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Abstract. In this paper, we propose a new approach to inheritance in
the context of algebraic graph transformation by providing a suitable
categorial framework which reflects the semantics of class-based inheri-
tance in software engineering. Inheritance is modelled by a type graph
T that comes equipped with a partial order. Typed graphs are arrows
with codomain T which preserve graph structures up to inheritance. Mor-
phisms between typed graphs are “down typing” graph morphisms: An
object of class t can be mapped to an object of a subclass of t. We prove
that this structure is an adhesive HLR category, i. e. pushouts along
extremal monomorphisms are “well-behaved”. This infers validity of clas-
sical results such as the Local Church-Rosser Theorem, the Parallelism
Theorem, and the Concurrency Theorem.
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1 Introduction

Developing appropriate models to mimic reality has always been an important
part of software engineering. However, the relation between coding and modelling
has changed over time. Today, model-driven engineering focuses on generating
code from appropriately detailed and formalised models, hoping that developing
the model and using a mature and well-tested code generator is less error-prone
than letting programmers write most of the code themselves. This reasoning,
however, is only valid if model development is relatively easy. Typically, differ-
ent graphical notations help people to structure the problem in various ways.
Consequently, graphs or graph structures play an important role in software
engineering today, compare e.g. the UML [13], a modelling language which is
currently the de facto standard for modelling object-oriented systems.

If one looks more closely at object-oriented systems, one realises that it is
impossible to analyse or build object-oriented software in an efficient way without
making use of specialization or inheritance.1 Therefore, it is sensible to require
that the graphical notation supports aspects of inheritance well.
1 In this paper, we do not differentiate between type specialization (subtyping) and

class inheritance, because the differences are mostly relevant in the context of type
theory, which we do not discuss, and because most mainstream OOP languages do
not differentiate between these concepts.
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On the one side, graphs are well suited for modelling static aspects of software,
e.g. the class and inheritance structure. On the other side, behavioural aspects
of the system, e.g. state changes, can be modelled using graph transformations
which formally describe when and how a graph (here: state of an object-oriented
system) can change into another graph (here: another system state). Graph
transformations, especially algebraic graph transformations based on adhesive
HLR categories2, have been studied for a long time and are a well-known tool
in the context of software engineering.

However, if we want to combine a graphical notation supporting inheritance
with graph transformations, which therefore have to operate on graphs with
inheritance, there are relatively few approaches, which differ in flexibility and
“readability”. In this papier, we propose a new approach which binds the in-
heritance hierarchy to the type graph (only); objects are typed by providing
a typing morphism into the type graph which preserves the graph structure
up to inheritance. Morphisms between graphs are allowed to relate objects of
different types as long as the target object is at least as specialised as the
source object.3 Upon this notion of inheritance, we build a suitable category
and show that this category is an adhesive HLR category, such that many inter-
esting results from the field of algebraic graph transformations can be applied
immediately.

The paper is structured as follows: Section 2 develops some basic notions and
defines the category GT which is used in the subsequent sections. Sections 3,
4, and 5 analyse the properties of monomorphisms, pushouts, and pullbacks in
GT . In section 6, we prove the main result of this paper, namely that GT is an
adhesive HLR category. Section 7 demonstrates the usefulness of our approach
by means of a practical example. We discuss related approaches in section 8.
Finally, section 9 summarises the results and discusses future work.

Due to space limitations, some of the proofs have been omitted. They can be
found in [12].

2 Basic Definitions

G denotes the usual category of multi-graphs whose objects G = (VG, EG, sG :
E → V, tG : E → V ) have vertices, edges, and the usual source and target
mappings sG, tG : E → V , resp.4 Morphisms f : G1 → G2 are pairs of mappings
compatible with the graph structure, i.e. they obey the rules f ◦ sG1 = sG2 ◦ f
2 Adhesive high-level replacement (HLR) categories introduced in [2, 5] combine high-

level replacement systems[4] with the notion of adhesive categories[10] in order to
be able to generalize the double pushout transformation approach from graphs to
other high-level structures as e. g. Petri nets using a categorial framework. Generally,
adhesiveness abstracts from exactness properties like compatibility of union and
intersection of sets.

3 We call this property “down-typing”.
4 These notations will remain fixed in that for any X ∈ G we will always write
VX , EX , sX , tX for the constituents of X without defining them explicitly.
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and f ◦ tG1 = tG2 ◦f .5 If a graph is used as a class diagram, its vertices represent
the available classes and its edges model directed associations. We formalise
class-inheritance by an additional partial order on the vertices of a type graph:

Definition 1 (Type Graph). A type graph is a pair (T,≤) where T is a graph
and ≤ ⊆ V × V is a partial order with a largest element O ∈ VT

6.

This definition reflects the basic nature of class models. It still lacks additional
annotations like multiplicities, abstractness properties or other constraints. The
forthcoming definition of object structures, however, shows that it is reasonable
to interpret edges as associations with multiplicity ”0..∗” on both ends.

Definition 2 (Typed Graph). Let I ∈ G and (T,≤) be a type graph. A map-
ping pair (iV : VI → VT , iE : EI → ET ), written i : I → T , is called T -typed
graph if the conditions (1) and (2) hold:7

i ◦ sI ≤ sT ◦ i (1)
i ◦ tI ≤ tT ◦ i (2)

Condition (1) means that subtypes inherit all attributes of all their super-types.
Condition (2) formalises the fact that referenced objects at run-time may appear
polymorphically: They may possess any subtype of the corresponding association
target, cf. Fig. 1. This concept coincides with the definition of ”clan morphism”
if the underlying relation I in [9] is a partial order.

In the sequel, the type graph T := (T,≤) will be fixed, i.e. we speak of ”typed
graphs” instead of ”T -typed graphs”.

Definition 3 (Type-Compatible Morphism). Given two typed graphs i :
I → T, j : J → T , a graph morphism m : I → J is type-compatible, written
m : i → j, if

j ◦m ≤ i (3)

on VI and
j ◦m = i (4)

on EI . If in (3) ”≤” can be replaced by ”=”, m is called strong. A strong mor-

phism f from i to j will be denoted i
f ��� j .

It follows that type-compatible morphism can map an “object” of type c to
an “object” the type of which is a subtype of c. This is especially useful when
5 Sometimes in the literature the two components fV and fE of f are explicitly differ-

entiated. We will not do that, because it will always become clear from the context
which component is used.

6 The letter ”O” shall remind of the class ”Object” in Java, which is a super class of
all other classes, hence the inheritance order’s largest object.

7 If f, g : X → Y are two mappings into a partially ordered set Y = (Y,≤), we write
f ≤ g if f(x) ≤ g(x) for all x ∈ X.
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matching a graph transformation rule, since one can match many specialised
objects by using an object of a general type.

Strong morphisms are closed under composition:
Proposition 4. Let i : I → T , j : J → T , and k : K → T be some typed graphs,
and let m : i → j and n : j → k be two strong morphisms. Then n ◦m is also
strong.

Proof. k ◦ (n ◦m) = (k ◦ n) ◦m = j ◦m = i. �	
Definition 5 (Category GT ). Let T be a type graph. We define GT to be the
category which has typed graphs as objects and type-compatible morphisms be-
tween them as arrows.
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Fig. 1. Typed graphs and type-compatible morphisms

The main effects are shown in UML-styled Fig. 1: T is the top graph in which
nodes are rectangles and the partial order is depicted by arrows with end-
triangles (reflexive elements and the largest element O are not shown). There are
three typed graphs i, j, k, their typing being highlighted by names :X whenever
they map to X . Since B inherits association e, i is a well-typed object structure.
Since A-objects may polymorphically be linked to C- or D-objects j is an ad-
missible typing. Moreover, m1 and m2 are two type-compatible morphisms (e.g.:
m1(:A) = :B yielding i(m1(:A)) = B < A = k(:A)8).

In the sequel, we let

τ :

{ GT → G
(g : G → T )

f �� (h : H → T ) 
→ G
f �� H

be the functor which forgets the typing structure.
8 < being short for: ≤ and �=.
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3 Monomorphisms and Epimorphisms

In order to investigate categorial properties of GT , we analyse the nature of
monomorphisms and epimorphisms: First, a straightforward argument shows
that any injective m : i → j is a monomorphism. The reverse statement is also
true, but we need the existence of the largest element O of ≤: If m : g → h
is a monomorphisms then m(v1) = m(v2) can be detected by mappings k1, k2 :
{:O} → G with ki(:O) = vi (i ∈ {1, 2}).9 If we do not require the existence of a
largest element, assume T contains the three types A, B, and C such that C < A
and C < B, then the non-injective m : {:A, :B} → {:C} with m(:A) = m(:B) =
:C is a monomorphism, as there do not exist any morphisms p, q : X → {:A, :B}
which map some element x ∈ X to :A and :B, resp., due to the missing common
supertype of A and B.

Surjective morphisms coincide with the class of epimorphisms. In contrast to
monomorphisms, however, the proof of this fact does not make use of the largest
element and is proven in the same way as the corresponding fact in G.

Proposition 6. Epimorphisms of GT are exactly the surjective morphisms.
Monomorphisms of GT are exactly the injective morphisms.

Conventionally, in category theory, extremal monomorphisms are often the right
choice if (ordinary) monomorphisms do not represent embeddings: A monomor-
phism m is said to be extremal, if any decomposition m = m′ ◦ f with an
epimorphism f already forces f to be an isomorphism. In GT a morphism
m : {:B} → {:A} with A < B is monic and epic (cf. Proposition 6) but no iso-
morphism, because a hypothetical inverse n would have to ”upcast” (n(:A) =:B),
which is not possible. Thus m is not extremal, because m = id ◦m.10

Proposition 7 (Strong Monos and Extremal Monos coincide). A mono-
morphism in GT is extremal if and only if it is strong.

Because of this result, it is reasonable to denote an extremal mono m from i to
j by i �� m ��� j .

4 Pushouts

In order to define and apply double-pushout graph transformation rules in the
category GT , we need to analyse how pushouts can be constructed. The first
observation is that pushouts do not always exist: Let T be the discrete graph11

with VT = {O,B,C} and ≤ = {(B,O), (C,O)} together with reflexive pairs.
Then

{:C} {:O}�� �� {:B}
9 The notation {x} is short for the graph ({x}, ∅, ∅, ∅).

10 In topoi, an epic monomorphisms necessarily becomes an isomorphism. Hence this
example shows that GT is not a topos. In the next sections there will be many
other aspects detecting this property (e.g. the fact that some limits and some more
co-limits do not exist).

11 A graph with empty edge set.
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obviously possesses no pushout. Even if one restricts down-typing to at most one
of the given morphisms, pushouts along monomorphisms need not exist, because

{1:B, 2:C} {1:O, 2:O}���� �� {12:O} ,

where the left leg maps according to the numbers (and hence is monic) and where
the right leg identifies the objects 1:O and 2:O by mapping them to 12:O, does
not admit a pushout. This behaviour has its roots in the fact that B and C are
incomparable and do not possess a common subtype.

Our goal is to find a feasible criterion for a span

j g
β�� α �� h (5)

to admit a pushout. For this we denote with
∧
A the greatest lower bound of a

subset A ⊆ VT if it exists12. Let furthermore G := τ(g), H := τ(h), and J := τ(j)
with the above introduced forgetful functor. We denote with [h, j] : H + J → T
the disjoint union of h and j and we need the usual relation

∼ := {(α(x), β(x)) | x ∈ G} (6)

on H+J , for which ≡ denotes the smallest (sortwise) equivalence on H+J which
contains ∼. An equivalence class of ≡ will be written [v]≡ or [v]. Let H +G J :=
(H + J)/≡ together with the canonical graph morphisms α : J → H +G J and
β : H → H +G J (which map v to [v]≡) that make up the G-pushout of α and β.

Theorem 8 (Characterisation of Pushouts). The span (5) admits a pushout
in GT if and only if

∀v ∈ VH+J :
∧

{[h, j](x) | x ∈ [v]≡}

exists. If this condition is met, the square

g
α ��

β

��

h

β

��
j

α
�� p

(7)

is a pushout in GT , where p : H +G J → T is defined by

p([v]) =
∧

{[h, j](x) | x ∈ [v]}

on vertices and p([e]) = [h, j](e) on edges.

Corollary 9. GT has all pushouts along extremal monomorphisms. In such a
pushout the extremal mono is preserved under the pushout.
12 The notation

∧
shall remind of ”intersection” (of sets): For any set X, any indexed

set (Yi)i∈I with Yi ∈ (℘(X),⊆) always has a greatest lower bound, namely
⋂

i∈I Yi.
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Proof. If α is an extremal mono, it is a strong monomorphism by Proposition 7.
This means, that for any v ∈ VH+J the set [v] is a singleton (if v ∈ VH is not in
the image of α), or it is of the form {α(y) | y ∈ β−1(β(x))} ∪ {β(x)} for some
x ∈ VG. In the first case, the greatest lower bound is h(v), in the latter case, by
strongness, it is j(β(x)). Thus, by Theorem 8, the pushout can be constructed
with the usual construction in G such that α becomes an embedding, hence a
strong (thus extremal) mono. �	

Theorem 8 can be alternatively formulated as

Corollary 10. A commutative diagram D =

g
α ��

β

��

h

δ

��
j γ

�� q

s.t. τ(D) is a pushout in G, is a pushout in GT ⇐⇒ ∀v ∈ Vτ(q) : q(v) =∧ {[h, j](x) | [γ, δ](x) = v}.
Proof. Let i : τ(q) → τ(p) be the canonical G-isomorphism between the given
pushout τ(D) and the canonical pushout in G (τ applied to (7)). Then for all
x ∈ H + J , v ∈ Vτ(q) we obtain [γ, δ](x) = v ⇔ i([γ, δ](x)) = i(v) ⇔ [α, β](x) =
i(v), thus

[γ, δ](x) = v ⇔ x ∈ i(v) (8)

”⇒”: By Theorem 8,
∧
Sv exists and (7) is pushout. Thus, i is a GT -iso-

morphism. Then q = p◦i and (8) yield q(v) = p(i(v)) =
∧ {[h, j](x) | x ∈ i(v)} =∧ {[h, j](x) | [γ, δ](x) = v}.

”⇐”: The definition of q and (8) yield the characterising condition of Theorem
8. Hence (7) is a GT -pushout. Moreover, by (8) and the definition of p we have
p(i(v)) =

∧ {[h, j](x) | x ∈ i(v)} =
∧ {[h, j](x) | [γ, δ](x) = v} = q(v), such that

i is a GT -isomorphism and the given square is a GT -pushout. �	
Note that the results of this section remain true even if we do not claim the

existence of a largest element O.

5 Pullbacks

In this section we characterise those co-spans of GT which admit pullbacks. The
situation is not dual to the situation in Section 4 because of the existence of the
largest element: If T consists of nodes {A,B,C,O} with no edges where ≤ is
generated from {(A,B), (A,C), (B,O), (C,O)}, the co-span

{:C} �� {:A} {:B}��
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possesses the pullback

{:C} {:O}�� �� {:B} .

But pullback construction fails in more complex situations: Let a type graph be
given by the class diagram in Fig. 2, in which the partial order is generated by
the depicted arrows.

Fig. 2. A type graph

Then the co-span

{:C} �� {:A} {:B}��

admits no pullback, because there are two incompatible candidates, namely the
spans

{:C} {:D}�� �� {:B} and {:C} {:E}�� �� {:B} ,

and a minimal candidate

{:C} {:D, :E}�� �� {:B} , (9)

for which, however, two different mediators exist from

{:C} {:O}�� �� {:B} .

This example shows that it seems to be difficult to find a feasible criterion for
a pullback to exist without claiming the existence of a largest element: If we
omitted O in Figure 2, there would indeed be a pullback, namely the span (9)
(which seems to be weird because the middle graph possesses two vertices – note
that monos are still preserved by pullbacks because both morphisms in (9) are
now monos, see the example in the first paragraph of Section 3).

In order to avoid these degenerate limits we return to the original situation in
which O exists. We want to find a necessary and sufficient criterion for a co-span

j
β �� g h

α�� (10)
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to admit a pullback which is feasible enough to be used in practical contexts.
It turns out that the existence of pullbacks heavily depends on the existence of
least upper bounds of two nodes of T . We use the notation B ∨ C to denote the
least upper bound if it exists.13

We abbreviate J := τ(j), G := τ(g), and H := τ(h). H ×G J is the pullback
object of α and β in G together with projections π1 : H ×G J → H and π2 :
H ×G J → J . It turns out that the two above examples fully characterise the
limitations for the existence of pullbacks:

Theorem 11 (Characterisation of Pullbacks). The co-span (10) admits a
pullback if and only if

∀(v1, v2) ∈ VH×GJ : h(v1) ∨ j(v2) exists.

If this condition is met, the square

g h
α��

j

β

��

pπ2

��

π1

�� (11)

is a pullback in GT , where p : H ×G J → T is defined by

p(v1, v2) = h(v1) ∨ j(v2)

on vertices and
p(e1, e2) = h(e1)(= j(e2))

on edges.

We obtain the following consequences:

Corollary 12.

(1) If in (10) at least one morphism is strong, the pullback exists.
(2) If in (T,≤) all pairs have a least upper bound, all pullbacks exist.
(3) If T is finite and ≤ represents a hierarchy, i.e. if each node in VT −{O} has

exactly one direct super node14, all pullbacks exist.
(4) Extremal monomorphisms as well as strong morphisms are preserved under

pullbacks.

Proof. 12(1), 12(2), and 12(4) are immediate consequences of Theorem 11 and
the fact that pullbacks preserve monos in G. 12(3) can be easily proved by in-
duction over path lengths from h(v1) to O and j(v2) to O, respectively. �	

Theorem 11 can be alternatively formulated:
13 The notation ∨ shall remind of ”union” (of sets): For any set X, any two elements

Y1, Y2 ∈ (℘(X),⊆) have always a least upper bound, namely Y1 ∪ Y2.
14 As is the case in each programming language that prohibits multiple inheritance.
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Corollary 13. A commutative diagram D =

g h
α��

j

β

��

qγ
��

δ

��

s.t. τ(D) is a pullback in G, is a pullback in GT if and only if ∀z ∈ Vτ(q) : q(z) =
h(δ(z)) ∨ j(γ(z)).

Proof. “⇒”: D and (11) yield a canonical GT -isomorphism i : q → p, such that
for z ∈ Vτ(q), q(z) = p(i(z)) = p(π1(i(z)), π2(i(z))) = p(δ(z), γ(z)) = h(δ(z)) ∨
j(γ(z)).

“⇐”: Let i : τ(q) → τ(p) be the canonical G-isomorphism between τ(D) and τ
applied to (11). Then q(z) = h(π1(i(z))) ∨ j(π2(i(z))) = p(π1(i(z)), π2(i(z))) =
p(i(z)), thus i is GT -isomorphism, hence D is GT -pullback. �	

6 Adhesiveness

In this section, we intend to show that GT is an adhesive HLR category for the
class M of all extremal monomorphisms.

Theorem 14. GT is an adhesive HLR category for the class M of all extremal
monomorphisms.

Proof. Due to Prop. 4 and [1, Prop. 7.62(2)], M is closed under composition (also
with isomorphisms) and decomposition15, resp. Moreover, GT has all pushouts
and pullbacks along M, and M-morphisms are preserved under pushouts and
pullbacks (cf. Corollaries 9 and 12). It remains to show that pushouts along M-
morphisms are VK squares, cf. [2, Def. 4.9]. Let therefore a commutative cube
be given with a pushout along the extremal mono α at the bottom and two rear
pullbacks (Fig. 3). From Corollaries 9 and 12(4) we can deduce that α and α′

are extremal monos, too (which is already indicated in Fig. 3).
We now show that the top face in Fig. 3 is a pushout ⇐⇒ the two front

faces are pullbacks.
”⇒”: By Corollary 9 and Proposition 7 α′ is strong. Applying τ to the cube
shows that front and right faces are pullbacks in G (by adhesiveness of G). By
Corollary 13 it suffices to show that c = d ◦ α′ ∨ h ◦ i1 and b = d ◦ β′ ∨ i ◦ i2 on
vertices. The first statement follows immediately, because α′ is strong and thus
for any x ∈ Vτ(c)

c(x) = d(α′(x)) and h(i1(x)) ≤ c(x)

s.t. c(x) = d(α′(x)) ∨ h(i1(x)).

15 “Decomposition” means: g ◦m an extremal mono ⇒ m an extremal mono.
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a

i0

��

β′

����
��
��

�� α′ ��� b

i2

��

β
′����

��
�

c

i1

��

α′
�� d

i3

��

g �� α ���

β����
��
��

i

β����
��
��

h ��
α

��� j

Fig. 3. Commutative cube

In order to show the second statement, we let z ∈ Vτ(b) be arbitrary. If z is in
the image of α′, i.e. z = α′(z′) for some z′ ∈ Vτ(a), we obtain

b(z) = a(z′) Strongness of α′

= c(β′(z′)) ∨ g(i0(z
′)) Cor. 13 applied to left rear pullback

= d(α′(β′(z′))) ∨ i(α(i0(z
′))) Strongness of α′ and α

= d(β
′
(z)) ∨ i(i2(z)) Top and right rear faces commute.

If z is not in the image of α′, the pushout construction of Theorem 8 shows that
β
′
(z) is not in the image of α′, such that by Corollary 10

b(z) = d(β
′
(z))

which yields b(z) = d(β
′
(z)) ∨ i(i2(z)), because i(i2(z)) ≤ b(z).

”⇐”: Assume all four side faces are pullbacks. By adhesiveness of G the top
face is a pushout in G such that by Corollary 10 it suffices to show that d◦α′ = c

and d ◦ β′
= b on τ(b)−α′(τ(a)). The first statement is immediate because α′ is

strong by Corollary 12(4).
Let z ∈ τ(b) − α′(τ(a)). Because the rear face is a pullback, i2(z) ∈ τ(i) −

α(τ(g)). By the pushout property of the bottom face, Corollary 10 yields
j(β(i2(z))) = i(i2(z)). Thus by Corollary 13

b(z) = d(β
′
(z)) ∨ i(i2(z)) = d(β

′
(z)) ∨ j(β(i2(z))) = d(β

′
(z)) ∨ j(i3(β

′
(z)))

But j ◦ i3 ≤ d, such that
b(z) = d(β

′
(z))

as desired. �	
Proposition 15. In GT , binary coproducts are compatible with M.

We conclude this section with the main result of this paper: If all graph trans-
formation rules in GT are spans L K����� �� ��� R of two extremal monomor-
phisms, we obtain the well-known concurrency theorems for the DPO-approach:
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Corollary 16. The following results for graph transformation based on GT and
the class M of all extremal monomorphisms are valid due to Theorem 14 and
Proposition 15:

– Local Church Rosser Theorem for pairwise analysis of sequential and parallel
independence [2, Thm. 5.12]

– Parallelism Theorem for applying independent rules and transformations in
parallel [2, Thm. 5.18]

– Concurrency Theorem for applying edge-related dependent rules simultane-
ously [2, Thm. 5.23]

7 Example

Consider a simple model of a file system (Fig. 4). On the one hand, we have the
file system itself and directories, which both can contain other file system objects
and, thus, are called containers. On the other hand, we have directories and
files, which are part of a (unique) container and, thus, are called containees.16
Directories can be created by the rule in Fig. 5a (file creation is done by a
similar rule). Fig. 5b allows to delete a file system object by unlinking it from
its container.17

Container (C’er) Containee (C’ee)

FileSystem Directory File

parts

Fig. 4. File system model

L = K

:C’er

R

:C’er

:Dir
:parts

r

(a) Rule “Create Directory”

L

:C’ee

:C’er

K = R

:C’ee

:C’er

:parts

l

(b) Rule “Delete Object”

Fig. 5. Example rules

16 We do not cover container uniqueness in this example.
17 Some sort of a garbage collector is needed to physically delete all objects that are

not part of any container. These rules are not shown in this example but can be
modelled by using NACs (negative application conditions) [2].
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Container (C’er) Containee (C’ee)

FileSystem Directory File Link

parts target

Fig. 6. File system model with links

Now we extend the file system model by links (see Fig. 6).18 Creating a link
is handled by the rule in Fig. 7. The rule in Fig. 8 allows to retarget a link; the
figure also demonstrates how the rule can be applied to a concrete instance G.

L

t:Containee

c:Container

K

t:Containee

c:Container

R

t:Containee

c:Container

l:Link

:parts

:targetl r

Fig. 7. Rule “Create Link”

In this example, the advantage of being able to define a graph transformation
rule on an abstract level should have become clear. For each containee, we only
need one rule to create the containee, instead of one rule for each concrete
container. It is not necessary to change or extend the rule to delete a file system
object. Retargeting a link can be specified by one single rule (independent of
whether the old and new targets of the link are directories, files, or links), whereas
without any abstraction, nine rules would be necessary.

8 Related Work

There are relatively few approaches that integrate inheritance or inheritance-
like features into graph transformation. Most of these research lines are based
on algebraic graph transformation, either on the double pushout approach [2] or
on the single-pushout approach [11].
18 A (symbolic) link is a reference to another file system object, which can be a link

itself. Typically, operating systems confine the link depth in order to sort out circular
references.
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L

t2:Containee

t1:Containee

l:Link

K

t2:Containee

t1:Containee

l:Link

R

t2:Containee

t1:Containee

l:Link

G

d:Directory

f:File

l:Link

D

d:Directory

f:File

l:Link

H

d:Directory

f:File

l:Link

:target

:target

:target

:target

l r

g h

m d n

Fig. 8. Rule “Retarget Link” and a sample application

H. Ehrig et al. [2] introduce inheritance as an additional set of inheritance
edges between vertices in the type graph. This structure is not required to be
hierarchical. Cycle-freeness is not necessary, since they do not work with the
original type graph. Instead they use a canonically flattened type structure, in
which inheritance edges are removed and some of the other edges are copied to
the “more special” vertices. By this reduction, they get rid of inheritance and are
able to reestablish their theoretical results. E. Guerra and J. de Lara [8] extend
this approach to inheritance between vertices and edges.

F. Hermann et al. [9] avoid the flattening and define a weak adhesive category
based on the original type graph with inheritance structure. The morphisms in
the rules are restricted to those which reflect the subtype structure: if an image
of a morphism possesses subtypes, all these subtypes have pre-images under the
morphism. This feature considerably restricts applicability to examples as in
section 7.

U. Golas et al. [7] also avoid the flattening process. They, however, require
that the paths along inheritance edges are cycle-free (hierarchy) and that every
vertex has at most one abstraction (single inheritance). For this set-up, they
devise an adhesive categorial framework comparable to our approach which is,
however, restricted to single inheritance.
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A. P. L. Ferreira and L. Ribeiro [6] introduced a graph transformation frame-
work for object-oriented programming based on single-pushout rewriting. They
allow vertex and edge specialisations in the type graph and show that suitably
restricted situations admit pushouts of partial morphisms. Their framework is
shown adequate as a model for object-oriented systems. They do not address
further categorial properties like adhesiveness.

9 Conclusion

Since our introduced formal foundation is enriched with inheritance, it is bet-
ter capable of modelling static structures of object-oriented systems. Although
there have been similar approaches (see Section 8), the innovation of our work
is the proof that our framework is well-behaved w.r.t. the interplay of pushouts
and pullbacks (adhesiveness). Consequently, important theorems on concurrent
applications of graph transformation rules are valid. This enables controlled ma-
nipulation and evolution of object graphs with inheritance based on the general
theory of algebraic graph transformations.

The presented inheritance concept increases the value of graph transforma-
tion techniques for applications. But beside the specification of associations (i.e.
admissible object linkings) and inheritance (property transfer between classes),
(UML-)class diagrams also specify attributes, object containment relations (com-
position), instantiation restrictions (abstract classes), arbitrary mulitiplicities,
and other limiting constraints. Hence, there is one important direction for fu-
ture research: Is adhesiveness invariant under enlargements of GT such as intro-
duction of attributes [3], addition of abstractness predicate, or sketched OCL19

constraints [14]?
It is also a goal of forthcoming research to define single pushout rewriting [11]

with inheritance: For this, transformation rules r : L → R with r a partial type-
compatible morphism have to be introduced, conflict freeness and more generally
“deletion injectivity” have to be made precise. In addition to static inheritance
features introduced above, we conjecture that simple inclusion relations of rules
lead to a better formal understanding of overwriting (a rule by a larger rule).
Consequently, the effect of replacing an application of a rule r by a super rule
r′ could also be interpreted as a negative application condition [2], if r′ is the
identity.

Finally, the overall research goal must be to integrate all important object-
orientation concepts to graph transformations, which will result in a compre-
hensive visual formal framework to be applied to object-oriented modelling and
meta-modelling.
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