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Abstract. We show how to write a concise and elegant specification of
a linearly linked data structure that is applicable for both verification
and runtime checking. A specification of linked lists is given as an ex-
ample. The concept of a list is captured by an observer method which
is a functional version of a reachability predicate. The specification is
written in the Java Modeling Language (JML) and does not require ex-
tensions of that language. This paper addresses a mixed audience of users
and developers in the fields of formal verification, runtime checking, and
specification language design. We provide an in-depth description of the
proposed specification and analyze its implications both for verification
and for runtime checking. Based on this analysis we have developed ver-
ification techniques that fully automate the verification process, using
the KeY tool, and that are also described here.

1 Introduction

Linked data structures have been specified and verified in many works. Yet,
the specifications we found in the literature either are complex and therefore
difficult to understand by engineers or use logics and formulas which cannot be
employed by runtime checkers1 for popular languages such as Java. JML [11]
is a specification language that has been designed for verification and runtime
checking, but the language is used differently depending on which of the two
approaches is used. This often results in specifications that are incompatible
for the other approach. L. du Bousquet et al. [7] show that specifications used
for verification or for runtime checking, even if written in JML, often cannot
be exchanged for the other purpose. The combination of both approaches is,
however, important due to their complementary strengths (see, e.g., [7,18]).

We have developed JML specifications for a selection of methods that operate
on linked lists (get, size, acyclic, remove, insert). They are compatible with
deductive program verification on the actual source code level as well as with
runtime checking tools. For the verification we have used KeY [3] and for run-
time checking the testing tool JET [5]. Both tools use JML as the specification
language. The goal of the paper, however, is not only to provide ready-to-use
1 We use the term runtime checker as a synonym for testing tool. The term is motivated

by the runtime assertion checker (RAC) that is provided with JML [11].
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specifications, but to explain the design decisions with respect to verification and
runtime checking. Our goal is to explain to engineers that use runtime checkers
how to write specifications that are compatible with formal verification tools and
vice-versa.

To achieve readable and executable specifications we have decided to use
queries, also known as inspector or observer methods, instead of list abstrac-
tions using ghost fields. Since no ghost state has to be managed, (a) the
implementation can be executed as it is, without the need to extend it with code
that updates the ghost state in parallel to the normal execution, and (b) the user
does not have to think about and to specify two kinds of states. However, regard-
ing verification, reasoning with queries is not easy and has been even proposed
as a verification challenge [12]. During this research we created experiments with
over 5.000 LOC as steps towards a clear and automatically provable specifica-
tion. A great amount of work was to extend the proving techniques of the KeY
tool, as briefly described in Section 6. Specification readability and clear seman-
tics of the specification elements are crucial for ensuring correctness. We have
developed specifications that are readable and understandable also by software
engineers that are not experts in deductive verification.

Reachability is crucial for reasoning about linked data structures [14]. To il-
lustrate our approach, we specify the query method Node get(Node o,int n)
(Figure 2) which provides access to the n’th node of the list starting at node o,
following the field next. It can be seen as a functional version of a reachability
predicate but additionally it identifies the position of list nodes. Quantification
over the integer n (second parameter) results in quantification over all elements of
the list o (first parameter). This enables to express properties that involve tran-
sitive closure of the list, that a requirement holds for all elements of the list or in
a specific range, and that an element exists (is reachable) which fulfills a certain
property. Transitive closure and reachability cannot be expressed in first-order
logic, but they can be expressed in first-order logic with integers [4].

JML provides the reachability predicate \reach, which returns the set of ob-
jects reachable from a particular reference. Dealing with this predicate requires
reasoning about sets, something that we tried to avoid in order to reduce com-
plexity. Not all tools that use JML as a specification language fully support this
predicate, e.g. KeY and JET. Also, sometimes different semantics of the predi-
cate are needed [1]. In contrast, the semantics of get is given by its specification
or implementation, providing an easy way of exporting the semantics to various
tools. Using a self-defined method instead of a built-in function or predicate is
also more flexible for the user.

Structure of the Paper. Section 2 describes related work. A short introduction
to JML is given in Section 3. In Section 4 the query get is described which is
the basis for our specifications. Section 5 describes the specification of modifier
methods, i.e., methods that change the program state, as well as additional
queries. Section 6 describes verification techniques we have developed, experience
with runtime checking, and additional insights. Section 7 concludes the paper
and describes future work.
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2 Related Work

Specification Using Queries and/or Model Fields. linked list specifications mostly
either (a) describe the effect of mutator methods in terms of query methods, or
(b) use an abstraction of the concrete data structure implementation.

The usage of inspector methods within specifications to abstract away from
the concrete implementation is promoted by [8]. An explicit heap encoding limits
the information on which those methods depend. In [6], a formalization of pure
methods is presented that allows reasoning about method calls in JML specifica-
tions. Pure methods are encoded by uninterpreted function symbols and axioms.
The encoding can be applied to JML’s model fields, specification-only fields that
encode abstractions of the concrete state of a data structure.

A full JML specification for java.util.LinkedList can be found in [2]. It
has complex dependencies due to its hierarchy of containers but it hides imple-
mentation details. Our focus is different, it is on proving and testing the actual
implementation of a linked data structure. Ideas from both specifications can be
combined. Some technical differences are: they use model fields, we do not; they
use no recursive specification of the get method and it is not connected with a
“next” pointer; their specification of remove uses disjunctions (DNF versus CNF)
which is incompatible with our verification technique (item 3 in Section 6).

Dafny is used to specify and verify a linked list in [13]. The class node uses
two ghost fields: the sequence of data values stored in a node and its successors,
and a set consisting of the node and its successors. In contrast to our approach,
the specifications do not use any reachability predicate.

Specification Using FOL. Analysis of programs that manipulate linked lists by
using first-order axiomatizations of reachability information has been extensively
studied (e.g., [16,10]). The verification in [10] provides a first-order approxima-
tion of a reachability predicate. Two predicates characterize reachability of heap
cells. These predicates allow reasoning uniformly about both acyclic and cyclic
lists. While theoretically incomplete, the authors of [10] believe that the approach
is complete enough for most realistic programs.

In [14], the authors explore how to harness existing theorem provers for first-
order logic to prove reachability properties of programs that manipulate dy-
namically allocated data structures. The paper also provides a set of axioms for
characterizing the reachability predicate, which works only for acyclic lists.

Two abstractions, a predicate abstraction and a canonical abstraction, of a
(cyclic) singly-linked list are studied in [15]. The state of a program is represented
using a 3-valued FOL structure. The intuition is that a heap containing only
singly-linked lists is characterized by the connectivity relations between a set of
nodes and the length of list segments.

Specification Using HOL or Separation Logic. Zee et al. [20] verify full functional
correctness of linked data structure implementations. The correctness properties
include intractable constructs such as quantifiers and transitive closure. The
specification is written in higher-order logic (including set comprehension, λ-
expressions, transitive closure, cardinality of finite sets, etc.), and for verification
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JAVA + JML
1 public class Node {
2 //@ public model static JMLDataGroup footprint;
3 public /*@ nullable */ Node next; //@ in footprint;
4 ... }

JAVA + JML

Fig. 1. The class Node, representing list elements

the Jahob system was used. For some verifications (e.g., a sized list), additional
provers such as SPASS, MONA, and BAPA have been used by Jahob.

Separation logic, a generalization of Hoare logic, is powerful for handling the
framing problem which occurs with reasoning about heaps. In [9], linked lists
with views are investigated which is not immediately expressible in frameworks
such as JML. Separation logic is usually used for verification but it has also been
utilized for runtime checking [17]. An approach that combines separation logic
and dynamic frames is described in [19].

3 JML

Java Modeling Language (JML) is a behavioral interface specification language
used to specify the behavior of Java modules. Following is a short description of
JML clauses used in the paper. Full details can be found in [11].

The pre-state of a method call is the state of the program after passing pa-
rameters and before running the method’s code. The post-state is the state of
the program just before the method normally returns or throws an exception.

The public normal_behavior clause is used to specify behavior of method
calls that return normally. The requires clause specifies the method’s precondi-
tion, evaluated at the pre-state of the method call. The ensures clause specifies
properties that are guaranteed to hold at the end of the method call, in case
that the method returns normally. Two keywords that are used in ensures are
\old and \result. The first refers to the value of fields at the pre-state, and
the second is the value returned by the method when normally terminating. The
expression (\forall int i;φ;ψ) denotes the formula ∀i : int.(φ→ ψ).

The clauses assignable and accessible declare the frame properties of a
method. The former defines which (memory) locations can be updated during
method execution and the latter states the locations that the method may read
from. A set of locations can be declared using a model field of class JMLDataGroup.
For instance, the model field footprint in Lines 2-3 of Figure 1 denotes the lo-
cation set of the field next for all receiver objects of class Node. The empty set
is denoted as \nothing.

The measured_by clause is used when the specification is recursive. It en-
ables to describe a termination argument, ensuring that the specification is well-
defined. It defines an integer-valued expression that must always be at least zero
and it has to decrease strictly for each (recursive) call.
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JAVA + JML
1 /*@ public normal_behavior
2 requires n>=0;
3 assignable \nothing;
4 accessible Node.footprint;
5 ensures (o==null || n==0) ==> \result == o;
6 ensures n>0 ==> \result == (get(o,n-1)!=null?
7 get(o,n-1).next : null);
8 measured_by n;
9 @*/

10 public static /*@nullable pure*/ Node get(/*@nullable*/Node o, int n){
11 int i=0; Node oldo = o; //oldo is a temporary variable
12 /*@ loop_invariant 0<=i && i<=n && o == get(oldo,i);
13 assignable \nothing; //syntactically not supported by JET
14 decreases n-i; @*/
15 while(i<n && o!=null) {
16 o=o.next;
17 i++;
18 }
19 return o;
20 }

JAVA + JML

Fig. 2. Specification and implementation of the query method get

Member fields, formal parameters, and method return types are by default
considered to be non_null. In order to enable them to have a null value, they
explicitly have to be annotated with the modifier nullable.

4 The Observer Method Get

In order to express properties of a list, we use the method Node get(Node o,
int n) (Figure 2) which provides access to the n’th node of the list starting
at node o, following the field next. It can be seen as a functional variant of
a reachability predicate, allowing quantification over list elements. The chosen
signature is a functional version of a get-method where the usually implicit this
pointer is made explicitly as the first argument. The rational was to allow the
first element to be the null pointer during our experiments. However, different
signatures can be used, e.g. get(int n), where o is a field or the this pointer.

4.1 Specification of the Get Query

Figure 2 presents a recursive specification of the method get. Line 5 defines
the base-case, where either the element at position 0 is accessed or the list is
empty, i.e. null. Lines 6-7 define the step-case for n>0, with a case distinction
that checks whether the element at position n-1 is null. If it is not null, then
get(o,n) is defined as get(o,n-1).next; otherwise, it is also null.
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For modular reasoning, the framing properties of get must be defined in
addition to the functional specification. Framing properties are important to
help verification and do not have to be used for runtime checking, as the latter
does not abstract the code. The assignable clause expresses what locations
might have been modified by a method (cf. Section 3). More interesting, however,
is the inverse, i.e., the locations that have not been modified. For every field f
not mentioned in the assignable clause, the implicit postcondition f==\old(f)
can be assumed. This information is important for verification to relate pre- and
post-state. The method get is (strictly) pure, thus it does not modify the heap’s
state and can be used in specifications.

The result of get depends not only on the values of the parameters o and n,
but also on the next field values of the Node objects of the list starting at node o.
Hence, whenever an assignment to next has been made, the value of the method
may have been changed. The difficulty in specification and verification when
using observer methods is in tracking the return values of the observer methods
according to the changes in states they depend on. The accessible clause, also
called dependency clause, describes which memory locations the method depends
on. The dependency clause in Line 4 of Figure 2 is an over-approximation. The
state of all locations that are not mentioned in the dependency clause can be
ignored when evaluating the method, which considerably simplifies verification.

4.2 Implementation of the Get Query

The specification of get can be used both for specifying and for verifying prop-
erties of a list. The first method that we have verified using get is the imple-
mentation of get itself. A recursive code is the most trivial to implement and to
verify. However, we demonstrate the more interesting iterative implementation,
since a loop invariant, which uses the recursively defined query get, has to be
provided or computed. As can be seen in Figure 2, the loop invariant is very
concise—which is one of our goals. The code annotations, however, bear some
problems that will be described next, together with the solutions that we have
successfully applied.

Required Lemma. The specification of get (Figure 2) implicitly implies that if
i is the last element’s index, then for all n, with i < n, get returns null. This is
needed for the verification, to prove the postcondition for the case that the loop
in Lines 15-18 terminates due to the condition o==null, and i<n evaluates to
true. If a verification system is not able to derive this knowledge automatically, it
must be provided by the user—for instance as a lemma. One possibility to do this
in JML is to declare a pure void method, say lem_getTransNull, which contains
the lemma in its postcondition (see Figure 3). A runtime checker, however, will
not be able to execute the postcondition as it uses unbounded quantification.
In such cases it may just ignore the postcondition. Since the lemma is needed
only as a hint for the verification tool, this lack of compatibility with runtime
checking is not a problem. To use it for verification, lem_getTransNull can be
inserted into the code in Figure 2 after Line 18. An implementation that ensures
i==n at loop exit does not need the lemma.



Specifying a Linked Data Structure in JML 105

JAVA + JML
1 /*@ public normal_behavior
2 assignable \nothing;
3 ensures (\forall int j; 0<=j && get(o,j)==null;
4 (\forall int k; j<k; get(o,k)==null)); @*/
5 public static void lem_getTransNull(/*@nullable */ Node node){};

JAVA + JML

Fig. 3. Encoding of a null transitivity lemma of the query method get

JAVA + JML
1 ... measured_by n; */
2 public /*@nullable pure*/ Node getImpl(/*@nullable*/Node o, int n){
3 int i=0; Node oldo = o;
4 /*@ loop_invariant 0<=i && i<=n && o == get(oldo,i); ...

JAVA + JML

Fig. 4. Implementation of the query method get

Well-definedness Issues: The measured_by Clause. The specification of the get
query (Figure 2) contains the measured_by n; clause. This clause requires that
each time the method is called a) the value of the argument n is decreased
and b) n ≥ 0. These conditions ensure the method’s termination and hence
its well-definedness. However, the loop invariant in Figure 2 is problematic, as it
permits i==n. When the subformula o==get(oldo,i) is evaluated and i==n, the
call get(oldo,n) is encountered which violates condition a) of the measured_by
clause. This can be a problem also for runtime checking, and not only for ver-
ification: the checker may not terminate when checking the loop invariant. To
enforce the first condition, the following two solutions can be applied:

Solution 1. Distinction between the Program and the Specification Function. This
solution explicitly distinguishes between the get query, which will be used for
specification only, and the method used for implementation, say getImpl (Fig-
ure 4). Both queries get and getImpl co-exist. The expression n following the
measured_by clause of get is independent of that employed in getImpl. In order
to use get also by a runtime checker, the implementation must be provided.

Solution 2. Expanding the Definition of get in the Loop Invariant. Since the
second argument of get is decreased in each recursion step, manual expansion
of the specification of o==get(oldo,i) ensures the satisfaction of the required
conditions of the measured_by clause. However, the specification is larger and
less readable.

5 Specification of Modifier Methods

Modifier methods, also called mutators, are non-pure ones, i.e., they can modify
fields of objects. We will show two of them: remove and insert. Figure 5 shows
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an implementation of the remove method. A trivial specification of the method
is shown in Figure 6, where Line 5 of the specification describes the effect of the
assignment in Line 3 of the implementation. The specification formalizes how
the next field is changed by the method when the precondition is satisfied. The
specification is strong and correct, but it is not suitable for our approach as it
does not specify how the result of get has changed.

The problem is that, in contrast to runtime checking, in verification a query
that uses recursion or a loop cannot be simply executed as this execution would
not terminate for arbitrary inputs. Instead, the value of the query has to be
deduced. This is not just the framing problem but the question of how exactly
values have changed. The addressed problem is typical for specifications with
queries used in modular verification. Handling this problem has been proposed
as a verification challenge [12] and is addressed in different works (see Section 2).
It can be explained using an example, summarized by the following three lines:

assume value of get(o,i) is known
assign u.next:=b
assert φ(get(o,i))

Assume that the value of get(o,i) is known, e.g. from a precondition. Then
a reference value b is assigned to the field next of an object u of class Node.
Such an assignment may occur in a modifier method, for instance remove. Since
the field next has been modified and the query is heap-dependent, the return
value of the query may have changed after the assignment. The problem is in
determining the value of the get(o,i) query after the state change in order to
check whether it fulfills some condition φ, e.g. the postcondition. In contrast to
runtime checking, in modular verification the query is not executed but rather
only the information from its specification is used2. However, whereas the value
of the field next in Figure 6 is specified, the evaluation of the get query is not.

JAVA

1 public static void remove(Node o, int i){
2 Node n=get(o,i-1);
3 n.next=n.next.next;
4 }

JAVA

Fig. 5. Implementation of the modifier method remove

A similar problem occurs also with the other queries: size and acyclic.
When verifying a program which invokes the query remove two times in a row,
e.g. remove(o,i);remove(o,k);, the postcondition of the first invocation of
remove must imply the precondition of the second invocation:

2 Also in verification the implementation of the query can be used instead of the
specification, but since the state space is infinite, or arbitrarily large, it cannot be
flattened to a finite set of executions.
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JML
1 public normal_behavior
2 requires 0<i && i<size(o) && acyclic(o);
3 assignable Node.footprint; //for KeY: get(o,i-1).next;
4 accessible Node.footprint;
5 ensures \old(get(o,i-1)).next==\old(get(o,i+1));

JML

Fig. 6. A precise specification of the method remove

JML
1 /*@ public normal_behavior
2 requires 0<i && i<size(o) && acyclic(o);
3 assignable Node.footprint; //for KeY: get(o,i-1).next;
4 accessible Node.footprint;
5 ensures (\forall int j;0<=j && j<i; get(o,j)==\old(get(o,j)));
6 ensures (\forall int k;i<k && k<=\old(size(o));
7 get(o,k)==\old(get(o,k+1)));
8 ensures size(o) == \old(size(o))-1 && acyclic(o); @*/

JML

Fig. 7. Specification of the method remove using the query get

. . .

postcondition of remove(o,i)
︷ ︸︸ ︷

\old(get(o, i− 1)).next = \old(get(o, i+ 1)) →
precondition of remove(o,k)

︷ ︸︸ ︷

0 < k ∧ k < size(o) ∧ acyclic(o)

where ‘. . .’ stands for additional assumptions, e.g. 0 < k < i < size(o), to ensure
validity of the formula. In order to prove this formula, knowledge is needed of
how the new information about the field next changes the evaluation of size
and acyclic. This knowledge can be provided either in the form of a lemma,
or, following our approach, in the postcondition of the modifier method.

5.1 Specification of the Method Remove Using Queries

A specification of the remove method that uses the get query is provided in
Figure 7. Since the specification describes the return value of get after calling
remove, one can regard it also as a specification of the query with respect to the
execution of remove. The specification contains three postconditions. The first

Fig. 8. Correspondence of list nodes before and after removing element B
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JAVA + JML

1 /*@ public normal_behavior
2 requires 0<i && i<=size(o) && acyclic(o);
3 requires e.next==null && (\forall int i;0<=i && i<=size(o);get(o,i)!= e);
4 assignable Node.footprint;
5 accessible Node.footprint;
6 ensures (\forall int j;0<=j && j<i;get(o,j)==\old(get(o,j)));
7 ensures get(o,i) == e;
8 ensures (\forall int k; i<k && k<=\old(size(o))+2;get(o,k)==\old(get(o,k-1)));
9 ensures size(o) == \old(size(o))+1 && acyclic(o); @*/

10 public static void insert(/*@nullable */ Node o, int i, Node e){
11 Node tmp = get(o,i-1);
12 lem_getTransNull(o); //this is a lemma, see Figure 3
13 e.next = tmp.next;
14 tmp.next = e;
15 }

JAVA + JML

Fig. 9. Specification and implementation of insert using queries

JAVA + JML
1 /*@ public normal_behavior
2 requires (\exists int i; ((o==null && i==0) ||
3 (i>0 && get(o,i-1)!=null && get(o,i)==null)) );
4 assignable \nothing;
5 accessible Node.footprint;
6 ensures ((o==null && \result==0) ||
7 (\result>0 && get(o,\result-1)!=null && get(o,\result)==null)); @*/
8 public static int /*@ pure */ size(/*@nullable */ Node o){...};

JAVA + JML

Fig. 10. Specification of the query method size

(Line 5) describes the new value of the query with respect to its old one (i.e.,
before executing the method) for the list interval that has not been changed.
The second postcondition (Lines 6 and 7) describes the interval after the re-
moved element; here the list has been shifted as depicted in Figure 8. These two
postconditions solve the problem of proving the following assertion:

assume value of get(o,i) is known
invoke remove(o,j)
assert φ(get(o,i))

If the formula φ(get(o,i)) is true, it can be proved using the specification given
in Figure 7 instead of the one in Figure 6. The reason is that full information
about get is available after invoking remove.

The third postcondition (Figure 7, Line 8) specifies the return values of size
and acyclic in the post state of remove. Hence, when calling remove twice in
a row, sufficient knowledge is provided to the theorem prover to prove that the
postcondition of the first invocation implies the precondition of the second one.

The specification of insert (Figure 9) follows similar principles to those of
remove. Programs constructed with these methods can therefore be verified using
the methods’ contracts.
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5.2 List Size and Acyclicity

The size query, which returns the list’s length, is used in Lines 2, 6, and 8
of Figure 7. Note that the length of the list is arbitrary and not fixed, i.e.,
the correctness proof is valid for every length. The specification is also cor-
rect without the upper bound \old(size(o)) of the quantification (Line 6), as
get(o,i)==null when i>size(o). Omitting the upper bound even simplifies
the verification since less queries are used, the formula is smaller, less case dis-
tinctions have to be made, and quantifier instantiation—a well-known problem
in theorem proving—is simpler. However, we have included the quantification
bound as it is important for runtime checking tools. Such tools check the quan-
tified formula explicitly for all elements of the quantification domain, e.g., by
using a for-loop, thus they usually cannot handle unbounded quantifiers.

Fig. 11. Removing element B within a
cycle of a cyclic list

Fig. 12. Removing element B at the
beginning of the cycle of a cyclic list

One way to refer to the list’s size is by storing it in a field of the class Node.
The value of this field can be defined using a class invariant and has to be
explicitly updated by the methods that modify the list. This approach simplifies
verification since in our approach the return value of size has to be deduced
from the list structure every time it is used. Nevertheless, we decided to use a
query in order to follow rigorously one approach.

Figure 10 shows the specification of size that we have used for verification.
It uses neither recursion nor quantifiers. Since the query is used inside other
specifications, keeping it small and simple is very important for reducing proof
complexity. When using other variants to specify size, e.g. a recursive specifica-
tion, automatic proof attempts of remove were more complicated or even failed.
For cyclic and infinite lists the precondition of size is false and its return value
is undefined. Acyclicity of the list must be ensured from the context where the
query is used as it is the case for the specifications of remove and insert.

Acyclicity is required for using the modifier methods (e.g., Figure 7, Line 2).
It can be implicity expressed as \exists int i;i==size(o). However, using an
explicit specification of acyclicity is much more efficient and practical. Figure 13
shows the specification of the query acyclic. A cycle exists if there are two
distinct integers i and j such that get(o,i)==get(o,j) and get(o,i)!=null.

The methods remove and insert can be generalized for cyclic lists. However,
then the specification and verification become more complicated. The problem
occurs when removing an element within the cycle, as shown in Figure 11. When
traversing the list in the pre- and poststate of remove, the size of the interval
on which the list is shifted is increased each cycle. A solution is to redefine size
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JAVA + JML
1 /*@ public normal_behavior
2 assignable \nothing;
3 accessible Node.footprint;
4 ensures \result == (\forall int i;0<=i && i<=size(o);
5 (\forall int j;i<j && j<=size(o);
6 (get(o,i)!=null==>get(o,i)!=get(o,j)))); @*/
7 public static boolean /*@ pure */ acyclic(/*@nullable*/ Node o){...};

JAVA + JML

Fig. 13. Specification of the query method acyclic

such that it will return the length of the list before the cycle repeats. To handle
cyclic lists, also the implementation of remove (Figure 5) has to be changed.
The reason is that if the element that is removed is the first in the cycle, then
two pointers, rather than one, must be changed. Otherwise, the shape of the list
may change without actually removing the element (Figure 12).

5.3 The Order of Postconditions Reflects Semantic Dependencies

The postconditions are connected via a conjunction. Nevertheless, the order of
the postconditions is structured in a specific way to assist a verification tool in
finding a proof. To prove one of the postconditions, but the first, in the specifi-
cation of remove and insert, the preceding postcondition must be assumed as
a premise. For instance, a proof of the postcondition in Lines 6-7 of Figure 7 re-
quires the postcondition in Line 5 as an assumption. The reason is that to prove
that the list has been shifted by one element after the removed element (Lines
6-7), the assumption is needed that it was not shifted on the interval before the
removed element (Line 5); see also Figure 8. The postcondition in Line 8 adds
another layer to the specification, which semantically depends on the postcondi-
tions in Line 5-7. It formalizes properties of size and acyclic in the poststate
of remove. These queries are defined in terms of get, i.e., when replacing the
queries by their postconditions, a formula is obtained that uses get as the only
query. Hence, to prove the postcondition in Line 8, those in Lines 5-7 must be
used as premises, as full information about get in the poststate of remove is
needed. A similar argumentation explains also the sequential dependency of the
postconditions of insert in Figure 9. This is a new technique, hence existing
tools need to be extended, as we did in KeY, to utilize the postcondition order.

6 Verification, Runtime Checking, and Discussion
Verification. To verify the code presented in the listings we have used an ex-
tended version of KeY, a tool that enables automatic and interactive verification.
Some techniques used by it are: symbolic execution of Java programs, handling
of pointer aliasing, first-order theorem proving with quantifier handling via E-
matching, and reasoning with integer arithmetics. It also allows applying an in-
duction rule interactively by supplying an induction hypothesis. Such features,
or equivalent ones, are needed for the verification of the code.
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To achieve fully automatic verification of the presented code we have inves-
tigated the verification conditions that arose and developed techniques that in-
crease KeY’s power by several orders of magnitude for programs with recursive
specifications and queries. I.e., each improvement eliminated a big set of user
interactions of a certain category that were needed. A detailed description of
these techniques cannot be given in this paper due to lack of space. We briefly
point out three techniques that we have developed as a result of this research:

(1) A set of strategies for replacing occurrences of queries in verification
conditions by their definitions, i.e. by their pre- and postconditions. Originally,
KeY performed such replacements randomly, but for handling recursive queries
such as get well-designed strategies are needed. Since the query get is spec-
ified recursively, the effect of the query expansion is that the second argu-
ment of the query is subtracted by one. Performing such a replacement is re-
quired in order to prove equality between terms. For instance, in order to prove
Φ → get(o, i) = get(o, i + 1), where Φ contains some assumptions that are not
shown here, it may be necessary to apply query expansion to the term get(o, i+1),
i.e., to get a term with get(o, (i+1)−1) that will match the term get(o, i). Orig-
inally KeY has chosen randomly which queries to expand but this approach
did not lead to successful proofs. We have developed several query expansion
heuristics which improved verification also of other kinds of programs than those
described in this paper. The following three query expansion heuristics are re-
quired: expansion of queries after execution of the loop body; breadth-first query
expansion (all queries expanded once, then twice, etc.); and detection and sup-
pression of infinite loops in the proof caused by unfolding of recursive queries.

(2) Automatic application of integer induction on postconditions that use
quantifiers (Figures 7 and 9). Induction is essential to prove these postcondi-
tions. A characteristic of the quantified formulas in the specifications is that
they put two terms with the query get which are evaluated in two different
states, i.e. pre- and poststate, into relation, e.g.:

get(o,j)==\old(get(o,j)). (1)

The only useful reasoning step that can be applied to this equation is unfolding
these queries which, leads among other formulas to the equation

get(o,j-1)==\old(get(o,j-1)). (2)

Hence, if we assume (2), then the original Equation (1) can be proved. However,
repeating such unfolding does not terminate, because j stands for an arbitrary
number. Only for a concrete value, e.g. where j = 0, the Equation (1) can be
proved using unfolding. Looking closely at these steps one can see that this is
induction. We have extended KeY to perform automatically integer induction on
the postconditions with quantified formulas. Fortunately, it is sufficient to use the
quantified formulas as induction hypotheses that occur in the postconditions to
prove them, hence no additional complicated techniques are needed to generate
induction hypotheses.

(3) Reuse already proved formulas as lemmas for further proofs. The post-
conditions are proved sequentially and used as premises or lemmas for proving
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following postconditions. This extension was necessary due to the semantic de-
pendencies between the postconditions (see Section 5.3). This approach mimics
the proving style of the theorem prover Isabelle. Hence, from a broad perspective
this idea is not new but we have not seen this style of specification in JML or
being applied for the specification of lists in the related work.

With these improvements the verification proof of remove involves approx-
imately 100.000 rule applications and the proof of insert is in the range of
150.000 rule applications. In comparison, using KeY to verify code of similar
size (not related to lists) that does not use recursion and that does not require
induction can be typically proved using approximately 1.000 rule applications.

Runtime Checking. For testing the code and the specifications using a runtime
checker we have used the automatic random testing tool JET [5]. No changes to
the code have been required. However, to create more meaningful tests we have
encapsulated the test code with a test driver. The goal was not to check if the
code and specification are correct—they already have been formally verified—but
rather to check if the specification is compatible with a runtime checker. KeY and
JET do not use the same JML dialect, thus we have been required to change the
way frame conditions are written (see remark in Section 4.1). Since our approach
does not use sophisticated frame conditions but rather only safe approximations,
the transformation of specifications between both dialects is safe and trivial. The
most important change we have used for an intermediate specification was to
introduce upper bounds of quantification in the specification, using the query
size. Adding the size query and the upper bound to the quantifications made
the verification more difficult, thus more improvements in KeY were required.

Discussion. We have compared our approach to alternative ones. One alter-
native is to use arrays or sequences as abstract data types for lists. Such an
abstraction stores a copy of the list and provides direct access to its elements
via an index, e.g. a[i], similar to get(o,i). The fundamental difference is that
an array (sequence) has its own (ghost-) state that exists in parallel to the state
of the actual list, whereas the method get derives a value from the state of
the list. Specification and verification of list operations using arrays (sequences)
abstraction differ from approaches employing query methods. A coupling invari-
ant that relates the content of the array (sequence) with the state of the list is
needed. When the list is modified, the array (sequence) must also be changed
explicitly using JML’s set keyword. For runtime checking this means that the
original code must be extended with ghost code. We found that these additional
annotations and ghost state simplify verification, since induction is not needed.
However, this overhead can make specifications larger and harder to understand,
issues which we tried to avoid by using the suggested approach. The approach
we followed can also be generalized for handling data types other than lists.

To ensure that the specifications of the methods also work for verification in
practice when reasoning with method contracts, we have verified some simple
programs that use these methods. Specifying and automatically verifying dis-
jointness of two lists after calling the modifier methods was no problem. We yet
have not investigated programs with shared lists, where the nodes u and o are
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distinct and there exist integers i and j such that get(u, i) = get(o, j). To verify
such programs, additional lemmas are needed. We have verified some of them,
such as ∀o, u : Node. ∀i : int.u = get(o, i) → get(u, j) = get(o, i + j).

We have experimented also with specifications for trees. Quantification over
the nodes of a tree is complicated due to the branching nature of a tree. One
possibility is using quantification over arrays which describe paths in the tree.
However, runtime checking tools have problems with such quantification and also
reasoning is difficult. Several possibilities exist for precisely indexing nodes in a
tree using integers. Quantification over integers works for runtime checking but
the arithmetics is very complicated for verification. A more suitable specification
approach for verification is using a “contains” query for specifying containment of
nodes and subtrees. This approach is, however, problematic for runtime checking
due to quantification over nodes. Whether it is possible to write specifications
for trees that are compatible with verification and runtime checking is thus an
open question.

7 Conclusion and Future Work

The paper describes how a specification of a linked data structure can be written
that is compatible with runtime checking and verification—a goal that existing
specifications often do not satisfy [7]. As an example, we presented a specification
of linked list operations using JML that is readable, that is based on first-order
logic with integers, and that is, to the best of our knowledge, unique considering
all its characteristics. Along that presentation we elaborated problems that arise,
related to verification and runtime checking, and our solutions. We developed
the ideas and techniques based on several hundred experiments consisting of
verification tasks that were conducted during this research.

Using queries for specification makes verification difficult, and has been pro-
posed as a challenge in verification [12]. However, such specifications are easily
readable, can be executed by runtime checkers, and can be used as abstractions
in verification. Using the self-defined query get rather than a special construct,
i.e. JML’s reachability predicate, enables flexibility, as users can define their
own queries. The semantics of such a query is given by its implementation and
specification, thus it can be understood by other tools.

We have investigated what verification techniques are needed for automatic
verification. Additional techniques we have developed are: strategies for replacing
(recursive) queries by their definition in formulas; automatic application of inte-
ger induction on the postconditions that contain quantifiers; and reuse of already
proven postconditions as premises for proving succeeding postconditions.

Future plans are handling of shared lists and extension of the approach to
other linked data structures. One idea is deducing of framing conditions for
queries.
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