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Abstract. One way of developing reliable systems is through the use of For-
mal Methods. A Graph Grammar specification is visual and based in a simple
mechanism of rewriting rules. On the other hand, verification through theorem
proving allows the proof of properties for systems with huge (and infinite) state
space. There is a previously proposed approach that has allowed the application
of theorem proving technique to graph grammars. One of the disadvantages of
such an approach (and theorem proving in general) is the specific mathematical
knowledge required from the user for concluding the proofs. This paper proposes
proof strategies in order to help the developer in the verification process through
theorem proving, when adopting graph grammar as specification language.

1 Introduction

In the present scenario we find a wide variety of software and hardware systems that are
increasingly complex. In this situation, it is important to adopt strategies for increasing
reliability. A way of achieve such a goal is using formal specification and verification.
A formal specification is carried by a mathematical model, with well-defined syntax
and semantics and formal verification can guarantee system properties.

There are several specification languages, among them, graph grammars (GG) [1]]
stand out, which are visual, based on rewriting rules and capable of describing complex
behaviours. In graph grammars, states are modelled as graphs and state changes are
described by graph rules. Likewise, there are a number of verification techniques, and
one of them is Theorem Proving [2]. In this technique both, the system and the desired
properties are described using mathematical descriptions and logic. The verification
strategy consists of finding a proof from axioms and intermediary lemmas of the system.
This technique is particularly interesting [3]] for systems with big or infinite state space,
since it does not require the construction of (any fragment of) the state space.

Previous work [4/506] has allowed the verification of systems specified in graph
grammars through theorem proving. This technique proposed a relational and logical
approach to GG, providing the coding of graphs and rules with relations. The rela-
tions that define a grammar determine axioms that can be used to develop proofs. The
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rule application is described by an event such as an inference rule (when a set of vari-
ables satisfies guard conditions, the rule is applied). This approach was translated into
Event-B structures [7], allowing the use of theorem provers compatible with this lan-
guage (available in the Rodin platform [8]) for demonstrations of properties. The proof
process is semi-automatic, requiring user interaction.

When modelling a system in Event-B, Rodin makes a syntactic (static check) and
a dynamic verification. In these verifications the tool generates proof obligations to
ensure invariants are preserved, guard conditions and actions are well defined, formu-
las are meaningful, among others. These obligations are stated in order to ensure sys-
tem consistency. Some are completed automatically, others need user intervention. The
knowledge of both the system and the tool required for completing the proofs hinders
the use of this proposal.

This work presents the proof obligations generated by a GG specification in Rodin,
as well as establishes the provers that discharge them. Also it proposes proof strategies
to assist the developers when discharging semi-automatic proof obligations generated
by the specification of atomic properties in the model. Next sections are organised as
follows. Section [2] introduces the graph grammar formalism. Section [3] presents the
mapping of graph grammars into Event-B structures. Section d] presents the proof obli-
gations generated by a GG in Event-B, indicating the respective provers to discharge
them. Section [3]describes strategies for discharging proof obligations generated by the
specification of atomic properties. Section[d concludes and discusses future works.

2 Graph Grammars

Graph Grammar is a specification language suitable for representing complex situa-
tions, because it is simple and visual. A graph is defined by two sets and two functions.
A graph morphism is defined by two partial functions. The identifiers used in next defi-
nitions (prefixed with inv_, grd_, axm_ and act_) are those used in the Event-B model
(meaning respectively, invariant, guard condition, axiom and action) in Section 3

Definition 1 (Graph and graph morphism). A graph G is a tuple (vertG,edgeG,
sourceG, targetG), where vertG is a set of vertices, edgeG is a set of edges, and
sourceG,targetG: edgeG — vertG are total functions, defining source and target
of each edge, respectively. Given two graphs G = (vertG, edgeG, sourceG, targetQ)
and H = (vertH, edgeH, sourceH, targetH), a (partial) graph morphism f: G-~H
is a tuple (f_V: vertG +vertH, f_E: edgeG - edge H) such that f commutes with
source and target functions:

grd_srctgt: Ve € dom(f_E) - f_V(sourceG(e)) = sourceH(f_E(e)) and
Ve € dom(f_E) - f_V(targetG(e)) = targetH(f_E(e))

A graph morphism is said to be total or injective if both of its components are total or
injective functions, respectively.

A typed graph is defined by two graphs connected by a total graph morphism (typing
morphism). A typed graph morphism is a graph morphism that satisfies a compatibility
condition, which establishes that the mapping of components must preserve types.
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Definition 2 (Typed Graph, Typed Graph Morphism). A typed graph is given by a
tuple GT = (G, tG,T) where G and T are graphs andtG = (tG_V,tG_E) is a typing
morphism from G over T, i.e., tG: G — T is a total graph morphism (inv_tG_V and
inv_tG_E). A (typed) graph morphism from G* to HT is defined by a morphism
g = (9_V,g_FE) from G to H, s.t. the typed morphism compatibility condition is
satisfied:

grd_vertices: Yv € dom(g_V) - tG_V(v) =tH_V(9_V(v)) and
grd_edges: Ve € dom(g_F) - tG_E(e) = tH_E(g_E(e))

A rule is composed of two typed graphs and a morphism between them, which de-
scribes a possible behaviour of the system.

Definition 3 (Rule). A rule typed over T is a typed graph morphism o = (a_V,a_E):
LT~ RT, where: LT and RT are graphs typed over T, « is injective (axm_alphaV
and axm_alphaE); a_V : vertL ~— vertR is a total function (axm_alphaV).

Definition 4 (Graph Grammar). A (typed) graph grammar is a tuple GG = (T, GO, R),
where T is a graph, called type graph; GO is a graph typed over T, called initial graph;
and, R is a set of rules typed over T.

The occurrence of the left-hand side (LHS) of a rule in a state graph is called match.

Definition 5 (Match). Let r = (a: LT+ RT) be a rule, with L™ and R™ typed graphs
over T. Let GT = (G,tG,T) be a typed graph with tG = (tG_V,tG_E). A match m
of rule r in G is defined by a total typed graph morphism m = (m_V,m_E): LT —
G7, such that m_E: edgeL — edgeG is injective.

The behaviour of a GG is given by rule applications. A rule is applied only if there
is a match of the rule in the state graph. When a rule is applied a new state is generated.

Definition 6 (Rule Application). Let 7 = (a : LT ~ RT) be a rule and m =
(m_V,m_E) be a match of v in a typed graph G*. A rule application GT =" HT,
or the application of r to GT at m, generates a typed graph HT = (H,tH,T), with

H = (vertH,edgeH, sourceH, targetH), as follows:

- vertH = vertG W (vertR — rng(a_V)) (act_vert);
- edgeH = (edgeG — rng(m_E)) W edgeR (act_edge);
— foralle € edgeH (act_src and act_tgt)

sourceG(e) if e € edgeG
m(sourceR(e)) otherwise
targetG(e) if e € edgeG
m(targetR(e)) otherwise

sourceH (e) = {

targetH (e) = {

where m: vertR — vertH is defined by:
AN _ /
m(v) = m_V(')ifv e r'ng(a_V) and v = a_V(v')
v otherwise
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- forallv € vertH andall e € edgeH, tH = (tH_V,tH_FE) is defined by (act_tV
and act_tE)

GV (v) it v € vertG
tH_V(v) = {tR_V(v) otherwise
)
)

tG_Ev) if e € edgeG
tH_E(e) = {tR EEU .

otherwise

Next we use the GG language to specify the Token Ring protocol [9]]. In this protocol,
a special signal, called a token, is passed from station to station in only one direction.
A message can be transmitted only by stations that hold the token (active stations). The
transmission circulates for all the ring and finishes when the message returns to the
original station. Then the station that started the transmission becomes standby and the
signal token is passed for the next station, restarting the cycle. In our example there
is only one token, so a single station can transmit at a given time. We also allows the
addition of new stations into the network at any time.

Token Token E - :l

QI
.
W

T GO
Token Token (M= Tokeny Token,
K v [y K K
-, .. - = .8 | - > .u_.a
= — 2 == 1 1 v
o e 1 £ —
L1 Act R1 L2 Stb R2
"B > Token, Token,
v v v —
N, .= - m & .. - m ..
$—1] 2 tr N2 D‘JE M 1 2
L3 R3 = La D Ra
- =
5 1 Stb
.. .8 K5 4
L5 ] R5

Fig. 1. Token Ring GG

Figurd]l illustrates the graph grammar for the example. The type graph T defines a
single type of node = (Node), and five types of edges = (Message), Token (Token),
*— (Next), (Active Station) and (Standby Station). = represents a network

station and © defines a portion of data. The Token is a special signal which enables
stations to transmit. ** connects each station. One station with edge transmits

some information through the network. One station with edge is standby, and can
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receive a message. The initial graph GO was set with three nodes, and none of the
stations are transmitting (there is no edge of type (Ac)y,

The behaviour of this protocol is given by the rules. In this representation, the mor-
phism is not explicitly represented, but we consider that the items with the same name
and type are mapped. In the rule al a standby station that holds the token becomes
active and sends a message to the next station. It is also possible that a standby station
holding the token directly passes it to the next station (rule o:2). When a message arrives
at a standby node, it goes directly to the next station (rule a3). In rule a4 the message
is received by the transmitting station, which returns to the standby mode and pass the
token to the next station. In this specification, at each instant of time new nodes can be
added into the ring, by rule 5. This model generates an infinite state-space.

3 Graph Grammars in Event-B

An Event-B model [[10] consists of a context (static part) and a machine (dynamic part).
In the context are defined sets, constants and axioms. In the machine are defined vari-
ables, invariants and events. A model is called correct if all set of proof obligations
generated from the model is discharged. An extensive tool support through the Rodin
Platform [8] makes Event-B especially attractive.

The Event-B model and its behaviour is similar to a graph grammar. There is a con-
cept of state (set of variables in Event-B and a graph in GG) and a transition is con-
sidered an atomic operation in the current state (an event that updates the variables
in Event-B and a rule application in a graph grammar). Each stage should preserve the
properties of the state. In Event-B these properties are treated as invariants, and in graph
grammars, they are related to the graph structure. A graph grammar with 7 rules, o to
ap and i € {1,...,n}, can be modelled in Event-B as follows:

1. Context

(a) The sets of the model are vertT, edgeT, vertLi, edgeLi, vert Ri and edge Ri
(the sets of vertices and edges of all graphs);

(b) The constants represent the vertices and edges of the type graph and rules and
also the names of typing functions tL:_V, tLi_FE, tRi_V and tRi_F, source
and target functions, sourcel, targetT, sourcelLi, targetLi, sourceRi and
target Ri, and rules alphaiV and alphaiE;

(c) The axioms define explicitly all sets and functions of the model.

2. Machine

(a) The model variables are specified by vertG, edgeG, sourceG, targetG,tG_V
and tG_F (current state of the system);

(b) The invariants define the types of variables;

(¢) The initialisation action sets the initial values for the variables vertG, edgeG,
sourceG, targetG, tG_V and tG_F (specifying the initial graph GO0);

(d) The set of events defines the rule applications. Guard conditions guarantee the
occurrence of a match (conditions for the rule to be applied).
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Tok (Tok) 1 2 (Stb)

Nxt D Msg (Nxt) 3 7 (Nxt)
6 (Stb)

Act 5 (Nxt)

1|4 6B Go
Tok11 Tok12 Msg11
al Nxt12
@ Nxt11 @ > (N3 N14
StoTi L1 Actii R1

Fig. 2. Alternative Representations for Type Graph T, Initial Graph G0 and Rule a1

Static Part: The static part of graph grammars is specified in the context. Figure
presents an alternative representation for graph 1" and rule a1 of Figure [Tl

The event-B specification is show in Figure 3l For specifying the type graph T', we
define as sets, vertT and edgeT’; as constants, the names of the vertices (/Vode) and the
edges (Nxt, Tok, M sg, Stb, Act), as well the names of the source and target functions
(sourceT, targetT); in the axioms, we define these sets explicitly (e.g., axm_vertT
is defined by partition(vertT,{ Node}) meaning that vertT = {Node}).

CONTEXT ctx_T
SETS

vertT, edgeT // Type graph T'
vertL1, edgelLl // Graph L1

vertR1, edgeR1 // Graph R1
CONSTANTS

Node Nxt Tok Msg Stb Act sourceT targetT // Constants of type graph T'
N11 N12 Tok11 Stb1l Nxt1l sourceLl targetLl tL1_V,tL1_E // Constants of graph L1
N13 N14 Tok12 Act11 Nxt12 Msgl1 sourceR1 targetR1 tR1_V tR1_E // Constants of graph R1
alphalV, alphalE // Morphism components
AxiomS 0P & P

axm_vertT : partition(vertT, { Node}) // Type graph T
axm_edgeT : partition(edgeT, { Nxt}, { Tok}, {Msg}, {Stb}, {Act}) // Type graph T'
axm_srcTtype : sourceT € edgeT — vertT // Type graph T’
axn_srcTdef : partition(sourceT, { Nzt — Node}, { Tok — Node},

{Msg — Node}, {Stb — Node}, {Act — Node}) // Type graph T'
axm_tgtTtype : targetT € edgeT — vertT [/ Type graph T'
axn_tgtTdef : partition(targetT, { Nzt — Node}, { Tok — Node},

{Msg — Node}, {Stb — Node}, {Act — Node}) // Type graph T'

axm_tR1.V: tR1_V € vertR1 — wvertT // Typing morphism graph R1
axm_tR1_V_def : partition(tR1_V,{N13 — Node}, {N14 — Node}) // Typing morphism graph R1
axm_tR1_E: tR1_E € edgeR1 — edgeT // Typing morphism graph R1
axm_tR1_E_def : partition(tR1_E,{Tok12 — Tok}, {Act1l — Act},

{Nzt12 — Nazt}, {Msg11 — Msg}) // Typing morphism graph R1
axm_alphalV : alphalV € wvertL1 - vertR1 // Vertex Morphism Component from graph L1 to R1
axm_alphalV_def : partition(alphalV ,{N11 — N13},{N12 — N14})
axm_alphalE: alphalE € edgeL1 + edgeR1 // Edge Morphism Component from graph L1 to R1
axm_alphalE def : partition(alphalE,{Tok11 — Tok12},{Nxzt11 — Nzt12})

Fig. 3. (Part of) GG Specification in Event-B
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To define a rule in Event-B, it is necessary to specify the two typed graphs and the
morphism. Graphs L1 and R1 are specified analogously T'. The typing morphism names
tR1_V andtR1_F are declared as constants while their definitions are explicitly defined
in the axioms (axm_tR1_V, axm_tR1_V _def, axm_tR1_E, axm_tR1_E_def).
The morphism components are also declared as constants (alphalV, alphal E') and ex-
plicitly specified in the axioms (axm_alphalV, axm_alphalV _def, axm_alphal E,
axm_alphalV _def).

Dynamic Part: The dynamic part of a graph grammar is specified in the machine. A
set of variables define the state graph and a set of invariants determine its types. Both
are illustrated in Figure 4l

MACHINE mch_trAll
SEES ctx_GG
VARIABLES

vertG, edgeG, sourceG, targetG, tG_V, tG_E
INVARIANTS

inv_vertG: wertG € P(N)

inv_edgeG: edgeG € P(N)

inv_sourceG: sourceG € edgeG — vertG
inv_targetG : targetG € edgeG — vertG
inv_tG V: tG_V € vertG — vertT
inv_tG_E: tG_E € edgeG — edgeT

EVENTS

Initialisation
act_vertG: wvertG:={1,2,3}
act_edgeG: edgeG:={1,2,8,4,5,6,7}
act_srcG: sourceG:={1w— 1,2 1,83 1,4+ 2,5—2,6— 3,7 3}
act_tgtG: targetG:={1—1,2+— 1,3+ 2,4 — 2,5 8,6 3,7+— 1}
act_ tG V: tG_V :={1 Node, 2 — Node, 3 — Node}

{1 — s d
act_tG_E: tG_E := {1 — Tok, 2 > Stb, 3 — Nuxt, 4 —
Event alphal =
any

n

th, 5 — Nat, 6 — Stb, 7 — Nuxt}

mV mE newEmsg newFact
where

grd mV: mV € vertLl1 — vertG

grd_ mE: mE € edgeLl — edgeG

grd_newEmsg : newEmsg € N\ edgeG

grd_newEact : newFact € N\ edgeG

grd_E1E2 : newEmsg # newEact

grd_vertices : Vv-v € vertL1 = tL1_V (v) = tG_V(mV (v))

grd_edges : Ve-e € edgeLl = tL1_E(e) = tG_E(mE(e))

grd_srctgt : Ve-e € edgeLl = mV (sourceL1(e)) = sourceG(mE(e)) A
mV (targetL1(e)) = targetG(mE(e))

then

act_E: edgeG := (edgeG \ {mE(Stb11)}) U {newEmsg, newEact}

act_src: sourceG := ({mE(Stb11)} < sourceG) U {newEact — mV (N11),
newEmsg — mV (N12)}

act_tgt : targetG := ({mE(Stb11)} < targetG) U {newEact — mV (N11),
newEmsg — mV (N12)}

act_tE: tG_E := ({mE(Stb11)} 9 tG_E) U {newFEact — Act, newEmsg — Msg}

Fig. 4. State Graph and Events in Event-B

The initial graph and rule applications are specified by events in Event-B. Figure
also shows an alternative representation for the initial graph GO of the token ring ex-
ample. Vertices and edges are named with natural numbers with its types described into
the brackets. The initialisation event, depicted in Figure ] defines GO. It is responsible
for initialising the value of each state variable.
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Other events determine the behaviour of the system, specifying the rule applications.
Figure M shows the specification for rule a1. Guard conditions guarantee the occur-
rence of a match, and the actions specify the value of the modified variables. If there
are values for the variables mV, mE, newEmsg, newFEact satisfying the guard con-
ditions, then the rule is applied. Guard conditions grd_mV, grd_mkFE, grd_vertices,
grd_edges and grd_srctgt guarantee that the pair (mV, mFE) defines a match of the
rule in the state graph. The conditions grd_newEmsg, grd_newFact and grd_E1E2
ensure that newFEmsg and newFact are new free edges names. The actions act_F,
act_src, act_tgt and act_t F modify the state graph. In this case, an Stb edge is deleted
and two new edges are created, one of type Act and other one of type M sg.

4 Proof Obligations Generated from a GG Specification in Rodin

When specifying a system in Event-B, the Rodin platform executes a static (syntactic)
and a dynamic verification. In these verifications proof obligations are generated, which
must be demonstrated in order to ensure (part of) the correctness of the model. These
properties can be discharged using provers that comes with the tool or external ones,
which can be installed in the form of plugins. Some of the proof obligations are proved
automatically, while other ones depend on the user interaction.

Proof obligations generated by a GG specification in Rodin are basically of two
kinds, to ensure well-definedness conditions (labelled with WD) or to preserve invari-
ants (labelled with INV). In the Event-B specification, the set of variables define the
state graph and the invariants specify their types. Proof obligations are generated to
guarantee the preservation of their types by the initialisation event and by the events
that specify the rules. The corresponding proof obligation are generated whenever a
variable is modified by an event, in order to guarantee its type preservation. Other proof
obligations aim to ensure that guards conditions (conditions for applying a rule) and
actions (responsible for updating the values of some variables) are well-defined.

The main provers available for Rodin are NewPP, PP (predicate prover) and ML
(mono-lemma). The NewPP prover has three forces. In the configuration “restricted”
(nPP R), all selected hypotheses and the goal are passed to New PP. In the configuration
“after lasso” (nPP with a lasso), a lasso operation is applied to the selected hypotheses
and the goal and the result is passed to New PP. The lasso operation selects any un-
selected hypothesis that have a common symbol with the goal or a hypothesis that is
currently selected. In the configuration “unrestricted” (nPP), all the available hypothe-
ses are passed to New PP. This prover is embedded in the tool and its input language is
first-order logic with the predicate €. First, all function and predicate symbols that are
different from € and not related to arithmetic are translated away. Then New PP trans-
lates the proof obligation to conjunctive normal form and applies a combination of unit
resolution and the Davis Putnam algorithm. The PP prover, available in the Atelier-B
as an external prover, also has three forces (PO, P1, PP). In the configuration “P0”, all
selected hypotheses and the goal are passed to PP. In the configuration “P1”, one lasso
operation is applied to the selected hypotheses and the goal and the result is passed to
PP. In the configuration “PP”, all the available hypotheses are passed to PP. The input
sequent is translated to classical B and fed to the PP prover of Atelier B. PP works in a
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manner similar to newPP but with support for equational and arithmetic reasoning. The
ML prover is also available in the Atelier-B, but different from others (PP and NewPP).
ML applies a mix of forward, backward and rewriting rules in order to discharge the
goal (or detect a contradiction among hypotheses). For more details see [[LO/7].

Table [ presents the main proof obligations generated when specifying a GG in
Event-B. They can be easily discharged by running the available provers. Besides the
identification of each proof obligation, follows a brief description of it, along with the
prover that must be used to discharge it.

Proof obligations identified with INITIALISATION guarantee that variables that
define the state-graph, when initialised, preserve their types. The initial value of the
variables describes the initial graph of the graph grammar. For instance, in the to-
ken ring example, the obligation INITIALISATION /inv/_vertG/INV is used to ensure
that {1,2,3} € P(N) (see Figure d). Similarly, proof obligations are generated in or-
der to ensure the type preservation by the initialisation of the other variables (edgeG,
sourceG, targetG, tG_V and tG_FE). All of them can be discharged by running PO.

Proof obligations labelled with rule/grd ensure that the guard conditions for the re-
spective event (or rule) are well-defined. For example, in the token ring, the obligation
rulel/grd_vertices/WD ensures that guard condition grd_vertices (see Figure [4)
is well-defined, that is, v € dom(tL1_V), v € dom(mV') and mV (v) € dom(tG_V),
with tL1_V,tG_V and mV preserving its types.

The result of a rule application can create edges, delete edges or create vertices in the
state-graph, changing the values of the corresponding variables. Proof obligations are
generated in order to guarantee that the variables with their values updated preserve its
types. These obligations are prefixed with rule/inv. In the token ring, rule 1 delete one
Stb edge and create one Act and one M sg edges (see Figure[d)). In such case, variables
edgeG, sourceG, targetG and tG_FE are modified, and then proof obligations are
generated to assure that these variables, after updating, preserve their types. E.g., it
must be guaranteed that (edgeG \ {mE(Stb11)}) U {newEmsg,newFEact} € P(N).

Obligations are also generated to ensure that actions (which define the result of a rule
application) are well-defined. These obligations are prefixed with rule/act. When a rule
deletes an e edge, then variables edgeG, sourceG, targetG and tG_E are modified.
In such case, the deleted edge of the state-graph is the image of e by the mFE compo-
nent of the match, i.e., mE(e) is deleted from edgeG. In the same way, are excluded
the elements (pairs) of the functions sourceG, targetG and tG_FE that have mFE(e)
as first component. In order to the respective actions be well-defined, the edge e must
belongs to the domain of mE and mE must preserve its type (these are the proof obli-
gations rule/act_E/WD, rule/act_src/WD, rule/act_tgt/WD, rule/act_tE/WD). Besides
that, when a rule adds an edge with source (or target) in a v vertex, that is preserved by
the rule, the source (respect. target) of the added edge must be image of v by the mV’
component of the match. In this case, in order to variables sourceG and targetG be
well-defined, v must belong to the domain of mV, with mV preserving its type (these
are the proof obligations rule/act_src/WD and rule/act_tgt/WD). Proof obligations of
this type are demonstrated automatically.

The proof obligations described above are those generated when specifying a GG in
Event-B. Following this approach [5]], any other property to be verified must be stated as
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Table 1. GG Proof Obligations in Event-B

Identification

INITTALISATION/inv_vertG/INV
INITTALISATION/inv_edgeG/INV

Description

Ensure that vertG preserves its type in GO (at initialisation).
Ensure that edgeG preserves its type in GO.

INITTIALISATION/inv_srcGtype/INV Ensure that sourceG preserves its type (a total function from

INITIALISATION/inv_tgtGtype/INV
INITIALISATION/inv_tG_V/INV
INITIALISATION/inv_tG_E/INV

rule/grd_vertices/WD

rule/grd_edges/WD

rule/grd_srctgt/WD

rule/inv_vertG/INV

rule/inv_edgeG/INV

rule/inv_srcGtype/INV

rule/inv_tgtGtype/INV

rule/inv_tG_V/INV

rule/inv_tG_E/INV

rule/act_E/WD

rule/act_src/WD

rule/act_tgt/WD

rule/act_tE/WD

edgeG to vertG) in GO.

Ensure that targetG preserves its type (a total function from
edgeG tovertG) in GO.

Ensure that tG_V preserves its type (a total function from
vertG to vertT') in GO.

Ensure that tG_E preserves its type (a total function from
edgeG to edgeT') in GO.

Ensure that the grd_vertices condition (see Fig. @ is well-
defined, i.e. v € dom(tL_V'), v € dom(mV') and mV (v)
€ dom(tG_V), with tL_V, tG_V and mV preserving its
types.

Ensure that the grd_edges condition (see Fig. H) is well-
defined, i.e. e € dom(tL_FE), e € dom(mE) and mE(e)
€ dom(tG_E), with tL_E, tG_E and mE preserving its
types.

Ensure that the grd_srctgt condition (see Fig. H) is
well-defined, ie. e € dom(sourceL), sourceL(e) €
dom(mV), e € dom(mE), mE(e) € dom(sourceG), e
€ dom(targetL), targetL(e) € dom(mV) and mE((e)
€ dom(targetG), with sourceL, mV, mE, sourceG,
targetL and targetG preserving its types.

Ensure that vertG, when modified by a rule application, pre-
serves its type.

Ensure that edgeG, when modified by a rule application, pre-
serves its type.

Ensure that sourceG, when modified by a rule application, pre-
serves its type (a total function from edgeG to vertQG).
Ensure that targetG, when modified by a rule application, pre-
serves its type (a total function from edgeG to vertQG).
Ensure that ¢tG_V', when modified by a rule application, pre-
serves its type (a total function from vertG to vertT).
Ensure that tG_E, when modified by a rule application, pre-
serves its type (a total function from edgeG to edgeT).
Ensure that the modification of variable edgeG is well-defined.
When an e edge is deleted, ensure that e belongs to the domain
of the m EZ component of the match (i.e e € dom(m£E)) and
that m E preserves its type (mE: edgeL — edgeG).

Ensure that the modification of variable sourceG is well-
defined.

When an e edge is deleted, ensure that e belongs to the domain
of the m E component of the match (i.e ¢ € dom(mE)) and
that m E preserves its type (mE: edgeL — edgeG).

When an e edge is created with source (or target) in a vertex v,
preserved by the rule, ensure that v belongs to the domain of
the mV" component of the match (i.e v € dom(mV’)) and that
mV preserves its type (mV: vertL — vertG).

Ensure that the modification of variable targetG is well-
defined.

When an e edge is deleted, ensure that e belongs to the domain
of the m EZ component of the match (i.e e € dom(m£E)) and
that m E preserves its type (mE: edgeL — edgeG).

When an e edge is created with source (or target) in a vertex v,
preserved by the rule, ensure that v belongs to the domain of
the mV component of the match (i.e v € dom(mV')) and that
mV preserves its type (mV: vertL — vertG).

Ensure that the modification of variable tG_E is well-defined.
When an e edge is deleted, ensure that e belongs to the domain
of the m E component of the match (i.e ¢ € dom(mE)) and
that m E preserves its type (mE: edgeL — edgeG).

Provers
ML or PO

ML or PO
PO
PO
ML, PO or NewPP
PO

ML or P1

ML, P1 or NewPP

ML or P1

ML or PO

ML or PO

PO

PO

ML, P1 or NewPP

PO

Automatic

Automatic

Automatic

Automatic
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an invariant, indicating that it must be true for all reachable states of the system. Proofs
for such properties are developed by induction: in the base case, a proof obligation is
generated to guarantee the preservation of the property for the initial graph and, at the
inductive step, a proof obligation is generated for the graph resulting from the applica-
tion of each rule of the grammar. In general, the discharging of such proof obligations
requires intervention from the user, that must have knowledge of both, the tool and the
specification. The proposal of proof strategies to help the user in the development of the
demonstrations for some of these properties is addressed in the next section.

S Proof Strategies for Atomic Properties

The translation of GG in Event-B structures has enabled the use of first-order logic to
express properties of reachable states of a graph grammar. However, during the devel-
opment of the case studies, we noticed that, although the specification of the behaviour
of the system could be rather intuitively described with graph grammars, the verification
of properties was not trivial. Properties over states are properties over graphs, typically
composed of different kinds of edges and vertices. In previous work [[11] we have pro-
posed patterns for the presentation, codification and reuse of property specifications.
Here, we presents proof strategies for the demonstration of specific atomic properties
belonging to such patterns. Particularly, we describe proof strategies for discharging the
properties presented in Figure[3l Properties must be stated as invariants in the machine.

INVARIANTS
propFin : finite(tG_E > {t}) /I The set of edges of type ¢ of a reachable graph is finite.
propCard : card(tG_E > {t}) = 1 // Any reachable graph has exactly one edge of type ¢.
propExEdge : Jz -z € tG_E > {t} // Any reachable graph has an edge of type ¢.
propExVert : Iz -z € tG_V > {t} // Any reachable graph has a vertex of type t.

Fig. 5. Properties as Invariants in Event-B

For each property, we first present the steps for discharging the proof obligation
for the initial graph and after for the rules. Property propFin is required for the dis-
charging of propCard. The steps for discharging the INITTALISATION/propFin/INV
generated by propFin finite(tG_E t> {t}) for the initial graph are the following:

1. Add the hypothesis tG_E t> {t} = {z}, replacing tG_FE by its value and consid-
ering x the result of {G_FE restricted to the type ¢ for the initial graph.

2. Execute the prover PP in force P1.

3. Run prover ML.

Figure[@ presents the proof tred] generated for the demonstration of the proof obliga-
tion INITTALISATION/propFin/INV. Each node represents a sequent and each number
(from 1 to 5) represents the rule or the prover used to discharge the corresponding se-
quent. A set of proof tactics and rewriting rules are available within the Rodin platform
[7]. Space limitations prohibit their detailing here. After adding the hypothesis three

! The set of hypotheses H in proof trees are omitted. In order to provide readability we denote
H different sets of hypotheses.
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sequents must be proved: (i) - T, that is discharged automatically with the T goal rule;
(i) - tG_E > {t} = {z} which is automatically simplified (through sl/ds, that corre-
sponds to a selection/deselection of hypotheses) to the sequent H + tG_E>{t} = {z},
discharged with P1; (iii) tG_E > {t} = {«} I finite(tG_Et>{t}) which is discharged
with ML.

PP RULES '
True HFEtGEP>{t} ={z} ; ML RULES .
T FtG_E > {t} = {z} tG_E > {t} = {z} F finite(tG_E > {t})

F finite(tG_E > {t}) ’

I PP;2 T goal;3sl/ds;4 ML:;5ah (tG_E > {t} = {z})

Fig. 6. Proof Tree for Discharging INITTALISATION/propFin/INV

In order to conclude the proof of propFin, proof obligations must be discharged
for each rule of the graph grammar that modifies tG_E. These will be those that replace
tG_F by its new value, determined by the action of the respective rule. In general, a
rule can both delete and create new edges, then the obligation to be discharged will be
of the form finite((({mE(e1),...,mE(e;))} 9<tG_E)UA) > {t}), considering that
j edges are deleted and a set of A pairs are included in tG_F. In this case, the steps for
discharging rule_i/propFin/INV for each rule ¢ are the following:

1. Apply the tactic Range Distribution Left Rewrites, which after the application of
some automatic tactics will generate two sequents to be proved: (i) finite(({mE(eq),
...,mE(e;))} <tG_E) > {t}) and (ii) finite(A > {t}).

2. Inorder to prove (i), add ({mE(e1),...,mE(e;))} <tG_E)>{t} CtG_E>{t}
as hypothesis, and conclude the subgoals running ML.

3. In order to prove (ii), add A > {t} C A as hypothesis, and conclude the subgoals
running ML.

Figure [7] presents the proof tree generated for the demonstration of each proof obli-
gation rule_i/propFin/INV. After applying the tactic range distribution left rewrites in
goal, a sequence of automatic tactics are applied (rules 12 to 14 in the proof tree). They
correspond to the applications of simplification rewriting rules and typing rewriter tac-
tic (details are found in Rodin Proof Tactics [7]). Then, the tactic A goal splits the
sequent into two subgoals: (i) finite(({mE(e1),...,mE(e;))} <tG_E) > {t}) and
(ii) finite(A > {t}). The subgoal (i) is discharged adding the hypothesis ({mE(ey),
...,mE(e;))} 9tG_E) > {t} C tG_E > {t}, remaining three sequents to be proved:
Hl e €edom(mE)A...Nej € dom(mE) AmE € edgeLi —+ Z, that is discharged
automatically, H + ({mE(e1),...,mE(e;))} <tG_E) > {t} C tG_E > {t} and
H + finite(({mE(e1), ...,mE(e;))} < tG_E) > {t}), which are both discharged
running ML. The subgoal (ii) is discharged adding the hypothesis A > {t} C A,
remaining three sequents to be proved: H + T, discharged with the T goal tactic,
HF A {t} C Aand H F finite(A > {t}), both discharged with ML.

The steps for discharging the obligation INITIALISATION/propCard/INV generated
by propCard (card(tG_E > {t}) = 1) for the initial graph are the following:
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ML RULES
HtE ({mE(e1),..., mE(e;))} QtG_E) > {t} C tG_E > {t}
ML RULES
H, ({mE(e1), - ., mE(e;))} StG_E) > {t} C tG_E > {t} & finite(({mE(e1),- .., mE(e;))} StG_E) > {t})

True
. HrT
H-ETA...AT

3
HF e € dom(mBE)A...Aecj € dom(mE) AmE € edgeLi - Z [p]

H  finite(({mE(e1), ..., mE(e;)} QtG_E) > {t})

2

True ML RULES . ML RULES
HF T Hr A {t} C A H, A {t} C A+ finite(A > {t})
H b finite(A> {t})

H & finite({mE(e1), ..., mE(e;))} <tG_BE > {t}) A finite(A > {t})

H & finite({mE(e1), ..., mE(e;))} 9tG_E > {t}) A finite(A > {t})

H & finite({mBE(e1), ..., mE(e;))} 9tG_E > {t}) A finite(A > {t})
H+ finite(({mE(e1), ..., mE(e;)} QtG_E > {t}) U (A > {t}))
HF finite(({mE(e1), ..., mE(e;j))} QtG_E) U A) > {t})

1T goal; 2 fication Rewrites ; 3 G MP;4 M L;5 ML;6ah ({mE(eq1), ..., mE(e;)} QtG_E) > {t} CtG_Er {t}i71T
goal; 8 ML;9 ML:10ah (A > {t} C A); 11 A goal; 12 Simp. rewrites; 13 Type Rewrites; 14 Simp. Rewrites; 15 Range Distribution Left Rewrites in Goal

Fig. 7. Proof Tree for Discharging rule_i/propFin/INV

1. Add the hypothesis tG_FE > {t} = {e — t}, replacing tG_F by its initial value
and considering e — ¢ the pair resultant of tG_FE restricted to the type t for the
initial graph.

2. Run prover PP in force P1 (lasso operation is applied to the common hypotheses).

3. Run prover PP in force P1.

Figure 8] presents the proof tree. After adding the hypothesis, three sequents must be
proved: (i) - T, that is discharged automatically with the T goalrule; (ii) tG_E>{t} =
{e — t} and (iii) 3z, 0. tG_E > {t} = {x > 20}, both discharged with P1.

The obligations generated by propCard for each rule will be those that replace
tG_F by its new value. Since a rule can both delete and create new edges, then the
general obligation to be discharged will be card((({mE(e1),...,mE(e;))}<9tG_E)U
{edi — t1,...,edy — ti}>{t}) = 1, considering that j edges are deleted and k edges
are created. In fact, if this property is valid, the ¢ edge or is preserved or is deleted and
created by a rule application. Then, we divide our tactic into two subcases:
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PP RULES ' PP RULES

HFtG_ED> {t} = {e — t} HF 3z,20 - tG_E > {t} = {z — x0}

True FtG_E> {t} = {e — t} : H+ 3z,20 - tG_E > {t} = {x — 0}
T FtG_E> {t} = {e — t} HF card(tG_E> {t}) =1

Fcard(tG_E> {t}) =1

| PP;2 PP;3sl/ds;4sl/ds;5 T goal; 6 simplification rewrites; 7 simplification rewrites;
8ah(tG_E > {t} = {e — t})

Fig. 8. Proof Tree for Discharging INITTALISATION/propCard/INV

The ¢ edge is preserved: 1. Apply the default post-tactics, which simplifies the prop-

erty to 3z, 20.(({mE(e1),...,mE(e;))} <tG_E)U{edi — ti,...,edy —
tp} > {t}) = {z — 20}.

2. Instantiate variables in goal with x, 20, converting the goal to ({m£E(e1), ...,
mE(e;))} StG_E)U{eds — t1,...,edy — ti}) > {t} = {x — z0}.

3. Run NewPP with lasso.
Figure [0l presents the generated proof tree.

The ¢ edge is deleted and a ¢ edge is created: 1. Add  card({mE(e1),...,mE

(e5))} <tG_Er{t}) = 0as hypothesis, which will generate three sub-goals to
be proved: (i) finite({mE(e1),....,mE(e;)} < tG_E > {t});
(i) {mE(e1),...,mE(e;))} S<tG_Er>{t} = @; and (iii) 3z, 20.(({mE(e1),
...,mE(e;))} 9tG_E)U{edqr — t1,...,edp — ti} > {t}) = {x — z0}.

2. Inorderto proof (i), add {mE(e1), ..., mE(e;)) } StG_E>{t} C tG_E>{t}
as hypothesis, and conclude the sub-goals running ML.

3. In order to proof (ii), add {mFE(e;)} < tG_E > {t} = @ as hypothesis, such
that e; is the ¢ deleted edge, and discharge the sub-goals running NewPP with
lasso.

4. In order to proof (iii), instantiate the variable of the existential quantifier with
ed; and t, such that ed; is the added t edge, and discharge the sub-goal with
NewPP with lasso.

Figure [T0l presents the generated proof tree.

NewPP RULES \
True HF ({mE(e1), .-, mE(ej)} QtG_E) U {edy > t1, ..., ed = t}) > {t} = {z — 20} .
HFT HF ({mB(e1), ..., mE(ej)} QtG_E) U {edy = t1, ..., edy — tp}) > {t} = {z — 20}
H 32,20 - ({mEB(e1),...,mE(e;)} <tG_E) U {edy — t1,...,ed = t}) > {t} = {z = 20} 4
5
H+ 3z,20 - ({mE(ey), ..., mE(e;)} QtG_E) U {edy = t1,..., edp — tp}) > {t} = {z — 20}
H 32,20 ({mEB(e1),...,mE(e;)} <tG_E) U {edy — t1,...,ed = t}) > {t} = {z = 20} 6
7
H+ 3z,20 - ({mE(ey), ..., mE(e;)} QtG_E) U {edy = t1,..., edp — tp}) > {t} = {z — 20}
HF card(({mE(e1), .-, mE(ej)} QtG_E) U {edy > t1, ..., edp — tp}) > {t}) =1 8

| NewPP;2 T goal; 3 sl/ds;4 3 goal (inst &, ®0); 5 Ihyp 3w, 20 - tG_E > {t} = {@ — x0)});
6 simplification rewrites; 7 type rewrites; 8 simplification rewrites

Fig. 9. Proof Tree for Discharging rule_i/propCard/INV
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A= {mE(e1),...,mE(e;)} <tG_E
B= {edy ~ t1,...,edp — t}
C= e; € dom(mE)A...ANe; € dom(mE) A mE € edgeLi - L

J J
D= e1 € dom(mE) A mE € edgeLi + Z
£= {me(e;)} 9tG_E

True 55 NewPP RULES
H+T HE (A UuB)>{t} = {ed; — t}
24
E H+ 3z, 20 - ((A) UB) > {t} = {z — 20}

HF card(((A) UB)>{t}) =1

20
HFT 19
HEFTAT 18 NewPP RULES 21 NewPP RULES »
HFD HrE>{t} =2 Hr A {t} =2
17
HFAD>{t} =2
F 16
HFAD>{t} =2
15
HFAD>{t} =2
14
HFAD>{t} =2
13
HF card(AD>{t}} =0
True
10
HEFT 9
HETA, ..., AT s ML RULES 1 ML RULES
HFC H+ A {t} CtG_E> {t} H - finite(A > {t})
H I+ finite(A > {t})
6
H - finite(A > {t})
5
H I+ finite(A > {t})
4
H - finite(A > {t})
HETA, ..., AT A finite(A> {t})
HF CA finite(AD> {t}) F E
1
H b card(((A) UB)>{t})) =1
lah(card({mE(e1), ..., 7rLE(6j)} < tG_E > {t}) = 0); 2 generalised MP; 3 simplification rewrites; 4 type rewrites; 5 simplification rewrites;

63 hyp(3z, 0 - tG_E > {t} = {@ — x0});7ah(A > {t} C tG_E > {t});8 generalised MP; 9 simplification rewrites; 10 T goal; 11 ML;
12 ML; 13 simplification rewrites; 14 type rewrites; 15 simplification rewrites; 16 3 hyp (3@, #0 - tG_E > {t} = {@ + x0});17ah (£ > {t} = ©);
18 generalised MP; 19 simplification rewrites; 20 T goal; 21 NewPP; 22 NewPP; 23 simplification rewrites; 24 3 goal (inst ed 5, t); 25 T goal; 26 NewPP

Fig. 10. Proof Tree for Discharging rule_i/propCard/INV

In order to discharge the proof obligation INITTALISATION/propExEdge/INV gen-
erated by property propExEdge ( 3z - © € tG_E > {t}) for the initial graph just run
NewPP. Again, since a rule can preserve, delete and create edges, then we divide our
proof strategies for obligations rule_i/propExEdge/INV in three cases.

All ¢ edges are preserved: Run NewPP with lasso.

An t edges is created: (a) Instantiate existential variable in goal with ed; > ¢, such
that ed; is the ¢ edge that is created. (b) Run ML.

An t edge is deleted, but an ¢ edge is preserved (a) Instantiate existential variable in
goal with mE(ed;) — t, such that ed; is the ¢ edge that is preserved. (b) Run
NewPP with lasso.

In order to discharge the proof obligation INITTALISATION/propEx Vert/INV gen-
erated by property propExVert ( 3z - € tG_V > {t}) for the initial graph just run
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NewPP. For such property no proof obligations are generated for rules. This is because
the component that map vertices in rules are total and injective, and then vertices can
not be deleted. Proving that we have a vertex of type ¢ in the initial graph, no other
rule can delete it. Previous work has addressed that this restriction in the model is not a
severe limitation for many practical applications [6].

6 Conclusions and Future Work

In this paper we presented the proof obligations generated by Rodin platform when
specifying a graph grammar system in Event-B structures, indicating the strategies to
discharge them. We also propose strategies of proofs for the verification of some atomic
properties, declared as invariants in the model.

One of the disadvantages of using theorem proving as verification technique is that
it requires user interaction during the development of the proofs, but on the other hand,
it allows the verification of systems with huge or infinite state spaces. This work con-
stitutes the first step towards the reduction of expertise required from the user when
adopting such an approach. Strategies for discharging other kind of properties are be-
ing proposed. Particularly, tactics for all patterns proposed in [11] are under devel-
opment. We are also investigating to which extent the theory of refinement, which is
well-developed in Event-B, could be used to validate a stepwise development based on
graph grammars.
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