
Institution-Based Semantics

for MOF and QVT-Relations

Daniel Calegari1 and Nora Szasz2

1 Facultad de Ingenieŕıa, Universidad de la República, Uruguay
dcalegar@fing.edu.uy

2 Facultad de Ingenieŕıa, Universidad ORT, Uruguay
szasz@ort.edu.uy

Abstract. To cope with formal verification issues within the Model-
Driven Engineering (MDE) paradigm, a separation of duties between
software developers is usually proposed: MDE experts define models and
transformations, while formal verification experts conduct the verifica-
tion process. This is often aided by (semi)automatic translations form
the MDE elements to their formal representation in the semantic domain
used for verification. From a formal perspective, this requires semantic-
preserving translations between the MDE elements and the semantic do-
main. The aim of this paper is to present formal semantics for the MOF
and QVT-Relations languages which are standard languages for defining
metamodels and model transformations, respectively. The semantics is
based on the Theory of Institutions and reflect the conformance relation
between models and metamodels, and the satisfaction of transforma-
tion rules between pairs of models. The theory assists in the definition
of semantic-preserving translations between our institutions and other
logics which will be used for verification.

Keywords: MOF, QVT-Relations, formal semantics, Theory of Insti-
tutions, verification.

1 Introduction

The Model-Driven Engineering paradigm (MDE, [1]) envisions a software de-
velopment life-cycle driven by models representing different views of the system
to be constructed. Its feasibility is based on the existence of a (semi)automatic
construction process driven by model transformations, starting from abstract
models of the system and transforming them until an executable model is gener-
ated. The Object Management Group (OMG) has conducted a standardization
process of languages for MDE. They defined the MetaObject Facility (MOF,
[2]) as the language for metamodeling as well as three transformation languages
with different transformation approaches. The Query/View/Transformation Re-
lations (QVT-Relations, [3]) is one of those languages and follows a relational ap-
proach which consists of defining transformation rules as mathematical relations
between source and target elements. Since the quality of the whole development

J. Iyoda and L. de Moura (Eds.): SBMF 2013, LNCS 8195, pp. 34–50, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Institution-Based Semantics for MOF and QVT-Relations 35

process strongly depends on the quality of the models and model transforma-
tions, verification is a must, and in some cases formal methods arise as a tool
for strengthening verification results. To cope with this situation, a separation of
duties between software developers is usually proposed. On the one side there are
those experts in the MDE domain, and on the other, those in formal verification.
This gives rise to different technological spaces [4], i.e. working contexts with a
set of associated concepts, body of knowledge, tools, required skills, and possi-
bilities. In general terms, MDE experts define models and transformations, while
formal verification experts conduct the verification process, often aided by some
(semi)automatic generation process which translates the MDE elements to their
formal representation in the semantic domain used for verification purposes.

We are exploring a comprehensive formal environment enabling this scheme.
This environment requires semantic-preserving translations between the MDE
elements and the chosen semantic domain. Moreover, different logics (e.g. modal
logic, predicate logic) can be used by verification experts. In this context, the
biggest problem is perhaps the maintenance of multiple formal representations of
the sameMDE elements and the complexity of linking different semantic domains
to perform a comprehensive verification using multiple semantic domains.

The aim of this paper is to present formal semantics for the MOF and the
QVT-Relations languages in a flexible way to solve the problems described be-
fore. We base our proposal on the heterogeneous specification approach [5,6],
which consists in having different mathematical formalism for expressing differ-
ent parts of the overall problem and defining semantic-preserving mappings in
order to allow “communication” between the formalisms. This approach uses as
a basis the Theory of Institutions [7]. Using this theory we define institutions to
represent the conformance relation between MOF models and metamodels and
the satisfaction of QVT-Relations transformation rules between pairs of mod-
els. The theory also assists in the definition of semantic-preserving translations
between our institutions and other logics which will be used for verification.

The remainder of the paper is structured as follows. In Section 2 we introduce
the elements involved in the MDE technical space which will be part of this
work and we introduce a running example. Then, in Section 3 we summarize
the general schema we follow for defining formal semantics based on the Theory
of Institutions. In Section 4 we formally define an institution for MOF, and in
Section 5 we define the institution for QVT-Relations. Finally, in Section 6 we
present some conclusions and guidelines for future work.

2 An Introduction to the MDE Technical Space

In MDE everything is a model, i.e. an abstraction of the system or its environ-
ment. Every model conforms to a metamodel, i.e. a model which introduces the
syntax and semantics of certain kind of models. MOF is a standard language for
metamodeling. A metamodel defines classes which can belong to a hierarchical
structure and some of them must be defined as abstract (there are no instances
of them). Any class has properties which can be attributes (named elements

36 D. Calegari and N. Szasz

with an associated type which can be a primitive type or another class) and
associations (relations between classes in which each class plays a role within
the relation). Every property has a multiplicity which constraints the number of
elements that can be related through the property. There are conditions (called
invariants) that cannot be captured by the structural rules of these languages, in
which case modeling languages are supplemented with another logical language,
e.g. the Object Constraint Language (OCL, [8]).

Let us consider a simplified version of the well-known Class to Relational
model transformation [3]. The metamodel on the left-hand side of Figure 1 de-
fines UML class diagrams, where classifiers (classes and primitive types as string,
boolean, integer, etc.) are contained in packages. Classes can contain one or more
attributes and may be declared as persistent, whilst attributes have a type that
is a primitive type. On the right-hand side of Figure 1 there is an example of
a model composed by a persistent class of name ID within a package of name
Package. The class has an attribute of name value and type String.

Fig. 1. Class metamodel and model of the example

A model transformation (or just transformation from now on) basically takes
as input a model conforming to certain metamodel and produces as output
another model conforming to another metamodel (possibly the same). QVT-
Relations follows a relational approach which consists on defining transformation
rules as mathematical relations between source and target elements. Although
transformations can be defined between multiple metamodels at the same time,
we will only consider a source and a target metamodel.

A transformation can be viewed as a set of interconnected relations which are
of two kinds: top-level relations which must hold in any transformation execution,
and non-top-level relations which are required to hold only when they are referred
from another relation. We can view a relation as having the following abstract
structure [3]:

Institution-Based Semantics for MOF and QVT-Relations 37

[top] relation R {

<R_var_set> <R_par_set>

Domain {

<domain_k_var_set> <domain_k_pat>

} //k = 1,2

[when <when_var_set> <when_cond>]

[where <where_cond>]

}

Every relation has a set <R_var_set> of variables occurring in the relation,
which are particularly used within the domains (<domain_k_var_set>) and in
the when clause (<when_var_set>). Each relation defines a source and a tar-
get pattern <domain_k_pat> which is used to find matching sub-graphs in a
model and can be viewed as a graph of typed pattern elements and pattern
links, together with a predicate which must hold. Relations can also contain
when (<when_cond>) and where (<where_cond>) clauses. A when clause speci-
fies the conditions under which the relationship needs to hold, whilst the where
clause specifies the condition that must be satisfied by all model elements par-
ticipating in the relation. The when and where clauses, as well as the predicate
of a pattern, may contain arbitrary boolean OCL expressions in addition to the
relation invocation expressions. Finally, any relation can define a set of primitive
domains which are data types used to parameterize the relation (<R_par_set>).

The standard checking semantics states that a rule holds if for each valid
binding of variables of the when clause and variables of domains other than the
target domain, that satisfy the when condition and source domain patterns and
conditions, there must exist a valid binding of the remaining unbound variables of
the target domain that satisfies the target domain pattern and where condition.

The Class to Relational transformation basically describes how persistent
classes within a package are transformed into tables within a schema. Attributes
of a class are transformed into columns of the corresponding table, and the pri-
mary key is defined by default. Below we show an excerpt of this transformation.

transformation umlToRdbms(uml:SimpleUML, rdbms:SimpleRDBMS) {

top relation PackageToSchema {

pn: String;

domain uml p:Package {name=pn};

domain rdbms s:Schema {name=pn};

}

top relation ClassToTable {

cn, prefix: String;

domain uml c:Class {namespace=p:Package {},kind=’Persistent’,name=cn};

domain rdbms t:Table {schema=s:Schema {}, name=cn,

column=cl:Column {name=cn+’_tid’, type=’NUMBER’},

key=k:Key {name=cn+’_pk’, column=cl}};

when { PackageToSchema(p,s); }

where { prefix = ’’; AttributeToColumn(c, t, prefix); }

}

relation AttributeToColumn { ... }

}

38 D. Calegari and N. Szasz

3 An Environment for Verification

We are exploring a comprehensive environment for the formal verification of
different aspects of a model transformation using heterogeneous verification ap-
proaches [9]. The environment is based on representing models (from now on
SW-models), metamodels, the conformance relation, transformations and ve-
rification properties in some consistent and interdependent way following the
heterogeneous specification approach [5,6]. This approach is based on providing
Institutions for the languages which are part of the environment. The concept
of Institution [7] was originally introduced to formalize the notion of logical sys-
tem, and many different logics as first-order, modal, rewriting, among others have
been shown to be institutions. Informally, an institution consists of a collection
of signatures (vocabularies for constructing sentences in a logical system), sig-
nature morphisms (allowing many different vocabularies at once), a collection of
sentences and models (providing semantics) for a given signature, and a satisfac-
tion relation of sentences by models, such that when signatures are changed (by
a signature morphism), satisfaction of sentences by models changes consistently.
The notion of an institution can be used to represent any specification language
since it provides ways of representing the syntax and semantics of the language,
as well as the relation between them by means of a satisfaction relation between
them, as in [5]. In this work we provide an institution for QVT-Relations check-
only unidirectional transformations. This kind of transformations only checks if
a target model is the result of transforming the source SW-model according to
the transformation rules. This institution needs a representation of SW-models
and metamodels, therefore we first define an institution for MOF for expressing
the conformance relation between them.

In order to use our institutions for verification purposes, there are two alter-
natives. The first one is to extend the institutions from a proof-theoretic point
of view by defining a logic, i.e. equipping the institutions with an entailment
system on sentences for conducting formal proofs. The second alternative is to
formally translate our institutions into another logic. This can be done through
institution comorphisms [10], which capture how a weaker institution can be
represented in a stronger and richer one. The importance of comorphisms is
such that it is possible (in some cases) to re-use (borrow) the entailment systems
of an institution in order to prove properties.

We take the second alternative and define comorphisms from our institutions
to a host logic and supplement this information with properties specified in
the host logic. In particular, we are in the process of defining a comorphism to
the Common Algebraic Specification Language (CASL, [11]), a general-purpose
specification language. The institution underlying CASL is the sub-sorted partial
first-order logic with equality and constraints on sets SubPCFOL=, a combina-
tion of first-order logic and induction with subsorts and partial functions. The
importance of CASL is that it is the main language within the Heterogeneous
Tool Set (Hets, [6]), which is a tool meant to support heterogeneous multi-logic
specifications. Hets allows defining institutions and comorphisms, and also pro-
vides proof management capabilities for monitoring the overall correctness of a

Institution-Based Semantics for MOF and QVT-Relations 39

heterogeneous specification whereas different parts of it are verified using (possi-
bly different) proof systems. Hets already supports several interconnected logics
(e.g. first-order and modal logics, among others). To the best of our knowledge,
Hets does not support the MDE paradigm, i.e. it does not have specific languages
for the specification of MDE elements. We plan to include our institutions as
logics in Hets, in such a way that a developer can import a transformation
(which is automatically translated into CASL through the comorphism), use the
logics within Hets to specify additional verification properties which must be
addressed, and perform the verification assisted by the tool.

3.1 Defining the Institutions

In Section 4 we define the institution for the MOF-based conformance relation,
basing our proposal on the institution defined for UML class diagrams in [12,13].
Unlike [12], in our definition there are no derived relations (not used in trans-
formations), the signature has an explicit representation of abstract classes and
datatypes, and there are only 2-ary properties (associations and attributes). We
also use an explicit syntactic representation of SW-models within the signature.
In [13], instances (class objects and type values) are represented within the sig-
nature. However, there is no representation of links between these elements since
they are used for other purposes. Moreover, unlike MOF, we do not consider ag-
gregation, uniqueness and ordering properties within a property end, operations
on classes, or packages. Properties and operations are not commonly used within
transformations, whereas packages are just used for organizing metamodel ele-
ments. We follow the schema in Figure 2. From any metamodel we can derive a
signature with a representation of types, properties, and SW-models, and a set of
formulas stating invariants which must hold on every conforming SW-model. Up
to now we have considered multiplicity constraints. However, it will be possible
to add other kind of constraints through comorphisms as explained before. Any
institution model (from now on just model) is a semantic representation of a
potentially conforming SW-model. The model is composed by objects and rela-
tions between them, which must satisfy the multiplicity constraints. This allows
us to define the satisfaction relation answering the question: does the SW-model
conform to the metamodel?

In Section 5 we also define an institution for QVT-Relations check-only uni-
directional transformations. For the definition of this institution we follow the
schema shown in Figure 3. For the definition we do not consider black-box opera-
tions or rule and transformation overriding since they are advanced features not
commonly used in practice. We neither consider keys definition since they are
not used within the checking semantics. The institution takes the institutional
representation of the source and target elements and supplements the formulas
with a representation of the transformation rules. In this case, the satisfaction
relation also answers the question: is the target SW-model the result of trans-
forming the source SW-model according to the transformation rules?

As we mentioned before, the when and where clauses, as well as the predicate
of a pattern, may contain arbitrary boolean OCL expressions. From a formal

40 D. Calegari and N. Szasz

Fig. 2. The conformance relation as an institution

Fig. 3. A model transformation as an institution

perspective we would rather have an institution for OCL which would allow
us to use the language not only for constraining the transformation rules, but
also for expressing general constraints on metamodels. Unfortunately there is
no institution for OCL, which is left for future work. However, in our work we
consider an institution for first-order logic with equality (FOL=) as defined in
[14]. With this decision we are not losing expressive power (there are works [15]
with the aim of expressing OCL into first-order logic).

3.2 Related Work

There are many works defining the semantics of MOF and the conformance re-
lation in terms of a shallow embedding of the language by providing a syntactic

Institution-Based Semantics for MOF and QVT-Relations 41

translation into another one, e.g. into first-order logic [16] and rewriting logic
[17]. We, on the contrary, do not want to depend on a general logic but to de-
fine a generic and minimal infrastructure allowing translations to other logics
as needed. There are also some works with an algebraic/institutional approach,
e.g. [18,19]. In these works the authors propose two alternatives: a generic alge-
braic representation of metamodels without an explicit representation of models,
and concrete institutions for each metamodel. Unlike these works, we avoid the
burden of defining a new institution for each metamodel, explicitly representing
models to be used within proofs. In [12,13] the authors define institutions for
simple and stereotyped UML Class Diagrams. As we said, we adapt those works
for the purpose of defining the institution for the conformance relation. Finally,
in [20] the authors define the semantics of class diagrams with OCL constraints
by defining a translation into CASL. Although this is also a shallow embedding,
as explained before, the translation (and the one proposed in [13]) could be
useful for defining the comorphism from our institution to CASL.

With respect to QVT-Relations, there are also works defining the semantics of
QVT-Relations in terms of a shallow embedding of the language, e.g. into rewrit-
ing logic [21] and coloured petri nets [22]. There are also embeddings into specific
tools, as in the case of Alloy [23] and KIV [24], which provide model checking
capabilities. As said before, we do not follow this approach. Moreover, in [18]
transformations are represented as institution comorphisms, which is somehow
restrictive since it assumes a semantic relation between metamodels. Finally, in
[25] the authors present a formal semantics for the QVT-Relations check-only
scenario based on algebraic specification and category theory. The definition of
the institution is much more complex than ours and the work does not envision
a scenario in which the elements of the transformation are translated to other
logics for verification.

4 An Institution for MOF

In this section we present the formal definition of an institution IC for the
MOF-based conformance relation. As said before, this definition is based on the
institutions for UML class diagrams defined in [12,13], but adapted for represent-
ing the conformance relation. Along the definition we will illustrate the concepts
introduced with the example presented in Section 2.

A class hierarchy is a partial order C = (C,≤C) where C is a set of class
names, and ≤C ⊆ C × C is the subclass (inheritance) relation. By T(C) we
denote the type extension of C by primitive types and type constructors. T(C) is
likewise a class hierarchy (T (C),≤T (C)) with C ⊆ T (C) and ≤C ⊆ ≤T (C). As
in [13], in order to provide generic access to primitive types, like Boolean, and
String, we treat these as built-ins with a standard meaning (they must be defined
within T (C)). All other classes are assumed to be inhabited, i.e., to contain at
least one object. However, unlike [13] in which it is assumed the existence of an
object null, we impose that if c ∈ C|abstract then there exists another c′ ∈ T (C)
downwards in the hierarchy having at least one object.

42 D. Calegari and N. Szasz

As we mentioned before, from a metamodel we can derive a signature
Σ = (T,P,M) declaring:

– A type extension of a finite class hierarchy T = (T (C),≤T (C), C |abstract)
extended with a subset C|abstract ⊆ C denoting abstract classes.

– A properties declaration (attributes and associations) P = (R,P) where R
is a finite set of role names and P is a finite set (pw)w∈(R×T (C))×(R×T (C))

of property names indexed over pairs of a role name and a class (or type)
name, such that for any class or type name c ∈ C, the role names of the
properties in which any c′ ≤T (C) c is involved are all different. If pw ∈ P
with w = ((r1, c1)(r2, c2)), we write p(r1 : c1, r2 : c2) ∈ P .

– A SW-model declaration (instances and links) M = (I, L) where I is a finite
set of instances of the form o : c with c ∈ T (C); and L is a finite set of links
between instances of the form pw(x, y) with pw ∈ P , w = ((r1, c)(r2, d)),
x : c, y : d ∈ I.

From a metamodel it is also possible to derive a set of formulas (multipli-
city constraints) constraining the set of SW-models conforming to it. Given a
signature as defined before, any Σ-formula is defined by:

Φ ::= #Π = n | n ≤ #Π | #Π ≤ n
Π ::= R • P

where n ∈ N. The #-expressions return the number of links in a property when
some roles are fixed. We use • as the select/partition operator in Π representing
the selection of the elements in the opposite side of role R in property P .

Let Σi = (Ti,Pi,Mi) (i = 1, 2) with Ti = (T (Ci),≤T (Ci), Ci |abstract), Pi =
(Ri, Pi), and Mi = (Ii, Li). A signature morphism σ : Σ1 → Σ2 is a tuple of
maps 〈σT , σR, σP , σI〉 between class names, role names, property names, and
instances. Signature morphisms extend to formulas over Σ1 as follows. Given a
Σ1-formula ϕ, σ(ϕ) is the canonical application of the signature morphism to
every role and property in the formula such that σ(r • p) = σR(r) • σP (p).

Given a class hierarchy C = (C,≤C), a C-object domain O is a family (Oc)c∈C

of sets of object identifiers verifying Oc1 ⊆ Oc2 if c1 ≤C c2. Given moreover a
type extension T, the value extension of a C-object domain O = (Oc)c∈C by
primitive values and value constructions, which is denoted by VT

C(O), is a T(C)-
object domain (Vc)c∈T (C) such that Vc = Oc for all c ∈ C. We consider disjoint
sets of objects within the same hierarchical level.

We adapt the definition of a Σ-interpretation in order to ’reduce’ the interpre-
tation to those elements and relations in M, i.e. there is an isomorphism between
these elements and those in the interpretation. A Σ-interpretation I consists of
a tuple (VT

C(O),A,KI) where

– VT
C(O) = (Vc)c∈T (C) is a T(C)-object domain

– A contains a relation pI ⊆ Vc1 × Vc2 for each relation name p(r1 : c1, r2 :
c2) ∈ P with c1, c2 ∈ T (C)

– KI maps each o : c ∈ I to an element of Vc
– c2 ∈ C|abstract implies Oc2 =

⋃
c1≤Cc2

Oc1

Institution-Based Semantics for MOF and QVT-Relations 43

– KI(o1 : c) �= KI(o2 : d) iff o1 : c �= o2 : d
– Vc =

⋃
cK

I(o : c) with o : c ∈ I, for all c ∈ T (C)
– pI = {(KI(x : c),KI(y : d)) | pw(x, y) ∈ L, x : c, y : d ∈ I}
Given a Σ-interpretation I = (VT

C(O),A,KI), the interpretation evaluates
relations as follows: if p(r1 : c1, r2 : c2) then (ri • p)I = {{t ∈ pI | πi(t) =
o} | o ∈ Vci} (i = 1, 2). The evaluation (ri • p)I gives a set of sets of pairs
of semantic elements connected through property p, grouped by the semantic
elements having role ri. Note that this set can be empty if the element with role
ri is not connected with any one.

Given a signatureΣ, a formula ϕ, and a Σ-interpretation I, the interpretation
satisfies ϕ, written I |=Σ ϕ, if one of the following conditions holds:

– ϕ is #(r • p) = n and |S| = n for all S ∈ (r • p)I
– ϕ is n ≤ #(r • p) and n ≤ |S| for all S ∈ (r • p)I
– ϕ is #(r • p) ≤ n and |S| ≤ n for all S ∈ (r • p)I

This means that the number of elements related through a property p with any
element with role r in such property, satisfies the multiplicity constraints. This
definition can be trivially defined for a set of formulas Φ.

Finally, the satisfaction condition holds for given signatures Σi (i = 1, 2), a
signature morphism σ : Σ1 → Σ2, a Σ2-interpretation I, and a Σ1-formula ψ:
I|σ, |=Σ1 ψ iff I |=Σ2 σ(ψ). This can be trivially extended to a set of formulas.

Given that the satisfaction condition holds we can state that IC consisting of
signatures, morphisms, formulas, interpretations, reducts, and the satisfaction
relation, defines an institution. For space reasons we omit here several definition
(e.g. signature morphisms, reducts) and proofs, which can be completely found
in [26].

4.1 Running Example

From the class metamodel and the SW-model in Figure 1 we derive the signature
(T,P,M) with T = (T (C),≤T (C), C|abstract), P = (R,P), and M = (I, L) such
that:

T (C) = {UMLModelElement,Package, ..., String}
≤T (C) = {Package ≤T (C) UMLModelElement, ...}
C|abstract = {UMLModelElement}
R = {namespace, elements, type, typeOpposite, ...}
P = {contains(namespace : Package, elements : Classifier),

name(UMLModelElement : UMLModelElement, name : String),
typeOf(typeOpposite : Attribute, type : PrimitiveDataType), ...}

I = {p : Package, c : Class, a : Attribute, ..., String : String}
L = {contains(p, c), contains(p, pdt), has(c, a), type(a, pdt),

name(p,Package), kind(c,Persistent), name(pdt, String), ...}

44 D. Calegari and N. Szasz

The set of formulas ϕ is defined by:

ϕ = {#(UMLModelElement • name) = 1, #(UMLModelElement • kind) = 1,
#(elements • contains) = 1, #(attribute • has) = 1, ...}

An interpretation I can be defined as follows, in which each element has a
correspondence with one in the signature:

– A T(C)-object domain consisting of
VClass = {c1}
VPrimitiveDataType = {pdt1}
VPackage = {p1}
VAttribute = {a1}
VString = {Pac, Str, Per, nul, ID, val}

– A set A consisting of relations
containsI = {(p1, c1), (p1, pdt1)}
nameI = {(p1, Pac), (c1, ID), (c2, nul), (a1, val)}
kindI = {(p1, nul), (c1, P er), (a1, nul), (pdt1, nul)}
typeI = {(a1, pdt1)}
...

The property contains(namespace : Package, elements : Classifier) represents
that a package contains classifiers. The interpretation I has the following inter-
pretation of this property: containsI = {(p1, c1), (p1, c2)(p1, pdt1), (p1, pdt2)},
such that there is only one package object p1, and it contains two classes (c1 and
c2) and two primitive datatype objects (pdt1 and pdt2). This interpretation eval-
uates (namespace • contains)I as the set {(p1, c1), (p1, c2), (p1, pdt1), (p1, pdt2)}
since there is only one object with role namespace which is the package object p1,
and those elements in the opposite side of the property are those in containsI .

Now, we check that I, β |=Σ ϕ for every formula ϕ defined before. For example
it holds in the following cases.

– #(UMLModelElement • name) = 1 and |S| = 1
for all S ∈ (UMLModelElement • name)I =
{{(p1, Pac)}, {(c1, ID)}, {(a1, val)}, {(pdt1, Str)}}

– #(elements • contains) = 1 and |S| = 1
for all S ∈ (elements • contains)I = {{(p1, c1)}, {(p1, pdt1)}}

5 An Institution for QVT-Relations

We finally introduce an institution IQVT for QVT-Relations check-only unidirec-
tional transformations, and then we continue illustrating the concepts introduced
with the example presented in Section 2.

A signature in IQVT is a triple 〈ΣC
1 , Σ

C
2 , Σ

FOL〉 with IC-signatures
ΣC

i (i = 1, 2) representing the source and target metamodels and models of

Institution-Based Semantics for MOF and QVT-Relations 45

the transformation, and a FOL= signature ΣFOL such that there are sorts for
every type (

⋃
i T (Ci) ⊆ S) and there is a predicate for each property declaration

(
⋃

i Pi ⊆ Π). We assume that there are no name clashes (types, roles and pro-
perties) between source and target metamodels. In fact, if a transformation has
the same source and target metamodels, we can use a prefix to identify elements
on each side. A signature morphism is defined as a triple of morphisms of the
corresponding institutions.

A Σ-formula is of the form 〈ϕC
1 , ϕ

C
2 , ϕ

rules〉 such that ϕC
i is a ΣC

i -formula
and ϕrules is a formula representing the transformation specification. i.e. a tuple
〈Rules, top〉 such that Rules is the set of transformation rules, and top ⊆ Rules
the set of top rules of the transformation.

A rule Rule ∈ Rules is a tuple 〈VarSet,Patterni (i = 1, 2),when,where〉 such
that VarSet ⊆ Xs with s ∈ S is the set of variables of the rule, Patterni (i = 1, 2)
are the source and target patterns, and when/where are the when/where clauses
of the rule, respectively. We will denote by k VarSet (k = 1, 2) the variables used
in pattern k that do neither occur in the other domain nor in the when clause.

A pattern Patterni (i = 1, 2) is a tuple 〈Ei, Ai, P ri〉 such that Ei ⊆ (Xc)c ∈Ci

is a set of class-indexed variables, Ai is a set of elements representing associations
of the form rel(p, x, y) with p ∈ Pi and x, y ∈ Ei, and Pri is a FOL

=-formula.
A when clause is a pair 〈whenc,whenr〉 such that whenc is a FOL=-formula

with variables in VarSet, and whenr is a set of pairs of transformation rules and
set of variables which are the parameters used for the invocation of each rule.
We will denote by WhenVarSet the set of variables ocurring in the when clause.
Finally, a where clause is a pair 〈wherec,wherer〉 such that wherec is a FOL=-
formula with variables in VarSet, and wherer is a set of pairs of transformation
rules and set of variables (parameters). Only variables used in a where clause
(as prefix in the example) are contained in 2 VarSet.

A Σ-model is a triple 〈MC
1 ,MC

2 ,MFOL〉 of SignCi (i = 1, 2) models, and a
SignFOL first-order structure, such that the interpretation of elements in SignCi
must be the same in MC

i and MFOL. This means that |D|t = Vt. ∀t ∈
⋃

i T (Ci),
and pD = pI . ∀p ∈ ⋃

i Pi. In the case of t ∈ T (C)\C (primitive types) we have
that Vt ⊆ |D|t since MFOL can have more elements than those in the source and
target institutions: type constants (e.g. the empty string) and elements created
using type constructors (e.g. new strings using type constructor ++).

Given variables Xs = (Xs)s ∈S , the binding of a variable xc ∈ Xc, denoted
by |xc|, is the set of possible interpretations of such a variable which corre-
sponds to the carrier set of the corresponding sort, i.e. |xc| = |D|c. Moreover,
the binding of a set of variables (x1, ..., xn), denoted by |(x1, ..., xn)|, is defined
as {(y1, ..., yn) | yi ∈ |xi| (i = 1..n)}. We can also view |(x1, ..., xn)| as a set of
variable assignments. We denote by μ[x1, ..., xn] the function with an assignment
for variables x1, ..., xn. We also denote by μ1 ∪ μ2 an assignment unifying the
former ones, assuming that if there is variable clash, the assignment takes for
those variables the values in μ2.

A when clause 〈whenc,whenr〉 is satisfied with respect to a first-order structure
MFOL and a variable assignment μ, denoted by MFOL, μ |= 〈whenc,whenr〉 if

46 D. Calegari and N. Szasz

MFOL, μ |=FOL whenc ∧ (∀(r, v) ∈ whenr. MFOL, μ[v] |= r) Here, |=FOL is
the satisfaction relation in FOL=, and |= is the satisfaction of the parametric
transformation rule r using the variable assignment μ[v] as a parameter. The
satisfaction of a where clause is defined in the same way.

A pattern Pattern = 〈E,A, Pr〉 is satisfied with respect to a first-order struc-
ture MFOL and a variable assignment μ (which must include a valuation for the
elements in E), denoted by MFOL, μ |= Pattern if there is a matching subgraph
∀ rel(p, x, y) ∈ A. (pD(μ(x), μ(y)) ∈ MFOL), and the predicate holds in FOL=

(MFOL, μ |=FOL Pr).
A rule Rule = 〈VarSet,Patterni (i = 1, 2),when,where〉 is satisfied with re-

spect to a first-order structure MFOL and a variable assignment μ, denoted by
MFOL, μ |= Rule if one of the following properties hold.

1. If WhenVarSet = ∅

∀ μ1[x1, ..., xn] ∈ |VarSet\2 VarSet|,
(MFOL, (μ1[x1, ..., xn] ∪ μ) |= Pattern1 →

∃ μ2[y1, ..., ym] ∈ |2 VarSet|,
(MFOL, (μ1 ∪ μ2 ∪ μ) |= Pattern2 ∧

MFOL, (μ1 ∪ μ2 ∪ μ) |= where))

2. If WhenVarSet �= ∅

∀ μw[z1, ..., zo] ∈ |WhenVarSet|,
(MFOL, (μw[z1, ..., zo] ∪ μ) |= when →

∀ μ1[x1, ..., xn] ∈ |VarSet\(WhenVarSet ∪ 2 VarSet)|,
(MFOL, (μ1 ∪ μw ∪ μ) |= Pattern1 →

∃ μ2[y1, ..., ym] ∈ |2 VarSet|,
(MFOL, (μ1 ∪ μ2 ∪ μw ∪ μ) |= Pattern2 ∧

MFOL, (μ1 ∪ μ2 ∪ μw ∪ μ) |= where)))

The satisfaction relation is defined in such a way that a model M satisfies
ϕ, written M |=Σ ϕ, if MC

i |=C
ΣC

i
ϕC
i (i = 1, 2) and M |=Σ ϕrules. In other

words, a model satisfies a formula if the SW-models conform to the correspond-
ing metamodels, and they fulfill the top transformation rules. The satisfaction
relation M |=Σ ϕrules is defined to hold if for all Rulei ∈ top. MFOL, ∅ |= Rulei.
We take ∅ as the empty variable assignment, since for rules it will be used only
in the case of non top and explicit called rules.

Finally, given signatures Σi, a signature morphism σ : Σ1 → Σ2, a Σ2-
model M, a set of variables X2, and a Σ1-formula ψ with variables in X2|σ, the
following satisfaction condition holds (see [26]): M|σ|=Σ1 ψ iff M |=Σ2 σ(ψ).
Thus, we can state that IQVT consisting of the definitions given before, defines
an institution. Complete definitions and proofs can be found in [26].

Institution-Based Semantics for MOF and QVT-Relations 47

5.1 Running Example

The signature Σ = 〈ΣC
1 , Σ

C
2 , Σ

FOL〉 contains the signature ΣC
1 of the source

metamodel, which is the one presented in Section 4.1, the signature ΣC
2 of the

target metamodel, which is not shown here but can be derived in the same
way, and a FOL= signature ΣFOL with at least one sort for each type name in⋃

i T (Ci) and a predicate for each property in
⋃

i Pi.
A transformation between two SW-models is represented as a formula ϕ of

the form 〈ϕC
1 , ϕ

C
2 , ϕ

rules〉 such that, for example, ϕC
1 is the formula introduced

in Section 4.1, which represents the multiplicity constraints of the metamodel in
Figure 1, ϕC

2 is another formula representing the target SW-model (not shown
here), and ϕrules = 〈Rules, top〉 is the formula representing the transformation
specification which has three relations named PackageToSchema ∈ top,
ClassToTable ∈ top and AttributeToColumn.

As an example, the relation PackageToSchema is defined as follows:
PackageToSchema = 〈VarSet,Patterni (i = 1, 2),when,where〉 such that

– VarSet = {pn, p, s} with pn ∈ XString, p ∈ XPackage, and s ∈ XSchema.
– Pattern1 = 〈E1, A1, P r1〉 with E1 = {p}, A1 = ∅, and Pr1 = name(p,pn)

(name is also a property in the source metamodel)
– Pattern2 = 〈E2, A2, P r2〉 with E2 = {s}, A2 = ∅, and Pr2 = name(s,pn).
– when = 〈∅, ∅〉 and where = 〈∅, ∅〉.
A modelM = 〈MC

1 ,MC
2 ,MFOL〉 can be composed byMC

1 = (I, β) as defined
in Section 4.1, MC

2 = (I ′, β′) is a target model not shown in this paper, and
MFOL is a first-order structure. Binding of variables depends on the type of
elements. If the variable is of a class, we have that the set of possible values
coincides with the set of elements within the MOF institutions, e.g. |p| = VPackage
= {p1}. However, if the variable is of a primitive type, we have than Vt ⊆ |D|t
since transformation rules can use other elements besides those in the MOF
institutions, for example those strings created using the type constructor ++,
e.g. |pn| = {Pac, Str, ID, ..., pk, tid, ..., ID++tid, ID ++numb, ...}

We have that M |=Σ ϕ, if MC
i |=C

ΣC
i
ϕC
i (i = 1, 2) and M |=Σ ϕrules.

We already showed that MC
1 |=C

ΣC
1
ϕC
1 , and we prove in the same way that

MC
2 |=C

ΣC
2
ϕC
2 for a valid SW-model. Thus, we need to prove that M |=Σ ϕrules,

and this holds ifMFOL, ∅ |= ClassToTable, andMFOL, ∅ |= PackageToSchema.
As an example, we prove thatMFOL, ∅ |= PackageToSchemaconsidering a valid

target SW-model with only one schema (semantically represented as s1) having
the same name as the package (semantically represented as Pac). We know that
|pn| = VString = {Pac, Str, Per, nul, ID, val, ...}, and |p| = VPackage = {p1}, so
|{pn, p}| is {(Pac, p1), (Str, p1), (ID, p1), (nul, p1), (Per, p1), (val, p1), ...}.

We also have that |s| = VSchema = {s1}. Thus, the rule holds if

∀ μ1[pn, p] ∈ {(Pac, p1), (Str, p1), (ID, p1), (Per, p1), (val, p1), (nul, p1), ...},
(MFOL, μ1 |= Pattern1 → ∃ μ2[s] ∈ {s1},

(MFOL, (μ1 ∪ μ2) |= Pattern2 ∧MFOL, (μ1 ∪ μ2) |= where))

48 D. Calegari and N. Szasz

For every μ1[pn, p] different from (Pac, p1) we have that Pattern1 does not
hold, since it depends on the predicate name(p,pn). Thus, in these cases the
implication holds. Now, in the case of (Pac, p1), we have that Pattern1 holds,
and that the only possible value for s is s1. In this case, we also have that
MFOL, (μ1 ∪ μ2) |= Pattern2 since the predicate name(s,pn) holds. Moreover,
since the where clause is empty, MFOL, (μ1∪μ2) |= where trivially holds. Finally,
we conclude that MFOL |= PackageToSchema indeed.

6 Conclusions and Future Work

In this paper we have defined institutions to represent the conformance relation
between MOF models and metamodels, and the satisfaction of QVT-Relations
check-only unidirectional transformations between pairs of models. These defi-
nitions neither depend on a shallow embedding of the languages by providing a
syntactic translation into other logics, nor on the definition of specific institu-
tions for each metamodel or model transformation. On the contrary, we defined
a generic and minimal infrastructure within a theory which allows the defini-
tion of semantic-preserving translations from the MDE elements to potentially
any logic defined as an institution, with the advantage that there is no need to
maintain multiple formal representations of the same MDE elements.

Unlike MOF, we do not consider some constructions (e.g. aggregation, opera-
tions on classes) since they are elements not commonly used within transforma-
tions. We neither consider black-box operations or rule and transformation over-
riding within transformations since they are advanced features not commonly
used in practice, nor keys definition since they are used for object creation not
within the checking semantics. However, an inclusion of these elements within
our institutions will strengthen the formal environment for MDE.

Our institutions contribute to the definition of a comprehensive formal envi-
ronment for the verification of model transformations. We plan to define comor-
phisms from our institutions to a host logic and supplement this information
with properties specified in the host logic. In particular, we have an initial for-
mal definition of comorphism to CASL, the main language within Hets, and we
are developing a first functional prototype of the running example using such
definition as a way to test the main concepts. The native inclusion of MOF and
QVT within Hets (by implementing the necessary Haskell code), as well as of
the comorphisms, is within our medium-term goals.

Although we are for now focusing on MOF and QVT-Relations, we envision
to extend the environment to support other transformation approaches.

References

1. Kent, S.: Model driven engineering. In: Butler, M., Petre, L., Sere, K. (eds.) IFM
2002. LNCS, vol. 2335, pp. 286–298. Springer, Heidelberg (2002)

2. Object Management Group: Meta Object Facility (MOF) 2.0 Core Specification.
Specification Version 2.0 (2003)

Institution-Based Semantics for MOF and QVT-Relations 49

3. Object Management Group: Meta Object Facility (MOF) 2.0
Query/View/Transformation. Final Adopted Specification Version 1.1 (2009)

4. Kurtev, I., Bezivin, J., Aksit, M.: Technological spaces: An initial appraisal. In:
Intl. Symposium on Distributed Objects and Applications (2002)

5. Cengarle, M.V., Knapp, A., Tarlecki, A., Wirsing, M.: A heterogeneous approach
to UML semantics. In: Degano, P., De Nicola, R., Meseguer, J. (eds.) Concurrency,
Graphs and Models. LNCS, vol. 5065, pp. 383–402. Springer, Heidelberg (2008)

6. Mossakowski, T.: Heterogeneous specification and the heterogeneous tool set. Tech.
Rep., Universitaet Bremen, Habilitation thesis (2005)

7. Goguen, J.A., Burstall, R.M.: Institutions: Abstract Model Theory for Specification
and Programming. J. ACM 39(1), 95–146 (1992)

8. Object Management Group: Object Constraint Language. Formal Specification
Version 2.2 (2010)

9. Calegari, D., Szasz, N.: Bridging techological spaces for the verification of model
transformations. In: Conf. Iberoamericana de Software Engineering, Uruguay
(2013)

10. Goguen, J.A., Rosu, G.: Institution morphisms. Formal Aspects of Computing 13,
274–307 (2002)

11. Mossakowski, T., Haxthausen, A.E., Sannella, D., Tarlecki, A.: Casl - the com-
mon algebraic specification language: Semantics and proof theory. Computers and
Artificial Intelligence 22, 285–321 (2003)

12. Cengarle, M.V., Knapp, A.: An institution for UML 2.0 static structures. Tech.
Rep. TUM-I0807, Institut für Informatik, Technische Universität München (2008)

13. James, P., Knapp, A., Mossakowski, T., Roggenbach, M.: Designing domain specific
languages – A craftsman’s approach for the railway domain using casl. In: Mart́ı-
Oliet, N., Palomino, M. (eds.) WADT 2012. LNCS, vol. 7841, pp. 178–194. Springer,
Heidelberg (2013)

14. Sannella, D., Tarlecki, A.: Foundations of Algebraic Specification and Formal Soft-
ware Development. Springer (2012)

15. Beckert, B., Keller, U., Schmitt, P.: Translating the Object Constraint Language
into first-order predicate logic. In: VERIFY Workshop, Denmark (2002)

16. Shan, L., Zhu, H.: Semantics of metamodels in UML. In: 3rd IEEE Symposium on
Theoretical Aspects of Software Engineering, pp. 55–62. IEEE Computer Society
(2009)

17. Rivera, J., Durán, F., Vallecillo, A.: Formal specification and analysis of domain
specific models using Maude. Simulation 85(11-12), 778–792 (2009)

18. Boronat, A., Knapp, A., Meseguer, J., Wirsing, M.: What is a multi-modeling
language? In: Corradini, A., Montanari, U. (eds.) WADT 2008. LNCS, vol. 5486,
pp. 71–87. Springer, Heidelberg (2009)

19. Orejas, F., Wirsing, M.: On the specification and verification of model transforma-
tions. In: Palsberg, J. (ed.) Semantics and Algebraic Specification. LNCS, vol. 5700,
pp. 140–161. Springer, Heidelberg (2009)

20. Bidoit, M., Hennicker, R., Tort, F., Wirsing, M.: Correct realizations of inter-
face constraints with OCL. In: France, R.B. (ed.) UML 1999. LNCS, vol. 1723,
pp. 399–415. Springer, Heidelberg (1999)

21. Boronat, A., Heckel, R., Meseguer, J.: Rewriting Logic Semantics and Verification
of Model Transformations. In: Chechik, M., Wirsing, M. (eds.) FASE 2009. LNCS,
vol. 5503, pp. 18–33. Springer, Heidelberg (2009)

50 D. Calegari and N. Szasz

22. de Lara, J., Guerra, E.: Formal Support for QVT-Relations with Coloured Petri
Nets. In: Schürr, A., Selic, B. (eds.) MODELS 2009. LNCS, vol. 5795, pp. 256–270.
Springer, Heidelberg (2009)

23. Anastasakis, K., Bordbar, B., Küster, J.M.: Analysis of model transformations via
Alloy. In: 4th MoDeVVa Workshop, pp. 47–56 (2007)

24. Stenzel, K., Moebius, N., Reif, W.: Formal verification of QVT transformations
for code generation. In: Whittle, J., Clark, T., Kühne, T. (eds.) MODELS 2011.
LNCS, vol. 6981, pp. 533–547. Springer, Heidelberg (2011)

25. Guerra, E., de Lara, J.: An algebraic semantics for QVT-relations check-only trans-
formations. Fundamenta Informaticae 114, 73–101 (2012)

26. Calegari, D., Szasz, N.: Institution-based semantics for MOF and QVT-Relations
(extended version). Tech. Rep. 13-06, InCo-PEDECIBA (2013) ISSN 0797-6410,
http://www.fing.edu.uy/inco/pedeciba/bibliote/reptec/TR1306.pdf

http://www.fing.edu.uy/inco/pedeciba/bibliote/reptec/TR1306.pdf

	Institution-Based Semantics for MOF and QVT-Relations
	1 Introduction
	2 An Introduction to the MDE Technical Space
	3 An Environment for Verification
	3.1 Defining the Institutions
	3.2 Related Work

	4 An Institution for MOF
	4.1 Running Example

	5 An Institution for QVT-Relations
	5.1 Running Example

	6 Conclusions and Future Work
	References

