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Preface

This volume represents the refereed proceedings of the Tenth International Con-
ference on Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing,
which was held at the University of New South Wales, Sydney, Australia, from 13 to
17 February 2012. It contains a limited selection of articles based on presentations
given at the conference. The conference program was arranged with the help of an
international committee consisting of:

• William Chen, Macquarie University, Australia
• Ronald Cools, KU Leuven, Belgium
• Josef Dick, University of New South Wales, Australia (Conference organizer)
• Henri Faure, CNRS Marseille, France
• Alan Genz, Washington State University, USA
• Mike Giles, University of Oxford, UK
• Paul Glasserman, Columbia University, USA
• Michael Gnewuch, University of Kaiserslautern, Germany
• Stefan Heinrich, University of Kaiserslautern, Germany
• Fred J. Hickernell, Illinois Institute of Technology, USA
• Aicke Hinrichs, University of Rostock, Germany
• Stephen Joe, University of Waikato, New Zealand
• Aneta Karaivanova, Bulgarian Academy of Science, Bulgaria
• Alexander Keller, NVIDIA, Germany
• Dirk P. Kroese, University of Queensland, Australia
• Frances Y. Kuo, University of New South Wales, Australia (Conference organizer)
• Gerhard Larcher, Johannes Kepler University Linz, Austria
• Pierre L’Ecuyer, Université de Montréal, Canada
• Christiane Lemieux, University of Waterloo, Canada
• Peter Mathé, Weierstrass Institute Berlin, Germany
• Makoto Matsumoto, Hiroshima University, Japan
• Kerrie Mengersen, Queensland University of Technology, Australia
• Thomas Müller-Gronbach, University of Passau, Germany
• Harald Niederreiter, RICAM Linz and University of Salzburg, Austria
• Erich Novak, University of Jena, Germany
• Art B. Owen, Stanford University, USA
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• Gareth W. Peters, University of New South Wales, Australia, and University
College London, UK (Conference organizer)

• Friedrich Pillichshammer, Johannes Kepler University Linz, Austria
• Leszek Plaskota, University of Warsaw, Poland
• Eckhard Platen, University of Technology Sydney, Australia
• Klaus Ritter, University of Kaiserslautern, Germany
• Gareth Roberts, University of Warwick, UK
• Wolfgang Ch. Schmid, University of Salzburg, Austria
• Nikolai Simonov, Russian Academy of Sciences, Russia
• Ian H. Sloan, University of New South Wales, Australia (Conference organizer)
• Ilya M. Sobol’, Russian Academy of Sciences, Russia
• Jerome Spanier, Claremont, California, USA
• Shu Tezuka, Kyushu University, Japan
• Xiaoqun Wang, Tsinghua University, China
• Grzegorz W. Wasilkowski, University of Kentucky, USA
• Henryk Woźniakowski, Columbia University, USA, and University of Warsaw,

Poland

This conference continued the tradition of biennial MCQMC conferences initi-
ated by Harald Niederreiter, held previously at:

• University of Nevada in Las Vegas, Nevada, USA, in June 1994
• University of Salzburg, Austria, in July 1996
• Claremont Colleges in Claremont, California, USA, in June 1998
• Hong Kong Baptist University in Hong Kong, China, in November 2000
• National University of Singapore, Republic of Singapore, in November 2002
• Palais des Congrès in Juan-les-Pins, France, in June 2004
• Ulm University, Germany, in July 2006
• Université de Montréal, Canada, in July 2008
• University of Warsaw, Poland, in August 2010

The next conference will be held at the KU Leuven, Belgium, in April 2014.
The proceedings of these previous conferences were all published by Springer-

Verlag, under the following titles:

• Monte Carlo and Quasi-Monte Carlo Methods in Scientific Computing
(H. Niederreiter and P.J.-S. Shiue, eds.)

• Monte Carlo and Quasi-Monte Carlo Methods 1996 (H. Niederreiter,
P. Hellekalek, G. Larcher, and P. Zinterhof, eds.)

• Monte Carlo and Quasi-Monte Carlo Methods 1998 (H. Niederreiter and
J. Spanier, eds.)

• Monte Carlo and Quasi-Monte Carlo Methods 2000 (K.-T. Fang, F.J. Hickernell,
and H. Niederreiter, eds.)

• Monte Carlo and Quasi-Monte Carlo Methods 2002 (H. Niederreiter, ed.)
• Monte Carlo and Quasi-Monte Carlo Methods 2004 (H. Niederreiter and

D. Talay, eds.)
• Monte Carlo and Quasi-Monte Carlo Methods 2006 (A. Keller, S. Heinrich, and

H. Niederreiter, eds.)
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• Monte Carlo and Quasi-Monte Carlo Methods 2008 (P. L’Ecuyer and A. Owen,
eds.)

• Monte Carlo and Quasi-Monte Carlo Methods 2010 (L. Plaskota and H. Woźni-
akowski, eds.)

The program of the conference was rich and varied with over 140 talks being
presented. Highlights were the invited plenary talks given by Pierre Del Moral
(INRIA and University of Bordeaux 1), Mike Giles (Oxford University), Fred J.
Hickernell (Illinois Institute of Technology), Aicke Hinrichs (University of Jena),
Michael Lacey (Georgia Institute of Technology), Kerrie Mengersen (Queensland
University of Technology), Andreas Neuenkirch (University of Kaiserslautern),
Art B. Owen (Stanford University), Leszek Plaskota (University of Warsaw), and
Eckhard Platen (University of Technology Sydney), and the tutorials given by Art B.
Owen (Stanford University), Pierre Del Moral (INRIA and University of Bordeaux
1), Josef Dick (University of New South Wales), and Alex Keller (NVIDIA).

The papers in this volume were carefully screened and cover both the theory
and the applications of Monte Carlo and quasi-Monte Carlo methods. We thank the
anonymous reviewers for their reports and many others who contributed enormously
to the excellent quality of the conference presentations and to the high standards for
publication in these proceedings by careful review of the abstracts and manuscripts
that were submitted.

We gratefully acknowledge generous financial support of the conference by
the School of Mathematics and Statistics of the University of New South Wales,
the Australian Mathematical Society (AustMS), the Australian and New Zealand
Industrial and Applied Mathematics (ANZIAM), the Australian Mathematical
Sciences Institute (AMSI), the Commonwealth Scientific and Industrial Research
Organisation (CSIRO), and the National Science Foundation (NSF).

Finally, we want to express our gratitude to Springer-Verlag for publishing this
volume.

Sydney, Australia Josef Dick
September 2013 Frances Y. Kuo

Gareth W. Peters
Ian H. Sloan
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Computing Functionals of Square Root
and Wishart Processes Under the Benchmark
Approach via Exact Simulation

Jan Baldeaux and Eckhard Platen

Abstract The aim of the paper is to show how Wishart processes can be used
flexibly in financial modeling. We explain how functionals, resulting from the
benchmark approach to finance, can be accurately computed via exact simulation
methods. We employ Lie symmetry methods to identify explicit transition densities
and explicitly computable functionals. We illustrate the proposed methods via
finance problems formulated under the benchmark approach. This approach allows
us to exploit conveniently the analytical tractability of the considered diffusion
processes.

1 Introduction

In mathematical finance, the pricing of financial derivatives can under suitable
conditions be shown to amount to the computation of an expected value, see e.g.
[50, 53]. We focus in this paper on the application of the benchmark approach,
described e.g. in [53], where we show how Wishart processes can be flexibly used
in financial modeling and derivative pricing. Depending on the financial derivative
and the model under consideration, it might not be possible to compute the expected
value explicitly, however, numerical methods have to be invoked. A candidate for
the computation of such expectations is the Monte Carlo method, see e.g. [11, 29],

J. Baldeaux (�)
Finance Discipline Group, University of Technology, PO Box 123, Broadway, Sydney, NSW,
2007, Australia
Current address: Quant Models & Development, Danske Bank, Denmark
e-mail: JanBaldeaux@gmail.com

E. Platen
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PO Box 123, Broadway, Sydney, NSW, 2007, Australia
e-mail: Eckhard.Platen@uts.edu.au

J. Dick et al. (eds.), Monte Carlo and Quasi-Monte Carlo Methods 2012,
Springer Proceedings in Mathematics & Statistics 65,
DOI 10.1007/978-3-642-41095-6__1, © Springer-Verlag Berlin Heidelberg 2013
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4 J. Baldeaux and E. Platen

and [40]. Applying the Monte Carlo method typically entails the sampling of
the distribution of the relevant financial state variables, e.g. an equity index, a
short rate, or a commodity price. It is then, of course, desirable to have at one’s
disposal a recipe for drawing samples from the relevant distributions. In case these
distributions are known, one refers to exact simulation schemes, see e.g. [52],
but also [7–9], and [16], for further references on exact simulation schemes. In
particular, exact simulation is relevant for long term simulation. If exact simulation
schemes are not applicable, discrete time approximations, as analyzed in [40] and
[52] become relevant.

For modeling financial quantities of interest, it is important to know a priori if
exact simulation schemes exist, so that financial derivatives can be priced accurately,
even if expected values cannot be computed explicitly. In this paper, we discuss
classes of square root and Wishart processes for which exact simulation is possible.
For one-dimensional diffusions, Lie symmetry analysis, see [10], and [51] turns
out to be a useful tool to identify tractable diffusion processes. Besides allowing
one to discover transition densities, see [21], it also allows us to compute Laplace
transforms of important multidimensional functionals, see e.g. [20]. In particular,
squared Bessel processes fall into the class of diffusions that can be handled well
via Lie symmetry methods.

The Wishart process [13], is the multidimensional extension of the squared
Bessel process. It turns out, see [32] and [33], that Wishart processes are affine
processes, i.e. their characteristic function is exponentially affine in the state
variables. We point out that in [32], and [33] the concept of an affine process was
generalized from real-valued processes to matrix-valued processes, where the latter
category covers Wishart processes. Furthermore, the characteristic function can be
computed explicitly, see [32], and [33]. Finally, we remark that in [1] an exact
simulation scheme for Wishart processes was presented.

Modeling financial quantities, one aims for models which provide a reasonably
accurate reflection of reality, whilst at the same time retaining analytical tractability.
The benchmark approach, see [53], offers a unified rich modeling framework to
derivative pricing, risk management, and portfolio optimization. It allows one to
use a much wider range of empirically supported models than under the classical
no-arbitrage approach. At the heart of the benchmark approach sits the growth
optimal portfolio (GOP). It is the portfolio which maximizes expected log-utility
from terminal wealth. In particular, the benchmark approach uses the GOP as
numéraire and benchmark and the real world probability measure for taking
expectations. The paper combines and reviews various recent results on Wishart
processes, Lie symmetry group methods and the benchmark approach with focus on
exact Monte carlo simulation for derivative pricing. We demonstrate using examples
that the benchmark approach is easily applied for the mentioned class of processes
for which exact simulation is possible.

The remaining structure of the paper is as follows: In Sect. 2 we introduce the
benchmark approach using a particular model for illustration, the minimal market
model (MMM), see [53]. Section 3 introduces Lie symmetry methods and discusses
how they can be applied in the context of the benchmark approach. Section 4
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presents Wishart processes and shows how they can be used to extend the MMM.
Section 6 concludes the paper.

2 Benchmark Approach

We focus in our selection of stochastic processes and the choice of examples on
their suitability under the benchmark approach. The GOP plays a pivotal role as
benchmark and numéraire under the benchmark approach. It also enjoys a prominent
position in the finance literature, see [39], but also [12, 41, 45–47], and [55]. The
benchmark approach uses the GOP as the numéraire. Since the GOP is the numéraire
portfolio, see [45], contingent claims are priced under the real world probability
measure. This avoids the restrictive assumption on the existence of an equivalent
risk-neutral probability measure. We remark, it is argued in [53] that the existence
of such a measure may not be a realistic assumption. Finally, we emphasize that the
benchmark approach can be seen as a generalization of risk-neutral pricing, as well
as other pricing approaches, such as actuarial pricing, see [53].

To fix ideas in a simple manner, we model a well-diversified index, which we
interpret as the GOP, using the stylized version of the MMM, see [53]. Though
parsimonious, this model is able to capture important empirical characteristics of
well-diversified indices. It has subsequently been extended in several ways, see e.g.
[53], and also [4]. To be precise, consider a filtered probability space .˝;A ;A ; P /,
where the filtration A D .At / t2Œ0;1/ is assumed to satisfy the usual conditions,
which carries, for simplicity, one source of uncertainty, a standard Brownian motion
W D fW.t/; t 2 Œ0;1/g. The deterministic savings account is modeled using the
differential equation

dS0t D r S0t dt ;

for t 2 Œ0;1/ with S00 D 1, where r denotes the constant short rate. Next, we
introduce the model for the well diversified index, the GOP Sı�t , which is given by
the expression

S
ı�
t D S0t NSı�t D S0t Yt ˛ı�t : (1)

Here Yt D NSı�t
˛
ı�
t

is a square-root process of dimension four, satisfying the stochastic

differential equation (SDE)

dY t D .1 � � Yt/ dtC
p
Yt dW.t/ ; (2)

for t 2 Œ0;1/ with initial value Y0 > 0 and net growth rate � > 0. Here W D
fW.t/ ; t � 0g is a standard Brownian motion. The deterministic function of time
˛
ı�
t is given by the exponential function

˛
ı�
t D ˛0 exp f�tg ;
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with scaling parameter ˛0 > 0. Furthermore, it can be shown by the Itô formula that
˛
ı�
t is the drift at time t of the discounted GOP

NSı�t WD
S
ı�
t

S0t
;

so that the parameters of the model are Sı�0 , ˛0, �, and r . We note that one obtains
for the GOP the SDE

dSı�t D Sı�t
 �
r C 1

Yt

�
dtC

s
1

Yt
dW.t/

!

: (3)

This SDE models the well-observed leverage effect, since as the index S
ı�
t

decreases, its volatility 1p
Yt
D
r

˛
ı�
t

NSı�t
increases and vice versa.

It is useful to define the transformed time '.t/ as

'.t/ D '.0/C 1

4

Z t

0

˛ı�s ds :

Setting

X'.t/ D NSı�t ;

we obtain the SDE

dX'.t/ D 4d'.t/C 2
p
X'.t/dW'.t/ ; (4)

where

dW'.t/ D
s
˛
ı�
t

4
dW.t/ ;

for t 2 Œ0;1/. This shows that X D fX'; ' 2 Œ'.0/;1/g is a time transformed
squared Bessel process of dimension four and W D fW'; ' 2 Œ'.0/;1/g is a
Wiener process in the transformed '-time '.t/ 2 Œ'.0/;1/, see [54]. The merit of
the dynamics given by (4) is that transition densities of squared Bessel processes are
well studied. In fact we derive them in Sect. 3 using Lie symmetry methods.

We remark that the MMM does not admit a risk-neutral probability measure

because the Radon-Nikodym derivative�t D NSı�0
NSı�t

of the putative risk-neutral mea-

sure, which is the inverse of a time transformed squared Bessel process of dimension
four, is a strict local martingale and not a martingale, see [54]. On the other hand,
Sı� , is the numéraire portfolio, and thus, when used as numéraire to denominate
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any nonnegative portfolio, yields a supermartingale under the real-world probability
measure P . This implies that the financial market under consideration is free of
those arbitrage opportunities that are economically meaningful in the sense that
they would allow to create strictly positive wealth out of zero initial wealth via
a nonnegative portfolio, that is, under limited liability, see [44] and [53]. This also
means that we can price contingent claims underP employingSı� as the numéraire.
This pricing concept is referred to as real-world pricing, which we now recall, see
[53]: For a nonnegative contingent claim with payoff H at maturity T , where H is
AT -measurable, andE

�
H

S
ı�
T

�
<1, we define the value process at time t 2 Œ0; T � by

Vt WD Sı�t E
 
H

S
ı�
T

ˇ
ˇ̌
ˇAt

!

: (5)

Note that since VT D H , the benchmarked price process Vt

S
ı�
t

is an .A ; P /-

martingale. Formula (5) represents the real-world pricing formula, which provides
the minimal possible price and will be used in this paper to price derivatives. If the
expectation in Eq. (5) cannot be computed explicitly, one can resort to Monte Carlo
methods. In that case, it is particularly convenient, if the relevant financial quantities,
such as Sı�T can be simulated exactly. In the next section, we derive the transition
density of Sı� via Lie symmetry methods, which then allows us to simulate Sı�T
exactly. Note, in Sect. 4 we generalize the MMM to a multidimensional setting and
present a suitable exact simulation algorithm.

3 Lie Symmetry Methods

The aim of this section is to present Lie symmetry methods as an effective tool
for designing tractable models in mathematical finance. Tractable models are, in
particular, useful for the evaluation of derivatives and risk measures in mathematical
finance. We point out that in the literature, Lie symmetry methods have been used to
solve mathematical finance problems explicitly, see e.g. [19], and [37]. Within the
current paper we want to demonstrate that they can also be used to design efficient
Monte Carlo algorithms for complex multidimensional functionals.

The advantage of the use of Lie symmetry methods is that it is straightforward
to check whether the method is applicable or not. If the method is applicable, then
the relevant solution or its Laplace transform has usually already been obtained in
the literature or can be systematically derived. We will demonstrate this in finance
applications using the benchmark approach for pricing.

We now follow [20], and recall that if the solution of the Cauchy problem

ut D bx�uxx C f .x/ux � g.x/u ; x > 0 ; t � 0 ; (6)

u.x; 0/ D '.x/ ; x 2 ˝ D Œ0;1/ ; (7)
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is unique, then by using the Feynman-Kac formula it is given by the expectation

u.x; t/ D E
�

exp

�
�
Z t

0

g.Xs/ds

�
'.Xt/

�
;

where X0 D x, and the stochastic process X D fXt ; t � 0g satisfies the SDE

dXt D f .Xt /dtC
q
2bX

�
t dW t :

We now briefly indicate the intuition behind the application of Lie symmetry
methods to problems from mathematical finance. In particular, the integral transform
method developed in [43], and the types of results this approach can produce. Lie’s
method allows one to find vector fields

v D �.x; t; u/@x C �.x; t; u/@t C �.x; t; u/@u ;

which generate one parameter Lie groups that preserve solutions of (6). It is standard
to denote the action of v on solutions u.x; t/ of (6) by

	.exp 
v/u.x; t/ D �.x; t I 
/u.a1.x; t I 
/; a2.x; t I 
// ; (8)

for some functions � , a1, and a2. Here 
 is the parameter of the group, � is referred
to as the multiplier, and a1 and a2 are changes of variables of the symmetry, see
[19] for more details. For the applications we have in mind, 
 and � are of crucial
importance. The parameter 
 will play the role of the transform parameter of the
Fourier or Laplace transform and � will usually be the Fourier or Laplace transform
of the transition density. Following [19], we assume that (6) has a fundamental
solution p.t; x; y/. For this paper, it suffices to recall that we can express a solution
u.x; t/ of the PDE (6) subject to the boundary condition u.x; 0/ D f .x/ in the form

u.x; t/ D
Z

˝

f .y/p.t; x; y/dy ; (9)

where p.t; x; y/ is a fundamental solution of (6). The key idea of the transform
method is to connect (8) and (9). Now consider a stationary, i.e. a time-independent
solution, say u0.x/. Of course, (8) yields

	 .exp 
v/ u0.x/ D � .x; t I 
/ u0 .a1.x; t I "// ;

which also solves the initial value problem. We now set t D 0 and use (8) and (9) to
obtain
Z

˝

�.y; 0I 
/u0 .a1 .y; 0; I 
// p .t; x; y/ dy D � .x; t I 
/ u0 .a1 .x; t I 
// : (10)
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Since � , u0, and a1 are known functions, we have a family of integral equations for
p.t; x; y/. To illustrate this idea using an example, we consider the one-dimensional
heat equation

ut D 1

2
g2uxx : (11)

We will show that if u.x; t/ solves (11), then for 
 sufficiently small, so does

Qu.z; t/ D exp

�

t2

2g2
� z


g2

�
u .z� t
; t/ :

Taking u0 D 1, (10) gives

Z 1

�1
exp

�
�y

g2

�
p.t; x; y/dy D exp

�
t
2

2g2
� x

g2

�
:

Setting a D � 

g2

, we get

Z 1

�1
expfaygp.t; x; y/dy D exp

�
a2g2t

2
C ax

�
: (12)

We recognize that (12) is the moment generating function of the Gaussian distri-
bution, so p.t; x; y/ is the Gaussian density with mean x and variance g2t . We
alert the reader to the fact that 
 plays the role of the transform parameter and �
corresponds to the moment generating function. Finally, we recall a remark from
[17], namely the fact that Laplace and Fourier transforms can be readily obtained
through Lie algebra computations, which suggests a deep relationship between
Lie symmetry analysis and harmonic analysis. Lastly, we remark that in order to
apply the approach, we require the PDE (6) to have nontrivial symmetries. The
approach developed by Craddock and collaborators, see [17–20], and [21], provides
us with the following: A statement confirming if nontrivial symmetries exist and an
expression stemming from (10), which one only needs to invert to obtain p.t; x; y/.
We first present theoretical results, and then apply these to the case of the MMM.
Now we discuss the question whether the PDE (6) has nontrivial symmetries, see
[20], Proposition 2.1.

Theorem 1. If � ¤ 2, then the PDE

ut D bx�uxx C f .x/ux � g.x/u ; x � 0 ; b > 0 (13)

has a nontrivial Lie symmetry group if and only if h.x/ D x1��f .x/ satisfies one
of the following families of drift equations



10 J. Baldeaux and E. Platen

bxh0 � bhC 1

2
h2 C 2bx2��g.x/ D 2bAx2�� CB ; (14)

bxh0 � bhC 1

2
h2 C 2bx2��g.x/ D Ax4�2�

2 .2 � �/2 C
Bx2��

2 � � C C ; (15)

bxh0 � bhC 1

2
h2 C 2bx2��g.x/ D Ax4�2�

2 .2 � �/2 C
Bx3� 32 �

3 � 3
2
�
C Cx2��

2 � � � � ; (16)

with � D �

8
.� � 4/ b2.

For the case � D 2, a similar result was obtained in [20], Proposition 2.1.
Regarding the first Ricatti equation (14), the following result was described in [20],
Theorem 3.1.

Theorem 2. Suppose � ¤ 2 and h.x/ D x1��f .x/ is a solution of the Ricatti
equation

bxh0 � bhC 1

2
h2 C 2bx2��g.x/ D 2bAx2�� C B :

Then the PDE (13) has a symmetry of the form

U".x; t/ D 1

.1C 4"t/ 1��2��

exp

8
<

:

�4"
�
x2�� C Ab .2 � �/2 t2

	

b .2� �/2 .1C 4"t/

9
=

;
(17)

� exp

(
1

2b

 

F

 
x

.1C 4"t/ 2
2��

!

� F .x/
!)

(18)

� u

 
x

.1C 4"t/ 2
2��

;
t

1C 4"t

!

; (19)

where F 0.x/ D f .x/=x� and u is a solution of the respective PDE. That is, for "
sufficiently small, U" is a solution of (13) whenever u is. If u.x; t/ D u0.x/ with u0
an analytic, stationary solution, then there is a fundamental solution p.t; x; y/ of
(13) such that

Z 1

0

expf�y2��gu0 .y/ p .t; x; y/ dy D U.x; t/ :

Here U.x; t/ D U 1
4 b.2��/2. Further, if u0 D 1, then

R1
0 p.t; x; y/dy D 1.

For the remaining two Ricatti equations, (15) and (16), we refer the reader to
Theorems 2.5 and 2.8 in [17].

We would now like to illustrate how the method can be used. Consider a squared
Bessel process of dimension ı, where ı � 2,
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dXt D ıdtC 2
p
XtdW t ;

whereX0 D x > 0. The drift f .x/ D ı satisfies Eq. (14) withA D 0. Consequently,
using Theorem 2 with A D 0 and u.x; t/ D 1, we obtain

U".x; t/ D exp

�
� 4
x

b .1C 4"t/
�
.1C 4"t/� ı

b ;

where b D 2. Setting " D b
4

, we obtain the Laplace transform

U.x; t/ D
Z 1

0

exp f�ygp.t; x; y/dy

D exp

�
� x

1C 2t
�
.1C 2t/� ı

2 ;

which is inverted to yield

p.t; x; y/ D 1

2t

�
x

y

� �
2

I�

�p
xy

t

�
exp

�
� .x C y/

2t

�
; (20)

where � D ı
2
� 1 denotes the index of the squared Bessel process. Here I� denotes

the modified Bessel function of the first kind. Equation (20) shows the transition
density of a squared Bessel process started at time 0 in x for being at time t in y.
This result, together with the real world pricing formula (5), allows us to price a wide
range of European style and path-dependent derivatives with payoffs of the type
H D f .S�t1 ; S

�
t2
; : : : ; S�td /, where d � 1 and t1; t2; : : : ; td are given deterministic

times.
By exploiting the tractability of the underlying processes, Lie symmetry methods

allow us to design efficient Monte Carlo algorithms, as the following example
from [3] and [2] shows. We now consider the problem of pricing derivatives on
realized variance. Here we define realized variance to be the quadratic variation of
the log-index, and we formally compute the quadratic variation of the log-index in
the form,



log.Sı�� /

�
T
D
Z T

0

dt

Yt
:

Recall from Sect. 2 that Y D fYt ; t � 0g is a square-root process whose dynamics
are given in Eq. (2). In particular, we focus on put options on volatility, where
volatility is defined to be the square-root of realized variance. We remark that call
options on volatility can be obtained via the put-call parity relation in Lemma 4.1 in
[3]. The real-world pricing formula (5) yields the following price for put options on
volatility
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S
ı�
t E

0

B
@
.K �

q
1
T

R T
0

ds
Ys
/C

S
ı�
T

ˇ̌
ˇ
ˇAt

1

C
A : (21)

For computing the expectation in (21) via Monte Carlo methods, one first needs
to have access to the joint density of .Sı�T ;

R T
0

ds
Ys
/ and subsequently perform the

Monte Carlo simulation. Before presenting the relevant result, we recall that Sı�T D
S0T ˛

ı�
T YT , i.e. it suffices to have access to the joint distribution of .YT ;

R T
0

dt
Yt
/. We

remark that if we have access to the Laplace transform of .YT ;
R T
0

dt
Yt
/, i.e.

E

�
exp

�
�YT � �

Z T

0

dt

Yt

��
; (22)

then we have, in principle, solved the problem. From the point of view of
implementation though, inverting a two-dimensional Laplace transform numerically
is expensive. The following result from [20], see Corollaries 5.8 and 5.9, goes
further: In fact the fundamental solution corresponds to inverting the expression
in (22) with respect to , which significantly reduces the computational complexity.

Lemma 1. The joint Laplace transform of YT and
R T
0

dt
Yt

is given by

E

�
exp

�
�YT � �

Z T

0

1

Yt
dt

��

D � .3=2C �=2/
� .� C 1/ ˇx�1 exp

�
�

�
T C x � x

tanh .�T=2/

��

1

ˇ˛
exp

�
ˇ2=.2˛/

�
M�k;�=2

�
ˇ2

˛

�
;

where ˛ D �
�
1C coth. �t

2
/
� C , ˇ D �

p
x

sinh. �t2 /
, � D 2

q
1
4
C 2�, and Ms;r.z/

denotes the Whittaker function of the first kind. In [20], the inverse with respect to
 was already performed explicitly and is given as

p.T; x; y/ D �

sinh .�T=2/

�y
x

	1=2

� exp

�
�

�
T C x � y � x C y

tanh.�T=2/

��
I�

�
2�
p
xy

sinh .�T=2/

�
: (23)

Consequently, to recover the joint density of .YT ;
R T
0

dt
Yt
/, one only needs to invert

a one-dimensional Laplace transform. For further details, we refer the interested
reader to [2]. By gaining access to the relevant joint densities, this example
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demonstrates that Lie symmetry methods allow us to design efficient Monte Carlo
algorithms for challenging problems in mathematical finance.

4 Wishart Processes

Very tractable and highly relevant to finance are models that generalize the
previously mentioned MMM. Along these lines, in this section we discuss Wishart
processes with a view towards exact simulation. As demonstrated in [13], Wishart
processes turn out to be the multidimensional extensions of squared Bessel pro-
cesses. However, they also turn out to be affine, see [32], and [33]. Prior to the
latter two contributions, the literature was focused on affine processes taking values
in the Euclidean space, see e.g. [28], and [27]. Subsequently, matrix-valued affine
processes were studied, see e.g. [22], and [34]. Since [32], and [33], it has been
more widely known that Wishart processes are analytically tractable, since their
characteristic function is available in closed form; see also [30]. In this section, we
exploit this fact when we discuss exact simulation of Wishart processes.

Firstly, we fix notation and present an existence result. Wishart processes are

SCd or SCd valued, i.e. they assume values in the set of positive definite or positive
semidefinite matrices, respectively. This makes them natural candidates for the
modeling of covariance matrices, as noted in [32]. Starting with [32] and [33],
there is now a substantial body of literature applying Wishart processes to problems
in finance, see [14, 15, 23–26], and [31]. In the current paper we study Wishart
processes in a pure diffusion setting. For completeness, we mention that matrix
valued processes incorporating jumps have been studied, see e.g. in [5], and [42].
These processes are all contained in the affine framework introduced in [22], where
we direct the reader interested in affine matrix valued processes.

In the following, we introduce the Wishart process as described in the work of

Grasselli and collaborators; see [25] and [34]. For x 2 SCd , we introduce the SCd
valued Wishart process Xx D X D fX t ; t � 0g, which satisfies the SDE

dX t D
�
˛a>aC bX t CX tb

>	 dtC
�p

X t dW taC a>dW >
t

p
X t

	
; (24)

where ˛ � 0, b 2Md , a 2Md . Here Md denotes the set of d � d matrices taking
values in <. An obvious question to ask is whether Eq. (24) admits a solution, and,
furthermore, if such a solution is unique and strong. For results on weak solutions we
refer the reader to [22], and for results on strong solutions to [48]. We now present
a summary of results, which in this form also appeared in [1]; see Theorem 1 in [1].

Theorem 3. Assume that x 2 SCd , and ˛ � d � 1, then Eq. (24) admits a unique
weak solution. If x 2 SCd and ˛ � d C 1, then this solution is strong.

In this paper, we are interested in exact simulation schemes to be used in Monte
Carlo methods. Hence weak solutions suffice for our purposes and we assume that
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˛ > d �1, so that the weak solution is unique. As in [1], we use WISd .x; ˛;b; a/ to
denote a Wishart process and WISd .x; ˛;b; aI t/ for the value of the process at the
time point t .

We begin with the study of some special cases, which includes an extension of
the MMM to the multidimensional case. We use B t to denote an n � d Brownian
motion and set

X t D B>t B t : (25)

Then it can be shown that X D fX t ; t � 0g satisfies the SDE

dX t D nIddtC
p

X t dW t C dW >
t

p
X t ;

where W t is a d � d Brownian motion, and Id denotes the d � d identity matrix.
This corresponds to the case where we set

a D Id ; b D 0 ; ˛ D n :

We now provide the analogous scalar result, showing that Wishart processes
generalize squared Bessel processes: Let ı 2 N , and set

x D
ıX

kD1
.wk/2 ;

where wk 2 <, k 2 f1; : : : ; ıg. Now we set

Xt D
ıX

kD1
.W k

t C wk/2 : (26)

Then X can be shown to satisfy the SDE

dXt D ıdtC 2
p
XtdBt ;

where B D fBt ; t � 0g is a scalar Brownian motion. This shows that (25) is the
generalization of (26). Furthermore, it is also clear how to simulate (25).

Next, we illustrate how Wishart processes can be used to extend the MMM from
Sect. 2. We recall some results pertaining to matrix-valued random variables, see e.g.
[35], and [49]. We introduce some auxiliary notation. We denote by Mm;n.</ the
set of allm�nmatrices with entries in<. Next, we present a one-to-one relationship
between vectors and matrices.

Definition 1. Let A 2Mm;n.</ with columns ai 2 <m, i D 1; : : : ; n, and define
the function vec WMm;n.</! <mn via
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vec.A/ D

0

B
@

a1
:::

an

1

C
A :

We can now define the matrix variate normal distribution.

Definition 2. A p � n random matrix is said to have a matrix variate normal
distribution with mean M 2 Mp;n.</ and covariance ˙ ˝ � , where ˙ 2 S Cp ,

� 2 S Cn , if vec.X>/ � Npn.vec.M>/;˙ ˝ � /, where Npn denotes the
multivariate normal distribution on<pn with mean vec.M>/ and covariance ˙˝� .
We will use the notation X � Np;n.M ;˙ ˝ � /.

Next, we introduce the Wishart distribution, which we link in the subsequent
theorem to the normal distribution.

Definition 3. A p�p-random matrix X in S Cp is said to have a noncentral Wishart
distribution with parameters p 2 N , n � p, ˙ 2 S Cp and � 2 Mp.</, if its
probability density function is of the form

fX .S / D
�
2
1
2 np�p.

n

2
/det.˙ /

n
2

	�1
etr

�
�1
2
.� C˙�1S /

�

� det.S /
1
2 .n�p�1/ 0F1

�
n

2
I 1
4

�˙�1S
�

where S 2 S Cp , etr denotes the exponential of the trace, and 0F1 is the matrix-
valued hypergeometric function, see [35], and [49] for a definition. We write

X � Wp.n;˙ ;�/ :

Before stating the next result, recall that scalar non-central chi-squared random
variables of integer degrees of freedom, can be constructed via sums of normal
random variables; see e.g. [38]. The following result presents the matrix variate
analogy.

Theorem 4. Let X � Np;n.M ;˙ ˝ In/, n 2 fp; p C 1; : : : g. Then

XX> � Wp.n;˙ ;˙�1MM>/ :

Using Theorem 4 we immediately have access to the probability density functions
of Wishart processes which are generated as products of matrix valued Brownian
motions, see Eq. (25) for an example. This close link between the Wishart distribu-
tion and the Wishart process is employed in the next section.
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5 Bivariate MMM

Theorem 4 is now employed to extend the MMM to a bivariate case. We consider
exchange rate options, and follow the ideas from [36]. The GOP denominated in
units of the domestic currency is denoted by Sa, and the GOP denominated in the
foreign currency by Sb . An exchange rate at time t can be expressed in terms of a
ratio of two GOP denominations. Then one would pay at time t , S

a
t

Sbt
units of currency

a to obtain one unit of the foreign currency b. As the domestic currency is indexed
by a, the price of, say, a call option with maturity T on the exchange rate can be
expressed via the real world pricing formula (5) as:

Sa0 E

0

B
@

�
SaT
SbT
�K

	C

SaT

1

C
A : (27)

We now discuss a bivariate extension of the MMM from Sect. 2, which is still
tractable, as we can employ the non-central Wishart distribution to compute (27).
For k 2 fa; bg, we set

Skt D S0;kt NSkt ;

where S0;kt D expfrktg, S0;k0 D 1, so S0;k denotes the savings account in currency
k, which for simplicity is assumed to be a deterministic exponential function of
time. As for the stylized MMM, we model the discounted GOP, NSkt , denominated in
units of the kth savings account, S0;kt , as a time-changed squared Bessel process of
dimension four. We introduce the 2 � 4 matrix process X D fX t ; t � 0g via

X t D
2

4

�
W 1;1

'1.t/
C w1;1

	 �
W 2;1

'1.t/
C w2;1

	 �
W 3;1

'1.t/
C w3;1

	 �
W 4;1

'1.t/
C w4;1

	

�
W

1;2

'2.t/
C w1;2

	 �
W

2;2

'2.t/
C w2;2

	 �
W

3;2

'2.t/
C w3;2

	 �
W

4;2

'2.t/
C w4;2

	

3

5 ;

where w1;1; : : : ;w4;2 can be interpreted as initial parameters. The processes W i;1

'1
,

i D 1; : : : ; 4, denote independent Brownian motions, subject to the deterministic
time-change

'1.t/ D ˛10
4�1

�
expf�1tg � 1� D 1

4

Z t

0

˛1s ds ;

c.f. Sect. 2. Similarly, also W i;2

'2
, i D 1; : : : ; 4, denote independent Brownian

motions, subject to the deterministic time change
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'2.t/ D ˛20
4�2

�
expf�2tg � 1� D 1

4

Z t

0

˛2s ds :

Now, consider the process Y D fY t ; t � 0g, which assumes values in SC2 , and is
given by

Y t WD X tX
>
t ; t � 0 ;

which yields

Y t D

2

6
4

P4
iD1

�
W

i;1

'1.t/
C wi;1

	2 P4
iD1

P2
jD1

�
W

i;j

'j .t/
C wi;j

	

P4
iD1

P2
jD1

�
W

i;j

'j .t/
C wi;j

	 P4
iD1

�
W i;2

'2.t/
C wi;2

	2

3

7
5 :

We set

NSat D Y 1;1t and NSbt D Y 2;2t ;

so we use the diagonal elements of Y t to model the GOP in different currency
denominations. Next, we introduce the following dependence structure: The Brow-
nian motionsW i;1 andW i;2, i D 1; : : : ; 4, covary as follows:

hW i;1

'1.�/; W
i;2

'2.�/it D
%

4

Z t

0

q
˛1s ˛

2
0ds; i D 1; : : : ; 4 ; (28)

where �1 < % < 1. The specification (28) allows us to employ the non-central
Wishart distribution. We work through this example in detail, as it illustrates how to
extend the stylized MMM to allow for a non-trivial dependence structure, but still
exploit the tractability of the Wishart distribution. We recall that vec.X>T / stacks the
two columns of X>T , hence

vec.X>T / D

2

6
66
6
6
6
6
66
6
6
6
4

�
W

1;1

'1.T /
C w1;1

	

:::�
W

4;1

'1.T /
C w4;1

	

�
W 1;2

'2.T /
C w1;2

	

:::�
W

4;2

'2.T /
C w4;2

	

3

7
77
7
7
7
7
77
7
7
7
5

:

It is easily seen that the mean matrix M of vec.X>T / satisfies
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vec
�
M>	 D

2

6
6
6
6
66
6
6
6
4

w1;1

:::

w4;1

w1;2

:::

w4;2

3

7
7
7
7
77
7
7
7
5

(29)

and the covariance matrix of vec.X>T / is given by

˙ ˝ I4 D
�
˙1;1I4 ˙

1;2I4

˙2;1I4 ˙
2;2I4


; (30)

where ˙ is a 2 � 2 matrix with ˙1;1 D '1.T /, ˙2;2 D '2.T /, and

˙1;2 D ˙2;1 D %

4

Z t

0

q
˛1s ˛

2
s ds :

We remark that assuming �1 < % < 1 results in ˙ being positive definite. It now
immediately follows from Theorem 4 that

XTX>T � W2

�
4;˙ ;˙�1MM>	 ;

where M and ˙ are given in Eqs. (29) and (30), respectively. Recall that we set

Y t D X tX
>
t ;

NSat D Y
1;1
t ;

NSbt D Y
2;2
t ;

hence we can compute (27) using

E .f .Y T // ;

where f W SC2 ! < is given by

f .y/ D
�

expfr1T gy1;1
expfr2T gy2;2 �K

	C

expfr1T gy1;1 ;

for y 2 SC2 , and yi;i , i D 1; 2, are the diagonal elements of y, and the probability
density function of Y T is given in Definition 3.
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We now discuss further exact simulation schemes for Wishart processes, where
we rely on [1] and [6]. For integer valued parameters ˛ in (24), we have the
following exact simulation scheme, which generalizes a well-known result from the
scalar case, linking Ornstein-Uhlenbeck and square-root processes. In particular,
this lemma shows that, in principle, certain square-root processes can be simulated
using Ornstein-Uhlenbeck processes.

Lemma 2. Let A > 0, Q > 0, and define the SDEs

dXit D �AXi
t dtC QdW i

t ;

for i D 1; : : : ; ˇ, where ˇ 2 N , W 1;W 2; : : : ;W ˇ are independent Brownian
motions. Then

Zt D
ˇX

iD1
.Xi

t /
2

is a square-root process of dimension ˇ, whose dynamics are characterised by an
SDE

dZt D .ˇQ2 � 2AZt /dtC 2Q
p
ZtdBt ;

where B is a resulting Brownian motion.

Proof. The proof follows immediately from the Itô-formula. ut
This result is easily extended to the Wishart case, for integer valued ˛, see Sect. 1.2.2
in [6]. We define

V t D
ˇX

kD1
Xk;tX

>
k;t ; (31)

where

dXk;t D AXk;tdtCQ>dW k;t ; k D 1; : : : ; ˇ ; (32)

where A 2Md , X t 2 <d , Q 2Md , W k 2 <d , so that V t 2Md . The following
lemma gives the dynamics of V D fV t ; t � 0g.
Lemma 3. Assume that V t is given by Eq. (31), where X t satisfies Eq. (32). Then

dV t D
�
ˇQ>QCAV t C V tA

>	 dtC
p

V t dW tQCQ>dW >
t

p
V t ;

where W D fW t ; t � 0g is a d � d matrix valued Brownian motion that is
determined by
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p
V t dW t D

ˇX

kD1
Xk;t dW >

t;k :

Finally, we remind the reader that vector-valued Ornstein-Uhlenbeck processes can
be simulated exactly, see e.g. Chap. 2 in [52].

For the general case, we refer the reader to [1]. In that paper, a remarkable
splitting property of the infinitesimal generator of the Wishart process was employed
to come up with an exact simulation scheme for Wishart processes without
any restriction on the parameters. Furthermore, in [1] higher-order discretization
schemes for Wishart processes and second-order schemes for general affine diffu-
sions on positive semidefinite matrices were presented. These results emphasize that
Wishart processes are suitable candidates for financial models from a computational
perspective, since exact simulation schemes are readily available. They are also well
suited from the perspective of the benchmark approach to finance, since they go in
a natural way beyond the classical risk neutral modeling.

6 Conclusion

In this paper, we discussed, with a view towards financial modeling under the
benchmark approach, classes of stochastic processes for which exact simulation
schemes are available. In the one-dimensional case, our first theorem gives access to
explicit transition densities via Lie symmetry group results. In the multidimensional
case the probability law of Wishart processes is described explicitly. When consid-
ering applications in finance, one needs a framework that can accommodate these
processes as asset prices, in particular, when they generate strict local martingales.
We demonstrated that the benchmark approach is a suitable framework for these
processes and allows us to systematically exploit the tractability of the models
described.
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The Supremum Norm of the Discrepancy
Function: Recent Results and Connections

Dmitriy Bilyk and Michael Lacey

Abstract A great challenge in the analysis of the discrepancy function DN is to
obtain universal lower bounds on the L1 norm of DN in dimensions d � 3. It
follows from theL2 bound of Klaus Roth that kDN k1 � kDN k2 & .logN/.d�1/=2.
It is conjectured that the L1 bound is significantly larger, but the only definitive
result is that of Wolfgang Schmidt in dimension d D 2. Partial improvements of the
Roth exponent .d �1/=2 in higher dimensions have been established by the authors
and Armen Vagharshakyan. We survey these results, the underlying methods, and
some of their connections to other subjects in probability, approximation theory, and
analysis.

1 Introduction

We survey recent results on the sup-norm of the discrepancy function. For integers
d � 2, and N � 1, let PN � Œ0; 1�d be a finite point set with cardinality
]PN D N . Define the associated discrepancy function by

DN .x/ D ].PN \ Œ0; x// �N jŒ0; x/j; (1)

where x D .x1; : : : ; xd / and Œ0; x/ D Qd
jD1Œ0; xj / is a rectangle with antipodal

corners at 0 and x, and j � j stands for the d -dimensional Lebesgue measure.
The dependence upon the selection of points PN is suppressed, as we are mostly
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interested in bounds that are universal in PN . The discrepancy function DN

measures equidistribution of PN : a set of points is well-distributed if this function
is small in some appropriate function space.

It is a basic fact of the theory of irregularities of distribution that relevant norms
of this function in dimensions 2 and higher must tend to infinity as N grows. The
classic results are due to Roth [21] in the case of the L2 norm and Schmidt [23] for
Lp , 1 < p < 2.

Theorem 1. For 1 < p <1 and any collection of points PN � Œ0; 1�d , we have

kDN kp & .logN/.d�1/=2 : (2)

Moreover, we have the endpoint estimate

kDN kL.logL/.d�1/=2 & .logN/.d�1/=2: (3)

The symbol “&” in this paper stands for “greater than a constant multiple of”,
and the implied constant may depend on the dimension, the function space, but not
on the configuration PN or the number of points N . The Orlicz space notation,
such as L.logL/ˇ , is explained in the next section, see (10).

We should mention that there exist sets PN that meet the Lp bounds (2) in all
dimensions. This remarkable fact is established by beautiful and quite non-trivial
constructions of the point distributions PN . We refer to the reader to one of the
very good references [2,11,12] on the subject for more information on this important
complement to the subject of this note.

While the previous theorem is quite adequate for Lp , 1 < p < 1, the endpoint
cases of L1 and L1 are not amenable to the same techniques. Indeed, the extremal
L1 bound should be larger than the average L2 norm. In dimension d D 2 the
endpoint estimates are known – it is the theorem of Schmidt [22].

Theorem 2. The following estimate is valid for all collections PN � Œ0; 1�2:

kDN k1 & logN: (4)

This is larger than Roth’s L2 bound by
p

logN . The difference between the two
estimates points to the fact that for extremal choices of sets PN , the L1 norm of
DN is obtained on a set so small it cannot be seen on the scale of Lp spaces. We
will return to this point below.

In dimensions 3 and higher partial results began with a breakthrough work of
J. Beck [1] in dimension d D 3. The following result is due to Bilyk and Lacey [5]
in dimension d D 3, and Bilyk, Lacey, Vagharshakyan [8] in dimensions d � 4.

Theorem 3. In dimensions d � 3 there exists � D �.d/ � c=d2 for which the
following estimate holds for all collections PN � Œ0; 1�d :

kDN k1 & .logN/
d�1
2 C� : (5)
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This is larger than Roth’s bound by .logN/�. Beck’s original result in dimension
d D 3 had a much smaller doubly logarithmic term .log logN/

1
8�" in place

of .logN/�. The proof strategy begins with the fundamental orthogonal function
method of Roth and Schmidt, which we turn to in the next section. In Sect. 3
we turn to a closely related combinatorial inequality for “hyperbolic” sums of
multiparameter Haar functions. It serves as the core question which has related the
progress on lower bounds for the discrepancy function to questions in probability
and approximation theory. Based upon this inequality, it is natural to conjecture that
the optimal form of the L1 estimate is

Conjecture 1. In dimensions d � 3 there holds kDN k1 & .logN/d=2.

We should mention that at the present time there is no consensus among the
experts about the sharp form of the conjecture (in fact, a great number of specialist
believes that kDN k1 & .logN/d�1 is the optimal bound, which is supported by
the best known examples). However, in this paper we shall advocate our belief
in Conjecture 1 by comparing it to other sharp conjectures in various fields of
mathematics. In particular, the sharpness of Conjecture 2 in Sect. 3 suggests that
the estimate above is the best that could be obtained by the orthogonal function
techniques.

The reader can consult the papers [5, 8], as well as the surveys of the first author
[3, 4] for more detailed information.

2 The Orthogonal Function Method

All progress on these universal lower bounds has been based upon the orthogonal
function method, initiated by Roth, with the modifications of Schmidt, as presented
here. Denote the family of all dyadic intervals I � Œ0; 1� by D . Each dyadic interval
I is the union of two dyadic intervals I� and IC, each of exactly half the length of
I , representing the left and right halves of I respectively. Define the Haar function
associated to I by hI D ��I�

C �IC
. Here and throughout we will use the L1

(rather than L2) normalization of the Haar functions.
In dimension d , the d -fold product Dd is the collection of dyadic intervals in

Œ0; 1�d . Given R D R1 � � � � �Rd 2 Dd , the Haar function associated with R is the
tensor product

hR.x1; : : : ; xd / D
dY

jD1
hRj .xj / :

These functions are pairwise orthogonal as R 2 Dd varies.
For a d -dimensional vector r D .r1; : : : ; rd / with non-negative integer coordi-

nates let Dr be the set of those R 2 Dd that for each coordinate 1 � j � d ,
we have jRj j D 2�rj . These rectangles partition Œ0; 1�d . We call fr an r-function
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(a generalized Rademacher function) if for some choice of signs f"R W R 2 Drg,
we have

fr.x/ D
X

R2Dr
"RhR.x/ :

The following is the crucial lemma of the method. Given an integer N , we set
n D d1Clog2 N e, where dxe denotes the smallest integer greater than or equal to x.

Lemma 1. In all dimensions d � 2 there is a constant cd > 0 such that for each r
with jr j WDPd

jD1 rj D n, there is an r-function fr with hDN ; fri � cd . Moreover,

for all r-functions there holds jhDN ; frij . N2�jr j.

The proof of the lemma is straightforward, see e.g. [3, 21, 23]. With this lemma
at hand, the proof of Roth’s Theorem in L2 is as follows. Note that the requirement
that jr j D n says that the coordinates of r must partition n into d parts. It follows
that the number of ways to select the coordinates of r is bounded above and below
by a multiple of nd�1, agreeing with the simple logic that there are d � 1 “free”
parameters: d dimensions minus the restriction jr j D n. Set Fd D P

r W jr jDn fr .
Orthogonality implies that kFdk2 . n.d�1/=2. Hence, by Cauchy–Schwarz

nd�1 .
X

r W jr jDn
hDN ; fri D hDN ;Fd i (6)

� kDN k2 � kFdk2 � kDN k2 � n.d�1/=2 : (7)

The universal lower bound n.d�1/=2 . kDN k2 follows.
Deeper properties of the discrepancy function may be deduced from finer prop-

erties of r-functions. A key property is the classical Littlewood–Paley inequality for
Haar functions:

Theorem 4. For p � 2, we have the inequality

�
��
X

I2D
˛I hI

�
��
p
� Cpp

�
��
hX

I2D
j˛I j2�I

i1=2���
p
; (8)

where C is an absolute constant, and the coefficients ˛I take values in a Hilbert
space H.

The right-hand side is the Littlewood–Paley (martingale) square function of the
left hand side. This inequality can be viewed as an extension of orthogonality
and Parseval’s identity to values of p other than 2, and it is often useful to keep
track of the growth of Lp norms. The fact that one can allow Hilbert space value
coefficients permits repeated application of the inequality. The role of the Hilbert
space valued coefficients is the focus of [14], which includes more information
about multiparameter harmonic analysis, relevant to this subject.

Consider the dual function in (7), Fd D P
r W jr jDn fr . As discussed earlier, the

index set fr W jr j D ng has d � 1 free parameters. The function Fd is a Haar series
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in the first variable, so the inequality (8) applies. On the right-hand side, the square
function can be viewed as an `2-valued Haar series in the second variable, hence (8)
applies again, see [3, 8] for details. Continuing this d � 1 times, one arrives at

kFdkp . p.d�1/=2n.d�1/=2 ; 2 � p <1 : (9)

Repeating (7) verbatim (with Hölder replacing Cauchy–Schwarz), one obtains
n.d�1/=2 . kDN kq for 1 < q < 2.

If one is interested in endpoint estimates, it is useful to rephrase the inequalities
for Fd above in the language of Orlicz spaces. For a convex increasing function
 W RC ! RC with  .0/ D 0, the Orlicz space L is defined as the space of
measurable functions f W Œ0; 1�d ! R for which

kf kL D inf

�
K > 0 W

Z

Œ0;1�d
 
�jf .x/j=K� dx � 1

�
: (10)

In particular, for  .t/ D tp one obtains the standard Lp spaces, while exp.L˛/ and
L.logL/ˇ denote Orlicz spaces generated by functions equal to et

˛
and t logˇ t

respectively, when t is large enough. These spaces serve as refinements of the
endpoints of the Lp scale, as for each 1 < p < 1, ˛, ˇ > 0 we have the
embeddingsL1 � exp.L˛/ � Lp and Lp � L.logL/ˇ � L1.

The polynomial growth in the Lp norms of Fd (9) translates into exponential
integrability estimates, namely kFdkexp.L2=.d�1// . n.d�1/=2, since

kf kexp.L˛/ ' sup
p>1

p�1=˛kf kp ; ˛ > 0 :

The dual space to exp.L2=.d�1// is L.logL/.d�1/=2, hence we see that

n.d�1/=2 . kDN kL.logL/.d�1/=2 :

A well-known result of Halász [15] is a ‘
p

logL’ improvement of this estimate in
dimension d D 2. Indeed, we have the following theorem valid for all dimensions,
see [18].

Theorem 5. For dimensions d � 2, there holds kDN kL.logL/.d�2/=2 &
.logN/.d�1/=2.

Notice that for d D 2 one recovers Halász’s L1 bound

p
logN . kDN k1: (11)

In dimension d D 2, the argument of Halász can be rephrased into the estimate

p
n . hDN ; sin

�
cp
n
F2
�i ; 0 < c < 1 sufficiently small. (12)
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This immediately shows that kDN k1 &
p
n in dimension d D 2. There is a relevant

endpoint estimate of the Littlewood–Paley inequalities, namely the Chang–Wilson–
Wolff inequality [10]. Employing extensions of this inequality and the estimate
above, one can give a proof of Theorem 5 in dimensions d � 3.

It is a well-known conjecture that in all dimensions d � 3 one has the estimate

kDN k1 & .logN/.d�1/=2 (13)

on theL1 norm of the discrepancy function. Any improvement of Theorem 5 would
yield progress on this conjecture.

3 The Small Ball Inequality

Lower bounds on the discrepancy function are related through proof techniques to
subjects in different areas of mathematics. They include, in particular, the so-called
small deviation inequalities for the Brownian sheet in probability theory, complexity
bounds for certain Sobolev spaces in approximation theory, and a combinatorial
inequality involving multivariate Haar functions in the unit cube. We refer the reader
to the references [3–5, 8] for more information, and emphasize that the questions in
probability and approximation theory are parts of very broad areas of investigation
with additional points of contact with discrepancy theory and many variations of the
underlying themes.

According to the idea introduced in the previous section, the behavior of DN is
essentially defined by its projection onto the span of fhR W R 2 Dd ; jRj D 2�ng.
It is therefore reasonable to model the discrepancy bounds by estimates of the
linear combinations of such Haar functions (we call such sums “hyperbolic”).
The problem of obtaining lower bounds for sums of Haar functions supported by
rectangles of fixed volume – known as the Small Ball inequality – arises naturally
in the aforementioned problems in probability and approximation theory. While in
the latter fields versions of this inequality have important formal implications, its
connection to discrepancy estimates is still only intuitive and is not fully understood.
However, most known proof methods are easily transferred from one problem to
another. The conjectured form of the inequality is the following.

Conjecture 2 (The Small Ball Conjecture). For dimension d � 3 we have the
inequality

2�n
X

jRjD2�n

j˛Rj . n.d�2/=2
�
�
�
�

X

R2Dd W jRjD2�n

˛RhR

�
�
�
�1

(14)

valid for all real-valued coefficients ˛R .

The subject of the conjecture is the exact exponent of n the right-hand side. This
conjecture is better, by one square root of n, than a trivial estimate available from
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the Cauchy–Schwartz inequality. Indeed, with n.d�2/=2 replaced by n.d�1/=2 it holds
for the L2 norm:

��
�
�

X

R2Dd W jRjD2�n

˛RhR

��
�
�
2

D
� X

jRjD2�n

j˛Rj22�n
� 1

2

(15)

&
P
jRjD2�n j˛Rj2�n=2
�
nd�12n

� 1
2

D n� d�1
2 � 2�n

X

jRjD2�n

j˛Rj;

where we have used the fact that the total number of rectangles R 2 Dd is
	nd�12n. This computation is similar in spirit to (7) establishing Roth’s L2

discrepancy bound. Generally, the Small Ball Conjecture bears a strong resemblance
to Conjecture 1 about the discrepancy function. Indeed, in both cases one gains a
square root of the logarithm over the L2 bound.

One can consider a restricted version of inequality (14), which appears to
contain virtually all the complexity of the general inequality and is sufficient for
applications:

�
�
�
X

jRjD2�n

"RhR

�
�
�1 & nd=2 ; "R 2 f�1; 0; 1g ; (16)

subject to the requirement that
P
jRjD2�n j"Rj � c2nnd�1 for a fixed small constant

c > 0, in other words, at least a fixed proportion of the coefficients "R are non-zero.
The relation to the discrepancy estimates becomes even more apparent for this form
of the inequality. For instance, the trivial bound (15) becomes

��
�
X

jRjD2�n

"RhR

��
�1 �

��
�
X

jRjD2�n

"RhR

��
�
2

& n.d�1/=2 : (17)

Compare this to Roth’s bound (2), and compare (16) to Conjecture 1. The
similarities between the discrepancy estimates and the Small Ball inequality are
summarized in Table 1.

A more restrictive version of inequality (14) with "R D ˙1 (the signed
small ball inequality) does allow for some proof simplifications, but has no direct
consequences. The papers [8, 9] study this restricted inequality, using only the
fundamental inequality – Lemma 2 of Sect. 6. This case will likely continue to be a
proving ground for new techniques in this problem.

Conjecture 2 is sharp: for independent random selection of coefficients (either
random signs or Gaussians), the supremum is at most Cnd=2,

E

�
�
�
X

jRjD2�n

˛RhR

�
�
�1 ' n

d=2 :
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Table 1 Discrepancy estimates and the signed Small Ball
inequality.

Discrepancy estimates Small Ball inequality (signed)

Dimension d D 2

kDN k1 & logN

���
�

X

jRjD2�n

"RhR

���
�

1

& n

(Schmidt, ’72; Halász, ’81) (Talagrand, ’94; Temlyakov, ’95)

Higher dimensions, L2 bounds

kDN k2 & .logN/.d�1/=2

���
�

X

jRjD2�n

"RhR

���
�
2

& n.d�1/=2

Higher dimensions, conjecture

kDN k1 & .logN/d=2
�
���

X

jRjD2�n

"RhR

�
���

1

& nd=2

Higher dimensions, known results

kDN k1 & .logN/
d�1
2 C�

���
�

X

jRjD2�n

"RhR

���
�

1

& n
d�1
2 C�

Unfortunately, random selection of coefficients does not seem to be a guide to the
sums that are hardest to analyze. The sharpness of the Small Ball Conjecture justifies
our belief in the optimality of Conjecture 1 in discrepancy theory.

4 Connections to Probability and Approximation Theory

We briefly touch upon the connections of the Small Ball inequality (14) to problems
in other fields. A very detailed account of these relations is contained in [4].

4.1 Approximation Theory: Metric Entropy of Classes
with Dominating Mixed Smoothness

Let MWp be the image of the unit ball Lp.Œ0; 1�d / under the integration operator�
T f

�
.x/ D R x1

0
: : :
R xd
0
f .y/dy, i.e. in some sense MWp is the set of functions

on Œ0; 1�d whose mixed derivative @d f

@x1@x2:::@xd
has Lp norm bounded by one.

This set is compact in the L1 metric and its compactness may be measured by
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covering numbers. Let N."; p; d/ be the cardinality of the smallest "-net of MWp

in the L1 norm. The exact asymptotics of these numbers as " # 0 is a subject of
conjecture.

Conjecture 3. For d � 2, we have logN."; 2; d/ ' "�1.log 1="/d�1=2 ; as " # 0.

The case d D 2 is settled [26], and the upper bound is known in all dimensions
[13]. Inequalities similar to the Small Ball Conjecture (14) lead to lower bounds on
the covering numbers.

4.2 Probability: The Small Ball Problem for the Brownian
Sheet

Consider the Brownian sheet Bd , i.e. a centered multiparameter Gaussian process
characterized by the covariance relation EBd .s/ � Bd .t/ D Qd

jD1 minfsj ; tj g. The
problem deals with the precise behavior of P.kBkC.Œ0;1�d / < "/, the small deviation
(or small ball) probabilities of Bd .

There is an exciting formal equivalence established by Kuelbs and Li [16, 17]
between the small ball probabilities and the metric entropy of the unit ball of the
reproducing kernel Hilbert space, which in the case of the Brownian sheet is WM2.
This yields an equivalent conjecture:

Conjecture 4. In dimensions d � 2, for the Brownian sheet B we have

� logP.kBkC.Œ0;1�d / < "/ ' "�2.log 1="/2d�1; " # 0:

The upper bounds are known for d � 2 [13], while the lower bound for d D 2 has
been obtained by Talagrand [26] using (14). It is worth mentioning that Conjecture 4
explains the nomenclature small ball inequality.

4.3 Summary of the Connections

The connections between the Small Ball Conjecture and these problems is illustrated
in Fig. 1. Solid arrows represent known formal implications, while a dashed line
denotes an informal heuristic relation. Hopefully, other lines, as well as other nodes,
will be added to this diagram in the future. In particular, we expect that the theory
of empirical processes may connect the discrepancy bounds to the small deviation
probabilities.
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Small Ball Conjecture

n
d−2

2 ∑
|R|=2−n

αRhR
∞

2−n ∑
R: |R|=2−n

|αR|:
Discrepancy estimates

DN ∞ (logN)
d
2

Small deviations for the Brownian sheet
− logP( B C([0,1]d ) < ) −2(log1/ )2d−1

Metric entropy of MW 2

logN( ,2,d) eeeee −1(log1/ ε)d−1/ 2

dnuobrewoldnuobrewol

Kuelbs, Li, ’93

Fig. 1 Connections between the Small Ball Conjecture and other problems.

5 Riesz Product Techniques

The only case in which the Small Ball inequality (14) is known in full generality is
dimension d D 2, which was proved by M. Talagrand [26].

Theorem 6. In dimension d D 2, there holds for all n,

2�n
X

jRjD2�n

j˛Rj .
�
�
�
X

jRj�2�n

˛RhR

�
�
�1:

Soon after M. Talagrand proved Conjecture 2 in dimension d D 2, V.
Temlyakov [27] has given an alternative elegant proof of this inequality, which
strongly resonated with the argument of Halász [15] for (4). We shall present this
technically simpler proof and then explain the adjustments needed to obtain the
discrepancy bound.

All the endpoint estimates in dimension d D 2 are based upon a very special
property of the two-dimensional Haar functions and the associated r-functions,
product rule: if R; R0 2 D2 are not disjoint, R ¤ R0, and jRj D jR0j, then

hR � hR0 D ˙hR\R0 ; (18)

i.e. the product of two Haar functions is again Haar, or equivalently, if jr j D
jsj D n, then the product fr � fs D ft is also an r function, where t D
.minfr1; s1g;minfr2; s2g/. In higher dimensions two different boxes of the same vol-
ume may coincide in one of the coordinates, in which case hRk � hR0

k
D h2Rk D 1Rk .

This loss of orthogonality leads to major complications in dimensions three and
above.
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Proof. For each j D 0; : : :; n consider the r-functionsf.j;n�j /D
X

jRjD2�n;

jR1jD2�j

sgn.˛R/hR.

In dimension d D 2 the summation conditions uniquely define the shape of a dyadic
rectangle. The product rule drives this argument. We construct the following Riesz
product

� WD
nY

jD1

�
1C f.j;n�j /

�
D 1C

X

R2Dd W jRjD2�n

sgn.˛R/hR C �>n; (19)

where, by the product rule, �>n is a linear combination of Haar functions supported
by rectangles of area less than 2�n, and make three simple observations

1. � � 0, since each factor is either 0 or 2.
2. Next,

R
�.x/dx D 1. Indeed, expand the product in (19) – the initial term is 1,

while all the higher-order terms are Haar functions with mean zero.
3. Therefore � has L1 norm 1: k�k1 D 1.

By the same token, using orthogonality,
�
��
�

X

jRjD2�n

˛RhR

�
��
�1
�
� X

jRjD2�n

˛RhR; �

�
D 2�n �

X

jRjD2�n

j˛Rj; (20)

since hhR; hRi D 2�n. ut
Rather than proving Schmidt’s discrepancy lower bound, we shall explain how

the above argument could be adapted to obtain Halász’s proof of (4). These are the
necessary changes:

• Building blocks: Instead of the r-functions f.j;n�j / D P
sgn.˛R/hR used

above, we take the r-functions provided by Lemma 1 with the property that
hDN ; fri & 1.

• Riesz product: The test function � WD Qn
jD1

�
1C f.j;n�j /

�
should be replaced

by a slightly more complicated ˚ D Qn
jD1

�
1C �f.j;n�j /

�
� 1, where � > 0 is

a small constant.

These adjustments play the following roles: �1 in the end forces the “zero-order”
term

R
DN.x/dx to disappear, while a suitable choice of the small constant �

takes care of the “higher-order” terms and ensures that their contribution is small.
Otherwise, the proof of (4) is verbatim the same as the proof of the two-dimensional
Small Ball Conjecture; the details can be found in [3, 8, 15, 19] etc. The Small Ball
Conjecture may therefore be viewed as a linear term in the discrepancy estimates.
These same comments apply to the proof of the L1 estimate (12) of Halász.
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Table 2 Discrepancy function and lacunary Fourier series.

Discrepancy function Lacunary Fourier series

DN.x/D #fPN \ Œ0; x/g �Nx1x2 f .x/ �P1

kD1 ck sinnkx, nkC1

nk
>  > 1

kDNk2 &
p

logN kf k2 �
pP jck j2

(Roth, ’54)

kDNk1 & logN kf k1 &
P jckj

(Schmidt, ’72; Halász, ’81) (Sidon, ’27)

Riesz product:
Q�
1C cf k

�
Riesz product:

Q�
1C cos.nkx C �k/�

kDNk1 &
p

logN kf k1 & kf k2
(Halász, ’81) (Sidon, ’30)

Riesz product:
Q
�
1C i � c

p

logN
fk

�
Riesz product:

Q
�
1C i � jck j

kf k2
cos.nkx C �k/

�

The power of the Riesz product approach in discrepancy problems and the Small
Ball Conjecture can be intuitively justified. The maximal values of the discrepancy
function (as well as of hyperbolic Haar sums) are achieved on a very sparse, fractal
set. Riesz products are known to capture such sets extremely well. In fact, � D
2nC11E , where E is the set on which all the functions fk are positive, i.e. � defines
a uniform measure on the set where the L1 norm is achieved. In particular, E is
essentially the low-discrepancy van der Corput set [3] if all "R D 1 (in this case,
f.k;n�k/ are Rademacher functions).

Historically, Riesz products were designed to work with lacunary Fourier series,
see e.g. [20,24,25,28], that is, Fourier series with harmonics supported on lacunary
sequences fnkg with nkC1=nk >  > 1, e.g., nk D 2k. The terms of such series
behave like independent random variables, which resembles our situation, since the
functions f.j;n�j / are actually independent. The failure of the product rule explains
the loss of independence in higher dimensions (see [7] for this approach towards the
conjecture). The strong similarity of the two-dimensional Small Ball inequality and
Sidon’s theorem on lacunary Fourier series [24]

�
�
�
�

X

jRjD2�n

˛RhR

�
�
�
�1

& 2�n
X

RW jRjD2�n

j˛Rj vs:

�
�
�
�
X

k

ck sinnkx

�
�
�
�1

&
X

k

jckj

(21)

may be explained heuristically: the condition jRj D 2�n effectively leaves only
one free parameter, and the supports of Haar functions are dyadic – thus we
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obtain a one-parameter system with lacunary frequencies. The similarities between
discrepancy estimates, lacunary Fourier series, and the corresponding Riesz product
techniques are shown in Table 2.

6 Recent Results

An improvement of the Small Ball inequality in higher dimensions has been
obtained by Bilyk, Lacey, and Vagharshakyan [5, 8].

Theorem 7. For all dimensions d � 3, there is an � D �.d/ > c=d2 so that for all
integers n there holds

2�n
X

jRjD2�n

j˛Rj . n
d�1
2 ��

�
�
�
X

jRj�2�n

˛RhR

�
�
�1:

We shall briefly explain some ideas and complications that arise in the higher-
dimensional case.

All simple approaches to these questions are blocked by the dramatic failure of
the product rule in dimensions d � 3. This failure, as well as potential remedies,
was first addressed in the breakthrough paper of József Beck [1]. Recall that the
product rule breaks when some sides of the dyadic rectangles coincide. There is
a whole range of inequalities which partially compensate for the absence of the
product rule and the presence of coincidences. The simplest of these inequalities is
the so-called Beck gain.

Lemma 2 (Beck gain). In dimensions d � 3 there holds

�
�
�

X

r¤s W jr jDjsjDn
r1Ds1

fr � fs
�
�
�
p

. pd�1n
2d�3
2 ; 1 < p <1 : (22)

The meaning of this bound can be made clear by simple parameter counting. The
summation conditions jr j D jsj D n and r1 D s1 “freeze” three parameters. Thus
the pair of vectors r and s has 2d�3 free parameters, and the estimate says that they
behave in an orthogonal fashion, nearly as if we had just applied the Littlewood-
Paley inequality 2d � 3 times. The actual proof is more complicated, of course,
since the variables in the sum are not free as they are in (9). The paper of Beck [1]
contains a weaker version of the lemma above in the case of d D 3, p D 2. The Lp

version is far more useful: the case d D 3 is in [5], and an induction on dimension
argument [8] proves the general case.

To apply the Riesz product techniques one has to be able to deal with longer, more
complicated patterns of coincidences. This would require inequalities of the type
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�
�
�
X

fr1 � � �frk
�
�
�
p

. p˛Mn
M
2 ; (23)

where the summation is extended over all k-tuples of d -dimensional integer vectors
r1, . . . , rk with a specified configuration of coincidences and M is the number of
free parameters imposed by this configuration, i.e. the free parameters should still
behave orthogonally even for longer coincidences. If k D 2, this is just (22); in [8]
a partial result in this direction is obtained for k > 2.

While the breakdown of the product rule is a feature of the method, there are
intrinsic issues that demonstrate that the higher-dimensional inequality is much
more delicate and difficult than the case d D 2. There is no simple closed form
for the dual function in this situation. Indeed, assume that all j˛Rj D 1. One then
wants to show that the sum

P
R W jRjD2�n ˛RhR.x/ & nd=2 for some values of x. But

every x is contained in many more, namely cnd�1 
 nd=2, rectangles of volume
2�n. That is, one has to identify a collection of points which capture only a very
slight disbalance between the number of positive and negative summands. There
doesn’t seem to be any canonical way to select such a set of points in the higher-
dimensional setting, let alone construct a function similar to the Riesz product (19),
which would be close to uniform measure on such a set, see [7].

6.1 Other Endpoint Estimates

The Small Ball Conjecture provides supporting evidence for Conjecture 1 on the
behavior of theL1 norm of the discrepancy function in dimensionsd � 3, kDN k &
.logN/d=2. On the other hand, the best known examples of point sets PN satisfy
kDN k1 . .logN/d�1. However, the techniques of the orthogonal function method
cannot prove anything better than the Small Ball inequality.

As we have pointed out repeatedly, the set on which DN achieves its L1 norm
is a small set. Exactly how small has been quantified in the two-dimensional setting
by Bilyk, Lacey, Parissis, Vagharshakyan [6].

Theorem 8. In dimension d D 2, for any integer N

(a) For any point set PN with #PN D N , and 2 < q <1, we have

kDN kexp.Lq/ & .logN/1�1=q I (24)

(b) There exists a set PN (a shifted van der Corput set) such that for 2 � q <1,

kDN kexp.Lq/ . .logN/1�1=q :

This theorem is an interpolation between Roth’s and Schmidt’s bounds in
dimension two: when q D 2 (the subgaussian case) the estimates resembles the
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L2 behavior,
p

logN , while as q approaches infinity, the bounds become close to
the L1 estimate, logN .

The crucial index q D 2 is the exact limit of Roth’s Theorem: kDN kexp.L2/ &p
logN by Roth’s theorem, and there is an example of PN for which the reverse

inequality holds. It is very tempting to speculate that the Orlicz space exp.L2/ of
subgaussian functions is the sharp space in all dimensions.

Conjecture 5. For all dimensions d

inf
PN

kDN kexp.L2/ . .logN/.d�1/=2 :

This would imply that in the extremal case the set fx W DN .x/ � .logN/d=2g
would have measure at most N�c , for some positive c. We are of course very far
from verifying such conjectures, though they can be helpful in devising potential
proof strategies for the main goal – Conjecture 1.
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An Introduction to Stochastic Particle
Integration Methods: With Applications
to Risk and Insurance

Pierre Del Moral, Gareth W. Peters, and Christelle Vergé

Abstract This article presents a guided introduction to a general class of interacting
particle methods and explains throughout how such methods may be adapted to
solve general classes of inference problems encountered in actuarial science and
risk management. Along the way, the resulting specialized Monte Carlo solutions
are discussed in the context of how they complemented alternative approaches
adopted in risk management, including closed form bounds and asymptotic results
for functionals of tails of risk processes.

The development of the article starts from the premise that whilst interacting par-
ticle methods are increasingly used to sample from complex and high-dimensional
distributions, they have yet to be generally adopted in inferential problems in
risk and insurance. Therefore, we introduce a range of methods which can all be
interpreted in the general framework of interacting particle methods, which goes
well beyond the standard particle filtering framework and Sequential Monte Carlo
frameworks. For the applications we consider in risk and insurance we focus on
particular classes of interacting particle genetic type algorithms. These stochastic
particle integration techniques can be interpreted as a universal acceptance-rejection
sequential particle sampler equipped with adaptive and interacting recycling mech-
anisms. We detail how one may reinterpret these stochastic particle integration
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techniques under a Feynman-Kac particle integration framework. In the process,
we illustrate how such frameworks act as natural mathematical extensions of
the traditional change of probability measures, common in designing importance
samplers for risk managements applications.

1 Introduction to Stochastic Particle Integration

The intention of this paper is to introduce a class of stochastic particle based
integration techniques to a broad community, with a focus on risk and insurance
practitioners. We will demonstrate that a range of problems in risk and insurance
can directly benefit from the development of such methods. A key motivation for
this endeavour is the fact that stochastic particle integration models have been
extensively used in engineering, statistics and physics under sometimes different
names, such as: particle filters, bootstrap or genetic filters, population Monte
Carlo methods, sequential Monte Carlo models, genetic search models, branching
and multi-level splitting particle rare event simulations, condensation models, go-
with-the winner, spawning models, walkers, population reconfigurations, pruning-
enrichment strategies, quantum and diffusion Monte Carlo, rejuvenation models,
and many others. However, they have not yet been routinely applied to develop
solutions in important financial domains such as those we discuss in this tutorial
type overview.

We begin with an introduction to the fundamental background for interacting
particle systems by highlighting key papers in their development in a range
of different scientific disciplines, before introducing aspects of these stochastic
methods to risk and insurance. It is the intention of this article to explain the key
papers and ideas in a general Feynman-Kac interacting particle framework which is
much more encompassing than the special subset of the well known particle filter
based algorithms. We proceed through a selection of key features of the development
of interacting particle systems, focusing on a sub-class of such methods of relevance
to the application domain explored in this manuscript, risk and insurance.

The origins of stochastic particle simulation certainly starts with the seminal
paper of N. Metropolis and S. Ulam [52]. As explained by these two physicists in
the introduction of their pioneering article, the Monte Carlo method is, “essentially,
a statistical approach to the study of differential equations, or more generally, of
integro-differential equations that occur in various branches of the natural sciences”.
The links between genetic type particle Monte Carlo models and quadratic type
parabolic integro-differential equations has been developed in the beginning of
2000’ in the series of articles on continuous time models [24, 26].

The earlier works on heuristic type genetic particle schemes seem to have started
in Los Alamos National Labs with works of M.N. Rosenbluth and A.W. Rosen-
bluth [68], and earlier works by H. Kahn and T. Harris [44]. We also quote the work
on artificial life of Nils Aall Barricelli [5,6]. In all of these works, the genetic Monte
Carlo scheme is always presented as a natural heuristic resampling type algorithm
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to generate random population models, to sample molecular conformations, or to
estimate high energy particle distributions, without a single convergence estimate to
ensure the performance, nor the robustness of the Monte Carlo sampler.

The mathematical foundations, and the performance analysis of all of these
discrete generation particle models is a rather recent development. The first rigorous
study in this field seems to be the article [11] published in 1996 on the applications
of particle methods to non-linear estimation problems. This article provides the
first proof of the unbiased property of particle likelihood approximation models
(Lemma 3 page 12); and adaptive resampling criteria w.r.t. the weight dispersions
(see Remark 1 on page 4). We also quote the first articles presenting heuristic type
particle filters [41, 45], and a series of earlier research reports [27, 29–31].

For an in-depth description of the origins of particle methods and their appli-
cations we refer to the following studies [18, 28]. These articles also contain new
stochastic models and methods including look-ahead type strategies (Sect. 4.2.2),
reducing the variance using conditional explorations w.r.t. the observation sequences
(Example 3 page 40), local errors transport models (see the proof of Theorem 1 on
page 11) and mean field models w.r.t. the occupation measures of random trees
(Sect. 3.2).

A more detailed review of particle models in discrete and continuous time can be
found in [19,23]. In the research monograph [19], the reader will find a detailed dis-
cussion on particle models and methods including acceptance-rejection with recy-
cling particle strategies, interacting Kalman filters a.k.a. Rao-Blackwellized particle
filters (Sects. 2.6 and 12.6.7), look-ahead type strategies (Sect. 12.6.6), genealogical
tree models and branching strategies (Sect. 11), and interacting Metropolis-Hasting
models (Chap. 5).

The practitioner will find in the research books [19,20,22,23] a source of useful
convergence estimates as well as a detailed list of concrete examples of particle
approximations for real models, including restricted Markov chain simulations,
random motions in absorbing media, spectral analysis of Schrodinger operators and
Feynman-Kac semi-groups, rare event analysis, sensitivity measure approximations,
financial pricing numerical methods, parameter estimation in HMM models, island
particle models, interacting MCMC models, statistical machine learning, Bayesian
inference, Dirichlet boundary problems, non-linear filtering problems, interacting
Kalman-Bucy filters, directed polymer simulations, stochastic optimization, and
interacting Metropolis type algorithms. For further discussion on the origins and
the applications of these stochastic models, we refer the reader to the following
texts [3, 12, 13, 21, 33, 34, 46, 53, 57, 60], and the references therein.

Despite this, particle methods are yet to be routinely or widely introduced to the
areas of risk and insurance modelling. The initial examples that have been developed
are detailed in [61], where a special sub-class of such methods for an important set of
risk management problems was explained. It is therefore the intention of this paper
to highlight aspects of this class of problems and the stochastic particle solutions
that will aid further development of these approaches in risk modelling.
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2 Motivation for Stochastic Particle Solutions: Examining
How Such Methods May Complement Risk Asymptotics

In the following subsections we provide motivation and context that will explain
how and why risk management and actuarial sciences can benefit from the devel-
opment of interacting particle system solutions. In particular, we will focus on a
few key estimation problems that form an important subset of generic problems
faced by practitioners in these domains. This will involve consideration of single
risk loss processes described under a Loss Distributional Approach (hereafter LDA)
framework, see discussion in [54, 62, 69] and the books [47] and [70] for the
background on such modelling approaches in risk. For basic discussions on how
such problems relate to a large class of non-life insurance problems see examples
in [60].

2.1 The Loss Distributional Approach and Risk Management:
A Tale of Light to Heavy Tails

In this section we first motivate and introduce the context of LDA modelling in
risk and insurance. Then we present three key challenges associated with working
with such LDA models that are commonly encountered by risk and insurance
practitioners, thereby explaining some important inference challenges faced by
such practitioners. Next, we provide a brief specifically selected survey of closed
form analytic results known in the actuarial and risk literature for sub-classes of
such LDA models as the Single Loss Approximations (hereafter SLA). We first
detail the closed form solution for the light tailed severity distribution case. Then
we explain how such results that are applicable in the light tailed case cannot be
obtained in such a form in the heavy tailed sub-exponential risk process settings.
Consequently, we briefly present the results recently developed in actuarial literature
for the heavy tailed case corresponding to the first order and second order asymptotic
approximations, see comprehensive discussions in a general context in [1, 16], and
the books [4] and [14].

The fact that SLA approximations are inherently asymptotic in nature, and
may be inaccurate outside of the neighbourhood of infinity, typically means that
in practice risk managers must resort to numerical procedures to estimate risk
measures and capital, see discussions in [66]. It is in these cases we will explain
and motivate the utility of interacting particle based solutions.

Consider the widely utilised insurance model known as a single risk LDA model.
This represents the standard under the Basel II/III capital accords [7] and involves
an annual loss in a risk cell (business line/event type) modelled as a compound
distributed random variable,
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Z
.j /
t D

N
.j/
tX

sD1
X.j /
s .t/ ; (1)

for t D 1; 2; : : : ; T discrete time (in annual units) and index j identifies the risk
cell. Furthermore, the annual number of losses is denoted by N.j /

t which is a
random variable distributed according to a frequency counting distribution P .j /.�/,
typically Poisson, Binomial or Negative Binomial. The severities (losses) in year
t are represented by random variables X.j /

s .t/, s � 1, distributed according to a
severity distribution F .j /.�/ and there are N.j /

t of them in year t .
In general, we will suppress the risk cell index j and time index t unless

explicitly utilised. Therefore, we denote by F.x/ a distribution with positive support
for the severity model characterizing the loss distribution for each random variable
Xs for s 2 f1; 2; : : : ; N g. We denote the annual loss (aggregated loss) by Z with
annual loss distribution G D FZ and the partial sum of n random losses by Sn
with distribution FSn D F n� where F n� denotes the n-fold convolution of the
severity distribution for the independent losses. The densities, when they exist, for
the severity distribution and annual loss distributions will be denoted by f .x/ and
fZ.x/ respectively.

We assume that all losses are i.i.d. with X.j /
s .t/ � F.x/ where F.x/ is contin-

uous with no atoms in the support Œ0;1/. As a consequence, linear combinations
(aggregation) of losses in a given year satisfy

Sn.t/ D
nX

sD1
X.j /
s .t/ � FSn.x/

and have the following analytic representation:

FSn.x/ D .F ? F ? � � �F / .x/ D
Z

Œ0;1/
F .n�1/?.x � y/dF.x/:

In [38] it is shown that if F.x/ has no atoms in Œ0;1/ then the n-fold convolution
of such severity distributions will also admit no atoms in the support Œ0;1/. The
implications of this for interacting particle based numerical procedures is that
it ensures numerical techniques are well defined for such models. In particular
the ratios of densities on the support Œ0;1/ are well defined. This is important
as it is often required for interacting particle methods. In addition we note that
continuity and boundedness of a severity distributionF.x/ is preserved under n-fold
convolution. Hence, if F.x/ admits a density d

dxF.x/ then so does the distribution of
the partial sum FSn , for any n 2 f1; 2; : : :g and compound process (random sum)FZ .

In practice the choice of severity distribution F.x/ should be considered
carefully for each individual risk process. As discussed in [66] it is common
to consider sub-exponential severity distributions that we denote by membership
.F.x/ 2 F /. The sub-exponential family of distributions F defines a class of
heavy tailed severity models that satisfy the limits
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lim
x!1

1 � F n?.x/

1 � F.x/ D n; (2)

if and only if,

lim
x!1

1 � F 2?.x/

1 � F.x/ D 2: (3)

Alternatively, one may characterize the family of distributions F 2 F by those that
satisfy asymptotically the tail ratio

lim
x!1

F .x � y/
F .x/

D 1; 8y 2 Œ0;1/: (4)

Severity models F 2 F are of interest in high consequence loss modelling since
they include models with infinite mean loss and infinite variance. In addition, the
class F includes all severity models in which the tail distribution under the log
transformed r.v., F .log.x//, is a slowly varying function of x at infinity.

To further understand LDA modelling with sub-exponential severity models
it will be beneficial to recall the notion of asymptotic equivalence in which
a probability distribution function F.x/ is asymptotically equivalent to another
probability distribution function G.x/, denoted by F.x/ � G.x/ as x ! 1 if
it holds that, 8
 > 0; 9x0 such that 8x > x0 the following is true

ˇ̌
ˇ
ˇ
F.x/

G.x/
� 1

ˇ̌
ˇ
ˇ < 
: (5)

Furthermore, we say that a probability distribution function is max-sum-equivalent,
denoted by F �M G, when the convolution of the tail distribution of two
random variables is distributed according to the sum of the two tail distributions
asymptotically,

1 � .F ? G/.x/ D .F ? G/.x/ � F .x/CG.x/; x !1:

Then for the class of heavy tailed sub-exponential LDA models we have that a
probability distribution function F will belong to the sub-exponential class F if
F �M F , i.e. it is max-sum-equivalent with itself and that the class F is closed
under convolutions. The implications of this for LDA models is clear when one
observes that sub-exponential LDA models are compound process random sums
comprised of an infinite mixture of convolved distributions,

G.x/ D
1X

nD0
pnF

n?.x/; (6)
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for a suitable series fpng, (e.g. convergent sequence satisfying Kolmogorov three
series theorem). Using the property of max-sum equivalence one can show the
practically relevant asymptotic equivalence between the severity distribution F and
the annual loss distribution G in which selecting F 2 F results in G 2 F and

lim
x!1

G.x/

F .x/
D :

This asymptotic equivalence relationship between the severity distribution F and
the annual loss distribution G, present for sub-exponential LDA models, greatly
benefits the formulation of asymptotic approximations of tail functionals used in
the estimation of bank capital.

Based on these aforementioned properties we can obtain asymptotic approxi-
mations to the annual loss distribution tails which typically fall under one of the
following classifications:

• “First-Order” and “Second-Order” Single Loss Approximations: recently dis-
cussed in [10, 16, 17] and references therein.

• “Higher-Order” Single Loss Approximations: see discussions in [8] and recent
summaries in [1] and references therein.

• Extreme Value Theory (EVT) Single Loss Approximations (Penultimate
Approximations): the EVT based asymptotic estimators for linear normalized
and power normalized extreme value domains of attraction were recently
discussed in [17].

• Doubly Infinitely Divisible Tail Asymptotics given ˛-stable severity models
discussed in [58, 64].

We now briefly detail the first and second order asymptotics that are known in
the risk literature for light and heavy tailed severity distributions in LDA models.
Then we explain how stochastic particle methods can be utilised to complement such
closed form expressions in practical banking models and scenarios.

2.1.1 A Light Tale of Light Tails

Here we recall some asymptotic results known for light tailed models as these will
inform the results obtained in the heavy tailed expansions. A useful result in the
light tailed case was provided by Embrechts and Puccetti [37] where they consider
frequency distributions pn D Pr.N D n/ satisfying

pn � wnn�C.n/; as n!1;

for some w 2 .0; 1/, � 2 R and a function C.n/ slowly varying at1. Then, if there
exists � > 0, such that the Laplace transform of the severity
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LX.s/ D L ŒF .x/� D
Z 1

0

exp.�sx/dF.x/; 8s 2 R;

matches the radius of convergence of the generating function of the frequency
distribution,

w�1 D LX.��/;

with �L0X.��/ < 1, one can state the following asymptotic equivalence for the
compound process tail distribution,

FZN .x/ �
x� exp.��x/C.x/
�
��wL0X.��/

��C1 ; x !1:

This light tailed asymptotic result demonstrates that the behaviour of the com-
pound loss distribution tail is determined by either the frequency or the severity
depending on which has the heavier tail. In addition, it is clear that the Poisson dis-
tribution tail is too light for this result to be valid, since the radius of convergence of
generating function is infinite. There are therefore alternative expansions developed
for compound Poisson risk processes such as the saddle point approximation.
So how do light tailed results motivate the context we are considering in sub-
exponential LDA models?

In the sub-exponential heavy tailed setting the Laplace transform does not
exist and hence these results do not apply. This is unfortunate, since rates of
convergence and approximation accuracy are studied for such results. There are
many important examples of LDA models for which these light tailed results do
not apply, these include severity distributions with power law tail decay (Pareto,
Burr, log gamma, Cauchy, ˛-Stable, tempered stable and t-distribution). In the
sub-exponential model setting it is often possible to develop alternative asymptotic
results, however asymptotic convergence rates are typically not available. This is one
area where particle integration methods can also be informative and complementary
in the study of such LDA closed form asymptotics.

2.1.2 A Heavier Tale of Heavy Tails

In this subsection we briefly detail the asymptotic fist and second order tail results
for the LDA models when sub-exponential severity distributions are considered.
The sub-exponential LDA first order tail asymptotics involve obtaining a closed
form approximate expression for FZ.x/, see details in [9, 17]. To proceed, consider
the annual loss distribution G.z/ D FZ.z/ under LDA formulation with the severity
distribution satisfying F 2 F ,
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G.z/ D FZ.z/ D
1X

nD0
Pr ŒZ � zjN D n�Pr ŒN D n� D

1X

nD0
pnF

.n/?.z/: (7)

Furthermore, to ensure convergence when evaluating Eq. (7) it is required that one
assumes that for some 
 > 0, the following condition is satisfied

1X

nD0
.1C 
/n pn <1:

Then the right tail of the annual loss distribution FZ.z/ for the annual loss random
variable Z, is approximated according to a SLA given by,

FZ.x/ D E ŒN � F .x/ .1C o.1// as x !1:

To understand this basic result of the first order tail asymptotic FZ.x/ consider the
following two steps:

1. Obtain an upper bound on the asymptotic ratio of F Sn.x/ and severity F .x/
for all n 2 J. Typically one can apply Kesten’s Bound which states that for
sub-exponential severity distributions F there exists a constantK D K.
/ <1
for 
 > 0 s.t. 8n � 2 the following bound holds [15],

F �n.x/
F .x/

� K.1C 
/n; x � 0:

2. Then utilise Kesten’s bound to motivate the application of dominated conver-
gence theorem to interchange the order of summation and limit and recall
the characterization of heavy tailed sub-exponential severity models to obtain
FZ.x/ � EŒN �F .x/ since,

lim
x!1

FZ.x/

F .x/
D lim

x!1

1X

nD1
pn
F �n.x/
F .x/

D
1X

nD1
npn D EŒN �:

As discussed in [16], and the papers therein, the second order asymptotic results
can be developed in a wide class of risk models by considering the following further
assumptions.

Assumption 1. F is zero at the origin (x D 0) and satisfies that both the tail
distribution F and density f are sub-exponential.

Assumption 2. The frequency distribution N � FN .n/ is such that its probability
generating function given by
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pN .v/ D E


vN
� D

1X

nD0
Pr.N D n/vn;

is analytic at v D 1.

Examples of severity models widely used in risk and insurance settings that satisfy
such assumptions include: Log-Normal, Weibull (heavy tailed), Benktander Type I
and Type II, Inverse Gaussian, ˛-Stable, Halphen Family and certain members of
Generalized Hypergeometric family.

Given a distribution satisfying Assumptions 1 and 2, then two second order
results are obtained. One for finite mean loss models and the other for infinite mean
loss models. If the loss r.v. has finite mean .EŒX� < 1/ then the following result
can be derived, see [55] and [73] for details,

lim
x!1

FZ.x/� EŒN �F .x/

f .x/
D EŒX�EŒ.N � 1/N �: (8)

Alternatively, if the loss r.v. has an infinite mean but the severity density satisfies the
regular variation condition f 2 RV�1=ˇ�1 for 1 � ˇ <1 then,

lim
x!1

FZ.x/ � EŒN �F .x/

f .x/
R x
0
F .s/ds

D cˇEŒ.N � 1/N �;

with c1 D 1 and cˇ D .1 � ˇ/� 2.1�1=ˇ/2� .1�2=ˇ/ for ˇ 2 .1;1/.

2.2 Inferential Challenges for Risk and Insurance:
Asymptotics and the Role for Stochastic Particle
Integration

The asymptotic approximation methods just surveyed were developed in the actu-
arial literature to tackle the serious statistical and computational challenges posed
by estimation of tail quantiles and expectations for heavy tailed LDA models. The
continued interest in such asymptotic results primarily stems from the fact that such
closed form expressions bypass the significant computational challenges involved
in estimation of risk measures for such heavy tailed annual loss distributions under
traditional integration methods, Fourier methods, recursions (Panjer) or basic Monte
Carlo approaches. However, they do have associated issues, see discussions in [42].

The properties of such asymptotic single loss approximation estimates are still an
active subject of study with regard to explicit approximation errors, asymptotic rates
of convergence and sensitivity to parameter estimation. To understand these features
for loss approximations as well as to provide an alternative estimation approach for
tail functionals we propose the application of interacting particle methods.
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As summarized in [66] these single loss approximations can be utilised to form
estimation of risk and capital approximations by obtaining an expression for the
LDA model quantile function. For example, based on second order asymptotic
results in the heavy tailed LDA models, one can show that if the severity distribution
F satisfies Assumptions 1 and 2 with a finite mean, and the hazard rate h.x/ D
f .x/

1�F.x/ is of regular variation h 2 RV�ˇ for ˇ � 0, then as ˛ ! 1 one has for the
inverse of the annual loss distribution the result (see [1]),

F�1Z .˛/ D F�1
�
1 � 1 � ˛

EŒN �

˚
1C Qcˇg1

�
F�1. Q̨ /�C o �g1

�
F�1. Q̨ /����1

�
(9)

where Q̨ D 1 � .1 � ˛/=EŒN � and

g1.x/ D
(

f .x/

1�F.x/ ; ifEŒX� <1;
R x
0 F .s/dsf .x/
1�F.x/ ; ifEŒX� D 1:I

Qcˇ D
(

EŒX�EŒ.N�1/N �
EŒN �

; ifEŒN � <1;
cˇEŒ.N�1/N �

EŒN �
; ifEŒN � D1:

Using this result it is then possible to consider asymptotic approximations of key risk
management quantities known as risk measures which are used in the allocation of
capital and reserving in all financial institutions and stipulated as standards under
regulatory accords in both Basel II/III and Solvency II.

For example, one may now utilise this approximation to the annual loss quantile
function to obtain estimates of common risk measures and regulatory capital, see
[2] and [50]. Examples of such risk measures include the Value-at-Risk (VaR) which
is defined for a level ˛ 2 .0; 1/ and corresponds to the quantile of the annual loss
distribution,

VaRZ .˛/ D F Z .˛/ D inf fz 2 R W FZ.z/ � ˛g

	 F Z
�
1 � 1 � ˛

EŒN �
Œ1C o.1/�

�
� F 

�
1 � 1� ˛

EŒN �

�
;

(10)

where F .�/ is the generalized inverse, see [36]. A second alternative, which
includes the Expected Shortfall as a special case, is the Spectral Risk Measure
(SRM), which for a weight function � W Œ0; 1� 7! R is given by

SRMZ.�/ D
Z 1

0

�.s/VaRZ.s/ds

	K .˛; �1/F
 
�
1 � 1 � ˛

EŒN �

�
� K .˛; �1/VaRZ .˛/ ;

(11)
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with 8t 2 .1;1/ a function �1.1� 1=t/ � Kt�1=ˇC1�
 for someK > 0 and 
 > 0
where

K .˛; �1/ D
Z 1

1

s1=ˇ�2�1.1 � 1=s/ds:

2.2.1 The Role for Stochastic Particle Methods

Though the asymptotic results presented are elegant for some LDA models and
efficient to evaluate in closed form, they do warrant careful consideration in their
application, see discussions in [37]. In practice it may often be the case that one
requires calculation of VaR, ES and Spectral Risk Measures at levels which do
not satisfy such asymptotic properties, rendering such approximations inaccurate.
In addition, though not yet a regulatory requirement, it is always good practice to
consider the uncertainty associated with the estimation of the tail functionals and
quantiles. This can be achieved via statistical confidence intervals, however these are
non-trivial to obtain under such asymptotic expansion results. Thirdly, as discussed
in [1] and [4], the asymptotic rates of convergence of such approximations are still
only known in a little-oh Landau sense and therefore do not inform or guide the
applicability of such results. Finally, there is a significant interest in diversification
benefits that may be gained through the modelling of tail dependence features in
the multi-variate risk process setting. Extending these asymptotic results to multiple
risk processes coupled with a copula structure makes the derivation of asymptotic
approximations highly challenging, see [43].

It is for these reasons that we argue stochastic particle based numerical solutions
for the estimation of risk measures and tail functionals in LDA structures can be of
direct utility to complement such asymptotic results. However, as all practitioners
will know, the naive implementation of standard Monte Carlo and stochastic
integration approaches to such problems will produce often poor results even for
a considerable computational budget, see discussions in [48]. We therefore require
specific interacting particle methods to provide accurate and computationally
efficient solutions.

3 Selected Topics in Stochastic Integration Methods

In this section we will introduce practitioners to a variety of stochastic integration
methods, presenting them formally from a mathematical perspective and making
clear the properties of such methods. Note, in this section the notation adopted is
utilised to reflect that which is utilised in the statistics and probability literature
where much of the formal study of these methods has taken place.
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3.1 Standard Monte Carlo Techniques for Risk and Insurance

Here we consider a conceptually simple problem involving a d -dimensional random
variable denoted by X and some measurable subset denoted by A � R

d . Now
suppose we want to compute the quantity P.X 2 A/ WD PX.A/. For example in an
LDA model in risk one may naturally consider defining A according to the interval
for the annual loss Z given by A D 
F Z .˛/;1� for some quantile level ˛ 2 Œ0; 1�
which is typically very close to one. Then we wish to evaluate the probability that
the annual loss for a risk process falls in this interval. If ˛ is close to one then such a
probability calculation poses a challenging computational task involving rare-event
simulation.

The simplest and least computationally efficient approach to such a computation
would involve a basic Monte Carlo simulation. To understand this approach we
further assume that it is straightforward to generate a sequence .Xi/1�i�N of
independent copies of the random variableX . In this situation, the traditional Monte
Carlo approximation of the distribution PX is given by the empirical measures

P
N
X D

1

N

X

1�i�N
ıXi �!N"1 PX:

Now we define a generic, bounded, measurable test function ' on R
d that will be

used through the remaining sections. Then we can say, more precisely, that the
convergence can be understood as the weak convergence of empirical measures,
in the sense that the sequence of random variables

P
N
X .'/ WD

Z
'.x/ PNX .dx/ D 1

N

X

1�i�N
'.Xi /

converges almost surely, to the limiting integrals

PX.'/ D
Z
'.x/ PX.dx/ D E.'.X//:

Using indicator functions of cells in R
d , the shape of the measure PX can be

obtained by plotting the histograms of the samples Xi in each dimension. By the
strong law of large numbers, the above convergence is also met for integrable
functions w.r.t. the measure PX .

For indicator functions ' D 1A, sometimes we make a slight abuse of notation
and we set PNX .A/ and PX.A/ instead of P

N
X .1A/ and PX.1A/. From the above

discussion, we already have that

P
N
X .A/ WD

1

N

X

1�i�N
1A.X

i / �!N"1 PX.A/ D E.1A.X//:
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The following properties are readily checked

E.PNX .A// D PX.A/ and Var
�
P
N
X .A/

� D 1

N
PX.A/ .1 � PX.A// :

In addition, an N -approximation of the conditional distribution of X w.r.t. the event
fX 2 Ag is given by

1

P
N
X .A/

1A.x/ P
N
X .dx/ �!N"1

1

PX.A/
1A.x/ PX.dx/ D P .X 2 dx j X 2 A/ :

(12)

The l.h.s. terms in the above display are well defined as soon as P
N
X .A/ > 0.

For rare event probabilities PX.A/, say of order 10�6, the practical implementation
of this Monte Carlo algorithm meets the difficulty that we need too many samples
to estimate PX.A/ using the proportion of success of such an event occurring only
once in millions of attempts. It is therefore in general not recommended to consider
such basic Monte Carlo techniques when studying or estimating the asymptotic risk
measures discussed in this paper.

We illustrate this basic Monte Carlo on a standard model in risk and insurance
based on the Poisson-Log Normal LDA model of a single risk process. This
example, though simple, is both widely utilised in practice and also illustrative of
the complementary role of the asymptotic approximations and the role Monte Carlo
plays, since this specific model admits a closed form expression for the survival
quantile of the annual loss under the first order asymptotic.

Example 1 (Single Risk LDA Poisson-Log-Normal Family). Consider the heavy
tailed severity model, selected to model the sequence of i.i.d. losses in each year t ,
denoted fXi.t/giD1WNt , and chosen to be a Log-Normal distributionXi � LN.�; �/
where the two parameters in this model correspond to parametrizing the shape of the
distribution for the severity � and the log-scale of the distribution �. The survival
and quantile functions of the severity are given by

f .xI�; �/ D 1

x
p
2��2

e
� .lnx��/2

2�2 ; x > 0I � 2 R � > 0;

F .xI�; �/ D 1 � F.x/ D
Z 1

x

1p
2��u

exp

�
� 1

2�2

�
log.u/� �2�

�
du

D 1

2
C 1

2
erf
h lnx � �p

2�2

i
; x > 0I � 2 R � > 0;

Q.p/ D exp
�
�C �˚�1.p/� ; 0 < p < 1:

Therefore the closed form SLA for the VaR risk measure at level ˛ would be
presented in this case under a first order approximation for the annual loss Z DPN

nD1 Xi according to Eq. (13)
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VaR˛ ŒZ� D exp

�
� � �˚�1

�
1 � ˛


�
: (13)

We illustrate the basic Monte Carlo solution for the VaR for a range of quantile
levels of the annual loss distribution, we display these along with the mea-
sured confidence intervals in the point estimators after a long run of 5,000,000
samples of annual years so that the Monte Carlo accuracy was sufficient. We
compare these to the first order SLA asymptotic result on the quantile levels ˛ 2
f0:70; 0:75; 0:80; 0:85; 0:9; 0:95; 0:99; 0:995; 0:9995g, where the 99:5 and 99:95%
quantile levels do in fact correspond to regulatory standards of reporting in Basel
II/III (Fig. 1).

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

102

101

100

109

108

107

106

105

104

103

Quantile Level for Value−at−Risk − Capital Level

A
nn

ua
l L

os
s 

V
aR

 : σ
 =

 0
.5

, μ
 =

 1
, λ

 =
 3

VaR Monte Carlo
VaR Monte Carlo 95% Upper CI
VaR Monte Carlo 95% Lower CI
VaR Single Loss Approximation

0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

Quantile Level for Value−at−Risk − Capital Level

A
nn

ua
l L

os
s 

V
aR

 : σ
 =

 5
, μ

 =
 1

, λ
 =

 3

VaR Monte Carlo
VaR Monte Carlo 95% Upper CI
VaR Monte Carlo 95% Lower CI
VaR Single Loss Approximation

Fig. 1 Annual loss VaR capital estimate versus quantile level for Poisson-Log normal LDA risk
process. Top plot: severity distribution � D 1; � D 0:5;  D 3. Bottom plot: severity distribution
� D 1; � D 5;  D 3.

This example provides a clear motivation for consideration of particle methods,
especially in cases where the SLA results are not accurate. One can see that even
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in this relatively simple example, depending on the values of the parameters in the
LDA risk model, the asymptotic VaR approximation may or may not be accurate
at quantile levels of interest to risk management. Therefore, even small amounts of
parameter uncertainty in the LDA model estimation may manifest in significantly
different accuracies in the SLA capital estimates. Further examples for higher order
asymptotics and other models are provided in [66].

Since the rate of convergence of SLA’s is still an active topic of research for
such approximations. This simple study illustrates the fact that in practice the only
way to ensure accuracy of such methods, for a given set of estimated or specified
parameters, is to complement these approximations with a numerical solution such
as a Monte Carlo or more efficient interacting particle solution.

3.2 Importance Sampling Techniques for Risk and Insurance

One could argue that the second most widely utilised class of stochastic inte-
gration methods considered in risk and insurance settings would be Importance
Sampling, see for example [39] and in insurance settings [61]. Here we consider
the understanding of these classes of methods in the context of risk and insurance
estimation of tail functions. This involves considering undertaking sampling using
another random variable for which the occurrence probability of the desired event
P.Y 2 A/ WD PY .A/ is closer to 1. This well known importance sampling
strategy often gives efficient results for judicious choices of twisted measures PY .
Nevertheless, in some practical situations, it is impossible to find a judicious PY

that achieves a given efficiency. Furthermore, this importance sampling technique is
intrusive, in the sense that it requires the user to change the reference statistical or
physical model into a twisted sampling rule.

To be more precise, sampling N independent copies .Y i /1�i�N with the
same dominating probability measure PY 
 PX , the traditional Monte Carlo
approximation is now given by

P
N
Y

�
1A
dPX

dPY

�
WD 1

N

X

1�i�N

1A.X
i /
dPX

dPY
.Y i / �!N"1

PY

�
1A

dPX

dPY

�
D PX.A/:

The following properties are readily checked

E

�
P
N
Y

�
1A

dPX

dPY

��
D PX.A/;

and

Var

�
P
N
Y

�
1A

dPX

dPY

��
D 1

N

�
PX

�
1A

dPX

dPY

�
� PX.A/

2

�
:
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It is easily checked that

PY .dx/ D 1

PX.A/
1A.x/ PX.dx/) Var

�
P
N
Y

�
1A

dPX

dPY

��
D 0:

In other words, the optimal twisted measure PY is given by the unknown conditional
distribution of X w.r.t. the event fX 2 Ag. In practice, we try to find a judicious
choice of twisted measure that is easy to sample, with a probability distribution that
resembles as closely as possible the desired conditional distribution.

Another approach is to use the occupation measure of a judiciously chosen
Markov Chain Monte Carlo (hereafter MCMC) sampler with prescribed target
measure

�.dx/ WD P .X 2 dx j X 2 A/ :
Of course, the first candidate is to take a sequence of independent copies of
random variables with common distribution �. Several exact sampling techniques
can be used, including the inversion of the repartition function, change of variables
principles, the coupling from the past, and acceptance-rejection techniques. A
random sampleXi with distribution PX is accepted whenever it enters in the desired
subset A. In this interpretation, we need to sample N independent copies of X to
obtain N WD N � P

N
X .A/ independent samples with common law �. However, for

probabilities PX.A/ of order 10�6, this method requires millions of samples, so we
consider more computationally efficient solutions.

3.3 Markov Chain Monte Carlo for Risk and Insurance

MCMC samplers have been used in insurance applications in non-life reserving
models for example in Chain Ladder models [63, 67, 72] and Paid Incurred
Claims models [51] and [59], in Operational Risk models in [62, 65] and in
credit risk modelling for example in [49]. Hence, we now present the fundamental
mathematical description of the underlying Monte Carlo algorithm that is developed
for all the risk and insurance applications discussed in these references.

MCMC algorithms are based on sampling a Markov chain with invariant measure
�. In this context, the limiting measure � is often called the target measure. It is not
difficult to construct these random processes. For instance, let us assume that the law
ofX is reversible w.r.t. some Markov transitionK.x; dy/. In this case, starting from
the set A, we sample a sequence of random states using the Markov proposal K ,
rejecting sequentially all the states falling outside the set A. The algorithm is well
defined as soon as K.x;A/ D K.1A/.x/ > 0, and the resulting Markov chain Xn
coincides with the Metropolis-Hasting algorithm with probability transition given
by the following formulae

M.x; dy/ WD K.x; dy/ 1A.y/C
�
1 �

Z
K.x; dz/ 1A.z/

�
ıx.dy/:
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It is not difficult to check that � is an invariant measure of the chain with
transitionM , that is we have that

.�M/.dy/ WD
Z
�.dx/ M.x; dy/ D �.dy/:

Note, the exact acceptance-rejection method discussed above corresponds to the
special case

K.x; dy/ D P .X 2 dy/ :

In more general situations, the proposal transition K.x; dy/ amounts of moving
randomly around the starting point x. The individual (sometimes also called the
walker) makes a number of tentative steps until it succeeds to enter into the desired
set A. In general, the random state at that (random) hitting time of A is not
distributed according to �. Roughly speaking, when the proposal transition K is
based on local moves, the individual tends to hit the set A near the boundary of A.
To be more precise, starting from an initial state X0 D x 2 R

d �A, the hitting time

T WD inf fn � 0 W Xn 2 Ag;
is a geometric random variable with distribution

P .T D n j X0 D x/ D .1 �K.x;A//n�1 K.x;A/;

and we have

E .'.XT / j X0 D x/ D KA.'/.x/ WD K.'1A/.x/=K.1A/.x/:

When the chain enters in A, it remains for all times confined to the set A. In
addition, under some weak regularity conditions on the Markov transition K , the
target measure � is approximated by the occupation measures of the states; that is,
we have the following asymptotic convergence result

1

nC 1
X

0�p�n
ıXp �!n"1 � and P .Xn 2 dy j X0 D x/ WDMn.x; dy/ �!n"1 �.dy/:

(14)

In the above display, Mn.x; dy/ stands for the n compositions of the integral
operatorM defined by the induction formulae

Mn.x; dy/ D
Z
Mn�1.x; dz/M.z; dy/ D

Z
M.x; dz/Mn�1.z; dy/;

with the conventionM0.x; dy/ D ıx.dy/, for n D 0. It is of course out of the scope
of this article to prove the ergodic theorem stated in the l.h.s. of (14).
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3.4 Sequential Monte Carlo for Risk and Insurance

Application of Sequential Monte Carlo (hereafter SMC) methods in risk and
insurance modelling is still relatively underdeveloped, hence the motivation for
this article. In the context of risk modelling see the example in [60] and the
references therein for more discussion. We start this section with a motivating class
of algorithms targeting rare-event simulation via the restriction of a target measure
to a contracting, increasingly rare set, such as a tail event.

SMC methods are acceptance-rejection techniques equipped with a recycling
mechanism that allows a gradual sampling of a population of individuals w.r.t.
a sequence of probabilities with increasing complexity, see a tutorial in [35].
We illustrate this methodology in the situation discussed above. Let us choose a
decreasing sequence of subsets .Ap/0�p�n joining A0 D R

d to the desired lower
subset An D A:

A0 D R
d � A1 � A2 � : : : � An�1 � An D A:

Now, let’s try to sample sequentially random copies of the random variable X w.r.t
the conditioning events fX 2 Apg, with p � n. To get one step further, we let �p
be the sequence of measures

�p.dy/ WD P
�
X 2 dx j X 2 Ap

�
with p � n:

By construction,
�
�p
�
0�p�n is a decreasing sequence of measures w.r.t. the abso-

lutely continuous partial order relation �� � between probability measures1; that
is, we have that

�n � �n�1 � : : :� �2 � �1 � �0 D Law.X/:

Example 2 (Single Risk LDA Doubly-Infinitely Divisible Poisson-˛-Stable Family).
Consider a single risk LDA model, then such a sequence of measures may
correspond to construction of a sequence for the annual loss distribution. As an
example, consider the sequence given by

�n.dz/ WD FZ.dzjZ 2 An/; (15)

where An D ŒVaRZ.˛n/;1/ is one set, corresponding to the n-th element in the
strictly increasing sequence .˛p/0�p�n as ˛p " 1, which results in a contracting
sequence of subsets A0 D Œ0;1/ � A1 D ŒVaRZ.˛1/;1/ � � � � � An D
ŒVaRZ.˛n/;1/. Given samples from this measure it is then simple to see that one
could estimate quantities such as FZ.VaRZ.˛n// which would be the normalizing
constant of this probability distribution when restricted to the set An. As an explicit

1We recall that �	 � as soon as �.A/ D 0) �.A/ D 0, for all measurable subset A 
 R
d .
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example we consider the ˛-Stable severity model in a Poisson LDA framework
with strictly positive support. Consider the ˛-Stable severity model with parameters
˛ 2 Œ0; 2�, ˇ 2 Œ�1; 1�, � > 0 and ı 2 R for the i.i.d. ˛-Stable distributed random
loses with common ˛. Then w.l.o.g. the density function of an alpha-Stable severity
distribution (standardized such that � D 1 and ı D 0) can be evaluated point-wise
according to the series expansions [74, Eq. 2.4.6, page 89]

fX.xI˛; ˇ; 1; 0IS.0//

D

8
<̂

:̂

1
�

P1
nD1.�1/n�1 � .

n
˛C1/

� .nC1/ sin.n�	/xn�1; if ˛ > 1; ˇ 2 Œ�1; 1�; x 2 R;
1
�

P1
nD1.�1/n�1nbnxn�1; if ˛ D 1; ˇ 2 .0; 1�; x 2 R;

1
�

� .n˛C1/
� .nC1/ sin.n�	˛/x�n˛�1; if ˛ < 1; ˇ 2 Œ�1; 1�; x 2 R

C;
(16)

where the coefficients bn are given by

bn D 1

� .nC 1/
Z 1

0

exp .�ˇu ln u/ un�1 sin
h
.1C ˇ/u�

2

i
du: (17)

The resulting LDA model annual loss distribution FZ is given by

Z D
NX

iD1
Xi � FZN D

1X

nD1
exp.�/

n

nŠ
S˛

�
zI Q̌n; Q�n; QınIS.0/

	
; (18)

where the parameters of each mixture component are analytically known as
expressions of the base severity model according to

Q�˛ D
NX

iD1
j�i j˛; Q̌ D

PN
iD1 ˇi j�i j˛PN
iD1 j�i j˛

;

Qı D
8
<

:

PN
iD1 ıi C tan �˛

2

� Q̌ Q� �PN
iD1 ˇj �j

	
if ˛ ¤ 1

PN
iD1 ıi C 2

�

� Q̌ Q� log Q� �PN
iD1 ˇj �j log j�i j

	
if ˛ D 1: (19)

Hence, one observes that as a result of closure under convolution of the ˛-stable
severity model, the resulting distribution for the annual loss can be presented
exactly as a mixture representation, see discussions in [58]. Now, consider the Levy
sub-family of models in which we consider X � S.0:5; 1; �; ıIS.0// with positive
real support x 2 Œı;1�. The density and distribution functions are analytic and
given respectively, for ı < x <1, by

fX.x/ D
r
�

2�

1

.x � ı/3=2 exp

�
� �

2 .x � ı/
�
; FX.x/ D erfc

�r
�

2 .x � ı/
�
;

where erfc.x/ D 1 � erf.x/ D 1 � 2p
�

R x
0
e�t 2dt. Under this severity model, the

distribution of the annual loss process Z, is represented by a compound process
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model with LDA structure in which the frequency isN � Po./ and the severity is
Xi � S.0:5; 1; �; ıIS.0//. The exact density of the annual loss process can then be
expressed analytically as a mixture density comprised of ˛-stable components with
Poisson mixing weights for N.j /

t > 0 given by,

fZ.z/D
1X

nD1
exp.�/

n

nŠ

2

6
4

r Q�n
2�

1
�

z�Qın
	3=2 exp

0

@� Q�n
2
�

z�Qın
	

1

A

3

7
5 I

hQın < z <1
i

(20)
with ěn D 1 and

e�n0:5D
nX

iD1

j�i j0:5D nj� j0:5; eınD
nX

iD1

ıi C tan
�

4

0

@Q�n�
nX

jD1

�j

1

A DnıC tan
�

4

�
n2j� j �n�� ;

and fZ.0/ D Pr.N .j /
t D 0/ D exp.�/ for N D 0. The exact form of the annual

loss cumulative distribution function is also expressible in closed-form,

FZ.z/ D
1X

nD1

exp.�/
n

nŠ
erfc

0

B
@

vuut
Q�n

2
�

z � Qın
	

1

C
A I

h Qın < z <1
i
C exp.�/I Œz D 0� :

(21)

Now, given these expressions, we note that the simple existence of a closed form
expression for the compound process distribution does not make it simple to sample
the distribution under the restriction to some set An, as may be required for certain
tail functional estimates. Therefore, we are still required to consider a sequence
of measures, which in this particular example may be defined by the restriction of
the annual loss to a decreasing tail set An D ŒVaRZ.˛n/;1/ as ˛n " 1. Hence,
the resulting sequence of target measures for the annual loss distribution is known
explicitly in a functional closed form according to

�k.dz/ WD FZ.dzjZ 2 Ak/ D FZ.Ak/ D 1 � FZ.Ak/

D 1 �
1X

nD1
exp.�/

n

nŠ
erfc

0

B
@

vu
u
t

Q�n
2
�

dz� Qın
	

1

C
A I

hnQın < dz <1
o
\ fdz 2 Akg

i

� exp.�/I Œdz D 0� :

This example is just one of many illustrations one could construct in order to
demonstrate the possible sequences of distributions of relevance in risk modelling
that will naturally fit into such Monte Carlo frameworks.
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3.4.1 A Markov Chain Monte Carlo Model

We assume that we have a dedicated MCMC style probability transition Mp with
invariant measure �p D �pMp, for any p � n. We start drawing a sequence
of random states .Xp/0�p�n1 with transitions M1, and initial condition �0. For a
sufficiently large time horizon n1, both the occupation measure 1

n1

P
1�p�n1 ıXp

and the law of the terminal state Law.Xn1/ D �0M
n1
1 WD �1 will approximate the

target measure �1. We also notice that the chain .Xp/p1�p�n1 is confined to the set
A1 as soon as one of the random states Xp1 2 A1 hits the set A1 for some p1 � n1.

In the second step, starting from Xn1 we run a sequence of random states
.Xn1Cp/0�p�n2 with transitionsM2 (and initial condition�1). For a sufficiently large
time horizon n2, both the occupation measure 1

n2

P
1�p�n1 ıXn1Cp

and the law of the
terminal state Law.Xn1Cn2/ D �1Mn2

2 will now approximate the target measure �2.
As before, the chain .Xn1Cp/p2�p�n2 is confined to the set A2 as soon as one of the
random states Xn1Cp2 2 A2 hits the set A2 for some p2 � n2,

�0
M
n1
1������! �0M

n1
1 WD �1

M
n2
2������! �1M

n2
2 D �2

M
n3
3������! �2M

n3
3 D �3 : : : : (22)

3.4.2 An Acceptance-Rejection Markov Model

Our next objective is to better understand the evolution of the flow of measures �p ,
from the origin p D 0 up to the final time p D n. Firstly, it is readily checked that

P
�
X 2 dx j X 2 ApC1

� D 1

P
�
X 2 ApC1 j X 2 Ap

� 1ApC1
.x/ P

�
X 2 dx j X 2 Ap

�

and

P
�
X 2 ApC1 j X 2 Ap

� D
Z
1ApC1

.x/ P
�
X 2 dx j X 2 Ap

�
:

Therefore, if we specifically set Gp.x/ D 1ApC1
.x/, then we have that

�pC1 D �Gp.�p/
with the Boltzmann-Gibbs �Gp transformation defined by:

�p.dx/ �! �Gp.�p/.dx/ WD 1

�p.Gp/
Gp.x/ �p.dx/:

The next formula provides an interpretation of the Boltzmann-Gibbs transformation
in terms of a non-linear Markov transport equation

�Gp.�p/.dy/ D ��pSp;�
�
.dy/ WD

Z
�p.dx/Sp;�p .x; dy/
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with the Markov transition Sp;�p defined below

Sp;�p .x; dy/ D Gp.x/ ıx.dy/C �1 �Gp.x/
�
�Gp.�p/.dy/:

In summary, we have shown that .�p/0�p�n satisfies the following evolution
equation

�0
S0;�0������! �1

S1;�1������! �2
S2;�2������! �3

S3;�3������! �4 : : :

In other words, �p D Law.X?
p/ can be interpreted as the law of the random state of

a Markov chain X?
p with transitions Sp;�p ; that is, we have that

X?
0

S0;�0������! X?
1

S1;�1������! X?
2

S2;�2������! X?
3

S3;�3������! : : : :

The Markov chain X?
p can be interpreted as the optimal sequential acceptance-

rejection scheme along the non-increasing sequence of subsets Ap , in the sense that

(
X?
p 2 ApC1 ) X?

pC1 D X?
p;

X?
p 2 Ap � ApC1 ) X?

pC1 D X??
pC1;

where X??
pC1 stands for an independent random sample with distribution �pC1 D

�Gp.�p/. When the sample X?
p is not in the desired subset ApC1, it jumps instantly

to a new stateX??
pC1 randomly chosen with the desired distribution �pC1 D �Gp.�p/.

Next we provide a brief discussion on the optimality property of this Markov chain
model. We recall that

k�pC1 � �pktv D sup
˚
Œ�pC1 � �p�.f / W osc.f / � 1�

D inf
˚
P
�
Xp 6D XpC1

� W .Xp;XpC1/ s.t. Law.Xp/ D �p and Law.XpC1/ D �pC1
�
:

In the above display osc.'/ D supx;y.j'.x/� '.y/j/ stands for the oscillation of a
given function ' on R

d .

Proposition 1. The chain X?
p with Markov transitions Sp;�p realizes the optimal

coupling between the sequence of distributions �p , in the sense that

k�pC1 � �pktv D k�pSp;�p � �pktv D P

�
X?
p 6D X?

pC1
	
: (23)

A proof of this assertion is provided in the appendix.

3.4.3 Feynman-Kac Distributions

As the reader may have noticed, the MCMC model and the acceptance-rejection
Markov chain models discussed may have very poor stability properties, in the
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sense that the distributions of the random states may strongly depend on the initial
distribution �0. For instance, we notice that �p coincides with the restriction of �0
to the subset Ap; more formally, we have that

�p.dx/ D �Gp�1 .�0/ D
1

�0.Ap/
1Ap.x/ �0.dx/:

The sequential Monte Carlo methodology is based on combining the MCMC
methodology presented in (22) with the sequential acceptance-rejection technique
discussed above. To describe with some precision this method, we let Mp be an
MCMC transition with invariant measure �p D �pMp . In this case, we have the
evolution equation

�pC1 D �pC1MpC1 D �Gp.�p/MpC1 WD ˚pC1.�p/:
Notice that ˚pC1 maps the set of probability measures � s.t. �.Gp/ > 0 into the
set of probability measures, and it is the composition of an updating transformation
�Gp and a Markov transport equation w.r.t. MpC1; that is, we have that

�p
�Gp������! O�p WD �Gp.�p/

MpC1������! O�pMpC1 D ˚pC1.�p/:
The solution of this equation is given by the Feynman-Kac measures defined for any
measurable function ' on R

d by the following formulae

�p.'/ D �p.'/=�p.1/ with �p.'/ D E

0

@'.Xp/
Y

0�q<p
Gq.Xq/

1

A : (24)

To prove this claim, we use the Markov property to check that

�pC1.'/ D E

0

@MpC1.'/.Xp/ Gp.Xp/
Y

0�q<p
Gq.Xq/

1

A D �p.GpMpC1.'//:

This clearly implies that

�pC1.'/ D �p.GpMpC1.'//=�p.1/
�p.Gp/=�p.1/

D �p.GpMpC1.'//
�p.Gp/

D �Gp.�p/MpC1.'/:

We already mention that the unnormalized measures �n can be expressed in terms
of the flow of measures .�p/0�p�n with the following multiplicative formulae

�p.'/ D �p.'/ �
Y

0�q<p
�q.Gq/: (25)

This result is a direct consequence of the following observation
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�p.1/DE

0

@Gp�1.Xp�1/
Y

0�q<p�1
Gq.Xq/

1

A D �p�1.Gp�1/D �p�1.Gp�1/ �p�1.1/:

It is readily checked that the measures �n are the n-th time marginals of the
Feynman-Kac measures on the path space defined by the following formulae

dQn WD 1

Zn

8
<

:

Y

0�p<n
Gp.Xp/

9
=

;
dPn (26)

with some normalizing constants Zn D �n.1/ and the reference measures

Pn D Law.X0Wn/ with X0Wn WD .X0; : : : ; Xn/:

This class of path space measures goes beyond the MCMC model discussed above.
These measures represent the distribution of the trajectories of a reference Markov
process, weighted by a collection of potential functions. These functional models are
natural mathematical extensions of the traditional change of probability measures,
commonly used in importance sampling.

From a purely probabilistic viewpoint, these measures can be interpreted as the
conditional distribution of a given Markov chain w.r.t. to a sequence of events. For
instance, if we take Gn D 1An indicator potential functions of some measurable
subsets An 2 En, then it can be readily checked that

Qn D Law.X0Wn j 80 � p < n Xp 2 Ap/ and Zn D P
�80 � p < n Xp 2 Ap

�
:

For a thorough discussion on the application domains of these Feynman-Kac
models, we refer the reader to the books [13, 19, 22, 34].

Example 3 (Multiple LDA Risk Conditional Tail Expectations). Consider the class
of problems in risk management involving the evaluation of a coherent capital allo-
cation. We consider the X 2 E to be a random vector X D 


Z.1/; Z.1/; : : : ; Z.d/
�

for d LDA structured risk processes, with the space on which this random vector
is defined given by E D Œ0;1/d . In this case we can consider the multi-variate
distribution for the d risk processes, for which we can consider dependence if
required, according to

Qn WD Law.X0Wn j 80 � p < n Xp 2 Ap/
D F.Z.1/

0 ; : : : ; Z
.d/
0 ; Z

.1/
1 ; : : : ; Z

.d/
n j 80 � p < n Xp 2 Ap/:

If one considers the event Xp 2 Ap as corresponding to the sequence of multi-
variate loss draws that produce the rare-event that the total loss ZT D Pd

iD1 Z.i/

gives ZT 2 .VaRZT .˛/ � 
n;VaRZT .˛/C 
n/ for some 
n # 0, then one has a
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mechanism for calculating conditional tail expectations, relevant to assessing multi-
variate risk measures, tail dependence and capital allocation problems.

3.5 Non-linear McKean Markov Chains

The central idea behind Feynman-Kac particle samplers is to observe that any
evolution equation of probability measures

�n D ˚n .�n�1/

on some measurable state spaces En can be interpreted as the law

�n D Law
�
Xn

�

of a Markov chain Xn with initial distribution �0 and Markov transitions

P
�
Xn 2 dxn j Xn�1 D xn�1

� D Kn;�n�1 .xn�1; dxn/:

The Markov transitionsKn;�n�1 are chosen so that

8n � 1; �n�1Kn;�n�1 D ˚n.�n�1/:

The Markov chain Xn incorporate free evolution moves according to Mn, with
sequential updates of the measures �n, so that the law of the random states Xn

coincide with the desired distributions �n, at every time step. This chain can be
interpreted as a perfect sequential sampler of the sequence of measures �n.

The choice of the transitions KnC1;�n is not unique. For instance, for the
Feynman-Kac models on En D R

d discussed above, if we take

KnC1;�n.x; dy/ WD 
Sn;�nMnC1
�
.x; dy/ or KnC1;�n.x; dy/ WD ˚nC1 .�n/ .dy/

we readily check that

�nKnC1;�n D ˚nC1 .�n/ D �Gn.�n/MnC1 D �nSn;�nMnC1:

We also mention that the law of the random trajectories .X0; : : : ; Xn/ are given by
the so-called McKean measures

Pn.dx0Wn/ D �0.dx0/ K1;�0.x0; dx1/ : : : Kn;�n�1 .xn�1; dxn/;

where dx0Wn D d.x0; : : : ; xn/ stands for an infinitesimal neighbourhood of the
trajectory x0Wn WD .x0; : : : ; xn/.
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We further assume that the Markov transitions Mn.xn�1; dxn/ are absolutely
continuous with respect to some reference measure �n and we set

Qn.xn�1; dxn/ WD Gn�1.xn�1/Mn.xn�1; dxn/ D Hn.xn�1; xn/ �n.dxn/:

In this situation, we have the following time reversal formulae

Qn.dx0Wn/ D �n.dxn/Mn;�n�1 .xn; dxn�1/ : : :M1;�0 .x1; dx0/; (27)

with the Markov transitions

Mn;�n�1 .xn; dxn�1/ WD �n�1.dxn�1/ Hn.xn�1; xn/
�n�1 .Hn..; xn// :

We prove this backward formula using the fact that

�n.dxn/ D �Gn�1 .�n�1/Mn.dxn/ D �n�1 .Hn..; xn//
�n�1.Gn�1/

�n.dxn/;

from which we find that

�n.dxn/Mn;�n�1 .xn; dxn�1/ D 1

�n�1.Gn�1/
�n�1.dxn�1/ Qn.xn�1; dxn/:

Iterating this process, we prove (27).

3.5.1 Mean Field Particle Simulation

This section is concerned with particle approximations of the Feynman-Kac model
(24) and (26). We also present a series of exponential concentration inequalities that
allows one to estimate the deviation of the particle estimates around their limiting
values.

In the remainder of this section 'n stands for some function s.t. k'nk � 1, and
.c1; c2/ represent two constants related to the bias and the variance of the particle
approximation scheme, and c stands for some universal constant. The values of
these constants may vary from line to line but they don’t depend on the time
horizon. Furthermore, we assume that the Feynman-Kac model satisfies some strong
stability properties. For a more detailed description of the stability properties, and
the description of the quantities .c; c1; c2/ in terms of the Feynman-Kac model (24),
we refer the reader to the books [19, 22].

We approximate the transitions

Xn ÝXnC1 � KnC1;�n.Xn; dxnC1/;
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by running a Markov chain �n D .�1n; : : : ; �
N
n / 2 EN

n that approximate the
distribution �n when N " 1

1

N

X

1�i�N
ı�in WD �Nn �!N"1 �n:

A natural choice of particle transitions is to take at every time step a sequence of
conditionally independent particles

�in Ý �inC1 � KnC1;�Nn .�
i
n; dxnC1/:

For the Feynman-Kac models discussed above, we can chose the transitions
KnC1;�n D Sn;�nMnC1. In this context, the evolution of the particle algorithm is
decomposed into two steps:

�1n
:::

�in
:::

�Nn

3

77
7
7
7
7
5

S
Gn;�

N
n����������!

2

66
6
6
6
6
6
4

O�1n
MnC1����������!

:::
O�in ����������!
:::
O�Nn ����������!

�1nC1
:::

�inC1
:::

�NnC1

3

77
7
7
7
7
5

:

During the first step, every particle �in evolves to a new particle O�in randomly chosen
with the distribution

S�Nn .�
i
n; dx/ WD Gn.�in/ ı�in.dx/C �1 �Gn.�in/

�
�Gn.�

N
n /.dx/;

with the updated measures

�Gn.�
N
n / D

NX

jD1

Gn.�
j
n /

PN
kD1 Gn.�kn /

ı
�
j
n
�!N"1 �Gn.�n/ D �nC1:

This transition can be interpreted as an acceptance-rejection scheme with a recycling
mechanism. In the second step, the selected particles O�in evolve randomly according
to the Markov transitions MnC1. In other words, for any 1 � i � N , we sample a
random state �inC1 with distributionMnC1

� O�in; dx
�
.
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3.6 A Sequential Monte Carlo Formulation

Most of the SMC technology developed for Bayesian inference, is based on finding
judicious sequential importance sampling representations of a given sequence of
target measures, on some general state space models defined on En. More precisely,
let us suppose that we are given a sequence of target measures of the following form

Qn.dx0Wn/ / Qn�1.dx0Wn�1/ �Qn.xn�1; dxn/; (28)

for some bounded positive integral operators Qn.xn�1; dxn/ from Bb.En/ into
Bb.En�1/. By construction, we observe that these target measures can alternatively
be defined by

Qn.dx0Wn/ WD 1

Zn

�0.dx0/Q1.x0; dx1/ : : : Qn.xn�1; dxn/;

for some normalizing constant Zn. Given a sequence of importance sampling
transitionMnC1 s.t.

QnC1.xn; ./�MnC1.xn; ./;
for any xn 2 En we denote by Wn the sequential importance weights

Wn.xn; xnC1/ / Target at time (n+1)

Target at time (n)� Twisted transition

/ QnC1.dx0WnC1//
Qn.dx0Wn/ �MnC1.xn; dxnC1/

WD dQnC1.xn; ./
dMnC1.xn; ./ .xnC1/: (29)

The corresponding change of measure has the following form

Qn.dx0Wn/ D 1

Zn

8
<

:

Y

0�p<n
Wp.xp; xpC1/

9
=

;
Pn.dx0Wn/: (30)

We consider the Markov chain on the transition space defined by

Xn WD .Xn;XnC1/ 2 En D .En � EnC1/ :

In this notation, for any bounded measurable function 'n on the product state space
.E0 � : : : �En/, we have the following importance sampling formulae

E

�
'n.X0Wn/

Q
0�p<n Wp.Xp;XpC1/

	
D E

�
'n.X0Wn/

Q
0�p<n Gp.Xp/

	

with the functions
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'n.X0Wn/ D 'n.X0Wn/; and the potential functions Gp WD Wp :

This implies that

Qn.'n/ D Qn.’n/; (31)

with the Feynman-Kac measure Qn associated with the Markov chain Xn on
the transition space En D .En � EnC1/ and the potential functions Gn. In this
formulation, sequential Monte Carlo samplers coincide with the mean field particle
interpretations discussed in Sect. 3.5.1.

3.6.1 Some Non-asymptotic Estimates: Finite Sample Accuracy
for Particle Integration

The exponential concentration inequalities developed below are satisfied under
some regularity conditions on the Feynman-Kac parameters .Gn;Mn/, on some
general state space models defined on En. It is clearly out of the scope to present
here all the details of the proof of these inequalities. As shown in Sect. 3.6, the
importance sampling Feynman-Kac representation of a given sequence of target
measures is far from unique. Roughly speaking, the twisted transitions Mn and the
corresponding potential weight functionsGn have to be chosen so that the non-linear
semi-group associated with evolution equation

�n D �Gn�1 .�n�1/Mn;

of the n-th time marginals �n of the Feynman-Kac target measures Qn are
sufficiently stable. One way to satisfy this stability property is to choose sufficiently
mixing twisted transitions, with bounded relative oscillations of the weight func-
tions. For a more thorough discussion on these stability conditions, we refer the
reader to [19, 20, 22].

We note that the exponential concentration inequalities presented below are also
valid for non necessarily stable Feynman-Kac semi-groups. Nevertheless, in this
degenerate situation the constants c and .c1; c2/ depend on the time parameter.
Using the concentration analysis of mean field particle models developed in [32],
the following exponential estimate was proved in [22]. For any x � 0, n � 0, and
any population size N � 1, the probability of the event



�Nn � �n

�
.'/ � c1

N

�
1C x Cpx�C c2p

N

p
x;

is greater than 1 � e�x .
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3.6.2 Non-asymptotic Estimates for Risk Measure Estimation via
Interacting Particle Systems

In addition, for any x D .xi /1�i�d and any .�1; x� D Qd
iD1.�1; xi � cells in

En D R
d , we let

Fn.x/ D �n
�
1.�1;x�

�
and FN

n .x/ D �Nn
�
1.�1;x�

�
:

For any y � 0, n � 0, and any population size N � 1, the probability of the
following event

p
N
�
�FN

n � Fn
�
� � c

p
d .y C 1/;

is greater than 1 � e�y . This concentration inequality ensures that the particle
repartition function FN

n converges to Fn, almost surely for the uniform norm. For
d D 1, we let F n be the generalized inverse on Œ0; 1� of the function Fn; that is, we
have that

F n .˛/ WD inf fx 2 R W Fn.x/ � ˛g:

We let F n .˛/ D qn;˛ be the quantile, of order ˛, and we denote by �in the order
particle statistic associated with the particle system �in at time n; that is, we have
that

�1n WD ��.1/n � �2n WD ��.2/n � : : : � �Nn WD ��.N/n ;

for some random permutation � . We also denote by qNn;˛ WD �
1CbN˛c
n the ˛-particle

quantile. By construction, we have that

ˇ
ˇFn

�
qNn;˛

� � Fn.qn;˛/
ˇ
ˇ � ˇˇFn

�
qNn;˛

� � FN
n .q

N
n;˛/

ˇ
ˇC ˇˇFN

n .q
N
n;˛/� ˛

ˇ
ˇ

� ��FN
n � Fn

�
�C

�
1C bN˛c

N
� ˛

�
� ��FN

n � Fn
�
�C 1=N:

This clearly implies that qNn;˛ converges almost surely to qn;˛ , as N tends to1. In
addition, for any y � 0, n � 0, and any population size N � 1, the probability of
the following event

p
N
ˇ
ˇFn

�
qNn;˛

� � ˛ˇˇ � c pd .y C 1/C 1p
N
;

is greater than 1 � e�y .
If we interpret the mutation-selection particle algorithm as a birth and death

branching process, then we can trace back in time the whole ancestral line �in D
.�ip;n/0�p�n of the individual �in at the n-th generation
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�i0;n  � �i1;n  � : : : � �in�1;n  � �in;n D �in:

The random state �ip;n represents the ancestor of the individual �in at the level p, with
0 � p � n, and 1 � i � N . It is more or less well known that �n coincides with
the particle approximation of the Feynman-Kac model defined in (24) by replacing
Xn by the historical process .Xp/0�p�n. This interpretation provides an alternative
particle approximation scheme of the measures (26), that is we have that

�Nn D
1

N

X

1�i�N
ı.�i0;n;�

i
1;n;:::;�

i
n;n/
: �!N"1 Qn:

More precisely, we proved in [22] the following exponential concentration estimate.
For any test function 'n on path space s.t. k'nk � 1, for any y � 0, n � 0, and any
N � 1, the probability of the event



�Nn �Qn

�
.'/ � c1 nC 1

N

�
1C x Cpx�C c2

r
.nC 1/
N

p
x;

is greater than 1 � e�x .
Further details on these genealogical tree models can be found in [19, 22, 25].

Mimicking formulae (25) and (27), we define an unbiased particle estimate �Nn of
the unnormalized measures �n and a particle backward measures QN

n by setting

�Nn .'/ D �Nn .'/ �
Y

0�q<n
�Nq .Gq/;

and

Q
N
n .d.x0; : : : ; xn// D �Nn .dxn/Mn;�Nn�1

.xn; dxn�1/ : : :M1;�N0
.x1; dx0/:

We end this section with a couple of exponential concentration estimates proved
in [22]. For any x � 0, n � 0, N � 1, and any 
 2 fC1;�1g, the probability of the
event




n
log

�Nn .1/

�n.1/
� c1

N

�
1C x Cpx�C c2p

N

p
x;

is greater than 1 � e�x . In addition, for any normalized additive functional

'n.x0; : : : ; xn/ D 1

nC 1
X

0�p�n
'p.xp/

with k'pk � 1, for x � 0, n � 0, and any population size N � 1, the probability
of the event
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Q
N
n �Qn

�
.'n/ � c1

1

N
.1C .x Cpx//C c2

r
x

N.nC 1/ ;

is greater than 1 � e�x .

4 Illustration of Interacting Particle Solutions for Risk
and Insurance Capital Estimation

In this section we detail a special subset of algorithms, from within the stochastic
particle integration methods, that were specifically developed to solve problems for
risk and insurance in [61]. The class of recursive solutions developed is applicable
to a wide range of insurance and risk settings. We provide a novel result in
this illustration which extends the framework originally presented in [61] through
consideration of a higher-order Panjer recursion whilst avoiding the need to perform
discretisation of the severity distribution. We shall present a generic version of this
approach which adopts an interacting particle solution. In addition, we illustrate
how this method may be used in inference for tail quantiles of compound processes
to complement the results considered for the SLA approximations.

4.1 Recursions for Loss Distributions: Panjer and Beyond

We extend the framework proposed in [61] for developing a recursive numerical
solution to estimation of such risk measures through estimation of the density of the
compound process. In particular, we briefly summarize an approach to transform
the standard actuarial solution known as the Panjer recursion [56] to a sequence
of expectations. We note that recursions for the evaluation of single risk process
distributions, under discretisation, are ubiquitous in risk and insurance modelling,
see discussions in [71]. We consider an advanced development that avoids the
need to discretise the severity distribution via development of a stochastic particle
integration based solution.

Consider the actuarial recursions for evaluating FZ.x/ based around the Panjer
class of frequency distribution relationships defined by

pn D
�
aC b

n

�
pn�1; (32)

with members Poisson .a D 0; b D l; p0 D e�/, Binomial .a D �q
.1�q/ ; b D

.mC1/q
.1�q/ ; p0 D .1 � q/m/ and Negative Binomial .a D b

1Cb ; b D .r�1/b
1Cb ; p0 D .1C

b/ � r/. In addition, we consider the higher order Panjer recursion for an extended
class of frequency distributions given by the generalized Poisson distribution (GPD).
The GPD model is defined via the probability mass function
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Pr .N D n/ D pn.; �/ D
(
.C n�/n�1 ; 8n D 0; 1; 2; : : :
0; if n > m; when � < 0;

with  > 0 and max.�1; =m/ � � < 1 andm � 4 is the largest positive integer s.t.
C�m > 0when � is negative, where the GPD is Poisson for � D 0; over-dispersed
� > 0 and under-dispersed � < 0.

One can then derive closed form recursions for the annual loss LDA compound
process distribution given by

fY .x/ D p1fX .x/C
Z x

0

�
aC by

x

�
fX .y/ fY .x � y/ dy; (33)

or the generalized higher order Panjer recursion [40],

fY .x/ D p1.; �/fX .x/C 

C �
Z x

0

�
� C y

x

	
fX .y/ fY .x � y/ dy: (34)

To understand how these recursions are obtained, consider the convolution identity
for an i.i.d. partial sum SnC1 D X1 C : : :CXnC1 with density

f �.nC1/.x/ D
Z x

0

f .�/f �n.x � �/d�; 8n D 1; 2; 3; : : : : (35)

Substitute the conditional of X1 when SnC1 D x,

fX1 .� jX1 C � � � CXnC1 D x/ D
f .�/f �n.x � �/
f �.nC1/.x/

; (36)

into the average given SnC1 D x to get

E ŒX1jX1 C � � � CXnC1 D x� D
Z x

0

�
fX1.�/f

�n
X1
.x � �/

f
�.nC1/
X1

.x/
d�: (37)

Then observe that with i.i.d. losses one also gets

E ŒX1jX1 C � � � CXnC1 D x� D 1

nC 1
nC1X

iD1
E ŒXi jX1 C � � � CXnC1 D x�

D 1

nC 1E ŒX1 C � � � CXnC1jX1 C � � � CXnC1 D x� D
x

nC 1:
(38)

Equating these conditional mean expressions and rearranging gives
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1

nC 1f
�.nC1/
X1

.x/ D 1

x

Z x

0

�fX1.�/f
�n
X1
.x � �/d�: (39)

Now utilise the Panjer class of frequency distributions satisfying for some a and b,

Pr .N D n/ D pn D
�
aC b

n

�
pn�1: (40)

Upon substitution and some elementary algebra one obtains the Panjer recursion.

4.2 Stochastic Particle Methods as Solutions to Panjer
Recursions

Avoiding the distributional discretisation of the severity model in applying the
Panjer recursion reduces the computational cost when considering heavy-tailed
severity models. It also reduces the discretisation error. It was noted in [61] that
the Panjer recursions could be re-expressed as linear Volterra integral equations of
the second kind via the mapping

x1 D x � y; g.x/ D p1F.x/; f .x1/ D fZ.x1/; and

k .x; x1/ D
�
aC b x � x1

x

	
F .x � x1/ :

(41)

where the kernel k W E � E 7! R and the function g W E 7! R are known whilst
the function f W E 7! R is unknown. Furthermore, if one defines k0.x; y/ , 1,
k1.x; y/ , k.x; y/ and

kn.x; y/ ,
Z
k.x; y/kn�1.z; y/dz

and these kernels satisfy that

1X

nD0

Z

E

jkn .x0; xn/ g .xn/j dxn <1;

then one can identify the resolvent kernel and Neumann series through iterative
expansion of the recursion to obtain for a sequence of domainsE1Wn

f .x0/ D g.x0/C
1X

nD0

Z x0

0

: : :

Z xn�1

0

g .xn/

nY

lD1
k .xl�1; xl / dx1Wn:
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Under this formulation it was shown in [61] how to address two problems:
estimation of the annual loss density over a set A and estimation of the annual loss
density pointwise. These are both directly relevant to obtaining estimates of the risk
measures specified for capital estimation.

To achieve this we convert the Neumann series above into a sequence of
expectations with respect to an importance sampling distribution. This is performed
by making the following associations

f0 .x0/ D g .x0/ ; and fn .x0Wn/ D g .xn/
nY

lD1
k .xl�1; xl /

) f .x0/ D f0 .x0/C
1X

nD1

Z x0

0

: : :

Z xn�1

0

fn .x0Wn/ dx0Wn:

Now we may develop this reformulated problem as an expectation with respect to a
sequence of distributions f� .n; x1Wn/gn�0:

f .x/ D f0.x/

�.0/
�.0/C

1X

nD1

Z

A1Wn.x/

fn .x; x1Wn/
� .n; x1Wn/

� .n; x1Wn/ dx1Wn

D E�.n;x1Wn/

�
fn .x; x1Wn/
� .n; x1Wn/


;

with the setsA1Wn .x0/ D f.x1; : : : ; xn/ W x0 > x1 > � � � > xng playing an analogous
role to the sequence of level sets described previously.

We note that there are now two path-space based particle solutions available,
those that consider estimating f .x/ point-wise via an importance sampling solution
on the path-space defined by

[1nD0 fng � A1Wn.x/:
The other alternative involves characterizing f .x/ over some interval by obtaining
samples from its restriction to that interval Œxa; xb�, via importance sampling on a
slightly larger space

1[

nD0
fng � A1Wn .Œxa; xb�/ :

In [61] a path space based Sequential Importance Sampling (SIS) approximation
to this sequence of expectations is obtained. This involves considering a Markov
chain with initial distribution �.x/ > 0 on E and transition kernel M.x; y/ > 0

if k.x; y/ ¤ 0 and M has absorbing state d … E such that M.x; d/ D Pd for
any x 2 E . Under this framework the interacting particle solution to the Panjer
recursion is summarized in Algorithm 1. This is directly applicable to the higher
order Panjer recursions discussed above.
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Algorithm 1 (Path Space Stochastic Particle Methods for Panjer Recur-
sions).

1. Generate N independent Markov chain paths
n
X
.i/

0Wn.i/C1
oN

iD1 until absorption

X
.i/

n.i/C1 D d .
2. Evaluate the importance weights for each particle on the path space by,

W
�
X
.i/

0Wn.i/
	
D

8
ˆ̂
<̂

ˆ̂
:̂

1

�
�
X
.i/
0

	

 
Qn.i/

nD1
k
�
X
.i/
n�1;X

.i/
n

	

M
�
X
.i/
n�1;X

.i/
n

	

!
g
�
X
.i/

n.i/

	

Pd
; if n.i/ � 1;

g
�
X
.i/
0

	

�
�
X
.i/
0

	
Pd
; if n.i/ D 0:

(42)

4.3 Stochastic Particle Solutions to Risk Measure Estimation

If we consider �
�
X
.i/
0

	
D ı

�
X
.i/
0

	
; 8i 2 f1; : : : ; N g, the empirical measure at a

point x0 is given by

OfZ .x0/ D 1

N

NX

iD1
W
�
x0;X

.i/

1Wn.i/
	
;

or over an interval by

OfZ .x0/ D 1

N

NX

iD1
W1

�
X
.i/

0Wn.i/
	
ı
�
x0 � X.i/

0

	
:

These estimators can be used to construct unbiased Monte Carlo approximations of

the expectation of fZ.z/ for any set A given by E

hR
A
Of .x0/dx0

i
D R

A
f .x0/dx0.

Having obtained this particle based approximation, this weighted Dirac measure
can then be utilised to estimate any of the required risk measures such as VaR
and SRM for any desired level ˛. This can be performed in two ways, depending
on whether the particle solution is obtained for the evaluation of the recursions
pointwise over a fixed grid or alternatively over an interval, which could be
increasing in size. In the case of an interval, or contracting set, one considers perhaps

a set of interest to be A D Œ0; xmax� such that xmax >> F 
�
1 � 1�˛

EŒN �

	
, and then

utilises this to construct an unbiased particle approximation of the distribution of
the annual loss up to any level ˛ 2 .0; 1/. This could be obtained from growing a
set A1 D Œ0; x1� � A2 � � � � � A D Œ0; xmax� recursively, as discussed in previous
sections.
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If the partition is made pointwise over a linear or a non-linear spacing Œ0; z� DSM
mD1 Œ.m � 1/4; m4/ and the distribution evaluated pointwise, this leads to an

estimation of

OFZ.z/ D
MX

mD0
4f .m4/ 	 1

N

MX

mD0

NX

iD1
4W

�
m4; X.i;m/

1Wn.i;m/
	
: (43)

Alternatively, if the estimation is performed over an interval A.xmax/ D Œ0; xmax�,
then for any z < xmax one may use the construction of the resulting empirical
measure to obtain,

OFZ .z/ D 1

N

NX

iD1
W
�
X
.i/

0Wn.i/
	
I

�
X
.i/

0Wn.i/ 2 Œ0; z�
	
!N"1

Z z

0

fZ.z/dz: (44)

Practical advice: consider a range for the support Œ0; xmax� such that xmax >>

F 
�
1 � 1�˛

EŒN �

	
.

From these unbiased particle approximations of the annual loss density and
distribution we can reconstruct the (inverse cdf) quantile function of the annual loss
LDA model. This can either be based on a random set of particle locations or on a
discrete deterministic grid as follows:

Deterministic Grid Solution: Given partition Œ0; xmax� D SM
mD1 Œ.m � 1/4 ,

m4/ for some step4 s.t.

OQ.p/ D inf

(

x 2 f0;4; : : : ;M4g W p � 1

N

MX

mD0

NX

iD1
4W

�
x;X

.i;m/

1Wn.i;m/
	
)

:

(45)

Interval Solution: Construct the empirical measure over A.1/ D Œ0;1/ s.t.

OQ.p/ D inf

(

x 2
n
X
.i/

.0/

o

iD1WN W p �
1

N

NX

iD1
W
�
X
.i/

.0/Wn.i/
	
I

�
X
.i/

.0/Wn.i/ 2 Œ0; x�
	
)

(46)

X
.i/

.0/ represents the order statistics for the particles.

Given the quantile function estimate we get the risk measure estimates for any ˛ 2
.0; 1/ by:

Value-at-Risk (VaR): directly obtained using the estimated quantile function!
Spectral Risk (SRM): the SRM for a weight function � W Œ0; 1� 7! R is given by

1SRMZ.�/ D 1

N

NX

iD1
X
.i/

.0/Wn.i/� .pi/4pi
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with pi DPjD1Wi W
�
X
.i/

.0/Wn.i/
	

.

For additional discussions and detailed examples of this numerical approach to risk
estimation, we refer the reader to the examples found in [61] and [70].

Example 4 (Poisson-Log Normal LDA Model (continued)). Consider the Poisson-
Log Normal compound process detailed in Example 1. We demonstrate results for
the standard Monte Carlo approach and compare results to the path-space particle
solution discussed above. The Monte Carlo solution involved N D 50 million
samples, hence it is considered effectively exact since the resulting Monte Carlo
error was insignificant. In addition, a grid based solution was adopted for the particle
solution with N D 50k per grid point giving a total of NT D 500k, with a grid
width = 1. The estimated quantiles (rounded to integer values) are provided in the
following table for two sets of parameter settings of  D 2, � D 2 and � D 0:5 and
 D 2, � D 2 and � D 1. The particle solution presents a 95 % confidence interval
and the single loss approximation simply reports the asymptotic approximation no
explicit error can be calculated for the point estimated quantile (as discussed above).

Table 1 Standard Monte Carlo solution (exact) versus particle solution and first order single loss
approximations.

Quantile level Standard Monte Carlo Particle solution (Algorithm 1) Single loss approximation

(%) � D 0:5 � D 1 � D 0:5 � D 1 � D 0:5 � D 1

50 14 16 15 [14,16] 16 [13,17] 10 14
80 27 39 25 [26,28] 41 [39,43] 14 26
90 35 57 33 [31,35] 55 [52,59] 16 38
95 42 77 40 [38,43] 74 [70,79] 19 52
99 57 129 55 [54,56] 123 [119,127] 26 97

99.5 77 234 73 [68,79] 227 [218,240] 38 198
99.95 83 276 79 [73,91] 270 [261,282] 42 240

The results that we present in Table 1 are obtained on a linearly spaced grid.
However, this can be changed to either include a non-linear spacing, placing more
points around the mode and less points in the tails, or as we detailed, straight
out evaluation on an interval, avoiding the discretisation of the grid. For the sake
of comparison between the standard Monte Carlo and the importance sampling
estimates, we histogram the standard Monte Carlo procedure samples using unit
length bins. We can see two things from Table 1, firstly as expected the particle
based solution performs accurately under any parameter settings for a modest
computational budget. When compared to the Single Loss Approximation, we see
that there is two clear advantages in having a complementary particle solution,
since we obtain measures of uncertainty in the quantile point estimates, trivially.
Secondly, we demonstrate that the Single Loss Approximations may not be as
accurate as required for even these simple models at quantiles that may be of
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interest to assessment and are required for reporting of capital figures under financial
regulation standards.

Appendix: Optimal Coupling Updated Models

This section is mainly concerned with the proof of the coupling formula (23). By
construction, we clearly have that

P

�
X?
pC1 6D X?

p

	
D �p.Ap �ApC1/ D �p.1 �Gp/ D 1 � �p.Gp/:

On the other hand, we have

�pC1.'/ � �p.'/ D �p
�
Sp;�p .'/ � '

�

D �p
�
Œ1 �Gp�



' � �Gp.�p/.'/

��
:

Choosing ' D 1 �Gp , so that

�Gp.�p/.'/ D 1� �Gp.�p/.Gp/ D 0

and

�p
�
Œ1 �Gp�



' � �Gp.�p/.'/

�� D �p
�
Œ1 �Gp�2

� D 1 � �p
�
Gp
�
:

This ends the proof of the optimal coupling formulae (23). Next, we observe that

1 � �p
�
Gp
� D 1 � �0.ApC1/=�0.Ap/ . with �0 D Law.X//

from which we conclude that

�0
�
Ap
� � �0

�
ApC1

� � .1� 
/ �0
�
Ap
� H) P

�
X?
pC1 D X?

p

	
� 1 � 
: (47)
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Multilevel Monte Carlo Methods

Michael B. Giles

Abstract The author’s presentation of multilevel Monte Carlo path simulation
at the MCQMC 2006 conference stimulated a lot of research into multilevel
Monte Carlo methods. This paper reviews the progress since then, emphasising the
simplicity, flexibility and generality of the multilevel Monte Carlo approach. It also
offers a few original ideas and suggests areas for future research.

1 Introduction

1.1 Control Variates and Two-Level MLMC

One of the classic approaches to Monte Carlo variance reduction is through the
use of a control variate. Suppose we wish to estimate EŒf �, and there is a control
variate g which is well correlated to f and has a known expectation EŒg�. In that
case, we can use the following unbiased estimator for EŒf �:

N�1
NX

nD1

˚
f .n/ �  �g.n/ � EŒg�

��
:

The optimal value for  is 	
p
VŒf � =VŒg�, where 	 is the correlation between f

and g, and the variance of the control variate estimator is reduced by factor 1�	2
compared to the standard estimator.

A two-level version of MLMC (multilevel Monte Carlo) is very similar. If we
want to estimate EŒP1� but it is much cheaper to simulate P0 	 P1, then since
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EŒP1� D EŒP0�C EŒP1 � P0�

we can use the unbiased two-level estimator

N�10
N0X

nD1
P
.n/
0 C N�11

N1X

nD1

�
P
.n/
1 � P .n/

0

	
:

HereP .n/
1 �P .n/

0 represents the difference betweenP1 andP0 for the same underlying

stochastic sample, so that P .n/
1 �P .n/

0 is small and has a small variance; the precise
construction depends on the application and various examples will be shown later.
The two key differences from the control variate approach are that the value of EŒP0�
is not known, so has to be estimated, and we use  D 1.

If we define C0 and C1 to be the cost of computing a single sample of P0 and
P1�P0, respectively, then the total cost is N0 C0CN1 C1; and if V0 and V1 are the
variance of P0 and P1�P0, then the overall variance is N�10 V0 CN�11 V1; assuming

that
N0X

nD1
P
.n/
0 and

N1X

nD1

�
P
.n/
1 � P .n/

0

	
use independent samples.

Hence, treating the integersN0;N1 as real variables and performing a constrained
minimisation using a Lagrange multiplier, the variance is minimised for a fixed cost
by choosingN1=N0 D

p
V1=C1 =

p
V0=C0:

1.2 Multilevel Monte Carlo

The full multilevel generalisation is quite natural: given a sequence P0; P1; : : : ;
which approximates PL with increasing accuracy, but also increasing cost, we have
the simple identity

EŒPL� D EŒP0�C
LX

`D1
EŒP` � P`�1�;

and therefore we can use the following unbiased estimator for EŒPL�,

N�10
N0X

nD1
P
.0;n/
0 C

LX

`D1

(

N�1`
NX̀

nD1

�
P
.`;n/

` � P .`;n/

`�1
	
)

with the inclusion of the level ` in the superscript .`; n/ indicating that the samples
used at each level of correction are independent.
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If we define C0; V0 to be the cost and variance of one sample of P0, and C`; V`
to be the cost and variance of one sample of P`�P`�1, then the overall cost and

variance of the multilevel estimator is
LX

`D0
N` C` and

LX

`D0
N�1` V`, respectively.

For a fixed cost, the variance is minimised by choosing N` D 
p
V` = C` for

some value of the Lagrange multiplier . In particular, to achieve an overall variance
of "2 requires that  D "�2 PL

`D0
p
V` C`: The total computational cost is then

C D "�2
 

LX

`D0

p
V` C`

!2

: (1)

It is important to note whether the product V` C` increases or decreases with `,
i.e. whether or not the cost increases with level faster than the variance decreases.
If it increases with level, so that the dominant contribution to the cost comes from
VL CL then we have C 	 "�2VL CL, whereas if it decreases and the dominant
contribution comes from V0 C0 then C 	 "�2V0 C0. This contrasts to the standard
MC cost of approximately "�2V0 CL, assuming that the cost of computing PL is
similar to the cost of computing PL�PL�1, and that VŒPL� 	 VŒP0�. This shows
that in the first case the MLMC cost is reduced by factor VL=V0, corresponding to
the ratio of the variances VŒPL�PL�1� and VŒPL�, whereas in the second case it
is reduced by factor C0=CL, the ratio of the costs of computing P0 and PL�PL�1.
If the product V` C` does not vary with level, then the total cost is "�2L2 V0 C0 D
"�2L2 VL CL.

1.3 Earlier Related Work

Prior to the author’s first publications [20, 21] on MLMC for Brownian path
simulations, Heinrich developed a multilevel Monte Carlo method for parametric
integration, the evaluation of functionals arising from the solution of integral
equations, and weakly singular integral operators [33–37]. Parametric integration
concerns the estimation of EŒf .x; /� where x is a finite-dimensional random
variable and  is a parameter. In the simplest case in which  is a real variable in the
range Œ0; 1�, having estimated the value of EŒf .x; 0/� and EŒf .x; 1/�, one can use
1
2
.f .x; 0/C f .x; 1// as a control variate when estimating the value of EŒf .x; 1

2
/�.

This approach can then be applied recursively for other intermediate values of ,
yielding large savings if f .x; / is sufficiently smooth with respect to . Although
this does not quite fit into the general MLMC form given in the previous section,
the recursive control variate approach is very similar and the complexity analysis is
also very similar to the analysis to be presented in the next section.

Although not so clearly related, there are papers by Brandt et al. [9, 10] which
combine Monte Carlo techniques with multigrid ideas in determining thermody-
namic limits in statistical physics applications. It is the multigrid ideas of Brandt and
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others for the iterative solution of systems of equations which were the inspiration
for the author in developing the MLMC method for SDE path simulation.

In 2005, Kebaier [41] developed a two-level approach for path simulation which
is very similar to the author’s approach presented in the next section. The only
differences are the use of only two levels, and the use of a general multiplicative
factor as in the standard control variate approach. A similar multilevel approach
was under development at the same time by Speight, but was not published until
later [49, 50].

2 MLMC Theorem

In the Introduction, we considered the case of a general multilevel method in which
the output PL on the finest level corresponds to the quantity of interest. However, in
many infinite-dimensional applications, such as in SDEs and SPDEs, the output P`
on level ` is an approximation to a random variable P . In this case, the mean square
error (MSE) has the usual decomposition into the total variance of the multilevel
estimator, plus the square of the bias .EŒPL�P �/2. To achieve an MSE which is less
than "2, it is sufficient to ensure that each of these terms is less than 1

2
"2. This leads

to the following theorem:

Theorem 1. Let P denote a random variable, and let P` denote the corresponding
level ` numerical approximation.

If there exist independent estimators Y` based on N` Monte Carlo samples, and
positive constants ˛; ˇ; �; c1; c2; c3 such that ˛� 1

2
min.ˇ; �/ and

(i) jEŒP`�P �j � c1 2
�˛ `

(ii) EŒY`� D
8
<

:

EŒP0�; ` D 0
EŒP`�P`�1�; ` > 0

(iii) VŒY`� � c2 N
�1
` 2�ˇ `

(iv) EŒC`� � c3 N` 2
� `; where C` is the computational complexity of Y`

then there exists a positive constant c4 such that for any "<e�1 there are values L
and N` for which the multilevel estimator

Y D
LX

`D0
Y`;

has a mean-square-error with bound

MSE  E

h
.Y � EŒP �/2

i
< "2
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with a computational complexity C with bound

EŒC � �

8
ˆ̂̂
<

ˆ̂
:̂

c4 "
�2; ˇ > �;

c4 "
�2.log "/2; ˇ D �;

c4 "
�2�.��̌ /=˛; ˇ < �:

The statement of the theorem is a slight generalisation of the original theorem in
[21]. It corresponds to the theorem and proof in [15], except for the minor change to
expected costs to allow for applications such as jump-diffusion modelling in which
the simulation cost of individual samples is itself random.

The theorem is based on the idea of a geometric progression in the levels of
approximation, leading to the exponential decay in the weak error in condition
(i), and the variance in condition (iii), as well as the exponential increase in the
expected cost in condition (iv). This geometric progression was based on experience
with multigrid methods in the iterative solution of large systems of linear equations,
but it is worth noting that it is not necessarily the optimal choice in all circumstances.

The result of the theorem merits some discussion. In the case ˇ > � , the
dominant computational cost is on the coarsest levels whereC` D O.1/ andO."�2/
samples are required to achieve the desired accuracy. This is the standard result
for a Monte Carlo approach using i.i.d. samples; to do better would require an
alternative approach such as the use of Latin hypercube sampling or quasi-Monte
Carlo methods. In the case ˇ < � , the dominant computational cost is on the
finest levels. Because of condition (i), 2�˛L D O."/, and hence CL D O."��=˛/.
If ˇ D 2˛, which is usually the largest possible value for a given ˛, for reasons
explained below, then the total cost is O.CL/ corresponding to O.1/ samples on
the finest level, again the best that can be achieved. The dividing case ˇ D � is
the one for which both the computational effort, and the contributions to the overall
variance, are spread approximately evenly across all of the levels; the .log "/2 term
corresponds to the L2 factor in the corresponding discussion in Sect. 1.2.

The natural choice for the multilevel estimator is

Y` D N�1`
X

i

P`.!i /�P`�1.!i /; (2)

where P`.!i / is the approximation to P.!i / on level `, and P`�1.!i / is the
corresponding approximation on level ` � 1 for the same underlying stochastic
sample !i . Note that VŒP`�P`�1� is usually similar in magnitude to EŒ.P`�P`�1/2�
which is greater than .EŒP` �P`�1�/2; this implies that ˇ � 2˛ and hence the
condition in the theorem that ˛ � 1

2
min.ˇ; �/ is satisfied.

However, the multilevel theorem allows for the use of other estimators, provided
they satisfy the restriction of condition (ii) which ensures that EŒY � D EŒPL�.
Two examples of this will be given later in the paper. In the first, slightly different
numerical approximations are used for the coarse and fine paths in SDE simulations,
giving
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Y` D N�1`
X

i

P
f

` .!i /�P c
`�1.!i /:

Provided EŒP
f

` � D EŒP c
` � so that the expectation on level ` is the same for the two

approximations, then condition (ii) is satisfied and no additional bias (other than the
bias due to the approximation on the finest level) is introduced into the multilevel
estimator. The second example defines an antithetic !ai with the same distribution
as !i , and then uses the multilevel estimator

Y` D N�1`
X

i

1
2

�
P`.!i /CP`.!ai /

� � P`�1.!i /:

Since EŒP`.!ai /� D EŒP`.!i /�, then again condition (ii) is satisfied. In each case, the
objective in constructing a more complex estimator is to achieve a greatly reduced
variance VŒY`� so that fewer samples are required.

3 SDEs

3.1 Euler Discretisation

The original multilevel path simulation paper [21] treated SDEs using the simple
Euler-Maruyama discretisation together with the natural multilevel estimator (2).

Provided the SDE satisfies the usual conditions (see Theorem 10.2.2 in [42]), the
strong error for the Euler discretisation with timestep h is O.h1=2/, and therefore
for Lipschitz payoff functions P (such as European, Asian and lookback options in
finance) the variance V`  VŒP`�P`�1� is O.h`/. If h` D 4�`h0, as in [21], then
this gives ˛D 2, ˇD 4 and � D 2. Alternatively, if h` D 2�`h0, then ˛D 1, ˇD 2
and � D 1. In either case, Theorem 1 gives the complexity to achieve a root-mean-
square error of " to be O."�2.log "/2/, which is near-optimal as Müller-Gronbach
and Ritter have proved an O."�2/ lower bound for the complexity [46].

For other payoff functions the complexity is higher. V` 	 O.h1=2/ for the
digital option which is a discontinuous function of the SDE solution at the final
time, and the barrier option which depends discontinuously on the minimum or
maximum value over the full time interval. Loosely speaking, this is because there
is an O.h1=2/ probability of the coarse and fine paths being on opposite sides of the
discontinuity, and in such cases there is an O.1/ difference in the payoff. Currently,
there is no known “fix” for this for the Euler-Maruyama discretisation; we will
return to this issue for the Milstein discretisation when there are ways of improving
the situation.

Table 1 summarises the observed variance convergence rate in numerical experi-
ments for the different options, and the theoretical results which have been obtained;
the digital option analysis is due to Avikainen [4] while the others are due to Giles,
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Higham and Mao [24]. Although the analysis in some of these cases is for one-
dimensional SDEs, it also applies to multi-dimensional SDEs [22].

Table 1 Observed and theoretical convergence rates for the multilevel
correction variance for scalar SDEs, using the Euler-Maruyama and
Milstein discretisations. ı is any strictly positive constant.

Euler-Maruyama Milstein
Option Numerics Analysis Numerics Analysis

Lipschitz O.h/ O.h/ O.h2/ O.h2/

Asian O.h/ O.h/ O.h2/ O.h2/

Lookback O.h/ O.h/ O.h2/ o.h2�ı/

Barrier O.h1=2/ o.h1=2�ı/ O.h3=2/ o.h3=2�ı/

Digital O.h1=2/ O.h1=2 logh/ O.h3=2/ o.h3=2�ı/

3.2 Milstein Discretisation

For Lipschitz payoffs, the variance V` for the natural multilevel estimator converges
at twice the order of the strong convergence of the numerical approximation of
the SDE. This immediately suggests that it would be better to replace the Euler-
Maruyama discretisation by the Milstein discretisation [20] since it gives first order
strong convergence under certain conditions (see Theorem 10.3.5 in [42]).

This immediately gives an improved variance for European and Asian options, as
shown in Table 1, but to get the improved variance for lookback, barrier and digital
options requires the construction of estimators which are slightly different on the
coarse and fine path simulations, but which respect the condition that EŒP f

` � D
EŒP c

` �.
The construction for the digital option will be discussed next, but for the lookback

and barrier options, the key is the definition of a Brownian Bridge interpolant based
on the approximation that the drift and volatility do not vary within the timestep.
For each coarse timestep, the mid-point of the interpolant can be sampled using
knowledge of the fine path Brownian increments, and then classical results can be
used for the distribution of the minimum or maximum within each fine timestep for
both the fine and coarse path approximations [29]. The full details are given in [20],
and Table 1 summarises the convergence behaviour observed numerically, and the
supporting numerical analysis by Giles, Debrabant and Rößler [23].

The outcome is that for the case in which the number of timesteps doubles at each
level, so h` D 2�`h0, then � D 1 and either ˇD 2 (European, Asian and lookback)
or ˇ D 1:5 (barrier and digital). Hence, we are in the regime where ˇ > � and the
overall complexity is O."�2/. Furthermore, the dominant computational cost is on
the coarsest levels of simulation.

Since the coarsest levels are low-dimensional, they are well suited to the use of
quasi-Monte Carlo methods which are particularly effective in lower dimensions
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because of the existence ofO..logN/d=N / error bounds, where d is the dimension
and N is the number of QMC points. The bounds are for the numerical integration
of certain function classes on the unit hypercube, and are a consequence of the
Koksma-Hlawka inequality together with bounds on the star-discrepancy of certain
sequences of QMC points.

This has been investigated by Giles and Waterhouse [28] using a rank-1 lattice
rule to generate the quasi-random numbers, randomisation with 32 independent
offsets to obtain confidence intervals, and a standard Brownian Bridge construction
of the increments of the driving Brownian process. The numerical results show that
MLMC on its own was better than QMC on its own, but the combination of the two
was even better. The QMC treatment greatly reduced the variance per sample for the
coarsest levels, resulting in significantly reduced costs overall. In the simplest case
of a Lipschitz European payoff, the computational complexity was reduced from
O."�2/ to approximatelyO."�1:5/.

3.2.1 Digital Options

As discussed earlier, discontinuous payoffs pose a challenge to the multilevel Monte
Carlo approach, because small differences in the coarse and fine path simulations
can lead to an O.1/ difference in the payoff function. This leads to a slower decay
in the variance V`, and because the fourth moment is also much larger it leads to
more samples being required to obtain an accurate estimate for V`, which is needed
to determine the optimal number of samples N`.

This is a generic problem. Although we will discuss it here in the specific
context of a Brownian SDE and an option which is a discontinuous function of the
underlying at the final time, the methods which are discussed are equally applicable
in a range of other cases. Indeed, some of these techniques have been first explored
in the context of pathwise sensitivity analysis [12] or jump-diffusion modelling [52].

Conditional Expectation

The conditional expectation approach builds on a well-established technique for
payoff smoothing which is used for pathwise sensitivity analysis (see, for example,
pp. 399–400 in [29]).

We start by considering the fine path simulation, and make a slight change
by using the Euler-Maruyama discretisation for the final timestep, instead of the
Milstein discretisation. Conditional on the numerical approximation of the value
ST�h one timestep before the end (which in turn depends on all of the Brownian
increments up to that time) the numerical approximation for the final value ST
now has a Gaussian distribution, and for a simple digital option the conditional
expectation is known analytically.

The same treatment is used for the coarse path, except that in the final timestep,
we re-use the known value of the Brownian increment for the second last fine
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timestep, which corresponds to the first half of the final coarse timestep. This results
in the conditional distribution for the coarse path underlying at maturity matching
that of the fine path to within O.h/, for both the mean and the standard deviation
[23]. Consequently, the difference in payoff between the coarse and fine paths near
the payoff discontinuity is O.h1=2/, and so the variance is approximatelyO.h3=2/.

Splitting

The conditional expectation technique works well in 1D where there is a known
analytic value for the conditional expectation, but in multiple dimensions it may
not be known. In this case, one can use the technique of “splitting” [3]. Here
the conditional expectation is replaced by a numerical estimate, averaging over a
number of sub-samples. i.e. for each set of Brownian increments up to one fine
timestep before the end, one uses a number of samples of the final Brownian
increment to produce an average payoff. If the number of sub-samples is chosen
appropriately, the variance is the same, to leading order, without any increase in the
computational cost, again to leading order. Because of its simplicity and generality,
this is now my preferred approach. Furthermore, one can revert to using the Milstein
approximation for the final timestep.

Change of Measure

The change of measure approach is another approximation to the conditional
expectation. The fine and coarse path conditional distributions at maturity are two
very similar Gaussian distributions. Instead of following the splitting approach of
taking corresponding samples from these two distributions, we can instead take a
sample from a third Gaussian distribution (with a mean and variance perhaps equal
to the average of the other two). This leads to the introduction of a Radon-Nikodym
derivative for each path, and the difference in the payoffs from the two paths is then
due to the difference in their Radon-Nikodym derivatives.

In the specific context of digital options, this is a more complicated method to
implement, and the resulting variance is no better. However, in other contexts a
similar approach can be very effective.

3.2.2 Multi-dimensional SDEs

The discussion so far has been for scalar SDEs, but the computational benefits
of Monte Carlo methods arise in higher dimensions. For multi-dimensional SDEs
satisfying the usual commutativity condition (see, for example, p. 353 in [29]) the
Milstein discretisation requires only Brownian increments for its implementation,
and most of the analysis above carries over very naturally.
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The only difficulties are in lookback and barrier options where the classical
results for the distribution of the minimum or maximum of a one-dimensional
Brownian motion, do not extend to the joint distribution of the minima or maxima
of two correlated Brownian motions. An alternative approach may be to sub-sample
from the Brownian Bridge interpolant for those timesteps which are most likely to
give the global minimum or maximum. This may need to be combined with splitting
for the barrier option to avoid the O.1/ difference in payoffs. An alternative might
be to use adaptive time-stepping [40].

For multi-dimensional SDEs which do not satisfy the commutativity condition
the Milstein discretisation requires the simulation of Lévy areas. This is unavoidable
to achieve first order strong convergence; the classical result of Clark and Cameron
says that O.h1=2/ strong convergence is the best that can be achieved in general
using just Brownian increments [14].

However, Giles and Lukasz have developed an antithetic treatment which
achieves a very low variance despite the O.h1=2/ strong convergence [26]. The
estimator which is used is

Y` D N�1`
X

i

1
2

�
P`.!i /CP`.!ai /

� � P`�1.!i /:

Here !i represents the driving Brownian path, and !ai is an antithetic counterpart
defined by a time-reversal of the Brownian path within each coarse timestep. This
results in the Brownian increments for the antithetic fine path being swapped relative
to the original path. Lengthy analysis proves that the average of the fine and
antithetic paths is within O.h/ of the coarse path, and hence the multilevel variance
is O.h2/ for smooth payoffs, and O.h3=2/ for the standard European call option.

This treatment has been extended to handle lookback and barrier options [27].
This combines sub-sampling of the Brownian path to approximate the Lévy areas
with sufficient accuracy to achieve O.h3=4/ strong convergence, with an antithetic
treatment at the finest level of resolution to ensure that the average of the fine paths
is within O.h/ of the coarse path.

3.3 Lévy Processes

3.3.1 Jump-Diffusion Processes

With finite activity jump-diffusion processes, such as in the Merton model [44], it is
natural to simulate each individual jump using a jump-adapted discretisation [47].

If the jump rate is constant, then the jumps on the coarse and fine paths will occur
at the same time, and the extension of the multilevel method is straightforward [52].

If the jump rate is path-dependent then the situation is trickier. If there is a
known upper bound to the jump rate, then one can use Glasserman and Merener’s
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“thinning” approach [31] in which a set of candidate jump times is simulated based
on the constant upper bound, and then a subset of these are selected to be real jumps.
The problem with the multilevel extension of this is that some candidate jumps will
be selected for the coarse path but not for the fine path, or vice versa, leading to
an O.1/ difference in the paths and hence the payoffs. Xia overcomes this by using
a change of measure to select the jump times consistently for both paths, with a
Radon-Nikodym derivative being introduced in the process [52].

3.3.2 More General Processes

With infinite activity Lévy processes it is impossible to simulate each jump. One
approach is to simulate the large jumps and either neglect the small jumps or
approximate their effect by adding a Brownian diffusion term [17,18,43]. Following
this approach, the cutoff ı` for the jumps which are simulated varies with level, and
ı` ! 0 as ` ! 1 to ensure that the bias converges to zero. In the multilevel
treatment, when simulating P`�P`�1 the jumps fall into three categories. The ones
which are larger than ı`�1 get simulated in both the fine and coarse paths. The ones
which are smaller than ı` are either neglected for both paths, or approximated by
the same Brownian increment. The difficulty is in the intermediate range Œı`; ı`�1�
in which the jumps are simulated for the fine path, but neglected or approximated
for the coarse path. This is what leads to the difference in path simulations, and
hence to a non-zero value for P` � P`�1.

Alternatively, for many SDEs driven by a Lévy process it is possible to directly
simulate the increments of the Lévy process over a set of uniform timesteps [16,48],
in exactly the same way as one simulates Brownian increments. For other Lévy
processes, it may be possible in the future to simulate the increments by constructing
approximations to the inverse of the cumulative distribution function. Where this is
possible, it may be the best approach to achieve a close coupling between the coarse
and fine path simulations, and hence a low variance V`, since the increments of the
driving Lévy process for the coarse path can be obtained trivially by summing the
increments for the fine path.

4 SPDEs

After developing the MLMC method for SDE simulations, it was immediately clear
that it was equally applicable to SPDEs, and indeed the computational savings
would be greater because the cost of a single sample increases more rapidly with
grid resolution for SPDEs with higher space-time dimension.

In 2006, the author discussed this with Thomas Hou in the specific context of
elliptic SPDEs with random coefficients, and Hou’s postdoc then performed the
first unpublished MLMC computations for SPDEs. The first published work was by
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a student of Klaus Ritter in her Diploma thesis [32]; her application was to parabolic
SPDEs. Since this early work, there has been a variety of papers on elliptic [6, 13,
15, 51], parabolic [5, 25] and hyperbolic [45] SPDEs.

In almost all of this work, the construction of the multilevel estimator is quite
natural, using a geometric sequence of grids and the usual estimators for P`�P`�1.
It is the numerical analysis of the variance of the multilevel estimator which is often
very challenging.

4.1 Elliptic SPDE

The largest amount of research on multilevel for SPDEs has been for elliptic PDEs
with random coefficients. The PDE typically has the form

�r � .k.x; !/rp.x; !// D 0; x 2 D:

with Dirichlet or Neumann boundary conditions on the boundary @D. For sub-
surface flow problems, such as the modelling of groundwater flow in nuclear waste
repositories, the diffusivity (or permeability) k is often modelled as a lognormal
random field, i.e. log k is a Gaussian field with a uniform mean (which we will
take to be zero for simplicity) and a covariance function of the general form
R.x; y/ D r.x�y/. Samples of log k are provided by a Karhunen-Loève expansion:

log k.x; !/ D
1X

nD0

p
�n �n.!/ fn.x/;

where �n are the eigenvalues ofR.x; y/ in decreasing order,fn are the corresponding
eigenfunctions, and �n are independent unit Normal random variables. However, it
is more efficient to generate them using a circulant embedding technique which
enables the use of FFTs [19].

The multilevel treatment is straightforward. The spatial grid resolution is doubled
on each level. Using the Karhunen-Loève generation, the expansion is truncated
after K` terms, with K` increasing with level [51]; in unpublished work, a similar
approach has also been used with the circulant embedding generation.

In both cases, log k is generated using a row-vector of independent unit Normal
random variables �. The variables for the fine level can be partitioned into those for
the coarse level � �̀1, plus some additional variables z`, giving �` D .�`�1; z`/. It is
possible to develop an antithetic treatment similar to that used for SDEs by defining
�a` D .�`�1;�z`/. This gives a second log ka` field on the fine grid, and then the
multilevel estimator can be based on the average of the two outputs obtained on the
fine grid, minus the output obtained on the coarse grid using log k`�1. Unfortunately,
numerical experiments indicate it gives little benefit; it is mentioned here as another
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illustration of an antithetic estimator, and as a warning that it does not always yields
significant benefits.

The numerical analysis of the multilevel approach for these elliptic SPDE
applications is challenging because the diffusivity is unbounded, but Charrier,
Scheichl and Teckentrup [13] have successfully analysed it for certain output
functionals, and Teckentrup et al. have further developed the analysis for other
output functionals and more general log-normal diffusivity fields [51].

4.2 Parabolic SPDE

Giles and Reisinger [25] consider an unusual SPDE from credit default modelling,

dp D �� @p
@x

dt C 1

2

@2p

@x2
dt �p	 @p

@x
dMt; x > 0

subject to boundary condition p.0; t/D 0. Here p.x; t/ represents the probability
density function for firms being a distance x from default at time t . The diffusive
term is due to idiosyncratic factors affecting individual firms, while the stochastic
term due to the scalar Brownian motion Mt corresponds to the systemic movement
due to random market effects affecting all firms. The payoff corresponds to different
tranches of a credit derivative which depends on the integral

R1
0 p.x; t/ dx at a set

of discrete times.
A Milstein time discretisation with timestep k, and a central space discretisation

of the spatial derivatives with uniform spacing h gives the numerical approximation

pnC1j Dpnj �
�k Cp	 k Zn

2h

�
pnjC1 � pnj�1

	

C .1�	/ k C 	 k Z2
n

2h2

�
pnjC1 � 2pnj C pnj�1

	

where pnj 	 p.j h; n k/, and the Zn are standard Normal random variables so thatp
h Zn corresponds to an increment of the driving scalar Brownian motion.
The multilevel implementation is very straightforward, with k` D k`�1=2 and

h` D h`�1=4 due to numerical stability considerations which are analysed in the
paper. As with SDEs, the coupling between the coarse and fine samples comes
from summing the fine path Brownian increments in pairs to give the increments
for the coarse path. The computational cost increases by factor 8 on each level, and
numerical experiments indicate that the variance decreases by factor 8, so the overall
computational complexity to achieve an O."/ RMS error is againO."�2.log "/2/.
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5 Continuous-Time Markov Chain Simulation

Anderson and Higham have recently developed a very interesting new application
of multilevel to continuous-time Markov Chain simulation [2]. Although they
present their work in the context of stochastic chemical reactions, when species
concentrations are extremely low and so stochastic effects become significant, they
point out that the method has wide applicability in other areas.

In the simplest case of a single chemical reaction, the “tau-leaping” method
(which is essentially the Euler-Maruyama method, approximating the reaction rate
as being constant throughout the timestep) gives the discrete equation

xnC1 D xn C P.h .xn//;

where h is the timestep, .xn/ is the reaction rate (or propensity function), and P.t/
represents a unit-rate Poisson random variable over time interval t .

If this equation defines the fine path in the multilevel simulation, then the coarse
path, with double the timestep, is given by

xcnC2 D xcn C P.2h .xcn//

for even timesteps n. The question then is how to couple the coarse and fine path
simulations.

The key observation by Anderson and Higham [2] is that for any t1; t2 > 0, the
sum of two independent Poisson variatesP.t1/, P.t2/ is equivalent in distribution to
P.t1Ct2/. Based on this, the first step is to express the coarse path Poisson variate as
the sum of two Poisson variates, P.h.xcn// corresponding to the first and second
fine path timesteps. For the first of the two fine timesteps, the coarse and fine path
Poisson variates are coupled by defining two Poisson variates based on the minimum
of the two reactions rates, and the absolute difference,

P1 D P
�
hmin..xn/; .xcn//

	
; P2 D P

�
h j.xn/ � .xcn/j

	
;

and then using P1 as the Poisson variate for the path with the smaller rate, and
P1CP2 for the path with the larger rate. This elegant approach naturally gives a
small difference in the Poisson variates when the difference in rates is small, and
leads to a very effective multilevel algorithm.

In their paper [2], Anderson and Higham treat more general systems with
multiple reactions, and include an additional coupling at the finest level to an
SSA (Stochastic Simulation Algorithm) computation, so that their overall multilevel
estimator is unbiased, unlike the estimators discussed earlier for SDEs. Finally, they
give a complete numerical analysis of the variance of their multilevel algorithm.

Because stochastic chemical simulations typically involve 1000’s of reactions,
the multilevel method is particularly effective in this context, providing computa-
tional savings in excess of a factor of 100 [2].



Multilevel Monte Carlo Methods 97

6 Wasserstein Metric

In the multilevel treatment of SDEs, the Brownian or Lévy increments for the coarse
path are obtained by summing the increments for the fine path. Similarly, in the
Markov Chain treatment, the Poisson variate for the coarse timestep is defined as
the sum of two Poisson variates for fine timesteps.

This sub-division of coarse path random variable into the sum of two fine path
random variables should work in many settings. The harder step in more general
applications is likely to be the second step in the Markov Chain treatment, tightly
coupling the increments used for the fine and coarse paths over the same fine
timestep.

The general statement of this problem is the following: given two very similar
scalar probability distributions, we want to obtain samples Zf ;Zc from each in a
way which minimises EŒ jZf �Zc jp�. This corresponds precisely to the Wasserstein
metric which defines the “distance” between two probability distributions as

�
inf
�

Z �
�Zf �Zc

�
�p d�.Zf ;Zc/

�1=p
;

where the minimum is over all joint distributions with the correct marginals. In 1D,
the Wasserstein metric is equal to

�Z 1

0

ˇ
ˇ
ˇ˚�1f .u/� ˚�1c .u/

ˇ
ˇ
ˇ
p

du

�1=p
;

where ˚f and ˚c are the cumulative probability distributions for Zf and Zc [8],
and this minimum is achieved by choosing Zf D ˚�1f .U /, Zc D ˚�1c .U /, for
the same uniform Œ0; 1� random variable U . This suggests this may be a good
general technique for future multilevel applications, provided one is able to invert
the relevant cumulative distributions, possibly through generating appropriate spline
approximations.

7 Other Uses of Multilevel

7.1 Nested Simulation

The pricing of American options is one of the big challenges for Monte Carlo
methods in computational finance, and Belomestny and Schoenmakers have recently
written a very interesting paper on the use of multilevel Monte Carlo for this purpose
[7]. Their method is based on Anderson and Broadie’s dual simulation method [1]
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in which a key component at each timestep in the simulation is to estimate a
conditional expectation using a number of sub-paths.

In their multilevel treatment, Belomestny and Schoenmakers use the same
uniform timestep on all levels of the simulation. The quantity which changes
between different levels of simulation is the number of sub-samples used to estimate
the conditional expectation. To couple the coarse and fine levels, the fine level uses
N` sub-samples, and the coarse level uses N`�1 D N`=2 of them.

Related unpublished research by N. Chen for a similar multilevel treatment of
nested simulation found that the multilevel correction variance is reduced if the
payoff on the coarse level is replaced by an average of the payoffs obtained using
the first N`=2 and the second N`=2 samples. This is similar in some ways to the
antithetic approach described earlier.

In future research, Belomestny and Schoenmakers intend to also change the
number of timesteps on each level, to increase the overall computational benefits
of the multilevel approach.

7.2 Truncated Series Expansions

Building on earlier work by Broadie and Kaya [11], Glasserman and Kim have
recently developed an efficient method [30] of exactly simulating the Heston
stochastic volatility model [38]. The key to their algorithm is a method of repre-
senting the integrated volatility over a time interval Œ0; T �, conditional on the initial
and final values, v0 and vT as

�Z T

0

Vs ds

ˇ
ˇ
ˇ̌ V0 D v0; VT D vT

�
dD
1X

nD1
xn C

1X

nD1
yn C

1X

nD1
zn

where xn; yn; zn are independent random variables.
In practice, they truncate the series expansions at a level which ensures the

desired accuracy, but a more severe truncation would lead to a tradeoff between
accuracy and computational cost. This makes the algorithm a candidate for a
multilevel treatment in which the level ` computation performs the truncation at
N`, so the level ` computation would use

NX̀

nD1
xn C

NX̀

nD1
yn C

NX̀

nD1
zn

while the level `�1 computation would truncate the summations atN`�1, but would
use the same random variables xn; yn; zn for 1 � n � N`�1.

This kind of multilevel treatment has not been tested experimentally, but it seems
that it might yield some computational savings even though Glasserman and Kim
typically only need to retain ten terms in their summations through the use of a
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carefully constructed estimator for the truncated remainder. The savings may be
larger in other circumstances which require more terms to be retained for the desired
accuracy.

7.3 Mixed Precision Arithmetic

The final example of the use of multilevel is unusual, because it concerns the
computer implementation of Monte Carlo algorithms. In the latest CPUs from Intel
and AMD, each core has a vector unit which can perform eight single precision or
four double precision operations with one instruction. Also, double precision data
takes twice as much time to transfer as single precision data. Hence, single precision
computations can be twice as fast as double precision on CPUs, and the difference
can be even greater on GPUs. This raises the question of whether single precision
arithmetic is sufficient for Monte Carlo simulation.

My view is that it usually is since the finite precision rounding errors are smaller
than the other sources of error: statistical error due to Monte Carlo sampling; bias
due to SDE discretisation; model uncertainty. However, there can be significant
errors when averaging unless one uses binary tree summation [39] to perform the
summation, and in addition computing sensitivities by perturbing input parameters
(so-called “bumping”) can greatly amplify the rounding errors.

The best solution is perhaps to use double precision for the final averaging,
and pathwise sensitivity analysis or the likelihood ratio method for computing
sensitivities, but if there remains a need for the path simulation to be performed
in double precision then one could use the two-level MLMC approach in which
level 0 corresponds to single precision and level 1 corresponds to double precision,
with the same random numbers being used for both.

7.4 Multiple Outputs

In all of the discussion so far, we have been concerned with a single expectation
arising from a stochastic simulation. However, there are often times when one
wishes to estimate the expected value of multiple outputs.

Extending the analysis in Sect. 1.2, when using multilevel to estimateM different
expectations, using Nl samples on each level, the goal is to achieve an acceptably
small variance for each output

LX

`D0
N�1` V`;m � "2m; m D 1; : : : ;M;
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with the desired accuracy "m being allowed to vary from one output to another, and
to do so with the minimum computational cost which is given as usual as

LX

`D0
N` C`;

assuming that the cost of computing the output functions is negligible compared to
the cost of obtaining the stochastic sample (e.g. through an SDE path simulation).

This leads naturally to a constrained optimisation problem with a separate
Lagrange multiplier for each output. However, a much simpler idea, due to Tigran
Nagapetyan, which in practice is almost always equivalent, is to define

V` D max
m

V`;m

"2m

and make the variance constraint
LX

`D0
N�1` V` � 1:

This is sufficient to ensure that all of the individual constraints are satisfied, and
we can then use the standard approach with a single Lagrange multiplier. This multi-
output approach is currently being investigated by Nagapetyan, Ritter and the author
for the approximation of cumulative distribution functions and probability density
functions arising from stochastic simulations.

8 Conclusions

In the past 6 years, considerable progress has been achieved with the multilevel
Monte Carlo method for a wide range of applications. This review has attempted
to emphasise the conceptual simplicity of the multilevel approach; in essence it
is simply a recursive control variate strategy, using cheap approximations to some
random output quantity as a control variate for more accurate but more costly
approximations.

In practice, the challenge is to develop a tight coupling between successive
approximation levels, to minimise the variance of the difference in the output
obtained from each level. In the context of SDE and SPDE simulations, strong
convergence properties are often relied on to obtain a small variance between coarse
and fine simulations. In the specific context of a digital option associated with a
Brownian SDE, three treatments were described to effectively smooth the output:
a analytic conditional expectation, a “splitting” approximation, and a change of
measure. Similar treatments have been found to be helpful in other contexts.

Overall, multilevel methods are being used for an increasingly wide range of
applications. The biggest savings are in situations in which the coarsest approxima-
tion is very much cheaper than the finest. So far, this includes multi-dimensional



Multilevel Monte Carlo Methods 101

SPDEs, and chemical stochastic simulations with 1000’s of timesteps. In SDE
simulations which perhaps only require 32 timesteps for the desired level of
accuracy, the potential savings are naturally quite limited.

Although this is primarily a survey article, a few new ideas have been intro-
duced:

• Equation (1) giving the total computational cost required for a general unbiased
multilevel estimator is new, as is the discussion which follows it, although the
underlying analysis is not;

• Based on the 1D Wasserstein metric, it seems that inverting the relevant
cumulative distributions may be a good way to couple fine and coarse level
simulations in multilevel implementations;

• The multilevel approach could be used in applications which involve the
truncation of series expansions;

• A two-level method combining single and double precision computations might
provide useful savings, due to the lower cost of single precision arithmetic;

• A multilevel approach for situations with multiple expectations to be estimated.

Looking to the future, exciting areas for further research include:

• More use of multilevel for nested simulations;
• Further investigation of multilevel quasi-Monte Carlo methods;
• Continued research on numerical analysis, especially for SPDEs;
• Development of multilevel estimators for new applications.

For further information on multilevel Monte Carlo methods, see the webpage
http://people.maths.ox.ac.uk/gilesm/mlmc_community.html
which lists the research groups working in the area, and their main publications.
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Guaranteed Conservative Fixed Width
Confidence Intervals via Monte Carlo Sampling

Fred J. Hickernell, Lan Jiang, Yuewei Liu, and Art B. Owen

Abstract Monte Carlo methods are used to approximate the means, �, of random
variables Y , whose distributions are not known explicitly. The key idea is that the
average of a random sample, Y1; : : : ; Yn, tends to � as n tends to infinity. This
article explores how one can reliably construct a confidence interval for � with
a prescribed half-width (or error tolerance) ". Our proposed two-stage algorithm
assumes that the kurtosis of Y does not exceed some user-specified bound. An initial
independent and identically distributed (IID) sample is used to confidently estimate
the variance of Y . A Berry-Esseen inequality then makes it possible to determine
the size of the IID sample required to construct the desired confidence interval
for �. We discuss the important case where Y D f .X/ and X is a random
d -vector with probability density function 	. In this case � can be interpreted as
the integral

R
Rd
f .x/	.x/ dx, and the Monte Carlo method becomes a method for

multidimensional cubature.

1 Introduction

Monte Carlo algorithms provide a flexible way to approximate � D E.Y / when
one can generate samples of the random variable Y . For example, Y might be
the discounted payoff of some financial derivative, which depends on the future

F.J. Hickernell (�) � L. Jiang
Department of Applied Mathematics, Illinois Institute of Technology, Chicago, IL 60616, USA
e-mail: hickernell@iit.edu; ljiang14@hawk.iit.edu

Y. Liu
School of Mathematics and Statistics, Lanzhou University, Lanzhou City, Gansu, China 730000
e-mail: lyw@lzu.edu.cn

A.B. Owen
Department of Statistics, Stanford University, Stanford, CA 94305, USA
e-mail: owen@stanford.edu

J. Dick et al. (eds.), Monte Carlo and Quasi-Monte Carlo Methods 2012,
Springer Proceedings in Mathematics & Statistics 65,
DOI 10.1007/978-3-642-41095-6__5, © Springer-Verlag Berlin Heidelberg 2013

105

mailto:hickernell@iit.edu
mailto:ljiang14@hawk.iit.edu
mailto:lyw@lzu.edu.cn
mailto:owen@stanford.edu


106 F.J. Hickernell et al.

performance of assets that are described by a stochastic model. Then � is the fair
option price. The goal is to obtain a confidence interval

PrŒj� � O�j � "� � 1 � ˛; (1)

where

• � is approximated by the sample average of n independent and identically
distributed (IID) samples of Y ,

O� D O�n D 1

n

nX

iD1
Yi ; (2)

• " is the half-width of the confidence interval, which also serves as an error
tolerance, and

• ˛ is the level of uncertainty, e.g., 1% or 0:1%, which is fixed in advance.

Often the sample size, n, is fixed in advance, and the central limit theorem (CLT)
provides an approximate value for " in terms of n and

�2 D Var.Y / D EŒ.Y � �/2�; (3)

which itself may be approximated by the sample variance. The goal here is
somewhat different. We want to fix " in advance and then determine how large
the sample size must be to obtain a fixed width confidence interval of the form
(1). Moreover, we want to make sure that our confidence interval is correct, not just
approximately correct, or correct in the limit of vanishing ". In this paper we present
Algorithm 1 for obtaining such a fixed width confidence interval for the mean of a
real random variable when one is performing Monte Carlo sampling.

Before presenting the method, we outline the reasons that existing fixed width
confidence intervals are not suitable. In summary, there are two drawbacks of exist-
ing procedures. Much existing theory is asymptotic, i.e., the proposed procedure
attains the desired coverage level in the limit as " ! 0 but does not provide
coverage guarantees for fixed " > 0. We want such fixed " guarantees. A second
drawback is that the theory may make distributional assumptions that are too strong.
In Monte Carlo applications one typically does not have much information about the
underlying distribution. The form of the distribution for Y is generally not known,
Var.Y / is generally not known, and Y is not necessarily bounded. We are aiming to
derive fixed width confidence intervals that do not require such assumptions.

The width (equivalently length) of a confidence interval tends to become smaller
as the number n of sampled function values increases. In special circumstances, we
can choose n to get a confidence interval of at most the desired length and at least the
desired coverage level, 1 � ˛. For instance, if the variance, �2 D Var.Y /, is known
then an approach based on Chebychev’s inequality is available, though the actual
coverage will usually be much higher than the nominal level, meaning that much
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narrower intervals would have sufficed. Known variance in addition to a Gaussian
distribution for Y supports a fixed width confidence interval construction that is
not too conservative. The CLT provides a confidence interval that is asymptotically
correct, but our aim is for something that is definitely correct for finite sample sizes.
Finally, conservative fixed width confidence intervals for means can be constructed
for bounded random variables, by appealing to exponential inequalities such as
Hoeffding’s or Chernoff’s inequality. Unfortunately, Y is often unbounded, e.g.,
in the case where it represents the payoff of a call option.

If the relevant variance or bound is unknown, then approaches based on sequen-
tial statistics [24] may be available. In sequential methods one keeps increasing n
until the interval is narrow enough. Sequential confidence intervals require us to take
account of the stopping rule when computing the confidence level. Unfortunately,
all existing sequential methods are lacking in some aspects.

Serfling and Wackerly [21] consider sequential confidence intervals for the mean
(alternatively for the median) in parametric distributions, symmetric about their
center point. The symmetry condition is not suitable for general purpose Monte
Carlo applications.

Chow and Robbins [2] develop a sequential sampling fixed width confidence
interval procedure for the mean, but its guarantees are only asymptotic (as "! 0).
Mukhopadhyay and Datta [14] give a procedure similar to Chow and Robbins’, and
it has similar drawbacks.

Bayesian methods can support a fixed width interval containing � with 1 � ˛
posterior probability, and Bayesian methods famously do not require one to account
for stopping rules. They do however require strong distributional assumptions.

There is no assumption-free way to obtain exact confidence intervals for a mean,
as has been known since Bahadur and Savage [1]. Some kind of assumption is
needed to rule out settings where the desired quantity is the mean of a heavy tailed
random variable in which rarely seen large values dominate the mean and spoil the
estimate of the variance. The assumption we use is an upper bound on the modified
kurtosis (normalized fourth moment) of the random variable Y :

Q� D EŒ.Y � �/4�
�4

� Q�max: (4)

(The quantity Q��3 is commonly called the kurtosis.) Under such an assumption we
present a two-stage algorithm: the first stage generates a conservative upper bound
on the variance, and the second stage uses this variance bound and a Berry-Esseen
Theorem, which can be thought of as a non-asymptotic CLT, to determine how
large n must be for the sample mean to satisfy confidence interval (1). Theorem 5
demonstrates the validity of the fixed width confidence interval, and Theorem 6
demonstrates that the cost of this algorithm is reasonable. These are our main new
theoretical results.

Our procedure is a two-stage procedure rather than a fully sequential one. In this
it is similar to the method of Stein [26, 27], except that the latter requires normally
distributed data.
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One might question whether assumption (4), which involves fourth moments of
Y , is more reasonable than an assumption involving only the second moment of Y .
For example, using Chebychev’s inequality with the assumption

�2 � �2max (5)

also yields a fixed width confidence interval of the form (1). We would argue that (4)
is indeed more reasonable. First, if Y satisfies (4), then so does cY for any nonzero
c, however, the analog does not hold for (5). In fact, if � is nonzero, then (5) must
be violated by cY for c sufficiently large. Second, making Q�max a factor of 10 or
100 larger than Q� does not significantly affect the total cost (number of samples
required) of our two-stage Monte Carlo Algorithm 1 for a large range of values of
�=". However, the cost of our Monte Carlo algorithm, and indeed any Monte Carlo
algorithm based on IID sampling is proportional to �2, so overestimating �2 by a
factor of 10 or 100 or more to be safe increases the cost of the algorithm by that
factor.

An important special case of computing � D E.Y / arises in the situation where
Y D f .X/ for some function f W Rd ! R and some random vector X with
probability density function 	 W Rd ! Œ0;1/. One may then interpret the mean of
Y as the multidimensional integral

� D �.f / D E.Y / D
Z

Rd

f .x/	.x/ dx: (6)

Note that unlike the typical probability and statistics setting, where f denotes a
probability density function, in this paper f denotes an integrand, and 	 denotes the
probability density function. Given the problem of evaluating � D R

Rd
g.x/ dx,

one must choose a probability density function 	 for which one can easily generate
random vectors X , and then set f D g=	. The quantities �2 and Q� defined above
can be written in terms of weighted Lp-norms of f :

kf kp WD
�Z

Rd

jf .x/jp 	.x/ dx

� 1=p
; �2 D kf � �k22 ; Q� D kf � �k

4
4

kf � �k42
:

(7)

For a given g, the choice of 	 is not unique, and making an optimal choice belongs
to the realm of importance sampling. The assumption of bounded kurtosis, (4),
required by Algorithm 1, corresponds to an assumption that the integrand f lies
in the cone of functions

CQ�max D ff 2 L4 W kf � �.f /k4 � Q�1=4max kf � �.f /k2g: (8)

This is in contrast to a ball of functions, which would be the case if one was
satisfying a bounded variance condition, (5).
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From the perspective of numerical analysis, if 	 has independent marginals, one
may apply a product form of a univariate quadrature rule to evaluate �. However,
this consumes a geometrically increasing number of samples as d increases, and
moreover, such methods often require rather strict smoothness assumptions on f .

If f satisfies moderate smoothness conditions, then (randomized) quasi-Monte
Carlo methods, or low discrepancy sampling methods for evaluating � are more
efficient than simple Monte Carlo [3, 9, 16, 25]. Unfortunately, practical error
estimation remains a challenge for quasi-Monte Carlo methods. Heuristic methods
have been proposed, but they lack theoretical justification. One such heuristic is
used with reasonable success in the numerical examples of Sect. 4. Independent
randomizations of quasi-Monte Carlo rules of fixed sample size can be used to
estimate their errors, but they do not yet lead to guaranteed, fixed width confidence
intervals.

Computational mathematicians have also addressed the problem of constructing
automatic algorithms, i.e., given an error tolerance of ", one computes an approxi-
mation, O�, based on n evaluations of the integrand f , such that j� � O�j � ". For
example, MATLAB [28], a popular numerical package, contains quad, an adaptive
Simpson’s rule for univariate quadrature routine developed by Gander and Gautschi
[4]. Although quad and other automatic rules generally work well in practice, they
do not have any rigorous guarantees that the error tolerance is met, and it is relatively
simple to construct functions that fool them. This is discussed in Sect. 4. Since a
random algorithm, like Monte Carlo, gives a random answer, any statements about
satisfying an error criterion must be probabilistic. This leads us back to the problem
of finding a fixed width confidence interval, (1).

An outline of this paper follows. Section 2 defines key terminology and provides
certain inequalities used to construct our fixed width confidence intervals. The new
two-stage Algorithm 1 is described in Sect. 3, where rigorous guarantees of its
success and its cost are provided. Section 4 illustrates the challenges of computing
� to a guaranteed precision through several numerical examples. This paper ends
with a discussion of our results and further work to be done.

2 Background Probability and Statistics

In our Monte Carlo applications, a quantity of interest is written as an expectation:
� D E.Y /, where Y is a real valued random variable. As mentioned above,
very often Y D f .X/ where X 2 R

d is a random vector with probability
density function 	. In other settings the random quantity X might have a discrete
distribution or be infinite dimensional (e.g., a Gaussian process) or both. For Monte
Carlo estimation, we can work with the distribution of Y alone. The Monte Carlo
estimate of � is the sample mean, as given in (2), where the Yi are IID random
variables with the same distribution as Y .
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2.1 Moments

Our methods require conditions on the first four moments of Y as described here.
The variance of Y , as defined in (3), is denoted by �2, and its non-negative square
root, � , is the standard deviation of Y . Some of our expressions assume without
stating it that � > 0, and all will require � < 1. The skewness of Y is � D
EŒ.Y ��/3�=�3; and the kurtosis of Y is � D Q��3 D EŒ.Y ��/4�=�4�3 (see (4)).
The mysterious 3 in � is there to make it zero for Gaussian random variables. Also,
�; �2; �; � are related to the first four cumulants [12, Chap. 2] of the distribution of
Y , meaning that

log.EŒexp.tY /�/ D �t C �2t2

2
C ��3t3

3Š
C ��4t4

4Š
C o.t4/:

Our main results require a known upper bound for �, which then implies that � and
� are finite.

2.2 CLT Intervals

A random variable Z has the standard normal distribution, denoted by N .0; 1/, if

Pr.Z � z/ D 1p
2�

Z z

�1
exp.�t2=2/ dt DW ˚.z/:

Under the central limit theorem, the distribution of
p
n. O�n � �/=� approaches

N .0; 1/ as n ! 1, where O�n denotes the sample mean of n IID samples. As a
result

Pr
� O�n � 2:58�=

p
n � � � O�n C 2:58�=

p
n
�! 0:99 (9)

as n!1. We write the interval in (9) as O�n ˙ 2:58�=pn. Equation (9) cannot be
used when �2 is unknown, but the usual estimate

s2n D
1

n � 1
nX

iD1
.Yi � O�n/2 (10)

may be substituted, yielding the interval O�n ˙ 2:58sn=pn which also satisfies the
limit in (9) by Slutsky’s theorem [8]. For an arbitrary confidence level 1�˛ 2 .0; 1/,
we replace the constant 2:58 by z˛=2 D ˚�1.1 � ˛=2/. The width of this interval is
2z˛=2sn=

p
n, and when � is in the interval then the absolute error j� � O�nj � " WD

z˛=2sn=
p
n.
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The coverage level of the CLT interval is only asymptotic. In more detail, Hall
[6, p. 948] shows that

Pr
�j� � O�nj � 2:58s=

p
n
� D 0:99C 1

n
.AC B�2 C C�/CO

� 1
n2

	
(11)

for constants A, B , and C that depend on the desired coverage level (here 99%).
Hall’s theorem requires only that the random variable Y has sufficiently many
finite moments and is not supported solely on a lattice (such as the integers). It is
interesting to note that theO.1=n/ coverage error in (11) is better than theO.1=

p
n/

root mean squared error for the estimate O�n itself.

2.3 Standard Probability Inequalities

Here we present some well known inequalities that we will use. First, Chebychev’s
inequality ensures that a random variable (such as O�n) is seldom too far from its
mean.

Theorem 1 (Chebychev’s Inequality). [10, 6.1c, p. 52] Let Z be a random
variable with mean � and variance �2 � 0. Then for all " > 0,

PrŒjZ � �j � "� � �2

"2
:

In some settings we need a one sided inequality like Chebychev’s. We will use
this one due to Cantelli.

Theorem 2 (Cantelli’s Inequality). [10, 6.1e, p. 53] Let Z be any random
variable with mean � and finite variance �2. For any a � 0, it follows that:

PrŒZ � � � a� � �2

a2 C �2 :

Berry-Esseen type theorems govern the rate at which a CLT takes hold. We will
use the following theorem which combines recent work on both uniform and non-
uniform (x-dependent right hand side) versions.

Theorem 3 (Berry-Esseen Inequality). Let Y1; : : : ; Yn be IID random vari-
ables with mean �, variance �2 > 0, and third centered moment M3 D
E jYi � �j3 =�3 < 1. Let O�n D .Y1 C � � � C Yn/=n denote the sample mean.
Then

ˇ
ˇ̌
ˇPr

� O�� �
�=
p
n
< x


� ˚.x/

ˇ
ˇ̌
ˇ
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� �n.x;M3/ WD 1p
n

min

�
A1.M3 CA2/; A3M3

1C jxj3
�

8x 2 R;

where A1 D 0:3328 and A2 D 0:429 [23], and A3 D 18:1139 [15].

The constants in the Berry-Esseen Inequality above have been an area of active
research. We would not be surprised if there are further improvements in the near
future.

Our method requires probabilistic bounds on the sample variance, s2n. For that,
we will use some moments of the variance estimate.

Theorem 4. [13, Eq. (7.16), p. 265] Let Y1; : : : ; Yn be IID random variables with
variance �2 and modified kurtosis Q� defined in (4). Let s2n be the sample variance
as defined in (10). Then the sample variance is unbiased, E.s2n/ D �2, and its
variance is

Var.s2n/ D
�4

n

�
Q� � n � 3

n � 1
�
:

3 Two-Stage Confidence Interval

Our two-stage procedure works as follows. In the first stage, we take a sample of
independent values Y1; : : : ; Yn� from the distribution of Y . From this sample we
compute the sample variance, s2n� , according to (10) and estimate the variance of Yi
by O�2 D C2 Os2n� , where C2 > 1 is a “variance inflation factor” that will reduce the
probability that we have underestimated �2 D Var.Y /. For the second stage, we use
the estimate O�2 as if it were the true variance of Yi and use Berry-Esseen theorem to
obtain a suitable sample size, n�, for computing the sample average, O�, that satisfies
the fixed width confidence interval (1).

The next two subsections give details of these two steps that will let us bound
their error probabilities. Then we give a theorem on the method as a whole.

3.1 Conservative Variance Estimates

We need to ensure that our first stage estimate of the variance �2 is not too small.
The following result bounds the probability of such an underestimate.

Lemma 1. Let Y1; : : : ; Yn be IID random variables with variance �2 > 0 and
kurtosis �. Let s2n be the sample variance defined at (10), and let Q� D � C 3. Then

Pr

"

s2n < �
2

(

1C
s�
Q� � n � 3

n � 1
��

1 � ˛
˛n

�)#

� 1 � ˛; (12a)
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Pr

"

s2n > �
2

(

1 �
s�
Q� � n � 3

n � 1
��

1 � ˛
˛n

�)#

� 1 � ˛: (12b)

Proof. Applying Theorem 4 and choosing

a D
r

Var.s2n/
1 � ˛
˛
D �2

s�
Q� � n � 3

n � 1
��

1 � ˛
˛n

�
> 0;

it follows from Cantelli’s inequality (Theorem 2) that

Pr

"

s2n � �2 � �2
s�
Q� � n � 3

n � 1
��

1 � ˛
˛n

�#

D Pr


s2n � �2 � a

�

� Var.s2n/

a2 CVar.s2n/
D Var.s2n/

Var.s2n/
1�˛
˛
C Var.s2n/

D 1
�
1�˛
˛

�C 1 D ˛:

Then (12a) follows directly. By a similar argument, applying Cantelli’s inequality
to the expression Pr


�s2n C �2 � a
�

implies (12b). ut
Using Lemma 1 we can bound the probability that O�2 D C2s2n� overestimates �2.

Equation (12a) implies that

Pr

2

6
6
4

s2n�

1 �
r�
Q� � n��3

n��1
	 �

1�˛
˛n�

	 > �
2

3

7
7
5 � 1 � ˛:

Thus, it makes sense for us to require the modified kurtosis, Q�, to be small enough,
relative to n� , ˛, and C, in order to ensure that Pr. O�2 > �2/ � 1 � ˛. Specifically,
we require

1

1 �
r�
Q� � n��3

n��1
	 �

1�˛
˛n�

	 � C2;

or equivalently,

Q� � n� � 3
n� � 1 C

� ˛n�
1 � ˛

	�
1 � 1

C2

�2
DW Q�max.˛; n� ;C/: (13)

This condition is the explicit version of (4) mentioned in the introduction.
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3.2 Conservative Interval Widths

Here we consider how to choose the sample size n� to get the desired coverage
level from an interval with half-length at most ". We suppose here that � is known.
In practice we will use a conservative (biased high) estimate for � .

First, if the CLT held exactly and not just asymptotically, then we could use a
CLT sample size of

NCLT."; �; ˛/ D
l� z˛=2�

"

	2m

independent values of Yi in an interval like the one in (9).
Given knowledge of � , but no assurance of a Gaussian distribution for O�n, we

could instead select a sample size based on Chebychev’s inequality (Theorem 1).
Taking

NCheb."; �; ˛/ D
l �2

˛"2

m
(14)

IID observations of Y gives the confidence interval (1). Naturally NCheb � NCLT.
Finally, we could use the non-uniform Berry-Esseen inequality from Theorem 3.

This inequality requires a finite scaled third moment M3 D E jYi � �j3 =�3. If O�n
denotes a sample mean of n IID random instances of Y , then the non-uniform Berry-
Esseen inequality implies that

Pr Œj�� O�nj � "� D Pr

� O�n � �
�=
p
n
�
p
n"

�


� Pr

� O�n � �
�=
p
n
< �
p
n"

�



� 
˚.pn"=�/ ��n.
p
n"=�;M3/

�

� 
˚.�pn"=�/C�n.�
p
n"=�;M3/

�

D 1 � 2Œ˚.�pn"=�/C�n.
p
n"=�;M3/�; (15)

since�n.�x;M3/ D �n.x;M3/. The probability of making an error no greater than
" is bounded below by 1� ˛, i.e., the fixed width confidence interval (1) holds with
O� D O�n, provided n � NBE."; �; ˛;M3/, where the Berry-Esseen sample size is

NBE."; �; ˛;M3/ WD min
n
n 2 N W ˚ ��pn"=��C�n.

p
n"=�;M3/ � ˛

2

o
: (16)

To compute NBE."; �; ˛;M3/, we need to know M3. In practice, substituting an
upper bound on M3 yields an upper bound on the necessary sample size.

Note that if the �n term in (16) were absent, NBE would correspond to the CLT
sample size NCLT, and in general NBE > NCLT. It is possible that in some situations
NBE > NCheb might hold, and in such cases we could use NCheb instead of NBE.
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3.3 Algorithm and Proof of Its Success

In detail, the two-stage algorithm works as described below.

Algorithm 1 (Two Stage). The user specifies four quantities:

• An initial sample size for variance estimation, n� 2 f2; 3; : : :g,
• A variance inflation factor C2 2 .1;1/,
• An uncertainty ˛ 2 .0; 1/, and,
• An error tolerance or confidence interval half-width, " > 0.

At the first stage of the algorithm, Y1; : : : ; Yn� are sampled independently from
the same distribution as Y . Then the conservative variance estimate, O�2 D C2s2n� ,
is computed in terms of the sample variance, s2n� , defined by (10).

To prepare for the second stage of the algorithm we compute Q̨ D 1�p1 � ˛ and
then Q�max D Q�max. Q̨ ; n� ;C/ using Eq. (13). The sample size for the second stage is

n� D N�."; O�; Q̨ ; Q�3=4max/; (17)

where

N�."; �; ˛;M/ WD max
�
1;min

�
NCheb."; �; ˛/;NBE."; �; ˛;M/

��
: (18)

Recall that NCheb is defined in (14) and NBE is defined in (16).
After this preparation, the second stage is to sample Yn�C1; : : : ; Yn�Cn� indepen-

dently from the distribution of Y , and independently of Y1; : : : ; Yn� . The algorithm
then returns the sample mean,

O� D 1

n�

n�Cn�X

iDn�C1
Yi : (19)

The success of this algorithm is guaranteed in the following theorem. The main
assumption needed is an upper bound on the kurtosis.

Theorem 5. Let Y be a random variable with mean �, and either zero variance
or positive variance with modified kurtosis Q� � Q�max. Q̨ ; n� ;C/. It follows that
Algorithm 1 above yields an estimate O� given by (19) which satisfies the fixed width
confidence interval condition

Pr.j O�� �j � "/ � 1 � ˛:

Proof. If �2 D 0, then s2n� D 0, n� D 1 and O� D � with probability one. Now
consider the case of positive variance. The first stage yields a variance estimate
satisfying Pr. O�2 > �2/ � 1 � Q̨ by the argument preceding the kurtosis bound in
(13) applied with uncertainty Q̨ . The second stage yields Pr.j O� � �j � "/ � 1 � Q̨
by the Berry-Esseen result (15), so long as O� � � and M3 � Q�max. Q̨ ; n� ;C/3=4.
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The second condition holds because M3 � Q�3=4 by Jensen’s Inequality [10, 8.4.b].
Thus, in the two-stage algorithm we have

Pr .j O� � �j � "/ D E


Pr .j O� � �j � " j O�/�

� E


.1 � Q̨ /1��O�

�

� .1� Q̨ /.1 � Q̨ / D 1 � ˛: ut

Remark 1. As pointed out earlier, the guarantees in this theorem require that the
modified kurtosis of Y not exceed the specified upper bound Q�max. As it is presented,
Algorithm 1 takes as inputs, n� , C, and ˛, and uses these to compute Q�max according
to (13). The reason for doing so is that one might have a better intuition for n� , C,
and ˛. Alternatively, one may specify n� and Q�max and use (13) to compute C, or
specify C and Q�max and use (13) to compute n� . The issue of how one should choose
n� , C, and Q�max in practice is discussed further in Sect. 5.

Remark 2. In this algorithm it is possible to choose n� much smaller than n� if the
sample variance is small. As a practical matter we suggest that if one is willing to
invest n� samples to estimate the variance then one should be willing to invest at
least that many additional samples to estimate the mean. Therefore, in the numerical
examples of Sect. 4 we use

N�."; �; ˛;M/ WD max
�
n� ;min

�
NCheb."; �; ˛/;NBE."; �; ˛;M/

��
(20)

instead of (18) to determine the sample size for the sample mean. Because the
variance is typically harder to estimate accurately than the mean, one may wonder
whether n� should be chosen greater than n�. However, for Monte Carlo simulation
we only need the variance to one or two digits accuracy, whereas we typically
want to know the mean to a much higher accuracy. By the error bound following
from Chebychev’s inequality (Theorem 1), the definition of N� in (20) means that
the fixed width confidence interval constructed by Algorithm 1 also holds for any
random variables, Y , with small variance, namely, �2 � "2˛n� , even if its kurtosis
is arbitrarily large.

As mentioned in the introduction, one frequently encountered case occurs when
Y is a d -variate function of a random vector X . Then � corresponds to the
multivariate integral in (6) and Theorem 5 may be interpreted as below:

Corollary 1. Suppose that 	 W Rd ! R is a probability density function, the
integrand f W Rd ! R has finite L4 norm as defined in (7), and furthermore
f lies in the cone CQ�max defined in (8), where Q�max D Q�max. Q̨ ; n� ;C/. It follows that
Algorithm 1 yields an estimate, O�, of the multidimensional integral � defined in (6),
which satisfies the fixed width confidence interval condition

Pr.j O�� �j � "/ � 1 � ˛:
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3.4 Cost of the Algorithm

The number of function values required by the two-stage Algorithm 1 is n� C n�,
the sum of the initial sample size used to estimate the variance of Y and the
sample size used to estimate the mean of Y . Although n� is deterministic, n�
is a random variable, and so the cost of this algorithm might be best defined
probabilistically. Moreover, the only random quantity in the formula for n� in
(17) is O�2, the upper bound on variance. Clearly this depends on the unknown
population variance, �2, and we expect O�2 not to overestimate �2 by much.
Thus, the algorithm cost is defined below in terms of �2 and the error tol-
erance (interval half-width) ". An upper bound on the cost is then derived in
Theorem 6.

Let A be any random algorithm that takes as its input, a method for generating
random samples, Y1; Y2; : : : with common distribution function F having variance
�2 and modified kurtosis Q�. Additional algorithm inputs are an error tolerance,
", an uncertainty, ˛, and a maximum modified kurtosis, Q�max. The algorithm then
computes O� D A.F; "; ˛; Q�max/, an approximation to � D E.Y /, based on a total of
Ntot."; ˛; Q�max; F / samples. The probabilistic cost of the algorithm, with uncertainty
ˇ, for integrands of variance no greater than �2max and modified kurtosis no greater
than Q�max is defined as

Ntot."; ˛; ˇ; Q�max; �max/ WD sup
Q��Q�max
���max

min fN W PrŒNtot."; ˛; Q�max; F / � N� � 1 � ˇg :

Note that Q�max is an input to the algorithm, but �max is not. The cost of an arbitrary
algorithm, A may also depend on other parameters, such as n� and C in our
Algorithm 1, which are related to Q�max. However, this dependence is not shown
explicitly to keep the notation simple.

The cost of the particular two-stage Monte Carlo algorithm defined in
Algorithm 1 is

sup
Q��Q�max
���max

min
˚
N W Pr.n� CN�."; O�; Q̨ ; Q�3=4max/ � N/ � 1 � ˇ

�
:

Since n� is fixed, bounding this cost depends on boundingN�."; O�; Q̨ ; Q�3=4max/, which
depends on O� as given by Algorithm 1. Moreover, O� can be bounded above using
(12a) in Lemma 1. For Q� � Q�max,

1 � ˇ � Pr

"

s2n� < �
2

(

1C
s�
Q� � n� � 3

n� � 1
��

1� ˇ
ˇn�

�)#

� Pr

"

O�2DC2s2n� < C2�2

(

1C
s�
Q�max.n� ; Q̨ ;C/� n� � 3

n� � 1
��

1� ˇ
ˇn�

�)#
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Fig. 1 (a) The cost ratios of Nup."; 0:01; 0:01; Q�max; �/=NCLT."; �; 0:01/ for Q�max D 2; 10; and
100, with n� D 4;000 Q�max (dashed) and n� optimized (solid); (b) the optimal values of n� (solid)
and C (dashed).

D Pr

 O�2 < �2v2. Q̨ ; ˇ;C/� ;

where

v2. Q̨ ; ˇ;C/ WD C2 C �C2 � 1�
s
Q̨ .1� ˇ/
.1 � Q̨ /ˇ > 1:

Noting that N�."; �; Q̨ ; Q�3=4max/ is a non-decreasing function allows one to derive the
following upper bound on the cost of the adaptive Monte Carlo algorithm.

Theorem 6. The two-stage Monte Carlo algorithm for fixed width confidence
intervals based on IID sampling described in Algorithm 1 has a probabilistic cost
bounded above by

Ntot."; ˛; ˇ; Q�max; �max/

� Nup."; ˛; ˇ; Q�max; �max/ WD n� CN�."; �maxv. Q̨ ; ˇ;C/; Q̨ ; Q�3=4max/:

Note that the Chebychev sample size, NCheb, defined in (14), the Berry-Esseen
sample size, NBE, defined in (16), and thus N� all depend on � and " through
their ratio, �=". Thus, ignoring the initial sample used to estimate the variance,
Ntot."; ˛; ˇ; Q�max; �max/ is roughly proportional to �2max="

2, even though �max is not
a parameter of the algorithm. Algorithm 1 adaptively determines the sample size,
and thus the cost, to fit the unknown variance of Y . Random variables, Y , with small
variances will require a lower cost to estimate � with a given error tolerance than
random variables with large variances.

Figure 1a shows the ratio of the upper bound of the cost, Nup."; 0:01; 0:01; Q�max;

�/, to the ideal CLT cost, NCLT."; �; 0:01/ D d.2:58�="/2e, for a range of �="
ratios and for Q�max D 2; 10, and 100. In these graphs the formula defining Nup
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in Theorem 6 uses the alternative and somewhat costlier formula for N� in (20).
The dashed curves in Fig. 1a show these cost ratios with n� D 4;000 Q�max, which
corresponds to C 	 1:1. The solid curves denote the case where n� and C vary
with �=" to minimize Nup. Figure 1b displays the optimal values of n� (solid) and
C (dashed). In both figures, higher curves correspond to higher values of Q�max.

Here,NCLT denotes the ideal cost if one knew the variance of Y a priori and knew
that the distribution of the sample mean was close to Gaussian. The cost ratio is the
penalty for having a guaranteed fixed width confidence interval in the absence of
this knowledge about the distribution of Y . For smaller values ofNCLT, equivalently
smaller �=", this cost ratio can be rather large. However the absolute effect of this
large penalty is mitigated by the fact that the total number of samples needed is not
much. For largerNCLT, equivalently larger �=", the cost ratio approaches somewhat
less than 1:4 in the case of optimal n� and C, and somewhat less than 2 for n� D
1;000 Q�max.

The discontinuous derivatives in the curves in Fig. 1 arise from the minimum and
maximum values arising in formulas (16) and (20) for NBE and N�, respectively.
Taking the upper dashed curve in Fig. 1a as an example, for NCLT less than about
3:5�104,N� D n� . ForNCLT from about 3:5�104 to about 6�106,N� corresponds
to the second term in the minimum in the Berry-Esseen inequality, (16), i.e., the
non-uniform term. For NCLT greater than 6 � 106, N� corresponds to the first term
in the minimum in the Berry-Esseen inequality, (16), i.e., the uniform term.

The ideal case of optimizing n� and C with respect to �=" is impractical, since
� is not known in advance. Our suggestion is to choose C around 1:1, and then
choose n� as large as needed to ensure that Q�max is as large as desired. For example
with C D 1:1 and Q�max D 2; 10, and 100 we get n� D 6;593, 59;311; and 652;417
respectively.

4 Numerical Examples

4.1 Univariate Fooling Functions for Deterministic Algorithms

Several commonly used software packages have automatic algorithms for integrat-
ing functions of a single variable. These include

• quad in MATLAB [28], adaptive Simpson’s rule based on adaptsim by
Gander and Gautschi [4],

• quadgk in MATLAB [28], adaptive Gauss-Kronrod quadrature based on
quadva by Shampine [22], and

• The chebfun [5] toolbox for MATLAB [28], which approximates integrals
by integrating interpolatory Chebychev polynomial approximations to the inte-
grands.
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Fig. 2 Plots of fooling functions, f , with � D R 1
0 f .x/ dx D 1, but for which the corresponding

algorithms return values of O� D 0.

For these three automatic algorithms one can easily probe where they sample the
integrand, feed the algorithms zero values, and then construct fooling functions for
which the automatic algorithms will return a zero value for the integral. Figure 2
displays these fooling functions for the problem � D R 1

0
f .x/ dx for these three

algorithms. Each of these algorithms is asked to provide an answer with an absolute
error no greater than 10�14, but in fact the absolute error is 1 for these fooling
functions. The algorithms quad and chebfun sample only about a dozen points
before concluding that the function is zero, whereas the algorithm quadgk samples
a much larger number of points (only those between 0 and 0:01 are shown in the
plot).

4.2 Integrating a Single Hump

Accuracy and timing results have been recorded for the integration problem � DR
Œ0;1�d

f .x/ dx for a single hump test integrand

f .x/ D a0 C b0
dY

jD1

"

1C bj exp

 

� .xj � hj /
2

c2j

!#

: (21)

Here x is a d dimensional vector, and a0; b0; : : : ; bd ; c1; : : : ; cd ; h1; : : : ; hd are
parameters. Figures 3 and 4 show the results of different algorithms being used
to integrate 500 different instances of f . For each instance of f , the parameters are
chosen as follows:

• b1; : : : ; bd 2 Œ0:1; 10� with log.bj / being i.i.d. uniform,
• c1; : : : ; cd 2 Œ10�6; 1� with log.cj / being i.i.d. uniform,
• h1; : : : ; hd 2 Œ0; 1� with hj being i.i.d. uniform,
• b0 chosen in terms of the b1; : : : ; bd ; c1; : : : ; cd ; h1; : : : ; hd to make �2 D
kf � �k22 2 Œ10�2; 102�, with log.�/ being i.i.d. uniform for each instance, and

• a0 chosen in terms of the b0; : : : ; bd ; c1; : : : ; cd ; h1; : : : ; hd to make � D 1.
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Fig. 3 Execution times and errors for test function (21) for d D 1 and error tolerance " D 10�3,
and a variety of parameters giving a range of � and Q�. Those points to the left/right of the dashed
vertical line represent successes/failures of the automatic algorithms. The solid line shows that
cumulative distribution of actual errors, and the dot-dashed line shows the cumulative distribution
of execution times.

These ranges of parameters are chosen so that the algorithms being tested fail to
meet the error tolerance a significant number of times.

These 500 random constructions of f with d D 1 are integrated using quad,
quadgk, chebfun, Algorithm 1, and an automatic quasi-Monte Carlo algorithm
that uses scrambled Sobol’ sampling [3, 7, 11, 17–19]. For the Sobol’ sampling
algorithm the error is estimated by an inflation factor of 1:1 times the sample
standard deviation of 8 internal replicates of one scrambled Sobol’ sequence [20].
The sample size is increased until this error estimate decreases to no more than the
tolerance. We have not yet found simple conditions on integrands for which this
procedure is guaranteed to produce an estimate satisfying the error tolerance, and
so we do not discuss it in detail. We are however, intrigued by the fact that it does
seem to perform rather well in practice.

For all but chebfun, the specified absolute error tolerance is 
 D 0:001.
The algorithm chebfun attempts to do all calculations to near machine precision.
The observed error and execution times are plotted in Figs. 3 and 4. Whereas
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Fig. 4 Execution times and errors for test function (21) for d D 1 and error tolerance " D 10�3,
and a variety of parameters giving a range of � and Q�. Those points to the left/right of the dashed
vertical line represent successes/failures of the automatic algorithms. The solid line shows that
cumulative distribution of actual errors, and the dot-dashed line shows the cumulative distribution
of execution times. For Algorithm 1 the points labeled * are those for which the Corollary 1
guarantees the error tolerance.

chebfun uses a minimum of 23 C 1 D 9 function values, the figure labeled
“chebfun (heavy duty)” displays the results of requiring chebfun to use at least
28C1 D 257 function values. Algorithm 1 takes ˛ D 0:01, and C D 1:1. For the plot
on the left, n� D 213 D 8;192, which corresponds to Q�max D 2:24. For the heavy
duty plot on the right, n� D 218 D 262;144, which corresponds to Q�max D 40:1.
The same initial sample sizes are used for the Sobol’ sampling algorithm.

Figure 3 shows that quad and quadgk are quite fast, nearly always providing an
answer in less than 0:01 s. Unfortunately, they successfully meet the error tolerance
only about 30% of the time for quad and 50–60% of the time for quadgk. The
difficult cases are those where c1 is quite small, and these algorithms miss the sharp
peak. The performance of chebfun is similar to that of quad and quadgk. The
heavy duty version of chebfun fares somewhat better. For both of the chebfun
plots there are a significant proportion of the data that do not appear because their
errors are smaller than 10�5.
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In the plots for Algorithm 1 in Fig. 4 the alternative and somewhat costlier
formula for N� in (20) is employed. An asterisk is used to label those points
satisfying Q� � Q�max, where Q� is defined in (7). All such points fall within the
prescribed error tolerance, which is even better than the guaranteed confidence of
99%. For Algorithm 1 (heavy duty) Q�max is larger, so there are more points for
which the guarantee holds. Those points labeled with a dot, are those for which
Q� > Q�max, and so no guarantee holds. The points labeled with a diamond are those
for which Algorithm 1 attempts to exceed the cost budget that we set, i.e., it wants
to choose n� such that n� C n� > Nmax WD 109. In these cases n� is chosen as
b109 � n�c, which often is still large enough to get an answer that satisfies the error
tolerance. Algorithm 1 performs somewhat more robustly than quad, quadgk,
and chebfun, because it requires only a low degree of smoothness and takes a
fairly large minimum sample. Algorithm 1 is generally much slower than the other
algorithms because it does not assume any smoothness of the integrand. The more
important point is that Algorithm 1 has a guarantee, whereas to our knowledge, the
other routines do not.

From Fig. 4, the Sobol’ sampling algorithm is more reliable and takes less time
than Algorithm 1. This is due primarily to the fact that in dimension one, Sobol’
sampling is equivalent to stratified sampling, where the points are more evenly
spread than IID sampling.

Figure 5 repeats the simulation shown in Fig. 4 for the same test function (21), but
now with d D 2; : : : ; 8 chosen randomly and uniformly. For this case the univariate
integration algorithms are inapplicable, but the multidimensional routines can be
used. There are more cases where the Algorithm 1 tries to exceed the maximum
sample size allowed, i.e., .n� C n�/d > Nmax WD 109, but the behavior seen for
d D 1 still generally applies.

4.3 Asian Geometric Mean Call Option Pricing

The next example involves pricing an Asian geometric mean call option. Suppose
that the price of a stock S at time t follows a geometric Brownian motion with
constant interest rate, r , and constant volatility, v. One may express the stock price
in terms of the initial condition, S.0/, as

S.t/ D S.0/ expŒ.r � v2=2/t C vB.t/�; t � 0;
where B is a standard Brownian motion. The discounted payoff of the Asian
geometric mean call option with an expiry of T years, a strike price of K , and
assuming a discretization at d times is

Y D max

�
Œ
p
S.0/S.T=d/S.2T=d/ � � �S.T .d � 1/=d/pS.T /�1=d �K; 0

�
e�rT :

(22)
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Fig. 5 Execution times and errors for test function (21) for d D 2; : : : ; 8 and " D 10�3 , with the
rest of the parameters as in Fig. 4.

The fair price of this option is � D E.Y /. One of our chief reasons for choosing
this option for numerical experiments is that its price can be computed analytically,
while the numerical computation is non-trivial.

In our numerical experiments, the values of the Brownian motion at different
times required for evaluating the stock price, B.T=d/; B.2T=d/; : : : ; B.T /, are
computed via a Brownian bridge construction. This means that for one instance of
the Brownian motion we first compute B.T /, then B.T=2/, etc., using independent
Gaussian random variables X1; : : : ; Xd , suitably scaled. The Brownian bridge
accounts for more of the low frequency motion of the stock price by the Xj with
smaller j , which allows the Sobol’ sampling algorithm to do a better job.

The option price, � D E.Y /, is approximated by Algorithm 1 and the Sobol’
sampling algorithm using an error tolerance of " D 0:05, and compared to the
analytic value of �. The result of 500 replications is given in Fig. 6. Some of the
parameters are set to be fixed values, namely,

S.0/ D K D 100; T D 1; r D 0:03:
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Fig. 6 Execution times and errors for the Asian geometric mean call option for d D
1; 2; 4; 8; 16; 32 and "D 0:05.

The volatility, v, is drawn uniformly between 0:1 and 0:7. The number of time steps,
d , is chosen to be uniform over f1; 2; 4; 8; 16; 32g. The true value of � for these
parameters is between about 2:8 and 14.

For this example the true kurtosis of Y is unknown. Both Algorithm 1 and the
Sobol’ sampling algorithm compute the option price to the desired error tolerance
with high reliability. For the IID sampling Algorithm 1 and the ordinary Sobol’
sampling algorithm it can be seen that some of the errors are barely under the error
tolerance, meaning that the sample size is not chosen too conservatively. For the
heavy duty Sobol’ algorithm, the high initial sample size seems to lead to smaller
than expected errors and larger than necessary computation times.

5 Discussion

Practitioners often construct CLT-based confidence intervals with the true variance
estimated by the sample variance, perhaps multiplied by some inflation factor.
Often, this approach works, but it has no guarantee of success. The two-stage
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algorithm presented here is similar to the approach just described, but it carries
guarantees. These are derived by employing Cantelli’s inequality to ensure a reliable
variance upper bound, and by employing a Berry-Esseen inequality to ensure a large
enough sample for the sample mean.

In certain cases our procedure multiplies the computational cost by a large
factor such as 2 or 10 or even 100 compared to what one might spend based on
the CLT with a known value of � (see Fig. 1). While this seems inefficient, one
should remember that the total elapsed time may still be well below several seconds.
Furthermore, one typically does not know � in advance, and our adaptive algorithm
estimates � and then an appropriate sample size n� from the data. Our algorithmic
cost will be low when the unknown � is small and large when � is large.

Like any algorithm with guarantees, our algorithm does need to make assump-
tions about the random variable Y . We assume a known bound on the kurtosis
of Y , either specified directly or implied by the user’s choice of the sample size
for estimating the variance, n� , and the variance inflation factor, C2. This is a
philosophical choice. We prefer not to construct an algorithm that assumes a bound
on the variance of Y , because such an algorithm would not be guaranteed for cY
with jcj large enough. If our algorithm works for Y , it will also work for cY , no
matter how large jcj is.

In practice the user may not know a priori if Q� � Q�max since it is even more
difficult to estimate Q� from a sample than it is to estimate �2. Thus, the choice of
Q�max relies on the user’s best judgement. Here are a few thoughts that might help.
One might try a sample of typical problems for which one knows the answers and
use these problems to suggest an appropriate Q�max. Alternatively, one may think of
Q�max not as a parameter to be prescribed, but as a reflection of the robustness of
one’s Monte Carlo algorithm having chosen ˛, n� and C. The discussion at the end
of Sect. 3.4 provides guidance on how to choose n� and C to achieve a given Q�max in
a manner that minimizes total computational cost. Briefly, one should not skimp on
n� , but choose n� to be several thousand times Q�max and employ a C that is relatively
close to unity. Another way to look at the Theorem 5 is that, like a pathologist, it
tells you what went wrong if the two-stage adaptive algorithm fails: the kurtosis
of the random variable must have been too large. In any case, as one can see in
Fig. 1, in the limit of vanishing "=� , i.e., NCLT ! 1, the choice of Q�max makes a
negligible contribution to the total cost of the algorithm. The main determinant of
computational cost is "=� .

Bahadur and Savage [1] prove in Corollary 2 that it is impossible to construct
exact confidence intervals for the mean of random variable whose distribution lies
in a set satisfying a few assumptions. One of these assumptions is that the set of
distributions is convex. This assumption is violated by our assumption of bounded
kurtosis in Theorem 5. Thus, we are able to construct guaranteed confidence
intervals.

Our algorithm is adaptive because n� is determined from the sample variance.
Information-based complexity theory tells us that adaptive information does not
help for the integration problem for symmetric, convex sets of integrands, f , in the
worst case and probabilistic settings [29, Chap. 4, Theorem 5.2.1; Chap. 8, Corollary
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5.3.1]. Here, in Corollary 1 the cone, CQ�max , although symmetric, is not a convex set,
so it is possible for adaption to help.

There are a couple of areas that suggest themselves for further investigation. One
is relative error, i.e., a fixed width confidence interval of the form

PrŒj� � O�j � " j�j� � 1� ˛:
Here the challenge is that the right hand side of the first inequality includes the
unknown mean.

Another area for further work is to provide guarantees for automatic quasi-
Monte Carlo algorithms. Here the challenge is finding reliable formulas for error
estimation. Typical error bounds involve a semi-norm of the integrand that is
harder to compute than the original integral. For randomized quasi-Monte Carlo
an estimate of the variance of the sample mean using n samples does not tell you
much about the variance of the sample mean using a different number of samples.
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Discrepancy, Integration and Tractability

Aicke Hinrichs

Abstract The discrepancy function of a point distribution measures the deviation
from the uniform distribution. Different versions of the discrepancy function capture
this deviation with respect to different geometric objects. Via Koksma-Hlawka
inequalities the norm of the discrepancy function in a function space is intimately
connected to the worst case integration error of the quasi-Monte Carlo integration
rule determined by the point set for functions from the unit ball of a related function
space. So the a priori very geometric concept of the discrepancy function is a crucial
tool for studying numerical integration.

In this survey article we want to discuss aspects of this interplay between
discrepancy, integration and tractability questions. The main focus is on the
exposition of some more recent results as well as on identifying open problems
whose solution might advance our knowledge about this interplay of discrepancy,
integration and randomization.

Via the Koksma-Hlawka connection, the construction of point sets with small
discrepancy automatically yields good quasi-Monte Carlo rules. Here we discuss
how the explicit point sets constructed by Chen and Skriganov as low discrepancy
sets in Lp for 1 < p < 1 provide also good quasi-Monte Carlo rules in Besov
spaces of dominating mixed smoothness.

Lower bounds for norms of the discrepancy function show the limits of this
approach using function values and deterministic algorithms for the computation
of integrals. Randomized methods may perform better, especially if the dimension
of the problem is high. In this context we treat recent results on the power of
importance sampling.

The study of average discrepancies is of interest to gain insight into the behavior
of typical point sets with respect to discrepancy and integration errors. Very general
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notions of the discrepancy function are related to empirical processes, average
discrepancies then are expectations of certain norms of such empirical processes.
We explain this connection and discuss some recent results on the limit behavior of
average discrepancies as the number of points goes to infinity.

1 Introduction

For a point set P of n � 1 points in the d -dimensional unit cube Œ0; 1/d the
discrepancy functionDP is defined as

DP.x/ WD 1

n

X

z2P
1Bx .z/� vol.Bx/: (1)

Here vol.Bx/ D x1 � � �xd denotes the volume of the rectangular box Bx D Œ0; x1/�
� � � � Œ0; xd / for x D .x1; � � � ; xd / 2 Œ0; 1/d and 1Bx is the characteristic function of
the box Bx . Then the sum in the discrepancy function counts the number of points
of P contained in Bx and the discrepancy function measures the deviation of this
number from the fair number of points n vol.Bx/ which would be achieved by a
perfect (but impossible) uniform distribution of the points of P .

There are two major goals in the study of the distribution of point sets P via the
discrepancy function. The first goal is to construct point sets as uniformly distributed
as possible. The deviation from a uniform distribution is then measured by some
norm of the discrepancy function DP . Constructions of such point sets abound in
the literature, see e.g. [15, 45, 63]. Later on we mention some constructions which
are relevant for our purposes.

The second goal is to study the limits of uniformity a finite point set of fixed size
n can achieve. This is done by proving lower bounds for norms of the discrepancy
function which any point set of size n in the unit cube Œ0; 1/d has to satisfy. This line
of research started in 1945 with the paper [2] of van Aardenne-Ehrenfest. Since then,
the search for lower bounds for the discrepancy function has continued unabated.
Many of the proofs of lower bounds are inspired by the ingenious idea of Roth in
1954 [54] using orthogonal functions to pick off bits of discrepancy and add them
up by orthogonality. A recent comprehensive survey on the use of the orthogonal
function method is given in Bilyk’s paper [5].

The study of the discrepancy function is an interesting problem on its own. What
makes it even more significant is its relation to numerical integration. This brings
us to the second subject of this article. Via the Hlawka-Zaremba identity and the
Koksma-Hlawka inequality, the norm of the discrepancy function in some function
space is also the worst case error of the quasi-Monte Carlo-rule

Qn.f / D 1

n

X

z2P
f .z/
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for the integration of functions f over the unit cube Œ0; 1/d from the unit ball of
some related function space. Then limits to uniformity provide also limits to the
achievable error, and point sets with low discrepancy provide good quasi-Monte
Carlo rules. Section 2 deals with bounds for the norm of the discrepancy function
and integration errors in function spaces.

Sometimes, randomization can be used to break barriers which are inherent in
deterministic approaches like quasi-Monte Carlo rules. In this article we want to
study two aspects of randomization connected to discrepancy and integration. In
Sect. 3 we consider the average behavior of the discrepancy function with respect
to random point sets in the unit cube Œ0; 1/d , where points are chosen independent
and uniformly distributed. It is rather clear that the uniformity of the distribution
of an average point set is much worse then that of the best point set of the same
cardinality. Nevertheless, it is an interesting object to study. Moreover, and perhaps
quite surprisingly, the average point sets are rather good for high-dimensional
problems and have small L1-norm of the discrepancy function, which we as usual
call the star discrepancy. This was demonstrated in [28].

Nevertheless, finding explicit point sets which have star discrepancy as good
as a typical point set is a difficult problem. In Sect. 4 we consider an approach to
use structured point sets in moderate dimension which have the best known star
discrepancy of explicitly given sets. This approach is new and, as it stands, is rather
a proof of concept. Nevertheless, we expect that in this direction much more can be
done.

In Sect. 5 we return to the question of the complexity of integration. We review
recent results showing that tractability can be achieved via randomized algorithms
for integration in Hilbert spaces of functions. Importance sampling can be shown to
be optimal in this setting.

The purpose of this survey article is by no means a comprehensive treatment
of all aspects of discrepancy theory and numerical integration. Rather, we want
to concentrate on the explanation of some recent results on different aspects of
discrepancy theory. The choice of these aspects is entirely due to the authors
preferences. Nevertheless, we hope that this paints an interesting picture and inspires
some future work. For the latter reason, we explicitly state a number of open
problems some of which are well-known and probably difficult, others are just on
the edge of our current knowledge.

Finally, for a comprehensive introduction into the subject, we have to refer to the
monographs [12, 43, 46–48, 50, 66].

2 Discrepancy and Integration in Function Spaces

We start by recalling the duality between the norm of the discrepancy function of a
point set P D ft1; : : : ; tng � Œ0; 1/d and the integration error of the quasi-Monte
Carlo-rule
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Qn.f / D 1

n

nX

iD1
f .t i /

for a smooth function f W Œ0; 1�d ! R. For simplicity, we assume that f is identical
0 on the boundary of the cube Œ0; 1�d . Then, with

INTd .f / D
Z

Œ0;1�d
f .x/ dx;

the Hlawka-Zaremba identity from [35, 70] tells us that the integration error can be
computed as

INTd .f /�Qn.f / D .�1/dC1
Z

Œ0;1�d
DP.x/

@df .x/

@x1 : : : @xd
dx:

So, a duality pairing leads to the estimate

ˇ
ˇ
ˇINTd .f /�Qn.f /

ˇ
ˇ
ˇ � ��DP jX 0

�
�
�
�@mixf jX

�
�

where X is some suitable normed function space with dual space X 0. Here @mixf

abbreviates the mixed derivative @d f .x/

@x1:::@xd
and kg jXk is the norm of g in the normed

space X . Moreover, up to some minor technicalities,
�
�DP jX 0

�
� is the worst case

error

sup
ˇ̌
ˇINTd .f /�Qn.f /

ˇ̌
ˇ

where the supremum is taken over all such functions f with mixed derivative in the
unit ball of X . Such inequalities go under the name Koksma-Hlawka inequality and
go back to [36, 39].

For 1 � p � 1, the usual Lebesgue space of p-integrable functions on the cube
Œ0; 1�d is denoted by Lp . Then it is well known that for 1 < p < 1 there exists a
constant c1.p/ > 0 such that, for any n � 1, the discrepancy function of any point
set P in Œ0; 1/d with n points satisfies

kDP jLpk � c1.p/ n�1
�

logn
�.d�1/=2

: (2)

This lower bound was proved by Roth in [54] for p D 2 (and, therefore, for p > 2)
and extended to 1 < p < 2 by Schmidt in [59]. Constructions of point sets P in
Œ0; 1/d with n points with

kDP jLpk � c2.p/ n�1
�

logn
�.d�1/=2

where given in [11, 25] for p D 2 and d D 2, in [56] for p D 2 and d D 3, in [57]
for p D 2 and d � 4, in [55] for 2 < p <1 and d D 2 and in [7] for 2 < p <1
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and d � 2. Since the constructions for p D 2 are equally suitable for 1 < p < 2,
this solved the problem of the asymptotic behavior of the discrepancy function in
Lp for 1 < p < 1. All the above constructions for d > 2 were probabilistic, so
they just gave existence results. Explicit constructions for p D 2 where found in [8]
and for p > 2 in [60].

The boundary cases p D 1 and p D 1 turned out to be more difficult. In
dimension d D 2 the construction of van der Corput in [9, 10] and the lower bound
of Schmidt in [58] show that there exist constants c1; c2 > 0 such that the right
asymptotics is

inf
#PDn

�
�DP jL1.Œ0; 1/2/

�
� � n�1 logn:

In dimension d > 2 we only have an upper bound of order n�1 .logn/d�1 due to
Halton [24] using Hammersley points [26] and a slight improvement over the lower
bound of Roth of order n�1 .logn/.d�1/=2C�d for some small constant �d proved
only recently by Bilyk, Lacey and Vagharshakyan in [6]. So we still have what is
sometimes called the great open problem of discrepancy theory.

Problem 1. What is the right asymptotics in n of

inf
#PDn

�
�DP jL1.Œ0; 1/d /

�
�

for fixed d � 3?

For p D 1, we only have a lower bound of order n�1 .logn/1=2 due to
Halász [23] and the upper bound n�1 .logn/.d�1/=2 which already follows from the
L2-constructions above. This is fine for d D 2, but for d � 3 it again leaves an
important open problem.

Problem 2. What is the right asymptotics in n of

inf
#PDn

�
�DP jL1.Œ0; 1/d /

�
�

for fixed d � 3?

Apart from the Lp-norms, until recently there was little done for other norms.
This changed when Lacey and collaborators started to make use of the full power of
Littlewood-Paley Theory to obtain good lower bounds for the discrepancy function
in Hardy spaces, in Orlicz spaces of type L.logL/˛ and exp.L˛/. This story is
nicely explained in Bilyk’s survey [5].

In [68] and, in particular, in the book [67] Triebel promoted the study of the
discrepancy function in other function spaces such as suitable Sobolev, Besov or
Triebel-Lizorkin spaces to gain more insight into its behavior and into applications
to numerical integration. In this section, we want to discuss the recently obtained
results for discrepancy and corresponding integration errors in these spaces.
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The first main tool to prove such results are characterizations of Besov spaces of
dominating mixed smoothness via the coefficients of the expansion of the functions
in dyadic or b-adic Haar bases. Then the lower bounds can be obtained via Roth’s
original idea of using the easy to compute coefficients for Haar functions whose
support does not contain a point of the point set. Also the best known constants in
the lower bound (2) for p D 2 obtained in [32] rely on this approach. For the upper
bounds, suitable point sets like Hammersley type point sets and Chen-Skriganov
point sets can be used. With the help of known embeddings between function spaces
of different type, such results can then be transferred from Besov spaces to Triebel-
Lizorkin spaces and Sobolev spaces of dominating mixed smoothness.

2.1 Function Spaces of Dominating Mixed Smoothness
and Haar Functions

In this section we introduce the spaces SrpqB.Œ0; 1/
d / and give a characterization

in terms of Haar expansions. Spaces of dominating mixed smoothness have a long
history and a huge literature. Since we are going to recall only the relevant parts
from [67] for our purposes we refer to the references therein for pointers to surveys
and results about these spaces.

We let S .Rd / stand for the Schwartz space and S 0.Rd / for the space of
tempered distributions on R

d . For f 2 S 0.Rd /, the Fourier transform and its
inverse are denoted by Of and Lf , respectively. Let �0 2 S .R/ satisfy �0.t/ D 1

for jt j � 1 and �0.t/ D 0 for t > 3=2. Define

�`.t/ D �0
�
2�`t

� � �0
�
2�`C1t

�
for t 2 R; ` 2 N

and

�k.x/ D �k1.x1/ : : : �kd .xd / for k D .k1; : : : ; kd / 2 N
d
0 ; x D .x1; : : : ; xd / 2 R

d :

The functions �k form a (dyadic) resolution of unity. The functions .�k Of /Lare entire
analytic functions for any f 2 S 0.Rd /.

For 0 < p; q � 1 and r 2 R, the Besov space SrpqB.R
d / of dominating mixed

smoothness can now be defined as the collection of all f 2 S 0.Rd / for which the
quasi-norm

�
�f jSrpqB.Rd /

�
� D

0

@
X

k2Nd0
2r.k1C���Ckd /q

�
�.�k Of /L

ˇ
ˇLp.Rd /

�
�q
1

A

1=q

is finite, with the usual modification if q D 1. Let D.Œ0; 1/d / stand for the
collection of all complex-valued infinitely differentiable functions on R

d with
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compact support in the interior of Œ0; 1/d and let D 0.Œ0; 1/d / be its dual space of
all distributions in Œ0; 1/d . Finally, the Besov spaces SrpqB.Œ0; 1/

d / of dominating
mixed smoothness on the domain Œ0; 1�d is the collection of all distributions f 2
D 0.Œ0; 1�d /which are restrictions of some g 2 SrpqB.Rd /, with quasi-norm given by

�
�f jSrpqB.Œ0; 1/d /

�
� D inf

n �
�f jSrpqB.Rd /

�
�
ˇ
ˇ
ˇ gjŒ0;1/d D f

o
:

The spaces SrpqB.R
d / and SrpqB.Œ0; 1/

d / are quasi-Banach spaces.
Observe that in [67] function spaces are defined on domains which are open

subsets of Rd . Since discrepancy is formally better dealt with on Œ0; 1/d , we abused
notation a little.

This extrinsic definition of the Besov spaces of dominating mixed smoothness is
not of much use to us for the computation of the norm of the discrepancy function.
To facilitate explicit computations we need the following intrinsic characterization
in terms of Haar expansions. For this purpose, we first introduce the Haar system on
the interval Œ0; 1/ and the tensor Haar system on Œ0; 1/d .

A dyadic interval of length 2�j ; j 2 N0; in Œ0; 1/ is an interval of the form
I D Ij;m WD



2�jm; 2�j .m C 1/� for m D 0; 1; : : : ; 2j � 1. The left and right

half of I D Ij;m are the dyadic intervals IC D ICj;m D IjC1;2m and I� D I�j;m D
IjC1;2mC1, respectively. The Haar function hI D hj;m with support I is the function
on Œ0; 1/ which is C1 on the left half of I , �1 on the right half of I and 0 outside
of I . The L1-normalized Haar system consists of all Haar functions hj;m with
j 2 N0 andm D 0; 1; : : : ; 2j �1 together with the indicator function h�1;0 of Œ0; 1/.
Normalized in L2.Œ0; 1// we obtain the orthonormal Haar basis of L2.Œ0; 1//.

Let N�1 D f�1; 0; 1; 2; : : :g and define Dj D f0; 1; : : : ; 2j � 1g for j 2 N0 and
D�1 D f0g for j D �1. For j D .j1; : : : ; jd / 2 N

d�1 and m D .m1; : : : ; md / 2
Dj WD Dj1 � � � � � Djd , the Haar function hj;m is given as the tensor product
hj;m.x/ D hj1;m1.x1/ : : : hjd ;md .xd / for x D .x1; : : : ; xd / 2 Œ0; 1/d . We will also
call the rectangles Ij;m D Ij1;m1 � � � � � Ijd ;md dyadic boxes. The L1-normalized
tensor Haar system consists of all Haar functions hj;m with j 2 N

d�1 and m 2 Dj .
Normalized in L2.Œ0; 1/d / we obtain the orthonormal Haar basis of L2.Œ0; 1/d /.

The announced intrinsic characterization of the Besov spaces SrpqB.Œ0; 1/
d / of

dominating mixed smoothness can now be formulated as follows. For d D 2, this
is Theorem 2.41 in [67]. The characterization can be extended to dimension d > 2

more or less straightforward.

Theorem 1. Let 0 < p � 1; 0 < q � 1, (1 < q � 1 if p D 1) and
1=p � 1 < r < min.1=p; 1/. Let f 2 D 0.Œ0; 1/d /. Then f 2 SrpqB.Œ0; 1/d / if and
only if it can be represented as

f D
X

j2Nd
�1

X

m2Dj
�j;m2

maxf0;j1gC���Cmaxf0;jd ghj;m
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for some sequence .�j;m/ with

 
X

j2Nd
�1

2.j1C���Cjd /.r�1=pC1/q
� X

m2Dj
j�j;mjp

	q=p
!1=q

<1; (3)

where the convergence is unconditional in D 0.Œ0; 1/d / and in any S%pqB.Œ0; 1/d /
with % < r . This representation of f is unique with the Haar coefficients

�j;m D �j;m.f / D
Z

Œ0;1/d
f .x/hj;m.x/ dx: (4)

Moreover, the expression (3) is an equivalent quasinorm on SrpqB.Œ0; 1/
d /.

This theorem shows in particular that S02;2B.Œ0; 1/
d / D L2.Œ0; 1/

d / which
reflects the fact that, after proper normalization, the system of Haar functions is
an orthonormal basis of L2.Œ0; 1/d /.

For the application to the point sets of Chen-Skriganov type which are nets in
base b where b can be bigger than 2 a similar characterization of the Besov spaces
of dominating mixed smoothness with expansions into Haar functions in base b is
needed. We do not formally state the definitions and the characterization. This was
carried out by Markhasin in [40–42] to which we refer the interested reader.

In the next section we also want to state results for Triebel-Lizorkin and
Sobolev spaces of dominating mixed smoothness. The Triebel-Lizorkin space with
dominating mixed smoothness SrpqF.R

d / consists of all f 2 S 0.Rd / with finite
quasi-norm

�
��f jSrpqF.Rd /

�
�� D

�
�
�
��
�
�

0

@
X

k2Nd0
2r jkjq

ˇ
ˇ̌
.�k Of /L.�/

ˇ
ˇ̌q
1

A

1
q

jLp.Rd /

�
�
�
��
�
�

with the usual modification if q D 1. Here jkj D k1 C � � � C kd is the `1-norm
of k. The Triebel-Lizorkin space with dominating mixed smoothness SrpqF.Œ0; 1/

d /

consists of all f 2 D 0.Œ0; 1/d / with finite quasi-norm

�
�
�f jSrpqF.Œ0; 1/d /

�
�
� D inf

n��
�gjSrpqF.Rd /

�
�
� W g 2 SrpqF.Rd /; gjŒ0;1/d D f

o
:

The Sobolev spaces of dominating mixed smoothness can then be obtained as
special cases of Triebel-Lizorkin spaces

SrpH.Œ0; 1/
d / D Srp 2F.Œ0; 1/d /:

For this and much more information we refer to [40, 42, 67].
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2.2 Discrepancy of Hammersley and Chen-Skriganov Point
Sets

We now want to survey the known results on norms of the discrepancy function
in Besov, Triebel-Lizorkin and Sobolev spaces of dominating mixed smoothness.
First bounds for the norms of the discrepancy function in SrpqB.Œ0; 1/

d /-spaces and
the SrpqF.Œ0; 1/

d /-spaces have been established by Triebel in [67]. There were gaps
between the exponents of the lower and the upper bounds which have been closed
for certain parameter values and for d D 2 in [31]. It turned out that the lower
bounds obtained by Triebel were the right ones. The upper bounds where established
using Hammersley type point sets

n� tm
2
C tm�1

22
C : : :C t1

2m
;
s1

2
C s2

22
C : : :C sm

2m

	 ˇ
ˇ t1; : : : ; tm 2 f0; 1g

o

for some m 2 N. Here si can be chosen for each i independently as si D ti or si D
1� ti , so the set contains n D 2m points. For these sets, the Haar coefficients of the
discrepancy function could be computed quite explicitly. Then the characterization
of the Besov spaces of dominating mixed smoothness given in Theorem 1 gives
optimal estimates of the norm.

This approach was generalized to Hammersley type point sets in arbitrary base
b by Markhasin in [41] using the corresponding b-adic characterization of the
Besov spaces of dominating mixed smoothness. It was already conjectured in
[31] that the point sets which Chen and Skriganov used to give explicit examples
of sets with optimal L2- and Lp-discrepancy in [8, 60] also give the optimal
discrepancy in SrpqB.Œ0; 1/

d /. This was finally proved by Markhasin in [40, 42].
Via embedding theorems between different function spaces of dominating mixed
smoothness this also leads to matching upper and lower bounds for the discrepancy
in SrpqF.Œ0; 1/

d / and SrpH.Œ0; 1/
d /. The cases with matching upper and lower

bounds are summarized in the next theorem.

Theorem 2. (i) Let 1 � p; q � 1 and q < 1 if p D 1 and q > 1 if p D 1.
Let 0 < r < 1

p
. Then there exist constants c1; C1 > 0 such that for any integer

n � 2 we have

c1 n
r�1 .logn/

d�1
q � inf

#PDn

��
�DP jSrpqB.Œ0; 1/d /

��
� � C1 nr�1 .logn/

d�1
q :

(ii) Let 1 � p; q <1. Let 0 < r < 1
max.p;q/ . Then there exist constants c2; C2 > 0

such that for any integer n � 2 we have

c2 n
r�1 .logn/

d�1
q � inf

#PDn

�
��DP jSrpqF.Œ0; 1/d /

�
�� � C2 nr�1 .logn/

d�1
q :

(iii) Let 1 � p < 1 Let 0 � r < 1
max.p;2/ . Then there exist constants c3; C3 > 0

such that for any integer n � 2 we have
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c3 n
r�1 .logn/

d�1
2 � inf

#PDn

�
�
�DP jSrpH.Œ0; 1/d /

�
�
� � C3 nr�1 .logn/

d�1
2 :

The constants are independent of n. They depend on d; p; q; r though. The
method of proof for the upper bound is the computation of the b-adic Haar
coefficients of the discrepancy function of the Chen-Skriganov point sets together
with the b-adic characterization of Besov spaces of dominating mixed smoothness
via Haar expansions. For some upper and lower bounds for other parameter values,
where they are not yet matching, we refer the reader to [40, 42, 67].

We finally comment on the restrictions in the parameter values. The restriction
to r < 1

p
is necessary since the discrepancy has to be in the corresponding function

spaces. The restriction r � 0 in the upper bounds is necessary for the considered
point sets of Hammersley type or Chen-Skriganov type. For r < 0 they do not even
yield the right power nr�1 in the main term. So there is an interesting transition
taking place at r D 0, for r < 0 points from a hyperbolic cross become better than
nets. But for r < 0 there are still gaps between lower and upper bounds, so we
formulate this as an open problem.

Problem 3. What is the asymptotic behavior of

inf
#PDn

�
�
�DP jSrpqB.Œ0; 1/d /

�
�
�

for r < 0?

A solution to this problem could again be transferred with the known embeddings
of function spaces to the Triebel-Lizorkin and Sobolev spaces. The restriction r <

1
max.p;q/ in the case of Triebel-Lizorkin and Sobolev spaces, which is an additional
restriction for p < q, is due to the limitations of the embedding method. This leads
to the next interesting open problem.

Problem 4. What is the asymptotic behavior of

inf
#PDn

�
��DP jSrpqF.Œ0; 1/d /

�
��

for 1
max.p;q/ < r <

1
p

in the case 1 � p < q?

2.3 Integration Errors in Besov Spaces of Dominating Mixed
Smoothness

Let n be a positive integer and M.Œ0; 1/d / be some Banach space of functions
on Œ0; 1/d . Let M1

0 .Œ0; 1/
d / be the subset of the unit ball of M.Œ0; 1/d / with the

property that the extensions of all elements of M1
0 .Œ0; 1/

d / vanish whenever one of
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the coordinates of the argument is 1. The error of quadrature formulas inM.Œ0; 1/d /
with n points is

errn.M/ D inf
fx1;:::;xng
Œ0;1/d

sup
f 2M1

0 .Œ0;1/
d /

ˇ̌
ˇ
ˇ
ˇ

Z

Œ0;1/d
f .x/ dx � 1

n

nX

iD1
f .xi /

ˇ̌
ˇ
ˇ
ˇ
:

Now the already mentioned Koksma-Hlawka duality can be formulated as follows,
see [67].

Let 1 � p; q � 1 and 1
p
< r < 1. Let

1

p
C 1

p0
D 1

q
C 1

q0
D 1:

Then there exist constants c1; c2 > 0 such that, for any integer n � 2, we have

(i)

c1 inf
#PDn

�
��DP jS1�rp0q0B.Œ0; 1/

d /
�
�� � errn.S

r
pqB/ � c2 inf

#PDn
�
��DP jS1�rp0q0B.Œ0; 1/

d /
�
�� ;

(ii)

c1 inf
#PDn

�
��DP jS1�rp0q0F.Œ0; 1/

d /
�
�� � errn.S

r
pqF / � c2 inf

#PDn
�
��DP jS1�rp0q0F.Œ0; 1/

d /
�
�� :

With this duality, Theorem 2 can be translated into the next result:

Theorem 3. (i) Let 1 � p; q � 1 and q < 1 if p D 1 and q > 1 if p D 1.
Let 1

p
< r < 1. Then there exist constants c1; C1 > 0 such that, for any integer

n � 2, we have

c1
.logn/

.q�1/.d�1/
q

nr
� errn.SrpqB/ � C1

.logn/
.q�1/.d�1/

q

nr
;

(ii) Let 1 � p; q <1. Let 1
min.p;q/ < r < 1. Then there exist constants c2; C2 > 0

such that, for any integer n � 2, we have

c2
.logn/

.q�1/.d�1/
q

nr
� errn.SrpqF / � C2

.logn/
.q�1/.d�1/

q

nr
;

(iii) Let 1 � p < 1 Let 1
min.p;2/ < r � 1. Then there exist constants c3; C3 > 0

such that, for any integer n � 2, we have

c3
.logn/

.q�1/.d�1/
q

nr
� errn.SrpH/ � C3

.logn/
.q�1/.d�1/

q

nr
:
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Again, for some upper and lower bounds for other parameter values, where they
are not yet matching, we refer the reader to [40, 42, 67].

3 Average Discrepancy and Brownian Bridges

In this section we focus on the behavior of the discrepancy of a typical point set in
Œ0; 1�d . Here typical means that we take a random point set ft1; : : : ; tng � Œ0; 1/d ,
where the t i are independent random points uniformly distributed in Œ0; 1/d . While
it is rather clear that such a typical point set has much worse discrepancy than the
best possible point set, this approach was used in [28] to obtain the best known upper
bounds for the star discrepancy of point sets of moderate size n in large dimension
d . This motivated further studies of the average discrepancy. In this section we want
to present recent results on the average discrepancy based on the papers [34,64]. We
start with explaining how the average discrepancy can be considered as an empirical
process.

3.1 Average Discrepancy as an Empirical Process

For a fixed integer n, let X;X1; : : : ; Xn be independent and identically distributed
random variables defined on the same probability space with values in some
measurable space M . Assume that we are given a sufficiently small class F of
measurable real functions onM . The empirical process indexed by F is given by

˛n.f / D 1p
n

nX

iD1

�
f .Xi / � Ef .X/

�

for f 2 F .
To show the relation of the empirical process and the discrepancy function, we

want to use a rather general notion of discrepancy. To this end, let .˝d ; �d / be a
probability space. For each fixed x 2 ˝d we consider one Lebesgue-measurable
subset B.x/ � Œ0; 1/d . Furthermore, we need that the mapping .t; x/ 7! 1B.x/.t/
is also measurable. The discrepancy function of the point set P D ft1; : : : ; tng �
Œ0; 1/d at x 2 ˝d is now given as

DP.x/ D 1

n

nX

iD1
1B.x/.t i /� d .B.x//;

where d is the d -dimensional Lebesgue measure. The classical discrepancy
function of lower left corners is obtained if ˝d D Œ0; 1�d and B.x/ D Œ0; x/ for
x 2 Œ0; 1�d .
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Now let Xi D t i be independent random points uniformly distributed in Œ0; 1/d

and let F be the class of functions 1B.x/ with x 2 ˝d . Then we see that

˛n
�
1B.x/

� D pnDP.x/

for x 2 ˝d , so
p
nDP is an empirical process indexed by x 2 ˝d (more exactly,

by 1B.x/).
Although we do not pursue this path in this paper, we want to comment on

the approximation of empirical processes by Gaussian processes, in particular by
Brownian bridges. The hope is that results on such approximations can be used to
study the behavior of the discrepancy of typical sets. Although the results on the
average discrepancies discussed in the subsequent subsections are proved directly,
we expect that the connection to empirical processes can be used in further studies.

Let us return to the setting of general empirical processes as above. The Brownian
bridge process G indexed by F is the mean zero Gaussian process with the same
covariance function as the empirical process ˛n which is given as

hf; gi D cov.G.f /;G.g// D Ef .X/g.X/ � Ef .X/Eg.X/

for f; g 2 F . Under certain conditions for the class F , it can then be shown that
there exist versions of X1; : : : ; Xn and G such that

sup
f 2F
j˛n.f /�G.f /j

is very small with high probability, i.e. with high probability the corresponding paths
of the empirical process ˛n and of the Brownian bridge G stay close together. For
concrete versions of these approximation results, we refer to [3].

The connection of the general type of discrepancy function as above to empirical
processes and Brownian bridges brings up the following general question.

Problem 5. For which norms on ˝d do we have the limit relation

lim
n!1

p
nE kDPk D E kGk;

where G is the corresponding Brownian bridge to the discrepancy considered as
an empirical process? If this limit relation holds, give quantitative estimates for the
speed of convergence.

The special case of the star discrepancy might be the most interesting one. For
this discrepancy, the corresponding Brownian bridge is the standard multivariate
Brownian bridge process on Œ0; 1�d and the norm is the sup-norm.

While it is open if the answer to the problem above is positive for the Lp-
norms of the discrepancy function of lower left corners, for the p-th powers
the corresponding limit relations can be shown. This is the content of the next
subsection.
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3.2 Average Lp-Discrepancy

Heinrich, Novak, Wasilkowski and Woźniakowski show in [28] some results for the
inverse of the star-discrepancy

n�1."; d / D minfn W disc�1.n; d/ � "g;

with the minimal Lp-star discrepancy defined by

disc�p.n; d/ D inf
#PDn;P
Œ0;1/d

��DP jLp
�� :

They show that for the inverse of the star discrepancy the upper bound

n�1."; d / � Cd"�2 (5)

holds, where the constant C is not known. The proof of this upper bound uses the
empirical process approach described above together with results on the expectation
of the supremum of empirical processes. For details, we refer to [28]. Because of the
unknown constant C , this term can not be computed for explicit values of " and d .
Thus, the authors introduce two other bounds for n�1."; d / with known constants,
namely

n�1."; d / � Ckd2"�2�1=k for k D 1; 2; : : :
and

n�1."; d / D O.d"�2.logd C log "�1//:

To prove the first one, the authors use a technique which is based on the analysis of
the average Lp-star discrepancy, defined as

av�p.n; d/ D
�
E
�
�DP jLp

�
�p�1=p D

�Z

Œ0;1�nd

�
�Dft 1;:::;tngjLp

�
�p dt

�1=p
; (6)

for independent and uniformly distributed points t1; : : : ; tn 2 Œ0; 1/d . For even p
they compute an explicit expression for the average Lp-star discrepancy

av�p.n; d/p D
p�1X

rDp=2
C.r; p; d/n�r ; (7)

with known constants C.r; p; d/, which depend on Stirling numbers of the first and
second kind. Because the explicit expression for av�p.n; d/ is a sum of alternating
terms, it is hard to handle. Thus, the authors show the upper bound

av�p.n; d/ � 32=325=2Cd=pp.p C 2/�d=pn�1=2;
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with p again even. To improve this bound, Hinrichs and Novak [33] used
symmetrization. This technique yields an expression with only positive summands
for the average Lp-star discrepancy and leads to

av�p.n; d/ � 21=2Cd=pp1=2.p C 2/�d=pn�1=2; for p � 2d;
av�p.n; d/ � 23=2�d=pn�1=2; for p < 2d:

This idea of symmetrization was applied by Gnewuch [18]. He computed bounds
for the average Lp-extreme discrepancy avp.n; d/. To get this type of discrepancy
axis-parallel boxes in Œ�1; 1�d instead of boxes in Œ0; 1�d anchored in the origin are
studied. Gnewuch used symmetrization and rather simple combinatorial arguments,
to get the bounds

avp.n; d/ � 21=2C3d=pp1=2.p C 2/�d=p.p C 4/�d=pn�1=2; for p � 4d;
avp.n; d/ � 25=431=4�dn�1=2; for p < 4d:

Bounds for general p 2 Œ2;1/ can be obtained by using Hölder’s inequality (see
e.g. Gnewuch [18]).

Recently, Aistleitner proved (5) with the constant C D 100 in [1]. Furthermore,
there exists also a lower bound for the inverse of the star-discrepancy

n�1."; d / � QC
d

"
; with 0 < " < "0

which was proven by Hinrichs in [29].
The first one who conceived limit relations as discussed in the introduction to this

section was Steinerberger in [64]. Although his proof contained a gap, this could be
closed in [34]. We present the results for different discrepancies as discussed in
[34, 64]. To this end, we define the Lp-B-discrepancy as

discBp .t
1; : : : ; tn/ D

 Z

˝d

ˇ
ˇ
ˇ
ˇ
ˇ
d .B.x// � 1

n

nX

iD1
1B.x/.t i /

ˇ
ˇ
ˇ
ˇ
ˇ

p

d�d.x/

!1=p

: (8)

This definition is similar to the Lp-B-discrepancy defined by Novak and Woź-
niakowski in [48]. While they use densities, we use measures. If the measure
�d is absolutely continuous with respect to the Lebesgue measure, we obtain
the definition of Novak and Woźniakowski via the Radon-Nikodym theorem.
Furthermore, we define the average Lp-B-discrepancy by

avBp .n; d/ D
�Z

Œ0;1�nd
discBp .t

1; : : : ; tn/pdt

�1=p
: (9)
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So this is nothing but the p-th root of the expectation of the p-th power of the Lp-
norm of the discrepancy function considered above. We also mention that theL2-B-
discrepancy was generalized to a weighted geometric L2-discrepancy by Gnewuch
in [19].

The general limit result as proved by H. Weyhausen and the author in [34] is as
follows.

Theorem 4. Let p > 0; d 2 N, let further .˝d ; �d / be a probability space and
fB.x/ W x 2 ˝d g � 2Œ0;1�d the allowed sets. Then

lim
n!1

np=2avBp .n; d/
p D 2p=2

�1=2
�

�
1C p
2

�Z

˝d

h
d .B.x//

�
1�d .B.x//�

ip=2
d�d .x/:

(10)

Proof. Switching the order of integration we get

avBp .n; d/
p D

Z

Œ0;1�nd

Z

˝d

ˇ̌
ˇ
ˇ
ˇ
d .B.x// � 1

n

nX

iD1
1B.x/.t i /

ˇ̌
ˇ
ˇ
ˇ

p

d�d.x/dt

D
Z

˝d

Z

Œ0;1�nd

ˇ
ˇ
ˇ̌
ˇ
d .B.x// � 1

n

nX

iD1
1B.x/.t i /

ˇ
ˇ
ˇ̌
ˇ

p

dtd�d.x/:

Now, we take a closer look at the inner integral.
Therefore, we interpret for fixed x 2 ˝d the characteristic functions 1B.x/.t i / as

Bernoulli random variables Xi W Œ0; 1�nd ! f0; 1g with probability  D d .B.x//,
where we first assume  ¤ 0; 1. Their expected value is E.Xi / D  and their
variance is �2.Xi/ D .1 � /. Hence, the sum

Pn
iD1 Xi is binomial distributed

with expected value E
�Pn

iD1 Xi
� D n and variance �2

�Pn
iD1 Xi

� D n.1 � /.
The central limit theorem now gives for fixed x 2 ˝d with d .B.x// ¤ 0; 1

Xn;d .B.x// D
 

 � 1
n

nX

iD1
Xi

!
p
n

D��! f ./Y; (11)

with Y � N .0; 1/ and f ./ D p.1 � /. The notationXn
D��! X means that the

random variables Xn converge in distribution to the random variable X . Observe,
that (11) holds obviously for  D 1 and  D 0 too.

This is only a pointwise convergence for fixed x. Because there is no uniform
convergence given, it is not enough to integrate over x 2 ˝d to get the result.

Instead, we will use the following approach. Let � be a random variable on the
probability space .˝d ; �d /, given by

�.x/ D d .B.x//
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and independent of Y . Now Xn;� is a random variable obtained by first choosing 
according to the distribution of � and then using Xn;d .B.x//. Then

np=2avBp .n; d/
p D E jXn;�jp :

We will show the equation

lim
n!1E jXn;�jp D E jf .�/Y jp D Ef .�/p E jY jp : (12)

This finally yields the result

lim
n!1

np=2avBp .n; d/
p D EjY jp

Z

˝d

h
d .B.x//

�
1 � d .B.x//�

ip=2
d�d .x/

D 2p=2

�1=2
�

�
1C p
2

�Z

˝d

h
d .B.x//

�
1 � d .B.x//�

ip=2
d�d .x/:

It is enough to show

Xn;�
D��! f .�/Y; (13)

because avBp .n; d/
p is of order n�p=2 for even p, which is shown in [34, Lemma 1].

Hence, we have for every even p

sup
n2N

E
�jXn;�jp

� D sup
n2N

np=2 avBp .n; d/
p � sup

n2N
np=2 n�p=2c.p/ <1;

which yields (12).
Instead of (13), we will show for the characteristic functions, that

lim
n!1'Xn;� D 'f.�/Y (14)

holds pointwise. These functions are given by

'Xn;�.s/ D EeisXn;� D
Z

˝

eisXn;�dP D
Z

˝d

Et e
isX

n;d .B.x//d�d.x/ and

'f.�/Y .s/ D Eeisf .�/Y D
Z

˝

eisf .�/Y dP D
Z

˝d

Et e
isf .d .B.x///Y d�d.x/:

Now we have to show for fixed s 2 R, that

lim
n!1

Z

˝d

Et e
isX

n;d .B.x//d�d.x/ D
Z

˝d

Et e
isf .d .B.x///Y d�d.x/: (15)

The dominated convergence theorem gives us (15): the absolute value of the
integrand on the left hand side is dominated by the function g 2 L1.˝d ; �d /,
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0
0

1

1

α

x1

x2

B1

B2

Fig. 1 Lp -discrepancy anchored in ˛. Boxes B1; B2 for points x1; x2 2 ˝2 D Œ0; 1�2.

defined by g.x/ D 1 for x 2 ˝d . Furthermore, we have for fixed x and therefore
fixed  D d .B.x// the equation

lim
n!1Et e

isX
n;d .B.x// D Et e

isf ./Y

because of (11) and the fact, that the exponential function is bounded and continu-
ous.

This yields (14) and the Lévy-Cramér continuity theorem ([4], Theorem 26.3)
gives (13) and finishes the proof. ut

If we choose ˝d D Œ0; 1�d , �d D d and B.x/ D Œ0; x/ we obtain the average
Lp-star discrepancy.

Now we use Theorem 4 for different types of discrepancies. For estimates of the
obtained limits we refer to [34, 64].

Example 1 (Lp-discrepancy anchored in ˛). To get av�;˛p .n; d/, the average Lp-
discrepancy anchored in ˛, we choose

˝d D Œ0; 1�d and �d D d :
The boxes B.x/ for fixed x 2 ˝d are defined as

B.x/ D�d
iD1
h

min fxi ; ˛i g ;max fxi ; ˛i g
	
:

Figure 1 illustrates the Boxes B for different x.
These boxes have the Lebesgue measure

d .B.x// D
dY

iD1
jxi � ˛i j :
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0
0

1

1

α

x1

x2

B1

B2

Fig. 2 Quadrant Lp-discrepancy in ˛. Boxes B1; B2 for points x1; x2 2 ˝2 D Œ0; 1�2.

Theorem 4 gives

lim
n!1n

p=2av�;˛p .n; d/p

D 2p=2

�1=2
�

�
1C p
2

�Z

Œ0;1�d

"
dY

iD1
jxi � ˛i j

 

1 �
dY

iD1
jxi � ˛i j

!#p=2

dx:

If we choose ˛ D 0 we get the boxes Œ0; x/, thus the averageLp-star discrepancy
av�p.n; d/. Theorem 4 gives

lim
n!1n

p=2av�p.n; d/p D
2p=2

�1=2
�

�
1C p
2

�Z

Œ0;1�d

"
dY

iD1
xi

 

1 �
dY

iD1
xi

!#p=2

dx:

Example 2 (Quadrant Lp-discrepancy in ˛). To get av˛p.n; d/, the average quad-
rant Lp-discrepancy in ˛, we choose

˝d D Œ0; 1�d and �d D d :

The boxes B.x/ for fixed x 2 ˝d are defined as

B.x/ D�d
iD1
h
1Œ˛i ;1�.xi / � xi ; 1Œ˛i ;1�.xi /C 1Œ0;˛i /.xi / � xi

	
:

Figure 2 illustrates the Boxes B for different x.
These boxes have the Lebesgue measure

d .B.x// D
dY

iD1

�
1Œ˛i ;1�.xi /.1 � xi /C 1Œ0;˛i /.xi /xi

�
: (16)
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0
0

1

1

x1

y1

x2

y2

B1

B2

Fig. 3 Extreme Lp-discrepancy. Boxes B1; B2 for points .x1; y1/; .x2; y2/ 2 ˝2 
 Œ0; 1�2 �
Œ0; 1�2.

Theorem 4 gives

lim
n!1n

p=2av˛p.n; d/
p D 2p=2

�1=2
�

�
1C p
2

�Z

Œ0;1�d

h
d .B.x//

�
1� d .B.x//�

ip=2
dx:

with d .B.x// given by (16).

Example 3 (Extreme Lp-discrepancy). To get the average extreme Lp-discrepancy
avp.n; d/ on Œ0; 1�d we choose

˝d D
˚
x D .x1; x2/ 2 Œ0; 1�d � Œ0; 1�d W x1 � x2� � Œ0; 1�2d :

The boxes B.x/ for fixed x D .x1; x2/ 2 ˝d are defined as

B.x/ D Œx1; x2/:

Figure 3 illustrates the Boxes B for different x. The measure �d is a normalized
Lebesgue measure c2d . To get the normalization factor c, we have to compute
2d .˝d /. This yields

2d .˝d / D
Z

Œ0;1�d

Z

Œx1;1�

1dx2dx1 D
dY

iD1

 Z 1

0

Z 1

x1i

1dx2i dx1i

!

D
dY

iD1

�Z 1

0

.1 � x1i /dx1i
�
D
�
1

2

�d
:
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B B

Fig. 4 Periodic Lp -discrepancy. Boxes B for points .x; y/ 2 ˝2 D Œ0; 1�2 � Œ0; 1�2.

Hence, we get the measure

�d D 2d2d :

The boxes B.x/ for fixed x D .x1; x2/ 2 ˝d have the Lebesgue measure

d .B.x// D
dY

iD1

�
x2i � x1i

�
:

Theorem 4 yields

lim
n!1

np=2avp.n; d/p

D 2p=2

�1=2
�

�
1C p
2

�Z

Œ0;1�d

Z

Œy;1�

"
dY

iD1

�
x2i � x1i

�
 

1 �
dY

iD1

�
x2i � x1i

�
!#p=2

2ddx1dx2:

Example 4 (PeriodicLp-discrepancy). To get the average periodicLp-discrepancy
avıp.n; d/ we choose

˝d D Œ0; 1�d � Œ0; 1�d and �d D 2d :
We define the Boxes B.x/ for fixed x D .x1; x2/ 2 ˝d as

B.x/ D�d
iD1
h
x1i ; 1fx1i >x2i g C 1fx1i �x2i gx

2
i

	
[
h
0; 1fx1i >x2i gx

2
i

	
:

Figure 4 illustrates the Boxes B for different x. These boxes have the Lebesgue
measure

d .B.x// D
dY

iD1

�
1Œ0;x1i /.x

2
i /.1C x2i � x1i /C 1Œx1i ;1/.x

2
i /.x

2
i � x1i /

	
: (17)
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0
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x
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Fig. 5 Periodic ball Lp-discrepancy. Boxes B for vectors .x; r/ 2 ˝2 D Œ0; 1�2 � Œ0; 1=2�.

Theorem 4 gives

lim
n!1n

p=2avıp.n; d/p

D 2p=2

�1=2
�

�
1C p
2

�Z

Œ0;1�d

Z

Œ0;1�d

h
d .B.x//

�
1 � d .B.x//�

ip=2
dx1dx2;

with d .B.x// given by (17).

Example 5 (Periodic ballLp-discrepancy). To define the average periodic ball Lp-
discrepancy av�p.n; d/ let 0 � r1 < r2 � 1

2
and ej the j th canonical unit vector in

dimension d . We choose

˝d D Œ0; 1�d � Œr1; r2�:
The boxes B.y/ for fixed y D .x; r/ 2 ˝d are defined as

B.x; r/ D
[

J
Œd �

0

@Br

0

@x C
X

j2J
ej

1

A \ Œ0; 1�d
1

A ;

where Br.x/ is the open ball with center x and radius r . In the case p D 2; d D 2

this type of discrepancy was investigated by Gräf, Potts, and Steidel [22]. Figure 5
illustrates the Boxes B for different x and fixed r D 1=4. The measure �d is a
normalized Lebesgue measur cdC1. To get the normalization factor c, we have to
compute dC1.˝d /. This yields

dC1.˝d / D
Z

Œ0;1�d

Z r2

r1

1drdx D r2 � r1:

Hence, we get the measure

�d D 1

r2 � r1 
dC1:
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The boxes B.x; r/ for fixed .x; r/ 2 ˝d have the Lebesgue measure

d .B.x; r// D rd �d=2

� .d=2C 1/ :

Theorem 4 gives

lim
n!1n

p=2av�p.n; d/p

D 2p=2

�1=2
�

�
1C p
2

�Z

Œ0;1�d

Z r2

r1

�
rd

�d=2

� .d=2C 1/
�
1 � rd �d=2

� .d=2C 1/
�p=2

drdx:

4 Star Discrepancy of Structured Sets

Since the star discrepancy is such a useful measure for the uniformity of a point
distribution, it is desirable to compute it for a given point set. Whereas the L2-norm
of the discrepancy function can be computed efficiently via the Warnock formula or
with an algorithm developed by Heinrich and Frank, see [16,27], the computation of
the star discrepancy is NP -hard [20] and W Œ1�-hard with respect to the dimension
parameter d [17].

But for very structured sets the computation of the star discrepancy is much
easier. So, if all n points of the point set are on the diagonal of the unit cube
f.x; : : : ; x/ W x 2 Œ0; 1�g, the star-discrepancy is easily computed within time
O.n/ (provided that the points are already sorted with respect to x). Indeed, if the
coordinates of the diagonal points are 0 � x1 � � � � � xn � 1, the star discrepancy
of the set

P D f.xi ; : : : ; xi / W i D 1; : : : ; ng

is

disc�.P/ D kDP jL1k D max
1�i�nmax

�
xi � i

n
;
i � 1
n
� xdi

�
:

Of course, these point sets can not have very small discrepancy. In fact, the best
possible star discrepancy of such sets quickly approaches 1=2 as d goes to infinity.

Nevertheless, this example illustrates the point that for certain structured sets the
computation or efficient estimation of the star discrepancy might be much easier
than for generic point sets. This will be used in this section to construct point
sets in moderate dimensions with the best known star discrepancy of explicit point
sets.
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4.1 Discrepancy with Respect to a Lower Dimensional
Subspace

In this section we first analyze the effect on the discrepancy which stems from
considering only a lower dimensional subspace. We do not do this in full generality
but rather in certain cases which are relevant for our later results and constructions.
Obviously, there is much to be explored here.

So let us fix the following setting. Let k > 1 and e be fixed natural numbers,
typically k will be 2; 3; 4, and let the dimension be d D ke. Let Me be the subset

Me D fx D .x1; : : : ; xd / 2 Œ0; 1�d W xk.m�1/C1 D xk.m�1/C2 D � � � D xkm;
m D 1; 2; : : : ; eg:

This is an e-dimensional box inside Œ0; 1�d . Let � be a probability measure on Me.
We define the discrepancy function of � as

disc.x; �/ D vol.Bx/ � �.Bx \Me/ for x 2 Œ0; 1�d ;

where as before Bx D Œ0; x1/ � � � � � Œ0; xd / is the anchored rectangular box with
upper right corner x. The star discrepancy of � then is

disc�.�/ D sup
x2Œ0;1�d

jdisc.x; �/j:

Let us parametrize the points in Me by z D .z1; : : : ; ze/ 2 Œ0; 1�e in the natural
way by setting

zm D xk.m�1/C1 D xk.m�1/C2 D � � � D xkm for x D .x1; : : : ; xd / 2Me and

m D 1; 2; : : : ; e: (18)

We now describe a special probability measure �0 by its cumulative distribution
function ˚ with respect to this parametrization. This cumulative distribution
function is given by

˚.z/ D �0.Bz/ D vol.Bz/C vol.Bz/
k

2
for z 2 Œ0; 1�d :

The probability measure �0 minimizes the star discrepancy among all probability
measures on Me.

Proposition 1. The star discrepancy of the measure �0 described above is

disc�.�0/ D 1

2
k1=.1�k/.1 � k�1/:
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Proof. For x 2 Œ0; 1�d , the intersection of Bx with Me is the box of points
parametrized by Bz with

zm D minfxk.m�1/C1 D xk.m�1/C2 D � � � D xkmg for m D 1; 2; : : : ; e: (19)

Hence

disc.x; �0/ D
dY

iD1
xi �

Qe
jD1 zj CQe

jD1 zkj
2

:

It follows that

disc.x; �0/ �
eY

jD1
zj �

Qe
jD1 zj CQe

jD1 zkj
2

D
Qe
jD1 zj �Qe

jD1 zkj
2

and

disc.x; �0/ �
eY

jD1
zkj �

Qe
jD1 zj CQe

jD1 zkj
2

D �
Qe
jD1 zj �Qe

jD1 zkj
2

:

Moreover, for fixed z 2 Œ0; 1�e these bounds are attained for a certain x 2 Œ0; 1�d .
We conclude that

disc�.�0/ D sup
t2Œ0;1�

t � tk
2
D 1

2
k1=.1�k/.1 � k�1/:

This completes the proof. ut
Remark 1. Observe that we obtain for the star discrepancy of �0 for k D 2; 3; 4 the
values 0:125; 0:19245 : : : ; 0:23623 : : : , respectively. Moreover, for larger k the star
discrepancy of �0 quickly approaches 1

2
. Hence this type of approximation is only

suitable for star discrepancies which are not to small. More ingenious methods are
necessary for smaller values. Since already values for the star-discrepancy around
1
4

(see Open Problem 42 in [48]) are interesting we concentrate here on this simpler
approach.

4.2 Approximation of �0 by Point Sets

We now approximate the measure �0 in the classical discrepancy fashion with an
average of point masses. Together with the results from the preceding subsection
we obtain point sets in Me whose star discrepancy as set in Œ0; 1�d can be easily
estimated.
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We use the following construction which starts with a point set Pn in Œ0; 1�e with
cardinality n. For each z D .z1; : : : ; ze/ 2 Pn let Qz D .zk1 ; : : : ; z

k
e / 2 Œ0; 1�e and let

QPn D fz W Qz 2Png. Let P2n be the union of Pn and QPn. To be more precise, if a
point occurs in both Pn and QPn we have to take it twice.

We again identifyMe with Œ0; 1�e via the parametrization (18) and obtain a point
set with cardinality 2n in Me � Œ0; 1�d . The main result is the following theorem.

Theorem 5. The star discrepancy of the set P2n in Œ0; 1�d can be estimated as

disc�.P2n/ � disc�.�0/C disc�.Pn/ D 1

2
k1=.1�k/.1 � k�1/C disc�.Pn/:

Proof. For z 2 Œ0; 1�e we define the relative discrepancy function of a finite set
P � Œ0; 1�e with respect to �0 as

disc.z; �0;P/ D �0.Bz/ � #Bz \P

#P
:

Obviously, for x 2 Œ0; 1�d

disc.x;P2n/ � disc.x; �0/C disc.z; �0;P2n/

where z is again given by (19). Now Proposition 1 implies that to prove the theorem
it is enough to show

jdisc.z; �0;P2n/j � disc�e .Pn/: (20)

To this end we calculate

disc.z; �0;P2n/ D �0.Bz/ � #Bz \P2n

2n

D vol.Bz/C vol.Bz/
k

2
� #Bz \Pn C #Bz \ QPn

2n

D 1

2

 

vol.Bz/ � #Bz \Pn

n
C vol.Bz/

k � #Bz \ QPn

n

!

D 1

2

�
vol.Bz/� #Bz \Pn

n
C vol.BQz/� #BQz \Pn

n

�

D 1

2

�
disc.z;Pn/C disc.Qz;Pn/

�

Now (20) follows and the proof is completed. ut
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Example 6. As an example we treat the Open Problem 42 from [48] which asks to
find explicitly n points in Œ0; 1�d with star discrepancy bounded by 1=4 and

(a) n � 1;528 and d D 15
(b) n � 3;187 and d D 30
(c) n � 5;517 and d D 50.

The existence of such sets is ensured by the non-constructive upper bounds in [14].
Now Theorem 5 provides such points if we find point sets with

(a) n � 764 and disc � 0:125, d D 8 or disc � 0:0575, d D 5 or disc � 0:0136,
d D 4

(b) n � 1;593 and disc � 0:125, d D 15 or disc � 0:0575, d D 10 or disc �
0:0136, d D 8

(c) n � 2;758 and disc � 0:125, d D 25 or disc � 0:0575, d D 17 or disc �
0:0136, d D 13.

Actually, there exist 128 Sobol points for d D 8 with discrepancy 0.1202, see [21].
This already solves the problem instance .a/. It seems that there even exists a point
set in dimension d D 8 with 97 points and star discrepancy 0.1214 (De Rainville,
F.-M., Winzen, C.: Private communication).

We close this section with two general problems.

Problem 6. Can structured sets be used to find point sets of moderate size with
small star discrepancy in arbitrary dimension?

Problem 7. Can structure be used to considerably speed up the algorithms for
computing the star discrepancy?

5 Importance Sampling and Tractability of High
Dimensional Integration

In this section we return to algorithms for the integration problem with a focus on
randomized algorithms and tractability. The spaces of functions under consideration
are reproducing kernel Hilbert spaces. In the first part we describe the approach via
importance sampling which was developed in [30] and comment on its optimality
which was demonstrated in [49]. The abstract approach via change of density
results from Banach space theory does not yield explicit sampling densities. For
one important example, which is the kernel

Kd.x; y/ D
dY

jD1

�
1Cmin.xj ; yj /

�
;

we give an explicit sampling density. This result is new.
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5.1 Optimality of Importance Sampling

For a probability density function 	 on a Borel measurable set D � R
d we consider

the integration problem

INTd .f / D
Z

D

f .x/	.x/ dx; (21)

where the functions f W Dd ! R belong to some Hilbert spaceH of functions. We
consider randomized algorithms using n function evaluations of f to approximate
the integral INTd .f /. In order to have function values well defined we assume that
H is a reproducing kernel Hilbert space with kernel K W D �D ! R.

For the integration problem (21) to be well defined it is necessary that

ˇ̌
ˇ
Z

D

f .x/	.x/ dx
ˇ̌
ˇ <1 for f 2 H (22)

which implies that also

Z

D

jf .x/j	.x/ dx <1 for f 2 H;

i.e. H is a subset of L1.	/.
If the kernel is positive, this is equivalent to the requirement that the initial error

and the norm of the functional INTd

C init D
�Z

D

Z

D

K.x; y/	.x/	.y/ dxdy

�1=2
<1; (23)

is finite.
In general, (22) or does not imply thatH � L2.	/. Hence standard Monte-Carlo

approximation of the integral does not necessarily have finite error, and it is not clear
whether randomized algorithms with error of order n�1=2 exist. The main result of
this paper is that importance sampling is a possible remedy. We will need that the
embedding operator

JH W H ! L1.	/ (24)

is not only well-defined but also bounded which means that

Z

D

jf .x/j	.x/ dx � C norm kf kH for f 2 H

where C norm D kJH k is the operator norm of the embedding operator (24).
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The boundedness of JH is a consequence of the Closed Graph Theorem as
follows. Assume that a sequence .fn/ � H converges to f in H and to g in L1.	/.
Since H is a reproducing kernel Hilbert space, f is also the pointwise limit of the
sequence .fn/. Moreover, convergence in L1.	/ implies convergence in measure
with respect to the measure 	 dx. Convergence of .fn/ to g in measure now implies
that a subsequence of .fn/ converges to g almost everywhere with respect to 	 dx.
Now f and g are equal almost everywhere with respect to 	 dx, so they are equal
in L1.	/, the graph of JH is indeed closed.

Importance sampling with another probability density function ! on D means
that we write the integral (21) as

INTd .f / D
Z

D

f .x/	.x/

!.x/
!.x/ dx;

choose n random sample points x1; x2; : : : ; xn according to the probability density
! and use the Monte-Carlo algorithm

Qn.f / D 1

n

nX

iD1

f .xi /	.xi /

!.xi /
: (25)

In the case ! D 	 we obtain the standard Monte-Carlo algorithm.
The worst case error of the randomized algorithm (25) is en given by the formula

e2n D sup
kf kH�1

E jINTd .f /�Qn.f /j2 (26)

D 1

n
sup
kf kH�1

�Z

D

f .x/2	.x/2

!.x/
dx � INTd .f /

2

�
;

where the expectation is with respect to the random choice of the sample points
according to the probability density !. Now, independent of the concrete integral
INTd .f / in question, we have the estimate

en � n�1=2 C.!/;

where C.!/ is given by

C.!/ D
 

sup
kf kH�1

Z

D

f .x/2	.x/2

!.x/
dx

!1=2
:

Let

C imps D inf
!
C.!/
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where the infimum is taken over all probability densities on D. Hence C imps < 1
is a sufficient condition for importance sampling to have a worst case error of order
n�1=2.

In the paper [52] the authors use the inequality jf .t/j � pK.t; t/ for kf k � 1
to conclude that

C.!/ �
�Z

D

K.x; x/	2.x/

!.x/
dx

�1=2
: (27)

For the standard Monte-Carlo case ! D 	 one obtains the standard diagonal kernel
condition

C std WD
�Z

D

K.x; x/	.x/ dx

�1=2
<1

as a sufficient condition for a worst case error of standard Monte-Carlo of order
n�1=2.

Of course one can define !� to minimize the right side of inequality (27)

!�.x/ D
p
K.x; x/	.x/

C
(28)

and it is clear that C.!�/ <1 if the diagonal kernel condition

C sqrt D
Z

D

p
K.x; x/	.x/ dx <1:

is satisfied.
The chain of inequalities

C init � C imps � C sqrt � C std

is obvious. In [52], examples are analyzed for whichC std is infinite butC sqrt is finite.
Here we will go beyond this condition and analyze cases where C sqrt is infinite but
we still have finite C imps.

We will proceed as follows. In Sect. 5.1.1 we describe the necessary tools from
Banach space theory. In particular we need a certain amount of knowledge about p-
summing operators, the Little Grothendieck Theorem and its application to change
of density results. Since our paper seems to be the first application of this part of
Banach space theory to complexity studies of integration algorithms we go into
some detail here. In particular, we present the key steps of the proof of the required
change of density result in order to illuminate how the density ! is constructed.

Section 5.1.2 the contains the main result and its proof which shows that
importance sampling works with worst case error of the order n�1=2. In Sect. 5.1.3
we study tractability of multivariate integration problems. In Sect. 5.1.4 we present
examples which show that our approach gives new algorithms and new information
about the integration problem in the randomized setting.
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5.1.1 Change of Density

We know that C init <1 means that H is a subspace of L1.	/ and that JH W H !
L1.	/ is a bounded operator. We would like to change the density so that H is
actually a subspace ofL2. This suggests to try the change of density approach which
is used in Banach space theory to study the structure of (mainly finite dimensional)
subspaces of Lp .

Our result will be that, after an appropriate change of density, H is not only a
subspace of L2 but the corresponding embedding operator is also bounded.

We need the concept of p-summing operators. We recall here the definition and
the Pietsch Domination Theorem, which is basic in theory and application of p-
summing operators. For further information we refer the reader to the books [13,51,
65] and, for a gentle introduction, to [37].

Let 1 � p < 1. A bounded linear operator T from a Banach space X to a
Banach space Y is called p-summing if there exists a constant c � 0 such that

nX

iD1
kT xikp � cp sup

kakX0�1

nX

iD1
ja.xi /jp

for every n and every family x1; x2; : : : ; xn 2 X . Here X 0 is the dual Banach space
of linear and bounded functionals onX . In other words, a p-summing operator maps
weakly p-summable sequences in X to strongly p-summable sequences in Y . The
smallest possible constant c is the p-summing norm of T and is denoted by �p.T /.

The Pietsch Domination Theorem is the fundamental characterization of p-
summing operators. For the formulation given here, see e.g. [51, 17.3.2 and 17.3.3].

Theorem 6. The operator T W X ! Y is p-summing if and only if there exists a
constant c � 0 and a regular Borel probability measure � on the weak-�-compact
closed unit ball BX 0 of X 0 such that

kT xkp � cp
Z

BX0

ja.x/jp d�.a/

for all x 2 X .
IfX D C.M/ is the space of continuous functions on a compact Hausdorff space

M then � can be chosen as a regular Borel probability measure on M such that

kTf kp � cp
Z

M

jf .t/jp d�.t/

for all f 2 C.M/. Moreover, �p.T / is in both cases the smallest possible
constant c.

The proof of this theorem requires a Hahn-Banach type argument. Hence, in
general, the measure � is not obtained in a constructive way. However, in many
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cases such a measure can be given explicitly. The measure � is often called a Pietsch
measure for the operator T .

We now provide the change of density result that we need. In the form stated here
it is taken from W. B. Johnson and G. Schechtman [38, Proposition 1, Chap. 19]. If
X is actually a subspace of L1.˝;�/ with the norm inherited from L1.˝;�/ then
this result is due to H. Rosenthal [53, Theorem 1, implication 2) 3]. The proof in
that paper can be literally carried over to give the result as stated here. We also refer
to B. Maurey [44].

Theorem 7. Let X be a Banach space of functions in L1.˝;�/ where � is a
probability measure. Let J W X ! L1.�/ be the embedding and let C D kJ k
be its operator norm which is assumed to be finite. Additionally, assume that X has
full support, i.e. that there does not exist a measurable subset of ˝ with positive
measure such that all f 2 X equal 0 almost everywhere on this subset. If the dual
operator J 0 W L1.˝;�/ ! X 0 is q-summing for some 1 � q < 1 then there
exists a measurable function g > 0 on ˝ such that

R
˝
g d� D 1 and such that the

isometry

M W L1.˝;�/! L1.˝; g d�/ given by Mf D fg�1

maps X to a space QX D M.X/ which is contained in Lp.˝; g d�/, where p is the
dual index of q defined as 1=p C 1=q D 1. Moreover, if we equip QX with the norm
from X , i.e. if we set

kMf j QXk D kf jXk for f 2 X;

then the embedding QJ W QX ! Lp.˝; g d�/ has norm

k QJ W QX ! Lp.˝; g d�/k � �q.J 0 W L1.˝;�/! X 0/:

In particular, under the assumptions of the Theorem, we obtain for f 2 X that

� Z

˝

jf jpg1�p d�
	1=p D kfg�1jLp.g d�/k D kMf jLp.g d�/k

� �q.J 0 W L1.˝;�/! X 0/ kMf j QXk
D �q.J 0 W L1.˝;�/! X 0/ kf jXk:

5.1.2 Importance Sampling from Change of Density

Theorem 8. Let H be a Hilbert space of functions with reproducing kernel K . Let
	 be a probability density such that C init < 1 or, equivalently, the embedding
JH W H ! L1.	/ is a bounded operator. Assume that H has full support with
respect to the measure 	 dx. Then
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C imps �p �
2
kJH W H ! L1.	/k:

In particular, there exists a density function ! > 0 such that the worst case error of
importance sampling with density function ! for the integral

INTd .f / D
Z

D

f .x/	.x/ dx

is bounded by

en �
p

�
2
kJH W H ! L1.	/kn�1=2:

Remark. The restriction to densities 	 with full support is not essential. If 	 does not
have full support we may restrict 	 to the support of JH.H/ and renormalize. This
increases kJH W H ! L1.	/k but not the rate of convergence of en. This applies
also to the upcoming Theorems 9 and 10.

Proof. The Little Grothendieck Theorem, see e.g. [51, 22.4.2] tells us that the dual
operator J 0H W L1.	/! H is 2-summing with

�2.J
0
H/ �

p
�
2
kJHk:

Now the Change of Density Theorem 7 provides us with a measurable function
g > 0 such that

Z

D

g.x/	.x/ dx D 1

and
� Z

D

jf .x/j2g.x/�1	.x/ dx
	1=2 � p�

2
kJH k kf kH for f 2 H:

Letting ! D g	 we obtain ! > 0 and
R
D
! D 1 and

C.!/ D
 

sup
kf kH�1

Z

D

f 2	2

!
dx

!1=2
� p�

2
kJH k:

This completes the proof. ut
The following theorem deals with the case that the reproducing kernel is

nonnegative.

Theorem 9. Let H be a Hilbert space of functions with nonnegative reproducing
kernel K and let 	 be a probability density such that

C init D
�Z

D

Z

D

K.x; y/	.x/	.y/ dxdy

�1=2
<1:
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Assume that H has full support with respect to the measure 	 dx. Then

C imps � p�
2
C init:

In particular, there exists a density function ! > 0 such that the worst case error of
importance sampling with density function ! for the integral

INTd .f / D
Z

D

f .x/	.x/ dx

is bounded by

en �
p

�
2
C init n�1=2:

Proof. This follows immediately from Theorem 8 and the observation that for a
nonnegative kernel the embedding JH W H ! L1.	/ is always bounded with
operator norm C norm D C init. ut

5.1.3 Tractability of Multivariate Integration

Theorems 8 and 9 have immediate consequences for the tractability of multivariate
integration problems. For more details on the notion of tractability we refer to [47].

Let fKd; 	d g1dD1 be a sequence of kernels and densities defined onDd � R
d and

consider the corresponding sequence of integration problems Id from (21). Let Hd

be the corresponding sequence of Hilbert spaces. Let n."; d/ be the minimal number
of sample points necessary so that there exists a randomized algorithm with error
en � " for the integration problem Id , where the error is given by (26). Then the
multivariate weighted integration problem is called polynomially tractable for the
absolute error criterion in the randomized setting if there exist constants c; a; b � 0
such that

n."; d/ � c"�ad b for " 2 .0; 1/ and d D 1; 2; : : : :

If b D 0 then the problem is called strongly polynomially tractable for the absolute
error criterion. If we require en=C init D en=kIdk � ", the corresponding notions
are (strong) polynomial tractability for the normalized error criterion.

The following result directly follows from Theorems 8 and 9.

Theorem 10. With the above notation, let CRId D 1 for the absolute error
criterion and CRId D kIdk for the relative error criterion. If the embeddings
JHd W Hd ! L1.	d / have full support with respect to the measures 	d dx,
and kJHd k=CRId is uniformly bounded then the multivariate weighted integration
problem is strongly polynomially tractable in the randomized setting with exponent
a D 2. This is in particular the case if all the kernels Kd are nonnegative.
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If the embeddings JHd W Hd ! L1.	d / have full support with respect to the
measures 	d dx, and the norms satisfy an estimate

kJHd k
CRId

� cdˇ for d D 1; 2; : : : :

for some constants c; ˇ � 0, then the multivariate weighted integration problem is
polynomially tractable in the randomized setting with exponents a D 2 and b D 2ˇ.

We finally comment on the optimality of the exponent of tractability a D 2.
Assume that we have that Kd is an integrable nonnegative kernel which is the d -
fold tensor product of a one-dimensional decomposable kernel K1. For the notion
of decomposability we refer to [48, Chap. 11]. Then we obtain for the normalized
error criterion that

n."; d/ � �

2
"�2 for 0 < " < 1; d 2 N:

Novak and Woźniakowski showed in [49] that

n."; d/ � 1

8
"�2 for 0 < " < 1; d � 2 ln "�1 � ln 2

ln ˛�1
;

where ˛ < 1 depends on the decomposable kernelK1. These results are also treated
in detail in [50, Chap. 23]

5.1.4 Examples

The first example which illustrates the difference between standard Monte-Carlo,
the algorithm from [52] and the results of Sect. 5.1.2 is artificially constructed to
show the main points clearly. It is the same example that is used in [52] to point out
the difference between the conditions C init <1 and C sqrt <1.

The example is built onD D Œ0;1/ with the kernel

K.x; y/ D
1X

jD1
a2j 1j .x/ 1j .y/;

where 1j stands for the indicator function of the interval Œj � 1; j /. Moreover, the
weight 	 is given by

	.x/ D
1X

jD1
rj 1j .x/

for some rj � 0 with
P

j rj D 1. The functions aj 1j are an orthonormal basis
of H .
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In this case,

C init D
� 1X

jD1
a2j r

2
j

	1=2
;

so the problem is well defined whenever .aj rj / 2 `2.
Since the kernel is nonnegative, Theorem 4 applies. However, it is easy to directly

construct a weight ! such that

C.!/ D C imps D C init D
� 1X

jD1
a2j r

2
j

	1=2
:

Indeed, we can choose

!.x/ D �C init��2
1X

jD1
a2j r

2
j 1j .x/:

Moreover,

C sqrt D
Z 1

0

p
K.x; x/	.x/ dx D

1X

jD1
jaj jrj ;

hence C sqrt <1 is satisfied iff .aj rj / 2 `1. Finally,

C std D
�Z 1

0

K.x; x/	.x/ dx

�1=2
D
0

@
1X

jD1
a2j rj

1

A

1=2

;

hence C std <1 is satisfied iff .a2j rj / 2 `1.
It is also worth to observe that H is a subspace of L2.	/ (and the embedding is

bounded) iff .a2j rj / 2 `1. So standard Monte-Carlo in this case still has error of

order n�1=2 even though C std and C sqrt might be infinite.
The second example uses the kernelK.x; y/ D minfx; yg onD D Œ0;1/ which

is the covariance kernel of the Wiener measure. In this case, the Hilbert space H
obtained from the reproducing kernel K is the space of all absolutely continuous
functions f W Œ0;1/! R which satisfy f 0 2 L2Œ0;1/ and f .0/ D 0, with norm

kf k2H D
Z 1

0

f 0.x/2 dx <1:

We obtain

C init D �
2
R1
0
x	.x/

R1
x
	.y/ dy dx

�1=2

C sqrt D �R1
0

p
x	.x/dx

�1=2

C std D R1
0
x	.x/dx:
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The kernel is obviously nonnegative and H has full support, so Theorem 9 applies
and C imps � p�=2C init.

Let us first consider a polynomial weight of the form 	.x/ D c˛ minf1; x˛g for
˛ < �1, where c˛ is chosen so that 	 is a probability density. Then

C init <1” R1
1
x2C2˛ dx <1 ” ˛ < �3=2

C sqrt <1” R1
1
x1=2C˛ dx <1” ˛ < �3=2

C std <1 ” R1
1 x1C˛ dx <1 ” ˛ < �2:

So there is no difference between the conditions C init < 1 and C sqrt < 1 in this
case, but C std <1 is more restrictive.

This example is also interesting since for ˛ D �2 we already have infinite C std

but, nevertheless, H is still continuously embedded in L2.	/ which means that
standard Monte-Carlo still has worst case error of order n�1=2. Indeed, if we set
g.x/ D f 0.x/ for f 2 H , then

f .x/

x
D 1

x

Z x

0

g.y/ dy:

Then it follows from Hardy’s inequality that f 0 D g 2 L2.0;1/ implies f .x/=x 2
L2.0;1/ and there exists a constant C > 0 such that

Z 1

0

f .x/2

x2
dx � C

Z 1

0

f 0.x/2 dx D kf k2H

which is what we claimed. Observe also that H is not a subset of L2.	/ if ˛ > �2,
so standard Monte-Carlo does not have finite error.

Now let us look more closely at the borderline case ˛ D �3=2. We consider a
weight of the form 	.x/ D cˇ minf1; x�3=2.log.1C x//ˇg for ˇ 2 R, where cˇ is
now chosen so that 	 is a probability density. In this case we obtain that C std D 1
and

C init <1” R1
1 x�1.log.1C x//2ˇ dx <1” ˇ < �1=2

C sqrt <1” R1
1
x�1.log.1C x//ˇ dx <1 ” ˇ < �1:

So in this case the difference between C init <1 and C sqrt <1 is again visible.
The next two examples show the application of the tractability result to uniform

integration on weighted Sobolev spaces. That is, we takeDd D Œ0; 1�d and 	d .x/ D
1. Both examples were considered in [62] and in [69].

In both examples, the d -dimensional kernel

Kd.x; t/ D
dY

jD1
K�j .xj ; tj / for x; t 2 Œ0; 1�d
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is a tensor product of one-dimensional weighted kernels K� for some � � 0 with

K�.x; t/ D 1C � min.x; t/ for x; t 2 Œ0; 1� (29)

in the first case and

K�.x; t/ D 1C �.min.x; t/ � xt/ for x; t 2 Œ0; 1� (30)

in the second case. The Hilbert spaces Hd are tensor products Hd D ˝djD1H�j

of the one-dimensional Hilbert spaces H� consisting of absolutely continuous
functions on Œ0; 1� whose first derivatives belong to L2Œ0; 1� with norm

kf k2H� D jf .0/j2 C 1

�

Z 1

0

jf 0.x/j2 dx:

In the first case (29), which is called the non-periodic case, there is no further
restriction on the functions f . In the second case (30), the periodic case, the
functions f have the additional restriction f .0/ D f .1/.

It is known that in both the non-periodic and the periodic case, the multivariate
integration problem with the normalized error criterion is strongly polynomially
tractable in the deterministic setting iff

P
�j < 1 [61], and the standard Monte-

Carlo algorithm is strongly polynomial iff
P
�2j <1 [62]. It is shown in [69] that

importance sampling with the weight !� from (28) provides a strongly polynomial
algorithm for the periodic case iff

P
�3j < 1. Now Theorem 10 shows that the

problem is strongly polynomially tractable (with importance sampling) without any
condition on the weights �j in both the periodic and the non-periodic case.

5.2 Explicit Importance Sampling Densities: Sampling
with the Representer

We further study the integration problem

INTd .f / D
Z

Dd

f .x/	d .x/ dx

for functions f W Dd ! R from a reproducing kernel Hilbert spaceHd of d -variate
functions. Here Dd � R

d is Borel measurable and 	d is a probability density. The
reproducing kernel is Kd W Dd �Dd ! R of Hd is assumed to be positive.

The setting is the randomized setting and we want to find explicit importance
sampling algorithms. That is, our algorithms have the form

Qn.f / D 1

n

nX

kD1

	d .xk/

!d .xk/
f .xk/
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where the x1; : : : ; xn are iid sampled according to the importance sampling den-
sity !d .

Our problem is well defined if Hd � L1.	d / or, equivalently, the embedding
Jd W Hd ! L1.	d / is a bounded operator. The initial error is the norm of the
functional INTd . In the case of a nonnegative kernel, we have

kINTdk D kJd W Hd ! L1.	d /k D
�Z

D

Z

D

Kd.x; y/	d .x/	d .y/ dxdy

�1=2
:

Now Theorem 8 shows that there exists a probability density !d such that

en �
q

�
2
kINTdk 1p

n
:

The proof is nonconstructive. It is desirable to have an explicit sampling density !d
at least for some important cases of integration problems where the standard Monte
Carlo approach with !d D 1 does not work.

We provide such a density for the following example. The domain of integration
is the unit cube Dd D Œ0; 1�d . We consider uniform integration, so the integration
density is 	d D 1: Kd is a tensor product kernel of the form

Kd.x; y/ D
dY

jD1

�
1Cmin.xj ; yj /

�
:

Then Hd is the Hilbert space tensor product of d copies of H1 where H1 consists
of all absolutely continuous functions f on Œ0; 1� with finite norm kf kH1 which is
the Hilbert space norm induced by the scalar product

hf; giH1 D f .0/g.0/C
Z 1

0

f 0.x/g0.x/ dx:

Since the integration problem INTd is also a tensor product of d one-dimensional
integration problems

INT1.f / D
Z 1

0

f .x/ dx

the Riesz representer hd of the linear functional INTd is also the tensor product of
the one-dimensional representer h1, which can be computed as

h1.x/ D 1C x � x
2

2
:
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This representer is a positive function. We have

kINTdk D khdkHd D
�
4

3

�d=2
:

Normalizing hd yields a probability density

!d D hd

khdkL1
D hd

khdk2Hd
:

The main result in this section is the following theorem.

Theorem 11. Let Hd , 	d and Qn be as above. Then en � kINTdkp
n
:

Proof. We have to show that the L2.!d /-norm of the function f=!d is bounded by
kINTdk kf kHd for any f 2 Hd , that is

Z

Œ0;1�d

f .x/2

!d .x/
dx �

�
4

3

�d
kf k2Hd :

Since everything is a tensor product, it is enough to prove the one-dimensional
version

Z 1

0

f .x/2

!1.x/
dx � 4

3

�
f .0/2 C

Z 1

0

f 0.x/2 dx

�

for every absolutely continuous function f on Œ0; 1� with square integrable deriva-
tive. Using the definition of !1, this is equivalent to the Sobolev type inequality

Z 1

0

f .x/2

1C x � x2=2 dx � f .0/2 C
Z 1

0

f 0.x/2 dx:

To derive this inequality, we use the function

g.x/ D
Z x

0

f 0.t/ dt

and use the weighted arithmetic geometric mean inequality to derive

f .x/2 D �
f .0/C g.x/�2 D f .0/2 C 2f .0/g.x/C g.x/2

� f .0/2 C
�
x � x

2

2

	
f .0/2 C g.x/2

x � x2

2

C g.x/2

D
�
1C x � x

2

2

	  

f .0/2 C g.x/2

x � x2

2

!

:
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Dividing by the expression 1C x � x2=2 and integrating leads to

Z 1

0

f .x/2

1C x � x2=2 dx � f .0/2 C
Z 1

0

g.x/2

x � x2

2

dx:

So it remains to check the inequality

Z 1

0

g.x/2

x � x2

2

dx �
Z 1

0

f 0.x/2 dx:

To this end, we use the Cauchy-Schwarz inequality to conclude that

g.x/2D
�Z x

0

f 0.t/ dt

�2
�
Z x

0

.1�t/ dt
Z x

0

f 0.t/2

1 � t dt D
�
x�x

2

2

	 Z x

0

f 0.t/2

1 � t dt:

Dividing by the expression x � x2=2 and integrating leads to

Z 1

0

g.x/2

x � x2

2

dx �
Z 1

0

Z x

0

f 0.t/2

1 � t dt dx D
Z 1

0

Z 1

t

f 0.t/2

1 � t dx dt D
Z 1

0

f 0.t/2 dt;

which finishes the proof. ut
We conclude with three by now natural open problems

Problem 8. For which integration problems as described in this section does
importance sampling with the Riesz representer gives a randomized algorithm with

en � C kINTdkp
n

for some C independent of the dimension d?

Problem 9. For which integration problems as described above can an importance
sampling density %d be explicitly constructed such that

en � C kINTdkp
n

for some C independent of the dimension d?

Problem 10. Can Theorem 8 also be shown for other linear functionals different
from integration?
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Noisy Information: Optimality, Complexity,
Tractability

Leszek Plaskota

Abstract In this paper, we present selected old and new results on the optimal
solution of linear problems based on noisy information, where the noise is bounded
or random. This is done in the framework of information-based complexity (IBC),
and the main focus is on the following questions:

(i) What is an optimal algorithm for given noisy information?
(ii) What is the "-complexity of a problem with noisy information?

(iii) When is a multivariate problem with noisy information tractable?

The answers are given for the worst case, average case, and randomized (Monte
Carlo) settings. For (ii) and (iii) we present a computational model in which the cost
of information depends on the noise level. For instance, for integrating a function
f W D ! R, available information may be given as

yj D f .tj /C xj ; 1 � j � n;

with xj
i:i:d:� N .0; �2j /. For this information one pays

Pn
jD1 c.�j / where c W

Œ0;1/ ! Œ0;1� is a given cost function. We will see how the complexity and
tractability of linear multivariate problems depend on the cost function, and compare
the obtained results with noiseless case, in which c  1.
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1 Introduction

The purpose of this paper is to survey selected old and present some recent
unpublished results on the optimal solution of linear problems for which available
information is partial, priced, and contaminated by noise. The noise can be bounded
in a norm, or can be a Gaussian random variable. Examples of such problems
include multivariate integration or approximation of a function f W Œ0; 1�d ! R,
where available information is standard, i.e.,

yj D f .tj /C xj ; 1 � j � n;

and the noise jxj j � ı, or xj � N .0; �2/ with xj mutually independent. The
analysis is done in the framework of information-based complexity (IBC) [17, 29,
34], in the worst case, average case, and randomized (Monte Carlo) settings. We
concentrate on the three main questions.

Optimality: What is an optimal algorithm for given noisy information?

We focus on the existence of optimal algorithms that are linear or affine, and
give sufficient conditions for this to hold in different settings. It turns out that for
approximating functionals from information with Gaussian noise, or noise bounded
in a Hilbert norm, all the settings are (in a way) equivalent. In particular, optimal
algorithms for bounded noise of level ı are optimal for Gaussian noise of some level
� , and vice-versa. These results are possible due to the existence of one-dimensional
subproblems (for the worst and average case approximations and for bounded and
Gaussian noise) that are as difficult as the original problem. This property was first
observed and used in [3].

For approximating operators in Hilbert spaces, optimal algorithms are smoothing
splines with parameter appropriately adjusted to the noise level.

Complexity: What is the "-complexity of a problem with noisy information?

By "-complexity of a problem, we mean the minimal cost of information from
which it is possible to construct an approximation with error ". We assume that
the information cost depends on the noise level via a nonincreasing cost function c.
For instance, the cost of a single observation of a functional with variance �2 may be
given as c.�/ D .1C ��1/s for some s � 0. Observe that information gets cheaper
as s decreases, so that the problem gets easier; moreover, s D 0 corresponds to exact
information, in which c  1. Here, general results reveal an interesting property that
the worst case setting with Gaussian noise is equivalent to the randomized setting
with Gaussian noise. The reason is that the use of adaption for noisy information
allows us to mimic any randomized algorithm.

As an illustration of this phenomenon, we study the worst case complexity
of numerical integration in the Hölder function classes C r

˛ .Œ0; 1�
d / for standard

information, with noise either bounded or Gaussian. To give an example of our
results, suppose that the noise is Gaussian and the dimension d is large enough,
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d > 2.r C ˛/. Then to obtain an "-approximation using nonadaptively chosen

sample points, one has to pay at least "
�
�

d
rC˛

�

. Since this is the same as for exact
information, one may think that it is impossible to do better. However, thanks to

adaption, for s > 0 the "-complexity of this problem is "
�
�

d
rC˛Cd=2

�
1� Ns

2

�
CNs
�

where
Ns D min.2; s/. Hence the exponent of "�1 is never larger than 2. We add that similar
results can be obtained for integration in Sobolev classes of functions, but we do not
pursue this subject here.

We also study complexity in the average case setting with Gaussian noise. Such
problems are never easier than problems with exact information, and adaption
usually does not help. We illustrate this by average case approximation with respect
to a Gaussian prior, using unrestricted linear information with Gaussian noise. In
this case, the "-complexity basically behaves in two ways: as for exact information,
or it is proportional to "�2.

Tractability: When is a multivariate problem with noisy information tractable?

Tractability of multivariate problems with exact information is already a well
established area, as seen from the resent three volume monograph of [17–19].
However, the study of tractability of problems with noisy information is still in
its initial stage. We give sample results on polynomial tractability of the two
problems considered earlier. The results show that the polynomial tractability for
exact information is equivalent to polynomial tractability for noisy information.
Moreover, if the problem for exact information is sufficiently difficult then the
exponents of tractability from exact information carry over to noisy information.

The paper is organized as follows. In the preliminary Sect. 2 we introduce the
basic notions. Optimal algorithms for given information are analyzed in Sect. 3. In
Sect. 4 we deal with complexity, and Sect. 5 is devoted to tractability.

2 Basics

Let

S W F ! G

be a linear operator acting between a linear space F and a normed space G with the
norm k � k. We usually think of F as a space of (multivariate) functions f W D ! R

whereD is a Lebesgue measurable subset of Rd . The two prominent examples are

• Integration: S D Int, where G D R and

Int.f / D
Z

D

f .t/ dt;
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• Approximation: S D App, where F is embedded into G, and

App.f / D f:

The aim is to approximate values S.f / for f 2 F . The approximation is produced
by an algorithm that uses some information about f . The information is partial and
noisy.

2.1 Noisy Information

Typical examples of noisy information about a function f include inaccurate
observations/evaluations of f at some points tj 2 D, i.e.,

yj D f .tj /C xj ;

or, more generally, inaccurate observations/evaluations of some linear functionals
Lj on F ,

yj D Lj .f /C xj :

Here, xj is the noise. The noise can be uniformly bounded, e.g., jxj j � ı, or it can

be a random variable, e.g., xj
i:i:d:� N .0; �2/. We now give a formal definition of

noisy information.

2.1.1 Information with Bounded Noise

An information operator is a mapping

N W F ! 2Y

where Y is a set of finite real sequences Y �P1nD0Rn. That is, N.f / is a subset of
Y . A sequence y 2 Y is called information about f iff y 2 N.f /.

This general definition admits linear information with uniformly bounded noise.
In this case, Y D R

n and

N.f / D fN.f /C x W x 2 Xg

where N W F ! Y is a linear mapping and X is a bounded subset of Y . The vector
N.f / is called exact information about f , and x is the noise. If X D f0g then
information is said to be exact. Examples include

X D fx 2 Y W jxj j � ıj W 1 � j � ng
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with ıj � 0, or

X D fx 2 Y W kxkY � ıg

with a Hilbert norm kxkY D
ph˙�1x; xi2 and a symmetric positive definite

operator (matrix) ˙ D ˙� > 0. The parameter ı � 0 is the noise level. The
information is exact iff ı D 0.

2.1.2 Information with Gaussian Noise

In this case, the information operator assigns to each f a probability measure �f
on the set Y . That is, Y is such that the sets Y \ R

i are measurable for all i , and

N W F !PY

where PY is the set of all probability measures on Y . A sequence y 2 Y is
information about f iff it is realization of a random variable distributed according
to �f D N.f /.

An important example is given by linear information with Gaussian noise. In this
case, Y D R

n and y D N.f /C x, where

x � Gn.0; �
2˙/;

N W F ! R
n is a linear mapping, and Gn.0; �2˙/ is the zero mean n-dimensional

Gaussian distribution on R
n whose covariance matrix is �2˙ . For the noise level

� D 0, the information is exact (with probability one).

2.2 Algorithms and Errors

Having defined the information N, an algorithm is now a mapping

' W Y ! G:

That is, an approximation to S.f / is given as '.y/ where y is information about f .
The error of an algorithm ' using information N depends on the setting. The

setting is determined by the assumptions on the elements f 2 F and information y
about f .

2.2.1 Worst Case Setting

In this setting, the error of an algorithm ' using information N is defined as the
worst case error with respect to a given set B � F . More specifically,
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• For bounded noise:

ew�w
B .S IN; '/ WD sup

f 2B
sup

y2N.f /
kS.f /� '.y/k;

• For Gaussian noise:

ew�a
B .S IN; '/ WD sup

f 2B

�Z

Y

kS.f / � '.y/k2�f .dy/

�1=2
:

The set B is usually chosen such that the elements f 2 B are ‘smooth’ and
bounded, e.g., some derivatives of f are uniformly bounded. If F is a normed space
with norm k � kF then we often take B to be the unit ball of F ,

B D ff 2 F W kf kF � 1g:

2.2.2 Average Case Setting

In this setting the error is defined as the average error with respect to a given
probability measure � on the space F . Specifically,

• For Gaussian noise:

ea�a
� .S IN; '/ WD

�Z

F

Z

Y

kS.f /� '.y/k2�f .dy/�.df /

�1=2
;

• For bounded noise:

ea�w
� .S IN; '/ WD

 Z

F

sup
y2N.f /

kS.f / � '.y/k2�.df /
!1=2

:

We will assume that F is a separable Banach space and the a priori measure � is
a Gaussian measure on the Borel subsets of F . This measure has mean zero and a
covariance operator C� W F � ! F , i.e.,

L1.C�L2/ D
Z

F

L1.f /L2.f / �.df /; 8L1;L2 2 F �:

See, e.g., [11] or [35] for the theory of Gaussian measures on Banach spaces.

2.2.3 Randomized Setting

In contrast to the deterministic settings considered above, in the randomized (or
Monte Carlo) settings the information and/or algorithms are chosen at random.
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We may have different randomized settings, depending on the assumptions on the
problem elements f and information y about f . In this paper, we only concentrate
on the worst case randomized setting with Gaussian noise. In this setting, the
problem elements f belong to B , and the information y has a distribution �f . For
brevity, we will use the name randomized setting.

Formally, the information operator and algorithm are now families fN!g and
f'!g parameterized by a random variable ! 2 ˝ . For technical reasons, we assume
that ˝ is a Polish space or the Cartesian product of countably many Polish spaces.
The elements S.f / are approximated by '!.y/ where the information y about f is
given as

y � �f .�j!/ D N!.f /

and ! is drawn randomly from ˝ according to some distribution. The error in the
randomized setting is defined as

eran
B .S I fN!g; f'!g/ WD sup

f 2B

�
E!

Z

Y!

kS.f /� '!.y/k2 �f .dyj!/
�1=2

where E! denotes the expectation with respect to !.
Observe that in the randomized setting we have two sources of randomness, one

coming from random selection of !, and the other coming from the noise.

3 Optimality

In this section, we give some general results on optimal algorithms for given noisy
information N. An algorithm is optimal in a given setting iff it minimizes the error
among all possible algorithms using N.

3.1 Approximation of Functionals

We first consider the case when S is a linear functional, e.g., S D Int. We
concentrate our attention on the existence of optimal algorithms that are affine
or linear. Note that widely used cubatures for the integration problem are linear
algorithms.

3.1.1 Worst Case Setting

Assume information is linear with uniformly bounded noise,

y D N.f /C x; x 2 X: (1)
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Let radw�w
B .S IN/, called the radius of information, be the minimal error that can be

achieved using information N. That is,

radw�w
B .S IN/ D inf

'
ew�w
B .S IN; '/ (2)

where the infimum is taken over all possible algorithms '.

Theorem 1. If B � F and X � Y are convex sets then there exists an affine
algorithm 'w�w

aff that is optimal, i.e., such that

ew�w
B .S IN; 'w�w

aff / D radw�w
B .S IN/:

In addition, if B andX are balanced (symmetric about zero) then any optimal 'w�w
aff

is linear.

Theorem 1 was first proven in [31] (see also [1]) for exact information and convex
and balanced B , and then generalized in [14] for noisy information, and in [32] for
exact information and convex B . The most general formulation was presented in
[12].

The proof of Theorem 1 is non-constructive. However, in some cases, it is
possible to construct optimal 'w�w

aff . Assume that the noise x of information (1)
belongs to the ball of radius ı > 0 in a Hilbert norm, i.e., that

X D fx W kxkY � ıg
where kxkY D

phx; xiY and h�; �iY is an inner product in Y . Then we have the
following elegant construction from [3], see also Sect. 2.4 in [29].

Let r.ı/ be the radius (2) of our information with noise level ı, which can be
conveniently written as

r.ı/ D sup fS.h/ W h 2 bal.B/; kN.h/kY � ı g (3)

where

bal.B/ WD 1
2
.B � B/ D ˚ 1

2
.b1 � b2/ W b1; b2 2 B

�
:

The radius r.�/ is a concave and nondecreasing function of � � 0. Hence, it can
be bounded from above by a straight line passing through .ı; r.ı//. In other words,
there exists d � 0 such that

r.�/ � r.ı/C d.� � ı/ 8� � 0:

Denote by @r.ı/ the set of all such d . Suppose that the radius is achieved at h�, i.e.,
r.ı/ D S.h�/ where h� D .f �1 � f ��1/=2, f ��1; f �1 2 B , kN.h�/kY � ı. From the
formula (2) it follows that our original problem is as difficult as the same problem,
but with B replaced by the interval I� D Œf ��1; f �1 � � B . That is,
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radw�w
B .S IN/ D radw�w

I� .S IN/:

We say that I� is the hardest one-dimensional subproblem contained in B . To find
all optimal affine algorithms it is enough to first find all optimal affine algorithms for
the subproblem I� and then remove those algorithms for which the error increases
when taken overB . This leads to the following formulas. IfN.h�/ D 0 then 'w�w

aff 
0, and otherwise

'w�w
aff .y/ D S.f �0 /C d hy�N.f �0 /;wiY ; (4)

where f �0 D .f ��1 C f �1 /=2, w D N.h�/=kN.h�/kY , and d 2 @r.ı/.
This construction cannot be applied for ı D 0. However, optimal algorithms for

exact information can be obtained by letting ı ! 0C.
We now switch to linear information with Gaussian noise, so that

x � Gn.0; �
2˙/; where � > 0: (5)

To see that optimal algorithms are not affine in this case, it is enough to have a short
look at the one-dimensional problem of approximating f from an interval B D
Œ��; �� � R based on just one observation y D f C x with noise x � N .0; �2/.
Indeed, the optimal affine algorithm is linear, given by 'lin.y/ D c1y with

c1 D c1.�; �2/ D �2

�2 C �2 :

For jyj > �=c1 we have 'lin.y/ … B , and therefore 'lin cannot be optimal among
arbitrary algorithms.

How much do we lose by using only linear approximations? This question was
studied, e.g., in [6, 9], but the most precise answer was given in L.D. Brown and
I. Feldman (The Minimax Risk for Estimating a Bounded Normal Mean, 1990,
unpublished manuscript). Let rarb.�; �

2/ and rlin.�; �
2/ be the minimal errors for

arbitrary nonlinear and linear algorithms. Then

�1 WD sup
�;�

rarb.�; �
2/

rlin.�; �2/
< 1:12 :

Surprisingly, this result for the one-dimensional problem can be generalized to the
approximation of arbitrary linear functionals S . Let radw�a

B .S IN/ denote the radius
of information in case of Gaussian noise (5). By an optimal affine algorithm we
mean an algorithm that minimizes the error over all affine algorithms.

Theorem 2. If B is a convex set then for the optimal affine algorithm 'w�a
aff we have

ew�a
B .S IN; 'w�a

aff / � �1 � radw�a
B .S IN/:
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In addition, if B is balanced then any such 'w�a
aff is linear.

The proof of Theorem 2 was first given in [3], see also Sect. 4.2 in [29]. It
reveals a remarkable connection between Gaussian noise (5) and noise bounded
in the Hilbert norm

kxkY D
p
h˙�1x; xi2 � ı: (6)

This connection can be explained as follows. Let 'w�w
ı denote an optimal affine

algorithm (4) in the worst case setting with bounded noise (6). Let ı D ı.�/ be such
that dı 2 @r.ı/ and

dı D ı r.ı/

�2 C ı2 : (7)

(If the equality (7) never holds, in which case d1 D limı!1 dı , we let ı D C1.)
Then 'w�a

� D 'w�w
ı is an optimal affine algorithm for Gaussian noise of level � and

ew�a
B .S IN; 'w�a

� / D � r.ı/p
�2 C ı2 :

(If ı D ı.�/ D C1 then ew�a
B D �d1.)

Theorem 1 now follows from the following property: if we restrict ourselves
only to affine algorithms then the hardest one-dimensional subproblem for the worst
case with bounded noise of level ı D ı.�/ is also the hardest one-dimensional
subproblem for the worst case with Gaussian noise of level � .

From what we already know, it is possible to infer the following fact about
randomization. Suppose that information N with Gaussian noise (5) is given. Then
randomization with respect to algorithms does not help much. Indeed, let I� be the
hardest one-dimensional subproblem for affine algorithms and information N. Then
there exists a least favorable probability distribution � on I� for which the minimal
average case error with respect to � is equal to the minimal worst case error with
respect to I�, see, e.g., [2]. Using this fact, along with the mean value theorem, we
see that for any randomized algorithm f'!g we have

�
eran
B .S IN; f'!g/

�2 D sup
f 2B

�
E!

Z

Y

jS.f /� '!.y/j2�f .dy/

�

� sup
f 2I�

�
E!

Z

Y

jS.f / � '!.y/j2�f .dy/

�

�
Z

I�

�
E!

Z

Y

jS.f / � '!.y/j2�f .dy/

�
�.df /

D E!

�Z

I�

Z

Y

jS.f / � '!.y/j2�f .dy/�.df /

�
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�
Z

I�

Z

Y

jS.f / � '!�.y/j2�f .dy/�.df /

� �radw�a
I� .S IN/�2

� ��21 � sup
f 2B

Z

Y

jS.f / � 'w�a
aff .y/j2�f .dy/

� ��21 �
�
radw�a

B .S IN/�2:

3.1.2 Average Case Setting

We will see that parallel results to that in the worst case hold in the average case
setting. Recall that F is now a separable Banach space and the a priori measure
� on the Borel sets of F is Gaussian with mean zero and a covariance operator
C� W F � ! F . We also assume that the functional S is continuous, S 2 F �. The
noisy information is y D N.f /C x, where

N.f / D ŒL1.f /; L2.f /; : : : ; Ln.f /�; Lj 2 F �:

Let hK;Li� D K.C�L/ D L.C�K/ denote the �-semi-inner product on F �, with
kLk� D

p
L.C�L/ denoting the corresponding seminorm.

Consider first Gaussian noise x � Gn.0; �2˙/ with � > 0. Then for any
continuous S (not necessarily a functional), optimal algorithms are linear and rely
on applying S to the conditional mean with respect to given information. For a
functional S these algorithms take the following form, see Sect. 3.5 in [29].

Theorem 3. The optimal algorithm is unique and is given as

'a�a
lin .y/ D hy;wi2;

where w is the solution of the linear system

.�2˙ CGN /w D N.C�S/

with matrix GN D


Li.C�Lj /

�n
i;jD1. Moreover,

ea�a
� .S IN; 'a�a

lin / D rada�a
� .S IN/ D

q
kSk2� � hN.C�S/;wi2:

Similarly to the worst case, the concept of a one-dimensional subproblem is also
important in the analysis of the average case. For a functionalK 2 F �, let

PK.f / D f � K.f /kKk2�
C�K
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be a projection onto kerK . Then kerPK D spanfC�Kg. The measure� can be then
decomposed as

� D
Z

kerK
�K.�jg/�P�1K .dg/

where �K.�jg/ is the conditional measure on F given g D PK.f /. The measure
�K.�jg/ is Gaussian with mean g and correlation operator

AK.L/ D hL;Ki�kKk2�
C�K;

and it is concentrated on the line

P�1K g D fgC ˛C�K W ˛ 2 Rg: (8)

The family of one-dimensional subproblems induced byK is indexed by g 2 kerK .
For each g, the subproblem relies on minimizing the average error ea�a

�K.�jg/.N; '/
over all algorithms '. (Equivalently, the subproblem is the original problem with
additional information that f is on the line (8).)

It is clear that rada�a
�K.�jg/.S IN/ � rada�a

� .S IN/. However, if

K� D S � 'a�a
lin .N.�// D S � hN.�/;wi2

then �K� .�jg/ is the hardest family of one-dimensional subproblems. For all g we
have

rada�a
�K� .�jg/.S IN/ D rada�a

� .S IN/:

Moreover, the same linear algorithm 'a�a
lin is optimal for the original problem � and

for each subproblem �K� .�jg/.
Consider noise that is bounded in a Hilbert norm. For the one-dimensional

problem of approximating f � N .0; / from one observation y D f C x with
jxj � ı, the optimal linear algorithm is 'lin.y/ D c2y with

c2 D c2.; ı/ D

8
<̂

:̂

1; ı2 � 2
�
;

�ıp2=�
Cı2�2ıp2=� ;

2
�
 < ı2 < �

2
;

0; �
2
 � ı2:

(9)

Let �2 denote the maximum with respect to  and ı of the ratio between the minimal
errors of linear and nonlinear algorithms. Then

�2 < 1:5 :



Noisy Information: Optimality, Complexity, Tractability 185

This generalizes to arbitrary functionals S . Let the noise kxkY D
ph˙�1x; xi2

satisfy kxkY � ı for some ı > 0.

Theorem 4. The optimal linear algorithm 'a�w
lin satisfies

ea�w
� .S IN; 'a�w

lin / � �2 � rada�w
� .S IN/:

The algorithm 'a�w
lin is given as follows. Let 'a�a

� be an optimal algorithm from
Theorem 3 for the noise level � . Let

	.�/ D kK�k�
kN.C�K�/kY :

If ıkSk� �
p
�=2kN.C�S/kY then the zero algorithm is optimal. Otherwise, the

optimal linear algorithm 'a�w
ı D 'a�a

� where � D �.ı/ is such that

c2 D c2.1; ı	.�// D 1

1C �2	2.�/ :

The assertion of Theorem 4 now follows from the fact that if we restrict ourselves
to only linear algorithms then the family determined by K� is the hardest family of
one-dimensional subproblems for the average case with bounded noise of level ı.
For details, see [25] and Sect. 4.2 in [29].

3.1.3 Equivalence of Different Settings

We showed close connections between Gaussian noise and noise bounded in a
Hilbert norm, for both the worst case and average case settings. Actually, similar
connections hold between the settings themselves.

Let F be a separable Banach space equipped with a zero mean Gaussian measure
with positive definite covariance operator C� W F � ! F . Let H0 D C�.F

�/ � F
be a pre-Hilbert space with inner product

hf1; f2iH D L1.C�L2/ D
Z

F

L1.f /L2.f /�.df /

for all fj D C�Lj , where Lj 2 F �, and let the Hilbert space H be the closure of
H0 with respect to h�; �iH . We let B denote the unit ball of H .

The pair .F;H/ forms an abstract Wiener space. The name comes from the
special case where F is the classical Wiener space of continuous functions f W
Œ0; 1� ! R with f .0/ D 0, norm kf kF D max0�t�1 jf .t/j, and H � F is the
Hilbert space of absolutely continuous functions with the inner product
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hf1; f2iH D
Z 1

0

f 01 .t/f 02 .t/ dt:

Equivalently, H is the reproducing kernel Hilbert space with the kernel K.s; t/ D
min.s; t/, 0 � s; t � 1. See, e.g., [11].

Consider now the problem of approximating a functional S 2 F �, so that

S.f / D hf; f �iH; f � D C�S;

from noisy information y D N.f /C x, where

N.f / D ŒL1.f /; L2.f /; : : : ; Ln.f /�

with Lj 2 F �, so that

Lj .f / D hf; fj iH ; fj D C�Lj :

Suppose that for all four settings:

• Worst case with bounded noise: f 2 B and h˙�1x; xi2 � ı2,
• Worst case with Gaussian noise: f 2 B and x � Gn.0; �2˙/,
• Average case with Gaussian noise: f � � and x � Gn.0; �2˙/,
• Average case with bounded noise: f � � and h˙�1x; xi2 � ı2,
we apply the same algorithm '� D 'a�a

lin . That is,

'�.y/ D
nX

jD1
wj yj

with .�2˙ C GN/w D N.f �/; GN D

hfi ; fj iH

�n
i;jD1 : Then we have the

following theorem, see Sect. 5.2.3 in [29].

Theorem 5. Let ı D � . Then for esett 2 few�w
B ; ew�a

B ; ea�a
� ; ea�w

� g we have

esett.S IN; '�/ D

vu
u
u
tS

0

@f � �
nX

jD1
wj fj

1

A � �sett � inf
'
esett.S IN; '/

where .�w�w; �w�a; �a�a; �a�w/ D .1:43; 1:59; 1:00; 2:13/:
Observe that for ‘small’ noise levels � the element f ��Pn

jD1 wj fj is ‘almost’
H -orthogonal projection of f � onto the span.f1; : : : ; fn/.
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3.2 Approximation of Operators

If S is a linear operator, but not a functional, then the results of Sect. 3.1 generally
do not hold. It is even possible that the worst case radius of (exact) information is
arbitrarily small, but the worst case error of any linear algorithm is infinite, see [38].

For problems such as function approximation, one commonly-used technique is
based on smoothing splines. The general idea relies on constructing algorithms that
are simultaneously smooth and adjusted to the given data. In some cases, smoothing
splines lead to algorithms that are linear and (almost) optimal.

3.2.1 Worst Case Setting

Let F be equipped with a semi-norm k � kF and S W F ! G be an arbitrary linear
operator. Let the set B be the unit ball in F and information be linear with uniformly
bounded noise, so that N.f / D fy 2 R

n W ky �N.f /kY � ıg:
For given information y, an ordinary spline so.y/ is given as an element in F

satisfying the following two conditions:

1. y 2 N.so.y//:
2. kso.y/kF D inf fkf kF W f 2 F; y 2 N.f /g:
(For simplicity, we assume that the infimum is attained.) Then the spline algorithm
is defined as 'o.y/ D S.so.y//, and we have from [10] that

ew�w
B .S IN; 'o/ � 2 � radw�w

B .S IN/;

where radw�w
B .S IN/ is the radius of information N, as in (2). The algorithm 'o is in

general not linear.
We now pass to smoothing splines. We assume that F , Y , and G are Hilbert

spaces, so that the norms k � kF , k � kY , and k � k are induced by the corresponding
inner products. We also assume that S W F ! G and N W F ! Y are continuous
linear operators. For 0 < � < 1, a smoothing spline is defined as an element
s� .y/ 2 F minimizing the functional

� � kf k2F C ky �N.f /k2Y over all f 2 F:

The smoothing spline s� .y/ is uniquely defined and it depends linearly on y.
Equivalently, s� .y/ can be defined as the result of regularization [33], i.e., as the
solution of the linear equation

.� I CN �N/f D N �y

where N � W Y ! F is the operator adjoint to N , i.e., hNf ; ziY D hf;N �ziF for all
f 2 F and z 2 Y . We additionally set s1.y/ D 0, and
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s0.y/ D arg minfkf kF W N.f / D PN yg;

where PN y is the orthogonal projection of y onto the subspace N.F / � Y .
The smoothing spline algorithm is defined as

'�.y/ D S.s� .y//:

If the information is exact, i.e., ı D 0, then '0 is optimal and

radw�w
B .S IN; '0/ D sup

h2B\kerN
kS.h/k;

see, e.g., Sect. 5.7 in Chap. 4 of [34]. In the general case, taking � D ı2 we obtain

ew�w
B .S IN; 'ı2/ �

p
2 � radw�w

B .S IN/:

However, the following stronger result holds, which was proven in [13].

Theorem 6. If F , G, and Y are Hilbert spaces then there exists �� such that the
smoothing spline algorithm '�� is optimal, i.e., such that

ew�w
B .S IN; '��/ D radw�w

B .S IN/:

The proof of Theorem 6 is not constructive. Nevertheless, the optimal value ��
of the smoothing parameter can be found in some special cases.

Assume that S W F ! G is a compact operator. By S� W G ! F and N � W Y !
F we mean the adjoint operators to S and N . Assume that S�S and N �N have a
common complete orthonormal in F basis f�j gj�1 of eigenelements, so that

S�S�j D j �j ; N �N�j D �j �j ; j � 1; (10)

and 1 � 2 � � � � � 0. (If dim.F / D d < 1 then we set j D �j D 0 for all
j � d C 1.) Then we have the following result. Let

t D minfi W �i D 0g and s D arg max
1�i�t�1

i � t
�i

:

If the noise level is sufficiently small, ı2 � min1�i�t�1 �i ; then

�� D �s t

s � t
and
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ew�w
B .S IN; '��/ D radw�w

B .S IN/ D
s

t C ı2 .s � t /
�s

:

Note a rather surprising property that �� (the optimal algorithm) does not depend
on the noise level ı. This is obviously a desirable property, especially when ı is not
exactly known. For these results and the corresponding formulas for arbitrary ı, see
Sect. 2.6.1 in [29].

Consider now an even more special case, in which F D G D R
d with the

ordinary inner product, S D I is the identity, and rank.N / D d . That is, we want
to approximate a vector f 2 R

d using information of full rank. Then i D 1 and
�i > 0 for all i D 1; 2; : : : ; d . For ı2 � min1�i�d �i we find that �� D 0, and that
the optimal algorithm

'0.y/ D N�1PN y

is nothing but the least squares algorithm. In addition, we have

ew�w
B .I IN; '0/ D ı

min1�i�d
p
�i
:

We now switch to Gaussian noise, x � Gn.0; �2˙/. In this case, the situation is
more complicated. A major step forward was done when importance of rectangular
and ellipsoidal problems was discovered in [6] and [22]. This allowed us to find
asymptotically optimal algorithms for L2-approximation in the space of univariate
functions f with f .r/ 2 L2, see [20]. In [4, 5] an approximation problem over
Besov and Triebel bodies is considered, where non-linear algorithms turn out to be
much better than linear algorithms. The following special results can be found in
Sect. 4.3.2 of [29].

Consider again the case when S�S and N �N have a common orthonormal basis
of eigenelements (10). Let

s D minfi W iC1 D 0 or �iC1 D 0g

and k be the smallest integer from f1; 2; : : : ; sg for which

p
kC1 �

�2
Pk

jD1.
p
j �j /

�1

1C �2Pk
jD1 ��1j

; (11)

or k D s C 1 if (11) never holds. Define �2i for i � 1 as follows:

(i) If 1 � k � s then
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�2i D
8
<

:
�2 i

�i

�p
i

�
1C�2Pk

jD1 �
�1
j

�2
Pk
jD1.
p
j �j /�1

�
� 1

�
; 1 � i � s;

0; i � s C 1:
(12)

(ii) If k D s C 1 then

�2i D

8
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
:

�2 i
�i

� p
ip
sC1

� 1
�
; 1 � i � s;

sC1 � �2
p
sC1

Ps
jD1

�p
j�
p
sC1

�j

�
; i D s C 1;

0; i � s C 2:

(13)

The optimal linear algorithm is given as

'w�a
lin .y/ D

sX

jD1

�2�2j

�2 C �j �2j
zj S.�j /

where zj D ��1j hN�j ;˙�1yi2, 1 � j � s, and

(i) For 1 � k � s

ew�a
B .S IN; 'w�a

lin / D � �

vu
uu
t

kX

jD1

j

�j
�
�2
�Pk

jD1.
p
j �j /�1

	2

1C �2Pk
jD1 ��1j

;

(ii) For k D s C 1

ew�a
B .S IN; 'w�a

lin / D
vuu
tsC1 C �2

sX

jD1

.
p
j �

p
sC1/2

�j
:

Moreover, nonlinear algorithms can be at most �1 < 1:12 times better than 'w�a
lin .

Consider again the special case when F D G D R
d , S D I , and N has full

rank. Then the formulas simplify to

'w�a
lin .y/ D

1

1C �2trace..N �N/�1/

dX

jD1
zj �j

where zj D ��1j hN�j ;˙�1yi2, and

ew�a
B .I IN; 'lin/ D � �

s
trace..N �N/�1/

1C �2trace..N �N/�1/
:
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In particular, for N D I and for a diagonal matrix ˙ we have z D y. This means
that 'w�a

lin is not a smoothing spline algorithm for any parameter � since the latter
uses coefficients cj D .1C�=�j /�1 at yj . Note also that the least squares algorithm
is in this case not optimal (unless B D R

d ).

3.2.2 Average Case Setting

We make the same assumptions as in Sect. 3.1.2 except that S W F ! G is not
a functional, but a continuous linear operator. As we have already mentioned, for
linear information with Gaussian noise x � Gn.0; �2˙/ optimal algorithms are the
mean elements of appropriate conditional distributions in G. More precisely,

'a�a
opt .y/ D

nX

jD1
zj S.C�Lj /

where .�2˙ CGN /z D y, with GN D ŒLi .C�Lj /�ni;jD1. Furthermore,

ea�a
� .S;N; 'a�a

opt / D rada�a
� .S;N/ D

q
trace.SC�S�/ � trace.'a�a

opt .NC�S
�//:

It turns out that this algorithm can be interpreted as smoothing spline algorithm.
See [36] for smoothing splines in the reproducing kernel Hilbert spaces. For the
following result, see Theorem 3.3 and Sect. 3.6.3 in [29].

Theorem 7. For a Banach space F , let H be a Hilbert space H such that .H; F /
is an abstract Wiener space. Then the optimal algorithm

'a�a
opt .y/ D S.s�2.y//;

where s�2 .y/ is the minimizer of

�2 � kf k2H C ky �N.f /k2Y
over all f 2 H .

Very little is known about approximation of operators in the average case with
noise bounded in a Hilbert norm, kxkY � ı. Therefore we mention only one result
that corresponds to the examples from the former settings.

Suppose again that F D G D R
d , S D I , and N is of full rank. Then, for

sufficiently small ı > 0 the least squares algorithm 'ls.y/ D N�1PN y is optimal
and linear, see Sect. 5.3 in [29] for details.
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4 Complexity

In Sect. 3, we were looking for optimal algorithms ' for given noisy information N.
In practical computations, we usually have some freedom in choosing information
and its accuracy. Then we want to compute an approximation within a given error "
with minimal cost. In this section, we formalize the notions of cost of approximation
and "-complexity of a problem, and find the complexity for some problems.

4.1 Cost of Information

Let � be a given class of linear functionals over F . We assume that information
about f 2 F is collected by noisy evaluations of linear functionals from � at
various levels of precision. We distinguish between nonadaptive information and
adaptive information.

4.1.1 Bounded Noise

In case of bounded noise, nonadaptive information N consists of an (exact)
information operatorN W F ! R

n of the form

N.f / D ŒL1.f /; L2.f /; : : : ; Ln.f /�; f 2 F; (14)

where L1; : : : ; Ln 2 �, and a precision vector

� D Œı1; ı2; : : : ; ın�;

where ıi � 0 for 1 � i � n. Then N W F ! 2Y with Y D R
n,

N.f / D fy 2 R
n W .y �N.f // 2 X.�/g:

The essence of this definition is that the ‘size’ of the noise depends on the precision
used; the higher precision the smaller the noise. In this paper, we consider

X.�/ D fx D Œx1; : : : ; xn� W jxi j � ıi ; 1 � i � ng;

which means that each Li.f / is evaluated with absolute error at most ıi . For other
possibilities and discussion, see Sect. 2.7 in [29].

Adaptive information has a richer structure. The decision about the choice of
each successive functional Li , each precision ıi , and when to terminate is made
based on the values y1; : : : ; yi�1 obtained from previous steps. That is, we first
choose the linear functional L1 2 � and precision ı1, and compute y1 such that
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jy1 � L1.f /j � ı1. In the i th step we make a decision whether we terminate or
proceed further with computations. If we decide to stop then y1; : : : ; yi�1 is our final
information about f . Otherwise we choose Li 2 � and ıi based on y1; : : : ; yi�1
and compute yi such that jyi �Li.f /j � ıi .

More formally, we assume that the range Y of adaptive information N W F ! 2Y

satisfies the condition:

for any Œy1; y2; : : :� 2 R
1 there is exactly one n such that Œy1; y2; : : : ; yn� 2 Y:

(15)

Denote Zi D f Œy1; : : : ; yi � 2 R
i W Œy1; : : : ; yj � … Y; 1 � j � ig. Then

N.f / D f Œy1; : : : ; yn� 2 Y W (16)

jyi � Li.f Iy1; : : : ; yi�1/j � ıi .y1; : : : ; yi�1/; i D 1; 2; : : : ; n g

where each ıi W Zi�1 ! Œ0;1/ and each functional Li W F � Zi�1 ! R is such
that for any fixed Œy1; : : : ; yi�1� 2 Zi�1 we have Li. � Iy1; : : : ; yi�1/ 2 �.

Note that (15) assures that the process of gaining information terminates, which
happens when the condition Œy1; : : : ; yi � 2 Y is met. Obviously, any nonadaptive
information is also adaptive.

With computation of yi we associate some cost. The cost depends on the
precision ıi via a cost function

c W Œ0;1/! Œ0;1�:

We assume that c is nonincreasing. For instance,

c.ı/ D
� C1; 0 � ı < ı0;

1; ı0 � ı;

which corresponds to a fixed noise level ı0, and to the exact information when ı0 D
0. It seems natural to assume that the cost depends polynomially on ı�1, e.g.,

cs.ı/ D .1C ı�1/s

for some s � 0, as this is what we usually have in numerical computations. Indeed,
for problems for which we use a mesh of size h, the accuracy and cost depend
inversely on h. Note that s D 0 corresponds to the exact information, c  1 (under
the convention that10 D 1).

Let N be a given, in general adaptive, information (16). The cost of obtaining
information y D Œy1; : : : ; yn� about some f 2 F , y 2 N.f /, is given as

cost.NI y/ D
nX

iD1
c.ıi .y1; : : : ; yi�1//:
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4.1.2 Gaussian Noise

In the case of Gaussian noise, the process of gaining information is basically the
same as for bounded noise. The only difference is that instead of the bounds ıi we
choose variances �2i of successive observations.

Specifically, nonadaptive information consists of an exact information opera-
tor (14) and a precision (variance) vector ˙ D Œ�21 ; : : : ; �

2
n �. Then y is information

about f iff

y � �f D Gn.N.f /;˙/ where˙ D diag.�21 ; : : : ; �
2
n /:

(Note that we use the same letter˙ to denote the precision vector and the covariance
matrix.)

For adaptive information N W F ! PY , we assume that the range Y satisfies
(15), and that the mappings Li.f I �/; �i .�/ W Yi�1 ! R, where Yi�1 D Y \ R

i�1,
are measurable. The measure �f is defined inductively on each Yi as follows. For
i D 1, we define

�f .A1/ D N
�
L1.f /; �

2
1

�
.A1/; A1 2 B.Y1/;

where B.Y1/ denotes Borel measurable subsets of Y1, and for i D 2; 3; : : : we have

�f .Ai / D
Z

Zi�1

N
�
Li .f I y.i�1//; �2i .y.i�1//

	 �
Cy.i�1/

�
�f
�
dy.i�1/

�
; Ai 2 B.Yi /;

where Cy.i�1/ D
˚
yi 2 R W Œy.i�1/; yi � 2 Ai

�
. Here N .a; �2/ is the one-

dimensional normal distribution with mean a and variance �2. Then, for any
A 2 B.Y /, we define

�f .A/ D
1X

iD1
�f .A \R

i /:

The cost of obtaining information y D Œy1; : : : ; yn� about f is defined as

cost.NI y/ D
nX

iD1
c.�i .y1; : : : ; yi�1//;

where c.�/ is the cost of a single observation with variance �2.

4.2 Worst Case and Randomized Complexities

The information "-complexity (or simply "-complexity) of a problem S W F ! G

is defined as



Noisy Information: Optimality, Complexity, Tractability 195

compsett.S I "/ D inf
˚
costsett.N/ W 9' such that esett.S IN; '/ � "� ; (17)

where esett.S IN; '/ is the error, and costsett.N/ is the cost of information N in a
given setting. In the worst case setting, we have

• For bounded noise:

costw�w
B .N/ D sup

f 2B
sup

y2N.f /
cost.NI y/;

• For Gaussian noise:

costw�a
B .N/ D sup

f 2B

Z

Y

cost.NI y/ �f .dy/;

while in the randomized setting

costran
B .fN!g/ D sup

f 2B

�
E!

Z

Y!

cost.N! I y/ �f .dyj!/
�
:

4.2.1 Adaption Versus Nonadaption

For a given setting, denote by

compsett.S I "/

the minimum cost of obtaining approximation within " using only nonadaptive
information. The problem of how comp sett.S I "/ is related to compsett.S I "/ has been
extensively studied for exact information, see, e.g., [16] for a comprehensive survey.

In the worst case setting with bounded noise, we have the following theorem,
which is a generalization of the corresponding result for exact information, see,
e.g., Theorem 5.2.1 in Chap. 4 of [34] and Theorem 2.15 in [29].

Theorem 8. Let the class B � F be convex and balanced. Then

compw�w
B .S I "/ D compw�w

B .S I˛"/

where 1 � ˛ � 2. If S is a functional then ˛ D 1.

In the worst case setting with Gaussian noise, adaption can significantly help,
even for convex balanced classesB . This is a marked contrast to the case of bounded
noise. A simple explanation for this is as follows: Even though randomization
is formally not allowed, we can mimic a random selection of information and
algorithm by using the adaptive mechanism along with noise. Since randomized
algorithms are much better than deterministic algorithms for many problems (the



196 L. Plaskota

main example being Monte Carlo for the integration problem over many function
classes), adaption can help. Hence, for some problems S we have

compw�a
B .S I "/� compw�a

B .S I "/:

In short, the mechanism works as follows. We take arbitrary functional L 2 �
and observe it twice with arbitrary precisions �2i . We obtain yi D Li.f / C xi ,
i D 1; 2. Now, the next functional L3 can be chosen dependently on y1; y2 via
! D y1 � y2. Then L3 is formally chosen adaptively. However, since ! is the zero
mean Gaussian random variable with variance �21 C �22 , the selection of L3 can also
be viewed as random based on the value of !. Hence we mimic randomization at
cost of just two observations, see, e.g., [27] for details.

Actually, we have the following general result.

Theorem 9. For any B � F we have

compran
B .S I "/ � compw�a

B .S I "/ � compran
B .S I "/C 2c0

where c0 D lim�!1 c.�/.

The proof for fixed precision � can be found in [28], and it can be straightforwardly
generalized to variable precision.

Note that even if the algorithm realizing the "-complexity in the worst case with
random noise is adaptive, the corresponding algorithm in the randomized setting can
be nonadaptive. The question whether adaption helps in the randomized setting for
linear problems over convex and balanced classes B is open.

4.2.2 Complexity of Integration in Hölder Classes

In this section, we find the "-complexity of integration, S D Int, for folded Hölder
classes of functions defined on D D Œ0; 1�d . Specifically, we assume that the set
B D C r

˛ .D/ consists of functions f W D ! R for which all partial derivatives of
order up to r exist and satisfy Hölder condition with exponent ˛, where 0 � ˛ < 1.
That is, for any multi-index r D .r1; : : : ; rd / with jrj D r1 C : : :C rd � r we have

jf .r/.t1/� f .r/.t2/j � kt1 � t2k˛1; for all t1; t2 2 D:

The class � of permissible functionals consists of standard function evaluations,
i.e., L 2 � iff it is of the form

L.f / D f .t/ 8f 2 B

for some t 2 D.
In the sequel, we write a."/ � b."/ iff there exist "0 > 0 and 0 < c1 � c2 <1

such that
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c1 b."/ � a."/ � c2 b."/; 8 " 2 .0; "0�:

For exact information the problem was analyzed, e.g., in [15] and [7]. In the

deterministic setting, the "-complexity is proportional to "�
�

d
rC˛

	

, and is achieved
by cubatures Qn.f / D Int.Pf / where Pf is the piecewise polynomial of degree
.r � 1/ with respect to each coordinate that interpolates f on the uniform grid.
In the randomized (Monte Carlo) setting, the "-complexity is proportional to

"
�
�

d
rC˛Cd=2

�

, and it is achieved by QQn.f / D Int.Pf /CMCn.f �Pf /where MCn

is the classical Monte Carlo. In particular, optimal algorithms are nonadaptive. We
now generalize these results to noisy information.

Consider first the bounded noise, so that

jyj � f .tj /j � ıj for all j:

Theorem 10. Let the cost function

c.ı/ � ı�s:

For integration in the Hölder class B D C r
˛ .D/ we have

compw�w
B .IntI "/ � compw�w

B .IntI "/ � "
�
�

d
rC˛Cs

	

:

Proof. The upper bound is easily obtained by nonadaptive algorithms that are
optimal for exact information. That is, for given ", let n � "�d=.rC˛/ andQn.f / DPn

jD1 aj f .tj / be the cubature that is based on piecewise polynomial interpolation
on the uniform grid, for which the worst case error for exact information is at most
"=2. Then

Pn
jD1 jaj j � A1 for some A1 independent of n, as shown in [28]. Taking

the error of Qn for information with noise bounded by ı we obtain

ˇ
ˇ
ˇ
Z

D

f .t/ dt�
nX

jD1
aj .f .tj /C xj /

ˇ
ˇ
ˇ �

ˇ
ˇ
ˇ
Z

D

f .t/ dt�
nX

jD1
aj f .tj /

ˇ
ˇ
ˇC ı

nX

jD1
jaj j

� "
2
C ı A1:

For ı D "=.2A1/ the error is at most ", and the cost is proportional to n c.ı/ D
"
�
�

d
rC˛Cs

	

, as claimed.
To show the lower bound, we reduce the original problem to a simpler one (with

respect to complexity). We choose a “bump” function 2 C r
˛ .R

d / that is supported
on the cube D, with both, a D k k1 and b D R

D
 .x/dx being positive. Given

h D 1=m, for all md multi-indices i D .i1; : : : ; id /, 0 � ij � m � 1, 1 � j � d ,
define the functions
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 h;i.x/ D hrC˛ 
�x � xi

h

	
;

where xi D .i1h; : : : ; idh/. The  h;i are all in C r
˛ .D/ and have mutually disjoint

supports, each on a cube of edge length h. Define the function class

Bh D
n
f D

X

i

ai i W jaij � 1 8 i
o
:

Since Bh � B , the integration problem over B is not easier than the integration
problem over Bh. Noting that k h;ik1 D ahrC˛ and that

Z

D

f .t/dt D
�
b

a

�
hd

 
X

i

ai.ahrC˛/
!

8f 2 Bh;

we conclude that the latter problem is not easier than the following problem.
(AP) For k D h�d , ˇ D .b=a/hd , and � D ahrC˛, approximate the sum

ˇ �
kX

iD1
vi

of a vector v D .v1; v2; : : : ; vk/ from the ball
˚
v 2 R

k W jvj j � �; 1 � j � k
�
:

Available information functionals are noisy evaluations of the coefficients of v.
We bound from below the complexity of (AP) for a special choice of ". In view

of Theorem 8 we can restrict ourselves to nonadaptive approximations only. Since
repetitive observations do not help, and observations with precisions ı � � are
useless, we can also assume that each coefficient is observed at most once with
precision at most � . Suppose without loss of generality that we observe the first n
coefficients where n � k. Then the optimal approximation is

'.y1; : : : ; yn/ D Œy1; : : : ; yn; 0; : : : ; 0„ ƒ‚ …
k�n

�

and its error equals ˇ
��Pn

iD1 ıi
�C .k � n/�

	
.

Suppose now that " D �ˇk=4 � hrC˛: Then for the error to be at most ", there

must be at least k=2 � "
�
�

d
rC˛

�

indices i with ıi � �=2 � ". This yields that the

cost is at least proportional to k c."/ � "
�
�

d
rC˛Cs

	

, as desired. Since " ! 0C as
h! 0C, the proof is complete. ut

We now consider Gaussian noise,

.yj � f .tj // � N .0; �2j /:
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Theorem 11. Let the cost function satisfy

1 � c.�/ � ��s ; where s > 0:

For integration in the Hölder class B D C r
˛ .D/ we have:

(i) For nonadaptive approximations

compw�a
B .IntI "/ �

8
ˆ̂
<

ˆ̂
:

"�2; d � 2.r C ˛/; s � 2;
"
�
�

d
rC˛

�
1� s

2

	
Cs
	

; d � 2.r C ˛/; 0 < s < 2;

"
�
�

d
rC˛

	

; d > 2.r C ˛/;

(ii) For adaptive approximations

compw�a
B .IntI "/ � compran

B .IntI "/ �
(
"�2; s � 2;
"
�
�

d
rC˛Cd=2

�
1� s

2

	
Cs
	

; 0 < s < 2:

Proof. We first show (i). Since we restrict ourselves to only nonadaptive approxi-
mations, the problem, by Theorem 5, is equivalent to the same problem, but with
noise x bounded in the Hilbert norm, so that

nX

jD1
jxj j2=ı2j � 1: (18)

Then the upper bounds can be obtained as in the proof of Theorem 10. That is, take
the cubatureQn.f / DPn

jD1 aj f .tj / with error for exact information at most "=2.
Now

Pn
jD1 jaj j2 � A2=n for some A2 independent of n. Hence for ıj D ı such

that ın�1=2 D "A�1=22 =2 we have

ˇ̌
ˇ
Z

D

f .t/dt �
nX

jD1
aj .f .tj /C xj /

ˇ̌
ˇ � "

2
C

nX

jD1
jaj xj j � "

2
C ıA

1=2
2p
n
� ":

The upper bounds are achieved by taking

ı � 1 and n � "�2 for d � 2.r C ˛/; s � 2;

ı � "
�
1� d

rC˛
�

and n � "�
�

d
rC˛

�

for d � 2.r C ˛/; 0 � s < 2;

ı � 1 and n � "�
�

d
rC˛

	

for d > 2.r C ˛/:

The lower bound in case d > 2.rC˛/ follows from the general property that the
complexity for nonadaptive approximations with noisy information is not smaller
than the complexity for exact information, see Lemma 1 in [28]. To show the lower
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bound "�2 for s � 2, it suffices to consider integration of constant functions f and
note that, by convexity of the function t 7! t s=2, the best strategy is to use repetitive
observations with ı � 1.

To show the remaining lower bound, we proceed as in the corresponding part of
the proof of Theorem 10 and arrive at the problem (AP) with noise (18). Assume for
simplicity that the cost c.ı/ D .1Cı�2/s=2. Then repetitive observations do not help.
Indeed, suppose that a coefficient is observed ` times with precisions ı1; : : : ; ı`. In
terms of the error, this is equivalent to just one observation with precision ı D
�P`

jD1 ı�2j
��1=2

. Comparing the costs in both situations we have

X̀

iD1
c.ıi / D

X̀

iD1
.1C ı�2i /s=2 �

�X̀

iD1
.1C ı�2i /

�s=2
�
�
1C

X̀

iD1
ı�2i

�s=2
D c.ı/

where we used the fact that the function t 7! t s=2 is concave for s < 2.
Thus we can restrict ourselves to at most one observation for each coordinate.

Suppose we observe v1; : : : ; vn with precisions ı1 � � � � � ın. Then the radius of
the corresponding noisy information can be expressed as

ˇ �max
n kX

iD1
vi W jvi j � �;

nX

iD1
v2i ı
�2
i � 1

o
:

Since we can reduce the error by neglecting a given observation and increasing the

precisions of the previous observations, we may assume that ı2n � �
�Pn

jD1 ı2j
�1=2

.
Then this radius equals

ˇ
�� nX

jD1
ı2j
�1=2 C .k � n/�

	
:

Since the function t 7! .1C t/s=2 is concave, we can replace those n observations
with different precisions ıi by n observations with the same precision ı2 D
.
Pn

jD1 ı2j /=n obtaining information with the same radius and smaller cost. We
arrive at the conclusion that to find the complexity of (AP) we have to minimize
n c.ı/ under the conditions that ı � �pn and

p
n ı C .k � n/� � "

ˇ
:

Now, take " D �ˇk=2. Then n � k=2 � "
�
�

d
rC˛

	

and ı � pk�ˇ=2 � "
1� d

2.rC˛/ ,
so that the "-complexity is at least

1

2
k.1C ı�2/s=2 � "�

�
d

rC˛

�
1� s

2

	
Cs
	



Noisy Information: Optimality, Complexity, Tractability 201

as claimed. This obviously holds for any cost function satisfying 1 � c.ı/ � ı�s .
We now show (ii). The upper bound is obtained by applying the optimal

randomized algorithm QQn with the squared error at most "2=2 for exact information.
Its coefficients aj satisfy

P2n
jD1 jaj j2 � A3=n for someA3 independent of n. Taking

the noise level �j D � such that �2=n � "2=.2A3/, the squared expected error for
any f 2 B can be bounded as

E

� Z

D

f .t/dt �
2nX

jD1
aj f .tj /

	2 C �2
� 2nX

jD1
jaj j2

	
� "2

2
C �2A3

n
� "2:

For the case s � 2, we take �2 � 1 and n � "�2, whereas in the case s < 2 we take

�2 � "
�
2� d

rC˛Cd=2
�

and n � "�
�

d
rC˛Cd=2

�

.
The lower bound for s � 2 can be obtained by switching from the worst case

to the average case with a normal distribution of variance  placed on the constant
functions. Then adaption and randomization do not help, see Sect. 4.3.1, and the
best strategy is to use repetitive observations with variance �2 � 1.

For s < 2, we use another averaging argument. The complexity can be bounded
from below by the average case complexity of the problem (AP) with Gaussian
noise, and with respect to a probability measure

� D � � � � � � �
„ ƒ‚ …

k

where � is placed on Œ��; ��. We then have that the optimal ' is of the form '.y/ DPk
jD1 'j .y/ where 'j is the optimal average case approximation of vj . Moreover,

'j uses only those yi that come from observations of vj . This yields that the squared
average error of ' equals

err2 D ˇ2 �
Z �

��
� � �
Z �

��„ ƒ‚ …
k

0

@
Z

Y

ˇ̌
ˇ

kX

jD1
ˇvj � 'j .y/

ˇ̌
ˇ
2

�v.dy/

1

A�.dv1/ � � ��.dvk/

D ˇ2 �
kX

jD1

Z

Y

�Z �

��

ˇ̌
ˇvj � 'j .y/

ˇ̌2
�.dvj jy/

�
�1.dy/

D
kX

jD1
err2j ;

where

err2j D ˇ2 �
�Z �

��

ˇ
ˇˇvj � 'j .y/

ˇ
ˇ2 �.dvj jy/

�
�1.dy/:
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Here �1 is the (total) distribution of y on Y and �.�jy/ is the conditional distribution
of vj given information y. Let costi .y/ be the cost of all those yi that come from
observations of vi . Then the average (total) cost can be expressed as

kX

jD1

Z

Y

�Z �

��
costi .y/ �.dvj jy/

�
�1.dy/:

Thus the error and cost are separated with respect to the successive coordinates vj .
We now specify � by putting equal mass 1=2 on ˙� , and suppose that err2 �

"2 D �2ˇ2k=4. Then for at least k=2 indices j we have err2j � �2ˇ2=2. Since
the initial squared error with respect to � is �2ˇ2k, the cost of observing vi must
be at least proportional to ��s . Indeed, suppose that a parameter v 2 f�1; 1g is
approximated with the average squared error 1=2 at cost K using observations with
precisions �i D �i .y1; : : : ; yi�1/. By a simple change of variables, one can see that
this is equivalent to approximating v 2 f��; �g with the squared error �2=2 at cost
proportional to K��s using observations with

Q�i .y1; : : : ; yi�1/ D � � �i
�y1
�
; : : : ;

yi�1
�

	
:

Finally, the cost of approximating v with error " is at least proportional to

k��s � "�
�

d
rC˛Cd=2

�

"
�
�

s.rC˛/
rC˛Cd=2

�

D "�
�

d
rC˛Cd=2

�
1� s

2

	
Cs
�

as claimed. The proof is complete. ut
Note the difference between the bounded and Gaussian noise. Integration

with bounded noise is always more difficult than without noise, and nonadaptive
approximations are optimal. In the presence of Gaussian noise the situation is more
complicated. Nonadaptive approximations are optimal only for d � 2.r C ˛/ and
s � 2, and for d > 2.r C ˛/ the complexity is of the same order as for exact
information. Adaptive approximations (that are equivalent to randomized ones) are
significantly better for s 2 .0; 2/;

We also note the assumption c.�/ � 1 in case of random noise. Apart from the
fact that it is quite natural, it is also necessary to avoid possibility of reducing the
error to an arbitrarily small level by repetitive observations with large variance �2.
This would happen when, e.g., c.�/ D ��s with s > 2.

4.3 Average Case Complexity

We consider the average case setting with respect to a Gaussian measure � whose
mean element is zero and a covariance operator C� W F � ! G, and with
information contaminated by Gaussian noise. Then the "-complexity, compa�a

� .S I "/,
is defined by (17) with
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costa�a
� .N/ D

Z

F

Z

Y

cost.NI y/ �f .dy/�.df /

D
Z

Y

cost.NI y/ �1.dy/;

where �1 is the total distribution of y on Y .

4.3.1 Adaption Versus Nonadaption

The results on adaption versus nonadaption in the average case setting for exact
information are presented in [37], see also Sect. 5.6 in Chap. 6 of [34]. They were
generalized to noisy information in [23, 26], and also in Sects. 3.7.2 and 3.9.1 in
[29]. One of the results is as follows.

Theorem 12. Suppose that compa�a
� .S Ip"/ is a semiconvex function of ", i.e.,

there exist "0 > 0, ˛ > 0, ˇ � ˛, and a convex function  W Œ0;1/! Œ0;1� such
that

˛ �  ."/ � compa�a
� .S Ip"/ 8 " � 0;

and

compa�a
� .S Ip"/ � ˇ �  ."/ 8 " 2 Œ0; "0�:

Then

compa�a
� .S I "/ �

�
˛

ˇ

�
� compa�a

� .S I "/ 8" 2 Œ0; "0�:

This theorem is applicable to many problems, including the one presented in
Sect. 4.3.2. Examples of problems for which adaption significantly helps in the
average case are given in [24].

4.3.2 Complexity of Approximation with � D �all

As an example, we now present complexity results for an approximation problem,
S D App. This section is based on Sect. 3.10.1 in [29], see also [23,26,30] for some
other results.

Specifically, we want to approximate elements f 2 F with error measured in
the norm k � k D ph�; �i of a Hilbert space G such that the embedding S W F ! G

is continuous. We assume that the class of permissible information functionals is
defined as

� D �all D
n
L 2 F � W kLk2� D

Z

F

L2.f / �.df / � 1
o
:
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Note that the restriction to functionals with uniformly bounded norm is necessary
since we could otherwise observe functionals L with arbitrary �-norm at constant
cost, and this would lead to almost exact information.

Let S� W G ! F � be the adjoint operator to the embedding S , i.e., .S�g/.f / D
hf; gi 8 f 2 F . Then S C�S� W G ! G is a linear operator with finite trace.
Denote by

1 � 2 � � � � � n � : : : � 0

its eigenvalues, and by �i the corresponding orthonormal eigenelements. Finally, let

Ki D �1=2i S��i ; i � 1;

where we put Ki D 0 if i D 0. Note that kKik� D 1 8i .
Let R.T / be the minimal error of algorithms that use nonadaptive information

with cost at most T . For exact information we have R.T /2 D P1
jDnC1 j

where n D bT c, and optimal information consists of observations of Ki for
i D 1; 2; : : : ; n. For the noisy case, we have the following formulas.

Suppose that the cost function c.�/ D .1C ��2/s=2. Then, assuming that

lim inf
n!1

1

n

nX

jD1

 

1=2
j


1=2
n

� 1
!

> 0;

(which holds, e.g., if j � j�p for some p > 1), we find that the "-complexity for
s > 2 is of the same order as the "-complexity for s D 2.

For s � 2 we have the following exact formulas:

R.T /2 D
�
1

T

�2=s  nX

iD1
ri

!1=r
C

1X

jDnC1
j

where r D s=.s C 2/ and n D n.T / is the largest integer satisfying

 

1C
n�1X

iD1

ri
rn

!1=r

�
 
n�1X

iD1

ri
rn

!1=r

� T 2=s :

Furthermore, R.T / is attained by observing the functionals K1; : : : ; Kn with
variances

�2i D
0

@2=.2Cs/i

 
T

Pn
jD1 rj

!2=s
� 1

1

A

�1

; 1 � i � n:
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Knowing R.T /2, we can check whether compa�a
� .AppIp"/ is a convex function

of ". To be more concrete, we present the following result.

Theorem 13. Let the eigenvalues

j �
�

lnq j

j

�p

where p > 1 and q � 0: Consider the cost function

1 � c.�/ � ��s :

Then, for the average case approximation we have

compa�a
� .AppI "/ �

8
ˆ̂
<

ˆ̂
:

�
1
"

�Ns
; .p � 1/Ns > 2;

�
1
"

� 2
p�1 �ln 1

"

� .qC1/p
p�1 ; .p � 1/Ns D 2;

�
1
"

� 2
p�1 �ln 1

"

� q p
p�1 ; 0 � .p � 1/Ns < 2;

where Ns D min.2; s/.

It seems surprising that the complexity behaves roughly in only two different
ways. If p < 1C 2=Ns (the problem is ‘difficult’) then noise does not influence the
exponent of "�1, and if p > 1C 2=Ns (the problem is ‘easy’) then the complexity is
proportional to "�Ns .

For instance, consider the L2-approximation with respect to the r-folded Wiener
sheet measure placed on the space C r;r;:::;r

0 .Œ0; 1�d / of functions f W Œ0; 1�d ! R

that are r times continuously differentiable with respect to all variables, and the
derivative f .j1;j2;:::;jd /.x1; x2; : : : ; xd / D 0 whenever at least one xj is zero. From

[21] we know that j �
�

lnd�1 j

j

	2rC2
. Therefore, for Ns > 1=.r C 1=2/ the "-

complexity is proportional to "�Ns , and for Ns < 1=.r C 1=2/ we have

compa�a
� .AppI "/ �

�
1

"

� 1
rC1=2 �

ln
1

"

� .d�1/.rC1/
rC1=2

:

5 Tractability

Although a systematic study of tractability of multivariate problems was initiated
only in 1994 in [39], there already exists a rich literature on the subject. The main
reference is now the three-volume monograph [17–19]. Unfortunately (and fortu-
nately for the author), all those results treat only exact information. In this section,
we give some sample results on tractability of problems with noisy information.
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5.1 Polynomial Tractability

There are many different notions of tractability. We concentrate on polynomial
tractability. Let

Sd W Fd ! Gd

be a problem parameterized by d D 1; 2; : : :, where the spaces Fd consist of
functions of d variables. We say that, in a given setting, the problem is polynomially
tractable iff there exist nonnegative C , p, q such that the inequality

compsett .Sd I "ed / � C � dq � "�p

holds for all d and " 2 .0; 1/. Here ed is the initial error, i.e., the minimal error that
can be achieved from zero information.

The choice of the cost function is now a more delicate question since it should
depend not only on the precision, but also on the dimension. We do not want to start
here a discussion on this. We only notice that for polynomial tractability the cost
should depend at most polynomially on d . For instance,

c.d; x/ D d t .1C x�1/s for some s; t � 0;

where x stands for ı in case of bounded noise, and for � in case of random noise.

5.1.1 Worst Case Integration in Hölder Classes

Consider first the integration problem in Hölder classes of Sect. 4.2.2. In case of
information with bounded noise the problem is not polynomially tractable, since
the exponent

�
d
rC˛ C s

�
at "�1 in the complexity formula of Theorem 10 grows to

infinity as d ! 1. This is not any surprise since problems with bounded noise
are never easier than problems with no noise. Actually we know from [8] that the
problem is intractable, i.e., for a fixed ", the complexity grows exponentially fast
with d !1.

The situation is different for information with Gaussian noise. Recall that in this
case adaptive deterministic algorithms are equivalent to randomized algorithms.
Using classical Monte Carlo for f with n noisy observations of fixed variance
�2 D 1 we easily obtain the (sharp) upper bound

p
2=n for the error. On the

other hand, the exponent at "�1 of Theorem 11 equals d
rC˛Cd=2

�
1 � Ns

2

� C Ns where
Ns D min.s; 2/, which approaches 2 as d !1. Thus we have the following result.

Theorem 14. Consider the worst case integration in Hölder classes B D
C r
˛ .Œ0; 1�

d / with the cost function satisfying 1 � c.d; x/ � d t x�s . The problem
is:
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(i) Not polynomially tractable for bounded noise,
(ii) Polynomially tractable for Gaussian noise, and the exponents are

p D 2 and q D t

5.1.2 Average Case Approximation with � D �all

As a second example, we consider the approximation problem of Sect. 4.3.2. It is
clear that if this problem with exact information is not polynomially tractable then
it is not polynomially tractable for information with Gaussian noise. The converse
is less obvious.

Theorem 15. Consider the average case approximation problem with Gaussian
noise, � D �all, and the cost function 1 � c.d; �/ � d t ��s . If the problem
is polynomially tractable for exact information (s D 0) with the exponents p and
q, then the problem is polynomially tractable for information with Gaussian noise
.s > 0/, and the exponents are correspondingly

8
<

:

p0 D Ns; q0 D Ns q=p for Ns > p;
p0 D p+; q0 D q+ for Ns D p;
p0 D p; q0 D q for Ns < p;

where Ns D min.2; s/, and p+ and q+ denote any numbers larger than p and q,
respectively.

Proof. Let d;1 � d;2 � : : : denote the eigenvalues of SdC�S�d . Then e2d DP1
jD1 d;j and

n.d; "/ D min
n
n � 0 W

1X

jDnC1
d;j � "2e2d

o

is the minimal number of functional evaluations that allow us to reduce the initial
error by a factor of " for exact information. Polynomial tractability yields n D
n.d; "/ � C dq�t "�p or, equivalently,

1X

jDnC1
d;j � "2e2d � C2=pd2.q�t /=pn�2=pe2d :

Since the monotonicity of d;j implies that nd;2n �P1jDnC1 d;j , the eigenvalues
can be bounded as

d;n � C1e
2
dd

2.q�t /=pn�.1C2=p/
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where C1 is independent of d , ", and n. To complete the proof, it is now enough
to apply Theorem 13 with j � j�.1C2=p/ and " replaced by "d�.q�t /=p, and to
multiply the result by d t . ut

We add that the general conditions on fd;j g for polynomial tractability of the
problem in case of exact information are given in Sect. 6.1 of [17].

Finally, we note that the L2-approximation with r-folded Wiener sheet measure
from Sect. 5.1.2 is not polynomially tractable, because of the ‘bad’ dependence
of the eigenvalues d;j on d . Actually, the problem is intractable, as shown in
Sect. 3.2.3 of [17].
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Quasi-Monte Carlo Image Synthesis
in a Nutshell

Alexander Keller

Abstract This self-contained tutorial surveys the state of the art in quasi-Monte
Carlo rendering algorithms as used for image synthesis in the product design and
movie industry. Based on the number theoretic constructions of low discrepancy
sequences, it explains techniques to generate light transport paths to connect
cameras and light sources. Summing up their contributions on the image plane
results in a consistent numerical algorithm, which due to the superior uniformity
of low discrepancy sequences often converges faster than its (pseudo-) random
counterparts. In addition, its deterministic nature allows for simple and efficient
parallelization while guaranteeing exact reproducibility. The underlying techniques
of parallel quasi-Monte Carlo integro-approximation, the high speed generation of
quasi-Monte Carlo points, treating weak singularities in a robust way, and high
performance ray tracing have many applications outside computer graphics, too.

1 Introduction

“One look is worth a thousand words” characterizes best the expressive power of
images. Being able to visualize a product in a way that cannot be distinguished
from a real photograph before realization can greatly help to win an audience. As
ubiquitous in many movies, a sequence of such images can tell whole stories in a
captive and convincing way. As a consequence of the growing demand and benefit
of synthetic images, a substantial amount of research has been dedicated to finding
more efficient rendering algorithms.

The achievable degree of realism depends on the physical correctness of the
model and the consistency of the simulation algorithms. While modeling is beyond
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the focus of this tutorial, we review the fundamentals in Sect. 2. The paradigm of
consistency is discussed in the next Sect. 1.1 as it is key to the quasi-Monte Carlo
techniques in Sect. 3 that are at the heart of the deterministic rendering algorithms
explored in Sect. 4.

On a historical note, the investigation of quasi-Monte Carlo methods in computer
graphics goes back to Shirley [69] and Niederreiter [54], and received early
industrial attention [60]. This comprehensive tutorial surveys the state of the art,
includes new results, and is applicable far beyond computer graphics, as for example
in financial mathematics and general radiation transport simulation.

1.1 Why Consistency Matters Most

Analytic solutions in light transport simulation are only available for problems
too simple to be of practical relevance, although some of these settings are useful
in understanding and testing algorithms [31]. In practical applications, functions
are high-dimensional and contain discontinuities that cannot be located efficiently.
Therefore approximate solutions are computed using numerical algorithms. In the
following paragraphs, we clarify the most important notions, as they are often
confused, especially in marketing.

1.1.1 Consistency

Numerical algorithms, whose approximation error vanishes as the sample size
increases, are called consistent. Note that consistency is not a statement with respect
to the speed of convergence. Within computer graphics, consistency guarantees
image synthesis without persistent artifacts such as discretization artifacts intro-
duced by a rendering algorithm; the results are consistent with the input model and
in that sense the notion of consistency is understandable without any mathematical
background. While many commercial implementations of rendering algorithms
required expert knowledge to tweak a big set of parameters until artifacts due to
intermediate approximations become invisible, the design of many recent rendering
algorithms follows the paradigm of consistency. As a result, users can concentrate
on content creation, because light transport simulation has become as simple as
pushing the “render”-button in an application.

1.1.2 Unbiased Monte Carlo Algorithms

The bias of an algorithm using random numbers is the difference between the
mathematical object and the expectation of the estimator of the mathematical
object to be approximated. If this difference is zero, the algorithm is called
unbiased. However, this property alone is not sufficient, because an estimator can
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be unbiased but not consistent, thus even lacking convergence. In addition, biased
but consistent algorithms can handle problems that unbiased algorithms cannot
handle: For example, density estimation allows for efficiently handling the problem
of “insufficient techniques” (for the details see Sect. 4.4.1).

The theory of many unbiased Monte Carlo algorithms is based on independent
random sampling, which is used at the core of many proofs in probability theory
and allows for simple parallelization and for estimating the variance as a measure
of error.

1.1.3 Physically Based Modeling

Physically based modeling subsumes the creation of input for image synthesis
algorithms, where physical entities such as measured data for light sources and
optical properties of matter or analytic models thereof are used for the input
specification. Modeling with such entities and relying on consistent light transport
simulation to many users is much more natural as compared to tweaking lights and
materials in order to deliver photorealistic results.

Although often confused in computer graphics, physically correct rendering is
not equivalent to unbiased Monte Carlo algorithms: Even non-photorealistic images
can be rendered using unbiased Monte Carlo algorithms. In addition, so far none of
the physically based algorithms can claim to comply with all the laws of physics,
because they are simply not able to efficiently simulate all effects of light transport
and therefore cannot be physically correct.

1.1.4 Deterministic Consistent Numerical Algorithms

While independence and unpredictability characterize random numbers, these prop-
erties often are undesirable for computer simulations: Independence compromises
the speed of convergence and unpredictability disallows the exact repetition of
a computer simulation. Mimicking random numbers by pseudo-random numbers
generated by deterministic algorithms, computations become exactly repeatable,
however, arbitrarily jumping ahead in such sequences as required in scalable
parallelization often is inefficient due to the goal of emulating unpredictability.

In fact, deterministic algorithms can produce samples that approximate a given
distribution much better than random numbers can. By their deterministic nature,
such samples must be correlated and predictable. The lack of independence is not
an issue, because independence is not visible in an average anyhow and consistency
can be shown using number theoretic arguments instead of probabilistic ones. In
addition, partitioning such sets of samples and leaping in such sequences of samples
can be highly efficient.

As it will be shown throughout the article, advantages of such deterministic
consistent numerical algorithms are improved convergence, exact reproducibility,
and simple communication-avoiding parallelization. Besides rendering physically
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Fig. 1 Illustration of the difference between unbiased and deterministic consistent uniform
sampling: The top row shows four independent sets of 18 points each and their union as generated
by a pseudo-random number generator. The middle row shows independent realizations of so-
called stratified samples with their union that result from uniformly partitioning the domain and
independently sampling inside each resulting interval in order to increase uniformity. However,
points can come arbitrarily close together along interval boundaries and there is no guarantee
for their union to improve upon uniformity. The bottom row shows the union of four contiguous
blocks of 18 points of the Halton sequence. As opposed to the pseudorandom number generator
and stratified sampling, the samples of the Halton sequence are more uniform, nicely complement
each other in the union, and provide a guaranteed minimum distance and intrinsic stratification
along the sequence.

based models, these methods also apply to rendering non-physical models that
often are chosen to access artistic freedom or to speed up the rendering process.
The illustration in Fig. 1 provides some initial intuition of the concepts and facts
discussed in this section.

2 Principles of Light Transport Simulation

Implementing the process of taking a photo on a computer involves the simulation of
light transport. This in turn requires a mathematical model of the world: A boundary
representation with attached optical properties describes the surfaces of the objects
to be visualized. Such a model may be augmented by the optical properties of
volumes, spectral properties, consideration of interference, and many more physical
phenomena. Once the optical properties of the camera system and the light sources
are provided, the problem specification is complete.
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P

Le

Camera

Fig. 2 Bidirectional generation of light transport paths: A path segment started from the camera
and a path segment started from a light source Le can be connected by a shadow ray (dotted line,
see Sect. 4.4.2), which checks whether the vertices to connect are mutually visible. Alternatively,
the basic idea of photon mapping (see Sect. 4.4.1) is to relax the precise visibility check by allowing
for a connection of both path segments if their end points are sufficiently close as indicated by the
dashed circle. Both techniques are illustrated for identical path length, which is the reason for the
dashed prolongation of the light path segment for photon mapping.

The principles of light transport simulation are well covered in classic textbooks
on computer graphics: Currently, [66] is the most updated standard reference, [16]
is a classic reference available for free on the internet, and [70] can be considered
a primer and kick start. Recent research is well surveyed in [6, 22, 82] along with
profound investigations of numerical algorithms and their issues.

2.1 Light Transport Along Paths

Light transport simulation consists of identifying all paths that connect cameras and
light sources and integrating their contribution to form the synthetic image. Figure 2
illustrates the principles of exploring path space.

One way of generating light transport paths is to follow the trajectories of photons
emitted from the light sources along straight line segments between the interactions
with matter. However, no computational device can simulate a number of photons
sufficiently large to represent reality and hence the direct simulation often is not
efficient.

When applicable, light transport paths can be reversed due to the Helmholtz
reciprocity principle and trajectories can be traced starting from the camera sensor
or eye. Most efficient algorithms connect such camera and light path segments and
therefore are called bidirectional.

Vertices of paths can be connected by checking their mutual visibility with
respect to a straight line or by checking their mutual distance with respect to a
suitable metric. While checking the mutual visibility is precise, it does not allow
for efficiently simulating some important contributions of light caused by surfaces
that are highly specular and/or transmissive, which is known as the problem of
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insufficient techniques [42]. In such cases, connecting paths by merging two
vertices that are sufficiently close helps. The resulting bias can be controlled by
the maximum distance allowed for merging vertices.

The interactions with matter need to be modeled: Bidirectional scattering
distribution functions (BSDFs) describe the properties of optical interfaces, while
scattering and absorption cross sections determine when to scatter in volume using
the distribution given by a phase function [66]. Similarly, the optical properties
of the light sources and sensors have to be mathematically modeled. For cameras,
models range from a simple pinhole to complete lenses allowing for the simulation
of depth of field and motion blur. Light sources often are characterized by so-called
light profiles. All these physical properties can be provided in measured form, too,
which in many cases provides quality superior to the current analytic models.

Beyond that, optical properties can be modeled as functions of wavelength across
the spectrum of light in order to overcome the restriction of the common approach
using only three selected wavelengths to represent red, green, and blue and to
enable dispersion and fluorescence. The simulation of effects due to polarization
and the wave character of light are possible to a certain extent, however, are subject
to active research.

While modeling with real entities is very intuitive, it must be noted that certain
violations of physics can greatly help the efficiency of rendering and/or help telling
stories at the cost of systematic errors.

2.2 Accelerated Ray Tracing and Visibility

The boundary of the scene often is stored as a directed acyclic graph, which
allows for referencing parts of the scene multiple times to instance them at
multiple positions in favor of a compact representation. Complex geometry like
for example hair, fur, foliage, or crowds often are generated procedurally, in which
case the call graph implicitly represents the scene graph. Triangles, quadrangles, or
multi-resolution surfaces, which include subdivision surfaces, are the most common
geometric primitives used for boundary representation.

The vertices of a light transport path are connected by straight line segments.
First, these can be found by tracing rays from a point x into a direction ! to identify
the closest point of intersection h.x; !/ with the scene boundary. A second way to
construct paths is to connect two vertices x and y of two different path segments.
This can be accomplished by checking the mutual visibility V.x; y/, which is zero
if the straight line of sight between the points x and y, a so-called shadow ray, is
occluded, one otherwise. As a third operation, two vertices can be merged, if their
distance with respect to a metric is less than a threshold. Efficient implementations
of the three operations all are based on hierarchal culling (see [35, 39] for a very
basic primer).

In order to accelerate ray tracing, the list of objects and/or space are recursively
partitioned. Given a ray to be traced, traversal is started from the root node
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descending into a subtree, whenever the ray intersects this part of the scene. Most
parts of the scene thus are hierarchically culled and never touched. In case the cost
of the construction of such an auxiliary acceleration hierarchy can be amortized over
tracing many paths, it makes sense to store it partially or completely. Checking the
mutual visibility by a shadow ray is even more efficient, since the traversal can be
stopped upon any intersection with the boundary, while tracing a ray requires to find
the intersection closest to its origin.

Efficiently merging vertices follows the same principle of hierarchical culling
[35]: Given two sets of points in space, the points of the one set that are at a
maximum given distance from the points of the other set are found by hierarchically
subdividing space and pruning the search for partitions of space that cannot overlap
within the given distance.

3 Principles of Quasi-Monte Carlo Integro-Approximation

Image synthesis can be considered an integro-approximation problem of the form

g.y/ WD
Z

X

f .x; y/d�.x/ D lim
n!1

1

n

n�1X

iD0
f .xi ; y/; (1)

where f .x; y/ is the measurement contribution to a location y by a light transport
path identified by x. We will focus on deterministic linear algorithms [78] to
consistently determine the whole image function g for all pixels y using one low
discrepancy sequence xi of deterministic sample points. The principles of such
quasi-Monte Carlo methods have been introduced to a wide audience in [55],
which started a series of MCQMC conferences, whose proceedings contain almost
all recent developments in quasi-Monte Carlo methods. Many of the results and
developments are summarized in recent books [10, 49, 72].

Before reviewing the algorithms to generate low discrepancy sequences in
Sect. 3.3 and techniques resulting from their number theoretic construction in
Sect. 3.4, error bounds are discussed with respect to measures of uniformity.

3.1 Uniform Sampling, Stratification, and Discrete Density
Approximation

A common way to generate a discrete approximation of a density comprises the
creation of uniformly distributed samples that are transformed [9, 25]. For many
such transformations, an improved uniformity results in a better discrete density
approximation. Measures of uniformity often follow from proofs of error bounds
(see the next paragraph) as a result of the attempt to bound the error by a product of
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Fig. 3 Examples of .M ; �/-uniform point sets with an outline of their partition M (from left to
right): n D 8 � 8 points of a Cartesian grid, the first n D 64 points of the Sobol’ sequence, the
first n D 72 points of the Halton sequence, and the maximized minimum distance rank-1 lattice
with n D 64 points and generator vector g D .1; 28/. The hexagonal grid with n D 72 point is
shown for comparison, as it cannot tile the unit square due to its irrational basis.

properties of the sampling points and the function as used in for example Theorem 1.
For the setting of computer graphics, where X is a domain of integration, B are the
Borel sets over X , and � the Lebesgue measure, a practical measure of uniformity
is given by

Definition 1 (see [56]). Let .X;B; �/ be an arbitrary probability space and let M
be a nonempty subset of B. A point set Pn of n elements of X is called .M ; �/-
uniform if

n�1X

iD0
�M .xi / D �.M/ � n for all M 2M ;

where �M .xi / D 1 if xi 2M , zero otherwise.

Figure 3 shows examples of .M ; �/-uniform points from X D Œ0; 1/2 that
obviously can only exist if the measures �.M/ are rational numbers with the same
denominator n [56]. While the subset M may consist of the Voronoi regions of a
lattice, it also may consist of axis aligned intervals of the form given by

Definition 2 (see [56]). An interval of the form

E.p1; : : : ; ps/ WD
sY

jD1

2

4 pj

b
dj
j

;
pj C 1
b
dj
j

1

A � Œ0; 1/s

for 0 � pj < bdjj and integers bj ; dj � 0 is called an elementary interval.

As compared to the original definition in [55, p. 48], which considers the special
case of b-adic intervals, i.e. bj D b (for bj D 2, the intervals are called dyadic),
different bases bj are allowed for each dimension j to include a wider variety
of point sets [52, 56]. Representing numbers in base bj , dj can be thought of as
the number of digits and fixes the resolution in dimension j , which allows for
specifying an elementary interval by its coordinates p1; : : : ; ps .

Characterizations of uniformity beyond the stratification properties imposed by
.M ; �/-uniformity (see Fig. 3) include the maximum minimum distance
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dmin.Pn/ WD min
0�i<j<n kxj � xikT

of the points on the torus T D Œ0; 1/s [33], and their deviation from uniformity
measured by various kinds of discrepancy [55].

In many applications, uniform points are transformed to approximate a continu-
ous density. The quality of such a discrete density approximation can be judged by
the star-discrepancy

D�.p; Pn/ WD sup
ADQs

jD1Œ0;aj /
Œ0;1/s

ˇ̌
ˇ
ˇ
ˇ

Z

Œ0;1/s
�A.x/p.x/dx � 1

n

n�1X

iD0
�A.xi /

ˇ̌
ˇ
ˇ
ˇ

with respect to the density p [25]. Discrepancies can be understood as integration
errors, where the exact measure of a test set A with respect to p is compared to
the average number of points in that set. For p  1, we have the so-called star-
discrepancyD�.Pn/ WD D�.1; Pn; / [55], which is of central importance for quasi-

Monte Carlo methods: Low discrepancy point sequences haveD�.Pn/ 2 O
�

logs n
n

	
,

while uniform random numbers can only achieve an order of O

�q
log log n

n

�

manifesting the asymptotic inferiority of random sampling with respect to discrete
density approximation.

3.2 Error Bounds

Using .M ; �/-uniformity, an error bound for the integro-approximation problem in
Eq. 1 is given by

Theorem 1 (see [33]). Let .X;B; �/ be an arbitrary probability space and let
M D fM1; : : : ;Mkg be a partition of X with Mj 2 B for 1 � j � k. Then
for any .M ; �/-uniform point set P D fx1; : : : ; xng and any bounded function f ,
which restricted to X is �-integrable, we have

�
�
�
��
1

n

n�1X

iD0
f .xi ; y/�

Z

X

f .x; y/d�.x/

�
�
�
��
�

kX

jD1
�.Mj /

�
�
�
��

sup
x2Mj

f .x; y/� inf
x2Mj

f .x; y/

�
�
�
��

for any suitable norm k � k.
In analogy to the Monte Carlo case [15], the above theorem has been derived in

order to prove the convergence of quasi-Monte Carlo methods for Eq. 1 in the setting
of computer graphics, where the only properties of f that are easily accessible are
square integrability and boundedness. By omitting y, the above theorem reduces
to an error bound for quasi-Monte Carlo integration as originally developed in
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[56, Theorem 2], which improved the derivation and results obtained for Riemann
integrable functions [24].

Other than trivial worst case bounds, the theorem does not provide a rate
of convergence, which is the price for its generality. However, including more
knowledge about the functionf by restricting the function class allows one to obtain
much better error bounds along with measures of uniformity: The Koksma-Hlawka
inequality [55] bounds the error by a product of the star discrepancy of the point
set and the variation of the function in the sense of Hardy and Krause, bounds for
functions with sufficiently fast decaying Fourier coefficients are found in [72], and
the error for integrating Lipschitz functions can be bounded by a product of the
Lipschitz constant and the maximum minimum distance of a lattice of points [8].

While quasi-Monte Carlo methods allow for improved convergence rates as
compared to Monte Carlo methods, the variance of an estimate cannot be consis-
tently computed due to the lack of independence. As a compromise to this issue,
randomized quasi Monte Carlo methods [4, 62] have been introduced that sacrifice
some uniformity of the sample points in order to control adaptive termination by
unbiased variance estimation. As we focus on deterministic algorithms only, this is
not an option and we refer to a deterministic variant of termination by comparing
differences of norms of intermediate results as introduced in [65]. In computer
graphics such norms should reflect the properties of the human visual system and
often the L2-norm [11, Sect. 3.5] is appropriate to measure error.

3.3 Algorithms for Low Discrepancy Sequences

Most known constructions of low discrepancy sequences imply sequences of
.M ; �/-uniform point sets (see [56, Remark 1] and [33]) that guarantee Eq. 1 to
converge. In the following, such mappings from N0 into the s-dimensional unit
cube Œ0; 1/s are surveyed with respect to their algorithmic principles that enable the
techniques reviewed in Sect. 3.4. Note that the Weyl sequence [85] is irrational and
as such cannot fulfill the condition of .M ; �/-uniformity. It is therefore excluded
from our considerations, since most proofs, and especially computers, rely on
rational numbers.

3.3.1 Radical Inversion

A digital radical inverse

˚b;C W N0 ! Q \ Œ0; 1/

i D
M�1X

lD0
al .i/b

l 7! �
b�1 � � �b�M �

2

6
4C

0

B
@

a0.i/
:::

aM�1.i/

1

C
A

3

7
5 (2)
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in a prime power base b is computed using a generator matrix C , where the
matrix-vector multiplications are performed in the finite field Fb (for the theory and
mappings from and to Fb see [55]). While in theory these matrices are infinite-
dimensional, in practice they are finite due to the finite precision of computer
arithmetic. The inverse mapping ˚�1b;C exists, if C is regular. M is the number of
digits, which allows for generating up to N D bM points.

The time to compute digital radical inverses is far from negligible in many
applications. Efficient implementations use tables of precomputed terms [14], take
advantage of bit vector arithmetic in b D 2 [82], or enumerate the radical inverses
using the Gray-code order [67]. Cancellation errors of floating point arithmetic are
avoided by ordering summations and computing in integers as long as possible.
Note that already the conversion to floating point numbers by the multiplication
with

�
b�1 � � � b�M � causes collisions of numbers that were different in integer

representation.

Van der Corput Sequence

Selecting the identity matrix I as generator matrix results in the points ˚b.i/ WD
˚b;I .i/ D P1

lD0 al .i/b�l�1 of the van der Corput sequence, which is the simplest
radical inverse. The mapping reflects the digits al .i/ of the index i represented in
base b at the decimal point. Obviously the computation is finite, as i has only finitely
many digits al .i/ 6D 0.

For 0 � i < bm, the mapping bm˚b.i/ is a permutation and hence the
first bm points of the sequence ˚b.i/ are equidistantly spaced with a distance
of 1

bm
. Furthermore, this implies that partitioning the van der Corput sequence into

contiguous blocks of length bm, the integer parts of the points within each block
multiplied by bm must be permutations, too. Many of the techniques described in
this article rely on these properties and their generalizations.

Another interesting property of the van der Corput sequence is its intrinsic
stratification [33]: For example, ˚2.i/ < 1

2
for even i and ˚2.i/ � 1

2
otherwise.

In general,

˚b.k C l � bm/ 2 Œ˚b.k/; ˚b.k/C b�m/ for l 2 N0:

While this property is very useful, it also is the reason why pseudo-random number
generators cannot just be replaced by the van der Corput sequence (and radical
inverses in general): Already a two-dimensional vector assembled by subsequent
numbers from the van der Corput sequence is not uniformly distributed.
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3.3.2 Scrambling

Scrambling a set of points onH D Œ0; 1/ comprises the following steps:

1. Partition H into b equal intervalsH1;H2; : : : ;Hb .
2. Permute these intervals.
3. For h 2 f1; 2; : : : ; bg, recursively repeat the procedure starting out with
H D Hh.

Formalizing the scrambling of the i -th point of a sequence represented in base b as
defined in Eq. 2 yields the scrambled digits

a0i;0 WD � .a0.i//

a0i;1 WD �a0.i/ .a1.i//

:::

a0i;l WD �a0.i/;a1.i/;:::;al�1.i/ .al .i// ;

:::

where the l-th permutation �a0.i/;a1.i/;:::;al�1.i/ W f0; : : : ; b � 1g ! f0; : : : ; b � 1g
depends on the l � 1 leading digits a0.i/; a1.i/; : : : ; al�1.i/. The mapping is
bijective, because it is based on the sequential application of permutations.

While obviously this procedure becomes finite by the finite precision of com-
putation, uniformly distributed points are mapped to uniformly distributed points.
Originally, these properties combined with random permutations were introduced to
randomize uniform points sets [62,63]. However, many deterministic optimizations
of low discrepancy sequences in fact can be represented as scramblings with
deterministic permutations. Note that using a regular generator matrix C 6D I in
Eq. 2 already can be considered a deterministic scrambling of the van der Corput
sequence.

3.3.3 Halton Sequence and Hammersley Points

The Halton sequence [21]

xi D .˚b1 .i/; : : : ; ˚bs .i//

has been constructed by using one van der Corput sequence for each component,
where the bases bj are relatively prime. Replacing one of the components by i

n

results in n points that form the Hammersley point set. As compared to the Halton
sequence, where by construction subsequent points fill the largest holes in space,
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the Hammersley points are even more uniformly distributed, however, at the price
of not being extensible.

Although the Halton sequence is of low discrepancy, it has the undesirable
property that projections are not as well distributed as they could be: For example,
the first minfb1; b2g points of a two-dimensional Halton sequence .˚b1.i/; ˚b2 .i//
lie on a straight line through the origin. Similar linear alignments appear over and
over again in the sequence and the bj can be large for high dimensional projections.

Therefore many improvements of the Halton sequence have been developed. In
fact, all of them turn out to be deterministic scramblings (see Sect. 3.3.2): For exam-
ple, Zaremba [88] used the simple permutation �bj .al .i//D .al .i/C l/ mod bj
instead of directly using the digits al .i/ and later Faure [13] developed a set
of permutations generalizing and improving Zaremba’s results. A very efficient
implementation can be found at http://gruenschloss.org/halton/halton.zip. While the
modifications improve the constant of the order of discrepancy, they also improve
upon the minimum distance [33].

Whenever the number of samples n D Qs
jD1 b

nj
j is a product of power of

the bases, the Halton sequence (including all its variants) is fully stratified.

3.3.4 Digital .t; s/-Sequences and .t; m; s/-Nets

Low discrepancy sequences can also be constructed from radical inverses using the
same base bj D b. They are based on b-adic elementary intervals as covered by
Definition 2:

Definition 3 (see [55, Definition 4.1]). For integers 0 � t � m, a .t;m; s/-net in
base b is a point set of bm points in Œ0; 1/s such that there are exactly bt points in
each b-adic elementary intervalE with volume bt�m.

Definition 4 (see [55, Definition 4.2]). For an integer t � 0, a sequence x0; x1; : : :
of points in Œ0; 1/s is a .t; s/-sequence in base b if, for all integers k � 0 andm > t ,
the point set xkbm; : : : ; x.kC1/bm�1 is a .t;m; s/-net in base b.

The elementary intervals from Definition 2 use a resolution of bdj along
dimension j . For a .t;m; s/-net in base b we then have

Ps
jD1 dj D m � t , which

relates the number of points determined by m and the quality parameter t . Since
scrambling (see Sect. 3.3.2) permutes elementary intervals, it does not change the t
parameter. Similar to the Halton sequence, any .t; s/-sequence can be transformed
into a .t;m; s C 1/-net by concatenating a component i

bm
[55].

According to Definition 3, a .0; s/-sequence is a sequence of .0;m; s/-nets,
similar to what is illustrated for the Halton sequence in Fig. 1. This especially
includes .0;ms; s/-nets, where in each hypercube-shaped elementary interval of
side length b�m, there is exactly one point. As the number of points of .0;ms; s/-
nets is exponential in the dimension, this construction is only feasible in small
dimensions.

http://gruenschloss.org/halton/halton.zip
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.0; 1/-Sequences in Base b

The simplest example of a .0; 1/-sequence in base b is the van der Corput sequence.
For regular generator matrices C , the radical inverses in Eq. 2 are .0; 1/-sequences,
too, and Definition 4 guarantees all properties of the van der Corput sequence as
described above for the more general .0; 1/-sequences.

Constructions of .t; s/-Sequences for s > 1

The digital construction

xi D .˚b;C1 .i/; : : : ; ˚b;Cs .i//

of .t; s/-sequence is based on the radical inverses from Eq. 2 with identical base b
and consequently different generator matrices Cj for each coordinate j .

The most popular .t; s/-sequence is the Sobol’ sequence [73] in base b D 2,
because it can be implemented efficiently using bit-vector operations [17, 43, 82] to
compute the radical inverses. The sequence can be constructed for any dimension
and in fact each component is a .0; 1/-sequence in base 2 itself. Due to the properties
of .0; 1/-sequences, the Sobol’ sequence at n D 2m samples must be a Latin
hypercube sample [61]. Other than Latin hypercube samples based on random
permutations that would have to be stored in O.sn/ memory, the permutations
generated by the Sobol’ sequence are infinite, can be computed on demand without
storing them, and are guaranteed to be of low discrepancy. A description of how to
compute the binary generator matrices can be found in [29, 30] and one good set of
matrices can be downloaded at http://web.maths.unsw.edu.au/~fkuo/sobol/. In [75]
Sobol’ et al. introduced additional criteria for the selection of the generator matrices.

As the first two components of the Sobol’ sequence form a .0; 2/-sequence in
base 2, the first 22m two-dimensional points must be stratified such that there is
exactly one point in each voxel of a 2m � 2m regular grid over Œ0; 1/2. This structure
is very useful in image synthesis (see Sect. 4.1).

Since .0; s/-sequences can only exist for s � b [55, Corollary 4.24], Faure
[12] generalized Sobol’s construction to higher bases. Following Sobol’s idea,
each component is constructed as .0; 1/-sequence. In fact both Sobol’s and Faure’s
construction yield upper triangular generator matrices.

The construction of better generator matrices is an ongoing effort and various
approaches have been taken [26]. In fact, there exist .t;m; s/-nets, which cannot be
generated by radical inverses [18, Sect. 3]. This in connection with the observation
that scrambling often improves the uniformity properties [33] of low discrepancy
points alludes to conjecture that there are better low discrepancy sequences that are
generated by general permutations instead of only generator matrices as in Eq. 2.

http://web.maths.unsw.edu.au/~fkuo/sobol/
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3.3.5 Rank-1 Lattice Sequences and Rank-1 Lattices

For a suitable generator vector g D .g1; : : : ; gs/, rank-1 lattice sequences [23,50,51]

xi D ˚b.i/.g1; : : : ; gs/ mod 1 2 .Q \ Œ0; 1//s

provide the simplest algorithm for generating a low discrepancy sequence in s
dimensions. While in theory the components gj D P1

mD0 gj;mbm of the generator
vector are represented by infinite sequences of digits gj;m 2 f0; : : : ; b � 1g,
in practice the components can be represented by positive integers due to the
finite precision of computer arithmetic. Yet, there only exists a tiny number of
constructions for the generator vectors [3, 84] and usually good generator vectors
result from exhaustive computer searches [2]. An implementation of a variety of
such methods is described in [48].

Lattice sequences resemble .t; s/-sequences, as contiguous blocks of bm points
form lattices, where the first lattice is anchored in the origin and the subsequent
lattices are shifted copies. For gcd.gi ; bm/ D 1 rank-1 lattices are instances of
a Latin hypercube sample, which in addition provides a trivial lower bound on
the minimum distance, because the one-dimensional projections are equidistantly
spaced at 1

bm
.

By allowing only generator vectors of the form g D .a0; a1; a2; : : : ; as�1/,
Korobov restricted the search space to one integer a 2 N [72]. Note that for suitable
a and bm, the generator vector coincides with a multiplicative linear congruential
pseudo-random number generator.

Hybrid Sequences

Besides the common properties of especially the Sobol’ .t; s/-sequence and rank-1
lattice sequences in base b D 2, there even exist rank-1 lattices that are .0; 2; 2/-nets
[8, Sect. 2.1]. There is an even closer relationship as stated by

Theorem 2. Given b and gj are relatively prime, the component ˚b.i/gj mod 1
of a rank-1 lattice sequence is a .0; 1/-sequence in base b.

Proof. ˚b is a .0; 1/-sequence [55] and by Definition 4 each contiguous block
of bm points is a .0;m; 1/-net in base b. As a consequence, the integer parts of
such a .0;m; 1/-net multiplied by bm are a permutation. If now b and gj are
relatively prime, then for such a .0;m; 1/-net the integers gj bbm˚b.i/c mod bm

form a permutation, too. Hence ˚b.i/gj mod 1 is a .0; 1/-sequence in base b. ut
If now the generator matrix C is regular, a permutation exists that maps

the elements of any .0;m; 1/-net of ˚b.i/gj mod 1 to ˚b;C .i/ and consequently
˚b;C .i/ and ˚b.i/gj mod 1 are scrambled (see Sect. 3.3.2) versions of each other.

This close relationship allows one to combine components of .t; s/-sequences in
base b with components of rank-1 lattice sequences using a radical inverse in base b.
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While this is of theoretical interest [45,46], it also is of practical interest, especially
in computer graphics: Rank-1 lattice sequences are cheap to evaluate, while .t; s/-
sequences use the structure of b-adic elementary intervals [83].

3.4 Algorithms for Enumerating Low Discrepancy Sequences

The properties of radical inversion allow for enumerating low discrepancy
sequences in different ways that are very useful building blocks of quasi-
Monte Carlo methods. The enumeration schemes can be derived by equivalence
transformations of integrals.

3.4.1 Enumeration in Elementary Intervals

Both the Halton and .t; s/-sequences are stratificatied with respect to elementary
intervals (see Definition 2 and [52]). In [19] methods have been developed to
efficiently enumerate the samples in a given elementary interval: Restricting the
sequences to a given elementary interval yields a system of equations, whose
solution results in an enumeration algorithm.

As the construction of the Halton sequence is based on the Chinese remainder
theorem [21], enumerating the Halton sequence restricted to an elementary interval
requires to solve a system of congruences. The solution of this system yields the

indices iCt �Qs
jD1 b

dj
j , t 2 N0 to enumerate the Halton points in a given elementary

interval. The initial offset i is uniquely identified by that elementary interval, while
the subsequent points are found by jumping along the sequence with a stride that is
a product of the prime powers of the bases bj , where dj fixes the resolution along
dimension j .

For .t; s/-sequences, the system of linear equations is assembled by solving
Eq. 2 for each dimension j for M D dj digits, where the dj specify the size
of the elementary interval as defined in Definition 2. The righthand side of the
equation system then is given by each the first dj digits of the coordinates pj
of the elementary interval and the number q of the point to be computed. In an
implementation, the inverse system matrix can be stored and enumerating the points
of an elementary interval is as expensive as computing the points of a .t; s/-sequence
(see the code at http://gruenschloss.org/sample-enum/sample-enum-src.zip).

Typical applications of enumerating samples per elementary interval are prob-
lems, where the structure matches the stratification implied by elementary intervals.
Such problems include integro-approximation and adaptive sampling [19, 40, 59],
where the number of samples needs to be controlled per elementary interval. Enu-
merating samples per elementary interval also is a strategy for parallelization [19].

http://gruenschloss.org/sample-enum/sample-enum-src.zip
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Fig. 4 Illustration of partitioned and nested low discrepancy sequences using the first 32 points
of the Sobol’ sequence. Left: Partitioning an s C 1-dimensional low discrepancy sequence by its
first component (along the x-axis) results in each one low discrepancy sequence in s dimensions
as illustrated by the projections onto the partitioning lines parallel to the y-axis. Right: Thres-
holding the first component results in nested s-dimensional low discrepancy sequences, where
each sequence with a smaller threshold is included in a sequence with a larger threshold.

3.4.2 Partitioning Low Discrepancy Sequences

Restricting a low discrepancy sequence to an axis-aligned subinterval does not
change its order of discrepancy [55]. Similarly the order of discrepancy is not
changed by omitting dimensions, i.e. projecting the points along canonical axis.

Using a characteristic function

�j .x
0/ WD

(
1 j � x0 < j C 1
0 otherwise,

the equivalence transformation

Z

Œ0;1/s
f .x/ dx D

bm�1X

jD0

Z

Œ0;1/

Z

Œ0;1/s
�j .b

m � x0/ � f .x/ dx dx0

identifies the point set

Pj WD
˚
xi W �j .bm � xi;c/ D 1; i 2 N0

� D fxi W j � bm � xi;c < j C 1; i 2 N0g

used to integrate the j -th summand when applying one s C 1 dimensional quasi-
Monte Carlo point sequence .xi /i�0 for integral estimation, where xi;c is the c-th
component of the point xi . Enumerating the subsequences

P˚�1
b .j=bm/ D

˚
xl �bmCj W l 2 N0

�
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of a sequence partitioned along a component, which is a radical inverse, is as simple
as leaping through the sequence with a stride of bm elements and an offset j [36]. As
mentioned before, the Pj must be of low discrepancy, too. The method is illustrated
in Fig. 4, where ˚2 is used to partition the two-dimensional Sobol’ sequence.

It is important to note that the partitioning component must not be used to sample
the integrand, because computations may diverge, as explained in [36]: This extra
dimension is used to partition an s C 1-dimensional low discrepancy sequence into
bm s-dimensional low discrepancy sequences.

The main application of this scheme are communication-avoiding parallel quasi-
Monte Carlo methods: Each thread, process, or job is assigned its own subsequence.
Upon the reduction of the partial results, the ensemble of all samples forms the
original low discrepancy sequence without any intermediate communication. Even
if each thread, process, or job terminates adaptively, on the average the number of
points consumed in each thread of process will be similar due to the low discrepancy
of each of the subsequences. Due to the partitioning property the result is even
independent of the number of processing elements; parallel or sequential execution
yield identical results.

3.4.3 Nested Low Discrepancy Sequences

Similar to partitioning low discrepancy sequences, nested s-dimensional low dis-
crepancy sequences are obtained by thresholding an additional component. As
illustrated in Fig. 4, the threshold determines the fraction of samples selected from
the original sequence. The sequences are nested in the sense that sequences resulting
from a smaller threshold are always included in sequences resulting from a larger
threshold.

Nested sequences can be used in consistent algorithms, where several problems
use the samples of one sequence. Depending on the single problem, a threshold can
be selected to control what fraction of samples is consumed. Similar to the previous
section, the nested sequences can be enumerated by leaping with a stride of bm for
a threshold b�m.

3.4.4 Splitting

If a problem is less sensitive in some dimensions as compared to others, efficiency
often can be increased by concentrating samples in the more important dimensions
of the problem. Trajectory splitting is one such technique that after a certain path
length splits one particle into multiple and follows their individual trajectories as
illustrated in Fig. 5.

The principle of a very simple and efficient quasi-Monte Carlo algorithm for
trajectory splitting is based on rewriting the integral of f
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Fig. 5 Splitting can increase the efficiency by sampling the dimensions of y more than the
dimensions of x. Using one low discrepancy sequence .xi ; yi /, the dimensions of xi are enumerated
slower by a fixed factor as compared to the dimensions of yi .
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as an integral of bm copies of f with respect to the dimension t , where the
characteristic function �A.t/ is one if t 2 A and zero otherwise. Applying a low
discrepancy sequence .xi ; ti /, where the component ti is a .0; 1/-sequence generated
by an identity matrix scaled by an element from Fb n f0g, to compute the righthand
side of the equivalence transformation yields:
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In Eq. 3, the characteristic function � selects the summands with ti 2 Œ jbm ; jC1bm
/ and

therefore the index j is equal to the integer part of bmti . Since ti D ˚b.i/ is a .0; 1/-
sequence in base b as defined in Eq. 2 generated by an identity matrix scaled by an
element from Fb n f0g, the m least significant digits of i can only influence the m
most significant digits of˚b.i/. Therefore the fraction bm˚b.i/�j can be computed
by just removing them least significant digits of the index i . In fact, ˚b.bi=bmc/ D
bm˚b.i/ � j , which becomes obvious by comparing the digits of both numbers in
base b. As the term ˚b.bi=bmc// no longer does depend on j , it can be factored out
of the sum. The remaining sum of characteristic functions is always one, because
the whole unit interval is covered and ˚b.i/ 2 Œ0; 1/ D [bm�1jD0 Œ

j

bm
;
jC1
bm
/.

As a result, the implementation of the algorithm to sample one dimension at a
rate bm less than others can be as simple as shifting the index i to the right by m
digits in base b. Numerical evidence leads to the conjecture that the algorithm also
works for the component ti being generated by an upper triangular generator matrix.

Although multiple splitting along a trajectory creates exponential work, the
splitting scheme along one dimension can be applied to multiple dimensions. As a
result, each dimension j can have its own sampling rate slow down factor bmj . Note
that this includes components of rank-1 lattice sequences, where the generator and
the base are relatively prime. For the Halton sequence, the splitting rate obviously
must be a product of prime powers, which grows exponentially with dimension.

The new method replaces and improves upon previous approaches [32, 43]
and has many applications in graphics, for example ambient occlusion, scattering,
sampling environment maps and area light sources, and simulating motion blur.

4 Deterministic Consistent Image Synthesis

The consistency of quasi-Monte Carlo methods for light transport simulation (see
Sect. 2.1) follows from Theorem 1 and allows one to use the building blocks
developed in the previous Sect. 3 in deterministic consistent image synthesis
algorithms.

The following sections describe how the subsequent components of a vector of
a low discrepancy sequence are transformed in order to generate a light transport
path: A path is started on the image plane, where the stratification properties of
the first two dimensions are used to sample the image plane in Sect. 4.1, while the
subsequent dimensions are applied in the simulation of a camera in Sect. 4.2. The
path then is continued by repeated scattering as described in Sect. 4.3 and connected
to the light sources. Section 4.4 considers more aspects of the opposite direction
of assembling light transport paths by tracing photon trajectories from the light
sources, their use in quasi-Monte Carlo density approximation, and the combination
of paths both starting from the image plane and the light sources.

The resulting algorithms in principle all implement Eq. 1 and are progressively
refining the results more and more over time. It is simple to interrupt and resume
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computation at any time, because the current state of the computation is completely
described by the index of the last sample taken within the problem domain.
Therefore termination can be triggered by any criterion and the computation can
be continued unless the result was satisfactory.

4.1 Sampling the Image Plane for Anti-aliasing

The rectangular picture elements of a display device match the structure of
elementary intervals in two dimensions. Simultaneously determining the average
color of each pixel is an integro-approximation problem that can be reduced to
the form of Eq. 1. As described in Sect. 3.4.1, the computation of all pixels can be
realized by one low discrepancy sequence covering the whole screen. Enumerating
the samples per pixel offers several advantages:

• The samples in adjacent pixels are never the same, which at low sampling rates
hides aliasing artifacts in noise.

• Keeping track of the last sample index per pixel allows for prioritized computa-
tion: Pixels of special interest can receive more samples per time, while others
progress with relatively fewer samples [40]. Such regions of interest can be
specified automatically or by user interaction. Nevertheless, the pixels remain
consistent; they only converge at different speeds.

• The computation can be parallelized and load balanced by rendering each pixel in
a separate thread. As the parallelization scheme is based on a domain partitioning,
the computation is independent of the sequence and timing of the single tasks.
Therefore the computation remains strictly deterministic and thus reproducible
independent of the parallel execution environment.

The implementation details for the Sobol’ .0; 2/-sequence and the Halton sequence
are found in [19], while the code can be downloaded at http://gruenschloss.org/
sample-enum/sample-enum-src.zip. After dedicating the first two dimensions of a
low discrepancy sequence to sampling the image plane, the use of the subsequent
dimensions for the construction of light transport paths is explored.

4.2 Depth of Field, Motion Blur, and Spectral Rendering

Light is colored and reaches the image plane through an optical system. Except for
pinhole cameras, light passes a lens with an aperture, which both specify the focal
plane and depth of field. With focal plane and aperture selected by the user, the
simulation associated to a sample with index i on the image plane continues by
using its next dimensions. For the example of a thin lens with the shape of a unit
disk, components xi;3 and xi;4 can be used to uniformly select a point

http://gruenschloss.org/sample-enum/sample-enum-src.zip
http://gruenschloss.org/sample-enum/sample-enum-src.zip
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Fig. 6 Simple mathematical models for bidirectional scattering distribution functions (BSDF)
fs.!o; x; !/ use only a small number of basis functions, like for example the Phong model, and
therefore cannot efficiently capture the variety and precision of measured data, like for example the
silver metallic paint or the violet rubber. The two cylinders illustrate the direction ! of incidence
from the right and the direction of perfect reflection exiting to the left (Images courtesy Ken Dahm
partially using data from [53]).

�p
xi;3 cos 2�xi;4p
xi;3 sin 2�xi;4

�
(4)

on the lens from which a ray is traced through the point in space identified by the
thin lens law applied to the sample point .xi;1; xi;2/ on the image plane. The above
mapping from the unit square onto the unit disk has been derived using the multi-
dimensional inversion method [74].

The simulation of more advanced camera models including spectral properties
[77] follows the same principle: Using another dimension to select a wavelength,
the samples are summed up weighted according to spectral response curves, which
for example map to the color basis of the display device [22].

However, including the simulation of motion blur caused by camera and/or
object motion by just adding another dimension to sample time during the open
shutter is not efficient. Each sample with a different time would require to
adjust all scene assets to that instant, invoking the loading of temporal data and
rebuilding acceleration data structures. On the other hand, interpolating data to
increase efficiency may result in inconsistent rendering algorithms: For example,
once approximated by an insufficient number of linear spline segments, a rotating
propeller will never get round during the course of computation. In addition the
memory footprint increases linearly with the number of spline segments.

Unless rendering relativistic effects, the speed of light is much faster than the
motion to be rendered and efficiency can be increased by selecting one instant in
time for multiple light transport paths. This efficient approach is easily implemented
as consistent deterministic algorithm using splitting as introduced in Sect. 3.4.4.
A splitting rate in the order of the number of pixels on the display device causes
temporal data to be prepared once per accumulated frame. A lower splitting rate
results in interleaving and averaging lower resolution images [38].
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4.3 Sampling Light Transport Path Segments

As determined by the sample on the image plane and the camera, a ray is traced into
the scene, where it interacts with the scene boundary and media inside the volume.

Given a direction of incidence ! and a direction !o of observation, the fraction
of light transported in a location x on the boundary is described by the bidirectional
scattering distribution function (BSDF) fs.!o; x; !/ as illustrated in Fig. 6. Such
densities are modeled as linear combinations of basis functions, which can be
analytic or tabulated measurements [53].

For the simulation, one of the basis functions can be selected proportional to its
linear combination weight. Then, given a direction of incidence, the direction of
scattering is determined by transforming two uniformly distributed components of
a low discrepancy sequence. If the selected basis function refers to measured data,
the table of measurements can be transformed into a discrete cumulative density
distribution function and a direction of scattering can be found using binary search.
For analytic functions, the inversion method is applied, which of course requires the
basis function to have an analytic integral that is invertible in closed form.

The observed radiance

Lo.x; !o/ D
Z

S 2
�
.x/

fs.!o; x; !/Lin.x; !/ cos �x d! (5)

results from the incident radianceLin integrated over the hemisphere S 2�.x/ aligned
by the surface normal in x attenuated by the BSDF fs , where the cosine of the angle
�x between the normal on the boundary and the direction of incidence accounts for
the perpendicular incident radiance, i.e. the effective part.

For the example of a constant basis function, evaluating such integrals requires
to sample the hemisphere with respect to the cosine weight. Such unit vectors

0

@

p
xi;j cos 2�xi;jC1p
xi;j sin 2�xi;jC1p

1 � xi;j

1

A

are similar to uniform samples on the disk (see Eq. 4), as the z component just results
from the constraint of unit norm. Alike transformations exist for many other analytic
basis functions of BSDFs [66].

The efficient simulation of scattering within media is subject to active research
[57, 58, 68, 87], especially the consistent deterministic simulation of inhomogenous
media is an open challenge and beyond the scope of this tutorial.
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4.3.1 Controlling Path Length

After a direction of scattering has been determined, the next ray can be traced and
the procedure is repeated at each point of interaction to follow a path through the
scene. The path length can be controlled by Russian roulette, where an extra dimen-
sion of the low discrepancy sequence is compared to the reflectivity/transmissivity
of a surface in order to determine whether the path is continued or terminated by
absorption [74].

Low discrepancy sequences, like for example the Sobol’ sequence, are dimension
extensible. Nevertheless, path length must be restricted to a maximum path length
in an implementation in order to avoid the possibility of an infinite loop due to
numerical issues in scattering and especially ray tracing.

4.3.2 Path Tracing

Path tracing generates samples on the image plane, traces a path through the camera,
and determines a scattering direction upon interacting with the scene. Whenever a
light source is encountered along the path, its contribution attenuated by the product
of BSDFs along the path is recorded on the image plane. This first simple rendering
algorithm is deterministic and consistent, as each path is completely determined by
one vector of a low discrepancy sequence realizing Eq. 1.

Typical types of light sources are area light sources Le.x; !/ and high dynamic
range environment maps Le;x.!/, which describe the light incident in one point
x from all directions of the sphere !. Besides analytic models describing the sky
dome, environment maps often contain incident light, for example measured by a
high dynamic range photograph of a perfect mirror ball. Similarly, area light sources
can be modeled by analytic functions or can be given as measured data. For a given
direction ! (and a location x for area light sources), the evaluation of the emission
distribution function returns a spectral density.

Path tracing is efficient, as long as hitting a light source is likely as for
example in product and car visualization, where objects are rendered enclosed by an
environment light source. Whenever a ray is scattered off the object to be visualized
and does not intersect the boundary any more, the light path is terminated and the
direction of the ray is used to look up the spectral density in the environment map.
In cases where the integrand exposes more variance in the dimensions used for
sampling the environment map, it pays off to split (see Sect. 3.4.4) the camera path
by sending multiple rays into the hemisphere.

4.3.3 Next Event Estimation

Path tracing is not efficient for small light sources as for example spots as used in
interiors. However, as the position of such light sources is known, it is easy to check,
whether they are visible. For so-called next event estimation, one component of a
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low discrepancy vector is used to select a light source, while two more are used to
determine a point on the selected light source. The visibility is checked by tracing
a so-called shadow ray from the location to be illuminated towards the point on
the light source. Unless the ray is occluded, the contribution of the light source is
recorded.

If the light sources are small, visible, and at sufficient distance, next event
estimation will be efficient. Otherwise, there are issues: Sampling the surface of
the light sources, the contribution of the light source must be divided by the squared
distance to account for the solid angle subtended by the area of the light source.
If the point to be illuminated is close to the point of the light source, the division
by the squared distance may result in overmodulation or even a division by zero.
The corresponding integral over the area of the light source is therefore called
weakly singular. This numerical problem can be robustly treated by combining both
techniques of sampling the solid angle and the area by either partitioning the integral
[44] or weighting the contributions [47, Sect. 4.1.5]. Both approaches bound the
integrand and are simple to implement, while the latter approach performs slightly
superior with respect to path tracing with next event estimation (see the example in
Sect. 4.4.3).

Applying the splitting technique from Sect. 3.4.4 as illustrated in Fig. 5 over-
comes the necessity of randomization as required in [43]. Testing multiple shadow
rays for one location to be illuminated may increase efficiency.

With an increasing number of light sources and varying area and distance, the
selection of contributing light sources becomes costly. Especially visibility cannot
be efficiently predicted in a general way and must be tested. Typical such scenarios
include architectural scenes, where light comes through door slits and corridors
and many lights can be occluded by walls. Note that shadow rays are testing only
geometry and therefore transparent or refractive surfaces report occlusion. For that
reason, next event estimation will not transport light through glass.

4.3.4 Light Tracing

Instead of starting light transport paths on the image plane, it appears more natural
to follow the trajectories of photons emitted by light sources, which requires the
simulation of the emission distribution functions. Similar to the previous section, a
light source is to be selected. For area light sources a point of emission needs to
be determined in addition. The direction of emission results from transforming two
more uniform components according to the emission distribution function. For the
special case of environment maps, the procedure is described in detail in [7].

Once emitted, the photon trajectory can be followed as described before in
Sect. 4.3. Similar to the issue of small light sources in path tracing, it is not very
likely that photons pass the camera to hit the image plane and therefore shadow
rays are traced from the light path vertices to the camera (in analogy to next event
estimation, see Sect. 4.3.3).
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Opposite to path tracing, light tracing with next event estimation can render
caustics, which for example are caused by light projected through a glass onto a
diffuse surface. Generating such light transport paths starting on the image plane
is inefficient due to the low probability of hitting the light source after scattering
on the diffuse surface, especially, if the light is small. However, if the caustic is
seen through a mirror, light tracing with next event estimation fails, too, because
the connection from the mirror to the camera realizes the reflection direction with
probability zero.

4.4 Blockwise Sampling of Light Transport Paths

When path tracing and light tracing with or without next event estimation are not
efficient due to a small probability of establishing a light transport path, starting path
segments from both the light sources and the camera and connecting them can help.
This requires two Markov chains to be simulated: One with the emission distribution
function as initial distribution and the BSDF as transition probabilities and another
one starting on the image plane using the BSDF as transition probabilities as well.

By partitioning one low discrepancy sequence along the components as illus-
trated in Fig. 7, both Markov chains can be realized by one vector .xi ; yi /, where for
example the odd components xi determine the path segment starting from the image
plane and the even components yi determine a photon trajectory.

As illustrated in Fig. 2 and introduced in Sect. 2.1 the connections between path
segments can be established by checking the mutual visibility of the end points of
the path segments (see Sect. 4.4.2) or by proximity (see Sect. 4.4.1). Depending on
the kind of the connection and the specific length of each of the two path segments,
the same transport path may be generated by multiple such techniques (similar to
the special case mentioned in Sect. 4.3.3). Their optimal combination is discussed
in Sect. 4.4.3.

4.4.1 Connecting Path Segments by Proximity

The basic idea of photon mapping [27, 28] is to compute the transported light
using density estimation [71]. The discrete density is stored as a point cloud called
photon map, which results from tracing photon trajectories from the light sources
and recording the incident energy at each interaction with the scene. In order to
compute the radiance as given by Eq. 5, the contribution of the photons within a
sphere around the point of interest is averaged.

As has been shown in [34], photon mapping can be realized as a deterministic
consistent quasi-Monte Carlo method: Either a .t; s/- or a rank-1 lattice sequence
.xi ; yi / in base b is progressively enumerated in blocks of size bm. For each vector
.xi ; yi / of the low discrepancy sequence, a light transport path segment from the
camera is constructed using the dimensions of xi , while a photon trajectory is started
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Fig. 7 In order to increase the efficiency of deterministic consistent density estimation (see
Sect. 4.4.1), one low discrepancy sequence is partitioned along the components and enumerated in
blocks. Within each block, each parameter xi is combined with each parameter yi . It is instructive
to compare the blockwise averaging to splitting as shown in Fig. 5.

from the lights using yi . Then all camera and light path segments within a block are
combined to simultaneously compute the radiance
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through each pixel P on the image plane. Figure 7 illustrates how the low
discrepancy sequence is used in the equation and how the sum over k enumerates
all ybmbi=bmcCk for each xi . Out of the camera paths, �P .xi / selects the ones
contributing the pixel P . Their contribution is weighted byW , which is the product
of all attenuations by interactions along the path segment until the query location
h.xi / is hit. The flux deposited in h.ybmbi=bmcCk/ by a photon is �. If now the
difference of both hit points is in a ball B of radius r.n/, both path segments are
considered connected by proximity and the product of weight, the flux, and the
BSDF fs is recorded for the pixel P . Assuming a locally planar surface around the
query location, the contribution is averaged over the disk area �r2.n/ and both !
denote the directions from which the end points of the path segments are hit.

Consistency requires the radius

r2.n/ D r20
n˛

for 0 < ˛ < 1
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to decrease with a power of n. As shown in [37, Sect. 3.1], the radius vanishes
arbitrarily slowly and the influence of the parameter ˛ becomes negligible already
after enumerating a few blocks. Consequently, the efficiency is controlled by the
initial radius r0 and the parameterm determining the block size bm. The initial radius
r0 determines the ratio of how many photons can interact with a query location.
Besides choosing r0 constant, adaptive methods have been discussed in [37, 41].

Once all query locations and photons within a block have been stored as point
clouds, space is subdivided hierarchically in order to prune sets of query locations
and photons that cannot interact [35] within the distance of r.n/. For the light
path segments that can be connected by proximity, the contribution is accumulated
according to Eq. 6. Obviously, the block size should be chosen as large as memory
permits in order to connect as many light path segments as possible within one
block.

The algorithm as described, for example, can render caustics seen in a mirror
or through a transparent object and thus overcomes the problem of “insufficient
techniques” (see [42, Fig. 2] and Sect. 4.3.4). However, this comes at a price: Since
connections are not precise but within a certain radius, images may appear blurred
and light may leak through the boundary. Although these artifacts vanish due to
consistency, they vanish arbitrarily slowly [37, Sect. 3.1], which underlines the
importance of the choice of r0.

4.4.2 Connecting Path Segments by Shadow Rays

Bidirectional path tracing (BDPT) [47, 79, 80] is a generalization of next event
estimation (see Sect. 4.3.3), where any vertex of a camera path can be connected
to any vertex of a light path segment by a shadow ray as illustrated in Fig. 2.
The algorithm is complementary to photon mapping, because it still is limited by
the problem of “insufficient techniques” (see previous section), however, lacks the
transient artifacts of progressive photon mapping due to precisely testing the mutual
visibility of vertices.

The mapping of a low discrepancy sequence to light transport path segments
works as described before by partitioning along the dimensions. While the original
approach connected vertices of one camera path segment with the vertices of
the corresponding light path segment, now connections can be established within
a block of path segments (see Fig. 7). Opposite to photon mapping, where the
number of connections can be restricted by proximity, the number of shadow rays
is quadratic in the block size multiplied by the product of camera and light path
segment length. Besides complexity, the block size also determines the look of the
transient artifacts. Using larger block sizes, camera paths in neighboring pixels are
illuminated by the same light path vertices. These can be considered point light
sources, resulting in sharp shadow contours that of course vanish due to consistency.
As an extension, splitting (see Sect. 3.4.4) allows for controlling the ratio of camera
and light paths to be connected.
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With photon mapping, bidirectional path tracing, and all the variants of sampling,
the question of which technique is best to use comes up and will be discussed in the
next section.

4.4.3 Optimally Combining Techniques

As described in the previous two sections, connecting camera and light path
segments by either shadow rays or proximity, the same path may be generated by
multiple sampling techniques. While the mapping of low discrepancy sequences
to camera and light path segments is shared over all techniques, their optimal
combination is still subject of active research, because the efficiency of the rendering
techniques may depend on the scene description. One of the key issues is the lack
of efficient algorithms for predicting visibility and especially the discontinuities in
the integrands of computer graphics.

Multiple Importance Sampling

Importance sampling aims to improve the efficiency by sampling the function
more frequently in important regions of the integration domain. Given a density
p representing importance, an integral
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f .P�1.x//
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(7)

of a function f is transformed using the substitution p.x/ D dP.x/
dx and the

formalism of the Riemann-Stieltjes integral. Assuming existence, in many cases the
transformation P�1 of uniform samples into p-distributed samples can be realized
by the multi-dimensional inversion method [25,74]. Originally developed in Monte
Carlo integration [74], the theory has been extended to cover quasi-Monte Carlo
integration as well [76].

The observation that in light transport simulation the same path may be generated
by different importance sampling techniques led to the idea of multiple importance
sampling [47,79,80]: Given a function f .x/ to be integrated and m densities pi .x/
that can be evaluated and sampled, defining the weights
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into a sum of integrals, where the i -th integral is evaluated using samples that
are distributed according to pi in analogy to Eq. 7. Hence for m D 1 the general
formulation of multiple importance sampling coincides with importance sampling.

The convex combination using the set of weights wi .x/ is called the power
heuristic [79]. While for ˇ D 0 the weights wi D 1

m
result in a uniform weighting,

for ˇ > 0 higher weights are assigned to techniques with higher density. Special
cases are the balance heuristic for ˇ D 1 with weights wi � pi and the maximum
heuristic for ˇ D 1, which selects the technique with the highest density pi.x/.
Among these and other heuristics, the power heuristic with ˇ D 2 is slightly
superior [79, Theorem 9.2].

Samples x for which pi .x/ D 0 obviously cannot be generated, which requires
wi .x/ D 0 to make the method work. As a direct consequence, for any x at least
one density must be positive. It may well happen that this cannot be guaranteed,
which is called the problem of “insufficient techniques” [42]. A related issue is the
situation, where the denominator is smaller than the numerator and samples may be
overly amplified [64, Sect. 2.2], although their importance actually is small.

Example: Removing the Weak Singularity in Direct Illumination

Given an emission distribution functionLe and a BSDF fs on the scene surface, the
direct illumination

Ld.x; !o/ D
Z

S 2
�
.x/

fs.!o; x; !/Le.h.x; !/;�!/ cos �xd!

D
Z

A

fs.!o; x; !/Le.y;�!/ cos �xV .x; y/
cos �y
jx � yj2 dy (10)

is equivalently determined by either integrating over the hemisphere S 2�.x/ or the
surface A of the light source Le with area jAj, where the direction ! points from x

towards the respective point y on the light source. The ray tracing function h.x; !/
and the visibility V.x; y/ are introduced in Sect. 2.2. Note that Eq. 10 is weakly
singular due to the division by the squared distance jx � yj2, which in this form
causes numerical problems whenever x and y are sufficiently close.

Two resulting sampling techniques are simulating scattering directions accord-
ing to

p1  fs.!o; x; !/ cos �x and using p2  1

jAj
to generate uniform samples on the light source. For a given hit point y WD h.x; !/,
the visibility V.x; y/ is one and changing the measure from solid angle in x to a
point y on the area of a light source and vice versa [47, Sect. 4.1.5] results in the
densities
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p1
cos �y
jx � yj2 and p2

jx � yj2
cos �y

:

Then the weights for the balance heuristic in Eq. 8 are

w1  p1

p1 C p2 jx�yj2cos �y

D jAjfs.!o; x; !/ cos �x cos �y
jAjfs.!o; x; !/ cos �x cos �y C jx � yj2 and

w2  p2

p1
cos �y
jx�yj2 C p2

D jx � yj2
jAjfs.!o; x; !/ cos �x cos �y C jx � yj2 :

While w1 has been derived using densities with respect to the solid angle and w2
has been using densities with respect to the area measure, the weights are ratios
of densities with respect to the same measure and therefore have no unit. Using
the transformation in Eq. 9 and the equivalence in Eq. 10, the direct illumination
amounts to

Ld .x; !o/ (11)

D
Z

Œ0;1/2
Le.h.x; !/;�!/ jAjfs.!o; x; !/ cos �x cos �y

jAjfs.!o; x; !/ cos �x cos �y C jx � yj2 dP1.!/

C
Z

Œ0;1/2
Le.y;�!/V.x; y/ fs.!o; x; !/ cos �x cos �y

jAjfs.!o; x; !/ cos �x cos �y C jx � yj2 dP2.y/

in accordance with [47, Eq. 4.7, Sect. 4.1.5].
Assuming that directions can be generated with the density p1, both integrands

in Eq. 11 are bounded, because the weak singularity [44] has been removed by
the transformation, which underlines one of the major advantages of multiple
importance sampling.

Note that the undefined 0
0

case needs to be handled explicitly: In order to avoid
numerical exceptions, it is sufficient to test fs cos �x cos �y for zero explicitly, since
then no radiation is transported. Comparing this term to a small, positive threshold,
substantial amounts of transport may be missed for small distances jx � yj2.

A Path Tracer with Next Event Estimation and Multiple Importance Sampling

For the purpose of this tutorial an efficient implementation of a path tracer with next
event estimation (see Sect. 4.3.3) and multiple importance sampling is described
[47, Sect. 4.1.5]. Light transport is modeled by a Fredholm integral equation of the
second kind

L D Le C TfsL;
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where the integral operator

TfsL 
Z

S 2
�
.x/

fs.!o; x; !/L.h.x; !/;�!/ cos �xd!

determines the transported radiance in analogy to Eq. 10. The radiance thus is the
source radiance Le plus transported radiance

TfsL D Tfs .Le C TfsL/DTfs ..w1Cw2/Le C TfsL/ D Tfs .w1Le C TfsL/C Tfsw2Le;

which can be computed by first replacing one instance of the radiance by its
definition and then inserting a linear combination of weights that always sums
up to one as derived in the previous section. As a result the transported radiance
is determined by two terms: The first term is evaluated by integration over the
hemisphere, which comprises sampling a scattering direction, tracing a ray and
summing up the weighted emission Le and recursively computing the transported
radiance. The second term uses a shadow ray towards the support of the light
sources and the according weight as derived in Eq. 11 for the example of the balance
heuristic.

The implementation can be realized as a simple loop without recursion, termi-
nating the path started from the image plane by Russian roulette (see Sect. 4.3.2),
and using the scattering direction both for path tracing and next event estimation
with multiple importance sampling. For regions with visibility V D 1 the method
converges much faster than the path tracer without multiple importance sampling
although no additional rays need to be traced.

This simple but already quite powerful algorithm can be extended to bidirectional
path tracing, where all vertices of a camera path are connected to all vertices
of a light path. Using the principle of implicit importance sampling as before,
the implementation is compact [1, 5]. As bidirectional path tracing suffers the
problem of insufficient techniques [42], photon mapping can be added [34] by
using multiple importance sampling as well [20, and references therein]. Using
the quasi-Monte Carlo technique of blockwise enumeration as illustrated in Fig. 7,
all image synthesis algorithms can be implemented as progressive, consistent, and
deterministic algorithms.

Although multiple importance sampling takes care of optimally combining
techniques, it does not consider visibility: For the simple example of a light bulb, all
shadow rays will report occlusion by the glass around the glowing wire. Similarly,
shadow rays are not efficient, when light enters a room or a car through a window.
On the other hand, mostly diffuse scenes do not benefit from photon mapping, which
raises the question, whether for a given scene description the relevant techniques can
be determined algorithmically and whether visibility can be efficiently predicted.
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5 State of the Art

Consistent quasi-Monte Carlo methods are easily parallelized and are perfectly
reproducible due to their deterministic nature. In industry they take advantage of
SIMD (single instruction multiple data) architectures and are perfectly suitable for
latency hiding architectures, especially GPUs (graphics processing units). Besides
computer graphics, other domains like for example finance, will benefit from
parallel quasi-Monte Carlo methods as well.

Low discrepancy sequences can be generated at the speed of high-quality pseudo-
random numbers and they offer a performance advantage due to better discrete
density approximation [25]. On certain restricted function classes [8, 55, 72], quasi-
Monte Carlo methods are roughly quadratically faster than Monte Carlo methods
and it is known that quasi-Monte Carlo methods outperform Monte Carlo methods
on the average [78, 86]. However, due to the deterministic nature of quasi-Monte
Carlo methods, it is possible to construct theoretical worst cases, especially for the
class of square integrable functions, where a Monte Carlo method can be expected
to be better. For this reason the general Theorem 1 cannot provide a good rate of
convergence on the class of square integrable functions.

Beyond the state of the art as surveyed in this article, there are still fundamental
issues in image synthesis: While (multiple) importance sampling is deeply explored
in the context of computer graphics, there are indications that the weights for
combining bidirectional path tracing and photon mapping are not optimal and
that there is no efficient deterministic method that can incorporate the prediction
of visibility (see Sect. 4.4.2), yet. While the Metropolis light transport [79, 81]
algorithm can efficiently handle boundaries with complex visibility, there does not
exist a deterministic version and it is unknown how to benefit from low discrepancy.

For all known techniques, settings can be constructed that result in inefficient
performance: For example, shadow rays do not work with transparent objects like
glass and the Metropolis light transport algorithm is not efficient in simple settings.
There is a desire to algorithmically determine which techniques are efficient for a
given setting.

Besides lighting complexity, the amount of data to be rendered in one frame
reaches amounts that require simplification to enable efficient processing. Such
approaches relate to multi-level algorithms and function representations and level-
of-detail representations. Finding such approximations is still a challenge, because
changing visibility often dramatically changes the light transport and consequently
the rendered image.

In conclusion, the paradigm of consistency has led to many new developments
in quasi-Monte Carlo methods and numerous industrial rendering solutions apply
quasi-Monte Carlo methods for light transport simulation.
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Conditional Sampling for Barrier Option
Pricing Under the Heston Model

Nico Achtsis, Ronald Cools, and Dirk Nuyens

Abstract We propose a quasi-Monte Carlo algorithm for pricing knock-out and
knock-in barrier options under the Heston (Rev Financ Stud 6(2):327–343, 1993)
stochastic volatility model. This is done by modifying the LT method from Imai
and Tan (J Comput Financ 10(2):129–155, 2006) for the Heston model such that
the first uniform variable does not influence the stochastic volatility path and then
conditionally modifying its marginals to fulfill the barrier condition(s). We show
that this method is unbiased and never does worse than the unconditional algorithm.
In addition, the conditioning is combined with a root finding method to also force
positive payouts. The effectiveness of this method is shown by extensive numerical
results.

1 Introduction

It is well known that the quasi-Monte Carlo method in combination with a good path
construction method, like the LT method from Imai and Tan [10], can be a helpful
tool in option pricing, see, e.g., [4, 13]. The integrand functions usually take the
form max.f; 0/ and a good path construction will somehow align the discontinuity
in the derivative along the axes. However, as soon as other discontinuities, in the
form of barrier conditions, are introduced, the performance of the quasi-Monte
Carlo method degrades as a lot of sample paths might not contribute to the
estimator anymore and are basically wasted, see [14] for an illustration and an
alternative solution. This is also the case for the Monte Carlo method for which
in [6] a conditional sampling method has been introduced to alleviate this problem.
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A conditional sampling scheme will make certain all sample paths will adhere to the
barrier condition and weights their contribution by the likelihood of its occurrence.

In previous work [1] we have introduced a conditional sampling method to deal
with barrier conditions in the Black–Scholes setting that can be used in combination
with a good path construction method like the LT method. In that paper we have
shown that such a scheme always performs better than the unconditional method.
Here we consider the more realistic Heston model [8], which has a stochastic
volatility component, and derive an algorithm to do conditional sampling on barrier
conditions under this model. We focus solely on the LT path construction which
enables us to construct a good path construction for the payoff; excluding the
maximum and barrier conditions which are handled by a root finding method
(optional) and the conditional sampling proposed in this paper.

2 The LT Method for Heston Under Log Prices

Assume a Heston world [8] in which the risk-neutral dynamics of the asset are
given by

dS.t/ D rS.t/dt C
p
V.t/S.t/dW 1.t/;

dV .t/ D .� � V.t//�dt C �
p
V.t/dW 2.t/;

dW 1.t/dW 2.t/ D 	dt;

where S.t/ denotes the price of the asset at time t , r is the risk-free interest rate, �
is the mean-reversion parameter of the volatility process, � is the long run average
price variance and � is the volatility of the volatility. We assume the Feller condition
2�� � �2 such that the process V.t/ is strictly positive. The parameter 	 controls
the correlation between the log-returns and the volatility. A useful observation is
that one can write

W 1.t/ D 	W 2.t/C
p
1 � 	2 W 3.t/;

where W 2.t/ and W 3.t/ are independent Brownian motions. This corresponds to
the Cholesky decomposition of the correlation structure. When resorting to Monte
Carlo techniques for pricing options under this model, asset paths need to be
discretized. For simplicity we assume that time is discretized using m equidistant
time steps �t D T=m, but all results can be extended to the more general case.
The notations OSk and OVk will be used for OS.k�t/ and OV .k�t/, respectively. We
use the Euler–Maruyama scheme [12] to discretize the asset paths in log-space (see
also [5, Sect. 6.5] w.r.t. transformations of variables) and sample the independent
Brownian motionsW 2 andW 3 by using independent standard normal variablesZ1

and Z2; for k D 0; : : : ; m � 1,
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log OSkC1 D log OSk C
 

r �
OVk
2

!

�t C
q
OVk
p
�t
�
	Z1

kC1 C
p
1 � 	2Z2

kC1
	
;

(1)

OVkC1 D OVk C .� � OVk/��t C �
q
OVk
p
�tZ1

kC1: (2)

For our method it is important that OV is sampled solely from Z1 and to switch to
log-space. This will be explained in the next sections.

Write Z D .Z1
1 ;Z

2
1 ; Z

1
2 ; Z

2
2 ; : : : ; Z

2
m/
0 2 R

2m, where the prime is used to denote
the transpose of a vector. Then Z has multivariate standard normal distribution.
Assuming a European option payoff represented as

max .f .Z /; 0/

one usually simulates the function f .Z / by mapping a uniform variate u in the unit
cube to Z by applying the inverse cumulative distribution function ˚�1. We will
call this method the standard Monte Carlo method (MC). When using quasi-Monte
Carlo (QMC), the uniform variates are replaced by a low-discrepancy point set. Our
conditional sampling scheme will use the influence of the first uniform variable u1
to try and force the barrier conditions to be met. For this we will employ the LT
method. First, the uniformly sampled variate u is mapped to a standard normal
variate z as in the MC method. The function f .Z / is then sampled using the
transformation Z D Qz for a carefully chosen orthogonal matrix Q. This means
that in (1) and (2) we take, for k D 0; : : : ; m � 1,

Z1
kC1 D

2mX

nD1
q2kC1;nzn and Z2

kC1 D
2mX

nD1
q2kC2;nzn;

where qi;j denotes the element from the matrixQ at row i and column j . We remark
that, for ease of notation, we will write f .Z /, f .z/, f .u/ or f . OS1; : : : ; OSm/ to denote
the function f from above in terms of normal variates Z or z, uniform variates u or
just the discretized stock path OS1; : : : ; OSm.

In what follows the notationQ�k denotes the kth column of Q and Qk� denotes
the kth row. The LT method [10] chooses the matrix Q according to the following
optimization problem:

maximize
Q�k2R2m

variance contribution of f due to kth dimension

subject to kQ�kk D 1;
hQ��j ;Q�ki D 0; j D 1; : : : ; k � 1;
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where Q��j denotes the columns of Q that have already been optimized in the
previous iterations. The algorithm is carried out iteratively for k D 1; 2; : : : ; 2m so
that in the kth optimization step the objective function ensures that, given columns
Q��j , j D 1; : : : ; k � 1 which have already been determined in the previous
iterations, the variance contribution due to the kth dimension is maximized while
the constraints ensure orthogonality. Being able to express the variance contribution
for each component analytically for general payoff functions f can be quite
complicated. Therefore, Imai and Tan [10] propose to approximate the objective
function by linearizing it using a first-order Taylor expansion for z D OzC�z,

f .z/ 	 f .Oz/C
2mX

kD1

@f

@zk

ˇ
ˇ̌
ˇ
zDOz
�zk:

Using this expansion, the variance contributed due to the kth component is

�
@f

@zk

ˇ̌
ˇ
ˇ
zDOz

�2
:

The expansion points are chosen as Ozk D .1; : : : ; 1; 0; : : : ; 0/, the vector with
k � 1 leading ones. Different expansion points will lead to different transformation
matrices; this particular choice allows for an efficient construction. The optimization
problem becomes

maximize
Q�k2R2m

 
@f

@zk

ˇ̌
ˇ
ˇ
zDOzk

!2
(3)

subject to kQ�kk D 1;
hQ��j ;Q�ki D 0; j D 1; : : : ; k � 1:

The original Imai and Tan paper [10] considers a European call option to
illustrate the computational advantage of the LT method under the Heston model. In
their paper the stochastic volatility is described in [10, Sect. 4.2] and we will revisit
their method in Sect. 4. For ease of illustration we also consider the payoff function
inside the max-function to be that of a European call option

f .z/ D OSm �K

where K is the strike price. For notational ease, we introduce the following
functions:

f 1
k D

p
�t

2

q
OVk

�
	Z1

kC1 C
p
1 � 	2Z2

kC1
	
� �t

2
;
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f 2
k D

q
OVk
p
�t;

f 3
k D 1 � ��t C

�
p
�t

2

q
OVk
Z1
kC1;

f 4
k D �

q
OVk
p
�t:

Note that all the above functions f i depend on Z . Similar to [10], to find the partial
derivatives @ OSm=@zi needed for the optimization algorithm, we obtain the recursive
relations (with initial conditions @ log OS0=@zi D 0 and @ OV0=@zi D 0)

@ log OSkC1
@zi

D @ log OSk
@zi

C @ OVk
@zi

f 1
k C

�
	q2kC1;i C

p
1 � 	2q2kC2;i

	
f 2
k ; (4)

@ OVkC1
@zi

D @ OVk
@zi

f 3
k C q2kC1;i f 4

k ; (5)

where k goes from 0 to m � 1. The chain rule is used to obtain

@ OSm
@zi
D OSm @ log OSm

@zi
:

We will use the following lemma to calculate the transformation matrix.

Lemma 1. The recursion

FkC1 D akFk C bkqk;
GkC1 D ckGk C dkqk C ekFk;

with initial values F0 D G0 D 0 can be written at index k C 1 as a linear
combination of the q`, ` D 0; : : : ; k, as follows

FkC1 D
kX

`D0
q` b`

kY

jD`C1
aj ;

GkC1 D
kX

`D0
q`

0

@d`
kY

jD`C1
cj C b`

kX

tD`C1
et

kY

vDtC1
cv

t�1Y

vD`C1
av

1

A :

Proof. The formula for FkC1 follows immediately by induction. For the expansion
of GkC1 we first rewrite this formula in a more explicit recursive form
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GkC1 D
kX

`D0
q`d`

kY

jD`C1
cj C

k�1X

`D0
q`b`

kX

tD`C1
et

kY

vDtC1
cv

t�1Y

vD`C1
av

D
kX

`D0
q`d`

kY

jD`C1
cj C

kX

tD1
et

kY

vDtC1
cv

 
t�1X

`D0
q`b`

t�1Y

vD`C1
av

!

:

The part in-between the braces equals Ft and the proof now follows by induction
on k. ut
A similar result is obtained if the second recursion is replaced by GkC1 D ckGk C
dkqk C d 0kq0k C ekFk . Furthermore the coefficients in the expansion for q` and q 0̀
can cheaply be calculated recursively. Using this lemma, we can make the log-LT
construction for the Heston model explicit in the following lemma.

Proposition 1. The column vectorQ�k that solves the optimization problem (3) for
a call option under the Heston model is given by Q�k D ˙v=kvk where

v2`C1 D OSmf 2
` 	C OSmf 4

`

m�1X

tD`C1
f 1
t

t�1Y

vD`C1
f 3
v ;

v2`C2 D OSmf 2
`

p
1 � 	2;

for ` D 0; : : : ; m � 1.

Proof. By Imai and Tan [10, Theorem 1] the solution to the optimization prob-
lem (3) is given by

Q�k D ˙ v

kvk ;

where v is determined from

Q0�kv D
@ OSm
@zk
D OSm @ log OSm

@zk
:

With the help of Lemma 1 we find from (4) and (5)

@ log OSm
@zk

D
m�1X

`D0
q2`C1;k

 

	f 2
` C f 4

`

m�1X

tD`C1
f 1
t

t�1Y

vD`C1
f 3
v

!

C
m�1X

`D0
q2`C2;k

p
1 � 	2f 2

` ;

from which the result now follows. ut
Note that since OSm and all functions f i depend on Z , the vector v changes in

each iteration step of (3) as the reference point Oz is changed.
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This construction can also be used for a put option with payoff

f .z/ D K � OSm:

In case of an arithmetic Asian option, the payoff is given by

f .z/ D 1

m

mX

jD1
OSj �K:

In that case the optimization problem (3) contains the sum of partial derivatives

@f

@zk

ˇ̌
ˇ
ˇ
zDOzk
D 1

m

mX

jD1

@ OSj
@zk

ˇ
ˇ̌
ˇ
ˇ
ˇ
zDOzk

:

It is thus straightforward to use the results for the call option in Proposition 1 to
construct the transformation matrix for the arithmetic Asian option.

Crucial to our conditional sampling algorithm is that we modify the LT construc-
tion by forcing all odd elements in the first column of Q to zero, i.e., q2kC1;1 D 0

for k D 0; : : : ; m � 1. This removes the influence of z1 to Z1
k and thus OVk for all k.

The LT algorithm then finds the orthogonal matrixQ which solves the optimization
problem under this extra constraint (which fixesm elements of the 4m2). In the next
section we will show this leads to an elegant conditional sampling scheme.

Lemma 2. Under the condition that q2`C1;1 D 0 for ` D 0; : : : ; m�1 we have that
the elements q2`C2;1 all have the same sign.

Proof. From Proposition 1, for k D 1, we find that q2`C2;1 is proportional to v2`C2,
i.e.,

v2`C2 D OSm
q
OV`
p
�t
p
1 � 	2;

which is always positive, and q2`C1;1 D v2`C1 D 0. Following Proposition 1 we
now take ˙v=kvk from which the result follows. ut

3 Conditional Sampling on Log-LT

For expository reasons assume for now an up-&-out option with barrier B ,

g. OS1; : : : ; OSm/ D max
�
f . OS1; : : : ; OSm/; 0

	
I

�
max
k

OSk < B
�
: (6)
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The condition at time tkC1 that the asset stays below the barrier can then be written,
for k D 0; : : : ; m � 1, as

log OSkC1 D log OSk C
 

r �
OVk
2

!

�t C
q
OVk
p
�t
�
	Z1

kC1 C
p
1 � 	2Z2

kC1
	

D logS0 C r.k C 1/�t ��t
kX

`D0

OV 2
`

2

C
kX

`D0

q
OV`
p
�t

2mX

nD2

�
	q2`C1;n C

p
1 � 	2 q2`C2;n

	
zn

C z1
p
�t
p
1 � 	2

kX

`D0

q
OV` q2`C2;1

< logB;

where we have used q2`C1;1 D 0. For notational ease we define the function

�k.B; z2W2m/ D logB=S0 � r.k C 1/�t C�tPk
`D0 OV 2

` =2p
�t
p
1 � 	2Pk

`D0
q
OV` q2`C2;1

�
Pk

`D0
q
OV`
p
�t
P2m

nD2
�
	q2`C1;n C

p
1 � 	2 q2`C2;n

	
zn

p
�t
p
1 � 	2Pk

`D0
q
OV` q2`C2;1

: (7)

Here the notation z2W2m is used to indicate the dependency on z2; : : : ; z2m, but not z1.
Note that �k depends on all other market parameters as well, but this dependency is
supressed not to clutter the formulas. Because of the assumption that q2kC1;1 D 0

for all k, OV can be sampled independently of z1. This means the barrier condition
can be written as a single condition on z1, i.e.,

z1 < min
k
�k.B; z2W2m/ if all q2`C2;1 > 0;

and

z1 > max
k
�k.B; z2W2m/ if all q2`C2;1 < 0:

The condition on z1 was here derived for an up-&-out option for ease of
exposition. The modifications for more complex barriers can easily be obtained from
here. Table 1 gives an overview of the conditions on z1 for the basic barrier types
and shows that these conditions can easily be combined for more complex types.
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Table 1 The barrier constraints on z1 for different types of barriers: up-&-
out (U&O), down-&-out (D&O), up-&-in (U&I), down-&-in (D&I) and some
combinations.

Type all q2`C2;1 > 0

U&O (B) z1 < mink �k.B; z2W2m/
D&O (B) z1 > maxk �k.B; z2W2m/
U&I (B) z1 > mink �k.B; z2W2m/
D&I (B) z1 < maxk �k.B; z2W2m/

U&O + D&O (B1 > B2) z1 2 .maxk �k.B2; z2W2m/;mink �k.B1; z2W2m//
U&O + D&I (B1 > B2) z1 < minfmaxk �k.B2; z2W2m/;mink �k.B1; z2W2m/g

Type all q2`C2;1 < 0

U&O (B) z1 > maxk �k.B; z2W2m/
D&O (B) z1 < mink �k.B; z2W2m/
U&I (B) z1 < maxk �k.B; z2W2m/
D&I (B) z1 > mink �k.B; z2W2m/

U&O + D&O (B1 > B2) z1 2 .maxk �k.B1; z2W2m/;mink �k.B2; z2W2m//
U&O + D&I (B1 > B2) z1 > maxfmaxk �k.B1; z2W2m/;mink �k.B2; z2W2m/g

We now show the main results on our conditional sampling scheme. Again, for
expository reasons, specialized for the case of the up-&-out option from above. This
result can easily be modified for other payout structures in the same spirit as the
results in Table 1. The following theorem holds for both the Monte Carlo method as
for a randomly shifted quasi-Monte Carlo rule.

Theorem 1. For the up-&-out option (6) and assuming that we fixed q2`C2;1 > 0

for ` D 0; : : : ; m � 1 (see Lemma 2) the approximation based on sampling

Og.z1; : : : ; zm/ D ˚
�

min
k
�k.B; z2W2m/

�
max .f .Oz1; z2; : : : ; zm/; 0/

where, using the relation z1 D ˚�1.u1/,

Oz1 D ˚�1
�

u1 min
k
�k.B; z2W2m/

�
; (8)

is unbiased. Furthermore, if we denote the respective unconditional method by

g.z1; : : : ; zm/ D max
�
f . OS1; : : : ; OSm/; 0

	
I

�
max
k

OSk < B
�
;

where the OS1, . . . , OSm are obtained directly from z1,. . . ,zm without using (8), then,
when using the Monte Carlo method or a randomly shifted quasi-Monte Carlo
method, the conditional sampling has reduced variance, i.e., VarŒ Og� � VarŒg�.
Furthermore the inequality is strict if PŒmaxk OSk � B� > 0 and EŒg� > 0, i.e.,
if there is any chance of knock-out and positive payoff.
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Proof. The proof can be constructed similar to [1, Theorems 3–5] from our previous
work. ut

The previous result shows that the proposed conditional algorithm can never do
worse than its unconditional variant. Furthermore, the more chance there is on a
knock-out the more effect the conditional algorithm will have. This can be observed
in the examples in Sect. 5.

Remark. The conditional sampling was applied to z1 (or, equivalently, to u1) to
keep the asset from knocking out (or in). Taking it one step further one could
try to add an additional bound on z1, keeping z2W2m constant, in order to force a
strictly positive payout. This is more involved than the barrier condition however
as for more complicated payoffs than calls and puts there might not exist analytical
formulae such as in Table 1 to condition z1. It is interesting to note that for calls
and puts the same formulas can be used as in Table 1, only now restricting the �k
functions to �m.K; z2W2m/. Adding this constraint to the existing barrier conditions
is straightforward. Root finding methods can be employed for more complex payout
structures. See our previous work [1] for a detailed analysis of root finding for Asian
options.

4 The Original LT Method for Heston

We mentioned previously that it is essential for our method to switch to log
prices. To illustrate the problem, we introduce the LT method for the Heston
model as in [10] and we derive also an explicit form of the orthogonal matrix Q
(cf. Proposition 1). However, the conditional sampling scheme from the previous
section is not applicable. The Euler–Maruyama discretizations for S.t/ and V.t/
are given by

OSkC1 D OSk C r OSk�t C
q
OVk OSk
p
�t
�
	Z1

kC1 C
p
1 � 	2Z2

kC1
	
;

OVkC1 D OVk C .� � OVk/��t C �
q
OVk
p
�tZ1

kC1;

compare with (1) and (2). For ease of notation, we introduce the following
functions:

f 1
k D 1C r�t C

q
OVk
p
�t
�
	Z1

kC1 C
p
1 � 	2Z2

kC1
	
;

f 2
k D

OSk
p
�t

2

q
OVk

�
	Z1

kC1 C
p
1 � 	2Z2

kC1
	
;

f 3
k D OSk

q
OVk
p
�t;
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f 4
k D 1 � ��t C

�
p
�t

2

q
OVk
Z1
kC1;

f 5
k D �

q
OVk
p
�t:

Note that all the above functions f i depend on Z . The recursion relations for the
partial derivatives become

@ OSkC1
@zi

D @ OSk
@zi

f 1
k C

@ OVk
@zi

f 2
k C q2kC1;i	f 3

k C q2kC2;i
p
1 � 	2f 3

k ;

@ OVkC1
@zi

D @ OVk
@zi

f 4
k C q2kC1;i f 5

k ;

for k D 0; : : : ; m � 1, and initial conditions @ OS0=@zi D 0 and @ OV0=@zi D 0. With
this notation we obtain the LT construction for the Heston model in explicit form.

Proposition 2. The column vector v D Q�k that maximizes the optimization
problem (3) for a call option under the Heston model is given by Q�k D ˙v=kvk
where

v2`C1 D f 3
` 	

m�1Y

jD`C1
f 1
j C f 5

`

m�1X

tD`C1
f 2
t

m�1Y

vDtC1
f 1
v

t�1Y

vD`C1
f 4
v ;

v2`C2 D f 3
`

p
1 � 	2

m�1Y

jD`C1
f 1
j ;

for ` D 0; : : : ; m � 1.

Proof. The proof is similar to Proposition 1, again making use of Lemma 1. ut
To show the advantage for conditional sampling of the log-LT method (as

explained in Sects. 2 and 3) over this version we consider again the up-&-out option
with payoff

g. OS1; : : : ; OSm/ D max
�
f . OS1; : : : ; OSm/; 0

	
I

�
max
k

OSk < B
�
:

The barrier condition at an arbitrary time step tkC1 takes the following form:

OSkC1 D OSk
�
1C r�t C

q
OVk
p
�t
�
	Z1

kC1 C
p
1 � 	2Z2

kC1
	�

D S0
kY

`D0

 

1C r�t C
q
OV`
p
�t

2mX

nD1

�
	q2`C1;n C

p
1 � 	2q2`C2;n

	
zn

!
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< B:

Trying to condition on z1, as we did in the log-LT model (assuming again q2`C1;1 D
0), leads to the following condition:

kY

`D0

�
A` C

q
OV`
p
�t
p
1 � 	2q2`C2;1z1

�
<
B

S0

where

A` D 1C r�t C
q
OV`
p
�t

2mX

nD2

�
	q2`C1;n C

p
1 � 	2q2`C2;n

	
zn:

To satisfy the condition on z1, a kC1-th order polynomial must be solved in order to
find the regions where the above condition holds. To find the global condition, one
has to solve polynomials of degrees 1 to m, and then find the overlapping regions
where all conditions hold. This quickly becomes impractical and we therefore use
the log-LT method which does not have this drawback.

5 Examples

5.1 Up-&-Out Call and Put

Consider the up-&-out call and put options with payoffs

Pc. OS1; : : : ; OSm/ D max
� OSm �K; 0

	
I

�
max
k

OSk < B
�
;

Pp. OS1; : : : ; OSm/ D max
�
K � OSm; 0

	
I

�
max
k

OSk < B
�
:

The fixed model parameters are r D 0% and � D 1. Furthermore, time is
discretized using m D 250 steps and thus our stochastic dimension is 500. The
results for this example are calculated using a lattice sequence (with generating
vector exod8_base2_m13 from [9] constructed using the algorithm in [2]). The
improvements of the standard deviations w.r.t. the Monte Carlo method for different
choices of 	, S0, V0 D � D � , K and B are shown in Table 2. The results
for the call and put option seem to be consistent over all choices of parameters:
the new conditional scheme (denoted by QMC+LT+CS) improves significantly
on the unconditional LT method (denoted by QMC+LT). Note that the QMC+LT
method uses the construction of Proposition 2. Adding root finding (denoted by
QMC+LT+CS+RF), to force a positive payout, further dramatically improves the
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Table 2 Up-&-out call and put. The reported numbers are the standard deviations of the
MC method divided by those of the QMC+LT+CS+RF, QMC+LT+CS and QMC+LT
methods. The MC method uses 30;720 samples, while the QMC methods use 1;024
samples and 30 independent shifts. The rightmost column denotes the option value.

.V0 D � D �; 	; S0; K; B/ QMC+LT+CS+RF QMC+LT+CS QMC+LT Value

Call

.0:2;�0:5; 90; 80; 100/ 405% 148% 98% 0:09

.0:2;�0:5; 100; 100; 120/ 502% 173% 90% 0:09

.0:2;�0:5; 110; 100; 150/ 463% 231% 117% 1:25

.0:2; 0:5; 90; 80; 100/ 474% 120% 124% 0:08

.0:2; 0:5; 100; 100; 125/ 446% 130% 99% 0:16

.0:2; 0:5; 110; 100; 140/ 454% 166% 136% 0:56

.0:3;�0:5; 90; 80; 100/ 623% 160% 82% 0:05

.0:3;�0:5; 100; 100; 120/ 590% 160% 144% 0:06

.0:3;�0:5; 110; 100; 150/ 429% 246% 141% 0:77

.0:3; 0:5; 90; 80; 100/ 360% 191% 106% 0:05

.0:3; 0:5; 100; 100; 125/ 353% 141% 81% 0:10

.0:3; 0:5; 110; 100; 140/ 367% 142% 104% 0:34

Put

.0:2;�0:5; 90; 80; 100/ 367% 331% 184% 9:02

.0:2;�0:5; 100; 100; 105/ 279% 235% 126% 7:76

.0:2;�0:5; 110; 100; 112/ 298% 263% 123% 4:44

.0:2; 0:5; 90; 80; 100/ 361% 376% 148% 6:05

.0:2; 0:5; 100; 100; 105/ 326% 298% 131% 5:33

.0:2; 0:5; 110; 100; 112/ 317% 325% 149% 2:98

.0:3;�0:5; 90; 80; 100/ 383% 348% 137% 10:3

.0:3;�0:5; 100; 100; 105/ 260% 243% 144% 8:65

.0:3;�0:5; 110; 100; 112/ 214% 187% 129% 5:38

.0:3; 0:5; 90; 80; 100/ 380% 294% 160% 6:44

.0:3; 0:5; 100; 100; 105/ 304% 272% 174% 5:57

.0:3; 0:5; 110; 100; 112/ 305% 279% 124% 3:33

results. The improvement of the QMC+LT+CS method for the put option is even
larger than that for the call option. This difference should not come as a surprise:
when using conditional sampling on a knock-out option, z1 is modified such that
the asset does not hit the barrier. In case of an up-&-out call option, the asset paths
are essentially pushed down in order to achieve this. The payout of the call option
however is an increasing function of OSm, so that pushing the asset paths down has
the side-effect of also pushing a lot of paths out of the money. For the put option the
reverse is true: the payout is a decreasing function of OSm, meaning that pushing the
paths down will result in more paths ending up in the money. Root finding can be
used to control this off-setting effect in case of the call option, this effect is clearly
visible in Table 2. These numerical results are illustrated in terms of N in Fig. 1 for
two parameter choices for the call option.
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Fig. 1 Up-&-out call convergence plots for two options with different parameters. The fixed
parameters are r D 0% and � D 1. The different choices for .V0 D � D �; 	; S0; K; B/ are
denoted above the figures.

5.2 Up-&-In Call

Consider an up-&-in call option with payoff

P. OS1; : : : ; OSm/ D max
� OSm �K; 0

	
I

�
max
k

OSk > B
�
:

The fixed model parameters are r D 2%, � D 1 and � D 0:2. Again, m D 250.
Here we use the Sobol’ sequence with parameters from [11] and digital shifting [3].
The standard deviations for different choices of 	, S0, V0 D � , K and B are shown
in Table 3. The improvements of the conditional scheme are extremely high for this
case. Note the impact of the correlation on the results: the improvement for 	 D 0:5
is even approximately twice that for 	 D �0:5. All parameter choices indicate that
conditional sampling on the barrier condition greatly improves accuracy. Adding
the additional condition of the payout itself (root finding) provides another serious
reduction in the standard deviation.

5.3 Up-&-Out Asian

Consider an up-&-out Asian option with payoff

P. OS1; : : : ; OSm/ D max

 
1

m

mX

kD1
OSk �K; 0

!

I

�
max
k

OSk < B
�
:

The fixed model parameters are r D 5%, � D 1 and � D 0:2. The number of time
steps is fixed at m D 250. We use the Sobol’ sequence as in the previous example
and the results are shown in Table 4. The results are once more very satisfactory
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Table 3 Up-&-in call. The reported numbers are the standard deviations of the MC
method divided by those of the QMC+LT+CS+RF, QMC+LT+CS and QMC+LT methods.
The MC method uses 30;720 samples, while the QMC+LT+CS+RF, QMC+LT+CS and
QMC+LT methods use 1;024 samples and 30 independent shifts. The rightmost column
denotes the option value.

.V0 D �; 	; S0; K; B/ QMC+LT+CS+RF QMC+LT+CS QMC+LT Value

.0:1;�0:5; 90; 80; 160/ 2;158% 1;515% 242% 5:47

.0:1;�0:5; 100; 100; 180/ 2;377% 1;542% 240% 5:05

.0:1;�0:5; 110; 120; 200/ 2;572% 1;545% 250% 4:74

.0:1; 0:5; 90; 80; 160/ 1;557% 654% 341% 17:4

.0:1; 0:5; 100; 100; 180/ 1;564% 644% 354% 16:9

.0:1; 0:5; 110; 120; 200/ 1;556% 640% 373% 16:6

.0:15;�0:5; 90; 80; 160/ 2;044% 1;247% 366% 10:6

.0:15;�0:5; 100; 100; 180/ 2;243% 1;262% 420% 10:1

.0:15;�0:5; 110; 120; 200/ 2;391% 1;236% 349% 9:72

.0:15; 0:5; 90; 80; 160/ 1;570% 568% 421% 23:3

.0:15; 0:5; 100; 100; 180/ 1;622% 567% 418% 23:0

.0:15; 0:5; 110; 120; 200/ 1;649% 562% 366% 22:9

Table 4 Up-&-out Asian call. The reported numbers are the standard deviations of the MC
method divided by those of the QMC+LT+CS+RF, QMC+LT+CS and QMC+LT methods.
The MC method uses 30;720 samples, while the QMC+LT+CS+RF, QMC+LT+CS and
QMC+LT methods use 1;024 samples and 30 independent shifts. The rightmost column
denotes the option value.

.V0 D �; 	; S0; K; B/ QMC+LT+CS+RF QMC+LT+CS QMC+LT Value

.0:1;�0:5; 90; 80; 120/ 483% 329% 154% 1:70

.0:1;�0:5; 100; 100; 140/ 461% 245% 185% 0:77

.0:1;�0:5; 110; 120; 160/ 404% 189% 110% 0:30

.0:1; 0:5; 90; 80; 120/ 392% 328% 144% 1:34

.0:1; 0:5; 100; 100; 140/ 414% 252% 115% 0:53

.0:1; 0:5; 110; 120; 160/ 502% 209% 133% 0:18

.0:15;�0:5; 90; 80; 120/ 463% 247% 143% 0:77

.0:15;�0:5; 100; 100; 140/ 425% 183% 125% 0:29

.0:15;�0:5; 110; 120; 160/ 389% 161% 93% 0:10

.0:15; 0:5; 90; 80; 120/ 416% 257% 111% 0:61

.0:15; 0:5; 100; 100; 140/ 486% 201% 119% 0:20

.0:15; 0:5; 110; 120; 160/ 528% 171% 108% 0:05

with similar results as for the up-&-out call and put options in Table 2. Figure 2
shows the convergence behaviour for two sets of parameter choices. As before, a
significant variance reduction can be seen for our conditional sampling scheme and
the root finding method further improves this result.
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Fig. 2 Up-&-out Asian call convergence plots for two options with different parameters. The fixed
parameters are r D 5%, � D 1 and � D 0:2. The different choices for .V0 D �; 	; S0; K; B/ are
denoted above the figures.

6 Conclusion and Outlook

The conditional sampling scheme for the LT method introduced in [1] for the
Black–Scholes model has been extended to the Heston model. This was done by
considering log prices and making the sampling of the volatility process independent
of z1. We also obtained explicit constructions for the matrix Q of the LT method.
The numerical results show that the method is very effective in reducing variance
and outperforms the LT method by a huge margin. We only considered an Euler–
Maruyama discretization scheme for the asset and volatility processes. It might be
interesting to see if the theory and results carry over when other simulation methods
are used, see [7] for an overview of other methods.
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Probabilistic Star Discrepancy Bounds
for Double Infinite Random Matrices

Christoph Aistleitner and Markus Weimar

Abstract In 2001 Heinrich, Novak, Wasilkowski and Woźniakowski proved that
the inverse of the discrepancy depends linearly on the dimension, by showing that
a Monte Carlo point set P of N points in the s-dimensional unit cube satisfies the
discrepancy bound D�sN .P/ � cabss

1=2N�1=2 with positive probability. Later their
results were generalized by Dick to the case of double infinite random matrices.
In the present paper we give asymptotically optimal bounds for the discrepancy of
such random matrices, and give estimates for the corresponding probabilities. In
particular we prove that theN �s-dimensional projections PN;s of a double infinite
random matrix satisfy the discrepancy estimate

D�sN .PN;s/ �
�
2130C 308 ln lnN

s

�1=2
s1=2N�1=2

for all N and s with positive probability. This improves the bound D�sN .PN;s/ �
.cabs lnN/1=2 s1=2N�1=2 given by Dick. Additionally, we show how our approach
can be used to show the existence of completely uniformly distributed sequences of
small discrepancy which find applications in Markov Chain Monte Carlo.
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1 Introduction and Statement of Results

1.1 Uniform Distribution and Discrepancy

Let x; y be two elements of the s-dimensional unit cube Œ0; 1�s . We write x � y if
this inequality holds coordinatewise, and x < y if all coordinates of x are smaller
than the corresponding coordinates of y. Furthermore, Œx; y/ denotes the set fz 2
Œ0; 1�s j x � z < yg. We write 0 for the s-dimensional vector .0; : : : ; 0/, and thus
Œ0; x/ denotes the set fz 2 Œ0; 1�s j 0 � z < xg. Throughout the paper we will use
the same notation for real numbers and for real vectors; it will be clear from the
context what we mean. Moreover, by cabs we will denote universal constants which
may change at every occurrence.

A sequence .xn/n2N of points from Œ0; 1�s is called uniformly distributed
(modulo 1) if for any x 2 Œ0; 1�s the asymptotic equality

lim
N!1

1

N

NX

nD1
1Œ0;x/.xn/ D .Œ0; x// (1)

holds. Here N denotes the set of positive integers, and  denotes the s-dimensional
Lebesgue measure. By an observation of Weyl [23] a sequence is uniformly
distributed if and only if

lim
N!1

1

N

NX

nD1
f .xn/ D

Z

Œ0;1�s
f .x/ dx (2)

for any continuous s-dimensional function f . This interrelation already suggests
that uniformly distributed sequences can be used for numerical integration—an
idea which is the origin of the so-called Quasi-Monte Carlo (QMC) method for
numerical integration. The speed of convergence in (1) and (2) can be measured by
means of the star discrepancy of the point sequence .xn/n2N � Œ0; 1�s , which is
defined as

D�sN .x1; : : : ; xN / D sup
x2Œ0;1�s

ˇ̌
ˇ
ˇ
ˇ
1

N

NX

nD1
1Œ0;x/.xn/� .Œ0; x//

ˇ̌
ˇ
ˇ
ˇ
; N 2 N: (3)

A sequence is uniformly distributed if and only if the discrepancy of its first N
elements tends to 0 as N !1.

The Koksma-Hlawka inequality states that the deviation between the finite
average

1

N

NX

nD1
f .xn/
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and the integral of a function f can be estimated by the product of the star
discrepancy of the point set fx1; : : : ; xN g and the variation (in the sense of Hardy
and Krause) of f ; see [7, 15, 17] for details, as well as for a general introduction
to uniform distribution theory and discrepancy theory. Thus, as a rule of thumb it is
reasonable to perform Quasi-Monte Carlo integration by using point sets having
small discrepancy. There exist many constructions of so–called low-discrepancy
point sets and low-discrepancy sequences, where for many decades the main focus
of research was set on finding point sets and sequences satisfying strong discrepancy
bounds for largeN and fixed s; however, recently, the problem asking for point sets
having small discrepancy for a moderate number of points in comparison with the
dimension has attracted some attention.

From a probabilistic point of view, a sequence .xn/n2N is uniformly distributed
if the corresponding sequence of empirical distribution functions converges to the
uniform distribution. In particular, by the Glivenko-Cantelli theorem a random
sequence is almost surely uniformly distributed.

1.2 The Inverse of the Discrepancy

Let n�.s; "/ denote the smallest possible size of a set of s-dimensional points
having star discrepancy not exceeding ". This quantity is called the inverse of
the discrepancy. By a profound result of Heinrich, Novak, Wasilkowski and
Woźniakowski [14] we know that

n�.s; "/ � cabss "
�2: (4)

This upper bound is complemented by a lower bound of Hinrichs [13], stating that

n�.s; "/ � cabss "
�1: (5)

Together, (4) and (5) give a complete description of the dependence of the inverse
of the star discrepancy on the dimension s, while the precise dependence on " is
still an important open problem. For their proof Heinrich et al. use deep results of
Haussler [12] and Talagrand [22]. In fact, what they exactly prove is that a randomly
generated sequence satisfies (4) with positive probability. The upper bound in (4) is
equivalent to the fact that for any N and s there exists a set of N points in Œ0; 1�s

satisfying the discrepancy bound

D�sN � cabs

p
sp
N
: (6)

For more details on the inverse of the discrepancy and on feasibility of Quasi-Monte
Carlo integration we refer to [11, 18, 19].
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1.3 Double Infinite Matrices

Dick [4] observed that the probabilities of the exceptional sets in the argument of
Heinrich et al. to prove (6) are summable over s and N , if the factor N is replaced
by N lnN . More precisely, he proved that with positive probability all the N � s-
dimensional projections of a randomly generated double infinite matrix .Xn;i /n;i2N
satisfy

D�sN � cabs

p
lnN

p
sp
N
: (7)

Dick’s result has been slightly improved by Doerr, Gnewuch, Kritzer and Pil-
lichshammer [6], again for randomly generated matrices. It is clear that such
a randomly generated matrix cannot achieve the discrepancy bound (6) uni-
formly in s and N , since by Philipp’s law of the iterated logarithm [20] for any
sequence .Xn/n2N of independent, uniformly distributed random vectors

lim sup
N!1

p
ND�sN .X1; : : : ; XN /p

ln lnN
D 1p

2
almost surely: (8)

Thus, the factor
p

lnN in (7) cannot be reduced to a function from the class

o
�p

ln lnN
	

, since by (8) no positive probability can exist for a random matrix

satisfying such an asymptotic discrepancy bound. However, there exists a double
infinite matrix constructed in a hybrid way (that is, consisting of both random and
deterministic entries) whose N � s-dimensional projections satisfy

D�sN � cabs

p
sp
N

uniformly in N and s, see [2]. The purpose of the present paper is to find optimal
discrepancy bounds which hold for random double infinite matrices with positive
probability, and to give estimates for the corresponding probabilities.

1.4 Complete Uniform Distribution and Markov Chain Monte
Carlo

A sequence .xn/n2N of numbers from Œ0; 1� is called completely uniformly dis-
tributed (c.u.d.), if for any s the sequences

..xn; : : : ; xnCs�1//n2N � Œ0; 1�s

are uniformly distributed. This property was suggested by Knuth as a test for
pseudorandomness of sequences in volume II of his celebrated monograph on
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The Art of Computer Programming. However, in our context it is more sensible to
use an non-overlapping version of the above construction, namely to use the first Ns
elements of an infinite sequence .xn/n2N to constructN points u.s/1 ; : : : ; u

.s/
N 2 Œ0; 1�s

in the form

u.s/1 D .x1; : : : ; xs/;
u.s/2 D .xsC1; : : : ; x2s/;

:::

u.s/N D .x.N�1/sC1; : : : ; xNs/: (9)

These two notions of complete uniform distribution are equivalent insofar as a
sequence is c.u.d. in the first sense if and only if it is c.u.d. in the second sense.

In many practical applications, e.g., in financial mathematics, a general integral
of the form

Z

˝

f .y/ d�.y/

for some measure space ˝ and some measure � can be transferred to the form

Z

Œ0;1�s

Of .y/ dy: (10)

That is, the original function f (which can be, for example, the payoff-function
of some financial derivative, where the properties of the underlying problem are
described by �) has to be replaced by a new function Of , which contains all the
information about the change of measure from � to . If Of can be easily calculated
and is a well-behaved function, then the integral in (10) can be directly computed
using classical QMC methods. However, in many cases the function Of will be
difficult to handle, and it is computationally easier to directly calculate the integral

Z

˝

f .y/ d�.y/ D
Z

˝

f .y/�.y/ dy; (11)

where � is the density function of �, by sampling random variables having density
� . In other words, it is necessary to sample random variables having density � ,
which may not be directly possible by standard methods. This problem can be solved
by using Markov Chain Monte Carlo (MCMC). Here y0 is a (random) starting
element, and the other samples yn are constructed iteratively in the form yn D
˚.yn�1; un/, where un 2 Œ0; 1�s and ˚ is an appropriate function. The distribution
of .ynjy0; : : : ; yn�1/ is the same as the distribution of .ynjyn�1/, which means that
the sequence .yn/n2N has the Markov property. Then, if � is the density of the
stationary distribution of .yn/n2N under ˚ , the integral (11) can be estimated by
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1

N

NX

nD1
f .yn/:

For more background information on MCMC we refer to [16, 21].
Traditionally, the points .un/n2N � Œ0; 1�s in the aforementioned construction are

sampled randomly. However, Chen, Dick and Owen [3] recently showed that it is
also possible to use quasi-random points instead, namely by choosing un D u.s/n ,
n 2 N, constructed out of a completely uniformly distributed sequence .xn/n2N
according to (9). Then, under some regularity assumptions, the MCMC sampler
consistently samples points having density � , provided the discrepancy of the c.u.d.-
sequence is sufficiently small. The results of [3] are of a merely qualitative nature,
stating that certain MCMC-methods are consistent if the discrepancy of the QMC-
points, constructed according to (9), tends to zero. However, it is natural to assume
that the speed of convergence of these MCMC samplers can be estimated by the

speed of decay of the discrepancy of
n
u.s/n j 1 � n � N

o
, and therefore it is desirable

to find sequences .xn/n2N for which this discrepancy is small. In [3] it is noted that
Dick’s proof from [4] can be modified to prove the existence of a sequence .xn/n2N
for which

D�sN
�

u.s/1 ; : : : ; u
.s/
N

	
� cabs

p
lnN

p
sp
N
;

uniformly in N and s. In the present paper we will show that the factor
p

lnN
can be reduced to

p
cabs C .ln lnN/=s, which is already very close to the upper

bound of Heinrich et al. in (6). We tried to find a hybrid construction achieving
(6), similar to the hybrid construction of a double infinite matrix mentioned at the
end of the previous section, but due to the complicated dependence between the

diverse coordinates of the point sets
n
u.s1/n j 1 � n � N1

o
and

n
u.s2/n j 1 � n � N2

o

for different s1; s2 and N1;N2 this seems to be hopeless. The discrepancy bound in
our Theorem 2 below is the strongest known discrepancy bound for c.u.d.-sequences
(which is valid uniformly in N and s) at present. Furthermore, Dick’s result is
of limited practical use as it involves unknown constants, while our results are
completely explicit and even allow to calculate the probability of a random sequence
satisfying the desired discrepancy bounds.

1.5 Results

Let X D .Xn;i /n;i2N be a double infinite array of independent copies of some
uniformly Œ0; 1�-distributed random variable. For positive integersN and s set

PN;s D
˚
X.1/; : : : ; X.N/

�
;
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where X.n/ D .Xn;1; : : : ; Xn;s/ 2 Œ0; 1�s for n D 1; : : : ; N . Hence, PN;s is the
projection of X onto its first N � s entries. As in (3) let D�sN .PN;s/ denote the
s-dimensional star discrepancy of these N points.

The main technical tool of the present paper is the following Lemma 1, which
will be used to derive our theorems.

Lemma 1. Let ˛ � 1 and ˇ � 0 be given. Moreover, for M; s 2 N set

˝M;s D
(

max
2M�N<2MC1

N �D�sN .PN;s/ >

r

˛AC ˇB lnM

s

p
s � 2M

)

;

where A D 1165 and B D 178. Then we have for all natural numbersM and s

P .˝M;s/ <
1

.1C s/˛
1

Mˇ
:

The proof of Lemma 1, which is given in Sect. 2 below, essentially follows the
lines of [1]. In addition we use a Bernstein type inequality which can be found, e.g.,
in Einmahl and Mason [8, Lemma 2.2]:

Lemma 2 (Maximal Bernstein inequality). For M 2 N let Zn, 1 � n � 2MC1,
be independent random variables with zero mean and variance V.Zn/. Moreover,
assume jZnj � C for some C > 0 and all n 2 f1; : : : ; 2MC1g. Then for every t � 0

P

 

max
1�N�2MC1

NX

nD1
Zn > t

!

� exp

0

@�t2=
0

@2
2MC1X

nD1
V.Zn/C 2Ct=3

1

A

1

A :

At the end of Sect. 2, we will conclude the following two theorems from
Lemma 1. Here � denotes the Riemann Zeta function.

Theorem 1. Let � � ��1.2/ 	 1:73 be arbitrarily fixed. Then with probability
strictly larger than 1 � .�.�/� 1/2 � 0 we have for all s 2 N and every N � 2

D�sN .PN;s / � p� �
r

1165C 178 ln log2 N

s
�
r
s

N
:

In particular, there exists a positive probability that a random matrix X satisfies for
all s 2 N and every N � 2

D�sN .PN;s/ �
r

2130C 308 ln lnN

s
�
r
s

N
:

In our second theorem, we show how our method can be applied to obtain
discrepancy bounds for completely uniformly distributed sequences. To this end
let X D .Xn/n2N be a sequence of independent, identically distributed random
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variables having uniform distribution on Œ0; 1�. For any s 2 N and N � 2 define a
sequence

U
.s/
1 D .X1; : : : ; Xs/;
U
.s/
2 D .XsC1; : : : ; X2s/;

:::

U
.s/
N D .X.N�1/sC1; : : : ; XNs/:

Furthermore, let

UN;s D
n
U
.s/
1 ; : : : ; U

.s/
N

o
: (12)

Theorem 2. Let � � ��1.2/ be arbitrarily fixed. Then with probability strictly
larger than 1 � .�.�/� 1/2 � 0 we have for all s 2 N and every N � 2

D�sN .UN;s / � p� �
r

1165C 178 ln log2 N

s
�
r
s

N
:

In particular, there exists a positive probability that a random sequence X is
completely uniformly distributed and satisfies for all s 2 N and every N � 2

D�sN .UN;s/ �
r

2130C 308 ln lnN

s
�
r
s

N
:

Our results are essentially optimal in two respects. On the one hand, for any
N and s satisfying N � exp.exp.cabss// our Theorem 1 gives (with positive
probability) a discrepancy estimate of the form

D�sN .PN;s/ � cabs

p
sp
N

(13)

and by this means resembles the aforementioned result of Heinrich et al. (note that
a discrepancy estimate of the form (13) is not of much use if N > exp.exp.cabss//,
since in this case the well-known bounds for low-discrepancy sequences are much
smaller). Hence, any improvement of our Theorem 1 (up to the values of the
constants) would require an improvement of (4). Furthermore, recent research of
Doerr [5] shows that the expected value of the star-discrepancy of a set of N points
in Œ0; 1�s is of order s1=2N�1=2. The probability estiamtes in [5] can be used to show
that for an i.i.d. random matrix X there exist absolute constants K1;K2 such that
for every s the probability, that the N � s-dimensional projections of X have a
discrepancy bounded by K1s

1=2N�1=2 for all N � exp.exp.K2s//, is zero. This
means that for N in this range our Theorem 1 is essentially optimal. It should also
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be mentioned that it is possible that (4) is already optimal and cannot be improved.
On the other hand, for fixed s and large N our discrepancy estimate is of the form

D�sN .PN;s/ � c.s/
p

ln lnNp
N

:

This discrepancy bound is asymptotically optimal for random matrices (up to the
value of the constants c(s)), since in view of the law of the iterated logarithm
(8) no random construction can achieve a significantly better rate of decay of the
discrepancy with positive probability.

We note that constructing a sequence of elements of Œ0; 1� satisfying good
discrepancy bounds in the sense of complete uniform distribution is much more
difficult than constructing point sets in Œ0; 1�s for a fixed number of points and fixed
dimension s. There exist constructions of sequences having good c.u.d.-behavior,
but usually the corresponding discrepancy bounds are only useful if N is much
larger than s; it is possible that the discrepancy estimates in Theorem 2 are optimal
in the sense that they give good results uniformly for all possible values of N and
s, and that Theorem 2 cannot be significantly improved (up to the values of the
constants) in this regard.

2 Proofs

Proof of Lemma 1. Since the proof is somewhat technical we split it into different
steps. The main ingredients in the proof are a dyadic decomposition of the unit
cube, which was introduced in [1], a maximal version of Bernstein’s inequality
(Lemma 2), which is also used to prove the law of the iterated logarithm in
probability theory, and Dick’s observation from [4] that the exceptional probabilities
are exponentially decreasing in s and are therefore summable over s. Our results
could not be proved using the method in [14] (which is tailor-made for fixed N
and s), since there does not exist a maximal version of Talagrand’s large deviations
inequality for empirical processes, which is the crucial ingredient in [14].

Step 1. Let M; s 2 N be fixed. Without loss of generality we can assume

1

2

r

˛AC ˇB lnM

s

r
s

2M
< 1 (14)

because otherwise

˝M;s �
�

max
2M�N<2MC1

N �D�sN .PN;s/ > 2
MC1

�
D ;:

For a moment assume L � 2 to be given. Let .ak/LkD�1 and .bk/LkD�1 be two
non-negative, non-increasing sequences such that
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A � 2
 

LX

kD�1

p
ak

!2

and B � 2
 

LX

kD�1

p
bk

!2

(15)

and set

yk D ˛ak C ˇbk lnM

s
and tk D pyk

p
s � 2M : (16)

Hence, using (14), as well as (15), we have

1 >
1p
2

r

˛a�1 C ˇb�1 lnM

s

r
s

2M
D 2 � 1

2
p
2

p
y�1

r
s

2M
:

If we choose L 2 N such that

1

2

�
1

2
p
2

p
y�1

r
s

2M

�
< 2�L � 1

2
p
2

p
y�1

r
s

2M
(17)

this implies L � 2.
Since the square root function is sublinear and concave we may use Jensen’s
inequality to obtain

LX

kD�1

p
yk �

LX

kD�1

p
˛ak C

LX

kD�1

r

ˇbk
lnM

s

D
s

˛

�XL

kD�1
p
ak

�2
C
s

ˇ

�XL

kD�1
p
bk

�2 lnM

s

�
s

˛2

�XL

kD�1
p
ak

�2
C ˇ2

�XL

kD�1
p
bk

�2 lnM

s

�
r

˛AC ˇB lnM

s
(18)

out of (15) and the definition of yk .
Step 2. In what follows we use a decomposition of the s-dimensional unit cube

in terms of ı-covers and ı-bracketing covers. A detailed description of this
decomposition can be found in [1]. We briefly sketch the main points.
For any given ı 2 .0; 1� a finite set � of points in Œ0; 1�s is called a ı-cover
of Œ0; 1�s if for every y 2 Œ0; 1�s there exist two elements x; z 2 � such that
x � y � z and .Œ0; z/nŒ0; x// � ı. Furthermore, a finite set � of pairs of points
from Œ0; 1�s is called a ı-bracketing cover if for every pair .x; z/ 2 � we have
.Œ0; z/nŒ0; x// � ı, and if for every y 2 Œ0; 1�s there exists a pair .x; z/ 2 �
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such that x � y � z. The concepts of ı-covers and ı-bracketing covers were
investigated in detail in [9].
For 1 � k < L let �k denote a 2�k-cover of Œ0; 1�s . Moreover, let �L denote a
2�L-bracketing cover of Œ0; 1�s . For notational convenience we set

�L D
n
pL 2 Œ0; 1�s

ˇ
ˇ
ˇ .pL; pLC1/ 2 �L for some pLC1

o
;

�LC1 D
n
pLC1 2 Œ0; 1�s

ˇ
ˇ
ˇ .pL; pLC1/ 2 �L for some pL

o

and p0 D 0 2 Œ0; 1�s . Furthermore, for points a � b in Œ0; 1�s we define

Œa; b/ D
(
Œ0; b/ n Œ0; a/; if a ¤ 0;
Œ0; b/; if a D 0 and b ¤ 0;

as well as Œ0; b/ D ; if b D 0.
By the definition of a ı-bracketing cover, to every x 2 Œ0; 1�s we can
assign a set ŒpL.x/; pLC1.x//, such that pk 2 �k; k D L;L C 1, and
.ŒpL.x/; pLC1.x/// � 2�L. Now, by the definition of a ı-cover, we can
assign a point pL�1.x/ 2 �L�1 [ f0g such that pL�1.x/ � pL.x/ and
.ŒpL�1.x/; pL.x/// � 2�LC1. Next we assign a point pL�2.x/ 2 �L�2 [ f0g
such that pL�2.x/ � pL�1.x/ and .ŒpL�2.x/; pL�1.x/// � 2�LC2. Proceeding
inductively, also for every k D 1; : : : ; L � 3 we find a point pk.x/ 2 �k [ f0g
such that pk.x/ � pkC1.x/ and .Œpk.x/; pkC1.x/// � 2�k . Finally for every
k D 1; : : : ; LC 1 we have assigned points pk.x/; 1 � k � LC 1, belonging to
�k [ f0g for each k, such that, writing Ik.x/ D Œpk.x/; pkC1.x//, 1 � k � L,
and setting I0.x/ D Œ0; p1.x//, we have

L�1[

kD0
Ik.x/ � Œ0; x/ �

L[

kD0
Ik.x/: (19)

and

.Ik.x// � 2�k; k 2 f0; : : : ; Lg:

For every k 2 f0; : : : ; Lg, let Ak D fIk.x/ j x 2 Œ0; 1�sg denote the collection
of all possible sets Ik.x/, as x runs through the whole unit cube Œ0; 1�s . Then
the cardinality of these sets is bounded by #�kC1. Using Theorem 1.15 from
Gnewuch [9] we see that we can choose our 2�k-covers �k such that

#Ak � #�kC1 � 2s s
s

sŠ
.2kC1 C 1/s < 1

2

p
2=�

�
2e.2kC1 C 1/

	s

� 1

2
exp

�
ln
p
2=� C ˛s ln

�
2e.2kC1 C 1/

		
; k 2 f0; : : : ; L � 2g; (20)
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where we used Stirling’s formula, as well as s � 1, and ˛ � 1. Similarly, we can
choose the 2�L-bracketing cover�L in a way that

#Ak � #�L D #�L � 2s�1 s
s

sŠ
.2L C 1/s < 1

2

p
1=.2�/

�
2e.2L C 1/�s

� 1

2
exp

�
ln
p
1=.2�/C ˛s ln

�
2e.2L C 1/�

	
; k 2 fL � 1;Lg:

Step 3. Given the decomposition from Step 2 we define for k D 0; : : : ; L and
I 2 Ak

Ek.I / D
(

max
2M�N<2MC1

ˇ̌
ˇ
ˇ
ˇ

NX

nD1
1I
�
X.n/

� �N.I /
ˇ̌
ˇ
ˇ
ˇ
> tk

)

;

where the numbers tk were defined in (16). Moreover, let Ek D S
I2Ak

Ek.I /

and E DSL
kD0 Ek . If we can show that independently of I 2 Ak we have

2kC1.1C s/˛Mˇ � #Ak � P.Ek.I // < 1 for k 2 f0; : : : ; Lg; (21)

then this leads to

P.E/ �
LX

kD0

X

I2Ak

P.Ek.I // �
LX

kD0
2�.kC1/.1C s/�˛M�ˇ < 1

.1C s/˛
1

Mˇ
: (22)

In order to show (21) for fixed I 2 Ak with k 2 f0; : : : ; Lg let us define the
random variables Zn D 1I .X

.n// � .I /, where n D 1; : : : ; 2MC1. Obviously,
all the Zn are independent and bounded by

jZnj � C D max f.I /; 1 � .I /g :

Furthermore, we have E.Zn/ D 0 and V.Zn/ D .I /.1�.I //. From Lemma 2
applied to˙Zn and t D tk we conclude

P.Ek.I // � 2 exp

�
� t2k =2

M

4 .I / .1� .I //C 2C tk=.3 � 2M /
�
: (23)

Since tk D pyk
p
s � 2M � py�1

p
s � 2M estimate (17) implies

2
tk

3 � 2M < 2
4
p
2

3
2�L <

(
2�kC1; for k D 0; : : : ; L � 1;
2�LC2; for k D L:
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For k 2 f0; 1g we use .I /.1 � .I // � 1=4 and C � 1 to estimate the
denominator in (23) by 3 and 2, respectively. If L > 2 and k 2 f2; : : : ; L � 1g it
is easy to see that maximizing 4.1� /C 2�kC1.1� / subject to  2 Œ0; 2�k�
gives the bound 3 � 2�kC1.1 � 2�k/. For K D L a similar argument shows that
the denominator in (23) is less than 2�LC3.1 � 2�L/. Hence, we have

P.Ek.I // � 2 exp.�yks=�k/; where �k D
(
3; k D 0;
2�kC3.1 � 2�k/; k > 0:

(24)

Using s � 1 it is easily seen that for any k � 0

2kC1.1C s/˛Mˇ � exp
�
ln 2kC1 C ˛s ln 2C ˇ lnM

�
(25)

such that we can conclude (21) if we choose ak and bk in the right way. We
explain the necessary arguments for the case k D 0 explicitly. The case k > 0

then works in the same manner. Combining the estimates (20), (24) and (25) we
have because of ˛s � 1 that

21.1C s/˛Mˇ � #A0 � P.E0.I //
< exp

�
ln
�
2
p
2=�

	
C ˛s ln

�
4e.21 C 1/�C ˇ ln.M/ � ˛sa0=�0 � ˇ ln.M/b0=�0

	

� exp
�
˛s
�

ln
�
24e

p
2=�

	
� a0=�0

	
C ˇ ln.M/ .1 � b0=�0/

	
� exp.0/ D 1;

if we choose

b0 D �0 and a0 D �0 ln
�
24e

p
2=�

	
: (26)

Similarly, we choose

bk D �k and ak D �k � ln
�
2kC3e

p
2=�.2kC1 C 1/

	
(27)

to obtain (21) also for k D 1; : : : ; L.
Step 4. To conclude the main statement of Lemma 1 by applying (22) it remains

to show that ˝M;s � E . To this end let N 2 Œ2M ; 2MC1/ be arbitrary, but fixed.
Due to the definitions in Step 3 for every ! 2 EC D TL

kD0
T
I2Ak

Ek.I /
C and

xn D X.n/.!/ 2 Œ0; 1�s (for n D 1; : : : ; N ) we have

ˇ
ˇ
ˇ̌
ˇ

NX

nD1
1I .xn/ �N.I /

ˇ
ˇ
ˇ̌
ˇ
� tk for all k 2 f0; : : : ; Lg and every I 2 Ak:

Thus, from (19) we conclude for every x 2 Œ0; 1�s



284 C. Aistleitner and M. Weimar

NX

nD1
1Œ0;x/.xn/ �

LX

kD0

NX

nD1
1Œpk.x/;pkC1.x//

.xn/

�
LX

kD0

�
N

�
Œpk.x/; pkC1.x//

	
C tk

	

D N.Œ0; x//CN
�
Œx; pLC1.x//

	
C

LX

kD0
tk:

Since pL.x/ � x � pLC1.x/ the volume of the set Œx; pLC1.x// can be
estimated from above by 2�L what is no larger than 1=2

p
y�1

p
s=2M due to

(17). Hence, because of N < 2 � 2M , the second term in the above sum is less
than
p
y�1
p
s � 2M . Consequently,

NX

nD1
1Œ0;x/.xn/ < N.Œ0; x//C

p
s � 2M

LX

kD�1

p
yk

� N.Œ0; x//C
r

˛AC ˇB lnM

s

p
s � 2M ;

where we used (18) from Step 1 for the last estimate. In a similar way we obtain
the corresponding lower bound

NX

nD1
1Œ0;x/.xn/ �

L�1X

kD0

NX

nD1
1Œpk.x/;pkC1.x//

.xn/

� N.Œ0; x// �N
�
Œx; pLC1.x//

	
�
L�1X

kD0
tk

> N.Œ0; x// �
r

˛AC ˇB lnM

s

p
s � 2M :

Both the estimates, together with the definition of D�sN , imply

N �D�sN .x1; : : : ; xN / �
r

˛AC ˇB lnM

s

p
s � 2M

since x 2 Œ0; 1�s was arbitrary. Due to the fact that this holds for all N 2
Œ2M ; 2MC1/ and for every ! 2 EC we have shown that EC � .˝M;s/

C , i.e.,
˝M;s � E .

Step 5. Finally, we need to check that the sequences .ak/LkD�1 and .bk/LkD�1,
which were defined in (26), (27), and (24), satisfy the assumptions made at the



Probabilistic Star Discrepancy Bounds for Double Infinite Random Matrices 285

beginning of Sect. 2. We already checked that L � 2, see (17). Moreover, it
is obvious that both sequences are non-negative and non-increasing for k � 0.
Hence, we define a�1 D a0 and b�1 D b0 to guarantee that this holds for all k.
It remains to show (15). To this end we calculate for c 2 fa; bg

2

 
LX

kD�1

p
ck

!2

� 2
 

2
p
c0 C

1X

kD1

p
ck

!2
�
(
1164:87; if c D a;
177:41; if c D b:

This completes the proof choosing A D 1165 and B D 178. ut
Proof of Theorem 1. Let � denote the Riemann Zeta function, and let � � ��1.2/.
Due to the choice of A > 9=2 in Lemma 1 we have ˝1;s D ; for all s 2 N. Hence,
for ˛ D ˇ D � it follows

P

0

@
[

s�1

[

M�1
˝M;s

1

A�
X

s�1

X

M�2
P.˝M;s/ <

X

s�1

X

M�2

1

.1C s/�
1

M�
D .�.�/�1/2 � 1:

In particular, this implies P
��S

s�1
S
M�1 ˝M;s

�C	
> 0. Since ��1.2/ < 1:73 and

B
ln log2 N

s
� B ln lnN

s
�B ln ln 2 � 66CB ln lnN

s
, we can choose � D 1:73 and obtain

D�sN .PN;s/ �
p
1:73

r

1165C 66C 178 ln lnN

s
�
r
s

N

�
r

2130C 308 ln lnN

s
�
r
s

N

with positive probability. This proves Theorem 1. ut
Proof of Theorem 2. For any fixed N and s, the point set UN;s is an array of N � s
i.i.d. uniformly distributed random variables, just like PN;s in the assumptions of
Lemma 1. For given ˛ � 1; ˇ � 0; M; s 2 N, as well as A D 1165 and B D
178, set

˝M;s D
(

max
2M�N<2MC1

N �D�sN .UN;s / >

r

˛AC ˇB lnM

s

p
s � 2M

)

where UN;s now is defined in (12). Then Lemma 1 yields

P .˝M;s/ <
1

.1C s/˛
1

Mˇ
:

With this estimate for the probabilities of the exceptional sets, the rest of the
proof of Theorem 2 can be carried out in exactly the same way as the proof of
Theorem 1. ut
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Note that the choice of the constants ˛ D ˇ D � in the above proofs is
not essential. Alternatively, it would be sufficient to take any pair of parameters
1 < ˛; ˇ < 1 such that .�.˛/ � 1/.�.ˇ/ � 1/ � 1. Using this trade-off it is
possible to fine-tune the absolute constants in our theorems in order to minimize
the discrepancy bounds for given N and s. Moreover, better estimates on the size
of the used ı-(bracketing) covers may lead to (minor important) improvements of
these constants. For details we refer to [1] and the conjectures in Gnewuch [10].
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The L2 Discrepancy of Irrational Lattices

Dmitriy Bilyk

Abstract It is well known that, when ˛ has bounded partial quotients, the lattices˚�
k=N; fk˛g��N�1

kD0 have optimal extreme discrepancy. The situation with the L2

discrepancy, however, is more delicate. In 1956 Davenport established that a
symmetrized version of this lattice has L2 discrepancy of the order

p
logN , which

is the lowest possible due to the celebrated result of Roth. However, it remained
unclear whether this holds for the original lattices without any modifications. It turns
out that the L2 discrepancy of the lattice depends on much finer Diophantine
properties of ˛, namely, the alternating sums of the partial quotients. In this paper
we extend the prior work to arbitrary values of ˛ and N . We heavily rely on Beck’s
study of the behavior of the sums

P�fk˛g � 1
2

�
.

1 Introduction

The present note is a sequel to the papers of the author with Temlyakov and Yu
[7, 8] – we continue the study of the L2 discrepancy of two-dimensional lattices

of the form LN .˛/ WD
��
k=N; fk˛g�

�N�1

kD0
. Historically these lattices play a very

important role in discrepancy theory. It has been known for a long time (cf., Lerch
[12, 1904]) that, when ˛ has bounded partial quotients of the continued fraction
(˛ is badly approximable), the extreme discrepancy of these lattices satisfies the
inequality

�
�DLN .˛/

�
�1 � C1.˛/ logN; (1)
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which is best possible in view of the famous result of Schmidt [16, 1972]. For
.x; y/ 2 Œ0; 1/2, the discrepancy function is defined as

DLN .˛/.x; y/ D #
�
LN .˛/ \ Œ0; x/ � Œ0; y/

� � Nxy: (2)

Regarding the L2 discrepancy, Davenport [10, 1956] has shown that the sym-
metrized lattice L

sym
N .˛/ WD LN .˛/ [LN .�˛/ consisting of 2N points satisfies

the inequality

��DL
sym
N .˛/

��
2
� C2.˛/

p
log.2N /; (3)

complementing the celebrated lower bound obtained by Roth [14, 1954] slightly
earlier. Similar inequalities also hold for the rational approximations of irrational
lattices (see [7, 8, 13]). Later Roth [15, 1979] established that random shifts of
lattices also achieve the optimal order of the L2 discrepancy.

Nevertheless, it still remained a mystery whether these modifications are indeed
necessary and whether the original lattices have asymptotically minimal L2 dis-
crepancy. At least a couple of standard references in discrepancy theory erroneously
stated without proof that

��DLN .˛/

��
2
� C 00̨ logN .

The belief in this bound was partially justified by the fact that it holds for
another classical low-discrepancy distribution – the Van der Corput set, while its
modifications (symmetrizations, translations, digit shifts) have L2 discrepancy of
the order

p
logN , i.e. in this case the modifications are really necessary.

However, in 1982 Sós and Zaremba [17] proved that if all the partial quotients of
the (finite or infinite) continued fraction are equal, then

��DLN .˛/

��
2
� C 0̨plogN .

This result, in particular, applied to ˛ D 1Cp2, the golden section ˛ D 1Cp5
2

, the
ratio of consecutive Fibonacci numbers ˛ D Fn

FnC1
. Unfortunately, the paper went

largely unnoticed in the subject and the generalizations of this result only appeared
recently. It turns out that the L2 discrepancy estimates for lattices depend on much
finer Diophantine properties than just boundedness of partial quotients.

We introduce some notation. For ˛ 2 R consider its continued fraction expansion

˛ D Œa0I a1; a2; : : :� D a0 C 1

a1 C 1

a2C 1
a3C:::

(4)

with the partial quotients a0 2 Z, ak 2 N, k � 1. This expansion is finite if ˛ is
rational, and infinite otherwise. We denote by pn=qn the nth order convergents of ˛,
i.e. pn=qn D Œa0I a1; : : : ; an�. We say that A 	 B if A D O.B/ and vice versa.

In this note we prove the following theorem:

Theorem 1. Assume that ˛ D Œa0I a1; a2; : : :� has bounded partial quotients and
let pn=qn be its nth order convergent. Then, for qn�1 < N � qn we have

�
�DLN .˛/

�
�
2
	 max

� ˇˇ
ˇ
ˇ

nX

kD1
.�1/kak

ˇ
ˇ
ˇ
ˇ;
p

logN

�
; (5)
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in particular,

�
�DLN .˛/

�
�
2
	 plogN if and only if

ˇ
ˇ

nX

kD0
.�1/kak

ˇ
ˇ � C.˛/pn: (6)

(If ˛ D pn�=qn� is rational, we additionally assume that N � qn�.)
The classical recurrence relation qnC1 D anC1qn C qn�1 easily implies that qn

grows exponentially and thus whenever qn�1 < N � qn, we have n 	 logN .
Therefore, the first expression in the estimate above is at most of the order logN .

We note that this theorem obviously includes the aforementioned result of
Sós and Zaremba. In addition, a partial case of this theorem has been obtained
by the author with Temlyakov and Yu [8] – this case deals with the situation
when the rational ˛ D pn=qn is the nth convergent of a badly approximable
number � and the number of points N D qn. This case, in particular, takes
care of the famous Fibonacci lattice Fn D

˚
.k=Fn; fkFn�1=Fng/

�Fn�1
kD0 . Aicke

Hinrichs (private communication) conjectures that the Fibonacci lattice has the
lowest L2 discrepancy among all lattices with Fn points. For more information
on the Fibonacci lattice and its relation to discrepancy and numerical integration
see [7, 8, 18–20].

We briefly mention some other values of ˛ which yield a lattice with an optimal
order of L2 discrepancy. First of all, for any integer of the form m D p2 C 1,
we have

p
m D ŒpI 2p�. Hence it follows already from the Sós–Zaremba result

that LN .
p
m/ has L2 discrepancy of order

p
N . Therefore, LN .

p
2/ is optimal,

while LN .
p
3/ is not, since

p
3 D Œ1I 1; 2� and the alternating sums grow linearly.

We can also construct other examples. It is well known that quadratic irrationalities
have periodic continued fraction expansions. Notice that if the length of the period is
odd, then the alternating sums

Pn
kD1.�1/kak stay bounded and the L2 discrepancy

is bounded by
p

logN . We list the first few values of m (excluding m D p2 C 1)
such that the expansions of

p
m have periods of odd length: 13, 29, 41, 53, 58,

61, 73, 74, 85, 89, 97. Notice that the periodicity implies an interesting dichotomy:
for any quadratic irrational ˇ, the L2 discrepancy of LN .ˇ/ is either of the order
logN or

p
logN . In general, it is not had to construct ˛ so that LN .˛/ has any

intermediate rate of the L2 discrepancy.
We add a few words about the methods. Both the original paper of Daven-

port [10], and the work of Bilyk, Temlyakov, and Yu [7, 8] used the Fourier series
analysis of the discrepancy function. However, Davenport looked at discrepancy
as a function of y and obtained estimates independent of x, while the author and
collaborators considered the two-dimensional Fourier series, which for a rational
lattice are supported on a very sparse set. In both cases, the main problem comes
from the zero-order term of the Fourier expansion (the integral); indeed, both
Davenport’s symmetrization and Roth’s translation are intended to handle this term.
In this paper, we revert to Davenport’s method.
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2 Preliminaries

Consider the 1-periodic sawtooth function  .x/ D fxg � 1
2
. It will be crucial for us

to understand the behavior of the sums

Sm.˛/ D
mX

kD0
 .k˛/: (7)

These objects have been extensively studied by Beck [2–4] (I would like to thank
Nir Lev for pointing out these references to me). In particular, it turns out that the
Cesaro mean of these sums

TN .˛/ WD 1

N

N�1X

mD0
Sm.˛/ D

N�1X

mD0

�
1 � m

N

�
 .m˛/ (8)

satisfies the following (see Theorem 3.2 in [3])

TN .˛/ D 1

12

nX

kD1
.�1/kak C O.max

1�i�n ai /; (9)

where n is the smallest index such that qn � N . It can also be shown (see [3]) that
the second moment of these sums satisfy

VN .˛/ WD 1

N

N�1X

mD0

�
Sm.˛/ � TN .˛/

�2 	
X

mW qm�N
a2m: (10)

In addition, the Central Limit Theorem holds for the sums Sn.˛/. The CLT takes
the following form (see Theorem 4.1 in [3])

1

N
� #
�
0 � m � N �1 W Sm.˛/� TN .˛/p

VN .˛/
� 

�
�! 1p

2�

Z 

�1

e�t2=2dt as N !1
(11)

provided that a2k=.
Pk

iD1 a2i /! 0 as k !1.
This statement is applicable, in particular, when ak’s are bounded. In this case it

follows from (10) that

VN .˛/ � max a2k � #fm W qm � N g � C˛ logN (12)

for some absolute constant C˛ > 0, since, as noted earlier, qn�1 < N � qn implies
n 	 logN .
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Now the CLT easily implies that

�
�
��
Sm.˛/ � TN .˛/p

VN .˛/

�
�
��
`2.N /

D O.1/ (13)

as N ! 1, where kxk`2.N / D
�
1

N

N�1X

mD0
jx.m/j2

�1=2
. Indeed, if x satisfies the

CLT (11), then

1

N

N�1X

mD0
jx.m/j2 �

X

k2Z

#fm W 2k�1 < jx.m/j � 2kg
N

� 22k

	
X

k2Z

22kp
2�

Z 2k

2k�1

e�t 2=2dt � 4p
2�

Z 1

0

t2 � e�t 2=2dt

when N is large. Therefore,

TN .˛/ �
�
1

N

N�1X

mD0
S2m.˛/

�1=2
� K˛

�
TN .˛/C

p
logN

�
(14)

for some constant K˛ > 0. The first inequality is obvious by Cauchy–Schwartz,
while the second one is a corollary of (13) and (12). This estimate will be crucial in
the proof of Theorem 1.

In the end we would like to note that the mean values of Sm.˛/ arise naturally
with respect to discrepancy. It is easy to check that

Z

Œ0;1/2
DLN .˛/.x; y/ dx dy D

N�1X

mD0

�
1 � m

N

��
1 � fm˛g�� N

4
D �TN .˛/C 1

4
:

(15)

This, together with Roth’s theorem, immediately implies the lower bound in (5)
since kf k2 � j

R
f j. Estimate (14) for the quadratic mean of Sm.˛/ will arise in

the proof of the upper bound.
In the case considered in [8] when ˛ D p=q is rational and N D q, the integral

above equals D.p; q/C 1
2
, where

D.p; q/ D
q�1X

kD0

k

q
�  
�
k
p

q

�
(16)

is the Dedekind sum. The fact that its behavior is controlled by the alternating sums
of partial quotients of p=q has been known independently of Beck’s work (e.g. [1,
11]) and has been used in the present setting in [8].
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3 The Proof of Theorem 1 (Upper Bound)

We follow Davenport’s approach. For a moment, let us fix x 2 Œ0; 1/ and set U D
U.x/ D dNx � 1e. It is well known (see [10,15]) that the discrepancy function may
be approximated as DLN .˛/.x; y/ DMU .y/C O.1/, where

MU.y/D
UX

kD0

�
 .k˛ � y/� .k˛/�D 1

2�i

X

m¤0

1

m

� UX

kD0
e2� imk˛

� �
1� e�2� imy

�
;

(17)

where the equality is understood in the L2 sense. We have used the Fourier

expansion  .x/ � �
X

m¤0

e2� imy

2�im
. Using Parseval’s identity one obtains:

��MU

��2
L2.dy/

� jbMU.0/j2 C C
1X

mD1

1

m2

ˇ
ˇ̌
ˇ

UX

kD0
e2� imk˛

ˇ
ˇ̌
ˇ

2

: (18)

The sum above is bounded by a constant multiple of logU � logN (see [9, 10] for
details – this estimate was the heart of Davenport’s proof). The zero-order Fourier
coefficient (the constant term) is

bMU.0/ D 1

2�i

X

m¤0

1

m

� UX

kD0
e2� imk˛

�
D �

UX

kD0
 .k˛/ D �SU .˛/: (19)

We thus arrive to

�
�MU

�
�2
L2.dy/

� S2U .˛/C C 0̨ logN: (20)

We now integrate estimate (20) over x 2 Œ0; 1/. Notice that as x runs over Œ0; 1/, the
discrete parameter U D U.x/ changes between 0 and N � 1, hence the first term
results in

1

N

N�1X

UD0
S2U .˛/ � C 00̨.T 2N .˛/C logN/ (21)

according to (14). Putting together these estimates and (9) we find that

�
�MU.x/.y/

�
�2
L2.dx dy/

� K1.˛/ logN CK2.˛/

ˇ
ˇ
ˇ
ˇ
X

kW qk�N
.�1/kak

ˇ
ˇ
ˇ
ˇ

2

; (22)
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for some constants K1.˛/ and K2.˛/, which yields the upper bound in (5) and
finishes the proof of Theorem 1. ut

We would like to make a concluding remark. It seems to be a recurrent feature
that whenever a well-distributed set fails to meet the optimal L2 discrepancy
bounds, the problem is always already in the constant term, i.e. the integral of
the discrepancy function [5, 6, 8, 10, 15]. We conjecture that this should be true in
general, in other words the following statement should hold: there exist constants
C1, C2, C3 > 0 such that whenever PN � Œ0; 1/2, #PN D N satisfies

��DPN

��1 �
C1 logN and

��DPN

��
2
� C2 logN , it should also satisfy

ˇ
ˇ
ˇ̌
Z

Œ0;1/2
DPN .x; y/ dx dy

ˇ
ˇ
ˇ̌ � C3 logN: (23)
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Complexity of Banach Space Valued
and Parametric Integration

Thomas Daun and Stefan Heinrich

Abstract We study the complexity of Banach space valued integration. The
input data are assumed to be r-smooth. We consider both definite and indefinite
integration and analyse the deterministic and the randomized setting. We develop
algorithms, estimate their error, and prove lower bounds. In the randomized setting
the optimal convergence rate turns out to be related to the geometry of the
underlying Banach space. Then we study the corresponding problems for parameter
dependent scalar integration. For this purpose we use the Banach space results and
develop a multilevel scheme which connects Banach space and parametric case.

1 Introduction

While complexity of integration in the scalar case is well-studied, the Banach space
case has not been investigated before. We consider both definite and indefinite
integration, develop randomized algorithms and analyse their convergence. We also
prove lower bounds and this way estimate the complexity of the integration
problems. The results are related to the geometry of the underlying Banach space.
It turns out that the bounds are matching and the algorithms are of optimal order for
special spaces, including the Lp spaces. For general Banach spaces an arbitrarily
small gap in the exponent of upper and lower bounds remains. We also study the
deterministic case and show that for arbitrary Banach spaces our methods are of
optimal order for any fixed choice of the random parameters.

The study of Banach space valued problems turns out to be crucial for the
development of algorithms and the complexity analysis for parameter dependent
problems, since such problems can be viewed as special cases of this general
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context. To apply our Banach space results we need a way of passing from Banach
space valued to scalar information (function values). This is achieved by a multilevel
scheme which is based on the ideas of [2, 6]. As a result, we obtain multilevel
algorithms for the parametric problems and show that they are of optimal order
(in some cases up to a logarithmic factor).

The paper is organized as follows. In Sect. 2 we provide the needed notation
and technical tools. Section 3 contains algorithms for definite and indefinite Banach
space valued integration, their analysis and lower bounds. In Sect. 4 we present the
multilevel approach and in Sect. 5 we apply the previous results to the parametric
problems.

2 Preliminaries

Let N D f1; 2; : : : g and N0 D f0; 1; 2; : : : g. We introduce some notation and
concepts from Banach space theory needed in the sequel. For a Banach space X
the closed unit ball is denoted by BX , the identity mapping on X by IX , and the
dual space by X�. Given another Banach space Y , we let L .X; Y / be the space
of bounded linear mappings T W X ! Y endowed with the canonical norm.
If X D Y , we write L .X/ instead of L .X;X/. Throughout the paper the norm
of X is denoted by k � k. Other norms are usually distinguished by subscripts. We
assume all considered Banach spaces to be defined over the same scalar field K D R

or K D C.
Let Q D Œ0; 1�d and let C r.Q;X/ be the space of all r-times continuously

differentiable functions f W Q! X equipped with the norm

kf kCr .Q;X/ D max
0�j�r; t2Q kf

.j /.t/k:

For r D 0 we write C0.Q;X/ D C.Q;X/, which is the space of continuous
X -valued functions on Q. If X D K, we write C r.Q/ and C.Q/.

Let 1 � p � 2. A Banach space X is said to be of (Rademacher) type p, if there
is a constant c > 0 such that for all n 2 N and x1; : : : ; xn 2 X

E

�
�
�

nX

iD1
"ixi

�
�
�
p � cp

nX

kD1
kxikp; (1)

where ."i /niD1 is a sequence of independent Bernoulli random variables with Pf"i D
�1g D Pf"i D C1g D 1=2 (we refer to [7, 9] for this notion and related facts). The
smallest constant satisfying (1) is called the type p constant of X and is denoted by
�p.X/. If there is no such c > 0, we put �p.X/ D 1. The space Lp1.N ; �/ with
.N ; �/ an arbitrary measure space and p1 <1 is of type p with p D min.p1; 2/.
Furthermore, there is a constant c > 0 such that �2.`n1/ � c.log.nC 1//1=2 for all
n 2 N. We will use the following result (see [7], Proposition 9.11).
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Lemma 1. Let 1 � p � 2, let X be a Banach space, n 2 N and .�i /niD1 be
a sequence of independent X -valued random variables with Ek�ikp < 1 and
E �i D 0 .i D 1; : : : ; n/. Then

 

E

�
�
�

nX

iD1
�i

�
�
�
p

!1=p
� 2�p.X/

 
nX

kD1
E k�ikp

!1=p
:

We need some notation and facts on tensor products of Banach spaces. For details
and proofs we refer to [1] and [8]. Let X ˝ Y be the algebraic tensor product of
Banach spaces X and Y . For z DPn

iD1 xi ˝ yi 2 X ˝ Y define

.z/ D sup
u2BX� ; v2BY�

ˇ
ˇ
ˇ

nX

iD1
hxi ; ui hyi ; vi

ˇ
ˇ
ˇ:

The injective tensor product X ˝ Y is defined as the completion of X ˝ Y with
respect to the norm . We use the canonical isometric identification

C.Q;X/ D X ˝ C.Q/; (2)

valid for arbitrary Banach spaces X , and in particular, for d > 1

C.Œ0; 1�d / D C.Œ0; 1�/˝ C.Œ0; 1�d�1/ D C.Œ0; 1�/˝ � � � ˝ C.Œ0; 1�/:

Given Banach spaces X1;X2; Y1; Y2 and operators T1 2 L .X1; Y1/, T2 2
L .X2; Y2/, the algebraic tensor product T1 ˝ T2 W X1 ˝X2 ! Y1 ˝ Y2 extends to
a bounded linear operator T1 ˝ T2 2 L .X1 ˝ X2; Y1 ˝ Y2/ with

kT1 ˝ T2kL .X1˝X2;Y1˝Y2/ D kT1kL .X1;Y1/kT2kL .X2;Y2/: (3)

For r;m 2 N we let P r;1
m 2 L .C.Œ0; 1�// be composite with respect to the partition

of Œ0; 1� into m intervals of length m�1 Lagrange interpolation of degree r . Let

P r;d
m D ˝dP r;1

m 2 L .C.Œ0; 1�d //

be its d -dimensional version. Setting � d
k D

˚
i
k
W 0 � i � k�d for k 2 N, it follows

that P r;d
m interpolates on � d

rm. Given a Banach space X , the X -valued versions of
the operators above are defined in the sense of identification (2) as

P r;d;X
m D IX ˝ P r;d

m : (4)

This means that if P r;d
m is represented as
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P r;d
m f D

X

s2� drm
f .s/'s .f 2 C.Q//

for some 's 2 C.Q/, then P r;d;X
m has the representation

P r;d;X
m f D

X

s2� drm
f .s/'s .f 2 C.Q;X//:

We can obviously considerP r;d;X
m also as an operator from `1.� d

rm;X/ toC.Q;X/.
Given r 2 N0 and d 2 N, there are constants c1; c2 > 0 such that for all Banach
spaces X and all m 2 N

kP r;d;X
m kL .C.Q;X// � c1; sup

f 2BCr .Q;X/
kf � P r;d;X

m f kC.Q;X/ � c2m�r : (5)

The scalar case of (5) is well-known, which in turn readily implies the Banach space
case by considering functions fu 2 C.Q/ given for f 2 C.Q;X/ and u 2 BX� by
fu.t/ D hf .t/; ui .t 2 Q/.

We will work in the setting of information-based complexity theory (IBC),
see [10, 12]. For the precise notions used here we also refer to [3, 4]. An abstract
numerical problem is described by a tuple P D .F;G; S;K;�/. The set F is the
set of input data, G is a normed linear space and S W F ! G an arbitrary mapping,
the solution operator, which maps the input f 2 F to the exact solution Sf . K is
an arbitrary set and � is a set of mappings from F to K – the class of admissible
information functionals.

A randomized algorithm for P is a family A D .A!/!2˝ , where .˝;˙;P/ is
the underlying probability space and each A! is a mapping A! W F ! G. For !
fixed, A! W F ! G is a deterministic algorithm, that is, stands for a deterministic
process (depending on !) which uses values of information functionals on f 2 F
in an adaptive way. The result of the algorithm, A!f , is the approximation to Sf .
The parameter ! incorporates all randomness used in the algorithm A D .A!/!2˝ .
The error of A is defined as

e.S;A; F / D sup
f 2F

E kSf � A!f kG:

Let card.A!; f / be the number of information functionals used by A! at input f .
We define the cardinality of A as

card.A; F / D sup
f 2F

E card.A!; f /:

The central notion of IBC is the n-th minimal error, which is defined for n 2 N0 as
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eran
n .S; F / D inf

card.A;F /�n e.S;A; F /:

So eran
n .S; F / is the minimal possible error among all randomized algorithms that

use (on the average) at most n information functionals.
We can introduce respective notions for the deterministic setting as a special case

of the above by considering only one-point probability spaces ˝ D f!0g, which
means that there is no dependence on randomness. Let edet

n .S; F / denote the n-th
minimal error in this setting.

The complexity of definite scalar integration has been studied in numerous
papers, see [10–12] and the references therein. The complexity of scalar indefinite
integration was considered only recently in [5]. Let us summarize these known
results.

Let r 2 N0, � 2 f0; 1g, and let S� be the operator of definite (� D 0), respectively
indefinite (� D 1) scalar integration (for the precise definitions see (8)–(9) and the
line after (10)). Then there are constants c1�4 > 0 such that for n 2 N the following
hold. The deterministic n-th minimal error satisfies

c1n
�r=d � edet

n .S�; BCr .Q// � c2n�r=d ; (6)

while the randomized n-th minimal errors fulfills

c3n
�r=d�1=2 � eran

n .S�; BCr .Q// � c4n�r=d�1=2: (7)

The Banach space cases of both problems have not been studied before. The
complexity of parametric definite integration was analysed in [6] (this result is
stated as part of Theorem 2 below), parametric indefinite integration has not been
investigated before.

Throughout the paper c; c1; c2; : : : are constants, which depend only on the
problem parameters r; d , but depend neither on the algorithm parameters n; l etc.
nor on the input f . We emphasize that they do not depend on X either. The same
symbol may denote different constants, even in a sequence of relations.

3 Banach Space Valued Integration

Let X be a Banach space, r 2 N0, and let the definite integration operator SX0 W
C.Q;X/! X be given by

SX0 f D
Z

Q

f .t/dt: (8)

Put F D BCr .Q;X/, G D X , let K D X and � D �.Q;X/ D fıt W t 2 Qg
with ıt .f / D f .t/. So here we consider X -valued information functionals. This
describes the definite integration problem
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P0 D .BCr .Q;X/; X; SX0 ;X;�.Q;X//:

The indefinite integration operator SX1 W C.Q;X/! C.Q;X/ is given by

.SX1 f /.t/ D
Z

Œ0;t �

f .u/du .t 2 Q/; (9)

with Œ0; t � D Qd
iD1Œ0; ti � for t D .ti /

d
iD1 2 Q. Here we take G D C.Q;X/, while

F;K , and � are the same as above, so the indefinite integration problem is

P1 D .BCr .Q;X/; C.Q;X/; SX1 ;X;�.Q;X//:

Note that in the sense of identification (2) we have

SX� D IX ˝ S� .� D 0; 1/; (10)

where S� is the scalar version of SX� , with X D K.
Now we present algorithms for the two integration problems (8) and (9). We

start with definite integration. Let n 2 N and let �i W ˝ ! Q.i D 1; : : : ; n/

be independent, uniformly distributed on Q random variables on some complete
probability space .˝;˙;P/. Set for f 2 C.Q;X/

A0;0;Xn;! f D 1

n

nX

iD1
f .�i .!// (11)

and, if r � 1, put k D ˙n1=d� and

A0;r;Xn;! f D SX0 .P r;d;X
k f /C A0;0;Xn;! .f � P r;d;X

k f /: (12)

We write A0;rn;! for the scalar case A0;r;Kn;! . Finally we set A0;r;Xn D �A0;r;Xn;!

�
!2˝ . In the

scalar case for r D 0 this is just the standard Monte Carlo method and for r � 1 the
Monte Carlo method with separation of the main part. Note that for r 2 N0, n 2 N,
! 2 ˝

A0;r;Xn;! D IX ˝ A0;rn;!: (13)

Let us turn to the error analysis for this algorithm. Fixing the random parameter
! 2 ˝ means that we obtain a deterministic method, the error of which we also
consider.

Proposition 1. Let r 2 N0 and 1 � p � 2. Then there are constants c1�3 > 0 such
that for all Banach spaces X , n 2 N, ! 2 ˝ we have card

�
A0;r;Xn;!

� � c1n and for
all f 2 C r.Q;X/
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kSX0 f � A0;r;Xn;! f k � c2n�r=dkf kCr .Q;X/ (14)
�
E kSX0 f � A0;r;Xn;! f kp�1=p � c3�p.X/n�r=d�1C1=pkf kCr .Q;X/: (15)

Proof. Let r D 0 and f 2 C.Q;X/. With

�i .!/ D
Z

Q

f .t/dt � f .�i .!//

we have E �i .!/ D 0,

SX0 f �A0;0;Xn;! f D 1

n

nX

iD1
�i .!/

and

k�i .!/k � 2kf kC.Q;X/:
This implies (14) and, together with Lemma 1, also (15). The case r � 1 follows
directly from the case r D 0 and relation (5), since

SX0 f �A0;r;Xn;! f D SX0 .f � P r;d;X
k f /� A0;0;Xn;! .f � P r;d;X

k f /:

This completes the proof. ut
Next we consider indefinite integration. First we assume r D 0 and present the

Banach space version of the algorithm from Sect. 4 of [5]. It is a combination of
the Smolyak algorithm with the Monte Carlo method. Fix any m 2 N, m � 2

and L 2 N0. For Nl D .l1; : : : ; ld / 2 N
d
0 we set j Nl j D l1 C � � � C ld and define

UNl ; VL 2 L .C.Q// by

UNl D .P 1;1

ml1
� P1;1

ml1�1 /˝ � � � ˝ .P 1;1

mld�1
� P1;1

mld�1�1 /˝ P1;1

mld
; (16)

with the understanding that P1;1

m�1 WD 0. Furthermore, put

VL D
X

Nl2Nd0 ; jNl jDL
UNl (17)

and let

UXNl D IX ˝ UNl ; V X
L D IX ˝ VL (18)

be the respective Banach space versions. Set

N1 D .1; : : : ; 1„ ƒ‚ …
d

/; m
Nl D .ml1 ; : : : ; mld /; �

mNl D � 1
ml1
� � � � � � 1

mld
;
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and for Ni D .i1; : : : ; id / 2 N
d with N1 � Ni � mNl (component-wise inequalities)

QNl;Ni D
�
i1 � 1
ml1

;
i1

ml1


� � � � �

�
id � 1
mld

;
id

mld


:

So .QNl;Ni /N1�Ni�mNl is the partition of Q corresponding to the grid �
mNl . Let �Nl;Ni W ˝ !

QNl;Ni .j Nl j D L; N1 � Ni � m
Nl / be independent random variables on a complete

probability space .˝;˙;P/ such that �Nl ;Ni is uniformly distributed on QNl;Ni . Define
gNl;! 2 `1.�mNl ; X/ by

gNl;!.t/ D
X

Nj WQNl; NjŒ0;t �
jQNl; Nj jf .�Nl; Nj .!// .t 2 �

mNl /; (19)

with the convention that gNl ;!.t/ D 0 if there is no Nj with QNl; Nj � Œ0; t � (that is, if
some component of t is zero). Finally we put

L D 2d � 1 (20)

and, given n 2 N,

m D
l
.nC 1/ 1L

m
: (21)

If r D 0, we define

A1;0;Xn;! f WD
X

Nl2Nd0 ; jNl jDL
UXNl gNl;! : (22)

In the case r � 1 we put k D ˙n1=d� and

A1;r;Xn;! f D SX1 .P r;d;X
k f /C A1;0;Xn;! .f � P r;d;X

k f /: (23)

Finally set A1;r;Xn D �
A1;r;Xn;!

�
!2˝ . Similarly to (13) we have for r 2 N0, n 2 N,

! 2 ˝
A1;r;Xn;! D IX ˝A1;rn;!; (24)

with A1;rn;! D A1;r;Kn;! . The scalar case of the following result for r D 0 has been
shown in [5]. We use the tensor product technique to carry over parts of the proof.

Proposition 2. Let r 2 N0, 1 � p � 2. Then there are constants c1�3 > 0 such
that for all Banach spaces X , n 2 N, ! 2 ˝ we have card

�
A1;r;Xn;!

� � c1n and for
all f 2 C r.Q;X/

kSX1 f �A1;r;Xn;! f kC.Q;X/ � c2n�r=dkf kCr .Q;X/ (25)

.E kSX1 f � A1;r;Xn;! f kpC.Q;X//1=p � c3�p.X/n�r=d�1C1=pkf kCr .Q;X/: (26)
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Proof. We start with the case r D 0, where we have

kSX1 f � A1;0;Xn;! f kC.Q;X/
� kSX1 f � V X

L S
X
1 f kC.Q;X/ C kV X

L S
X
1 f � A1;0;Xn;! f kC.Q;X/: (27)

The first term can be estimated using

kSX1 � V X
L S

X
1 kL .C.Q;X// � cm�LCd�1; (28)

the scalar case of which is Lemma 4.2 of [5]. The Banach space case follows by
taking tensor products and using (10) and (18). Now we consider the second term.
We have

kV X
L S

X
1 f � A1;0;Xn;! f kC.Q;X/ �

X

Nl2Nd0 ; jNl jDL
kUXNl S

X
1 f � UXNl gNl ;!kC.Q;X/ (29)

and

kUXNl S
X
1 f � UXNl gNl ;!kC.Q;X//

� kUX
Nl kL �

`1.�
m

Nl /;C.Q;X/
	
�
�
�.SX1 f /j�

m
Nl
� gNl ;!

�
�
�
`1.�

m
Nl /

� c max
t2�

m
Nl

�
�
�
Z

Œ0;t �

f .t/dt�
X

Nj WQNl; NjŒ0;t �
jQNl; Nj jf .�Nl ; Nj /

�
�
�D c max

N1�Ni�mNl

�
�
�
X

N1� Nj�Ni
�Nl ; Nj

�
�
� (30)

with

�Nl ; Nj D
Z

QNl; Nj

f .t/dt � jQNl; Nj jf .�Nl ; Nj / .N1 � Nj � mNl /: (31)

The random variables f�Nl; Nj W N1 � Nj � m
Nlg are independent, of mean zero, and

satisfy

k�Nl; Nj k � 2jQNl; Nj jkf kC.Q;X/ D 2m�Lkf kC.Q;X/: (32)

Combining (20)–(21) and (27)–(32), we obtain (25) for r D 0.
For p > 1 we get from Lemma 4.3 of [5] (a simple generalization of Doob’s

inequality, the proof of which literally carries over to the Banach space case)

�
E max
N1�Ni�mNl

�
�
�
X

N1� Nj�Ni
�Nl; Nj

�
�
�
p	1=p � c

�
E

�
�
�
X

N1� Nj�Nl
�Nl; Nj

�
�
�
p	1=p

: (33)

Moreover, Lemma 1 gives
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�
E

�
�
�
X

N1� Nj�Nl
�Nl ; Nj

�
�
�
p	1=p � 2�p.X/

� X

N1� Nj�Nl
E k�Nl ; Nj kp

	1=p
: (34)

From (33) and (34) we conclude for p > 1

�
E max
N1�Ni�mNl

��
�
X

N1� Nj�Ni
�Nl; Nj

��
�
p	1=p � c�p.X/

� X

N1� Nj�Nl
E k�Nl ; Nj kp

	1=p
: (35)

The same relation also holds for p D 1 by the triangle inequality. We obtain
from (29)–(30), (32), and (35)

.E kV X
L S

X
1 f � A1;0;Xn;! f kpC.Q;X//1=p � c�p.X/m�.1�1=p/Lkf kC.Q;X/: (36)

Now relation (26) for r D 0 follows from (20)–(21), (27)–(28), and (36).
As in the proof of Proposition 1 the case r � 1 follows from the case r D 0

and (5), since

SX1 f �A1;r;Xn;! f D SX1 .f � P r;d;X
k f /� A1;0;Xn;! .f � P r;d;X

k f /:

By (16)–(17) and (19)–(23) the number of function values used in A1;r;Xn;! f is

ckd C c
X

jNl jDL
ml1 : : : mld � cn:

ut
Theorem 1. Let r 2 N0, � 2 f0; 1g, 1 � p � 2. Then there are constants c1�4 > 0
such that for all Banach spaces X and n 2 N the following hold. The deterministic
n-th minimal error satisfies

c1n
�r=d � edet

n .S
X
� ; BCr .Q;X// � c2n�r=d :

Moreover, if X is of type p and pX is the supremum of all p1 such that X is of type
p1, then the randomized n-th minimal errors fulfills

c3n
�r=d�1C1=pX � eran

n .S
X
� ; BCr .Q;X// � c4�p.X/n�r=d�1C1=p:

Proof. The upper bounds follow from Propositions 1 and 2. Since definite integra-
tion is a particular case of indefinite integration in the sense that SX0 f D .SX1 f /

�N1�,
it suffices to prove the lower bound for SX0 . The lower bounds for the deterministic
setting and for the randomized setting with pX D 2 follow from the respective scalar
cases (6) and (7), since trivially every Banach spaceX over K contains an isometric
copy of K.
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It remains to show the lower bound for the randomized setting for Banach
spaces with pX < 2. Any such Banach space must be infinite dimensional (a finite
dimensional space X always has pX D 2). Let n 2 N and let k 2 N be such that

.k � 1/d < 8n � kd : (37)

The Maurey-Pisier Theorem (see [9], Theorem 2.3) implies that for every k 2 N

there is a subspace Ek � X of dimension kd and an isomorphism T W `kdpX ! Ek

with kT k � 1 and kT �1k � 2. Let xi D Tei , where .ei /k
d

iD1 is the unit vector basis

of `k
d

pX
. Let  2 C1.Rd / be such that  .t/ > 0 for t 2 .0; 1/d and supp �

Œ0; 1�d . Let .Qi/
kd

iD1 be the partition of Q into closed cubes of side length k�1 of
disjoint interior, let ti be the point in Qi with minimal coordinates and define  i 2
C.Q/ by

 i.t/ D  .k.t � ti // .i D 1; : : : ; kd /:

It is readily checked that there is a constant c0 > 0 such that for all .˛i /k
d

iD1 2
Œ�1; 1�kd

c0k
�r

kdX

iD1
˛ixi i 2 BCr .Q;X/:

Put fi D c0k�r xi i and � D R
Q
 .t/dt. Then for .˛i /k

d

iD1 2 R
kd

�
�
�

kdX

iD1
˛iS

X
0 fi

�
�
� D c0k�r

�
�
�

kdX

iD1
˛ixi

Z

Q

 i .t/dt
�
�
�

D c0�k
�r�d

�
�
�

kdX

iD1
˛ixi

�
�
� � ck�r�d

0

@
kdX

iD1
j˛i jpX

1

A

1=pX

:

Next we use Lemmas 5 and 6 of [3] with K D X (Lemma 6 is formulated for
K D R, but directly carries over to K D X ) and (37) to obtain

eran
n .S

X
0 ; BCr .Q;X// �

1

4
min

If1;:::;kd g;jI j�kd�4n
E

�
��
X

i2I
"iS

X
0 fi

�
��

� ck�r�.1�1=pX /d � cn�r=d�1C1=pX ;
where ."i /k

d

iD1 is a sequence of independent centered Bernoulli random variables.
ut

Note that the bounds in the randomized cases of Theorem 1 are matching up to
an arbitrarily small gap in the exponent. In some cases, they are even of matching
order.
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Corollary 1. Let r 2 N0, 1 � p � 2, � 2 f0; 1g. Then there are constants c1; c2 > 0
such that the following hold. Let X be a Banach space which is of type p and
moreover, satisfies pX D p (that is, the supremum of types is attained). Then for all
n 2 N

c1n
�r=d�1C1=p � eran

n .S
X
� ; BCr .Q;X// � c2�p.X/n�r=d�1C1=p:

This holds, in particular, for spaces of type 2 with p D 2 and, if 1 � p1 < 1,
for spaces X D Lp1.N ; �/, where .N ; �/ is some measure space, with p D
min.p1; 2/.

For general Banach spaces X upper and lower bounds of matching order of
eran
n .S

X
� ; BCr .Q;X// .� D 0; 1/ remain an open problem.

4 A Multilevel Procedure

In the previous section we considered Banach space valued information functionals.
Now we develop a scheme which will serve as a bridge between the Banach space
and the scalar case. It is based on the multilevel Monte Carlo approach from [2, 6].
Assume that a Banach space Y is continuously embedded into the Banach space X ,
and let J be the embedding map. We shall identify elements of Y with their images
in X . For r; % 2 N0 we consider integration of functions from the set

BCr .Q;X/ \ BC%.Q;Y /:

Let .Tl /1lD0 � L .X/ (this is intended to be a sequence which approximates the
embedding J ) and set for l 2 N0

Rl D Tl ˝ IC.Q/ 2 L .C.Q;X//: (38)

The operator Rl is just the pointwise application of Tl in the sense that for f 2
C.Q;X/ and t 2 Q we have .Rlf /.t/ D Tlf .t/. Fix any l0; l1 2 N0, l0 � l1,
nl0 ; : : : ; nl1 2 N and define for � 2 f0; 1g and f 2 C.Q;X/ an approximation
A
.�/
! f to SX� f as follows:

A.�/! f D A�;r;Xnl0 ;!
Rl0f C

l1X

lDl0C1
A�;%;Xnl ;!

.Rl � Rl�1/f (39)

and A.�/ D .A.�/! /!2˝ . It follows from (13), (24), and (38) that
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A.�/! D Tl0 ˝ A�;rnl0 ;! C
l1X

lDl0C1
.Tl � Tl�1/˝A�;%nl ;! : (40)

Furthermore, put

Xl D clX.Tl.X// .l 2 N0/; Xl�1;l D clX..Tl � Tl�1/.X// .l 2 N/; (41)

where clX denotes the closure in X . In particular, Xl and Xl�1;l are endowed
with the norm induced by X . Given a Banach space Z, we introduce the notation
G0.Z/ D Z and G1.Z/ D C.Q;Z/. Now we estimate the error of A.�/! on
BCr .Q;X/ \ BC%.Q;Y /.
Proposition 3. Let 1 � p � 2, r; % 2 N0, and � 2 f0; 1g. Then there are constants
c1; c2 > 0 such that for all Banach spacesX ,Y , and operators .Tl /1lD0 as above, for

all l0; l1 2 N0 with l0 � l1, and for all .nl /
l1
lDl0 � N the so-defined algorithm A

.�/
!

satisfies

sup
f 2BCr .Q;X/\BC%.Q;Y /

kSX� f �A.�/! f kG�.X/

� kJ � Tl1J kL .Y;X/ C c1kTl0kL .X/ n
�r=d
l0

Cc1
l1X

lDl0C1
k.Tl � Tl�1/J kL .Y;X/ n

�%=d
l .! 2 ˝/ (42)

and

sup
f 2BCr .Q;X/\BC%.Q;Y /

�
E kSX� f � A.�/! f kpG�.X/

	1=p

� kJ � Tl1J kL .Y;X/ C c2�p.Xl0/kTl0kL .X/n
�r=d�1C1=p
l0

Cc2
l1X

lDl0C1
�p.Xl�1;l /k.Tl � Tl�1/J kL .Y;X/n

�%=d�1C1=p
l : (43)

Proof. Let f 2 BCr .Q;X/ \ BC%.Q;Y /. From (39) we get

kSX� f � A.�/! f kG�.X/
� kSX� f � SX� Rl1f kG�.X/ C kSX� Rl0f �A�;r;Xnl0 ;!

Rl0f kG�.Xl0 /

C
l1X

lDl0C1
kSX� .Rl �Rl�1/f �A�;%;Xnl ;!

.Rl �Rl�1/f kG�.Xl�1;l /: (44)
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We have

kSX� f � SX� Rl1f kG�.X/ � kSX� kL .C.Q;X/;G�.X//kf � Rl1f kC.Q;X/
� kJ � Tl1J kL .Y;X/kf kC.Q;Y / � kJ � Tl1J kL .Y;X/: (45)

Furthermore, by Propositions 1 and 2

kSX� Rl0f �A�;r;Xnl0 ;!
Rl0f kG�.Xl0 / � cn

�r=d
l0
kRl0f kCr .Q;Xl0 /

� cn�r=dl0
kTl0kL .X/kf kCr .Q;X/ � ckTl0kL .X/n

�r=d
l0

; (46)

and similarly,

E

�
kSX� Rl0f �A�;r;Xnl0 ;!

Rl0f kpG�.Xl0 /
	1=p � c�p.Xl0/kTl0kL .X/n

�r=d�1C1=p
l0

:

(47)

For l0 < l � l1 we obtain

kSX� .Rl � Rl�1/f � A�;%;Xnl ;!
.Rl � Rl�1/f kG�.Xl�1;l /

� cn�%=dl k.Rl � Rl�1/f kC%.Q;Xl�1;l /
� cn�%=dl k.Tl � Tl�1/J kL .Y;X/kf kC%.Q;Y / � ck.Tl � Tl�1/J kL .Y;X/n

�%=d
l

(48)

and

E

�
kSX� .Rl � Rl�1/f � A�;%;Xnl ;!

.Rl � Rl�1/f kpG�.Xl�1;l /
	1=p

� c�p.Xl�1;l /k.Tl � Tl�1/J kL .Y;X/n
�%=d�1C1=p
l : (49)

Combining (44)–(49) yields the result. ut

5 Scalar Parametric Case

In this section we apply the previous results to parametric definite and indefinite
integration. Let d; d1 2 N, Q1 D Œ0; 1�d1 . We consider numerical integration of
functions depending on a parameter s 2 Q1. The definite parametric integration
operator S0 W C.Q1 �Q/! C.Q1/ is given by

.S0f /.s/ D
Z

Q

f .s; t/dt .s 2 Q1/:
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We put F D BCr .Q1�Q/, the set K is the scalar field K, and � is the following
class of information functionals �.Q1 � Q;K/ D fıs;t W s 2 Q1; t 2 Qg
where ıs;t .f / D f .s; t/. This is just standard information consisting of values of
f . Hence, the definite parametric integration problem is

˘0 D .BCr .Q1�Q/; C.Q1/;S0;K; �.Q1 �Q;K//:
The indefinite parametric integration operator S1 W C.Q1 �Q/! C.Q1 �Q/

is given by

.S1f /.s; t/ D
Z

Œ0;t �

f .s; u/du .s 2 Q1; t 2 Q/:

Here F;K;� are chosen to be the same as above, so the indefinite parametric
integration problem is described by

˘1 D .BCr .Q1�Q/; C.Q1 �Q/;S1;K; �.Q1 �Q;K//:
We can relate these problems to the previously considered Banach space valued

ones as follows. Setting X D C.Q1/, we have

C.Q1 �Q/ D C.Q1/˝ C.Q/ D X ˝ C.Q/ D C.Q;X/

and S� D S
C.Q1/
� .� D 0; 1/. Moreover, referring to the notation of Sect. 4, we put

Y D C r.Q1/ and % D 0, which gives

BCr .Q1�Q/ � BCr .Q;C.Q1// \ BC.Q;C r .Q1// D BCr .Q;X/ \ BC.Q;Y /:
Let r1 D max.r; 1/ and define for l 2 N0

Tl D P r1;d1
2l
2 L .C.Q1//: (50)

By (5),

kTlkL .C.Q1// � c1; kJ � TlJ kL .C r .Q1/;C.Q1// � c22�rl ; (51)

where J W C r.Q1/! C.Q1/ is the embedding. The algorithmsA.�/! defined in (39)
and equivalently (40) turn into

A.�/! D P r1;d1
2l0
˝ A�;rnl0 ;! C

l1X

lDl0C1

�
P
r1;d1
2l
� P r1;d1

2l�1

	
˝ A�;0nl ;! : (52)

Let us note that (52) together with the definitions of P r1;d1
m and A�;rn;! imply the

following representation of A.�/! . There are sl;i 2 Q1, tl;j;! 2 Q;'l;i 2 C.Q1/,

 
.�/

l;j;! 2 K if � D 0,  .�/l;j;! 2 C.Q/ if � D 1;Ml � c2d1l , and Nl � cnl such that
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A.�/! f D
l1X

lDl0

MlX

iD1

NlX

jD1
f .sl;i ; tl;j;!/ 'l;i ˝  .�/l;j;! .f 2 C.Q1 �Q/; ! 2 ˝/:

(53)

The particular shape of these functions can be read from the Definitions (11)–(12)
and (16)–(23), for more details in the case � D 1 see also [5]. It follows that

card.A.�/! / � c
l1X

lDl0
nl2

d1l .! 2 ˝/: (54)

Now we estimate the error of A.�/! . Recall the notation G0.C.Q1// D C.Q1/ and
G1.C.Q1// D C.Q1 �Q/.
Proposition 4. Let r 2 N0, d; d1 2 N, � 2 f0; 1g. There are constants c1�4 > 0

such that the following hold. For each n 2 N there are l0 2 N0 and nl0 2 N such
that with l1 D l0 we have card.A.�/! / � c1n and

sup
f 2BCr .Q1�Q/

kS�f � A.�/! f kG�.C.Q1// � c2n�
r

d1Cd (55)

for all ! 2 ˝ . Moreover, for each n 2 N with n � 2 there is a choice of l0; l1 2 N0,
.nl /

l1
lDl0 � N such that card.A.�/! / � c3n .! 2 ˝/ and

sup
f 2BCr .Q1�Q/

�
E kS�f �A.�/! f k2G�.C.Q1//

	1=2

� c4

8
<̂

:̂

n
� 2rCd
2.d1Cd/ .logn/

1
2 if r=d1 > 1=2

n� 1
2 .logn/2 if r=d1 D 1=2

n
� r
d1 .logn/

r
d1 if r=d1 < 1=2:

(56)

Proof. Let n 2 N and put

l� D
�

log2 n

d1

�
; l0 D

�
d1

d1 C d l
�
�
: (57)

Furthermore, let l1 2 N0, l0 � l1 � l�, ı0; ı1 � 0 to be fixed later on and define

nl0 D 2d1.l
��l0/; nl D

l
2d1.l

��l/�ı0.l�l0/�ı1.l1�l/
m

.l D l0 C 1; : : : ; l1/: (58)

Then by (54) the cost fulfills
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card.A.�/! / � c
l1X

lDl0
nl2

d1l � c2d1l� C c
l1X

lDl0C1
2d1l

��ı0.l�l0/�ı1.l1�l/

� c
8
<

:

n if ı0 > 0 or ı1 > 0
n if ı0 D ı1 D 0 and l1 D l0
n log n if ı0 D ı1 D 0 and l1 > l0:

(59)

To show (55), we put l1 D l0 and get from (42) of Proposition 3, (51), and (57)–
(58)

sup
f 2BCr .Q1�Q/

kS�f �A.�/! f kG�.C.Q1//

� c2�rl0 C cn� r
d

l0
� c2�r d1

dCd1
l� C c2� r

d d1.l
��l0/ � c2� rd1l

�

dCd1 � cn� r
dCd1 ;

which together with (59) gives (55).
Now we turn to the proof of (56) and assume, in addition, that n � 2. Observe

that by (41) and (50)

Xl D P r1;d1
2l

.C.Q1// D P r1;d1
2l

.`1.� d1
r12l
// (60)

and P r1;d1
2l
W `1.� d1

r12l
/! Xl is an isomorphism which satisfies

�
�P r1;d1

2l

�
� � c1;

�
��P r1;d1

2l

��1�� D 1:

Indeed, the first estimate is just the first part of (5), the second estimate is a
consequence of the fact that the inverse of the interpolation operator is just the
restriction of functions in Xl to � d1

r12l
. It follows that

�2.Xl/ � c�2
�
`1
�
�
d1
r12l

�� � c.l C 1/1=2: (61)

By (60),Xl�1 � Xl for l � 1, therefore (41) implies that we also haveXl�1;l � Xl ,
thus

�2.Xl�1;l / � c.l C 1/1=2: (62)

For brevity we denote

E WD sup
f 2BCr .Q1�Q/

�
E kS�f �A.�/! f k2G�.C.Q1//

	1=2
:

By (43) of Proposition 3, (51), and (61)–(62)
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E � c2�rl1 C c.l0 C 1/1=2n�r=d�1=2l0
C c

l1X

lDl0C1
.l C 1/1=22�rln�1=2l

� c2�rl1 C c.l� C 1/1=22�.r=dC1=2/d1.l��l0/ C c.l� C 1/1=2
l1X

lDl0C1
2��.l/;

(63)

where we defined

�.l/ D rl C .d1.l� � l/ � ı0.l � l0/� ı1.l1 � l//=2 .l0 � l � l1/: (64)

We have from (57)

rd1

d
.l� � l0/ � rd1

d
� d

d1 C d l
� D r d1

d1 C d l
� � rl0;

consequently,

2�.r=dC1=2/d1.l��l0/ � 2�rl0�d1.l��l0/=2 � 2��.l0/;

which together with (63) gives

E � c2�rl1 C c.l� C 1/1=2
l1X

lDl0
2��.l/: (65)

We rewrite (64) as

�.l/ D rl0 C d1.l� � l1/=2C .r � ı0=2/.l � l0/C .d1 � ı1/.l1 � l/=2: (66)

If r > d1=2, we set ı1 D 0; l1 D l� and choose ı0 > 0 in such a way that
r � ı0=2 > d1=2: From (57), (65), and (66) we obtain

E � c2�rl� C c.l� C 1/1=2
l�X

lDl0
2�rl0�.r�ı0=2/.l�l0/�d1.l��l/=2

� c2�rl� C c.l� C 1/1=22�rl0�d1.l��l0/=2

� c2�rl� C c.l� C 1/1=22� .rCd=2/d1
d1Cd l� (67)

� c.l� C 1/1=22� .rCd=2/d1
d1Cd l� � cn� rCd=2

d1Cd .logn/1=2; (68)

where in the step from (67) to (68) we used .rCd=2/d1
d1Cd < r; which follows from the

assumption r > d1=2. This together with (59) proves (56) for r > d1=2.
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If r D d1=2, we set ı0 D ı1 D 0, l1 D l� and get from (57), (65), and (66)

E � c2�rl� C c.l� C 1/1=2
l�X

lDl0
2�rl0�r.l�l0/�d1.l��l/=2

� c.l� C 1/3=22�d1l�=2 � cn�1=2.logn/3=2:

Combining this with (59) and transforming n logn into n gives the respective
estimate (56) in this case.

Finally, if r < d1=2, we set ı0 D 0, choose ı1 > 0 in such a way that .d1 �
ı1/=2 > r and put

l1 D l� �
˙
d�11 log2.l

� C 1/� : (69)

Consequently,

log2.l
� C 1/ � d1.l� � l1/ < log2.l

� C 1/C d1: (70)

Also observe that there is a constant c0 2 N such that for n � c0
l0 � l� �

˙
d�11 log2.l

� C 1/� � l�: (71)

Since for n < c0 the estimate (56) follows trivially from (65) by a suitable choice
of the constant, we can assume n � c0, and thus (71). By (57), (65)–(66), (69),
and (70)

E � c2�rl1 C c.l� C 1/1=2
l1X

lDl0
2�rl0�d1.l��l1/=2�r.l�l0/�.d1�ı1/.l1�l/=2

� c2�rl1 C c.l� C 1/1=22�rl0�d1.l��l1/=2�r.l1�l0/
� c2�rl1 C c.l� C 1/1=22�rl1�.log2.l

�C1//=2

� c2�rl1 D c2�rl�Cr.l��l1/ � c2�rl�C.r=d1/ log2.l
�C1/

D c2�rl�.l� C 1/r=d1 � cn�r=d1 .logn/r=d1 :

With this, (56) is now a consequence of (59). ut
The following theorem gives the complexity of parametric integration. The case

of definite parametric integration is already contained in [6] (with a slightly better
upper bound in the limit case r=d1 D 1=2: .logn/3=2 instead of .logn/2/. The case
of indefinite parametric integration is new.

Theorem 2. Let r 2 N0, d; d1 2 N, � 2 f0; 1g. Then there are constants c1�8 > 0

such that for all n 2 N with n � 2 the deterministic n-th minimal error satisfies
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c1n
� r
d1Cd � edet

n .S�; BCr .Q1�Q// � c2n�
r

d1Cd :

For the randomized n-th minimal error we have the following: If r=d1 > 1=2, then

c3n
� 2rCd
2.d1Cd/ .logn/

1
2 � eran

n .S�; BCr .Q1�Q// � c4n�
2rCd
2.d1Cd/ .logn/

1
2 ;

if r=d1 D 1=2, then

c5n
� 12 .logn/

1
2 � eran

n .S�; BCr .Q1�Q// � c6n�
1
2 .logn/2

and if r=d1 < 1=2, then

c7n
� r
d1 .logn/

r
d1 � eran

n .S�; BCr .Q1�Q// � c8n�
r
d1 .logn/

r
d1 :

Proof. The upper bounds follow from Proposition 4. For the lower bounds it suffices
to consider parametric definite integration. But these are contained in Theorem 2.4
of [6] (note a misprint there, case r < d1=2: d2 is to be replaced by d1). ut

Let us finally note that the choice of Y D C r.Q1/ and % D 0 in this section was
motivated by our application to the class C r.Q1�Q/, but is, of course, not the only
interesting one. We leave other cases to future consideration.
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Extended Latin Hypercube Sampling
for Integration and Simulation
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Abstract We analyze an extended form of Latin hypercube sampling technique that
can be used for numerical quadrature and for Monte Carlo simulation. The technique
utilizes random point sets with enhanced uniformity over the s-dimensional unit
hypercube. A sample of N D ns points is generated in the hypercube. If we project
the N points onto their i th coordinates, the resulting set of values forms a stratified
sample from the unit interval, with one point in each subinterval Œ.k � 1/=N; k=N/.
The scheme has the additional property that when we partition the hypercube intoN
subcubes

Qs
iD1Œ.`i �1/=n; `i=n/, each one contains exactly one point. We establish

an upper bound for the variance, when we approximate the volume of a subset of the
hypercube, with a regular boundary. Numerical experiments assess that the bound is
tight. It is possible to employ the extended Latin hypercube samples for Monte Carlo
simulation. We focus on the random walk method for diffusion and we show that
the variance is reduced when compared with classical random walk using ordinary
pseudo-random numbers. The numerical comparisons include stratified sampling
and Latin hypercube sampling.
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1 Introduction

Approximating integrals is a basic problem of numerical analysis and may be
a component in a more complex computation. Two families of techniques have
been developed: deterministic methods and Monte Carlo. We only consider here
random algorithms, which are parts of stochastic simulation methods used in applied
sciences. Monte Carlo (MC) methods are known to converge slowly, with respect
to the number of random points used. Various techniques have been developed, in
order to reduce the variance of the approximation, including stratified sampling and
Latin hypercube sampling [5, 7, 9].

Let s � 1 be a given dimension; then I s WD Œ0; 1/s is the s-dimensional half-
open unit hypercube and s denotes the s-dimensional Lebesgue measure. If g is a
square-integrable function defined on I s , we want to approximate

I WD
Z

I s
g.x/ds.x/: (1)

For the usual MC approximation, fU1; : : : ; UN g are independent random variables
uniformly distributed over I s . Then

X WD 1

N

NX

kD1
g.Uk/ (2)

is an unbiased estimator of I . A simple stratified sampling (SSS) method was
proposed in [10]. Let fD1; : : : ;DN g be a partition of I s , so that s.D1/ D � � � D
s.DN / D 1=N . Let fV1; : : : ; VN g be independent random variables, with V`
uniformly distributed overD`. Then

Y WD 1

N

NX

`D1
g.V`/ (3)

is another unbiased estimator of I and for a regular g, one has Var.Y / � Var.X/:
we refer to [1, 2, 10] for variance reduction analyses. Latin hypercube sampling
(LHS) was introduced in [15]. Let I` WD Œ.` � 1/=N; `=N / for 1 � ` � N and
fV i

1 ; : : : ; V
i
N g be independent random variables, where V i

` is uniformly distributed
over I`. If f�1; : : : ; �sg are independent random permutations of f1; : : : ; N g, put
W` WD .V 1

�1.`/
; : : : ; V s

�s.`//. Then

Z WD 1

N

NX

`D1
g.W`/ (4)
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is another unbiased estimator of I . McKay et al. [15] showed that if g is a
monotonic function of each of its argument then one has Var.Z/ � Var.X/. The
analysis in [21] established that for any square-integrable g, LHS does reduce the
variance relative to simple random sampling in an asymptotic sense (N ! 1).
A proposition in [20] implied that an N -point Latin hypercube sample never
leads to a variance greater than that of simple MC with N � 1 points. LHS
stratifies only the one-dimensional marginals of the uniform distribution over the
unit hypercube. Orthogonal array (OA)-based LHS was proposed in [18, 22].
This method generalizes LHS by stratifying low-dimensional (� r for OA-based
LHS with a corresponding orthogonal array of strength r) marginal distributions.
Variance formulas of order O.N�1/ were given by Owen [19, 20].

We analyze here a hybrid of SSS and LHS, where the random samples retain
some uniformity properties of the nets used in quasi-Monte Carlo methods [17].
More precisely, we constructN D ns random points in I s such that in every interval

I i�1 �
�
k � 1
N

;
k

N

�
� I s�i .for 1 � i � s and 1 � k � N/

or

I` WD
sY

iD1

�
`i � 1
n

;
`i

n

�
.for 1 � i � s and 1 � `i � n/

lies only one point of the set (property P): an example is shown on Fig. 1. We call
this approach extended Latin hypercube sampling (ELHS). In contrast with OA-
based LHS, ELHS achieves full (s-dimensional) stratification and also stratifies the
one-dimensional marginals. The construction of extended Latin hypercube samples
is elementary and requires only random permutations. Both methods are similar in
the two-dimensional case.

In Sect. 2 we analyze a MC method using ELHS for numerical integration.
Since we have experienced that some simulation methods can be reduced to
numerical integration of indicator functions of subdomains of I s , we focus here
on the approximation of the volume of subsets of the unit hypercube. We prove a
bound for the variance and we show through numerical experiments that the orders
obtained are precise. We compare the variance of the following methods: usual MC,
SSS, LHS and ELHS. In Sect. 3, we propose a random walk algorithm for one-
dimensional diffusion. Each step of the simulation is formulated as a numerical
integration in I 2. In order to benefit from the great uniformity of extended Latin
hypercube samples, the particles are sorted by position before performing MC
quadrature. The results of a numerical experiment show that the use of ELHS leads
to reduced variance, when compared with usual MC, SSS or LHS.
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Fig. 1 An extended Latin hypercube sample of 42 points (?) in dimension s D 2.

2 Numerical Integration

We consider the problem of evaluating integrals like (1) when g D 1A, for some
measurable A � I s . For usual MC approximation (2), one has

Var.X/ D 1

N
s.A/

�
1 � s.A/

� � 1

4N
: (5)

We analyze here ELHS using samples of N D ns points. If x WD .x1; : : : ; xs/, we
put Oxi WD .x1; : : : ; xi�1; xiC1; : : : ; xs/. Let �1; : : : ; �s be random bijections

f1; : : : ; ngs�1 ! f1; : : : ; ns�1g
and u1; : : : ; us be random variables uniformly distributed on IN ; we assume that all
these variables are mutually independent. Then we put
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W` D .W 1
` ; : : : ;W

s
` / with W i

` WD
`i � 1
n
C �i . Òi / � 1C ui`

N
; (6)

for ` WD .`1; : : : ; `s/ with 1 � `i � n. Then the point set fW` W 1 � `i � ng has
property P . For ` D .`1; : : : ; `s/ with 1 � `i � n and m D .m1; : : : ; ms/ with
1 � mi � ns�1, let

I`;m WD
sY

iD1

�
`i � 1
n
C mi � 1

N
;
`i � 1
n
C mi

N

�
I

then I` DSm I`;m. We have

EŒ1A.W`/� D 1

ns.s�1/

X

m

Z

I s
1A

�
`1 � 1
n
C m1 � 1C u1

N
; : : : ;

`s � 1
n
C ms � 1C us

N

�
du

where the sum extends over allm D .m1; : : : ; ms/ with 1 � mi � ns�1. Hence

EŒ1A.W`/� D N
Z

I`

1A.u/du D Ns.I` \ A/: (7)

Consequently, if Z is defined by (4), it is an unbiased estimator of I ; we want to
estimate Var.Z/.

Proposition 1. Let A � I s be such that, for all i , with 1 � i � s,

A D f.u1; : : : ; us/ 2 I s W ui < fi .Oui /g;

where Oui WD .u1; : : : ; ui�1; uiC1; : : : ; us/ and fi are Lipschitz continuous functions

I
s�1 ! I . Let fW` W 1 � `i � ng be defined by (6). If

Z WD 1

N

X

`

1A.W`/;

then

Var.Z/ �
�k C 2

4
C 2s.k C 2/2

	 1

N 1C1=s ;

where k is a Lipschitz constant (for the maximum norm) for all the fi .

Proof. We may write

Var.Z/ D 1

N 2

X

`

Var.1A.W`//C 1

N 2

X

`¤`0

Cov.1A.W`/; 1A.W`0//:
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From (7) we obtain

1

N 2

X

`

Var.1A.W`// D
X

`

V0.`/;

where

V0.`/ D 1

ns
s.I` \A/ � .s.I` \ A//2:

Since V0.`/ D 0 whenever I` � A or I` \A D ; and since 0 � nss.I` \A/ � 1,
we have

X

`

jV0.`/j � 1

4n2s
#f` W I` 6� A and I` \A ¤ ;g:

Here, #E denotes the number of elements of a set E . Similarly, we have

1

N 2

X

`¤`0

Cov.1A.W`/; 1A.W`0// D
sX

iD1

X

Ò
iDÒ0i
`i¤`0

i

Vi .`; `
0/C

X

Ò
j¤Ò0j

VsC1.`; `0/;

where

Vi .`; `
0/ D ns.s�1/

.ns�1 � 1/s�1
X

miDm0

i

mj¤m0

j

s.I`;m \A/s.I`0;m0 \ A/� s.I` \ A/s.I`0 \ A/;

VsC1.`; `
0/ D ns.s�1/

.ns�1 � 1/s
X

mj¤m0

j

s.I`;m \A/s.I`0;m0 \ A/� s.I` \ A/s.I`0 \ A/:

And so

X

Ò
iDÒ0i
`i¤`0

i

jVi .`; `0/j �

1

n2s
#f.`; `0/ W Òi D Ò0i ; `i ¤ `0i ; I` 6� A; I` \ A ¤ ;; I`0 6� A; I`0 \A ¤ ;g;

X

Ò
j¤Ò0j
jVsC1.`; `0/j �

s

n3s�1
#f.`; `0/ W Òj ¤ Ò0j ; I` 6� A; I` \ A ¤ ;; I`0 6� A; I`0 \A ¤ ;g:
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Consequently

Var.Z/ � 1

4n2s
#f` W I` 6
 A and I` \ A ¤ ;g

C 1

n2s

sX

iD1

#f.`; `0/ W Òi D Ò0i ; `i ¤ `0

i ; I` 6
 A; I` \ A ¤ ;; I`0 6
 A; I`0 \ A ¤ ;g

C s

n3s�1
#f.`; `0/ W Òj ¤ Ò0j ; I` 6
 A; I` \ A ¤ ;; I`0 6
 A; I`0 \ A ¤ ;g:

Let us note

OI`;i D
sY

jD1
j¤i

�
`j � 1
n

;
`j

n

�
:

We have the following inferences:

• If I` 6� A, there exists Ou`;i 2 OI`;i such that nfi .Ou`;i / < `i ,
• If I` \ A ¤ ;, there exists Ov`;i 2 OI`;i such that `i < nfi . Ov`;i /C 1.

Hence

#f` W I` 6
 A and I` \ A¤ ;g � ns�1.kC 2/;
#f.`; `0/ W Òi D Ò0i ; `i ¤ `0

i ; I` 6
 A; I` \ A ¤ ;; I`0 6
 A; I`0 \ A¤ ;g � ns�1.kC 2/2;
#f.`; `0/ W Òj ¤ Ò0j ; I` 6
 A; I` \ A¤ ;; I`0 6
 A; I`0 \ A ¤ ;g � n2.s�1/.k C 2/2;

and the result follows. ut
The variance bound represents a gain in accuracy of the factor N�1=s D 1=n

as compared with simple MC. The gain is of diminishing importance as s becomes
large and limits the use of the present approach to problems of moderate dimension.
This is precisely the case in some MC particle simulations, such as the random
walk proposed in Sect. 3. A variance bound with the same order was established
in [14]. The differences are as follows. Firstly a two-dimensional analysis in the
context of the simulation of Markov chains was conducted in [14] and a possible
generalization to higher-dimensional settings was discussed. Secondly the point set
used in [14] was obtained by simple stratified sampling over the unit square, with
one point in each subsquare

Q2
iD1Œ.`i � 1/=n; `i=n/ (without the LHS property).

We use a simple example to illustrate the previous analysis. We consider the
subset of the unit ball:

Q WD fu 2 I s W kuk2 < 1g;
where kuk2 denotes the Euclidean norm of u. In order to estimate the variance of
the MC, SSS, LHS and ELHS approximations, we replicate the quadrature indepen-
dentlyM times and compute the sample variance. We useM D 100; : : : ; 1;000 and
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we only see small differences between the estimates. The results (for M D 1;000)
are displayed in Fig. 2. It appears that the better accuracy due to ELHS goes beyond
an improved convergence order: the slope of the curve given by the series of ELHS
points is steeper than the slope of the corresponding curve for the MC or LHS points;
in addition, the starting ELHS point is below the starting MC or LHS points. The
computation times are given in the same figure; one can see that for obtaining the
smallest variance achieved by usual MC or LHS, the ELHS approach needs less
time. Assuming Var D O.N�˛/, linear regression can be used to evaluate ˛ and the
outputs are listed in Table 1. The values obtained for ELHS are very close to the
orders of the bounds given in Proposition 1, despite the fact that the hypothesis on
the boundary of A is not satisfied, since the functions

fi W Oui !
q
1 � u21 � � � � � u2i�1 � u2iC1 � � � � � u2s

are not Lipschitz continuous on I
s�1

. This suggests that the hypothesis is too strong.

Table 1 Order ˛ of the variance of the calculation of s.Q/.

Dimension MC LHS SSS ELHS

s D 2 0:99 1:00 1:48 1:50

s D 3 1:00 1:00 1:34 1:33

s D 4 1:01 1:00 1:26 1:24

3 Simulation of Diffusion

In many physical applications, there is a need to simulate plain diffusion problems.
These problems are frequently encountered as sub-problems while solving more
complicated ones. MC simulation has proved a valuable tool for investigating
processes involving the diffusion of substances [6,8,23]. In this section we consider
a particle method for solving the initial value problem

@c

@t
.x; t/ D D @2c

@x2
.x; t/; x 2 R; t > 0; (8)

c.x; 0/ D c0.x/; x 2 R; (9)

with diffusion coefficientD > 0. We assume that the initial data satisfies

c0 � 0;
Z

R
c0.x/dx D 1: (10)
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Fig. 2 Sample variance of M D 1;000 independent copies of the calculation of s.Q/ as a
function of N (left, log–log plot) and CPU time in seconds for the sample variance (right).
Comparison of MC (C), LHS (4), SSS (ut) and ELHS methods (?) outputs for s D 2 and
202 � N � 4002 (top), s D 3 and 103 � N � 1003 (middle), s D 4 and 64 � N � 404

(bottom).
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The solution possesses the conservation property

8t > 0
Z

R
c.x; t/dx D 1: (11)

The fundamental solution for the heat operator
@

@t
�D @2

@x2
is

E.x; t/ WD 1p
4�Dt

e�x2=4Dt ; x 2 R; t > 0:

For any � � 0 the solution of (8) satisfies

c.x; t/ D
Z

R
E.x � y; t � �/c.y; �/dy; x 2 R; t > �: (12)

For the numerical approximation of the solution we choose an integer n and we
put N D n2. The first step of the simulation involves approximating the initial data
u0 with a sum of Dirac delta functions (particles),

c0.x/ WD 1

N

NX

kD1
ı.x � x0k/:

One has to sample x01 ; : : : ; x
0
N according to the density function c0; this may be done

by inversion method

x0k WD C�10
�
2k � 1
2N

�
; 1 � k � N;

where C0 is the cumulative distribution function associated with c0. Let �t be a
time step, put tp WD p�t and cp.x/ WD c.x; tp/. Given particles at positions xpk and
the approximate solution

cp.x/ WD 1

N

NX

kD1
ı.x � xpk /

at time tp , the solution at time tpC1 is obtained as follows.
Generate an extended Latin hypercube sample, as is done in Sect. 2

fW` W 1 � `1 � n; 1 � `2 � ng � I 2:

Relabel the particles. We order the particles by position:

x
p
1 � xp2 � � � � � xpN : (13)
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This type of sorting was initiated in [11] and used in the context of simulation
of diffusion in [12, 16]. Since each step of the random walk algorithm may be
described by a numerical integration (see below), the sorting reverts to minimizing
the amplitude of the jumps of the function to be integrated.

Diffusion of particles. Using (12), one obtains an approximation to the solution
at time tpC1:

QcpC1.x/ WD 1

N

NX

kD1
E.x � xpk ;�t/:

Let

f .u/ WD p2D�t˚�1.u/; u 2 .0; 1/;
where ˚ denotes the standard normal cumulative distribution function. If A � R,
denote by 1A the indicator function. For any measurable A � R, one has

Z

R
QcpC1.x/1A.x/dx D 1

N

NX

kD1

Z

I

1A.x
p

k C f .u//du: (14)

For 1 � k � N , let 1Ik denote the indicator function of Ik WD Œ.k � 1/=N; k=N/.
We associate to any measurable A � R the following indicator function:

C
pC1
A .u/ WD

NX

kD1
1Ik .u1/1A.x

p

k C f .u2//; u D .u1; u2/ 2 I � .0; 1/:

It is easy to verify that
Z

R
QcpC1.x/1A.x/dx D

Z

I 2
C
pC1
A .u/du: (15)

We recover an approximate solution at time tpC1 by performing a MC quadrature
using the extended Latin hypercube sample defined above: for any measurable
A � R

Z

R
1A.x/c

pC1.x/ D 1

N

nX

`1D1

nX

`2D1
C
pC1
A .W`/:

The algorithm may be summarized as follows. Let bxc denote the greatest integer
� x and put k.u/ WD bN uc. The positions of the particles are updated according to

x
pC1
k.W 1

` /
D xp

k.W 1
` /
C f .W 2

` /; 1 � `1 � n; 1 � `2 � n: (16)

For any ` WD .`1; `2/, the first projectionW 1
` selects the particle number k.W 1

` / and
the second projection W 2

` gives the random displacement f .W 2
` / of the selected
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Fig. 3 Sample variance of M D 5;000 independent copies of the calculation of
R a
0 c.x; T /dx

as a function of N (left, log–log plot) and CPU time in seconds for the sample variance (right).
Comparison of MC (C), LHS (4), SSS (ut) and ELHS methods (?) outputs for 102 � N � 2002 .

particle. In this algorithm, we may replace extended Latin hypercube samples with
simple stratified samples or Latin hypercube samples. The classical random walk
algorithm works as follows: there is no reordering of the particles and

x
pC1
k D xpk C f .Uk/; 1 � k � N: (17)

Here U1; : : : ; UN are independent random samples drawn from the uniform distri-
bution on I .

We compare the approaches in a simple situation. We solve (8)–(9) withD D 1:0
and

c0.x/ WD 1p
�

e�x2 ; x 2 R:

We approximate the integral
Z a

0

c.x; T /dx;

for a D 4:0 and T D 1:0. The time step is chosen to be �t WD 1=100. We replicate
the computation independently M D 5;000 times to calculate the sample variance
of the MC, SSS, LHS and ELHS approximations. The results are displayed in
Fig. 3. As before (Sect. 2), the ELHS method produces better accuracy and improved
convergence rate for the variance. The computation times are given in the same
figure; one can see that, for the same calculation time, the ELHS technique has a
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smaller variance than the other methods. If we assume Var D O.N�ˇ/, we can
estimate ˇ using linear regression; the outputs are listed in Table 2.

Table 2 Order ˇ of the variance of the calculation of
R a
0 c.x; T /dx.

MC LHS SSS ELHS

1:00 1:00 1:44 1:43

Although not reported, supplementary results lead to the following remarks.
Firstly, it is useless to reorder the particles by position, when using the simple
random walk algorithm (with ordinary pseudo-random numbers). Secondly, if we
employ ELHS without reordering the particles, the variance is larger than the
variance of the simple random walk, and the convergence order (estimated by linear
regression) is the same.

4 Conclusion

We have analyzed an extended LHS technique that produces random points which
are evenly spread over the unit cube. We have established that for approximate
calculation of the measure of some subsets of the hypercube, the technique has a
reduced variance, when compared to usual Monte Carlo, simple stratified sampling
or Latin hypercube sampling, and a better convergence order.

Then we have modified the classical random walk method for simulation of
diffusion. We reorder the particles by position in every time step, and we replace
pseudo-random numbers with simple stratified samples, Latin hypercube samples or
extended Latin hypercube samples. In an example, we have shown that the method
using extended Latin hypercube samples produces lower variance with improved
convergence order than the other strategies.

For approximate integration, the hypothesis made on the subsets of the unit
hypercube could be relaxed. For the simulation procedure, a bound of the variance
is not available: it certainly deserves future work. Another way of progress is in
applications of the method to more complex diffusion problems [4] or to Markov
chains, as it was done for QMC [3] or randomized QMC methods [13, 14].
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Abstract This paper is an extension of previous work where we laid the foundation
for the kernel-based collocation solution of stochastic partial differential equations
(SPDEs), but dealt only with the simpler problem of right-hand-side Gaussian
noises. In the present paper we show that kernel-based collocation methods can
be used to approximate the solutions of high-dimensional elliptic partial differential
equations with potentially non-Gaussian random coefficients on the left-hand-side.
The kernel-based method is a meshfree approximation method, which does not
require an underlying computational mesh. The kernel-based solution is a linear
combination of a reproducing kernel derived from the related random differential
and boundary operators of SPDEs centered at collocation points to be chosen by
the user. The random expansion coefficients are obtained by solving a system of
random linear equations. For a given kernel function, we show that the convergence
of our estimator depends only on the fill distance of the collocation points for the
bounded domain of the SPDEs when the random coefficients in the differential
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1 Introduction

Stochastic partial differential equations (SPDEs) represent a recent, fast growing
research area which has frequent applications in physics, biology, geology, mete-
orology and finance. However, in many cases it is difficult to obtain an explicit
form of the solutions of these SPDEs. There has been a great interest in devising
numerical methods to treat these problems resulting in various techniques such
as stochastic Galerkin finite element methods, stochastic collocation methods and
Monte Carlo and Quasi-Monte Carlo methods [1, 2, 13, 14]. All of these methods
require a finite element approximation restricted to a suitable regular spatial grid
in the domain space and the probability space. The kernel-based approximation
method (meshfree approximation method) is a relatively new numerical tool for
high-dimensional problems. In our recent papers [5, 11, 16], we use a kernel-based
collocation method to approximate the solutions of high-dimensional SPDEs with
random noises on the right-hand side. The kernel-based method is very flexible
so that its collocation points can be placed at rather arbitrarily scattered locations
allowing for the use of either deterministic or random designs, e.g., Halton or Sobol’
points. How to find a good design for various PDEs or SPDEs is still a popular open
problem which we will not address in this paper. Both stochastic Galerkin finite
element methods and stochastic collocation methods are based on truncating the
Karhunen-Loéve (KL) expansion of the stochastic fields. To get the KL expansion
one is required to know the eigenvalues and the eigenfunctions of the stochastic
fields associated with SPDEs. The kernel-based collocation method can avoid the
use of KL expansion just as the Quasi-Monte Carlo method does [13, 14]. The
Quasi-Monte Carlo method, however, needs to evaluate high-dimensional integrals,
whose integral dimensions are equal to the number of nodes of the triangular finite
element mesh. As is common with (stochastic) Galerkin methods, one has to project
the stochastic field onto the finite element basis. This process is potentially very
computationally expensive. For the kernel-based method we simulate the stochastic
field at the collocation points directly and solve a system of random linear equations,
whose collocation matrix can be exactly obtained. While the kernel-based systems
are usually dense systems, the finite element solution can be obtained by a sparse
linear system. However, the sparse matrix usually needs to be approximated in
the stochastic fields. The kernel-based collocation method requires the solutions of
SPDEs to be smooth enough such that the approximate solution is well-behaved at
each collocation point while the finite element method is able to solve non-smooth
problems.

Our previous papers [5, 11, 16] focus only on solving elliptic SPDEs with right-
hand-side Gaussian noises because a parabolic SPDE derived by the white noises
can be discretized into several elliptic SPDEs with Gaussian noises. In the classical
sense, an SPDE is introduced by the white noise and one refers to a PDE as
being random when its random part is associated with random coefficients. For
convenience, we call a PDE stochastic if its solution is a stochastic field. This
means that, using our terminology, a PDE whose random part is only dependent
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on random differential operators is also called an SPDE. In this paper, we want to
extend the results of the kernel-based collocation method stated in [5] to solve the
same elliptic PDEs with non-Gaussian random coefficients as discussed in [1, 14],
but avoiding finite element constructions and KL expansions. The kernel-based
collocation solution is a linear combination of a reproducing kernel derived from
the related random differential and boundary operators of the SPDE centered at
chosen collocation points (see Eq. (9)). The covariance matrix (collocation matrix)
becomes random when the random parts of SPDEs appear on the left-hand side.
Moreover, we prove the weak convergence of the kernel-based method and show
that the convergence rate depends only on the fill distance of collocation points for
the bounded domain of SPDEs for the case when the random coefficients of the
differential operator are random variables (see Sect. 4.1) – a topic not covered at all
in [5]. Finally, we show this new method to be well-behaved for a two-dimensional
stochastic Poisson differential equation with Dirichlet boundary conditions driven
by a random coefficient of the elliptic differential operators on the left-hand side
(see Sect. 5).

1.1 Problem Setting

Let a vector of random coefficient functions a WD .a1; � � � ; as/T with s 2 N

be defined on a regular open bounded domain D � R
d and a probability space

.˝a;Fa;Pa/, i.e., a W D � ˝a ! R
s . Suppose that a has a nonzero mean

and is nonzero almost surely, i.e., E .a/ 6 0 and Pa .a 6 0/ D 1, and that

Pa

�n
aj 2 C.D/

os

jD1

�
D 1. Consider an elliptic partial differential equation driven

by the random coefficients a1; : : : ; as

(
Lau D f; in D ;

Bu D g; on @D ;
(1)

where La is a linear elliptic differential operator with the random coefficients a,
B is a boundary operator for Dirichlet or Neumann boundary conditions, and f W
D ! R, g W @D ! R are deterministic functions. For example, La WD a� or
La WD a1� � a2I and B WD I j@D (see Formulas (4)).

Remark 1. For each realization of the random coefficients a, we can obtain the
realization of the random differential operator La in order to introduce different
deterministic partial differential equations from the SPDE (1).

In what follows we assume that the probability structure of the random coeffi-
cients a is given, e.g., if a D a (scalar coefficient) is a random variable then we know
its cumulative distribution function Fa W R! Œ0; 1�, and if a D a is a Gaussian field
then its mean ma W D ! R and covariance kernel Ra W D � D ! R are known.
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We assume that the elliptic SPDE (1) for suitable left-hand sides a and right-hand
sides f; g has a unique solution u 2H m.D/ almost surely (see [4]), where H m.D/
is the classical L2-based Sobolev space of order m > O.La/ C d=2 and O.La/ is
the order of La, which is independent of the order of differential derivatives.

The kernel-based collocation method for solving the SPDE (1) can be described
as follows:

1. We firstly choose a finite collection of predetermined collocation points

XD WD fx1; � � � ; xN g � D ; X@D WD fxNC1; � � � ; xNCM g � @D ;

and fix a reproducing kernelK W D �D ! R, whose reproducing kernel Hilbert
space HK.D/ is equivalent to H m.D/.

2. Next we sample the values
˚
yj
�N
jD1 and

˚
yNCj

�M
jD1 from the SPDE (1) at the

collocation points XD and X@D , i.e.,

yj WD f .xj /; j D 1; : : : ; N; yNCj WD g.xNCj /; j D 1; : : : ;M; (2)

and simulate the random coefficients a D .a1; � � � ; as/T at the collocation points
XD , i.e.,

ax1 ; : : : ; axN � some joint probability distributions:

For example, when a D a is a random variable with cumulative distribution
function Fa then

ax1 D � � � D axN D a � F�1a .U /; U � UnifŒ0; 1�;

where F�1a is the inverse of Fa and U is a random variable with uniform
distribution on Œ0; 1�. If, on the other hand, a D a is a Gaussian field with
mean ma and covariance kernel Ra, then ax1 ; : : : ; axN have joint multi-normal
distributions with mean mX and covariance matrix RX , i.e.,

.ax1 ; � � � ; axN /
T � N .mX ;RX/ ;

where mX WD .ma.x1/; � � � ; ma.xN //
T and RX WD

�
Ra.xj ; xk/

�N;N
j;kD1 (see [12,

Chapter 2]).
3. Finally, we approximate the solution u of the SPDE (1) using a kernel-based

collocation method written as

u.x/ 	 Ou.x/ WD
NX

kD1
ckLaxk ;2

�
K.x; xk/C

MX

kD1
cNCkB2

�
K.x; xNCk/; x 2 D ; (3)
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where
�
K is an integral-type kernel of K (see Formula (5)). Here Lax;2 and

B2 mean that we differentiate with respect to the second argument, i.e.,

Laxk ;2

�
K.x; xk/ D Lay;2

�
K.x; y/jyDxk and B2

�
K.x; xk/ D By

�
K.x; y/jyDxk . The

unknown random coefficients c1; : : : ; cNCM are obtained by solving a system of
random linear equations (with deterministic right-hand side and random matrix
that varies with each realization of the random coefficients). Details are provided
in Sect. 4.

2 Reproducing Kernels and Matérn Functions

Definition 1 ([15, Definition 10.1]). A Hilbert space HK.D/ consisting of func-
tions f W D ! R is called a reproducing-kernel Hilbert space with a reproducing
kernel K W D � D ! R if (i) K.�; y/ 2 HK.D/ and (ii) f .y/ D .f;K.�; y//HK.D/

for all f 2HK.D/ and all y 2 D .

In our recent papers [9, 10, 16] we show that reproducing kernels suitable for the
numerical solution of (S)PDEs can be computed from the Matérn functions (Sobolev
splines) and that their reproducing kernel Hilbert spaces are equivalent to certain
Sobolev spaces. According to [9, Example 5.7] and [16, Example 4.4], the Matérn
function with shape parameter � > 0 and degreem > d=2

G�.x/ WD 21�m�d=2

�d=2� .m/�2m�d
.� kxk2/m�d=2Kd=2�m.� kxk2/; x 2 R

d ;

is a full-space Green function of the differential operator L WD �
�2I ���m, where

t 7! K�.t/ is the modified Bessel function of the second kind of order �. The
reproducing kernel related to G� ,

K�.x; y/ WD G�.x � y/; x; y 2 R
d ;

is positive definite. Moreover, its reproducing-kernel Hilbert space is equivalent to
the L2-based Sobolev space of orderm, i.e.,

HK� .R
d / ŠH m.Rd /

and its inner product has the explicit form

.f; g/HK�
.Rd / WD

Z

Rd

Pf .x/TPg.x/dx;

where P WD �QT
0 ;Q

T
1 ; � � � ;QT

m

�T
and
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Qj WD
(
�j�

k; j D 2k;
�j�

krT ; j D 2k C 1;
�j WD

s
mŠ�2m�2j
j Š.m � j /Š ; k 2 N0; j D 0; 1; : : : ;m:

According to [3, Theorem 1.4.6], the reproducing-kernel Hilbert space HK� .D/ on
the bounded domain D is endowed with the reproducing-kernel norm

kf kHK�
.D/ WD inf

Qf 2HK�
.Rd /

��
�
� Qf
�
�
�

HK�
.Rd /
W Qf jD D f

�
:

If the open bounded domain D � R
d is regular, then HK� .D/ is again equivalent

to the L2-based Sobolev space of orderm, i.e.,

HK� .D/ ŠH m.D/:

3 Constructing Gaussian Fields by Reproducing Kernels
with Differential and Boundary Operators

For the reader’s convenience we repeat the theoretical results from [5, 16] that are
essential to our discussion later on.

Definition 2 ([3, Definition 3.28]). A stochastic process S W D � ˝ ! R is said
to be Gaussian with mean � W D ! R and covariance kernel R W D � D !
R on a probability space .˝;F ;P/ if, for any pairwise distinct points X WD
fx1; � � � ; xN g � D , the random vector

SX WD .Sx1 ; � � � ; SxN /
T � N .�X ;RX/ ;

is a multi-normal random vector with mean �X WD .�.x1/; � � � ; �.xN //T and

covariance matrix RX WD
�
R.xj ; xk/

�N;N
j;kD1.

Let a differential operator L W H m.D/ ! L2.D/ and a boundary operator
B WH m.D/! L2.@D/ be linear combinations of derivativesD˛ with ˛ 2 N

d
0 and

nonconstant coefficients defined on D and @D respectively, i.e.,

L WD
X

j˛j�m
c˛D

˛; B WD
X

j˛j�m�1
b˛D

˛j@D ; (4)

where c˛ 2 C.D/ and b˛ 2 C.@D/. Moreover, the orders of these operators are
given by

O.L/ WD max fj˛j W c˛ 6 0g ; O.B/ WD max fj˛j W b˛ 6 0g :
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The following theorem shows that we can view the reproducing kernel Hilbert
space ˝K WD HK.D/ as a sample space and its Borel �-field FK WD B.HK.D//
as a �-algebra to set up the probability spaces P

� so that the stochastic fields
LSx.!/ WD L!.x/ and BSx WD B!.x/ are Gaussian, where ! 2 ˝K .

Theorem 1 ([5, Theorem 3.1] and [16, Theorem 7.2]). Suppose that the repro-
ducing kernel Hilbert space HK.D/ is embedded into the Sobolev space H m.D/
with m > d=2. Further assume that the differential operator L and the boundary
operator B have the orders O.L/ < m � d=2 and O.B/ < m � d=2. Given a
function � 2 HK.D/ there exists a probability measure (Gaussian measure) P�

defined on the measurable space .˝K;FK/ WD .HK.D/;B .HK.D/// such that
the stochastic processes LS , BS given by

LSx.!/ D LS.x; !/ WD .L!/.x/; x 2 D ; ! 2 ˝K DHK.D/;

BSx.!/ D BS.x; !/ WD .B!/.x/; x 2 @D ; ! 2 ˝K DHK.D/;

are Gaussian with means L�, B� and covariance kernels

L1L2
�
K.x; y/ D

Z

D

L1K.x; z/L1K.y; z/dz; x; y 2 D ;

B1B2
�
K.x; y/ D

Z

D
B1K.x; z/B1K.y; z/dz; x; y 2 @D ;

defined on .˝K;FK;P
�/ respectively, where the integral-type kernel

�
K of the

reproducing kernel K is given by

�
K.x; y/ WD

Z

D
K.x; z/K.y; z/dz; x; y 2 D : (5)

When L WD I then we rewrite LS D S which indicates that Sx.!/ D !.x/. (Here
L1; B1 and L2; B2 denote the differential and boundary operators with respect to
the first and second arguments, respectively.)

Moreover, the probability measure P� is only related to� and
�
K, which indicates

that it is independent of L and B .

4 Kernel-Based Collocation Methods

For convenience, we only discuss the case when the random coefficients a of the
differential operator La of the SPDE (1) consist of single a scalar random function
a, i.e., a D a. This means that the random differential operator only has one random
coefficient a. We therefore denote the operator by La. Moreover, if we know the
means and the covariance structures of a vector of Gaussian coefficients, then it is
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not difficult to generalize the case of scalar random coefficients presented here to
that of multiple random coefficients. In this section, we only solve an SPDE with a
scalar random coefficient. This is similar to what was done in [1, 2, 13]. We intend
to investigate non-Gaussian multiple random coefficients in our future research.

4.1 Random Coefficients as Random Variables

We firstly consider the random coefficient a of La as a random variable, which
means that z D a.!/ is a real constant for any sample ! 2 ˝a. So Lz becomes a
deterministic elliptic differential operator for any fixed real constant z 2 R.

We use the Gaussian fields LzS , BS with means Lz�; B� and covariance ker-

nelsLz;1Lz;2

�
K; B1B2

�
K (see Theorem 1), respectively, to construct the kernel-based

solution Ou to estimate the solution u of the SPDE (1). Here the covariance kernels are

defined by Lz;1Lz;2

�
K.xj ; xk/ D Lz;xLz;y

�
K.x; y/jxDxj ;yDxk and B1B2

�
K.xj ; xk/ D

BxBy

�
K.x; y/jxDxj ;yDxk .

Remark 2. Since we want to interpolate the values of the differential equation at
the collocation points,Lz!.x/ needs to be well-defined pointwise for each available
solution ! 2 HK.D/ Š H m.D/ � C2.D/. This requires the Sobolev space
H m.D/ to be smooth for second-order elliptic differential operators. If we just
need a weak solution as for the finite element method, then the order needs to satisfy
m � 2 only.

We define the vector

y0 WD .y1; � � � ; yN ; yNC1 � � � ; yNCM/T ;

where the values
˚
yj
�N
jD1 and

˚
yNCj

�M
jD1 are given in Eq. (2), and we also define

the product space

˝Ka WD ˝K �˝a; FKa WD FK ˝Fa; P
�
a WD P

� ˝ Pa;

where the probability measure P
� is defined on .HK.D/;B .HK.D/// D

.˝K;FK/ independent of the differential and boundary operators as in Theorem 1.
The probability space .˝a;Fa;Pa/ comes from the SPDE (1). We extend the
random variables defined on the original probability spaces to random variables on
the new probability space in the natural way: if random variables V1 W ˝K ! R and
V2 W ˝a ! R are defined on .˝K;FK;P

�/ and .˝a;Fa;Pa/, respectively, then

V1.!1; !2/ WD V1.!1/; V2.!1; !2/ WD V2.!2/; for each !1 2 ˝K and !2 2 ˝a:
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Note that in this case the random variables have the same probability distri-
butional properties, and they are independent on

�
˝Ka;FKa;P

�
a

�
. This implies

that the stochastic processes LzS; S and a can be extended to the product space�
˝Ka;FKa;P

�
a

�
while preserving the original probability distributional properties,

and that .LzS; S/ and a are independent.
Therefore, [5, Corollary 3.2] and [16, Corollary 7.3] show that the random vector

SX;a WD
�
LaSx1 ; � � � ; LaSxN ; BSxNC1

� � � ; BSxNCM

�T

conditioned on a D z has a multi-normal distribution with mean

�X;z WD .Lz�.x1/; � � � ; Lz�.xN /; B�.xNC1/; � � � ; B�.xNCM//T

and covariance matrix (collocation matrix)

�

KX;z WD

0

B
BB
@

�
Lz;1Lz;2

�

K.xj ; xk/
�N;N

j;kD1

;

�
Lz;1B2

�

K.xj ; xNCk/

�N;M

j;kD1�
B1Lz;2

�

K.xNCj ; xk/
�M;N

j;kD1

;

�
B1B2

�

K.xNCj ; xNCk/

�M;M

j;kD1

1

C
CC
A
2 R

NCM;NCM;

where X WD XD [ X@D . We can check that
�
KX;z is always positive semi-definite.

This collocation matrix is used to set up the random linear equations one needs to
solve for the random coefficients of the kernel-based solution.

Fix any x 2 D . By Bayes’ rule, we can obtain the conditional probability density
function p�x of Sx given SX;a and a, i.e., for any v 2 R

NCM and any z 2 R,

p�x .vjv; z/ WD
1

�.xjz/p2� exp

�
� .v �m

�
x .vjz//2

2�.xjz/2
�
; v 2 R; (6)

where

m�
x .vjz/ WD �.x/C

�
kX;z.x/T

�
KX;z�

�
v � �X;z

�
;

�.xjz/2 WD �
K.x; x/� �kX;z.x/T

�
KX;z�

�
kX;z.x/;

(7)

and
�
kX;z.x/ WD

�
Lz;2

�
K.x; x1/; � � � ; Lz;2

�
K.x; xN /; B2

�
K.x; xNC1/; � � � ; B2

�
K.x; xNCM/

�T
. In particular, Sx conditioned on SX;a D y0 and a D z has the

probability density function p
�
x .�jy0; z/. Here the dagger � denotes the pseudo

inverse. The vector
�
kX;z contains the basis for the kernel-based solution and �.xjz/2

is used in our derivation of the error bounds for the kernel-based solution.
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4.1.1 Constructing Kernel-Based Solutions

We use techniques from statistics to construct the kernel-based solution Ou. Fix any
x 2 D . Let

Ax.v/ WD f!1 � !2 2 ˝Ka W !1.x/ D vg ;

and

AX;a .y0; z/ WD f!1 � !2 2 ˝Ka W Lz!1.x1/ D y1; : : : ; Lz!1.xN / D yN ;
B!1.xNC1/ D yNC1; : : : ; B!1.xNCM/ D yNCM and a.!2/ D zg :

Since LzSx.!1; !2/ D LzSx.!1/ D Lz!1.x/, BSx.!1; !2/ D BSx.!1/ D B!1.x/
and a.!1; !2/ D a.!2/ for each !1 2 ˝K and !2 2 ˝a, we can use the same
methods as in [5] and [16, Chapter 7] to obtain that

P
�
a .Ax.v/jAX;a .y0; z// D P

�
a .Sx D vjSX;a D y0; a D z/ D p�x .vjy0; z/:

We can view z as a realization of a and simulate the random coefficient a by its
cumulative distribution function Fa, i.e.,

a � F�1a .U /; U � UnifŒ0; 1�;

where Unif means the standard uniform distribution. We now obtain our estimator
Ou.x/ by solving an optimization problem that is reminiscent of the maximum
likelihood method. The estimator is given by

Ou.x; !2/ WD argmax
v2R

sup
�2HK.D/

p�x .vjy0; a.!2//; !2 2 ˝2: (8)

Assume that the random covariance matrix
�
KX;a is nonsingular almost surely. One

optimal solution of the maximization problem (8) has the form

Ou.x/ D
NX

kD1
ckLa;2

�
K.x; xk/C

MX

kD1
cNCkB2

�
K.x; xNCk/ D

�
kX;a.x/T

�
KX;a�1y0: (9)

This means that the random coefficients of the estimator can be computed from the
system of random linear equations

�
KX;ac D y0;

where c WD .c1; � � � ; cNCM /T and the matrix
�
KX;a was defined in the previous

section.



Kernel-Based Collocation for Elliptic PDEs With Random Coefficients 341

The estimator Ou also satisfies the interpolation conditions almost surely, i.e.,
La Ou.x1/ D y1; : : : ; La Ou.xN / D yN and B Ou.xNC1/ D yNC1; : : : ; B Ou.xNCM/ D
yNCM . It is obvious that Ou.�; !2/ 2 HK.D/ for each !2 2 ˝a. Since the random
part of Ou.x/ is only related to the random variable a, we can formally rewrite Ou.x; !2/
as Ou.x; a/ and Ou.x/ can be transferred to a random variable defined on the one-
dimensional probability space .R;B.R/; dFa/.

4.1.2 Convergence Analysis

Since u.�; !2/ belongs to HK.D/ Š H m.D/ almost surely for !2 2 ˝a, u can be
seen as a map from ˝a into HK.D/. So we have u 2 ˝Ka D ˝K �˝a.

We fix any x 2 D and any 
 > 0. Let the subset

Ex.
IX; a/ WD f!1 � !2 2 ˝Ka W j!1.x/� Ou.x; !2/j � 
; such that Lz!1.x1/ D y1;
: : : ; Lz!1.xN / D yN ;B!1.xNC1/ D yNC1; : : : ; B!1.xNCM / D yNCM
and a.!2/ D zg ;

and

ma WD E.a/:

Since z represents a linear coefficient of the differential operator Lz and
�
KX;z is

always positive semi-definite, d2

d z2
�.xjz/ � 0 for all z 2 R. This indicates that the

variance �.xj�/ W R! R induced byLz (see Eq. (7)) is a concave function. Thus we
can deduce that

P
�
a .Ex.
IX; a// D P

�
a .jSx � Ou.x/j � 
 such that SX;a D y0/

D
Z

R

Z

RNCM

Z

jv�Ou.x;a/j�

p�x .vjv; z/dvıy0 .dv/dFa.z/

D
Z

R

erfc

�

p

2�.xjz/
�

dFa.z/

�
Z

R

p
2�.xjz/



dFa.z/

D
p
2



E .�.xja// �

p
2



�.xjma/;

where ıy0 is a Dirac delta function at y0 and erfc is the complementary error
function.

The reader may note that the form of the expression for the variance �.xjma/
2

(see Eq. (7)) is analogous to that of the power function [6,15], and we can therefore
use the same techniques as in the proofs from [5, 6, 15, 16] to obtain a formula for
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the order of �.xjma/. When Lz is a second-order elliptic differential operator and B
is a Dirichlet boundary operator, then we have

�.xjma/ D O
�
h
m�2�d=2
X;D

	
;

where

hX;D D sup
x2D

min
xj2X

�
�x � xj

�
�
2

is the fill distance of X for D . This implies that

sup
�2HK.D/;x2D

P
�
a .Ex.
IX; a// D O

 
h
m�2�d=2
X;D




!

:

Since ju.x; !2/� Ou.x; !2/j � 
 if and only if u 2 Ex.
IX/, we conclude that

sup
�2HK.D/

P
�
a

�ku � OukL1.D/ � 

� � sup

�2HK.D/;x2D
P
�
a .Ex.
IX; a//! 0;

when hX;D ! 0. Therefore we say that the estimator Ou converges to the exact
solution u of the SPDE (1) in all probabilities P�a when hX;D goes to 0.

Remark 3. The error bounds for kernel-based collocation solutions can also be
described in terms of the number of collocation points and the dimension of the
domain spaces as is typical for the Quasi-Monte Carlo method. In particular, when
K is a Gaussian kernel and X satisfies the condition for an optimal sampling
scheme as defined in [7, 8], then [7, Theorem 5.2] and [8, Theorem 1] show
that the convergence rate of the kernel-based collocation estimator is dimension-
independent, i.e.,

sup
�2HK.D/

P
�
a

�ku � OukL1.D/ � 

� D O

�
.N CM/�p




�
; for some p > 0;

where N CM denotes the combined number of interior and boundary collocation
points. We want to emphasize again that the number of collocation points employed
in this paper has a different meaning than the number of sample points used as
designs in the probability space as discussed in [1, 14]. In our future research, we
will try to find other kernel functions to construct kernel-based estimators with
dimension-independent errors in terms of the number of collocation points similar
as done in [7, 8].
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4.2 Random Coefficients as Stochastic Fields

Now we can also generalize the random coefficient a of the SPDE (1) to be a
stochastic field defined on the domain D and the probability space .˝a;Fa;Pa/.

If the stochastic field a is Gaussian with nonzero mean ma W D ! R and
covariance kernel Ra W D � D ! R, then we can also use the kernel-based
collocation method to approximate its solution.

Since a is Gaussian with a known correlation structure, we can simulate the value
a at the collocation points XD , i.e., ax1 ; : : : ; axN have multi-normal distributions
with mean mX and covariance matrix RX , i.e.,

.ax1 ; � � � ; axN /
T � N .mX ;RX/ ;

where mX WD .ma.x1/; � � � ; ma.xN //
T and RX WD

�
Ra.xj ; xk/

�N;N
j;kD1.

Similar to before, the covariance matrix can be rewritten as

�
KX;a WD

0

BB
B
@

�
Laxj ;1

Laxk ;2

�
K.xj ; xk/

�N;N

j;kD1
;

�
Laxj ;1

B2
�
K.xj ; xNCk/

�N;M

j;kD1�
B1Laxk ;2

�
K.xNCj ; xk/

�M;N

j;kD1
;

�
B1B2

�
K.xNCj ; xNCk/

�M;M

j;kD1

1

CC
C
A
:

If
�
KX;a is nonsingular almost surely, then the kernel-based solution is given by

Ou.x/ D
NX

kD1
ckLaxk ;2

�
K.x; xk/C

MX

kD1
cNCkB2

�
K.x; xNCk/;

and the random coefficients c D .c1; � � � ; cNCM /T are obtained by solving the
system of random linear equations

�
KX;ac D y0;

where y0 WD .y1; � � � ; yNCM/T is defined in Eq. (2).
Even when the nonconstant coefficient a is non-Gaussian, we can still use the

kernel-based collocation method to set up the estimator. We assume that the joint
cumulative distribution function Fx1;:::;xN W Rn ! Œ0; 1� of ax1 ; : : : ; axN is known for
any finite set of collocation points XD D fx1; : : : ; xN g in D .

Moreover, we can use the Markov chain rule to generate a realization of the
random numbers ax1 ; : : : ; axN . WhenN D 1 then we can simulate ax1 by the inverse
transform method, i.e.,

ax1 � F �1x1 .U1/; U1 � UnifŒ0; 1�:
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When N > 1 we can simulate the random numbers inductively. Suppose that we
have already got the random numbers ax1 ; : : : ; axN�1 . Finally, we start to generate
the remainder axN , i.e.,

axN � F�1xN jx1;:::;xN�1
.UN jax1 ; : : : ; axN�1 /; UN � UnifŒ0; 1�;

where the conditional probability distribution

FxN jx1;:::;xN�1
.zN jz1; : : : ; zN�1/ WD

@N�1

@z1���@zN�1
Fx1;:::;xN .z1; : : : ; zN�1; zN /

@N�1

@z1���@zN�1
Fx1;:::;xN�1 .z1; : : : ; zN�1/

:

Thus we can obtain the kernel-based collocation solution in the same manner as in
the Gaussian cases. We plan to include a convergence analysis for this approach in
a future research paper.

5 Numerical Examples

In this section we present a simple numerical experiment. Let the domain D WD
.0; 1/2 � R

2 and let the scalar random variable a have a Gamma distribution with
1 > 0 and 2 > 0, i.e.,

Fa.z/ D �
�
1; 

�1
2 z
�

� .1/
;

where �.k1; k2/ is the lower incomplete gamma function and � .k/ is the standard
gamma function. We use the deterministic functions

f .x/ WD exp .sin.�x1/C cos.�x1/C sin.�x2/C cos.�x2// ; x D .x1; x2/ 2 D ;

and

g.x/ WD

8
ˆ̂
<

ˆ̂
:

sin.2�x1/; 0 < x1 < 1; x2 D 0;
� sin.2�x2/; x1 D 1; 0 < x2 < 1;
0; otherwise on @D ;

and the random coefficient a D a to set up a stochastic Poisson equation with
Dirichlet boundary condition, i.e.,

(
�a�u D f; in D ;

u D g; on @D ;
(10)

where� WD @2

@x21
C @2

@x22
is the Laplace differential operator.
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Fig. 1 Numerical Experiments of the probability distributions for the SPDE (10) with 1 D 10

and 2 D 10. Left: the stochastic Galerkin finite element methods with maximum mesh parameter
h D 0:05 of the triangulation. Right: the kernel-based collocation method using fill distance
hX;D D 0:0965 (XD -Halton points of N D 81 and X@D -uniform grid points of M D 36), and
shape parameter � D 2. Error: relative point-wise absolute error.

We firstly use the stochastic Galerkin finite element method to compute a
benchmark solution of the SPDE (10) on a triangulation with a small maximum
mesh parameter h. This solution will serve as a stand-in for the exact solution of the
SPDE (10) in this section (see the left-hand side of Fig. 1).

For the numerical experiments, we approximate the mean and variance of the
arbitrary random variable V by its sample mean and sample variance based on ns WD
10;000 simulated sample paths, i.e.,

E.V / 	 1

ns

nsX

kD1
V .!k/; Var.V / 	 1

ns

nsX

kD1

0

@V.!k/� 1

ns

nsX

jD1
V .!j /

1

A

2

:

For the kernel-based methods, we use the C4-Matérn function (radial basis
function) with shape parameter � > 0

G�.r/ WD .3C 3� r C �2r2/e�� r ; r > 0;

to construct the reproducing kernel (Sobolev-spline kernel)

K�.x; y/ WD G�.kx � yk2/; x; y 2 D
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Fig. 2 Convergence of the SPDE (10) with 1 D 10 and 2 D 10 by kernel-based methods and
finite element methods.

because u 2 HK.D/ Š H 3C1=2.D/ (see Sect. 2). Then we can compute

the integral-type
�
K�.x; y/ D

R 1
0

R 1
0
K�.x; z/K�.y; z/dz1dz2. To fix our choice of

collocation points we choose Halton points in D and uniform grid points on @D .
However, this choice is rather arbitrary and we do not claim that it is a particularly
good choice. We can also simulate the random coefficient a by

a � F�1a .U /; U � UnifŒ0; 1�:

Using the kernel-based collocation method, we can obtain the approximation Ou via
Eq. (9).

According to the numerical results in the right-hand side of Fig. 1, the kernel-
based collocation method is well-behaved for the approximate probability distribu-
tions. Figure 2 shows that the approximate mean and the approximate variance are
convergent as the fill distance hX;D is refined (see Sect. 4.1.2). According to Fig. 2,
we find that the convergence of the kernel-based method we used here seems to be
comparable to that of the finite element method.

Remark 4. If the random part of the SPDE is given on the right-hand side as in [5,
11,16], then the covariance matrix (collocation matrix) is deterministic and we only
compute its inverse once to get the kernel-based solution at any event from the
sample space. The resulting method is more efficient than the left-hand-side case
discussed in this paper.
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Polynomial Accelerated MCMC and Other
Sampling Algorithms Inspired
by Computational Optimization

Colin Fox

Abstract Polynomial acceleration methods from computational optimization can
be applied to accelerating MCMC. For example, a geometrically convergent MCMC
may be accelerated to be a perfect sampler in special circumstances. An equivalence
between Gibbs sampling of Gaussian distributions and classical iterative methods
can be established using matrix splittings, allowing direct application of Chebyshev
acceleration. The conjugate gradient method can also be adapted to give an
accelerated sampler for Gaussian distributions, that is perfect in exact arithmetic.

1 Introduction

Standard Markov chain Monte Carlo (MCMC) algorithms simulate a homogeneous
Markov chain by performing a stationary linear iteration on the space of probability
distributions. The repeated application of a fixed kernel results in geometric
convergence of the Markov chain, just as it does for the stationary linear iterative
solvers used to solve systems of linear equations. Stationary linear solvers were
state-of-the-art in the 1950s, but are now considered very slow precisely because
they are geometrically convergent.

In this paper, methods for accelerating stationary linear iterations developed in
the field of numerical computation are applied to accelerating MCMC, both in the
general setting of a Markov chain designed to target an arbitrary distribution �
(Sect. 2), and also in the specific setting of Gibbs sampling from the multivariate
Gaussian distribution N

�
0;A�1

�
with known precision matrix A (Sects. 4 and 5).

We will see that polynomial acceleration of a geometrically convergent MCMC can,
in certain cases, generate perfect samples in finite time.
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The special case of Gibbs sampling applied to Gaussian distributions is precisely
equivalent to classical iterative methods for solving linear systems understood in
terms of matrix splittings, as shown in Sect. 3. Chebyshev acceleration, which is
optimal in a certain sense for matrix-splitting methods, can therefore be used to
optimally accelerate the Gibbs sampler, as demonstrated in Sect. 4. The conjugate
gradient optimization algorithm may also be viewed as a polynomial acceleration in
which the eigenvalues of the iteration operator are estimated within the iteration. A
‘conjugate gradient sampler’ for Gaussian distributions is presented in Sect. 5.

This work takes place within our ongoing efforts in computational (Bayesian)
inference that utilizes sampling methods, specifically MCMC. In these problems one
wishes to evaluate expectations with respect to a given (posterior) target distribution
� over a typically high-dimensional state space. Since the statistics over � are
analytically intractable, the best current technology is Monte Carlo integration with
importance sampling using samples drawn from � via a random-walk MCMC.
That can be very slow. By identifying sampling with optimization, at mathematical
and algorithmic levels, we look to adapt the sophisticated methods developed for
accelerating computational optimization to computational sampling.

We were also curious about Gibbs sampling being referred to as “stochastic
relaxation” in [11], and whether this was related to the “relaxation” methods of
numerical analysis in an intuitive sense or in a more formal mathematical sense.

Throughout this paper it is taken as understood that the tasks of computational
optimization and solution of systems of equations are equivalent; the normal
equations for the optimization form the system to be solved. The terms solve and
optimize are used interchangeably.

2 Polynomial Acceleration of MCMC

This section provides a cartoon of polynomial acceleration of distributional conver-
gence in standard MCMC, to convey the ideas behind polynomial acceleration that
can get hidden in a more formal presentation. The weighted-subsampling scheme
in Sect. 2.2 does not necessarily lead to a practical technique, but does show the
remarkable speedup possible.

2.1 Errors and Convergence in Standard MCMC

The algorithmic mainstay of MCMC methods is the simulation of a homogeneous
Markov chain fX0;X1; : : :g that tends to some desired target distribution � . The
chain is homogeneous because the Markov chain is constructed by repeatedly
simulating a fixed transition kernel P constructed so that � is invariant, i.e.,

�P D �;
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typically using Metropolis-Hastings (MH) dynamics that ensures that P and � are
in detailed balance.

When the chain is initialized with X0 � �.0/, the n-step distribution (overXn) is

�.n/ D �.n�1/P D �.0/Pn:

The difference between this distribution and the target distribution � ,

�.n/ � � D ��.0/ � ��Pn; (1)

is called the n-step distribution error. Note how the magnitude of the error goes to
zero according to the initial distribution error multiplied by the polynomial Pn of
the transition kernel.

All iteration schemes lead to a n-step distribution error of this form, i.e. the
initial error multiplied by an n-th order polynomial Pn of the transition kernel.
In numerical analysis it is usual to write this error polynomial as a polynomial in
I �P . Hence the error polynomial in this case is

Pn.I �P/ DPn D .I � .I �P//n or Pn./ D .1 � /n: (2)

All error polynomials satisfy Pn.0/ D 1, since P D I leaves the iterate (and error)
unchanged. This error polynomial has only one (repeated) zero at  D 1.

The second form in Eq. (2) emphasizes that the error polynomial may be
evaluated over the eigenvalues of I � P . Since P is a stochastic kernel, all
eigenvalues of I � P are contained in Œ0; 2�. The error tends to zero when the
eigenvalues of I �P in directions other than � are bounded away from 0 and 2, as
is guaranteed by standard results for a convergent MCMC.

Thus, a homogeneous MCMC produces a sample correctly distributed as � either
after one step (when all eigenvalues of I �P in directions other than � equal 1),
or in the limit n ! 1 (when any eigenvalue in a direction other than � is not 1).
In the latter case, the distributional error in Eq. (1) will be dominated by the error
in the direction of the eigenvalue of I �P furthest from 1, �, hence decays as
.1 � �/n, and the convergence is geometric.

2.2 Acceleration by Weighted Subsampling

The key idea in polynomial acceleration is to modify the iteration so that the error
polynomial is ‘better’ than the stationary case in Eqs. (1) and (2), in the sense of
smaller error. A simple way to modify the iteration in the setting of MCMC is to
subsample with weights. This does not allow complete freedom in choosing the error
polynomial, hence there is room for improvement. (Finding an optimal modification
is an open problem.) The recipe I will use is: run n steps of a standard MCMC
starting at x.0/ � �.0/ to produce the realization fx.1/; x.2/; : : : x.n/g and then choose
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x D x.i/ w.p. (with probabilities) f˛i gniD1 (where ˛i � 0 and
P

i ˛i D 1). The
resulting sample is distributed as the mixture model

x � �.0/
nX

iD1
˛iP

i

with the individual distributions related by increasing powers of P . Weighted
subsampling is also considered by Łatuszyński and Roberts [16]. The associated
error polynomial is then

Qn D
nX

iD1
˛i .1 � /i

which is an n-th order Lorentz polynomial. Since we choose the coefficients f˛i gniD1
we have some freedom in choosing the error polynomial. In special circumstances,
it is possible to choose an error polynomial that is zero at the eigenvalues of I �P
other than  D 0, in which case subsampling with weights generates a perfect
sample from � . That is possible, for example, when the sample space is finite, with
s states. Then I�P has at most s distinct eigenvalues and when the s�1 eigenvalues
other than 0 can be the zeros of a Lorentz polynomial it is possible to chooseQn to
give zero distribution error.

Consider the simple example in which we want to sample from a state-space with
s D 3 states with target pmf � D .1=3; 1=3; 1=3/. A Markov chain that targets �
can be generated by repeatedly simulating the transition matrix
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which can easily be seen to be in detailed balance with � and gives a chain that is
irreducible and aperiodic. Note that convergence is geometric, and that
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so that as n!1 the chain converges to a sample from � that is independent of the
starting state. This chain can be accelerated by weighted subsampling, as follows:

1. Start with (any) x.0/, simulate three steps with P to get x.1/, x.2/, x.3/.
2. Sample x from .x.1/; x.2/; x.3// w.p.

�
1
11

14
33

16
33

�
.

The resulting x is an exact draw from � , and independent of the starting state,
because 1

11
PC 14

33
P2C 16

33
P3 DP1. It is left as an exercise to explicitly construct

the error polynomial to see how the example was constructed.
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As mentioned above, there are a few practical difficulties with this simple sub-
sampling scheme. An obvious limitation is that the zeros of a Lorentz polynomial
only occur for eigenvalues that decorrelate the chain, in which case the polynomial
‘acceleration’ that draws exact (and i. i. d.) samples actually increases the variance
in a CLT (see e.g. [16]). However, one might argue that distributional convergence
is improved, which may be important in some settings. A further difficulty occurs
when n needs to be large since we really want to specify the zeros of the error
polynomial yet these are not a stable numerical function of the f˛ig. Furthermore, n
must be chosen in advance which is typically not convenient. All these difficulties
may be circumvented in the case of a Gaussian target by using a second-order
iteration.

3 Gibbs Sampling of Gaussians is Gauss-Seidel Iteration

The Gibbs sampling algorithm [11] repeatedly samples from (block) conditional
distributions of � . We consider the simplest, and original, version of Gibbs sampling
in which one iteration consists of conditional sampling along each coordinate
direction in sequence, see e.g. Turčin [21], also known as Glauber dynamics [12],
the local heat-bath algorithm [5], and the sequential updating method.

3.1 Normal Distributions

We now focus on the case of Gibbs sampling from the multivariate Normal (or
Gaussian) distribution N

�
0;A�1

�
with known precision matrix A. This situation

commonly occurs in (hierarchical) Bayesian analyses when spatial dependencies are
modelled via neighbourhood relationships, leading to a Gaussian Markov random
field (GMRF) with sparse precision matrix [15]. Both A and the covariance matrix
˙ D A�1 are symmetric positive definite. In d dimensions the density function is
(written in the natural parametrization)

� .x/ D
r

det .A/
2�d

exp

�
�1
2

xTAxC bTx
�
: (3)

The mean vector Nx satisfies

ANx D b (4)

which gives the first indication that solution of linear equations is relevant to
Gaussian distributions.

Cholesky factorization is the preferred method for solving moderately sized
linear systems with symmetric and positive definite coefficient matrix, and also for
sampling from moderate dimension Gaussian distributions [19] (also called global
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heat bath [5]). We are interested in the case where the state-space dimension d
is large and A is sparse. Then, iterative methods such as the Gibbs sampler are
attractive as the main cost per iteration is operation by the precision matrix A, which
is cheap, and memory requirements are low.

The Gibbs sampler updates components via the conditional distributions, which
are also Gaussian. Hence choosing �.0/ to be Gaussian results in a sequence of
Gaussian n-step distributions. Since these n-step distributions converge to � , the
sequence of n-step covariance matrices converge to ˙ , i.e., ˙.n/ ! ˙: One of the
motivations for this work was to understand what decomposition of the matrix ˙
this sequence is effectively performing. Many matrix decompositions are known in
numerical analysis and we were curious to see if Gibbs sampling was effectively
performing one of them.

3.2 Matrix Formulation of Gibbs Sampling From N.0; A�1/

Let y D .y1; y2; : : : ; yn/
T denote the state of the Gibbs sampler. Component-

wise Gibbs updates each component in sequence from the (normal) conditional
distributions. One ‘sweep’ over all n components can be written [14]

y.kC1/ D �D�1Ly.kC1/ �D�1LT y.k/ CD�1=2z.k/ (5)

where D D diag.A/, L is the strictly lower triangular part of A, and z.k�1/ � N.0; I/.
Since D is invertible, the iteration can be written as the stochastic AR(1) process

y.kC1/ D Gy.k/ C c.k/

where c.k/ are i. i. d. draws from a ‘noise’ distribution with zero mean and finite
covariance.

3.3 Matrix Splitting Form of Stationary Iterative Methods

Since about 1965, the matrix splitting formalism has been the standard for formu-
lating and understanding the classical iteration schemes used to solve linear systems
of equations, as in Eq. (4). The splitting A D M � N converts the linear system to
Mx D NxC b. When M is invertible, this may be written

x DM�1NxCM�1b:

Classical iterative methods compute successive approximations to the solution by
repeatedly applying the iteration
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x.kC1/ D M�1Nx.k/ CM�1b

D Gx.k/ C g:

The iteration is convergent if the sequence of iterates converge for any x.0/.
Many splittings use terms in A D L C D C U where L is the strictly lower

triangular part of A, D is the diagonal of A, and U is the strictly upper triangular
part of A. For example, Gauss-Seidel iteration, that sequentially solves for each
component using the most recent values, corresponds to the splitting M D LC D.
The resulting iteration for a sweep over all components in sequence is

x.kC1/ D �D�1Lx.kC1/ �D�1LTx.k/ C D�1b: (6)

The similarity between Gauss-Seidel iteration in Eq. (6) and the matrix formula-
tion of Gibbs sampling in Eq. (5) is obvious. The only difference is that whereas in
each iteration of Gauss-Seidel the constant vector D�1b is added, in Gibbs sampling
the i. i. d. random vector D�1=2z.k/ is added. This equivalence has been known for
some time; it was explicitly stated in Amit and Grenander [2] and is implicit in
Adler [1].

3.4 Matrix Splittings Give Generalized Gibbs Samplers

The standard Gibbs sampler in Eq. (6) and Gauss-Seidel iteration in Eq. (5) are
equivalent in the sense that they correspond to the same splitting of the precision
matrix. In fact any splitting of the precision matrix leads to a (generalized) Gibbs
sampler for N.0;A�1/. What makes this equivalence interesting and useful is
that the generalized Gibbs sampler converges (in distribution) if and only if the
stationary linear iteration converges (in value); hence convergent Gibbs samplers
are equivalent to convergent matrix splittings. The following theorem formalizes
this statement.

Theorem 1. Let A DM �N be a splitting with M invertible. The stationary linear
solver

x.kC1/ D M�1Nx.k/ CM�1b (7)

D Gx.k/ CM�1b

converges, if and only if the random iteration

y.kC1/ D M�1Ny.k/ CM�1c.k/ (8)

D Gy.k/ CM�1c.k/
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converges in distribution. Here c.k/
iid� �n is any ‘noise’ distribution that has zero

mean and finite variance.

Proof. (outline) Each converges iff the spectral radius %.G/ < 1. ut
A complete proof is given in Fox and Parker [9]. (A more general theory allowing

G to be random can be found in [6].) We first saw this result in one direction in
Goodman and Sokal [14] and Galli and Gao [10]. Further, it can be shown [9] that
the mean converges with asymptotic convergence factor %.G/, and covariance with
%.G/2 (see also [18]). Thus, the rate of convergence is also the same for both the
Gibbs sampler and the linear solver derived from a splitting. Hence the optimal
solver leads to the optimal Gibbs sampler, and vice versa.

3.5 Some (Not So Common) Gibbs Samplers for N.0; A�1/

There are many matrix splittings known in the numerical analysis community,
with conditions for convergence being well established. Most introductory texts
on numerical analysis cover the topic of stationary iterative methods and give
several classical splittings. Some of these are tabulated in Table 1 with increasing
sophistication and (roughly) speed listed from top to bottom. Conditions that
guarantee convergence, taken from the numerical analysis literature, are also listed
for the case where A is symmetric positive-definite.

Table 1 Some classical matrix splittings and the derived Gibbs samplers. Conditions for con-
vergence are given in the right-most column, for A symmetric positive definite. Jacobi iteration
converges when A is strictly diagonally dominant (SDD).

Splitting/sampler M Var.c.k// DMT C N Converge if

Richardson 1
!

I 2
!

I� A 0 < ! < 2
%.A/

Jacobi D 2D� A A SDD
GS/Gibbs DC L D always
SOR/B&F 1

!
DC L 2�!

!
D 0 < ! < 2

SSOR/REGS !
2�!

MSORD�1MT
SOR

!
2�!

�
MSORD�1MT

SORC NT
SORD�1NSOR

�
0 < ! < 2

The convenience of a splitting depends on being able to cheaply solve systems of
the form Mu D r given any vector r. When the splitting is used to generate a Gibbs
sampler, as in Eq. (8), it is also necessary to draw realizations of the noise c.k/ �
N.0;MT C N/, so the covariance matrix MT C N needs to have some convenient
form.

It is interesting to note that the simplest splittings – Richardson and Jacobi – give
simple stationary iterative solvers because it is cheap to operate by M�1 in these
cases. However, the required noise covariance matrix is not necessarily simple and
so these splittings don’t give particularly useful Gibbs samplers.
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The Gauss-Seidel (GS) splitting, that gives the standard component-wise Gibbs
sampler, hits a ‘sweet-spot’ in terms of simplicity of the required matrix solution and
noise sampling problems. The matrix M is lower-triangular, so operation by M�1
is straightforward by forward substitution, while the noise covariance is diagonal
which presents a simple sampling problem. It is no surprise, therefore, that the
standard Gibbs sampler was the first of these methods to be discovered. We see
from the right column in Table 1 that the Gauss-Seidel iteration is unconditionally
convergent, hence Theorem 1 guarantees that so is the component-wise Gibbs
sampler – but we already knew this from standard convergence results for the Gibbs
sampler.

An early method for accelerating the Gauss-Seidel iteration, due to Young and
Frankel in 1950, introduces a relaxation parameter ! and modifies the iteration to
x.kC1/ D .1 � !/ x.k/C! �Gx.k/ CM�1b

�
. This successive over-relaxation (SOR)

method effectively uses the splitting shown on the row labeled SOR in Table 1. It
can be shown that the method converges for 0 < ! < 2, though finding values of
! that actually increase convergence speed is problem-specific and can be difficult.
The equivalent accelerated Gibbs sampler has been discovered a few times: initially
by Adler in 1981 [1] in the physics literature, later in the statistics literature by
Barone and Frigessi in 1990 [4] who subsequently referred to it (immodestly) as the
‘method of Barone and Frigessi’, and in Amit and Grenander [2].

A symmetric splitting, for which M and hence N is symmetric, has the desirable
property that the iteration operator G has real eigenvalues. A simple way to
achieve this is to perform a forwards then backwards sweep of SOR giving the
symmetric successive over-relaxation (SSOR) method introduced by Young [22].
The effective splitting is listed in Table 1. The equivalent Gibbs sampler was
introduced by Roberts and Sahu [18] as a reversible kernel produced by a forward
then backward sweep of the standard Gibbs sampler, under the title of the REGS
sampler. Polynomial acceleration of this sampler is developed in the next section.

4 Polynomial Acceleration of Gibbs Sampling

Sampling from N.Nx;A�1/, where ANx D b, using the matrix splitting A D M� N,
with M invertible, determines the iteration operator G D M�1N and noise

distribution c.k/
iid� N.0;MT C N/. One sweep of the resulting Gibbs sampler is

the matrix iteration

y.kC1/ D Gy.k/ CM�1.c.k/ C b/ (9)

that combines Eqs. (7) and (8) to converge in both mean and covariance.
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4.1 A Closer Look at Convergence

Since both the mean and covariance are invariant under the iteration in Eq. (9), the
n-step error in the mean is

E
�
y.n/

� � Nx D Gn


E
�
y.0/

� � Nx� ;

and the error in variance is

Var
�
y.n/

� �A�1 D Gn


Var

�
y.0/

�� A�1
�

Gn:

Both these error terms show that the n-step error is the initial error operated on by
the n-th order (matrix) polynomial Gn. Hence, the asymptotic average convergence
factor is %.G/ for the mean, and %.G/2 for the covariance. These results also appear
in Roberts and Sahu [18].

Thus, the error polynomial for the iteration is

Pn .I �G/ D .I� .I �G//n D �I �M�1A
�n

or Pn./ D .1 � /n

which has the same form as in Eq. (2) because this iteration is also stationary, though
now the eigenvalues are of the matrix M�1A.

In particular, the solver and sampler have exactly the same error polynomial. This
is a very important observation, since it means that methods for improving the error
polynomial of the solver will also improve convergence of the generalized Gibbs
sampler. Further, since the solver and sampler have exactly the same asymptotic
average convergence factor, the optimal solver will also be the optimal sampler.
Thus, the task of finding a fast Gibbs sampler (for Gaussian distributions) is reduced
to the task of consulting the numerical linear algebra literature to find a fast linear
iterative solver.

4.2 Chebyshev Acceleration

Golub and Varga [13] introduced the splitting

A D 1

�
MC

�
1 � 1

�

�
M �N;

with parameter � , that the gives the iteration operator

G� D
�
I � �M�1A

�
: (10)
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Fig. 1 The default error
polynomial (dashed) and
Chebyshev error polynomial
(solid) after 10 iterations.
Vertical dotted lines show the
minimum and maximum
eigenvalues of M�1A.

Repeated iteration using this splitting results in the error polynomial Pn ./ D
.1 � �/n, while n iterations using the sequence of parameters �1; �2; : : : ; �n results
in the error polynomial

Pn ./ D
nY

lD1
.1 � �l/ :

Note that the zeros of Pn can be chosen; they are just 1=�1; 1=�2; : : : ; 1=�n. The
resulting iteration is non-stationary (because the iteration operator changes each
iteration), hence the derived Gibbs sampler simulates a non-homogeneous Markov
chain.

When estimates of the extreme eigenvalues min and max of M�1A are available
(min and max are real when M is symmetric), the error polynomial may be chosen
to be optimal in the sense that it has minimum maximum modulus over the interval
Œmin; max�. The solution is the well-known scaled Chebyshev polynomial with
zeros

1

�l
D max C min

2
C max � min

2
cos

�
�
2l C 1
2n

�
l D 0; 1; 2; : : : ; n � 1: (11)

The potential improvement in rate of convergence achievable by the Chebyshev
error polynomial is shown in Fig. 1 that shows the Chebyshev (solid) and default
(dashed) error polynomials for a random covariance over d D 10 variables, after
n D 10 iterations.

The largest value of the default error polynomial occurs at the extreme eigen-
values of M�1A, as we expect from standard MCMC convergence theory. The
Chebyshev polynomial achieves a much lower maximum value over the interval,
at the expense of some ‘ripple’ in the interval that is of no consequence for conver-
gence. In this case the Chebyshev acceleration gives a factor of 300 improvement in
convergence, i.e. the distribution error is 300 times smaller, after just 10 iterations.

An explicit calculation of the maximum of the scaled Chebyshev polynomial over
the interval Œmin; max� shows that the asymptotic average reduction factor (see e.g.
Axelsson [3]) is

� D 1 �pmin =max

1Cpmin =max

;
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and that this is necessarily better (smaller) than the per-iteration error reduction
factor of the un-accelerated iteration.

4.3 Second-Order Accelerated Sampler

The first-order polynomial-accelerated iteration turns out to be numerically unsta-
ble, because the iteration operators in Eq. (10) may have spectral radius greater
than 1, and also suffers from having to choose the number of iterations n in
advance. Numerical stability, and optimality at each step, is given by the second-
order iteration [3]

y.kC1/ D .1 � ˛k/y.k�1/ C ˛ky.k/ C ˛k�kM�1.c.k/ �Ay.k// (12)

with ˛k and �k chosen so the error polynomial satisfies the Chebyshev recursion.

Theorem 2. If f˛kg and f�kg are such that the 2nd-order solver converges, then the
2nd-order sampler in Eq. (12) converges. Further, the error polynomial is optimal,
at each step, for both mean and covariance.

A proof of this theorem and details of a practical second-order Chebyshev acceler-
ated Gibbs sampling algorithm are given in Fox and Parker [8].

4.3.1 An Example with d D 10 � 10

Consider the locally-linear Gaussian distribution defined by the precision
matrix [15]

ŒA�ij D 10�4ıij C
8
<

:

ni if i D j;
�1 if i ¤ j and jjsi � sj jj2 � 1;
0 otherwise.

We compute an example on the square 10 � 10 lattice, so the problem dimension is
d D 100. The precision matrix inherits the neighbourhood structure of the lattice,
so is sparse, with non-zero pattern:
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Fig. 2 Convergence of
n-step covariance as a
function of computational
work, for plain and
accelerated Gibbs samplers
applied to d D 100

dimensional problem. The
work and error for the
Cholesky factorization is
shown as dotted lines, for
reference.

The convergence in n-step covariance of various Gibbs samplers applied to this
distribution is shown in Fig. 2. The dashed line shows the SSOR (or REGS) sampler
using the optimal SOR parameter of ! D 1:6641. The solid curve shows the
standard REGS (forward and backward sweep of Gibbs) sampler (! D 1). Dash-dot
lines show the Chebyshev accelerated SSOR sampler. It is clear that the Chebyshev
accelerated sampler is considerably faster than standard Gibbs sampling, in this case
	 104 times faster. The dotted lines in Fig. 2 show the work and error for a sample
drawn using the Cholesky factorization of A, and confirm that Cholesky factoring is
the method of choice for moderately-sized problems.

4.3.2 An Example with d D 106

Figure 3 shows a sample from a locally linear Gaussian random field, with the same
definition of the precision matrix as the previous example, on the 3-dimensional
lattice with d D 100 � 100 � 100, computed using the Chebyshev accelerated
SSOR sampler. This problem has d D 106 which is much larger than could be
calculated using a Cholesky factorization. However, the iterative structure of the
Gibbs sampler is able to take advantage of the sparse precision matrix, which is the
only special structure exploited here. (The Fourier transform is also applicable in
this case because the GMRF is stationary.)

5 A Conjugate Gradient Sampling Algorithm

The conjugate gradient (CG) optimization method may be viewed as a polynomial
acceleration in which the optimal error polynomial is chosen by also calculating the
eigenvalues of the iteration operator within the procedure. However, we present the
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Fig. 3 Slices through a sample on the 3-dimensional lattice with d D 100� 100� 100.

method here by focusing on the mutually A-conjugate directions that are generated
at each iteration.

Figure 4 shows a schematic of the iterative structure implemented by Gauss-
Seidel (left) and conjugate gradient optimization (right) of a quadratic function in
d D 2 dimensions. The sequence of search directions is depicted by dashed lines.
The Gauss-Seidel iteration performs optimization along each coordinate direction,
in sequence. As we have seen, this implements exactly the same iteration structure as
the Gibbs sampler, depicted by solid lines with the sequence of conditional samples
denoted x.0/, x.1/, etc. In contrast the CG algorithm uses a sequence of search
directions that are mutually A-conjugate, seeded by the gradient at each iterate,
as depicted in the right panel of Fig. 4. By performing conditional sampling along
this sequence of directions, as opposed to 1-dimensional optimization, we get the
conjugate gradient sampler (solid lines).

Mutually conjugate vectors (with respect to A) are independent directions for
N.0;A�1/, since

VTAV D D) A�1 D VD�1VT

where V has mutually conjugate columns and D is a diagonal matrix. Hence, if
z � N .0; I / then x D V

p
D�1z � N.0;A�1/. Thus the problem of sampling

from N.0;A�1/ is reduced to sampling from standard normal distributions. Both the
Cholesky factorization and eigen-decomposition are examples of sets of mutually
conjugate vectors [7].
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Gibbs sampling & Gauss Seidel CG sampling & optimization

Fig. 4 Schematic in d D 2 dimensions depicting the path taken by the Gauss-Seidel iteration
and Gibbs sampler (left) and the CG optimizer and sampler (right). Contours of the quadratic
objective function and log-target density are also shown. Path of the optimizer shown in dotted
lines, sampler shown in solid lines. Search directions are p.0/; p.1/; : : :, iterates are x.0/; x.1/; : : :,
while r.0/;r.1/; : : : show the direction of gradients at iterates.

Algorithm 1 (CD sampler producing x � N.0;A�1/). Initialize x and b (Ax ¤
b)

1. r b� Ax
2. p r
3. for k D 1 to n do:
4. q Ap
5. set d  qTp, e  qTx=d , f  pTb=d
6. draw z � N .0; 1/ and set ˛ z=

p
d

7. x xC .˛ � e/ p
8. b bC .˛ � f / q
9. r r � .f � e/q

10. p r � rTq
d

p

The sequential conjugate-direction algorithm given in Fox [7] is shown in
Algorithm 1. This algorithm operates locally, so can potentially be generalized to
non-Gaussian targets. An earlier Krylov-space method was presented in Schneider
and Willsky [20]. Ceriotti et al. [5] gave an algorithm that solves Ax D b by standard
linear CG and separately accumulates the sample y. They mitigated problems
associated with loss of conjugacy and degenerate eigenspaces by a combination
of random restarts and orthogonalization over a small set of vectors. Parker and Fox
[17] presented a convergence criterion based on the residual, also for an algorithm
that solves Ax D b by standard linear CG and separately accumulates the sample
y. They also established that, after k steps, Var.yk/ is the CG polynomial, and gave
following best-approximation property:

Theorem 3 (Parker 2009). The covariance matrix

Var.ykjx0;b0/ D VkT �1k V T
k
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Fig. 5 A CG sample (left panel) x � N.0;A�1/ from a 100 � 100-dimensional Gaussian field
with a second-order locally linear precision matrix. The realized variance Var.x/ accounts for 80 %
of the variability in A�1. A Cholesky sample is shown on the right panel.

has k non-zero eigenvalues which are the Lanczos estimates of the eigenvalues of
A�1. The eigenvectors of Var.ykjx0;b0/ are the Ritz vectors Vkvi which estimate the
eigenvectors of A.

That is, the k-step variance Var.ykjx0;b0/ approximates A�1 in the eigenspaces
corresponding to the extreme and well separated eigenvalues of A.

Figure 5 shows two samples drawn from a 100�100-dimensional Gaussian field
with a second-order locally linear precision matrix. The left panel was drawn using
the CG sampler of Parker and Fox [17], while the right sample was evaluated using
the Cholesky factorization of A. Loss of conjugacy in the CG algorithm means
that the algorithm terminates before sampling all d -dimensions of the problem.
For typical covariance functions, this results in over smooth samples as can be
seen in the left panel of Fig. 5. However, the connection with iterative solvers
immediately suggests the efficient solution which is to initialize the (accelerated)
Gibbs sampler with the CG sample. This plays to the strengths of each method;
the CG sampler efficiently calculates smooth structures in the Gaussian field, while
relaxation techniques such as Gauss-Seidel (hence Gibbs sampling) are efficient in
removing high-frequency errors.

6 Discussion

The motivating query of whether “stochastic relaxation” is formally equivalent to
“relaxation” has been answered in the affirmative, in the Gaussian setting; Gibbs
sampling is precisely equivalent to Gauss-Seidel iteration. This result generalizes
to any splitting of the precision matrix, to give both a “stochastic relaxation” and
a “relaxation” with identical conditions for convergence, rates of convergence, and
error polynomial.
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Hence, existing efficient solvers (multigrid, fast multipole, parallel tools) can
all be used to perform sampling from Gaussian distributions; indeed, these ‘best’
solvers are necessarily the ‘best’ samplers for Gaussian distributions.

As was shown in Sect. 2, polynomial acceleration may also be applied to the
Markov chain that targets a non-Gaussian distribution. The example presented,
while rather special and not of practical use, did demonstrate that polynomial
acceleration of a geometrically convergent chain can lead to an algorithm that draws
‘perfect’ samples in finite compute time.

For general target distributions, Chebyshev acceleration of convergence in mean
and covariance is also not limited to Gaussian targets. The requirement of explicitly
knowing the precision matrix A may be circumvented by adapting to it [8].
Applications in the setting of diffusion tomography show good results, though no
proof of convergence exists for the accelerated adaptive algorithm.

Acknowledgements Polynomial acceleration of Gibbs sampling is the brainchild of Al Parker, to
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Antithetic Multilevel Monte Carlo Estimation
for Multidimensional SDEs

Michael B. Giles and Lukasz Szpruch

Abstract In this paper we develop antithetic multilevel Monte Carlo (MLMC)
estimators for multidimensional SDEs driven by Brownian motion. Giles has
previously shown that if we combine a numerical approximation with strong order
of convergence O.�t/ with MLMC we can reduce the computational complexity
to estimate expected values of Lipschitz functionals of SDE solutions with a
root-mean-square error of 
 from O.
�3/ to O.
�2/. However, in general, to
obtain a rate of strong convergence higher thnan O.�t1=2/ requires simulation,
or approximation, of Lévy areas. Recently, Giles and Szpruch [5] constructed an
antithetic multilevel estimator thnnat avoids thnne simulation of Lévy areas and
still achieves an MLMC correction variance which is O.�t2/ for smooth payoffs
and almost O.�t3=2/ for piecewise smooth payoffs, even though there is only
O.�t1=2/ strong convergence. This results in an O.
�2/ complexity for estimating
the value of financial European and Asian put and call options. In this paper, we
extend these results to more complex payoffs based on the path minimum. To
achieve this, an approximation of the Lévy areas is needed, resulting in O.�t3=4/
strong convergence. By modifying the antithetic MLMC estimator we are able
to obtain O.
�2 log.
/2/ complexity for estimating financial barrier and lookback
options.

1 Introduction

In his original MLMC paper [4], Giles showed that one could obtain a good MLMC
variance for smooth payoffs by using a numerical approximation with good strong
convergence properties. This is in contrast to the standard Monte Carlo approach
to simulations of SDEs, where only a good weak order of convergence is required.
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For multidimensional SDEs, to obtain good strong convergence, simulation of the
Lévy areas is required. Indeed, Clark and Cameron [1] proved for a particular SDE
that it is impossible to achieve a better order of strong convergence than the Euler-
Maruyama discretisation when using just the discrete increments of the underlying
Brownian motion. The analysis was extended by Müller-Gronbach [8] to general
SDEs. As a consequence, if we use the standard MLMC method with the Milstein
scheme without simulating the Lévy areas the complexity will remain the same
as for Euler-Maruyama. Recently, Giles and Szpruch [5] constructed an antithetic
MLMC estimator, enabling one to neglect the Lévy areas and still obtain a multilevel
correction estimator with a variance which decays at the same rate as the scalar
Milstein estimator. They achieved an O.�t2/ MLMC variance for smooth payoffs
and almost an O.�t3=2/ variance for piecewise smooth payoffs, even though there
is only O.�t1=2/ strong convergence. This results in an O.
�2/ complexity for
estimating the value of European and Asian put and call options.

The question remains whether the approach can be extended to more complex
payoffs such as those based on the minimum of the path over the simulation
interval. For scalar SDEs with the Milstein discretisation, Giles [4] obtainedO.
�2/
complexity for such payoffs by combining MLMC with conditional Monte Carlo
methods. In this paper, we extend these results to the multidimensional case. Unlike
the previous multidimensional work, we find that a suitable approximation to the
Lévy areas is required. By a suitable modification of the antithetic MLMC estimator
we are able to obtain O.
�2 log.
/2/ complexity for payoffs corresponding to
financial lookback and barrier options. We focus on simulations of Clark and
Cameron’s SDE since it captures the essence of simulations requiring Lévy area
simulation to obtain higher that O.�t1=2/ strong convergence property. Our results
are supported by numerical experiments.

2 MLMC

Multilevel Monte Carlo simulation uses a number of levels of resolution, ` D
0; 1; : : : ; L, with ` D 0 being the coarsest, and ` D L being the finest. In the
context of an SDE simulation, level 0may have just one timestep for the whole time
interval Œ0; T �, whereas level L might have 2L uniform timesteps �tL D 2�LT .
If P denotes the payoff (or other output functional of interest), and P` denote its
approximation on level `, then the expected value EŒPL� on the finest level is equal
to the expected value EŒP0� on the coarsest level plus a sum of corrections which
give the difference in expectation between simulations on successive levels,

EŒPL� D EŒP0�C
LX

`D1
EŒP` � P`�1�: (1)
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Let Y0 be an estimator for EŒP0� using N0 samples, and let Y`, ` > 0, be an
estimator for EŒP` � P`�1� using N` samples. The simplest estimator is a mean
of N` independent samples, which for ` > 0 is

Y` D N�1`
NX̀

iD1
.P i

` � P i
`�1/: (2)

The key point is that P i
` �P i

`�1 should come from two discrete approximations for
the same underlying stochastic sample.

We recall the Theorem from [5]:

Theorem 1. Let P denote a functional of the solution of a stochastic differential
equation, and let P` denote the corresponding level ` numerical approximation.
If there exist independent estimators Y` based on N` Monte Carlo samples, and
positive constants ˛; ˇ; �; c1; c2; c3 such that ˛� 1

2
min.ˇ; �/ and

(i) jEŒP`�P �j � c1 2�˛ `

(ii) EŒY`� D
8
<

:

EŒP0�; ` D 0
EŒP`�P`�1�; ` > 0

(iii) VŒY`� � c2 N�1` 2�ˇ `
(iv) C` � c3 N` 2� `; where C` is the computational complexity of Y`

then there exists a positive constant c4 such that for any 
<e�1 there are values L
and N` for which the multilevel estimator Y DPL

`D0 Y`; has a mean-square-error

with bound MSE  E

h
.Y � EŒP �/2

i
< 
2 with a computational complexity C

with bound

C �

8
ˆ̂
<̂

ˆ̂
:̂

c4 

�2; ˇ > �;

c4 

�2.log 
/2; ˇ D �;

c4 

�2�.��̌ /=˛ ; 0 < ˇ < �:

In (2) we have used the same estimator for the payoff P` on every level `, and
therefore (1) is a trivial identity due to the telescoping summation. However, in [3]
Giles explained that it can be better to use different estimators for the finer and
coarser of the two levels being considered, Pf

` when level ` is the finer level, and
P c
` when level ` is the coarser level. In this case, we require that

EŒP
f

` � D EŒP c
` � for ` D 0; : : : ; L � 1; (3)

so that EŒP f
L � D EŒP

f
0 � C

PL
`D1 EŒP

f

` � P c
`�1�: The MLMC Theorem is still

applicable to this modified estimator. The advantage is that it gives the flexibility
to construct approximations for which Pf

` �P c
`�1 is much smaller than the original

P`�P`�1, giving a larger value for ˇ, the rate of variance convergence in condition
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(iii) in the theorem. In the next sections we demonstrate how suitable choice of Pf

`

and P c
` can dramatically increase the convergence of the variance of the MLMC

estimator.

2.1 Milstein Scheme

Let .˝;F ; fFt gt�0;P/ be a complete probability space with a filtration fFtgt�0
satisfying the usual conditions, and let w.t/ be a m-dimensional Brownian motion
defined on the probability space. We consider the numerical approximation of SDEs
of the form

dx.t/ D f .x.t// dt C g.x.t// dw.t/; (4)

where x.t/ 2 R
d for each t � 0, f 2 C2.Rd ;Rd /, g 2 C2.Rd ;Rd�m/ have

bounded first and second derivatives, and for SIMPLICITY we assume a fixed initial
value x0 2 R

d .
For Lipschitz continuous payoffs that depend on finite number of times t `n D

n�t`, the MLMC variance can be estimated from the strong convergence of the
numerical scheme, that is

 

E



sup
0�n�2`

��x.t`n/� X`
n

��p�
!1=p

D O.�t�` / for p � 2:

For partition P�t` WD fn�t` W n D 0; 1; 2; : : : ; 2` D N g, where �t` D T=N , we
consider the Milstein approximationX`

n with i th component of the form

X`
i;nC1 DX`

i;n C fi .X`
n/�t` C

mX

jD1
gij.X

`
n/�w`j;n

C
mX

j;kD1
hijk.X

`
n/
�
�w`j;n�w`k;n � ıj;k �t` � ŒA`jk�tnC1

tn

	 (5)

where hijk.x/ D 1
2

Pd
lD1 glk.x/

@gij

@xl
.x/, ıj;k is a Kronecker delta, �w`n D w..nC

1/�t`/� w.n�t`/ and ŒA`jk�
tnC1

tn is the Lévy area defined as

ŒA`jk�
tnC1

tn D
Z t `

nC1

t`n

�
wj .t/�wj .t

`
n/
	

dwk.t/ �
Z t `

nC1

t`n

�
wk.t/�wk.t

`
n/
	

dwj .t/:

(6)

For the Milstein scheme � D 1 and therefore ˇD 2 for smooth payoffs, and hence
MLMC has complexity O."�2/. However, there is no method for simulating Lévy
areas with a cost per timestep similar to that of Brownian increments, apart from
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in dimension 2 [2, 9, 10]. Furthermore, within computational finance, options are
often based on the continuously-monitored minimum (or maximum) or the path.
The Milstein scheme gives an improved rate of convergence at the simulation times,
but to maintain the strong order of convergence for such path-dependent options we
use Brownian Bridge interpolation within each timestep Œt `n; t

`
nC1�

QX`.t/ D X`
n C ` .X`

nC1�X`
n/C g.X`

n/
�
w.t/ � w.t`n/ � �w`n

�
(7)

where `  .t � t `n/=�t`. Using this interpolant, we have the result [7]

E



sup
0�t�T

�
�x.t/ � QX`.t/

�
�p� D O.j �t` log.�t`/ jp/:

3 Antithetic MLMC Estimator

The idea for the antithetic estimator is to exploit the flexibility of the more general
MLMC estimator by defining P c

`�1 to be the usual payoff P.Xc/ coming from a

level `�1 coarse simulation Xc , and define Pf

` to be the average of the payoffs
P.Xf /; P.Xa/ coming from an antithetic pair of level ` simulations, Xf and Xa.
Xf will be defined in a way which corresponds naturally to the construction of

Xc . Its antithetic “twin” Xa will be defined so that it has exactly the same distri-
bution as Xf , conditional on Xc , which ensures that EŒP.Xf /� D EŒP.Xa/� and
hence (3) is satisfied, but at the same time

�
Xf � Xc

� 	 � .Xa �Xc/ and there-
fore

�
P.Xf / � P.Xc/

� 	 � .P.Xa/� P.Xc// ; so that 1
2

�
P.Xf /C P.Xa/

� 	
P.Xc/: This leads to 1

2

�
P.Xf /C P.Xa/

��P.Xc/ having a much smaller variance
than the standard estimatorP.Xf /�P.Xc/. It was proved in [5], that if

�
� @P
@x

�
� � L1,��

� @
2P
@x2

��
� � L2: then for p � 2,

E

h�
1
2
.P.Xf /C P.Xa// � P.Xc/

�pi

� 2p�1 Lp1 E

h�
� 1
2
.Xf CXa/ �Xc

�
�p
i
C 2�p�1 Lp2 E

h�
�Xf �Xa

�
�2p

i
:

In the multidimensional SDE we will show that the Milstein approximation with the
Lévy areas set to zero, combined with the antithetic construction, leads to Xf �
Xa D O.�t1=2/ but 1

2
.Xf CXa/ � Xc D O.�t/. Hence, the variance VŒ 1

2
.P

f

` C
Pa
` / � P c

`�1� is O.�t2/ for smooth payoffs, which is the same order obtained for
scalar SDEs using the Milstein discretisation with its first order strong convergence.



372 M.B. Giles and L. Szpruch

4 Clark-Cameron Example

The Clark and Cameron model problem [1] is

dx1.t/ D dw1.t/; dx2.t/ D x1.t/ dw2.t/; (8)

with x1.0/ D x2.0/ D 0, and zero correlation between the two Brownian motions
w1.t/ and w2.t/. These equations can be integrated exactly over a time interval
Œtn; tnC1�, where tn D n�t , to give

x1.tnC1/ D x1.tn/C�w1;n

x2.tnC1/ D x2.tn/C x1.tn/�w2;n C 1
2
�w1;n�w2;n C 1

2
ŒA12�

tnC1

tn (9)

where �wi;n  wi .tnC1/ � wi .tn/, and ŒA12�
tnC1

tn is the Lévy area defined in (6).
This corresponds exactly to the Milstein discretisation presented in (5), so for this
simple model problem the Milstein discretisation is exact. The point of Clark and
Cameron’s paper is that for any numerical approximationX.T / based solely on the
set of discrete Brownian increments �w, EŒ.x2.T / � X2.T //2� � 1

4
T �t: Since

in this section we use superscript f; a; c for fine Xf , antithetic Xa and coarse Xc

approximations, respectively, we drop the superscript ` for the clarity of notation.
We define a coarse path approximation Xc with timestep �t , and times tn 

n�t , by neglecting the Lévy area terms to give

Xc
1;nC1 D Xc

1;n C�w`�11;n

Xc
2;nC1 D Xc

2;n CXc
1;n�w`�12;n C 1

2
�w`�11;n �w`�12;n (10)

This is equivalent to replacing the true Brownian path by a piecewise linear
approximation as illustrated in Fig. 1. Similarly, we define the corresponding two
half-timesteps of the first fine path approximationXf . Using

�w`�1nC1  .w.tnC1/� w.tn//

D .w.tnC1/� w.tnC1=2//C .w.tnC1=2/� w.tn//  �w`nC1=2 C�w`n;

we can combine two half-timestep approximations to obtain an equation for the
increment over the coarse timestep,

X
f
1;nC1 D X

f
1;n C�w`�11;n

X
f
2;nC1 D X

f
2;n CXf

1;n �w`�12;n C 1
2
�w`�11;n �w`�12;n (11)

C 1
2

�
�w`1;n �w`2;nC1=2 ��w`2;n �w`1;nC1=2

	
:
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W
Wf

Wc

Wa

Fig. 1 Brownian path w, its piecewise linear interpolations wc and wf , and the antithetic wa , for
a single coarse timestep. The circles denote the points at which the Brownian path is sampled.

The antithetic approximation Xa
n is defined by exactly the same discretisation

except that the Brownian increments �w`nC1=2 and �w`nC1 are swapped, as illus-
trated in Fig. 1. This gives

Xa
1;nC1 D Xa

1;n C�w`�11;n ;

Xa
2;nC1 D Xa

2;n CXa
1;n �w`�12;n C 1

2
�w`�11;n �w`�12;n (12)

� 1
2

�
�w`1;n �w`2;nC1=2 ��w`2;n �w`1;nC1=2

	
:

Swapping �w`n and �w`nC1=2 does not change the distribution of the driving

Brownian increments, and hence Xa has exactly the same distribution as Xf . Note
also the change in sign in the last term in (11) compared to the corresponding term
in (12). This is important because these two terms cancel when the two equations
are averaged.

In [5] Giles and Szpruch proved the following result:

Lemma 1. If Xf
n , Xa

n and Xc
n are as defined above, then

X
f
1;n D Xa

1;n D Xc
1;n;

1
2

�
X
f
2;n CXa

2;n

	
D Xc

2;n; n D 1; 2; : : : ; N  2`�1:

and

E

hˇˇ̌
X
f
2;N � Xa

2;N

ˇ
ˇ̌pi D O.�tp=2/ for p � 2:
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This allows us to prove that for payoffs which are a smooth function of the final
state the MLMC variance

V

h
1
2

�
P.X

f
N /C P.Xa

N /
	
� P.Xc

N /
i

has anO.�t2/ upper bound and therefore the complexity of the MLMC estimator is
O.
2/. This matches the convergence rate and complexity for the multilevel method
for scalar SDEs using the standard first order Milstein discretisation, and is much
better than the O.�t/ MLMC convergence obtained with the Euler-Maruyama
discretisation. Very few financial payoff functions are twice differentiable on the
entire domain, but Giles and Szpruch have proved that for piecewise smooth put and
call options the variance converges with rateO.�t3=2/, assuming local boundedness
of the density of the SDE solution (4) near the strike [5].

To perform numerical experiments we closely follow the algorithm prescribed in
[4, Sect. 5] with predefined root-mean-square errors 
 D Œ1; 2; 4; 8; 16� � 10�4:
1. Start with level ` D 0
2. Estimate variance using initial 104 samples
3. Evaluate optimal number of samples on each level as in [4, Sect. 5]
4. If L � 2, test for convergence [4, Sect. 5]
5. If L < 2 or not converged, set ` WD `C 1 and go to 2.

In addition, we used 106 samples to generate the plots where we estimate the rate of
the strong and weak errors.

Figure 2 presents results for the payoff function P D max.0; x2.1/ � 1/ applied
to Clark and Camerson model problem with initial conditions x1.0/ D x2.0/ D 1.
The top left plot with the superimposed reference slope with rate 1.5 shows that
the variance P` � P`�1 is O.�t1:5` /. The top right plot shows that EŒP` � P`�1� D
O.�t`/. The bottom left plot shows 
2 C where C is the computational complexity
as defined in Theorem 1. The plot is versus 
, and the nearly horizontal line
confirms that the MLMC complexity is O.
�2/, whereas the standard Monte Carlo
approach has complexity O.
�3/. For accuracy " D 10�4, the antithetic MLMC
is approximately 500 times more efficient than standard Monte Carlo. The bottom
right plot shows that VŒX`

2;N � X`�1
2;N � D O.�t`/, corresponding to the standard

strong convergence of order 0.5.

5 Subsampling of Levy Areas

Consider now a Brownian path w.t/ on the interval Œ0; T � with N sub-intervals of
size �tDT=N . We define wn  w.n�t/ and �wn  wnC1 � wn.
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Fig. 2 Clark/Cameron model problem with payoff max.0; x2.1/� 1/.

Lemma 2. The Lévy area for w.t/ can be expressed as

ŒAjk�
T
0 D

N�1X

nD0

�
.wj;n � wj;0/�wk;n � .wk;n � wk;0/�wj;n C ŒAsjk�.nC1/�tn�t

	

where ŒAsjk�
.nC1/�t
n�t is the Lévy area for the sub-interval Œn�t; .nC1/�t�.

Proof. This follows from the definition of the Lévy area by expressing the integral
over Œ0; T � as the sum of integrals over each of the sub-intervals, and using the
identity w.t/�w.0/ D .wn �w0/ C .w.t/�wn/ to evaluate the integral on the nth

sub-interval. ut
Ignoring the sub-interval Lévy areas ŒAsjk�

.nC1/�t
n�t , which corresponds to using

the expected value of ŒAjk�
T
0 conditional on fw.n�t/g0�n�N , gives the Lévy area

approximation:

ŒLjk�
T
0 D

N�1X

nD0

�
.wj;n � wj;0/�wk;n � .wk;n � wk;0/�wj;n

	
:
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We denote by ŒLajk�
T
0 the corresponding antithetic quantity generated by reversing

the order of the Brownian increments �wN ;�wN�1; : : : ; �w1. The antithetic label
is due to the following lemma:

Lemma 3.

ŒLajk�
T
0 D �ŒLjk�

T
0 :

Proof.

ŒLajk�
T
0 D

N�1X

nD0

n�1X

mD0
�wj;N�1�m�wk;N�1�n ��wk;N�1�m�wj;N�1�n

D
N�1X

m0D0

N�1X

n0Dm0C1
�wj;n0�wk;m0 ��wk;n0�wj;m0

D �
N�1X

n0D0

n0�1X

m0D0
�wj;m0 �wk;n0 ��wk;m0 �wj;n0

D � ŒLjk�
T
0

The second line in the proof uses the substitutions m0DN �1�n, n0DN �1�m,
and the third line simply switches the order of summation. ut

5.1 Antithetic Subsampling

In Sect. 4 we showed that by setting the Lévy area to zero and using a suitable
antithetic treatment we obtained an MLMC variance with the same order as the
Milstein scheme for scalar SDEs. However, to obtain similarly good results for
payoffs which depend on the path minimum (or maximum) we are not able to
completely neglect the Lévy areas. Instead, for reasons which would require a
lengthy explanation and will be addressed in future work, we need to improve the
rate of strong convergence from 1=2 to 3=4 by approximating the Lévy areas by
sub-sampling the driving Brownian path. LetMf denote the number of subsamples
required to approximate the Lévy area on the fine timestep. The subsampling
timestep is given by ı` D 2�`T=Mf : Since we want to obtain

E

�
��ŒLjk�

tnC1=2

tn � ŒAjk�
tnC1=2

tn

�
��
2 D O..2�`/3=2/;
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W
Wf

Wc

Wa

Fig. 3 Brownian path w, its piecewise linear interpolations wc and wf , and the antithetic wa , for
a single coarse timestep. The circles denote the points at which the Brownian path is sampled.

we need to takeMf 	 2`=2 sub-samples in each fine timestep. By the same reason-
ing we take Mc 	 2.`�1/=2, with sub-sampling timestep ı`�1 D 2�.`�1/T=Mc .
For implementation we round the exponents, using Mf D 2d`=2e and Mc D
2d.`�1/=2e.

Figure 3 illustrates a case in which wc has McD4 sub-sampling intervals within
each coarse timestep, and wf has Mf D 8 sub-sampling intervals within each fine
timestep (this corresponds to level ` D 5). With sub-sampling, the piecewise linear
antithetic fine path wa is defined by a time-reversal of the Brownian increments
within each of the coarse sub-sampling intervals. In the case illustrated, the first
coarse sub-sampling interval contains 4 fine sub-sampling intervals, so these 4 incre-
ments �wf;1; �wf;2; �wf;3; �wf;4 are re-ordered as �wf;4; �wf;3; �wf;2; �wf;1 to
give the increments for wa.

First we represent the Lévy area approximation on the coarse time interval as a
sum of two approximations each with Mc=2 subsamples

ŒLcjk�
tnC1

tn D ŒLcjk�tnC1=2

tn C ŒLcjk�tnC1

tnC1=2
C
�
�w`1;nC1=2 �w`2;nC1 ��w`2;nC1=2 �w`1;nC1

	
:

(13)

We can represent the Lévy area approximation for the first fine timestep within a
coarse timestep as
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ŒL
f
jk �
tnC1=2

tn D ŒLcjk�tnC1=2

tn C
Mc=2�1X

sD0
ŒL

f
jk �
tnC.sC1/ı`�1
tnCsı`�1 ; (14)

where ŒLfjk �
tnC.sC1/ı`�1
tnCsı`�1 are Lévy area approximatiosn with 2Mf

Mc
subsamples. Notice

that Mc

2
ı`�1 D 2�`. In the same way, we represent the Lévy area approximation for

the antithetic path as

ŒLajk�
tnC1=2

tn D ŒLcjk�tnC1=2

tn C
Mc=2�1X

sD0
ŒLajk�

tnC.sC1/ı`�1
tnCsı`�1 : (15)

Due to Proposition 3, ŒLajk�
tnC.sC1/ı`�1
tnCsı`�1 D �ŒLfjk �tnC.sC1/ı`�1tnCsı`�1 . Hence

�
ŒL

f
jk �
tnC1=2

tn � ŒLcjk�tnC1=2

tn

	
D �

�
ŒLajk�

tnC1=2

tn � ŒLcjk�tnC1=2

tn

	
;

which is the key antithetic property required for higher order MLMC variance
convergence. We derive the analogous approximation for the second fine timestep
within a coarse timestep. Returning to the Clark-Cameron example, where we focus
only on the equation for x2, with Lévy area approximation using Mc and Mf

subsamples respectively, we obtain

Xc
2;nC1 D Xc

2;n CXc
1;n�w`�12;n C 1

2
�w`�11;n �w`�12;n C 1

2
ŒLcjk�

tnC1

tn (16)

X
f
2;nC1 D Xf

2;n CXf
1;n �w`�12;n C 1

2
�w`�11;n �w`�12;n C 1

2
ŒL

f
jk �
tnC1=2

tn C 1
2
ŒL

f
jk �
tnC1

tnC1=2

C 1
2

�
�w`1;n �w`2;nC1=2 ��w`2;n �w`1;nC1=2

	
; (17)

Xa
2;nC1 D Xa

2;n CXa
1;n �w`�12;n C 1

2
�w`�11;n �w`�12;n C 1

2
ŒLajk�

tnC1=2

tn C 1
2
ŒLajk�

tnC1

tnC1=2

C 1
2

�
�w`1;n �w`2;nC1=2 ��w`2;n �w`1;nC1=2

	
; (18)

where we use Lévy areas approximations (13) and (14). We present a lemma that
can be proved in a similar way to Lemma 3.1 in [5]:

Lemma 4. If Xf
n , Xa

n and Xc
n are as defined above, and N D 2`�1, then

X
f
1;n D Xa

1;n D Xc
1;n;

1
2

�
X
f
2;n CXa

2;n

	
D Xc

2;n; n D 1; 2; : : : ; N
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and

sup
0�n�N

E

hˇˇ
ˇXf

2;n �Xa
2;n

ˇ
ˇ
ˇ
pi D O.�t 34 p/

Our numerical experiments show that for lookback and barrier options the
MLMC variance

V


1
2

�
P.Xf /C P.Xa/

� � P.Xc/
�

has an O.�t3=2/ upper bound. Since we use subsampling to approximate the Lévy
areas, the computational cost corresponds to � D 3=2 in Theorem 1, and as a
consequence the complexity of the MLMC estimator is O.
�2.log 
/2/, whereas
the standard Monte Carlo simulation complexity is O.
�3/.

6 Lookback and Barrier Options

6.1 Lookback Options

Lookback options are based on the minimum (or maximum) of the simulated path.
As a specific example, we consider the payoff P D x2.T / �min0<t<T x2.t/; based
on the second component x2 of the Clark and Cameron model problem.

To improve the convergence we use QX`.t/ defined in (7). We have

min
0�t<T

QX`
2.t/ D min

0�n<2`�1
X`
2;n;min;

where the minimum of the fine approximation over the fine timestep Œt `�1n ; t`�1nC1=2�
is given by [6]

X`
2;n;min D 1

2

 

X`
2;n CX`

2;nC1=2 �
r�

X`
2;nC1=2�X`

2;n

	2 � 2 g2.X`
n/
2 �t` logUn

!

;

(19)

where Un is a uniform random variable on the unit interval. The minima for the
antithetic path are defined similarly, using the same uniform random numbers Un.

For the coarse path, we do something slightly different. Using the same Brownian
interpolation, we use Eq. (7) to define QX`�1

nC1=2  QX`�1..nC 1
2 /�t`�1/. Given this

interpolated value, the minimum value over the coarse interval can then be taken to
be the smaller of the minima for the two fine intervals
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X`�1
2;n;minD1

2

 

X`�1
2;n C QX`�1

2;nC1=2 �
r� QX`�1

2;nC1=2�X`�1
2;n

	2� 2 g2.X`�1
n /2 �t` logUn

!

;

X`�1
2;nC1=2;min

D1
2

 
QX`�1
2;nC1=2CX`�1

2;nC1�
r�
X`�1
2;nC1� QX`�1

2;nC1=2
	2� 2 g2.X`�1

n /2 �t` logUnC1=2

!

: (20)

Note that we use g2.X`�1
n / for both fine timesteps, because we have used the

Brownian Bridge with diffusion term g2.X
`�1
n / to derive both minima. If we

changed g2.X`�1
n / to g2. QX`�1

nC1=2/ in X`�1
2;nC1=2;min, this would mean that we used

different Brownian Bridge on the first and second half of the coarse timestep
and as a consequence we would violate (3). Note also the re-use of the same
uniform random numbers Un and UnC1=2 used to compute the fine path minima.
To perform numerical experiments we closely follow the algorithm prescribed in
[4]. The results in Fig. 4 are for the Clark and Cameron model problem with this
lookback payoff. The top left plot shows the behaviour of the variance of both
P` and P` � P`�1. The superimposed reference slope with rate 1.5 indicates that
the variance V` D VŒP` � P`�1� D O.�t1:5` /, corresponding to O.
�2.log 
/2/
computational complexity for the antithetic MLMC estimator. The top right plot
shows that EŒP` � P`�1� D O.�t`/. The bottom left plot shows computational
complexity C (as defined in Theorem 1) with desired accuracy 
. The plot is of

2 C versus 
, because we expect to see that 
2 C is only weakly dependent on

 for MLMC. For standard Monte Carlo without subsampling of the Lévy areas,
theory predicts that 
2 C should be proportional to the number of timesteps on
the finest level, which in turn is roughly proportional to 
�1 due to the weak
convergence order. For accuracy " D 10�4, the antithetic MLMC is over 100
times more efficient than standard Monte Carlo. The bottom right plot shows that
VŒX`

2 � X`�1
2 � D O.�t

3=2

` /. This corresponds to the standard strong convergence
of order 3/4.

6.2 Barrier Options

The barrier option which is considered is a down-and-out option for which the
payoff is a Lipschitz function of the value of the underlying at maturity, provided
the underlying has never dropped below a value B , i.e. P D f .x2.T // 1f�>T g;
where the crossing time � is defined as � D inf ft W x2.t/ < Bg :Using the Brownian

Bridge interpolation, we can approximate 1f�>T g by
Q2`�1�1=2
nD0 1fX`2;n;min�Bg; where

X`
2;n;min is defined in Eq. (19). This suggests following the lookback approximation
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Fig. 4 Clark/Cameron model with payoff x2.1/�min x2.t/.

in computing the minimum of both the fine and coarse paths. However, the variance
would be larger in this case because the payoff is a discontinuous function of
the minimum. A better treatment, which is the one used in [3], is to use the
conditional Monte Carlo approach to further smooth the payoff. Since the process
X`
n is Markovian, we have

E

2

4f .X`
2;N /

N�1=2Y

nD0

1
fX`n;min�Bg

3

5 D E

2

4f .X`
2;N / E

2

4
N�1=2Y

nD0

1
fX`2;n;min�Bg

j X`
0 ; : : : ; X

`
N

3

5

3

5

D E

2

4f .X`
2;N /

N�1=2Y

nD0

E


1

fX`2;n;min�Bg
j X`

n;X
`
nC1=2

�
3

5

D E

2

4f .X`
2;N /

N�1=2Y

nD0

.1 � p`n/
3

5 ;

where
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p`n D P

�
inf

tn<t<tnC1=2

QX`
2.t/ < B j X`

n;X
`
nC1=2

�
D exp

 �2 .X`
2;n�B/C.X`

2;nC1=2
�B/C

g2.X`
n/
2 �t`

!

The antithetic path is treated similarly. For the payoff for the coarse path we
subsample QX`�1

nC1=2, as we did for the lookback option, to obtain

E

2

4f .X`�1
2;N /

N�1=2Y

nD0
1fX`�12;n;min�Bg

3

5 D E

2

4f .X`�1
2;N /

N�1=2Y

nD0
.1 � p`�1n /

3

5 ;

where, for integer n,

p`�1n D exp

 �2 .X`�1
2;n �B/C. QX`�1

n2;C1=2�B/C
g2.X`�1

n /2 �t`

!

;

p`�1nC1=2 D exp

 �2 . QX`�1
2;nC1=2�B/C.X`�1

2;nC1�B/C
g2.X`�1

n /2 �t`

!

:

Note that the same g2.X`�1
n / is used to calculate both probabilities for the same

reason as for the lookback option.
The results in Fig. 5 are for barrier option with barrier B D 0:1. The top left plot

shows the behaviour of the variance of both P` and P` � P`�1. The superimpose
reference slope with rate 1.5 indicates that the variance V` D VŒP` � P`�1� D
O.�t1:5` /. This corresponds to an O.
2.log 
/2/ computational complexity for the
antithetic MLMC, due to the additional cost of the sub-sampling to approximate the
Lévy areas. The top right plot shows that EŒP` � P`�1� D O.�t`/. The bottom left
plot shows the variation of the computational complexityC with desired accuracy 
.
For standard Monte Carlo without subsampling of the Lévy areas, theory predicts
that 
2 C should be proportional to the number of timesteps on the finest level,
which in turn is roughly proportional to 
�1 due to the weak convergence order.
For accuracy " D 10�4, antithetic MLMC is almost 10 times more efficient than
standard Monte Carlo. The bottom right plot shows that VŒX`

2�X`�1
2 � D O.�t3=2` /.

This corresponds to standard strong convergence of order 3/4.

7 Conclusions

In this paper we extended results from [3] and [5] to lookback and barrier options
for multidimensional SDEs. By suitable modification of the antithetic MLMC
estimator, using sub-sampling of the driving Brownian path to approximate the Lévy
areas, we obtained O.
�2 log.
/2/ complexity for barrier and lookback options.
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Fig. 5 Clark/Cameron model with payoff min.x2.1/� 1; 0/ 1min x2.t/>0:1 .

Similar results have also been obtained for digital options which are a discontinuous
function of the final state, but they have been omitted here due to lack of space.
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On the Convergence of Quantum and Sequential
Monte Carlo Methods

François Giraud and Pierre Del Moral

Abstract Sequential and Quantum Monte Carlo methods, as well as genetic type
search algorithms can be interpreted as a mean field and interacting particle
approximations of Feynman-Kac models in distribution spaces. The performance
of these population Monte Carlo algorithms is related to the stability properties
of nonlinear Feynman-Kac semigroups. In this paper, we analyze these models
in terms of Dobrushin ergodic coefficients of the reference Markov transitions
and the oscillations of the potential functions. Sufficient conditions for uniform
concentration inequalities w.r.t. time are expressed explicitly in terms of these
two quantities. Special attention is devoted to the particular case of Boltzmann-
Gibbs measures’ sampling. In this context, we design an explicit way of tuning the
temperature schedule with the number of Markov Chain Monte Carlo iterations.

1 Introduction

Sequential and Quantum Monte Carlo methods (abbreviate SMC and QMC)
are stochastic algorithms to sample from complex high-dimensional probability
distributions. These stochastic simulation techniques are of current use in numerical
physics [1, 2, 21] to compute ground state energies. They are also used in statistics,
signal processing and information sciences [4, 10, 12, 14] to compute posterior
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distributions of partially observed signal or unknown parameters. In evolutionary
computing literature, these Monte Carlo methods are used as natural population
search algorithms for solving optimization problems. From the pure mathematical
viewpoint, these advanced Monte Carlo methods coincide with mean field particle
interpretations of Feynman-Kac (abbreviate FK) models. For a thorough discussion
on FK models we refer the reader to the monograph [11], and references therein. The
principle (see also [12] and the references therein) is to approximate a sequence of
target probability distributions .�n/n by a large cloud of random samples termed
particles or walkers. The algorithm starts with N independent samples from �0 and
then alternates two types of steps: an acceptance-rejection scheme equipped with a
recycling mechanism, and a sequence of free exploration of the state space.

In the recycling stage, the current cloud of particles is transformed by randomly
duplicating and eliminating particles in a suitable way, similarly to a selection step
in models of population genetics. In the Markov evolution step, particles move
independently of each other (mutation step).

This method is often used for solving sequential problems, such as filtering
(see e.g., [10]). In other interesting problems, these algorithms also turn out to
be efficient to sample from a single target measure �. In this context, the central
idea is to find a judicious interpolating sequence of measures .�k/0�k�n with
increasing sampling complexity, starting from some initial distribution �0, up to
the terminal one �n D �. Consecutive measures �k and �kC1 are sufficiently similar
to allow for efficient importance sampling and/or acceptance-rejection sampling.
The sequential aspect of the approach is then an “artificial way” to introduce the
difficulty of sampling gradually. Large population sizes allow to cover several
modes simultaneously. This is an advantage compared to standard MCMC methods.
These sequential samplers have been used with success in several application
domains, including rare events simulation (see [5]), stochastic optimization and
Boltzmann-Gibbs measures sampling [12].

Up to now, SMC and QMC algorithms have been mostly analyzed using
asymptotic (i.e. when number of particles N tends to infinity) techniques, notably
through central limit theorems and large deviation principles (see for instance
[4, 7, 9, 10, 13, 14, 16, 17, 23] and [11] for an overview). Our work relates to less
studied non-asymptotic problems, and follows those based on Markov kernels’
mixing properties (see for instance [6, 17] and [11]). We emphasize that other
independent approaches, such as Whiteley’s [27] or Schweizer’s [26], based on,
e.g., drift conditions, hyper-boundedness, or spectral gaps, lead to convergence
results that may also apply to non-compact state spaces. To our knowledge, these
techniques are restricted to non-asymptotic variance theorems and they cannot be
used to derive uniform and exponential concentration inequalities.

The present work consists in estimating explicitly the stability properties of
FK semigroup in terms of the Dobrushin ergodic coefficient of the reference
Markov chain and the oscillations of the potential functions. We combine these
techniques with non-asymptotic theorems on Lp error bounds [17] and some useful
concentration inequalities [18]. Another contribution is to provide parameter tuning
strategies that allow to deduce some useful uniform concentration inequalities
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w.r.t. the time parameter. These results also apply to non-homogeneous FK models
associated with cooling temperature parameters.

In a preliminary section, we recall a few essential notions related to Dobrushin
coefficients or FK semigroups, as well as a couple of important non-asymptotic
results we use in the further development of the article. The second part is concerned
with the semigroup stability analysis of these models. We also provide a couple
of uniform Lp-deviations and concentration estimates. We end the article with an
application of these results to Boltzmann-Gibbs models associated with a decreasing
temperature schedule. In this context, SMC and QMC algorithms can be interpreted
as a sequence of interacting simulated annealing (abbreviate ISA) algorithms.
The detailed proofs of the results presented in this article will be presented in a
forthcoming publication dedicated to adaptive particle algorithms (see [20] for a
preliminary version).

2 Preliminaries

2.1 Notations

Let .E; r/ be a complete, separable metric space and let E be the �-algebra of Borel
subsets of E . Denote by P.E/ the space of probability measures on E . Let B.E/
be the space of bounded, measurable, real-valued functions on E . Let B1.E/ �
B.E/ be the subset of all bounded by 1 functions.

If � 2 P.E/, f 2 B.E/ and K;K1;K2 are Markov kernels on E , then �.f /
denotes the quantity

R
E
f .x/�.dx/, K1:K2 denotes the Markov kernel defined by

K1:K2.x;A/ D
Z

E

K1.x; dy/K2.y;A/;

K:f denotes the function defined by

K:f .x/ D
Z

E

K.x; dy/f .y/

and �:K denotes the probability measure defined by

�:K.A/ D
Z

E

K.x;A/�.dx/:

For any f 2 B.E/, denote by osc.f / the quantity .fmax�fmin/. For any x 2 E ,
the Dirac measure centered on x is designated by ıx .
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2.2 The Feynman-Kac Measure-Valued Model

Consider a sequence of probability measures .�n/n, defined by an initial measure �0
and recursive relations:

8f 2 B.E/; �n.f / D �n�1 .Gn �Mn:f /

�n�1.Gn/

for positive functions Gn 2 B.E/ and Markov kernels Mn with Mn.x; �/ 2
P.E/ and Mn.�; A/ 2 B1.E/. This is the sequence of measures we wish to
approximate with the SMC algorithm. In an equivalent way, .�n/n can be defined by
the relation:

�n D �n.�n�1/
where �n W P.E/ ! P.E/ is the FK transformation associated with potential
functionGn and Markov kernelMn and defined by

�n.�n�1/ D  Gn.�n�1/:Mn

with

 Gn.�n�1/.dx/ WD 1

�n�1.Gn/
Gn.x/ �n�1.dx/

The next formula provides an interpretation of the Boltzmann-Gibbs transformation
in terms of a nonlinear Markov transport equation

�Gn.�n�1/.dy/ D ��n�1Sn;�n�1

�
.dy/ WD

Z
�n�1.dx/Sn;�n�1 .x; dy/

with the Markov transition Sn;�n defined below

Sn;�n�1 .x; dy/ D "n:Gn.x/ ıx.dy/C .1 � "n:Gn.x// �Gn.�n�1/.dy/;

(for any constant "n > 0 so that "n:Gn � 1). This implies

�n D �n�1Kn;�n�1 with Kn;�n�1 D Sn;�n�1Mn

Therefore, �n can be interpreted as the distributions of the random states Xn of a
Markov chain whose Markov transitions

P
�
XnC1 2 dy j Xn D x

� WD KnC1;�n.x; dy/

depend on the current distribution �n D Law
�
Xn

�
.

An important point (FK semigroup structure, see e.g., [17]) is that the semigroup
transformations
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�p;n WD �n ı �n�1 ı : : : ı �pC1
admit a comparable structure as each of the �k, i.e. for any integers p < n, there
exist a positive function Gp;n 2 B.E/ and a Markov kernel Pp;n so that:

8f 2 B.E/; 8� 2P.E/; �p;n.�/:f D �
�
Gp;n � Pp;n:f

�

�.Gp;n/
(1)

2.3 The Associated Interacting Particle System

In SMC and QMC algorithms, we approximate the measures �n by simulating an
interacting particle system .�n/n D

�
�1n; : : : ; �

N
n

�
n

of size N so that

�Nn D
1

N

X

1�i�N
ı�in !N"1 �n

Of course, the main issue is to make precise and to quantify this convergence.
We start with N independent samples �0 D .�10 ; : : : ; �

N
0 / from �0. The particle

dynamics alternates two genetic type transitions.
During the first step, every particle �in evolves to a new particle O�in randomly

chosen with the distribution

S�Nn .�
i
n; dx/ WD "nC1:GnC1.�in/ ı�in .dx/C �1 � "nC1:GnC1.�in/

�
�GnC1

.�Nn /.dx/

with the updated measures

�GnC1
.�Nn / D

NX

jD1

GnC1.�jn /
PN

kD1 GnC1.�kn /
ı
�
j
n

This transition can be interpreted as an acceptance-rejection scheme with a recycling
mechanism. In the second step, the selected particles O�in evolve randomly according
to the Markov transitions MnC1. In other words, for any 1 � i � N , we sample a

random state �inC1 with distributionMnC1
� O�in; dx

	
.

Denote respectively by P.�/ and E.�/ probabilities and expectations taken with
respect to the random variables .�in/n;i and . O�in/n;i .

2.4 Dobrushin Ergodic Coefficients

The Dobrushin coefficient ˇ.K/ 2 Œ0; 1� of a Markov kernelK on E , is defined by:

ˇ.K/ D supfK.x;A/�K.y;A/ j x; y 2 E; A 2 E g;
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or in an equivalent way:

ˇ.K/ D supfkK.x; �/�K.y; �/ktv j x; y 2 Eg

where k�� �ktv denotes the total variation distance between the measures � and �.
The parameter ˇ.K/ caracterizes mixing properties of the Markov kernel K .

Note that the function ˇ is an operator norm, in the sense that ˇ.K1:K2/ �
ˇ.K1/:ˇ.K2/, for any couple of Markov kernels K1, K2. Further details on these
ergodic coefficients can be found in the monograph [11].

Estimating these coefficients is generally a difficult task (related to the large field
of Markov chains’ stability), since their definition involves a supremum over every
pair .x; y/ 2 E2 and every set A 2 E . However, here is a first remark: if a Markov
kernel K satisfies the ergodic total variation convergenceKm.x; �/! � uniformly
w.r.t. x 2 E whenm tends to infinity, then ˇ.Km/ tends to zero.

In the particular case of a finite state space E , the Dobrushin ergodic coefficient
of a Markov kernelK on E is given by the formula

ˇ.K/ D 1

2
sup

(
X

l2E
jK.i; flg/�K.j; flg/j I i; j 2 E

)

;

which implies it is calculable as soon as the probability of the elementary transitions
K.i; flg/ are known. This formula can provide a approximation of ˇ.K/ in the case
of an infinite but simple (low dimensional) state space E , that one can discretize.

In practice, the property ˇ.K/ < 1 is easily met as soon as the state space E is
compact. Typically, any Markov kernel of the form

K.x; dy/ D h.x; y/m.dy/

where h is a positive, continuous function on E2 and m a reference measure on E ,
satisfies ˇ.K/ < 1. Otherwise, in some other particular situations, one can explicitly
estimate ˇ.K/. For instance, if E D R

d and

K.x; dy/ / e�˛jy�a.x/jdy

for some ˛ > 0 and some bounded function a W E ! E , then for all x; x0 2 E we
have

K.x; dy/

K.x0; dy/
D e˛.jy�a.x0/j�jy�a.x/j/ � e˛�osc.a/

) K.x; dy/ � e�˛�osc.a/K.x0; dy/. This clearly implies ˇ.K/ � .1 � e�˛�osc.a//.
The reader will also find in [17] an estimate of ˇ.K2/ in the following case

K.x; dy/ / e� 12 jy�a.x/j2dy;
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when the function a is constant outside some compact set F � E . Finally, the case
of the Metropolis-Hastings kernel will be recalled page 395.

2.5 Some Non-Asymptotic Results

To quantify the FK semigroup stability properties, it is convenient to introduce the
following parameters.

Definition 1. For any integers p < n, we set

bn WD ˇ.Mn/ and bp;n WD ˇ.Pp;n/:

gn WD sup
x;y2E

Gn.x/

Gn.y/
and gp;n WD sup

x;y2E
Gp;n.x/

Gp;n.y/
:

The quantities gp;n, and respectively bp;n, reflect the oscillations of the potential
functions Gp;n, and respectively the mixing properties of the Markov transition
Pp;n associated with the FK semigroup �p;n described in (1). Several contraction
inequalities of �p;n w.r.t. the total variation norm or different types of relative
entropies can be derived in terms of these two quantities (see for instance [11]).

The performance analysis developed in this article is partly based on the two
non-asymptotic inequalities presented below.

The following Lp error bound for all f 2 B1.E/ is proved in [17]:

E

�ˇ
ˇ�Nn .f /� �n.f /

ˇ
ˇp
	1=p � Bpp

N

nX

kD0
gk;nbk;n (2)

where Bp designates an universal constant.
In the further development of the article we also use the following exponential

concentration inequality derived in [18]. For all f 2 B1.E/ and any " > 0we have:

�1
N

logP
�
j�Nn .f /� �n.f /j �

rn

N
C "

	
� "2

2

"

b?nˇn C
p
2rnp
N
C "

�
2rn C b?n

3

�#�1

(3)

where rn, ˇn and b?n are constants so that:

8
ˆ̂
ˆ̂
ˆ̂
<

ˆ̂
ˆ̂
ˆ̂
:

rn �Pn
pD0 4g3p;nbp;n

ˇn
2 �Pn

pD0 4g2p;nb2p;n

b?n � sup
0�p�n

2gp;nbp;n
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3 General Feynman-Kac semigroup analysis

Equations (2) and (3) provide explicit non-asymptotic estimates in terms of the
quantities gp;n and bp;n. Written this way, they hardly apply to any SMC’ parameters
tuning decision, since the only known or calculable objects are generally the
reference Markov chain Mp and the elementary potential functions Gp . We thus
have to estimate gp;n and bp;n in terms of the gp and bp.

By construction (see Lemma 2:1 in [15]), Gp;n and Pp;n satisfy the following
backward relations:

8
ˆ̂
<

ˆ̂:

Gp�1;n D Gp �Mp:Gp;n

Pp�1;n:f D Mp:.Gp;n � Pp;n:f /
Mp:Gp;n

with the initial definitions Gn;n D 1 and Pn;n D Id . By combining these formulae
with Dobrushin ergodic coefficient estimation techniques, we obtain the following
lemma:

Lemma 1. For any integers p � n, we have:

gp;n � 1 �
nX

kDpC1
.gk � 1/

k�1Y

iDpC1
.bigi /

bp;n �
nY

kDpC1
bk:gk;n

(4)

To obtain uniform bounds w.r.t. time n (in the case of the Lp norm), we notice
that

nX

pD0

nY

kDpC1
bkgk�1;n < C1 H)

nX

pD0
gp;nbp;n < C1

This naturally leads to a sufficient condition of the following type:

bk � gk�1;n � a with 0 < a < 1

for any k < n, which ensures:

8f 2 B1.E/; E

�ˇ
ˇ�Nn .f /� �n.f /

ˇ
ˇp
	1=p � Bpp

N

1

1 � a (5)

More generally, this condition ensures uniform bounds for ˇn
2
; b?n and rn :
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ˇn
2 � 4

1 � a2 b?n � 2 rn � 4

1 � a � sup
p;n

g2p;n

bearing in mind that the gp;n are bounded in the cases of interest. We then fix
0 < a < 1 and the objective is to find conditions on the bp so that bkgk�1;n � a.
This parameter a is to be chosen according to the error we allow ourselves to
commit, and the number N of particles involved, with bounds explicited above.
In order to explicit relevant and applicable conditions, we study two typical cases
of assumptions on the potential functions Gp . The first one being that the gp are
bounded (Theorem 1), the second one being that the gp tend to 1 (Theorem 2).

Theorem 1. Under the assumption 8p 2 N; gp � M , where M is a constant,
condition

bp � a

M.1C a/ (6)

ensures the Lp error bound (5), as well as the following concentration inequality:

8y � 0; 8f 2 B1.E/; P

�
j�Nn .f / � �n.f /j �

r?1 N C r?2 y
N 2

�
� e�y

with

8
ˆ̂
<

ˆ̂
:

r?1 D 9
2

M2

.1�a/3 C
q

8p
1�a2 C

18M2

.1�a/2pN

r?2 D 18 M2

.1�a/2 C
q

8p
1�a2 C

18M2

.1�a/2pN

Let us now consider the case where gp tends decreasingly to 1. We define

˛ D a

1 � a > 0 so that a D ˛

1C ˛
Theorem 2. Under the assumption gp �!p!1 1 (decreasingly), if the sequence
bp satisfies for any p � 1;

bp �
g˛p � 1
g˛C1p � 1 �! a and bp � a

g˛C1p

�! a

then the Lp error bound (5) is satisfied, as well as the following concentration
inequalities :

8y � 0; 8f 2 B1.E/; P

�
j�Nn .f /� �n.f /j �

r?3 .n/:N C r?4 .n/:y
N 2

�
� e�y
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In the above displayed formulae r?3 .n/ and r?4 .n/ are defined below in terms of a
sequence un which tends to 1, as n tends to1:

8
ˆ̂
<

ˆ̂
:

r?3 .n/ D 9:un
2.1�a/ C

q
8p
1�a2 C

18:unp
N

r?4 .n/ D 18:un
1�a C

q
8p
1�a2 C

18:unp
N

Such conditions on the bp can appear to be difficult to reach since the Markov
kernels may be imposed by the application under study. However, we can deal
with this problem as soon as we can simulate a Markov kernel Kn such that
�n:Kn D �n. Indeed, the algorithm designer can add MCMC evolution steps next
to each Mn-mutation step, to stabilize the system. From the formal viewpoint, the
target sequence .�n/n is clearly also solution of the FK measure-valued equations
associated with the Markov kernelsM 0n D Mn:K

mn
n , where iteration numbersmn are

to be chosen loosely. This system is more stable since the corresponding b0p satisfy:

b0p � bp:ˇ.Kmp
p / � bp:ˇ.Kp/

mp :

In such cases, Theorems 1 and 2 provide sufficient conditions on iteration numbers
mp to ensure the convergence of the algorithm.

4 The Particular Case of Boltzmann-Gibbs Measures,
Interacting Simulated Annealing

Let V 2 B.E/. For all ˇ � 0, denote Boltzmann-Gibbs probability measure
associated with “temperature” ˇ and potential function V by:

�ˇ.dx/ D 1

Zˇ
e�ˇ:V .x/m.dx/;

where m is a reference measure, and Zˇ a normalizing constant. It is well known
that Boltzmann-Gibbs measures’ sampling is related to the problem of minimizing
the potential function V , since �ˇ tends to concentrate on V ’s minimizers as
temperature ˇ tends to infinity. One illustration is the following inequality, satisfied
for all 0 < "0 < ":

�ˇ .V � Vmin C "/ � e�ˇ."�"0/

m"0
(7)

wherem"0 D m.V � Vmin C "0/ > 0:
Besides, let fix a “temperature schedule”, being a strictly increasing sequence

ˇn so that ˇn �! C1. The sequence .�n/n WD .�ˇn/n admits a FK structure
associated with potential functions Gn D e�.ˇn�ˇn�1/:V and Markov kernels Mn
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chosen as being MCMC dynamics for the current target distributions. In this context,
the SMC algorithm, used as a strategy to minimize V , can be interpreted as a
sequence of interacting simulated annealing (abbreviate ISA) algorithms.

We propose in this section to turn the previously raised conditions on bp and
gp into conditions on the temperature schedule to use, and the number of MCMC
steps. We will then combine the concentration results of Sect. 3 with inequality (7)
to obtain results in terms of optimization performance.

Let us fix a “temperature schedule” .ˇn/ and denote:

• �n.dx/ D �ˇn.dx/ D 1
Zˇn
e�ˇnV.x/m.dx/;

• Gp.x/ D e��p:V.x/ ;
• And then gp D e�p:osc.V /.

where �p are the increments of temperature �p D ˇp � ˇp�1. At a fixed
temperature ˇ, let us consider the simulated annealing Markov kernel, designated
by Kˇ. It involves a proposition kernel K.x; dy/, assumed here as being fixed,
according to the following formulae (written here in the case whereK is symmetric,
see [3]):

Kˇ.x; dy/ D K.x; dy/:min
�
1; e�ˇ.V.y/�V.x//

� 8y ¤ x

Kˇ.x; fxg/ D 1�
R
y¤x K.x; dy/:min

�
1; e�ˇ.V.y/�V.x//

�

Under the assumption Kk0.x; �/ � ı�.�/ for some integer k0, some measure �
and some ı > 0, one can show (see [3]) that:

ˇ.K
k0
ˇ / �

�
1 � ıe�ˇ�V .k0/

	
(8)

where�V .k0/ is the maximum potential gap one can obtain making k0 movements
with K . This quantity is bounded by osc.V /. To let the bp’s tuning be possible,

it is out of the question to choose Mp D Kˇp ; but Mp D K
k0:mp
ˇp

, the simulated
annealing kernel iterated k0:mp times, to obtain suitable mixing properties. The
algorithm’s user then has a choice to make on two parameters: the temperature
schedule ˇp , and the kernelsKk0

ˇp
iteration numbersmp. Note that for all b 2 .0; 1/,

condition bp � b is turned into
�
1 � ıe�ˇp�V .k0/

	mp � b; which can also be

written:

mp �
log. 1

b
/e�V .k0/:ˇp

ı

Then, combining the concentration inequality (7), the theorems of Sect. 3 (taken
with indicator function f D 1fV�VminC"g), and the Dobrushin ergodic coefficient
estimation (8) we obtain the following theorem:
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Theorem 3. Let us fix a 2 .0; 1/. If the temperature schedule .ˇp/ and the iteration
numbersmp satisfy one of these two conditions:

1. �p bounded by � (e.g. linear temperature schedule) and

mp �
log.

e�:osc.V /.1Ca/
a

/e�V .k0/:ˇp

ı

2. �p �! 0 (decreasingly) and mp �
�

osc.V /:�p C log. 1
a
/

�
e�V .k0/:ˇp

ı

then for all " > 0, and all "0 < ", the proportion pNn ."/ of particles .�in/ so that
V.�in/ � Vmin C " satisfies the inequality:

8y � 0; P

 

pNn ."/ �
e�ˇn."�"0/

m"0
C r?i N C r?j y

N 2

!

� e�y

where .i; j / D .1; 2/ in the case of bounded �p (taken with M D e�:osc.V /) and
.i; j / D .3; 4/ in the second one.

We then clearly distinguish two error terms: the first one,

 
e�ˇn."�"0/

m"0

!

, esti-

mating the Boltzmann-Gibbs measure’s concentration around V ’s minimizers, and

the second one,

�
r?i N C r?j y

N 2

�
, estimating the occupation measure’s concentration

around this Boltzmann-Gibbs theoretical measure. More than providing tunings
which ensure convergence, this last concentraion inequality explicits the relative
impact of other parameters, such as probabilistic precision y, threshold t on the
proportion of particles possibly out of the area of interest, final temperature ˇn
or population size N . A simple equation, deduced from this last theorem, such

as

 
e�ˇn."�"0/

m"0
D r?i N C r?j y

N 2
D t

2

!

may be applied to the global tuning of an

Interacting Simulated Annealing algorithm, which is generally a difficult task.

5 Conclusion

It is instructive to compare the estimates of Theorem 3 with the performance
analysis of the traditional simulated annealing model (abbreviate SA). Firstly, most
of the literature on SA models is concerned with the weak convergence of the law
of the random states of the algorithm. When the initial temperature of the scheme
is greater than some critical value, using a logarithmic cooling schedule, it is well
known that the probability for the random state to be in the global extrema levels
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tends to 1, as the time parameter tends to 1. The cooling schedule presented in
Theorem 3 is again a logarithmic one. In contrast to the SA model, Theorem 3
allows to quantify the performance analysis of the ISA model in terms of uniform
concentration inequalities, that does not depend on a critical parameter.

Like most rigorous and non-asymptotic tuning theorems, our results may not be
applied directly. They highlight important principles (as uniform accessibility of
all the state space after a given number of mutations) and the type of dependence
in some parameters. Otherwise, to our knowledge, our work presently provides the
most explicit non-asymptotic ISA convergence results, at least in the case jEj D 1.

Nevertheless, the models we studied involve a deterministic sequence ˇn, while
choosing the sequence of increments �n D .ˇn � ˇn�1/ in advance can cause
computational problems. In practice, adaptive strategies, where increment �n

depends on the current set of particles �n�1, are of common use in the engineering
community (see for instance [8, 19, 22, 24, 25]). In a forthcoming paper (see [20]
for a preliminary version), we try to adapt the present work to analyze one of these
adaptive tuning strategies.
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Lower Error Bounds for Randomized Multilevel
and Changing Dimension Algorithms

Michael Gnewuch

Abstract We provide lower error bounds for randomized algorithms that approx-
imate integrals of functions depending on an unrestricted or even infinite number
of variables. More precisely, we consider the infinite-dimensional integration
problem on weighted Hilbert spaces with an underlying anchored decomposition
and arbitrary weights. We focus on randomized algorithms and the randomized
worst case error. We study two cost models for function evaluation which depend on
the number of active variables of the chosen sample points. Multilevel algorithms
behave very well with respect to the first cost model, while changing dimension
algorithms and also dimension-wise quadrature methods, which are based on a
similar idea, can take advantage of the more generous second cost model. We
prove the first non-trivial lower error bounds for randomized algorithms in these
cost models and demonstrate their quality in the case of product weights. In
particular, we show that the randomized changing dimension algorithms provided
in Plaskota and Wasilkowski (J Complex 27:505–518, 2011) achieve convergence
rates arbitrarily close to the optimal convergence rate.

1 Introduction

Integrals over functions with an unbounded or infinite number of variables are
important in physics, quantum chemistry or in quantitative finance, see, e.g., [8, 25]
and the references therein. In the last few years a large amount of research was
dedicated to design new algorithms as, e.g., multilevel and changing dimension
algorithms or dimension-wise quadrature methods, to approximate such integrals
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efficiently. Multilevel algorithms were introduced by Heinrich in [12] in the context
of integral equations and by Giles in [8] in the context of stochastic differential
equations. Changing dimension algorithms were introduced by Kuo et al. in [16]
in the context of infinite-dimensional integration on weighted Hilbert spaces and
dimension-wise quadrature methods were introduced by Griebel and Holtz in [11]
for multivariate integration; changing dimension and dimension-wise quadrature
algorithms are based on a similar idea.

Here we want to study the complexity of numerical integration on a weighted
Hilbert space of functions with infinitely many variables as it has been done in
[2, 4, 6, 9, 13, 14, 16, 18, 21]. The Hilbert space we consider here allows for a so-
called anchored function space decomposition. For a motivation of this specific
function space setting and connections to problems in stochastics and mathematical
finance see, e.g., [13, 18]. We derive lower error bounds for randomized algorithms
to solve the infinite-dimensional integration problem. Notice that the complexity
of integration problems is not as well understood in the randomized setting as in
the deterministic setting (where only deterministic algorithms are permitted and the
deterministic worst case error is considered), see, e.g., the comments in [20, p. 487].

Our error bounds are for the randomized worst case error and are expressed
in terms of the cost of a randomized algorithm. Here we solely take account of
function evaluations, i.e., the cost of function sampling, and disregard other cost
as, e.g., combinatorial cost. Notice that this makes the statements of our lower
bounds only stronger. To evaluate the cost of sampling, we consider two sampling
models: the nested subspace sampling model (introduced in [5], where it was called
variable subspace sampling model) and the unrestricted subspace sampling model
(introduced in [16]). Our lower error bounds are the first non-trivial lower bounds
in these settings, cf. also the comments in the introductions of [13, 21]. Due to
space restrictions, we do not provide new constructive upper error bounds. For the
same reason we refer for a formal definition of multilevel algorithms and changing
dimension algorithms for the infinite-dimensional integration problem on weighted
Hilbert spaces to [9,13,18] and [16,21], respectively. In this article we only compare
our lower bounds to already known upper bounds. In particular, we show that the
randomized changing dimension algorithms provided for product weights in [21]
achieve convergence rates arbitrarily close to the optimal rate of convergence.

Let us mention that similar general lower error bounds for infinite-dimensional
integration on weighted Hilbert spaces are provided in [6] in the determistic setting
for the anchored decomposition and in [4] in the randomized setting for underlying
ANOVA-type decompositions (to treat the latter decompositions, a technically more
involved analysis is necessary).

The article is organized as follows: In Sect. 2 the setting we want to study is
introduced. In Sect. 3 we prove new lower bounds for the complexity of randomized
algorithms for solving the infinite-dimensional integration problem on weighted
Hilbert spaces. In Sect. 3.1 we provide the most general form of our lower bounds
which is valid for arbitrary weights. In Sect. 3.2 we state the simplified form of our
lower bounds for specific classes of weights. In particular, we show in Sect. 3.2.1
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that the randomized changing dimension algorithms from [21] are essentially
optimal.

2 The General Setting

In this section we describe the precise setting we want to study. A comparison with
the (slightly different) settings described in the papers [9,16,21] is provided in paper
[10]; we refer to the same paper and to [13,14] for rigorous proofs of the statements
on the function spaces we consider here.

2.1 Notation

For n 2 N we denote the set f1; : : : ; ng by Œn�. If u is a finite set, then its size is
denoted by juj. We put U WD fu � N j juj < 1g. We use the common Landau
symbol O , and additionally for non-negative functions f; g W Œ0;1/ ! Œ0;1/ the
notation f D ˝.g/ if g D O.f /.

2.2 The Function Spaces

As spaces of integrands of infinitely many variables, we consider reproducing kernel
Hilbert spaces; our standard reference for these spaces is [1].

We start with univariate functions. Let D � R be a Borel measurable set of R
and let k W D�D ! R be a measurable reproducing kernel with anchor a 2 D, i.e.,
k.a; a/ D 0. This implies k.�; a/  0. We assume that k is non-trivial, i.e., k ¤ 0.
We denote the reproducing kernel Hilbert space with kernel k byH D H.k/ and its
scalar product and norm by h�; �iH and k � kH , respectively. Additionally, we denote
its norm unit ball by B.k/. We use corresponding notation for other reproducing
kernel Hilbert spaces. If g is a constant function inH , then the reproducing property
implies g D g.a/ D hg; k.�; a/iH D 0. Let 	 be a probability measure on D. We
assume that

M WD
Z

D

k.x; x/ 	.dx/ <1: (1)

For arbitrary x; y 2 DN and u 2 U we define

ku.x; y/ WD
Y

j2u

k.xj ; yj /;
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where by convention k;  1. The Hilbert space with reproducing kernel ku will
be denoted by Hu D H.ku/. Its functions depend only on the coordinates j 2 u.
If it is convenient for us, we identify Hu with the space of functions defined on
Du determined by the kernel

Q
j2u k.xj ; yj /, and write fu.xu/ instead of fu.x/ for

fu 2 Hu, x 2 DN, and xu WD .xj /j2u 2 Du. For all fu 2 Hu and x 2 DN we have

fu.x/ D 0 if xj D a for some j 2 u. (2)

This property yields an anchored decomposition of functions, see, e.g., [17].
Let now � D .�u/u2U be weights, i.e., a family of non-negative numbers. We

assume

X

u2U
�uM

juj <1: (3)

Let us define the domain X of functions of infinitely many variables by

X WD
(

x 2 DN

ˇ
ˇ
ˇ
ˇ̌
X

u2U
�uku.x; x/ <1

)

:

Let � be the infinite product probability measure of 	 on DN. Due to our
assumptions we have �.X / D 1, see [13, Lemma 1] or [10]. We define

K�.x; y/ WD
X

u2U
�uku.x; y/ for all x; y 2 X .

K� is well-defined and, since K� is symmetric and positive semi-definite, it is a
reproducing kernel on X �X , see [1]. We denote the corresponding reproducing
kernel Hilbert space by H� D H.K�/, its norm by k � k� , and its norm unit ball by
B� D B.K� /. For the next lemma see [14, Corollary 5] or [10].

Lemma 1. The space H� consists of all functions f D P
u2U fu, fu 2 Hu, that

have a finite norm

kf k� D
 
X

u2U
��1u kfuk2Hu

!1=2
:

For u 2 U let Pu denote the orthogonal projection Pu W H� ! Hu, f 7! fu

ontoHu. Then each f 2H‚ has a unique representation

f D
X

u2U
fu with fu D Pu.f / 2 Hu, u 2 U .
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2.3 Infinite-Dimensional Integration

For a given f 2H� we want to approximate the integral

I.f / WD
Z

X
f .x/ �.dx/:

Due to (3), I is continuous on H� and its representer h 2H� is given by

h.x/ D
Z

X
K�.x; y/�.dy/:

The operator norm of the integration functional I is given by

kIk2H�
D khk2� D

X

u2U
�uC

juj
0 <1; (4)

where

C0 WD
Z

D

Z

D

k.x; y/ 	.dx/ 	.dy/:

We have C0 � M . We assume that I is non-trivial, i.e., that C0 > 0 and �u > 0 for
at least one u 2 U . For u 2 U and f 2H� we define Iu WD I ı Pu, i.e.,

Iu.f / D
Z

Du
fu.xu/ 	

u.dxu/;

and the representer hu of Iu in H� is given by hu.x/ D Pu.h/.x/. Thus we have

h D
X

u2U
hu and I.f / D

X

u2U
Iu.fu/ for all f 2H� .

Furthermore,

khuk2� D �uC
juj
0 for all u 2 U . (5)

2.4 Randomized Algorithms, Cost Models, and Errors

As in [13], we assume that algorithms for approximation of I.f / have access to the
function f via a subroutine (“oracle”) that provides values f .x/ for points x 2 DN.
For convenience we define f .x/ D 0 for x 2 DN nX .

We now present the cost models introduced in [5] and [16]: In both models
we only consider the cost of function evaluations. To define the cost of a function
evaluation, we fix a monotone increasing function $ W N0 ! Œ1;1�. For our lower
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error bounds we will later assume that $.�/ D ˝.�s/ for some s � 0. For each
v 2 U we define the finite-dimensional affine subspace Xv;a of X by

Xv;a WD fx 2 DN j xj D a for all j 2 N n vg:

In the nested subspace sampling model function evaluations can be done in a
sequence of affine subspaces Xv1;a �Xv2;a � � � � for a strictly increasing sequence
v D .vi /i2N of sets ; ¤ vi 2 U , and the cost for a function evaluation in some
point x is given by the cost function

cv;a.x/ WD inff$.jvi j/ j x 2Xvi ;ag; (6)

where we use the standard convention that inf; D 1. Let Cnest denote the set of all
cost functions of the form (6). The nested subspace sampling model was introduced
in [5], where it was actually called “variable subspace sampling model”. We prefer
the name “nested subspace sampling model” to clearly distinguish this model from
the following cost model, which is even more “variable”:

In the unrestricted subspace sampling model we are allowed to sample in any
subspace Xu;a , u 2 U , without any restriction. The cost for each function evaluation
is given by the cost function

ca.x/ WD inff$.juj/ j x 2 Xu;a; u 2 U g: (7)

Put Cunr WD fcag. The unrestricted subspace sampling model was introduced in
[16], where it did not get a particular name. Obviously, the unrestricted subspace
sampling model is more generous than the nested subspace sampling model.

We consider randomized algorithms for integration of functions f 2 H� . For
a formal definition we refer to [5, 19, 23, 24]. Here we require that a randomized
algorithm Q yields for each f 2 H� a square-integrable random variable Q.f /.
(More precisely, a randomized algorithmQ is a mapQ W ˝ �H� ! R, .!; f / 7!
Q.!; f /, where ˝ is some suitable probability space. But for convenience we will
not specify the underlying probability space ˝ and suppress any reference to ˝ or
! 2 ˝ . We use this convention also for other random variables.) Furthermore, we
require that the cost of a randomized algorithm Q, which is defined to be the sum
of the cost of all function evaluations, is a random variable, which may depend on
the function f . That is why we denote this random variable by costc.Q; f /, c the
relevant cost function from Cnest or Cunr.

We denote the class of all randomized algorithms for numerical integration on
H� that satisfy the very mild requirements stated above by A ran. For unrestricted
subspace sampling we additionally consider a subclass A res of A ran. We say that an
algorithmQ 2 A ran is in A res if there exist an n 2 N0 and sets v1; : : : ; vn 2 U such
that for every f 2 H� the algorithm Q performs exactly n function evaluations
of f , where the i th sample point is taken from Xvi ;a, and E.costca .Q; f // DPn

iD1 $.jvi j/. If additionally jv1j; : : : ; jvnj � ! for some ! 2 N, we say that
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Q 2 A res�! . Notice that the classes A ran, A res, and A res�! contain in particular
non-linear and adaptive algorithms.

The worst case cost of a randomized algorithmQ on a class of integrands F is

costnest.Q;F / WD inf
c2Cnest

sup
f 2F

E.costc.Q; f //

in the nested subspace sampling model and

costunr.Q;F / WD sup
f 2F

E.costca .Q; f //

in the unrestricted subspace sampling model. The randomized (worst case) error
e.Q;F / of approximating the integration functional I by Q on F is defined as

e.Q;F / WD
�

sup
f 2F

E

�
.I.f / �Q.f //2

	�1=2
:

For N 2 R, mod 2 fnest; unrg, and � 2 fran; res; res � !g let us define the
correspondingN th minimal error by

e�mod.N; F / WD inffe.Q;F / jQ 2 A � and costmod.Q;F / � N g:

2.5 Strong Polynomial Tractability

Let ! 2 N, mod 2 fnest; unrg, and � 2 fran; res; res � !g. The "-complexity of
the infinite-dimensional integration problem I on H� in the considered cost model
with respect to the class of admissable randomized algorithms A � is the minimal
cost among all admissable algorithms, whose randomized errors are at most ", i.e.,

comp�mod."; B�/ WD inf
˚
costmod.Q;B�/ jQ 2 A � and e.Q;B�/ � "

�
: (8)

The integration problem I is said to be strongly polynomially tractable if there are
non-negative constants C and p such that

comp�mod."; B� / � C "�p for all " > 0: (9)

The exponent of strong polynomial tractability is given by

p�mod D p�mod.�/ WD inffp jp satisfies (9) for some C > 0g:

Essentially, 1=p�mod is the convergence rate of the N th minimal error e�mod.N;B�/.
In particular, we have for all p > p�mod that e�mod.N;B�/ D O.N�1=p/.
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3 Lower Bounds

We start in Sect. 3.1 by proving lower bounds for general weights. In Sect. 3.2 we
show how these bounds simplify for several specific classes of weights.

3.1 Results for General Weights

Let � D .�u/u2U be a given family of weights that satisfy (3). We denote by O� the
family of weights defined by

O�u WD �uC
juj
0 for all u 2 U . (10)

Recall that (3) implies
P

u2U O�u <1. Weights � are called finite-order weights of
order ! if there exists an ! 2 N such that �u D 0 for all u 2 U with juj > !. Finite-
order weights were introduced in [7] for spaces of functions with a finite number of
variables. The following definition is taken from [9].

Definition 1. For weights � and � 2 N let us define the cut-off weights of order �

� .�/ D .�.�/u /u2U via �.�/u D
(
�u if juj � �;
0 otherwise.

(11)

Cut-off weights of order � are in particular finite-order weights of order � . Let
us denote by u1.�/; u2.�/; : : :, the distinct non-empty sets u 2 U with �.�/u > 0

for which O�.�/u1.�/
� O�.�/u2.�/

� � � � . Let us put u0.�/ WD ;. We can make the same

definitions for � D 1; then we have obviously �.1/ D � . For convenience we will
often suppress any reference to � in the case where � D 1. For � 2 N [ f1g let
us define

decay�;� WD sup

�
p 2 R

ˇ
ˇ
ˇ lim
j!1 O�

.�/

uj .�/
j p D 0

�
:

Due to assumption (3) the weights we consider always satisfy decay� ;� � 1 for all
� 2 N [ f1g. The following definition is from [9].

Definition 2. For � 2 N [ f1g let t�� 2 Œ0;1� be defined as

t�� WD inf
˚
t � 0 j 9Ct > 0 8 v 2 U W jfi 2 N j ui .�/ � vgj � Ct jvjt

�
:

Let � 2 N. Since jui .�/j � � for all i 2 N, we have obviously t�� � � . On the
other hand, if we have an infinite sequence .uj .�//j2N, it is not hard to verify that
t�� � 1, see [9].

For v1; : : : ; vn 2 U we use the short hand fvi g for .vi /niD1. Put v WD [niD1vi and
define the mapping
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�fvi g;a WD
X

j I 9i2Œn�Wujvi
Puj : (12)

The operator �fvi g;a is the orthogonal projection of H� onto the subspace

Hfvi g;a WD
X

j I 9i2Œn�Wujvi
Huj :

Put

bfvi g;a WD sup
f 2B�

jI.f / � I.�fvi g;af /j:

In the case where n D 1 and v D v1, we simply write �v;a and bv;a. In that case we
have, due to (2),

.�v;a.f //.x/ D f .xvI a/ for all f 2H� and x 2X , (13)

where the j th component of .xvI a/ is defined by

.xvI a/j WD
(
xj if j 2 v;
a otherwise.

Lemma 2. Let v1; : : : ; vn 2 U . Then

b2fvi g;a D
X

j I8i2Œn�Wujªvi

O�uj :

Proof. Let hfvi g;a denote the representer of the continuous functional I ı �fvi g;a.
Due to (12) we get

hfvi g;a D
X

j I 9i2Œn�Wujvi
huj :

Since h � hfvi g;a is the representer of I � I ı �fvi g;a in H� , we obtain with (5)

b2
fvig;a

D kh�hfvi g;ak2� D
���
���

X

j I 8i2Œn�Wuj ªvi

huj

���
���

2

�

D X

j I 8i2Œn�Wuj ªvi

�
�huj

�
�2

�
D X

j I 8i2Œn�Wuj ªvi

O�uj :

This completes the proof. ut
Lemma 3. Let � 2 .1=2; 1� and v1; : : : ; vn 2 U . Let the randomized algorithm
Q 2 A ran satisfy P.Q.f / D Q.�fvi g;af // � � for all f 2 B� . Then

e.Q;B�/
2 � .2� � 1/b2fvi g;a:
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Proof. Since �fvi g;a is an orthogonal projection, we have for all f 2 B� that g WD
f ��fvi g;af 2 B� . Furthermore,�fvi g;a.g/ D �fvi g;a.�g/ D 0. LetA WD fQ.g/ D
Q.�g/g. Then fQ.g/ D Q.�fvi g;ag/g \ fQ.�g/ D Q.�fvi g;a.�g//g � A, and
hence P.A/ � 2� � 1. Therefore

e.Q;B�/
2 �max

n
E

�
.I.g/ �Q.g//2

	
;E
�
.I.�g/�Q.�g//2

	o

�max

�Z

A

.I.g/ �Q.g//2 dP;
Z

A

.I.�g/�Q.�g//2 dP

�

�.2� � 1/jI.g/j2 D .2� � 1/jI.f /� I.�fvi g;af /j2:

Hence e.Q;B�/
2 � .2� �1/ supf 2B�

jI.f /� I.�fvig;af /j2 D .2� �1/b2fvig;a. ut
Further Assumptions. We assume for the rest of this article that $.�/ D ˝.�s/

for some s 2 .0;1/. Furthermore, we assume that �f1g > 0 and that there exists
an ˛ > 0 such that for univariate integration in H.�f1gk/ the N th minimal error
satisfies

eran.N;B.�f1gk// D ˝.N�˛=2/: (14)

(Note that in the univariate situation the nested and the unrestricted subspace
sampling models are equal; that is why we suppress the reference to unr or nest.)
Since B.�f1gk/ � B� , assumption (14) implies in particular

eran
nest.N;B�/ D ˝.N�˛=2/ and eres�!

unr .N;B�/ � eres
unr.N;B�/ D ˝.N�˛=2/:

(15)

Theorem 1. Consider the nested subspace sampling model. To achieve strong
polynomial tractability for the class A ran it is necessary that the weights satisfy

decay� ;� > 1 for all � 2 N. (16)

If (16) holds, we have

pran
nest � max

(
2

˛
; sup
�2N

2s=t��
decay� ;� � 1

)

:

As we will see in Sect. 3.2, for product weights and finite-order weights
condition (16) is equivalent to decay� D decay� ;1 > 1.

Proof. Let Q 2 A ran with costnest.Q;B�/ � N . Then there exists an increasing
sequence v D .vi /i2N, ; ¤ vi 2 U , such that E.costcv;a .Q; f // � N C 1 for every
f 2 B� . Let m be the largest integer satisfying $.jvmj/ � 4.N C 1/. This implies
for all f 2 B� that P.Q.f / D Q.�vm;af // � 3=4, see (13). Due to Lemmas 2
and 3 we get



Lower Error Bounds for Randomized Multilevel and Changing Dimension Algorithms 409

e.Q;B�/
2 � 1

2

X

j I ujªvm

O�uj :

Let us now assume that � are weights of finite order !. Then we get for t > t�! and
a suitable constant Ct > 0

�m WD jfj j uj � vmgj � Ct jvmjt D O.N t=s/;

since N D ˝.jvmjs/. Hence we get for p! > decay� ;! D decay� � 1

e.Q;B�/
2 � 1

2

1X

jD�mC1
O�uj D ˝.�1�p!m / D ˝

�
N

t
s .1�p!/

	
:

For general weights � , � 2 N, and cut-off weights �.�/ we have e.Q;B�/ �
e.Q;B�.�/ /, see also [9, Remark 3.3]. Since the cut-off weights � .�/ are weights
of finite order � , we get for all p� > decay�;� and t� > t��

e.Q;B�/
2 D ˝

�
N

t�
s .1�p� /

	
: (17)

Since (15) holds, the inequality for the exponent of tractability follows.
Now assume that the infinite-dimensional integration problem I is strongly

polynomially tractable. Let � 2 N. Then we get from inequality (17) that p� �
1C 2s=.t� pran

nest/. Hence

decay� ;� � 1C
2s=t��
pran

nest
:

Thus we have decay� ;� > 1 for all � 2 N. ut
Theorem 2. Consider the unrestricted subspace sampling model. To achieve strong
polynomial tractability for the class A res it is necessary that the weights satisfy

decay� ;� > 1 for all � 2 N.

If this is the case, we have

pres
unr � max

(
2

˛
; sup
�2N

2minf1; s=t�� g
decay�;� � 1

)

:

Proof. Let Q 2 A res have costunr.Q;B�/ � N . Then there exists an n 2 N

and coordinate sets v1; : : : ; vn such that Q selects randomly n sample points
x1 2 Xv1;a; : : : ; xn 2 Xvn;a and

Pn
iD1 $.jvi j/ � N . Since Q.f / D Q.�fvi g;af /

for all f 2 B� , we obtain from Lemmas 2 and 3
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e.Q;B�/
2 �

X

j I8i2Œn�Wujªvi

O�uj :

Let us first assume that � are weights of finite order !. Then we get with Jensen’s
inequality for t > t�! and suitable constants Ct ; c > 0

jfj j 9i 2 Œn� W uj � vi gj �
nX

iD1
jfj j uj � vi gj �

nX

iD1
Ct jvi jt

� Ct
 

nX

iD1
jvi js

!1=minf1;s=tg
� Ct.cN /1=minf1;s=tg:

Hence we obtain for S WD dCt.cN /1=minf1;s=tge and all p! > decay� ;!

e.Q;B�/
2 �

1X

jDSC1
O�uj D ˝.S1�p! / D ˝

�
N

1�p!
minf1;s=tg

	
:

If we have general weights � , then we obtain for � 2 N and the cut-off weights
�.�/ that e.Q;B.K�// � e.Q;B.K�.�/ //. From this and (15) the inequality for
the exponent of tractability follows. Similarly as in the proof of Theorem 1, the
necessity of condition (16) is easily established. ut
Theorem 3. Let ! 2 N be fixed. We have for the exponent of tractability pres�!

unr in
the unrestricted subspace sampling setting

pres�!
unr � max

(
2

˛
; sup
�2N

2

decay� ;� � 1

)

:

Proof. We follow the lines of the proof of Theorem 2, and use the same notation.
The difference is that this time Q selects randomly n sample points x1 2
Xv1;a; : : : ; xn 2 Xvn;a, where jvi j � ! for all i 2 Œn�, and that we therefore can
make the estimate jfj j 9i 2 Œn� W uj � vi gj � 2!n D O.N/, since $.jvi j/ � 1 for
all i 2 Œn� by definition of the function $. Hence we get this time for p > decay�

e.Q;B�/
2 �

1X

jD2!nC1
O�uj D ˝.N1�p/:

This completes the proof. ut
A comparison of Theorems 2 and 3 indicates that there are cost functions and

classes of finite-order weights for which changing dimension algorithms cannot
achieve convergence rates that are arbitrarily close to the optimal rate. Let us
recall that for weights of finite order !, changing dimension algorithms as defined
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in [16, Proof of Theorem 5] would only use sample points from sample spaces
Xu;a with juj � !; see also the comment at the beginning of Sect. 4 in [16].
Examples of such cost functions and finite-order weights would be $.k/ D ˝.ks/

and lexicographically-ordered weights of order ! > s, see Sect. 3.2.3. (A similar
observation was made for the deterministic setting, see [9, Theorem 3.2 and
Sect. 3.2.3 ].)

3.2 Results for Specific Classes of Weights

Here we consider some example classes of weights and show how our bounds from
Sect. 3.1 simplify in those settings.

3.2.1 Product Weights and Finite-Product Weights

Definition 3. Let .�j /j2N be a sequence of non-negative real numbers satisfying
�1 � �2 � : : : : With the help of this sequence we define for ! 2 N [ f1g weights
� D .�u/u2U by

�u D
(Q

j2u �j if juj � !;
0 otherwise,

(18)

where we use the convention that the empty product is 1. In the case where ! D1,
we call such weights product weights, in the case where ! is finite, we call them
finite-product weights of order !.

Product weights were introduced in [22] and have been studied extensively since
then. Finite-product weights were considered in [9]. Observe that for � 2 N the
cut-off weights � .�/ of product weights � are finite-product weights of order � .

Let us assume that � are product or finite-product weights. As shown in [9,
Lemma 3.8], we have

decay�;1 D decay� ;� for all � 2 N [ f1g. (19)

(Actually, [9, Lemma 3.8] states identity (19) only for all � 2 N. But the proof
provided in [9] is also valid for the case � D 1.) In particular, we see that for
strong polynomial tractability with respect to the nested subspace sampling model
and the class A ran or with respect to the unrestricted subspace sampling model and
the class A res it is necessary that decay� D decay� ;1 > 1. Since t�1 D 1, we obtain
from Theorems 1 to 3

pran
nest � max

(
2

˛
;

2s

decay� ;1 � 1

)

; (20)
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and

pres
unr � max

(
2

˛
;
2minf1; sg

decay� ;1 � 1

)

; pres�!
unr � max

(
2

˛
;

2

decay� ;1 � 1

)

: (21)

Note that the bounds for finite-product weights are the same as for product weights.

Remark 1. For product and order-dependent (POD) weights .�u/u2U , which were
recently introduced in [15] and are of the form

�u D �juj
Y

j2u

�j ; where �1 � �2 � � � � � 0, and �0 D �1 D 1, �2; �3; : : : � 0,

identity (19) still holds; for a proof see [6]. Thus (20) and (21) are also valid for
POD weights. Product and finite-product weights are, in particular, POD weights.

Let us assume that there exist constants c; C; � > 0, ˛1 � 0, and ˛2 2 Œ0; 1� such
that for all ; ¤ u 2 U and all n � 1 there exist randomized algorithms Qn;u using
for all fu 2 Hu at most n function values of fu with

E
�jIu.fu/�Qn;u.fu/j2

� � cC juj

.nC 1/�
�
1C ln.nC 1/

.juj � 1/˛2
�˛1.juj�1/˛2

kfuk2Hu
:

Note that necessarily � � ˛. Let us further assume that decay�;1 > 1 and the cost
function $ satisfies $.�/ D O.er�/ for some r � 0. Plaskota and Wasilkowski
proved in [21] with the help of randomized changing dimension algorithms that

pres
unr � max

(
2

�
;

2

decay� ;1 � 1

)

:

Hence, if˝.�/ D $.�/ D O.er�/ and � D ˛, our lower bound (21) is sharp and the
randomized algorithms from [21] exhibit essentially the optimal convergence rate.

Let us consider a more specific example, namely the case where D D Œ0; 1�,
k is the Wiener kernel given by k.x; y/ D minfx; yg, and 	 is the restriction of
the Lebesgue measure to D. In this case the anchor a is zero. The space H.k/ is
the Sobolev space anchored at zero, and its elements are the absolutely continuous
functions f with f .0/ D 0 and square-integrable first weak derivative. It is known
that � D 3 D ˛, see [26, Example 1 and Proposition 3] (or [21, Example 2])
and [19, Sect. 2.2.9, Proposition 1]. Thus the upper bound from [21] and our lower
bound (21) establish for˝.�/ D $.�/ D O.er�/ that

pres
unr D max

(
2

3
;

2

decay� ;1 � 1

)

:
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For the same specific example Hickernell et al. showed for the case $.�/ D �.�/

with the help of multilevel Monte Carlo algorithms that

pran
nest � max

(

2;
2

decay� ;1 � 1

)

for decay� ;1 > 1,

see [13, Corollary 5]. Hence

pran
nest D

2

decay� ;1 � 1
for decay� ;1 2 .1; 2�.

Similarly as in the deterministic setting [6, 9, 18] or in the randomized setting with
underlying ANOVA-type decomposition [4], our lower bound for pran

nest is sharp for
sufficiently large decay�;1. This may be proved by using multilevel algorithms based
on the integration algorithms provided in [26, Sect. 4] (cf. also [21, Sect. 3.2]) or
on scrambled quasi-Monte Carlo algorithms similar to those discussed in [3], but
providing a rigorous proof for this claim is beyond the scope of this article.

3.2.2 Finite-Intersection Weights

We restate Definition 3.5 from [9].

Definition 4. Let 	 2 N. Finite-order weights .�u/u2U are called finite-intersection
weights with intersection degree at most 	 if we have

jfv 2 U j �v > 0 ; u \ v ¤ ;gj � 1C 	 for all u 2 U with �u > 0. (22)

For finite-intersection weights of order ! it was observed in [9] that t�� D 1 for
all � 2 N, resulting in the lower bounds (20) and (21) with decay� ;1 replaced by
decay� ;! .

3.2.3 Lexicographically-Ordered Weights

To every set u � N with juj D ` we may assign a word '.u/ WD i1i2 : : : i`, where
for j 2 Œ`� the number ij is the j th-largest element of u. On the set of all finite
words over the alphabet N we have the natural lexicographical order �lex, where by
convention the empty word should be the first (or “smallest”) word.

Definition 5. We call weights � lexicographically-ordered weights of order ! if
�; D 1, �u > 0 for all u � N with juj � !, and

'.ui / �lex '.uj / for all i; j 2 N satisfying i < j .
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Lexicographically-ordered weights were introduced in [9]. Their properties
complement the properties of the other classes of weights considered before, see
[9] for more information. For lexicographically-ordered weights of order ! we have
t�� D minf�; !g. Hence we get from Theorems 1 to 3 the lower bounds

pran
nest � max

(
2

˛
;

2s=!

decay�;! � 1

)

;

and

pres
unr � max

(
2

˛
;
2minf1; s=!g
decay� ;! � 1

)

; pres�!
unr � max

(
2

˛
;

2

decay� ;! � 1

)

:

The lower bounds indicate that in the setting where ! > s and decay� ;! is
only moderate, changing dimension algorithms (which are algorithms of the class
A res�!) cannot achieve the optimal rate of convergence and can be outperformed
by multilevel algorithms (which can exhibit a behavior similar to the lower bound
for pran

nest above). For the deterministic setting and the Wiener kernel k.x; y/ D
minfx; yg on D D Œ0; 1� this was rigorously proved in [9] by lower bounds for
changing dimension algorithms and upper bounds for multilevel algorithms, see [9,
Theorem 3.2 and Sect. 3.2.3 ].
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A Non-empirical Test on the Second to the Sixth
Least Significant Bits of Pseudorandom Number
Generators
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Abstract Lagged Fibonacci generators are widely used random number generators.
Some implementations discard the least significant bit of their outputs, because their
weight distribution has a strong deviation. But the degree of the improvement is
unclear.

In this paper, we give a method to compute the weight distribution of the n-th
least significant bit of several pseudo random number generators for arbitrary n,
generalizing the weight discrepancy test which was possible only for n D 1. The
method is based on the MacWilliams identity over Z=2n, and predicts the sample
size for which the bit stream fails in a statistical test. These tests are effective to
lagged Fibonacci generators such as random() in BSD-C library. For example,
we show that the second least significant bit of random() will be rejected if the
sample size is of order 104, while the sixth bit will be rejected for the sample size
around 107.
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1 Introduction

Consider a pseudo random number generator (PRNG) based on the following
recursion

xiC31 D xiC28 C xi mod 232 .i D 0; 1; 2; : : :/ (1)

from randomly chosen initial values of .x0; : : : ; x31/. Such a generator is called a
lagged-Fibonacci generator, and still widely used, for example in the C-library of
BSD UNIX (called random()). It is known that its least significant bit has a strong
deviation, hence some applications discard the least significant bit.

In order to investigate the effect of this discarding, one usually applies statistical
tests to the output sequence, which compute the deviation of the empirical distri-
bution of the sequence from the theoretical distribution. Many statistical tests for
PRNGs are proposed [4, 6].

However, statistical tests have some problems. One lies in the instability, i.e.
every experiment shows a different test result, which depends on the choice of the
initial value. Another is that new defects may be discovered when the sample-size
is increased in accordance with the increase of computational power. Therefore, we
want a test whose results are independent of the initial value.

The second and the third authors introduced a theoretical test on the distribution
of 1’s and 0’s in the bits of the sequence, named weight discrepancy test [11]. This is
not an empirical test but a figure of merit defined on the generator, like the spectral
test [1] or the k-distribution test [2]. The weight discrepancy test gives the sample
size for which the generator is rejected by the weight distribution test [8], which is
a classical empirical test equivalent to a random walk test. However, their method
is limited to linear generators based on Z=2. Thus, it is applicable only to the least
significant bit for the generators such as (1), since for n > 1, the n-th least significant
bit in (1) is not Z=2-linear.

The aim of this paper is to generalize their method to Z=2n for arbitrary integer
n, and which enables us to apply the weight discrepancy test to the n-th bit. In our
method, the computation time increases at least exponentially with respect to n,
but still we can execute the weight discrepancy test on the second to the sixth least
significant bits of two lagged Fibonacci generators. The results show the degree
of improvement by such discarding. Section 2 reviews the weight discrepancy test.
Section 3 deals with how the output of a PRNG is regarded as a random variable,
and how to compute its distribution. Section 4 shows the results of the weight
discrepancy test, and compares it with the results of the weight distribution test,
which is a statistical test.
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2 �2-Discrepancy and Weight Discrepancy Tests

This section recalls the weight discrepancy test. See [11] for details. Consider
a set of events f0; 1; 2; : : : ; �g. Let .pk/kD0;1;:::� be a probability distribution on
f0; 1; 2; : : : ; �g; i.e.,

0 < pk � 1 and
�X

kD0
pk D 1:

Let .qk/kD0;1;:::;� be another probability distribution.

Definition 1. We define the �2-discrepancy ı between the two distributions .pk/
and .qk/ by

ı D
�X

kD0
.qk � pk/2=pk:

This value measures the amount of discrepancy between two distributions. Suppose
that we make a null hypothesis that one trial of a probabilistic event conforms to
the distribution pk , and the different trials are independently identically distributed.
To test this null hypothesis, we perform N trials, and count the number Yk of
occurrences of each event k 2 f0; 1; : : : ; �g. The �2-value X of this experiment
is defined as

X WD
�X

kD0
.Yk �Npk/2=Npk:

It is known that X approximately conforms to the �2-distribution with � degrees
of freedom under the null hypothesis, ifNpk is large enough for each k. Let X be a
random variable with �2-distribution with � degrees of freedom.

Recall that the (left) p-value p corresponding to the observed �2-value X is
defined by

p D Pr.X < X /:

If the p-value is too high like >0:99; then we reject the null hypothesis with
significance level >0:99: (The null hypothesis is also rejected if the p-value is too
small, but this is not treated in this manuscript.)

Suppose that the above null hypothesis is not correct, and the actual distribution
is .qk/kD0;:::;� : It is shown that the expectation of X is approximated by

E.X / � � CNı:
Thus, ifNı is large, thenE.X / is large, and X tends to be large so that the p-value
is large. For 0 < p < 1, we define Np as the value N which satisfies
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p D Pr.X < E.�//:

Roughly speaking, this means that if we take Np samples, then on average the �2-
value of the �2-test by the wrong null hypothesis gives a p-value around p. To
make explanations simple, we call N:75 the safe sample size which corresponds to
p D 0:75 (thus the sample tends to pass the �2-test with p-value around 0.75) and
the risky sample size N:99 which corresponds to p D 0:99 (and hence tends to fail
the test).

Theorem 1. Let � be moderately large, say � � 5. (For � < 5, we need to consult
a table of �2-distribution.)

1. The safe sample size N:75 is approximated by

N:75 	
p
2� xp C 2

3
.x2p � 1/

ı
for xp D 0:674:

2. The risky sample size N:99 is approximated by

N:99 	
p
2� xp C 2

3
.x2p � 1/

ı
for xp D 2:33:

By this theorem, the �2-discrepancy ı provides us with an estimation of the
sample size for which �2-test reveals the defect of the generator, as well as the
size for which it does not.

Now return to a pseudo random number generator G, which consists of a state
space S and the output symbol O . We can regard the output sequence as a function
of the initial state. We assume that the initial state is uniformly randomly chosen
from S . Then, the output sequence is a random variable. In particular, we treat the
case whereO D f0; 1g, namely, a pseudorandom bit generator. We fix an integerm.
For an initial state s 2 S , consider the output sequence .x0.s/; x1.s/; : : : ; xm�1.s//
of lengthm, and let W.s/ be the weight of this sequence, namely, the number of 0’s
among the m bits (usually the number of 1’s, but by symmetry it does not matter
for testing randomness). If the bit sequence is really random, the weight should
conform to the binomial distribution, whereasW.s/ with a random choice of s may
not. As usual in applying �2-test, we categorize f0; 1; : : : ; mg to several intervals so
that each interval has enough probability for approximation by �2-distribution.

Definition 2. A weight discrepancy test means to obtain the �2-discrepancy ı for
the weight W.s/ for the generator under the null hypothesis that it is the binomial
distribution B.m; 1=2/, and to compute the safe sample size N0:75 and the risky
sample size N0:99.

This test is not an empirical test but a theoretical test similar to the spectral test
[1] or to the k-distribution test [2], since the value is determined by the PRNG only,
independent of the choice of the initial state.
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3 Computing the Probability by Enumeration

In this section, we shall mainly explain the weight discrepancy test on the second
least significant bits of the sequence generated by (1).

Let x0; x1; x2; : : : be a pseudo random sequence generated by (1). The least
significant two bits satisfy

xiC31 D xiC28 C xi mod 22 .i D 0; 1; 2; : : :/:

Assume that exactly m outputs are consumed in one simulation. Let W denote the
number of 0’s appeared in the second least significant bits in x0; x1; : : : xm�1, i.e.,
the weight.

In this case, we may regard the initial state space as S D .Z=4/31; the initial state
is .x0; � � � ; x30/; and the map

OG W S ! .Z=4/m .x0; � � � ; x30/ 7! .x0; � � � ; xm�1/

is an abelian group homomorphism.
Let w D .w1;w2; : : : ;wm/ 2 .Z=4/m : For 0 � i � 3; we denote the number of

i ’s among w1;w2; : : : ;wm by wti .w/. Under a random choice of the initial state, wti
are random variables.

Let us denote by qk the probability Pr.W D k/, where 0 � k � m. By the
definition, we have

qk D fs 2 S W wt0.OG.s//Cwt1.OG.s// D kg
#S

:

For an ideal PRNG, qk should be the binomial distribution pk WD
�
m
k

�
=2m; but

the generator (1) has a huge deviation form > dim.S/.
Let C WD OG.S/ � .Z=4/m be the image of S . Because S is a group and

OG W S ! .Z=4/m is a group homomorphism, a uniform choice from S gives a
uniform choice from C WD OG.S/. Thus, we have

qk D fw 2 C W wt0.w/C wt1.w/ D kg
#C

:

For non-negative integers j0; j1; j2; j3 with j0 C j1 C j2 C j3 D m, we define

Aj0;j1;j2;j3 WD #fw 2 C W wti .w/ D ji .i D 0; 1; 2; 3/g;

and we call the list of integers Aj0;j1;j2;j3 the weight enumeration of C . Using this,
qk can be written as

qk D
P

j0Cj1Dk Aj0;j1;j2;j3
#C

:
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In general, the computation of the list of integers Aj0;j1;j2;j3 is NP-complete
[14], so it is intractable. However, if its orthogonal space C? is not too large,
the MacWilliams identity gives a solution as follows. We define a standard inner
product on .Z=4/m by h.x1; � � � ; xm/; .y1; � � � ; ym/i WD Pm

iD1 xiyi 2 Z=4, and the
orthogonal space C? � .Z=4/m by

C? WD fy 2 .Z=4/m W hx; yi D 0 for all x 2 C g:

The polynomial

WC.X0;X1;X2;X3/ WD
X

Aj0;j1;j2;j3X
j0
0 X

j1
1 X

j2
2 X

j3
3 ;

where
P

means the sum of all tuples .j0; j1; j2; j3/ of non-negative integers with
j0Cj1Cj2Cj3 D m, in the indeterminantsX0;X1;X2; andX3 is called the weight
enumerator polynomial of C .

Theorem 2 (the MacWilliams identity, Z=4-version [5]).

WC.X0;X1;X2;X3/ D
1

#C?
WC?.X0 CX1 CX2 CX3; X0 C

p�1X1 � X2 �
p�1X3;

X0 � X1 CX2 � X3; X0 �
p�1X1 � X2 C

p�1X3/

This identity enables us to compute the weight enumeration of C from that of
C?. If C? is not too large, then we can compute the weight enumeration of C? by
an exhaustive check, and the weight enumerator polynomialWC?.X0;X1;X2;X3/,
and by the substitution described on the right hand side in the theorem, we get
WC.X0;X1;X2;X3/. Then the coefficient of Xj0

0 X
j1
1 X

j2
2 X

j3
3 is Aj0;j1;j2;j3 . Take

the standard basis e1 D .1; 0; : : : ; 0/; : : : ; e31 D .0; 0; : : : ; 1/ of S D .Z=4/31.
Their imagesOG.e1/; : : : ; OG.e31/ generate C by linear combination. A vector x in
.Z=4/m belongs to C? if and only if x is perpendicular to OG.ei / for 1 � i � 31.
This is the solution of a linear equation described by a .31�m/matrix. By Gaussian
elimination, we obtain a basis of this kernel, and we can enumerate vectors in C?
as all possible linear combinations of this basis.

For the weight discrepancy test on the second least significant bit, we don’t need
each value of Aj0;j1;j2;j3 but only the sums

P
j0Cj1Dk Aj0;j1;j2;j3 for 0 � k � m.

Substituting X0 for X1 and X2 for X3 in the weight enumerator polynomial of C
yields

WC.X0;X0;X2;X2/ D
X

0�j0Cj1Dk�m
Aj0;j1;j2;j3X

k
0 X

m�k
2 ;

and hence reduces
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X

0�j0Cj1Dk�m
Aj0;j1;j2;j3X

k
0 X

m�k
2

D 1

#C?
WC?.2.X0 CX2/; .1C

p�1/.X0 �X2/; 0; .1 �
p�1/.X0 � X2//:

by the above MacWilliams identity. This substitution reduces the number of
variables from four to two, therefore the right hand side can be expanded effectively.

In the same way, we can compute the weight distribution of the l-th least
significant bits by using the MacWilliams identity over Z=2l .

4 The Results of Tests

The first example is a lagged Fibonacci generator, based on (1). As usual in a �2-test,
the set f0; 1; : : : ; mg is categorized into:

S0 D f0; 1; : : : ; s0g;
Sk D fs0 C kg .1 � k � m � 2s0 � 1/; (2)

S� D fm � s0;m � s0 C 1; : : : ; mg

for suitably chosen s0 so that each category has moderate probability. Then the
degree of freedom is � D m � 2s0. We conduct the weight discrepancy test on
the second least significant bits of this generator for these categories. The result is
shown in Table 1.

The row ı shows the �2-discrepancy, the rows N:75; N:99 respectively show the
safe, risky sample size implied by Theorem 1.

Table 1 Weight discrepancy test on the second least significant bit of xiC31 D
xiC28 C xi as in (1).

m 34 35 36 37 38

� 14 15 16 17 18

ı 3:1� 10�4 5:3� 10�4 7:9 � 10�4 1:1 � 10�3 1:4� 10�3

N:75 10;293 6;250 4;350 3;303 2;653

N:99 49;113 29;513 20;349 15;314 12;206

We also empirically test the same generator by the weight distribution test [8],
which we shall briefly explain. Fix the sample size N and choose an initial state.
Generate m pseudo random bits by the generator. Let W1 be the number of 0’s in
these m bits. Then again generate m words, count the number of 0’s and let W2 be
this number. Iterate this N times. We have W1;W2; : : : ;WN each of which should
conform to the binomial distribution B.m; 1=2/. We apply the �2-test to these N
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samples, using the categories (2). We obtain one value of �2-statistics, and then
obtain the corresponding probability value. This is the weight distribution test.

Table 2 shows the result of the weight distribution test in the case of m D 34.
We choose five different initial values randomly, and test the generator for three
different sample sizes, namely, 10;000; 50;000, and 100;000. The empirical results
of the five tests are in good accordance with the theoretical expectation shown in
Table 1.

Table 2 The p-values of the weight distribution tests on the
second least significant bit withm D 34 (unit: %).

Sample size \trial 1st 2nd 3rd 4th 5th

N:75 � 10;000 95:2 50:0 2:6 96:2 45:8

N:99 � 50;000 93:4 99:0 99:6 99:9 92:6

2� N:99 � 100;000 88:0 99:9 100:0 99:9 99:8

Table 3 shows ı;N:75 and N:99 of the first to the sixth least significant bits of the
distribution of (1). We observed that each ı becomes almost 1=4 times smaller than
the ı of the previous bit. Accordingly,N:75 and N:99 become four times larger.

Table 3 Weight discrepancy test for the 1st to 6th bits of xiC31 D xiC28 C xi as in (1).

bit 1st 2nd 3rd 4th 5th 6th

ı 1:2 � 10�3 3:1 � 10�4 7:8 � 10�5 1:9 � 10�5 4:9 � 10�6 1:2� 10�6

N:75 2;566 10;293 41;195 164;806 659;250 2;637;030

N:99 12;248 49;113 196;568 786;390 3;145;680 12;582;800

The second example is another type of a lagged Fibonacci generator, which is
recommended by Knuth [1], based on

xiC100 D �xiC63 C xi mod 230 .i D 0; 1; 2; : : :/: (3)

Table 4 shows the result of the weight discrepancy tests on the second least
significant bit of the generator (3), Table 5 shows the result of the weight distribution
tests on the same bit, and Table 6 shows the result of the weight discrepancy tests
for the first to the sixth least significant bits for m D 103. This last table shows that
the rate of decrease of ı is almost four. Although the order of ı of (3) is different
from that of (1), the rate of decrease looks similar, but we have no mathematical
explanation so far.

The CPU time consumed for the weight discrepancy test on the sixth bit is about
3 days by Mathematica 8 on the Intel Core i5 at 3.1 GHz, with 4 GB of memory. It
seems more difficult to test the higher bits.

We also compute the �2-discrepancies of the second least significant bits of
several generators. The following eight F2-linear generators were tested: a 13-term
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Table 4 Weight discrepancy test on the 2nd bit of the generator xiC100 D
�xiC63 C xi as in (3).

m 100C 3 100C 4 100C 5 100C 6 100C 7
� 43 44 45 46 47

ı 1:3� 10�5 2:2� 10�5 3:3� 10�5 4:7� 10�5 6:2 � 10�5

N:75 462;952 271;382 180;906 130;784 99;977

N:99 1;931;530 1;129;910 751;697 542;374 413;834

Table 5 The p-values of the weight distribution tests on the gener-
ator (3) withm D 103 (unit: %).

Sample size \trial 1st 2nd 3rd 4th 5th

4:6� 105 � N:75 50:1 47:9 40:8 35:5 80:5

2:0� 106 � N:99 98:4 98:9 99:5 99:9 69:3

4:0� 106 � 2�N:99 100:0 99:2 99:9 99:9 99:9

Table 6 Weight discrepancy test for the 1st to 6th bits of xiC100 D �xiC63 C xi as in (3).

bits 1st 2nd 3rd 4th 5th 6th

ı 5:1� 10�5 1:3 � 10�5 3:2 � 10�6 7:9 � 10�7 2:0� 10�7 5:0� 10�8

N:75 115;728 462;951 1;851;846 7;407;423 29;629;733 118;518;973

N:99 482;844 1;931;532 7;726;286 30;905;312 123;621;410 494;485;798

and a 15-term linear recurrence generator with 100-dimensional state space, two toy
models of Mersenne Twister [10], LFSR113 [3], XorShift [7, 12], TT800 [9], and
WELL512 [13]. The dimension of the state space and the order of ı are shown in
Table 7.

Table 7 Comparison of ı of several F2-generators.

Name dim.S/ blog10 ıc
13� term 100 �16
15� term 100 �18

MT89 89 �26
MT127 127 �32

Name dim.S/ blog10 ıc
LFSR113 113 �34
XorShift 128 �38
TT800 800 �124

WELL512 512 �152

5 Conclusion and Future Works

We computed the weight distribution of the second to the sixth least significant bits
from lagged Fibonacci generators. The risky sample size is multiplied by a factor
of 4, when the examined bit is shifted to the left. Tables 3 and 6 show that even the
6th least significant bit of the tested lagged Fibonacci generators have observable
deviation, so more than 6 bits need to be discarded.
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Lagged Fibonacci generators are one of the special types of multiple recursive
generators (MRGs). The same method can apply to MRGs when the modulus is a
power of 2, which is left for future work.
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A Finite-Row Scrambling of Niederreiter
Sequences

Roswitha Hofer and Gottlieb Pirsic

Abstract This paper introduces a scrambling matrix that modifies the generating
matrices of the classical Niederreiter sequences to so-called finite-row generating
matrices. The method used for determining this scrambling matrix also allows
us to construct the inverse matrices of these generating matrices of Niederreiter.
The question for finite-row digital .t; s/-sequences is motivated in the context
of Niederreiter-Halton sequences, where—inspired by the Halton sequences—
Niederreiter sequences in different bases are combined to a higher dimensional
sequence. The investigation of the discrepancy of the Niederreiter-Halton sequences
is a difficult task and still in its infancy. Results achieved for special examples
raised the idea that the combination of finite-row generating matrices in different
bases may be interesting. This paper also contains experiments that compare the
performance of some Niederreiter-Halton sequences to the performance of Faure
and Halton sequences and corroborate this idea.

1 Introduction

The interest in low-discrepancy sequences as research topic originally comes from
number theory, more precisely Diophantine approximation, as exemplified by the
Kronecker sequences (see e.g., Chap. XXIII in the classical textbook [6]). In the
last decades, the application side has gained much importance in the field of what
may be called number-theoretical analysis, here especially in quasi-Monte Carlo
methods, with uses in many diverse fields such as mathematical finance, particle
transport simulation and computer imaging. Particularly the task of numerically
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integrating highly multivariate function has gained importance, since the asymptotic
error bound (e.g., via the Koksma-Hlawka inequality) is of order 1=N compared
to the purely Monte-Carlo bound 1=

p
N . (The interested reader, unfamiliar with

(quasi-)Monte Carlo methods, discrepancy theory, and low-discrepancy sequences,
is referred to [1, 14] for comprehensive introductions.)

Apart from the above mentioned Kronecker sequences a further example of
a low-discrepancy sequence is the Halton sequence [5], which uses the notion
of digit expansion: let 'b be the radical inverse, i.e., the operation that reflects
the b-adic expansion of a nonnegative integer at the (b-adic) decimal point. Then
..'pi .n//

s
iD1/n�0, where pi are distinct primes, is an s-dimensional low-discrepancy

sequence.
In a further application of the concept of using digit expansions, digital .t; s/-

sequences (over Fq) have been defined by Niederreiter [12], employing the digital
method (earlier forms can be found in [2] and [15]). Briefly explained, the strategy
is as follows: using s infinite matrices C .i/ 2 F

N�N
q , the q-adic digit vector vn 2 F

N

q

of n 2 N is transformed into s vectors

x.i/n WD .C .i/vn/ 2 F
N

q ; i 2 f1; : : : ; sg:

These vectors are then considered as fractional digits of real numbers �.i/n 2 Œ0; 1/,
so in the end we gain the sequence ! D ..�

.i/
n /

s
iD1/n�0 2 .Œ0; 1/s/N0 . Here we

implicitly used an enumeration of the elements of the finite field, i.e., a set bijection
between Fq and the set of digits, f0; : : : ; q � 1g. It is usually required that this
bijection maps the zero in Fq to 0 and that the columns of the matrices contain only
finitely many nonzero entries.

In these sequences, the parameter t 2 N0 points to the quality of distribution of
the point set; it occurs as an exponential factor in the Koksma-Hlawka bound, so
low values of t are a goal, with 0 being the optimum. From the generating matrices
the parameter t can be derived as follows: ! as defined above is a digital .t; s/-
sequence, if: for all m 2 N and all partitions d1; : : : ; ds in N0 of m � t the set of
m � t truncated (to m components) row vectors,

ft rum.c
.i/
j / 2 F

m
q ; i 2 f1; : : : ; sg; j 2 f1; : : : ; di gg

is linearly independent.
One particular construction of matrices was given by Niederreiter [13]: Let Fq be

a finite field with q D pr elements, where p is prime and r � 1. For a given dimen-
sion s we choose p1; : : : ; ps 2 FqŒx� to be distinct monic nonconstant irreducible
polynomials over Fq of degrees ei WD degpi for 1 � i � s. Now the j th row of the

i th generating matrix C .i/, denoted by 	.i/j , is defined as follows. We choose l 2 N

andm 2 f0; : : : ; ei � 1g such that j D ei l �m and consider the expansion
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xm

pi.x/l
D
X

r�0
a.i/.l; m; r/x�r�1 2 Fq..x

�1//

and set 	.i/j D .a.i/.l; m; 0/; a.i/.l;m; 1/; : : :/. It is easy to check that the generating
matrices are nonsingular upper triangular (NUT) matrices over Fq and by (a
small adaption of) [13] they generate a digital .t; s/-sequence over Fq , with
t DPs

iD1.ei � 1/.
The special case of s � q with q prime and the choice of pi as linear polynomials

is well-known by the name of Faure sequence [2]. In this case, the generating matri-
ces are powers ofP , whereP is the Pascal matrix of binomial coefficients modulo q,

P WD
  
j � 1
i � 1

!

mod q

!

i�1;j�1
:

Going back to Halton sequences, a characteristic distinguishing those sequences
from digital .t; s/-sequences is the use of different bases in each coordinate. The
construction principle using 'b is however closely related to the digital method since
using the identity matrix has the same effect as 'b. A natural and obvious question
now is the behavior of digital .t; s/-sequences with different bases in different
components (or, from another viewpoint, of the direct product of sequences over
differentFqi ). For such sequences, first defined in [9] and earlier suggested in [3], the
notion Niederreiter-Halton sequence was coined [7]. The investigation of the distri-
bution of these sequences appears to be a difficult task. As can be seen by a particular
choice of matrices, there are some deeper problems obstructing a straight-forward
generalization: choose 2 and 3 as bases, let the generating matrix for base 3 equal the
identity matrix and assume the first row of the matrix for base 2 only contains 1s (as
is the case, e.g., with the Pascal matrix). Then one is lead immediately to the inves-
tigation of the binary digit sum of multiples of 3 which turns out to be uniformly
distributed modulo 2 but with very slow convergence. Results in [10] imply that
the discrepancy of, e.g., the five-dimensional sequence that is built by combining
the Faure sequence in base 2 and the Faure sequence in base 3, which we call the
5-dimensional Faure-Halton sequence in bases 2 and 3, satisfies a lower bound

NDN � cN log4.3/ for all N 2 N, (1)

where the constant c does not depend on N . This result as well as some further
investigations gave the impression, that too many nonzero entries in the generating
matrices may cause problems when mixing digital sequences in different bases, and
motivated the quest for finite-row generating matrices, i.e., matrices where each
row contains only finitely many nonzero entries. In [10] first nontrivial examples of
such matrices were given, which were further investigated in [11]. These sequences
can be described as Faure-Tezuka scramblings [4] (a specific type of reordering) of
Faure sequences. A direct construction of finite-row generating matrices of digital
.0; s/-sequences over a finite field Fq was elaborated in [8]. So far, all results were
limited to the quality parameter t D 0 and therefore limited to dimensions s � q.



430 R. Hofer and G. Pirsic

Our aim in this paper is to give a scrambling matrix for Niederreiter sequences
that transforms their generating matrices into finite-row matrices. This is done in
Sect. 2. The method used therein also provides a tool to determine the inverse
matrices of, e.g., the generating matrices proposed by Niederreiter. In Sect. 3
we briefly discuss results on the discrepancy of sequences that are built by
combining sequences thus constructed and perform a numerical comparison to other
constructions.

2 Scrambling of Faure and Tezuka and Finite-Row Digital
.t; s/-Sequences

First we recall an easy result about linear scrambling of digital .t; s/-sequences.

Lemma 1 ([4, Proposition 1]). Let C .1/; : : : ; C .s/ be the generating matrices of a
digital .t; s/-sequence over Fq and S be a non-singular upper triangular (NUT)
N � N-matrix over Fq . Then C .1/S; : : : ; C .s/S are generating matrices of a digital
.t; s/-sequence over Fq .

Proof. From the nonsingularity of S follows the nonsingularity of the square
submatrices Sm consisting of the first m rows and columns for anym > 0. Suppose
d1; : : : ; ds is a partition of m � t and ft rum.c

.i/
j /; i 2 f1; : : : ; sg; j 2 f1; : : : ; di gg

is a linearly independent set of row vectors of the original generating matrices, as
in the condition for a .t; s/-sequence. Consider the .m � t/ � m matrix C 0 with
these vectors as row vectors. Then, by t rum.vSm/ D t rum.v/Sm for any vector
v 2 F

m
q , the matrix C 0Sm is associated to the matrices C .i/S and has the same rank,

m� t . Therefore all linear independence conditions translate from the matrices C .i/

to C .i/S and the resulting net has at worst the same quality parameter t . ut
We now aim for scrambling matrices S such that the generating matrices based

on monic irreducible polynomials introduced by Niederreiter and already mentioned
in the introduction yields finite-row matrices. In the following the quantityLd is the
maximal row length of the first d rows. More precisely, taking the matrix consisting
of the first d rows of each of the generating matrices, Ld is the index of the last
nonzero column (or1, if none exists). In [10] the notation L.d; : : : ; d / was used.

Theorem 1. LetC .1/; : : : ; C .s/ be the generating matrices associated to the distinct
monic nonconstant irreducible polynomials p1; : : : ; ps with degrees e1; : : : ; es . We
set v WD lcm.e1; : : : ; es/ and define the matrix S as follows. For k 2 N, the kth
column ck of S , is given by ck D .b0; b1; : : : ; bk�1; 0; : : :/T where the bu are the
coefficients of the following monic polynomial of degree k � 1,

p.x/ D xr1
sY

iD1
pi .x/

.liCliC1C���Cls /v=ei D
X

u�0
bux

u:
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Here the li and ri are defined as follows

k � 1 D svls C rs; rs 2 f0; : : : ; vs � 1g
rs D .s � 1/vls�1 C rs�1; rs�1 2 f0; : : : ; v.s � 1/� 1g
:::

:::

r2 D vl1 C r1; r1 2 f0; : : : ; v � 1g:

Then, the matrices C .1/S; : : : ; C .s/S generate a digital .t; s/-sequence, with t DPs
iD1.ei � 1/ satisfying Ld � sv

˙
d
v

� � sd C .v � 1/s.
Proof. It is easy to check that p.x/ is monic and has degree k � 1 and therefore S
is a NUT matrix. Hence Lemma 1 ensures the assertion on the quality parameter t .
We prove the bounds on the row lengths. Let 	.i/j denote the j th row of the matrix

C .i/ and consider 	.i/j ck . We use that this product equals the coefficient of x�1 in
the Laurent series of

xr

pi.x/l
xr1

sY

iD1
pi .x/

.liCliC1C���Cls /v=ei ; (2)

where by definition l 2 N and r 2 f0; : : : ; ei�1g are such that j D ei l�r . To prove
that the matrix C .i/S satisfies the upper bound on its lengths, i.e., Ld � sv dd=ve,
we have to ensure that for every positive integer d , for all k > sv dd=ve and for all
1 � j � d , the coefficient of x�1 in the Laurent series of (2) is 0.

Using the definition of l and r we obtain l � dd=eie for all j � d . The definition
of ls and rs together with the assumption k > sv dd=ve yields ls � dd=ve. The
inequalities l � dd=eie � dd=ve v=ei � lsv=ei (the second inequality follows
from v=ei 2 N) ensure that (2) is a polynomial and therefore in the Laurent series
the coefficient of x�1 is 0. ut
Remark 1. The row lengths obtained by S in Theorem 1 are asymptotically best
possible. Proposition 1 in [10] says that if C .1/; : : : ; C .s/ are generating matrices of
a digital .0; s/-sequence then for every d 2 N there exists an i 2 f1; : : : ; sg such
that Ld � sd . For all d  0 .mod v/ we already obtain equality.

Example 1. If s D q, with q prime and pi.x/ D x � i C 1 then it is easily verified
that the scrambling matrix is built columnwise by the coefficients of the falling
factorials x.x � 1/.x � 2/ � � � .x � .k � 2//, which are related to the signed Stirling
numbers of the first kind and therefore

S D
��
r � 1
j � 1


.�1/r�j

�

j�1;r�1
2 F

N�N
p

(the square brackets are Karamata-Knuth notation for Stirling numbers). This
scrambling matrix was already introduced in [11], where nice formulas for the
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generating matrices were identified, namely C .i/S D SQi�1, where Q is a very
thin NUT band matrix with bandwidth 2.

Open Problem 1. Taking a closer look at the example above one sees that the
scrambling matrix related to the Stirling numbers almost diagonalizes simulta-
neously the generating matrices of the Faure sequences. In this case scrambling
to finite rows means changing to a common base of the generating matrices.
Of course an interesting question would be if such a scrambling, effecting a
simultaneous almost diagonalization, exists for all examples of generating matrices
of Niederreiter sequences; or whether it is already possible to identify similar
formulas forC .1/S; : : : ; C .s/S using the scrambling matrix suggested in Theorem 1.

As a corollary to the method of proof used for Theorem 1 we can determine
the inverse matrices to the generating matrices of Niederreiter sequences. These
inverse matrices can be useful e.g., in geometric applications, specifically in the fast
determination of subsequences lying in specific elementary intervals.

We use the notation b�c and f�g for the polynomial and fractional part of a Laurent
series in 1=x.

Proposition 1. Let C .i/ be the generating matrices based on the monic distinct
nonconstant irreducible polynomials p1; : : : ; ps of degrees e1; : : : ; es. Then their
inverses, denoted by C .�i /, can be determined as follows. For k 2 N we denote
the kth column of C .�i / by c.�i /k , choose v 2 N0;w 2 f0; : : : ; ei � 1g such that
k � 1 D eiv C w, regard the polynomial

pi .x/
v

�
pi .x/

xei�w

�
D
X

u�0
b.v;w; u/xu;

and set c.�i /k D .b.v;w; 0/; b.v;w; 1/; : : :/T .

Proof. We abbreviate the j th row of C .i/ to 	.i/j . The crux of the following proof is

that 	.i/j � c.�i /k equals the coefficient of x�1 in the Laurent series of

xm

pi .x/l
pi .x/

v

�
pi.x/

xei�w

�
D
X

p�0
dpx

p C
X

r�0
frx
�r�1

with dp; fr 2 Fq and where m; l satisfies m 2 f0; : : : ; ei � 1g and j D lei � m.
Hence it suffices to consider f0 for different values of k and j and to prove that
f0 D 1 if k D j and zero otherwise. We make a distinction of cases with regard to
v and l :

– v � l and therefore k > j : In this case xm

pi .x/l
pi .x/

v
j
pi .x/

xei�w

k
is a polynomial

over Fq and therefore the coefficient of x�1 is 0 2 Fq .
– v C 1 < l : In this case the leading coefficient in the Laurent series belongs to
xm�leiCveiCei�.ei�w/ D xmCwC.v�l/ei . Now it is easy to see that 0 � m C w �
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2.ei � 1/ and .v C l/ei � �2ei and therefore mC wC .v � l/ei � �2. Thus
the coefficient of x�1 is 0 2 Fq .

– v C 1 D l : We write pi .x/ D xei C ˛ei�1xei�1 C � � � C ˛1x C ˛0 and regard

xm

pi .x/

�
pi .x/

xei�w

�
D xm.xw C ˛ei�1xw�1 C � � � C ˛ei�wC1x C ˛ei�w/

xei C ˛ei�1xei�1 C � � � C ˛1x C ˛0
:

If mC w D ei � 1 the coefficient of x�1 is 1 2 Fq , and if mC w < ei � 1 the
coefficient of x�1 is 0 2 Fq . Finally if mC w > ei � 1 we consider the equality

xm

pi .x/

�
pi .x/

xei�w

�
D xm

pi .x/

pi .x/

xei�w
� xm

pi .x/

�
pi.x/

xei�w

�
:

We know that the first term of the right hand side is a polynomial and the Laurent
series of the second term is of the form

P
r�1 frx�r�1. This yields that the

coefficient of x�1 is 0 2 Fq .

Since j D k is equivalent to the only nonzero case, i.e., vC 1 D l together with
mC w D ei � 1, the proof is concluded. ut

3 Discrepancy and Experiments

As constructions of finite-row generating matrices of digital .t; s/-sequences with
roughly lowest possible row lengths are available now, the next step is to investigate
the discrepancy of Niederreiter-Halton sequences, that are built by combining finite-
row digital .t; s/-sequences in different bases. Here we reduce our discussions to the
five-dimensional finite-row Faure-Halton sequence in bases 2 and 3, which is built
by juxtaposing the components of the 2-dimensional scrambled Faure sequence in
base 2 and the components of the 3-dimensional scrambled Faure sequence in base
3 of Example 1. One method near at hand for the investigation of the discrepancy
of this finite-row Faure-Halton sequence is to proceed analogously to papers that
estimate the discrepancy of the Halton sequence, which are using as a main tool
the Chinese Remainder Theorem. This was done in [9] and produced a bound that
depends on the row lengths, see [9, Theorem 3.1]. As a consequence, the bound
achieved for the finite-row Faure-Halton sequence in bases 2 and 3 is also valid
for all other Niederreiter-Halton sequences that share the same bounds on the row
lengths, as for example the one generated by the following two matrices over F2,

0

BB
B
B
B
@

1 0 0 0 0 0 0 0 : : :

0 0 1 0 0 0 0 0 : : :

0 0 0 0 1 0 0 0 : : :

0 0 0 0 0 0 1 0 : : :
:::
:::
:::
:::
:::
:::
:::
:::
: : :

1

CC
C
C
C
A

and

0

BB
B
B
B
@

0 1 0 0 0 0 0 0 : : :

0 0 0 1 0 0 0 0 : : :

0 0 0 0 0 1 0 0 : : :

0 0 0 0 0 0 0 1 : : :
:::
:::
:::
:::
:::
:::
:::
:::
: : :

1

CC
C
C
C
A
;
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and the following three matrices over F3,

0

B
BB
@

1 0 0 0 0 0 0 0 : : :

0 0 0 1 0 0 0 0 : : :

0 0 0 0 0 0 1 0 : : :
:::
:::
:::
:::
:::
:::
:::
:::
: : :

1

C
CC
A
;

0

B
BB
@

0 1 0 0 0 0 0 0 : : :

0 0 0 0 1 0 0 0 : : :

0 0 0 0 0 0 0 1 : : :
:::
:::
:::
:::
:::
:::
:::
:::
: : :

1

C
CC
A

and

0

B
BB
@

0 0 1 0 0 0 0 0 : : :

0 0 0 0 0 1 0 0 : : :

0 0 0 0 0 0 0 0 : : :
:::
:::
:::
:::
:::
:::
:::
:::
: : :

1

C
CC
A
:

We call this sequence trivial finite-row sequence in bases 2 and 3. Its component
sequences do not have good distribution properties and, therefore, we do not expect
that the bound achieved in [9, Theorem 3.1] is sharp for the finite-row Faure-Halton
sequences. Nevertheless so far there are no methods known to get better discrepancy
bounds for these sequences.

In order to get an impression about the quality of this sequence we carried out an
experiment, where we approximated the integral of several functions using different
sequences and compared the convergence of the integration error.

We used the following 5-dimensional sequences:

Halton: the Halton sequence (with respect to the primes 2; 3; 5; 7; 11).
Faure: the quinary Faure sequence.
FinFH: finite-row Faure-Halton sequence in bases 2 and 3.
FaureH: the 5-dimensional Faure-Halton sequence in bases 2 and 3.
TrivFinH: the trivial finite-row sequence in bases 2 and 3.
MC: the average of integration errors using ten instances of a pseudo-

random sequence (the internal MATHEMATICA [16] routine
Random[]).

For numerical investigation of the performance of those point sequences in an
integration task, we chose the following 5-dimensional test functions:

f1: a polynomial: .2.x1 C x2 C x3 C x4 C x5/� 5/4.
f2: a Gaussian distribution function: exp.

P
i .xi � 1=i/2/.

f3: an oscillatory function with decreasing frequencies in successive components:
cos.

P
i xi =i/.

f4: an oscillatory function with increasing frequencies in successive components:
cos.e C 2�Pi ixi /.

f5: a rational function:

..
P

i xi /
2 � 1/2

1C ..Pi xi /
2 �Pi .x

2
i //=2

:

Figures 1–5 exhibit the absolute numerical integration errors in log-log graphs.
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Fig. 1 f1: a polynomial.
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Fig. 2 f2: a Gaussian distribution function.
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Fig. 3 f3: an oscillatory function with decreasing frequencies.
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Fig. 4 f4: an oscillatory function with increasing frequencies.
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Fig. 5 f5: a rational function.

3.1 Summary of the Numerical Experiments

Where QMC rules cannot prevail over MC rules due to the high variation of
the function, see, e.g., function f4, the finite-row Faure-Halton point sets are not
worse (nor better). All other functions are relatively smooth. Note that even in
this relatively small-scale data set it can be seen that the numerical integration
with the classical MC and QMC rules (compare Faure and Halton) is according
to expectation, so that a comparison is justified. We also observe a performance
of the Faure-Halton sequence according to the large lower discrepancy bound (1)
and also the integration error using the trivial finite-row sequence converges slowly
as expected. Surprisingly, the QMC rule that is based on the finite-row Faure-
Halton sequence behaves in a similar way as the ones that use the well-known
low-discrepancy sequences. Comparison of this rule with the one based on the trivial
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example, indicates that the bound in [9, Theorem 3.1] is not sharp. In summary,
we consider the investigation of finite-row Niederreiter-Halton sequences as an
interesting task for future research.
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Reconstructing Multivariate Trigonometric
Polynomials by Sampling Along Generated Sets

Lutz Kämmerer

Abstract The approximation of problems in d spatial dimensions by sparse
trigonometric polynomials supported on known or unknown frequency index sets
I � Z

d is an important task with a variety of applications. The use of a
generalization of rank-1 lattices as spatial discretizations offers a suitable pos-
sibility for sampling such sparse trigonometric polynomials. Given an index set
of frequencies, we construct corresponding sampling sets that allow a stable and
unique discrete Fourier transform. Applying the one-dimensional non-equispaced
fast Fourier transform (NFFT) enables the fast evaluation and reconstruction of the
multivariate trigonometric polynomials.

1 Introduction

Given a spatial dimension d 2 N, we consider Fourier series of continuous functions
f .x/ DPk2Zd Ofke2� ik�x mapping the d -dimensional torus Œ0; 1/d into the complex

numbersC, where
� Ofk

	

k2Zd � C are the Fourier coefficients. A sequence
� Ofk

	

k2Zd
with a finite number of nonzero elements specifies a trigonometric polynomial.
We call the index set of the nonzero elements the frequency index set of the
corresponding trigonometric polynomial. For a fixed index set I � Z

d with a finite
cardinality jI j, ˘I D spanfe2� ik�x W k 2 I g is called the space of trigonometric
polynomials with frequencies supported by I .

Assuming the index set I is of finite cardinality and a suitable discretization
in frequency domain for approximating functions, e.g. functions of dominating
mixed smoothness, cf. [13], we are interested in evaluating the corresponding
trigonometric polynomials at sampling nodes and reconstructing the Fourier

L. Kämmerer
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coefficients
� Ofk

	

k2I from samples. Accordingly, we consider (sparse) multivariate

trigonometric polynomials

f .x/ D
X

k2I
Ofke2� ik�x

and assume the frequency index set I is given.
For different specific index sets I there has been done some related work

using rank-1 lattices as spatial discretizations [6, 11]. A multivariate trigonometric
polynomial evaluated at all nodes of a rank-1 lattice essentially simplifies to a one-
dimensional fast Fourier transform of the length of the cardinality of the rank-1
lattice, cf. [10]. Allowing for some oversampling one can find a rank-1 lattice, which
even allows the reconstruction of the trigonometric polynomial from the samples at
the rank-1 lattice nodes. A suitable strategy to search for such reconstructing rank-
1 lattices can be adapted from numerical integration. In particular, a modification
of the component-by-component constructions of lattice rules based on various
weighted trigonometric degrees of exactness described in [2] allows one to find
adequate rank-1 lattices in a relatively fast way, cf. [6]. The search strategy specified
in [6] uses discrete optimization techniques.

In this paper we consider so-called generated sets, which generalize the concept
of rank-1 lattices. The structure of these spatial discretizations allows for the
evaluation of multivariate trigonometric polynomials by means of some simple
precomputations and a one-dimensional non-equispaced discrete Fourier transform
(NDFT). The fast computation can be realized by using the non-equispaced fast
Fourier transform (NFFT), cf. [7]. The stability of the computation mainly depends
on the Fourier matrices of this one-dimensional NFFT. Similar to the approaches
known from rank-1 lattices, we have to search for suitable generating vectors
guaranteeing a Fourier matrix of full column rank and, in addition, stability. In
contrast to searching for suitable rank-1 lattices, we can use continuous optimization
methods. Our search algorithm is based on the minimization of an upper bound of
the maximum Gerschgorin circle radii, cf. [4], via a simplex search method.

The paper is organized as follows: In Sect. 2 we define generated sets, explain
their advantages in computation, and give a basic example. To estimate the stability
of the corresponding discrete Fourier transform, we specify an upper bound on the
condition number of the involved Fourier matrices in Sect. 3. Algorithm 1 describes
how to compute this upper bound in a simple and fast way. We optimize the
generating vector by applying a nonlinear optimization technique as described in
[12]. In practice, we (locally) minimize the theoretical number of samples needed
to achieve at least a fixed stability. Some numerical examples can be found in Sect. 4.

The given examples include frequency index sets called weighted hyperbolic
crosses

H
d;�
N WD fh 2 Z

d W
dY

sD1
max.1; ��1s jhj j/ � N g
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with parameters d 2 N; N 2 R, � � R
N, 1 � �1 � �2 � : : : � 0, and 0�1 WD 1.

More general index sets called generalized hyperbolic crosses were discussed in
[5, 8]. Note that our approach is universally applicable. Accordingly, the theoretical
statements of this paper also treat the frequency index sets specified in [5, 8].

2 Generated Sets

For givenM 2 N and r 2 R
d we define the generated set

�.r;M / WD fxj D j r mod 1; j D 0; : : : ;M � 1g

as a generalization of rank-1 lattices. We stress the fact that the restriction of the
generating vector r 2 M�1Zd results in rank-1 lattices, cf. [2, 3, 14, 15]. Note, in
contrast to rank-1 lattices, generated sets do not retain the group structure of the
sampling sets, i.e. in general we have xj ¤ xjCM .

However, we take advantage of the rank-1 structure of the generated set. In a
similar way as described in [10], the evaluation of the trigonometric polynomial
f 2 ˘I at all nodes xj 2 �.r;M / simplifies to a one-dimensional NDFT. For
Y D fk � r mod 1 W k 2 I g is the set of all scalar products of the elements of the
frequency index set I with the generating vector r we obtain

f .xj / D
X

k2I
Ofke2� ijk�r D

X

y2Y

0

@
X

k�r�y .mod 1/

Ofk

1

A e2� ijy:

We evaluate f at all nodes xj 2 �.r;M /; j D 0; : : : ;M � 1; by the

precomputation of all Ogy WD P
k�r�y .mod 1/

Ofk together with a one-dimensional
NFFT in O .M logMC .j log "j C d/jI j/ floating point operations, [7]. The
parameter " determines the accuracy of the computation and is independent of the
dimension d .

As the fast evaluation of trigonometric polynomials at all sampling nodes xj of
the generated set�.r;M / is guaranteed, we draw our attention to the reconstruction
of a trigonometric polynomial f with frequencies supported on I using function
values at the nodes xj of a generated set �.r;M /. We consider the corresponding
Fourier matrix A and its adjoint A�,

A WD �e2� ik�x�
x2�.r;M/; k2I and A� WD �e�2� ik�x�

k2I; x2�.r;M/
;

to determine necessary and sufficient conditions on generated sets�.r;M / allowing
for a unique reconstruction of all Fourier coefficients of f 2 ˘I . Assuming a full
column rank matrix A, the reconstruction of the Fourier coefficients Of D . Ofk/k2I
from sampling values f D .f .x//x2�.r;M/ can be realized by solving A�AOf D A�f
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using a standard conjugate gradient method, see [1, Chap. 11]. In particular, we aim
to find generated sets �.r;M / that even allow for a stable reconstruction of the
Fourier coefficients of specific trigonometric polynomials.

For that reason we consider the spectral condition number of the matrix B D
M�1A�A, which is defined as

cond2.B/ D max

min
;

where max and min are the largest and smallest eigenvalues of B, respectively. Note
that B is a symmetric, positive semidefinite matrix with eigenvalues 0 � min �
max. In particular, the condition number of B is bounded below by one.

Besides the stability, the considered condition number measures the speed of
convergence of the conjugate gradient method used to reconstruct the trigonometric
polynomial f , cf. [1, Chap. 13]. The lower the condition number the faster our
reconstruction algorithm converges.

Of course, one can consider the condition number as a function of different
variables. Our approach fixes the frequency index set I , which results in a functional

�.r;M / WD cond2.B.r;M //

depending on the generating vector r and the number of samples M , where
B.r;M / D M�1 .A.r;M //�A.r;M / and A.r;M / D �

e2� ik�x�
x2�.r;M/; k2I . Now

we are interested in a generating vector r which minimizes the functional � for
fixed M . For relatively small cardinalities jI j one can evaluate this condition num-
ber exactly. Thus, we can minimize the functional � using nonlinear optimization
techniques such as nonlinear simplex methods. The vectors (1) in the following
example were determined in this way.

Example 1. We consider the weighted hyperbolic cross Hd;�
256 with � D �

41�s
�
s2N

and fix the number of sampling points M D 16;381 < 16;384 D b�1N c b�2N c.
Hence, for d � 2 Lemma 2.1 in [6] yields that there does not exist any sampling
scheme of M D 16;381 nodes that allows for a perfectly stable reconstruction, i.e.
it is proven that cond2.B/ > 1.

Nevertheless, we ask for a sampling scheme of cardinality M D 16;381 with
a stable Fourier matrix A. Generated sets are our first choice because of the easy
possibility of the fast evaluation and reconstruction. In fact, the vectors

r2 D
�
0:508425953824

0:058509185871

�
and r5 D

0

B
B
BB
B
@

0:075119519237

0:285056619170

0:500703041738

0:970811563102

0:568203958723

1

C
C
CC
C
A

(1)
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generate the two-dimensional set �2 D �.r2; 16;381/ and the five-dimensional
set �5 D �.r5; 16;381/. The corresponding condition numbers cond2.Bs/ with
Bs D M�1 .As/

�As and Fourier matrices As D
�
e2� ik�x�

x2�s; k2Hs;�
N

, s D 2; 5, are

cond2.Bs/ 	
(
3:9177; for s D 2;
11:934; for s D 5:

Note that the corresponding matrices are square matrices with B2 2 C
1;761�1;761 and

B5 2 C
2;187�2;187, respectively. ut

Considering frequency index sets and corresponding generated sets of larger
cardinalities, we cannot compute exact condition numbers efficiently. For that
reason, we want to estimate the condition numbers from above.

3 Gerschgorin Circle Theorem and Generated Sets

In the following, we consider the Fourier matrix A.r;M / and its adjoint A�.r;M /

like above and apply the Gerschgorin circle theorem to the matrix B.r;M /. Let us
consider the elements

.B.r;M //h;k D
1

M

M�1X

jD0
e2� ij.k�h/�r D 1

M

M�1X

jD0
e2� ij.yk�yh/ DW KM.yk � yh/ (2)

of the matrix B.r;M /. We define yh D h � r mod 1 for all h 2 I and therefore
we can regard KM as a univariate trigonometric kernel, which obviously is a
Dirichlet kernel. Now we adapt some results from [9, Theorem 4.1] and formulate
the following

Theorem 1. We fix r 2 R
d and I � Z

d of finite cardinality. Let yh D h � r mod 1
for all h 2 I . Moreover, let us assume that we have sorted the sequence of yh’s in
ascending order, i.e. 0 � yh1 � yh2 � : : : � yh

jI j
< 1. In addition, we define the

sequence of gaps g

gj D
(
1C yh1 � yh

jI j
; for j D 1;

yhj � yhj�1 ; for j D 2; : : : ; jI j:

Then, for M 2 N the interval


1 �M�1#.r/; 1CM�1#.r/� with

#WRd ! R; r 7! #.r/ WD

j
jI j

2

k

X

kD1

 
kX

tD1
g�.t/

!�1
; (3)
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and � being a permutation of f1; : : : ; jI jg ordering the gaps 0 � g�.1/ � g�.2/ �
: : : � g�.jI j/ contains all eigenvalues of the matrix

.B.r;M //h;k2I D .KM.yk � yh//h;k2I :

Proof. We consider the sequence
�
g�.t/

�jI j
tD1. For g�.1/ D 0 we obtain at least one

pair k;h 2 I , h ¤ k with yh  yk .mod 1/. Accordingly, the matrix B.r;M /

contains at least two identical columns and thus is not of full rank. So, a unique
solution of B.r;M /x D b is not guaranteed. The smallest eigenvalue of the matrix
B.r;M / is zero. On the other hand, the corresponding upper bound M�1#.r/ of
the Gerschgorin circle radius of B.r;M / is infinite. Certainly, the interval Œ�1;1�
contains all eigenvalues of B.r;M /.

Now let us assume g�.1/ > 0. Obviously, the diagonal elements of the considered
matrices B.r;M / are all ones. Let � be an arbitrary eigenvalue of B.r;M /.
Following the Gerschgorin circle theorem, there exists at least one index j 2
f1; : : : ; jI jg with

j� � 1j �
jI jX

lD1I l¤j
jKM.yhj � yhl /j:

For x 2 R n Z we obtain

KM.x/ D 1

M

M�1X

jD0
e2� ijx D 1

M

e2� iMx � 1
e2� ix � 1 D

e� iMx

e� ix

sin�Mx

M sin�x
: (4)

Due to 2x � sin�x for x 2 .0; 1=2� we estimate

jKM.x/j D
ˇ
ˇ
ˇ
ˇ

sin�Mx

M sin�x

ˇ
ˇ
ˇ
ˇ �

1

jM sin�xj �
1

2Mx

for all x 2 .0; 1=2�. Moreover, we have jKM.x/j D jKM.�x/j for x 2 R.
We split the index set J D f1; : : : ; jI jg n fj g in the following two subsets

J1 D fl 2 J W 0 < yhj � yhl mod 1 � 1

2
g

and J2 D fl 2 J W 1
2
< yhj � yhl mod 1 < 1g:

This yields

jI jX

lD1I l¤j

jKM.yhj � yhl /j D
X

l2J1

jKM.yhj � yhl mod 1/j CX

l2J2

jKM.�yhj C yhl mod 1/j

� 1

2M

X

l2J1

1

yhj � yhl mod 1
C 1

2M

X

l2J2

1

yhl � yhj mod 1
:



Sampling Trigonometric Polynomials Along Generated Sets 445

Now, we estimate the differences yhj � yhl mod 1. In principle, we interpret the
index set J1 as the indices of the left neighbors of yhj . So, the distance of the nearest
neighbor on the left hand side to yhj is at least g�.1/. Clearly the second nearest
neighbor at the left hand side brings a distance of at least g�.1/ C g�.2/. In general
the k-th nearest neighbor to the left of yhj has a distance not less than

Pk
tD1 g�.t/

to yhj . The index set J2 can be interpreted as the index set of the right neighbors of
yhj and we determine the lower bounds on the distances in the same way as done
for the left neighbors. We obtain

jI jX

lD1I l¤j
jKM.yhj � yhl /j �

1

2M

jJ1jX

kD1

 
kX

tD1
g�.t/

!�1
C 1

2M

jJ2jX

kD1

 
kX

tD1
g�.t/

!�1
:

Using
Pk

tD1 g�.t/ �
Pr

tD1 g�.t/ for k � r we balance the two sums and hence

jI jX

lD1I l¤j
jKM.yhj � yhl /j �

1

M

j
jI j

2

k

X

kD1

 
kX

tD1
g�.t/

!�1
;

which proves the theorem. ut
Remark 1. In order to obtain the upper bound of the radii of all Gerschgorin circles
in Theorem 1, we estimated the absolute value of the kernelKM by a monotonically
non-increasing upper bound j2Mxj�1 in



0; 1

2

�
. Due to jKM.

t
M
/j D 0 < 1

j2t j D
j2M t

M
j�1, for t 2 Z nMZ, the upper bound and the absolute value of the kernel

KM possibly differ widely. In addition, we sorted the pairwise distances of the sorted
sequence

�
yhj

�
jD1;:::;jI j in a worst case scenario. Thus, we also have to expect some

differences between the estimation and the exact maximum Gerschgorin radius.
Altogether, we obtain an estimation of the maximum Gerschgorin radius which
eventually is much larger than the exact maximum Gerschgorin circle radius.

Corollary 1. With the notation from Theorem 1, #.r/ < 1, and C > 1, we
determine

M �.C / D
�
C C 1
C � 1#.r/

�
: (5)

The condition number of the matrix B.r;M �.C // is bounded by

1 � �.r;M �.C // � C:

Proof. Fixing M �.C / in (5) ensures

C � 1CM �.C /�1#.r/
1�M �.C /�1#.r/ � �.r;M

�.C // � 1;

as required. ut
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Algorithm 1 Computing#.r/ from (3)

Input: I frequency index set
r 2 R

d generating vector

#.r/ D 0

for j D 1; : : : ; jI j do
yj D hj � r mod 1

end for
in-place sort y in ascending order
g1 D 1C y1 � yjI j

for j D 2; : : : ; jI j do
gj D yj � yj�1

end for
in-place sort g in ascending order

for j D 1; : : : ;
j

jI j

2

k
do

#.r/ D #.r/C 1
gj

gjC1 D gjC1 C gj
end for

Output: #.r/

Our approach is to find generated sets �.r;M / with small condition numbers
�.r;M /. Obviously, the term #.r/ should be of our main interest here. The
functional # is the important term of the upper bound M�1#.r/ of the radii of all
Gerschgorin circles of the matrix B.r;M /. Note that#.r/ depends on the generating
vector r of the generated set�.r;M / but not onM . On the contrary, knowing#.r/
one can simply determine a suitable M �.C / guaranteeing the condition number
�.r;M �.C // � C , see (5).

Algorithm 1 computes the value of #.r/ for given I and r with a complexity of
O .jI j.log jI j C d//.

Another point of view is described by our approach as follows: Let us assume,
that we search for a generated set �.r;M / such that the condition number �.r;M /

of the matrix B.r;M / does not exceedC . We call the generating vector r suitable in
the sense of Theorem 1 if#.r/ <1, i.e. jY j D jI j. For each suitable r, Corollary 1
specifies an M �r .C / guaranteeing a condition number �.r;M �r .C // not larger than
C . So, minimizing the functional # directly reduces the cardinality M �r .C / of the
corresponding generated set for fixed C . This means that the theoretical number
of sampling nodes needed for the fast and stable reconstruction of the Fourier
coefficients .fk/k2I decreases.

Note that a simple lower bound on the functional# is given by

#.r/ � jI j

j
jI j

2

k

X

kD1
k�1; for all r 2 R

d : (6)
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We obtain equality, iff the sequence of .yh/h2I is an equispaced lattice on the one-
dimensional torus. In that case we can translate yh such that yh1 D 0 and apply an
equispaced FFT of length jI j to reconstruct all Fourier coefficients supported on I .

Example 2. Continuing Example 1, we obtain the following rounded results by
minimizing# using a nonlinear simplex search method:

r2;# D
�
0:14266632

0:40770614

�
and r5;# D

0

B
B
BB
B
@

0:24342553

0:42933779

0:05122878

0:88917104

0:94691925

1

C
C
CC
C
A

with

#.r2;#/ 	 113;324:3 and #.r5;#/ 	 161;500:5:
The corresponding cardinalities M2;#.10/ and M5;#.10/ of �.rs;#;Ms;#.10//

guaranteeing a condition number �.rs;#;Ms;#.10// D cond2.B.rs;#;Ms;#// of at
most ten are determined by

M2;#.10/ D 138;508 and M5;#.10/ D 197;390;

cf. (5). Of course, these Ms;#.10/ are simply based on an upper bound of the
Gerschgorin radii. We also computed the exact Gerschgorin radii numerically for
the generating vectors r2;# and r5;# and differentMs and obtain

M �2 D 14;989 and M �5 D 20;129
guaranteeing condition numbers of B.rs;#;M �s / smaller or equal ten. In fact, we get
condition numbers

�.rs;#;M �s / 	
(
2:1847; for s D 2;
2:1037; for s D 5:

Finally, we give the condition numbers of the problem of Example 1. We simply
took the generating vectors rs;# and computed the condition numbers of B.rs;#;M/

forM D 16;381 resulting in

�.rs;#;M/ 	
(
1:7548; for s D 2;
2:9223; for s D 5:

Obviously, these condition numbers are much smaller than those from Example 1,
where we minimized the condition numbers directly. Note that the minimization of
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the main term # of the upper bound of all Gerschgorin radii is much faster than the
direct minimization of the condition number �. ut

4 Numerical Examples

The numerical minimization of #.r/ returns minimizers r�, which are vectors of
rational numbers. So one can find a possibly huge NM , such that the generated set
�.r�; NM/ is a rank-1 lattice. With M < NM , one can interpret the generated set
�.r�;M / as the first M elements of the rank-1 lattice �.r�; NM/. In general we
obtainM � NM .

Our numerical examples use generating vectors r� found by minimizing #,
cf. (3). We used the nonlinear simplex search method fminsearch of the
Optimization ToolboxTM of MATLAB in version 7.14.0.739 (R2012a).

Using the rand function, we started the minimization at a randomly chosen
vector. Providing a diameter of the actual simplex smaller than 10�10 and differences
of the function values at the corners of the simplex smaller than 10�8jI j, we
terminated the minimization. Alternatively, we stopped the minimization after a
fixed number of function evaluations, even if these conditions are not fulfilled. In
order to compute the minimizers of Tables 1 and 2 we limited the number of function
evaluations to 3,000. In Table 3, we accepted at most 30,000 function evaluations.
The applied simplex search method finds only local minimizers. For each index set
I we computed 20 local minimizers of # and took as r� the local minimizer that
yields the smallest value #.r/ in order to avoid obtaining minimizers of relatively
large local minima.

Besides the computation of M �.C / D ˙
CC1
C�1#.r

�/
�

from (5) guaranteeing a
condition number smaller or equal C we computed exact maximum Gerschgorin
circle radii defined by

%.r�;M / D max
k2I

X

h2Infkg
jKM.yk � yh/j

for several M , where KM.yk � yh/ describes the elements of the matrix B.r�;M /

as defined in (2). The Gerschgorin circle theorem ensures that the condition
%.r�;M / � C�1

CC1 implies �.r�;M / � C .
For a fixed vector r� we define M �G .C / as the smallest power of 2 such that the

exact maximum Gerschgorin circle radius ensures a condition number not larger
than C ,

M �G .C / D min
n2N

�
2n W %.r�; 2n/ � C � 1

C C 1
�
:
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Moreover, we call ��G .M/ WD 1C%.r�;M/

1�%.r�;M/
the estimation of the condition number

of the matrix B.r�;M / based on the exact maximum Gerschgorin circle radius.
Certainly, we have to assume %.r�;M / < 1 to estimate the condition number
��.M/ WD �.r�;M / � ��G .M/. Otherwise, i.e. %.r�;M / � 1, we obtain 0 2
Œ1� %.r�;M /; 1C %.r�;M /� and so zero is a candidate for the smallest eigenvalue
of B.r�;M /. Consequently, ��G.M/ < 0 does not bound the condition number of
B.r�;M /.

Applying (4), the computational costs for calculating M �G .C / is bounded by
cjI j2 log2.M

�.C //, where c is independent of I and M �.C /. In general, this
computation is not necessary in order to obtain stable spatial discretizations, but
the costs for computing M �G .C / can be quickly compensated using the generated
set �.r�;M �G .C // instead of �.r�;M �.C // in practical applications. In particular
for a frequently used fixed index set I and generating vector r�, the generated
set �.r�;M �G .C // with cardinality M �G .C / < M �.C / saves sampling and
computational costs.

4.1 Weighted Hyperbolic Crosses

Tables 1 and 2 show some numerical examples for weighted hyperbolic crosses
H
d;�
N as frequency index sets I . In Table 1 we consider weights �a D

�
2�1

�
s2N,

refinement N D 32, and dimensions d from 2 up to 12 as parameters and
determine suitable generated sets for reconstructing trigonometric polynomials with
frequencies supported on I . Table 2 contains similar results for weights �b D
.3�1/s2N, refinement N D 48, and dimensions d up to 27. The parameters chosen
ensureHd;�b

48 � Hd;�a
32 . In detail, we obtain

H
d;�a
32 nHd;�b

48 �
(

k 2 Hd;�a
32 W kkk0 D

dX

sD1
.1 � ı0.ks// > 1

)

;

i.e. the hyperbolic crossHd;�b
48 is sparser than Hd;�a

32 in mixed indices only.
The first column of these tables shows the dimension d and the second column

the cardinality of the considered frequency index set Hd;�
N . We minimize # like

described above and obtain the resulting theoretical number of sampling points
M �.10/ needed to ensure a condition number of B.r�;M �.10// not larger than
ten. M �.10/ is listed in column 3. Fixing I and r�, in column 4 we present the
smallest power of 2 M �G .10/ guaranteeing that the exact maximum Gerschgorin
radius is not larger than 9

11
. This restriction ensures that even the condition number

of B.r�;M �G .10// is not larger than ten. In other words, sampling along the first
M �G .10/ multiples of the generating vector r� already guarantees a stable recon-
struction of all multivariate trigonometric polynomials with frequencies supported
on H

d;�
N . We specify the corresponding estimations of the condition numbers
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based on the maximum Gerschgorin radius labeled with ��G .M �G .10// in column 5.
Column 6 shows the corresponding exact condition numbers ��.M �G .10//.

Table 1 CardinalitiesM�.10/, M�

G .10/, andM��.10/ of generated sets generated by vectors r�

that are found by minimizing # for index sets I which are weighted hyperbolic crosses H
d;�a
32

with weights �a D .2�1/s2N and dimensions d D 2; : : : ; 12; additionally, the condition numbers
�� and upper bounds ��

G of the corresponding matrices B.r�;M�

G .10// and B.r�;M��.10//,
respectively.

d jHd;�a
32 j M�.10/ M�

G .10/ ��

G .M
�

G .10// ��.M�

G .10// M��.10/ ��

G .M
��.10// ��.M��.10//

2 145 2,216 1,024 2.8466 1.4540 370 11.9876 2.0705

3 441 9,709 4,096 2.8441 1.2811 1,408 �7.1782 1.8418

4 1,105 48,328 8,192 8.1211 1.9993 6,291 �15.0278 2.1016

5 2,433 151,727 32,768 3.0456 1.4690 18,119 4.5528 1.4570

6 4,865 471,958 65,536 6.1468 1.8703 52,492 4.3597 1.6842

7 9,017 1,115,494 131,072 5.2118 1.9046 116,850 7.1495 1.8891

8 15,713 2,538,107 262,144 4.3721 1.7571 252,533 4.1645 1.7939

9 26,017 6,256,440 524,288 5.5048 2.1663 595,180 3.2571 1.7159

10 41,265 15,910,747 2,097,152 3.1616 1.7769 1,454,830 4.1586 1.8770

11 63,097 29,880,128 2,097,152 5.7801 2.5378 2,637,334 2.9012 1.8379

12 93,489 46,057,959 4,194,304 4.4024 1.7782 4,065,252 4.0095 1.7426

Regarding both tables, one observes that the values of M �G .10/ behave like

M �G .10/ �M ��.10/ WD

6
6
6
66
4M

�.10/

0

B
@

j
jI j

2

k

X

kD1
k�1

1

C
A

�177
7
77
5 :

We listed the values ofM ��.10/. The equispaced case discussed in the context of (6)
illustrates that this observation is being caused by the construction of the functional
# from (3). We also computed the exact maximum Gerschgorin circle radii
%.r�;M ��.10//, the estimator of the condition number ��G .M ��.10//, and the exact
condition numbers ��.M ��.10// of the corresponding matrices B.r�;M ��.10//.
One obtains a few exceptions only where the maximum Gerschgorin circle radii
%.r�;M ��.10// strongly exceeds the bound 9

11
that guarantees an upper bound

��G .M ��.10// of the condition number ��.M ��.10// smaller or equal ten. Never-
theless, all exact condition numbers ��.M ��.10// of the matrices B.r�;M ��.10//
do not exceed three in Table 1 and two in Table 2, evidently.

4.2 Randomly Chosen Index Sets

As described above, our approach finds stable spatial discretizations of trigono-
metric polynomials with frequencies supported on arbitrary known index sets I .
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Table 2 CardinalitiesM�.10/, M�

G .10/, andM��.10/ of generated sets generated by vectors r�

that are found by minimizing # for index sets I which are weighted hyperbolic crosses H
d;�b
48

with weights �b D .3�1/s2N and dimensions d D 2; : : : ; 27; additionally, the condition numbers
�� and upper bounds ��

G of the corresponding matrices B.r�;M�

G .10// and B.r�;M��.10//,
respectively.

d jHd;�b
48 j M�.10/ M�

G .10/ ��

G .M
�

G .10// ��.M�

G .10// M��.10/ ��

G .M
��.10// ��.M��.10//

2 105 1,878 512 5.6271 1.8467 354 8.9423 1.7548

3 225 5,916 2,048 2.6898 1.4053 1,006 31.1502 1.9347

4 401 16,432 4,096 5.4966 1.9237 2,588 5.0743 1.4437

5 641 34,464 8,192 3.8947 1.7342 5,110 2.6683 1.2588

6 953 91,526 16,384 4.5491 1.9292 12,912 3.1832 1.6643

7 1,345 120,893 16,384 5.3483 1.8287 16,351 5.3015 1.8288

8 1,825 244,266 32,768 3.1868 1.7918 31,856 3.6431 1.7963

9 2,401 400,917 65,536 2.1847 1.5143 50,639 3.1209 1.6695

10 3,081 595,978 65,536 3.3692 1.8932 73,163 3.0289 1.7584

11 3,873 960,647 131,072 2.3670 1.5973 114,946 2.3611 1.5942

12 4,785 1,265,910 131,072 3.2820 1.9410 147,990 2.3929 1.6242

13 5,825 1,875,694 262,144 2.6817 1.7231 214,662 2.4461 1.5622

14 7,001 2,135,009 262,144 2.9406 1.7604 239,603 2.9177 1.7633

15 8,321 3,310,334 262,144 5.2203 2.8743 364,835 2.7691 1.7001

16 9,793 4,831,312 524,288 2.6954 1.6401 523,570 2.6728 1.6412

17 11,425 6,156,192 1,048,576 3.0616 1.8571 656,735 2.4556 1.7802

18 13,225 7,735,764 1,048,576 2.9312 1.8649 813,162 2.5909 1.8368

19 15,201 9,885,874 1,048,576 2.0752 1.6079 1,024,862 2.1632 1.5777

20 17,361 11,784,210 1,048,576 2.8501 2.0048 1,205,779 2.2593 1.6075

21 19,713 16,342,704 2,097,152 2.8862 1.8002 1,651,639 2.0994 1.5800

22 22,265 18,916,637 2,097,152 1.9674 1.5404 1,889,453 2.0036 1.5755

23 25,025 27,027,375 2,097,152 4.1966 2.7862 2,669,617 2.1054 1.6669

24 28,001 30,693,609 4,194,304 2.8452 1.8359 2,999,686 1.8831 1.5614

25 31,201 37,040,314 4,194,304 1.8965 1.5780 3,583,403 1.9974 1.6094

26 34,633 41,051,986 4,194,304 2.7275 1.8536 3,933,160 2.8633 1.8562

27 38,305 46,404,278 4,194,304 2.0293 1.6813 4,328,544 2.0485 1.5950

So, we consider index sets I randomly chosen from the d -dimensional cube
Œ�128; 128�d � Z

d in Table 3. It presents results for several cardinalities of the
index set I and dimensions d which are powers of 2. The content of each column is
as described above. To achieve these results we increased the maximum number of
the allowed function evaluations. In higher dimensions, this seems to be necessary
to suitably decrease the diameter of the simplex in the used optimization method.
For comparability we chose this parameter independent on the dimension d . So we
allowed at most 30,000 function evaluations to minimize#.r/.

We see that in principle the cardinalitiesM �.10/,M �G .10/, andM ��.10/mildly
decrease with growing dimensions. In other words, an increasing number of degrees
of freedom of the functional# results in a lower minimal value.

Furthermore, we observe a growing oversampling with increasing cardinality of
the index set I . For a doubled cardinality of I , the values of M �.10/, M �G .10/,
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and M ��.10/ increase approximately fourfold. Thus, the cardinalities of the found
generated sets grow nearly quadratical in the cardinality of the index set I . Taking
into account some modifications of the results of Theorem 3.2 in [6], we also
expect this behavior for rank-1 lattices which bring a full column rank of the
corresponding Fourier matrix A. Accordingly, we expect to evaluate and reconstruct
the multivariate trigonometric polynomial with frequencies supported on I with
a complexity of O

�jI j2 log jI j C .j log "j C d/jI j�. Precomputing the set Y and
saving the necessarily bijective mapping I ! Œ0; 1/ W h 7! h � r .mod 1/ we reduce
the complexity to O

�jI j2 log jI j C j log "jjI j�, which is independent of the spatial
dimension d .

Table 3 CardinalitiesM�.10/, M�

G .10/, andM��.10/ of generated sets generated by vectors r�

that are found by minimizing # for index sets I of dimensions d D 2n; n D 1; : : : ; 8; elements
of I taken from Œ�128; 128�d \ Z

d uniformly at random; additionally, condition numbers �� and
upper bounds ��

G of the corresponding matrices B.r�;M�

G .10// and B.r�;M��.10//, respectively.

d jI j M�.10/ M�

G .10/ ��

G .M
�

G .10// ��.M�

G .10// M��.10/ ��

G .M
��.10// ��.M��.10//

2 750 195,091 32,768 1.8286 1.4154 29,988 2.1015 1.6151

4 750 196,928 32,768 2.8119 1.9440 30,271 3.9359 2.2560

8 750 166,797 32,768 1.9991 1.5679 25,639 2.2685 1.7329

16 750 144,334 16,384 7.0620 2.8097 22,186 2.5448 1.7345

32 750 104,756 16,384 2.8085 1.6086 16,102 2.6035 1.6000

64 750 61,856 8,192 7.7925 2.0178 9,508 5.9218 1.8894

128 750 62,873 8,192 8.3523 2.1612 9,664 6.1158 1.9719

256 750 54,611 8,192 5.3793 1.8811 8,394 5.3329 1.9067

2 1,500 412,137 65,536 1.7069 1.2490 57,257 1.8188 1.3153

4 1,500 851,612 131,072 2.3944 1.8503 118,313 3.6857 2.4721

8 1,500 647,439 65,536 5.0975 3.2850 89,947 3.4072 1.8601

16 1,500 619,395 65,536 6.2502 3.2448 86,051 2.2943 1.7509

32 1,500 411,622 65,536 2.0989 1.5788 57,185 2.6901 1.7571

64 1,500 324,658 32,768 6.7930 2.6120 45,104 2.5211 1.7025

128 1,500 254,375 32,768 3.2401 1.8037 35,339 2.6962 1.8009

256 1,500 226,842 32,768 3.5078 1.8600 31,514 3.4103 1.8070

2 3,000 547,361 65,536 1.9555 1.2360 69,367 2.0029 1.2113

4 3,000 3,265,505 262,144 8.4853 6.5363 413,838 2.6677 2.4452

8 3,000 3,078,366 262,144 8.7348 4.9750 390,122 2.4379 2.0957

16 3,000 2,434,510 262,144 3.0088 2.6453 308,526 2.0252 1.8461

32 3,000 1,675,774 262,144 1.9351 1.6033 212,371 2.2124 1.6160

64 3,000 1,213,198 131,072 5.4684 2.8743 153,749 2.5438 1.7883

128 3,000 1,034,141 131,072 2.3803 1.6471 131,057 2.3964 1.6471

256 3,000 805,916 131,072 3.1876 1.8898 102,134 2.7344 1.7359

2 6,000 674,627 65,536 6.0235 1.6905 78,593 6.9360 1.5907

4 6,000 13,250,802 1,048,576 7.2950 6.1781 1,543,707 2.9009 2.6842

8 6,000 11,501,870 2,097,152 1.8113 1.5978 1,339,958 4.3485 2.9201

16 6,000 10,191,192 1,048,576 3.2384 2.8720 1,187,265 2.3771 2.1829

32 6,000 7,573,185 1,048,576 2.3761 1.7520 882,269 2.1095 1.8821

64 6,000 5,661,152 524,288 6.4483 3.8637 659,519 2.2256 1.7379

128 6,000 3,777,565 524,288 2.2653 1.6630 440,083 2.1709 1.6788

256 6,000 3,311,017 524,288 2.6142 1.8378 385,730 2.3017 1.6661
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5 Summary

The concept of generated sets provides mildly oversampled and stable spatial
discretizations for multivariate trigonometric polynomials with frequencies sup-
ported on index sets I of reasonable cardinalities. In addition, the NFFT and some
simple precomputations allow for the fast evaluation of multivariate trigonometric
polynomials f at all sampling nodes of generated sets �.r;M /. Assuming the
condition number cond2.B.r;M // equal or near one, the conjugate gradient method
using the NFFT and its adjoint provide the fast, stable, and unique reconstruction
of f from samples along the generated set �.r;M /. Our approach imposes only
one important condition on the generating vector r 2 R

d : Successive elements of
the one-dimensional sampling scheme Y D fk � r mod 1 W k 2 I g should have
relatively large distances.
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Bayesian Approaches to the Design of Markov
Chain Monte Carlo Samplers

Jonathan M. Keith and Christian M. Davey

Abstract In the decades since Markov chain Monte Carlo methods were first
introduced, they have revolutionised Bayesian approaches to statistical inference.
Each new advance in MCMC methodology produces near immediate benefits
for Bayesian practitioners, expanding the range of problems they can feasibly
solve. In this paper, we explore ways in which Bayesian approaches can return
something of the debt owed to MCMC, by using explicitly Bayesian concepts to
aid in the design of MCMC samplers. The art of efficient MCMC sampling lies
in designing a Markov process that (a) has the required limiting distribution, (b)
has good convergence and mixing properties and (c) can be implemented in a
computationally efficient manner. In this paper, we explore the idea that the selection
of an appropriate process, and in particular the tuning of the parameters of the
process to achieve the above goals, can be regarded as a problem of estimation.
As such, it is amenable to a conventional Bayesian approach, in which a prior
distribution for optimal parameters of the sampler is specified, data relevant to
sampler performance is obtained and a posterior distribution for optimal parameters
is formed. Sampling from this posterior distribution can then be incorporated into
the MCMC sampler to produce an adaptive method. We present a new MCMC
algorithm for Bayesian adaptive Metropolis-Hasting sampling (BAMS), using an
explicitly Bayesian inference to update the proposal distribution. We show that
author Keith’s earlier Bayesian adaptive independence sampler (BAIS) and a
new Bayesian adaptive random walk sampler (BARS) emerge as instances. More
important than either of these instances, BAMS provides a general framework
within which to explore adaptive schemes that are guaranteed to converge to the
required limiting distribution.
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1 Introduction

The goal of this paper is to initiate the study of a new class of adaptive Markov
chain Monte Carlo (MCMC) techniques, which we refer to as Bayesian adaptive
Metropolis-Hastings sampling (BAMS). Like any adaptive MCMC technique, the
goal is to progressively improve the sampling procedure, as one learns more about
the target distribution f .x/ (which prior to sampling is considered a ‘black box’).
Reviews of the extensive literature on existing rigorously justified adaptive MCMC
methods are available elsewhere [1, 2, 4, 11].

The novelty of the approach presented here is to cast the learning procedure
as a problem of Bayesian inference. In other words, the approach considers the
parameters of the adaptive procedure (and perhaps even the choice of adaptive pro-
cedure itself) as unknowns to be inferred from data consisting of a sample of points
.x1; x2; : : :/ and evaluations of the target density at those points .f .x1/; f .x2/; : : :/.

In earlier work [8], author Keith presented the first algorithm of the general
type to be developed here. This algorithm involved multiple parallel Markov
chains, each implementing an independence sampler of Metropolis-Hastings type,
with a common proposal distribution. The parameters of the proposal distribution
were adaptively estimated using Bayesian inference. In this section, we review
Metropolis-Hastings samplers and the Bayesian adaptive independence sampler
(BAIS) before presenting a new generalisation.

The paper is structured as follows. Section 1.1 recapitulates the well known
Metropolis-Hastings algorithm, using a non-standard framework that will be nec-
essary for constructing the generalisation. Section 1.2 revises the Bayesian adaptive
independence sampler. In Sect. 2.1, BAIS is generalised to produce the main result
of this paper, a new Bayesian adaptive Metropolis-Hasting sampler. In Sect. 2.2, we
briefly show that BAIS is an instance of BAMS, and in Sect. 2.3, we present a new
instance of BAMS: a Bayesian adaptive random walk sampler (BARS). A simple
example illustrating the use of BARS is presented in Sect. 3. Finally, in Sect. 4,
some directions for further research are discussed.

1.1 Metropolis-Hastings Sampling

A major class of MCMC method is the Metropolis-Hastings algorithm [5, 9]. The
algorithm is based on an arbitrary proposal density that is used to generate potential
new values which are then either accepted or rejected. Let X be the target space
from which elements are to be sampled and let f .x/ be the density of the target
distribution, defined over X . Let g.yjx/ be the proposal density, which determines
how the proposed new element y is selected when the current element is x. In what
follows, it will be convenient to describe the Metropolis-Hastings sampler in a non-
standard way, using a construction described in Keith et al. [7]. A Markov chain is
constructed on the space X �X with the limiting density
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h.x; y/ D f .x/g.yjx/:

Note that the marginal density of x is the target distribution f , so the required
sample is obtained by sampling from h and discarding the y values. The required
Markov chain is generated by the following algorithm.

Algorithm 1 (Metropolis-Hastings). Given initial values .x.0/; y.0//, set t WD 1

and iterate the following:

1. Draw y0 from h.yjx.t�1// D g.yjx.t�1//
2. Draw u uniformly and randomly from the interval .0; 1/ and set

.x.t/; y.t// D
�
.y0; x.t�1// if u < ˛.x.t�1/; y0/
.x.t�1/; y0/ otherwise

where

˛.x; y/ D min

�
1;
h.y; x/

h.x; y/

�
:

The distribution h.x; y/ is stationary with respect to this process. To see this, note
first that the transition in Step 1 leaves the marginal distribution of x unchanged, and
trivially preserves the conditional distribution h.yjx.t�1//. Moreover, h satisfies the
detailed balance equations with respect to the transition function implied by Step 2.
To see this, the transition function can be defined as follows:

R..x; y/; .x0; y0// D
8
<

:

˛.x; y/ if .x0; y0/ D .y; x/
1 � ˛.x; y/ if .x0; y0/ D .x; y/
0 otherwise.

Note that h.x; y/˛.x; y/ D h.y; x/˛.y; x/ and hence

h.x; y/R..x; y/; .x0; y0// D h.x0; y0/R..x0; y0/; .x; y//

for all .x; y/ and .x0; y0/. Stationarity of h follows by integrating both sides of the
detailed balance equations over .x; y/.

Two widely used special cases of the Metropolis-Hastings sampler are the
independence sampler and the random walk sampler. In the independence sampler,
the proposal density h.yjx/ is independent of x. The proposal density can thus be
written h.y/ and can be described as a global proposal mechanism. In practice, h is
chosen to be a distribution that is easy to sample, yet as similar as possible to the
target distribution. In the random walk sampler, h.yjx/ is a distribution centred at
x, and can therefore be described as a local proposal mechanism. If the difference
y � x is defined, h is a function of y � x, and is a density centred at 0.



458 J.M. Keith and C.M. Davey

1.2 BAIS

The first algorithm to employ a specifically Bayesian strategy for adaptive purposes
in MCMC was the Bayesian adaptive independence sampler of Keith et al. [8],
which uses a Bayesian approach to infer a parametric approximation to the
target distribution f .x/ based on data obtained from N parallel chains. This
approximation is then used as the new proposal distribution for each of theN chains,
in the manner of Metropolis-Hastings independence samplers. The algorithm
cycles between updating each individual chain and updating the parameter � of
the proposal distribution.

Consider a target density f defined on<d . BAIS involves inferring a multivariate
normal approximation to f , with mean� and covariance matrix˙ . Put � D .�;˙/.
Given a sample x D .x1; : : : ; xN / and assuming a non-informative prior, the
resulting posterior distribution for � is the product of a multivariate normal density
and an inverse Wishart density with N � 1 degrees of freedom:

p.� jx/ D Norm.�jx;˙=N/ � InvWN�1.˙ jS/ (1)

where

x D 1

N

NX

iD1
xn (2)

and

S D
NX

iD1
.xn � x/.xn � x/T : (3)

This estimate of � is then used to construct a new proposal density Norm.yj�/.
The BAIS algorithm can now be expressed as follows.

Algorithm 2 (BAIS). Given initial values .x.0/1 ; : : : ; x
.0/
N / and �.0/ D .�.0/; ˙.0//,

set t WD 1 and iterate the following:

1. Draw �.t/ from p.� jx.t�1//.
2. For each i D 1; : : : ; N , draw y0 from Norm.yj�.t// and draw u uniformly and

randomly from the interval .0; 1/. Set x0 D .x
.t/
1 ; : : : ; x

.t/
i�1; x

.t�1/
i ; : : : ; x

.t�1/
N /

and set:

x
.t/
i D

(
y0 if u < ˛i.x0; y0; � .t//
x
.t�1/
i otherwise

where

˛i .x; y; �/ D min

�
1;
f .y/Norm.xi j�/p.� jx�/
f .xi /Norm.yj�/p.� jx/

�

and x� is x with xi replaced by y.
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Note that ˛i .x; y; �/ is not the standard Metropolis-Hastings acceptance ratio,
because the parameter � has been augmented to the search space, so that the
augmented target distribution is

p.� jx/
NY

iD1
f .xi /:

BAIS can therefore be considered an auxiliary variable method [6] (as can the
new BAMS and BARS algorithms described below). This augmentation is crucial,
because it incorporates the adaptive parameter into the Markov chain, ensuring
convergence to the target distribution. This solves a difficult problem for adaptive
procedures: when the parameters of the process are constantly changing, there is no
guarantee that there is a unique stationary distribution, or even that the chain will
converge. Many adaptive techniques solve this problem by terminating the adaptive
part of the algorithm once some objective has been achieved, so that the actual
sampling of the target distribution is non-adaptive. The augmentation technique
allows the adaptation to continue indefinitely.

Below we use a similar technique to adaptively estimate the scale parameter of
a random walk Metropolis sampler. Although the justification of the adaptive part
of the procedure is slightly more complex than for BAIS, the resulting algorithm is
simpler in that the acceptance ratios do not contain an adjustment factor dependent
on the sampling procedure.

2 Methods

In this section we introduce a general framework for Bayesian adaptive Metropolis-
Hastings sampling, applicable to both global and local proposal mechanisms. We
also show that both BAIS and a new Bayesian adaptive random walk sampler
emerge as instances.

2.1 Bayesian Adaptive Metropolis-Hastings Sampling

First, we generalise BAIS to provide an adaptive scheme for a parallel implementa-
tion of any Metropolis-Hastings sampler, including both independence and random
walk samplers. The generalisation requires that the following objects be defined:

1. A performance vector � containing one or more parameters relevant to sampler
performance,

2. A Bayesian model, encapsulated as a posterior distributionp.� jx/, for estimating
the performance vector of the sampler given a sample x D .x1; : : : ; xN /, and

3. A proposal map � assigning to each performance vector � a corresponding
Metropolis-Hastings proposal distribution �� .yjx/.
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The term performance vector coined above should be interpreted broadly. In
BAIS, the performance vector consists of the mean and covariance matrix of the
multivariate normal model that is used as the proposal distribution. In general, the
performance vector is merely a set of parameters to be estimated based on a sample,
the values of which will be used to select the proposal distribution. The term is used
to indicate that these parameters are estimated for the purpose of improving sampler
performance, and may include some measure of sampler performance, or model
relating proposal to performance.

As in BAIS, N parallel sampling chains will be constructed. Each of these will
involve generating pairs .xi ; yi / 2 X �X in the manner of Sect. 1.1, so that the
limiting distribution of xi is the target distribution. A parameter chain will also be
constructed, and will involve sampling � from the parameter space�. The combined
chain is thus constructed on the space:

.X �X /N ��

such that the density of the limiting distribution is:

h.x; y; �/ D f .x/p.� jx/�.yjx; �/

where x D .x1; : : : ; xN /, y D .y1; : : : ; yN /, f .x/ D QN
iD1 f .xi / and

�.yjx; �/ D
NY

iD1
��.yi jxi /:

It is immediately clear that this is the density of a true distribution.
A Markov chain with the required limiting distribution h.x; y; �/ is generated by

the following algorithm.

Algorithm 3 (BAMS). Given initial values .x.0/; y.0/; � .0//, set t WD 1 and iterate
the following:

1. Draw .y0; � .t// from h.y; � jx.t�1// by

(a) Drawing �.t/ from p.� jx.t�1//
(b) Drawing y0 from �.yjx.t�1/; � .t//

2. For each i D 1; : : : ; N , draw u uniformly and randomly from the interval .0; 1/,
set x0 D .x.t/1 ; : : : ; x.t/i�1; x.t�1/i ; : : : ; x

.t�1/
N / and set

.x
.t/
i ; y

.t/
i / D

(
.y0i ; x

.t�1/
i / if u < ˛i .x0; y0; � .t//

.x
.t�1/
i ; y0i / otherwise

where

˛i .x; y; �/ D min

�
1;
h.x�; y�; �/
h.x; y; �/

�
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and x� and y� are x and y with xi and yi swapped.

The distribution h.x; y; �/ is stationary with respect to this process. To see
this, note first that the transition in Step 1 leaves the marginal distribution of
x unchanged, and trivially preserves the conditional distribution h.y; � jx.t�1//.
Moreover, h satisfies the detailed balance equations with respect to the transitions
in Step 2, that is

h.x; y; �/˛i .x; y; �/ D h.x�; y�; �/˛i .x�; y�; �/

and hence h is stationary with respect to these transitions also.
Note also that since x� and y� differ from x and y in only one coordinate,

˛i .x; y; �/ simplifies to:

˛i .x; yi ; �/ D min

�
1;
f .yi /p.� jx�/�� .xi jyi /
f .xi /p.� jx/�� .yi jxi /

�
: (4)

2.2 BAIS as an Instance of BAMS

BAIS is a straightforward instance of the more general BAMS construction. As
noted above, the parameter vector in BAIS consists of the mean vector and
covariance matrix, that is � D .�;˙/. The Bayesian model for estimating the per-
formance vector is the multivariate normal model discussed in Sect. 1.2, and results
in the posterior distribution p.� jx/ given by Eq. 1. The proposal map is given by:

�� .yjx/ D Norm.yj�;˙/:

Note that the proposal is independent of x, as it should be for an independence
sampler.

The values y0 drawn for each i in Step 2 of Algorithm BAIS can instead be
drawn at Step 1 to give a vector y0, as in Algorithm BAMS. The acceptance ratio in
Step 2 of Algorithm BAIS is just Eq. 4 with the multivariate normal proposal map
defined above. It remains only to note that accepting y0 in Step 2 of Algorithm BAIS
is equivalent to swapping x.t�1/i with y0i in Step 2 of Algorithm BAMS, whereas
rejecting y0 is equivalent to not swapping.

2.3 A Random Walk Instance of BAMS

It is now relatively easy to construct a random walk sampler with an adaptive
proposal distribution within the BAMS framework. Consider a target distribution
f defined on <d . Let the random walk proposal distribution be the multivariate
normal distribution Norm.yjx;˙ 0/ centred on the current sample x 2 <d and
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with covariance matrix ˙ 0. The covariance matrix ˙ 0 can be adapted to improve
sampler performance. Based on the investigations of Gelman et al. [3], we set
˙ 0 D .2:4=pd/2˙ where˙ is a covariance matrix for a multivariate normal model
of the target distribution, to be estimated based on a sample. Thus � D ˙ is the
performance vector, and the proposal map is defined by:

�� .yjx/ D Norm.yjx; .2:4=
p
d/2˙/:

The posterior distribution for˙ is obtained by integrating Eq. 1 over � to obtain:

p.˙ jx/ D InvWN�1.˙ jS/

where S is given by Equations 2 and 3. A Bayesian adaptive random walk sampler
can thus be constructed as follows:

Algorithm 4 (BARS). Given initial values .x.0/1 ; : : : ; x
.0/
N / and ˙.0/, set t WD 1

and iterate the following:

1. Draw ˙.t/ from p.˙ jx.t�1// and set ˙ 0 D .2:4=pd/2˙.t/.
2. For each i D 1; : : : ; N , draw y0 from Norm.yjx.t�1/i ; ˙ 0/ and draw u uniformly

and randomly from the interval .0; 1/. Set x0 D .x.t/1 ; : : : ; x.t/i�1; x.t�1/i ; : : : ; x
.t�1/
N /

and set:

x
.t/
i D

(
y0 if u < ˛i.x0; y0; ˙.t//

x
.t�1/
i otherwise

where

˛i .x; y;˙/ D min

�
1;
f .y/p.˙ jx�/
f .xi /p.˙ jx/

�

and x� is x with xi replaced by y.

Note that the proposal map cancels from the acceptance ratio, because in this
case �� .yjx/ is symmetric in x and y.

3 A Worked Example: Sampling from a Multimodal
Distribution

To illustrate implementation of the BARS algorithm we include a simple example
in which we sample from a distribution with multiple modes (for examples
implementing BAIS see [8]).

The target density is given as follows:

f .x/ / e�x2=18 sin2.x/: (5)
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This density is somewhat challenging for an adaptive random walk sampler,
which has to avoid the pitfall of tuning to the scale of an individual mode. Ideally the
algorithm should tune to the scale of the envelope function e�x2=18, which resembles
a normal density with variance 9.

We assume a univariate normal proposal distribution, with variance .2:4/2� , and
we centre the distribution of the proposed value for each sampling chain, yi , on the
current value of that chain xi , giving us the following form:

p.yi j xi ; �/ D 1

2:4
p
2��

exp

�
�1
2

.yi � xi /2
.2:4/2�



The factor of 2.4 is included to optimise the jumping kernel, as suggested by [3].
The parameter to be adapted in this example is the variance � of a normal model

fitted to the current vector of states of the chains, x D .x1; : : : ; xN /. This is updated
by sampling from an Inverse-Gamma distribution:

� j x � Inv�� .
; !/

where the shape, 
, and scale, !, are given by:


 D ˛0 C N

2

! D 1

2

"

C �A
�
B

2A

�2#

Here

A D 1

�
CN

B D �2
 
ı

�
C

NX

iD1
xi

!

C D ı2

�
C 2ˇ0 C

NX

iD1
x2i

for N sampling chains and for prior shape ˛0 and prior scale ˇ0 of the (gamma)
distribution of � . Here, ı is the mean and �� is the variance of the prior distribution
for the fitted mean. In our simulation ˛0, ˇ0 and � were all taken to be 1 and ı was
taken to be 0.

Using the BARS algorithm, 100 sampling chains were updated, followed by the
parameter chain for � . This was repeated for 10,000 iterations, with the first 5,000
discarded. Figure 1 shows a density plot for the remaining 5,000 samples from each
of the sampling chains, fitted using the statistical computing package, R [10]. As
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Fig. 1 Density plot of the samples produced using BARS for the target distribution given in
Eq. (5). The solid curve is the estimated density plot of the samples and the dashed curve is the
normalised theoretical density plot of the target distribution.

a density was calculated from the samples the theoretical curve was normalised
(divided by the normalising constant 3.75994). This allows a more appropriate
comparison between theory and observation. Convergence of the sampling chains
was confirmed by a graphical check of the time series plots.

Figure 1 was plotted using 10,000 points per curve, with the same x values for
both the density plot of the samples and the theoretical curve. The sum of squared
differences between 10,000 points on the theoretical curve and the corresponding
ones on the density plot of the samples was calculated to be 0.07568542. This is less
than a 0.00001 average difference per pair of points, indicating a good agreement
between theory and samples. Most of the difference occurs at peaks and troughs
in the function, with larger differences occurring for sharper peaks and troughs.
This may be due to the density fitting algorithm used by R rather than any defect
in the sample. It should also be noted that the normalising constant used to scale
the theoretical curve was a numerical approximation, calculated using R’s built-in
function integration, with an absolute error of less than 5 � 10�6.

The posterior mean estimate of � was 8.955, based on samples from the last
5,000 iterations. This is close to the variance of 9 relevant to the envelope function
mentioned above, indicating that the algorithm has tuned to the appropriate scale.

This simple example is intended only to clarify the proposed algorithm. It is
not our intention in this paper to present a state-of-the-art algorithm for real-
world applications; rather, our focus is on developing a broad framework for



Bayesian MCMC Design 465

Bayesian adaptive sampling, within which many practical samplers can in future
be investigated.

4 Future Directions

We have presented a new algorithm for Bayesian adaptive Metropolis-Hastings
sampling. The algorithm involves three almost arbitrary objects: the performance
vector, a Bayesian model relating the performance vector to a sample, and a proposal
map. Convergence of the Markov chain implied by Algorithm BAMS to the required
limiting distribution is guaranteed for any choice of these three objects, provided the
chain is irreducible and aperiodic. However, it is not guaranteed that an arbitrary
choice of these objects will result in an efficient sampler, or even in a sampler
that adapts to improve performance. Identifying appropriate choices for these three
objects is thus a significant direction for future research. What we have achieved
here is to provide a broad framework that guarantees convergence and within which
many adaptive schemes can be investigated.

It may also be difficult to sample the performance vector, so further work
needs to be done in this area to determine when it is possible. In some cases
approximations may be required to the underlying posterior distributions of the
performance vector. However, complicated supports may make this difficult and
further research into finding suitable approximations is required. Further work is
also required to determine appropriate proposal distributions for specific cases.

As with all Markov chain Monte Carlo algorithms, it will be important to study
how the variables of the method affect performance. In the case of algorithms that
fit within the proposed framework, key variables are: (a) the number of sampling
chains, (b) the length of each chain (run time) (c) the dimension of the target space
and (d) the rate at which the algorithm adapts.

So far we have described only two instances of BAMS: Algorithms BAIS
and BARS for independence and random walk samplers in <d respectively. It
should be noted that these two instances scarcely begin to exploit the potential
of the BAMS framework. For one thing, they are defined only on <d , whereas
BAMS is defined for an arbitrary target space X , which might be combinatorial in
nature. More importantly, both BAIS and BARS involve a very simple performance
vector, estimated using a multivariate normal model of the target distribution. Other,
more general methods of approximating the target distribution could be used, and in
fact approximating the target distribution is not an essential element of BAMS. We
envisage that a great many alternative methods for quantifying sampler performance
and relating it to tuneable parameters are possible within the BAMS framework.
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Deterministic Consistent Density Estimation
for Light Transport Simulation

Alexander Keller and Nikolaus Binder

Abstract Quasi-Monte Carlo methods often are more efficient than Monte Carlo
methods, mainly, because deterministic low discrepancy sequences are more uni-
formly distributed than independent random numbers ever can be. So far, tensor
product quasi-Monte Carlo techniques have been the only deterministic approach to
consistent density estimation. By avoiding the repeated computation of identical
information, which is intrinsic to the tensor product approach, a more efficient
quasi-Monte Carlo method is derived. Its analysis relies on the properties of .0; 1/-
sequences, provides new insights, and generalizes previous approaches to light
transport simulation.

1 Introduction

Image synthesis comprises of computing functionals of the solution of a Fredholm
integral equation of the second kind, which models light transport. Except for
academic problems, no analytic solutions are available for any meaningful practical
application. Therefore and due to high dimensionality and discontinuities of the
functions involved, numerical algorithms average the contribution of transport paths
sampled from the space of all possible light transport paths.

Monte Carlo methods [30] generate such samples from random numbers, which
on a computer are simulated by pseudo-random number generators. Obviously,
independence and unpredictability can only be mimicked, because pseudo-random
number generators in fact are implemented as deterministic algorithms.

Quasi-Monte Carlo methods [22] are the deterministic counterpart of Monte
Carlo methods. They often improve convergence speed as compared to Monte Carlo
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methods, because omitting the simulation of independence and unpredictability
allows for a much better sampling. In addition, quasi-Monte Carlo methods have
the desirable properties of simple parallelization [6, 15] and strict reproducibility.

In image synthesis, the aforementioned functionals correspond to measurements
of transported light and can be formulated as integrals of a measurement contribu-
tion function f .x; y/, which determines the light transported along a light transport
path that is determined by x and y. As illustrated in Fig. 3, such paths may result
from connecting a path segment from a sink determined by x to a path segment
originating from a source as determined by y.

Often it is efficient to connect multiple path segments from a source to a single
path segment from the sink and vice versa. For this setting, a new quasi-Monte Carlo
algorithm is derived in Sect. 2 and applied to image synthesis in Sect. 3. The new
algorithm is especially useful in difficult settings of light transport (see Fig. 4) and
improves the efficiency of a first approach to consistent deterministic light transport
simulation [16] by overcoming the necessity of a tensor product approach in order
to guarantee consistency.

2 Consistent Blockwise Quasi-Monte Carlo Methods

Formulated in an abstract way, a measurement (as described above) is an integral

Z

Œ0;1/s1

Z

Œ0;1/s2
f .x; y/ dydx D lim

n!1
1

n

n�1X

iD0

1

bm

bm�1X

kD0
f .xi ; ybmbi=bmcCk/; (1)

where x represents the s1 dimensions of a sink path, y specifies the trajectory
of a source path in s2 dimensions, and f .x; y/ is the measurement contribution
resulting from the connection of both path segments. Instead of considering the
interaction of each source path with each sink path similar to the tensor product
enumeration scheme in [16], the case bm < 1 results in a simpler and more
efficient algorithm: As illustrated in Fig. 2, the algorithm averages the measurement
contributions of contiguous blocks of bm vectors .xi ; yi / from one low discrepancy
sequence, where within each block with integer index bi=bmc each xi is combined
with all ybmbi=bmcCk for 0 � k < bm.

The actual computation progresses in contiguous blocks, which allows one
to increase efficiency by storing intermediate results of the path segments that
are accessed bm times in O.bm/ memory. The computation can be stopped and
continued by only saving the current set of indices. For example, termination can be
triggered by the user, by fixing a sample or time budget, or thresholding differences
during the temporal progression of the algorithm [27].

Using the fact that quasi-Monte Carlo integration converges for bounded, square
integrable functions [23], the consistency of Eq. 1 will be shown for quasi-Monte
Carlo points that are based on radical inversion as reviewed in Sect. 2.1. The proof
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Fig. 1 All kinds of elementary intervals with area 1
16

for s D b D 2. The first 24 D 16 points of
Sobol’s .0; 2/-sequence, which form a .0; 4; 2/-net in base b D 2, are superimposed over each set
of elementary intervals.

in Sect. 2.3 is based on the properties of such point sequences and a technique called
scrambling (as reviewed in Sect. 2.2). The results can be generalized to include
quasi-Monte Carlo integro-approximation [13] by adding a free variable z and
considering f .x; y; z/.

2.1 Low Discrepancy Sequences

Instead of sampling by using uniform (pseudo-) random numbers, quasi-Monte
Carlo methods apply deterministic low discrepancy sequences, which are more
uniformly distributed than random numbers can be. For a profound introduction
including multiple constructions of low discrepancy sequences, we refer to the
standard reference [22].

In order to prove Eq. 1, we focus on a framework that has been derived by
Niederreiter [21] building on previous work on special cases by Sobol’ [29] and
Faure [4]. It is based on stratification properties as imposed by

Definition 1. For a fixed dimension s � 1 and an integer base b � 2 the subinterval

E.p1; : : : ; ps/ WD
sY

jD1

�
pj � b�dj ; .pj C 1/ � b�dj

�
� Œ0; 1/s

with 0 � pj < bdj , pj ; dj 2 N0, is called an elementary interval (see [22, p. 48]).
For integers 0 � t � m, a .t;m; s/-net in base b (see [22, Definition 4.1]) is a point
set of bm points in Œ0; 1/s such that there are exactly bt points in each elementary
interval E.p1; : : : ; ps/ with volume bt�m. For an integer t � 0, a sequence
x0; x1; : : : of points in Œ0; 1/s is a .t; s/-sequence in base b (see [22, Definition 4.2])
if, for all integers k � 0 andm > t , the point set xkbm; : : : ; x.kC1/bm�1 is a .t;m; s/-
net in base b.

One construction to enumerate the components of .t; s/-sequences in base b is to
first represent the integer index
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i DW
M�1X

lD0
al .i/ � bl

by its digits al .i/ 2 Zb WD f0; : : : ; b � 1g in base b. Then the j -th component of
the i -th point Ui is computed as

U
.j /
i D

MX

kD1
u.j /i;k � b�k Db 0:u.j /i;1 u.j /i;2 : : : u

.j /
i;M 2 Œ0; 1/\Q; where

u.j /i;k WD �
.j /

k

�M�1X

lD0
c
.j /

k;l �  l
�
al .i/

��
(2)

and �.j /k W R ! Zb and  l W Zb ! R are two families of bijections from and to a
commutative ring .R;C; �/ with jRj D b elements. While in theory the generator
matrices

C .j / WD
�
c
.j /

k;l

�M;M�1

kD1;lD0
2 RM�M

could be infinite-dimensional, in practice they are finite due to the finite precision
of computer arithmetic. Obviously,M digits allow for generating up to bM points.

If the constructed point set U D fU0; : : : ; Un�1g is a .t;m; s/-net in base b, then
it is also called a digital .t;m; s/-net constructed over R. Digital .t; s/-sequences
are defined analogously. The quality of a digital sequence is mainly determined by
the choice of the ring R and the generator matrices C .j /. Polynomial rings RŒX�
over R are frequently used for the construction of the generator matrices C .j / (see
[2, 4, 22, 28, 29, 31] and others).

The most popular implementation of digital sequences is the Sobol’ sequence,
which is a .t; s/-sequence in base b D 2. The perfect match of bit vector and
computer arithmetic allows for the rapid generation of the Sobol’ points at a speed
comparable to high quality pseudo-random number generators. For example code
and generator matrices see http://web.maths.unsw.edu.au/~fkuo/sobol/.

An important property of Sobol’s constructions is that each component is a .0; 1/-
sequence. Thus the matrices C .j / must be regular (in fact they are upper triangular
matrices) and Eq. 2 is a bijection. The structure imposed by the elementary intervals
is illustrated in Fig. 1 for the example of a .0;m; 2/-net resulting from the first two
dimensions of the Sobol’ sequence.

2.2 Scrambling

In order to scramble a point set on H D Œ0; 1/s , the following steps are applied to
each coordinate:

http://web.maths.unsw.edu.au/~fkuo/sobol/
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1. Slice H into b equal volumesH1;H2; : : : ;Hb along the coordinate.
2. Permute these volumes.
3. For each volumeHh recursively repeat the procedure starting out withH D Hh.

While scrambling [24, 25] has been introduced to randomize point sets in order
to allow for variance estimation, in fact, several classic improvements to low
discrepancy sequence are deterministic scramblings [4, 13]. As the partitioning
happens along elementary intervals (see Definition 1), the t parameter of .t; s/-
sequences in base b is invariant with respect to scrambling.

Again, due to the finite precision of computer arithmetic, the scheme becomes
a finite algorithm that can be formalized as follows: Given the j -th component
U
.j /
i Db 0:u.j /i;1 u.j /i;2 u.j /i;3 � � � u.j /i;M of the i -th point of a point sequence, its scrambled

version V .j /
i Db 0:v.j /i;1 v

.j /
i;2 v

.j /
i;3 � � �v.j /i;M is determined by applying permutations to

the digits

v
.j /
i;1 WD �.j /

�
u.j /i;1

	

v
.j /
i;2 WD �

.j /

u
.j /
i;1

�
u.j /i;2

	

:::

v
.j /
i;M WD �

.j /

u
.j /
i;1 ;u

.j /
i;2 ;:::;u

.j /
i;M�1

�
u.j /i;M

	
; (3)

where the k-th permutation from the symmetric group Sb of all permutations over
the set f0; : : : ; b � 1g depends on the k � 1 leading digits of U .j /

i . The mapping is

bijective on Œ0; 1/ \ Q, because the inverse u.j /i;k of any v.j /i;k is found by recursively

computing u.j /i;k D
�
�
.j /

u
.j /
i;1 ;:::;u

.j /
i;k�1

��1 �
v
.j /

i;k

	
.

2.3 Replication by Partial Scrambling

With the properties of .t; s/-sequences and scrambling as reviewed in the two
previous sections, we are ready to prove Eq. 1 formulated as

Theorem 1. Given a deterministic digital .t; s/-sequence .xi ; yi / in base b, whose
components in yi are generated by regular upper triangular matrices,

Z

Œ0;1/s1

Z

Œ0;1/s2
f .x; y/dydx D lim

n!1
1

n

n�1X

iD0

1

bm

bm�1X

kD0
f .xi ; ybmbi=bmcCk/

is consistent.
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s1 s2

i

x0 y0

x1 y1

x2 y2

x3 y3

x4 y4

x5 y5

x6 y6

x7 y7

x8 y8

= + + +

Fig. 2 Top: One s1 C s2-dimensional low discrepancy sequence is partitioned into contiguous
blocks of bm vectors. Simultaneously, all vectors are identically partitioned into s1-dimensional xi -
and s2-dimensional yi -components. Bottom: Combining all vectors xi of a block with all vectors
yi of the same block can be regarded as the sum of all tuples .xi ; yi /, .xi ; ybmbi=bmcC..iC1/ mod bm//,
.xi ; ybmbi=bmcC..iC2/ mod bm//, and so on, which is key to proving Eq. 1 as stated in Theorem 1.

Proof. Swapping the two sums in the algorithm yields

lim
n!1

1

n

n�1X

iD0

1

bm

bm�1X

kD0
f .xi ; ybmbi=bmcCk/

D 1

bm

bm�1X

kD0
lim
n!1

1

n

n�1X

iD0
f .xi ; ybmbi=bmcC..iCk/ mod bm//

„ ƒ‚ …
.�/

as illustrated at the bottom of Fig. 2.
For fixed k 2 f0; : : : ; bm � 1g, looking at the term (*), the j -th component

y
.j /

bmbi=bmcC..iCk/ mod bm/
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D �
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:::
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:::

1

C
C
C
CC
C
A

D �
b�1 � � �b�M �C .j /

0

B
B
BB
B
B
@

�k.a0.i//
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C
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of ybmbi=bmcC..iCk/ mod bm/ is rewritten by inserting the index bmbi=bmc C ..i C
k/ mod bm/ into the definition of the radical inverse as introduced in Eq. 2. The
first step of the transformation reveals that only them least significant digits of i are
changed by the enumeration scheme. Consequently, the permutation .iCk/ mod bm

can only affect the m most significant digits of the j -th component, because by
assumption the generator matrix C .j / is a regular, upper triangular matrix. The
second step rewrites the extraction of a digit from the permutation .i C k/ mod bm

as a permutation applied to a digit of i , where the permutation depends on k and the
previous least significant digits.

Obviously, changing the enumeration order of the partial sequence yi results
in the same points. However, the above derivation shows that this reordering can
be understood as a scrambling, which is permuting elementary intervals. Hence,
the sequence .xi ; ybmbi=bmcC..iCk/ mod bm// remains a .t; s/-sequence with identical
t parameter that results from applying a partial deterministic scrambling to the
original .t; s/-sequence .xi ; yi / as explained in Sect. 2.2.

In combination with the assumption of a square integrable, bounded integrand,
[23, Theorem 2] then guarantees convergence to the desired integral. Averaging the
results of term (*) for all k yields the consistency of Eq. 1, which concludes the
proof. ut

As a corollary, the result extends to quasi-Mont Carlo integro-approximation by
using the generalization of [23, Theorem 2] as derived in [13, Theorem 1].

In [13, 23] it has been shown that quasi-Monte Carlo integration and integro-
approximation converge for bounded, square integrable functions, which is the
setting in computer graphics. However, the error bounds do not provide a separation
into a property of the function f and a rate of convergence depending on the
number n of samples. In order to argue for the superiority of quasi-Monte Carlo
methods over Monte Carlo methods, rates provided by theorems on discrete density
approximation [10] can be consulted. Whenever the functions are more specific
functions classes, like for example in the class of bounded variation in the sense
of Hardy and Krause, the discrepancy of the point set provides a convergence
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rate, like for example the Koksma-Hlawka inequality [22]. In conclusion, one can
always argue for a superiority of deterministic low discrepancy sampling over
(pseudo-) random sampling. While in some settings the advantage may be small,
the deterministic method is simpler to parallelize and reproduce [6, 15].

2.3.1 Rank-1 Lattice Sequences

Rank-1 lattice sequences [9] are point sequences resulting from multiplying a
generator vector g by a .0; 1/-sequence in base b on the unit torus. If now the base
b is relatively prime to the components of the generator vector g, each component
of the rank-1 lattice sequence is a .0; 1/-sequence.

While scrambling (see Sect. 2.2) can destroy the lattice structure, it cannot
change the order of uniformity: As only elementary intervals are permuted, scram-
bled low discrepancy rank-1 lattice sequences remain of low discrepancy. Therefore,
Eq. 1 works with rank-1 lattice sequences for any block size bm in analogy to
Theorem 1.

2.3.2 Halton Sequence

Theorem 1 requires the components of yi to be .0; 1/-sequences. While this is true
for the Halton type sequences [8], the bases for each dimension are relatively prime,
which requires the block size to be a product of powers of the bases in order to
make Theorem 1 work. Then the approach may be considered impractical, because
the block size would exponentially grow with dimension.

2.3.3 General Block Size and .0; 1/-Sequences

The theoretical restrictions of the previous section could be overcome if the
algorithm in Theorem 1 worked for any block size q 2 N instead of only bm. In
fact this conjecture is backed by numerical experiments with the specific algorithm
described in Sect. 3.2 using the Halton sequence, whose convergence visually
cannot be distinguished from sampling with the Sobol’ sequence or rank-1 lattice
sequences.

Although y.j /
qbi=qcC..iCk/ mod q/ and y.j /i generate the identical set of numbers,

the properties of the sequences may be different: For example for q D 3 and
k D 1, ˚2.3bi=3c C ..i C 1/ mod 3// is not a .0; 1/-sequence, although ˚2.i/
is, which is easily verified by looking at the first four elements of either sequence.
Therefore, enumerating a .t; s/-sequence in base b using the permuted enumeration
index qbi=qc C ..i C k/ mod q/ instead of i may increase the t parameter (see
Definition 1) unless q D bm, because the permutation does not match the structure
of elementary intervals of .t; s/-sequences and .t;m; s/-nets in a selected base b.
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Then, the sequence .xi ; yqbi=qcC..iCk/ mod q// cannot be written as a scrambling in the
sense of [24, 25] (see Sect. 2.2) and the assumptions of Theorem 1 are not fulfilled.

Still, since qbi=qc C ..i C k/ mod q/ is a bijection on N0, there exists an
automorphism on the s-dimensional unit cube that undoes the permutation. Con-
sequently, for square integrable, bounded integrands the term (*) converges to the
desired integral by Theorem 2 in [23]. The same argument allows for using any low
discrepancy sequence, whose components y.j /

qbi=qcC..iCk/ mod q/ are bijections, which
especially includes .0; 1/-sequences generated by non-upper triangular matrices.

3 Application to Light Transport Simulation

In practice, the algorithm in Eq. 1 is evaluated in a progressive way: One low
discrepancy sequence .xi ; yi / is enumerated in contiguous blocks of bm elements.
Then, the function f is evaluated for all possible pairs .xi ; ybmbi=bmcC..iCk/ mod bm//

of arguments within each block.
In light transport simulation (see Fig. 3), each tuple .xi ; yi / determines two end

points h.xi / and h.yi / of path segments in space. While h.yi / results from tracing
the trajectory of a photon started on a light source, the h.xi / results from following
optical paths starting from the camera. In analogy to random walk simulation,
decisions of how to scatter and/or terminate paths are controlled by the components
of the low discrepancy points .xi ; yi / instead of using random numbers.

In order to determine the measurement contribution f , the path segments
generated this way need to be connected by either testing their mutual visibility
(see Sect. 3.1) or connecting end points of path segments that are sufficiently close
(see Sect. 3.2). As discussed in Sect. 3.3, the efficiency of the methods depends on
the parameterm, which controls the block size.

3.1 Consistent Bidirectional Path Tracing

The Monte Carlo method realized in [26] first generates a set of paths from the
camera into the scene, then traces paths of photons from the light sources yielding a
set of virtual point lights, and finally checks the visibility of each point light source
from each end point of the camera paths in order to compute the radiance passing
through the screen’s pixels. Convergence is achieved by iterating the procedure.

Equation 1 is the deterministic and consistent quasi-Monte Carlo analog of that
procedure. For m D 0, the methods coincides with bidirectional path tracing [20,
32,33], where each camera path segment is connected with its photon path segment.
While for m D 0 the dominating transient artifact is noise, for m > 0 larger block
sizes trade noise for coherence artifacts like for example discrete shadow boundaries
[12].
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P

Le

Camera

Fig. 3 Bidirectional generation of light transport paths: A path segment started from the camera
and a path segment started from a light source Le can be connected by a shadow ray (dotted line),
which checks whether the vertices to connect are mutually visible. Alternatively, the basic idea of
photon mapping is to relax the precise visibility check by allowing for a connection of both path
segments if their end points are sufficiently close as indicated by the dashed circle. Both techniques
are illustrated for identical path length, which is the reason for the dashed prolongation of the light
path segment for photon mapping.

3.2 Consistent Photon Mapping

Connecting light path segments by checking the mutual visibility of their end points
is not efficient in many common situations. In such situations (see [16] for an
extensive background), connecting path segments if their end points are sufficiently
close, i.e. if their difference vector lies within a ball B of radius r.n/ centered at the
origin, can help overcome the problem of “insufficient techniques” [19, Fig. 2].

Using �B.r.n// as the characteristic function of that ball, the radiance

LP D lim
n!1

jP j
n

n�1X

iD0
�P .xi /W.xi /

1

bm

bm�1X

kD0

�B.r.n//.h.xi /� h.ybmbi=bmcCk//
�r2.n/

�fs.!.xi /; h.xi /; !.ybmbi=bmcCk//�.ybmbi=bmcCk/ (4)

is determined by averaging the contributions to the query location h.xi / attenuated
by the throughputW.xi / of the path, where �P selects the paths contributing to the
pixel P . These contributions are the product of the flux � of a photon attenuated
by the bidirectional scattering distribution function (BSDF) fs averaged over the
disk with the radius r.n/. The BSDF determines the fraction of light incident from
direction !.ybmbi=bmcCk/ in the surface location h.xi / into direction !.xi /, where
the directions are determined by the respective last edge of the path segments.

The characteristic function �B.r/ selects a subset of path space. Since light
transport is a linear problem, the number of paths in that set asymptotically must
be linear in n. If now the radius

r2.n/ D r20
n˛

(5)
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Fig. 4 The images compare three approaches to sampling in light transport simulation computed
at an identical number of samples. Obviously the image quality achieved by consistent blockwise
quasi-Monte Carlo method is superior to both the tensor product approach and the Monte Carlo
method. The quasi-Monte Carlo methods were using the Sobol’ sequence, while the pseudo-
random numbers have been generated using the Mersenne Twister.

for some fixed r0 2 R
C, consistency can be proved similar to [16, Sect. 3.1]: For

˛ D 1, doubling the number n of paths results in half the squared radius, meaning
half the area, while the number of paths connected in B.r.n// must remain the
same due to linearity. For 0 < ˛ < 1 the squared radius decreases slower than the
increase in number of connected paths. As a consequence, more and more paths
become connected with increasing n, which guarantees convergence. Note that for
˛ D 0 the radius r becomes independent of n and the computation converges to an
average over the disk of fixed radius r .

In the practical computation of Eq. 4, for each block its smallest radius is used,
which is r.bm.bi=bmc C 1/ � 1/. If the number of blocks is finite and known
beforehand, the overall smallest radius can be used right from the beginning.

As shown in [16], the radius vanishes arbitrarily slowly and the influence
of the parameter ˛ becomes negligible already after enumerating a few blocks.
Consequently, the efficiency is controlled by the initial radius r0 and the parameterm
determining the block size bm. The initial radius r0 determines the ratio of how many
photons can interact with a query location. Besides choosing r0 constant, adaptive
methods have been discussed in [16, 18].

3.2.1 Generalizations and Extensions

Similar to [11, 18], it is straightforward to extend the algorithm in Eq. 4 for light
transport simulation in participating media: The BSDF is replaced by the product of
phase function and scattering cross section, while for example Woodcock tracking
is used to sample path segments in participating media.

With respect to efficiency, Eq. 4 is easily extended by a sum to account for
multiple photons and/or query locations stored along path segments. Then, bounding
memory in a conservative way results in a memory footprint proportional to the
block size multiplied by the maximum path length. Therefore, it may be more
efficient to fix anm, which is decreased during the course of computation whenever
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the allocated memory block cannot store all path segments. It is obvious that in the
limit this adaptive procedure converges as well. Optionally, Russian roulette can be
used to adaptively control the average path length per path.

3.3 Selecting the Block Size

For consistent photon mapping (see Sect. 3.2), a larger block size increases the
density of query locations and photons, which in turn results in more paths being
connected. Since the memory footprint is proportional to the block size, m should
be determined by the maximum amount of memory dedicated to storing query
locations and photons.

With respect to path tracing (see Sect. 3.1),m blends between different algorith-
mic concepts. As proposed in [6], the xi can be used to generate paths uniformly
sampling the screen. If now bm is about the number of pixels, each path through
a pixel is connected to bm paths from light sources. This approach very much
resembles the method of dependent tests used in [12], however, now the scheme
is deterministic and consistent. The application of smaller block sizes results in
consistent version of interleaved sampling [17], where neighboring pixels do not
share light path samples.

Although bidirectional path tracing and photon mapping, i.e. integration and
density estimation, impose different constraints on m, both approaches can be
efficiently combined: The bm samples in a block used for density estimation can be
partitioned into smaller blocks of the size of a power of b for integration purposes.

By using multiple importance sampling [1, 3, 20, 33], it is possible to further
increase efficiency by weighting the contributions of both bidirectional path tracing
and photon mapping [5, 7]. With respect to consistent quasi-Monte Carlo methods,
this is subject to future investigation.

4 Conclusion

Compared to the tensor product quasi-Monte Carlo method introduced in [16], the
new scheme is consistent without having to compute identical paths over and over
again and thus can sample path space more densely in the same amount of time. For
the case of photon mapping (see Sect. 3.2), the resulting improvement is shown in
Fig. 4.

Other than the initial approach [16], the new algorithm does not allow for
controlling the ratio of camera and photon paths. This, however, can be easily
complemented using the orthogonal technique of enumerating low discrepancy
sequences, whose components are .0; 1/-sequences, at different speeds as derived
in [14, Sect. 3.2.4].
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On Wavelet-Galerkin Methods for Semilinear
Parabolic Equations with Additive Noise

Mihály Kovács, Stig Larsson, and Karsten Urban

Abstract We consider the semilinear stochastic heat equation perturbed by additive
noise. After time-discretization by Euler’s method the equation is split into a
linear stochastic equation and a non-linear random evolution equation. The linear
stochastic equation is discretized in space by a non-adaptive wavelet-Galerkin
method. This equation is solved first and its solution is substituted into the nonlinear
random evolution equation, which is solved by an adaptive wavelet method. We
provide mean square estimates for the overall error.

1 Introduction

We consider the following semilinear parabolic problem with additive noise,

du� r � .�ru/ dt D f .u/ dt C dW; x 2 D ; t 2 .0; T /;
u D 0; x 2 @D ; t 2 .0; T /;
u.�; 0/ D u0; x 2 D :
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Here T > 0, D � R
d , d D 1; 2; 3, is a convex polygonal domain or a domain with

smooth boundary @D , and fW.t/gt�0 is an L2.D/-valued Q-Wiener process on a
filtered probability space .˝;F ;P; fFt gt�0/ with respect to the normal filtration
fFt gt�0. We use the notation H D L2.D/, V D H1

0 .D/ with k � k D k � kH
and .�; �/ D .�; �/H . Moreover, AWV ! V 0 denotes the linear elliptic operator
Au D �r � .�ru/ for u 2 V where �.x/ > �0 > 0 is smooth. As usual we consider
the bilinear form aWV �V ! R defined by a.u; v/ D hAu; vi for u; v 2 V , and h�; �i
denotes the duality pairing of V 0 and V . We denote by e�tA the analytic semigroup
in H generated by the realization of �A in H with D.A/ D H2.D/ \ H1

0 .D/.
Finally, f WH ! H is a nonlinear function, which is assumed to be globally
Lipschitz continuous, i.e., there exists a constant Lf such that

kf .u/ � f .v/k � Lf ku � vk; u; v 2 H: (2)

It is well known that our assumptions on A and on the spatial domain D implies
the existence of a sequence of nondecreasing positive real numbers fkgk�1 and an
orthonormal basis fekgk�1 of H such that

Aek D kek; lim
k!C1k D C1:

Using the spectral functional calculus for A we introduce the fractional powers As ,
s 2 R, of A as

Asv D
1X

kD1
sk.v; ek/ek; D.As/ D

n
v 2 H W kAsvk2 D

1X

kD1
2sk .v; ek/

2 <1
o

and spaces PHˇ D D.Aˇ=2/ with norms kvkˇ D kAˇ=2vkˇ . It is classical that if 0 �
ˇ < 1=2, then PHˇ D Hˇ and if 1=2 < ˇ � 2, then PHˇ D fu 2 Hˇ W uj@D D 0g,
where Hˇ denotes the standard Sobolev space of order ˇ. We also use the spaces

L2.˝; PHˇ/ with the mean square norms kvkL2.˝; PHˇ/ D
�
EŒkvk2ˇ�

� 1
2 .

We assume for some ˇ � 0 that

kAˇ�1
2 Q

1
2 kHS <1; u0 2 L2.˝; PHˇ/: (3)

Here Q is the covariance operator of W and k�kHS denotes the Hilbert-Schmidt
norm. The Hilbert-Schmidt condition in (3) can be viewed as a regularity assump-
tion on the covariance operator Q. In particular, it holds with ˇ D 1 if Q is a trace
class operator and with ˇ < 1=2 if Q D I and d D 1. More generally, it holds ifP1

kD1 �˛k < 1 (thus ˛ > d=2) and AˇC˛�1Q is a bounded linear operator on H
(see, for example, [10, Theorem 2.1]).

It is known ([9], [11, Lemma 3.1]) that if (2) and (3) hold, then (1) has a unique
mild solution, which is defined to be the solution of the fixed point equation
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u.t/ D e�tAu0 C
Z t

0

e�.t�s/Af .u.s// ds C
Z t

0

e�.t�s/A dW.s/: (4)

This naturally splits the solution as u D vCw, where w is a stochastic convolution,

w.t/ D
Z t

0

e�.t�s/A dW.s/; (5)

which is the solution of

dwC Aw dt D dW; 0 < t � T I w.0/ D 0; (6)

and v is the solution of the random evolution equation

Pv C Av D f .v C w/; 0 < t � T I v.0/ D u0: (7)

Our approach will be to first compute w and then to insert it into (7) which
we then solve for v. Finally, u D v C w. For the numerical solution we use
Rothe’s method, where we first discretize with respect to time and then discretize
the resulting elliptic problems with wavelet methods.

Thus, we fix a time step � > 0, set tn WD n� with tN D T , and consider a
backward Euler discretization of (1). With un 	 u.tn/ and increments �W n D
W.tn/ �W.tn�1/ this reads

un C �Aun D un�1 C �f .un/C�W n; 1 � n � N I u0 D u0: (8)

Then we decompose un D vn C wn to get time-discrete versions of (6) and (7):

wn C �Awn D wn�1 C�W n; 1 � n � N I w0 D 0; (9a)

vn C �Avn D vn�1 C �f .vn C wn/; 1 � n � N I v0 D u0: (9b)

This allows us to solve the linear problem (9a) first and use the result as an input for
the nonlinear problem (9b). Moreover, the stochastic influence in (9b) is smoother
than in (9a), which allows us to use fast nonlinear solvers.

We consider now the spatial discretization of (9). To this end, let SJ be a
multiresolution space of orderm (see (26) for the definition) and let fwnJ gNnD0 � SJ
be the corresponding Galerkin approximation of fwngNnD0, i.e.,

wnJ C �AJwnJ D wn�1J C PJ�W n; 1 � n � N I w0J D 0: (10)

We refer to Sect. 3 for further details. We enter this approximation instead of wn

into (9b). The corresponding equation reads

Nvn C �A Nvn D Nvn�1 C �f . Nvn C wnJ /; 1 � n � N I Nv0 D u0: (11)
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For each ! 2 ˝ and for each n � 1 the nonlinear equation in (11) is solved by
an adaptive wavelet algorithm to yield an approximate solution vn" with tolerance
"n. Note that we use the same tolerance for each !. More precisely, denoting Nvn D
En. Nvn�1/, whereEn D .I C �A� �f .� CwnJ //

�1 is the nonlinear one-step operator
from (11), we assume that vn" D QEn.vn�1" /, where QEn is an approximation of En
such that

kEn.v/ � QEn.v/k � "n; 1 � n � N; v 2 H: (12)

The output of the computation will then be the sequence

un" D vn" C wnJ ; 0 � n � N: (13)

The total error is un" � u.tn/ D .vn" � Nvn/ C . Nvn � vn/ C .wnJ � wn/ C .un �
u.tn//. The contributions are bounded as follows, where the constants C depend on

ku0kL2.˝; PHˇ/, kA
ˇ�1
2 Q

1
2 kHS, and T , referring to assumption (3). We also assume

�Lf <
1
2
.

First, in Sect. 2.1, an adaptive wavelet algorithm is described which realizes (12).
In Theorem 4, we also analyze the computational effort of the algorithm applied
to (11). We conclude the section by showing that

max
0�tn�T

kvn" � NvnkL2.˝;H/ � C
NX

nD1
"n: (14)

The multiresolution approximation of the time-discrete stochastic convolution is
studied in Sect. 3 and Theorem 5 shows that

max
0�tn�T

kwnJ � wnkL2.˝;H/ � C 2�J min.ˇ;m/: (15)

In Sect. 4, Theorem 8, we study the time-discretization error and prove that

max
0�tn�T

kun � u.tn/kL2.˝;H/ � C �
ˇ
2 ; if 0 � ˇ < 1: (16)

Finally, in Sect. 5, we analyze the perturbation of the nonlinear term and obtain
that

max
0�tn�T

k Nvn � vnkL2.˝;H/ � C max
0�tn�T

kwnJ � wnkL2.˝;H/: (17)

Therefore, our main result is the following.

Theorem 1. Assume (3) for some ˇ � 0. Let fwnJ gNnD0 � SJ be computed by
a multiresolution Galerkin method of order m and fvn" gNnD0 by an adaptive wavelet
method with tolerances "n. Then for 0 � ˇ < 1, the total error in (13) is bounded by
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max
0�tn�T

kun" � u.tn/kL2.˝;H/ � C �
ˇ
2 C C 2�J min.ˇ;m/ C C

NX

nD1
"n;

for �Lf < 1
2
, where C D C.ku0kL2.˝; PHˇ/; kA

ˇ�1
2 Q

1
2 kHS; T /. If ˇ � 1, then first

term is replaced by Cı�
1
2�ı , for any ı > 0.

The literature on numerics for nonlinear stochastic parabolic problems is now
rather large. We mention, for example, [15] on pure time-discretization and [13,18]
on complete discretization based on the method of lines, where the spatial dis-
cretization is first performed by finite elements and the resulting finite-dimensional
evolution problem is then discretized. Wavelets have been used in [12] where
the spatial approximation (without adaptivity) of stochastic convolutions were
considered.

Our present paper is a first attempt towards spatial adaptivity by using Rothe’s
method together with known adaptive wavelet methods for solving the resulting
nonlinear elliptic problems.

The spatial Besov regularity of solutions of stochastic PDEs is investigated
in [2, 3]. The comparison of the Sobolev and Besov regularity is indicative of
whether adaptivity is advantageous. For problems on domains with smooth or
convex polygonal boundary with boundary adapted additive noise (that is, (3) holds
for ˇ high enough), where the solution can be split as u D v C w, we expect
that the adaptivity is not needed for the stochastic convolution w, which then has
sufficient Sobolev regularity. We therefore apply it only to the random evolution
problem (7). Once the domain is not convex, or the boundary is not regular, or the
noise is not boundary adapted, adaptivity might pay off also for the solution of the
linear problem (9a).

The recent paper [1] is a first attempt for a more complete error analysis of
Rothe’s method for both deterministic and stochastic evolution problems. The
overlap with our present work is not too large, since we take advantage of special
features of equations with additive noise.

2 Wavelet Approximation

In this section, we collect the notation and the main properties of wavelets that will
be needed in the sequel. We refer to [4, 8, 17] for more details on wavelet methods
for PDEs. For the space discretization, let

� D f  W  2J � g; Q� D f Q  W  2J � g

be a biorthogonal basis ofH , i.e., in particular . ; Q �/H D ıı;�. Here,  typically
is an index vector  D .j; k/ containing both the information on the level j D jj
and the location in space k (e.g., the center of the support of  ). Note that � also
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contains the scaling functions on the coarsest level that are not wavelets. We will
refer to jj D 0 as the level of the scaling functions.

In addition, we assume that   2 V , which is an assumption on the regularity
(and boundary conditions) of the primal wavelets. To be precise, we pose the
following assumptions on the wavelet bases:

1. Regularity:   2 Ht.D/,  2J � for all 0 � t < s� ;
2. Vanishing moments: ..�/r ;  /0ID D 0, 0 � r < m� , jj > 0.
3. Locality: diam.supp �/ � 2�jj.
We assume the same properties for the dual wavelet basis with s� and m� replaced
by Qs� and Qm� . Note that the dual wavelet Q  does not need to be in V , typically one
expects Q  2 V 0.

We will consider (often finite-dimensional) subspaces generated by (adaptively
generated finite) sets of indices� �J � and

�� WD f  W  2 �g; S� WD clos span.��/;

where the closure is of course not needed if � is a finite set. If � D �J WD f 2
J � W jj � J � 1g, then SJ WD S�J contains all wavelets up to level J � 1 so
that SJ coincides with the multiresolution space generated by all scaling functions
on level J , i.e.,

SJ D span˚J ; ˚J D f'J;k W k 2 IJ g; (18)

where IJ is an appropriate index set.

2.1 Adaptive Wavelet Methods for Nonlinear Variational
Problems

In this section, we quote from [7] the main facts on adaptive wavelet methods for
solving stationary nonlinear variational problems. Note, that all what is said in this
section is taken from [7]. However, we abandon further reference for easier reading.

Let F WV ! V 0 be a nonlinear map. We consider the problem of finding u 2 V
such that

hv;R.u/i WD hv; F.u/� gi D 0; v 2 V; (19)

where g 2 V 0 is given. As an example, let F be given as hv; F.u/i WD a.v; u/ C
hv; f .u/i which covers (11). The main idea is to consider an equivalent formulation
of (19) in terms of the wavelet coefficients u of the unknown solution u D uT � .
Setting

R.v/ WD .h ;R.v/i/2J � ; v D vT �;
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the equivalent formulation amounts to finding u 2 `2.J � / such that

R.v/ D 0: (20)

The next ingredient is a basic iteration in the (infinite-dimensional) space `2.J � /

and replacing the infinite operator applications in an adaptive way by finite
approximations in order to obtain a computable version. Starting by some finite
u.0/, the iteration reads

u.nC1/ D u.n/ ��u.n/; �u.n/ WD B.n/R.u.n// (21)

where the operator B.n/ is to be chosen and determines the nonlinear solution
method (such as Richardson or Newton). The sequence �u.n/ D B.n/R.u.n//
(possibly infinite even for finite input u.n/) is then replaced by some finite sequence
w.n/
� WD RESŒ�n;B.n/;R;u.n/� such that

k�u.n/ � w.n/
� k � �n:

Replacing�u.n/ by w.n/
� in (21) and choosing the sequence of tolerances .�n/n2N0

appropriately results in a convergent algorithm such that any tolerance " is reached
after finitely many steps. We set Nu."/ WD SOLVEŒ";R;B.n/;u.0/� such that we get
ku � Nu."/jj � ".

In terms of optimality, there are several issues to be considered:

• How many iterations n."/ are required in order to achieve "-accuracy?
• How many “active” coefficients are needed to represent the numerical approxi-

mation and how does that compare with a “best” approximation?
• How many operations (arithmetic, storage) and how much storage is required?

In order to quantify that, one considers so-called approximation classes

A s WD fv 2 `2.J � / W �N .v/ . N�sg

of all those sequences whose error of best N -term approximation

�N .v/ WD minfkv �wk`2 W # supp w � N g

decays at a certain rate (supp v WD f 2J � W v 6D 0g, v D .v/2J � ).
Let us first consider the case where F D A is a linear elliptic partial differential

operator, i.e., Au D g 2 V 0, where AWV ! V 0, g 2 V 0 is given and u 2 V is to
be determined. For the discretization we use a wavelet basis � inH where rescaled
versions admit Riesz bases in V and V 0, respectively. Then, the operator equation
can equivalently be written as

Au D g 2 `2.J � /;
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where A WD D�1a.�; �/D�1, g WD D�1.g; �/ and u WD D.u/2J � , with u
being the wavelet coefficients of the unknown function u 2 V , kukV � kuk`2.J � /.
Wavelet preconditioning results in the fact that �2.A/ <1, [5].

The (biinfinite) matrix A is said to be s�-compressible, A 2 Cs� , if for any
0 < s < s� and every j 2 N there exists a matrix Aj with the following properties:
For some summable sequence .˛j /j2N, the matrix Aj is obtained by replacing all
but the order of ˛j 2j entries per row and column in A by zero and satisfies

kA �Aj k � C˛j 2�js; j 2 N:

Wavelet representations of differential (and certain integral) operators fall into this
category. Typically, s� depends on the regularity and the order of vanishing moments
of the wavelets. Then, one can construct a linear counterpart RESlin of RES such
that w� WD RESlinŒ�;A; g; v� for finite input v satisfies

kw� � .Av � g/k`2 � �; (22a)

kw�kA s . .kvkA s C kukA s /; (22b)

# supp w� . ��1=s.kvk1=sA s C kuk1=sA s /; (22c)

where the constants in (22b), (22c) depend only on s. Here, we have used the quasi-
norm

kvkA s WD sup
N2N

Ns�N .v/:

This is the main ingredient for proving optimality of the scheme in the following
sense.

Theorem 2 ([5, 7]). If A 2 Cs� and if the exact solution u of Au D g satisfies
u 2 A s , s < s�, then Nu."/ D SOLVElinŒ"� satisfies

ku � Nu."/k � "; (23a)

# supp Nu."/ . "�1=s; (23b)

computational complexity � # supp Nu."/: (23c)

It turns out that most of what is said before also holds for the nonlinear case
except that the analysis of the approximate evaluation of nonlinear expressions
R.v/ poses a constraint on the structure of the active coefficients, namely that it has
tree structure. In order to define this, one uses the notation � � , ;� 2 J �

to express that � is a descendant of . We explain this in the univariate case with
  D  j;k D 2j=2 .2j � �k/. Then, the children of  D .j; k/ are, as one would
also intuitively define, � D .j C 1; 2k/ and � D .j C 1; 2k C 1/. The descendants
of  are its children, the children of its children and so on. In higher dimensions and
even on more complex domains this can also be defined – with some more technical
effort, however.
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Then, a set T �J � is called a tree if  2 T implies � 2 T for all � 2J �

with  � �. Given this, the error of the best N -term tree approximation is given as

� tree
N .v/ WD minfkv � wk`2 W T WD # supp w is a tree and #T � N g

and define the tree approximation space as

A s
tree WD fv 2 `2.J � / W � tree

N .v/ . N�sg

which is a quasi-normed space under the quasi-norm

kvkA s
tree
WD sup

N2N
Ns� tree

N .v/:

Remark 1. For the case V D Ht (or, a closed subspace of Ht ) it is known that the
solution being in some Besov space u 2 BtCds

q .Lq/, q D .s C 1
2
/�1, implies that

u 2 A r
tree, for r < s, see [6, Remark 2.3].

The extension of the s�-compressibility Cs� is the s�-sparsity of the scheme RES
which is defined by the following property: If the exact solution u of (20) is in A s

tree
for some s < s�, then w� WD RESŒ�;B;R; v� for finite v satisfies

kw�kA s
tree
� C.kvkA s

tree
C kukA s

tree
C 1/;

#suppw� � C��1=s.kvk1=sA s
tree
C kuk1=sA s

tree
C 1/;

comp. complexity � C.��1=s.kvk1=sA s
tree
C kuk1=sA s

tree
C 1/C #T .suppv//;

where C depends only on s when s ! s� and T .suppv/ denotes the smallest tree
containing suppv. Now, we are ready to collect the main result.

Theorem 3 ([7, Theorem 6.1]). If RES is s�-sparse, s� > 0 and if u 2 A s
tree for

some s < s�, then the approximations Nu."/ satisfy ku � u."/k � " with

# supp Nu."/ � C "�1=skuk1=sA s
tree
; kNu."/kA s

tree
� CkukA s

tree
;

where C depends only on s when s ! s�. The number of operations is bounded by
C"�1=skuk1=sA s

tree
.

We remark that since the wavelet transform is of linear complexity the overall
number of operations needed is the one mentioned in Theorem 3.

Next we show that the wavelet coefficients Nvn of the solution of (11) belong to
a certain approximation class A s

tree and hence, in view of Theorem 3, we obtain an
estimate on the support of Nvn" and the number of operations required to compute it.

Theorem 4. The wavelet coefficients Nvn of the solution of (11) belong to A s
tree for

all s < 1
2d�2 , where d � 2 is the spatial dimension of D .
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Proof. It follows from [1, Lemma 5.15] that r.�A/ 2 L .L2.D/; Br
q .Lq// for

r D 3d�2C4"
2d�2C4" , where 1=q D .r � 1/=d C 1=2 and " > 0. Thus, the statement

follows from Remark 1 noting that t D 1 and hence r D 1C ds. ut
We end this section by showing (14); that is, the overall error after n steps, when in
every step (11) is solved approximately up to an error tolerance "n using the adaptive
wavelet algorithm described above. Define

En
j D En ı � � � ıEjC1; En

n D I I 0 � j < n � N;

and similarly QEn
j . Then we have

vn" � Nvn D QEn
0 .u0/� En

0 .u0/

D
n�1X

jD0

�
En
jC1. QEjC1

0 .u0//� En
j .
QEj
0 .u0//

�

D
n�1X

jD0

�
En
jC1. QEjC1

j . QEj
0 .u0///� En

jC1.E
jC1
j . QEj

0 .u0///
�

D
n�1X

jD0

�
En
jC1. QEjC1.vj" //� En

jC1.EjC1.vj" //
�
:

A simple argument shows that the Lipschitz constant of En is bounded by .1 �
�Lf /

�1 � ec�Lf for some c > 0, if �Lf � 1
2
, cf. the proof of Lemma 5. Hence

En
jC1 has a Lipschitz constant bounded by ec.tn�tjC1/ � ectN . Thus, using (12), we

obtain

kvn" � NvnkL2.˝;H/ �
n�1X

jD0
ec.tn�tjC1/k QEjC1.vj" / �EjC1.vj" /kL2.˝;H/

�
nX

jD1
ec.tn�tj /"j � ectN

nX

jD1
"j :

After taking a mean square we obtain (14).

3 Error Analysis for the Stochastic Convolution

Let SJ D S�J be a multiresolution space (18). The multiresolution Galerkin
approximation of the equation Au D f in V 0 is to find uJ 2 SJ such that
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a.uJ ; vJ / D .f; vJ / 8v 2 SJ : (24)

Define the orthogonal projector PJ WH ! SJ by

.PJ v;wJ / D .v;wJ /; v 2 H; wJ 2 SJ : (25)

Note that PJ can be extended to V 0 by (25) since SJ � V . Next, we define the
operator AJ WSJ ! SJ by

a.AJ vJ ;wJ / D a.vJ ;wJ /; uJ ; vJ 2 SJ :

Then (24) reads AJ uJ D PJf in SJ : Alternatively we may write uJ D RJ u,
where RJ WV ! SJ is the Ritz projector, defined by

a.RJ v;wJ / D a.v;wJ /; v 2 V; wJ 2 SJ :

The multiresolution space is of orderm if

inf
wJ2SJ

kv � wJ kL2.˝;H/ . 2�mJ kvkmID ; v 2 Hm.D/ \ V: (26)

Standard arguments then show, using elliptic regularity thanks to our assumptions
on D , that kuJ � ukmID . 2�mJkukmID , or in other words

kv �RJ vkmID . 2�mJkvkmID ; v 2 Hm.D/ \ V: (27)

The next lemma is of independent interest and we state it in a general form.

Lemma 1. Let�A and�B generate strongly continuous semigroups e�tA and e�tB
on a Banach space X and let r.s/ D .1 C s/�1. Then, for all x; y 2 X , N 2 N,
� > 0,

�

NX

nD1
krn.�B/y � rn.�A/xkp �

Z 1

0

ke�tBy � e�tAxkp dt; 1 � p <1; (28)

krn.�B/y � rn.�A/xk � sup
t�0
ke�tBy � e�tAxk: (29)

Proof. By the Hille-Phillips functional calculus, we have

rn.�B/y � rn.�A/x D
Z 1

0

.e�t�By � e�t�Ax/fn.t/ dt; (30)

where fn denotes the nth convolution power of f .t/ D e�t . Since kfnkL1.RC/ D 1
inequality (29) follows immediately by Hölder’s inequality. To see (28) we note that
fn is a probability density and hence by Jensen’s inequality and (30),
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�

NX

nD1
krn.�B/y � rn.�A/xkp D �

NX

nD1

��
�
Z 1

0

.e�t�By � e�t�Ax/fn.t/ dt
��
�
p

� �
NX

nD1

Z 1

0

ke�t�By � e�t�Axkpfn.t/ dt

D
Z 1

0

ke�tBy � e�tAxkp dt sup
t>0

1X

nD1
fn.t/:

Finally, by monotone convergence, the Laplace transform of
P1

nD1 fn is given by

� 1X

nD1
fn

	O
./ D

1X

nD1
Ofn./ D

1X

nD1

� 1

1C 
	n D 1


;  > 0:

Thus,
P1

nD1 fn  1 and the proof is complete. ut
Next we derive an error estimate for the multiresolution approximation of the

semigroup e�tA and its Euler approximation rn.�A/.

Lemma 2. Let SJ be a multiresolution space of orderm and let A, AJ , and PJ be
as above. Then, for T � 0, N � 1, � , we have

� Z T

0

ke�tAJ PJ v � e�tAvk2 dt
	 1
2 � C2�Jˇkvkˇ�1; 0 � ˇ � m; (31)

and

�
�

NX

nD1
krn.�AJ /PJ v � rn.�A/vk2

	 1
2 � C2�Jˇkvkˇ�1; 0 � ˇ � m: (32)

Proof. Estimate (31) is known in the finite element context, see for example
[16, Theorem 2.5], and may be proved in a completely analogous fashion for
using the approximation property (27) of the Ritz projection RJ , the parabolic
smoothing (35), and interpolation. Finally, (32) follows from (31) by using Lemma 1
with x D v, y D PJ v, and B D AJ . (Note that C is independent of T .) ut

Now we are ready to consider the multiresolution approximation of wn in (9a).

Theorem 5. Let SJ be a multiresolution space of order m and w and wnJ the

solutions of (9a) and (10). If kAˇ�1
2 Q

1
2 kHS <1 for some 0 � ˇ � m, then

.EŒkwnJ � wnk2�/ 12 � C2�JˇkAˇ�1
2 Q

1
2 kHS:
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Proof. Let tk D k� , k D 0; : : : ; n. By (10), (9a), and induction,

wnJ � wn D
nX

kD1

Z tk

tk�1



rn�kC1.�AJ /PJ � rn�kC1.�A/

�
dW.s/;

whence, by Itô’s isometry, we get

EŒkwnJ � wnk2� D
nX

kD1

Z tk

tk�1

�
�
rn�kC1.�AJ /PJ � rn�kC1.�A/

�
Q

1
2

�
�2

HS ds

D
nX

kD1
�
�
�
rk.�AJ /PJ � rk.�A/

�
Q

1
2

�
�2

HS:

Let felg1lD1 be an orthonormal basis of H . Then, using Lemma 2, we obtain

EŒkwnJ � wnk2� D
1X

lD1

nX

kD1
�kŒrk.�AJ /PJ � rk.�A/�Q 1

2 elk2

� C
1X

lD1
2�2JˇkQ1

2 elk2ˇ�1 D C2�2JˇkA
ˇ�1
2 Q

1
2 k2HS:

This completes the proof. ut

4 Pure Time Discretization

In the proofs below we will often make use of the following well-known facts about
the analytic semigroup e�tA, namely

kA˛e�tAk � C t�˛; ˛ � 0; t > 0; (33)

k.e�tA � I /A�˛k � C t˛; 0 � ˛ � 1; t � 0; (34)

for some C D C.˛/, see, for example, [14, Chap. II, Theorem 6.4]. Also, by a
simple energy argument we may prove

Z t

0

kA1
2 e�sAvk2 ds � 1

2
kvk2; v 2 H; t � 0: (35)

We quote the following existence, uniqueness and stability result from [11, Lemma
3.1]. For the mild, and other solution concepts we refer to [9, Chaps. 6 and 7].
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Lemma 3. If kAˇ�1
2 Q

1
2 kHS < 1 for some ˇ � 0, u0 2 L2.˝;H/, and (2) holds,

then there is a unique mild solution fu.t/gt�0 of (1) with supt2Œ0;T � Eku.t/k2 � K ,
where K D K.u0; T; Lf /.

Concerning the temporal regularity of the stochastic convolution we have the
following theorem.

Theorem 6. Let kA��Q 1
2 kHS < 1 for some � 2 Œ0; 1

2
�. Then the stochastic

convolution w.t/ WD R t
0

e�.t��/A dW.�/ is mean square Hölder continuous on
Œ0;1/ with Hölder constant C D C.�/ and Hölder exponent 1

2
� �, i.e.,

�
Ekw.t/ � w.s/k2� 12 � C jt � sj 12��; t; s � 0:

Proof. For � D 1
2

the result follows from Lemma 3. Let � 2 Œ0; 1
2
/ and, without loss

of generality, let s < t . By independence of the increments ofW ,

Ekw.t/ � w.s/k2 D E

�
�
�
Z t

s

e�.t��/A dW.�/
�
�2

C E

��
�
Z s

0

e�.t��/A � e�.s��/A dW.�/
�
�2 D I1 C I2:

From Itô’s isometry and (33) it follows that

I1 D E

�
�
�
Z t

s

A�e�.t��/AA�� dW.�/
�
�2 D

Z t

s

kA�e�.t��/AA��Q 1
2 k2HS d�

� C
Z t

s

.t � �/�2�kA��Q 1
2 k2HS d� � C

1 � 2�.t � s/
1�2�kA��Q 1

2 k2HS:

Finally, let fekg1kD1 be an orthonormal basis of H . Then, by (34) and (35),

I2 D
Z s

0

k.e�.t��/A � e�.s��/A/Q 1
2 k2HS d�

D
1X

kD1

Z s

0

k.e�.t�s/A � I /A�. 12��/A 1
2��e�.s��/AQ 1

2 ekk2 d�

� C.t � s/1�2�
1X

kD1

Z s

0

kA1
2 e�.s��/AA��Q 1

2 ekk2 d�

� C.t � s/1�2�
1X

kD1
kA��Q 1

2 ekk D C.t � s/1�2�kA��Q 1
2 k2HS:

(36)

This completes the proof. ut
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The next result shows that the time regularity of w transfers to the solution of the
semilinear problem.

Theorem 7. If u0 2 L2.˝; PHˇ/ and kAˇ�1
2 Q

1
2 kHS <1 for some 0 � ˇ < 1, then

there is C D C.T; u0; ˇ/ such that the mild solution u of (1) satisfies

�
Eku.t/ � u.s/k2� 12 � C jt � sj ˇ2 ; t; s 2 Œ0; T �:

Proof. Let T > 0 and 0 � s < t � T . Then, by (4),

u.t/ � u.s/ D .e�tA � e�sA/u0 C
Z t

s

e�.t�r/Af .u.r// dr

C
Z s

0

.e�.t�r/A � e�.s�r/A/f .u.r// dr C w.t/ � w.s/:

In a standard way, for 0 � ˇ � 2, we have Ek.e�tA�e�sA/u0k2 � C jt�sjˇEku0k2ˇ:
Using that f is Lipschitz and hence kf .u/k � C.1C kuk/, the norm boundedness
of the semigroup e�tA, and Lemma 3, we have that

E

�
�
�
Z t

s

e�.t�r/Af .u.r// dr
�
�
�
2 � C jt � sj2

�
1C sup

r2Œ0;T �
Eku.r/k2

	
� C jt � sj2:

For 0 � ˇ < 1, by Lemma 3, (33) and (34), it follows that

E

�
�
�
Z s

0

.e�.t�r/A � e�.s�r/A/f .u.r//dr
�
�
�
2

� sE
Z s

0
k.e�.t�r/A � e�.s�r/A/f .u.r//k2 dr

� Cs
�
1C sup

r2Œ0;T �
Eku.r/k2

	 Z s

0
ke�.t�r/A � e�.s�r/Ak2 dr

� Cs
Z s

0
kAˇ

2 e�.s�r/A.e�.t�s/A � I /A� ˇ2 k2 dr � C jt � sjˇs2�ˇ � C jt � sjˇ:

Finally, by Theorem 6 with � D �ˇ�1
2

, we have Ekw.t/ � w.s/k2 � C jt � sjˇ;
which finishes the proof. ut
In order to analyze the order of the backward Euler time-stepping (8) we quote the
following deterministic error estimates, where r.�A/ D .I C �A/�1.
Lemma 4. The following error estimates hold for tn D n� > 0.

kŒe�n�A � rn.�A/�vk � C� ˇ2 kvkˇ; 0 � ˇ � 2; (37)

kŒe�n�A � rn.�A/�vk � C� t�1n kvk; (38)
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nX

kD1
�
�
�Œrk.�A/ � e�k�A�v

�
�2 � C�ˇkvk2ˇ�1; 0 � ˇ � 2: (39)

Proof. Estimates (37) and (38) are shown in, for example, [16, Chap. 7]. Esti-
mate (39) can be proved in a similar way as (2.17) in [18, Lemma 2.8]. ut
Theorem 8. If u0 2 L2.˝; PHˇ/ and kAˇ�1

2 Q
1
2 kHS <1 for some 0 � ˇ < 1, then

there is C D C.T; u0; ˇ/ such that for 0 < � < 1
2Lf

, the solutions u of (4) and un

of (8) satisfy

.Eku.tn/� unk2/ 12 � C�ˇ=2; tn D n� 2 Œ0; T �:

Proof. We have, with en WD u.tn/ � un,

en D Œe�tnA � rn.�A/�u0 C
nX

kD1

Z tk

tk�1

Œe�.tn�s/A � rn�kC1.�A/� dW.s/

C
nX

kD1

Z tk

tk�1

e�.tn�s/Af .u.s// � rn�kC1.�A/f .uk/ ds D e1 C e2 C e3:

The error e1 is easily bounded, using (37), as

Eke1k2 � C�ˇEku0k2ˇ; 0 � ˇ � 2:

The contribution of e2 is the linear stochastic error. First, we decompose e2 as

e2 D
nX

kD1

Z tk

tk�1

Œe�tn�kC1A � rn�kC1.�A/� dW.s/

C
nX

kD1

Z tk

tk�1

Œe�.tn�s/A � e�tn�kC1A� dW.s/ D e21 C e22:

Let fflg1lD1 be an ONB ofH . By Itô’s isometry, the independence of the increments
of W and (39),

Eke21k2 D
nX

kD1
�kŒrk.�A/ � e�k�A�Q 1

2 k2HS �D
1X

lD1

nX

kD1
�kŒrk.�A/ � e�k�A�Q 1

2 flk2

� C
1X

lD1
�ˇkQ1

2 flk2ˇ�1 D C�ˇkA
ˇ�1
2 Q

1
2 k2HS; 0 � ˇ � 2:

The term e22 can be bounded using a similar argument as in (36) by
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Eke22k2 � C�ˇkA
ˇ�1
2 Q

1
2 k2HS; 0 � ˇ � 2:

Next, we can further decompose e3 as

e3 D
nX

kD1

Z tk

tk�1

rn�kC1.�A/Œf .u.tk// � f .uk/� ds

C
nX

kD1

Z tk

tk�1

Œe�tn�kC1A � rn�kC1.�A/�f .u.tk// ds

C
nX

kD1

Z tk

tk�1

e�tn�kC1AŒf .u.s// � f .u.tk//� ds

C
nX

kD1

Z tk

tk�1

Œe�.tn�s/A � e�tn�kC1A�f .u.s// ds D e31 C e32 C e33 C e34:

By the stability of rn.�A/ and the Lipschitz condition on f , we have

Eke31k2 � 2L2f �2Ekenk2 C 2L2f �2n
n�1X

kD1
Ekekk2 � 2L2f �2Ekenk2 C C�

n�1X

kD1
Ekekk2:

By (38) and Lemma 3, with � t�1n�kC1 D .n � k C 1/�1 D l�1,

Eke32k2 � CE

� nX

kD1
�� t�1n�kC1kf .u.tk//k

	2 � C�2
nX

lD1

1

l2

nX

kD1
Ekf .u.tk//k2

� C�2
nX

kD1
.1C Eku.tk/k2/ � C� tn � C�:

Furthermore, by Theorem 7,

Eke33k2 � tn
nX

kD1

Z tk

tk�1

Ekf .u.s// � f .u.tk//k2 ds � C t2n�ˇ � C�ˇ; 0 � ˇ < 1:

To estimate e34 we have, using again that tn�kC1 D tn � tk�1 and Lemma 3,

Eke34k2 D E

� nX

kD1

Z tk

tk�1

kŒAˇ
2 e�.tn�s/A.I � e�.s�tk�1/A/�A�

ˇ
2 f .u.s//k ds

	2

� C tn
nX

kD1

Z tk

tk�1

.tn � s/�ˇ�ˇEkf .u.s//k2 ds � C�ˇ; 0 � ˇ < 1:
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Putting the pieces together, we have

Ekenk2 � C�ˇ C 2L2f �2Ekenk2 C C�
n�1X

kD1
Ekekk2; 0 � ˇ < 1:

Finally, if � < 1
2Lf

, then by the discrete Gronwall lemma,

Ekenk2 � C�ˇeCtn � C�ˇ; 0 � ˇ < 1;

and the theorem is established. ut

5 Error Analysis for the Nonlinear Random Problem

In this section we bound the term E

k Nvn�vnk2� in (17). We use the global Lipschitz

condition (2).

Lemma 5. Assume that �Lf � 1
2
. Then, with C D 2Lf Te2Lf T ,

max
1�n�N

�
E

k Nvn � vnk2�

	 1
2 � C max

1�n�N

�
E

kwnJ � wnk2�

	 1
2
:

Proof. Let en WD Nvn � vn. Then, we have by (9b) and (11)

en C �Aen D ��f . Nvn C wnJ /� f .vn C wn/
�C en�1:

Since e0 D 0, we get by induction

en D �
nX

jD1
.I C �A/�.nC1�j /�f . Nvj C wjJ / � f .vj C wj /

�
:

In view of the global Lipschitz condition (2), this results in the estimate

kenk � Lf �
nX

jD1
k.I C �A/�.nC1�j /k k Nvj C wjJ � vj � wjk

� Lf �
nX

jD1

�kwjJ � wj k C kej k�;

since k.I C �A/�1k � 1. Thus, we obtain
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kenk � .1 � Lf �/�1Lf �
� nX

jD1
kwjJ � wj k C

n�1X

jD1
kej k

	
:

With Lf � � 1
2

we complete the proof by the standard discrete Gronwall lemma.
ut
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Component-by-Component Construction
of Hybrid Point Sets Based on Hammersley
and Lattice Point Sets

Peter Kritzer, Gunther Leobacher, and Friedrich Pillichshammer

Abstract In a series of recent articles, such as, e.g., (Hellekalek (2012) Hybrid
function systems in the theory of uniform distribution of sequences. Monte Carlo
and quasi-Monte Carlo methods 2010. Springer, Berlin, pp. 435–450; Hofer, Kritzer,
Larcher, Pillichshammer (Int J Number Theory 5:719–746, 2009); Kritzer (Monatsh
Math 168:443–459, 2012); Niederreiter (Acta Arith 138:373–398, 2009)), point
sets mixed from integration node sets in different sorts of quasi-Monte Carlo rules
have been studied. In particular, a finite version, based on Hammersley and lattice
point sets, was introduced in Kritzer (Monatsh Math 168:443–459, 2012), where the
existence of such hybrid point sets with low star discrepancy was shown. However,
up to now it has remained an open problem whether such low discrepancy hybrid
point sets can be explicitly constructed. In this paper, we solve this problem and
discuss component-by-component constructions of the desired point sets.

1 Introduction

In many applications of mathematics (most notably in numerical integration) one
is in need of having at hand finite or infinite sequences of points which are evenly
spread in a certain domain, which, for the sake of simplicity, will be assumed to be
the unit cube Œ0; 1/s . It is well-known that point sets which are evenly distributed
in the unit cube yield a low integration error when applying a quasi-Monte Carlo
(QMC) algorithm using the point set as integration nodes (see, e.g., [2, 3, 17, 19, 21,
29] for comprehensive introductions to this topic). Whenever we speak of a point set
in the following, we mean a multi-set, i.e., points may occur repeatedly, and, if so,
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are counted repeatedly. There are several well-known classes of point sets that are
traditionally considered when one speaks of point sets with excellent distribution
properties, such as, e.g., .t;m; s/-nets (see [2,21]) or lattice point sets (see [21,29]).

As one is interested in point sets that are evenly distributed in the unit cube, one
is in need of a way of measuring uniformity of distribution. One way of actually
assessing the quality of distribution of a point set is to consider its star discrepancy,
which is defined as follows.

Definition 1. Let PN be a point set of N points in Œ0; 1/s. The star discrepancy of
PN is defined as

D�N .PN / WD sup
IŒ0;1/s

ˇ
ˇ
ˇ
ˇ
AN .PN ; I /

N
� s.I /

ˇ
ˇ
ˇ
ˇ ;

where the supremum is extended over all half-open, rectangular subintervals I of
Œ0; 1/s with their lower left corner in the origin, where AN .PN ; I / is the number
of points of PN contained in I , and where s denotes the s-dimensional Lebesgue
measure.

If we consider an infinite sequence S of points in Œ0; 1/s , then D�N .S / denotes
the star discrepancy of the first N elements of S .

Remark 1. From the definition, it is easy to see that the star discrepancy always
takes on values in Œ0; 1�. The star discrepancy is a measure of uniformity of
distribution, i.e., point sets that are evenly distributed in the unit cube have a
lower star discrepancy than point sets that are not evenly distributed. An infinite
sequence S of points in Œ0; 1/s is called uniformly distributed if and only if its star
discrepancy tends to zero for growing N .

Remark 2. It is well-known in the theory of low discrepancy point sets that
computing exact values of the star discrepancy is, at least for large values of s and/or
N , infeasible (in fact, as shown in [4], calculating the star discrepancy is NP-hard).
Therefore, one usually has to resort to considering bounds on the discrepancy of a
given point set (see, e.g., [2, 21]).

Remark 3. The star discrepancy of a point set PN is related to the integration error
of a QMC algorithm based on the points x0; : : : ;xN�1 of PN via the Koksma-
Hlawka inequality

ˇ
ˇ
ˇ̌
ˇ

Z

Œ0;1�s
f .x/ dx � 1

N

N�1X

kD0
f .xk/

ˇ
ˇ
ˇ̌
ˇ
� D�N .PN /V.f /;

where V.f / denotes the variation of f in the sense of Hardy and Krause; see [2, 3,
17, 21] for further information.

In what follows, we are going to study a combination of two well-known classes
of finite point sets with low discrepancy. The first are Hammersley point sets, which
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are based on the so-called radical inverse function. Here and in the following, we
denote by N0 the set of non-negative integers and by N the set of positive integers.

Definition 2. Let b � 2 be an integer. For n 2 N0, let n D n0 C n1b C n2b2 C � � �
be the base b expansion of nwith digits ni 2 f0; 1; : : : ; b�1g for i � 0. The radical
inverse function 'b W N0 ! Œ0; 1/ is defined by

'b.n/ WD
1X

kD1
nk�1b�k:

Based on the radical inverse function, we can now define the s-dimensional
Hammersley point set.

Definition 3. Let s � 2 and let b1; : : : ; bs�1 be integers, bi � 2 for all indices
1 � i � s � 1. Let N 2 N. Then the s-dimensional Hammersley point set in bases
b1; : : : ; bs�1 is defined to be the point set HN D .xn/N�1nD0 � Œ0; 1/s , where

xn D
� n
N
; 'b1.n/; 'b2 .n/; : : : ; 'bs�1 .n/

	
for all 0 � n � N � 1:

Remark 4. It is well-known (see, e.g., [1, 2, 21]) that the Hammersley point set has
good distribution properties in Œ0; 1/s if the bases b1; : : : ; bs�1 are pairwise co-prime.
To be more precise, the s-dimensional Hammersley point set in pairwise co-prime
bases b1; : : : ; bs�1 of N points satisfies

D�N .HN / D O..logN/s�1=N /;

where the implied constant depends on s and b1; : : : ; bs�1. For this reason, we
are frequently going to choose the bases b1; : : : ; bs�1 as distinct prime numbers
p1; : : : ; ps�1 in the following.

Another class of finite point sets that are known to have low discrepancy is that
of lattice point sets, going back to Korobov [14] and Hlawka [7].

Definition 4. Let N be an integer and let g D .g1; : : : ; gd / be a d -dimensional
vector of integers. The lattice point set LN D .yn/

N�1
nD0 with generating vector g,

consisting of N points in Œ0; 1/d , is defined by

yn D
�nng1
N

o
; : : : ;

nngd
N

o	
for all 0 � n � N � 1;

where f�g denotes the fractional part of a number. For short, we write

yn D
�nng

N

o	
for all 0 � n � N � 1:

Remark 5. Note that it is sufficient to consider only the generating vectors g 2
f0; 1; : : : ; N � 1gd in the definition of lattice point sets.
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Remark 6. Regarding the discrepancy of lattice point sets, it was shown in [20]
that, given N , there always exists a d -dimensional generating vector g, such that
the d -dimensional lattice point set LN of N points, generated by g, satisfies

D�N .LN / D O..logN/d=N /;

where the implied constant depends on d . It was shown later by Joe [11] (see
also [2]) that, at least for prime N , generating vectors g yielding lattice points
with a discrepancy as above can be constructed by means of a component-by-
component algorithm which chooses one component of the generating vector at a
time. Component-by-component (CBC) constructions are nowadays quite standard
in the theory of lattice point sets and they apply to many quality measures, such as
the worst-case error criteria in Korobov and Sobolev spaces (see, e.g., [18,30]). This
approach was first introduced by Korobov [15] and later it was re-invented by Sloan
and Reztsov [31].

Considerable progress has been made during the last years in the analysis of
QMC algorithms where low discrepancy point sets served as the integration nodes.
Traditionally, these approaches only use one fixed sort of point set in the algorithm.
However, Spanier [32] considered a mixture of quasi-Monte Carlo and Monte
Carlo methods, where he suggested concatenating vectors of QMC point sets and
(pseudo-) random vectors, i.e., one obtains .s C d/-dimensional “hybrid” point
sets or sequences. Recent results regarding hybrid sequences built from QMC point
sets and pseudo-random points can be found in [22–26] and the references therein.
Moreover, the paper [5] contains a collection of general results regarding these point
sets.

Here, we do not consider the concatenation of (pseudo-) random and quasi-
random point sets, but we deal with a slightly different concept of a hybrid sequence,
namely one that is obtained by using different QMC point sets. Therefore, whenever
we speak of a hybrid point set or sequence in the following, we mean a set of
points that is obtained by concatenating the components of two different quasi-
random point sets (see also Owen [28], where a randomized variant is considered).
As pointed out by Keller in [13], such hybrid point sets can be used in computer
graphics.

The rest of the paper is structured as follows. In Sect. 2 we shall define a special
type of finite hybrid point sets that will be studied in the rest of the paper. These are
a mixture of Hammersley point sets on the one hand, and lattice point sets on the
other hand. In Sect. 3 we are going to show a CBC construction of such point sets
with particularly low discrepancy. We would like to stress that the aim of the current
article is not to find general point sets with a discrepancy as low as possible, but the
aim is to find hybrid point sets with low star discrepancy.
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2 Finite Hybrid Quasi-Random Point Sets

In several papers, such as, e.g., [8–10], hybrid point sets with infinitely many points
were considered. The drawback of these considerations is that, at least in many
cases, it is not known how to explicitly find hybrid point sets with good distribution
properties. For this reason, in the paper [16] a finite version of hybrid point sets was
introduced.

To be more precise, it was shown in [16] that there exist finite hybrid point sets,
consisting ofN points (N a prime) which are obtained from Hammersley and lattice
point sets, that have low discrepancy. Indeed, let p1; : : : ; ps�1 be s�1 distinct prime
numbers and, for technical reasons, let N be an odd prime number that is different
from p1; : : : ; ps�1. Furthermore, we writeGN D f0; 1; : : : ; N �1g in the following.
Let .xn/N�1nD0 be the s-dimensional Hammersley point set in bases p1; : : : ; ps�1. Let
.yn/

N�1
nD0 be the d -dimensional lattice point set generated from the vector g 2 Gd

N ,
i.e., yn D

˚
ng

N

�
for 0 � n � N � 1. Define now

PN WD ..xn;yn//N�1nD0 2 Œ0; 1/sCd :

By an averaging argument, it was shown in [16] that for any prime N different
from p1; : : : ; ps�1 there exists a generating vector g 2 Gd

N for which

D�N .PN / D O..logN/sCd=N / (1)

holds, where the implied constant depends on s; d and p1; : : : ; ps�1. Theoretically
speaking, one could now search for a “good” generating vector g 2 Gd

N to explicitly
construct low discrepancy hybrid point sets, which is a step forward in comparison
to many existence results on infinite hybrid sequences, where it is not clear how
one could search for examples with low discrepancy. However, a search over Gd

N is
practically infeasible if d and N are not very small. A similar observation is true if
one considers only Korobov type generating vectors g, as it was also discussed in
[16]. Therefore, we are, as outlined in the conclusion of [16], in need of an efficient
construction algorithm for a generating vector g 2 Gd

N such that a bound as in (1)
holds.

As we already noted above, if one considers “pure” lattice point sets, it is known
due to earlier papers that there exist CBC constructions yielding low discrepancy.
Therefore, it is near at hand to also use a CBC construction for the lattice part of
the hybrid point sets under consideration. We introduce such an algorithm in the
following section.
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3 A CBC Construction

As before, let p1; : : : ; ps�1 be s � 1 distinct prime numbers and let N be an odd
prime number that is different from p1; : : : ; ps�1. Let .xn/N�1nD0 be the s-dimensional
Hammersley point set in bases p1; : : : ; ps�1. Let .yn/

N�1
nD0 be the d -dimensional

lattice point set generated from the vector g 2 Gd
N , i.e., yn D

˚
ng

N

�
for 0 � n �

N � 1. Let now

PN D ..xn;yn//
N�1
nD0 2 Œ0; 1/sCd :

In this section, we are going to show how we can use a CBC algorithm to
construct a generating vector g 2 Gd

N such that D�N .PN / is low.
For 1 � i � s � 1 let mi be the minimal integer such that N � p

mi
i , i.e.,

mi D dlogpi N e � logN
logpi
C 1.

In the derivation of (1) in [16], the constants not depending on the cardinality
N of PN were not given in their explicit form. However, going through exactly
the same steps as in the proof of [16, Eq. (5)], one can also give a bound on
D�N .PN / where all constants can be stated explicitly. This discrepancy bound is
given in Eq. (2) below. At this stage we need to introduce some further notation:
for N 2 N, we define C.N/ as the set .�N=2;N=2� \ Z, Cd.N / as C.N/d , and
C �d .N / as Cd.N / n f0g. For h 2 Z, we define r.h/ WD max.1; jhj/ and we put

r.h/ D Qd
jD1 r.hj / for h D .h1; : : : ; hd /. Let further SN WD P

h2C�.N / jhj�1 and
let kxk to denote the distance of a real x to the nearest integer.

Now we have

ND�N .PN / � 1C .2s C .1C SN /d /
s�1Y

iD1
mipi CTN .g/

s�1Y

iD1
pi ; (2)

with

TN .g/ D
m1X

j1D1
� � �

ms�1X

js�1D1

X

h2C�

d .N /

1

r.h/
HN;Q.h � g/;

whereQ D pj11 � � �pjs�1s�1 and where

HN;Q.h � g/ D
�
N=Q if h � g  0 mod N;
kQh � g=N k�1 if h � g 6 0 mod N:

In [16], an averaging argument was used to show the existence of a generating
vector g 2 Gd

N for which (1) holds. Here we would like to use (2) as a starting point
for a CBC algorithm for the construction of a good generating vector g, i.e., one
component of g will be constructed at a time. To begin with, we analyze how the
quantity TN can be computed effectively.
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3.1 Computing the Quantity TN

Throughout this section, we let Of denote the discrete Fourier transform of a function
f W C.N/! C, that is

Of .k/ D
X

h2C.N/
f .h/ exp.�2�ihk=N/ ; k 2 C.N/:

For n 2 GN , let

RN .g; n/ WD �1C
dY

iD1

0

@
X

h2C.N/

1

r.h/
exp.�2�ihgi n=N /

1

A

D �1C
dY

iD1

1

�

1

r

�

.gin/ : (3)

We can now write

TN .g/ D
m1X

j1D1
� � �

ms�1X

js�1D1

N�1X

kD0
HN;Q.k/

X

h2C�

d .N /

h�g�k mod N

1

r.h/

D
m1X

j1D1
� � �

ms�1X

js�1D1

N�1X

kD0
HN;Q.k/

X

h2C�

d .N /

1

r.h/

� 1
N

N�1X

nD0
exp

�
2�i

h � g � k
N

n

�

D
m1X

j1D1
� � �

ms�1X

js�1D1

1

N

N�1X

nD0

N�1X

kD0
HN;Q.k/ exp

�
�2�i k

N
n

�

�
X

h2C�

d .N /

1

r.h/
exp

�
2�i

h � g
N

n

�

D
N�1X

nD0
RN .g; n/

m1X

j1D1
� � �

ms�1X

js�1D1

1

N

N�1X

kD0
HN;Q.k/ exp

�
�2�i k

N
n

�
:

Note that
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N�1X

kD0
HN;Q.k/ exp

�
�2�i k

N
n

�
D

X

k2C.N/
HN;Q.k/ exp

�
�2�i k

N
n

�
D1HN;Q.n/:

Therefore the vector FN with entries

FN .n/ WD
m1X

j1D1
� � �

ms�1X

js�1D1

1

N

N�1X

kD0
HN;Q.k/ exp

�
�2�i k

N
n

�
; 0 � n � N � 1;

(4)

can be computed using O.N log.N /s/ operations by fast Fourier transform. We
state this as a lemma for later reference.

Lemma 1. The vector FN defined in (4) can be computed using O.N.logN/s/
operations.

Now, using (3),

TN .g/ D
N�1X

nD0
FN .n/RN .g; n/

D �
N�1X

nD0
FN .n/C

N�1X

nD0
FN .n/

dY

iD1

1

�

1

r

�

.gin/

D �
N�1X

nD0
FN .n/C

N�1X

nD0

1

�

1

r

�

.gdn/

0

B
@FN .n/

d�1Y

iD1

1

�

1

r

�

.gin/

1

C
A : (5)

For a given g D .g1; : : : ; gd /, TN .g/ can therefore be computed recursively

using O.N.log.N /s C d// operations. Note that FN and c
�
1
r

�
have to be computed

only once. Thus, having pre-computedFN and c
�
1
r

�
, a straightforward CBC construc-

tion of a vector g with a low value of TN .g/ would requireO.N log.N /s CN2d/

operations. However, we are going to present an algorithm with a better run-time in
the next section (see Algorithm 1 and the subsequent comments).

3.2 The CBC Construction

In this section, we would like to show a CBC algorithm for generating a vector
g 2 Gd

N such that (1) is satisfied. Before we state the algorithm and show that it
indeed generates a vector of the desired quality, we prove three lemmas.
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Lemma 2. Let N be an odd prime and let Q be an integer such that gcd.N;Q/ D
1. Then we have

PN�1
kD1 kQk=N k�1 D NSN .

Proof. If k runs through all elements of f1; : : : ; N � 1g, then the residues of Qk
moduloN run through all elements of f1; : : : ; N � 1g as well. Hence we have

N�1X

kD1

�
�
��

Qk

N

�
�
��

�1
D

N�1X

hD1

�
�
��
h

N

�
�
��

�1
D N

.N�1/=2X

hD1

1

h
CN

N�1X

hD.NC1/=2

1

N � h

D 2N

.N�1/=2X

hD1

1

h
D NSN :

This completes the proof. ut
Lemma 3. There exists a g 2 GN such that

TN .g/ � SN
"
s�1Y

iD1

1

pi � 1 C SN
s�1Y

iD1
mi

#

:

Proof. We have

1

N

X

g2GN
TN .g/ D

m1X

j1D1
� � �

ms�1X

js�1D1

1

N

X

g2GN

X

h2C�.N /

1

r.h/
HN;Q.hg/:

Now, using Lemma 2,

1

N

X

g2GN

X

h2C�.N /

1

r.h/
HN;Q.hg/

D 1

N

X

g2GN

N�1X

kD0
HN;Q.k/

X

h2C�.N /
hg�k mod N

1

r.h/

D 1

Q

X

h2C�.N /

1

r.h/

X

g2GN
hg�0 mod N

1

C 1

N

N�1X

kD1
kQk=N k�1

X

h2C�.N /

1

r.h/

X

g2GN
hg�k mod N

1

D 1

Q
SN C S2N :
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Since Q D pj11 � � �pjs�1s�1 we obtain

1

N

X

g2GN
TN .g/ D

m1X

j1D1
� � �

ms�1X

js�1D1

"
1

p
j1
1 � � �pjs�1s�1

SN C S2N
#

� SN
"
s�1Y

iD1

1

pi � 1 C SN
s�1Y

iD1
mi

#

;

and the result follows. ut
For g D .g1; : : : ; gd / 2 Gd

N and gdC1 2 GN we write in the following
.g; gdC1/ WD .g1; : : : ; gd ; gdC1/.
Lemma 4. Let N be an odd prime number. Assume that there exists g 2 Gd

N such
that

TN .g/ � Œ.1C SN /d � 1�
"
s�1Y

iD1

1

pi � 1 C SN
s�1Y

iD1
mi

#

:

Then there exists gdC1 2 GN , such that

TN ..g; gdC1// � Œ.1C SN /dC1 � 1�
"
s�1Y

iD1

1

pi � 1 C SN
s�1Y

iD1
mi

#

:

Proof. Let

TN .g;Q/ WD
X

h2C�

d .N /

1

r.h/
HN;Q.h � g/:

We show the result by an averaging argument. We have

1

N

X

gdC12GN
TN ..g; gdC1/;Q/

D 1

N

X

gdC12GN

X

.h;hdC1/2C�

dC1.N /

1

r..h; hdC1//
HN;Q..h; hdC1/ � .g; gdC1//

D TN .g;Q/

C 1

N

X

gdC12GN

N�1X

kD0
HN;Q.k/

X

.h;hdC1/2Cd .N/�C�.N /
gdC1hdC1�k�h�g mod N

1

r..h; hdC1//
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D TN .g;Q/

C 1

Q

X

.h;hdC1/2Cd .N/�C�.N /

1

r..h; hdC1//
X

gdC12GN
gdC1hdC1��h�g mod N

1

C 1

N

N�1X

kD1
kQk=N k�1

X

.h;hdC1/2Cd .N/�C�.N /

1

r..h; hdC1//

�
X

gdC12GN
gdC1hdC1�k�h�g mod N

1

� TN .g;Q/C 1

Q

X

.h;hdC1/2Cd .N/�C�.N /

1

r..h; hdC1//

C 1

N

N�1X

kD1
kQk=N k�1

X

.h;hdC1/2Cd .N/�C�.N /

1

r..h; hdC1//

D TN .g;Q/C 1

Q
.1C SN/dSN C .1C SN /dS2N ;

where we used Lemma 2. Therefore

1

N

X

gdC12GN
TN ..g; gdC1//

� TN .g/C .1C SN /dSN
"
s�1Y

iD1

1

pi � 1 C SN
s�1Y

iD1
mi

#

� Œ.1C SN /d � 1C .1C SN/dSN �
"
s�1Y

iD1

1

pi � 1 C SN
s�1Y

iD1
mi

#

D Œ.1C SN /dC1 � 1�
"
s�1Y

iD1

1

pi � 1 C SN
s�1Y

iD1
mi

#

:

Hence there exists a gdC1 2 GN such that

TN ..g; gdC1// � Œ.1C SN /dC1 � 1�
"
s�1Y

iD1

1

pi � 1 C SN
s�1Y

iD1
mi

#

:

This completes the proof. ut
We are now ready to state our CBC algorithm for generating the vector g 2 Gd

N .
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Algorithm 1. Let N; d� 2 N. Set g0 WD ./. For d 2 f0; : : : ; d� � 1g, assume we
have already constructed gd 2 Gd

N . Then choose gdC1 2 GN which minimizes
TN ..gd ; �//.

We now assess the complexity of the CBC construction. In the d -th step of
the CBC construction, g1; : : : ; gd�1 are already fixed and we need to compute
TN ..g1; : : : ; gd�1; gd // for all gd simultaneously. Referring to Eq. (5), we therefore
need a quick way to compute the sum

N�1X

nD0

1

�

1

r

�

.gdn/

0

B
@FN .n/

d�1Y

iD1

1

�

1

r

�

.gin/

1

C
A (6)

for all gd . This is best done by viewing (6) as a multiplication of the matrix ˝ WD�
c� 1
r

�
.gn/

	N�1
g;nD0 with the transpose of the vector x D

�
FN .n/

Qd�1
iD1

c� 1
r

�
.gin/

	N�1
nD0 .

This matrix-vector multiplication can be computed using N logN operations, by
transforming the matrix into a circulant one so that multiplication with a vector can
be done using fast Fourier transform. See the by now classical article by Nuyens
and Cools [27] on fast CBC constructions for details.

We summarize in the following lemma.

Lemma 5. The vector F .d/
N defined by

F
.d/
N .g/ WD

N�1X

nD0

1

�

1

r

�

.gn/

0

B
@FN .n/

d�1Y

iD1

1

�

1

r

�

.gin/

1

C
A

can by computed recursively in d usingO.N..logN/s�1 C d/ logN/ operations.

Corollary 1. The number of required operations in Algorithm 1 is of order

O.N..logN/s�1 C d/ logN/:

The following theorem shows that Algorithm 1 yields g such that, if we use
g as the generating vector of the lattice of our hybrid point set, we obtain low
discrepancy.

Theorem 1. Let p1; : : : ; ps�1 be s � 1 distinct prime numbers and let N be an odd
prime number that is different from p1; : : : ; ps�1. Let .xn/N�1nD0 be the s-dimensional
Hammersley point set in bases p1; : : : ; ps�1. Let d� 2 N and assume that g D
.g1; : : : ; gd�

/ 2 Gd�

N is constructed according to Algorithm 1. Then for all d 2
f1; : : : ; d�g the point set

PN D ..xn;yn//N�1nD0 2 Œ0; 1/sCd
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with yn D
˚
ng

N

�
for 0 � n � N � 1 where g D .g1; : : : ; gd /, satisfies

ND�N .PN / � 1C Œ2sC .1CSN/dC1�SN �
s�1Y

iD1
mipiC Œ.1CSN /d �1�

s�1Y

iD1

pi

pi � 1:

Proof. The result can be shown by combining (2) and an inductive argument.
Indeed, starting from (2), one only needs to show the existence of g 2 Gd�

N with
small TN .g/. The latter step is done by induction on d�, with Lemma 3 covering
the one-dimensional case, and Lemma 4 covering the induction step. ut
Remark 7. Recall that mi � logN

logpi
C 1 for all 1 � i � s � 1. Furthermore we

have SN � 2 logN . Therefore the discrepancy bound in Theorem 1 is of the form
D�N .PN / D O..logN/sCd=N /. This corresponds to the existence result in [16,
Theorem 1].

We report some concrete computations. Table 1 lists some results for s D d D
2. The number N is chosen as the N0-th prime number and the bound on the
discrepancy, labeled by “Bound (Theorem 1)” is that from Theorem 1. However,
we also state the values of the preliminary bound in (2), labeled “Bound (2)” for
comparison. Computing time is in seconds on an icore7 CPU.

Remark 8. It is not surprising that the bounds on the discrepancy reported in Table 1
cannot compete with the ones for non-hybrid sequences, which can be found in [21,
Theorem 3.8] (Hammersley sequence) and [12, Eq. (20)] (lattice points). But to our
best knowledge our bounds are the first non-trivial ones given for this kind of hybrid
sequence. Note further that the order of convergence is as good as that of non-hybrid
sequences.

Table 1 Discrepancy bounds and good generating vectors for s D d D 2.

N0 N D �.N0/ Bound (Theorem 1) g1 g2 Bound (2) Time

25,000 287,117 2.302 39,578 893 2.065 14
50,000 611,953 1.348 222,724 283,785 1.211 32
75,000 951,161 0.954 202,628 38,908 0.856 51

100,000 1,299,709 0.782 1,196,035 448,030 0.703 71
125,000 1,655,131 0.646 531,187 81,506 0.579 91
150,000 2,015,177 0.552 1,421,738 994,192 0.496 112
175,000 2,381,147 0.506 1,847,221 90,990 0.454 136
200,000 2,750,159 0.451 1,665,684 312,176 0.404 160
225,000 3,122,321 0.407 673,590 1,982,517 0.364 191
250,000 3,497,861 0.371 2,430,895 1,686,792 0.332 219
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4 Concluding Remarks

In this paper, we have discussed the explicit construction of hybrid point sets
obtained by mixing Hammersley point sets and lattice point sets. Algorithm 1 is
a common CBC approach for generating the lattice part of our hybrid set. This
algorithm yields point sets satisfying a discrepancy bound as good as the bound in
the existence result of [16]. We have therefore solved the open problem outlined in
the final section of [16] and taken a further step towards obtaining explicit versions
of hybrid point sets of high quality.

Finally, we would like to remark that the point sets under consideration in this
paper have recently also been analyzed with respect to a different measure of
uniformity, namely the diaphony (cf. [6]).
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A QMC-Spectral Method for Elliptic PDEs
with Random Coefficients on the Unit Sphere

Quoc Thong Le Gia

Abstract We present a quasi-Monte Carlo spectral method for a class of elliptic
partial differential equations (PDEs) with random coefficients defined on the
unit sphere. The random coefficients are parametrised by the Karhunen-Loève
expansion, while the exact solution is approximated by the spherical harmonics.
The expectation of the solution is approximated by a quasi-Monte Carlo integration
rule. A method for obtaining error estimates between the exact and the approximate
solution is also proposed. Some numerical experiments are provided in the last
section.

1 Introduction

Let S be the unit sphere in R
3, i.e. S D fx 2 R

3 W jxj D 1g. Let .˝;˙;P / be a
probability space and assume that a.�; !/ W ˝ ! L1.S/ is a P -measurable map.
We assume

a 2 L2.˝; dPIL1.S//; (1)

which renders the mean and variance of the random field a as elements of L1.S/
and respectively of L1.S � S/, finite.

Given a random diffusion coefficient a.x; !/, a prediction of the concentration
u.x; !/ for x 2 S requires a solution of a stochastic differential equation such as

(
�Div .a.x; !/Grad u.x; !// D f .x/ on S;

R
S

u.x; !/dS.x/ D 0; ! 2 ˝; (2)

Q.T. Le Gia (�)
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where Div and Grad are the surface divergence and surface gradient on the sphere
respectively.

These equations can be used to describe a diffusion on the sphere in which
the diffusivity contains random noises coming from measurements. This situation
can occur when turbulent diffusivity of the atmosphere is inferred from radar
measurements [11].

To ensure (2) has a unique solution, we assume further that a 2 L1.S �˝/ is
strictly positive, with lower and upper bound amin > 0 and amax < 1 respectively,
i.e.

amin � ess inf a.x; !/ and ess sup a.x; !/ � amax P-a.s; (3)

where the essential infimum and supremum are taken with respect to the Lebesgue
measure in S .

In this work, we propose an approximation scheme for (2) using the Karhunen-
Loève expansion on the unit sphere of the random coefficient. A similar approxima-
tion model for elliptic PDEs with random coefficients on bounded domains in R

n

has been proposed recently [4].
The paper is organised as follows. In Sect. 2, we review background materials on

spherical harmonics, Karhunen-Loève expansion on the unit sphere, quasi Monte
Carlo method using lattice rules. In Sect. 3, we describe the parametric variational
formulation of the PDE and discuss the regularity of the solution, QMC integration
for the exact solution of the PDE. The spectral method on the sphere and the
combined error estimates are presented in the last two sections of the paper.

2 Preliminaries

2.1 Spherical Harmonics

Spherical harmonics are the restriction to S of homogeneous polynomials Y in R
3

which satisfy �Y D 0, where � is the Laplacian operator in R
3. The space of all

spherical harmonics of degree ` on S , denoted by H`, has an orthonormal basis

fY`;m W m D �`; : : : ; `g:

The space of spherical harmonics of degree � L will be denoted by PL WDLL
`D0 H`; it has dimension .`C 1/2. Every function f 2 L2.S/ can be expanded

in terms of spherical harmonics,

f D
1X

`D0

X̀

mD�`
Of`;mY`;m; Of`;m D

Z

S

f Y`;mdS;
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where dS is the surface measure of the unit sphere. The following formulas are the
addition theorems for spherical harmonics [10, p. 223].

X̀

mD�`
Y`;m.x/Y`;m.y/ D 2`C 1

4�
P`.x � y/; (4)

X̀

mD�`
GradY`;m.x/ � GradY`;m.y/ D .2`C 1/`.`C 1/

4�
P`.x � y/; (5)

where P` is the Legendre polynomial of degree ` normalised so that P`.1/ D 1.

Lemma 1. Let Y` be a spherical harmonic of degree `. Then

jY`.x/j �
r
2`C 1
4�

�Z

S

jY`.x/j2dS

�1=2
(6)

and

jGradY`.x/j �
r
2`C 1
4�

�Z

S

jGradY`.x/j2dS

�1=2
(7)

Proof. Inequality (6) is a result of [6, Lemma 8, p. 14]. In order to prove inequality
(7), suppose Y`.x/ D P`

mD�` dmY`;m.x/, where dm D .Y`; Y`;m/L2.S/. We use the
orthogonality [10, p. 227]

R
S

GradY`;m �GradY`0;m0dS D `.`C1/ı`;`0ım;m0; to obtain

Z

S

jGradY`j2dS D `.`C 1/
X̀

mD�`
.dm/

2: (8)

Applying Cauchy-Schwarz’s inequality and (5) we have

jGradY`.x/j2 �
X̀

mD�`
.dm/

2
X̀

mD�`
jGradY`;m.x/j2 D .2`C 1/`.`C 1/

4�

X̀

mD�`
.dm/

2:

Combining this with (8), we obtain (7). ut

2.2 Karhunen-Loève Expansion on the Unit Sphere

To define the Karhunen-Loève (KL) expansion of a.x; !/, we assume the mean field
and two-point correlation of a.x; !/ are known, i.e. that

Na.x/ WD
Z

˝

a.x; !/dP.!/ and Ca.x; y/ WD
Z

˝

a.x; !/a.y; !/dP.!/ (9)
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are known. An equivalent assumption is that the mean field Na and its covariance Va
are known, since by definition,

Va.x; y/ D Ca.x; y/� Na.x/ Na.y/: (10)

The 2-point correlation of a.x; !/ is well-defined and belongs to L1.S � S/
due to (1). Associated with Va we can define a compact, self-adjoint operator
Va W L2.S/! L2.S/ by

.Vau/.x/ D
Z

S

Va.x; y/u.y/dS.y/; (11)

where dS is the surface measure of the unit sphere S .
A covariance kernel Va.x; y/ 2 L2.S � S/ given by (10) is said to be admissible

if it is symmetric and positive definite in the sense that

nX

kD1

nX

jD1
akVa.xk; xj /aj � 0; 8xj ; xk 2 S; ak; aj 2 C:

Using a characterisation of positive definite functions on the unit sphere by
Schoenberg [8, Theorem 1], we conclude that an admissible covariance kernel
Va.x; y/ admits the following expansion into spherical harmonics

Va.x; y/ D
1X

`D0

X̀

mD�`
Ov`Y`;m.x/Y`;m.y/; x; y 2 S: (12)

where

1X

`D0
.2`C 1/ Ov` <1; Ov` > 0; ` D 0; 1; : : : (13)

From the addition theorem for spherical harmonics (4),

Va.x; y/ D
1X

`D0

2`C 1
4�

Ov`P`.x � y/:

Therefore, in view of condition (13), the series (12) converge uniformly by
Weierstrass M-test.

Using the orthogonality of the spherical harmonics, we have
Z

S

Va.x; y/Y`;m.y/dS.y/ D Ov`Y`;m.x/:

Therefore f. Ov`; Y`;m/ W ` D 0; 1; : : : Im D �`; : : : ; `g is the sequence of eigenpairs
of the integral operator Va.
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Using the Loève representation theorem, since S is a compact set and the
spherical harmonics form an orthonormal basis of L2.S/, the random field (1) takes
the form

a.x; !/ D Na.x/C
1X

`D0

X̀

mD�`

p
Ov`Y`;m.x/X`;m.!/; (14)

where X`;m.!/ are centred at 0, pairwise uncorrelated random variables on proba-
bility spaces .˝`;m;˙`;m; P`;m/ for ` D 0; 1; 2; : : : Im D �`; : : : ; `.

We now assume that

Na 2 W 1;1.S/;
1X

`D1

p
`.`C 1/.2`C 1/

p
Ov` <1; (15)

where kvkW 1;1.S/ D maxfkvkL1.S/; kGrad vkL1.S/g.
Since Y`;m is an element of an orthonormal basis, we deduce from (6),

jY`;m.x/j �
r
2`C 1
4�

8x 2 S: (16)

From assumption (15) and estimate (16) we obtain

1X

`D0

X̀

mD�`

p
Ov`kY`;m.x/kL1.S/ <1: (17)

We sometimes make a stronger assumption that

1X

`D0

X̀

mD�`

p
. Ov`/pkY`;m.x/kpL1.S/ <1; 0 < p < 1: (18)

Using the orthogonality of GradY`;m, we deduce from (7) that

jGradY`;m.x/j �
r
`.2`C 1/.`C 1/

4�
: (19)

So from (19) and (15) we deduce that

1X

`D0

X̀

mD�`

p
Ov`kY`;m.x/kW 1;1.S/ <1; (20)

which will guarantee the convergence of the approximate solution.
Following [1], we assume that the diffusion coefficient a.x; !/ satisfies (3), the

covariance kernel Va is admissible and a.x; !/ admits a Karhunen-Loève expansion
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(14). Furthermore, we make the following assumptions on the random variables
X`;m in the KL-expansion (14) of the random coefficient.

Assumption 1. (i) The family fX`;m W ` D 0; 1; 2; : : : Im D �`; : : : ; `g is
independent.

(ii) The KL-expansion (14) of the random coefficient is finite, i.e. there exists M <

1 such that X`;m D 0 for all ` > M .
(iii) EachX`;m.!/ in (14) is associated with a probability space .˝`;m;˙`;m; P`;m/

with the following properties:

(a) The range of X`;m, U`;m WD Range.X`;m/ � R, is assumed to be compact,
(b) The probability measure P`;m admits a probability density function

	`;m WU`;m! Œ0;1/ such that dP`;m.!/ D 	`;m.y`;m/dy`;m, y`;m 2 U`;m,
and

(c) The sigma algebras˙`;m are subsets of the Borel sets of the interval U`;m,
i.e. ˙`;m � B.U`;m/

In the sequel, we let � WD f` D 0; 1; 2; : : : ;M Im D �`; : : : ; `g:
Assumption 1 (ii) is made so that we can represent the measure P on the space

of input data as anM�fold product measure and to avoid technical issues related to
countable product measures on the space L1.S/ of input data. We have

˙ D
O

.`;m/2�
˙`;m; dP D

O

.`;m/2�
dP`;m; U D

O

.`;m/2�
U`;m:

While the double index .`;m/ follows the convention of spherical harmonics, it
is inconvenient in subsequent analysis. We introduce a single index via the map

j.`;m/ D `.`C 1/C 1Cm; ` D 0; 1; 2; : : : Im D �`; : : : ; `:
In subsequent sections, we assume that X`;m.!/ D !`;m uniformly distributed and
U D 
� 1

2
; 1
2

�s
; for some s �M .

2.3 Quasi-Monte Carlo Integration in Weighted Spaces

Let s be a positive integer, we consider integrals over the s-dimensional cube
� 1
2
; 1
2

�s
of the form

Is.F / WD
Z

Œ� 12 ; 12 �
s
F .y/dy:

An N -point QMC approximation to this integral is an equal weight quadrature of
the form

Qs;N .F / WD 1

N

NX

iD1
F.y.i//;
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with carefully chosen points y.1/; : : : ; y.N / 2 Œ� 1
2
; 1
2
�s . We shall assume that the

integrand F belongs to weighted and anchored Sobolev space Ws;� , which is a
Hilbert space equipped with the norm

kF kWs;� WD
0

@
X

uf1Wsg
��1u

Z

Œ� 12 ; 12 �juj

ˇ
ˇ̌
ˇ
ˇ

Z

Œ� 12 ; 12 �s�juj

@jujF
@yu

.yuI yf1WsgnuI 0/dyf1Wsgnu

ˇ
ˇ̌
ˇ
ˇ

2

dyu

1

A

1=2

(21)

The norm of Is as a linear functional on the function space Ws;� is, from [9],

kIsk WD sup
kF kWs;��1

jIs.F /j D
0

@
X

uf1Wsg
�u

�
1

12

�juj
1

A

1=2

:

We shall assume that we have a sequence of positive weights � D .�u/juj<1
satisfying

X

juj�1
�u

�
1

12

�juj
<1: (22)

For the moment, we focus on a family of QMC rules known as “shifted rank-1
lattice rules”, whose quadrature points are given by the following formula

y.i/ D frac

�
iz
N
C�

�
�
�
1

2
; : : : ;

1

2

�
; i D 1; : : : ; N;

where z 2 Z
s is known as the generating vector, � 2 Œ0; 1�s is the shift, and frac.�/

means to take the fractional part of each component in the vector.
An application ofQs;N with a realization for a draw of the shift � will be denoted

by Qs;N .�I�/.
Theorem 1 ([4, Theorem 2.1]). Let s;N 2 N be given, and assume F 2 Ws;�

for a particular choice of weights � . Then a randomly shifted lattice rule can be
constructed using a component-by-component algorithm such that the root-mean-
square error for approximating the s-dimensional integral Is.F / satisfies, for all
 2 .1=2; 1�,

q
EŒjIs.F /�Qs;N .F I �/j2� (23)

�
0

@
X

juj<1
�u

�
2�.2/

.2�2/
C 1

12

�juj
1

A

1=.2/

.N � 1/�1=.2/kF kWs;� ; (24)
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where EŒ�� denotes the expectation with respect to the random shift � which is
uniformly distributed over Œ0; 1�s .

3 Parametric Variational Formulation

3.1 Function Spaces

Define the following Sobolev space

H1.S/ WD fu 2 L2.S/ W Grad u 2 L
2.S/g:

That is, H1.S/ consists of functions u 2 L2.S/, whose weak gradient Grad u exists
and is in the space L2.S/, which contains all vector fields u so that

R
S

u � u <1.
Let V be a subspace of H1.S/ which contains all functions with zero mean

over S , i.e.

V WD
�

u 2 H1.S/ W
Z

S

u D 0
�
:

It can be shown that V is a Hilbert space with the following inner product and norm

.u; v/V D .Grad u;Gradv/L2.S/; kukV D kGrad ukL2.S/:

Let V � be the dual space of V with respect to the L2.S/ inner product .�; �/, i.e., the
space of all continuous linear functionals defined on V . Since V � H1.S/, we have
H�1.S/ � V �. We also consider the following function space

Z WD fv 2 V W ��v 2 L2.S/g;

where �� is the Laplace-Beltrami operator on S . The space Z � V is a closed
subspace which, when equipped with the norm

kvkZ WD
�
kvk2

L2.S/
C k��vk2

L2.S/

	1=2
;

is a Hilbert space. The space Z is a subspace of H2.S/, see [5] for definitions of
Sobolev spaces on manifolds based on the Laplace–Beltrami operator.

We also define the weighted spaces Ws;� .U IV /, which are the Bochner versions
of the weighted spaces Ws;� , with the norm
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kukWs;� .U IV / WD
0

@
X

juj�f1Wsg

��1
u

Z

Œ� 1
2 ;
1
2 �

juj

��
���

Z

Œ� 1
2 ;
1
2 �
s�juj

@juju

@yu
.�; .yuI yf1WsgnuI 0//dy

f1Wsgnu

��
���

2

V

dyu

1

A

1=2

:

(25)

In this paper, we wish to compute
Z

U

F.y/dy; with F.y/ D G.u.�; y//; G 2 V �: (26)

Then for s � 1 and for u 2 Ws;� .U IV /, using (21) and

@jujF
@yu

.y/ D G
 
@juju
@yu

.�; y/
!

;

we have

kF kW� � kG.�/kV �kukWs;� .U IV / <1: (27)

3.2 The Parametric Variational Formulation

The weak formulation of (2) is given by

E

�Z

S

a.x; !/Grad u.x; !/ � Grad v.x; !/dS.x/

D E

�Z

S

f .x/v.x; !/dS.x/

;

where E denotes the expectation with respect to the random variable !.
As a consequence of the independence in Assumption 1, the multivariate

probability density on U is given by

	.y/ WD ˘.`;m/2�	`;m.y`;m/:

We substitute X`;m.!/ by y`;m and equip the range U of the vector y with the prod-
uct measure dP.!/ DN 	`;m.y`;m/dy`;m. Here we assume that the random variable
X`;m and the random numbers y`;m have the same probability distribution. Changing
measure from dP.!/ to ˘.`;m/2�	`;m.y`;m/dy`;m, problem (2) is equivalent to the
parametric, deterministic problem:

Find u.�; y/ 2 V such that � Div a.x; y/Grad u.x; y/ D f .x/; x 2 S; y 2 U:
(28)

For a fixed y 2 U , the parametric variational formulation of the PDE (28) is
obtained by multiplying it with a test function and integrating by part: find u.�; y/ 2
V such that
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Z

S

a.x; y/Grad u.x; y/ � Grad v.x; y/dS.x/ D
Z

S

f .x/v.x/dS 8v 2 V:

Let us define the parametric bilinear form b.yI v;w/ by

b.yI v;w/ WD
Z

S

a.�; y/Gradv � Grad wdS v;w 2 V: (29)

In view of (3) the bilinear form b.�; �/ is continuous and coercive on V � V , i.e., for
all y 2 U and all v;w 2 V we have

b.yI v; v/ � aminkvk2V and jb.yI v;w/j � amaxkvkV kwkV :

The variational form now reads:

Find u.�; y/ 2 V such that b.yI u.�; y/; v/ D hf; vi 8v 2 V: (30)

By the Lax-Milgram Lemma we conclude that for every f 2 V �, there exists a
unique solution to the parametric weak problem (30).

Theorem 2. Under Assumptions (3) and (17), for every f 2 V � and every y 2 U ,
there exists a unique solution u.�; y/ of the parametric weak problem (30), which
satisfies

ku.�; y/kV � 1

amin
kf kV � :

3.3 Regularity of the PDE Solution

Assume that f 2 L2.S/, we want to obtain a bound on the Z norm of u.�; y/ for
each value of the parameter y.

Theorem 3. Under Assumptions (3) and (15), there exists a constant C > 0

such that for every f 2 L2.S/ and every y 2 U , the solution u.�; y/ 2 V of
the parametric weak problem (30) satisfies

ku.�; y/kZ � Ckf kL2.S/: (31)

Proof. Using Assumption (15), which implies (20), for every y 2 U , we have,

ka.�; y/kW 1;1.S/ � kNakW 1;1.S/ C 1

2

1X

`D0

X̀

mD�`

p
Ov`kY`;mkW 1;1.S/ <1:

We apply the identity
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Div .˛.x/Grad w.x// D ˛.x/��w.x/C Grad˛.x/ � Grad w.x/;

to (2) in order to obtain

�a.�; y/��u.�; y/ D Grad a.�; y/ � Grad u.�; y/C f .�/ on S;
Z

S

u.x; y/dS.x/ D 0:

This implies that for every y 2 U there holds

amink��u.�; y/kL2.S/ � ka.�; y/kW 1;1.S/ku.�; y/kV C kf kL2.S/;
and this yields

ku.�; y/k2Z � ku.�; y/k2L2.S/ C
1

a2min

.ka.�; y/kW 1;1.S/ku.�; y/kV C kf kL2.S//2:

Using the Poincaré inequality kukL2.S/ � CP kukV for all u 2 V , we obtain

ku.�; y/k2Z �
�
1

C 2
P

C 2

a2min

sup
z2U
ka.�; z/k2

W 1;1.S/

�
ku.�; y/k2V C

2

a2min

kf k2
L2.S/

:

The proof is completed by using Theorem 2. ut
In the following, we will discuss the regularity of u.x; y/ with respect to the y
variable. Firstly, we introduce a multi-index notation. For � D .�j /j�1 2 N

N

0 ,
where N0 D N [ f0g, we define j�j WD �1 C �2 C � � � , and we refer to � as
a “multi-index” and j�j as the length of �. For � � N of finite cardinality, we
denote by

@
�
y u WD @j�j

@
�1
y1 @

�2
y2 � � �

u

the partial derivative of order j�j of u with respect to y.

Theorem 4. Under Assumptions (3) and (17), for every f 2 V �, every y 2 U
and every � � N of finite cardinality, the solution u.�; y/ of the parametric weak
problem (30) satisfies

k@�y u.�; y/kV � j�jŠkf kV �

amin

Y

j2�
bj ; (32)

where the sequence b D .bj /j�1 2 `1.N/ is defined by

bj WD 1

amin

p Qvj kYjkL1.S/: (33)
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Remark 1. As mentioned earlier, the relationship between j , `, m is given by

j.`;m/ D `.`C 1/C 1Cm; ` D 0; 1; 2; : : : Im D �`; : : : ; `:

The coefficients Qvj are defined by

Qvj D Ov`; for `.`C 1/C 1 � ` � j � `.`C 1/C 1C `:

Proof. The proof of this theorem can be adapted from the proof of [4, Theorem 4.2]
with a slight modification, namely the r is replaced by the surface gradient Grad
on the sphere. The key idea is the following recurrence relation deduced from (30)

Z

S

a.x; y/Grad .@
�
y u.x; y// � Grad v.x/dS.x/

C
X

j2supp.�/

�j

Z

S

p Qvj Yj .x/Grad .@
��ej
y u.x; y// � Grad v.x/dS.x/ D 0;

(34)

for every v 2 V , y 2 U and � � N with 0 ¤ j�j < 1. Here ej 2 N
N denotes

the multi-index with entry 1 in the j th position and zeros elsewhere, and where
supp.�/ D fj 2 N W �j ¤ 0g denotes the “support” of �. We now select in (34) the

function v.x/ D @�y u.x; y/ 2 V to estimate @
�
y u.x; y/ in appropriate norms. ut

3.4 Dimensional Truncation

Theorem 5. Under Assumptions (3) and (17), for every f 2 V �, every y 2 U and
every s 2 N, the solution u.�; .yf1WsgI 0// of the truncated parametric weak problem
(30) satisfies

ku.�; y/� u.�; .yf1WsgI 0//kV � kf kV
�

2a2min

X

j�sC1

p Qvj kYjkL1.S/:

Proof. The proof of this theorem can also be adapted from the proof of [4, Theorem
5.1] when the r is replaced by the surface gradient Grad and the eigenfunctions
 j D

p Qvj Yj : ut

4 Spectral Method on the Sphere

Let P�
L be the space of all spherical harmonics of degree�L excluding the constant

function, i.e.
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P�
L D spanfY`;m W ` D 1; : : : ; LI m D �`; : : : ; `g:

The space P�
L is a subspace of V since the orthogonality of the spherical harmonics

implies
Z

S

pdS D 0 8p 2P�
L:

For a given function u 2 Hm.S/ with m � 1, there is a constant C > 0 such
that [3]

inf
p2P�

L

ku � pkH1.S/ � CL1�mkukHm.S/: (35)

Consequently, for a given function u 2 Z � H2.S/, there is a positive constant C
such that

inf
p2P�

L

ku � pkV � CL�1kukZ: (36)

For any y 2 U , we define the parametric spectral approximation uL.�; y/ as
the spectral solution of the parametric deterministic problem: for f 2V � and
y2U , find

uL.�; y/ 2P�
L W b.yI uL.�; y/; p/ D hf; pi 8p 2P�

L: (37)

Theorem 6. Under Assumptions (3) and (15), for every f 2 V � and every y 2 U ,
the spectral approximations uL.�; y/ are stable in the sense that

kuL.�; y/kV � kf kV �

amin
: (38)

Moreover, for every f 2 L2.S/, as L ! 1, there exists a constant C >0
independent of L such that

ku.�; y/� uL.�; y/kV � CL�1kf kL2.S/: (39)

Proof. The result follows from Cea’s lemma together with the approximation
property (36). ut
Since we are interested in estimating the error in approximating functionals (26),
we also assume that G.�/ 2 L2.S/.
Theorem 7. Under Assumptions (3) and (15), for every f 2L2.S/, every G.�/ 2
L2.S/, and every y 2 U , the spectral approximation G.uL.�; y// satisfy the
asymptotic estimate

jG.u.�; y//�G.uL.�; y//j � CL�2kf kL2.S/kG.�/kL2.S/;
where the constant C > 0 is independent of y 2 U .
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Proof. For G.�/ 2 L2.S/ and any y 2 U , we define vG.�; y/ 2 V as the unique
solution to the adjoint problem

b.yIw; vG.�; y// D G.w/ 8w 2 V: (40)

Since b is symmetric, b.yIw; v/ D b.yI v;w/ for all v;w 2 V , we also have

b.yI vG.�; y/;w/ D G.w/ 8w 2 V:

So, by the regularity estimate (31), there is a constant C > 0, which is independent
of y such that

kvG.�; y/kZ � CkG.�/kL2.S/: (41)

Using the orthogonality property and (40), we may write for every y 2 U and every
vL 2P�

L,

jG.u.�; y//�G.uL.�; y//j D jG.u.�; y/� uL.�; y//j
D jb.yI u.�; y/� uL.�; y/; vG.�; y/j
D jb.yI u.�; y/� uL.�; y/; vG.�; y/� p/j
� Cku.�; y/� uL.�; y/kV kvG.�; y/� pkV :

Finally, we apply (36), (38) and (41) to obtain

jG.u.�; y/�G.uL.�; y//j � CL�2kf kL2.S/kvGkZ � CL�2kf kL2.S/kG.�/kL2.S/:

This completes the proof. ut

5 Combined Error Estimates

We now present the error analysis for the combined QMC spectral approximation for
the integral (26) using a randomly shifted lattice rule withN points in s dimensions.
A realization for a draw of the shift � will be denoted by Qs;N .�I�/ and for each
evaluation of the integrand, the exact solution u.�; y/ of the parametric weak problem
(30) is replaced by its spectral approximation uL 2P�

L.

Theorem 8. Under the same assumptions and definitions as in Theorems 5–7
and (18), if we approximate the integral over U by the randomly shifted lattice rule
from Theorem 1 with N points in s dimensions, and for each shifted lattice point we
solve the approximate elliptic problem (38) by a spectral method then we have the
root-mean-square error bound

q
EŒjI .G.u//�Qs;N .G.uL/I �/j2�
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� C.�.s;N /kf kV �kG.�/kV � C CL�2kf kL2.S/kGkL2.S//;

where

�.s;N / D

8
ˆ̂<

ˆ̂
:

s�2.1=p�1/ CN�.1�ı/ when p 2 .0; 2=3�;
s�2.1=p�1/ CN�.1=p�1=2/ when p 2 .2=3; 1/;
.
P

j�sC1 bj /2 CN�1=2 when p D 1;

and EŒ�� denotes the expectation with respect to the random shift � which is
uniformly distributed over Œ0; 1�s .

Proof. We express the overall error as the sum of a dimensional truncation error, a
QMC quadrature error, and a spectral approximation error:

I .G.u//�Qs;N .G.uL/I�/
D .I �Is/.G.u//C .Is.G.u//�Qs;N .G.u/I�//CQs;N .G.u � uL/I�/:

The mean-square error with respect to the random shift can then be bounded by

EŒjI .G.u//�Qs;N .G.uL/I �/j2� � 3j.I �Is/.G.u//j2C
3E ŒjIs.G.u//�Qs;N .G.u/I �/j2�C
3E ŒjQs;N .G.u � uL/I �/j2�:

(42)

For the truncation error, i.e., the first term in (42), we use the estimate

j.I �Is/.G.u//j D
ˇ
ˇ
ˇ
ˇ

Z

U

G.u.�; y/� u.�; .yf1WsgI 0///dy

ˇ
ˇ
ˇ
ˇ

� sup
y2U
jG.u.�; y/� u.�; .yf1WsgI 0///j

� kG.�/kV � sup
y2U
ku.�; y/� u.�; .yf1WsgI 0//kV ;

and then apply Theorem 5. The QMC error is already analysed in [4, Sect. 6].
Finally, for the spectral error, i.e., the third term in (42), using the property that
the QMC quadrature weights 1=N are positive and sum to 1, we obtain

EŒjQs;N .G.u � uL/I �/j2� � sup
y2U
jG.u.�; y/� uL.�; y//j2;

and then apply Theorem 7. ut
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6 Numerical Experiments

Let the unit sphere S by parametrised by

x D .x1; x2; x3/ D .sin � cos�; sin � sin �; cos �/; � 2 Œ0; ��; � 2 Œ0; 2�/:

Let U D 
� 1
2
; 1
2

�2
, we consider the following simplified problem

(
�Div .a.x; y/Grad u.x; y// D f .x; y/;
R
S

u.x; y/dS.x/ D 0; 8y D .y1; y2/ 2

� 1

2
; 1
2

�2 (43)

with

a.x; y/ D 3C y1 C y2x3;
and

f .x; y/ D 2y1x1.8y2x23 C 18x3 C 6x3y1 � y2/:
It can be shown that the exact solution is given by

u.x; y/ D y1 cos.�/ sin.2�/ D 2y1x1x3:
The spherical harmonics and their gradients are computed explicitly using

formulas in Varshalovich’s book [10], see also [2]. Integration of a function f on
the sphere is approximated by a quadrature of the form

Z

S

fdS 	 2�

M

M=2X

pD1
wp

M�1X

qD0
f .sin �p cos�q; sin �p sin �q; cos �p/;

for an even number M � 2, where
R 1
�1 g.z/dz 	 PM=2

pD1 is a Gauss-Legendre rule
and �q D 2�q=R.

For fixed value y D .1=2; �1=4/T , Table 1 shows the values of the quantities

emax D max
x2Q ju.x; y/� uL.x; y/j and e2 D

 
X

x2Q
wxju.x; y/� uL.x; y/j2

!1=2
;

where Q is the set of quadrature points.

Table 1 Errors of the PDE solvers for fixed y D .1=2; �1=4/T .

L 1 2 3 5
emax 0.2581 3.3307e�16 3.2613e�16 4.1633e�16
e2 0.4583 3.3729e�16 3.4730e�16 3.8967e�16
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101 102 103 104
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err0(N)
0.03/N

Fig. 1 Errors plot of err0.N /.

Table 1 shows spectral approximation errors are neglectable for L � 2 in this
example.

We used Fibonacci lattice point sets for our QMC rule since these are optimal
for any choice of weights [7, Chap. 5]. The Fibonacci point set fy.1/; : : : ; y.N /g of
size N D Fn, where Fn is the nth Fibonacci number, has the generating vector

.1; Fn�1/, so that y.k/ D
�
k
Fn
; kFn�1

Fn

	
mod 1. The random shifts � are drawn

uniformly from Œ0; 1�2.
We let n D 10; 11; : : : ; 20 and hence N D 55;89; : : : ; 6;765. Figure 1 shows the

plot of quantities

err0.N / D
0

@E

ˇ
ˇ̌
ˇ
ˇ
1

N

NX

kD1
u5.x0; yk C�/ �

Z

Œ�1
2 ;

1
2 �
2

u.x0; y/dy

ˇ
ˇ̌
ˇ
ˇ

2
1

A

1=2

;

where x0 D .�0:9994; 0:0314; �0:0156/ 2 S andE is taken over 10 random shifts
�’s. The plot is in the log-log scale compared with 0:03=N . Since the truncation
error is also neglectable in this example, the numerical results are consistent with
Theorem 8.
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Sampling and Low-Rank Tensor Approximation
of the Response Surface

Alexander Litvinenko, Hermann G. Matthies, and Tarek A. El-Moselhy

Abstract Most (quasi)-Monte Carlo procedures can be seen as computing some
integral over an often high-dimensional domain. If the integrand is expensive to
evaluate—we are thinking of a stochastic PDE (SPDE) where the coefficients are
random fields and the integrand is some functional of the PDE-solution—there is
the desire to keep all the samples for possible later computations of similar integrals.
This obviously means a lot of data. To keep the storage demands low, and to allow
evaluation of the integrand at points which were not sampled, we construct a low-
rank tensor approximation of the integrand over the whole integration domain. This
can also be viewed as a representation in some problem-dependent basis which
allows a sparse representation. What one obtains is sometimes called a “surrogate”
or “proxy” model, or a “response surface”. This representation is built step by step
or sample by sample, and can already be used for each new sample. In case we are
sampling a solution of an SPDE, this allows us to reduce the number of necessary
samples, namely in case the solution is already well-represented by the low-rank
tensor approximation. This can be easily checked by evaluating the residuum of
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the PDE with the approximate solution. The procedure will be demonstrated in the
computation of a compressible transonic Reynolds-averaged Navier-Strokes flow
around an airfoil with random/uncertain data.

1 Motivation

Situations where one is concerned with uncertainty quantification often come in the
following guise: we are investigating some physical system which is modelled by
an evolution equation for its state:

@

@t
u.t/ D F.pI u.t//C f .pI t/; (1)

where u.t/ describes the state of the system at time t 2 Œ0; T � lying in a Hilbert
space V (for the sake of simplicity), F is an operator modelling the physics of the
system, and f is some external influence (action/excitation/loading). In particular
F.pI u.t// could be some parameter-dependent differential operator, for example

@

@t
u.x; t/ D r � .�.x; !/ru.x; t//C f .x; t/; x 2 G � R

d ; t 2 Œ0; T �;

where �.x; !/ is a random field dependent on a random parameter ! in some
probability space $, and one may take V D L2.G /.

The model depends on some parameter p 2 P; in the context of uncertainty
quantification the actual value of p is uncertain. Often this uncertainty is modelled
by giving the set P a probability measure. Evaluation and quantification of the
uncertainty will often involve functionals of the state ‰.u.pI t//, and the functional
dependence of u onp becomes important. Similar situations arise in design, wherep
may be a design parameter still to be chosen, and one may seek a design such that a
functional‰.u.pI t// is e.g. maximised.

The situation just sketched involves a number of objects which are functions
of the parameter values. While evaluating F.p/ or f .p/ for a certain p may
be straightforward, one may easily envisage situations where evaluating u.p/ or
�.u.p//may be very costly as it may involve some very time consuming simulation
or computation, like for example running a climate model.

As will be shown in the following Sect. 2, any such parametric object like u.p/,
F.p/, or f .p/ may be seen as an element of a tensor product space [4, 5]. This in
turn can be used to find very sparse approximations to those objects, and in turn
much cheaper ways to evaluate other parameter values. In particular, this may be
used in the uncertainty quantification to large advantage, like computing means,
covariances, exceedance probabilities, etc. For this, the dependence of F.p/ and
f .p/ on p has to be propagated to the solution or state vector u.p/, see e.g. [18].
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2 Parametric Problems

Let r W P ! V be a parametric description of one of the objects alluded to in the
introduction, where P is some set, and V for the sake of simplicity is assumed as
a separable Hilbert space with inner product h�j�iU (the meaning of the index U
will soon become clear). What we desire is a simple representation/approximation
of that function, which avoids solving Eq. 1 every time one wants to know r.p/ for a
new p 2P , i.e. a response surface (RS) or surrogate model, sometimes also called
an emulator, whereas the solver for Eq. 1 is termed a simulator.

One relatively well-known way, particularly in statistical estimation [10], turns
the problem into one of approximation of a linear mapping: let U D span r.P/ D
span im r � V be the smallest closed subspace of V which is spanned by all the
vectors fr.p/j p 2Pg. Then to each such function r WP ! U one may associate
a linear map

R W U 3 u 7! hr.�/juiU 2 R
P : (2)

By construction, R is injective. This may be used to define an inner product on
imR as

8�; 2 imR W h�j iR WD hR�1�jR�1 iU ;

and let R be the completion of imR with that inner product. It is obvious that R is
a unitary map between the Hilbert spaces U and R.

Up to now, no structure on the set P has been assumed, whereas on U the inner
product is assumed to measure what is important for the state r.p/ 2 U . This is
carried via the map R in Eq. 2 onto the space of scalar functions R on the set P ,
and the inner product there measures essentially the same thing as the one on U .

2.1 Reproducing Kernel Hilbert Space

This is a first representation, and R is called a reproducing kernel Hilbert space
(RKHS) [9] with reproducing kernel ~ 2 R

P � R
P

~.p1; p2/ WD hr.p1/jr.p2/iU : (3)

It is straightforward to verify that it defines an obviously continuous (on R) point-
evaluation functional

ıp W R 3 � 7! hıp; �iR��R WD �.p/ D h~.p; �/j�iR 2 R;

hence the name.
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In other settings like classification or machine learning, e.g. with support vector
machines, where p 2 P has to be classified as belonging to certain subsets of
P , the space V and the map r W P ! V may often be freely chosen. This
is then referred to as the “kernel trick”, and classification may be achieved by
mapping these subsets with r into U and separating them with hyperplanes—a
linear classifier.

In terms of representation, one may now choose a basis f'mgm2N in R, which
may be assumed to be a complete orthonormal system (CONS). With the CONS
fym j ym D R�1'mgm2N in U , the operator R, its inverse R�1, and the parametric
element r.p/ become

R D
X

m

'm ˝ ymI R�1 D
X

m

ym ˝ 'mI r.p/ D
X

m

ym'm.p/; (4)

exhibiting the tensorial nature of the representation mapping. With such a basis one
may define a unitary map from `2 to R and via R�1 further to U :

`2 3 a D .a1; a2; : : :/ 7!
X

m

am'm 7!
X

m

amym 2 U : (5)

Note that this representation is linear in the new ‘parameters’ .a1; a2; : : :/ 2 `2.
Model reductions may be achieved by choosing only subspaces of R or `2, or
by approximating the map R�1. This pattern of Eqs. 4 or 5 repeats itself for all
representations to follow.

2.2 Spectral Decomposition

As a way of measuring of what is important on the set P , assume that there is
another inner product h�j�iW for scalar functions � 2 R

P , and denote the Hilbert
space of functions with that inner product by W . With this, one may define [10] a
densely defined map C in U through the bilinear form

hCujviU WD hRujRviW ; 8u; v 2 U

The map C D R�R (the adjoint is taken w.r.t. the W -inner product, by abuse of
notation we shall still call the map R) may be called the ‘correlation’ operator. By
construction it is injective, positive, and self-adjoint.

Often the inner product h�j�iW comes from a measure $ on P , so that W may
be taken as L2.P;$/. One important class of problems is when$ is a probability
measure on P , i.e. $.P/ D 1. Often the set has more structure, like being in a
topological space, differentiable (Riemann) manifold, or a Lie group, which then
may induce the choice of �-algebra or measure. In all such cases one has C D
R�R D RP r.p/˝r.p/ $.dp/. It is the factorisation ofC D R�R which paves the
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way for further possibilities of representation. Most common is to use the spectral
decomposition (e.g. [25]) of C :

Cu D
Z 1

0

 dE.u/; (6)

where E is the corresponding projection valued spectral measure, with the
spectrum �.C / � RC. For the sake of simplicity assume that C has a pure point
spectrum �p.C / D �.C /—the important case where C has also a continuous
spectrum requires too many technical tools such as Gel’fand triplets (rigged Hilbert
spaces) and generalised eigenvectors to be treated in this short note—such that Eq. 6
may be written with the CONS of unit-U -norm eigenvectors vm:

Cu D
X

m

mhvmjuiU vm D
X

m

m.vm ˝ vm/u:

From this follows the singular value decomposition of R, with 1=2m sm WD Rvm:

R D
X

m


1
2
m.sm ˝ vm/I R� D

X

m


1
2
m.vm ˝ sm/I r.p/ D

X

m


1
2
m sm.p/vm;

where the last relation is the so-called Karhunen-Loève or proper orthogonal
decomposition (POD). Observe that r—as well asR�—is linear in the sm. Similarly
to Eq. 5, we have the—linear in a—representation:

`2 3 a D .a1; a2; : : :/ 7!
X

m

amsm 7!
X

m

1=2m amvm 2 U :

An alternative formulation of the spectral decomposition Eq. 6 is [25] that C is
unitarily equivalent with a multiplication operator:

C D VMkV
� D .VM1=2

k /.VM1=2

k /�;

where V is unitary between some L2.T / and U , Mk is a multiplication operator
on the measure space T with a positive function k.s/ > 0, andM1=2

k DMpk . The
essential range of k is the spectrum of C . This gives in the now familiar manner
a representation on L2.T / through the choice of a CONS f&mg. Setting um WD
VMpk&m, one obtains

.VM1=2

k / D .VMpk/ D
X

m

um ˝ &m

as tensorial representation. A representation on U is given by the factorisationC D
C1=2C 1=2, where the positive square root of C is C1=2 D VMp

k
V �.
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2.3 Other Factorisations of C

Other factorisations C D B�B—which are all unitarily equivalent—lead to
analogous representations. Let B W U ! H be an injective mapping into another
Hilbert space H . Pick a CONS femg in H and set fm WD B�em, then

B� D
X

m

fm ˝ em;

again a tensorial representation. All the representations considered so far are of this
type. Similarly to Eq. 5, we have the—linear in a—representation:

`2 3 a D .a1; a2; : : :/ 7!
X

m

amem 7!
X

m

amfm 2 U :

For finite dimensional spaces, a favourite choice for such a decomposition of C is
the Cholesky factorisation C D LLT .

3 Discretisation and Computation

For brevity we follow [17], where more references may be found, cf. also the
recent monograph [13]. For the sake of simplicity, let us concentrate on the time-
independent or stationary version of Eq. 1, namely F.pI u/ D f .p/. Usually
this is some partial differential equation and has to be discretised, approximated,
or somehow projected onto some finite dimensional subspace VN � V , with
dim VN D N . The entities of Eq. 1 which are projected or induced on the
corresponding R

N will be denoted by boldface, such that the stationary, projected
equation reads as

F .pIu/ D f .p/: (7)

To propagate the parametric dependence, choose a finite dimensional subspace
of the Hilbert spaces, say SM � S for the solution u.p/ in Eq. 7. Via Galerkin
projection or collocation, or other such techniques, the still parametric model Eq. 7
is thereby formulated on the tensor product VN ˝SM , denoted as

F.u/ D f: (8)

The results of Sect. 2 (particularly Sect. 2.2) show that there are multiple possibili-
ties for the choice of S , and hence finite dimensional subspaces SM . The solution
of Eq. 8 is often computationally challenging, as dim VN ˝ SM D N � M may
be very large. One possibility for such high-dimensional problems are the low-
rank approximations, by representing the entities in Eq. 7 such as F , u, and f in a
low-rank format. Several numerical techniques [3, 12, 19, 21] have been developed
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recently to obtain an approximation to the solution u 	 P
j uj ˝ zj to Eq. 8 in

this format by only ever operating on the data-sparse low-rank representation, thus
allowing for an efficient resolution of the high-dimensional problem [5,8,11,22–24].

Once this has been computed, any other functional such as ‰.u.p// may be
computed with relative ease. In case there is a probability measure on P , for
example to quantify some uncertainty in the parameters, the functionals usually
take the form of expectations, a variance, an exceedance probability, or other such
quantity needed in an uncertainty quantification.

3.1 Sampling by Simulation

The probability space is given as a triplet .$;A ;P/, where $ is the set of
elementary events ! 2 $, A a �-algebra, and P the probability measure. Assume
we want to compute

� D E .� .�; ue.�/// D
Z

˝

� .!; ue.!//P.d!/; (9)

where P is a probability measure on ˝ , and ue is the exact solution of a PDE
depending on the parameter ! 2 ˝:

F Œ!� .ue.!// D f .!/; a.s. in! 2 ˝;

ue.!/ is a U -valued random variable (RV), where e.g. U WD VH1.G / D fu 2
H1.G / j u D 0 on @G g and G computational domain.

To compute an approximation ua.!/ to ue.!/ via MC simulation is expensive,
even for one value of !. Put ua.!/ into Eq. 9, obtain

� 	
NsX

iD1
� .!i ; ua.!i //wi ;

where Ns is number of quadrature points (or MC simulations), wi weights and !i
sample points.

To simulate ua one may need samples of the random field (RF) which depends
on infinitely many random variables (RVs). This has to be reduced/transformed� W
$ ! Œ0; 1�M to a finite number M of RVs 	 D .�1; : : : ; �M /, with � D ��P the
push-forward measure:

� D
Z

$

‰.!; ue.!//P.d!/ D
Z

Œ0;1�M

O‰.	; ua.	// �.d	/:

This is a product measure for independent RVs .�1; : : : ; �M /. The next aim is to
approximate an expensive simulation ua.	/ by cheaper emulation.
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4 Constructing the Emulation

The idea is to approximate the solution by a (multivariate) polynomial (see Eqs. 10
and 13) and then to use it for sampling.

Let u.!/ D .u.x1; !/; : : : ; u.xN ; !//T be the solution (or a functional of the
solution), which depends on a random parameter !. u.!/ can be approximated in a
set of new independent Gaussian random variables (Wiener’s [26] polynomial chaos
expansions (PCE)):

u.	.!// D
X

ˇ2J
uˇHˇ.	.!// 	

X

ˇ2JM;p

uˇHˇ.	/ WD UH ; (10)

where U WD .: : : uˇ : : :/ 2 R
N�L, H WD .: : : Hˇ.	/ : : :/

T 2 R
L, L WD

jJM;pj D .MCp/Š
MŠpŠ

, 	.!/ D .�1.!/; : : : ; �M .!//, uˇ D .uˇ.x1/; : : : ; uˇ.xN //T

are coefficients,Hˇ.	/ the multivariate Hermite polynomials

Hˇ.	/ WD
MY

jD1

hˇj .�j / 8	 2 R
M ; ˇ 2JM;p WD fˇ 2J j �.ˇ/ � M; jˇj � pg;

where �.ˇ/ WD maxfj 2 N jˇj > 0g, hˇj are univariate Hermite polynomials,
ˇ 2 J a multiindex. For the purpose of actual computation, truncate PCE after
finitely many terms (Eq. 10) and obtain the finite multiindex subset JM;p of the
infinite set J WD fˇjˇ D .ˇ1; : : : ; ˇj ; : : :/; ˇj 2 N0g. Since Hermite polynomials
are orthogonal, the coefficients uˇ can be computed by projection:

uˇ D 1

ˇŠ

Z

�

Hˇ.	/u.	/P.d	/ 	 1

ˇŠ

ZX

iD1
Hˇ.	 i /u.	 i /wi DWWƒˇ; (11)

where W WD .u.	1/; : : :;u.	Z// 2 R
N�Z ,ƒˇ WD 1

ˇŠ
.Hˇ.	1/w1; : : : ;Hˇ.	Z/wZ/T

2 R
Z . The multidimensional integral over � is computed approximately, for

example, on a sparse Gauss-Hermite grid where 	 i are quadrature points, wi
corresponding weights and Z is the number of quadrature points [2, 6]. The matrix
W is represented as ABT via a rank k approximation (see Sect. 5). The matrix U
of all PCE coefficients will be

U WD .: : : uˇ : : :/ DW� 	 ABT�; ˇ 2JM;p; (12)

where � D .: : : ƒˇ : : :/ 2 R
Z�L. The final low-rank response surface will be

u.	/ 	 ABT�H : (13)
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Now, having low-rank response surface (Eq. 13), we can easily generate a large
sample (u.	1/, u.	2/,. . . ) by generating the random vector 	 and evaluating the
expression in Eq. 13. After each m new samples we perform the update of matrices
A and B as shown in the Algorithm in Sect. 5.

4.1 Emulation Instead of Simulation

In applications it is often very time-consuming (or/and expensive) to generate a
sample which is large enough to compute statistical functionals, probability density
functions (pdf), cumulative distribution functions (cdf), etc. Our idea [15] is to
construct an approximation of the response surface (RS) from few samples and then
to use the residual for its improvement. A motivation for this idea comes from the
fact that in many software packages for solving engineering and physical problems
it is impossible or very difficult to change the code, but it is possible to access the
residual.

Assume that our response surface is an approximation via multivariate Hermite
polynomials as in Eq. 10, where coefficients are computed like in Eqs. 11 and 12
with quadrature points 	j , j D 1::Z.

Assume now that we get the new random point 	ZCj , j D 1; : : : m, where the
solution u.x;	ZCj / should be computed. The following algorithm computes this
solution efficiently and updates the given response surface.

Algorithm 1.

1. Evaluate the RS from Eq. 13 in 	ZCj . Let ua.x;	ZCj / be the obtained value.
2. Compute the norm of residual krk WD kF.ua.x;	ZCj // � f .	ZCj /k of the

deterministic problem (e.g. evaluate one iteration). If krk is small then there is
no need to solve the expensive deterministic problem in 	ZCj , otherwise solve
the deterministic problem.

3. Extend matrix W and vector ƒˇ and recompute A, BT and � in Eq. 13. Go to
Step 1.

In the best case we never have to solve the deterministic problem again. In the
worst case we must solve the deterministic problem for each 	ZCj , j D 1; 2; ::.
The numerical results (Fig. 4, left) in Sect. 6 (solution is smooth, no shock) show
that with this algorithm one can reduce the number of needed TAU iterations from
10,000 to 1,000. If the solution is discontinuous (e.g. with shock) then our response
surface is a very poor approximation and the produced value can not be used as a
good starting point (see Fig. 6).
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5 Low-Rank Data Compression

A large number of stochastic realisations of random fields requires a large amount of
memory and powerful computational resources. To decrease memory requirements
and computing time, we use a low-rank approximation [5, 8, 11, 22–24] for all
realisations of the solution. This low-rank approximation allows an effective post-
processing with drastically reduced memory requirements. For each new realisation
only a corresponding low-rank update is computed (see e.g. [1]). This can be
practical when, e.g., the results of many thousands of Monte Carlo simulations
should be computed and stored. Let ui 2 R

N , i D 1::Ns (Ns can be e.g. equal toZ),
be the solution vectors (snapshots), where Ns is a number of stochastic realisations
of the solution. Let us build from all these vectors the matrix W D .u1; : : : ;uNs / 2
R
N�Ns and consider the approximation

W 	Wk D ABT ; where A 2 R
N�k ; B 2 R

Ns�k and kW �Wkk < "; k � minfN;Nsg:
(14)

To compute factors A and B in Eq. 14 we omit all singular values which are smaller
than a given level " or, an alternative variant, we leave a fixed number (D k) of
largest singular values. After truncation we speak about reduced singular value
decomposition (denoted by rSVD) Wk D U k†kV k

T , where U k 2 R
N�k contains

the first k columns of U , V k 2 R
Ns�k contains the first k columns of V and

†k 2 R
k�k contains the k-biggest singular values of †. We denote A D U k†k

and B D V k . The Eckart-Young-Mirsky theorem (see more in [20] or [7]) states
that matrix Wk is the best approximation of W in the set of all rank-k matrices w.r.t.
the Frobenius norm.

Suppose Wk is given. Suppose also that the matrix W
0 2 R

N�m contains new
m solution vectors. For a small m, computing the factors E 2 R

N�k and D 2
R
m�k such that W

0 	 EDT is not expensive. Now our purpose is to compute with
linear complexity the rank-k approximation of Wnew WD ŒW W0� 2 R

N�.NsCm/.
To do this, we build two concatenated matrices Anew WD ŒA E � 2 R

N�2k and
BT

new D blockdiagŒBT DT � 2 R
2k�.NsCm/. Note that the difficulty now is that

matrices Anew and Bnew have rank 2k. To truncate the rank from 2k to k we
use the QR-algorithm below with complexity O..N CNs/k2 C k3/ [1, 7], linear in
.N CNs/.
Algorithm 2 (Rank truncation operation �2k!k.�/).
1. Compute (reduced)QR-factorization of Anew DQARA and Bnew D QBRB ,

where QA 2 R
N�2k , QB 2 R

Ns�2k , and upper triangular matrices RA, RB 2
R
2k�2k .

2. Compute rSVD with k largest eigenvalues of RART
B D U†V T .

3. Compute U k WD QAU , V k WD QAV T .

Finally, obtain .U k†/V
T
k D �2k!k.AnewBT

new/.
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5.1 Mean and Variance in the Rank-k Format

Denote the j -th row of matrix A by aj 2 R
k and the i -th row of matrix B by

bi 2 R
k . Then one can estimate the mean solution u 2 R

N as follows

u WD 1

Ns

NsX

iD1
ui D 1

Ns

NsX

iD1
A � bi D Ab: (15)

The computational complexity is O.k.NsCN//, in contrast to O.N �Ns/ for usual
dense data format. One can compute the variance of the solution var.u/ 2 R

N by
the computing the covariance matrix and taking its diagonal. For this, first, one
computes the centred matrix W c WD W � W �

T , where W D W � �=Ns and
� D .1; : : : ; 1/T .
Computing W c costs O.k2.N CNs// (addition and truncation of rank-k matrices).
By definition

C D 1

Ns � 1W cW
T
c 	

1

Ns � 1U k˙k˙
T
k U T

k : (16)

The variance of the solution vector (i.e. the diagonal of the covariance matrix in
(16)) can be computed with the complexity O.k2.Ns CN//.
Lemma 1. Let kW �W kk2 � ", and uk be a rank-k approximation of the mean u.
Then (a) ku � ukk � "p

Ns
, (b) kW c � .W c/kk � ", c) kC � C kk � 1

Ns�1"
2.

Proof. Since u D 1
Ns

W � and uk D 1
Ns

W k�, then

ku � ukk2 D 1

Ns
k.W �W k/�k2 � 1

Ns
k.W �W k/k2 � k�k2 � "p

Ns
:

Let I 2 R
Ns�Ns be the identity matrix, then

kW c � .W c/kk2 � kW �W kk2 � kI � 1

Ns
� � � �T k2 � "; and

kC � C kk2 � 1

Ns � 1kW cW
T
c � .W c/k.W c/

T
k k2

D 1

Ns � 1kU˙˙
TU T � U k˙k˙

T
k U T

k k �
1

Ns � 1"
2:

6 Numerical Tests

In this work we consider an example from aerodynamic, described by a system of
Navier-Stokes equations with a k-! turbulence model. Uncertainties in parameters
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such as the angle of attack ˛ and Mach number Ma are modelled by random
variables (see details in [14, 16]):

˛.�1; �2/ D ˛ C Q̨ .�1; �2/; Ma.�1; �2/ D MaC fMa.�1; �2/; (17)

where �1 and �2 are Gaussian random variables, which model the components of
the random fluctuations of the velocity vector, ˛ and Ma are the mean values, and
Q̨ .�1; �2/ and fMa.�1; �2/ are the random fluctuations.

Uncertain output fields such as pressure, density, velocity, turbulence kinetic
energy are modelled by random fields as well. The lift, drag and moments will be
random variables. We will consider two cases: Case 1 (˛ D 1:93 and Ma D 0:676,
no shock) and Case 9 (˛ D 2:79 and Ma D 0:73 with shock).

As the deterministic solver for the Navier-Stokes problem we use the DLR
(German Aerospace Agency) TAU code. Our aim is the appropriate modelling of
uncertainties and developing stochastic/statistical numerical techniques for further
quantification of uncertainties. See, for instance, Fig. 1 which shows 5 % and 95 %
quantiles of the (left) pressure (cp) and (right) the skin friction (cf) coefficients
for RAE-2822 airfoil. With probability 90 % (cp) and (cf) belong to the interval
between the lower and upper curves.

Figure 2 demonstrates ranks 5 (left) and rank 30 (right) approximation errors of
the variance of the density. Both errors are smaller than, e.g. discretisation error or
MC error.

To compute the mean value we use sparse Gauss-Hermite two-dimensional grids
with 281 (Fig. 3 on the left) and 201 (Fig. 3 on the right) nodes. Figure 3 compares
the mean pressure, obtained from 2,600 Monte-Carlo simulations with the mean
pressure obtained from the sparse grid. We do this comparison for both cases—with
shock (Case 9, right) and without (Case 1, left). Both errors are very small. Thus the
response surface in Eq. 13 and Monte Carlo produce similar results.

Fig. 1 5 % and 95 % quantiles for the (left) pressure coefficient cp; and (right) friction coefficients
cf. Computations are done for the Case 9, RAE-2822 airfoil.
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Fig. 2 (Left) Rank-k approximation errors jvar.	/� var.	/5j and (right) jvar.	/� var.	/30j. The
exact density 	 and its variance var.	/ are computed from W 2 R

65568�2600 (see Eq. 14), whereas
var.	/k is computed from Wk . All computations are done for the Case 9 (with shock), RAE-2822
airfoil. The ranges of 	 and var.	/ are shown in Fig. 5.
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Fig. 3 Comparison of the mean pressures computed with PCE and with MC. (Left) � Np WD
j NpPCE281 � NpMCj, Case 1 without shock, (right) � Np WD j NpPCE201 � NpMCj, Case 9 with shock.

6.1 Numerical Experiment with Sampling from the Response
Surface

In this experiment, a sparse Gauss-Hermite two-dimensional grid [2, 6] is used for
building the response surface. The response surface is the multivariate Hermite
polynomial of order p D 2 with two random variables �1 and �2.

At first, we take 20 grid points (shown in Fig. 4, right) and compute TAU
solutions in these points. This can be expensive, since one evaluation of the TAU
code in one points requires already at least 10;000 TAU iterations.

In the next step, we evaluate the just constructed response surface in the 21st grid
point and take the obtained value as the start value for TAU iterations. If this start
value is good (meaning that the response surface gives a good initial approximation)
then only few (may be none) TAU iterations are needed. If the start value is not
good, we need again around 10;000 TAU iterations as above. After obtaining the
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solution we update our response surface (see Sect. 4.1). The same procedure is
repeated for all remaining sparse grid points. Figure 4 (left) shows relative errors
in the Frobenius and the maximum norms for pressure and density computed in
10 points from a neigbourhood of ˛ D 1:93 and Ma D 0:676 (shown on the
right). These relative errors are computed between solutions which we obtained
after 10,000 TAU iterations without any starting and solutions which we obtained
after only 1,000 TAU iterations with start values taken from the response surface
(multivariate Hermite polynomials with M D 2 variables and of order p D 2).
One can see that the errors are very small, i.e. the response surface produces a good
approximation.
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Fig. 4 (Left) Relative errors in the Frobenius and the maximum norms for pressure and density.
(Right) 10 points .˛;Ma/ were chosen in the neigbourhood of ˛ D 1:93 and MaD 0:676.

Figure 5 demonstrates the mean and the variance of the density for Case 9.
Figure 6 demonstrates the density evaluated from the TAU code (6,000 iterations)

and from two different response surfaces (p D 2 and p D 4). Both response
surfaces fail to produce a good result. Please note the increasing range of density—it
does not reflect the physics (compare with Fig. 5). This effect is similar to the effect
when one tries to approximate a step function by a polynomial—the amplitude of
oscillations increases. Another negative effect which we observed during further
iterations on the approximation obtained from the response surface is that the
deterministic solver (TAU) may fail due to non-physical values after a few iterations.
A possible reason is that some important solution values, obtained from the
response surface, are out of the physical range and are non-realistic, or just that the
approximation from the response surface is not a valid starting point for the iteration.

We also observed that RS produces a very poor solution in the discontinuous
case (with shock). For instance, we obtained the wrong (and non-physical) solution
range .�6I 5/, in contrast to the correct one .0:6; 1:35/. A possible remedy would
be to compute the response surface for the log of the pressure.
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Fig. 5 (Left) The mean density and (right) variance of the density. Case 9, RAE-2822 airfoil.

Fig. 6 Density computed from the TAU code (left) and from the response surfaces, Case 9, Z D
201. (Centered) p D 2 and (right) p D 4.

Thus, if the solution is smooth (e.g. as in Case 1) then the response surface
produces a good starting point. In the case when the solution has a shock, the
response surface produces a very poor starting point (Fig. 6) and further iterations
do not help.

7 Conclusion

Stochastic calculations produce a huge amount of data which require a low-rank
approximation (representation). The ansatz in low-rank tensor products reduces the
numerical work, as well as the amount of storage for the solution and residuum.
Low-rank approximation works in sampling and emulation as well as for non-
linear problems and solvers. The set of random realisations (snapshots) can be
approximated with a low rank k (k D 5 and k D 30 in Fig. 2). The numerical
complexity is almost linear, i.e. O.k2.N CNs//, where N is the number of degrees
of freedom and Ns the number of realisations (simulations). One can successfully
use PCE for the quantification of uncertainties (Fig. 3 compares MC with PCE).
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PCE produces results which are similar to MC and requires a smaller number of
deterministic computations. Using the response surface approximation as starting
point for further iterations requires some care and possibly transformation to ensure
physically valid values.
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The Stochastic EM Algorithm for Censored
Mixed Models

Ian C. Marschner

Abstract The Stochastic EM algorithm is a Monte Carlo method for approximating
the regular EM algorithm in missing data situations where the E step is intractable.
It produces a stationary Markov chain iterative sequence where each iteration is
the result of applying complete data maximum likelihood estimation to a single
simulation of the complete data conditional on the observed data. Analogously to
other Markov chain Monte Carlo methods, the final estimate is the mean of the
iterative sequence after a burn-in period. We consider a case study of the application
of the Stochastic EM algorithm for censored mixed models, a computationally
challenging context. The Stochastic EM algorithm is particularly simple to apply
to either linear or non-linear mixed models with censoring. All that is required is a
routine to simulate censored multivariate normal observations, and a routine to fit
the desired uncensored mixed model. An application is presented involving repeated
measures of HIV viral load subject to censoring caused by a lower detection limit of
the assay. It is found that crude methods ignoring the censoring are biased compared
to results from the Stochastic EM algorithm.

1 Introduction

The purpose of this paper is to provide a case study of the application of a
straightforward Monte Carlo iterative technique for undertaking analyses in a
computationally challenging context, mixed models with censoring.

Since mixed model analysis is standard when no censoring is present, it is natural
to accommodate censoring by formulating the problem as a missing data problem
and making use of the EM algorithm [5]. However, despite the applicability and
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convenience of the EM algorithm in many missing data contexts, its usefulness is
limited in contexts where either the conditional expectations required by the E step,
or the maximisation required by the M step, are complicated or intractable. In the
context of mixed models with censoring, the E step requires multi-dimensional
numerical integration which can render the EM algorithm highly intensive and even
infeasible in the presence of a reasonable level of censoring. Thus, while the EM
approach is a natural one, modifications of the EM algorithm are required to make
it generally applicable.

A general approach to dealing with an intractable E step in the EM algorithm
is to carry out the so-called Monte Carlo EM algorithm (MCEM), which involves
calculating the conditional expectations at the E step via simulation [19]. Thus, at
each iteration of the EM algorithm, a large number of simulations of the missing data
must be carried out, conditional on the observed data and the parameter value from
the previous iteration. This approach has been suggested for censored linear mixed
models by Hughes [9]. A drawback of the MCEM algorithm is its computational
requirements which mandate, at each iteration, sufficiently many simulations to
estimate the E step conditional expectations with high precision. In the present paper
we make use of an approach to mixed model analysis of censored HIV viral load
data which is computationally less intensive than MCEM, and is trivial to implement
with the aid of standard software for fitting uncensored mixed models. An additional
advantage of the approach is that, unlike MCEM, it is similarly convenient in
non-linear contexts, although here we make use of it only in the context of linear
models.

The approach we make use of is based on a modification of the EM algorithm
known as the Stochastic EM (SEM) algorithm, which was introduced by Celeux and
Diebolt [3] and described in detail by Diebolt and Ip [7]. Over the years this method
has been used in a range of applications, including finite mixture and censoring
problems [2,4], as well as various genetics and bioinformatics applications [10,18].
In the spirit of the MCEM algorithm, the SEM algorithm substitutes an intractable
E step with a single simulation of the missing data conditional on the observed data
and the parameter value from the previous iteration. The result of this scheme is a
Markov chain, indexed by the iteration number, which can be averaged to produce
a point estimate of the parameter. In contexts where the MCEM algorithm might be
employed, the SEM algorithm will generally be computationally less burdensome
because it requires only one simulation at each iteration. This, combined with the
asymptotic equivalence of the SEM and EM estimates makes the SEM approach
attractive in some contexts [7].

In the next section we consider the details of a laboratory assay data set which
provides motivation for the use of mixed models with censored data. Subsequently
we discuss the SEM algorithm and its implementation for fitting mixed models with
censoring. A detailed analysis of the data set will then be presented in which the
results of the SEM algorithm are assessed and compared with other approaches.
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2 Motivating Application

HIV viral load, typically defined as the concentration of HIV RNA in plasma, is
a useful prognostic tool for the management of HIV infection. In this context it
is of some interest to assess patterns of change in HIV viral load subsequent to
interventions such as the initiation or cessation of antiviral therapy. Since statistical
models for repeated measures of HIV viral load over time need to accommodate
substantial differences between individuals in rates of change and other parameters,
mixed models are a natural tool for the analysis of repeated measures of HIV viral
load. However, as with many laboratory assay contexts, a complicating feature of
viral load data is that some measurements may be censored because the assay may
have limits of detection beyond which measurement of the viral load is not possible.
This motivates the need for mixed model analysis of censored data.

The data we consider in this paper are from a study of HIV-infected individuals
who were initially treated with antiviral therapy so that their HIV viral load was
suppressed below a predetermined threshold [8]. Subsequently these individuals
experienced a loss of viral load suppression when part of the therapy was ceased.
The goal of the analysis is to address the question of how the rate of increase in
HIV viral load is related to certain subject-specific covariates, in order to obtain
information about the manner in which HIV replicates in the body.

The present analysis involves 14 subjects for whom it could be verified that there
was complete compliance with the demanding drug regimens over the course of the
study. A plot of four subjects’ data is given in Fig. 1; in this figure, and throughout
the paper, HIV viral load is analysed on a log10 scale since changes tend to be linear
and approximately normally distributed on this scale. In the data to be analysed,
the average number of measurements per subject was 6.2, with a range of 4–8
measurements per subject, and 87 measurements in total. A discussion of the crude
versus adjusted slope estimates in Fig. 1 will be deferred to Sect. 3.

A feature of the data presented in Fig. 1 is that some observations are known
only to be less than a particular value, or left censored. In the full dataset to be
analysed, the number of censored observations ranges from 1 to 5 per subject, with
40 % of all measurements being censored. Censoring arises because the virologic
assays used to measure HIV viral load are subject to measurement limitations which
impose a lower limit on the detectable concentration of HIV RNA. Thus, if the
actual HIV viral load is less than the lower limit, it is left censored. The lower
limits vary from assay run to assay run and are associated with factors other than
the underlying HIV viral load value (assay reagents, technologist performance etc.).
This last point implies that it is reasonable to assume non-informative censoring,
and this will be done in the analysis presented later in the paper. As an aside we
note that it is also possible that HIV viral load measurements are subject to upper
limits of detection, leading to right censoring. The methods discussed in this paper
can be applied in essentially the same way when the data are right censored (or
even interval censored), however, the data analysed here were subject only to left
censoring so we restrict our discussion to that context.
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Fig. 1 Plots of HIV viral load measurements (log10 scale) for four subjects. Circles denote
observed values, arrows denote left censoring. For each plot, the crude and adjusted slopes
correspond to the slope estimates from a linear regression ignoring the censoring, and incorporating
the censoring, respectively.

The association between HIV viral load changes and subject-specific factors will
be addressed using the following covariates: (i) baseline HIV viral load prior to
beginning therapy; (ii) CD4 cell count (a measure of the state of the immune system)
prior to cessation of therapy; and (iii) the change in CD4 cell count during the initial
period of therapy. In the original analysis of the data from this study it was observed
that the probability of retaining suppression of HIV viral load is lower for those
subjects having greater increases in CD4 cell count [8]; however, the result would
be stronger if an association could be identified with the rate of increase in HIV viral
load subject to loss of suppression. Thus, from a scientific point of view, the main
goal of this analysis is to investigate whether such an association exists with change
in CD4 count, as well as whether there is a lack of an association with the other
subject-specific covariates. Although it is somewhat paradoxical that improving
the immune system could lead to greater production of virus, the hypothesis is
motivated by the presence of more targets for HIV infection (that is, more CD4
cells) in subjects having greater increases in CD4 cell count. An association between
HIV viral replication and increases in CD4 cell count would be important because
it would stress the need for early treatment prior to deterioration of the immune
system, and may argue for caution in the application of treatment regimens which
cause dramatic rises in CD4 count.



Stochastic EM Algorithm 557

3 Models and Exploratory Analyses

Before describing a full analysis of the data, we consider some exploratory analyses
based on separate models for each subject’s data. As can be seen in Fig. 1, taking
account of the fact that some observations are censored, linear increases in viral
load are generally consistent with the data. Thus, a censored linear regression
model can be used to estimate subject-specific rates of viral load increase and
intercepts, for example using the LIFEREG procedure in the SAS software package
[17]. The adjusted estimates in Fig. 1 were calculated in this manner, making an
assumption of normal errors. An important point arising from Fig. 1 is that the
censoring mechanism leads to censoring primarily among earlier observations,
because these observations tend to be the smallest. Consequently, the censored
observations tend to have high leverage in determining estimates of the rate of
viral load increase. By comparing the crude estimates and the estimates adjusted for
censoring in Fig. 1, it can be seen that ignoring the censoring tends to underestimate
the slopes. This obviously leads to the potential for bias in the assessment of factors
associated with the rate of viral load increase. The potential for bias when the
censoring indicators are ignored will be further illustrated in the full analysis of
Sect. 5.

Figure 2 contains a plot, versus various subject-specific quantities, of the
estimated rates of increase in viral load for each of the 14 subjects, based on separate
censored linear regression analyses with normal errors. The analyses displayed in
Fig. 2 will be used below in motivating a linear mixed model for the data.

To describe an appropriate model for these data we use the following notation:
letN be the total number of subjects and ni be the number of observations taken on
subject i ; let tij be the j th time at which subject i is observed .i D 1; : : : ; N I j D
1; : : : ; ni /, and Vij be the value of subject i ’s (log10-transformed) HIV viral load at
time tij ; let Ai and Bi be the values, for subject i , of the baseline HIV viral load
and CD4 cell count prior to drug cessation, respectively; and finally, let Ci be the
CD4 change ratio, defined as the CD4 cell count just prior to partial cessation of
antiviral therapy divided by the baseline CD4 cell count. The quantity Ci measures
the change in the CD4 cell count during the initial period of therapy. The exploratory
analyses of Fig. 2a–c suggest that this covariate has the strongest association with
rate of viral load increase.

A linear dependence of HIV viral load on time of measurement is suggested
by the exploratory analyses in Fig. 1. In addition, a linear dependence of the
subject-specific rates of change on the covariates A, B and C , is consistent with
the exploratory analyses in Fig. 2a–c. Furthermore, subject-specific differences in
both initial viral load and rates of change in viral load are evident in Fig. 2d.
These considerations suggest the following model, which allows for subject-specific
intercepts and slopes, and rates of change that depend, in linear fashion, on the three
covariates of interest:
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Fig. 2 Rate of viral load increase for each patient, obtained by fitting a censored linear regression
model to each subject’s data separately. Plotted against: (a) baseline viral load (Ai ); (b) CD4 count
prior to cessation of therapy (Bi ); (c) CD4 change ratio (Ci ); and (d) estimated viral load intercept
obtained from the subject-specific censored regression analyses.

Vij D �i C gi .Ai ; Bi ; Ci/tij C 
ij (1)

where

gi .A;B; C / D ˛i C ˇAC �B C ıC: (2)

Random effects and mixed models have been used for some time in other
contexts to model variation over subjects in HIV viral load parameters [12, 22].
In the present context,�i , ˛i and 
ij will be taken to be normally distributed random
effects, which implies that (1) and (2) are equivalent to a linear mixed model. Thus,
it is assumed that f�i g are i.i.d.N.�; �2�/, f˛ig are i.i.d.N.˛; �2˛/, and f
ij g are i.i.d.
N.0; �2
 /. Because the SEM analysis in Sect. 5 will incorporate standard software
for fitting uncensored mixed models, it is possible to include a correlation structure
between the random effects. However, in view of the exploratory analyses in Fig. 2d,
which show a clear lack of correlation between the subject-specific intercepts and
slopes, our analysis will not include such a correlation structure; that is, the random
effects �i , ˛i and 
ij will be assumed to be independent.
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Observe that under the model specification in (1) and (2), the covariate effects
are treated as fixed effects; that is, ˇ, � and ı do not vary over subjects. It is natural
to consider whether to allow variation over subjects in the way viral load changes
depend on the covariates, and thus to include them as random effects. In fact, such
a model is not identifiable for these data, which can be seen in an intuitive way as
follows, assuming we have just a single covariate C . It is possible to estimate a rate
of change Ogi for each subject, and hence to fit the model ˛i CıCi to the Ogi ’s; ˇ here
is analogous to the gradient of the plot in Fig. 2c. However, it is not possible to fit the
model ˛i C ıiCi to the Ogi ’s; this would be analogous to fitting a separate gradient
for each observation in Fig. 2c, which is obviously not identifiable. Thus, only a
single baseline random effect will be used to model the subject-specific gradients,
and this baseline gradient will be modified in fixed fashion by the covariate effects,
as in Eq. (2).

For completely observed data fVij g, the mixed model specified by Eqs. (1)
and (2) can be conveniently accommodated in a number of standard statistical
software packages. However, in view of the discussion in Sect. 2, the observed data
in the present context are potentially left censored, corresponding to fV �ij g where
V �ij D max.Vij ; Lij /, and Lij is the lower limit of detection for the assay run
corresponding to the j th measurement on subject i . As discussed in Sect. 2, Lij can
be assumed to be independent of Vij , so that the censoring is non-informative. In the
next section, treating fVij g as a complete data set, we discuss the SEM algorithm
in order to conveniently fit the mixed model subject to censoring, making use of
standard mixed model software at the M step, combined with a simulated E step to
fill in the censored data.

4 Stochastic EM Algorithm

The EM algorithm is useful for maximising a log-likelihood L.� IY / to obtain the
maximum likelihood estimate (MLE) of the parameter � , when the observed data Y
can be considered to be an incomplete version of an unobserved complete data setX
[5, 14]. Given a current estimate O�old of � , an iteration of the algorithm proceeds in
two steps, the expectation (E) and maximisation (M) steps. The E step corresponds
to calculation of

Q.� j O�old/ D E
�
Lc.� IX/

ˇ
ˇ̌
ˇY I O�old


; (3)

whereLc is the log-likelihood corresponding to the complete dataX , and the M step
corresponds to maximisation of Q.� j O�old/ over � to produce the updated estimate
O�new. This process is continued until convergence, that is, until O�new D O�old.

The SEM algorithm, described in detail by Diebolt and Ip [7], replaces the E
step above with a single simulation X� of the complete data X , conditional on the
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observed data Y and the current estimate O�old. Thus, an SEM iteration consists of
maximising Lc.� IX�/. Let �.X/ be the MLE for � based on the complete data X ,
that is, the maximiser of Lc.� IX/: If we let Fc.zjY I �/ be the distribution function
for the random variable �.X/, conditional on the observed data Y , then an SEM
iteration is equivalent to

O�new D random draw from Fc.zjY I O�old/: (4)

The updated estimate O�new is therefore an observation from a distribution that
depends on the current estimate O�old, meaning that the sequence of iterates arising
from an SEM algorithm is a Markov chain. This sequence converges to a stationary
distribution and, analogously to other Markov chain Monte Carlo (MCMC) tech-
niques, after a sufficiently long burn-in period during which iterates are discarded,
a point estimate of � can be obtained by averaging the remaining sequence of
SEM iterates. In many contexts it can be shown that the resulting SEM estimate
is asymptotically equivalent to the EM estimate [7].

The SEM algorithm described above is useful when the Monte Carlo update (4)
is easy and the deterministic E step (3) is hard. This is indeed the case for fitting
mixed models with censoring. In this case (4) requires two straightforward steps at
each iteration: (i) construction of a complete data set by simulating the censored
measurements conditional on the observed data; and (ii) analysis of the complete
data set by fitting an uncensored mixed model. Step (ii) is straightforward using
existing software for mixed models, and requires a trivial amount of programming
using standard packages. Step (i) is also straightforward, requiring simulation
from a truncated multivariate normal distribution, which can be carried out using
simple rejection/acceptance sampling, or using more efficient Gibbs sampling.
Such simulation is straightforward to implement directly, but is also conveniently
available in standard software [20].

The ease with which the SEM algorithm can be implemented contrasts with the
deterministic EM algorithm. In this case, (3) involves multi-dimensional numerical
integration over the censoring region .�1; Li1� � � � � � .�1; Lini � for each
individual i . When individuals have more than one censored observation, which is
common in the application considered here, this can involve a large number of multi-
dimensional integrations at each iteration which can be computationally prohibitive.

Implementation of the SEM algorithm requires choices for the initial parameter
estimates, the burn-in period and the length of the MCMC sequence that will
be averaged to produce the final estimates. Good initial estimates can speed up
convergence of the MCMC sequence to a stationary distribution, and a simple
method for providing good initial estimates is described below, which led to almost
immediate stationarity. Using these initial estimates, a burn-in period of 50 iterations
was used followed by a further 500 iterations which were averaged to give the final
estimates. In view of the almost immediate stationarity, these were conservative
but satisfactory choices. In view of the asymptotic equivalence of the SEM and
EM algorithms, approximate standard errors for the fixed effects components of
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the model can be obtained using a natural application of the method of Louis [11],
formulas for which were given by Hughes [9] in the present context.

In order to provide good initial estimates for the SEM algorithm, a crude multiple
imputation procedure was used. In Sect. 2 we described subject-specific estimates of
viral load intercept and slope, calculated using censored linear regression analysis.
These subject-specific estimates were used to simulate, or impute, each subject’s
censored measurements, with simulation of each censored measurement being
carried out based on a univariate truncated normal distribution. The mixed model
was then fitted to these uncensored data using a standard routine, leading to an
imputed parameter estimate. One hundred such imputed estimates were obtained
and averaged to give the multiple imputation estimate, which was then used as the
initial estimate for the SEM algorithm. In practice, an even cruder calculation of
the initial estimates is likely to be satisfactory, for example based on ignoring the
censoring indicators altogether; however, it is of some interest to compare estimates
from the stochastic algorithms with those from the crude multiple imputation
approach, so the latter is presented below.

In the next section we discuss the results of the analysis produced by applying
the above SEM procedure to the data described in Sect. 2.

5 Analysis Results

Before discussing the results in detail, we consider some initial SEM analyses
assessing the importance of the various covariates. The full model specified in (1)
and (2) allows the rate of viral load increase to depend on three covariates. When
this full model was fitted, little evidence was found that the rate of viral load increase
depends on the baseline viral load (Ai ) or the CD4 count prior to cessation of
drugs (Bi ). In particular, the SEM estimates of the covariate effects in (2) were:
for baseline viral load, Ǒ D �0:011 and s.e.. Ǒ/ D 0:0090 (P D 0:22); and for CD4
count prior to cessation of drugs, O� D �1:85 � 10�5 and s.e.. O�/ D 1:84 � 10�5
(P D 0:32). In contrast, consistent with the exploratory analyses in Fig. 2a–c, there
was strong evidence that the rate of viral load increase depends on the CD4 change
ratio (Ci ), with Oı D 0:066 and s.e.. Oı/ D 0:014 (P < 0:0001). While it is prudent
to interpret the asymptotic standard errors with caution, these results, taken together
with the exploratory analyses in Fig. 2, suggest that it is only the CD4 change ratio
which has a significant association with viral load change. Thus, the detailed results
quoted below will make use of the model without the two insignificant covariates
(Ai and Bi ).

Table 1 contains estimates of the six parameters obtained using various methods.
When the censoring indicators are ignored there is clearly great potential for
bias, as shown by a comparison of the uncensored estimates with the SEM
estimates. Understandably the between-subject variation parameter (��) is strongly
underestimated because ignoring the censoring indicators has the effect of reducing
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Table 1 Estimates for the parameters of the viral load mixed model specified in Eqs. (1)
and (2), comparing the stochastic EM (SEM) procedure with two other methods of estimation.
The uncensored analysis corresponds to ignoring the censoring indicators, while the imputed
analysis corresponds to a multiple imputation procedure described in Sect. 4.

Method O� Ǫ Oı O�� O�˛ O�

Uncensored 0.96 –0.026 0.054 0.21 0.012 0.35
Imputed 0.36 –0.024 0.061 0.62 0.0097 0.36
SEM 0.46 –0.025 0.061 0.57 0.0091 0.40

the variability of smaller observations, taken soon after cessation of therapy. The
bias is substantially improved by carrying out the crude imputation procedure
outlined in Sect. 4, however, there is still some bias evident, relative to the SEM
procedure, for all parameters except ˛ and ı.

For the three fixed effects .�; ˛; ı/, 95 % confidence intervals based on the SEM
estimates are Œ0:098; 0:81�, Œ�0:067; 0:018� and Œ0:032; 0:090�, respectively. The
fact that ı is significantly greater than zero reflects a positive relationship between
the rate of viral load increase and the increase in CD4 count prior to cessation
of therapy. This result is consistent with the exploratory analyses summarized in
Fig. 2c. The interpretation of this finding is that, paradoxically, the rate of viral load
increase is greatest for individuals who had a better immune response to therapy.
This is likely explained by the fact that a better immune response on therapy means
that there are more targets for the virus if treatment is ceased. Such a finding could
have implications for the way treatment is administered, particularly in relation to
highlighting the need for a high level of treatment compliance.

It is of interest to investigate the extent of between subject variation in the rate
of viral load increase that is explained by the differences in immune response.
The variation between subjects in the rate of viral load increase is illustrated in
Fig. 1, using the adjusted subject-specific slopes. When taken across all individuals
in the sample, these adjusted slopes have a standard deviation of 0:023, compared
to the variance component estimate O�˛ D 0:0091 from Table 1. That is, adjust-
ment for differences in the immune response explains approximately 86 % of the
variation between subjects in the rate of viral load increase. When the analogous
computations are carried out for the crude analysis which ignores the censoring,
the variance component estimate is O�˛ D 0:012 from Table 1. Compared with
a standard deviation of 0:024 for the crude subject-specific slopes, this suggests
that approximately 73 % of the variation between subjects in viral load increase is
explained by the immune response. Thus, compared with the SEM analysis, the
crude analysis substantially underestimates the importance of immune response in
explaining the variability of viral load rebound rate.

Since the SEM estimates require averaging of stationary Markov chains, it is
of interest to inspect the behaviour of these sequences. Figure 3 shows the SEM
iterates for each of the six parameters, together with the final estimates as listed in
Table 1. Beginning with the good initial estimates provided by the crude imputation
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Fig. 3 Plots of SEM iterates for HIV viral load data set, showing stationarity of the Monte Carlo
Markov chain sequences about the final estimates shown in Table 1 (horizontal lines). The 550
iterates are provided for each of the six parameters in the mixed effects model: intercept (�), slope
(˛), CD4 ratio coefficient (ı), between-subject variance (�2�), between-subject slope variance (�2˛ )
and error variance (�2
 ).

procedure, it is seen that stationarity occurs almost immediately and that subsequent
iterates vary stably about the final estimates.

In view of its stochastic nature, it is important to investigate the extent of
stochastic variation across different runs of the SEM algorithm. The results of 50
replications of the SEM algorithm are displayed in Table 2, where each replication
was implemented identically to the main analysis displayed in Table 1. It can be
seen that the means of the SEM replications are virtually identical to the SEM
estimates in Table 1. Furthermore, the standard deviations of the SEM replications
are extremely small relative to the magnitude of the estimates. Indeed, compared
to the sampling variation summarised in the confidence intervals discussed earlier
in this section, the stochastic variation in the SEM algorithm is negligible and
inconsequential. It can also be seen that the difference between the SEM estimates
and the crude estimates displayed in Table 1 are greater than could be explained
by the negligible stochastic variation in the SEM estimates. This indicates that these
differences are genuine, rather than simply reflecting stochastic variation in the SEM
algorithm. Additional analyses conducted with other choices for the burn-in period
and the length of the averaged MCMC iterative sequence were also highly consistent
with the analyses displayed in Table 1.
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Table 2 Means and standard deviations of the parameter estimates from 50 identical replications
of the stochastic EM (SEM) algorithm applied to the viral load data. Each replication of the SEM
algorithm was implemented identically to the primary analysis displayed in Table 1.

Summary O� Ǫ Oı O�� O�˛ O�

Mean 0.46 –0.025 0.061 0.56 0.0092 0.40
Standard deviation 0.0049 0.00026 0.00015 0.0077 0.00012 0.0019

Although it is preferable to start with good initial estimates, in this application
the SEM algorithm is insensitive to the initialisation and always converges rapidly to
a stationary Markov chain centred around the estimates in Table 1. This behaviour is
illustrated in Fig. 4, which shows the burn-in period of the SEM iterative sequences
beginning with initial estimates that correspond to an implausible special case of
the linear mixed model, namely, independent and identically distributed viral load
measurements with unit mean and variance. It is seen that the sequences reach
stability about the final estimates within ten iterations, even for the parameters that
have very poor initial estimates. Similar behaviour arises for other choices of the
initial estimates.

6 Discussion

Adjustment for censoring when fitting mixed models is not a trivial problem but is
important to avoid bias resulting from more crude methods of analysis. The present
paper illustrates a straightforward approach which can be implemented easily in
routine data analyses, as illustrated using a case study on changes in HIV viral
load subsequent to partial cessation of antiviral therapy. In this application, the
analyses allowed the rate of increase in viral load to depend on a number of subject-
specific covariates and pointed to a strong association between the rate of viral load
increase and the increase in CD4 count prior to cessation of therapy, a finding
that would potentially have implications for the way treatment is administered.
Furthermore, the models fitted provide information about parameters governing
the dynamics of viral load increases over time, and the mixed effects approach
allows quantification of the extent of variation between subjects with respect to these
parameters. Importantly, in the analyses presented there were substantial biases in
both the parameter estimates and the extent of variation explained by covariates
when the analysis method did not take account of the censoring.

The SEM algorithm that we have used here to carry out the adjustment for
censoring is a convenient tool in any context where a Monte Carlo E step might
be employed. A particularly useful feature of the SEM algorithm for censored
mixed models is that it can be straightforwardly applied in the context of non-
linear models. All that is required is a standard routine for fitting non-linear mixed
effects models for uncensored data, and then the same approach can be used as
that described in Sect. 4. On the other hand, accommodation of non-linear models
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Fig. 4 Burn-in periods for SEM iterates with poor initial estimates showing rapid convergence of
the Monte Carlo Markov chain sequences to stationarity about the final estimates shown in Table 1
(horizontal lines). The poor initial estimates correspond to independent and identically distributed
viral load observations with unit mean and unit variance, .�; ˛; ı; �2�; �
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in an EM or MCEM framework is less straightforward [21]. Other Monte Carlo
based algorithms have also been useful in this context to overcome the complexities
of full MCEM, including the so-called stochastic approximation EM algorithm
[6, 16], which makes use of the technique of stochastic approximation to deal with
intractable expectations during the E step.

Censoring in both linear and non-linear mixed effects models can also be handled
under a Bayesian formulation of the model with conventional MCMC methods used
for model fitting [1]. While this may be useful in that it would provide full posterior
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distributions for the parameters of interest, it would also be subject to considerably
increased computational burden, particularly given convergence in Bayesian models
is typically much slower than the very rapid stationarity achieved by the SEM
sequence.

Enhancement to the SEM algorithm implemented here may also be useful. For
example Nielsen [15] studied the use of more than one simulation during each
iteration, an approach that is intermediate to the SEM and MCEM algorithms,
while Marschner [13] proposed a general correction to the SEM algorithm that can
improve its performance in small samples. While these and other enhancements of
the basic SEM algorithm may be worthy of further study in the context of censored
mixed models, overall the approach illustrated here offers a straightforward way to
accommodate censoring in mixed models, and is amenable to routine data analysis
using only standard software and straightforward Monte Carlo methods.
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Existence of Higher Order Convergent
Quasi-Monte Carlo Rules via Walsh Figure
of Merit

Makoto Matsumoto and Takehito Yoshiki

Abstract The Walsh figure of merit WAFOM.P / is a quality measure of point
sets P � Œ0; 1/S in the S -dimensional unit cube for quasi-Monte Carlo integration
constructed by a digital net method with n-bit precision over the two element field.
We prove that there are explicit constants E , C , D such that for any d � 9S and
n, there is a point set P of size N WD 2d with WAFOM.P / � E � 2�Cd2=SCDd D
E � N�C.log2 N /=SCD, by bounding WAFOM.P / by the minimum Dick-weight of
P?, and by proving the existence of point sets with large minimum Dick-weight by
a probabilistic argument.

1 WAFOM and Its Background

Let S , n be positive integers. Let F2 D f0; 1g denote the two element field. Let V WD
VS;n denote the set of S � n matrices with coefficients in F2. For A D .aij/ 2 V , we
define a non-negative integer

�.A/ WD
X

1�T�S;1�j�n
j � aT;j ; (1)

where each aT;j 2 f0; 1g is considered as an integer, not an element of F2. If n D 1,
then A is a column vector, and �.A/ is the Hamming weight of A. From this view
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point, we may call �.A/ a Dick weight of A since it is a special case (where n D ˛)
of �˛ introduced by Dick in [2] (see also a comprehensive book [5], to which we
refer for all the basic terminology), or, we may call it simply the weight of A in this
article.

Let P � V be an F2-linear subspace of V . We may consider P as a point set in
Œ0; 1/S by the digital net method (see Niederreiter’s book [8]), but we will choose a
slightly different formulation in the following. We define the Walsh figure of merit
[7] of P by

Definition 1 (WAFOM).

WAFOM.P / WD
X

A2P?nf0g
2��.A/;

whereP? denotes the orthogonal space of P in V with respect to the standard inner
product on V , namely, A � B D .ai;j / � .bi;j / DPi;j ai;j bi;j 2 F2.

Remark 1. This figure of merit is based on the decay of Walsh coefficients of
smooth functions proved by Dick (see a survey [3, Sects. 4.1 and 4.2]), and hence
Walsh in its name.

Theorem 1. There are positive constants C , D and E such that for any positive
integers S , n and d � 9S , there exists a linear subspace P � VS;n of dimension d
satisfying

WAFOM.P / � E � 2�Cd2=SCDd:

We explain the background briefly (see [7, Sect. 2] for detail). A matrixB 2 VS;n has
S rows. Each row is n-digit of bits, and by identifying with the corresponding 2-adic
fraction, each row gives a real number in Œ0; 1/, and an elementary 2-adic interval
of length 2�n. More precisely, we identify an element b D .b1; : : : ; bn/ 2 F

n
2 with a

real number b WDPn
iD1 bi2�i and then with the interval Œb;bC2�n/ (these intervals

are called 2-adic elementary interval of length 2�n). Thus, Fn2 is identified with the
set of 2n such intervals. Then, .Fn2/

S is identified with the set of .2n/S of 2-adic
elementary cubes in Œ0; 1/S represented as the S -dimensional Cartesian products of
these intervals. Thus, each B 2 V represents a 2-adic elementary cube, which we
shall denote IB � Œ0; 1/S .

Let f W Œ0; 1�S ! R be a Riemann integrable function. We define its n-digit
discretization fn W V ! R by

fn.B/ WD 1

Vol.IB/

Z

IB

f .x/dx;

namely, fn.B/ is the average of the value of f over IB . Then, the integration equals
to the discrete sum, i.e.,
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Z

Œ0;1/S
f .x/dx D 1

#.V /

X

B2V
fn.B/:

(Here #.F / denotes the cardinality of finite set F .) We may approximate fn.B/
by the value of f at the center of the cube IB , for example. Then, under Lipschitz
continuity of f , as n ! 1 and the cube collapses to its center, the approximation
error of the integration when fn.B/ in the right sum is replaced with the value
of f sampled from the cube B is O.Cf

p
S2�n/ in n, where Cf is the Lipschitz

constant (see [7], this is the discretization error). We assume that n is taken to be
large enough, so that the precision required in the particular computation is less
than or equal to n binary digits. Practically, we may take n large so that the above
discretization error is small enough for our particular purposes.

Let P � V . The discretized quasi-Monte Carlo integration of a function f W
Œ0; 1/S ! R by the point set P is an approximation of

R
Œ0;1/S f .x/dx by the average

1
#.P /

P
B2P fn.B/ (see [7, (2.3)]).

We have a bound on the integration error [7, (3.7)]
ˇ
ˇ
ˇ
ˇ
ˇ

Z

Œ0;1/S
f .x/dx � 1

#.P /

X

B2P
fn.B/

ˇ
ˇ
ˇ
ˇ
ˇ
� cS;njjf jjn �WAFOM.P /;

where jjf jjn is a norm of f defined in [2,5, Chap. 14.6] and cS;n is a constant inde-
pendent of f and P . Thus, finding point sets with the smaller value of WAFOM.P /
implies the smaller error bound. Dick [2] and Dick and Pillichshammer [5] showed
that for arbitrary ˛ > 0, there is a construction of a family of point sets with error
boundO.N�˛.logN/S˛/, whereN is the size of the point set under the assumption
of ˛-smoothness (in the classical, non-digital sense) on the function class.

Our result below can be written as WAFOM.P / D O.N�C.log2 N /=SCD/. These
results go in a similar direction, but there is no implication between them; Dick
fixed the smoothness ˛ and gave a construction of series of point sets with error
bound C˛N�˛.logN/S˛, where the constant C˛ depends on ˛. While our method
requires n-smoothness on the function for n being as above. Thus, in our case, the
function class is getting smaller for n being increased. On the other hand, we do not
get an implied constant depending on n. Although our method is not constructive,
the existence of point sets P for every d � 9S has been shown using probabilistic
arguments. Further, a random search has successfully been performed in [7, Sect. 5].

2 Proof

2.1 Geometry of Weight and Enumeration

Recall that with the weight function� W V ! N0 defined in (1), V is a metric space,
by defining
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d.A;B/ WD �.A� B/ for A;B 2 V:

It is easy to show that this is a metric. We use this metric from now on. We remark
that V is not distance-transitive, differently from the case of the Hamming weight.
Namely, for two given pairs .A;B/; .A0; B 0/ with d.A;B/ D d.A0; B 0/, there may
be no F2-affine isometry f W V ! V that maps A to A0 and B to B 0.

Let us define

SS;n.m/ WD fA 2 VS;n j �.A/ D mg; (2)

sS;n.m/ WD #.SS;n.m//: (3)

Note that SS;n.m/ is the sphere in V with center 0 and radius m, and sS;n.m/ is its
cardinality. A combinatorial interpretation of sS;n.m/ is as follows. One has coins
with values 1; 2; : : : ; n. For each value i , one has exactly S labeled coins with value
i . Then, sS;n.m/ is the number of ways to pay m by using these coins.

Another equivalent definition is in the following identity:

nY

kD1
.1C xk/S D

1X

mD0
sS;n.m/x

m: (4)

Note that the right hand side is a finite sum. It is easy to see that sS;n.m/ is
monotonically increasing with respect to S and n, and sS;m.m/ D sS;mC1.m/ D
sS;mC2.m/ D � � � holds.

Definition 2. sS .m/ WD sS;m.m/.
We have the following identity between formal power series:

1Y

kD1
.1C xk/S D

1X

mD0
sS .m/x

m: (5)

For any positive integerM , we define

BS;n.M/ WD [MmD0SS;n.m/; volS;n.M/ WD #.BS;n.M//: (6)

Note that BS;n.M/ is the ball in V with center 0 and radius M , and volS;n.M/ is
its cardinality. Since volS;n.M/ DPM

mD0 sS;n.m/, volS;n.M/ inherits properties of
sS;n.m/, namely, it is monotonically increasing with respect to S and n, and has the
stability property

volS.M/ WD volS;M .M/ D volS;MC1.M/ D � � � :
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2.2 Combinatorial Inequalities on Volumes of Spheres

Lemma 1.

sS;n.m/ � sS .m/ < e2
p

Sm

Proof. We have already seen the first inequality. We prove the next inequality along
[6, Exercise 3(b), p. 332], which treats only S D 1 case. Define a polynomial with
non-negative integer coefficients by

fS;m.x/ WD
mY

kD1
.1C xk/S :

From (4) and Definition 2, sS .m/ is the coefficient of xm in fS;m.x/.
Since fS;m.x/ has only non-negative coefficients, by dropping all terms except

the last in (4)

sS .m/ � fS;m.x/=xm .x 2 .0; 1// (7)

holds. Taking log WD loge of the both sides, well-known bounds log.1C xk/ < xk

for 0 < x give

log sS .m/ � S
mX

kD1
log.1C xk/Cm log.1=x/

< S

mX

kD1
xk Cm log.1C .1=x � 1//

< Sx=.1 � x/Cm.1 � x/=x:

Here, we can take any value of x 2 .0; 1/. By comparison of the arithmetic mean
and the geometric mean, the last expression attains the minimum value 2

p
Sm when

Sx=.1 � x/ D m.1 � x/=x, namely, .1 � x/=x D p
S=m. A direct computation

shows that x D .pS=mC 1/�1 2 .0; 1/ attains this equality. ut
Remark 2. The function

Q1
kD1.1Cxk/S is an automorphic form, and the magnitude

of the coefficients sS.m/ � . 1p
2
/SC3. S

3
/
1
4 m� 34 e

�
p

3

p
Sm
.m!1/ can be proved by

using a method in [1, Chap. 6, Theorem 6.2], which may improve the following
estimation. Here, f .m/ � g.m/ means that f .m/=g.m/! 1 whenm!1.

Lemma 2 (Volume of balls). For a positive integerM , we have

volS;n.M � 1/ � volS .M � 1/ �
p
M=Se2

p
SM:
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Proof. It is an easy exercise that sS .m/ is monotonically increasing with respect
to m. Thus, we have

volS.M � 1/ D
M�1X

mD0
sS .m/ �

M�1X

mD0
e2
p

Sm

�
Z M

mD0
e2
p

Smdm

D
Z 4SM

xD0
e
p
x dx

4S

D 1

4S

h
2
p
xe
p
x � 2e

p
x
ixD4SM

xD0

D 1

4S

h
4
p

SMe2
p

SM � 2e2
p

SM C 2
i

<
1

4S

h
4
p

SMe2
p

SM
i

D
p
M=Se2

p
SM;

which completes the proof. ut

2.3 Bounding WAFOM by the Minimum Weight

Let P � V be a d -dimensional subspace.

Definition 3. The minimum weight of P? is defined by

ıP? WD min
A2P?nf0g

�.A/:

Thus, ıf0g D C1.

We have the following equivalence:

ıP? �M , P? \BS;n.M � 1/ D f0g:

The next easy lemma bounds WAFOM.P / by the minimum weight of P?.

Lemma 3. For an integerM , define

CS;n.M/ WD
X

A2VS;nnBS;n.M�1/
2��.A/ D

1X

mDM
sS;n.m/2

�m:
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Then we have

WAFOM.P / D
X

A2P?nf0g
2��.A/ < CS;n.ıP?/:

Proof. The result holds because ıP? is the maximum M satisfying P? n f0g �
VS;n nBS;n.M � 1/: ut
We shall estimate CS;n.M/ (C for the Complement of the ball) for rather general
M : from Lemma 1 it follows that

CS;n.M/ D
1X

mDM
sS;n.m/2

�m �
1X

mDM
sS.m/2

�m �
1X

mDM
e2
p

Sm2�m: (8)

The sequence e2
p

Sm2�m .m �M/ is decreasing if

e2
p
S.MC1/�2pSM=2 � 1:

The left hand side is

e2
p
S.
p
MC1�pM/=2 D e2

p
S. 1

p

MC1C
p

M
/
=2 < e

p
S
M =2;

and hence if log 2 >
p
S=M or equivalentlyM > .log 2/�2S . Under this condition,

we have

CS;n.M C 1/ �
1X

mDMC1
e2
p

Sm2�m �
Z 1

mDM
e2
p

Sme�m log 2dm

D
Z 1

mDM
e
�.log 2/.

p
m�

p

S
log 2 /

2C S
log 2 dm

D
Z 1

xDpM
e
�.log 2/.x�

p

S
log 2 /

2C S
log 2 2xdx:

For a positive number c, we assume
p
M � .1C c/

p
S

log 2 or equivalentlyM � .1C
c/2.log 2/�2S , which is stronger than the previous assumptionM � .log 2/�2S .

Then, since on the domain of integration x � pM � .1 C c/
p
S

log 2 , we have

cx � .1C c/.x �
p
S

log 2 /, and the estimation continues:
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CS;n.M C 1/ �
Z 1

xDpM
e
�.log 2/.x�

p

S
log 2 /

2C S
log 2 2 � 1C c

c
.x �

p
S

log 2
/dx

D 1C c
c

1

log 2
e
�.log 2/.

p
M�

p

S
log 2 /

2C S
log 2

D 1C c
c

1

log 2
e�.log 2/MC2pSM D 1C c

c

1

log 2
2�Me2

p
SM:

Since CS;n.M/ � CS;n.M C 1/C 2�Me2
p

SM , we proved:

Proposition 1. Let M be a positive integer, c a positive real number. Assume M �
.1C c/2.log 2/�2S . Then we have the following bound

CS;n.M/ WD
X

A2VS;nnBS;n.M�1/
2��.A/ <

�
1C 1C c

c

1

log 2

�
2�Me2

p
SM:

Remark 3. Definition 3 is a special case where ˛ D n holds in: [4, Definition 3],
where their Theorem 3 describes the condition of higher-order digital nets in terms
of ıP? .

Recently, Kousuke Suzuki [10] proved that the construction of higher order
digital nets given in [5, Theorem 15.7] combined with some Niederreiter-Xing point
sets [9] yields an explicit construction of low-WAFOM point sets, whose order of
WAFOM is almost same with this paper.

2.4 Existence of Large Minimum-Weight Point Sets
by Probabilistic Argument

Let d be a positive integer. Choose d matrices B1; : : : ; Bd 2 VS;n uniformly
randomly. Let P � V be the F2-linear span of B1; : : : ; Bd . For any given nonzero
matrix L 2 VS;n, let PerpL be the event that B1; : : : ; Bd are all perpendicular to L,
which occurs with probability 2�d . Consider the event that ıP? �M , namely

P? \BS;n.M � 1/ D f0g: (9)

This is the complement of the union [L2BS;n.M�1/PerpL: The probability of this
union is bounded from above by #.BS;n.M � 1// � 2�d D volS;n.M � 1/2�d .
Thus, the probability that (9) holds is larger than 1�volS;n.M �1/2�d . This shows:

Proposition 2. If volS;n.M � 1/ < 2d , then there exists P � V of dimension at
most d such that ıP? �M . By Lemma 2, the condition is satisfied if

p
M=Se2

p
SM � 2d : (10)
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Remark 4. Suppose that B1; : : : ; Bd are linearly dependent. Still, if n is sufficiently
large, we may choose anyP of dimension d containingB1; : : : ; Bd , then ıP? �M .

Corollary 1. If the inequality (10) on d;M is satisfied, then there exists P � V

with dimension at most d with WAFOM.P / <
�
1C 1Cc

c
1

log 2

	
2�Me2

p
SM, if M

and c satisfy the condition in Proposition 1.

For a given d , we want to estimate a large M satisfying (10). For this, we put
M D x2d2=S for a positive indetermined x. Then, the inequality (10) is rewritten as

xd

S
e2xd � 2d :

Assume x � 1 or equivalentlyM � d2=S . Then a sufficient condition is

d

S
e2xd � 2d ;

and by taking log this is equivalent to

2xd � d.log 2/� logd C logS: (11)

This condition is tighter when S is smaller, so we may assume S D 1. Then, the
above inequality is x � .log 2/=2�.logd/=.2d/. Since .logd/=d is monotonically
decreasing for d � e, by assuming d � 4 we have .logd/=d � .log 4/=4 D
.log 2/=2 and obtain a sufficient condition for (10):

x � .log 2/=2� .log 2/=4 D .log 2/=4 DW ˛: (12)

(We remark that by taking a larger constant C � 4 and assuming that d � C , we
may replace ˛ with log 2

2
� logC

2C
.)

Proposition 3. Let ˛ WD .log 2/=4 and assume d � 4. If M � ˛2d2=S , then the
inequality (10) is satisfied, and hence a subspace P of dimension at most d with
ıP? �M exists (for all n) by Proposition 2.

From now on, we take M to be b˛2d2=Sc so that P with dimF2 .P / � d and
ıP? � M exists. To make the estimation easier, we assume M D ˛2d2=S , which
is not precise but has no effect on the order of estimation. Then the conditionM �
.1C c/2.log 2/�2S in Proposition 1 is equivalent to d � .1Cc/S

˛ log 2 .

By pluggingM D ˛2d2=S in Corollary 1, we obtain Theorem 1; more precisely:

Theorem 2. Let ˛ WD .log 2/=4, and take an arbitrary number c > 0. Then for any
n and d � .1Cc/S

˛ log 2 , there is a subspace P � VS;n of F2-dimension at most d such
that

WAFOM.P / �
�
1C 1C c

c

1

log 2

�
2�˛2

d2

S C2.log 2/�1˛d :
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If we write N WD 2d , the right hand side is

�
1C 1C c

c

1

log 2

�
N�˛2

log2 N
S C2.log 2/�1˛:

The constant ˛ is approximately 0:173286 � � � , and d � .1Cc/S
˛ log 2 D .1 C c/S �

8:3254 � � � . Hence, we may take c so that the latter condition is d � 9S .

Remark 5. Approximation. When d is large, then in the inequality (11), the effect
of logd is negligible compared to d.log 2/. Then, we may approximately replace ˛
with .log 2/=2 D 0:34657 � � � , and obtain approximately

WAFOM.P / �
�
1C 1C c

c

1

log 2

�
2�..log 2/=2/2d2=SCd

D
�
1C 1C c

c

1

log 2

�
N�..log 2/=2/2.log2 N /=SC1:

Thus, the convergence ratio N�ˇ would be realized when d � S.ˇ C
1/.2= log2/2 D S.ˇ C 1/ � 8:3254 � � � . The condition d � .1Cc/S

˛ log 2 becomes,

for ˛ D .log 2/=2, d � S.1 C c/=2 � .2= log 2/2 and in this case we may take c
such that .1C c/=2 D ˇC 1, so that the both conditions coincide. For example, for
ˇ � 1, it suffices to take d � S � 16:6509 � � � . This seems not practical for S � 3
in quasi-Monte Carlo integration, since the number of points 2d is too large.

A finer estimation may lead to a better bound, but it would be a future work.
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ANOVA Decomposition of Convex Piecewise
Linear Functions

Werner Römisch

Abstract Piecewise linear convex functions arise as integrands in stochastic
programs. They are Lipschitz continuous on their domain, but do not belong to
tensor product Sobolev spaces. Motivated by applying Quasi-Monte Carlo methods
we show that all terms of their ANOVA decomposition, except the one of highest
order, are smooth if the underlying densities are smooth and a certain geometric
condition is satisfied. The latter condition is generically satisfied in the normal case.

1 Introduction

During the last decade much progress has been achieved in Quasi-Monte Carlo
(QMC) theory for computing multidimensional integrals. Appropriate function spa-
ces of integrands were discovered that allowed to improve the classical convergence
rates. It is referred to the monographs [17, 27] for providing an overview of the
earlier work and to [2,12,15] for presenting much of the more recent achievements.

In particular, certain reproducing kernel Hilbert spaces Fd of functions f W
Œ0; 1�d ! R became important for estimating the quadrature error (see [7]). If the
integral Id .f / D

R
Œ0;1�d

f .x/dx defines a linear continuous functional on Fd and
Qn;d .f / denotes a Quasi-Monte Carlo method for computing Id .f /, i.e.,

Qn;d .f / D 1

n

nX

jD1
f .xj / .n 2 N/

for some sequence xi 2 Œ0; 1/d , i 2 N, the quadrature error en.Fd / allows the
representation
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en.Fd / D sup
f 2Fd ;kf k�1

ˇ
ˇId .f / �Qn;d .f /

ˇ
ˇ D sup

kf k�1
jhf; hnij D khnk (1)

according to Riesz’ theorem for linear bounded functionals. The representer hn 2
Fd of the quadrature error is of the form

hn.x/ D
Z

Œ0;1�d
K.x; y/dy � 1

n

nX

iD1
K.x; xi / .8x 2 Œ0; 1�d /;

whereK W Œ0; 1�d � Œ0; 1�d ! R denotes the kernel of Fd . It satisfies the conditions
K.�; y/ 2 Fd and hf;K.�; y/i D f .y/ for each y 2 Œ0; 1�d and f 2 Fd , where h�; �i
and k � k denote inner product and norm in Fd .

In particular, the weighted tensor product Sobolev space [26]

Fd D W
.1;:::;1/
2;mix .Œ0; 1�d / D

dO

iD1
W 1
2 .Œ0; 1�/ (2)

equipped with the weighted norm kf k2� D hf; f i� and inner product (see Sect. 2
for the notation)

hf; gi� D
X

uf1;:::;dg

Y

j2u

��1j
Z

Œ0;1�juj

@juj

@xu
f .xu; 1�u/

@juj

@xu
g.xu; 1�u/dxu; (3)

and a weighted Walsh space consisting of Walsh series (see [2, Example 2.8] and
[1]) are reproducing kernel Hilbert spaces.

They became important for analyzing the recently developed randomized lattice
rules (see [11,13,25] and [1,2]) and allowed for deriving optimal error estimates of
the form

en.Fd / � C.ı/n�1Cı .n 2 N; ı 2 .0; 1
2
�/; (4)

where the constant C.ı/ does not depend on the dimension d if the nonnegative
weights �j satisfy

1X

jD1
�

1
2.1�ı/

j <1:

Unfortunately, a number of integrands do not belong to such tensor product Sobolev
or Walsh spaces and are even not of bounded variation in the sense of Hardy and
Krause. The latter condition represents the standard requirement on an integrand
f to justify Quasi-Monte Carlo algorithms via the Koksma-Hlawka theorem [17,
Theorem 2.11].
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Often integrands are non-differentiable like those in option pricing models [31]
or max-type functions in general. It has been discovered in [4, 5] that the so-called
ANOVA decomposition (see Sect. 2) of such integrands may have a smoothing
effect in the sense that many ANOVA terms are smooth if the underlying densities
are sufficiently smooth.

In this paper we show that such a smoothing effect occurs also in case of
piecewise linear convex functions f . More precisely, we show that all ANOVA
terms except the one of highest order of such functions are infinitely differentiable
if the densities are sufficiently smooth and a geometric property is satisfied.
This geometric property is generic if the underlying densities are normal. The
results pave the way to extensions for composite functions f .g.�// with a smooth
mapping g. Since piecewise linear convex functions appear as the result of linear
optimization processes, our results apply to linear two-stage stochastic programs
and (slightly) extend the main result of [6]. Hence, the results justify earlier
studies of QMC methods in stochastic programming [3, 9, 21] and motivate that the
recently developed randomized lattice rules [2, 25] may be efficient for stochastic
programming models if their superposition dimension is small. The computational
experience reported in [6] confirms the efficiency of randomly shifted lattice rules.

The paper starts by recalling the ANOVA decomposition in Sect. 2 and convex
piecewise linear functions in Sect. 3. Section 4 contains the main results on
the smoothing effect of the ANOVA decomposition of convex piecewise linear
functions, followed by discussing the generic character of the geometric property
(Sect. 5) and dimension reduction (Sect. 6) both in the normal case.

2 ANOVA Decomposition and Effective Dimension

The analysis of variance (ANOVA) decomposition of a function was first proposed
as a tool in statistical analysis (see [8] and the survey [29]). Later it was often used
for the analysis of quadrature methods mainly on Œ0; 1�d . Here, we will use it on R

d

equipped with a probability measure given by a density function 	 of the form

	.�/ D
dY

jD1
	j .�j / .8� D .�1; : : : ; �d / 2 R

d / (5)

with continuous one-dimensional marginal densities 	j on R. As in [5] we consider
the weighted Lp space over Rd , i.e., Lp;	.R

d /, with the norm

kf kp;	 D

8
ˆ̂
<

ˆ̂
:

� R

Rd

jf .�/jp	.�/d�
	 1
p

if 1 � p < C1;
ess sup

�2Rd
	.�/jf .�/j if p D C1:
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Let I D f1; : : : ; d g and f 2 L1;	.R
d /. The projection Pk , k 2 I , is defined by

.Pkf /.�/ WD
Z 1

�1
f .�1; : : : ; �k�1; s; �kC1; : : : ; �d /	k.s/ds .� 2 R

d /:

Clearly, the function Pkf is constant with respect to �k . For u � I we use juj for
its cardinality, �u for I n u and write

Puf D
�Y

k2u

Pk

	
.f /;

where the product sign means composition. Due to Fubini’s theorem the ordering
within the product is not important and Puf is constant with respect to all �k , k 2 u.

The ANOVA decomposition of f 2 L1;	.R
d / is of the form [14, 30]

f D
X

uI
fu (6)

with fu depending only on �u, i.e., on the variables �j with indices j 2 u. It satisfies
the property Pj fu D 0 for all j 2 u and the recurrence relation

f; D PI .f / and fu D P�u.f /�
X

vu

fv :

It is known from [14] that the ANOVA terms are given explicitly in terms of the
projections by

fu D
X

vu

.�1/juj�jvjP�vf D P�u.f /C
X

v
u

.�1/juj�jvjPu�v.P�u.f //; (7)

where P�u and Pu�v mean integration with respect to �j , j 2 I n u and j 2 u n v,
respectively. The second representation motivates that fu is essentially as smooth as
P�u.f / due to the Inheritance Theorem [5, Theorem 2].

If f belongs to L2;	.R
d /, the ANOVA functions ffuguI are orthogonal in the

Hilbert space L2;	.R
d / (see e.g. [30]).

Let the variance of f be defined by �2.f / D kf � PI .f /k2L2 . Then it holds

�2.f / D kf k22;	 � .PI .f //2 D
X

;¤uI
kfuk22;	 DW

X

;¤uI
�2u .f /:

To avoid trivial cases we assume �.f / > 0 in the following. The normalized ratios
�2u .f /

�2.f /
serve as indicators for the importance of the variable �u in f . They are used to

define sensitivity indices of a set u � I for f in [28] and the dimension distribution
of f in [16, 18].
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For small " 2 .0; 1/ (" D 0:01 is suggested in a number of papers), the effective
superposition (truncation) dimension dS."/ (dT ."/) is defined by

dS."/ D min
n
s 2 I W

X

juj�s

�2u .f /

�2.f /
� 1 � "

o

dT ."/ D min
n
s 2 I W

X

uf1;:::;sg

�2u .f /

�2.f /
� 1 � "

o

and it holds dS."/ � dT ."/ and (see [30])

�
�
�f �

X

juj�dS ."/
fu

�
�
�
2;	
� p"�.f /: (8)

For linear functions f one has �u.f / D 0 for juj > 1, dS."/ D 1, but dT ."/ may
be close to d [18, 30]. For the simple convex piecewise linear function f .�1; �2/ D
maxf�1; �2g on Œ0; 1�2 with the uniform distribution it holds f; D 1

3
, �2.f / D 1

18
,

ffig.�i / D �1
2
�2i C �i �

1

3
; �2fig.f / D

2

45
; .i D 1; 2/; �2f1;2g.f / D

1

90
:

Hence, we obtain dS."/ D 2 for " 2 .0; 1
5
/ and the situation is entirely different for

convex piecewise linear functions.

3 Convex Piecewise Linear Functions

Convex piecewise linear functions appear as optimal value functions of linear
programs depending on parameters in right-hand sides of linear constraints or in
the objective function. In general, they are nondifferentiable and not of bounded
variation in the sense of Hardy and Krause (for the latter see [19]). On the other
hand, such functions enjoy structural properties which make them attractive for
variational problems.

As in [22, Sect. 2.I] a function f from R
d to the extended reals NR is called

piecewise linear on D D domf D f� 2 R
d W f .�/ <1g if D can be represented

as the union of finitely many polyhedral sets relative to each of which f .�/ is given
by f .�/ D a>� C ˛ for some a 2 R

d and ˛ 2 R.

Proposition 1. Let f W Rd ! NR be proper, i.e., f .�/ > �1 and D D domf be
nonempty. Then the function f is convex and piecewise linear if and only if it has a
representation of the form
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f .�/ D
�

maxfa>1 � C ˛1; : : : ; a>̀� C ˛`g ; � 2 D;
1 ; � 62 D; (9)

for some ` 2 N, aj 2 R
d and ˛j 2 R, j D 1; : : : ; `. Moreover, D is polyhedral

and, if intD is nonempty, D may represented as the union of a finite collection of
polyhedral sets Dj , j D 1; : : : ; `, such that intDj ¤ ; and intDj \ intDj 0 D ;
when j ¤ j 0.
Proof. The two parts of the results are proved as Theorem 2.49 and Lemma 2.50 in
[22, Sect. 2.I]. ut
Example 1 (Linear two-stage stochastic programs). We consider the linear opti-
mization problem

min
n
c>x C EP Œq

>y.�/� W Wy.�/C T .�/x D h.�/; x 2 X; y.�/ � 0;8� 2 R
d
o
;

where c 2 R
m, q 2 R

Nm, W is a r � Nm matrix, T .�/ a r � m matrix, h.�/ 2 R
r

for each � 2 R
d , X is convex and polyhedral in R

m, P is a probability measure
on R

d and EP denotes expectation with respect to P . We assume that T .�/ and h.�/
are affine functions of �. The above problem may be reformulated as minimizing a
convex integral functional with respect to x, namely,

min
n
c>x C

Z

Rd

˚.h.�/ � T .�/x/P.d�/ W x 2 X
o
; (10)

where ˚ is the optimal value function assigning to each parameter t 2 R
r an

extended real number by ˚.t/ D inffq>y W Wy D t; y � 0g. The value
˚.t/ D �1 appears if there exists y 2 R

NmC, y ¤ 0 such that Wy D 0 and
˚.t/ D C1 means infeasibility, i.e., fy 2 R

Nm W Wy D t; y � 0g is empty. The
integrand in (10) is f .�/ D c>x C ˚.h.�/ � T .�/x/ for every x 2 X .

Now, we assume that both dom˚ D ft 2 R
r W ˚.t/ < C1g and the dual

polyhedron D D fz 2 R
r W W >z � qg are nonempty. Then ˚.t/ > �1 holds for

all t 2 R
r and the original primal as well as the dual linear program maxft>z W z 2

Dg are solvable due to the duality theorem. If vj , j D 1; : : : ; l , denote the vertices
of D , it holds

˚.t/ D max
jD1;:::;l t

>vj .t 2 dom˚ D R
r /;

i.e., the integrand f .�/ is convex and piecewise linear on D D R
d for every x 2 X .

For more information on stochastic programming see [23, 24].
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4 ANOVA Decomposition of Convex Piecewise Linear
Functions

We consider a piecewise linear convex function f and assume that its polyhedral
domainD D domf has nonempty interior. LetDj , j D 1; : : : ; `, be the polyhedral
subsets of D according to Proposition 1 such that

f .�/ D a>j � C ˛j .8� 2 Dj /

holds for some aj 2 R
d , ˛j 2 R, j D 1; : : : ; `. For each i 2 I D f1; : : : ; d g

there exist finitely many .d � 1/-dimensional intersectionsHij, j D 1; : : : ; J.i/, of
Di with adjacent polyhedral sets Dj , j 2 f1; : : : ; d g n fig. These polyhedral sets
are subsets of finitely many .d � 1/-dimensional affine subspaces of Rd which are
renumbered by Hi , i D 1; : : : ; �.f /.

Furthermore, we assume that the support ) of the probability measure is
contained in D and its density 	 is of the form (5). For any k 2 I we denote
the kth coordinate projection of D by �k.D/, i.e.,

�k.D/ D f�k 2 R W 9�j ; j 2 I; j ¤ k; such that � D .�1; : : : ; �d / 2 Dg:

Next we intend to compute projections Pk.f / for k 2 I . For � 2 D we set
N�k D .�1; : : : ; �k�1; �kC1; : : : ; �d /, and N�ks D .�1; : : : ; �k�1; s; �kC1; : : : ; �d / for
s 2 �k.D/. We know that

N�ks 2
[̀

jD1
Dj D D (11)

for every s 2 �k.D/ and assume 	k.s/ D 0 for every s 2 R n �k.D/. Hence, we
obtain by definition of the projection

.Pkf /. N�k/ D
Z 1

�1
f . N�ks /	k.s/ds D

Z 1

�1
f .�1; : : : ; �k�1; s; �kC1; : : : ; �d /	k.s/ds:

Due to (11) the one-dimensional affine subspace f N�ks W s 2 Rg intersects a finite
number of the polyhedral sets Dj . Hence, there exist p D p.k/ 2 N [ f0g, si D
ski 2 R, i D 1; : : : ; p, and ji D j ki 2 f1; : : : ; `g, i D 1; : : : ; p C 1, such that
si < siC1 and

N�ks 2 Dj1 8s 2 .�1; s1� \ �k.D/
N�ks 2 Dji 8s 2 Œsi�1; si � .i D 2; : : : ; p/
N�ks 2 DjpC1

8s 2 Œsp;C1/\ �k.D/:
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By setting s0 WD �1, spC1 WD 1, we obtain the following explicit representation
of Pkf .

.Pkf /. N�k/ D
pC1X

iD1

Z si

si�1

.a>ji N�ks C ˛ji /	k.s/ds (12)

D
pC1X

iD1

�� dX

lD1
l¤k

aji l �l C ˛ji
	 Z si

si�1

	k.s/dsC aji k
Z si

si�1

s	k.s/ds
	

D
pC1X

iD1

�� dX

lD1
l¤k

aji l �l C ˛ji
	
.'k.si /� 'k.si�1//

Caji k. k.si / �  k.si�1//
	

(13)

Here, 'k is the one-dimensional distribution function with density 	k ,  k the
corresponding mean value function and �k the mean value, i.e.,

'k.u/ D
Z u

�1
	k.s/ds;  k.u/ D

Z u

�1
s	k.s/ds; �k D

Z C1

�1
s	k.s/ds:

Next we reorder the outer sum to collect the factors of 'k.si / and  k.si /, and a
remainder.

.Pkf /. N�k/ D
pX

iD1

�� dX

lD1
l¤k

.aji l � ajiC1l /�l C .˛ji � ˛jiC1
/
	
'k.si /C

.aji k � ajiC1k/ k.si /
	
C

dX

lD1
l¤k

ajpC1l �l C ˛jpC1
C ajpC1k�k: (14)

As the convex function f is continuous on intD, it holds

a>ji N�ks C ˛ji D a>jiC1

N�ks C ˛jiC1

and, thus, the points si , i D 1; : : : ; p, satisfy the equations

dX

lD1
l¤k

�l .ajiC1l � aji l /C si .ajiC1k � ajik/C ˛jiC1
� ˛ji D 0 .i D 1; : : : ; p/:

This leads to the explicit formula
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si D 1

aji k � ajiC1k

� dX

lD1
l¤k

�l .ajiC1l � aji l /C˛jiC1
�˛ji

	
if aji k¤ ajiC1k: (15)

for i D 1; : : : ; p. Hence, all si , i D 1; : : : ; p, are linear combinations of the
remaining components �j , j ¤ k, of � if the following geometric condition is
satisfied: All kth components of adjacent vectors aj are different from each other,
i.e., all polyhedral sets Hj are subsets of .d � 1/-dimensional subspaces that are
not parallel to the kth coordinate axis in R

r or, with other words, not parallel to the
canonical basis element ek (whose components are equal to ıik, i D 1; : : : ; d ).

To simplify notation we set wi D aji � ajiC1
and vi D ˛ji � ˛jiC1

. If the above
geometric condition is satisfied, we obtain the following representation of Pkf :

.Pkf /. N�k/D
pX

iD1
wik

�
� si . N�k/'k.si . N�k//C  k.si . N�k//

	

C
dX

lD1
l¤k

ajpC1l �l C ˛jpC1
C ajpC1k�k (16)

si D si . N�k/ D � 1

wik

� dX

lD1
l¤k

wi l �l C vi
	
: (17)

Hence, the projection represents a sum of products of differentiable functions and
of affine functions of �k .

Proposition 2. Let f be piecewise linear convex having the form

f .�/ D a>j � C ˛j .8� 2 Dj /: (18)

Let k 2 I and assume that vectors aj belonging to adjacent polyhedral sets Dj

have different kth components. Then the kth projection Pkf is twice continuously
differentiable. The projection Pkf belongs to C sC1.Rd / if the density 	k is in
C s�1.R/ (s 2 N). Pkf is infinitely differentiable if the density 	k is in C1.R/.

Proof. Let l 2 I , l ¤ k. The projection Pkf is partially differentiable with respect
to �l and it holds

@Pkf

@�l
. N�k/ D

pX

iD1
wik

@

@�l

�
� si . N�k/'k.si . N�k//C  k.si . N�k//

	
C ajpC1l

D
pX

iD1
wi l
�
'k.si . N�k//C si . N�k/' 0k.si . N�k//�  0k.si . N�k//

�C ajpC1l

D
pX

iD1
wi l'k.si . N�k//C ajpC1l
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due to (16)–(17) and ' 0k.s/ D 	k.s/ and  0k.s/ D s	k.s/. Hence, the behavior
of all first order partial derivatives of Pkf only depends on the kth marginal
distribution functions. The first order partial derivatives are continuous and again
partially differentiable. The second order partial derivatives are of the form

@2Pkf

@�l@�r
. N�k/ D

pX

iD1

�wi lwir
wik

	k.si . N�k//

and, thus, only depend on the marginal density 	k . Hence, Pkf is twice continu-
ously differentiable as 	k is continuous. If 	k 2 C s�1.R/ for some s 2 N, Pkf
belongs to C sC1.Rd /. If 	k 2 C1.R/, Pkf is in C1.Rd /. ut
Our next example shows that the geometric condition imposed in Proposition 2 is
not superfluous.

Example 2. Let us consider the function

f .�/ D maxf�1;��1; �2g .8� D .�1; �2/ 2 R
2/

on D D R
2, i.e., we have ˛1 D ˛2 D ˛3 D 0 and a1 D .1; 0/>, a2 D .�1; 0/> and

a3 D .0; 1/>. The decomposition of D according to Proposition 1 consists of

D1 D f� 2 R
2 W �1 � 0; �2 � �1g; D2 D f� 2 R

2 W �1 � 0; �2 � ��1g;
D3 D f� 2 R

2 W �2 � �1; �2 � ��1g:
All polyhedral sets are adjacent and the second component of two of the vectors aj ,
j D 1; 2; 3, coincides. Hence, the geometric condition in Proposition 2 is violated.
Indeed, the projection P2f is of the form

.P2f /.�1/ D j�1j
Z j�1j

�1
	.�2/d�2 C

Z C1

j�1j
�2	.�2/d�2

and, thus, nondifferentiable on R (see also [6, Example 3]).

The previous result extends to more general projections Pu.

Proposition 3. Let ; ¤ u � I , f be given by (18) and the vectors aj belonging to
adjacent polyhedral sets Dj have kth components which are all different for some
k 2 u. Then the projection Puf is continuously differentiable. The projection Puf

is infinitely differentiable if 	k 2 C1b .R/. Here, the subscript b at C1b .R/ indicates
that all derivatives of functions in that space are bounded on R.

Proof. If juj D 1 the result follows from Proposition 2. For u D fk; rg with k; r 2
I , k ¤ r , we obtain from the Leibniz theorem [5, Theorem 1] for l 62 u

DlPuf .�
u/ D @

@�l
Puf .�

u/ D Pr @
@�l
Pkf .�

u/
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and from the proof of Proposition 2

DlPuf .�
u/ D

pX

iD1
wi l

Z

R

'k.si . N�k//	r .�r /d�r C ajpC1l :

If u contains more than two elements, the integral on the right-hand side becomes
a multiple integral. In all cases, however, such an integral is a function of the
remaining variables �j , j 2 I n u, whose continuity and differentiability properties
correspond to those of 'k and 	k . This follows from Lebesgue’s dominated
convergence theorem as 'k and all densities 	j , j 2 u, and their derivatives are
bounded on R. ut
The following is the main result of this section.

Theorem 1. Let u � I , f given by (18) and the vectors aj belonging to adjacent
polyhedral setsDj have kth components which are all different for some k 2 �u D
I n u. Then the ANOVA term fu is infinitely differentiable if 	k 2 C1b .R/.
Proof. According to formula (7) it holds

fu D P�u.f /C
X

v
u

.�1/juj�jvjPu�v.P�u.f //

and Proposition 3 implies that P�uf is infinitely differentiable. The result follows
from the Inheritance Theorem [5, Theorem 2] applied to Pu�v.P�u.f // for each
v � u. ut
Corollary 1. Let f be given by (18) and the following geometric condition (GC)
be satisfied: All .d � 1/-dimensional subspaces containing .d � 1/-dimensional
intersections of adjacent polyhedral setsDj are not parallel to any coordinate axis.
Then the ANOVA approximation

fd�1 WD
X

u
I
fu (19)

of f is infinitely differentiable if all densities 	k , k 2 I , belong to C1b .R/.

Proof. The result follows immediately from Theorem 1 when applying it to all
nonempty strict subsets of I . ut
Remark 1. Under the assumptions of Corollary 1 all ANOVA terms fu are at least
continuously differentiable if 	 is continuous and juj � d � 1. Hence, the function
fd�1 is in C1.Rd / (C1.Rd /) if each 	k , k 2 I , belongs to C.R/ (C1b .R/). On the
other hand, it holds

f D fd�1 C fI and kf � fd�1k2L2 D kfI k2L2 D �2I .f /
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according to (6). Hence, the question arises: For which convex piecewise linear
functions f is �2I .f / small or, in terms of the effective superposition dimension
dS."/ of f , is dS."/ smaller than d (see also (8))?

5 Generic Smoothness in the Normal Case

We consider the convex, piecewise linear function

f .�/ D maxfa>1 � C ˛1; : : : ; a>̀� C ˛`g .8� 2 R
d /

on domf D R
d and assume that � is normal with mean � and nonsingular

covariance matrix ˙ . Then there exists an orthogonal matrix Q such that � D
Q˙ Q> is a diagonal matrix. Then the d -dimensional random vector � given by

� D Q�C � or � D Q>.� � �/

is normal with zero mean and covariance matrix �, i.e., has independent compo-
nents. The transformed function Of
Of .�/ D f .Q�C�/ D max

jD1;:::;`fa
>
j .Q�C�/C˛j g D max

jD1;:::;`f.Q
>aj />�Ca>j �C˛j g

is defined on the polyhedral set Q>D �Q>� and it holds

Of .�/ D .Q>aj />�C a>j �C ˛j for each � 2 Q>.Dj � �/:

We consider now .d � 1/-dimensional intersectionsHij of two adjacent polyhedral
setsDi andDj , i; j D 1; : : : ; `. They are polyhedral subsets of .d�1/-dimensional
affine subspacesHi . The orthogonal matrixQ> causes a rotation of the setsHij and
the corresponding affine subspaces Hi . However, there are only countably many
orthogonal matrices Q such that the geometric condition (GC) (see Corollary 1)
on the subspaces is not satisfied. When equipping the linear space of all orthogonal
d� d matrices with the standard norm topology, the set of all orthogonal matricesQ
that satisfy the geometric condition, is a residual set, i.e., the countable intersection
of open dense subsets. A property for elements of a topological space is called
generic if it holds in a residual set. This proves

Corollary 2. Let f be a piecewise linear convex function on domf D R
d and

let � be normally distributed with nonsingular covariance matrix. Then the infinite
differentiability of the ANOVA approximation fd�1 of f (given by (19)) is a generic
property.

Proof. Let � be the mean vector and ˙ be the nonsingular covariance matrix of �.
Let Q be the orthogonal matrix satisfying Q˙ Q> D � D diag.�21 ; : : : ; �

2
d / and
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	 be the normal density with mean � and covariance matrix �. Then �j > 0, j D
1; : : : ; d , and 	 is equal to the product of all one-dimensional marginal densities 	k ,
where

	k.t/ D 1p
2��k

exp
�
� .t � �k/

2

2�2k

	
.k D 1; : : : ; d /;

and all 	k belong to C1b .R/. Hence, the result follows from Corollary 1. ut

6 Dimension Reduction of Piecewise Linear Convex
Functions

In order to replace a piecewise linear convex function f by the sum fd�1 of ANOVA
terms until order d � 1 (see Corollary 1), we need that the effective superposition
dimension dS of f is smaller than d . Hence, one is usually interested in determining
and reducing the effective dimension. This topic is discussed in a number of papers,
e.g., [3, 16, 18, 28, 30, 32].

In the normal or lognormal case there exist universal (i.e., independent on the
structure of f ) and problem dependent principles for dimension reduction.

A universal principle for dimension reduction is principal component analysis
(PCA). In PCA one uses the decomposition ˙ D UP U

>
P of ˙ with the matrix

UP D .
p
1u1; : : : ;

p
dud /, the eigenvalues1 � � � � � d > 0 of˙ in decreasing

order and the corresponding orthonormal eigenvectors ui , i D 1; : : : ; d , of ˙ .
Several authors report an enormous reduction of the effective truncation dimension
in financial models if PCA is used (see, for example, [30, 31]). However, PCA may
become expensive for large d and the reduction effect depends on the eigenvalue
distribution.

Several dimension reduction techniques exploit the fact that a normal random
vector � with mean � and covariance matrix ˙ can be transformed by � D
B� C � and any matrix B satisfying ˙ D B B> into a standard normal random
vector � with independent components. The following equivalence principle is [32,
Lemma 1] and already mentioned in [20, p. 182].

Proposition 4. Let ˙ be a d � d nonsingular covariance matrix and A be a fixed
d � d matrix such that AA> D ˙ . Then it holds˙ D B B> if and only if B is of
the form B D AQ with some orthogonal d � d matrix Q.

To apply the proposition, one may choose A D LC , where LC is the standard
Cholesky matrix, or A D UP . Then any other decomposition matrix B with ˙ D
B B> is of the form B D AQ with some orthogonal matrixQ.

A dimension reduction approach now consists in determining a good orthogonal
matrixQ such that the truncation dimension is minimized by exploiting the structure
of the underlying integrand f . Such an approach is proposed in [10] for linear
functions and refined and extended in [32].
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Piecewise linear convex functions are of the form

f .�/ D G.a>1 � C ˛1; : : : ; a>̀� C ˛`/; (20)

where G.t1; : : : ; t`/ D maxft1; : : : ; t`g. Hence, f is of the form as considered in
[32] shortly after Theorem 3. The transformed function is

Of .�/ D f .B�C�/ D G..B>a1/>�1Ca>1 �C˛1; : : : ; .B>a`/>�d Ca>̀�C˛`/:
(21)

In order to minimize the truncation dimension of Of in (21), the following result is
recorded from [32, Theorem 2] (see also Proposition 1 in [10]).

Proposition 5. Let ` D 1. If the matrix Q D .q1; : : : ; qd / is determined such that

q1 D ˙ A>a1
kA>a1k and Q is orthogonal, (22)

the transformed function is

Of .�/ D G.kA>a1k�1 C a>1 �C ˛1/
and has effective truncation dimension dT D 1.

The orthogonal columns q2; : : : ; qd may be computed by the Householder transfor-
mation. In case 1 < ` � d it is proposed in [32] to determine the orthogonal matrix
Q D .q1; : : : ; qd / by applying an orthogonalization technique to the matrix

M D .A>a1; : : : ; A>a`; b`C1; : : : ; bd /; (23)

where we assume that the a1; : : : ; a` are linearly independent and b`C1; : : : ; bd are
selected such that M has rank d . It is shown in [32, Theorem 3] that then the
function Of depends only on �1; : : : ; �`. The practical computation may again be
done by the Householder transformation applied to M in (23).
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Hit-and-Run for Numerical Integration

Daniel Rudolf

Abstract We study the numerical computation of an expectation of a bounded
function f with respect to a measure given by a non-normalized density on a convex
body K � R

d . We assume that the density is log-concave, satisfies a variability
condition and is not too narrow. In [19, 25, 26] it is required that K is the Euclidean
unit ball. We consider general convex bodies or even the whole R

d and show that
the integration problem satisfies a refined form of tractability. The main tools are the
hit-and-run algorithm and an error bound of a multi run Markov chain Monte Carlo
method.

1 Introduction and Results

In many applications, for example in Bayesian inference, see [5, 8], or in statistical
physics, see [18, 27], it is desirable to compute an expectation of the form

Z

K

f .x/ �	.dx/ D
Z

K

f .x/ c 	.x/ dx;

where the probability measure �	 is given by the density c 	 with c > 0. The
normalizing constant of the density

1

c
D
Z

K

	.x/ dx
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is not known and hard to compute. We want to have algorithms that are able to
compute the expectation without any precompution of c.

More precisely, let 	WRd ! RC be a possibly non-normalized density function,
let K D supp.	/ � R

d be a convex body and let f WK ! R be integrable with
respect to �	. For a tuple .f; 	/ we define the desired quantity

A.f; 	/ D
R
K f .x/ 	.x/ dx
R
K
	.x/ dx

: (1)

In [19] a simple Monte Carlo method is considered which evaluates the numerator
and denominater of A.f; 	/ on a common independent, uniformly distributed
sample inK . There it must be assumed that one can sample the uniform distribution
inK . The authors show that this algorithm is not able to use any additional structure,
such as log-concavity, of the density function. But they show that such structure can
be used by Markov chain Monte Carlo which then outperforms the simple Monte
Carlo method.

Markov chain Monte Carlo algorithms for the integration problem of the form
(1) are considered in [19, 21, 25, 26]. Basically it is always assumed that K is the
Euclidean unit ball rather than a general convex body. We extend the results to the
case where K might even be the whole R

d if the density satisfies some further
properties. We do not assume that we can sample with respect to �	. The idea is
to compute A.f; 	/ by using a Markov chain which approximates �	. We prove
that the integration problem (1) satisfies an extended type of tractability. Now let us
introduce the error criterion and the new notion of tractability.

Error criterion and algorithms. Let t WN�N! N be a function and let An;n0 be
a generic algorithm which uses t.n; n0/ Markov chain steps. Intuitively, the number
n0 determines the number of steps to approximate �	. The number n determines the
number of pieces of information of f used by the algorithm. The error is measured
in mean square sense, for a tuple .f; 	/ it is given by

e.An;n0.f; 	// D
�

E jAn;n0.f; 	/ � A.f; 	/j2
	1=2

;

where E denotes the expectation with respect to the joint distribution of the used
sequence of random variables determined by the Markov chain.

For example the algorithm might be a single or multi run Markov chain Monte
Carlo. More precisely, assume that we have a Markov chain with limit distribution
�	 and let X1; : : : ; XnCn0 be the first nC n0 steps. Then

Sn;n0.f; 	/ D
1

n

nX

jD1
f .XjCn0/

is an approximation of A.f; 	/ and the function t.n; n0/ D n C n0. In contrast to
the single run Markov chain Monte Carlo Sn;n0 one might consider a multi run
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Markov chain Monte Carlo, say Mn;n0 , given as follows. Assume that we have
n independent Markov chains with the same transition kernel, the same initial
distribution and limit distribution �	. Let X1

n0
; : : : ; Xn

n0
be the sequence of the n0th

steps of the Markov chains, then

Mn;n0.f; 	/ D
1

n

nX

jD1
f .Xj

n0
/

is an approximation of A.f; 	/. In this setting the function t.n; n0/ D n � n0.
Tractability. In [19, 21] a notion of tractability for the integration problem (1) is

introduced. It is assumed that kf k1 � 1 and that the density function satisfies

supx2K 	.x/
infx2K 	.x/

� �;

for some � � 3. Let s";� .n; n0/ be the minimal number of function values of
.f; 	/ to guarantee an "-approximation with respect to the error above. Then the
integration problem is called tractable with respect to � if s";� .n; n0/ depends
polylogarithmically on � and depends polynomially on "�1, d . We extend this
notion of tractability. We study a class of tuples .f; 	/ which satisfy kf k1 � 1

and we assume that for any 	 there exists a set G � K such that for � � 3 holds

R
K
	.x/ dx

vold .G/ infx2G 	.x/
� �; (2)

where vold .G/ denotes the d -dimensional volume of G. Then we call the integra-
tion problem tractable with respect to � if the minimal number of function values
t";� .n; n0/ of .f; 	/ to guarantee an "-approximation satisfies for some non-negative
numbers p1, p2 and p3 that

t";� .n; n0/ D O."�p1dp2 Œlog ��p3 /; " > 0; d 2 N; � � 3:

Hence we permit only polylogarithmical dependence on the number �, since it might
be very large (e.g. 1030 or 1040). The extended notion of tractability allows us to
considerK D supp.	/ D R

d .
The structure of the work and the main results are as follows. We use the hit-

and-run algorithm to approximate �	. An explicit estimate of the total variation
distance of the hit-and-run algorithm, proven by Lovász and Vempala in [15, 16],
and an error bound of the mean square error of Mn;n0 are essential. In Sect. 2 we
provide the basics on Markov chains and prove an error bound of Mn;n0 . In Sect. 3
we define the class of density functions. Roughly we assume that the densities are
log-concave, that for any 	 there exists a set G � K such that condition (2) holds
for � � 3 and that the densities are not too narrow. Namely, we assume that level
sets of 	 of measure larger than 1=8 contain a ball with radius r . We distinguish
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two settings which guarantee that the densities are not too spread out. Either the
convex body K D supp.	/ is bounded by a ball with radius R around 0, then we
say 	 2 Ur;R;� , or the support of 	 is bounded in average sense,

Z

K

ˇ
ˇx � x	

ˇ
ˇ2 �	.dx/ � 4R2;

where x	 D
R
K
x �	.dx/ 2 R

d is the centroid. Then we say 	 2 Vr;R;� . For precise
definitions see Sect. 3. In Sect. 4 we provide the hit-and-run algorithm and state
convergence properties of the algorithm for densities from Ur;R;� and Vr;R;� . Then
we show that the integration problem (1) is tractable with respect to �, see Sect. 5.
For 	 2 Ur;R;� we obtain in Theorem 4 that

t";� .n; n0/ D O.d 2 Œlog d�2 "�2 Œlog "�1�3 Œlog ��3/: (3)

For 	 2 Vr;R;� we find in Theorem 5 a slightly worse bound of the form

t";� .n; n0/ D O.d 2 Œlog d�2 "�2 Œlog "�1�5 Œlog ��5/: (4)

Here the O notation hides the polynomial dependence on r and R.
In [19, 21, 25, 26] it is proven that the problem (1) is tractable with respect to �

for K D Bd , where Bd denotes the Euclidean unit ball. Note that for G D Bd we
have

R
K
	.x/ dx

vold .G/ infx2G 	.x/
� supx2K 	.x/

infx2K 	.x/
� �:

Furthermore it is assumed that 	WBd ! RC is log-concave and log 	 is Lipschitz.
Then the Metropolis algorithm with a ball walk proposal is used to approximate �	.
For kf kp � 1 with p > 2 the algorithm Sn;n0 is considered for the approximation
of A.f; 	/. It is proven that

s";� .n; n0/ D O.d maxflog2.�/; d g."�2 C log �//: (5)

In open problem 84 of [21] it is asked whether one can extend this result to other
families of convex sets. The complexity bound of (5) is better than the results of
(3) and (4) in terms of the dimension, the precision and � . On the one hand the
assumption thatK D Bd is very restrictive but on the other hand the estimates of (3)
and (4) seem to be pessimistic. However, with our results we contribute to problem
84 in the sense that tractability with respect to � can be shown for arbitrary convex
bodies or even the whole Rd if the density functions satisfy certain properties.



Hit-and-Run for Numerical Integration 601

2 Markov Chains and an Error Bound

Let .Xn/n2N be a Markov chain with transition kernel P.�; �/ and initial distribution
� on a measurable space .K;B.K//, where K � R

d and B.K/ is the Borel �-
algebra. We assume that the transition kernel P.�; �/ is reversible with respect to �	.
For p 2 Œ1;1� we denote by Lp D Lp.�	/ the class of functions f WK ! R with

kf kp D
�Z

K

jf .x/jp �	.dx/
�1=p

<1:

Similarly we denote by Mp the class of measures � which are absolutely continuous
with respect to �	 and where the density d�

d�	
2 Lp . The transition kernel induces

an operator P WLp ! Lp given by

Pf .x/ D
Z

K

f .y/ P.x; dy/; x 2 K;

and it induces an operator P WMp !Mp given by

�P.C / D
Z

K

P.x; C /�.dx/; C 2 B.K/:

For n 2 N and a probability measure � note that Pr.Xn 2 C/ D �P n.C /, where
C 2 B.K/. We define the total variation distance between �P n and �	 as

���P n � �	
��

tv D sup
C2B.K/

ˇ̌
�P n.C /� �	.C /

ˇ̌
:

Under suitable assumptions on the Markov chain one obtains that
�
��P n � �	

�
�

tv !
0 as n!1.

Now we consider the multi run Markov chain Monte Carlo method and prove an
error bound. This bound is not new, see for example [4].

Theorem 1. Assume that we have n0 independent Markov chains with transition
kernel P.�; �/ and initial distribution � 2M1. Let �	 be a stationary distribution of
P.�; �/. Let X1

n0
; : : : ; Xn

n0
be the sequence of the n0th steps of the Markov chains and

let

Mn;n0.f; 	/ D
1

n

nX

jD1
f .Xj

n0
/:

Then

e.Mn;n0.f; 	//
2 � 1

n
kf k21 C 2 kf k21

�
��P n � �	

�
�

tv :
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Proof. With an abuse of notation let us denote

A.f / D
Z

K

f .x/ �	.dx/ and �P n0.f / D
Z

K

f .x/ �P n0.dx/:

We decompose the error into variance and bias. Then

e.Mn;n0.f; 	//
2 D 1

n

Z

K

jf .x/ � �P n0.f /j2 �P n0.dx/C j�P n0.f /� A.f /j2

D 1

n

�
�P n0.f 2/� �P n0.f /2

�C j�P n0.f / �A.f /j2

� 1

n
kf k21 C

Z

K

f .x/2
ˇ
ˇ�P n0.dx/� �	.dx/

ˇ
ˇ

� 1

n
kf k21 C 2 kf k21

�
��P n0 � �	

�
�

tv :

The last inequality follows by a well known characterization of the total variation
distance, see for example [24, Proposition 3]. ut

Very often there exists a number ˇ 2 Œ0; 1/ and a number C� <1 such that
�
��P n � �	

�
�

tv � C�ˇn:

For example, if ˇ D kP �AkL2!L2 < 1 and C� D 1
2

�
�� � �	

�
�
2
, see [23] for more

details. Let us define the L2-spectral gap as

gap.P / D 1 � kP � AkL2!L2 :

This is a significant quantity, see for instance [2, 26–29]. In [26] it is shown that

e.Sn;n0.f; 	//
2 � 4 kf k4

n gap.P /
for n0 �

log
�
64
�
�
� d�
d�	
� 1

�
�
�
2

	

gap.P /
:

There are several Markov chains where it is possible to provide, for certain classes of
density functions, a lower bound of gap.P / which grows polynomially with respect
to the dimension, see for example [16, 19]. Then, the error bound of the single run
Markov chain Monte Carlo method might imply that the integration problem (1) is
tractable with respect to some �.

Note that there are also other possible approximation schemes and other bounds
of the error of Sn;n0 which depend on different assumptions to the Markov chain
(e.g. Ricci curvature condition, drift condition, small set), see for instance [9, 11–
13]. For example one might consider a multi run Markov chain Monte Carlo method
where function values of a trajectory of each Markov chain after a sufficiently large
n0 are used. But all known error bounds of such methods include quantities such as
the L2-spectral gap or the conductance.
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It is not an easy task to prove that a Markov chain satisfies the different
assumptions stated above and it is also not an easy task to prove a lower bound
of the L2-spectral gap. It might be easier to estimate the total variation distance
of �P n0 and �	 directly. Then one can use Theorem 1 to show that the integration
problem (1) is tractable with respect to some �.

3 Densities with Additional Structure

Let us assume that the densities have some additional structure. For 0 < r � R and
� � 3 a density function 	WK ! RC is in Ur;R;� if the following properties are
satisfied:

(a) 	 is log-concave, i.e. for all x; y 2 K and  2 Œ0; 1� one has

	.x C .1 � /y/ � 	.x/	.y/1�:

(b) 	 is strictly positive, i.e. K D supp.	/ and we assume that K � RBd , where
RBd is the Euclidean ball with radius R around 0.

(c) There exists a set G � K such that

R
K
	.x/ dx

vold .G/ infx2G 	.x/
� �;

and we can sample the uniform distribution on G.
(d) For s > 0 let K.s/ D fx 2 K j 	.x/ � tg be the level set of 	 and let B.z; r/

be the Euclidean ball with radius r around z. Then

�	.K.s// � 1

8
H) 9z 2 K B.z; r/ � K.s/:

The log-concavity of 	 implies that the maximal value is attained on a convex
set, that the function is continuous and that one has an isoperimetric inequality, see
[16]. Assumption (b) gives that K is bounded.

By (c) we can sample the uniform distribution on G. We can choose it as initial
distribution for a Markov chain, where the number � provides an estimate of the
influence of this initial distribution.

The condition on the level set K.s/ guarantees that the peak is not too narrow.
Roughly speaking, if the �	 measure of a level set is not too small, then the Lebesgue
measure is also not too small. Note that K is bounded from below, since condition
(d) implies that B.z; r/ � K .

Now we enlarge the class of densities. Let us define the following property:

(b0) 	 is strictly positive, i.e. K D supp.	/ and x	 D
R
K
x �	.dx/ 2 R

d is the
centroid of �	. Then
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Z

K

ˇ
ˇx � x	

ˇ
ˇ2 �	.dx/ � 4R2:

We have 	 2 Vr;R;� if the density 	 satisfies (a), (b0), (c) and (d). We substituted the
boundedness condition (b) by (b0). Note that (b) implies (b0). Hence Ur;R;� � Vr;R;� .
Condition (b0) provides a boundedness criterion in average sense. Namely, it implies
that

Z

K

Z

K

jx � yj2 �	.dx/ �	.dy/ � 8R2:

Example of a Gaussian function in Vr;R;� . Let ˙ be a symmetric and positive
definite d � d matrix. We consider the non-normalized density

'.x/ D exp.�1
2
xT˙�1x/; x 2 R

d :

The target distribution �' is a normal distribution with mean x' D 0 2 R
d and

covariance matrix ˙ . There exists an orthogonal matrix V D .v1; : : : ; vd /, where
v1; : : : ; vd are the eigenvectors of ˙ . Then

V �1˙V D �;
where� D diag.1; : : : ; d / and 1; : : : ; d with i > 0 for i 2 f1; : : : ; d g are the
corresponding eigenvalues of ˙ . Recall that the trace and the determinant of ˙ are

tr.˙/ D
dX

iD1
i and det.˙/ D

dY

iD1
i :

We show that if r , R and � are appropriately chosen, then ' 2 Vr;R;� .

To (a): The density ' is obviously log-concave.
To (b0): Since x' D 0 we obtain

Z

K

ˇ̌
x � x'

ˇ̌2
�'.dx/ D 1

.2�/d=2
p

det.˙/

Z

Rd

jxj2 '.x/ dx D tr.˙/:

Hence we set R D 1
2

p
tr.˙/.

To (c): Let min D miniD1;:::;d i and let vmin be the corresponding eigenvector.
Note that xT˙�1x � �1min jxj2 and that equality holds for x D vmin. With G D
Bd we obtain

R
Rd
'.x/ dx

vold .Bd / infx2Bd '.x/
D exp.

1

2
�1min/ � .d=2C 1/ 2d=2

p
det.˙/;

where � .d/ D R1
0
td�1 exp.�t/ dt is the gamma function. Hence we set
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� D exp.
1

2
�1min/ � .d=2C 1/ 2d=2

p
det.˙/:

To (d): The level sets of ' are ellipsoids

K.s/ D fx 2 R
d j xT˙�1x � 2 log.s�1/g; s 2 Œ0; 1�:

In general one has

�'.K.s// D
R1
0

vold .K.s/\K.t// dt
R1
0

vold .K.t// dt
D s vold .K.s//C

R1
s

vold .K.t// dt
R1
0

vold .K.t// dt
:

By the well known formula of the volume of an ellipsoid we obtain

vold .K.t// D 2d=2 logd=2.t�1/
p

det.˙/ vold .Bd /; t 2 Œ0; 1�

and

�'.K.s// D s logd=2.s�1/C R 1
s

logd=2.t�1/ dt
R 1
0

logd=2.t�1/ dt
; s 2 Œ0; 1�:

Hence

�'.K.s// D �.log s�1; d=2/
� .d=2/

; s 2 Œ0; 1�;

where �.r; d/ D R r
0
td�1 exp.�t/ dt is the lower incomplete gamma function.

Let us define a function r� W N! R by

r�.d/ D inffr 2 Œ0;1/W �.r; d=2/ � 1

8
� .d=2/g:

If we substitute 1=8 by 1=2 in the definition of r�.d/ we have the median of the
gamma distribution with parameter d=2 and 1. It is known that the median is in
�.d/, see [1]. Figure 1 suggests that r�.d/ behaves also linearly in d .
Let log.s�.d/�1/ D r�.d/, such that s�.d/ D exp.�r�.d//. Then

�'.K.s
�.d/// D 1

8
and B.0; .minr

�.d//1=2/ � K.s�.d//:

Hence we set r D .minr
�.d//1=2.

Let us summarize. For r D .minr
�.d//1=2, R D 1

2

p
tr.˙/ and

� D exp.
1

2
�1min/ � .d=2C 1/ 2d=2

p
det.˙/
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Fig. 1 Plot of an
approximation of r�.d/ with
a Newton method and an
appropriately chosen initial
value.

we obtain that ' 2 Vr;R;� . Note that � depends exponentially on the dimension d .
However, if one has tractability with respect to �, then the error depends polynomi-
ally on the dimension.

4 Hit-and-Run Algorithm

For 	WK ! RC the hit-and-run algorithm is as follows. Let � be a probability
measure on .K;B.K// and let x1 2 K be chosen by �. For k 2 N suppose that the
states x1; : : : ; xk are already computed. Then

1. Choose a direction u uniformly distributed on @Bd ;
2. Set xkC1 D xk C ˛ u, where ˛ 2 Ik D f˛ 2 R j xk C ˛u 2 Kg is chosen with

respect to the distribution determined by the density

`k.s/ D 	.xk C s u/
R
Ik
	.xk C t u/ dt

; s 2 Ik:

The second step might cause implementation issues. However, if we have a log-
concave density 	 then `k is also log-concave. In this setting one can use different
acceptance/rejection methods. For more details see for example [6, Sect. 2.4.2] or
[17]. In the following we assume that we can sample the distribution determined
by `k.

Other algorithms for the approximation of �	 would be a Metropolis algorithm
with suitable proposal [19] or a combination of a hit-and-run algorithm with uniform
stationary distribution and a Ratio-of-uniforms method [10]. Also hybrid samplers
are promising methods, especially when 	 decreases exponentially in the tails [7].

Now let us state the transition kernel, say H	, of the hit-and-run algorithm
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H	.x; C / D 2

vold�1.@Bd /

Z

C

	.y/ dy

`	.x; y/ jx � yjd�1
; x 2 K; C 2 B.K/;

where

`	.x; y/ D
Z 1

�1
	.x C .1 � /y/1K.x C .1 � /y/ d:

The transition kernelH	 is reversible with respect to �	, let us refer to [3] for further
details.

In the following we state several results from Lovaśz and Vempala. This part is
based on [15]. We start with a special case of [15, Theorem 1.1] and sketch the proof
of this theorem.

Theorem 2. Let " 2 .0; 1=2/ and 	 2 Ur;R;� . Let � be an initial distribution with
the following property. There exists a set S"
K and a numberD � 1 such that

d�

d�	
.x/ � D; x 2 K n S";

where �.S"/ � ". Then for

n0 > 10
27.dr�1 R/2 log2.8D dr�1 R"�1/ log.4D "�1/

the total variation distance between �Hn0
	 and �	 is less than 2".

Proof (Sketch).

1. Let us assume that S" D ;:

Then it follows
�
�
� d�
d�	

�
�
�1 � D; so that � 2M1. We use [14, Corollary 1.6] with

s D "
2D

and obtain

�
���Hn

	 � �	
�
��

tv
� "=2CD exp.�1

2
n ˚2

"
2D
/;

where˚ "
2D

is the "
2D

-conductance ofH	. By Theorem 3.7 of [15] and the scaling
invariance of the hit-and-run algorithm we find a lower bound of ˚ "

2D
. It is

given by

˚ "
2D
� 10�13

2 dr�1 R log.4 dr�1 RD "�1/
: (6)

This leads to

�
�
��Hn

	 � �	
�
�
�

tv
� "=2CD exp

� �10�26 n
8 .dr�1 R/2 log2.4 dr�1 RD "�1/

�
: (7)
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2. Now let us assume that S" ¤ ;:
Let Q" WD �.S"/, so that 0 < Q" � " � 1=2 and for C 2 B.K/ let

�1.C / D �.C \ Sc" /
�.Sc" /

and �2.C / D �.C \ S"/
�.S"/

:

Then

� D .1� Q"/�1 C Q"�2

and
�
�� d�1d�	

�
��1 � 2D. Furthermore for any C 2 B.K/ we find

ˇ
ˇ
ˇ�Hn

	 .C /� �	.C /
ˇ
ˇ
ˇ � .1 � Q"/

ˇ
ˇ
ˇ�1Hn

	 .C /� �	.C /
ˇ
ˇ
ˇC Q":

By using (7) we get

��
��1Hn

	 � �	
��
�

tv
� "=2C 2D exp

� �10�26 n
8 .dr�1 R/2 log2.8 dr�1 RD "�1/

�
;

and altogether

�
���Hn

	 � �	
�
��

tv
� 3 "=2C 2D exp

� �10�26 n
8 .dr�1 R/2 log2.8 dr�1 RD "�1/

�
:

(8)

Choosing n so that the right hand side of the previous equation is less than or
equal to 2" completes the proof. ut

The next Corollary provides an explicit upper bound of the total variation distance.

Corollary 1. Under the assumptions of Theorem 2 with

ˇ D exp

� �10�9
.dr�1 R/2=3

�
and C D 12 dr�1 RD

one obtains
��
��Hn0

	 � �	
��
�

tv
� C ˇ

3
p
n0 ; n 2 N:

Proof. Set " D 8 dr�1 RD exp
�
�10�9 n1=3

.dr�1 R/2=3

	
and use (8) to complete the proof. ut

Note that the result of Theorem 2 is better than the result of Corollary 1. However,
Corollary 1 provides an explicit estimate of the total variation distance. One can see
that there is an almost exponential decay, namely the total variation distance goes to
zero at least as ˇ 3

p
n0 goes to zero for increasing n0.
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In the previous results we assumed that 	 2 Ur;R;� . It is essentially used that
(b) holds. Now let us assume that 	 2 Vr;R;� . The next statement is proven in [15,
Theorem 1.1].

Theorem 3. Let " 2 .0; 1=2/, 	 2 Vr;R;� . Let � be an initial distribution with the
following property. There exists a set S"
K and a numberD � 1 such that

d�

d�	
.x/ � D; x 2 K n S";

where �.S"/ � ". Then for

n0 � 4 � 1030.dr�1 R/2 log2.2 D dr�1 R "�1/ log3.D "�1/

the total variation distance between �Hn0
	 and �	 is less than 2".

Note that Theorems 2 and 3 can be applied if the initial distribution is bounded,

i.e. we can set D D
�
�
� d�
d�	

�
�
�1 and S" D ;. Furthermore if � 2 M2, i.e.

�
�
� d�
d�	

�
�
�
2

is

bounded, then we can also apply Theorems 2 and 3 with D D
��
� d�
d�	

��
�
2

2
"�1 and

S" D
(

x 2 K j d�
d�	

.x/ >

�
��
�
d�

d�	

�
��
�

2

2

"�1
)

:

5 Main Results

Now we are able to state and to prove the main results. To avoid any pathologies we
assume that r�1Rd � 3.

Theorem 4. Let " 2 .0; 1=2/ and

Fr;R;� D f.f; 	/ j 	 2 Ur;R;� ; kf k1 � 1g :

For .f; 	/ 2 Fr;R;� let � be the uniform distribution on G � R
d from (c). Let

X1
n0
; : : : ; Xn

n0
be a sequence of the n0th steps of n independent hit-and-run Markov

chains with stationary distribution �	 and initial distribution �. Recall that

Mn;n0.f; 	/ D
1

n

nX

jD1
f .Xj

n0
/:

Then for n � "�2 and

n0 � 1027.dr�1 R/2 log2.8 dr�1 R � "�2/ log.4� "�2/
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we obtain

sup
.f;	/2Fr;R;�

e.Mn;n0.f; 	// � 3":

Hence

t";� .n; n0/ D O.d 2 .r�1 R/2 log2.dr�1 R/ "�2 Œlog "�1�3 Œlog ��3/:

Proof. For C 2 B.K/ we have

�.C / D
Z

C

1G.y/
R
K
	.x/ dx

vold .G/	.y/
�	.dy/:

It implies that d�
d�	
.x/ � � for all x 2 K . Then the assertion follows by Theorems 1

and 2. ut
Now let us consider densities which belong to Vr;R;� .

Theorem 5. Let " 2 .0; 1=2/ and

Gr;R;� D f.f; 	/ j 	 2 Vr;R;�; kf k1 � 1g :

Let Mn;n0 be given as in Theorem 4. Then for n � "�2 and

n0 � 4 � 1030.dr�1 R/2 log2.2 dr�1 R � "�2/ log3.� "�2/

we obtain

sup
.f;	/2Gr;R;�

e.Mn;n0.f; 	// � 3":

Hence

t";� .n; n0/ D O.d 2 .r�1 R/2 log2.dr�1 R/ "�2 Œlog "�1�5 Œlog ��5/:

Proof. The assertion follows by the same steps as the proof of Theorem 4. Note that
we use Theorem 3 instead of Theorem 2. ut

Note that in both theorems there is no hidden dependence on further parameters
in the O notation. However, the explicit constant might be very large, of the
magnitude of 1030. The theorems imply that the problem of integration (1) is
tractable with respect to � on the classes Fr;R;� and Gr;R;� .

Example of a Gaussian function revisited. In the Gaussian example of Sect. 3
we obtained
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R=r D .2 r�.d/1=2/�1 �ptr.˙/=min;

� D exp.
1

2
�1min/ � .d=2C 1/ 2d=2

p
det.˙/:

If we assume that r�.d/ increases linearly in d (Fig. 1), that
p

tr.˙/=min and
log.exp. 1

2
�1min/

p
det.˙// grows polynomially in the dimension, then t";� .n; n0/

grows also polynomially in the dimension. This implies that the integration problem
with respect to the Gaussian function is polynomially tractable in the sense of Novak
and Woźniakowski [20–22].
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QMC Galerkin Discretization of Parametric
Operator Equations

Christoph Schwab

Abstract We extend recent results from Kuo et al. (SIAM J Numer Anal 50:3351–
3374, 2012) of QMC quadrature and Finite Element discretization for parametric,
scalar second order elliptic partial differential equations to general QMC-Galerkin
discretizations of parametric operator equations, which depend on possibly count-
ably many parameters. Such problems typically arise in the numerical solution
of differential and integral equations with random field inputs. The present set-
ting covers general second order elliptic equations which are possibly indefinite
(Helmholtz equation), or which are given in saddle point variational form (such as
mixed formulations). They also cover nonsymmetric variational formulations which
appear in space-time Galerkin discretizations of parabolic problems or countably
parametric nonlinear initial value problems (Hansen and Schwab, Vietnam J. Math
2013, to appear).

1 Introduction

The efficient numerical computation of statistical quantities for solutions of partial
differential and of integral equations with random inputs is a key task in uncertainty
quantification in engineering and in the sciences. The quantity of interest being
expressed as a mathematical expectation, the efficient computation of these quanti-
ties involves two basic steps: (i) approximate (numerical) solution of the operator
equation, and (ii) numerical integration. In the present note, we outline a general
strategy towards these two aims which is based on (i) stable Galerkin discretization
and (ii) Quasi Monte-Carlo (QMC) integration by a randomly shifted, first order
lattice rule following [6, 17, 22].
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QMC (and other) quadrature methods require the introduction of coordinates of
integration prior to numerical quadrature. In the context of random field inputs with
nondegenerate covariance operators, a countable number of coordinates is required
to describe the random input data, e.g. by a Karhunen-Loève expansion. Therefore,
in the present note, we consider in particular that the operator equation contains not
only a finite number of random input parameters, but rather depends on random
field inputs, i.e. it contains random functions of space and, in evolution problems,
of time which describe uncertainty in the problem under consideration. Combined
QMC – Finite Element error analysis for scalar diffusion problems with random
coefficients was obtained recently in [9, 17]. In the present note, we indicate how
the main conclusions in [17] extend to larger classes of problems.

2 Parametric Operator Equations

2.1 Abstract Saddle Point Problems

Throughout, we denote by X and Y two reflexive Banach spaces overR (all results
will hold with the obvious modifications also for spaces over C) with (topological)
duals X 0 and Y 0, respectively. By L .X ;Y 0/, we denote the set of bounded linear
operators A W X ! Y 0. The Riesz representation theorem associates each A 2
L .X ;Y 0/ in a one-to-one correspondence with a bilinear form b.�; �/ WX �Y !
R by means of

b.v;w/ D hw; AviY �Y 0 for all v 2X ;w 2 Y : (1)

Here and in what follows, we indicate spaces in duality pairings h�; �i by subscripts.
We shall be interested in the solution of linear operator equations Au D f and

make use of the following solvability result which is a straightforward consequence
of the closed graph theorem, see, e.g., [1] or [8, Chap. 4].

Proposition 1. A bounded, linear operator A 2 L .X ;Y 0/ is boundedly invert-
ible if and only if its bilinear form satisfies inf-sup conditions: ex. ˛ > 0 s.t.

inf
0¤v2X

sup
0¤w2Y

b.v;w/
kvkX kwkY � ˛ ; inf

0¤w2Y
sup

0¤v2X
b.v;w/
kvkX kwkY � ˛ : (2)

If (2) holds then for every f 2 Y 0 the operator equation

find u 2X W b.u; v/ D hf; viY 0�Y 8v 2 Y (3)

admits a unique solution u 2X and there holds kukX D kA�1f kX � ˛�1kf kY 0 .
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2.2 Parametric Operator Families

We shall be interested in QMC quadratures applied to solutions of parametric
families of operators A. From partial differential equations with random field input
(see, e.g. [27]), we consider, in particular, operator families which depend on
infinitely many parameters (obtained, for example, by Karhunen-Loève expansion
of random input functions). To this end, we denote by y WD .yj /j�1 2 U the
possibly (for random field inputs with nondegenerate covariance kernels) countable
set of parameters. We assume the parameters to take values in a bounded parameter
domain U � R

N. Then, in particular, each realization of y is a sequence of
real numbers. Two main cases arise in practice: first, the “uniform case”: the
parameter domain U D Œ�1=2; 1=2�N and, second, the “truncated lognormal
case”: the parameter domain U � R

N. In both cases, we account for randomness
in inputs by equipping these parameter domains with countable product probability
measures (thereby stipulating mathematical independence of the random variables
yj ). Specifically,

%.dy/ D
O

j�1
%j .yj /dyj ; y 2 U (4)

where, for j 2 N, %j .yj / � 0 denotes a probability density on .�1=2; 1=2/; for
example, %j .yj / D 1 denotes the uniform density, and in the truncated lognormal
case, %j D �1, the Gaussian measure truncated to the bounded parameter domain
.�1=2; 1=2/ � R, normalized so that �1.Œ�1=2; 1=2�/ D 1.

Often, mathematical expectations w.r. to the probability measure % of (function-
als of) the solutions u.y/ of operator equations depending on the parameter vector
y are of interest. One object of this note is to address error analysis of QMC
evaluation of such, possibly infinite dimensional, integrals. A key role in QMC
convergence analysis is played by parametric regularity of integrand functions,
in terms of weighted (reproducing kernel) Hilbert spaces which were identified
in recent years as pivotal for QMC error analysis (see, e.g., [20, 21, 30, 30, 33])
and QMC rule construction (see, e.g., [4, 5, 26]). By N

N

0 we denote the set of all
sequences of nonnegative integers, and by F D f� 2 N

N

0 W j�j < 1g the set of
“finitely supported” such sequences, i.e., sequences of nonnegative integers which
have only a finite number of nonzero entries. For � 2 F, we denote by n � N

the set of coordinates j such that �j ¤ 0, with j repeated �j � 1 many times.
Analogously, m � N denotes the supporting coordinate set for � 2 F.

We consider parametric families of continuous, linear operators which we denote
as A.y/ 2 L .X ;Y 0/. We now make precise the dependence of A.y/ on the
parameter sequence y which is required for our regularity and approximation
results.

Assumption 1. The parametric operator family fA.y/ 2 L .X ;Y 0/ W y 2 U g is
a regular p-analytic operator family for some 0 < p � 1, i.e.,
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1. A.y/ 2 L .X ;Y 0/ is boundedly invertible for every y 2 U with uniformly
bounded inverses A.y/�1 2 L .Y 0;X /, i.e., there exists C0 > 0 such that

sup
y2U
kA.y/�1kL .Y 0;X / � C0 (5)

and
2. For any fixed y 2 U , the operators A.y/ are analytic with respect to each yj

such that there exists a nonnegative sequence b D .bj /j�1 2 `p.N/ such that

8� 2 Fnf0g W sup
y2U

�
��.A.0//�1.@�yA.y//

�
��

L .X ;X /
� C0b� : (6)

Here @�yA.y/ WD @�1y1@
�2
y2
� � �A.y/; the notation b� signifies the (finite due to � 2

F) product b�11 b
�2
2 : : : where we use the convention 00 WD 1.

We verify the abstract assumptions in the particular setting of affine parameter
dependence; this case arises, for example, in diffusion problems where the diffusion
coefficients are given in terms of a Karhunen-Loève expansion (see, e.g. [28] for
such Karhunen-Loève expansions and their numerical analysis, in the context of
elliptic PDEs with random coefficients). Then, there exists a family fAj gj�0 �
L .X ;Y 0/ such that A.y/ can be written in the form

8y 2 U W A.y/ D A0 C
X

j�1
yjAj : (7)

We shall refer to A0 D A.0/ as “nominal” operator, and to the operators Aj , j � 1
as “fluctuation” operators. In order for the sum in (7) to converge, we impose the
following assumptions on the sequence fAj gj�0 � L .X ;Y 0/. In doing so, we
associate with the operator Aj the bilinear forms bj .�; �/ WX � Y ! R via

8v 2X ; w 2 Y W bj .v;w/ DY hw; Aj viY 0 ; j D 0; 1; 2 : : : :

Assumption 2. The family fAj gj�0 in (7) satisfies the following conditions:

1. The “nominal” or “mean field” operator A0 2 L .X ;Y 0/ is boundedly
invertible, i.e. (cf. Proposition 1) there exists ˛0 > 0 such that

inf
0¤v2X

sup
0¤w2Y

b0.v;w/
kvkX kwkY � ˛0 ; inf

0¤w2Y
sup

0¤v2X
b0.v;w/
kvkX kwkY � ˛0 : (A1)

2. The “fluctuation” operators fAj gj�1 are small with respect to A0 in the
following sense: there exists a constant 0 < � < 2 such that for ˛0 as in (A1)
holds
X

j�1
bj � � < 2 ; where bj WD kA�10 Aj kL .X ;X / ; j D 1; 2; : : : :

(A2)
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Condition (A2) (and, hence, Assumption 2) is sufficient for the bounded invertibility
of A.y/, uniformly w.r. to the parameter vector y 2 U .

Theorem 1. Under Assumption 2, for every realization y 2 U D Œ�1=2; 1=2�N
of the parameter vector, the parametric operator A.y/ is boundedly invertible.
Specifically, for the bilinear form b.y I �; �/ W X � Y ! R associated with
A.y/ 2 L .X ;Y 0/ via

b.yIw; v/ WDY hv;A.y/wiY 0 (8)

there hold uniform (w.r. to y 2 U ) inf-sup conditions (2) with ˛ D .1��=2/˛0 > 0,

8y 2 U W inf
0¤v2X

sup
0¤w2Y

b.y I v;w/
kvkX kwkY � ˛ ; inf

0¤w2Y
sup

0¤v2X
b.y I v;w/
kvkX kwkY � ˛ :

(9)

In particular, for every f 2 Y 0 and for every y 2 U , the parametric operator
equation

find u.y/ 2X W b.yI u.y/; v/ D hf; viY 0�Y 8v 2 Y (10)

admits a unique solution u.y/ which satisfies the a-priori estimate

sup
y2U
ku.y/kX � Ckf kY 0 : (11)

Proof. We use Proposition 1, which gives necessary and sufficient conditions for
bounded invertibility; also, 1=˛ is a bound for the inverse. By Assumption 2, the
nominal part A0 of A.y/ in (7) is boundedly invertible, and we write for every

y 2 U : A.y/ D A0

�
I CPj�1 yjA�10 Aj

	
. We see that A.y/ is boundedly

invertible iff the Neumann Series in the second factor is. Since jyj j � 1=2, a
sufficient condition for this is (A2) which implies, with Proposition 1, the assertion
with ˛ D ˛0.1 � �=2/. ut
From the preceding considerations, the following is readily verified.

Corollary 1. The affine parametric operator family (7) satisfies Assumption 1 with

C0 D 1

.1 � �=2/˛0 and bj WD kA�10 Aj kL .X ;X / ; for all j � 1 :

Examples for families of parametric operator equation include certain linear and
parabolic evolution equations [12], linear second order wave equations [13],
nonlinear elliptic equations [11], elliptic problems in random media with multiple
scales [14], and elliptic and parabolic control problems [15].
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2.3 Analytic Parameter Dependence of Solutions

The dependence of the solution u.y/ of the parametric, variational problem (10) on
the parameter vector y is analytic, with precise bounds on the growth of the partial
derivatives. The following bounds of the parametric solution’s dependence on the
parameter vector y will, as in [17], allow us to prove dimension independent rates
of convergence of QMC quadratures.

Theorem 2. Under Assumption 1, for every f 2 Y 0 and for every y 2 U , the
unique solution u.y/ 2X of the parametric operator equation

A.y/ u.y/ D f in Y 0 (12)

depends analytically on the parameters, and the partial derivatives of the paramet-
ric solution family u.y/ satisfy the bounds

sup
y2U
k.@�y u/.y/kX � C0j�jŠ Qb�kf kY 0 for all � 2 F; (13)

where 0Š WD 1 and where the sequence Qb D . Qbj /j�1 2 `p.N/ is defined by Qbj D bj
with bj as in (A2) in the affine case (7), and with Qbj D bj = ln 2 for all j 2 N in
the truncated lognormal case (6).

For a proof in the case of stationary diffusion problems we refer, for example, to
[3], for control problems to [15]. The regularity estimates (13) (and, therefore, also
sparsity and, as shown ahead, QMC convergence) results are available for linear
parabolic and hyperbolic PDE problems [12, 13], and for solutions of nonlinear,
parametric initial value problems on possibly infinite dimensional state spaces [10].

2.4 Spatial Regularity of Solutions

Convergence rates of Galerkin discretizations will require regularity of the paramet-
ric solution u.y/. To state it, we assume given scales of smoothness spaces fXtgt�0
and fY 0t gt�0, with

X DX0 �X1 �X2 � : : : ; Y 0 D Y 00 � Y 01 � Y 02 � : : : : (14)

The scales fXt gt�0 and fY 0t gt�0 (and analogously fX 0
t gt�0, fYtgt�0) are defined

for noninteger values of t � 0 by interpolation.
Instances of smoothness scales (14) in the context of the diffusion problem

considered in [3, 17] are, in a convex domain D, the choices X D H1
0 .D/,

X1 D .H2 \ H1
0 /.D/, Y 0 D H�1.D/, Y 01 D L2.D/. In a nonconvex polygon

(or polyhedron), analogous smoothness scales are available, but involve Sobolev
spaces with weights (see, e.g., [25]). In the ensuing convergence analysis of
QMC – Galerkin discretizations of (12), we assume f 2 Y 0t for some t > 0

implies that
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sup
y2U

ku.y/kXt D sup
y2U

kA.y/�1f kXt � Ctkf kY 0

t
: (15)

Such regularity is available for a wide range of parametric differential equations
(see [10, 15, 27] and the references there). For the analysis of Multi-Level QMC
Galerkin discretizations, however, stronger bounds which combined (15) and (13)
are necessary (see [19]).

2.5 Discretization

As the inverseA.y/�1 is not available explicitly, we will have to compute, for given
QMC quadrature points y 2 U , an approximate inverse. We consider the case
when it is obtained by Galerkin discretization: we assume given two one-parameter
families fX hgh>0 �X and fY hgh>0 � Y of subspaces of equal, finite dimension
Nh, which are dense in X resp. in Y , i.e.

8u 2X W lim sup
h!0

inf
0¤uh2X h

ku � uhkX D 0 (16)

and likewise for fY hgh>0 � Y . We also assume the approximation property:

80 < t � Nt W 9Ct > 0 W 8u 2 Xt 80 < h � h0 W inf
wh2X h

ku � whkX � CthtkukXt :

(17)

The maximum amount of smoothness in the scale Xt , denoted by Nt , depends of
the problem class under consideration and on the Sobolev scale: e.g. for elliptic
problems in polygonal domains, it is well known that choosing for Xt the usual
Sobolev spaces will allow (15) with t only in a rather small interval 0 < t � Nt ,
whereas choosing Xt as weighted Sobolev spaces will allows large values of Nt (see
[25]).

Proposition 2. Assume that the subspace sequences fX hgh>0 � X and
fY hgh>0 � Y are stable, i.e. that there exists N̨ > 0 and h0 > 0 such that
for every 0 < h � h0, there hold the uniform (w.r. to y 2 U ) discrete inf-sup
conditions

8y 2 U W inf
0¤vh2X h

sup
0¤wh2Y h

b.y I vh;wh/
kvhkX kwhkY � N̨ > 0 (18)

and

8y 2 U W inf
0¤wh2Y h

sup
0¤vh2X h

b.yI vh;wh/
kvhkX kwhkY � N̨ > 0 : (19)
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Then, for every 0 < h � h0, and for every y 2 U , the Galerkin approximation
uh 2X h, given by

find uh.y/ 2X h W b.y I uh.y/; vh/ D hf; vhiY 0�Y 8vh 2 Y h (20)

admits a unique solution uh.y/ which satisfies the a-priori estimate

sup
y2U
kuh.y/kX � N̨�1kf kY 0 : (21)

Moreover, there exists a constant C > 0 such that for all y 2 U holds
quasioptimality

ku.y/ � uh.y/kX � C N̨�1 inf
0¤wh2X h

ku.y/� whkX : (22)

We remark that under Assumption 2, the validity of the discrete inf-sup conditions
(18), (19) for the “nominal” bilinear forms b0.y I �; �/ with constant N̨0 > 0

independent of h implies (18), (19) for the form b.yI �; �/ with constant N̨ D
.1 � �=2/ N̨0 > 0.

3 QMC Integration

For a given bounded, linear functional G.�/ W X ! R, we are interested in
computing expected values of

F.y/ WD G.u.�;y// ; y 2 U ; (23)

(respectively of its parametric Galerkin approximation uh.y/ 2 Xh � X defined
in (20)). The expected value of F is an infinite-dimensional, iterated integral of the
functionalG.�/ of the parametric solution:

Z

U

F.y/ dy D
Z

U

G.u.�;y// dy D G

�Z

U

u.�;y/ dy

�
: (24)

The issue is thus the numerical evaluation of Bochner integrals of X -valued
functions over the infinite dimensional domain of integration U . We also observe
that for the parametric operator equation (12), to evaluate F at a single QMC point
y 2 U requires the approximate (Galerkin) solution of one instance of the operator
equation for u.�;y/ 2 X . This introduces an additional Galerkin discretization
error, and can be accounted for as in [17] in the present, more general, setting with
analogous proofs.

In [3] and the present paper, the summability of the fluctuation operators Aj ,
j � 1, plays an important role for proving dimension-independent convergence
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rates of approximations of the parametric solution maps. Accordingly, we will make
the assumption, stronger than Assumption (A2) that there exists 0 < p < 1 such that

X

j�1
kAj kpL .X ;Y 0/

< 1 : (A3)

Notice that this condition is, by (A1), equivalent to .bj /j�1 2 `p.N/, and implies
decay of the fluctuation coefficients Aj , with stronger decay as the value of p
becomes smaller. In both [3, 17] and the present paper, the rate of convergence
O.N�1Cı/ is attained if (A3) is satisfied with p D 2=3. Here and throughout what
follows, N denotes the number of points used in QMC integration. For values of p
between 2=3 and 1, the rate of convergence in both cases is O.N�.1=p�1=2//.

Recall that the purpose of the present paper is to analyze accuracy and complexity
of QMC methods in connection with the Galerkin approximation (20) of (10). To
obtain convergence rates, we strengthen Assumption (A2) to the requirement

sup
y2U
kA.y/�1kL .Y 0

t ;Xt / <1 ; 0 � t � 1 : (A4)

For application of QMC quadrature rules, the infinite sum in (7) must be truncated
to a finite sum of, say, s terms. Below, the parameter s shall be referred to as “QMC-
truncation dimension”. In order for the dimension truncation to be meaningful, we
will assume additionally that the Aj are decreasingly, i.e. the sequence of bounds
bj in (A2) is nonincreasing:

b1 � b2 � : : : � bj � � � � : (A5)

The overall error for the QMC-Galerkin approximation is then a sum of three terms:
a truncation error, a QMC error, and the Galerkin discretization error. We bound
the three errors and finally combine them to arrive at an overall QMC-Galerkin error
bound.

3.1 Finite Dimensional Setting

In this subsection we review QMC integration when the truncation dimension (i.e.
the number of integration variables), denoted by s, is assumed to be finite and
fixed. The domain of integration is taken to be the s-dimensional unit cube Œ� 1

2
; 1
2
�s

centered at the origin so that QMC integration methods formulated for Œ0; 1�s may
require a coordinate translation. We thus consider integrals of the form

Is.F / WD
Z

Œ� 1
2 ;
1
2 �
s

F .y/ dy : (25)



622 C. Schwab

In our later applications F will be of the form (23), but for the present it is general
and depends only on s variables. An N -point QMC approximation to this integral
is an equal-weight rule of the form

Qs;N .F / WD 1

N

NX

iD1
F.y.i//;

with carefully chosen points y .1/; : : : ;y .N / 2 Œ� 1
2
; 1
2
�s . For classical results on

QMC methods, see, e.g. [24, 29].
We shall assume that our integrand F belongs to a weighted and anchored

Sobolev space W a
s;� . This is a Hilbert space over the unit cube Œ� 1

2
; 1
2
�s with norm

given by

kF k2W a
s;�
WD

X

uf1Wsg

1

�u

Z

Œ� 1
2 ;
1
2 �

juj

ˇ
ˇ
ˇ̌
ˇ
@jujF
@yu

.yuI 0/
ˇ
ˇ
ˇ̌
ˇ

2

dyu ; (26)

where f1 W sg is a shorthand notation for the set of indices f1; 2; : : : ; sg, @jujF
@yu

denotes
the mixed first derivative with respect to the variables yj with j 2 u, and .yuI 0/
denotes the vector whose j th component is yj if j 2 u and 0 if j … u.

A closely related family of weighted spaces are the so-called unanchored spaces
denoted by W u

s;� . Here, “inactive” arguments of integrands are averaged, rather than
fixed at the origin as in (26). Accordingly, the unanchored norm kı kW u

s;�
is given by

kF k2W u
s;�
WD

X

uf1Wsg

1

�u

Z

Œ� 1
2 ;
1
2 �

juj

 Z

Œ� 1
2 ;
1
2 �
s�juj

@jujF
@yu

.yuIyf1Wsgnu/dyf1Wsgnu

!2
dyu :

(27)

We omit the superscripts a and u in statements which apply for either choice of
space; we will also require u 2 W a

s;�.U IX / which is defined as the Bochner space
of strongly measurable, X -valued functions for which the (26) (with the k ı kX
norm in place of the absolute value) is finite.

Weighted, anchored spaces W a
s;� were first introduced by Sloan and Woźni-

akowski in [32]. By now there are many variants and generalizations, see e.g. [7,31]
and the references there. In (26) the “anchor” is .0; : : : ; 0/, the center of the unit cube
Œ 1
2
; 1
2
�s , corresponding to the anchor . 1

2
; : : : ; 1

2
/ in the standard unit cube Œ0; 1�s . For

parametric operator equations (12) anchoring at the origin is preferable, since the
parametric solution of (12) with anchored operators corresponds to the anchored
parametric solution.

Regarding the choice of weights, from derivative bounds (13), in [17] product
and order dependent (“POD” for short) weights were derived which are given by

�u D �juj
Y

j2u
�j > 0 : (28)
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Here juj denotes the cardinality (or the “order”) of u. The weights are therefore
determined by a specific choice of the sequences �0 D �1 D 1; �2; �3; : : : and
�1; �2; �3; : : :. (a precise choice of �u will be given in (38) ahead).

QMC error analysis is based on the worst case error of a QMC rule (or a family
of QMC rules). It is defined as supremum of the (bounded, linear) QMC error
functional over all functions in the unit ball of Ws;� :

ewor.Qs;N IWs;�/ WD sup
kF kWs;��1

jIs.F / �Qs;N .F /j : (29)

Due to linearity of the functionals Is.�/ andQs;N .�/, we have

jIs.F / �Qs;N .F /j � ewor.Qs;N IWs;�/ kF kWs;� for all F 2 Ws;� : (30)

In shifted rank-1 lattice rules, quadrature points in U are given by

y .i/ D frac

�
iz
N
C�

�
� � 1

2
; : : : ; 1

2

�
; i D 1; : : : ; N ;

where z 2 Z
s is the generating vector, � 2 Œ0; 1�s is the shift, and frac.�/

indicates the fractional part of each component in the vector. Subtraction by the
vector . 1

2
; : : : ; 1

2
/ translates the rule from Œ0; 1�s to Œ� 1

2
; 1
2
�s . In randomly shifted

lattice rules the shift � is a vector with independent, uniformly in Œ0; 1/ distributed
components; we denote the application of the QMC rule to the integrand function
F for one draw of the shift � by Qs;N .�IF /.
Theorem 3 ([16, Theorem 5]). Let s;N 2 N be given, and assume that F 2 Ws;�

for a particular choice of weights � , with Ws;� denoting either the anchored space
with norm (26) or the unanchored space with norm (27).

In each case, there exists a randomly shifted lattice such that its root-mean-
square error (with respect to averages over all shifts) satisfies, for all  2 .1=2; 1�,

q
E ŒjIs.F / �Qs;N .�IF /j2�

�
0

@
X

;¤uf1Wsg
�u	./

juj
1

A

1=.2/

Œ'.N /��1=.2/ kF kWs;� ; (31)

where EŒ�� denotes the expectation with respect to the random shift which is
uniformly distributed over Œ0; 1�s . In (31), with �.x/ denotes the Riemann zeta
function, and '.N / the Euler totient function which satisfies '.N / � 9N for all
N � 1030,
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	./ WD

8
ˆ̂<

ˆ̂
:

2�.2/

.2�2/
C 1

12
if Ws;� D W a

s;� ;

2�.2/

.2�2/
if Ws;� D W u

s;� :

(32)

The result with general weights, restricted to prime N in the anchored case was
first obtained in [31, Theorem 3(A)], for general N and unanchored spaces in [16,
Theorem 4.1] (with the choice m D 0 in the statement of that theorem), and for
generalN and anchored spaces in [16, Theorem 4.1],

The question of efficient construction of lattice rules has received much attention
in recent years [30]. Algorithms which obtain the generating vector with favourable
(w.r. to N and s) scaling have been obtained for integrands in unanchored spaces
in [26], where the first algorithm for fast CBC construction using FFT at a cost
of O.sN logN/ was given. Efficient algorithms for construction of so-called
embedded families of lattice rules where proposed in [4]. We refer to [16, 18] for a
discussion.

3.2 Dimensional Truncation

Given s 2 N and y 2 U , we observe that truncating the sum in (7) at s
terms amounts to setting yj D 0 for j > s. We thus denote by us.x;y/ WD
u.x; .yf1WsgI 0// the solution of the parametric weak problem (10) corresponding
to the parametric operator A..yf1WsgI 0// in which the sum (7) is truncated at s
terms. Then Theorem 1 remains valid with constants independent of s when u.�;y/
is replaced by its dimensionally truncated approximation us.�;y/.
Theorem 4. Under Assumptions (A2), (A3), (A5), for every f 2 Y 0 and for every
y 2 U and for every s 2 N, the dimensionally truncated, parametric solution
us.�;y/ D u.�; .yf1WsgI 0// of the s-term truncated parametric weak problem (10)
satisfies, with bj as defined in (A2),

ku.�;y/� us.�;y/kX � C˛�1kf kY 0

X

j�sC1
bj (33)

for some constant C > 0 independent of s, y and f . For every G.�/ 2 X 0

jI.G.u//� Is.G.u//j � QC ˛�1kf kY 0kG.�/kX 0

 
X

j�sC1
bj

!2
(34)

for some constant QC > 0 independent of s, f and G.�/. In addition, if Assump-
tions (A3) and (A5) hold, then
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X

j�sC1
bj � min

�
1

1=p � 1 ; 1
� X

j�1
b
p
j

!1=p
s�.1=p�1/ :

This result is proved in the affine case (7) in [17, Theorem 5.1], and for operators
depending lognormally on y in [2]. It will hold for general probability densities
%.y/ in (4) whenever the factor measures %j .dyj / are centered.

4 Analysis of QMC and Galerkin Disretization

We apply QMC quadrature Qs;N to the dimensionally truncated approximaion
Is.G.u// of the integral (24), where the integrand F.y/ D G.u.�;y// is a
continuous, linear functional G.�/ of the parametric solution u.�;y/ of the operator
equation (10).

As proposed in [7,23], choices of QMC weights can be based on minimizing the
product of worst case error and of (upper bounds for) the weighted norms kF kWs;�

in the error bound (30). This idea was combined with the bounds (13) in [17]
to identify POD QMC weights (28) as sufficient to ensure a QMC convergence
rate of O.N�1Cı/ with O./ being independent of the truncation dimension s.
Another issue raised by the infinite dimensional nature of the problem is to choose
the value of s and estimate the truncation error I.G.u// � Is.G.u//, which was
estimated in Theorem 4. The following QMC quadrature error bound is proved in
[17, Theorem 5.1] for scalar, parametric diffusion problems; its statement and proof
generalize to the parametric operator equations (12) with solution regularity (13).

Theorem 5 (Root-mean-square error bound). Under Assumptions (A2) and (9)
let bj be defined as in (A2). For every f 2 Y 0 and for every G.�/ 2X 0, let u.�;y/
denote the solution of the parametric variational problem (10).

Then for s;N 2 N and weights � D .�u/, randomly shifted lattice rules
Qs;N .�I �/ with N points in s dimensions can be constructed by a component-by-
component algorithm such that the root-mean-square error for approximating the
finite dimensional integral Is.G.u// satisfies, for all  2 .1=2; 1�, and allN � 1030
q
E ŒjIs.G.u//�Qs;N .�IG.u//j2� � C�./

˛
N�1=.2/kf kY 0 kG.�/kX 0 ; (35)

where EŒ�� denotes the expectation with respect to the random shift � (uniformly
distributed over Œ0; 1�s) and C�./ is independent of s as in [17, Eq. (6.2)].

In [17, Theorem 6.1], a choice of weights which minimizes the upper bound was
derived. As the derivation in [17, Theorem 6.1] generalizes verbatim to the presently
considered setting we only state the result. Under the assumptions of Theorem 5, for
bj as in (A2) suppose that (A3) holds, i.e.
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X

j�1
b
p
j < 1 for some 0 < p < 1 ; (36)

For the choice

 WD
(

1
2�2ı for some ı 2 .0; 1=2/ when p 2 .0; 2=3� ;
p

2�p when p 2 .2=3; 1/ ; (37)

the choice of weights

�u D ��u WD
0

@jujŠ
Y

j2u

bjp
	./

1

A

2=.1C/

(38)

with 	./ in (32) minimizes the constant C�./ in the bound (35). To account for
the impact of Galerkin discretization of the operator equation, recall Sect. 2.5. For
any y 2 U , the parametric FE approximation uh.�;y/ 2 X h is defined as in
(20). Here, b.yI �; �/ denotes the parametric bilinear form (8). In particular the FE
approximation (20) is defined pointwise with respect to the parameter y 2 U .

Theorem 6. Under Assumptions (A2), (9) and (15) for every f 2 Y 0 and for every
y 2 U , the approximations uh.�;y/ are stable, i.e. (21) holds. For every f 2 Y 0t
with 0 < t � 1 exists a constant C > 0 such that for all y 2 U as h! 0 holds

sup
y2U
ku.�;y/� uh.�;y/kX � C ht kf kY 0

t
: (39)

Proof. Since f 2 Y 0t for some t > 0 implies with (15) that u.y/ 2 Xt and, with
the approximation property (22),

ku.�;y/� uh.�;y/kX � C ht ku.�;y/kXt

where the constant C is independent h and of y. This proves (39). ut
Since we are interested in estimating the error in approximating functionals (24),

we will also impose a regularity assumption on the functionalG.�/ 2X 0:

9 0 < t 0 � 1 W G.�/ 2X 0
t 0 (40)

and the adjoint regularity: for t 0 as in (40), and for every y 2 U ,

w.y/ D .A�.y//�1G 2 Yt 0 ; sup
y2U
kw.y/kYt0 � CkGkX 0

t0
: (41)

Moreover, since in the expression (23) only a bounded linear functional G.�/ of u
rather than the parametric solution u itself enters, the discretization error of G.u/ is
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of main interest in QMC error analysis. An Aubin-Nitsche duality argument shows
that jG.u.�;y// � G.uh.�;y//j converges faster than ku.�;y/ � uh.�;y/kX : under
Assumptions (A2), (9), (A4), and (15), (41) there exists a constant C > 0 such that
for every f 2 Y 0t with 0 < t � 1, for every G.�/ 2 X 0

t 0 with 0 < t 0 � 1 and for
every y 2 U , as h! 0, the Galerkin approximationsG.uh.�;y// satisfy

ˇ
ˇG.u.�;y// �G.uh.�;y//ˇˇ � C h� kf kY 0

t
kG.�/kX 0

t0
; (42)

where 0 < � WD t C t 0 and where the constant C > 0 is independent of y 2 U .
We conclude with bounds for the combined QMC FE approximation of the

integral (24). To define the approximation of (24), we approximate the infinite
dimensional integral using a randomly shifted lattice rule with N points in s

dimensions. The QMC rule with N points for integration over .�1=2; 1=2/s for
one single draw � of the shift will be denoted by Qs;N .�I�/. For each evaluation
of the integrand F , we replace the exact solution u.�;y/ of the parametric weak
problem (10) by the Galerkin approximation uh.�;y/ in the subspace X h � X of
dimensionMh WD dimX h <1.

Thus we may express the overall error as a sum of a dimension truncation error
(which is implicit when a finite dimensional QMC method is used for an infinite
dimensional integral), a QMC quadrature error, and a FE discretization error:

I.G.u//�Qs;N .G.u
h/I�/

D .I � Is/.G.u// C .Is.G.u//�Qs;N .G.u/I�// C Qs;N .G.u � uh/I�/ :

We bound the mean-square error with respect to the random shift by

E

jI.G.u//�Qs;N .G.u

h/I �/j2� � 3 j.I � Is/.G.u//j2
C 3E 
jIs.G.u//�Qs;N .G.u/I �/j2

�C 3E

jQs;N .G.u � uh/I �/j2� : (43)

The dimension truncation error, i.e., the first term in (43), was estimated in
Theorem 4. The QMC error, i.e., the second term in (43), is already analyzed in
Theorem 5. Finally, for the Galerkin projection error, i.e., for the third term in (43),
we apply the property that the QMC quadrature weights 1=N are positive and sum
to 1, to obtain

E

jQs;N .G.u� uh/I �/j2� � sup

y2U
jG.u.�;y/ � uh.�;y//j2 ;

and apply (42) Then, under the assumptions in Theorems 4, 5 and in (42), we
approximate the dimensionally truncated approximation (25) of the integral (24)
over U by the randomly shifted lattice rule from Theorem 5 with N points in s
dimensions. For each lattice point we solve the approximate problem (20) with one
common subspace X h �X withMh D dim.X h/ degrees of freedom and with the
approximation property (17). Then, there holds the root-mean-square error bound
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q
E

jI.G.u//�Qs;N .�IG.uh//j2

�

� C
�
�.s;N / kf kY 0 kG.�/kX 0 C h� kf kY 0

t
kG.�/kX 0

t0

	
;

where � D t C t 0, and, assuming '.N / � CN , for fixed ı > 0 arbitrary small,

�.s;N / D
(
s�2.1=p�1/ CN�.1�ı/ when p 2 .0; 2=3� ;
s�2.1=p�1/ CN�.1=p�1=2/ when p 2 .2=3; 1/ :

Acknowledgements The author is supported by ERC under Grant AdG 247277.

References

1. Brezzi, F., Fortin, M.: Mixed and Hybrid Finite Element Methods. Springer, Berlin (1991)
2. Charrier, J.: Strong and weak error estimates for elliptic partial differential equations with

random coefficients. SIAM J. Numer. Anal. 50, 216–246 (2012)
3. Cohen, A., DeVore, R., Schwab, Ch.: Convergence rates of best N -term Galerkin approxima-

tion for a class of elliptic sPDEs., Found. Comput. Math. 10, 615–646 (2010).
4. Cools, R., Kuo, F.Y., Nuyens, D.: Constructing embedded lattice rules for multivariate

integration. SIAM J. Sci. Comput. 28, 2162–2188 (2006)
5. Dick, J.: On the convergence rate of the component-by-component construction of good lattice

rules. J. Complexity 20, 493–522 (2004)
6. Dick, J., Pillichshammer, F.: Digital Nets and Sequences. Cambridge University Press,

Cambridge, UK (2010)
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On the Choice of Weights in a Function Space
for Quasi-Monte Carlo Methods for a Class
of Generalised Response Models in Statistics

Vasile Sinescu, Frances Y. Kuo, and Ian H. Sloan

Abstract Evaluation of the likelihood of generalised response models in statistics
leads to integrals over unbounded regions in high dimensions. In order to apply
a quasi-Monte Carlo (QMC) method to approximate such integrals, one has to
transform the original integral into an equivalent integral over the unit cube. From
the point of view of QMC, this leads to a known (but non-standard) space of
functions for the transformed problem. The “weights” in this function space describe
the relative importance of variables or groups of variables. The quadrature error
produced via a QMC method is bounded by the product of the worst-case error
and the norm of the transformed integrand. This paper is mainly concerned with
finding a suitable error bound for the integrand arising from a particular generalised
linear model for time series regression, and then determining the choice of weights
that minimises this error bound. We obtained “POD weights” (“product and order
dependent weights”) which are of a simple enough form to permit the construction
of randomly shifted lattice rules with the optimal rate of convergence in the given
function space setting.

1 Introduction

In this paper we use quasi-Monte Carlo (QMC) methods for the approximation of
high-dimensional integrals arising from a class of generalised response models in
statistics. In particular, we study the log-likelihood function considered in [6]
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`.ˇ;˙ / D log
Z

Rd

exp

�
yT.Xˇ CW w/� 1Tb.Xˇ CW w/� 1

2
wT˙�1w

�
dw

� 1
2

log j˙ j � d
2

log.2�/C 1Tc.y/; (1)

where y is a response vector containing counts, ˇ and ˙ are model parameters,
X is a design matrix corresponding to the effects in ˇ, W is a design matrix
sometimes assumed to be the identity matrix, and d is the number of counts. The
functions b and c are scalar functions which are applied component-wise to a vector.
For such models a conditional Poisson likelihood is often assumed, hence we take
b.x/ D ex and c.x/ D log.1=xŠ/. The log-likelihood (1) represents the logarithm of
an expectation with respect to the random variable w from the multivariate normal
density with mean 0 and covariance matrix ˙ . See [2, 3, 6, 10, 13] for further
background information on the problem.

QMC methods are equal-weight quadrature rules defined over the unit cube. The
usual approach to approximating integrals over unbounded regions via QMC is to
transform the original integral into one over the unit cube. In this case, however,
the typical approach of diagonalising ˙ and using its factors to map to the unit
cube yields very poor results, see [6]. The main reason is that integrals arising from
the log-likelihood have a narrow peak located far away from the origin, attributable
to the exponential function b.x/ D ex in the exponent. Therefore, in [6] the authors
recentred and rescaled the exponent in the integrand before mapping to the unit
cube; the details of the transformation will be given in Sect. 3.

After recentering around the stationary point of the exponent and then rescaling,
we divide and multiply the resulting integrand by the product of a suitable univariate
probability density �, so obtaining the integral in the form

Id .f; �/ D
Z

Rd

f .x/

dY

jD1
�.xj / dx: (2)

The integral (2) is then transformed into an equivalent integral over the unit cube by
using the mapping

u D ˚.x/ D
Z x

�1
�.t/ dt; 8x 2 R; (3)

for each coordinate direction. The inverse mapping is ˚�1 W .0; 1/! R; ˚�1.u/ D
x. In dimension d , we have ˚�1.u/ WD .˚�1.u1/; : : : ; ��1.ud //, and the trans-
formed integral in the unit cube is

Id . Qf / D
Z

Œ0;1�d

Qf .u/ du; where Qf D f ı ˚�1: (4)
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We stress that a different choice of the density � will lead to a different integrand f
in (2), and a different transformed integrand Qf in (4).

This transformed integrand Qf does not lie in a function space where QMC
methods are typically analysed (e.g., the standard Sobolev space in [17]). Therefore
standard QMC results do not apply. Fortunately, the integrand Qf lies in a function
space studied in [9, 11] and therefore the results in those papers can be used for the
problem considered here. Further details will be provided in Sect. 2.

To construct the particular QMC methods known as randomly shifted lattice
rules, we need to choose some nonnegative parameters known as weights, which
are used to describe the relative importance of variables or groups of variables.
Weighted spaces of functions were first proposed in [17] to explain the success
of QMC. By now the literature on finding good QMC methods in weighted spaces
of functions, once the weights are known, is very rich, see for instance the recent
reviews [4, 7].

In [6] the weights were chosen in an ad hoc fashion. In this paper, in contrast,
our goal is to obtain weights suitable for approximating the log-likelihood integral
arising from a particular time series model (see Sect. 3), using the following
approach. The integration error is bounded by the product of the worst-case error
(depending only on the QMC point set) and the norm of the function (depending
only on the integrand). We choose weights that minimise a certain upper bound on
this product. In order to do that we focus first on bounding the norm of f under
different choices of �, a difficult task for the specific integrands arising from the
log-likelihood (1). The strategy of then finding the weights will be adapted from [8],
where the authors were concerned with QMC methods suitable for a class of elliptic
partial differential equations. As there, the resulting weights are “POD weights”, see
further details in Sect. 2.

2 Background on Lattice Rules and the Function Space
Setting

The function space we use is the same as the function space in [9, 11], see also
[18, 19]. The norm in this (“anchored”) space is given by

kf k� WD
0

@
X

uD

��1u

Z

Rjuj

 
@juj

@xu
f .xu; 0/

!2Y

j2u
 2.xj / dxu

1

A

1=2

: (5)

In (5), the notation .xu; 0/means that we anchor to 0 all the components of x that do
not belong to u, and D WD f1; 2; : : : ; d g. The space is “non-standard” in the sense
that the integral in (5) is over the unbounded domain (rather than the unit cube) and
is weighted by a positive and continuous function  W R ! R

C. The role of  is
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to control the growth of the mixed first partial derivatives of the functions as any
component xj goes to˙1, and hence to control the size of the function space.

For each subset u � D , the nonnegative parameter �u is the weight associated
with the variables xu D fxj W j 2 ug. Popular classes of weights include product
weights (first introduced in [17]) and order dependent weights (see e.g., [16]). The
recent paper [8] led us to consider a hybrid between these two classes of weights
called POD weights (“product and order dependent” weights): they take the form

�u WD �juj
Y

j2u
�j ;

where �juj depends only on the cardinality of the set u (the order dependent part),
while �j is a weight associated with the individual coordinate xj . We will see that
POD weights are also suitable for our problem here.

Note that via the transformation (3) which links (2) to (4), the norm of f defined
as above in the Euclidean space will be equal to the norm of the transformed
integrand Qf D f ı˚�1 in the corresponding isometric space over the unit cube. In
what follows it will be more convenient, however, to analyse the norm of f in R

d .
The integral (2) may be approximated by randomly shifted lattice rules

Qn;d .f I�/ D 1

n

n�1X

kD0
f

�
˚�1

��
kz
n
C�

���
;

where � 2 Œ0; 1�d is a random shift drawn from the uniform distribution over the
unit cube and z 2 Z

d is a (deterministic) generating vector. (More accurately,
the randomly shifted lattice rule is applied to the transformed integral (4).) The
braces around a vector indicate that we take the fractional part of each vector
component. The generating vector can be restricted to the set Z d

n , where Zn WD
fz 2 f1; 2; : : : ; n � 1g W gcd.z; n/ D 1g. We have jZnj D '.n/, where '.n/ is
Euler’s totient function, that is, the number of positive integers smaller than n and
co-prime with n.

We define the worst-case error of a shifted lattice rule with generating vector z
and shift � by

en;d;�.z;�/ WD sup
kf k��1

jId .f; �/ �Qn;d .f I�/j:

It follows that for all f with finite norm (5) we have

jId .f; �/ �Qn;d .f I�/j � en;d;�.z;�/ � kf k� :

Squaring both sides of this inequality, integrating over � 2 Œ0; 1�d , and then taking
the square root on both sides, we obtain
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q
EjId .f; �/�Qn;d .f I �/j2 � Oen;d;�.z/ � kf k� ; (6)

where the expectation is with respect to the random shift, and Oen;d;�.z/ is the “shift-
averaged” worst-case error for randomly shifted lattice rules, defined by

Oen;d;�.z/ WD
�Z

Œ0;1�d
e2n;d;�.z;�/ d�

�1=2
:

A lattice rule can be constructed via the component-by-component (CBC) algo-
rithm, which is a greedy algorithm that constructs the generating vector one
component at a time. The CBC construction has been extensively used in many
research papers, see among others [5,12,14,15]. Specific (fast) CBC constructions of
randomly shifted lattice rules for POD weights were considered in [7,11]. Note that
the CBC construction and the error bound for this specific function space, see [11],
depend explicitly on the choices of � and  as well as on the weights �u. Further
analysis on the worst-case error will be given in Sect. 6.

3 The Integrand for the Likelihood Problem

In this paper we focus on the particular time series model in [6, Example 1]. The
integral of interest is (leaving out a scaling constant)

Z

Rd

exp.F.w// dw; (7)

where the function F is defined by

F.w/ WD
dX

jD1

�
yj .ˇ C wj / � eˇCwj

� � 1
2

wT˙�1w:

Here ˇ 2 R is a parameter, y1; : : : ; yd 2 f0; 1; : : :g are the count data, and ˙ is
a (Toeplitz) covariance matrix with the .j; i/-th entry given by �2�ji�j j=.1 � �2/,
where �2 is the variance and � 2 .�1; 1/ is the autoregression coefficient.

As mentioned earlier, we follow the idea from [6] of first recentering and
rescaling the exponent of the integrand, as follows:

1. Find the unique stationary point w� satisfying rF.w�/ D 0.
2. Determine the matrix ˙ � D .�r2F.w�//�1, which describes the convexity of
F around the stationary point and factorise it as ˙ � D A�A�T.

3. Introduce the transformation w D A�x C w�. Then dw D j detA�j dx, and the
integral (7) becomes j detA�j R

Rd
exp.F.A�x C w�// dx.
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We remark that Steps 1–2 use the idea from the “Laplace method” (see e.g.,
[1]) which involves a multivariate normal approximation to the integrand via a
second order Taylor series approximation of the exponent about its stationary point.
The matrix ˙ � will most likely be positive definite due to our underlying model
assumptions.

We then multiply and divide the new integrand exp.F.A�x C w�// byQd
jD1 �.xj / for a suitable univariate probability density function � W R ! R.

Thus we have transformed the integral (7) into an integral of the form (2), where f
is given by (omitting here the factor j detA�j)

f .x/ WD exp.g.x//
dY

jD1
h.xj /; with h.x/ D 1=�.x/; (8)

and

g.x/ WD
dX

jD1

�
yj ..A

�x/j C ˇC w�

j /� e.A�x/jCˇCw�

j

	
� 1
2
.A�xC w�/T˙ �1.A�xC w�/:

By construction, rg.x/ vanishes at x D 0, while near the origin g.x/ behaves like
g.0/� 1

2
xTx.

Let us remark that f is determined after we have chosen �. Later we will
consider logistic, normal and Student densities for �; these have been analysed in
[9]. We also need to choose a weight function  to ensure that the norm (5) of f is
finite. We will show that for our three choices of � it suffices to take   1. (We
stress that even with   1 the corresponding isometric space over the unit cube is
not the standard Sobolev space considered in e.g., [17].)

4 Bounding the Mixed First Partial Derivatives
of the Integrand

Due to the error bound (6), we are interested in finding an upper bound on the norm
(5) of f in (8). In turn, we need to estimate the mixed first partial derivatives of f .

Lemma 1. Let .a�j i /1�i;j�d denote the .j; i/-entry in the matrix A�, and let .A�/i
denote the i -th column of A�. Let ˘.v/ denote the set of all partitions of a finite
set v. For any probability density � and any u � D , the mixed first partial
derivatives of f defined by (8) are given by

@jujf .x/
@xu

D
X

vu

"
@jvj exp.g.x//

@xv

 
dY

iD1
i 62uXv

h.xi /

! 
dY

iD1
i2uXv

h0.xi /
!#

; (9)

where
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@jvj exp.g.x//

@xv
D exp.g.x//

X

�2˘.v/

Y

t2�

0

@�
dX

jD1

�Y

i2t

a�

j i

�
e.A

�x/jCˇCw�

j C Tt.x/
1

A ;

(10)

and for any subset t � v

Tt.x/ WD

8
ˆ̂
<

ˆ̂
:

Pd
jD1 yj a�j i � .A�/Ti ˙�1.A�x C w�/ if jtj D 1; t D fig;

�.A�/Ti ˙�1.A�/k if jtj D 2; t D fi; kg;
0 if jtj � 3:

(11)

Proof. From (8), we see that we can write

@jujf .x/
@xu

D
X

vu

"
@jvj exp.g.x//

@xv
� @
juj�jvj

@xuXv

 
dY

iD1
h.xi /

!#

:

For the derivative of the product function on the right-hand side, we obtain

@juj�jvj

@xuXv

 
dY

iD1
h.xi /

!

D
 

dY

iD1
i 62uXv

h.xi /

! 
dY

iD1
i2uXv

h0.xi /
!

:

For the partial derivatives of exp.g.x//, we use the well-known Faà di Bruno’s
formula for differentiating compositions of multivariate functions, to obtain

@jvj exp.g.x//

@xv
D exp.g.x//

X

�2˘.v/

Y

t2�

@jtjg.x/
@xt

:

We turn our attention to finding the partial derivatives of g. We have

@g.x/

@xi
D

dX

jD1

�
yj a
�
j i � a�j i e.A

�x/jCˇCw�

j

	
� .A�/Ti ˙�1.A�x C w�/;

@2g.x/

@xi @xk
D �

dX

jD1
a�j i a�jke

.A�x/jCˇCw�

j � .A�/Ti ˙�1.A�/k for i ¤ k;

@jtjg.x/
Q
i2t @xi

D �
dX

jD1

 
Y

i2t
a�j i

!

e.A
�x/jCˇCw�

j for any t � v with jtj � 3:

Combining all formulas in this proof leads to the stated result. ut
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To proceed further from (9), we need a bound on the mixed first partial derivatives
of exp.g.x// given by (10), and a bound on those products involving h D 1=�

and its derivative. The former is done in Lemma 2 below; the latter is treated in
Assumption 1 and Lemma 3 in the next section.

We need the following definitions:

˛i WD max
jD1;:::;d ja

�
j i j; ! WD 1C

dX

iD1

dX

jD1
j$ij j with ˙�1 D .$ij /

d
i;jD1; (12)

�1 WD
dX

iD1

jPd
jD1 yj a�j i � .A�/Ti ˙�1w�j

˛i
; �k WD

dX

iD1

ˇ
ˇ..A�/Ti ˙

�1A�/k
ˇ
ˇ

˛i
;

(13)

�2 WD
dX

jD1
yj .ˇ C w�j /�

1

2
w�T˙�1w�; �k WD

dX

jD1
yj a
�
jk � .w�T˙�1A�/k:

(14)

Furthermore, it is easy to see that the matrix A�T˙�1A� is real, symmetric and
positive definite, and consequently all the eigenvalues are positive. We define

min WD the smallest eigenvalue of the matrix A�T˙�1A�: (15)

Also we denote by Bm the Bell number of orderm, that is, the number of partitions
of a set with m elements.

Lemma 2. For any v � D , the mixed first partial derivative of exp.g.x// from (10)
is bounded by

ˇ̌
ˇ
ˇ
@jvj exp.g.x//

@xv

ˇ̌
ˇ
ˇ � e�1C�2BjvjjvjŠ!jvj=2

�Y

i2v

˛i

� dY

kD1

exp

�
� min

2
x2k C �kxk C �k jxk j

�
:

Proof. For convenience, we define for the scope of this proof

K.x/ WD
dX

jD1
e.A

�x/jCˇCw�

j and J.x/ WD g.x/CK.x/:

These, together with the definition of ˛i in (12), yield the following bound on (10)

ˇ
ˇ
ˇ
ˇ̌
@jvj exp.g.x//

@xv

ˇ
ˇ
ˇ
ˇ̌ � exp.J.x/�K.x//

X

�2˘.v/

Y

t2�

 

K.x/
Y

i2t
˛i C jTt.x/j

!

D
�Y

i2v
˛i

�
exp.J.x/�K.x//

X

�2˘.v/

Y

t2�

�
K.x/C jTt.x/jQ

i2t ˛i

�
; (16)
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where we used the property that for any partition � of v we have

Y

t2�

Y

i2t
˛i D

Y

i2v
˛i :

For (16) we now considerK.x/ � 1 andK.x/ > 1 separately. Note thatK.x/ �
0 for any x. If K.x/ � 1 then

ˇ
ˇ̌
ˇ
ˇ
@jvj exp.g.x//

@xv

ˇ
ˇ̌
ˇ
ˇ
�
�Y

i2v
˛i

�
exp.J.x//

X

�2˘.v/

Y

t2�

�
1C jTt.x/jQ

i2t ˛i

�
: (17)

If K.x/ > 1 then

ˇ̌
ˇ̌
ˇ
@jvj exp.g.x//

@xv

ˇ̌
ˇ̌
ˇ
�
�Y

i2v

˛i

�
exp.J.x/ �K.x//

X

�2˘.v/

Y

t2�

�
K.x/

�
1C jTt.x/jQ

i2t ˛i

��

�
�Y

i2v

˛i

�
exp.J.x// exp.�K.x//.K.x//jvj

X

�2˘.v/

Y

t2�

�
1C jTt.x/jQ

i2t ˛i

�
: (18)

Using the elementary inequality e�xx� � .
�

e
/� for all x � 0 and � � 1 together

with Stirling’s formula, we obtain

exp.�K.x//.K.x//jvj �
� jvj
e

�jvj
� jvjŠ:

Since jvjŠ � 1 for any subset v with jvj � 1, it follows from (17) and (18) that

ˇ̌
ˇ
ˇ
ˇ
@jvj exp.g.x//

@xv

ˇ̌
ˇ
ˇ
ˇ
� jvjŠ

�Y

i2v
˛i

�
exp.J.x//

X

�2˘.v/

Y

t2�

�
1C jTt.x/jQ

i2t ˛i

�
: (19)

Next we use the definition of Tt.x/ in (11) which depends on the cardinality of
the block t in the partition � . For the product over partition blocks of cardinality 1,
we have

Y

t2�jtjD1

�
1C jTt.x/jQ

i2t ˛i

�
� exp

 
X

t2�jtjD1

jTt.x/jQ
i2t ˛i

!

� exp

 
dX

iD1

jTfig.x/j
˛i

!

; (20)
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where the first inequality was obtained by using 1C x � ex for x 2 R. The second
inequality above is conservative, but allows us to obtain a bound independent of the
partition. It follows from the first case in (11) and the definitions of �1 and �k in
(13) that

dX

iD1

jTfig.x/j
˛i

�
dX

iD1

ˇ̌Pd
jD1 yj a

�

j i � .A�/Ti ˙ �1w�

ˇ̌C ˇ̌.A�/Ti ˙
�1A�x

ˇ̌

˛i
� �1 C

dX

kD1

�k jxkj:
(21)

For the product over partition blocks of cardinality 2, we use the definitions of ˛i
and ! in (12) to obtain for any pair of distinct indices fi; kg � D

1C jTfi;kg.x/j
˛i˛k

D 1C j.A
�/Ti ˙

�1.A�/kj
˛i˛k

� !:

Then since for any partition � of v we have at most bjvj=2c blocks of cardinality 2,
we conclude that

Y

t2�jtjD2

�
1C jTt.x/jQ

i2t ˛i

�
� !jvj=2: (22)

Substituting (20), (21), and (22) into (19), and noting that the product over partition
blocks of cardinality greater than 2 always equals 1, we obtain

ˇ̌
ˇ
ˇ
ˇ
@jvj exp.g.x//

@xv

ˇ̌
ˇ
ˇ
ˇ
� BjvjjvjŠ !jvj=2

�Y

i2v
˛i

�
exp

 

J.x/C �1 C
dX

kD1
�kjxkj

!

;

(23)

where Bjvj is the number of partitions of the set v.
Finally we use the definitions of �2 and �k in (14) and min in (15) to write

J.x/ D g.x/CK.x/ D �2 � 1
2

xTA�T˙�1A�x C
dX

jD1
yj .A

�x/j � w�T˙�1A�x

� �2 C
dX

kD1

�
�min

2
x2k C �kxk

�
; (24)

where we used the property that xTA�T˙�1A�x � min
Pd

kD1 x2k for any x 2 R
d .

Substituting (24) into (23) completes the proof. ut
Note that in Lemma 2 we intentionally obtained a bound that depends on the

variables xk in a product manner, so that the integral in the norm (5) can be easily
calculated.
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5 Bounding the Norm of the Integrand for Specific Densities

Specific bounds on the norm (5) of the integrand f given in (8) will depend on the
chosen density �. We first state an assumed bound for the products in (9) involving
h D 1=� and its derivative, and verify that this generic bound holds for three specific
choices of �. We then proceed to obtain a generic bound on the norm of f .

Assumption 1. Suppose � is a probability density such that for all v � u � D we
have, with h D 1=�,

� dY

iD1
i 62uXv

h.xi /

�� dY

iD1
i2uXv

jh0.xi /j
�
� pdqjuj�jvj

dY

kD1
exp

�
0x

2
k C �0jxk j

�
; (25)

where p, q, 0 and �0 are constants independent of v, u and d .

Lemma 3. Assumption 1 holds for the logistic, normal, and Student densities with
parameter � > 0 as follows:

�.x/ p q 0 �0

Logistic
ex=�

�.1C ex=�/2 4�
1

4�
0

1

�

Normal
1p
2��

exp

�
�x

2

2�

� p
2��

1

�

1

2�
1

Student T�

�
1C x2

�

�� �C1
2 1

T�
1C 1

�
0

� Cmax.1;
p
2� � 1/p

2�

Here T� D .��/�1=2 � . �C12 /=� . �2 /, where � .�/ denotes Euler’s gamma function.

Proof. Recall that h.x/ D 1=�.x/. For the logistic density we use the estimates

h.x/ D �.ex=� C 2C e�x=�/ � 4�ejxj=� and jh0.x/j D jex=� � e�x=� j � ejxj=�:

For the normal density we use jxj � ejxj for all x 2 R to obtain

h.x/ D p2�� exp

�
x2

2�

�
;

jh0.x/j D
ˇ
ˇ
ˇ
ˇ
ˇ

r
2�

�
x exp

�
x2

2�

�ˇˇ
ˇ
ˇ
ˇ
�
p
2��

�
exp

�
x2

2�
C jxj

�
:

For the Student density we use 1 C x2=� � exp.jxjp2=�/ and jxj � ejxj for all
x 2 R to obtain
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h.x/ D 1

T�

�
1C x2

�

� �C1
2

� 1

T�
exp

�
� C 1p
2�
jxj
�
;

jh0.x/j D
ˇ
ˇ̌
ˇ
ˇ
ˇ

1

T�

� C 1
�

x

�
1C x2

�

� ��1
2

ˇ
ˇ̌
ˇ
ˇ
ˇ
� 1

T�

�
1C 1

�

�
exp

��
� � 1p
2�
C 1

�
jxj
�
:

These estimates lead to the parameters in the lemma. ut
Theorem 1. If the weight function is   1 and the probability density � satisfies
Assumption 1 with

0 <
min

2
;

then the norm (5) of f defined by (8) is bounded by

kf k2� � e2.�1C�2/p2d
X

u�D

"

��1
u B2

juj
.jujŠ/2

�
�

min � 20
�

juj=2Y

i2u

.q C !1=2˛i /2

�
Y

k2u

�
exp

�
.�k C �0 � �k/2
min � 20

�
C exp

�
.�k C �0 C �k/2
min � 20

��#

:

Proof. Combining Lemmas 1 and 2 and Assumption 1, we obtain

ˇ
ˇ
ˇ̌
ˇ
@jujf .x/
@xu

ˇ
ˇ
ˇ̌
ˇ
� e�1C�2pd

X

vu

�
BjvjjvjŠ!jvj=2qjuj�jvj

Y

i2v
˛i

�

�
dY

kD1
exp

�
�
�
min

2
� 0

�
x2k C �kxk C .�k C �0/jxk j

�
;

where

X

vu

�
BjvjjvjŠ!jvj=2qjuj�jvj

Y

i2v
˛i

�
� BjujjujŠ

Y

i2u
.q C !1=2˛i /:

Thus

kf k2� � e2.�1C�2/p2d
X

uD

"

��1u B2
juj.jujŠ/2

Y

i2u
.q C !1=2˛i /2

�
Y

k2u

Z 1

�1
 2.xk/ exp

�
� .min � 20/ x2k C 2�kxk C 2.�k C �0/jxkj

�
dxk

#

:

(26)
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Now with   1 and 0 < min=2, the desired result follows from the estimate

Z 1

�1
exp.�x2 C 2�x C 2� jxj/ dx

�
Z 1

�1
exp.�x2 C 2.�C �/x/ dx C

Z 1

�1
exp.�x2 C 2.�� �/x/ dx

D
r
�



�
exp

�
.� � �/2



�
C exp

�
.� C �/2



��
for all  > 0:

This completes the proof. ut
We conclude from Lemma 3 that Theorem 1 holds for the logistic density and

the Student density with � > 0, and for the normal density with

� >
1

min
:

Alternatively, it is also possible to use a normal density � with � � 1=min, but we
would need to consider a weight function  6 1 that decays fast enough to make
the integral in (26) finite.

6 Choosing the Weights

From Theorem 1 and Lemma 3, we see that for the three choices of the density �
we can bound the norm of f by an expression of the form

kf k� �
0

@c
X

uD

��1u �juj
Y

k2u
bk

1

A

1=2

: (27)

It now remains to obtain a bound on the integration error, and then determine the
most appropriate weights �u for our problem.

Theorem 2. Let   1. Let � be one of the three probability densities in Lemma 3
with parameter � > 0, and let ˚ denote the corresponding cumulative distribution
function. Assume additionally that � > 1=min when � is the normal density. Define

8
ˆ̂
ˆ̂̂
<̂

ˆ̂
ˆ̂̂
:̂

C WD 22�ı�
�2�ııe1�ı=2

; r WD 1 � ı=2; ı 2 .0; 1/; if � is logistic;

C WD 23=2�ı�1=2

�3=2�ııe1�ı=2
; r WD 1 � ı=2; ı 2 .0; 1/; if � is normal;

C WD 4T
1=�
� �1�1=�.� C 1/.�C1/2=.2�/

�2�1=�.min.1; �//.�C1/=2.2� � 1/ ; r WD 1 � 1=.2�/; if � is Student;
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and

%./ WD
�
2

Z 0

�1
˚2.x/ dx

�
C 2C�.2r/;  2 .1=.2r/; 1�; (28)

where �.x/ D P1
kD1 k�x is the Riemann zeta function. For f defined by (8) with

norm bounded as in (27), the following statements hold:

• A randomly shifted lattice rule can be constructed via the CBC algorithm such
that the root-mean-square error satisfies for all  2 .1=.2r/; 1�

q
EjId .f / �Qn;d .f I �/j2

�
�

1

'.n/

X

uD

�u .%.//
juj
�1=.2/�

c
X

uD

��1u �juj
Y

k2u
bk

�1=2
; (29)

where the expectation is with respect to the random shift which is uniformly
distributed over Œ0; 1�d , and '.n/ is Euler’s totient function.

• For a given  2 .1=.2r/; 1�, the weights �u that minimise the error bound (29)
are given by

�u D �u./ WD
 

�juj
Y

k2u

bkp
%./

!2=.1C/
for each set u � D : (30)

Proof. Setting   1 and using the symmetry of �, it follows from the results in
[11] (see also [9] for product weights) that the generating vector z for a randomly
shifted lattice rule can be constructed by the CBC algorithm such that the shift-
averaged worst-case error satisfies

Oen;d;�.z/ �
�

1

'.n/

X

uD

�u .%.//
juj
�1=.2/

for all  2 .1=.2r/; 1�; (31)

where 	./ is defined by (28), with the values of C > 0 and r > 1=2 chosen to
satisfy

O�.h/ WD 2

�2h2

Z 1=2

0

sin2.�hy/

�.˚�1.y//
dy � C

hr
for all positive integers h:

Below we obtain C and r for our three choices of the density �. (We remark that
a few combinations of � and  were analyzed in [9], but the case   1 was not
included.)

For the logistic density we have ˚�1.y/ D � ln.y=.1 � y// and �.˚�1.y// D
y.1 � y/=�. Since 1 � y � 1=2 for y 2 Œ0; 1=2�, we have
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O�.h/ � 4�

�2h2

Z 1=2

0

sin2.�hy/

y
dy D 4�

�2h2

 Z 1=�

0

sin2.�t/

t
dt C

Z h=2

1=�

sin2.�t/

t
dt

!

;

where the last equality was obtained by the substitution t D hy. We now use
sin2.�t/ � �2t2 for t 2 Œ0; 1=�� and sin2.�t/ � 1 for t � 1=� to obtain

O�.h/ � 4�

�2h2

�
1

2
C ln

�
�h

2

��
� 22�ı�
�2�ııe1�ı=2

h�2Cı for all ı > 0;

where the last inequality follows from 1=2 C ln.�h=2/ � hı�ı=.2ııe1�ı=2/ for
all ı > 0. Indeed, it can be easily checked that the function �.h/ WD .1=2 C
ln.�h=2//h�ı attains its maximum at h0 D .2=�/e1=ı�1=2. Consequently, �.h/ �
�.h0/ which is equivalent to the stated inequality.

For the normal density we have from [9, Eq. (25)] that exp..˚�1.y//2=.2�// �
1=y for y 2 .0; 1=2/, which leads to

O�.h/ � 2
p
2��

�2h2

Z 1=2

0

sin2.�hy/

y
dy:

The remaining derivation of C and r follows the argument for the logistic density.
For the Student density the values of C and r are obtained by taking ˛ D 0 in [9,

Example 3].
The estimates (6), (27) and (31) together yield (29). The choice of weights which

minimizes the right-hand side of (29) follows from [8, Lemma 6.2]. ut

7 Discussion

In summary, we obtained POD weights (30) for the likelihood integrand from a time
series model. This is no coincidence: it is the consequence of our deliberate aim to
obtain a bound in Lemma 2 that depends on the set v only through its cardinality
and depends on the variables xk in a multiplicative way.

POD weights provide enough flexibility to model more complicated structure
between variables, and yet they are of a simple enough form to allow the practical
implementation of CBC construction for lattice rules.

Since r can be arbitrarily close to 1 in Theorem 2, we can take  close to 1=2 to
yield nearly order n�1 convergence, which is optimal in this function space setting.

In our analysis we have considered the “anchored” version of the function
space setting. However, as recently highlighted in [4, Sect. 5] and [11], the CBC
construction in the anchored setting is more costly due to the need to switch to
some “auxiliary weights” for the implementation. One way to avoid this issue is to
consider instead the “unanchored” function space setting in the analysis, meaning
that we need to modify our estimates to bound a different norm for the integrand.
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Alternatively, we can continue to work with the anchored setting, but modify the
weights following the strategy in [4, pp. 208–209], at the expense of enlarging the
overall error estimate. We leave these possible refinements for future work.
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Multi-level Monte Carlo Finite Difference
and Finite Volume Methods for Stochastic
Linear Hyperbolic Systems

Jonas Šukys, Siddhartha Mishra, and Christoph Schwab

Abstract We consider stochastic linear hyperbolic systems of conservation laws in
several space dimensions. We prove existence and uniqueness of a random weak
solution and provide estimates for the space-time as well as statistical regularity
of the solution in terms of the corresponding estimates for the random input
data. Multi-Level Monte Carlo Finite Difference and Finite Volume algorithms are
used to approximate such statistical moments in an efficient manner. We present
novel probabilistic computational complexity analysis which takes into account the
sample path dependent complexity of the underlying FDM/FVM solver, due to the
random CFL-restricted time step size on account of the wave speed in a random
medium. Error bounds for mean square error vs. expected computational work are
obtained. We present numerical experiments with uncertain uniformly as well as
log-normally distributed wave speeds that illustrate the theoretical results.

1 Introduction

Linear hyperbolic systems of conservation laws arise in a very large number of
models in physics and engineering such as the acoustic wave equation, equations
of linear elasticity and linearized shallow water and Euler equations. For a given
bounded domain D � R

d , the general form of a linear hyperbolic system is given by
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8
ˆ̂<

ˆ̂
:

Ut .x; t/C
dX

rD1
.Ar .x/U.x; t//xr D S.x/;

U.x; 0/ D U0.x/;

8.x; t/ 2 D � RC: (1)

Here, U W D � RC ! R
m denotes the vector of conserved variables, Ar W Rm !

R
m denote linear maps (linear fluxes), and S W D ! R

m denotes the source term.
Equation (1) is augmented with initial data U0 2 D ! R

m and suitable boundary
conditions.

Given the lack of explicit solution formulas (particularly for variable coefficients
and in several space dimensions), numerical methods are widely used to approxi-
mate (1). Popular discretization methods include finite difference, finite volume and
discontinuous Galerkin methods, see [6, 9, 16] and references therein.

These numerical methods require the specification of the coefficient matrices,
initial data, source terms and boundary data as input. However, these quantities are
often determined by measurements. Measurements are typically uncertain and only
provide statistical information about the input data. As an example, consider the
propagation of acoustic waves in the subsurface. The wave speeds, being dependent
on the material properties of medium, are generally determined up to some statistical
moments. This uncertainty in the input data results in the solution being uncertain.
The efficient computation of the solution uncertainty, given the input uncertainty, is
the central theme of uncertainty quantification (UQ).

A necessary prerequisite in UQ is to formulate an appropriate mathematical
notion of random solutions for linear hyperbolic systems. The first aim of this
paper is to provide an appropriate framework of random solutions of (1) and prove
existence, uniqueness as well as (spatio-temporal and statistical) regularity of these
solutions.

The second aim is to present efficient numerical methods for approximation
of random version of linear hyperbolic systems (1). Examples of such methods
include the stochastic Galerkin and stochastic collocation, see references in [11].
Currently these methods are not able to handle large number of uncertainty sources,
are intrusive (existing deterministic solvers need to be reconfigured) and hard to
parallelize.

Another class of methods are the Monte Carlo (MC) methods where the under-
lying deterministic PDE is solved for each statistical sample and the samples are
combined to ascertain statistical information. However, MC methods are inefficient
due to the error convergence rate of 1=2: a large number of numerical solves of
(1) is required. Such slow convergence has inspired the development of Multi-Level
Monte Carlo (MLMC) methods. They were introduced by S. Heinrich for numerical
quadrature [8], developed by M. Giles for Itô SPDE [4], and applied to various
SPDEs [2,3,13]. In particular, recent papers [10–12] extended the MLMC algorithm
to nonlinear conservation laws. Massively parallel simulations of the random multi-
dimensional Euler, magnetohydrodynamics (MHD) and shallow water equations
were conducted using novel static load balancing [15].
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In this paper, we extend the MLMC methods for computing uncertainty in
the solutions of random linear hyperbolic systems. It is essential to point out
the following two novel features of this paper in the context of MC and MLMC
methods:

• Due to the linearity of the underlying evolution equations, we are able to prove
rigorous error estimates for linear hyperbolic systems, both in terms of the spatio-
temporal discretization parameter as well as in terms of the number of samples,
for the MC as well as MLMC discretizations. This should be contrasted with the
results in a recent paper [11], where we postulated error estimates for the MC
and MLMC discretizations for nonlinear hyperbolic systems.

• A new feature that emerges in the treatment of linear equations with random
coefficients is the probabilistic nature of the computational complexity estimates.
This is due to the fact that the wave speed (depending on the eigenvalues of the
coefficient matrices in (1)) is random and can have a large statistical spread, for
instance, if the wave speed is log-normally distributed. Consequently, for the
popular explicit time stepping schemes (such as those employed in the current
paper), the time step size, being specified in terms of the wave speed due to
the CFL condition, is random. Hence, the number of time steps as well as the
total computational work for the whole simulation is a random quantity. Thus,
we device novel probabilistic computational complexity estimates to account
for this randomness in computational work. A crucial result of this paper is to
derive such probabilistic work estimates for the MLMC methods and to show
that the expected work of the MLMC methods is asymptotically the same as
that of a single deterministic run of the underlying finite difference or finite
volume scheme. Hence, the MLMC method is considerably superior to the MC
methods. To the best of our knowledge, this is the first time that such probabilistic
complexity estimates have been obtained for MC discretizations of random
PDEs.

To illustrate theoretical results, we present numerical experiments for the acoustic
wave equation in uniformly as well as log-normally distributed random medium.

2 Linear Systems of Stochastic Hyperbolic Conservation
Laws

Definition 1 (Strong hyperbolicity). In the case d D 1, the linear system of
conservation laws (1) is called strongly hyperbolic [6] if 8x 2 D; 9Qx W Rm ! R

m:

sup
x2D
kQ�1x kkQxk � K <1; Q�1x A1.x/Qx is diagonal. (2)

For extension of strong hyperbolicity to d > 1 spatial variables we refer to [6].

Let V denote an arbitrary Banach space. The following notation will be used:
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kU;S; tkV D kUkV C tkSkV ; U;S 2 V; t � 0: (3)

The following result recapitulates some of the classical existence and uniqueness
results [6, 9, 16] for weak solutions of linear hyperbolic systems (1).

Theorem 1. Denote Lp.D/ D Lp.D/m, Wr;1.D/ D W r;1.D/m, and assume
that

1. The linear system (1) is strongly hyperbolic with K <1 in (2),
2. There exist r0; rS; rA 2 N [ f0;1g such that:

U0 2Wr0;1.D/; S 2WrS;1.D/; Ar 2WrA;1.D/m: (4)

Then, for every finite time horizon T < 1, (1) admits a unique weak solution
U 2 L1.D � Œ0; T �/m. Furthermore, for every 0 � t � T , the a priori estimates
hold:

kU.�; t/kL2.D/ � KkU0;S; tkL2.D/; (5)

kU.�; t/ �V.�; t/kL2.D/ � KkU0 � V0; SU � SV; tkL2.D/; (6)

U 2 C.Œ0; T �;WNr;1.D//; with Nr D minfr0; rS; rAg: (7)

Let .˝;F ;P/ denote a complete probability space and B.V / a Borel �-algebra.

Definition 2 (Random field). A V -valued random field is a measurable mapping

U W .˝;F /! .V; B.V //; ! 7! U.x; t; !/:

The stochastic version of the linear system of hyperbolic conservation laws (1) is

8
ˆ̂
<

ˆ̂:

Ut .x; t; !/C
dX

rD1
Ar .x; !/Uxr D S.x; !/;

U.x; 0; !/ D U0.x; !/;

8.x; t/ 2 D � RC; 8! 2 ˝:

(8)
Here, U0 and S are L2.D/-valued random fields .˝;F /!.L2.D/;B.L2.D///. The
fluxes Ar are L1.D/m-valued random fields .˝;F / ! .L1.D/m;B.L1.D/m//.
We define the following notion of solutions of (8):

Definition 3 (Random weak solution). A C.Œ0; T �;L2.D//-valued random field
U W ˝ 3 ! 7! U.x; t; !/ is a random weak solution to the stochastic linear
hyperbolic system of conservation laws (8) if it is a weak solution of (1) for P-a.e.
! 2 ˝ .

Based on Theorem 1, we obtain the following well-posedness result for (8).

Theorem 2. In (8), assume that the following holds for some k 2 N [ f0;1g:
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1. Equation (8) is strongly hyperbolic, with NKk D kK.!/kLk.˝;R/ <1,
2. There exists non-negative integers r0; rS; rA 2 N [ f0;1g such that:

U0 2 Lk.˝;Wr0;1.D//; S 2 Lk.˝;WrS;1.D//; Ar 2 L0.˝;WrA;1.D/m/;
(9)

3. Each random field Ar , r D 1; : : : ; d , is independent of U0 and S on .˝;F ;P/.

Then, for T <1, (8) admits a unique random weak solution

U W ˝ ! C.Œ0; T �;L2.D//; ! 7! U!.�; �/; 8! 2 ˝; (10)

where U!.�; �/ is the solution to the deterministic system (1). Moreover, 8t 2 Œ0; T �,

kU.�; t; !/kL2.D/ � K.!/kU0.�; !/; S.�; !/; tkL2.D/; P-a.s.; (11)

kUkLk.˝;C.Œ0;T �;L2.D/// � NKkkU0;S; tkLk.˝;L2.D//; (12)

with kU;S; tkLk.˝;V / D kkU;S; tkV kLk.˝;R/.
We will use the following lemma in the proof.

Lemma 1. Let E be a separable Banach space and X W ˝ ! E be an E-
valued random variable on .˝;F /. Then, mapping ˝ 3 ! 7! kX.!/kE 2 R

is measurable.

Proof (of Theorem 2). To retain brevity of exposition, we only outline the key steps,
following [10].

1. By Theorem 1, the random field in (10) is well defined for P-a.e. ! 2 ˝ .
Furthermore, for P-a.e. ! 2 ˝ , U.�; �; !/ is a weak solution of (1).

2. 8t 2 Œ0; T �, 8j D 1; : : : ; m, we verify the measurability of the component map
˝ 3 ! 7! Uj .�; t; !/ 2 L2.D/. Since L2.D/ is a separable Hilbert space, the
B.L2.D// is the smallest �-algebra containing all subsets

fv 2 L2.D/ W '.v/ � ’g W ' 2 L2.D/; ’ 2 R:

For a fixed ’ 2 R, ' 2 L2.D/, consider the set fUj .�; t; !/ W '.Uj .�; t; !// �
’g. By continuity (5) in L2.D/, since U0;S 2 L0.˝;L2.D// and Ar 2
L0.˝;L2.D/m/, we obtain Uj .�; t; �/ 2 L0.˝;L2.D//, for every 0 � t � T .

3. Equation (11) follows from (5) and Lemma 1; (12) follows from (11) and
hypothesis 3,

kUkk
Lk.˝;C.Œ0;T �;L2.D/// D E

�
max
0�t�T kU.�; t; !/k

k
L2.D/



� E

h
Kk.!/kU0;S; tkkL2.D/

i
D NKk

kkU0;S; tkkLk.˝;L2.D//:
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This theorem ensures the existence of the k-th moments M k.U/ 2 .L2.D//k [10]
of the random weak solution, provided U0;S 2 Lk.˝;L2.D// andK 2 Lk.˝;R/.

ut

3 Multi-level Monte Carlo FVM and FDM Methods

3.1 Monte Carlo Method

Under the hypotheses of Theorem 2, the unique random weak solution exists and
has bounded k-th moments [10]. We are interested in the computational estimation
of the “mean field” or “ensemble average”, i.e. of M 1.U/ D EŒU�. To this end,
we use the Monte Carlo (MC) method to approximate EŒU�: fix M 2 N and let
OIi WD f OUi

0;
OSi ; OAi

1; : : : ;
OAi

d g be independent, identically distributed (i.i.d.) samples
of input data OI.!/ WD f OU0.!/; OS.!/; OA1.!/; : : : ; OAd .!/g. The Monte Carlo (MC)
estimate of the expectation M 1.U/ D EŒU.�; t; �/� at fixed time t is given by the
sample average

EMŒU.�; t; �/� WD 1

M

MX

iD1
OUi
.�; t/; (13)

where OUi
.�; t/ denotes the M unique random weak solutions of the deterministic

linear system of conservation laws (1) with the input data OIi . By (11), we have

kEM ŒU�kL2.D/ D
1

M

�
�
�
�
�

MX

iD1
OUi
�
�
�
�
�

L2.D/

� 1

M

MX

iD1
k OUikL2.D/

(11)� 1

M

MX

iD1
Kik OUi0; OS

i
; tkL2.D/:

Using the i.i.d. property of the samples fOIi gMiD1 of the random input data I.!/,
Lemma 1, the linearity of EŒ�� and hypothesis 3 in Theorem 2, we obtain

E

kEMŒU.�; t; !/�kL2.D/

� D NK1k OU0.�; !/; OS.�; !/; tkL1.˝;L2.D// <1: (14)

The following result states that MC estimates (13) converge as M !1.

Theorem 3. Assume the hypothesis of Theorem 2 is satisfied with k � 2, i.e. the
second moments of the random initial data U0, source S and K exist. Then, the
MC estimates EMŒU.�; t; !/� in (13) converge to M 1.U/ D EŒu� as M ! 1.
Furthermore,

kEŒU.t/� � EMŒU.t/�.!/kL2.˝;L2.D// �M� 12 NK2kU0;S; tkL2.˝;L2.D//: (15)
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Proof. We follow the structure of the analogous proofs in [2]. The M samples

fOIi gMiD1 are interpreted as realizations of M independent “copies” of I.!/ on the

probability space .˝;F ;P/, i.e. OIi D OIi .!/. By L2.D/ contractivity (6), 80 � t �
T , solutions OU.�; t; !/ of any two i.i.d. realizations of I.!/ are strongly measurable
as L2.D/-valued functions, hence are independent random fields. By Lemma 1 and
by continuity (11), the mapping ! 7! kU.�; t; !/kL2.D/ is measurable. Hence,

E

h
kEŒU� � EMŒU�.!/k2L2.D/

i
D 1

M2
E

"
MX

iD1
kEŒU� � OUi

.!/k2L2.D/
#

D 1

M
E

h
kEŒU� �Uk2L2.D/

i
D 1

M

�
EkUk2L2.D/ � kEŒU�k2L2.D/

	
� 1

M
EkUk2L2.D/:

Using (11), hypothesis 3 of Theorem 2, and notation U.t/ D U.�; t; !/, we deduce

E

h
kEŒU.t/� � EMŒU.t/�.!/k2L2.D/

i
�M�1 NK2

2E

h
kU0;S; tk2L2.D/

i
;

which implies (15) upon taking square roots. ut

3.2 Finite Difference and Finite Volume Methods

In the derivation of (15), we have assumed that the exact random weak solutions
OUi
.x; t; !/ of (1) are available. In MC-FDM/FVM and MLMC-FDM/FVM, solu-

tions are approximated by Finite Difference [6] and Finite Volume [9] methods.
If U0 and S are continuous (then solution U is also continuous), conventional

Finite Difference methods [6,16] can be used where spatial and temporal derivatives
in (1) are approximated by upwinded difference quotients. For discontinuous U0 and
S, (then solution U is also discontinuous) we present Finite Volume Method.

For simplicity of exposition, we consider here periodic Cartesian physical
domains D D I1 � � � � � Id � R

d . However, all results of the present paper
also extend to systems (1) in general polyhedral domains with suitable boundary
conditions.

Let T D T 1 � � � � �T d denote a uniform axiparallel quadrilateral mesh of the
domain D, consisting of identical cells Cj D Cj1 � � � � � Cjd , jr D 1; : : : ; #T r .

Assume mesh widths are equal in each dimension, i.e. #x WD jI1j
#T1
D � � � D jId j

#Td
.

Define the approximations to cell averages of the solution U and source term S by

U#x.x; t/ D Uj.t/ 	 1

jCjj
Z

Cj

U.x; t/dx; 8x 2 Cj; Sj 	 1

jCjj
Z

Cj

S.x/dx:

Then, a semi-discrete finite volume scheme [9] for approximating (1) is given by
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@tUj.t/ D �
dX

rD1

1

#x

�
Fr

jC 1
2

� Fr
j� 12

	
� Sj; (16)

where numerical fluxes Fr� are defined by using (approximate) solutions of local
Riemann problems (in direction r) at each cell interface. High order accuracy is
achieved by using non-oscillatory TVD, ENO, WENO methods [5, 7]. Approxima-
tions Un

#x D U#x.�; tn/ at time steps tn are obtained by SSP Runge-Kutta methods.

Assumption 1. We assume that the abstract FDM or FVM scheme (16) satisfies

kUn
#xkL2.D/ � KkU0

#xkL2.D/; (17)

and the approximation error converges (as#x ! 0) with rate s > 0, i.e.

kU0 � U0
#xkL2.D/ � C#xskU0kHs.D/; kS � S#xkL2.D/ � C#xskSkHs .D/; (18)

kU.tn/� Un
#xkL2.D/ � C#xs

�kU0;S; tnkHs .D/ C tnkU0;S; tnkL2.D/

�
; (19)

provided#t D #x=. C;  > 0 are independent of#x. Hs.D/ denotesW s;2.D/m.

Assumption 1 is satisfied by many standard FDM and FVM (for small s) schemes,
we refer to [6, 9, 16] and the references therein. For q-th order (formally) accurate
schemes, q 2 N, the convergence estimate (19) holds [6, 9] with

s D minfq; Nrg (FDM); s D minfq;maxfminf2; qg=2; Nrgg (FVM): (20)

We assume the computational work of FDM/FVM for a time step and for a complete
run to behave as

Workstep
#x D B#x�d ; Work#x DWorkstep

#x

T

#t
D TB#x�.dC1/; (21)

where B > 0 is independent of #x and #t . However, in the random case (8),
the computational work (21) of FDM/FVM for one complete run depends on the
particular realization of the coefficient c.�; !/: due to the CFL condition ensuring
the numerical stability of the explicit time stepping, the number of time steps
N.#x; !/ depends on the speed  of the fastest moving wave, where .!/ DPd

rD1 k�rmax.�; !/kL1.D/,

N.#x; !/ D .!/T=#x D T=#x max
1�r�d

k�rmax.�; !/kL1.D/; 8! 2 ˝: (22)

Here, �rmax D maxf�r1 ; : : : ; �rmg, where �r1 .x; !/; : : : ; �
r
m.x; !/ are the eigenvalues

of Ar .x; !/ and correspond to the directional speeds of the wave propagation at
x 2 D.
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3.3 MC-FDM and MC-FVM Schemes

The MC-FDM or MC-FVM algorithm consists of the following three steps:

1. Sample: We draw M independent identically distributed (i.i.d.) input data
samples Ii with i D 1; 2; : : : ;M from the random fields I.�; !/ and approximate
these by piece-wise constant functions obtained from cell averages.

2. Solve: For each realization Ii , the underlying balance law (1) is solved numeri-
cally by the Finite Volume/Difference Method (16). Denote the solutions by Ui;n

#x .
3. Estimate Statistics: We estimate the expectation of the random solution field

with the sample mean (ensemble average) of the approximate solution:

EMŒUn
#x� WD

1

M

MX

iD1
Ui;n
#x: (23)

Higher statistical moments can be approximated analogously under suitable
statistical regularity assumptions on the underlying random entropy solutions
[10].

Theorem 4. Assume the hypothesis of Theorem 2 is satisfied with k � 2, i.e. second
moments of the random initial data U0, source S andK exist. Under Assumption 1,
the MC-FDM/FVM estimate (23) satisfies the following error bound,

kEŒU.tn/� �EMŒUn
#x�.!/kL2.˝;L2.D// �M�

1
2 NK2kU0;S; tkL2.˝;L2.D//

C C#xs �kU0;S; tnkL2.˝;Hs .D// C tnkU0;S; tnkL2.˝;L2.D//
�
;

(24)

where C > 0 is independent ofM;K and#x.

Proof. Firstly, we bound the left hand side of (24) using the triangle inequality,

kEŒU.tn/� � EMŒUn
#x�.!/kL2.˝;L2.D// � kEŒU.tn/� � EMŒU.tn/�.!/kL2.˝;L2.D//

C kEMŒU.tn/�.!/ � EMŒUn
#x�.!/kL2.˝;L2.D// D IC II:

Term I is bounded by (15). Next, by the triangle inequality, and by (5) and (19),

II D kEM ŒU.tn/ �Un
#x�.!/kL2.˝;L2.D//

� 1

M

MX

iD1
kUi .�; tn; !/� Ui;n

#x.!/kL2.˝;L2.D//DkU.�; tn; !/ �Un
#x.!/kL2.˝;L2.D//

� C#xs ��kU0;S; tnkHs .D/ C tnkU0;S; tnkL2.D/

�
�
L2.˝;R/

:

Finally, (24) is obtained by applying the triangle inequality on the last term. ut
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To equilibrate statistical and spatio-temporal discretization errors in (24), we require
M D O.#x�2s/. Next, we are interested in the asymptotic behavior of the error
(24) vs. the expected computational work. We choose the algorithm parameters in
order to maximize the convergence rate ’ > 0, ie.

kEŒU.tn/� �EMŒUn
#x�.!/kL2.˝;L2.D// � C

�
E


WorkMC

#x

���’
:

Assuming that the expected fastest wave speed N D EŒ.!/� in (22) is finite,

EŒWorkMC
#x � D E ŒMWork#x.!/� D #x�.dC1C2s/TB N <1: (25)

Consequently, the asymptotic error bound (29) is satisfied with ’ D s=.dC1C2s/,
which is considerably lower than the deterministic rate ’ D s=.d C 1/.

3.4 MLMC-FDM and MLMC-FVM Schemes

Given the slow convergence of MC-FDM/FVM, we propose the Multi-Level Monte
Carlo methods: MLMC-FDM and MLMC-FVM. The key idea is to simultaneously
draw MC samples on a hierarchy of nested grids [10]. There are four steps:

0. Nested meshes: Consider nested meshes fT`g1̀D0 of the domain D with corre-
sponding mesh widths #x` D 2�`�x0, where #x0 is the mesh width for the
coarsest resolution and corresponds to the lowest level ` D 0.

1. Sample: For each level of resolution ` 2 N0, we draw M` independent
identically distributed (i.i.d) samples Ii` with i D 1; 2; : : : ;M` from the random
input data I.!/ and approximate these by cell averages.

2. Solve: For each level ` and each realization Ii`, the balance law (1) is solved for
Ui;n
#x`

and Ui;n
#x`�1

by the FDM/FVM method (16) with mesh widths #x` and
#x`�1.

3. Estimate solution statistics: Fix some positive integer L < 1 corresponding
to the highest level. Denoting MC estimator (23) with M D M` by EM`

, the
expectation of the random solution field U is estimated by

ELŒUn
#xL

� WD
LX

`D0
EM`

ŒUn
#x`
�Un

#x`�1
�: (26)

As MLMC-FDM/FVM is non-intrusive, any standard FDM/FVM codes can be used
in step 2. Furthermore, MLMC-FDM/FVM is amenable to efficient parallelization
[11, 15] as data from different grid resolutions and samples only interacts in step 3.

Theorem 5. Assume the hypothesis of Theorem 2 is satisfied with k � 2, i.e. second
moments of the random initial data U0, source S andK exist. Under Assumption 1,
the MLMC-FDM/FVM estimate (26) satisfies the following error bound,
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�
�EŒU.tn/� � ELŒUn

#xL
�.!/

�
�
L2.˝;L2.D//

� C1#xsL C C2
LX

`D1
M
� 12
` #xs` C C3M�

1
2

0 ;

(27)

C1 D C
�kU0;S; tnkL1.˝;Hs.D// C tnkU0;S; tnkL1.˝;L2.D//

�
;

C2 D C
�kU0;S; tnkL2.˝;Hs.D// C tnkU0;S; tnkL2.˝;L2.D//

�
;

C3 D NK2kU0;S; tnkL2.˝;L2.D//:

Proof. Using the triangle inequality, the left hand side of (27) is bounded by

kEŒU.tn/��EŒUn
#xL

�kL2.˝;L2.D//CkEŒUn
#xL

��ELŒUn
#xL

�.!/kL2.˝;L2.D// D IC II:

We estimate term I and II separately. By linearity of the expectation, term I equals

I D kEŒU.�; tn; !/ � Un
#xL

.�; !/�kL2.D/ D kU.�; tn; !/ �Un
#xL

.�; !/kL1.˝;L2.D//;

which can be bounded by (19). Using MLMC definition (26) and, again, linearity of
the expectation, and the MC bound (15), term II is bounded by

IID
�
�
�
��

LX

`D0
EŒUn

#x`
.�; !/�Un

#x`�1
.�; !/��EM`

ŒUn
#x`
.�; !/�Un

#x`�1
.�; !/�

�
�
�
��
L2.˝;L2.D//

�
LX

`D0
kEŒUn

#x`
.�; !/�Un

#x`�1
.�; !/��EM`

ŒUn
#x`
.�; !/� Un

#x`�1
.�; !/�kL2.˝;L2.D//

�M� 120 kUn
#x0
.�; !/kL2.˝;L2.D//C

LX

`D1
M
� 12
` kUn

#x`
.�; !/�Un

#x`�1
.�; !/kL2.˝;L2.D//:

The first term is bounded by (17); the detail terms Un
#x`
�Un

#x`�1
are bounded by

kUn
#x`
�Un

#x`�1
kL2.˝;L2.D// � kU �Un

#x`
kL2.˝;L2.D// C kU �Un

#x`�1
kL2.˝;L2.D//:

Using (19), detail terms can be further bounded by

kUn
#x`
�Un

#x`�1
kL2.˝;L2.D//�C#xs`

�
�kU0;S; tnkHs .D/ C tnkU0;S; tnkL2.D/

�
�
L2.˝;R/

:

Using triangle inequality and summing over all levels ` > 0, bound (27) follows.
ut

To equilibrate the statistical and the spatio-temporal errors in (27), we require

M` D O.22.L�`/s/; 0 � ` � L: (28)
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Notice that (28) implies that the largest number of MC samples is required on the
coarsest mesh level ` D 0, whereas only a few MC samples are needed for ` D L.
Next, we are interested in the largest ’ > 0 and smallest “ > 0, such that:

kEŒU.tn/�� ELŒUn
#xL

�.!/kL2.˝;L2.R// � C .E ŒWorkL�/
�’ log.EŒWorkL�/

“: (29)

Assuming that N D EŒ.!/� in (22) is finite and using (21) with (28),

E ŒWorkL� D E

"
LX

`D0
M`Work#x`.!/

#

D
LX

`D0
M`E



Work#x`.!/

�

D
LX

`D0
M`TB N#x�.dC1/` D TB N

LX

`D0
M`#x

�.dC1/
` :

(30)

The last term in (30) was already estimated in [11]. Since the expectation of
computational work is obtain from the deterministic computational work by scaling
with a problem dependent constant N, the asymptotic error vs. expected (in the mean)
computation work estimate (29) remains analogous to the estimates derived in [11],

.’; “/ D
( �

min
˚
1
2
; s
dC1

�
; 1
�

if s ¤ .d C 1/=2;
�
1
2
; 3
2

�
if s D .d C 1/=2: (31)

Finally, we would like to note that bounds (15), (24) and (27) can be easily
generalized (all steps in proofs are analogous) for higher statistical moments, i.e.
k > 1.

4 Acoustic Isotropic Wave Equation as a Linear Hyperbolic
System

The stochastic isotropic linear acoustic wave equation, modeling the propagation of
acoustic pressure p in a random medium, is given by

8
ˆ̂
<

ˆ̂
:

ptt .x; t; !/ � r � .c.x; !/rp.x; t; !// D f .x; !/;
p.x; 0; !/ D p0.x; !/;
pt .x; 0; !/ D p1.x; !/;

x 2 D; t > 0; ! 2 ˝:

(32)
In many cases, the initial data p0; p1, the coefficient c and the source f are
not known exactly. We propose to model them as random fields p0; p1 2
Lk.˝;Wr0;1.D//, f 2 Lk.˝;Wrf ;1.D// and c 2 L0.˝;W rc;1.D// with
PŒc.x; !/ > 0;8x 2 D� D 1. For implementation, we rewrite the stochastic linear
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acoustic wave equation (32) as a linear system of d C 1 first order conservation
laws. One possibility (out of many) is the following,

8
ˆ̂
ˆ̂̂
<

ˆ̂̂
ˆ̂
:

pt .x; t; !/ � r � .c.x; !/u.x; t; !// D tf .x; !/;
ut .x; !/ � rp.x; !/ D 0;

p.x; 0; !/ D p0.x; !/;
u.x; 0; !/ D u0.x; !/;

x 2 D; t > 0; ! 2 ˝;

(33)

To verify equivalence of (33) and (32), differentiate the first equation of (33) in time:

f D ptt � r � .c.x; !/ut / D ptt � r � .c.x; !/rp/:

The linear hyperbolic system (33) is a system of conservation laws (8) for m D
d C 1,

U D
�
p

u


; U0 D

�
p0
u0


; S D

�
tf

0


; Ar .x; !/ 2 R

.dC1/�.dC1/: (34)

All elements of Ar are zero, except .Ar .x; !//1;rC1 D �c.x; !/ and .Ar /rC1;1 D
�1. Note, that Ar defines a strongly hyperbolic linear system of conservation laws.
This is easily verifiable for d D 1; there exists an invertible Qx.!/ diagonalizing A:

Qx.!/ D 1p
2

"
1p
c
� 1p

c

1 1

#

H) Qx.!/A1.x; !/Qx.!/
�1 D

��pc 0

0
p
c


:

Since kQx.!/kkQ�1x .!/k D maxfc 12 ; c� 1
2 g � c

1
2 C c� 1

2 , the uniform bound-
edness c; c�1 2 L1.˝;L1.D// ensures NK1 < 1. For k < 1: c; c�1 2
Lk=2.˝;L1.D// implies

NKk
k D EŒKk.!/� � kc.�; !/k k2

Lk=2.˝;L1.D//
C kc�1.�; !/k k2

Lk=2.˝;L1.D//
<1: (35)

Since the non-zero eigenvalues of Ar 2 R
m�m are ˙pc.x; !/, the expected maxi-

mum wave speed N required in (25) and (30) is finite provided c 2 L1=2.˝;L1.D//,
N D kckL1=2.˝;L1.D// <1: (36)

Finally, hypothesis 2 of the Theorem 1 holds with r0 D r0, rS D rf , rA D rc .
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5 Numerical Experiments for Acoustic Isotropic Wave
Equation

All simulations reported below were performed on Cray XE6 in CSCS [14] with the
recently developed massively parallel code ALSVID-UQ [1, 11, 15].

We assume that random wave speed c is given by its Karhunen-Loève expansion

log c.x; !/ D log Nc.x/C
1X

mD1

p
m�m.x/Ym.!/; (37)

with eigenvalues fmg1mD1 2 `
1
2 .N/, eigenfunctions �m; Nc 2 L2.D/, k�mkL2.D/ D

1, and independent random variables Ym with zero mean and finite variance.

5.1 Smooth Wave with Uniformly Distributed Coefficient

For physical domain D D Œ0; 2�, consider deterministic, smooth (r0 D 1) initial
data

p0.x; !/ WD sin.�x/; p1.x; !/  0; (38)

and random coefficient c.x; !/ that is given in terms of its KL expansion (37) with
identical, uniformly distributed Ym � U Œ�1; 1�. We choose eigenvalues m D
m�2:5, eigenfunctions �m.x/ D sin.�mx/ and the mean field Nc.x/  0:1. Then
both c and c�1 are uniformly bounded in ˝: c.x; !/; c�1.x; !/ 2 L1.˝;L1.D//.
Hence (35) and (36) holds with any k 2 N0 [ f1g. For simulations, KL expansion
is truncated up to the first 10 terms: m D 0; 8m > 10. Since r0 D 1,
rc � 1, by Theorem 1 the solution P-a.s. has bounded weak derivatives of first
order, i.e. U.�; �; !/ 2 WNr;1.D/ with Nr D 1. First order accurate FVM scheme
(q D 1, HLL Rusanov flux [9], FE time stepping) will be used, hence, in (20),
s D minf1;maxf1=2; 1gg D 1. Higher order schemes (s > 1) for case d D 1 are
inefficient since s=.d C 1/ > 1=2 in (31). Results of the MLMC-FVM simulation
at t D 2:0 are presented in Fig. 1.

Using MLMC-FVM approximation from Fig. 1 (computed on 12 levels of
resolution with the finest resolution having 16;384 cells) as a reference solution
Uref, we run MC-FVM and MLMC-FVM (with #x0 D 1=4) on a series of
mesh resolutions from 32 cells up to 1;024 cells and monitor the convergence
behavior. For L2.˝; �/ norms in (24) and (27), the L2.˝IL2.D//-based relative
error estimator from [10] was used. K D 5 delivered sufficiently small relative
standard deviation �K .

In Fig. 2, we compare the MC-FVM scheme with M D O.�x�2s/ and the
MLMC-FVM scheme with M` D ML2

2s.L�`/, where ML D 16 is chosen as sug-
gested in [10]. Dashed lines indicate convergence rate slopes proved in Theorems 4
and 5. Theoretical and numerically observed convergence rates coincide, confirming
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Fig. 1 One sample (left) and mean and variance (right) acoustic pressure p.x; !/ as in (33).

the robustness of our implementation. MLMC method is observed to be three orders
of magnitude faster than MC method. This numerical experiment clearly illustrates
the superiority of the MLMC algorithm over the MC algorithm (for q D 1; s D 1).

Fig. 2 Convergence of estimated mean for (38). Both MLMC and MC give similar errors for the
same spatial resolution. However, MLMC method is 3 orders of magnitude faster than MC.

5.2 Discontinuous Wave with Normally Distributed Coefficient

For domain D D Œ0; 2�, consider deterministic, discontinuous (r0 D 0) initial data

p0.x; !/ WD 2�.0:5;1:5/.x/ � 1:0; p1.x; !/  0; (39)

and stochastic coefficient c.x; !/ that is given by KL expansion (37) with identical,
normally distributed Ym � N Œ0; 1�. We choose eigenvalues m D m�2:5,
eigenfunctions �m.x/ D sin.�mx/ and the mean field Nc.x/  0:1. Then, unlike in
the uniform case before, c; c�1 … L1.˝;L1.D//. However, (35) and (36) holds by



664 J. Šukys et al.

Proposition 1. Assume fmg 2 `
1
2 .N/. Then c; c�1 2 Lk.˝;L1.D//, 8k 2

N [ f0g.
Proof. Using triangle inequality and k�mkL1.D/ D 1, we obtain the following
bound,

kc.�; !/kL1.D/

k NckL1.D/
� exp

 1X

mD1

p
mjYm.!/j

!

DW Qc.!/:

Next, we bound EŒ Qc.!/k�. Since Ym are independent and normally distributed,

EŒ Qc.!/k� D
1Y

mD1
E

h
exp

�
k
p
mjYm.!/j

	i
D
1Y
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exp
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2
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1C erf

 
k
p
mp
2

!!

;

where the error function is defined by erf.a/ D 2
p
.�/

Z a

0

exp.�t2/dt .
Using inequalities erf.a/ � 2p

�
a and 1C a � exp.a/, for any real a � 0,
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Hence, kckLk .˝;L1.D// � kNckL1.D/EŒ Qc.!/k� 1k is bounded further using

EŒ Qc.!/k� 1k � exp

 
k

2
kfmgk`1.N/ C

r
2

�

�
�
�
np

m

o��
�
`1.N/

!

<1:

Proof of c�1 2 Lk.˝;L1.D// is analogous due to symmetry of Ym. ut
Since r0 D 0, by Theorem 1, the solution U.!/ 2 WNr;1.D/ is P-a.s.

discontinuous ( Nr D 0). First order accurate (q1 D 1, HLL Rusanov flux [9], FE
time stepping) and second order accurate (q2 D 2, HLL Rusanov flux, WENO
reconstruction, SSP-RK2 time stepping [9]) FVM schemes will be used; hence, in
(20), s1 D 1=2 and s2 D 1. For simulations, KL expansion is truncated up to first
10 terms: m D 0; 8m > 10. Results of the MLMC-FVM simulation at t D 2:0

are presented in Fig. 3.
MLMC-FVM approximation from Fig. 3 (computed on 12 levels of resolution

with the finest resolution being on a mesh of 16;384 cells) is used as a reference
solution Uref. Additionally to MC and MLMC schemes with s D s1, we consider
MC2 and MLMC2 schemes with s D s2. In Fig. 4, we show convergence plots for
variance; MLMC methods appear to be two orders of magnitude faster than MC
methods.
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Fig. 3 One sample (left) and mean and variance (right) acoustic pressure p.x; !/ as in (33).

Fig. 4 Convergence of estimated variance for (39). Both MLMC(2) and MC(2) give similar errors
for the same spatial resolution. However, MLMC methods are 2 orders of magnitude faster.

6 Conclusion

We formulate the proper notion of random solution for stochastic linear hyperbolic
systems of conservation laws with random fluxes and show the resulting problem to
be well-posed. We propose Multi-Level Monte Carlo FDM/FVM methods and prove
their convergence. The complexity of the underlying FDM/FVM solver is sample
path dependent due to the random CFL-restricted time step size in the explicit time-
stepping scheme. To this end, a novel probabilistic complexity analysis of the error
vs. expected computational cost is introduced. MLMC-FDM/FVM are proven to be
much faster than MC methods and have the same accuracy vs. expected work ratio
as one deterministic solve; they are also non-intrusive (existing FDM/FVM solvers
can be used) and easily parallelizable [15]. As an example, we consider acoustic
wave propagation in random medium with time independent statistical properties.
The acoustic wave equation is rewritten as a linear hyperbolic system. In particular,
the case of log-normal, isotropic Gaussian wave speed was considered, where the
FVM with explicit time stepping incurs a random CFL stability bound. Numerical
experiments are presented which are consistent with the findings from the theory.
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