
RDAS: A Symmetric Key Scheme

for Authenticated Query Processing
in Outsourced Databases

Lil Maŕıa Rodŕıguez-Henŕıquez and Debrup Chakraborty

Departamento de Computación, CINVESTAV-IPN
Av. IPN No. 2508, Col. San Pedro Zacatenco, México, D.F. 07360, México
lrodriguez@computacion.cs.cinvestav.mx, debrup@cs.cinvestav.mx

Abstract. Security of outsourced databases is an important problem
of current practical interest. In this paper we address the problem of
authenticated query processing in outsourced databases. We describe
the syntax of a generic scheme for authenticated query processing called
RDAS, and provide security definitions for RDAS in line with concrete
provable security. Then, we propose a new scheme called RDAS1 which
enables a client to ensure both correctness and completeness of the query
results obtained from a server. Our solution involves use of bitmap indices
and message authentication codes in a novel manner. We prove that
RDAS1 is secure relative to our security definition. Finally, we discuss a
concrete improvement over RDAS1 (which we call RDAS2) and provide
performance data for both RDAS1 and RDAS2 on a real data base.

Keywords: Database security, query authentication, bitmap index,
MACs.

1 Introduction

Cloud computing holds the promise of revolutionizing the manner in which en-
terprises manage, distribute, and share information. The data owner (client) can
out-source almost all its information processing tasks to a “cloud”. The cloud
can be seen as a collection of servers (we shall sometimes refer to it as the server)
which caters the data storage, processing and maintenance needs of the client.
Needless to say this new concept of computing has already brought significant
savings in terms of costs for the data owner.

Among others, an important service provided by a cloud is Database as a
Service (DAS). In this service the client delegates the duty of storage and main-
tenance of his/her data to a third party (an un-trusted server). This model has
gained lot of popularity in the recent times. The DAS model allows the client
to perform operations like create, modify and retrieve from databases in a re-
mote location [6]. These operations are performed by the server on behalf of the
client. However, delegating the duty of storage and maintenance of data to a
third party brings in some new security challenges.

R. Accorsi and S. Ranise (Eds.): STM 2013, LNCS 8203, pp. 115–130, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

116 L.M. Rodŕıguez-Henŕıquez and D. Chakraborty

The two main security goals of cryptography are privacy and authentication.
These security issues are relevant to the outsourced data also. The client who
keeps the data with an untrusted server has two main concerns. The first one
being that the data may be sensitive and the client may not want to reveal the
data to the server and the second one is the data whose storage and maintenance
has been delegated to the server would be used by the client. The typical usage
of the data would be that the client should be able to query the database and the
answers to the client’s queries would be provided by the server. It is natural for
the client to be concerned about a malicious server who does not provide correct
answers to the client queries. In this work we are interested in this problem. We
aim to devise a scheme in which the client would be able to verify whether the
server is responding correctly to its queries.

We consider the scenario where a client delegates a relational data base to
an un-trusted server. When the client queries its outsourced data, it expects
in return a set of records (query reply) satisfying the query’s predicates. As
the server is not trusted, so it must be capable of proving the correctness of
its responses. We describe the intricacies of the problem with the help of an
example. Consider the relational database of employees data shown in Table 1.

Table 1. Relation R1 (This relation would serve as a running example)

EmpId Name Gender Level

TRW Tom M L2

MST Mary F L1

JOH John M L2

LCT Lucy F L1

ASY Anne F L1

RZT Rosy F L2

We consider that this relation has been delegated by a client to a server, and
the client poses the following query

SELECT * FROM R1 WHERE Gender = ’M’ OR Level = ’L2’.

The correct response to this query is the set Res consisting of three tuples

Res = {(TRW, Tom, M, L2), (JOH, John, M, L2), (RZT, Rosy, F, L2)}.

In answering the query the server can act maliciously in various ways. In the
context of authentication we are concerned with two properties of the response
namely correctness and completeness, denote two different malicious activities
of the server. We explain these notions with an example below:

1. Incorrect result: The server responds with three tuples, but changes the
tuple (TRW, Tom, M, L2), to (TRW, Tom, F, L2). Moreover, it can be the
case that the server responds with Res∪{(BRW, Bob, M, L2), i.e., it responds
with an extra tuple which is not a part of the original relation.

RDAS: A Symmetric Key Scheme for Authenticated Query Processing 117

2. Incomplete result: The server may not respond with the complete result,
i.e., it can delete some valid results from the response, i.e., instead of res-
ponding with Res it responds with Res− {(TRW, Tom, M, L2)}.

The problem of correctness can be easily handled in the symmetric setting
by adding a message authentication code to each tuple. A secure message au-
thentication code is difficult to forge, and thus this property would not allow
the server to add fake entries in its response. The completeness problem is more
difficult and its solution is achieved through more involved schemes.

The problem of query completeness has been largely addressed by some inter-
esting use of authenticated data structures. The basic idea involved is to store the
information already present in the relation in a different form using some special
data structures. This redundancy along with some special structural properties
of the used data structures help in verifying completeness.

A large part of the literature uses tree based authentication structures like the
Merkeley hash tree [8] or its variants. Some notable works in this direction are
reported in [3, 5, 7–9, 13, 14, 19]. These techniques involve using a special data
structure along with some cryptographic authentication mechanism like hash
functions and/or signatures schemes. The tree based structures yield reasonable
communication and verification costs. But, in general they require huge storage
at server side, moreover the query completeness problem is largely addressed
with respect to range queries and such queries may not be relevant in certain
scenarios, say in case of databases with discrete attributes which do not have
any natural metric relationship among them.

Signature schemes have also been used in a novel manner for solving the pro-
blem. One line of research has focussed on aggregated signatures [10–12, 15, 16].
Signature aggregation helps in reducing the communication cost to some extent
and in some cases can function with constant extra communication overhead. A
related line of research uses chain signatures. If one uses chain signatures as in
[11], the use of specialized data structures may no longer be required.

Our Contributions: Though there have been considerable amount of work
on authenticated query processing on relational data bases, but it has been ac-
knowledged (for example in [20]) that the problem of query authentication largely
remains open. An unified cryptographic treatment of the problem is missing in
the literature. In most existing schemes cryptographic objects have been used in
an ad-hoc manner, and the security guarantees that the existing schemes pro-
vide are not very clear. In this work we initiate a formal cryptographic study
of the problem of query authentication in a distinct direction. We propose a
new scheme which does not use any specialized data structure to address the
completeness problem. Our solution involves usage of bitmap indices for this
purpose. Bitmap indices have gained lot of popularity in the current days for
their use in accelerated query processing [18], and many commercially available
databases like Oracle, IBM DB2, Sybase IQ now implement some form of bitmap
index scheme in addition to the more traditional B-tree based schemes. Thus, it
may be easy to incorporate a bitmap based scheme in a modern database with-
out significant extra cost. To our knowledge, bitmaps have not been used till

118 L.M. Rodŕıguez-Henŕıquez and D. Chakraborty

date for a security goal. In addition to bitmap indices we use a secure message
authentication code (MAC) as the only cryptographic object. We show that by
the use of these simple objects one can design a query authentication scheme
which allows verification of both correctness and completeness of query results.

In concrete terms in this paper we describe a generic scheme which we call as
relational database authentication scheme (RDAS) which can provide the func-
tionality of authenticated query processing in static databases. We define the
security goals of RDAS in line with the tradition of concrete provable security.
Then we propose a RDAS called RDAS1. RDAS1 is designed using message au-
thentication codes and bitmap indices in a novel manner. RDAS1 is capable of
authenticated query processing of simple select queries and select queries invol-
ving disjunctions of equality conditions. We point out various directions in which
RDAS1 can be modified to incorporate other types of queries. In particular we
propose a modification called RDAS2 which is capable of authenticating a larger
class of queries. Finally we provide some experimental data on performance of
RDAS1 and RDAS2.

2 Preliminaries and Notations

Relations: By R(A) we would denote a relation over a set of attributes A. If
A = {a1, a2, · · · an}, we shall sometimes write R(a1, a2, · · · , an) instead of R(A).
We will assume that each attribute has a set of permitted values, i.e., the domain
of the attribute. Given an attribute a, Dom(a) would represent its domain. We
are mainly concerned with attributes whose domains are finite, note that for a
static database each attribute always has a finite domain. By cardinality of an
attribute we shall mean the cardinality of the domain of the attribute. We will
denote the cardinality of an attribute a by Card(a) = |Dom(a)|.

A tuple t in a relation is a function that associates with each attribute a value
in its domain. Specifically if A = {a1, a2, · · ·an} and R(A) be a relation then the
jth tuple of relation R(A) would be denoted by tRj and for ai ∈ A by tRj [ai] we

shall denote the value of attribute ai in the jth tuple in R. For B ⊆ A, tRj [B]

will denote the set of values of the attributes in B in the jth tuple. We shall
sometimes omit the subscripts and superscripts from tRj and denote the tuple
by t if the concerned relation is clear from the context and the tuple number is
irrelevant.

Binary Strings: The set of all binary strings would be denoted by {0, 1}∗, and
the set of n bit strings by {0, 1}n. For X1, X2 ∈ {0, 1}∗, by X1||X2 we shall mean
the concatenation of X1 and X2; and |X1| will denote the length of X1 in bits.
By biti(X) we will denote the ith bit of X . We shall always consider that the
domains of all attributes in the relations are subsets of {0, 1}∗, this would allow
us to apply transformations and functions on the values of the tuples without
describing explicit encoding schemes.

Bitmaps: Consider a relation R(a1, . . . , am) with nT many rows. Consider that
for each attribute ai, Dom(ai) = {vi1, vi2, . . . viλi

}, thus Card(ai) = λi for 1 ≤

RDAS: A Symmetric Key Scheme for Authenticated Query Processing 119

i ≤ m. We define the bitmap of an attribute ai corresponding to its value vij in

the relation R as BitMapR(ai, v
i
j) = X , where X is a binary string, such that

|X | = nT and for 1 ≤ k ≤ nT,

bitk(X) =

{
1 if tRk [ai] = vij
0 otherwise.

Consider the relation R1 on the attributes {EmpID, Name, Gender, Level} as
shown in Table 1. Here we have Dom(Gender) = {M, F} and Dom(Level) =
{L1, L2}. Hence we can compute the following bitmaps:

BitMapR1(Gender,F) = 010111 , BitMapR1(Gender,M) = 101000

BitMapR1(Level, L1) = 010110 , BitMapR1(Level, L2) = 101001

Message Authentication Codes: Message authentication codes provide au-
thentication in the symmetric key setting. It is assumed that the sender and the
receiver share a common secret key K. Given a message x, the sender uses K
to generate a footprint of the message. This footprint (commonly called a tag)
is the message authentication code (MAC) for the message x. The sender trans-
mits the pair (x; tag) to the receiver. The receiver uses K to verify that (x, tag)
is a properly generated message-tag pair. Verification is generally performed by
regenerating the tag on the message x and comparing the generated tag with
the one received. We shall call the algorithm for generating the tag as a MAC.
Assuming that the size of the tag is τ bits, we see the tag generation scheme as
a function MAC : K ×M → {0, 1}τ , where K andM are the key and message
spaces respectively. In most cases we shall writeMACK(x) instead ofMAC(K,x).

3 Relational Database Authentication Scheme (RDAS):
Definitions and Basic Notions

A relational database authentication scheme (RDAS) consists of a tuple of algo-
rithms (K,F , Φ, Ψ,V), which are described in details in the following paragraphs.

K is the key generation algorithm and it selects one (or more) keys from
a pre-specified key space and outputs them.

F is called the authentication transform, which takes in a set of rela-
tions R and a set of keys and outputs another set of relations R′ along
with some additional data (Ms,Mc). If the set of keys is K, we shall denote
this operation as (R′,Mc,Ms) ← FK(R). A client who wants to store the
set of relations R in an un-trusted server, transforms R to R′ using the
authentication transform F and a set of keys. The transform F produces
some additional data other than the set of relations R′, the additional data
consists of two distinct parts Ms and Mc. The set of relations R′ along with
Ms are stored in the server and the keys and the data Mc are retained in
the client. The key generation algorithm and the authentication transform
are executed in the client side.

120 L.M. Rodŕıguez-Henŕıquez and D. Chakraborty

We call Φ as the query translator, it is a transformation which takes in a
query for the relations in R and converts it into a query for relations in R′.
For ease of discussion we shall refer a query for R to be a R-query and a
query for R′ to be a R′-query. Thus, given a R-query q, Φ(q) would be a R′-
query. Thus by use of the transform Φ, the client would be able to translate
queries meant for R to queries which can be executed on the transformed
relations in R′.

Ψ is the response procedure. To execute a query q onR, the client converts
the query to Φ(q) and sends it to the server. The server executes the function
Ψ , which takes in the query Φ(q) and uses R′ and Ms. The output of Ψ is ρ,
which we call as the response of the server. The server returns it to the client.

The verification procedure is a keyed transform VK which runs in the
client. It takes as input the query q, a response ρ of the server and Mc and
outputs either an answer ans for the query q or outputs a special symbol ⊥
which signifies reject.

3.1 Correctness and Security

If we fix the set of relationsR, then a R-query q when executed in R would have
a fixed answer say ans(R, q). Our goal is to transform R to R′ using a RDAS in
such a way that if the query Φ(q) is sent to the server, then the answer ans should
be recoverable from the server response ρ through the procedure V , if the server
follows the protocol correctly. On the other hand, if the server is malicious, i.e.,
it deviates from the protocol and sends a response ρ′ distinct from the correct
response ρ then the procedure V should reject the response by outputting ⊥. In
other words, if the answer to a R-query is ans, then after running the protocol,
V will either produce ans or ⊥, it would not produce an answer ans′ distinct
from ans.

In the security model, we allow the adversary to choose the primary set of
relations R. Given this choice of R, we compute (R′,Mc,Ms) ← FK(R), for a
randomly selected set of keys K which is unknown to the adversary. We give R′
and Ms to the adversary. The adversary chooses a R-query q and the challenger
provides the adversary with Φ(q), finally the adversary outputs a response ρ,
and we say that the adversary is successful if VK(ρ, q,Mc) /∈ {⊥, ans(R, q)}.
Definition 1. Let SuccA be the event that a specific adversary A is successful
in the sense as described above. We say that a RDAS is (ε, t)-secure if for any
adversary A which runs for time at most t, Pr[SuccA] ≤ ε.

4 RDAS1: A Generic Scheme for Select Queries Involving
Arbitrary Disjunctions

We discuss a basic scheme for a secure RDAS which works only if the queries
made are single attribute select queries or select queries involving disjunctions
of an arbitrary number of equality conditions. We call this scheme as RDAS1.

RDAS: A Symmetric Key Scheme for Authenticated Query Processing 121

We describe the scheme assuming that the set of initial relations R is a sin-
gleton set consisting of a single relation R(B), where B = {b1, b2, . . . , b|B|} is the
set of attributes, and consider A = {a1, . . . , am} ⊆ B to be a set of attributes on
which queries are allowed, we shall call A the set of allowed attributes. It is pos-
sible that B = A. The procedure F converts R into two relations Rα and Rβ , i.e,
R′ = {Rα, Rβ} and Ms is empty and Mc = nT, where nT is the number of tuples
in R. The only cryptographic object used by RDAS1 is a message authentication
code MAC : K×{0, 1}∗ → {0, 1}τ , where K is the key space. In what follows, we
shall describe the procedures involved in RDAS1 considering a generic relation
R(B), where the set of allowed attributes is A ⊆ B. Also we shall throughout
consider the relation R1 in Table 1 as a concrete example, and for simplicity, for
R1 we shall consider the set of allowed attributes to be {Gender, level}.
RDAS1.K: The key space for RDAS1 is the same as the key space of the associated
message authentication code MAC. The key generation algorithm selects a key
K uniformly at random from K.
RDAS1.F : F produces two relations Rα and Rβ by the action of the key. The
relation Rα is defined on the set of attributes B ∪{Nonce, Tag}, i.e., Rα has two
more attributes than in R. If R contains nT many tuples then Rα also contain
the same number of tuples. The procedure for populating the tuples of Rα is
depicted in Figure 1. What this procedure does is compute a MAC for each
row. The relation Rβ contains the attributes {Name, SearchKey, RowNo, Tag1},
irrespective of the attributes in relation R. Where Dom(Name) = {a1, . . . , am},
i.e., the allowed attributes in R. And, Dom(SearchKey) = Dom(a1)∪Dom(a1)∪
· · · ∪Dom(am). Let Ω = ∪mi=1 ({ai} × Dom(ai)), note that the elements of Ω are
ordered pairs of the form (x, y) where x ∈ Dom(Name) and y ∈ Dom(SearchKey),
and |Ω| = ∑m

i=1 Card(ai) = N . Let L be a list of the elements in Ω in an arbitrary
order. If (x, y) be the i-th element in L, then we shall denote x and y by L1i
and L2i respectively, where 1 ≤ i ≤ N . The way the relation Rβ is populated
is also shown in Figure 1. This procedure allows the client to store all possible
pairs L1i ,L2i along with the MAC calculated over this pair concatenated with the
respective bitmap and RowNo. Note that the bitmap is not explicitly stored in
the relation Rβ . The transform F is executed in the client side, and the resulting
relations Rα and Rβ are stored in the server.

For a concrete example, if RDAS1.F has as input the relation R1 (see Table
1) and the set of allowed attributes is {Gender, level}, then it would produce
as output the relations R1α and R1β as shown in Table 2. The relation R1α is
almost the same as that ofR1, except that it has two additional attributes, Nonce
and Tag. The attribute Nonce just contains the row numbers and is thus unique
for each row. The attribute Tag is the message authentication code computed
for a message which is produced by concatenating all the values of the attributes
in that tuple.

The relation R1β contains the attributes {Name, SearchKey, RowNo, Tag1},
where in this case, Dom(Name) = {Gender, Level}, Dom(SearchKey) = {M,F}∪

122 L.M. Rodŕıguez-Henŕıquez and D. Chakraborty

Creating Rα

1. for j = 1 to nT
2. for i = 1 to |B|
3. tRα

j [bi]← tRj [bi];

4. end for

5. tRα
j [Nonce]← j;

6. H ← tRj [b1]|| . . . ||tRj [bm]||j;
7. tRα

j [Tag]← MACK(H);

8. end for

Creating Rβ

1. for j = 1 to N

2. t
Rβ
j [Name]← L1

j ;

3. t
Rβ
j [SearchKey]← L2

j ;

4. t
Rβ
j [RowNo]← nT +j;

5. L← L1
j ||L2

j ||BitMapR(L1
j ,L2

j)||(nT + j);

6. t
Rβ
j [Tag1]← MACK(L);

7. end for

Fig. 1. Creating Rα and Rβ

{L1, L2}. The tuples in R1β are populated according to the procedure as shown
in Figure 1, and the specific relation R1β is shown in Table 2.
RDAS1.Φ: The transform Φ, transforms a query meant for the original relation
R to a set of queries which are meant to be executed on the relations Rα and
Rβ which are stored in the server side. As mentioned, the allowed queries for
RDAS1 are of the following form:

Q: SELECT * FROM R WHERE a1 = v1 OR a2 = v2 OR OR al = vl

Table 2. Relations R1α and R1β

Relation R1α

EmpId Name Gender Level Nonce Tag

TRW Tom M L2 1 Y1

MST Mary F L1 2 Y2

JOH John M L2 3 Y3

LCT Lucy F L1 4 Y4

ASY Anne F L1 5 Y5

RZT Rosy F L2 6 Y6

Relation R1β

Name SearchKey RowNo Tag1

Gender F 7 Y ′
7

Gender M 8 Y ′
8

Level L1 9 Y ′
9

Level L2 10 Y10
′

The allowed set of queries are thus select queries on arbitrary numbers of
disjunctions on different or repeated attributes 1, which includes select queries
on a single attribute of the form SELECT * FROM R WHERE ai = v. Given as
input a valid query q, Φ(q) outputs two queries one for the relation Rα (which
we call qα) and the other for Rβ (which we call qβ). For the specific query Q,
Φ(Q) will output the following queries:

Qα: SELECT * FROM Rα WHERE a1 = v1 OR a2 = v2 OR OR al = vl
Qβ: SELECT * FROM Rβ WHERE (Name = a1 AND SearchKey = v2) OR OR

(Name = al AND SearchKey = vl)

In the concrete example, consider the following query Q1 on the relation R1

Q1: SELECT * FROM R1 WHERE Gender = ’M’ OR Level= ’L2’

1 By a query of disjunction on repeated attributes we mean a query like: SELECT *

FROM R WHERE a1 = v1 OR a1 = v2 OR a2 = v3. Here the attribute a1 is repeated
twice.

RDAS: A Symmetric Key Scheme for Authenticated Query Processing 123

Applying the transformation Φ(Q1), the output queries Q1α and Q1β would be
the following:

Q1α: SELECT * FROM R1α WHERE Gender = ’M’ OR Level = ’L2’

Q1β: SELECT * FROM R1β WHERE (Name = ’Gender’ AND Searchkey =’M’) OR

(Name = ’Level’ AND Searchkey =’L2’)

The reason for the specific structure of the qβ queries would be clear from the
description of the verification process and the associated example.

RDAS1.Ψ : As discussed, Ψ is the transform executed in the server to generate
the response for a set of queries produced by Φ. In RDAS1 the response of
the server is constructed just by running the queries specified by Φ on Rα and
Rβ . We denote the response by S = (Sα, Sβ) where Sα and Sβ corresponds to
responses of qα and qβ respectively. Thus, for the example, the server executes
the queries Q1α and Q1β on R1α and R1β respectively and thus returns the
response S1 = (S1α, S1β) which is shown in Table 3.

Table 3. Left side: Answer S1α, Right side: Answer S1β

Relation S1α

EmpId Name Gender Level Nonce Tag

TRW Tom M L2 1 Y1

JOH John M L2 3 Y3

RZT Rosy F L2 6 Y6

Relation S1β

Name SearchKey RowNo Tag1

Gender M 8 Y ′
8

Level L2 10 Y10
′

RDAS1.V : The verification procedure receives as input the response S = (Sα, Sβ)
from the server, the original query and the keys. The response of the server
consists of two parts. We denote these two parts as two sets Sα and Sβ which
are responses to the queries qα and qβ respectively. Thus, Sα and Sβ contains
tuples from the relations Rα and Rβ respectively.

The transformed queries qα and qβ are also disjunctions of conditions, for
a qα query the conditions are of the form ai = vi, where ai is an attribute
and vi its value, and for a qβ query the conditions are of the form Name =
v AND SearchKey = w. Thus, for the description below, we consider that Cα

1

OR Cα
2 OR . . . Cα

l is a α query where each Cα
i is an equality condition and Cβ

1

OR Cβ
2 OR . . . Cβ

l is a β query where each Cβ
i is a conjunction of two equality

conditions. Note that the number of conditions in qα and qβ would always be the
same. Let SaT be a predicate which takes as input a tuple t and a condition C
(which can also be a query q) and outputs a 1 if the tuple t satisfies the condition
C, otherwise outputs a zero. With these notations defined, we are ready to
describe the verification algorithm. The verification algorithm consists of three
procedures: α-Verify, makeBitMap and β-Verify. The procedures are shown in
Figure 2, and they are applied sequentially in the same order as stated above.

The verification procedure checks for both the correctness and the complete-
ness of the server response against the original query q. Note that the server
response consists of two distinct parts Sα and Sβ , the Sα part corresponds to

124 L.M. Rodŕıguez-Henŕıquez and D. Chakraborty

α-Verify
1. for all tuples t ∈ Sα

2. if SaT(t, qα) = 0, return ⊥
3. ta← MACK(t[b1]|| . . . ||t[b|B|]||t[Nonce]);
4. if ta �= t[Tag] , return ⊥;
5. end for

β-Verify
17. for i← 1 to l
18. T [i]← 0;
19. end for
20. for i← 1 to l
21. for all tuples t ∈ Sβ

22. if SaT(Cβ
i , t) = 1

23. T [i]← T [i] + 1;
24. LL← t[Name]||t[SearchKey]||Xi||t[RowNo];
25. if MACK(LL) �= t[Tag1] return ⊥;
26. endif
27. end for
28. end for
29. for i← 1 to l
30. if T [i] �= 1 return ⊥;
31. end for
32. return

∏
(b1,b2,··· ,b|B|) Sα;

makeBitMap
6. for i← 1 to l

7. Xi ← 0nT;
8. end for
9. for all tuples t ∈ Sα

10. for i← 1 to l
11. if SaT(t, Ci)
12. j ← t[Nonce];
13. bitj(Xi)← 1;
14. end if
15. end for
16. end for

Fig. 2. The procedures involved in the verification process

the real result of the original query q and the Sβ part assists the verification
process to verify the completeness of the result in Sα. In the part α-Verify, the
verification procedure checks for the correctness of the tuples returned by the
server. As in the transformed relation Rα a message authentication code is asso-
ciated with each tuple of the original relation, hence the α-Verify part of the
verification procedure checks whether the contents of the tuples in Sα are not
modified. If any of the the tuples in Sα are modified then the computed message
authentication code on the tuple will not match the attribute Tag. If the com-
puted value of tag does not match with the attribute Tag for any tuple then the
verification process rejects by returning ⊥. Moreover in line 2 it checks whether
each tuple in Sα do satisfy the specified query. If the verification process does not
terminate in the α-Verify phase then it means that the tuples in Sα are all valid
tuples of the relation Rα and they all satisfy the specified query qα. The other
two parts of the verification process checks the completeness of the response.

Corresponding to each condition Name = v AND SearchKey = w in qβ the
procedure makeBitMap constructs the corresponding bitmap BitMapRα

(v, w) us-
ing the server response Sα. Note that if the server response Sα is correct then
makeBitMap would be able to construct the bitmaps corresponding to each con-
dition in qβ correctly. This is possible due to the specific type of the allowed
queries. Recall that an allowed query is formed only by the disjunctions of
equality conditions. In the procedure corresponding to the l conditions in qβ ,
l bitmaps are constructed which are named X1, . . . , Xl (See the example later
for more explanation).

RDAS: A Symmetric Key Scheme for Authenticated Query Processing 125

In the procedure β-Verify the response Sβ is verified using the bitmaps
X1, . . . , Xl constructed before. The procedure β-Verify first verifies whether Sβ

contains tuples corresponding to each condition in qβ , this is done using the
counter T [i], where i runs over the conditions in qβ . Notice, that for every con-

dition Cβ
i the server must return only one tuple in Sβ. The other parts of the

procedure involves in verifying the tags of the tuples against the tag’s of the
computed bitmaps.

To make the exposition clearer let us consider the same example we have so
far considered, i.e., the relation R1 the queries Q1α, Q1β and the corresponding
server responses of S1α and S1β (which are shown in Table 3). Given these
responses the procedure α-Verify will not terminate, as all the tuples in S1α do
satisfy the conditions in Q1α and as they are correct responses in the sense that
they are just copies of the tuples present in the relation Rα, hence the corres-
ponding message authentication codes will match. Given the responses in S1α,
one can compute the bitmaps BitMapRα

(Gender,M) and BitMapRα
(Level, L2).

To see this, see the response S1α in Table 3, where it says that the tuples
satisfying the condition Gender=M OR Level=L2 are the tuples with the nonce
values 1, 3 and 6. Now, as the verification procedure has as input the whole
of response S1α, hence it can predict correctly that the rows with the nonce
value 1 and 3 satisfies the condition Gender=M and all the tuples in S1α (i.e.,
with nonce values 1, 3, 6) satisfies the condition Level=L2. Thus, knowing that
the total number of tuples in Rα to be 6, and assuming that server response is
complete then the bitmap can be computed as BitMapRα

(Gender,M) = 101000.
Note that the 1st and 3rd bits of this bitmap are only one, as it corresponds to
the response in S1α. Similarly one can compute BitMapRα

(Level, L2) = 101001.
This is precisely what the procedure makeBitMaps would do for the example that
we consider. The computation of the individual bitmaps BitMapRα

(Gender,M)
and BitMapRα

(Level, L2) are possible from S1α as the Q1α query is a disjunc-
tion of equality conditions, if in the contrary the query was a conjunction of
conditions then there would be no way to compute the individual bitmaps in a
straightforward way, this explains the reason for the query restriction that we
impose.

Once these bitmaps are computed by using the procedure β-Verify one can
verify the correctness of the response S1β. As one can concatenate corresponding
the bitmaps computed by the procedure makeBitMaps with the other attributes
of the tuples in Sβ and compute the tag using the message authentication code
and thus verify if the computed tag matches the attribute Tag1.

The procedure β-Verify basically verifies the correctness of the response Sβ ,
this verification is done by using the bitmaps constructed using the response Sα.
The correctness of the response Sβ implies the completeness of the response Sα.

4.1 Security of RDAS1

We can distinguish two possibilities for breaking RDAS1: infringe the correct-
ness or violate the completeness of the response for a fixed query. To break the

126 L.M. Rodŕıguez-Henŕıquez and D. Chakraborty

correctness the opponent must make changes in one or more tuples of Sα and
still pass the verification process. This implies that the adversary must forge
the respective MACs. On the other hand, to violate the completeness, the ad-
versary must change the respective bitmaps in Sβ which also implies forging the
respective MACs. Now, we introduce this notion in a formal way.

Theorem 1. Consider an arbitrary adversary A attacking RDAS1 in the sense
of definition 1. Let A choose a relation R with nT tuples and the relation be
such that the transformed relation Rβ contains n′ tuples. Then there exist an
adversary B attacking the message authentication code MAC such that

Pr[SuccA] ≤ Pr[B forges].

Also, B asks at most nT+ n′ queries to its oracle and runs for time tA + (nT+
n′)(c+ tMAC), where tA is the running time of A, tMAC is the time for one MAC
computation and c is a constant.

For space limitations we skip the proof, it would be presented in the full version,
which would be published in the IACR eprint archive.

4.2 Costs and Overheads

Storage Cost: Given a relation R(B) with nT tuples, let size(ti[b]) denote the
size of the attribute b in the tuple t. Then the total size of R (which we also
denote by size(R)) would be given by

size(R) =
nT∑
i=1

∑
b∈B

size(ti[b]).

If this relation R is converted into (Rα, Rβ) with RDAS1.F , then we would
have,

size(Rα) = size(R) +

nT∑
i=1

(size(ti[Nonce]) + size(ti[Tag])),

if we assume a tag of constant length of τ bits then we would have

size(Rα) ≤ size(R) + nT(lg nT+ τ).

Again considering the set of allowed attributes of R as A = {a1, a2, . . . , am},
and N =

∑m
i=1 Card(ai), we will have

size(Rβ) =
N∑
i=1

(size(ti[Name]) + ti[SearchKey] + ti[RowNo] + size(ti[Tag1])).

If we consider sName and ssk the maximum size of the values of the attributes
Name and SearchKey, then we would have

size(Rβ) ≤ N(sName + ssk + lg(nT+N) + τ).

RDAS: A Symmetric Key Scheme for Authenticated Query Processing 127

The total cost of storage at the server side would be size(Rα) + size(Rβ), and
at the client side would be lg(nT) as in the client we need to store the number
of tuples in the original relation.

Communication Cost: Consider the query SELECT * FROM Rα WHERE a1 =
v1 OR a2 = v2 OR OR al = vl, let the number of tuples satisfying the
query be num. Let siz be the size of the response in a normal scenario without
authentication. Then the maximum size of the server response in case of RDAS1
would be

sizRD1 = siz+ num× (lg nT+ τ) + l × (sName + ssk + lg(nT +N) + τ), (1)

where the first two terms corresponds to the Sα response and the remaining
term counts for the Sβ response.

5 Selects Involving Arbitrary Boolean Connectives

Here we propose an extension of RDAS1 which can support queries of the form

Q: SELECT * FROM R WHERE (a1 = v1) Δ1 (a2 = v2) Δ2 Δl−1
(al = vl),

where Δis are arbitrary Boolean connectives. An easy solution to this case would
be to change RDAS1 to a new protocol RDAS2 along the following lines:

1. The relationRβ produced by RDAS2.F would contain explicit bitmaps corres-
ponding to the attributes and the values. Specifically, the attributes present
in Rβ should be {Name, SearchKey, RowNo, bitmap, tag1}. Thus, for creating
the relation Rβ we need to add a line t

Rβ

j [bitmap] ← BitMapR(L1j ,L2j) after
line 5 in the procedure Creating Rβ in Fig. 1.

2. The query translation procedure and the response procedure for RDAS2 re-
mains same as that of RDAS1.

3. The response procedure also remains the same, i.e., the server just answers
the qα and qβ queries, but as the Rβ relation now explicitly contains the
bitmaps, hence the bitmaps would also be a part of the query.

4. For the verification procedure in RDAS2 it is not required to create the
bitmaps any more, the client verifies the Sα response by the procedure α-
Verify in Fig. 2, then it verifies the tags of the individual bitmaps returned
in Sβ and finally computes the result bitmap using the returned bitmap and
checks if the result bitmap matches with the result returned.

We now state the storage and communication costs for RDAS2 following the
notations in Section 4.2. The size of Rα in case of RDAS2 would be the same as
in RDAS1, the size of Rβ would be

size(Rβ) ≤ N(sName + ssk + lg(nT+N) + τ + nT).

128 L.M. Rodŕıguez-Henŕıquez and D. Chakraborty

The size of a server response in case of RDAS2 would be

sizRD2 = sizRD1 + l× nT (2)

where sizRD1 is the size of the response of RDAS1, as given in Eq. (1). In case
of RDAS2, though we state that the bitmaps are to be explicitly stored in the
relation Rβ , but as most commercial data bases uses bitmaps indices for accele-
rating query processing, hence this may not amount to extra storage in some
systems. Moreover bitmaps can be compressed, there has been substantial work
on suitable encoding of bitmaps such that their sizes can be reduced and the
Boolean operations be applied on the compressed bitmaps [1, 2]. Applying proper
encoding of the bitmaps can drastically reduce both storage and communication
costs. Details about this would appear in the full version of the paper.

6 Experimental Results

In this section we discuss some experimental results on the performance of
RDAS1 and RDAS2. Both RDAS1 and RDAS2 can be implemented with any
secure MAC, we chose PMAC instantiated with an AES with 128 bit key (we
use the description in [17]). For implementation of AES we use the new Intel
dedicated instructions for it.

All results were obtained by testing the implementation in a four-core i5-
2400 Intel processor (3.1GHz) machine, with a Ubuntu 12.04.02 LTS operating
system. We used PostgreSQL 9.1.9 for our database and used the gcc 4.7.3
compiler.

We used Census-Income data set [4] to test performance of our schemes. This
data contains weighted census data extracted from the 1994 and 1995 current
population surveys conducted by the U.S. Census Bureau. The number of in-
stances in the data set is 199523. The data contains 42 demographic and em-
ployment related variables, the sum of the cardinalities of all the attributes is
103419, and the total size of the dataset size is 99.1 MB.

The experiments were performed using the set of queries presented in Table 4
(a). Table 4 (a) shows the characteristics of the queries in terms of the number
of restrictions and the size of the query response, all of them are disjunctions
of equality conditions. The last column shows the percentage of the response
size in terms of the whole database size. Note that the number of restrictions
corresponds to the number of tuples which would be included in a correct and
complete Sβ response and the response size would be same as the number of
tuples in the Sα result. In Table 4 (b) we report the time required for executing
the set of queries in Table 4 (a). We report times for normal execution (i.e.
without any authentication) and RDAS1 and RDAS2. All reported times are the
average of 250 executions of the same query. The response sizes for the queries
can be easily computed using equations (1) and (2). For concrete numerical
values see the full version.

RDAS: A Symmetric Key Scheme for Authenticated Query Processing 129

Table 4. Performance Information

(a) Summary of the different queries used for performance testing

Query Id Number of Response Size Database
Restrictions (tuples) Percentage

Q1 10 20115 10
Q2 20 35452 18
Q3 30 92791 46
Q4 40 106065 53
Q5 50 198869 99

(b) Execution times for OR queries. All times are in milliseconds.
RDAS1 RDAS2

Query Id Normal time Avg Extra Avg Extra
time Overhead(%) time Overhead(%)

Q1 680.93 829.33 21.79 827.06 21.46
Q2 1223.09 1652.09 47.10 1516.33 35.01
Q3 2784.97 4076.28 46.36 3604.09 29.41
Q4 3192.06 4582.93 43.58 4004.43 25.45
Q5 6130.07 10781.05 75.87 9222.51 50.45

7 Conclusion

We presented RDAS a generic framework for authenticated query processing and
provided the syntax and security definition of a RDAS. We also provided two
concrete constructions RDAS1 and RDAS2 which uses bitmap indices and mes-
sage authentication codes in a novel way. There are other ways in which RDAS1
and RDAS2 can be improved, for example communication costs can be drasti-
cally reduced using aggregate message authentication codes. These possibilities
would be discussed in the full version of the paper.

Acknowledgements. The authors acknowledge the support from CONACYT
project 166763.

References

1. Chan, C.Y., Ioannidis, Y.E.: Bitmap index design and evaluation. In: Haas, L.M.,
Tiwary, A. (eds.) SIGMOD Conference, pp. 355–366. ACM Press (1998)

2. Chan, C.Y., Ioannidis, Y.E.: An efficient bitmap encoding scheme for selection
queries. In: Delis, A., Faloutsos, C., Ghandeharizadeh, S. (eds.) SIGMOD Confer-
ence, pp. 215–226. ACM Press (1999)

3. Devanbu, P.T., Gertz, M., Martel, C.U., Stubblebine, S.G.: Authentic data publi-
cation over the internet. Journal of Computer Security 11(3), 291–314 (2003)

4. Frank, A., Asuncion, A.: UCI machine learning repository (2010)
5. Goodrich, M.T., Tamassia, R., Triandopoulos, N.: Super-efficient verification of dy-

namic outsourced databases. In: Malkin, T. (ed.) CT-RSA 2008. LNCS, vol. 4964,
pp. 407–424. Springer, Heidelberg (2008)

6. Hacigümüs, H., Mehrotra, S., Iyer, B.R.: Providing database as a service. In: ICDE,
p. 29. IEEE Computer Society (2002)

7. Li, F., Hadjieleftheriou, M., Kollios, G., Reyzin, L.: Dynamic authenticated index
structures for outsourced databases. In: Chaudhuri, S., Hristidis, V., Polyzotis, N.
(eds.) SIGMOD Conference, pp. 121–132. ACM (2006)

130 L.M. Rodŕıguez-Henŕıquez and D. Chakraborty

8. Merkle, R.C.: A certified digital signature. In: Brassard, G. (ed.) CRYPTO 1989.
LNCS, vol. 435, pp. 218–238. Springer, Heidelberg (1990)

9. Mouratidis, K., Sacharidis, D., Pang, H.: Partially materialized digest scheme: an
efficient verification method for outsourced databases. VLDB J. 18(1), 363–381
(2009)

10. Mykletun, E., Narasimha, M., Tsudik, G.: Authentication and integrity in out-
sourced databases. In: NDSS, The Internet Society (2004)

11. Narasimha, M., Tsudik, G.: DSAC: integrity for outsourced databases with signa-
ture aggregation and chaining. In: Herzog, O., Schek, H.-J., Fuhr, N., Chowdhury,
A., Teiken, W. (eds.) CIKM, pp. 235–236. ACM (2005)

12. Narasimha, M., Tsudik, G.: Authentication of outsourced databases using signa-
ture aggregation and chaining. In: Li Lee, M., Tan, K.-L., Wuwongse, V. (eds.)
DASFAA 2006. LNCS, vol. 3882, pp. 420–436. Springer, Heidelberg (2006)

13. Nuckolls, G.: Verified query results from hybrid authentication trees. In: Jajodia,
S., Wijesekera, D. (eds.) Data and Applications Security 2005. LNCS, vol. 3654,
pp. 84–98. Springer, Heidelberg (2005)

14. Palazzi, B., Pizzonia, M., Pucacco, S.: Query racing: Fast completeness certification
of query results. In: Foresti, S., Jajodia, S. (eds.) Data and Applications Security
and Privacy XXIV. LNCS, vol. 6166, pp. 177–192. Springer, Heidelberg (2010)

15. Pang, H., Jain, A., Ramamritham, K., Tan, K.-L.: Verifying completeness of rela-
tional query results in data publishing. In: Özcan, F. (ed.) SIGMOD Conference,
pp. 407–418. ACM (2005)

16. Pang, H., Zhang, J., Mouratidis, K.: Scalable verification for outsourced dynamic
databases. PVLDB 2(1), 802–813 (2009)

17. Rogaway, P.: Efficient instantiations of tweakable blockciphers and refinements to
modes OCB and PMAC. In: Lee, P.J. (ed.) ASIACRYPT 2004. LNCS, vol. 3329,
pp. 16–31. Springer, Heidelberg (2004)

18. Wrembel, R., Koncilia, C.: Data warehouses and OLAP: concepts, architectures,
and solutions. Gale virtual reference library. IRM Press (2007)

19. Yang, Y., Papadopoulos, S., Papadias, D., Kollios, G.: Spatial outsourcing for
location-based services. In: Alonso, G., Blakeley, J.A., Chen, A.L.P. (eds.) ICDE,
pp. 1082–1091. IEEE (2008)

20. Zheng, Q., Xu, S., Ateniese, G.: Efficient query integrity for outsourced dynamic
databases. IACR Cryptology ePrint Archive, 2012:493 (2012)

	RDAS: A Symmetric Key Scheme for Authenticated Query Processing
in Outsourced Databases
	1 Introduction
	2 Preliminaries and Notations
	3 Relational Database Authentication Scheme (RDAS): Definitions and Basic Notions
	3.1 Correctness and Security

	4 RDAS1: A Generic Scheme for Select Queries Involving
Arbitrary Disjunctions
	A Generic Scheme for Select Queries Involving Arbitrary Disjunctions
	4.1 Security of RDAS1

	4.2 Costs and Overheads

	5 Selects Involving Arbitrary Boolean Connectives
	6 Experimental Results
	7 Conclusion
	References

