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Abstract We analyze an extended form of Latin hypercube sampling technique that
can be used for numerical quadrature and for Monte Carlo simulation. The technique
utilizes random point sets with enhanced uniformity over the s-dimensional unit
hypercube. A sample of N D ns points is generated in the hypercube. If we project
the N points onto their i th coordinates, the resulting set of values forms a stratified
sample from the unit interval, with one point in each subinterval Œ.k � 1/=N; k=N /.
The scheme has the additional property that when we partition the hypercube into N

subcubes
Qs

iD1Œ.`i �1/=n; `i=n/, each one contains exactly one point. We establish
an upper bound for the variance, when we approximate the volume of a subset of the
hypercube, with a regular boundary. Numerical experiments assess that the bound is
tight. It is possible to employ the extended Latin hypercube samples for Monte Carlo
simulation. We focus on the random walk method for diffusion and we show that
the variance is reduced when compared with classical random walk using ordinary
pseudo-random numbers. The numerical comparisons include stratified sampling
and Latin hypercube sampling.
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1 Introduction

Approximating integrals is a basic problem of numerical analysis and may be
a component in a more complex computation. Two families of techniques have
been developed: deterministic methods and Monte Carlo. We only consider here
random algorithms, which are parts of stochastic simulation methods used in applied
sciences. Monte Carlo (MC) methods are known to converge slowly, with respect
to the number of random points used. Various techniques have been developed, in
order to reduce the variance of the approximation, including stratified sampling and
Latin hypercube sampling [5, 7, 9].

Let s � 1 be a given dimension; then I s WD Œ0; 1/s is the s-dimensional half-
open unit hypercube and �s denotes the s-dimensional Lebesgue measure. If g is a
square-integrable function defined on I s , we want to approximate

I WD
Z

I s

g.x/d�s.x/: (1)

For the usual MC approximation, fU1; : : : ; UN g are independent random variables
uniformly distributed over I s . Then

X WD 1

N

NX

kD1

g.Uk/ (2)

is an unbiased estimator of I . A simple stratified sampling (SSS) method was
proposed in [10]. Let fD1; : : : ; DN g be a partition of I s , so that �s.D1/ D � � � D
�s.DN / D 1=N . Let fV1; : : : ; VN g be independent random variables, with V`

uniformly distributed over D`. Then

Y WD 1

N

NX

`D1

g.V`/ (3)

is another unbiased estimator of I and for a regular g, one has Var.Y / � Var.X/:
we refer to [1, 2, 10] for variance reduction analyses. Latin hypercube sampling
(LHS) was introduced in [15]. Let I` WD Œ.` � 1/=N; `=N / for 1 � ` � N and
fV i

1 ; : : : ; V i
N g be independent random variables, where V i

` is uniformly distributed
over I`. If f�1; : : : ; �sg are independent random permutations of f1; : : : ; N g, put
W` WD .V 1

�1.`/
; : : : ; V s

�s.`//. Then

Z WD 1

N

NX

`D1

g.W`/ (4)
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is another unbiased estimator of I . McKay et al. [15] showed that if g is a
monotonic function of each of its argument then one has Var.Z/ � Var.X/. The
analysis in [21] established that for any square-integrable g, LHS does reduce the
variance relative to simple random sampling in an asymptotic sense (N ! 1).
A proposition in [20] implied that an N -point Latin hypercube sample never
leads to a variance greater than that of simple MC with N � 1 points. LHS
stratifies only the one-dimensional marginals of the uniform distribution over the
unit hypercube. Orthogonal array (OA)-based LHS was proposed in [18, 22].
This method generalizes LHS by stratifying low-dimensional (� r for OA-based
LHS with a corresponding orthogonal array of strength r) marginal distributions.
Variance formulas of order O.N �1/ were given by Owen [19, 20].

We analyze here a hybrid of SSS and LHS, where the random samples retain
some uniformity properties of the nets used in quasi-Monte Carlo methods [17].
More precisely, we construct N D ns random points in I s such that in every interval

I i�1 �
�

k � 1

N
;

k

N

�

� I s�i .for 1 � i � s and 1 � k � N /

or

I` WD
sY

iD1

�
`i � 1

n
;

`i

n

�

.for 1 � i � s and 1 � `i � n/

lies only one point of the set (property P): an example is shown on Fig. 1. We call
this approach extended Latin hypercube sampling (ELHS). In contrast with OA-
based LHS, ELHS achieves full (s-dimensional) stratification and also stratifies the
one-dimensional marginals. The construction of extended Latin hypercube samples
is elementary and requires only random permutations. Both methods are similar in
the two-dimensional case.

In Sect. 2 we analyze a MC method using ELHS for numerical integration.
Since we have experienced that some simulation methods can be reduced to
numerical integration of indicator functions of subdomains of I s , we focus here
on the approximation of the volume of subsets of the unit hypercube. We prove a
bound for the variance and we show through numerical experiments that the orders
obtained are precise. We compare the variance of the following methods: usual MC,
SSS, LHS and ELHS. In Sect. 3, we propose a random walk algorithm for one-
dimensional diffusion. Each step of the simulation is formulated as a numerical
integration in I 2. In order to benefit from the great uniformity of extended Latin
hypercube samples, the particles are sorted by position before performing MC
quadrature. The results of a numerical experiment show that the use of ELHS leads
to reduced variance, when compared with usual MC, SSS or LHS.
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Fig. 1 An extended Latin hypercube sample of 42 points (?) in dimension s D 2.

2 Numerical Integration

We consider the problem of evaluating integrals like (1) when g D 1A, for some
measurable A � I s . For usual MC approximation (2), one has

Var.X/ D 1

N
�s.A/

�
1 � �s.A/

� � 1

4N
: (5)

We analyze here ELHS using samples of N D ns points. If x WD .x1; : : : ; xs/, we
put Oxi WD .x1; : : : ; xi�1; xiC1; : : : ; xs/. Let �1; : : : ; �s be random bijections

f1; : : : ; ngs�1 ! f1; : : : ; ns�1g
and u1; : : : ; us be random variables uniformly distributed on I N ; we assume that all
these variables are mutually independent. Then we put
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W` D .W 1
` ; : : : ; W s

` / with W i
` WD `i � 1

n
C �i . Ò

i / � 1 C ui
`

N
; (6)

for ` WD .`1; : : : ; `s/ with 1 � `i � n. Then the point set fW` W 1 � `i � ng has
property P . For ` D .`1; : : : ; `s/ with 1 � `i � n and m D .m1; : : : ; ms/ with
1 � mi � ns�1, let

I`;m WD
sY

iD1

�
`i � 1

n
C mi � 1

N
;

`i � 1

n
C mi

N

�

I

then I` D S
m I`;m. We have

EŒ1A.W`/� D 1

ns.s�1/

X

m

Z

I s

1A

�
`1 � 1

n
C m1 � 1 C u1

N
; : : : ;

`s � 1

n
C ms � 1 C us

N

�

du

where the sum extends over all m D .m1; : : : ; ms/ with 1 � mi � ns�1. Hence

EŒ1A.W`/� D N

Z

I`

1A.u/du D N �s.I` \ A/: (7)

Consequently, if Z is defined by (4), it is an unbiased estimator of I ; we want to
estimate Var.Z/.

Proposition 1. Let A � I s be such that, for all i , with 1 � i � s,

A D f.u1; : : : ; us/ 2 I s W ui < fi .Oui /g;

where Oui WD .u1; : : : ; ui�1; uiC1; : : : ; us/ and fi are Lipschitz continuous functions

I
s�1 ! I . Let fW` W 1 � `i � ng be defined by (6). If

Z WD 1

N

X

`

1A.W`/;

then

Var.Z/ �
�k C 2

4
C 2s.k C 2/2

� 1

N 1C1=s
;

where k is a Lipschitz constant (for the maximum norm) for all the fi .

Proof. We may write

Var.Z/ D 1

N 2

X

`

Var.1A.W`// C 1

N 2

X

`¤`0

Cov.1A.W`/; 1A.W`0//:
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From (7) we obtain

1

N 2

X

`

Var.1A.W`// D
X

`

V0.`/;

where

V0.`/ D 1

ns
�s.I` \ A/ � .�s.I` \ A//2:

Since V0.`/ D 0 whenever I` � A or I` \ A D ; and since 0 � ns�s.I` \ A/ � 1,
we have

X

`

jV0.`/j � 1

4n2s
#f` W I` 6� A and I` \ A ¤ ;g:

Here, #E denotes the number of elements of a set E . Similarly, we have

1

N 2

X

`¤`0

Cov.1A.W`/; 1A.W`0// D
sX

iD1

X

Ò
i D Ò0

i

`i ¤`0

i

Vi .`; `0/ C
X

Ò
j ¤ Ò0

j

VsC1.`; `0/;

where

Vi .`; `0/ D ns.s�1/

.ns�1 � 1/s�1

X

mi Dm0

i

mj ¤m0

j

�s.I`;m \ A/�s.I`0;m0 \ A/ � �s.I` \ A/�s.I`0 \ A/;

VsC1.`; `0/ D ns.s�1/

.ns�1 � 1/s

X

mj ¤m0

j

�s.I`;m \ A/�s.I`0;m0 \ A/ � �s.I` \ A/�s.I`0 \ A/:

And so

X

Ò
i D Ò0

i

`i ¤`0

i

jVi .`; `0/j �

1

n2s
#f.`; `0/ W Ò

i D Ò0
i ; `i ¤ `0

i ; I` 6� A; I` \ A ¤ ;; I`0 6� A; I`0 \ A ¤ ;g;
X

Ò
j ¤ Ò0

j

jVsC1.`; `0/j �

s

n3s�1
#f.`; `0/ W Ò

j ¤ Ò0
j ; I` 6� A; I` \ A ¤ ;; I`0 6� A; I`0 \ A ¤ ;g:
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Consequently

Var.Z/ � 1

4n2s
#f` W I` 6� A and I` \ A ¤ ;g

C 1

n2s

sX

iD1

#f.`; `0/ W Ò
i D Ò0

i ; `i ¤ `0

i ; I` 6� A; I` \ A ¤ ;; I`0 6� A; I`0 \ A ¤ ;g

C s

n3s�1
#f.`; `0/ W Ò

j ¤ Ò0

j ; I` 6� A; I` \ A ¤ ;; I`0 6� A; I`0 \ A ¤ ;g:

Let us note

OI`;i D
sY

j D1
j ¤i

�
`j � 1

n
;

`j

n

�

:

We have the following inferences:

• If I` 6� A, there exists Ou`;i 2 OI`;i such that nfi .Ou`;i / < `i ,
• If I` \ A ¤ ;, there exists Ov`;i 2 OI`;i such that `i < nfi . Ov`;i / C 1.

Hence

#f` W I` 6� A and I` \ A ¤ ;g � ns�1.k C 2/;

#f.`; `0/ W Ò
i D Ò0

i ; `i ¤ `0

i ; I` 6� A; I` \ A ¤ ;; I`0 6� A; I`0 \ A ¤ ;g � ns�1.k C 2/2;

#f.`; `0/ W Ò
j ¤ Ò0

j ; I` 6� A; I` \ A ¤ ;; I`0 6� A; I`0 \ A ¤ ;g � n2.s�1/.k C 2/2;

and the result follows. ut
The variance bound represents a gain in accuracy of the factor N �1=s D 1=n

as compared with simple MC. The gain is of diminishing importance as s becomes
large and limits the use of the present approach to problems of moderate dimension.
This is precisely the case in some MC particle simulations, such as the random
walk proposed in Sect. 3. A variance bound with the same order was established
in [14]. The differences are as follows. Firstly a two-dimensional analysis in the
context of the simulation of Markov chains was conducted in [14] and a possible
generalization to higher-dimensional settings was discussed. Secondly the point set
used in [14] was obtained by simple stratified sampling over the unit square, with
one point in each subsquare

Q2
iD1Œ.`i � 1/=n; `i=n/ (without the LHS property).

We use a simple example to illustrate the previous analysis. We consider the
subset of the unit ball:

Q WD fu 2 I s W kuk2 < 1g;
where kuk2 denotes the Euclidean norm of u. In order to estimate the variance of
the MC, SSS, LHS and ELHS approximations, we replicate the quadrature indepen-
dently M times and compute the sample variance. We use M D 100; : : : ; 1;000 and
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we only see small differences between the estimates. The results (for M D 1;000)
are displayed in Fig. 2. It appears that the better accuracy due to ELHS goes beyond
an improved convergence order: the slope of the curve given by the series of ELHS
points is steeper than the slope of the corresponding curve for the MC or LHS points;
in addition, the starting ELHS point is below the starting MC or LHS points. The
computation times are given in the same figure; one can see that for obtaining the
smallest variance achieved by usual MC or LHS, the ELHS approach needs less
time. Assuming Var D O.N �˛/, linear regression can be used to evaluate ˛ and the
outputs are listed in Table 1. The values obtained for ELHS are very close to the
orders of the bounds given in Proposition 1, despite the fact that the hypothesis on
the boundary of A is not satisfied, since the functions

fi W Oui !
q

1 � u2
1 � � � � � u2

i�1 � u2
iC1 � � � � � u2

s

are not Lipschitz continuous on I
s�1

. This suggests that the hypothesis is too strong.

Table 1 Order ˛ of the variance of the calculation of �s.Q/.

Dimension MC LHS SSS ELHS

s D 2 0:99 1:00 1:48 1:50

s D 3 1:00 1:00 1:34 1:33

s D 4 1:01 1:00 1:26 1:24

3 Simulation of Diffusion

In many physical applications, there is a need to simulate plain diffusion problems.
These problems are frequently encountered as sub-problems while solving more
complicated ones. MC simulation has proved a valuable tool for investigating
processes involving the diffusion of substances [6,8,23]. In this section we consider
a particle method for solving the initial value problem

@c

@t
.x; t/ D D

@2c

@x2
.x; t/; x 2 R; t > 0; (8)

c.x; 0/ D c0.x/; x 2 R; (9)

with diffusion coefficient D > 0. We assume that the initial data satisfies

c0 � 0;

Z

R
c0.x/dx D 1: (10)
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Fig. 2 Sample variance of M D 1;000 independent copies of the calculation of �s.Q/ as a
function of N (left, log–log plot) and CPU time in seconds for the sample variance (right).
Comparison of MC (C), LHS (4), SSS (ut) and ELHS methods (?) outputs for s D 2 and
202 � N � 4002 (top), s D 3 and 103 � N � 1003 (middle), s D 4 and 64 � N � 404

(bottom).
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The solution possesses the conservation property

8t > 0

Z

R
c.x; t/dx D 1: (11)

The fundamental solution for the heat operator
@

@t
� D

@2

@x2
is

E.x; t/ WD 1p
4�Dt

e�x2=4Dt ; x 2 R; t > 0:

For any � � 0 the solution of (8) satisfies

c.x; t/ D
Z

R
E.x � y; t � �/c.y; �/dy; x 2 R; t > �: (12)

For the numerical approximation of the solution we choose an integer n and we
put N D n2. The first step of the simulation involves approximating the initial data
u0 with a sum of Dirac delta functions (particles),

c0.x/ WD 1

N

NX

kD1

ı.x � x0
k/:

One has to sample x0
1 ; : : : ; x0

N according to the density function c0; this may be done
by inversion method

x0
k WD C �1

0

�
2k � 1

2N

�

; 1 � k � N;

where C0 is the cumulative distribution function associated with c0. Let �t be a
time step, put tp WD p�t and cp.x/ WD c.x; tp/. Given particles at positions x

p

k and
the approximate solution

cp.x/ WD 1

N

NX

kD1

ı.x � x
p

k /

at time tp , the solution at time tpC1 is obtained as follows.
Generate an extended Latin hypercube sample, as is done in Sect. 2

fW` W 1 � `1 � n; 1 � `2 � ng � I 2:

Relabel the particles. We order the particles by position:

x
p
1 � x

p
2 � � � � � x

p
N : (13)
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This type of sorting was initiated in [11] and used in the context of simulation
of diffusion in [12, 16]. Since each step of the random walk algorithm may be
described by a numerical integration (see below), the sorting reverts to minimizing
the amplitude of the jumps of the function to be integrated.

Diffusion of particles. Using (12), one obtains an approximation to the solution
at time tpC1:

QcpC1.x/ WD 1

N

NX

kD1

E.x � x
p

k ; �t/:

Let

f .u/ WD p
2D�t˚�1.u/; u 2 .0; 1/;

where ˚ denotes the standard normal cumulative distribution function. If A � R,
denote by 1A the indicator function. For any measurable A � R, one has

Z

R
QcpC1.x/1A.x/dx D 1

N

NX

kD1

Z

I

1A.x
p

k C f .u//du: (14)

For 1 � k � N , let 1Ik
denote the indicator function of Ik WD Œ.k � 1/=N; k=N /.

We associate to any measurable A � R the following indicator function:

C
pC1
A .u/ WD

NX

kD1

1Ik
.u1/1A.x

p

k C f .u2//; u D .u1; u2/ 2 I � .0; 1/:

It is easy to verify that
Z

R
QcpC1.x/1A.x/dx D

Z

I 2

C
pC1
A .u/du: (15)

We recover an approximate solution at time tpC1 by performing a MC quadrature
using the extended Latin hypercube sample defined above: for any measurable
A � R

Z

R
1A.x/cpC1.x/ D 1

N

nX

`1D1

nX

`2D1

C
pC1
A .W`/:

The algorithm may be summarized as follows. Let bxc denote the greatest integer
� x and put k.u/ WD bN uc. The positions of the particles are updated according to

x
pC1

k.W 1
` /

D x
p

k.W 1
` /

C f .W 2
` /; 1 � `1 � n; 1 � `2 � n: (16)

For any ` WD .`1; `2/, the first projection W 1
` selects the particle number k.W 1

` / and
the second projection W 2

` gives the random displacement f .W 2
` / of the selected
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Fig. 3 Sample variance of M D 5;000 independent copies of the calculation of
R a

0 c.x; T /dx

as a function of N (left, log–log plot) and CPU time in seconds for the sample variance (right).
Comparison of MC (C), LHS (4), SSS (ut) and ELHS methods (?) outputs for 102 � N � 2002 .

particle. In this algorithm, we may replace extended Latin hypercube samples with
simple stratified samples or Latin hypercube samples. The classical random walk
algorithm works as follows: there is no reordering of the particles and

x
pC1

k D x
p

k C f .Uk/; 1 � k � N: (17)

Here U1; : : : ; UN are independent random samples drawn from the uniform distri-
bution on I .

We compare the approaches in a simple situation. We solve (8)–(9) with D D 1:0

and

c0.x/ WD 1p
�

e�x2

; x 2 R:

We approximate the integral
Z a

0

c.x; T /dx;

for a D 4:0 and T D 1:0. The time step is chosen to be �t WD 1=100. We replicate
the computation independently M D 5;000 times to calculate the sample variance
of the MC, SSS, LHS and ELHS approximations. The results are displayed in
Fig. 3. As before (Sect. 2), the ELHS method produces better accuracy and improved
convergence rate for the variance. The computation times are given in the same
figure; one can see that, for the same calculation time, the ELHS technique has a
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smaller variance than the other methods. If we assume Var D O.N �ˇ/, we can
estimate ˇ using linear regression; the outputs are listed in Table 2.

Table 2 Order ˇ of the variance of the calculation of
R a

0 c.x; T /dx.

MC LHS SSS ELHS

1:00 1:00 1:44 1:43

Although not reported, supplementary results lead to the following remarks.
Firstly, it is useless to reorder the particles by position, when using the simple
random walk algorithm (with ordinary pseudo-random numbers). Secondly, if we
employ ELHS without reordering the particles, the variance is larger than the
variance of the simple random walk, and the convergence order (estimated by linear
regression) is the same.

4 Conclusion

We have analyzed an extended LHS technique that produces random points which
are evenly spread over the unit cube. We have established that for approximate
calculation of the measure of some subsets of the hypercube, the technique has a
reduced variance, when compared to usual Monte Carlo, simple stratified sampling
or Latin hypercube sampling, and a better convergence order.

Then we have modified the classical random walk method for simulation of
diffusion. We reorder the particles by position in every time step, and we replace
pseudo-random numbers with simple stratified samples, Latin hypercube samples or
extended Latin hypercube samples. In an example, we have shown that the method
using extended Latin hypercube samples produces lower variance with improved
convergence order than the other strategies.

For approximate integration, the hypothesis made on the subsets of the unit
hypercube could be relaxed. For the simulation procedure, a bound of the variance
is not available: it certainly deserves future work. Another way of progress is in
applications of the method to more complex diffusion problems [4] or to Markov
chains, as it was done for QMC [3] or randomized QMC methods [13, 14].
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