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Abstract We extend recent results from Kuo et al. (SIAM J Numer Anal 50:3351–
3374, 2012) of QMC quadrature and Finite Element discretization for parametric,
scalar second order elliptic partial differential equations to general QMC-Galerkin
discretizations of parametric operator equations, which depend on possibly count-
ably many parameters. Such problems typically arise in the numerical solution
of differential and integral equations with random field inputs. The present set-
ting covers general second order elliptic equations which are possibly indefinite
(Helmholtz equation), or which are given in saddle point variational form (such as
mixed formulations). They also cover nonsymmetric variational formulations which
appear in space-time Galerkin discretizations of parabolic problems or countably
parametric nonlinear initial value problems (Hansen and Schwab, Vietnam J. Math
2013, to appear).

1 Introduction

The efficient numerical computation of statistical quantities for solutions of partial
differential and of integral equations with random inputs is a key task in uncertainty
quantification in engineering and in the sciences. The quantity of interest being
expressed as a mathematical expectation, the efficient computation of these quanti-
ties involves two basic steps: (i) approximate (numerical) solution of the operator
equation, and (ii) numerical integration. In the present note, we outline a general
strategy towards these two aims which is based on (i) stable Galerkin discretization
and (ii) Quasi Monte-Carlo (QMC) integration by a randomly shifted, first order
lattice rule following [6, 17, 22].
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QMC (and other) quadrature methods require the introduction of coordinates of
integration prior to numerical quadrature. In the context of random field inputs with
nondegenerate covariance operators, a countable number of coordinates is required
to describe the random input data, e.g. by a Karhunen-Loève expansion. Therefore,
in the present note, we consider in particular that the operator equation contains not
only a finite number of random input parameters, but rather depends on random
field inputs, i.e. it contains random functions of space and, in evolution problems,
of time which describe uncertainty in the problem under consideration. Combined
QMC – Finite Element error analysis for scalar diffusion problems with random
coefficients was obtained recently in [9, 17]. In the present note, we indicate how
the main conclusions in [17] extend to larger classes of problems.

2 Parametric Operator Equations

2.1 Abstract Saddle Point Problems

Throughout, we denote by X and Y two reflexive Banach spaces overR (all results
will hold with the obvious modifications also for spaces over C) with (topological)
duals X 0 and Y 0, respectively. By L .X ; Y 0/, we denote the set of bounded linear
operators A W X ! Y 0. The Riesz representation theorem associates each A 2
L .X ; Y 0/ in a one-to-one correspondence with a bilinear form b.�; �/ W X �Y !
R by means of

b.v; w/ D hw; AviY �Y 0 for all v 2 X ; w 2 Y : (1)

Here and in what follows, we indicate spaces in duality pairings h�; �i by subscripts.
We shall be interested in the solution of linear operator equations Au D f and

make use of the following solvability result which is a straightforward consequence
of the closed graph theorem, see, e.g., [1] or [8, Chap. 4].

Proposition 1. A bounded, linear operator A 2 L .X ; Y 0/ is boundedly invert-
ible if and only if its bilinear form satisfies inf-sup conditions: ex. ˛ > 0 s.t.

inf
0¤v2X

sup
0¤w2Y

b.v; w/

kvkX kwkY
� ˛ ; inf

0¤w2Y
sup

0¤v2X

b.v; w/

kvkX kwkY
� ˛ : (2)

If (2) holds then for every f 2 Y 0 the operator equation

find u 2 X W b.u; v/ D hf; viY 0�Y 8v 2 Y (3)

admits a unique solution u 2 X and there holds kukX D kA�1f kX � ˛�1kf kY 0 .



QMC Galerkin Discretization of Parametric Operator Equations 615

2.2 Parametric Operator Families

We shall be interested in QMC quadratures applied to solutions of parametric
families of operators A. From partial differential equations with random field input
(see, e.g. [27]), we consider, in particular, operator families which depend on
infinitely many parameters (obtained, for example, by Karhunen-Loève expansion
of random input functions). To this end, we denote by y WD .yj /j �1 2 U the
possibly (for random field inputs with nondegenerate covariance kernels) countable
set of parameters. We assume the parameters to take values in a bounded parameter
domain U � R

N. Then, in particular, each realization of y is a sequence of
real numbers. Two main cases arise in practice: first, the “uniform case”: the
parameter domain U D Œ�1=2; 1=2�N and, second, the “truncated lognormal
case”: the parameter domain U � R

N. In both cases, we account for randomness
in inputs by equipping these parameter domains with countable product probability
measures (thereby stipulating mathematical independence of the random variables
yj ). Specifically,

%.dy/ D
O

j �1

%j .yj /dyj ; y 2 U (4)

where, for j 2 N, %j .yj / � 0 denotes a probability density on .�1=2; 1=2/; for
example, %j .yj / D 1 denotes the uniform density, and in the truncated lognormal
case, %j D �1, the Gaussian measure truncated to the bounded parameter domain
.�1=2; 1=2/ � R, normalized so that �1.Œ�1=2; 1=2�/ D 1.

Often, mathematical expectations w.r. to the probability measure % of (function-
als of) the solutions u.y/ of operator equations depending on the parameter vector
y are of interest. One object of this note is to address error analysis of QMC
evaluation of such, possibly infinite dimensional, integrals. A key role in QMC
convergence analysis is played by parametric regularity of integrand functions,
in terms of weighted (reproducing kernel) Hilbert spaces which were identified
in recent years as pivotal for QMC error analysis (see, e.g., [20, 21, 30, 30, 33])
and QMC rule construction (see, e.g., [4, 5, 26]). By N

N

0 we denote the set of all
sequences of nonnegative integers, and by F D f� 2 N

N

0 W j�j < 1g the set of
“finitely supported” such sequences, i.e., sequences of nonnegative integers which
have only a finite number of nonzero entries. For � 2 F, we denote by n � N

the set of coordinates j such that �j ¤ 0, with j repeated �j � 1 many times.
Analogously, m � N denotes the supporting coordinate set for � 2 F.

We consider parametric families of continuous, linear operators which we denote
as A.y/ 2 L .X ; Y 0/. We now make precise the dependence of A.y/ on the
parameter sequence y which is required for our regularity and approximation
results.

Assumption 1. The parametric operator family fA.y/ 2 L .X ; Y 0/ W y 2 U g is
a regular p-analytic operator family for some 0 < p � 1, i.e.,
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1. A.y/ 2 L .X ; Y 0/ is boundedly invertible for every y 2 U with uniformly
bounded inverses A.y/�1 2 L .Y 0; X /, i.e., there exists C0 > 0 such that

sup
y2U

kA.y/�1kL .Y 0;X / � C0 (5)

and
2. For any fixed y 2 U , the operators A.y/ are analytic with respect to each yj

such that there exists a nonnegative sequence b D .bj /j �1 2 `p.N/ such that

8� 2 Fnf0g W sup
y2U

���.A.0//�1.@�
yA.y//

���
L .X ;X /

� C0b
� : (6)

Here @�
yA.y/ WD @�1

y1
@�2

y2
� � � A.y/; the notation b� signifies the (finite due to � 2

F) product b
�1

1 b
�2

2 : : : where we use the convention 00 WD 1.

We verify the abstract assumptions in the particular setting of affine parameter
dependence; this case arises, for example, in diffusion problems where the diffusion
coefficients are given in terms of a Karhunen-Loève expansion (see, e.g. [28] for
such Karhunen-Loève expansions and their numerical analysis, in the context of
elliptic PDEs with random coefficients). Then, there exists a family fAj gj �0 �
L .X ; Y 0/ such that A.y/ can be written in the form

8y 2 U W A.y/ D A0 C
X

j �1

yj Aj : (7)

We shall refer to A0 D A.0/ as “nominal” operator, and to the operators Aj , j � 1

as “fluctuation” operators. In order for the sum in (7) to converge, we impose the
following assumptions on the sequence fAj gj �0 � L .X ; Y 0/. In doing so, we
associate with the operator Aj the bilinear forms bj .�; �/ W X � Y ! R via

8v 2 X ; w 2 Y W bj .v; w/ DY hw; Aj viY 0 ; j D 0; 1; 2 : : : :

Assumption 2. The family fAj gj �0 in (7) satisfies the following conditions:

1. The “nominal” or “mean field” operator A0 2 L .X ; Y 0/ is boundedly
invertible, i.e. (cf. Proposition 1) there exists ˛0 > 0 such that

inf
0¤v2X

sup
0¤w2Y

b0.v; w/

kvkX kwkY
� ˛0 ; inf

0¤w2Y
sup

0¤v2X

b0.v; w/

kvkX kwkY
� ˛0 : (A1)

2. The “fluctuation” operators fAj gj �1 are small with respect to A0 in the
following sense: there exists a constant 0 < � < 2 such that for ˛0 as in (A1)
holds
X

j �1

bj � � < 2 ; where bj WD kA�1
0 Aj kL .X ;X / ; j D 1; 2; : : : :

(A2)
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Condition (A2) (and, hence, Assumption 2) is sufficient for the bounded invertibility
of A.y/, uniformly w.r. to the parameter vector y 2 U .

Theorem 1. Under Assumption 2, for every realization y 2 U D Œ�1=2; 1=2�N

of the parameter vector, the parametric operator A.y/ is boundedly invertible.
Specifically, for the bilinear form b.y I �; �/ W X � Y ! R associated with
A.y/ 2 L .X ; Y 0/ via

b.yI w; v/ WDY hv; A.y/wiY 0 (8)

there hold uniform (w.r. to y 2 U ) inf-sup conditions (2) with ˛ D .1��=2/˛0 > 0,

8y 2 U W inf
0¤v2X

sup
0¤w2Y

b.y I v; w/

kvkX kwkY
� ˛ ; inf

0¤w2Y
sup

0¤v2X

b.y I v; w/

kvkX kwkY
� ˛ :

(9)

In particular, for every f 2 Y 0 and for every y 2 U , the parametric operator
equation

find u.y/ 2 X W b.yI u.y/; v/ D hf; viY 0�Y 8v 2 Y (10)

admits a unique solution u.y/ which satisfies the a-priori estimate

sup
y2U

ku.y/kX � C kf kY 0 : (11)

Proof. We use Proposition 1, which gives necessary and sufficient conditions for
bounded invertibility; also, 1=˛ is a bound for the inverse. By Assumption 2, the
nominal part A0 of A.y/ in (7) is boundedly invertible, and we write for every

y 2 U : A.y/ D A0

�
I CP

j �1 yj A�1
0 Aj

�
. We see that A.y/ is boundedly

invertible iff the Neumann Series in the second factor is. Since jyj j � 1=2, a
sufficient condition for this is (A2) which implies, with Proposition 1, the assertion
with ˛ D ˛0.1 � �=2/. ut
From the preceding considerations, the following is readily verified.

Corollary 1. The affine parametric operator family (7) satisfies Assumption 1 with

C0 D 1

.1 � �=2/˛0

and bj WD kA�1
0 Aj kL .X ;X / ; for all j � 1 :

Examples for families of parametric operator equation include certain linear and
parabolic evolution equations [12], linear second order wave equations [13],
nonlinear elliptic equations [11], elliptic problems in random media with multiple
scales [14], and elliptic and parabolic control problems [15].
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2.3 Analytic Parameter Dependence of Solutions

The dependence of the solution u.y/ of the parametric, variational problem (10) on
the parameter vector y is analytic, with precise bounds on the growth of the partial
derivatives. The following bounds of the parametric solution’s dependence on the
parameter vector y will, as in [17], allow us to prove dimension independent rates
of convergence of QMC quadratures.

Theorem 2. Under Assumption 1, for every f 2 Y 0 and for every y 2 U , the
unique solution u.y/ 2 X of the parametric operator equation

A.y/ u.y/ D f in Y 0 (12)

depends analytically on the parameters, and the partial derivatives of the paramet-
ric solution family u.y/ satisfy the bounds

sup
y2U

k.@�
y u/.y/kX � C0j�jŠ Qb�kf kY 0 for all � 2 F; (13)

where 0Š WD 1 and where the sequence Qb D . Qbj /j �1 2 `p.N/ is defined by Qbj D bj

with bj as in (A2) in the affine case (7), and with Qbj D bj = ln 2 for all j 2 N in
the truncated lognormal case (6).

For a proof in the case of stationary diffusion problems we refer, for example, to
[3], for control problems to [15]. The regularity estimates (13) (and, therefore, also
sparsity and, as shown ahead, QMC convergence) results are available for linear
parabolic and hyperbolic PDE problems [12, 13], and for solutions of nonlinear,
parametric initial value problems on possibly infinite dimensional state spaces [10].

2.4 Spatial Regularity of Solutions

Convergence rates of Galerkin discretizations will require regularity of the paramet-
ric solution u.y/. To state it, we assume given scales of smoothness spaces fXtgt�0

and fY 0
t gt�0, with

X D X0 	 X1 	 X2 	 : : : ; Y 0 D Y 0
0 	 Y 0

1 	 Y 0
2 	 : : : : (14)

The scales fXt gt�0 and fY 0
t gt�0 (and analogously fX 0

t gt�0, fYtgt�0) are defined
for noninteger values of t � 0 by interpolation.

Instances of smoothness scales (14) in the context of the diffusion problem
considered in [3, 17] are, in a convex domain D, the choices X D H 1

0 .D/,
X1 D .H 2 \ H 1

0 /.D/, Y 0 D H �1.D/, Y 0
1 D L2.D/. In a nonconvex polygon

(or polyhedron), analogous smoothness scales are available, but involve Sobolev
spaces with weights (see, e.g., [25]). In the ensuing convergence analysis of
QMC – Galerkin discretizations of (12), we assume f 2 Y 0

t for some t > 0

implies that
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sup
y2U

ku.y/kXt D sup
y2U

kA.y/�1f kXt � Ctkf kY 0

t
: (15)

Such regularity is available for a wide range of parametric differential equations
(see [10, 15, 27] and the references there). For the analysis of Multi-Level QMC
Galerkin discretizations, however, stronger bounds which combined (15) and (13)
are necessary (see [19]).

2.5 Discretization

As the inverse A.y/�1 is not available explicitly, we will have to compute, for given
QMC quadrature points y 2 U , an approximate inverse. We consider the case
when it is obtained by Galerkin discretization: we assume given two one-parameter
families fX hgh>0 � X and fY hgh>0 � Y of subspaces of equal, finite dimension
Nh, which are dense in X resp. in Y , i.e.

8u 2 X W lim sup
h!0

inf
0¤uh2X h

ku � uhkX D 0 (16)

and likewise for fY hgh>0 � Y . We also assume the approximation property:

80 < t � Nt W 9Ct > 0 W 8u 2 Xt 80 < h � h0 W inf
wh

2X h
ku � whkX � Cth

t kukXt :

(17)

The maximum amount of smoothness in the scale Xt , denoted by Nt , depends of
the problem class under consideration and on the Sobolev scale: e.g. for elliptic
problems in polygonal domains, it is well known that choosing for Xt the usual
Sobolev spaces will allow (15) with t only in a rather small interval 0 < t � Nt ,
whereas choosing Xt as weighted Sobolev spaces will allows large values of Nt (see
[25]).

Proposition 2. Assume that the subspace sequences fX hgh>0 � X and
fY hgh>0 � Y are stable, i.e. that there exists N̨ > 0 and h0 > 0 such that
for every 0 < h � h0, there hold the uniform (w.r. to y 2 U ) discrete inf-sup
conditions

8y 2 U W inf
0¤vh2X h

sup
0¤wh2Y h

b.y I vh; wh/

kvhkX kwhkY
� N̨ > 0 (18)

and

8y 2 U W inf
0¤wh2Y h

sup
0¤vh2X h

b.yI vh; wh/

kvhkX kwhkY
� N̨ > 0 : (19)
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Then, for every 0 < h � h0, and for every y 2 U , the Galerkin approximation
uh 2 X h, given by

find uh.y/ 2 X h W b.y I uh.y/; vh/ D hf; vhiY 0�Y 8vh 2 Y h (20)

admits a unique solution uh.y/ which satisfies the a-priori estimate

sup
y2U

kuh.y/kX � N̨�1kf kY 0 : (21)

Moreover, there exists a constant C > 0 such that for all y 2 U holds
quasioptimality

ku.y/ � uh.y/kX � C N̨ �1 inf
0¤wh2X h

ku.y/ � whkX : (22)

We remark that under Assumption 2, the validity of the discrete inf-sup conditions
(18), (19) for the “nominal” bilinear forms b0.y I �; �/ with constant N̨0 > 0

independent of h implies (18), (19) for the form b.yI �; �/ with constant N̨ D
.1 � �=2/ N̨0 > 0.

3 QMC Integration

For a given bounded, linear functional G.�/ W X ! R, we are interested in
computing expected values of

F.y/ WD G.u.�; y// ; y 2 U ; (23)

(respectively of its parametric Galerkin approximation uh.y/ 2 Xh � X defined
in (20)). The expected value of F is an infinite-dimensional, iterated integral of the
functional G.�/ of the parametric solution:

Z

U

F.y/ dy D
Z

U

G.u.�; y// dy D G

�Z

U

u.�; y/ dy

�
: (24)

The issue is thus the numerical evaluation of Bochner integrals of X -valued
functions over the infinite dimensional domain of integration U . We also observe
that for the parametric operator equation (12), to evaluate F at a single QMC point
y 2 U requires the approximate (Galerkin) solution of one instance of the operator
equation for u.�; y/ 2 X . This introduces an additional Galerkin discretization
error, and can be accounted for as in [17] in the present, more general, setting with
analogous proofs.

In [3] and the present paper, the summability of the fluctuation operators Aj ,
j � 1, plays an important role for proving dimension-independent convergence
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rates of approximations of the parametric solution maps. Accordingly, we will make
the assumption, stronger than Assumption (A2) that there exists 0 < p < 1 such that

X

j �1

kAj kp

L .X ;Y 0/
< 1 : (A3)

Notice that this condition is, by (A1), equivalent to .bj /j �1 2 `p.N/, and implies
decay of the fluctuation coefficients Aj , with stronger decay as the value of p

becomes smaller. In both [3, 17] and the present paper, the rate of convergence
O.N �1Cı/ is attained if (A3) is satisfied with p D 2=3. Here and throughout what
follows, N denotes the number of points used in QMC integration. For values of p

between 2=3 and 1, the rate of convergence in both cases is O.N �.1=p�1=2//.
Recall that the purpose of the present paper is to analyze accuracy and complexity

of QMC methods in connection with the Galerkin approximation (20) of (10). To
obtain convergence rates, we strengthen Assumption (A2) to the requirement

sup
y2U

kA.y/�1kL .Y 0

t ;Xt / < 1 ; 0 � t � 1 : (A4)

For application of QMC quadrature rules, the infinite sum in (7) must be truncated
to a finite sum of, say, s terms. Below, the parameter s shall be referred to as “QMC-
truncation dimension”. In order for the dimension truncation to be meaningful, we
will assume additionally that the Aj are decreasingly, i.e. the sequence of bounds
bj in (A2) is nonincreasing:

b1 � b2 � : : : � bj � � � � : (A5)

The overall error for the QMC-Galerkin approximation is then a sum of three terms:
a truncation error, a QMC error, and the Galerkin discretization error. We bound
the three errors and finally combine them to arrive at an overall QMC-Galerkin error
bound.

3.1 Finite Dimensional Setting

In this subsection we review QMC integration when the truncation dimension (i.e.
the number of integration variables), denoted by s, is assumed to be finite and
fixed. The domain of integration is taken to be the s-dimensional unit cube Œ� 1

2
; 1

2
�s

centered at the origin so that QMC integration methods formulated for Œ0; 1�s may
require a coordinate translation. We thus consider integrals of the form

Is.F / WD
Z

Œ� 1
2 ; 1

2 �s
F .y/ dy : (25)
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In our later applications F will be of the form (23), but for the present it is general
and depends only on s variables. An N -point QMC approximation to this integral
is an equal-weight rule of the form

Qs;N .F / WD 1

N

NX

iD1

F.y.i//;

with carefully chosen points y .1/; : : : ; y .N / 2 Œ� 1
2
; 1

2
�s . For classical results on

QMC methods, see, e.g. [24, 29].
We shall assume that our integrand F belongs to a weighted and anchored

Sobolev space W a
s;� . This is a Hilbert space over the unit cube Œ� 1

2
; 1

2
�s with norm

given by

kF k2
W a

s;�
WD

X

u�f1Wsg

1

�u

Z

Œ� 1
2 ; 1

2 �juj

ˇ̌
ˇ̌
ˇ
@jujF
@yu

.yuI 0/

ˇ̌
ˇ̌
ˇ

2

dyu ; (26)

where f1 W sg is a shorthand notation for the set of indices f1; 2; : : : ; sg, @jujF
@yu

denotes
the mixed first derivative with respect to the variables yj with j 2 u, and .yuI 0/

denotes the vector whose j th component is yj if j 2 u and 0 if j … u.
A closely related family of weighted spaces are the so-called unanchored spaces

denoted by W u
s;� . Here, “inactive” arguments of integrands are averaged, rather than

fixed at the origin as in (26). Accordingly, the unanchored norm k ı kW u
s;�

is given by

kF k2
W u

s;�
WD

X

u�f1Wsg

1

�u

Z

Œ� 1
2 ; 1

2 �juj

 Z

Œ� 1
2 ; 1

2 �s�juj

@jujF
@yu

.yuI yf1Wsgnu/dyf1Wsgnu

!2

dyu :

(27)

We omit the superscripts a and u in statements which apply for either choice of
space; we will also require u 2 W a

s;�.U I X / which is defined as the Bochner space
of strongly measurable, X -valued functions for which the (26) (with the k ı kX

norm in place of the absolute value) is finite.
Weighted, anchored spaces W a

s;� were first introduced by Sloan and Woźni-
akowski in [32]. By now there are many variants and generalizations, see e.g. [7,31]
and the references there. In (26) the “anchor” is .0; : : : ; 0/, the center of the unit cube
Œ 1

2
; 1

2
�s , corresponding to the anchor . 1

2
; : : : ; 1

2
/ in the standard unit cube Œ0; 1�s . For

parametric operator equations (12) anchoring at the origin is preferable, since the
parametric solution of (12) with anchored operators corresponds to the anchored
parametric solution.

Regarding the choice of weights, from derivative bounds (13), in [17] product
and order dependent (“POD” for short) weights were derived which are given by

�u D �juj
Y

j 2u
�j > 0 : (28)
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Here juj denotes the cardinality (or the “order”) of u. The weights are therefore
determined by a specific choice of the sequences �0 D �1 D 1; �2; �3; : : : and
�1; �2; �3; : : :. (a precise choice of �u will be given in (38) ahead).

QMC error analysis is based on the worst case error of a QMC rule (or a family
of QMC rules). It is defined as supremum of the (bounded, linear) QMC error
functional over all functions in the unit ball of Ws;� :

ewor.Qs;N I Ws;�/ WD sup
kF kWs;� �1

jIs.F / � Qs;N .F /j : (29)

Due to linearity of the functionals Is.�/ and Qs;N .�/, we have

jIs.F / � Qs;N .F /j � ewor.Qs;N I Ws;�/ kF kWs;� for all F 2 Ws;� : (30)

In shifted rank-1 lattice rules, quadrature points in U are given by

y .i/ D frac

�
iz
N

C �

�
� �

1
2
; : : : ; 1

2

�
; i D 1; : : : ; N ;

where z 2 Z
s is the generating vector, � 2 Œ0; 1�s is the shift, and frac.�/

indicates the fractional part of each component in the vector. Subtraction by the
vector . 1

2
; : : : ; 1

2
/ translates the rule from Œ0; 1�s to Œ� 1

2
; 1

2
�s . In randomly shifted

lattice rules the shift � is a vector with independent, uniformly in Œ0; 1/ distributed
components; we denote the application of the QMC rule to the integrand function
F for one draw of the shift � by Qs;N .�I F /.

Theorem 3 ([16, Theorem 5]). Let s; N 2 N be given, and assume that F 2 Ws;�

for a particular choice of weights � , with Ws;� denoting either the anchored space
with norm (26) or the unanchored space with norm (27).

In each case, there exists a randomly shifted lattice such that its root-mean-
square error (with respect to averages over all shifts) satisfies, for all � 2 .1=2; 1�,

q
E ŒjIs.F / � Qs;N .�I F /j2�

�
0

@
X

;¤u�f1Wsg
��
u	.�/juj

1

A
1=.2�/

Œ'.N /��1=.2�/ kF kWs;� ; (31)

where EŒ�� denotes the expectation with respect to the random shift which is
uniformly distributed over Œ0; 1�s . In (31), with 
.x/ denotes the Riemann zeta
function, and '.N / the Euler totient function which satisfies '.N / � 9N for all
N � 1030,
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	.�/ WD

8
ˆ̂<

ˆ̂:

2
.2�/

.2�2/�
C 1

12�
if Ws;� D W a

s;� ;

2
.2�/

.2�2/�
if Ws;� D W u

s;� :

(32)

The result with general weights, restricted to prime N in the anchored case was
first obtained in [31, Theorem 3(A)], for general N and unanchored spaces in [16,
Theorem 4.1] (with the choice m D 0 in the statement of that theorem), and for
general N and anchored spaces in [16, Theorem 4.1],

The question of efficient construction of lattice rules has received much attention
in recent years [30]. Algorithms which obtain the generating vector with favourable
(w.r. to N and s) scaling have been obtained for integrands in unanchored spaces
in [26], where the first algorithm for fast CBC construction using FFT at a cost
of O.sN log N / was given. Efficient algorithms for construction of so-called
embedded families of lattice rules where proposed in [4]. We refer to [16, 18] for a
discussion.

3.2 Dimensional Truncation

Given s 2 N and y 2 U , we observe that truncating the sum in (7) at s

terms amounts to setting yj D 0 for j > s. We thus denote by us.x; y/ WD
u.x; .yf1WsgI 0// the solution of the parametric weak problem (10) corresponding
to the parametric operator A..yf1WsgI 0// in which the sum (7) is truncated at s

terms. Then Theorem 1 remains valid with constants independent of s when u.�; y/

is replaced by its dimensionally truncated approximation us.�; y/.

Theorem 4. Under Assumptions (A2), (A3), (A5), for every f 2 Y 0 and for every
y 2 U and for every s 2 N, the dimensionally truncated, parametric solution
us.�; y/ D u.�; .yf1WsgI 0// of the s-term truncated parametric weak problem (10)
satisfies, with bj as defined in (A2),

ku.�; y/ � us.�; y/kX � C˛�1kf kY 0

X

j �sC1

bj (33)

for some constant C > 0 independent of s, y and f . For every G.�/ 2 X 0

jI.G.u// � Is.G.u//j � QC ˛�1kf kY 0kG.�/kX 0

 
X

j �sC1

bj

!2

(34)

for some constant QC > 0 independent of s, f and G.�/. In addition, if Assump-
tions (A3) and (A5) hold, then
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X

j �sC1

bj � min

�
1

1=p � 1
; 1

� X

j �1

b
p
j

!1=p

s�.1=p�1/ :

This result is proved in the affine case (7) in [17, Theorem 5.1], and for operators
depending lognormally on y in [2]. It will hold for general probability densities
%.y/ in (4) whenever the factor measures %j .dyj / are centered.

4 Analysis of QMC and Galerkin Disretization

We apply QMC quadrature Qs;N to the dimensionally truncated approximaion
Is.G.u// of the integral (24), where the integrand F.y/ D G.u.�; y// is a
continuous, linear functional G.�/ of the parametric solution u.�; y/ of the operator
equation (10).

As proposed in [7,23], choices of QMC weights can be based on minimizing the
product of worst case error and of (upper bounds for) the weighted norms kF kWs;�

in the error bound (30). This idea was combined with the bounds (13) in [17]
to identify POD QMC weights (28) as sufficient to ensure a QMC convergence
rate of O.N �1Cı/ with O./ being independent of the truncation dimension s.
Another issue raised by the infinite dimensional nature of the problem is to choose
the value of s and estimate the truncation error I.G.u// � Is.G.u//, which was
estimated in Theorem 4. The following QMC quadrature error bound is proved in
[17, Theorem 5.1] for scalar, parametric diffusion problems; its statement and proof
generalize to the parametric operator equations (12) with solution regularity (13).

Theorem 5 (Root-mean-square error bound). Under Assumptions (A2) and (9)
let bj be defined as in (A2). For every f 2 Y 0 and for every G.�/ 2 X 0, let u.�; y/

denote the solution of the parametric variational problem (10).
Then for s; N 2 N and weights � D .�u/, randomly shifted lattice rules

Qs;N .�I �/ with N points in s dimensions can be constructed by a component-by-
component algorithm such that the root-mean-square error for approximating the
finite dimensional integral Is.G.u// satisfies, for all � 2 .1=2; 1�, and all N � 1030

q
E ŒjIs.G.u// � Qs;N .�I G.u//j2� � C�.�/

˛
N �1=.2�/kf kY 0 kG.�/kX 0 ; (35)

where EŒ�� denotes the expectation with respect to the random shift � (uniformly
distributed over Œ0; 1�s) and C�.�/ is independent of s as in [17, Eq. (6.2)].

In [17, Theorem 6.1], a choice of weights which minimizes the upper bound was
derived. As the derivation in [17, Theorem 6.1] generalizes verbatim to the presently
considered setting we only state the result. Under the assumptions of Theorem 5, for
bj as in (A2) suppose that (A3) holds, i.e.
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X

j �1

b
p
j < 1 for some 0 < p < 1 ; (36)

For the choice

� WD
(

1
2�2ı

for some ı 2 .0; 1=2/ when p 2 .0; 2=3� ;
p

2�p
when p 2 .2=3; 1/ ;

(37)

the choice of weights

�u D ��
u WD

0

@jujŠ
Y

j 2u

bjp
	.�/

1

A
2=.1C�/

(38)

with 	.�/ in (32) minimizes the constant C�.�/ in the bound (35). To account for
the impact of Galerkin discretization of the operator equation, recall Sect. 2.5. For
any y 2 U , the parametric FE approximation uh.�; y/ 2 X h is defined as in
(20). Here, b.yI �; �/ denotes the parametric bilinear form (8). In particular the FE
approximation (20) is defined pointwise with respect to the parameter y 2 U .

Theorem 6. Under Assumptions (A2), (9) and (15) for every f 2 Y 0 and for every
y 2 U , the approximations uh.�; y/ are stable, i.e. (21) holds. For every f 2 Y 0

t

with 0 < t � 1 exists a constant C > 0 such that for all y 2 U as h ! 0 holds

sup
y2U

ku.�; y/ � uh.�; y/kX � C ht kf kY 0

t
: (39)

Proof. Since f 2 Y 0
t for some t > 0 implies with (15) that u.y/ 2 Xt and, with

the approximation property (22),

ku.�; y/ � uh.�; y/kX � C ht ku.�; y/kXt

where the constant C is independent h and of y. This proves (39). ut
Since we are interested in estimating the error in approximating functionals (24),

we will also impose a regularity assumption on the functional G.�/ 2 X 0:

9 0 < t 0 � 1 W G.�/ 2 X 0
t 0 (40)

and the adjoint regularity: for t 0 as in (40), and for every y 2 U ,

w.y/ D .A�.y//�1G 2 Yt 0 ; sup
y2U

kw.y/kYt0
� C kGkX 0

t0
: (41)

Moreover, since in the expression (23) only a bounded linear functional G.�/ of u
rather than the parametric solution u itself enters, the discretization error of G.u/ is
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of main interest in QMC error analysis. An Aubin-Nitsche duality argument shows
that jG.u.�; y// � G.uh.�; y//j converges faster than ku.�; y/ � uh.�; y/kX : under
Assumptions (A2), (9), (A4), and (15), (41) there exists a constant C > 0 such that
for every f 2 Y 0

t with 0 < t � 1, for every G.�/ 2 X 0
t 0 with 0 < t 0 � 1 and for

every y 2 U , as h ! 0, the Galerkin approximations G.uh.�; y// satisfy

ˇ̌
G.u.�; y// � G.uh.�; y//

ˇ̌ � C h� kf kY 0

t
kG.�/kX 0

t0
; (42)

where 0 < � WD t C t 0 and where the constant C > 0 is independent of y 2 U .
We conclude with bounds for the combined QMC FE approximation of the

integral (24). To define the approximation of (24), we approximate the infinite
dimensional integral using a randomly shifted lattice rule with N points in s

dimensions. The QMC rule with N points for integration over .�1=2; 1=2/s for
one single draw � of the shift will be denoted by Qs;N .�I �/. For each evaluation
of the integrand F , we replace the exact solution u.�; y/ of the parametric weak
problem (10) by the Galerkin approximation uh.�; y/ in the subspace X h � X of
dimension M h WD dimX h < 1.

Thus we may express the overall error as a sum of a dimension truncation error
(which is implicit when a finite dimensional QMC method is used for an infinite
dimensional integral), a QMC quadrature error, and a FE discretization error:

I.G.u// � Qs;N .G.uh/I �/

D .I � Is/.G.u// C .Is.G.u// � Qs;N .G.u/I �// C Qs;N .G.u � uh/I �/ :

We bound the mean-square error with respect to the random shift by

E
	jI.G.u// � Qs;N .G.uh/I �/j2
 � 3 j.I � Is/.G.u//j2

C 3E
	jIs.G.u// � Qs;N .G.u/I �/j2
C 3E

	jQs;N .G.u � uh/I �/j2
 :
(43)

The dimension truncation error, i.e., the first term in (43), was estimated in
Theorem 4. The QMC error, i.e., the second term in (43), is already analyzed in
Theorem 5. Finally, for the Galerkin projection error, i.e., for the third term in (43),
we apply the property that the QMC quadrature weights 1=N are positive and sum
to 1, to obtain

E
	jQs;N .G.u � uh/I �/j2
 � sup

y2U
jG.u.�; y/ � uh.�; y//j2 ;

and apply (42) Then, under the assumptions in Theorems 4, 5 and in (42), we
approximate the dimensionally truncated approximation (25) of the integral (24)
over U by the randomly shifted lattice rule from Theorem 5 with N points in s

dimensions. For each lattice point we solve the approximate problem (20) with one
common subspace X h � X with Mh D dim.X h/ degrees of freedom and with the
approximation property (17). Then, there holds the root-mean-square error bound
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q
E
	jI.G.u// � Qs;N .�I G.uh//j2


� C
�
�.s; N / kf kY 0 kG.�/kX 0 C h� kf kY 0

t
kG.�/kX 0

t0

�
;

where � D t C t 0, and, assuming '.N / � CN , for fixed ı > 0 arbitrary small,

�.s; N / D
(

s�2.1=p�1/ C N �.1�ı/ when p 2 .0; 2=3� ;

s�2.1=p�1/ C N �.1=p�1=2/ when p 2 .2=3; 1/ :
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