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Abstract One of the most difficult issues for using wind power in practice is that
the power output largely depends on the wind condition, and as a result, the future
output may be volatile or uncertain. Therefore, the forecast of power output is
considered important and is key to electric power generating industries making the
wind power electricity market work properly. However, the use of forecasts may
cause other problems due to ‘‘forecast errors’’. The objective of this chapter is to
summerize conventional tools to manage such risks in the wind power electricity
market. In particular, we focus on possible insurance claims or the so-called
weather derivatives, which are contracts written on weather indices whose values
are constructed from weather data.

In this chapter, we introduce weather derivatives based on wind conditions
combined with their forecast information. In other words, we consider ‘‘wind
derivatives’’ whose payoffs are determined by the forecast errors of wind condi-
tions. In contrast to the standard weather derivatives in which the underlying index
is given by observed weather data only (say, temperature), the wind derivatives
discussed here take advantage of forecast data and the payoff depends on the
difference between the actual and forecast data. Such a derivative contract is
expected to be useful for hedging the possible loss (or risk) caused by forecast
errors of power outputs associated with the forecast errors of wind conditions in
wind energy businesses. We also demonstrate the hedge effect of wind derivatives
using empirical data for a wind farm located in Japan.
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1 Introduction

Motivated by a worldwide growing trend towards the production of wind energy,
new problems associated with risk management and operation have appeared on
the new energy market. Because the wind generated output largely depends on the
wind condition, one of the most difficult issues in practice is that the wind gen-
erated output may be volatile and is uncertain in advance. This undesirable
property may significantly reflect on the schedule of generation and control of
frequency in the electricity grid, which leads to increased demand of accurate wind
power forecast in various countries.

The forecast of wind condition is considered important and is key to electric
power generating industries making the wind power electricity market work
properly. However, the use of forecasts may cause other problems due to ‘‘forecast
errors’’ of power output. In this chapter, we summerize conventional tools to
manage such risks in the wind power electricity market. In particular, we focus on
possible insurance claims or the so-called ‘‘weather derivatives,’’ which is
potentially useful for wind power trades in the wind energy market.

Weather derivatives are contracts written on weather indices, which in turn are
variables whose values are constructed from weather data. The payoffs of these
contracts are based on weather indices (e.g., temperature, rain, snow, wind, etc.) at
a specific site (e.g., Tokyo, Japan) over a prespecified period. Although the
underlying variables describing weather dynamics are manifold, a large portion of
contracts are currently written on a temperature-based index, such as monthly
average temperature, or heating/cooling degree days (HDDs/CDDs). Here HDDs
and CDDs are defined relative to a base temperature to represent winter/summer
energy demands concerning temperature. For example, an HDD of a day may be
defined as the maximum between the base minus daily average temperature and
zero [1], and the monthly contracts are based on the cumulative HDDs in a specific
calender month.

The difference of weather derivatives from financial derivatives is that the
underlying index (i.e., weather data) has no direct cash value unlike stocks or
bonds. Therefore, the weather derivatives are usually traded for insurance purpose
(not for investment purpose), and may be used by organizations/individuals to
reduce risk associated with adverse or unexpected weather conditions. Note that
the difference between insurances and derivatives is that, the payoff for insurance
is determined by the loss associated with the underlying event, whereas for
derivatives, the payoff is determined based on the value of the underlying index,
i.e., weather data in the case of weather derivatives; it does not matter if the actual
loss was caused due to the change of weather condition.

It should be mentioned that the total amount of transactions has been increasing
worldwide. According to the Weather Risk Management Association,1 the total
limit of weather transactions executed amounted to $4.7 billion in the twelve

1 See http://www.wrma.org/.
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months 2003–2004, but in the period 2005–2006, this number jumped nearly
tenfold to $45.2 billion. There are a number of ways in which a weather derivative
trade can take place. Primary market trades are usually over the counter (OTC),
meaning that they are traded privately between the two counterparties. A growing
part of the secondary market is traded on the Chicago Mercantile Exchange
(CME), which lists, as of June 2010, weather derivatives on temperature for
24 cities in the US, 11 cities in Europe, 6 cities in Canada, and 6 cities in Japan and
Australia.2

In this chapter, we introduce weather derivatives based on wind conditions
combined with their forecast information. In other words, we consider ‘‘wind
derivatives’’ whose payoffs are determined by the forecast errors of wind condi-
tions. Here we mainly explain the result of [2] where weather derivative contracts
based on forecast errors are first demonstrated. It is fair to say that the most
literature on weather derivatives discusses temperature related issues [3–9] in
which the underlying index is defined by the observation data (of temperature)
only. On the other hand, the weather derivatives considered here take the forecast
data into account and the payoff depends on the difference between the actual and
forecast data. Such a weather derivative contract is expected to be useful for
hedging the possible loss (or risk) caused by forecast errors of power outputs
associated with the forecast errors of wind conditions in wind energy businesses.

We use the following notation: For a sequence of observations of a variable,
xn; n ¼ 1; . . .;N, the sample mean and the sample variance are denoted by
Mean xnð Þ and Var xnð Þ, respectively. Covðxn; ynÞ and Corrðxn; ynÞ represent the
sample covariance and the sample correlation, respectively, where yn; n ¼
1; . . .;N is a sequence of observations for another variable. The set of real number
is denoted by <, and an n� m matrix with real entries is denoted by A 2 <n�m.

The rest of this chapter is organized as follows: In Sect. 2, we explain the basic
structure of derivatives and show some foundations of pricing problems. In par-
ticular, we formulate a general pricing problem using a payoff function that satisfies
a zero expected value condition. In Sect. 3, we demonstrate wind derivatives on
forecast errors of wind speed, and provide hedging problems by introducing a loss
function for a wind farm (WF). Then, we define four types of problems based on
combinations of payoff and loss functions. An empirical analysis is provided in
Sect. 4, where we estimate the hedge effect of wind derivatives using empirical data
for a WF located in Japan. In Sect. 5, we make a further discussion concerning the
risk management on forecast errors and provide a future research direction.
Section 6 offers a summary of this chapter.

2 See http://www.cmegroup.com/.
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2 Basic Structure of Derivatives

Before discussing wind derivatives, we need to know some basic terminology and
payoff structure which are common with financial derivatives.

2.1 Foundations of Derivative Pricing

A forward contract is probably the simplest example among all types of deriva-
tives, which is a contract made at time 0 (without initial cost) to purchase or sell
the underlying asset, say one stock, at a specific price (called the ‘‘forward price’’)
at a prespecified future time T [ 0. If the stock price at time T is above the
forward price, the buyer makes a profit by the amount of the difference between
the actual (realized) price of stock and the forward price. On the other hand, the
buyer makes a loss if the stock price drops below the forward price. In either case,
the profit (or loss) for the buyer is given as

ST � F0 ð1Þ

where ST is the price of stock at time T and F0 is the forward price determined at
time 0. We can say that the forward contract has a ‘‘payoff’’ of ST � F0 at time T
by considering the cash settlement. Figure 1 shows a payoff function of forward
contract, where the x-axis refers to ST and y-axis to the payoff. We see that the
payoff function is linear in the case of forward contract.

On the other hand, the payoff function of call option has a nonlinear structure as
depicted in Fig. 2, where a call option is a right (not obligation) to buy a stock at a
future time T [ 0 (i.e., the maturity) at a specific price K (called the ‘‘strike
price’’). In contrast with forward contracts, the option holder does not have to buy
the underlying stock if ST �K at time T , and in this case, the option becomes
worthless. In other words, the value of option at time T is zero when ST �K. Note
that, if ST [ K holds, the option holder may be considered to earn a profit of

Fig. 1 Payoff function of a
forward contract
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ST � K similar to the forward contract. Taking both cases into account, the payoff
of call option at time T is given by

max ST � K; 0ð Þ; ð2Þ

which provides a payoff function of ST as shown in Fig. 2.
A put option is a right to sell a stock with a strike price K at a specified future

time T . With the similar argument, the payoff function of ST is given by

max K � ST ; 0ð Þ ð3Þ

and is drawn in Fig. 3.
Although one can introduce an option contract having a flexibility with respect

to the choice of timing to sell or buy the underlying stock, here we focus on
options and other derivatives whose payoffs occur at a given future time T [ 0
only. Then the pricing problem at the initial time 0 may be formulated as follows:

Find the value of option at time 0 whose payoff at time T is defined by a given payoff
function, e.g., the one in Fig. 2 for a call option or the one in Fig. 3 for a put option.

Let V0 be the value of option at time 0. Then V0 may represent an initial cost to
carry out such an option contract. On the other hand, the initial cost for a forward
contract is always zero, which is an essential difference between forward and
option contracts.

Instead of paying initial costs in option contracts, we can assume that the option
holder pays a fixed amount at time T , i.e., at the same time as the payoff is made.
The fixed payment may correspond to the initial cost V0, but we need to take a time
value into consideration, where a risk free interest rate r [ 0 is compounded
between time 0 and time T . Then, the fixed payment at time T is computed to be
erT V0, which is known at time 0. We can regard that this type of contract is a

Fig. 2 Payoff function of a
call

Fig. 3 Payoff function of a
put
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‘‘swap’’ between a fixed payment, erT V0, and an uncertain payoff, e.g.,
max ST � K; 0ð Þ in the case of call option. In this case, the payoff function of ST ,
denoted by w STð Þ, for a call option is modified to

w ðSTÞ :¼ max ST � K; 0ð Þ � erT V0 ð4Þ

as shown in Fig. 4.
Note that the value denoted by Eq. (4) may be thought of a cash flow for the

option holder at time T . On the other hand, the cash flow for the counterparty (i.e.,
the seller for the option) is given as

�w STð Þ: ð5Þ

Therefore, a fair contract may satisfy that the expected value of w STð Þ is zero,
which may be written as follows:

E w STð Þ½ � ¼ 0 ð6Þ

where E is the expected value operator. Then V0 is obtained as

V0 ¼ e�rT
E max ST � K; 0ð Þ½ �: ð7Þ

Similarly, in the case of forward contracts, we have

E ST � F0½ � ¼ 0; ð8Þ

which provides the forward price as follows:

F0 ¼ E ST½ �: ð9Þ

According to the fundamental theorem of asset pricing [10], the pricing formula
in (7) is valid if E is defined under a risk neutral probability measure, that coincides
with the original results of [11, 12] known as the ‘‘Black–Scholes–Merton model’’
for option pricing. On the other hand, in empirical data analysis, we usually work on
the real probability measure so that the sample statistics (such as sample mean and
variance) of observed data may provide proxies of the underlying probability dis-
tribution. Although one can usually transform the real probability measure to a risk
neutral probability measure using a suitable change of measure technique, here we
assume that, for simplicity, the real probability measure provides a risk neutral
probability measure, and evaluate the value of derivatives under the real probability

Fig. 4 Payoff function of a
swap for call option with
strike K
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measure. Note that a further discussion of the relation between the real and risk
neutral probability measures is beyond the scope of this article and that the inter-
ested reader may refer to [13].

2.2 General Pricing Problem with Payoff Functions

As discussed in the end of Sect. 2.1, the swap contract for a call option has a payoff
function of (4) satisfying condition (6). Moreover, the forward price also satisfies
(8). These conditions are generally said that swap and forward contracts have zero
expected values with respect to payoff functions of ST , i.e.,

E w STð Þ½ � ¼ 0 ð10Þ

holds with a suitable choice of payoff function w. For example, w is given as

wðxÞ ¼ x� F0

for a forward contract, or

wðxÞ ¼ max x� K; 0ð Þ � erT V0

for a call option.
Then, the problem can be reformulated as follows:

Find w satisfyingE wðSTÞ½ � = 0 with w 2 W;

where W is a set of functions defined as

W :¼ w xð Þ ¼ x� F0jF0 2 <f g ð11Þ

in the case of forward contracts, or

W :¼ wðxÞ ¼ max ðx� K; 0Þ � erT V0jV0 2 <
� �

ð12Þ

in the case of call options. In any cases, we see that a given contract is fair as far as
condition (10) is satisfied with a specific payoff function in W, so that we can
search for a suitable payoff function by taking w 2 W as a variable. This is a basic
idea for constructing payoff functions for wind derivatives in the following
sections.

3 Wind Derivatives on Forecast Errors and Hedging
Problems

In this section, we demonstrate wind derivatives with respect to forecast errors and
define associated hedging problems.
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3.1 Loss Functions for WFs and Problem Settings

We will consider two basic positions, a seller and a buyer, for trading wind gen-
erated electricity, in which the seller is assumed to be a WF having a responsibility
to quote the promised power output in advance using forecast information. A
possible sales contract for the power output may be described as follows, which
specifies a loss function for a WF on forecast errors of power output:

In general, the value of electricity generated by wind power is considered to be
low due to the uncertainty of the tradable volume. Here we assume that the elec-
tricity price without forecast is estimated to be 3 yen per 1 kWh. On the other hand,
the value of the electricity would be estimated to be higher, if the tradable volume
were quoted in advance by forecast, but the seller has to guarantee the quoted
volume or has to pay the penalty in case of shortages. Suppose that the value of
electricity with forecast is given as 7 yen per 1 kWh and that the penalty of the
shortage is 10 yen per 1 kWh. These assumptions are not so far from the current
situation discussed in the forecast business [14]. In this case, the loss function
caused by forecast errors is depicted in Fig. 5, which shows the relation between the
forecast error for the power output P� P̂ (the actual power output minus its
forecast) and the loss caused by the forecast error. Note that, even if the forecast
error is positive, we can also think of this situation as an opportunity loss to sell the
output with a suitable price.

Taking the above situation into consideration, we formulate the problem more
precisely. Let n ¼ 1; . . .;N be the time index (say, hourly index) and define the
following variables:

Pn : Total power output at time n
P̂n : Forecast of Pn (which is computed, e.g., 1 day in advance).

The buyer is willing to trade the power output by using the reference P̂n, and
may require a penalty if the forecast error exceeds a certain level.

Let ep;nðn ¼ 1; . . .;NÞ be the forecast error of the power output at time n, which
causes a loss for the seller due to the penalty or opportunity loss to sell the output.
Suppose that the loss associated with the forecast error of the power output is
defined using a loss function as / ep;n

� �
. For instance, the loss function may be

given as the one shown in Fig. 5 if the seller is a WF owner. Also, there is a case in
which the forecast is sufficiently accurate or the forecast error is less than a certain
(small) level. In this case, the seller can be thought of getting a bonus because of a
higher price of power output with forecast, which results in a profit for the seller
and makes the loss negative, i.e., / ep;n

� �
\0. We assume that

Mean / ep;n

� �� �
¼ 0 ð13Þ

so that the sum of profit/loss is zero on average. Note that we take the sample mean
instead of using the expected value operator E, because we will work on empirical
data in the next section.
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Consider a situation in which the seller with / �ð Þ would like to compensate
their loss on ep;n using a weather derivative on the forecast error of the wind speed.
To this end, define the following variables:

Wn : Wind speed at time n
Ŵn : Forecast of Wn (which is computed, e.g., 1 day in advance).

Let ew;n be the forecast error of the wind speed. Without loss of generality,
assume that Mean ew;n

� �
¼ 0. Let w be a payoff function such that

Mean w ew;n

� �� �
¼ 0: ð14Þ

Note that, in the case of simple forward contracts, w ew;n

� �
may be given as a linear

function, e.g.,

w ew;n

� �
¼ ew;n: ð15Þ

Based on the above settings, we will first consider the following problems:

(P1) Given the loss function and the payoff function of wind derivatives, find the
optimal volume of wind derivative.

(P2) Given the loss function, find the optimal payoff function of wind derivatives.

We will investigate the hedge effect of wind derivatives and show that using
wind derivatives on forecast error of wind speed is highly effective to hedge the
loss caused by forecast errors of power output.

Then we will consider a situation in which there already exists a standardized
derivative contract with a certain payoff function, but there is some room for
improvement on the loss function, e.g., for a WF owner. The problem can be
thought of as a reverse problem of (P2), which is given as follows:

(P3) Given the payoff function of wind derivatives, find the optimal loss function
against forecast errors of power output.

Fig. 5 An example of loss
function
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Finally, we will formulate a simultaneous optimization problem of payoff and
loss functions as (P4) below:

(P4) Optimize the payoff function of wind derivatives and the loss function
simultaneously.

3.2 Standard Minimum Variance Hedging Problem

With the notation and definitions introduced in the previous subsection, the first
optimization problem, (P1), is formulated as follows:

Contract volume optimization problem:

min
D2<

Var / ep;n

� �
þ Dw ew;n

� �� �
: ð16Þ

The contract volume optimization problem may be considered as the standard
‘‘minimum variance hedge,’’ and the optimal volume D� may be computed ana-
lytically as

D� ¼ �Covð/ðep;nÞ; wðew;nÞÞ
Varðwðew;nÞÞ

� ð17Þ

To estimate the hedge effect, we define the variance reduction rate (VRR) as
follows:

VRR :¼ Varð/ðep;nÞ þ D�wðew:nÞÞ
Varð/ðep;nÞÞ

: ð18Þ

Because the minimum variance can be computed as

Var / ep;n

� �
þ D�w ew;n

� �� �

¼ Var / ep;n

� �� �
1� Corr / ep;n

� �
;w ew;n

� �� �� �2� 	
;

ð19Þ

we obtain

VRR ¼ 1� Corr /ðep;nÞ; ðew;nÞ
� �� �2

: ð20Þ

Note that VRR satisfies

0� VRR � 1 ð21Þ

and that a smaller VRR provides a better hedge effect in terms of minimum
variance.

In the case of standard minimum variance hedge, the optimal volume is also
found by solving a linear regression problem, where / ep;n

� �
is regressed with

respect to w ew;n

� �
, and the regression coefficient gives the optimal volume for
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fixed loss and payoff functions. On the other hand, we can expect to obtain a better
hedge effect if we could optimize the payoff function of the weather derivative
directly. This can be done by applying non-parametric regression techniques
introduced in the next section, and we will find that using a non-parametric
regression corresponds to optimizing the derivative contract directly by choosing a
suitable payoff function.

3.3 Minimum Variance Hedging Using Non-Parametric
Regression

In this section, we first introduce a non-parametric regression technique, and then
formulate the second optimization problem, (P2).

In the previous section, we showed that the contract volume optimization
problem is formulated as standard minimum variance hedging and can be solved
by applying linear regression. A similar idea may be employed to solve the payoff
function optimization problem of (P2) [or the loss function optimization problem
of (P3)] by introducing a non-parametric regression technique. Since we will apply
a non-parametric regression to find a payoff function (or loss function) by
assuming that a loss function (or payoff function) is fixed, it may be useful to
specify which function is given explicitly. To this end, we use overlines as

/ð�Þ ¼ /ð�Þ ðor wð�Þ ¼ wð�ÞÞ

to indicate that a loss function (or a payoff function) is fixed.

3.3.1 Generalized Additive Models

The non-parametric regression technique introduced here is to find a (cubic)
smoothing spline that minimizes the so-called penalized residual sum of squares
(PRSS) among all regression spline functions with two continuous derivatives. Let
yn and xn be dependent and independent variables, respectively, and express yn as

yn ¼ h Xnð Þ þ en; Mean enð Þ ¼ 0 ð22Þ

using a smooth function hð�Þ and residuals en. Here the function hð�Þ is a (cubic)
smoothing spline that minimizes the following PRSS,

PRSS ¼
XN

n¼1

ðyn � hðxnÞÞ2 þ k
Z1

�1

ðh00ðxÞÞ2dx ð23Þ
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among all functions h �ð Þ with two continuous derivatives, where k is a given
parameter. In (23), the first term measures closeness to the data while the second
term penalizes curvature in the function. Note that, if k ¼ 0 and h �ð Þ is given by a
polynomial function, the problem is reduced to the standard regression polynomial
and is solved by the least squares method. It is shown that (23) has an explicit and
unique minimizer and that a candidate of optimal k may be found by using the
so-called generalized cross validation criteria (See [15]). Note that regression
splines can be extended to the multivariable case with additive sums of smoothing
splines, known as generalized additive models (GAMs; see e.g., [16]). Also note
that GAMs can be computed using free software ‘‘R (http://cran.r-project.org/),’’
and we will refer to the class of smoothing splines for non-parametric regression as
GAMs in this chapter. We will apply GAMs to solve (P2)–(P4) and estimate the
hedge effect of wind derivatives.

Note that, instead of writing the problem as an unconstrained optimization
problem, we can reformulate it as an optimization problem constrained on h �ð Þ as
follows:

min
hð�Þ

XN

n¼1

ðyn � hðxnÞÞ2

s:t:
Z1

�1

ðh00ðxÞÞ2dx� a

ð24Þ

where a is a given parameter. Based on the similar argument to that in [15], we can
verify that the objective function of problem (24) is quadratic subject to a convex
constraint and that the minimization problem (24) is equivalent to the following
problem,

max
k [ 0

min
hð�Þ

XN

n¼1

yn � hðxnÞf g2þk
Z

h00ðxÞf g2dx� a


 �( )( )

; ð25Þ

using a Lagrange multiplier k [ 0. Therefore, we see that fixing k in (23) corre-
sponds to fixing a in (24) and that the non-parametric regression problem using
GAM may be recast as a minimization problem of the sample variance with a
smooth constraint.

3.3.2 Optimization of Derivative Contracts

It is in a position to formulate the the second optimization problem, i.e., the payoff
function optimization problem, in the context of minimum variance hedge using
non-parametric regression as follows:
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Payoff function optimization problem:

min
wð�Þ

Var �/ðep;nÞ þ wðew;nÞ
� �

s:t:
Z1

�1

w00ðxÞð Þ2dx� a:
ð26Þ

The minimization problem (26) may be recast as (24) by taking yn :¼ / ep;n

� �
,

xn :¼ ew;n, and h �ð Þ :¼ �w �ð Þ, and therefore, can be solved by applying GAM. Let
w�ð�Þ be the optimal payoff function. Then VRR may be defined as

VRR :¼
Var �/ ep;n

� �
þ w� ew;n

� �� �

Var �/ ep;n

� �� � : ð27Þ

Although it is possible to find the optimal payoff function by solving GAM
once, it may be worthwhile to mention that we have a slight improvement by
applying a linear regression after finding the optimal payoff function w�ð�Þ as

min
a2<

Var �/ ep;n

� �
þ aw� ew;n

� �� �
: ð28Þ

In this case, VRR may be given as

VRR ¼
Var �/ ep;n

� �
þ a�w� ew;n

� �� �

Var / ep;n

� �� � : ð29Þ

or equivalently,

VRR ¼ 1� Corr �/ðep;nÞ;w� ew;n

� �� �� �2
: ð30Þ

where a� 2 < is the regression coefficient to solve (28). Note that (30) is inde-
pendent of a�, or any scaling parameter to w� ew;n

� �
, and that it can be computed if

w� �ð Þ is specified. Therefore, we use the right hand side of (30) as a proxy of VRR.
It is readily confirmed that VRR in (27) is actually an upper bound of (30).
However, as indicated in the end of Sect. 4.2, the gap between (27) and (30) is very
small from our numerical experience.

3.4 Optimization with Loss Functions and Simultaneous
Optimization

3.4.1 Optimal Loss Function

Next, we will consider a case in which a payoff function of wind derivative is
given but we would like to find a loss function that is desirable for using the wind
derivative, i.e., in a case where there already exists a standardized derivative
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contract with a certain payoff function, but there is some room for improvement on
the loss function / for a WF owner.

Assume that the loss function / ep;n

� �
satisfies

Mean / ep;n

� �� �
¼ 0; ð31Þ

Var / ep;n

� �� �
¼ c: ð32Þ

We will compute an optimal loss function satisfying the above constraints for a
given payoff function w ¼ w such that

Mean �w ew;n

� �� �
¼ 0: ð33Þ

The problem is then formulated as follows:

Loss function optimization problem:

min
/ �ð Þ

Var / ep;n

� �
þ �w ew;n

� �� �

s:t:
Z1

�1

/00 xð Þð Þ2dx� a;

Var / ep;n

� �� �
¼ c:

ð34Þ

Note that the constraint Var / ep;n

� �� �
¼ c is also quadratic if / is given by a

cubic natural spline function, and hence, the problem might be reformulated as an
unconstrained optimization problem by introducing another Lagrangian term for
the variance constraint. On the other hand, we can still apply GAM directly
to solve the problem without the variance constraint (i.e., Var / ep;n

� �� �
¼ c),

similar to the payoff function optimization problem (26). Then we can scale the
minimizing function so that it satisfies the variance constraint (32). In this case,
condition (31) is also satisfied.

Let /̂ �ð Þ be the optimizer of problem (34) without the variance constraint (i.e.,

Var / ep;n

� �� �
¼ c), which can be computed by applying GAM. By scaling /̂ �ð Þ to

satisfy (32), we obtain the optimal loss function /� �ð Þ as follows:

/� �ð Þ ¼ c

Var / ep;n

� �� � / �ð Þ: ð35Þ

Note that the optimal volume of wind derivative with the given payoff and loss
functions, wð�Þ and /�ð�Þ, will be found by solving the standard minimum variance
hedging problem as in Sect. 3.2, and VRR may be computed as

VRR ¼ 1� Corr /� ep;n

� �
; �w ew;n

� �� �� �2
: ð36Þ
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3.4.2 Simultaneous Optimization

It may be interesting to consider a simultaneous optimization of the payoff and loss
functions, w ew;n

� �
and / ep;n

� �
. Recall that VRR can be computed using the

correlation between the payoff function and the loss function as

1� Corr / ep;n

� �
;w ew;n

� �� �� �2
:

Since the larger correlation the smaller VRR, the minimization of VRR boils
down to the maximization of correlation between / ep;n

� �
and w ew;n

� �
. Therefore,

the simultaneous optimization of the payoff and the loss functions may be
formulated as follows:

Simultaneous optimization problem:

max Corr / ep;n

� �
; w ew;n

� �� �

s.t.
Z1

�1

/00 xð Þð Þ2 dx � a/;

Z1

�1

w00 xð Þð Þ2dx � aw;

Var / ep;n

� �� �
¼ c:

ð37Þ

The simultaneous optimization problem may be solved using an iterative
algorithm by solving the payoff function optimization problem with /ð�Þ ¼ /ð�Þ
fixed, or the loss function optimization problem with wð�Þ ¼ wð�Þ fixed, at each
step. The following is the iterative algorithm:

Iterative algorithm:

1. Given /ð�Þ ¼ /ð�Þ, find wð�Þ to solve the payoff function optimization problem.
Let w�ð�Þ be the optimal function, and let wð�Þ ¼ w�ð�Þ.

2. Given wð�Þ ¼ wð�Þ, find /ð�Þ to solve the loss function optimization problem.
Let /�ð�Þ be the optimal loss function and let /ð�Þ ¼ /�ð�Þ.

3. Repeat steps 2 and 3 until the objective function in (37) does not change.

Note that the optimal loss function obtained from the above iterative algorithm
satisfies (32) and that we can consider additional constraints to take more realistic
situations into account for the loss and payoff functions. Although we may need to
specify ah and a/ for solving the iterative algorithm, an optimal selection of
smoothing parameters for /ð�Þ and wð�Þ may be applicable at each step by using
GAMs in stead of fixing these parameters a priori in the algorithm.
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Remark 1 The above iterative algorithm is formally in the class of so-called
‘‘Alternating Conditional Expectations (ACE) algorithm (see, e.g., Chap. 7 of
[16]).’’ The ACE algorithm seeks optimal transformations of hðYÞ and f ðXÞ for
two random variables X and Y so that the squared error loss

E hðYÞ � f ðXÞð Þ2
h i

is minimized. Since the zero functions trivially minimize the square error, ACE
has a constraint so that hðYÞ has unit variance at each step, which is exactly the
same as our variance constraint (32). Note that the convergence of ACE algorithm
is also discussed in [16], although we omit the details for brevity.

4 Empirical Analysis and Numerical Experiment

In this section, we demonstrate the solutions to (P1)–(P4) and estimate their hedge
effect using empirical data for the power output, wind speed, and their forecasts.

4.1 Data Description and Preliminary Analysis

Here we consider the power output from a WF located in Japan, where the power
output from the WF is predicted based on the numerical weather forecast and the
power generating properties for turbines. The numerical weather forecast consists
of the following two steps:

• Japan Meteorological Agency announces the hourly data of regional spectral
models for the next 51 h twice a day (9 am and 9 pm).

• Using them as initial and boundary values, a public weather forecasting com-
pany computes more sophisticated values for the next day’s hourly data by
12 pm.

In this chapter, we use the forecast data obtained from the Local Circulation
Assessment and Forecast System (LOCALS) developed by ITOCHU Techno-
Solutions Corporation for the wind speed and the power output of a WF in Japan
[17, 18]. The data set is given as follows3:

Data specifications:

Realized and predicted values of total power output for the WF, and those of wind
speed for the observation tower in the WF.

3 All the data used in this chapter were provided by ITOCHU Techno-Solutions Corporation.
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Data period:

2002–2003 (1 year), hourly data, everyday.

Total number of data:

8,000 for each variable excluding missing values.
Let n ¼ 1; . . .;N be the time index (where N’ 8; 000), and assume that the

actual power output and the wind speed at time n are, respectively, denoted by Pn

and Wn. Also, let P̂n and Ŵn be the forecasts of the corresponding power output
and the wind speed obtained from LOCALS, which are computed by noon one day
before the actual data is observed. Figure 6 shows a scatter diagram for the wind
speed Wn and the power output Pn, where the power output Pn is normalized so
that its maximum equals 100. From Fig. 6, we can see that:

• The generator starts providing the power output when the wind speed exceeds
around 2 [m/s].

• The power output increases with the wind speed between 5–15 [m/s].

Also note that, because each electricity generator is controlled so that the
maximum output does not exceed a certain value, the total output is also bounded
as shown in Fig. 6.

Figure 7 shows a partial residual plot for

Wn ¼ aw bWn þ bw þ ew;n; n ¼ 0; . . .;N; Mean ew;n

� �
¼ 0 ð38Þ

i.e., the scatter diagram of Ŵn; Wn � bw

� �
, where aw and bw are a regression

coefficient and an intercept, respectively, and ew;n is a residual satisfying
ep;n

� �
¼ 0. The partial regression line is depicted using a solid straight line as

shown in Fig. 7. In this case, the sample variance of residuals is found to be

Fig. 6 Wind speed Wn [m/s]
versus Power output Pn [W]
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Var ew;n

� �
’ 5:12: ð39Þ

On the other hand, the regression spline f ð�Þ to fit the same data of Fig. 7 using
GAM is shown as a solid line in Fig. 8, where f �ð Þ satisfies

Wn ¼ f bWn

� 	
þ ew;n: ð40Þ

In this case, the sample variance of the residuals is

Var ew;n

� �
’ 4:95: ð41Þ

Noting that the sample variance of the measured values is computed as ‘‘11.0,’’ we
can say that the variance of the wind speed is reduced by 50 % (from ‘‘11.0’’ to
‘‘5.12’’) using the predicted value and the linear regression, and it is improved a
little using GAM, i.e., from ‘‘5.12’’ to ‘‘4.95.’’ In this section, we define the
forecast error of the wind speed as the one given by GAMs, i.e., ew;n in (40).

Fig. 7 Predicted versus
Measured values for the wind
speed

Fig. 8 Spline regression
function for the wind speed
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Similarly, we can draw a partial residual plot for the power output Pn with
respect to the predicted value P̂n as shown in Fig. 9, where the solid line is
obtained from a linear regression for partial residuals. In this case, the sample
variance of the residuals is found to be ‘‘249.’’ The solid line in Fig. 10 refers to
the regression spline function g �ð Þ satisfying

Pn ¼ g bPn

� 	
þ ep;n; n ¼ 0; . . .;N ð42Þ

using GAM. Note that the sample variance of residuals in this case is given as
‘‘239’’, whereas the sample variance of the measured value of the power output is
‘‘504’’. Similar to the case of wind speed, we can say that the variance of power
output is reduced to less than half (from ‘‘504’’ to ‘‘249’’) using the predicted value
and the linear regression, and it is improved a little using GAM, i.e., ‘‘249’’ to
‘‘239’’.

Fig. 9 Predicted versus
Measured values for the
power output

Fig. 10 Spline regression
function for the power output
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Although we should be able to define the forecast error of the power output
using the residual in (42), it might be worthwhile to mention that there is another
way to define the forecast error of the power output. As stated in the beginning of
this section, the power output is predicted using numerical weather forecast, and
therefore, we can define a regression model such that the power output Pn is a
dependent variable and the wind speed forecast Ŵn is an independent variable, i.e.,

Pn ¼ h bWn

� 	
þ ep;n; ð43Þ

where hð�Þ is a regression spline that minimizes PRSS.
Figure 11 shows the relation between the predicted values of the wind speed

and the measured values for the power output, where the solid line in Fig. 12 is the
regression spline hð�Þ. In this case, the sample variance of the residuals is com-
puted as

Var ep;n

� �
’ 254 ð44Þ

Fig. 11 Predicted value of
the wind speed versus
Measured values for the
power output

Fig. 12 Spline regression
function for the power output
using the wind speed forecast
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which is, in fact, higher than the one given by (42). However, it will turn out that
using the forecast error in (43) provides not only a better hedge effect but also a
smaller variance of the hedged loss when combining with the optimal wind
derivative. Therefore, we will use the residual ep;n in (43) to define the forecast
error of the power output. An empirical analysis using the forecast error defined by
the residual in (42) may be found in [19].

4.2 Construction of Wind Derivatives

Next, we will construct wind derivatives and demonstrate their hedge effect on
wind power energy businesses.

We first solve the minimum variance hedging problem for the simplest case
where the loss and the payoff functions are both linear. Let

/ ep;n

� �
¼ ep;n;w ew;n

� �
¼ ew;n ð45Þ

without loss of generality. In this case, the problem is reduced to solving a linear
regression for the following regression function:

ep;n ¼ aw ew;n þ gn; ð46Þ

where gn is a residual. Since the linear regression computes aw that minimizes
variance of gn ¼ ep;n � awew;n, the regression coefficient provides the optimal
volume as

D� ¼ �aw ð47Þ

in the problem (16) under condition (45), where

Fig. 13 Wind speed forecast
error ew;n versus power output
forecast error ep;n
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aw ¼
Cov ep;n; ew;n

� �

Var ew;n

� � : ð48Þ

Figure 13 shows a scatter plot of ew;n versus ep;n with a linear regression line.
The sample correlation is computed as

Corr ep;n; ew;n

� �
’ 0:76: ð49Þ

and VRR as

VRR ¼ 1� Corrðep;n; ew;nÞ2 ’ 0:43: ð50Þ

We see that the forecast errors of the wind speed and the power output, ew;n and
ep;n, are highly correlated and that the sample variance is reduced to 43 % from the
original one using the wind derivative in the case where the loss and the payoff
functions are both linear.

Now, we apply GAMs to compute an optimal payoff function. The solid line in
Fig. 14 shows the optimal payoff curve obtained by solving the optimization
problem (26) when /ð�Þ is linear. In this case, the VRR is computed as

VRR ¼
Var ep;n þ w�
� �

ew;n

� �

Var ep;n

� � ’ 0:407 ð51Þ

where w� �ð Þ is the optimal payoff function. Moreover, the variance of the hedged
loss ep;n þ w� ew;n

� �
is computed as

Var ep;n þ w� ew;n

� �� �
’ 103: ð52Þ

The above variance is actually lower than that of the hedged loss using (42) with
the optimal wind derivative, which is computed as ‘‘119’’. Therefore, we see that,
even though the variance of the original loss might be larger, it can be reduced

Fig. 14 Optimal payoff
function on ew;n obtained
from GAM
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more effectively by combining it with the wind derivative if we define the forecast
error by (43) instead of (42).

Next, we will consider the case in which the loss function /ð�Þ ¼ /ð�Þ is given
as shown in Fig. 5 with zero mean constraint (13), i.e.,

/ ep;n

� �
:¼ 4 ep;n

�� ��þþ10 ep;n

�� ����l ð53Þ

where

l :¼ Mean 4 ep;n

�� ��þþ10 ep;n

�� ���
� 	

and �j jþ and �j j� are defined as

xj jþ:¼ max x; 0ð Þ; xj j�:¼ min x; 0ð Þ

for x 2 <. The solid line in Fig. 15 shows the optimal payoff function to solve the
problem (26). In this case, VRR in (27) is computed as

VRR ¼ 0:5461946. . .: ð54Þ

whereas the right hand side of (30) is found to be

1� Corr / ep;n

� �
; w� ew;n

� �� �� �2¼ 0:5461927. . .: ð55Þ

From this example, we see that VRR can be approximated by (30) with high
accuracy.

4.2.1 Optimal Loss Function and Simultaneous Optimization

In this subsection, we first provide an illustrative example for solving (P3) to
compute an optimal loss function, and then solve the simultaneous optimization
problem of (P4).

Fig. 15 Optimal payoff
function on the wind speed
forecast error ew;n
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Since the linear correlation between ep;n and ew;n is high in this example, it
would be more interesting to consider the case where a payoff function is non-
linear with respect to ew;n. Therefore, we assume that there already exists a
derivative contract with the payoff being proportional to the size of the wind speed
forecast error, ew;n

�� ��. Noting that w ew;n

� �
satisfies (14), such a payoff function may

be given as

w ew;n

� �
¼ w ew;n

� �
:¼ ew;n

�� ��� Mean jew;nj
� �

; ð56Þ

Fig. 16 shows the payoff function with respect to ew;n.
Now we will solve (P3) with the given payoff function in (56). Assume that the

sample variance of the loss, / ep;n

� �
, satisfies

Var / ep;n

� �� �
¼ Var ep;n

� �
ð57Þ

and we solve the problem (34) with the assumption that the optimal loss function
satisfies the above variance constraint. The solid line in Fig. 17 shows the optimal
loss function, which is obtained by applying GAM and scaling the minimizing
function as in (35). In this case, VRR is found to be

VRR ’ 0:56: ð58Þ

Fig. 16 Payoff function with
respect to the wind speed
forecast error ew;n for the loss
function optimization
problem

Fig. 17 Optimal loss
function on the power output
forecast error ep;n
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Next, we demonstrate the simultaneous optimization of P4). Here we also
introduce a nonlinearity using the absolute value of ew;n. Assume that the payoff of
the wind derivative is a function of ew;n

�� ��, and consider a maximization problem of

Corr / ep;n

� �
;w jew;nj
� �� �

: ð59Þ

We apply the iterative algorithm for a fixed loss function / �ð Þ or a fixed payoff
function w �ð Þ at each step to maximize (59). Assume that the payoff function is
initially set to the one given in (56) and we solve the loss function optimization
problem. The initial loss function in this case is given by the one shown in Fig. 17.
We repeatedly apply steps 1 and 2 in the iterative algorithm until the objective
function does not change or the relative change of the values of the objective
function is less than a sufficiently small number. In this example, we obtained

VRR ¼ 0:53; ð60Þ

after the 8th iteration. Figure 18 shows the optimal loss function after the 8th iter-
ation, where the loss function is scaled to satisfy the variance constraint (57). We see
that the loss function became smoother compared to the one given in Fig. 17.

5 Further Discussion

The main contribution of this study is summarized as follows:

• Constructed a type of weather derivative contracts based on the forecast errors,
which might be applicable for other situations (or businesses) and/or other
indices such as temperature, rain falls, and so on.

• Provided an application of non-parametric regression techniques in the context of
minimum variance hedge using smooth functions, which can be thought of a
generalization of the standard minimum variance hedge based on linear regression.

Fig. 18 Optimal loss
function after the 8th iteration
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Here we assumed that the payoff functions are just smooth. Therefore, the
approximation of these functions using the standard payoff functions for puts or
calls may be required in practice when the standardized derivative contracts are
only available. Also, the convergence of the iterative algorithm for simultaneous
optimization is an important issue. These are interesting topics to be discussed
further in the future work.

It should be mentioned that there is another important issue concerning the risk
management on forecast errors such as usage of storage battery system, i.e., a
storage battery may be installed to compensate the shortage of the scheduled
power output of a WF. Note that the advantage of installing the storage battery is
not only to achieve the scheduled power output in certain period, but also to reduce
the variability of the wind generated electricity that may significantly effect on the
frequency of electricity grid. However, the installation of storage battery requires
an additional cost [20], say, as much as the total capacity of the WF in the worst
case scenario that the WF quoted the maximum power output but the actual one
was zero. As the capacity of storage battery is reduced, the installation cost
becomes lower, but in this case, the possibility of shortage may be increased.
Therefore, in such a situation, we may still need wind derivatives to hedge the loss
caused by forecast errors. For the wind power energy business to be profitable, it
should be important to study an optimal balance of the capacity of storage battery
and the possible introduction of wind derivatives.

6 Summary

In this chapter, we have introduced weather derivatives based on wind conditions
combined with their forecast information, namely ‘‘wind derivatives.’’ The
payoffs of wind derivatives were determined by the forecast errors in contrast to
the standard weather derivatives in which the underlying index is given by
observed weather data only (say, temperature). In other words, the wind deriva-
tives discussed here take advantage of forecast data and the payoff depends on the
difference between the actual and forecast data.

Here we began by explaining the basic structure which are common with
financial derivatives and showed some foundations of pricing problems. In par-
ticular, we demonstrated a general pricing problem using a payoff function that
satisfies a zero expected value condition. Then, we introduced wind derivatives on
forecast errors, and derived a loss function for a WF based on the possible sales
contract using forecasts. The following four types of optimization problems are
formulated using combinations of payoff and loss functions: The first is a contract
volume optimization problem that computes an optimal volume of wind derivatives
for given loss and payoff functions. The second is a payoff function optimization
problem that constructs optimal payoff function using a non-parametric regression
technique called GAM. The third is a loss function optimization problem to find an
optimal loss function that is desirable for a given payoff function of wind derivative,
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i.e., in a case where there already exists a standardized derivative contract with a
certain payoff function, but there is some room for improvement on the loss
function for a WF owner. The forth is a simultaneous optimization problem of loss
and payoff functions, which may be solved using an iterative algorithm for a given
payoff function or a loss function. To estimate the hedge effect, we defined the VRR
as the ratio of variances of the losses with and without the hedge.

An empirical analysis was provided using the total power output data of a WF
located in Japan, the wind speed data at the observation tower in the WF, and their
forecasts. The power output from the WF was predicted based on the numerical
weather forecast and the power generating properties for turbines. In particular, we
used the forecast data of the power output and the wind speed obtained from
LOCALS developed by ITOCHU Techno-Solutions Corporation. Based on the
empirical data, we first solved the contract volume optimization problem in the case
where the loss and the payoff functions are both linear. In this case, we saw from the
VRR that the sample variance was reduced to 43 % from the original one using the
wind derivative. Then, we applied GAMs and computed an optimal payoff function,
where the VRR was obtained as VRR ’ 0:407, showing the slight improvement by
using GAMs. Also, we considered the case in which the loss function is given as the
one used in the example of sales contract to compare the original VRR with its
approximation formula given by one minus squared correlation coefficient. In this
case, we were able to obtain a high accuracy of approximation.

Next, we solved the loss function optimization problem by introducing a
nonlinearity using the absolute value of wind speed forecast error. We assumed
that the payoff function is proportional to the size of wind speed forecast error and
obtained VRR ’ 0:56 by solving the problem. Then, we applied the iterative
algorithm to solve the simultaneous optimization problem, where the initial payoff
function was set to the same as in the above loss function optimization problem.
We repeated the iterative procedure until the relative change of objective function
is less than a sufficiently small number. By solving the simultaneous optimization,
we concluded that VRR was improved from VRR ’ 0:56 to VRR ’ 0:53 com-
pared to the case of loss function optimization.

Acknowledgments The author would like to thank H. Fukuda, R. Tanikawa, and N. Hayashi
from ITOCHU Techno-Solutions Corporation for their helpful comments and discussions.

References

1. Jewson S, Brix A and Ziehmann C (2005) Weather derivative valuation—the meteorological
statistical financial and mathematical foundations. Cambridge University Press, Cambridge

2. Yamada Y (2008) Optimal hedging of prediction errors using prediction errors. Asia-Pacific
Finan Mark 15(1):67–95

3. Brody DC, Syroka J, Zervos M (2002) Dynamical pricing of weather derivatives. Quant
Financ 2:189–198

4. Cao M, Wei J (2004) Weather derivatives valuation and market price of weather risk.
J Futures Mark 24(11):1065–1089

Risk Management Tools for Wind Power Trades 65



5. Davis M (2001) Pricing weather derivatives by marginal value. Quant Financ 1:305–308
6. Kariya T (2003) Weather risk swap valuation Working Paper Institute of Economic Research.

Kyoto University, Japan
7. Platen E, West J (2004) Fair pricing of weather derivatives. Asia-Pacific Finan Mark

11(1):23–53
8. Yamada Y (2007) Valuation and hedging of weather derivatives on monthly average

temperature. J Risk 10(1):101–125
9. Yamada Y, Iida M, and Tsubaki H (2006) Pricing of weather derivatives based on trend

prediction and their hedge effect on business risks. Proc inst stat math 54(1):57–78 (in
Japanese)

10. Harrison JM, Pliska SR (1981) Martingales and stochastic integrals in the theory of
continuous trading. Stoch Process Appl 11(3):215–260

11. Black F, Scholes M (1973) The pricing of options and corporate liabilities. J Polit Econ
81:637–654

12. Merton RC (1973) Theory of rational option pricing. Bell J Econ Manage Sci 4(1):141–183
13. Shreve SE (2004) Stochastic calculus for finance (2): continuous-time models. Springer, New

York
14. Takano T (2006) Natural Energy Power and Energy Storing Technology, trans Inst Electri

Eng Jpn (B) 126(9):857–860 (in Japanese)
15. Wood SN (2006) Generalized additive models: an introduction with R. Chapman and Hall,

London
16. Hastie T, Tibshirani R (2005) Generalized additive models. Cambridge University Press,

Cambridge
17. Enomoto S, Inomata N, Yamada T, Chiba H, Tanikawa R, Oota T and Fukuda H

(2001)Prediction of power output from wind farm using local meteorological analysis.
Proceedings of European Wind Energy Conference, Copenhagen, Denmark, p 749–752

18. Tanikawa R (2001) Development of the wind simulation model by LOCALS and
examination of some studies, Nagare, p.405–415 (in Japanese)

19. Yamada Y (2008) Optimal design of wind derivatives based on prediction errors. JAFEE J
7:152–181 (in Japanese)

20. Tanabe T, Sato T, Tanikawa R, Aoki I, Funabashi T, and Yokoyama R (2008) Generation
scheduling for wind power generation by storage battery system and meteorological forecast.
IEEE Power and Energy Society General Meeting—Conversion and Delivery of Electrical
Energy in the 21st Century, pp 1–7

21. Geman H (1999) Insurance and Weather Derivatives, Risk Books
22. Takezawa K (2006) Introduction to nonparametric regression. Wiley, New Jersey

66 Y. Yamada


	3 Risk Management Tools for Wind Power Trades: Weather Derivatives on Forecast Errors
	Abstract
	1…Introduction
	2…Basic Structure of Derivatives
	2.1 Foundations of Derivative Pricing
	2.2 General Pricing Problem with Payoff Functions

	3…Wind Derivatives on Forecast Errors and Hedging Problems
	3.1 Loss Functions for WFs and Problem Settings
	3.2 Standard Minimum Variance Hedging Problem
	3.3 Minimum Variance Hedging Using Non-Parametric Regression
	3.3.1 Generalized Additive Models
	3.3.2 Optimization of Derivative Contracts

	3.4 Optimization with Loss Functions and Simultaneous Optimization
	3.4.1 Optimal Loss Function
	3.4.2 Simultaneous Optimization


	4…Empirical Analysis and Numerical Experiment
	4.1 Data Description and Preliminary Analysis
	4.2 Construction of Wind Derivatives
	4.2.1 Optimal Loss Function and Simultaneous Optimization


	5…Further Discussion
	6…Summary
	Acknowledgments
	References


