
Toward the Revision of CTL Models

through Kripke Modal Transition Systems

Paulo T. Guerra1, Aline Andrade2, and Renata Wassermann1

1 University of São Paulo
{paulotgo,renata}@ime.usp.br

2 Federal University of Bahia
aline@ufba.br

Abstract. In this paper we consider the problem of automatic repair
of models in the context of system partial specification. This problem
is a challenge involving theoretical and practical issues and the theory
of belief revision is an alternative to give theoretical support to its so-
lution. A Kripke structure is widely used to model systems, but it does
not express partial information explicitly and a set of these structures
might be required to represent several possibilities of behavior. A more
general structure is the Kripke Modal Transition System (KMTS) which
can specify systems with partial information and can be interpreted as
a set of Kripke models. In this paper, we propose a framework for the
repair of KMTS based on belief revision combined with model check-
ing as an approach to revise sets of Kripke structures. We demonstrate
the advantages of our approach, even with the existing restrictions in
representing general sets of CTL models over the KMTS formalism.

1 Introduction

In the preliminary phases of system development it can be necessary to deal
with incomplete information because generally not all requirements are already
known. To specify an undetermined system it is desirable that models can rep-
resent partial information, such as possible behaviors. When a model does not
explicitly express partial information, an alternative is to take several models
as possible candidates for the system behavior. In both cases the models should
be able to be formally verified and when a desired property is not satisfied the
models must be repaired, ideally automatically.

We consider in this work the technique of model checking [1] for the verifi-
cation of systems, particularly model checking over Kripke structures as CTL
(Computation Tree Logic) models. A CTL model checker solves the decision
problem: given a Kripke structure K, an initial state s0 and a CTL formula ϕ,
does K satisfy φ from s0? (K, s0 |= φ ?). When the property is not satisfied, the
model checker shows a counter-example that can guide the repair of the model.

A CTL model does not express partial information explicitly. A set of these
structures might be required to represent several possibilities of behavior. A more
general Kripke structure is the Kripke Modal Transition System (KMTS) which
is adequate for the specification of systems with partial information [2] and can

J. Iyoda and L. de Moura (Eds.): SBMF 2013, LNCS 8195, pp. 115–130, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

116 P.T. Guerra, A. Andrade, and R. Wassermann

be expanded in a set of CTL models. KMTS is interpreted over a 3-valued logic
and can represent behavior that must or may occur. Model checking over KMTS
[2], besides true and false values, can return indefinite meaning both values may
be consistent.

The automatic repair of models is not straightforward and presents several
challenges. The theory of belief revision [3] can be applied to this problem by
considering models as beliefs [4,5]. In [4], a revision operation is defined to repair
a set of CTL models when they are inconsistent with a desired property.

In this paper, we define the revision of a set of CTL models through the
revision of a KMTS model when the KMTS model checking returns false or
indefinite. We compare it with the revision of a set of CTL models as proposed
in [5] and show the correspondence between these two approaches. Although
there are some restrictions in representing a general set of Kripke models, we
argue that the compact representation of KMTSs has advantages during the re-
vision process. We show how revision can be implemented, using model checking
through 3-valued model checking game as proposed in [6].

To the best of our knowledge this is the first work on revision of a set of CTL
models through KMTS. In [7] the authors propose an algorithm to repair KMTS
models based on primitive changes defined in [8]. Unlike our proposal this work is
not based on belief revision and it does not make reference to any other theory
of change and its context is abstract model checking, where a KMTS model
represents an abstraction of a concrete Kripke structure as proposed by [6].

This paper is organized as follows. In Section 2, we briefly introduce CTL and
the model revision approach. In Section 3 we introduce KMTS and how it is
expanded into Kripke structures. In Section 4 we define revision of KMTS, its
operations, the minimality criterion and proofs of its correctness. We describe
how to implement KMTS revision in Section 5 based on a model checking game.
Finally in Sections 6 and 7 we discuss this approach and conclude the paper.

2 Preliminaries

2.1 Computation Tree Logic

The computation tree logic (CTL) [9,10] is a temporal logic where the future
is represented by a time-branching structure. CTL is suitable for example to
describe properties over computer program and its different execution paths.
The CTL syntax is given by the following Backus-Naur form:

φ ::=� | ⊥ | p | (¬φ) | (φ ∨ φ) | (φ ∧ φ) | (φ→ φ) | EXφ |
AXφ | EFφ | AFφ | EGφ | AGφ | E[φUφ] | A[φUφ]

where its temporal operators comprise: path quantifiers (E, “there is a path”,
or A, “for all paths”); and state operators (X, “neXt state”, U, “Until”, G,
“Globally in states” or F, “some Future state”).

The semantics for CTL is defined over a labelled transition system called
Kripke structure. These structures are described by Definition 1.

Revision of CTL through KMTS 117

Definition 1. A Kripke structure is a tuple M = (AP, S, S0, R, L) where AP
is a set of atomic propositions; S is a finite set of states, S0 ⊆ S is the set of
initial states, R ⊆ S × S is transition relation over S, and L : S → 2AP is a
labelling function of truth assignment over states.1

For convenience, we frequently refer to Kripke structures as CTL models.

2.2 CTL Model Revision

Guerra and Wassermann [4,5] propose a model repair framework using principles
of belief revision theory [3]. Belief revision deals with how to rationally adapt
dynamic beliefs set in order to incorporate new information, even if it is inconsis-
tent with what is believed. This rationality principle usually involve a minimal
change assumption, that is also intended to the model repair: the solution should
preserve as much information as possible from the original model.

The authors define a model revision operator ◦c based on a set of basic model
change operations, as proposed by [8]. These change operations represent all
primitive structural changes over a CTL model:

PU1: Adding one pair to the relation R
PU2: Removing one pair from the relation R
PU3: Changing the labelling function on one state
PU4: Adding one state to S
PU5: Removing one isolated state of S

Let M and M ′ be two CTL models, we denote by DiffPUi(M,M ′) the struc-
tural difference between M and M ′ produced by applications of PUi, for exam-
ple, DiffPU1(M,M ′) denotes the transitions added to M in order to achieve M ′.

A model change is said to be admissible if it produces a model M ′ from
M such that M ′ satisfies the desired property and there is no model M ′′ ob-
tained from M such that DiffPUi(M,M ′′) ⊆ DiffPUi(M,M ′), i = 1, ..., 5 and
DiffPUi(M,M ′′) ⊂ DiffPUi(M,M ′), for some i = 1, ..., 5. Guerra and Wasser-
mann define a minimality criterion over admissible changes in order to select
minimal changes according to belief revision principles, therefore defining the
following revision operator:

Mod(ψ ◦c φ) =MinMod(ψ)(Mod(φ)),

where ψ, φ are CTL formulas that represent the initial beliefs and the new
information, respectively, Mod(α) all CTL models of a formula α and MinB(A)
the set of all minimal models of A according to any admissible modification on
any model of B. The authors show that ◦c satisfies the rationality postulates for
belief revision as presented in [11].

Guerra and Wasserman [4] also proposed an algorithm for CTL model revi-
sion. The algorithm receives as input a CTL formula φ and a set of CTL models

1 Usually the transition relation is defined as total. Although it makes simple the
definition of many temporal logic semantics, this requirement is not needed.

118 P.T. Guerra, A. Andrade, and R. Wassermann

that do not satisfy φ, then by repairing each model individually and filtering
these repaired models according to their belief revision ordering criterion, the
algorithm returns as result a set of revised models representing possible correc-
tions to the original models relative to the formula φ.

3 Kripke Model Transition System as Sets of CTL
Models

KMTS are expressive models to represent undetermined or sub-specified systems.
They have two types of transitions, transitions that must occur and transitions
that may occur, which represent necessary and possible behavior, respectively.

Specification over KMTS are written in the μ− calculus and in this work we
use this language in its negation normal form.

Definition 2. (μ − calculus). Let AP be a set of atomic propositions and V a
set of propositional variables. The set of literals over AP is defined as Lit =
AP ∪ {¬p | p ∈ AP}. The μ − calculus in its negation normal form over AP
is defined by ϕ ::= l | Z | ϕ ∧ ϕ | ϕ ∨ ϕ | AXϕ | EXϕ | μZ.ϕ | υZ.ϕ where
l ∈ Lit and Z ∈ V. AX means for all successors and EX means there ex-
ists a successor. μ denote the least fixpoint and υ denote the greatest fixpoint. A
formula ϕ is closed if all its variables Z are bounded by a fixpoint operator μ or υ.

CTL formulas can be specified in μ − calculus by the following translation:
EFφ ≡ μZ.φ ∨ EXZ;AFφ ≡ μZ.φ ∨ AXZ;EGφ ≡ υZ.φ ∧ EXZ;AGφ ≡
υZ.φ ∧AXZ;E[φUφ] ≡ μZ.φ ∨ (φ ∧EXZ); and A[φUφ] ≡ μZ.φ ∨ (φ ∧AXZ).
Definition 3. A Kripke modal transition system (KMTS) is a tuple M = 〈AP,
S, S0, R

+, R−, L〉, where S is a set of finite sates, S0 ⊆ S is the set of initail
states, R+ ⊆ S×S and R− ⊆ S×S are transition relations such that R+ ⊆ R−,
and L : S → 2Lit is a label function, such that for all state s and p ∈ AP , at
most one between p and ¬p occur. The transitions R+ e R− correspond to the
transitions must and may respectively.

The semantics defined below is presented in [6]. A complete semantics of
μ− calculus is presented in [12].

Definition 4. The semantics of three values ‖ϕ‖M3 of a closed formula ϕ with
respect to a KMTS M is a map from S to {T, F,⊥}. The interesting cases are
defined below.

‖l‖M3 (s) = T if l ∈ L(s), F if ¬l ∈ L(s),⊥ otherwise.

‖AXϕ‖M3 (s) =

⎧
⎪⎨

⎪⎩

T, if ∀t ∈ S, if R−(s, t) then ‖ϕ‖M3 (t) = T

F, if ∃t ∈ S such that R+(s, t) and ‖ϕ‖M3 (t) = F

⊥, otherwise.

And dually for EXϕ exchanging F and T.

Revision of CTL through KMTS 119

M:
¬p

s0 s1

¬p
s2

must transition

may transition

MK:

k1:
¬p

s0

p

s1

¬p
s2

k2:
¬p

s0

¬p
s1

¬p
s2

k3:
¬p

s0

p

s1

¬p
s2

k4:
¬p

s0

¬p
s1

¬p
s2

k5:
¬p

s0

p

s1

¬p
s2

k6:
¬p

s0

¬p
s1

¬p
s2

k7:
¬p

s0

p

s1

¬p
s2

k8:
¬p

s0

¬p
s1

¬p
s2

Fig. 1. (a) Example of a KMTS M (b) Expansion MK of M

3.1 Expanding KMTS into CTL Models

In this section we formally define a KMTS expansion into a set of Kripke struc-
tures showing its capacity to compactly represent CTL models and some limi-
tations of this representation.

Definition 5. Let M = 〈AP, S, S0, R
+, R−, L〉 be a KMTS, the KMTS expan-

sion ofM , denoted by MK, is the set of all Kripke models K ′ = 〈AP ′, S′, S′
0, R

′,
L′〉 such that AP ′ = AP , S′ = S, S′

0 = S0, R
+ ⊆ R′ ⊆ R−and L(s) ⊆ L′(s),

for all s ∈ S.

The KMTS expansion may lead to an exponential set of Kripke models, as
stated in Proposition 1. On the other hand, it shows the capacity of this formal-
ism to compactly represent a huge set of CTL models in one single structure. It
is important to note that KMTS may not be expressive enough to represent all
possible sets of CTL models, as shown in Proposition 2.

Proposition 1. LetM = 〈AP, S, S0, R
+, R−, L〉 be a KMTS withm= |R−\R+|

genuine (strictly) may transitions and n = |{s ∈ S | p ∈ AP and p,¬p �∈ L(s)}|
state indeterminations. M can be expanded into 2m+n Kripke structures.

Proof. It follows straight from the number of possible combinations of each KMTS
indetermination that can be realized or not in the Kripke structures.

Proposition 2. Let K = {k1, ..., kn} any set of kripke structures ki = 〈AP, S,
S0, Ri, Li〉. Not necessarily exists a KMTS M = 〈AP, S, S0, R

+, R−, L〉 that can
be expanded into K.

Proof. Take for example K = {k3, k5} of Figure 1(b). No KMTS M = 〈{p}, {s0,
s1, s2}, {s0}, {(s0, s0), (s1, s2)}, R−, L}〉 can be expanded in this set. This is be-
cause the KMTS formalism does not provide any way of expressing interdepen-
dency between indeterminations. In this example, we could not express in M that
the transitions (s0, s1) and (s0, s2) should not occur at the same time.

120 P.T. Guerra, A. Andrade, and R. Wassermann

To represent any set of Kripke structures we have two alternatives: (1) to
associate a selection function to a KMTS that selects the desired Kripke models
among its expanded models; (2) to consider a set of KMTS models that represent
the set of Kripke models. In the second alternative, in the worse case, each KMTS
will be a Kripke model.

Proposition 3. Let M be a KMTS and K = {k1, ..., kn} the Kripke structures
expanded from M . Consider s0 the initial state of M . For all closed formula ϕ
of μ− calculus, if the semantic value of ‖ϕ‖M3 (s0) is equal to

1. ⊥, then ∃ki, kj ∈ K, i �= j such that (‖ϕ‖ki (s0) = T and ‖ϕ‖kj (s0) = F

2. T , then ∀ki ∈ K, ‖ϕ‖ki (s0) = T

3. F , then ∀ki ∈ K, ‖ϕ‖ki (s0) = F

Proof. It follows straight from the semantics of KMTS and the expansion of it.

4 Revision of KMTS Models

In this section we define the KMTS model revision operation, through the spec-
ification of minimal change criterion over KMTS models and showing its corre-
spondence to the minimal changes over sets of KMTS expanded Kripke models.
This minimality criterion is similar to that proposed by [5], but now considering
a different set of primitive operations which represent possibilities of changes in
KMTS models, as shown below.

P1: Removing one pair from the relation R−

P2: Removing one pair from the relation R+

P3: Transforming one pair (si, sj) of R
− to (si, sj) of R

+

P4: Changing a defined literal on one state label
P5: Assigning a literal to a a state label if it is undefined in it

For the definitions below we consider some notation. XPn denotes a set of
changes relative to operation Pn, 1 ≤ n ≤ 5. Each change in XPn is represented
as (si, sj) or (si, l), where l is a literal, depending on whether the change is
relative to transitions or to state labels, respectively. A change X is represented
as X = (XP1, ..., XP5), where XPn can be an empty set if no change of type
Pn occurs. We say that X = (XP1, ..., XP5) ⊂ Y = (YP1, ..., YP5) if for each
XPn ⊆ YPn and at least one XPi ⊂ YPi. The application of X to a model A
results in another model denoted by A(X). We refer toM, s0 |= ϕ is True, False
or ⊥ to indicate the result of model checking ϕ in M from s0.

Our definition of minimal change over KMTS is based on the operations P2
and P4, the operations P1, P3 and P5 are disregarded. This makes sense because
among the Kripke models expanded of the KMTS there are models without
the transitions of P1, which already have the transitions of case P3, and those
where the state label already has the literal of P5 assigned. In this sense, these
modifications should not be considered for all models. We then define minimal
changes considering a reduced change X/ of a change X as defined below.

Revision of CTL through KMTS 121

Definition 6. Let X = (XP1, ..., XP5), the reduced change X/ of X is defined
as X/ = (XP2, XP4).

A reduced change X/ = (XP2, XP4) over a KMTS M induces changes in
K ∈ MK : all (si, sj) ∈ XP2 induces a change (si, sj) of type PU2 in K and all
(si, l) ∈ XP4 induces a change (si, l) of type PU3 in K. So, we also refer XP2

and XP4 as changes over K meaning its corresponding induced changes.

Definition 7. Given two changes X1 = (X1P1, ..., X1P5) and X2 = (X2P1, ...,
X2P5), X1 ≤ X2 iff for all n, X1/Pn ⊆ X2/Pn. X1 < X2 iff X1 ≤ X2 and
there is at least one n, such that X1/Pn ⊂ X2/Pn. If there is no X2 such that
X2 < X1, X1 is said to be minimal.

Propositions 4, 5 and 6 show that the defined minimality criterion for KMTS
correspond to the minimality criterion (presented in section 2.2) for the set
of Kripke models expanded of the KMTS, i.e. the revision of a set of Kripke
models can be achieved by the revision of a KMTS that represents them. The
next proposition specifies that any change in a Kripke model, that belongs to
MK , can be achieved through a change in M .

Proposition 4. Let M be a KMTS, MK its corresponding expansion, K1 a
model in MK and Y = (YP2, YP4) a change in K1. Then there is a change X in
M such that M(X)K contains the model K1(Y).

Proof. Construct X = (XP1, XP2, XP3, XP4, XP5): XP1 contains all (si, sj)
may transitions such that (si, sj) are not transitions of K1; XP2 contains (si, sj)
∈ YP2 if (si, sj) is a must transition in M , otherwise (si, sj) is included in XP1;
XP3 contains all (si, sj) may transitions which correspond to (si, sj) transitions
of K1; XP4 contains (si, l) ∈ YP4 if l or ¬l ∈ label(si) in M , otherwise include
it in XP5. Take a model K2 from MK which differs from K1 in two ways: 1) for
all (si, l) ∈ XP5, l ∈ label(si) in K2; 2) K2 does not have the transitions (si, sj)
of YP2 if they are may transitions in M (K2 exists because the expansion of
M generates all Kripke models resulting from all the possibilities of transform-
ing indetermination in M in determinations in Kripke models, in the best case
K2 = K1 and X/ = Y). Therefore M(X)K contains the model K2(X/) which
is equal to K1(Y).

Proposition 5. Let M be a KMTS and X = (XP1, XP2, XP3, XP4, XP5) be a
minimal change in M . Then X/ = (XP2, XP4) is a minimal change in MK .

Proof. Suppose X/ is not minimal in MK, so there is a change Y = (YP2, YP4)
in MK such that Y < X/. The transitions of YP2 are not may transitions in M
and all literals of the states in YP4 are defined literals in the respective states in
M . By the proposition 4 there is a change Z in M constructed from Y such that
Z/ = Y . So, Z/ < X/ which implies that Z < X, a contradiction.

Proposition 6. Let M be a KMTS such that M, s0 |= ϕ is False, X = (XP1,
XP2, XP3, XP4, XP5) a minimal change in M such that M(X), s0 |= ϕ is True.
So, there is a model K in MK such that K(X/), s0 |= ϕ is True.

122 P.T. Guerra, A. Andrade, and R. Wassermann

Proof. Take a model K of MK such that K does not have the transitions of XP1,
has the transitions of XP3 if XP3 �= ∅ and for all (si, l) in XP5, l ∈ labels of si
of K. For all Ki of M(X)K , Ki, s0 |= ϕ is True because M(X), s0 |= ϕ is True
(see proposition 3). The model K(X/) is one of the Ki models.

Minimal changes over M

X1 = ({(s0, s2)}, ∅, ∅, {(s0, p)}, {(s1, p)})
X2 = ({(s0, s1), (s0, s2)}, ∅, ∅, {(s0, p)}, ∅)
X3 = ({(s0, s2)}, {(s0, s0)}, ∅, ∅, {(s1, p)})
X4 = ({(s0, s1), (s0, s2)}, {(s0, s0)}, ∅, ∅, ∅)

Reduced changes

X1/ = (∅, {(s0, p)})
X2/ = (∅, {(s0, p)})
X3/ = ({(s0, s0)}, ∅)
X4/ = ({(s0, s0)}, ∅)

Revised KMTS:

p

s0

p

s1

¬p
s2

p

s0 s1

¬p
s2

¬p
s0

p

s1

¬p
s2

¬p
s0 s1

¬p
s2

Fig. 2. Revision by AXp of the KMTS M (Fig. 1(a))

Figures 2 and 3 show an example of the relation between minimal changes of a
KMTSM and minimal changes of the setMK . They present the minimal possible
changes (with the operations P1 to P5 above) in M to satisfy the property AXp
from s0 and their respective reduced changes which correspond to the minimal
changes of MK . Consider the change X = (∅, ∅, ∅, {(s0, p), (s2, p)} , {(s1, p)}),
it is not minimal because X1 < X . To exemplify the Proposition 4 consider
the model K4 (Fig. 1(b)) and the change Y = (∅, {(s0, p), (s1, p)}), the model
K4(Y) = K3(X2/). As an example of Proposition 6, consider the model K3

(Fig. 1(b)) and the change X1 of M (Fig. 2), M(X1), s0 |= AXp is True and
K3(X1/), s0 |= AXp is True.

In the case that the KMTS model checking returns ⊥, the KMTS revision
selects among its expanded Kripke models those that are consistent with the

p

s0

p

s1

¬p
s2

p

s0

p

s1

¬p
s2

p

s0

¬p
s1

¬p
s2

¬p
s0

p

s1

¬p
s2

¬p
s0

p

s1

¬p
s2

¬p
s0

¬p
s1

¬p
s2

Fig. 3. Revision by AXp of the expansion MK (Fig 1(b))

Revision of CTL through KMTS 123

verified property. This result is aligned to the result produced by the operator
◦c. When the KMTS model checking returns false, changes effectively modify
the KMTS model. As stated before in this paper we consider only changes in
state labels and removal of transitions. Although these changes seem relatively
restrictive, the results presented in this paper are still relevant to domains where
the KMTS completely defines the consistent information, and thus no other
information such as new states can be added. Our approach is also a step forward
in the definition of a general KMTS revision operator with all kinds of changes,
which we intend to define afterwards.

5 Implementing Revision of KMTS Models

The revision of a KMTS model M might occur when M, s0 |= ϕ is ⊥ or F .
In case ⊥ the revision consists of refining the KMTS to be expanded into only
Kripke structures where the required property is satisfied. In case F , the KMTS
should be repaired resulting in KMTSs where model checking results in T causing
changes in the expanded Kripke structures.

In this section we present the 3-valued model checking game proposed by
Grumberg in [12] and our proposal of an abstract algorithm over this game to
refine a KMTS model.

5.1 The 3-valued Model Checking Game

In the μ − calculus 3-valued model checking game proposed in [12], Grumberg
introduces the concept of non-losing strategy to identify the causes of ⊥ in model
checking besides the known concept of winning strategy. These games are defined
between two players, ∃ and ∀, where the player ∃ tries to verify the formula and
the ∀ tries to refute the formula.

The game for model checking a formula ϕ consists of a graph of configurations
of type s � ψ where s is a state of the model and ψ is a subformula of ϕ. These
configurations are determined from the decomposition of the formula ϕ in its
subformulas according to the rules presented in Figure 4, considering the states
and transitions of the KMTS model.

In Figure 5 we show an example of a graph of configurations of a 3-valued
model checking game. A configuration is classified as a ∃ configuration when ψ
is of the form of the antecedent of an ∃ rule and is represented as an ellipse
in the game graph and is classified as a ∀ configuration if ψ is of the form
of the antecedent of an ∀ rule and is represented as a rectangle in the game
graph. Dotted edges correspond to KMTS genuine may transitions (R−\R+)
and normal edges correspond to both KMTS must transitions and other moves
generated from the rules that do not involve transitions of the model.

The players move from their configurations according to a strategy. A strategy
of a player σ is a function between its configurations and all the configurations
of the game graph. A winning strategy of player σ is such that it makes σ win a
game independent of the strategy used by the other player. When neither players

124 P.T. Guerra, A. Andrade, and R. Wassermann

win the game, both of them have a non-losing strategy and the game results ⊥.
For example, in Figure 5 the bold edges are part of non-losing strategies of the
∀ player.

Rules of player ∃:
s � ψ0 ∨ ψ1

s � ψi
: i ∈ {0, 1} s � EXψ

t � ψ : R+(s, t) or R−(s, t)

s � ηZ.ψ
s � Z : η ∈ {μ, υ}

s � Z
s � ψ : if fp(Z) = ηZ.ψ, η ∈ {μ, υ}, and fp(Z)

is the unique subformula identified by Z

Rules of player ∀:
s � ψ0 ∧ ψ1

s � ψi
: i ∈ {0, 1} s � AXψ

t � ψ : R+(s, t) or R−(s, t)

Fig. 4. Rules of the model checking game

A play can be finite or infinite and it is defined as a sequence of configura-
tions C0, C1, ... such that there is an edge from Ci to Ci+1. Each configuration
of the graph is colored depending on the result of all plays starting from this
configuration: with T if the player ∃ wins, with F if the player ∀ wins, or ⊥ if
both players do not win (or do not lose). A necessary condition for a player to
win a play is to obey the restriction that all of his/her movements in the config-
urations of the play are through normal edges, meaning that the player does not
move between configurations that corresponds to genuine may transitions of the
model. Moreover, there are other conditions to determine the winner of a play
as presented below.

Conditions for the player ∃ win a play C0, C1, ...:
1. To exist a n ∈ N such that Cn = t � l and the state t of the model is

labelled with l or
2. To exist a n ∈ N such that Cn = t � AXψ and there does not exist
t′ ∈ S such that (t, t′) is a transition in the model or

3. the outermost variable that occurs infinitely often is of type υ

Conditions for the player ∀ win a play C0, C1, ...:
1. To exist a n ∈ N such that Cn = t � l and the state t of the model is

labelled with ¬l or
2. to exist a n ∈ N such that Cn = t � EXψ and does not exits t′ ∈ S

such that (t, t′) is a transition in the model or
3. the outermost variable that occurs infinitely often is of type μ

If neither player wins a play, the result of it is ⊥, meaning that both players
have a non-losing strategy for that play. A player wins a game if he/she wins all
the plays in the game from the initial configuration (s0 � ϕ).

To calculate the result of the game, one can color each configuration of the
graph bottom up with T , F or ⊥ depending on whether ∃ has a winning strat-
egy, or ∀ has a winning strategy, or both players have a non-losing strategy,

Revision of CTL through KMTS 125

respectively, in all plays starting from that configuration. Initially the deadend
configurations are colored (a deadend configuration is one that does not reach
another configuration), then the coloring proceeds to other configurations taking
other plays until all the configurations are colored as explained in next section.
The result of the game will be the color of the root node of the graph (configu-
ration s0 � ϕ). Figure 5 presents a game graph with the colored configurations
(represented by the symbols enclosed in parenthesis inside the node of the con-
figuration) and with edges that belong to the non-losing strategies of player ∀,
represented as bold edges.

s0 �AX((υZ.¬m ∧ AXZ)

∨ (μY.m ∨ AXY)) (⊥)
1 :

s1 � (υZ.¬m ∧ AXZ)

∨ (μY.m ∨ AXY) (⊥)
2 :

s1 � υZ.¬m ∧ AXZ (⊥)3 :

s1 � Z (⊥)4 :

s1 � ¬m ∧ AXZ (⊥)5 :

s1 � ¬m (⊥)6 : s1 � AXZ (⊥)7 :

s0 � Z (F)8 :

s0 � ¬m ∧ AXZ (F)9 :

s0 � ¬m (F)10 : s0 � AXZ (⊥)11 :

s1 � μY.m ∨ AXY (⊥)12 :

s1 � Y (⊥)13 :

s1 � m ∨ AXY (⊥)14 :

s1 � m (⊥)15 : s1 � AXY (⊥)16 :

s0 � Y (T)17 :

s0 � m ∨ AXY (T)18 :

s0 � m (T)19 : s0 � AXY (⊥)20 :

m

s0 s1

ϕ = AX(AG¬m ∨ AFm)

ϕ = AX((υZ.¬m ∧ AXZ) ∨ (μY.m ∨ AXY))

Fig. 5. Example of failure witnesses of non-losing strategy of player ∀

5.2 Implementing KMTS Repair

In this section we develop an algorithm to refine the KMTS (case M, s0 |= ϕ
is ⊥) based on the repair of the 3-valued model checking game. The algorithm
considers non-losing strategies (that are not winning strategies) for both players
∀ and ∃ defined in [12] to determine the witnesses of the failure. Our algorithm
consists of reducing the KMTS to represent only the Kripke structures that
satisfy the property ϕ by eliminating genuine may transitions, or transforming
genuine may transitions into must transitions, or changing the labels of undefined
states. At the end of this section we present a quick overview of an algorithm to
implement the repair when M, s0 |= ϕ is False.

From now on we will refer to the configurations of the game as nodes. Let ψ
be a subformula of ϕ. We define a witness of a failure in case M, s0 |= ψ is ⊥
one of the following transitions, which belongs to non-losing strategies of ∀ or
∃, found bottom up in the game graph: (1) a genuine may edge, coming from a
node of type AX colored ⊥, to a child node colored F or ⊥, (2) a genuine may
edge, coming from a node of type EX colored ⊥, to a child node colored T or
⊥, (3) a must edge, coming from a node of type EX colored ⊥, to a child node
colored ⊥, (4) an edge coming from a node of type si � l ∧ ψ to a node si � l

126 P.T. Guerra, A. Andrade, and R. Wassermann

colored with ⊥, (5) an edge from a node of type si � l ∨ ψ where its child node
si � l is colored with ⊥ and the other child is colored ⊥ or F . In Figure 5 the
bold edges are examples of failure witnesses.

In order to obtain all the Kripke models that satisfy the property, all failure
witnesses might be considered, resulting in different KMTSs. It is not necessary
to consider all possible combinations of changes in order to generate all possible
Kripke models because the KMTS expresses possibilities by the may transitions.
For example if a node s0 � EXp colored ⊥ has two may children nodes s1 �
p, s2 � p both colored T , it is enough to change only one may edge at a time
(to be a must edge), because the resultant KMTSs expresses the Kripke models
with both transitions as must.

KMTS M: AX(AG¬m ∨ AFm)

is indefinite from s0

m

s0 s1

Revised KMTSs: AX(AG¬m ∨ AFm)

is true from s0

m

s0

¬m

s1

m

s0 s1

m

s0

m

s1

m

s0 s1

Fig. 6. Example of KMTS refinement

The algorithm Revision-game controls the refinements of the model M from
the sequence of failure witnesses (Fwitness) identified by procedure Check-model,
which determines them from a the 3-valued model checker game. One failure of
Fwitness at a time is processed by Refine-game until no more failures exists in
Fwitness. For the game of Figure 5, Fwitness will be initialized with the sequence
of failure witnesses ((7, 8), (16, 13), (14, 15)), where a pair (m,n) represents the
edge from the node m to the node n of the game. Other failure witnesses are
considered by Refine-game to complement the change X = ({(s1, s0)} , ∅, ∅, ∅, ∅)
such as (5, 6) and (16, 13). The algorithm returns 4 KMTSs (see Figure 6)
that satisfy ϕ with the changes: (1) X = ({(s1, s0)} , ∅, ∅, ∅, {(s1,¬m)}), (2)
X = ({(s1, s0), (s1, s1)}, ∅, ∅, ∅, ∅), (3) X = ({(s1, s1)} , ∅, ∅, ∅, ∅), (4) X =
(∅, ∅, ∅, ∅, {(s1,m)}).

The algorithm Refine-game controls the possible refinements from a failure
witness of Fwitness. Each change X is used to the modification and recoloring
of the game graph by Recolor-game (which is supposed to call the 3-valued model
cheker). A change is done relative to the model, i.e., if an edge (m,n) corresponds
to the transition (si, sj) in the model, all edges (r, s) which correspond to (si,
sj) should be removed of the game graph and if the subgraphs from nodes s
are no more accessible from the root node they must be desconsidered by other
search for failure witnesses. If the model checker results ⊥, all the other failure
witnesses in Nwitness (determined by Recolor-game) are considered (one at a
time) to complement X by call Refine-game recursively. When the result of
model checking is T the model M(X) is returned, the game is restored to a

Revision of CTL through KMTS 127

previous state in order to other failures witnesses from Nwitness be considered
and achieve all possible complementations for the change X .

The algorithm Refine-play generates the change X according to Failure =
(m,n), i.e., the change generated depends on the cause of the failure which is
relative to the node m or n. Consider node m of type (si � ψ) and n of type
(sj � χ). Node m can be: a AX node (si � AXψ), a EX node (si � EXψ),
a disjunctive node of type si � ψ ∨ l, or a conjunctive node of type si � ψ ∧ l.
The conditions specified in the algorithm cover the cases described below that
represent the possible changes required.

A node EX is true if it has a must child colored with true, it is false if all
its may children are false and otherwise it is ⊥. If node m is a EX node and
n is colored T and (m,n) is a may transition, it should be transformed into a
must transition. A may edge to a node of type sk � V that represents loop in
the graph and V is a greatest fixpoint variable (ν) (formulas of type EG) is also
changed to must. A node AX is true if all its may (including must) children are
colored true, it is false if it has a must child colored false, otherwise it is ⊥. If
node n is colored F or ⊥ (not of type sj � l) the may transition (m,n) should be
cut, if it is ⊥ and of type sj � l two alternatives exits: the label of sj is changed
to contain l or the transition is cut. To consider both alternatives when a failure
witness of this type is found then this failure witness (m,n) is duplicated in the
sequence of witnesses (Fwitness or Nwitness) and in the second one the node is
represented as a negative number (−n). A node si � ψ ∧ l is colored ⊥ if it does
not have a child colored F and has one or both children colored ⊥. So, if node n
of type sj � l is colored ⊥ the label of sj should be changed. A node si � ψ ∨ χ
is colored ⊥ if it does not have a child colored T and has a child colored ⊥. So,
if node n of type si � l is colored ⊥ its label should be changed.

Algorithm 1. Revision-game()

Input: KMTS M to revise, property ϕ /* X is declared as a global variable */
Output: KMTSs resultant of the changes with s0 � ϕ colored T

1 Read(M , ϕ) ;
2 Check-model(M , ϕ, Fwitness); /* returns a 3-valued model checking game

graph and the possible failure witnesses in case s0 � ϕ colored ⊥ */
3 if s0 � ϕ colored ⊥ then
4 repeat
5 X := () ;
6 Refine-game(Fwitness, X) ;
7 Restore-game(head(Fwitness)) ;
8 Fwitness := tail(Fwitness) ;

9 until Fwitness = nil ;

10 end

128 P.T. Guerra, A. Andrade, and R. Wassermann

Algorithm 2. Refine-game(Fwitness, X)

Input: Fwitness - sequence of pairs (m,n) determining the failure witness edges
Output: KMTSs resultant of the changes with s0 � ϕ colored T

1 Failure := head(Fwitness);
2 Refine-play(Failure, X); /* X contains the changes to be done */
3 Recolor-game(ϕ, Nwitness, X); /* other failure witnesses are put in Nwitness if

they exists (s0 � ϕ is colored ⊥) */
4 if s0 � ϕ is colored T then
5 Return M(X) ;
6 Restore-game(Failure) /* the game is restored by removing the change

corresponding to Failure ;

7 else if s0 � ϕ is colored ⊥ then
8 while Nwtiness 	= nil do
9 Refine-game(Nwitness, X) ;

10 Nwitness := tail(Nwitness) ;

11 end

12 end

Algorithm 3. Refine-play(Change, X)

Input: Failure = (m,n) such that node m is colored ⊥ and is of type si � ψ
and node n is of type sj � χ

Output: Changes X

1 if node m is of type si � EXψ and n is colored T or (ψ = V and V is a
variable of type ν and n is colored ⊥ and (m,n) represents a loop in the game
graph then

2 X.P3 := X.P3 ∪ {(si, sj)};
3 else if node m is of type si � AXψ then
4 if node n is colored F or n is not of type sj � l and is colored ⊥ then
5 X.P1 := X.P1 ∪ {(si, sj)} ;
6 else if node n is of type sj � l and is colored ⊥ then
7 if n > 0 then X.P5 := X.P5 ∪ {(sj , l)};
8 else X.P1 := X.P1 ∪ {(si, sj)} ;

9 end

10 if node n is of type sj � l and m is not of type si � AXψ then
11 X.P5 := X.P5 ∪ {(sj , l)};
12 end

For the implementation of the repair of the KMTS when a property is in-
consistent with the model, a similar algorithm used for the refinement can be
developed. Winning strategies of player ∀ instead of non-losing strategies should
now be considered to identify some failure witnesses, combined with other failures
witnesses such as deadends nodes colored with F . The algorithm can proceed
also from bottom up changing labels or eliminating transitions that are causes
of the failure in the game.

Revision of CTL through KMTS 129

6 Final Remarks

As addressed before, general sets of Kripke structures cannot be represented by
a single KMTS (Proposition 2). A solution is to generalize KMTS revision to
deal with a set of KMTS instead of a single model. This solution increases the
revision complexity, but it is upperbounded by the complexity of CTL revision
(in the worst case, each KMTS will be a Kripke structure). The set of KMTS still
have on average a more compact representation, which allows the development
of more efficient revision methods.

Revision over KMTS structures is significantly more efficient than Kripke re-
vision. For example, the revision of the models of Figure 3 produces 32 repair
candidates, which have to be compared to the 8 initial models in order to select
the minimal ones, which involve approximately 256 comparisons. This compu-
tation can be even more complicated if it involves a fixpoint formula as EF or
AG, in the sense that it increases the number of repair candidates greatly, as the
number of redundant or useless change to achieve them. On the other hand, the
KMTS revision is almost straightforward fromM to the solution set of 4 KMTS,
with almost no redundant or useless modifications. The algorithms used for the
repair were specified over 3-valued model checking game which can be imple-
mented as two μ− calculus 2-valued model checking game [12]. It is noteworthy
that μ− calculus 2-valued model checking game for CTL is linear in time.

6.1 Related Work

Zhang and Ding [8] proposed the first approach on this line, improving model
checking with belief update theory [11]. As shown in [4], the choice of a belief
revision approach, rather then belief update, may avoid some unnecessary loss of
information in static contexts. Zhang and Ding [8] do not deal with partial sys-
tem information. Belief revision principles were adopted in [4], but with no focus
on partial system information. Although their framework may deal with partial
information by handling sets of models, its lack of a compact representation
like KMTS that can make it difficult to be used in real applications. Grumberg
[6] addresses KMTS representation, but the context is abstract model checking,
where a KMTS model represents an abstraction of a concrete Kripke structure.
Grumberg also proposes an algorithm based on 3-valued model checking to re-
fine a KMTS with a different proposal which consists in expanding an abstract
state of the KMTS (with some undefined literal) into concrete states (states of
the concrete Kripke structure that was abstracted in the KMTS). Finally, in
[7], the authors deal with KMTS and develop an algorithm, not using 3-valued
model checking, to repair KMTS models. Two main differences distinguish their
approach from ours: the focus is on abstract model checking and not on partial
system specification; and their proposal does not refer to a known change theory.

7 Conclusion

In this paper we presented a new approach to the revision of a set of CTL
models through the revision of a KMTS model. We considered the revision of

130 P.T. Guerra, A. Andrade, and R. Wassermann

KMTS both when the satisfiability of a property is undefined or is inconsistent
with the model. We defined a minimality criterion relative to KMTS repair and
proved that it preserves the minimality criterion relative to the repair of its set
of expanded CTL models as in [4]. We presented an algorithm to implement the
revision in case the property is undefined. The design of an algorithm for the
repair of the KMTS in case the property is false is our next goal.

The work presented here is a first step towards a framework for the automatic
repair of partial specifications. In this version of this work we considered only
changes of labels of states and the removal of transitions. We aim to propose a
generalization of this solution from an extension of the approach presented here.

Acknowledgments. The first author was supported by the grant #2010/15392-
3, São Paulo Research Foundation (FAPESP). The second author was sup-
ported by the grant #2012/16308-1, São Paulo Research Foundation (FAPESP).
The third author was supported by Brazilian Research Council (CNPq) grant
#304043/2010-9.

References

1. Clarke, E.M., Grumberg, O., Peled, D.A.: Model checking. Springer (1999)
2. Huth, M.: Model checking modal transition systems using kripke structures. In:

Cortesi, A. (ed.) VMCAI 2002. LNCS, vol. 2294, pp. 302–316. Springer, Heidelberg
(2002)

3. Alchourron, C., Gärdenfors, P., Makinson, D.: On the logic of theory change. J.
Symb. Logic 50(2), 510–530 (1985)

4. Guerra, P.T., Wassermann, R.: Revision of CTL models. In: Kuri-Morales, A.,
Simari, G.R. (eds.) IBERAMIA 2010. LNCS, vol. 6433, pp. 153–162. Springer,
Heidelberg (2010)

5. Guerra, P.T.: Revisão de modelos CTL. Master’s thesis, Univ. São Paulo (2010)
6. Grumberg, O.: 2-valued and 3-valued abstraction-refinement in model checking.

Information and Communication Security 25, 105–128 (2011)
7. Chatzieleftheriou, G., Bonakdarpour, B., Smolka, S.A., Katsaros, P.: Abstract

model repair. In: Goodloe, A.E., Person, S. (eds.) NFM 2012. LNCS, vol. 7226,
pp. 341–355. Springer, Heidelberg (2012)

8. Zhang, Y., Ding, Y.: CTL model update for system modifications. Journal of Ar-
tificial Intelligence Research 31(1), 113–155 (2008)

9. Clarke, E.M., Emerson, E.A.: Design and synthesis of synchronization skeletons us-
ing branching-time temporal logic. In: Kozen, D. (ed.) Logic of Programs, vol. 131,
pp. 52–71. Springer, Heidelberg (1982)

10. Clarke, E.M., Emerson, E.A., Sistla, A.P.: Automatic verification of finite-state
concurrent systems using temporal logic specifications. ACM Transactions on Pro-
gramming Languages and Systems (TOPLAS) 8(2), 244–263 (1986)

11. Katsuno, H., Mendelzon, A.O.: On the difference between updating a knowledge
base and revising it. In: Proc. of KR, pp. 387–395. Morgan Kaufmann (1991)

12. Grumberg, O., Lange, M., Leucker, M., Shoham, S.: When not losing is better than
winning: Abstraction and refinement for the full μ-calculus. Inf. Comput. 205(8),
1130–1148 (2007)

	Toward the Revision of CTL Models through Kripke Modal Transition Systems
	1 Introduction
	2 Preliminaries
	2.1 Computation Tree Logic
	2.2 CTL Model Revision

	3 Kripke Model Transition System as Sets of CTL Models
	3.1 Expanding KMTS into CTL Models

	4 Revision of KMTS Models
	5 Implementing Revision of KMTS Models
	5.1 The 3-valued Model Checking Game
	5.2 Implementing KMTS Repair

	6 FinalRemarks
	6.1 Related Work

	7 Conclusion
	References

