
Juliano Iyoda
Leonardo de Moura (Eds.)

 123

LN
CS

 8
19

5

16th Brazilian Symposium, SBMF 2013
Brasilia, Brazil, September/October 2013
Proceedings

Formal Methods: 
Foundations
and Applications



Lecture Notes in Computer Science 8195
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany



Juliano Iyoda Leonardo de Moura (Eds.)

Formal Methods:
Foundations
and Applications
16th Brazilian Symposium, SBMF 2013
Brasilia, Brazil, September 29 – October 4, 2013
Proceedings

13



Volume Editors

Juliano Iyoda
UFPE, Centro de Informática
Recife, PE, Brazil
E-mail: jmi@cin.ufpe.br

Leonardo de Moura
Microsoft Research
Redmond, WA, USA
E-mail: leonardo@microsoft.com

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-41070-3 e-ISBN 978-3-642-41071-0
DOI 10.1007/978-3-642-41071-0
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013948105

CR Subject Classification (1998): D.2.4-5, D.2, F.3.1, F.4.1-2, D.3, K.6

LNCS Sublibrary: SL 2 – Programming and Software Engineering

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)



Preface

This volume contains the papers presented at SBMF 2013: the 16th Brazilian
Symposium on Formal Methods. The conference was held in Braśılia, Brazil,
colocated with CBSoft 2013, the 4th Brazilian Conference on Software: Theory
and Practice.

The conference program included two invited talks, given by Christiano Braga
(UFF, Brazil) and Kenneth McMillan (Microsoft Research, USA).

A total of 14 research papers were presented at the conference and are in-
cluded in this volume; they were selected from 29 submissions. The submissions
came from 10 countries: Australia, Brazil, Canada, Denmark, Israel, Germany,
Norway, the UK, the USA, and Uruguay.

The deliberations of the Program Committee and the preparation of these
proceedings were handled by EasyChair.

We are grateful to the Program Committee, and to the additional reviewers,
for their hard work in evaluating submissions and suggesting improvements. In
particular, special thanks go to Rohit Gheyi, co-chair of SBMF 2012, who was
always available to help us and to share his experience and wisdom. SBMF 2013
was organized by the University of Braśılia (UnB) under the auspices of the
Brazilian Computer Society (SBC). We are very thankful to the organizers of
this year’s conference, Genáına Nunes Rodrigues (UnB) and Rodrigo Bonifacio
de Almeida (UnB), who made everything possible for the conference to run
smoothly.

The conference was sponsored by the following organizations, which we thank
for their generous support:

- Brazilian National Institute of Science and Technology for Software Engi-
neering (INES)

- CAPES, the Brazilian Higher Education Funding Council
- CNPq, the Brazilian Scientific and Technological Research Council
- Google Inc.
- Universidade de Braśılia

July 2013 Juliano Iyoda
Leonardo de Moura
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Meaningful Models

— A Research Agenda on Model-Driven Engineering —

Christiano Braga and Cássio Santos

Instituto de Computação
Active Documentation and Intelligent Design Laboratory

Universidade Federal Fluminense
{cbraga,cfernando}@ic.uff.br

Abstract. An important question in software engineering is whether
a program (or system) is correct with respect to its specification. The
model-driven engineering discipline (MDE) is an approach to software
development that supports domain-engineering, is generative and
language-driven. We believe that this set of characteristics enable MDE
as a suitable approach for the rigorous development of correct software
systems as it allows us to focus on models rather than code. In this paper,
we illustrate how programming languages theory, through operational se-
mantics, and logic in computer science, through Description Logics, may
help us identify meta-properties and techniques to reason about MDE
models.

1 Introduction

An important question in software engineering is whether a program (or system)
is correct with respect to its specification. The boundaries of what can be auto-
matically verified (decidability) and how efficiently it can be done (complexity)
have been identified and are being challenged ever since. Informally, Göedel’s
first incompleteness theorem [15] states that a program can’t list all that is true
(theorems) about a (consistent axiomatic) system. Rice’s theorem [18] states
that expressive properties (i.e. non-trivial) are not verifiable (decidable) by a
program. Cook’s theorem [18] states that checking if there exits a valuation for
a boolean expression (SAT) is unfeasible, unless P = NP .

These results are related to the expressivity (understood as decidability or
complexity) of the language that a given system is described in and the properties
that can be verified on these systems. Therefore, if we reduce the expressivity of
the system description language, and also the properties to be checked, one may
be able to automatically verify less expressive properties about abstractions (or
models) of systems. A classical example is reasoning on database models [22].

The model-driven engineering discipline (MDE, e.g. [21]) appears to fit quite
nicely within this approach. It supports domain engineering, is generative (which
means that one only needs to convince oneself about correctness once, or, at
least, only for a class of problems) and is language-based. This last characteristic
is quite important as it allows for the definition of a rigorous foundation for

J. Iyoda and L. de Moura (Eds.): SBMF 2013, LNCS 8195, pp. 1–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



2 C. Braga and C. Santos

MDE as there exists a solid theory for programming languages. Not only the
theory of programming languages (PL), so to speak (that includes automata
languages, formal languages, and formal semantics) may help us to build better
(correct) software with MDE but also logic in computer science presents itself
as an important foundation as it provides the machinery for reasoning about
models.

In this paper, we illustrate how programming languages theory and logic in
computer science may help us with meta-properties and techniques to reason
about MDE models. In our discussion, we consider MDE models as relational
models. They may represent domain models and also transformations among
such models. Therefore, the techniques for the specification and reasoning about
models nicely apply to model transformations as well.

This paper is organized as follows. Section 2 gives rigorous definitions for the
model-driven engineering concepts that will be discussed in Sections 3 and 4.
In Section 3 we understand model transformations as operational semantics
specifications and study how meta-theoretical properties from PL theory can
be adapted to the context of model transformations. Section 4 presents an on-
tological perspective and conjectures on model transformations as ontological
alignment under contextualized ontologies. In Section 5 we discuss some related
work on the specification and verification of model transformations. Section 6
concludes this paper with our final remarks.

2 Elements of Model-Driven Engineering

In this paper we will discuss three MDE concepts and two relations among them.
The first concept is a metamodel, formalized in Definition 1, which is essentially
a set of relations among classes. It may be understood as the description of the
syntax of a modeling language. This is the understanding adopted in Section 3.
With this understanding in mind, a well-formed object model, formalized by
Definitions 2 and 3, is a syntactically correct program according to the syntax
defined by its metamodel. Moreover, an object model in conformance with a
given metamodel, formalized in Definition 4, is a well-formed model that has the
properties defined in the given metamodel. From a programming languages per-
spective, checking for well-formedness may be understood as syntactical analysis
with respect to the syntax defined by a given metamodel whereas conformance
may be understood as type checking with respect to the properties defined by a
given metamodel.

These elements may also be understood from a logical perspective, the one
adopted in Section 4, where a metamodel together with the modeling language’s
properties may be understood as a theory in a suitable logic and an object
model is a term. A well-formed object model with respect to a metamodel is
a well-formed term with respect to the signature of logical theory associated
with the given metamodel. Finally, an object model in conformance with a given
metamodel and a set of properties is understood as semantic entailment between
the term representing the object model and the logical theory representing the
metamodel together with the modeling language’s properties.
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Definition 1 (Metamodel). A metamodel M is a structure 〈C,A〉 with C the
set of classes of M comprised by a set of attribute declarations Id × (T ∪C) and
a set of method declarations Id × (T ∪ C)∗ × (T ∪ C), and A ⊆ C2 ×K2 the set
of associations of M where K is the set of association’s cardinalities given by
intervals of the general form [n1..n2], where n1, n2 ∈ � and n1 ≤ n2.

Definition 2 (Object model). An object model m is a structure 〈O,At , L〉
where O ⊆ Id × Class is a set of objects with o : C ∈ O an abbreviation for
〈o, C〉 ∈ O denoting that the object identified by o is an instance of class C;
At ⊆ Id × Id × Values is a set of object attributes with a(o, v : T ) ∈ A an
abbreviation for 〈a, o, (v, T )〉 ∈ A, a denotes an attribute of object o, and v a
(typed) value attached to a, with T ⊆ Value; and L ⊆ Id × Id × Id is a set of
links relating objects in O with l(o1, o2) an abbreviation for 〈l, o1, o2〉.

Definition 3 (Well-formed model). Given an object model m = 〈O,At , L〉
and a metamodel M = 〈C,A〉, m is said well-formed with respect to M, denoted
by m ∈ M, if and only if for every object o : c ∈ O we have c ∈ C, each tuple
formed by attributes in At indexed by o is an element of the product denoted by
c, and for every link l(o1, o2) in L, o1 : c1 ∈ O and o2 : c2 ∈ O, with c1, c2 ∈ C,
and there exists an a ∈ A such that a = (c1, c2, k1, k2), with k1, k2 ∈ K.

Definition 4 (Model conformance). Given a model m and a metamodel M,
m is said in conformance with M, denoted by m |= M, if and only m |= PM,
where PM is the set of properties that must hold on every model m ∈ M. When
PM is not empty, M is defined as a triple 〈C,A, P 〉.

The last MDE concept considered in this paper is a model transformation. We
understand a model transformation as a model that relates metamodels and we
call such models transformation contracts. They are formalized in Definition 5.
Example 1 illustrates the concept of a transformation contract through a model
transformation from non-deterministic finite automata to deterministic finite
automata, as defined in [18]. The symbol−�− denotes inheritance (or set inclusion
from left to right). Standard notation for cardinality constraints is used when

defining associations, as in A
1 R ∗

B , where A and B are classes and R is an
association with cardinality one-to-many.

Definition 5 (Transformation contract). A transformation contract is a
model K resulting from a model operation S �AK T on two given metamod-
els S and T that extends1 the metamodels S and T and: (i) disjointly unites2

all the model elements of S and T ; (ii) declares associations a ∈ AK that relate
classes in S with T and disjointly unites AK with S and T ; and (iii) declares
properties PK over AK.

1 We use the word extends here in its algebraic sense that “junk” may be added but
no “confusion”, that is, new terms may be added but are not identified with old
ones.

2 The disjoint union avoids name clashing by tagging each model element name with
the metamodel’s name.
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Example 1 (NFAtoDFA). Let f ∈ T .F, si ∈ S.Q, ti ∈ T .Q, (ti, tj , a) ∈ T .δ,

S =

�
{Σ,Q,Q0 −�−Q,F −�−Q, δ}, Q 1 source ∗

δ Q
∗ target ∗

Σ

∗ symbol 1

�

T =

�
{Σ,Q,Q0 −�−Q,F −�−Q, δ}, Q 1 source ∗

δ Q
∗ target 1

Σ

∗ symbol 1

�

AK =

⎧⎪⎪⎨⎪⎪⎩
S.Σ 1 sigma 1T .Σ,S.Q0

1 initial 1 T .Q0,

S.F ∗ final ∗ T .F,S.δ ∗ delta 1 T .δ

⎫⎪⎪⎬⎪⎪⎭
PK = { T .Q ⊆ 2S.Q, ∀f(f = {s1, s2, . . . , sn}, ∃si(si ∈ S.F )),

∀(ti, tj , a)(t1 = {s1, s2, . . . , sn}, t2 =
�n

i=1 S.δ(si, a)) }

3 A Programming Languages Perspective

Operational semantics [19, 28] (OS) is a formalism for the description of the
formal semantics of programming languages. An operational semantics specifi-
cation S = 〈Σ,R〉 for a programming language L declares in Σ the grammar
for L and R induces a finite state transition system [24] to programs in L. The
rules in R capture either or both static and dynamic semantics of L.

Essentially, transformation contracts may be understood as operational se-
mantics specifications by considering metamodels S and T as grammars, and
associations in AK as rules with PK as premises. Formally,

�〈S �AK T ,PK〉� = 〈S � T ,PK ⇒ AK〉. (1)

Operational semantics specifications may be implemented as rewriting logic
theories [5,23,30] quite directly since they are almost in a one-to-one correspon-
dence. (Some care must be taken to prevent the application of the congruence
inference rule of rewriting logic.) As an indication of the soundness of Equation 1,
we have implemented3 the model transformation NFAtoDFA in Example 1 in
the rewriting logic language Maude [12]. The implementation essentially repre-
sents the model transformation NFAtoDFA as a membership equational logic
theory. Sorts, subsorting relations and operations represent classes and asso-
ciations. Membership axioms and equations represent cardinality constraints.
Finally, equations implement the properties in PK as a condition to the main
equation that implements the model transformation. Listing 1.1 gives the decla-
ration (Line 1) and equation (Lines 2–5) for operation nfa2dfa.4 The signature

3 It can be read at http://www.ic.uff.br/~cbraga/nfa2dfa.maude.
4 Listing 1.1 is actually a simplification of the implementation in
http://www.ic.uff.br/~cbraga/nfa2dfa.maude. There, we also implement
deletion of useless states and transitions. Listing 1.1 suffices for the purposes of this
paper.

http://www.ic.uff.br/~cbraga/nfa2dfa.maude
http://www.ic.uff.br/~cbraga/nfa2dfa.maude
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of nfa2dfa relates terms from sort Nfa to terms from sort Dfa. A term in sort Fa,
a super sort of both Nfa and Dfa, is a 5-tuple defined as usual in textbooks, that
is, Σ ×Q× q0 × δ×F . A membership axiom constraining the cardinality of the
image of function δ properly types a term in Fa as a Nfa or Dfa. The conditions
in Lines 3 to 5 represent the elements of set PK in Example 1, respectively.

1 op n f a 2d f a : Nfa −> Dfa .
2 ceq n f a 2d f a(<SS , QS, q0 , DS, F>) = <SS , QS ’ , q0 , DS ’ , F ’>
3 i f QS ’ := 2ˆ QS /\
4 F ’ := r e a c h a b l e F i n a l S t a t e s (DS ’ ) /\
5 DS ’ := de l taD ( (2ˆ QS) , SS , DS)

Listing 1.1. Maude equation that implements transformation NFAtoDFA

We may now take advantage of meta-theoretical properties from operational
semantics theory (e.g. [25]) to reason on transformation contracts.

3.1 Type Soundness Properties

In [31] the authors propose an approach to prove the soundness of Hindley/Mil-
ner-style polymorphic type systems based on the following properties,

Weak soundness : if � e : τ then eval(e) �= WRONG,
Strong soundness : if � e : τ then eval (e) ∈ V τ

where the formula � e : τ denotes that expression e is well-typed; the function
eval : Programs → Answers ∪ {WRONG} is a partial function that defines
the semantics of untyped programs, returns WRONG when the given program
causes a type error, and is undefined for programs that do not terminate; and
V τ denotes the set of values of type τ . Intuitively, the authors understand a
static type system as a filter that selects well-typed programs from a universe
of untyped programs. The weak soundness property essentially prevents type
errors while strong soundness relates well-typed programs to proper answers.

As we mentioned before, the model transformation in Example 1 can be un-
derstood straightforwardly as an operational semantics specifications by the ap-
plication of Equation 1. The weak soundness property may be written as follows
for the NFAtoDFA model transformation

if m |= NFA then NFAtoDFA(m) �= WRONG.

To check that the weak soundness property holds in NFAtoDFA means to
prove that given a source model in conformance with the NFA metamodel the
model transformation will never produce a model that is not in conformance
with the DFA metamodel. Note that, in this setting, NFAtoDFA is a partial
function that could very well return WRONG for a source model not in con-
formance with the NFA metamodel. In Maude, this could be checked using the
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ITP/OCL tool [13], an inductive theorem prover for membership equational
logic. In Maude, the equality t = WRONG, where t is a term, would be denoted
by checking that the type of t is not at the kind level, that is, t is properly sorted.
In the context of NFAtoDFA model transformation we would have to make sure
that any given term NFAtoDFA(m), where m : Nfa, would never be at the kind
level of Fa, denoted [Fa].

The strong soundness property may be written as follows for the NFAtoDFA
model transformation

if m |= NFA then NFAtoDFA(m) ∈ DFA.

To check that the strong soundness property holds in NFAtoDFA means to
prove that given a source model in conformance with the NFA metamodel the
model transformation will always produce a model that is in conformance with
the DFA metamodel. In Maude, we would have to make sure that any given
term NFAtoDFA(m), where m : Nfa, is always of type Dfa.

3.2 Bisimulation

Definition 6 recalls the concept of bisimulation from observation equivalence
theory [24].

Definition 6 (Bisimulation). Let S = 〈Γ,L,→〉 be a transition system. A
relation R ⊆ Γ × Γ is a simulation if for every pair of elements p, q in Γ
with (p, q) in R, for all α in L such that for all p′ in Γ , p

α→ p′ implies that

there exists a q′ in Γ such that q
α→ q′. R is said a strong bisimulation if

its inverse R−1 is also a simulation. Moreover, a strong bisimulation relation,
denoted ∼, is an equivalence relation, that is, ∼ is reflexive (p ∼ p), ∼ is
symmetric (p ∼ q ⇒ q ∼ p) and ∼ is transitive (∃r(p ∼ q ∧ q ∼ r ⇒ p ∼ r)).

Let us move our attention back to Example 1. Relation delta in AK and the
third property in PK, which we recall here

∀((t1, t2, a) ∈ T .δ, si ∈ S.Q, ti ∈ T .Q)
(t1 = {s1, s2, . . . , sn}, t2 =

�n
i=1 S.δ(si, a)),

induce a relation, say R, where R ⊆ S.Q × T .Q.
Now, consider the application of NFAtoDFA to the automaton NA3 , in Fig-

ure 1a, that recognizes the language L = {w | w has aaa as sufix}. The applica-
tion NFAtoDFA(NA3 ) produces DA3 , the DFA in Figure 1b. These automata
are an example that the relation R induced by NFAtoDFA is not a strong bisim-
ulation. R is actually a simulation. In NFAtoDFA(NA3 ),

R = {(p0, q0), (p0, q1), (p0, q2), (p0, q3), (p1, q1), (p1, q2), (p1, q3),
(p2, q2), (p2, q3), (p3, q3)}

and q1S
−1p1 is not a strong simulation since q1

b−→ q0 and �p(p1
b−→ p∧ q0S

−1p).
Interestingly enough, p0 ∼ q0.
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a �� �������	p2
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(a) NA3 = NFA for L

�� �������	q0
b ��

a �� �������	q1
a ��

���

�������	q2
a ��

���

�������	
������q3

a

��

������
b

��

(b) DA3 = DFA for L

Programming languages theory and concurrency theory have contributed a lot
to model-driven engineering (e.g. [20]). This Section is, of course, a shy example
of it. But let us see now how logic in computer science and, in particular, how an
ontological perspective can contribute to the model-driven engineering discipline.

4 An Ontological Perspective

This Section discusses a formalization of model-driven engineering concepts as
ontologies in Description Logics [2]. In particular, we explore the semantics of
transformation contracts as ontology alignments of contextualized ontologies [9].
Section 4.1 discusses how ontologies are represented as Description Logics the-
ories. Section 4.2 formalizes model-driven engineering concepts in terms of De-
scription Logics elements. In particular, we introduce the notion of Extended
TBox to reason on the consistency of object models. Section 4.3 recalls from lit-
erature the concept of contextualized ontology and a set of algebraic operations
on contextualized ontologies. Finally, Section 4.4 conjectures on transformation
contracts as alignments of contextualized ontologies.

4.1 Ontologies as Theories in Description Logics

Description Logics is a family of logics defined to be efficiently decidable. Each
fragment of the logic was carefully studied on its expressiveness and efficiency
of reasoning. We will focus on ALCQI, a particular Description Logic which is
expressive enough for the purposes of this paper.

An ontology may be described as a terminology box, or TBox, in a Description
Logic, which is comprised essentially by concepts, which denote sets; concept
subsumption represented by C � C′, denoting set inclusion, where C and C′

are concepts (C ≡ C′ abbreviates C � C′ and C′ � C); and roles, which are
essentially binary relations.

The syntax of ALCQI’s axioms is as follows:

C ::= A | ¬C | C1 �C2 | (≤ k R.C)

R ::= P | P−

where C, C1 and C2 are concepts, A is an atomic concept, k ∈ �, R is a role
and P an atomic role with P− its inverse.
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Some abbreviations may help the definition of ALCQI TBoxes: (i) ⊥ ≡ A �
¬A, where A is an atomic concept; (ii) � ≡ ¬⊥; (iii) C1 � C2 ≡ ¬(¬C1 � ¬C2);
(iv) C1 ⇒ C2 ≡ ¬C1 � C2; (v) ≥ k R.C ≡ ¬(≤ (k − 1)R.C); (vi) (= 1C.R) ≡
(≥ 1C.R � ≤ 1C.R); (vii) ∃R.C ≡ (≥ 1 R.C); and finally, ∀R.C ≡ ¬∃R.¬C.

The meaning of a TBox is defined in a standard way by means of an inter-
pretation I = (ΔI , ·I), where ΔI is the domain of I and ·I is the interpretation
function that associates to a concept C, or relation R, a subset of the domain
with the appropriate arity. The following rules specify the interpretation for
ALCQI TBoxes.

�T = ΔI �T
n ⊆ (ΔI)n

P I ⊆ �I
2 AI ⊆ ΔI

(P−)I ⊆ {(a, a′) ∈ ΔI
2 | (a′, a) ∈ P I} (C1 � C2)

I ⊆ CI
1 ∩ CI

2

(≤ kR.C)I ⊆ {a ∈ ΔI | ¬CI ⊆ ΔI/CI

#{a′ ∈ ΔI | (a, a′) ∈ RI ∧ a′ ∈ CI} ≤ k}

Given a TBox T , an interpretation that satisfies all of T ’s assertions is called
a model of T . Similarly, T is said consistent if T has a model and inconsistent
otherwise. A concept C is satisfiable in T if there exists an interpretation I of
T such that CI is not empty, that is, C �� ⊥.

4.2 Models as DL Theories

We rely on the interpretation of class models defined in [3]. Definition 7 recalls
it. (In this paper we do not consider OCL constraints as defined in [29]. We take
them into account in [6].)

Definition 7 (TBox of a metamodel). Given a metamodel M, the TBox T
associated with M is defined as follows:

1. For each class C in M there exists an atomic concept C in T ;
2. For each generalization between a class C and its child class C1 in M there

exists an inclusion assertion C1 � C in T . A class hierarchy is represented
by the assertions C1 � C, . . . , Cn � C in T when Ci inherits from C in M.
A disjointness constraint among classes C1, . . . , Cn in D can be modeled as
Ci �

�n
j=i+1 ¬Cj , with 1 ≤ i ≤ n− 1 in T , while a covering constraint can

be expressed as C �
�n

i=1 Ci in T ;
3. Each binary association (or aggregation) A between a class C1 and a class

C2, with multiplicities ml..mu and nl..nu on each end, respectively, in M
is represented by the atomic role A, together with the inclusion assertion
� � ∀A.C2�∀A−.C1 in T . The multiplicities are formalized by the assertions
C1 � (≥ nl A.�)�(≤ nu A.�) and C2 � (≥ mlA

−.�)�(≤ muA
−.�), where

� denotes the largest concept (top) that includes all concepts and ∀R.C is
just syntactic sugar for ≤ 0 R.¬C in T .

An object model may be represented as a TBox by simply understanding each
object as a class and each link as a role.
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Definition 8 (TBox of an object model). Given an object model O =
〈O,A,L〉, the TBox of O, denoted by Ô, is given by the application of the fol-
lowing mapping to O: (i) for each object o ∈ O there exists a concept o in Ô,
and (ii) for each attribute a(o, v : T ) ∈ A there exists an axiom O � a.T in Ô.

Now, we reduce conformance verification of a particular model m with respect
to a metamodel M to the verification of the consistency of the DL theory re-
sulting from the extension of the TBox that represents M with the TBox that
represents m, as discussed in [6].

Definition 9 (Extended TBox). Given a model m and a metamodel M, such
that m ∈ M and m |= M, the TBox of M extended with respect to the TBox
of m, or extended TBox for short, denoted by M̂m̂, is given by the union of M̂,
given by Definition 7, with m̂, given by Definition 8, together with: (i) axioms
o � C, for each concept o in m̂, representing an object o in m, with C the concept
representing o’s class; (ii) disjointness axioms among objects of the same type
C in m declared as oi �

�n
j=i+1 ¬oj, with 1 ≤ i ≤ n− 1 and n the cardinality of

the set of objects of type C in m, (iii) completeness axioms among objects of the
same type C in m declared as C �

�n
i=1 oi, with n the cardinality of the set of

objects of type C in m, (iv) let LA be the set of links in m for association A in
M, then (a) for each link l(oi, oj) ∈ LA, with A ⊆ C1 ×C2, axiom oi �= 1A.oj
is in M̂m̂, and (b) for all l(oi, o) �∈ LA, with o ∈ C2 (and all C2’s child concepts),
axiom oi � ¬∃A.o is in M̂m̂.

Conjecture 1. m |= M ⇔ ⊥ �|= M̂m̂

4.3 The Algebra of Contextualized Ontologies

Informally, a contextualized ontology is a pair of ontologies where one ontology
gives semantics (or context) to the other. Our intuition is that the ontology
that represents a metamodel provides context to the ontology that describes a
model. Conjecture 2 in Section 4.4 formalizes this intuition. Let us first recall the
definition of contextualized ontologies and a few operations on them, as defined
in [9].

Definition 10 (Contextualized ontology). A contextualized ontology is a
triple (E,C, F ) where E and C are the entity and context ontologies, respec-
tively, and F is the contextualization homomorphism F : E → C, that is,
F (f(e1, e2, . . . , en)) = F (f)[F (e1), F (e2), . . . F (en)], where ei, 1 ≤ i ≤ n, n ∈ �
are the parts of E related by f . Moreover, (i) any entity must have an identity
link and thus the entity may be viewed as a context of itself; (ii) an entity is
called the domain of a link, while a context is called codomain of a link; (iii)
links can be composed in an associative way if the codomain of the first is the
domain of the second.



10 C. Braga and C. Santos

Definition 11 (Entity Integration). Given two contextualized entities shar-
ing the same context e1 : E1 → C and e2 : E2 → C, the integration of E1 and E2

with respect to C is the contextualized entity E → C, such that, (i) there exists
e′1 : E → E1 and e′2 : E → E2 such that e1 ◦ e′1 = e2 ◦ e′2, and, (ii) for any other
entity E′′, with links e′′1 : E′′ → E1 and e′′2 : E′′ → E2, there exists a unique link
! : E′′ → E with e′1◦! = e′′1 and e′2◦! = e′′2 .

C

E1

e1
��������

E2

e2
��������

C

E1

e1
��������

E2

e2
��������

E
e′1

�������� e′2

��������

Fig. 1. Entity integration in contextualized ontologies

Definition 12 (Context Integration). Given two contextualizations of the
same entity e1 : E → C1 and e2 : E → C2, the context integration of C1 and C2

with respect to E is the contextualized entity E → C , such that, (i) there exists
e′1 : C1 → C and e′2 : C2 → C such that e′1 ◦ e1 = e′2 ◦ e2, and, (ii) for any other
context C′′, with maps e′′1 : C1 → C′′ and e′′2 : C2 → C′′ there exists a unique
map ! : C → C′′ with ! ◦ e′1 = e′′1 and ! ◦ e′2 = e′′2 .

C1 C2

E

e1

�������� e2

��������

C

C1

e′1
��������

C2

e′2
��������

E

e1

�������� e2

��������

Fig. 2. Context integration in contextualized ontologies

Definition 13 (Relative Intersection). Given two maps between contextual-
ized entities m1 : CE 1 → CE and m2 : CE2 → CE, the relative intersection of
CE 1 and CE 2 with respect to CE is the contextualized entity CE ′, with maps
m′

1 : CE ′ → CE 1 and m′
2 : CE ′ → CE 2 such that, (i) m1 ◦m′

1 = m2 ◦m′
2, and,

(ii) for any other contextualized entity CE ′′, with maps m′′
1 : CE ′′ → CE 1 and

m′′
2 : CE ′′ → CE 2 there exists a unique map ! : CE ′′ → CE ′ with m′

1◦! = m′′
1

and m′
2◦! = m′′

2 .
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��
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��
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1

��

m′
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��
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C1

��

E

��

C2

��

E1

�� 		

C′



 		

E2

��



E′



 		��

Fig. 3. Relative intersection in contextualized ontologies

4.4 Transformation Contracts and Ontological Alignment

As we mentioned in Section 4.3, our intuition is that the conformance relation
may be understood as contextualization. We are now ready to formalize it as
Conjecture 2. This conjecture appears to be sound based on the idea that confor-
mance of a model with respect to a metamodel should preserve the metamodel’s
structure. That is precisely the idea of a homomorphism.

Conjecture 2 (Conformance is a contextualization homomorphism). Given a me-
tamodel M and a model m, and their associated TBoxes M̂ and m̂,

m |= M ⇔ m̂ → M̂.

Recall from Conjecture 1 that we believe that

m |= M ⇔ M̂m̂.

Now, assuming Conjectures 1 and 2 correct, a consistent Extended TBox
should be equivalent to a contextualized ontology. This is formalized in Conjec-
ture 3.

Conjecture 3 (Extended TBox and contextualization). Given a metamodel M
and a model m, and their associated TBoxes M̂ and m̂,

⊥ �|= M̂m̂ ⇔ m̂ → M̂.

Our objective in this Section is to reach a semantics of transformation con-
tracts in terms of relative intersection. (See Definition 13.) If the diagram in Fig-
ure 4 commutes then the properties of the transformation contract K, taking R
into account, are preserved in the application of the transformation contract k(s).

The question now is to identify what is R̂: it represents the ontology associated
with the dynamic semantics of K. For instance, R may specify a simulation
relation, as recalled in Section 3.2, between the transition system induced by S
and the transition system induced by T .
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K̂

Ŝ

		

ˆk(s)

��

T̂





ŝ

�� 		

R̂



 		

t̂

��



r̂

�� ����

Fig. 4. Transformation contracts as relative intersection

Let us illustrate this discussion with a simple example borrowed from [24, pg.
19]. Figure 5 depicts two bisimilar transition systems. The bisimulation relation
is represented in Figure 5 by dotted lines. Let us consider now that the transition
system with states in {p0, p1, p2} represents the behavior of the source model of
a model transformation and the transition system with states in {q0, q1, q2} rep-
resents the behavior of the model generated by the given model transformation.
The relation r in Figure 4 would be represented by the dotted line in Figure 5,
that is, r = {(p0, q0), (p0, q2), (p1, q1), (p2, q1)}.

�������	p0 a ��

a

		

�������	p1

a





b��
�������	q0

a �� �������	q1

a

��

b

��
��
��
��
�

�������	p2

b

��

a

�� �������	q2

a

��

Fig. 5. Bisimilar transition systems

We can then use a Description Logics reasoner to verify some properties of r by
reducing the verification of such properties to consistency checking of the associ-
ated DL theory. First, we need an encoding of transition systems in Description
Logics by essentially representing states as concepts and labeled transitions as
roles. For instance, the transition p0

a−→ p1 is specified by the axiom p0 � ∀a.p1.
(Note that due to open world semantics assumed by DL reasoners, one needs also
to specify when two states are not related by a given labeled transition, such as

p0
b

�→ p1 in Figure 5.) The relation r is specified in a similar way with axioms that
relate bisimilar states, such as p0 � ∀r.q1. We also axiomatize the bisimulation
property for every bisimilar pair of states. For instance, for the pair (p1, q1) ∈ r,

since p1
a−→ p2 and q1

a−→ q1 then (p2, q1) should be in r. This is axiomatized in
DL by the following concepts: p1 � ∀a.p2, q1 � ∀a.q1 and p1 � r.q1. We also
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state that r should be reflexive, symmetric and transitive since, as recalled in
Section 3.2, a bisimulation is an equivalence relation. The specification that r is
the largest set that has the bisimulation property (see Definition 6) requires a
fixpoint operator and therefore a DL that is more expressive then ALCQI, such
as μALCQI [10].

Conjecture 4 formalizes that validity of the application of a model transfor-
mation could be understood as the relative intersection. Assuming Conjectures 3
and 4 correct, the validity of a particular model transformation application could
be verified by checking the consistency of the associated Description Logics the-
ory representing the relative intersection.

Conjecture 4 (Model transformation as relative intersection).

k(s) |= K ⇔ r̂ → R̂ is the relative intersection of ŝ → Ŝ and t̂ → T̂
with respect to �k(s) → K̂.

5 Related Work

We organize the discussion of related work at the specification and verification
levels. At the specification level, we adopt a relational approach towards the
specification of a model transformation. It is similar in essence to [1, 4] but
different from [11, 16]. In [11] the authors specify transformation contracts as
OCL invariants from source and target model elements. We formalize our un-
derstanding of transformation contracts in Section 2 as opposed to the informal
discussion in [1, 4, 16]. (The authors in [11, 16] also discuss the use of pre and
postconditions but such predicates may also be represented as invariants.) The
specification of a relation between the model elements of the metamodels related
by a model transformation is essential to generalize from OCL invariants and
understand that different kinds of properties may be specified over such relation.
It is important to make explicit the relationship among the metamodels.

In [4] the idea of transformation model to specify model transformation is
discussed. The authors describe the benefits of omitting details of the transfor-
mation process and concentrating in depicting the transformation as a model,
in which models are instances of metamodels and transformations can be de-
scribed in conformity to a metamodel. From this point it is possible to describe
a transformation model in a formal way, thus it can be validated and verified.
We share the idea of transformation models but in this work we make precise
what we mean by transformation model (as the result of a disjoint union of two
metamodels) and how it may be used to reason on model transformations, as
opposed to [4].

OMG’s Query View Transformations (QVT) [26] and Graph Grammars (GG,
e.g. [17]) are other possible specifications for a model transformation that require
specific theory and machinery to reason and implement model transformations.
(In the case of GG, focus is on the verification of typical properties of term rewrit-
ing systems such as confluence and termination.) The transformation contracts
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approach proposed in this paper is not biased by any particular specification lan-
guage and may be used with them as well. Note, however, that QVT is bound
to OCL as the specification language for the properties of metamodels and there
are properties, such as consistency, subject of this paper, best specified in other
semantic frameworks. GG may not have QVT’s restriction on the specification
language for metamodel properties but a key aspect of our approach is that we
apply to model transformation specification design the same specification lan-
guages and techniques one would to design a modeling language. No additional
framework, such as QVT or GG, is necessary.

At the verification level, different kinds of properties may be reasoned upon
besides OCL invariants. One such property is model consistency understood as
satisfiability of a propositional formula representing a constrained model. In this
paper, we check for the consistency of Description Logics theories associated
with a given model. Note that, since we understand model transformations as
models, their consistency may be checked as one would check the consistency of
any given model, such as in [3].

In [7] the authors use an SMT-solver to check for the satisfiability of model
transformations. The mapping is essentially built upon a first-order logic seman-
tics for OCL in [14]. However, they are focused on a particular model transforma-
tion language. We believe that to be able to use the same modeling language to
describe both the metamodels and model transformation is an important issue.

Some approaches to model verification consider the transformations of models
into other languages and formalisms, in which the validation occurs by the use of
solvers or theorem provers. In [8], Constraint Satisfaction Problem (CSP) is used
to verify UML/OCL models using a translation method. After the translation, a
constraint solver is used to verify if the constraint problem induced by the OCL
specification is satisfiable. In [27] the authors propose the verification of model
transformations specified in a language that extends QVT relations with CSP
techniques. The use of CSP techniques is similar to our use of Description Logics
however their approach is bound to QVT.

6 Final Remarks

In this paper we have discussed (in Section 3) how programming languages the-
ory, through operational semantics, and logic in computer science (in Section 4),
through Description Logics, may be used as a semantics and a logic framework,
respectively, to specify and reason on model-driven engineering models. Both
perspectives consider MDE models as relational models and build on the percep-
tion that model transformations are models as well, here called transformation
contracts. Therefore, all the techniques for the specification and reasoning of
MDE domain models apply to transformation contracts as well. In particular,
in Section 4.4 we discuss what appears to be a novel semantics for transforma-
tion contracts which are understood as relative intersection on contextualized
ontologies. We conjecture on the equivalence of reasoning on the application of
the relative intersection operation and the so called Extended TBox of the given
transformation contract.
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Future work lies on further developing the research directions pointed out in
this paper. In particular, we believe finite model theory [22] will allow us to
define more expressive properties with the cost of incomplete models.
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15. Göedel, K.: On formally undecidable propositions of principia methematica and
related systems. Dover (1992)

16. Van Gorp, P., Janssens, D.: Cavit: a consistency maintenance framework based
on transformation contracts. In: Transformation Techniques in Soft. Eng., number
05161 in Dagstuhl Seminar Proc. (2006)

17. Hermann, F., Ehrig, H., Golas, U., Orejas, F.: Efficient analysis and execution of
correct and complete model transformations based on triple graph grammars. In:
Proc. of MDI 2010, pp. 22–31. ACM (2010)

18. Hopcroft, J.E., Motwani, R., Ullman, J.D.: Introduction to Automata Theory, Lan-
guages, and Computation, 2nd edn. Addison-Wesley (2000)

19. Kahn, G.: Natural semantics. In: Brandenburg, F.J., Wirsing, M., Vidal-Naquet,
G. (eds.) STACS 1987. LNCS, vol. 247, pp. 22–39. Springer, Heidelberg (1987)

20. Kleppe, A.: Software Language Engineering. Addison-Wesley (2009)
21. Kleppe, A.G., Warmer, J., Bast, W.: MDA Explained. Addison-Wesley (2003)
22. Libkin, L.: Elements of Finite Model Theory, 1st edn. Springer (2010)
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Abstract. The empirical sciences are based on inductive inference, that
is, the formation of theories by generalization from observations. In this
process, scientists place a high value on the mathematical beauty or
elegance of a theory. Apart from aesthetic concerns, mathematical sim-
plicity has the virtue of constraining our speculations, preventing us from
“over-fitting” the data, and thus increasing the chance that our theories
will successfully account for new observations. This criterion is tradition-
ally known as Occam’s razor (after the medieval philosopher William of
Ockham, a frequent user though not originator of the principle).

In mathematical proof we observe a similar phenomenon. That is,
conjectures and lemmas are often formed by plausible generalizations
from particular cases. Imagine, for example, proving a conjecture about
an object in N dimensions. We might first try to prove the special case
of two or three dimensions, and then generalize the argument to the N-
dimensional case. We would prefer a proof of the two-dimensional case
that is simple, on the grounds that it will be less prone to depend on
particular aspects of this case, thus more likely to generalize.

The appearance of Occam’s razor in logical proof should surprise us,
since we require no heuristic justification of conclusions logically deduced
from axioms. Nonetheless, such criteria can be highly valuable in the
search for a proof, since they allow us to form conjectures that are plau-
sibly valid and potentially useful, and thus to navigate the intractably
large space of potential proofs.

We will illustrate these concepts by applying them to proofs about
programs. To form generalizations, we use a methodology of interpo-
lation: finding a hypothesis intermediate between a premise and a de-
sired conclusion. We will set out heuristic criteria for generalizations in
terms of evidence provided for both validity of the generalization and
its utility in constructing a proof. These criteria can be used to dis-
cover inductive invariants that prove given properties of programs by
considering only fragments of the program’s behavior. We observe that
evidence for generalizations comes at a computational cost, and that in
practice it is important to strike a balance between cost and quality of
generalizations.

Moreover, we observe a subtle but significant difference between the
use of Occam’s razor in deductive as opposed to inductive settings. That
is, by considering the simplicity of the proof of a proposition in a partic-
ular case, we can make distinctions that cannot be made based on the
simplicity of hypotheses alone.
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Abstract. We propose a unifying treatment of multi-valued logic in the
general context of specification, presented in the style of the Unifying
Theories of Programming of Hoare and He. At a low level, UTP theories
correspond to different types of three-valued logic. At higher levels they
correspond to individual specifications. Designs are considered as their
models, but members of other unifying theories of computation can serve
as models just as well. Using this setup we have the opportunity to show
correspondences between specification languages that use different logics.

1 Introduction

Previous work by Woodcock et al. [1] investigates the formal relationships be-
tween various logics that deal explicitly with undefinedness. The logics covered
are Bochvar’s strict logic [2], McCarthy’s left-right logic [3] and Kleene’s “lazy”
logic as used in VDM’s Logic of Partial Functions [4]. These are compared with
classical and flavours of semi-classical logic. Semi-classical logics permit terms to
be non-denoting, but are otherwise classical in character. Examples are the logic
of Z [5], and LUTINS [6], the logic of the IMPS theorem prover. An information-
theoretic theorem is there proven that orders these logics according to their re-
silience to undefinedness. In subsequent work [7] we make use of the features
of Hoare and He’s Unifying Theories of Programming (UTP) [8] to migrate the
results of this work from a denotational semantics style to a fully algebraic one,
enabling further expansion of the work to be carried out entirely using UTP.
There we define an approach to encoding three-valued logics in classical logic in
general and use the intrinsic theory structuring mechanism of UTP to construct
theories of each logic.

With this logical basis in place, it is possible to start abstracting. Since every
specification formalism is built on some underlying logic, it is natural to lift
this investigation to the level of specification. Here we start exploring the formal
connections existing between specification languages in general. We use a variant
of our previous classical encoding to determine what correspondences are induced
by the logic-level connections at the more abstract level of the specification
languages built on these logics. We believe that the general view taken here will
aid in the ongoing quest for a fully formal basis for theorem prover reuse.

1.1 Related Work

The structure of our approach is primarily inspired from the foundational work
of Goguen and Burstall on institutions [9] and the work that followed from it

J. Iyoda and L. de Moura (Eds.): SBMF 2013, LNCS 8195, pp. 18–33, 2013.
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[10–14]. Our intention, however, is not to continue in a categorical vein, but
rather to explore the problem using the relational style of UTP. We believe
that this move will address a comment made by Gavilanes-Franco and Lucio-
Carrasco, that “the connections among different logics are sometimes presented
in a cumbersome way” [15]. Indeed the treatment of how logics relate to each
other is often application-specific and usually focused on a single pair of logics
[16–21]. Usually no universal approach is taken. Our approach unifies the treat-
ment of any type of logic and enables the investigation of relationships using the
same mechanisms in all instances. These mechanisms are those intrinsic to UTP,
like theory links and Galois connections. We believe that this approach regains
a level of generality similar to that enjoyed by the categorical approach.

2 Classical Representation of Three-Valued Predicates

Since our primary aim is to give an account of the connections existing between
various specification methods in use today, we restrict our investigations to three-
valued logic only. The use of three truth values is most prominent in VDM [22],
which employs the Logic of Partial Functions [4], and in the Overture tool for
VDM [23], which employs a more operational flavour known as McCarthy’s left-
right logic [3]. Other three-valued logics help us understand how to better handle
undefinedness in specification settings built over classical logic. Our starting
point is Alan Rose’s classical encoding of three-valued predicates.

Rose [24] proposes a representation of three-valued predicates taking on the
values “true”, “false” and “undefined”, as a pair of classical predicates. A three-
valued predicate P is there given a representation (Pl,Pr), where Pl represents
the circumstances under which (the valuation of its free variables for which) P
is true, and Pr represents the circumstances under which P is defined. There-
fore, Pl ∧Pr captures the values for which P is both defined and true in the
three-valued sense (the conjunction operator “∧” in this expression is classical
conjunction). The free variables of Pl are those of Pr, which are in turn those
of P itself, leading to the simple Venn diagram representation of P shown in
Fig. 1. We adopt this representation for three-valued predicates, but depart im-
mediately from it in two different ways. First, because we want to treat different
logics in use today, we do not adopt the operators defined by Rose for these
predicates. Our operators are introduced in Sect. 4.3. Second, our aim is to treat

�
��
��

Fig. 1. Representation (Pl,Pr) of three-valued predicate P over its universe U
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these different logics in their specification contexts, and to this end the free vari-
ables of our predicates are themselves allowed to range over predicates. Section
4 is dedicated to this topic.

3 Three-Valued Predicates in UTP

Starting with Rose’s encoding, we must choose a way to represent these pred-
icates as UTP alphabetized relations. What will primarily determine this en-
coding is the interpretation of the undefined truth value “⊥” in a specification
context. This requires careful consideration, as different specification philoso-
phies will attribute “⊥” different interpretations. In a multi-valued logic, the
two possible interpretations are as missing information [25], and as too much,
or contradictory, information (as considered by Belnap in a four-valued logic
[26]). These two interpretations lead to differing views on what a specification
statement says about those values which make it undefined. Here we take the
position that undefined specification statements contain insufficient information.
Therefore undefined specifications are permissive of those values that make them
undefined. This naturally accommodates the refinement approach to specifica-
tion, where such undefinedness can be refined away.

3.1 Three-Valued Predicate Representation

In the spirit of UTP designs, we want to give a syntactic model for three-valued
predicates in terms of the individual components of Rose’s predicate pair. Here
we make the subscript notation used before formal. Therefore, for a three-valued
predicate P , we use Pl for the left component (i.e., the left projection) of Rose’s
pair, and Pr for the right component. The word “model” is used here to refer to
this new syntactic representation. Later, where it will be made clear, the word
is used in the model-theoretic sense.

Because in the most general sense Pl and Pr are not mandated to relate to each
other, a device is required to bind them together in the desired way. In the theory
of designs this binding is achieved through the introduction of the observation
variable ok . For a design P � Q, the variables ok and ok’ are not definable
in terms of each other, nor in terms of P and Q. They represent observable
properties in the physical domain and are atomic and unanalyzable. Similarly,
we introduce a variable def into the alphabet of each predicate pair (Pl,Pr),
which reflects whether the three-valued predicate P represented is defined. Now
we can combine def with Rose’s representation to obtain our unifying model
(i.e., syntactic representation) of three-valued predicates.

Definition 1 (Three-valued predicate model). A three-valued predicate P
with alphabet αP ≡ α(Pl,Pr) is represented in classical logic as,

(Pl,Pr) � Pl 	 def � ¬Pr ≡ (def ∧ P ) ∨ (¬def ∧ ¬Pr) .

α(Pl,Pr) � {def } ∪ αPl .

where αPl = αPr and def /∈ αPl .
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This conditional models the three-valued predicate P as follows. def reflects
whether P is defined for some valuation of its free variables. Pr captures the
space over which P is defined, whereas Pl captures the space over which P is
true. def allows us to define how Pl and Pr capture properties of the predicate
P that exist in the three-valued realm, which is itself represented in def.

Of course, there is nothing in place so far to prevent illegitimate combinations
of def, Pl and Pr. The most important correspondence required of all predicates
P represented thus is that between the definedness of P (as reflected in def )
and the predicate Pr. This is suggested by the structure of the conditional itself.
Whenever def is true, the conditional reduces to Pl, which is independent of
Pr. But a guarantee is required that def and Pr agree at that point, otherwise
nothing can be said about what Pl represents. This guarantee is provided by the
following healthiness condition.

Definition 2 (Three-valued predicate healthiness). Healthy predicate pairs
exhibit agreement between def and Pr.

H(Pl,Pr) = def ⇔ Pr .

3.2 The Effect of Classical Operators

The development of our theory continues with the search for operators. Intu-
itively, the operators should be the logical operators which can combine alpha-
betized relations, which represent atomic predicates, into relations representing
logical sentences in the usual way. Before trying to define the operators outright,
it is natural to explore whether we can reuse any existing operators, so we first
observe the effect of the classical logical operators, the logical operators of UTP
itself, on our model of three-valued predicates.

We begin with the simplest case by considering the classical negation of a
three-valued predicate (Pl,Pr). First we establish a straightforward lemma,

Lemma 1. There exist two equivalent representations of predicate pairs (Pl,Pr):

Pl 	 def � ¬Pr ≡ (def ⇒ Pl) ∧ (¬def ⇒ ¬Pr) .

Now the effect of classical negation on the predicate model can be observed:

¬(Pl,Pr) ≡ ¬(Pl 	def �¬Pr) by Definition 1
≡ ¬((def∧Pl) ∨ (¬def∧¬Pr)) definition of conditional
≡ (def ⇒ ¬Pl) ∧ (¬def ⇒ Pr) distributivity of “¬”and

definition of “⇒”
≡ (¬Pl,¬Pr) by Lemma 1

The resulting pair represents a three-valued predicate which is true where the
original was false, and which is defined where the original was undefined. Negat-
ing a three-valued predicate in this way does not in fact correspond to negation
in any familiar three-valued logic because it makes defined predicates out of
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undefined ones and vice versa. In the logics we consider, negation is always con-
tingent on predicates being defined in the first place. More importantly, the op-
erators of the logics we consider are monotonic in the information order shown in
Fig. 2, which classical negation in this case is not. We therefore abandon classical
negation.

��������������	
�

�

Fig. 2. Information ordering of the three logical values

Binary operators are more troublesome. According to Definition 1, all pred-
icates share the observable def. Taking the classical conjunction, for instance,
of two predicates (Pl,Pr) and (Ql,Qr) instantly reveals the need to discriminate
between their respective def s. Consider the equivalence [8],

(Pl 	 def �¬Pr) ∧ (Ql 	def � ¬Qr)
≡ (Pl ∧Ql) 	 def � (¬Pr ∧¬Qr) mutual distribution, Ex. 2.1.2
≡ (Pl ∧Ql,Pr ∨Qr)

There are several problems with the resulting three-valued predicate. Since def is
shared between P and Q, their classical conjunction yields the representation of
a predicate that is defined when either P or Q is defined, but which is undefined
when both are undefined. This reflects no three-valued conjunction we know, nor
classical conjunction, and as it stands is too problematic to shed further light
on the effect of classical operators on these representations.

We can try to tackle the problem of the shared def by using substitution to
rename a predicate P ’s def so that it does not clash with the def of any other
predicate. This can be done by referring to the predicate P [defP /def ] instead.
Taking the classical conjunction now, we obtain,

P [defP /def ] ∧Q[defQ /def ] ≡ (Pl 	defP �¬Pr) ∧ (Ql 	defQ �¬Qr) .

Table 3 shows the consequence of this change. It is clear from the case, for
instance, where P is defined and Q is not, that the result is similarly nonsensical.
Since we know that defQ and Qr agree, the conjunction reduces to Pl. This again
does not correspond directly to any logical operation in any of our three-valued
logics. Applying the same renaming technique in the case of classical disjunction,
we obtain the following identity, and result summary in Table 3.

P [defP /def ] ∨Q[defQ /def ] ≡ (Pl 	defP �¬Pr) ∨ (Ql 	defQ �¬Qr) .

The trouble with this approach is that the definedness information of the entire
conjunction (resp. disjunction) is lost, and to recover it we would have to do so
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defP defQ Result

T T Pl ∧Ql

T F Pl ∧¬Qr

F T ¬Pr ∧Ql

F F ¬Pr ∧¬Qr

defP defQ Result

T T Pl ∨Ql

T F Pl ∨¬Qr

F T ¬Pr ∨Ql

F F ¬Pr ∨¬Qr

Fig. 3. Classical conjunction and disjunction of three-valued predicate models

by definition. We will return to the topic of classical conjunction and disjunction
of three-valued predicate models in Sect. 4.5, where this classical behaviour is in
fact reused, but to a different end. As for the immediate purpose of defining the
theory’s operators, this is done by first considering how the theory will be used.

4 Three-Valued Predicates as Specifications

This section continues to build on the three-valued predicate model by intro-
ducing the remaining components required for a complete lattice of three-valued
predicates. The necessary partial order, theory operators, meet and join opera-
tors, and lattice top and bottom are defined.

4.1 Designs as Models of Specifications

We consider the case where a given relation’s alphabet ranges over alphabetized
relations in turn, i.e., when a relation has second-order observation variables.
As with first-order observation variables, we can assume that we have at our
disposal the use of the substitution operator [v0/v] (implying knowledge of each
relation’s alphabet, which can be captured as a type on the variable [8]), logical
operators, both those that are the operators of the source theory of the variable,
as well as those of the classical logic employed in UTP, the construction of lists
of alphabetized relations, and so on. Of course, all this must be consistent with
the fact that the resulting characteristic predicate must be a classical predicate.
Moreover, these predicates must be allowed to range in turn over alphabetized
predicates in order to accommodate the expression of specification statements,
as described below. Therefore, we consider the alphabet of a relation P to be

composed of a first-order alphabet
F

αP , and a higher-order alphabet
H

αP :

Definition 3 (Alphabet partitioning). The alphabet of any relation P is

composed of a first-order alphabet
F

αP and a higher-order alphabet
H

αP .

αP � F

αP ∪ H

αP , where def ∈ F

αP .

This partitioning will help make the distinction between relations that represent
three-valued predicates in general, and the subset that can be understood as
specification statements in the usual sense of software specification.

In the UTP style, usually a specification is given as an input-output relation
defining the behaviour of the entity that it names. This view can be generalized
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mathematically as follows. Consider an alphabetized relation P = (inα, outα, p),
where p is the characteristic predicate specifying the behaviour of the entity P .
If we name this entity separately, say P ◦, then the specification describing the
alphabetized relation P itself can be captured as,

∀i, i′ • p(i, i′) ⇔ P ◦(i) = i′ , where
F

α= {i, i′} and
H

α= {P ◦} .

This second-order statement introduces the entity P ◦ as a definition [27] that se-
lects, from all possible entities, only those which satisfy the original input-output
specification P : they are the onlymodels that satisfy this formula (here we switch
to the use of the word “model” in the model-theoretic sense of “interpretation”).
In general, any alphabetized relation with only second-order alphabetical vari-
ables is a specification statement that introduces by definition the entities named
by its second-order alphabet. This is in fact exactly the role of formal specifica-
tion that is captured here. As expected, the stronger, more useful relationship
of refinement of P ◦ to P is also accommodated:

∀i, i′ • P ◦(i) = i′ ⇒ p(i, i′) .

This second definition of P ◦ selects not only those entities which behave exactly
in accordance with P , but also those that refine it.

Specifications can be more or less refined, naturally exhibiting the expected
refinement order P � Q. Real entities which make the refining specification Q
true will make the refined specification P true as well. The healthiness condition
selecting such a lattice of predicates from the complete space is exactly the
predicate that expresses the requirements collected for one single specification.
This is not meant to refer to a specific UTP predicate, but the logical statement,
in any logic, of the requirements. Therefore, just as all specifications that are true
to a set of (non-contradictory) requirements will satisfy all the requirements, so
all the predicates in the resulting lattice will satisfy its healthiness condition,
and represent all levels of refinement of one single specification.

If specifications are captured as unifying theories in the style described above,
as second-order predicates ranging over entities which form their models, then
the lowest-level description of these entities available to us in the UTP setting
is the theory of designs. Designs (essentially abstract descriptions of pieces of
functionality) naturally serve as models for specifications of large systems be-
cause they form a well-developed unifying theory in their own right. In fact,
the various models of programming treated in UTP, namely designs, reactive
designs, CSP processes, CCS processes etc. serve equally well as models of these
specifications.

As a simple example, consider the specification of the “subp ” function pro-
posed by Jones [22], where i, j : N.

pre : i ≤ j post : subp (i, j) = j − i .

Using the lifting approach described above, this specification can be captured
as,

(S ⇔ res ′ = j − i, i ≤ j) ≡ (S ⇔ res ′ = j − i) 	 def � ¬(i ≤ j) .



Unifying Theories of Logic and Specification 25

where αS = {i, j, res}, F

α= αS,
H

α= {S} and res is a result variable introduced
so that the function subp may be represented as a relation. The alphabetical
variable S ranges over all possible implementations for subp , designs for instance.
One non-trivial implementation proposed by Jones has the recursive definition,

subp (i, j) � if i = j then 0 else subp (i+ 1, j) + 1 .

Adapted as a design with alphabet αS as described above, this becomes

S � true � ∃r0 • ((μX • res′ = r0 	 i = j � X [i+ 1/i, r0 + 1/r0]) ∧ r0 = 0) .

Note that the precondition of the design intentionally matches that of Jones’
recursive definition, and not that of the specification. Substitution into the spec-
ification relation now yields,

∃r0 • ((μX • res ′ = r0 	 i = j � X [i+ 1/i, r0 + 1/r0]) ∧ r0 = 0) ⇔ res ′ = j − i
	def �

¬(i ≤ j) .

First lifting the original three-valued specification into an alphabetized relation
and then substituting into the resulting second-order variable a possible imple-
mentation of the defined entity subp , we arrive at an expression that verifies
that, as expected, our candidate implementation indeed satisfies the original
specification. This example is developed further using the defined three-valued
logical operators in Sect. 4.3.

4.2 Partial Order for Three-Valued Predicates

We desire a partial order between pairs of relations that captures specification
refinement in a particular logical setting. In the case of Kleene’s three-valued
logic (the logic used in VDM), if the refinement order is denoted � (is less
refined than), then any two relations P and Q such that P � Q (Q refines P )
must satisfy the following properties (we use the notation P t for P [true /def ],
and similarly for false):

Definition 4 (Properties of refinement).

1. Q can refine two aspects of P : behaviours specified by P and situations where
P is undefined:

[
Qt ⇒ (P t ∨ P f)

]
.

2. Q can not be undefined where P is defined:
[
Qf ⇒ P f

]
.

It is clear that the standard reverse implication order usually employed in uni-
fying theories can not be used as the refinement order, for one thing due to
alphabet mismatch at def : our notion of refinement must discern between defP
and defQ, but the standard reverse implication is only defined for P and Q
where αP = αQ.

It is therefore necessary to define a bespoke partial order that reflects a view
of refinement in a three-valued logical specification setting as described above.
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This order must be reflexive, antisymmetric and transitive. It must therefore be
shown that these two sets of requirements are not at odds. That is, it must be
shown that a partial order satisfying the two properties above can in fact be
reflexive, antisymmetric and transitive.

Theorem 1 (Partial order). The conditions of Definition 4 define a partial
order on three-valued predicate models.

The proof strategy is simple: for any two relations P � Q, we assume the two
properties of Definition 4 and prove reflexivity, antisymmetry and transitivity.

4.3 Theory Operators

Since characteristic predicates are built using the term expression language, our
theory operators will then be the logical operators, allowing the construction
of logical sentences from terms. For the sake of brevity, we only discuss the
operators of Kleene’s three-valued logic. Two other logics of interest are strict
three-valued logic, as proposed by Bochvar [2], an approach to evaluating three-
valued logical statements that is easily implementable, and McCarthy’s left-
right logic [3], a three-valued logic that retains more information than the strict
variant, but is still tailored to easy implementation. McCarthy’s logic is used in
the Overture tool for VDM [23]. We justify the use of left-right logic in Overture
elsewhere [7]. These logics are briefly explored in Sect. 5.

¬
T F
F T
U U

∧ T F U

T T F U
F F F F
U U F U

∨ T F U

T T T T
F T F U
U T U U

∀x • P Condition

T P is true for all x.
F P is false for at least one x.
U Otherwise.

ιx • P Condition

x P is everywhere defined and there is exactly one x such that P (x).
U Otherwise.

Fig. 4. Kleene’s three-valued logical operators

The definition of Kleene’s logical operators is shown in Fig. 4.

Definition 5 (Kleene logic operators). The operators of the unifying theory
of three-valued Kleene logic are defined as follows.

1. Negation:
K¬P � (¬Pl, Pr) .

2. Conjunction: P
K∧Q � (Pl ∧Ql, (Pr ∧Qr) ∨ (¬Pl ∧ Pr) ∨ (¬Ql ∧Qr)) .

3. Disjunction: P
K∨Q � (Pl ∨Ql, (Pr ∧Qr) ∨ (Pl ∧ Pr) ∨ (Ql ∧Qr)) .

4. Universal Quantification:
K

∀x • P � (∀x • Pl, [Pr] ∨ ∃x • ¬Pl ∧ Pr) .

5. Definite Description:
K

ι x•P � (Pl, [Pr]∧∃x•Pl(x)∧∀y•Pl(y) ⇒ x = y))) .



Unifying Theories of Logic and Specification 27

Note: Under the assumption that predicates have finite alphabets,
K

∀ ,
K

ι are ac-
tually finite families of operators, one for each combination of free variables in
αP , represented by x.

Since
K

ι is not a logical operator, it requires some explanation. In order to include
it in our theory, it must operate on a predicate and yield a predicate in turn.
It achieves this by changing its parameter P to behave in accordance with the
behaviour of the definite description operator used in VDM. That is, it modifies
an arbitrary P to only be defined and true for the unique x that satisfies it, if it
exists.

Returning to the subp example, we can now explore the proof obligation re-
quired by VDM of the pre/postcondition specification given. The proof
obligation, in LPF, is

∀i, j : N • i ≤ j ⇒ subp (i, j) = j − i .

Since implication in LPF is defined in the usual way in terms of negation and
disjunction, we shall focus instead on the statement,

∀i, j : N • ¬(i ≤ j) ∨ subp (i, j) = j − i .

The atoms of this formula are i ≤ j and subp (i, j) = j − i. They are the two
relations that will be combined using the operators of our theory to form the full
relation representing the three-valued statement above. The atomic relations are
(i ≤ j, true) and (S ⇔ res ′ = j − i, i ≤ j), and the complete relation is,

K

∀ i, j • K¬ (i ≤ j, true)
K∨ (S ⇔ res ′ = j − i, i ≤ j)

≡ ∀i, j, res ′ • (¬(i ≤ j) ∨ (S ⇔ res ′ = j − i), true) by Definition 5

This example illustrates how the atomic elements of logical sentences are cho-
sen and represented as relations in our theory, and how the original sentences
are then reconstructed using the theory’s operators. Ignoring the characteristic
predicate expression language at the level of the theory means that, if required,
the characteristic predicates of the atomic relations can themselves use classical
logical operators, ensuring that classical logic does not bleed into the sentences
constructed inside the theory. And similarly, defining the theory’s three-valued
operators solely in terms of classical predicates ensures that undefinedness from
the three-valued logic represented does not bleed back into the classical logic of
UTP.

4.4 Strongest and Weakest Predicates

From Fig. 2 we know that the bottom element “⊥” of the information order on
logical values is the undefined value. Happily this also corresponds to the most
useless specification, the completely undefined specification, ¬def . We therefore
adopt ¬def as the bottom element.
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The strongest element is a little less intuitive. It should be the specification
that is not implementable. Such a specification is totally defined, but everywhere
false. It would therefore admit no model. From Definition 1 we obtain,

� � (false, true) ≡ def ∧ ¬def ≡ false .

At first sight this is not exactly the expression we desire, since it does not
explicitly capture the fact that it represents a defined statement. But it is in fact
neither defined, nor undefined, since neither def nor ¬def make it true. So on
one hand it can be considered unimplementable from an even more fundamental
point of view, which reveals that it can not even be established whether it is a
defined statement in the first place; and on the other hand it is in fact technically
strong enough to serve as our strongest specification and predicate.

4.5 Lattice Operators

In Sect. 3.2 we explored the effect of classical conjunction and disjunction on
our model of three-valued predicates. Since these are the classical meet (greatest
lower bound) and join (least upper bound) operators, we should investigate
whether they can serve as same in our theory of three-valued predicates. First
we establish the properties that the meet and join operators must possess in the
context of specification.

Essentially we want the meet of two specifications to be only as prescriptive as
the least prescriptive of the two. If undefinedness is present, then it dominates.
First, it is reasonable to require that where the two specifications are defined,
their meet is their disjunction, just as in the classical setting. That is, wherever
¬P f and ¬Qf , then (P �Q)t = P t ∨Qt and ¬(P �Q)f . Second, wherever both
specifications are undefined, then their meet must also be undefined. That is,
wherever P f and Qf , then (P �Q)f . Third, wherever one of the two specifica-
tions is undefined, their meet must also be undefined. That is, wherever ¬P f and
Qf , or P f and ¬Qf , then (P � Q)f . This condition is consistent with our view
that undefined specifications do not constrain any behaviour. From Sect. 3.2 we
observe that the classical disjunction of two three-valued predicate models satis-
fies all these conditions. Its behaviour is reproduced in the following definition:

Definition 6 (Meet). The greatest lower bound of three-valued predicate mod-
els P and Q is defined as,

P �Q � (Pl ∨Ql,Pr ∧Qr) ≡ P ∨Q .

The greatest lower bound of a (possibly infinite) set S of three-valued predicate
models is defined as,

⊔S � (
∨

{Il|I ∈ S} ,
∧

{Ir|I ∈ S}) .
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By a similar argument we have,

Definition 7 (Join). The least upper bound of three-valued predicate models P
and Q is defined as,

P �Q � (Pl ∧Ql,Pr ∨Qr) ≡ P ∧Q .

The least upper bound of a (possibly infinite) set S of three-valued predicate
models is defined as,⊔

S � (
∧

{Il|I ∈ S} ,
∨

{Ir|I ∈ S}) .

To show that these definitions provide maximal (respectively minimal) bounds,
we consider the case of the meet. The argument for join follows a similar line of
reasoning. The statement to prove is the following second-order formula,

∀P,Q • ((P �Q � P ) ∧ (P �Q � Q) ∧ (∀S • (S � P ∧ S � Q) ⇒ S � P �Q)).

The first two conjuncts require that P �Q is indeed a lower bound of P and of
Q, and are clearly true. The third conjunct requires maximality.

According to condition 2 of Definition 4, two cases must be considered. First,
we consider the case when P and Q are undefined. We know that S is also unde-
fined and that [Pr ⇒ Sr] and that [Qr ⇒ Sr], since

[
P f ⇒ Sf

]
and

[
Qf ⇒ Sf

]
.

Therefore it is the case that
[
(P �Q)f ⇒ Sf

]
, since [Pr ∧Qr ⇒ Sr]. Second, we

must consider the case when P is defined. If Q is also defined, then we have,
for defined S, that [Pl ∨Ql ⇒ Sl] from [Pl ⇒ Sl] and [Ql ⇒ Sl]. The case for
undefined S follows trivially. In the case of defined P and undefined Q, P � Q
is also undefined and from the hypothesis S � P ∧ S � Q we have that S is
undefined, yielding the conclusion directly.

It is interesting to see here why Kleene’s operators do not serve well. Kleene’s
logical operators are very permissive of undefinedness in that they evaluate to
a defined value using a minimal amount of information. The design of these
definitions, to extract as much information as possible from arguments, is directly
at odds with the notion of meet and join needed here, where undefinedness must
prevail. The case of the disjunction of “F” and “U” in the disjunction table in
Fig. 4 illustrates this contradiction clearly.

5 Connecting Theories

The various elements introduced in Sect. 4 define an unifying theory of Kleene

logic, denoted K, with signature ΣK � (
K¬ ,

K∧ ,
K∨ ,

K

∀ ,
K

ι ). Considering the top,
bottom, meet and join operators defined in Sect. 4.5, it is easy to show that K is
in fact a complete lattice of predicates, as desired. This section discusses briefly
the unifying treatment of two other logics, and some connections between them.
These theories possess the same lattice property. They are defined analogously
to K and their operators mimic the operator definitions in Fig. 5. The details
are here deferred [28].
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5.1 Strict Logic and McCarthy Left-Right Logic

Bochvar’s strict internal logic and McCarthy’s left-right logic are two other vari-
ations on the theme of three truth values that regards undefinedness as useless
information, but whose operators are defined with implementability in mind.
They are reproduced in Figs. 5a and 5b. Similar to the definition of the op-
erators of our theory of Kleene logic in Sect. 4.3, Definition 5, we define the
operators of the corresponding theories of strict and left-right logics, bearing in

mind the same observation on the families of operators
S

∀ ,
S

ι ,
LR

∀ ,
LR

ι .

¬
T F
F T
U U

∧ T F U

T T F U
F F F U
U U U U

∨ T F U

T T T U
F T F U
U U U U

∀x • P Condition

T P is true for all x.
F P is false for at least one x.
U P is undefined for any x.

ιx • P Condition

x P is everywhere defined and there is exactly one x such that P (x).
U Otherwise.

(a) Strict three-valued logical operators.

¬
T F
F T
U U

∧ T F U

T T F U
F F F F
U U U U

∨ T F U

T T T T
F T F U
U U U U

∀x • P Condition

T P is true for all x.
F P is false for at least one x.
U P is undefined for any x.

ιx • P Condition

x P is everywhere defined and there is exactly one x such that P (x).
U Otherwise.

(b) Left-right three-valued logical operators.

Fig. 5. Strict and McCarthy left-right logical operators

Definition 8 (Strict and McCarthy left-right theory operators). The
operators of the unifying theories of strict and left-right three-valued logic are
defined as follows.

1. Negation:
S¬P =

LR¬P � (¬Pl, Pr) .

2. Conjunction: P
S∧Q � (Pl ∧Ql, Pr ∧Qr) .

P
LR∧Q � (Pl ∧Ql, (Pr ∧Qr) ∨ (¬Pl ∧ Pr)) .

3. Disjunction: P
S∨Q � (Pl ∨Ql, Pr ∧Qr) .

P
LR∨Q � (Pl ∨Ql, (Pr ∧Qr) ∨ (Pl ∧ Pr)) .

4. Universal Quantification:
S

∀x • P =
LR

∀ x • P � (∀x • Pl, [Pr]) .
5. Definite Description:

S

ι x • P =
LR

ι x • P � (Pl, [Pr] ∧ ∃x • Pl(x) ∧ ∀y • Pl(y) ⇒ x = y))) .
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Then, ΣS � (
S¬ ,

S∧ ,
S∨ ,

S

∀ ,
S

ι ) and ΣLR � (
LR¬ ,

LR∧ ,
LR∨ ,

LR

∀ ,
LR

ι ) are the signatures of
the resulting theories S and LR, respectively.

5.2 Relating Theories

There exist at least three different ways of relating the theories described so far.
From the definedness ordering discovered by Woodcock et al. [1] between the
three logics considered, we define the following relationships. Only S and LR
are considered here, but the extension to K is straightforward. In what follows,
let σSLR and σLRS be the signature morphisms that map the operators of S
to those of LR and vice versa, respectively, expanded to the sentences of their
respective theories. We also make use of the following theorem.

Theorem 2 (Equivalent behaviour). There exists a function τ : S → LR

such that for all binary operators
S⊕ of S and predicates P and Q in S,

[P
S⊕Q ≡ (τP )(σSLR

S⊕)(τQ)] .

The function τ can be defined by structural induction on members of S.
A retract [8] is a weakening, monotonic and idempotent endofunction on UTP

theories. The following theorem confirms that LR is at least as resilient to un-
definedness as S, and mirrors the corresponding part of the ordering theorem of
Woodcock et al. A similar theorem exists for LR and K.

Theorem 3 (Retract). The theory defined by the endofunction (τ ◦ σLRS) on
LR is a retract.

The intuition behind this result is illustrated by the application of σLRS alone
to members of LR, but the subsequent application of τ is necessary to inject the
resulting theory back into LR. τ achieves a simulation of the behaviour of S in
LR and so weakening is shown. Monotonicity and idempotence are clear.

Since S, LR and K have signatures of the same size, we would expect that
sentences can be transliterated between any two theories with no losses. The next
theorem confirms that the logics are equally expressive with respect to syntax.

Theorem 4 (Isomorphism). S and LR are isomorphic, since

σLRS ◦ σSLR = idS and σSLR ◦ σLRS = idLR .

The result in Theorem 3 can be lifted to provide a more interesting class of
connections between theories, as exemplified in the next theorem.

Theorem 5 (Galois connection). The pair (σLRS , τ) forms a Galois connec-
tion between S and LR.

Tighter Galois connections than this can be defined where the two adjoints
can retain and reconstruct, respectively, varying amounts of information when
moving from one theory to the other and back. This fact can be used to give a
measure of the amount of information that a sentence can retain when translated
between different logics.
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6 Conclusions and Future Work

We have presented the foundations of work that aims to express and explore, in
the unifying style of Hoare and He, the relationships between various flavours
of logic, with an eye to understanding and automating the connection between
various modern specification formalisms that employ these logics. This is not a
new line of research, but it is the first attempt, as far as we have determined,
that explores this problem in the UTP framework. In this installment we provide
a classical model of three-valued predicates and explore the effect of the classical
logical operators on this model, something that is rarely shown on the operators
of new theories in the UTP literature. The model is used as the basis for UTP
theories of three different three-valued logics, and a sampling of connections
between them is shown. The interpretation of logical statements in these theories
as specifications is explored, as well as one possible model theory. Future work
includes exploration of alternative model theories using reactive designs and
other process algebras, the meaning of connections in these contexts, treatment
of types, direct application to Z, VDM and CML [29], and mechanization in
Isabelle/HOL [30].

Acknowledgments. We are grateful to Simon Foster and to the anonymous
reviewers for their helpful comments and recommendations. The results of this
work have contributed to the semantics of CML, the modelling language devel-
oped in the EU FP7 project COMPASS (No. 287829).
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Abstract. To cope with formal verification issues within the Model-
Driven Engineering (MDE) paradigm, a separation of duties between
software developers is usually proposed: MDE experts define models and
transformations, while formal verification experts conduct the verifica-
tion process. This is often aided by (semi)automatic translations form
the MDE elements to their formal representation in the semantic domain
used for verification. From a formal perspective, this requires semantic-
preserving translations between the MDE elements and the semantic do-
main. The aim of this paper is to present formal semantics for the MOF
and QVT-Relations languages which are standard languages for defining
metamodels and model transformations, respectively. The semantics is
based on the Theory of Institutions and reflect the conformance relation
between models and metamodels, and the satisfaction of transforma-
tion rules between pairs of models. The theory assists in the definition
of semantic-preserving translations between our institutions and other
logics which will be used for verification.

Keywords: MOF, QVT-Relations, formal semantics, Theory of Insti-
tutions, verification.

1 Introduction

The Model-Driven Engineering paradigm (MDE, [1]) envisions a software de-
velopment life-cycle driven by models representing different views of the system
to be constructed. Its feasibility is based on the existence of a (semi)automatic
construction process driven by model transformations, starting from abstract
models of the system and transforming them until an executable model is gener-
ated. The Object Management Group (OMG) has conducted a standardization
process of languages for MDE. They defined the MetaObject Facility (MOF,
[2]) as the language for metamodeling as well as three transformation languages
with different transformation approaches. The Query/View/Transformation Re-
lations (QVT-Relations, [3]) is one of those languages and follows a relational ap-
proach which consists of defining transformation rules as mathematical relations
between source and target elements. Since the quality of the whole development
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process strongly depends on the quality of the models and model transforma-
tions, verification is a must, and in some cases formal methods arise as a tool
for strengthening verification results. To cope with this situation, a separation of
duties between software developers is usually proposed. On the one side there are
those experts in the MDE domain, and on the other, those in formal verification.
This gives rise to different technological spaces [4], i.e. working contexts with a
set of associated concepts, body of knowledge, tools, required skills, and possi-
bilities. In general terms, MDE experts define models and transformations, while
formal verification experts conduct the verification process, often aided by some
(semi)automatic generation process which translates the MDE elements to their
formal representation in the semantic domain used for verification purposes.

We are exploring a comprehensive formal environment enabling this scheme.
This environment requires semantic-preserving translations between the MDE
elements and the chosen semantic domain. Moreover, different logics (e.g. modal
logic, predicate logic) can be used by verification experts. In this context, the
biggest problem is perhaps the maintenance of multiple formal representations of
the sameMDE elements and the complexity of linking different semantic domains
to perform a comprehensive verification using multiple semantic domains.

The aim of this paper is to present formal semantics for the MOF and the
QVT-Relations languages in a flexible way to solve the problems described be-
fore. We base our proposal on the heterogeneous specification approach [5,6],
which consists in having different mathematical formalism for expressing differ-
ent parts of the overall problem and defining semantic-preserving mappings in
order to allow “communication” between the formalisms. This approach uses as
a basis the Theory of Institutions [7]. Using this theory we define institutions to
represent the conformance relation between MOF models and metamodels and
the satisfaction of QVT-Relations transformation rules between pairs of mod-
els. The theory also assists in the definition of semantic-preserving translations
between our institutions and other logics which will be used for verification.

The remainder of the paper is structured as follows. In Section 2 we introduce
the elements involved in the MDE technical space which will be part of this
work and we introduce a running example. Then, in Section 3 we summarize
the general schema we follow for defining formal semantics based on the Theory
of Institutions. In Section 4 we formally define an institution for MOF, and in
Section 5 we define the institution for QVT-Relations. Finally, in Section 6 we
present some conclusions and guidelines for future work.

2 An Introduction to the MDE Technical Space

In MDE everything is a model, i.e. an abstraction of the system or its environ-
ment. Every model conforms to a metamodel, i.e. a model which introduces the
syntax and semantics of certain kind of models. MOF is a standard language for
metamodeling. A metamodel defines classes which can belong to a hierarchical
structure and some of them must be defined as abstract (there are no instances
of them). Any class has properties which can be attributes (named elements
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with an associated type which can be a primitive type or another class) and
associations (relations between classes in which each class plays a role within
the relation). Every property has a multiplicity which constraints the number of
elements that can be related through the property. There are conditions (called
invariants) that cannot be captured by the structural rules of these languages, in
which case modeling languages are supplemented with another logical language,
e.g. the Object Constraint Language (OCL, [8]).

Let us consider a simplified version of the well-known Class to Relational
model transformation [3]. The metamodel on the left-hand side of Figure 1 de-
fines UML class diagrams, where classifiers (classes and primitive types as string,
boolean, integer, etc.) are contained in packages. Classes can contain one or more
attributes and may be declared as persistent, whilst attributes have a type that
is a primitive type. On the right-hand side of Figure 1 there is an example of
a model composed by a persistent class of name ID within a package of name
Package. The class has an attribute of name value and type String.

Fig. 1. Class metamodel and model of the example

A model transformation (or just transformation from now on) basically takes
as input a model conforming to certain metamodel and produces as output
another model conforming to another metamodel (possibly the same). QVT-
Relations follows a relational approach which consists on defining transformation
rules as mathematical relations between source and target elements. Although
transformations can be defined between multiple metamodels at the same time,
we will only consider a source and a target metamodel.

A transformation can be viewed as a set of interconnected relations which are
of two kinds: top-level relations which must hold in any transformation execution,
and non-top-level relations which are required to hold only when they are referred
from another relation. We can view a relation as having the following abstract
structure [3]:
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[top] relation R {

<R_var_set> <R_par_set>

Domain {

<domain_k_var_set> <domain_k_pat>

} //k = 1,2

[when <when_var_set> <when_cond>]

[where <where_cond>]

}

Every relation has a set <R_var_set> of variables occurring in the relation,
which are particularly used within the domains (<domain_k_var_set>) and in
the when clause (<when_var_set>). Each relation defines a source and a tar-
get pattern <domain_k_pat> which is used to find matching sub-graphs in a
model and can be viewed as a graph of typed pattern elements and pattern
links, together with a predicate which must hold. Relations can also contain
when (<when_cond>) and where (<where_cond>) clauses. A when clause speci-
fies the conditions under which the relationship needs to hold, whilst the where
clause specifies the condition that must be satisfied by all model elements par-
ticipating in the relation. The when and where clauses, as well as the predicate
of a pattern, may contain arbitrary boolean OCL expressions in addition to the
relation invocation expressions. Finally, any relation can define a set of primitive
domains which are data types used to parameterize the relation (<R_par_set>).

The standard checking semantics states that a rule holds if for each valid
binding of variables of the when clause and variables of domains other than the
target domain, that satisfy the when condition and source domain patterns and
conditions, there must exist a valid binding of the remaining unbound variables of
the target domain that satisfies the target domain pattern and where condition.

The Class to Relational transformation basically describes how persistent
classes within a package are transformed into tables within a schema. Attributes
of a class are transformed into columns of the corresponding table, and the pri-
mary key is defined by default. Below we show an excerpt of this transformation.

transformation umlToRdbms(uml:SimpleUML, rdbms:SimpleRDBMS) {

top relation PackageToSchema {

pn: String;

domain uml p:Package {name=pn};

domain rdbms s:Schema {name=pn};

}

top relation ClassToTable {

cn, prefix: String;

domain uml c:Class {namespace=p:Package {},kind=’Persistent’,name=cn};

domain rdbms t:Table {schema=s:Schema {}, name=cn,

column=cl:Column {name=cn+’_tid’, type=’NUMBER’},

key=k:Key {name=cn+’_pk’, column=cl}};

when { PackageToSchema(p,s); }

where { prefix = ’’; AttributeToColumn(c, t, prefix); }

}

relation AttributeToColumn { ... }

}
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3 An Environment for Verification

We are exploring a comprehensive environment for the formal verification of
different aspects of a model transformation using heterogeneous verification ap-
proaches [9]. The environment is based on representing models (from now on
SW-models), metamodels, the conformance relation, transformations and ve-
rification properties in some consistent and interdependent way following the
heterogeneous specification approach [5,6]. This approach is based on providing
Institutions for the languages which are part of the environment. The concept
of Institution [7] was originally introduced to formalize the notion of logical sys-
tem, and many different logics as first-order, modal, rewriting, among others have
been shown to be institutions. Informally, an institution consists of a collection
of signatures (vocabularies for constructing sentences in a logical system), sig-
nature morphisms (allowing many different vocabularies at once), a collection of
sentences and models (providing semantics) for a given signature, and a satisfac-
tion relation of sentences by models, such that when signatures are changed (by
a signature morphism), satisfaction of sentences by models changes consistently.
The notion of an institution can be used to represent any specification language
since it provides ways of representing the syntax and semantics of the language,
as well as the relation between them by means of a satisfaction relation between
them, as in [5]. In this work we provide an institution for QVT-Relations check-
only unidirectional transformations. This kind of transformations only checks if
a target model is the result of transforming the source SW-model according to
the transformation rules. This institution needs a representation of SW-models
and metamodels, therefore we first define an institution for MOF for expressing
the conformance relation between them.

In order to use our institutions for verification purposes, there are two alter-
natives. The first one is to extend the institutions from a proof-theoretic point
of view by defining a logic, i.e. equipping the institutions with an entailment
system on sentences for conducting formal proofs. The second alternative is to
formally translate our institutions into another logic. This can be done through
institution comorphisms [10], which capture how a weaker institution can be
represented in a stronger and richer one. The importance of comorphisms is
such that it is possible (in some cases) to re-use (borrow) the entailment systems
of an institution in order to prove properties.

We take the second alternative and define comorphisms from our institutions
to a host logic and supplement this information with properties specified in
the host logic. In particular, we are in the process of defining a comorphism to
the Common Algebraic Specification Language (CASL, [11]), a general-purpose
specification language. The institution underlying CASL is the sub-sorted partial
first-order logic with equality and constraints on sets SubPCFOL=, a combina-
tion of first-order logic and induction with subsorts and partial functions. The
importance of CASL is that it is the main language within the Heterogeneous
Tool Set (Hets, [6]), which is a tool meant to support heterogeneous multi-logic
specifications. Hets allows defining institutions and comorphisms, and also pro-
vides proof management capabilities for monitoring the overall correctness of a
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heterogeneous specification whereas different parts of it are verified using (possi-
bly different) proof systems. Hets already supports several interconnected logics
(e.g. first-order and modal logics, among others). To the best of our knowledge,
Hets does not support the MDE paradigm, i.e. it does not have specific languages
for the specification of MDE elements. We plan to include our institutions as
logics in Hets, in such a way that a developer can import a transformation
(which is automatically translated into CASL through the comorphism), use the
logics within Hets to specify additional verification properties which must be
addressed, and perform the verification assisted by the tool.

3.1 Defining the Institutions

In Section 4 we define the institution for the MOF-based conformance relation,
basing our proposal on the institution defined for UML class diagrams in [12,13].
Unlike [12], in our definition there are no derived relations (not used in trans-
formations), the signature has an explicit representation of abstract classes and
datatypes, and there are only 2-ary properties (associations and attributes). We
also use an explicit syntactic representation of SW-models within the signature.
In [13], instances (class objects and type values) are represented within the sig-
nature. However, there is no representation of links between these elements since
they are used for other purposes. Moreover, unlike MOF, we do not consider ag-
gregation, uniqueness and ordering properties within a property end, operations
on classes, or packages. Properties and operations are not commonly used within
transformations, whereas packages are just used for organizing metamodel ele-
ments. We follow the schema in Figure 2. From any metamodel we can derive a
signature with a representation of types, properties, and SW-models, and a set of
formulas stating invariants which must hold on every conforming SW-model. Up
to now we have considered multiplicity constraints. However, it will be possible
to add other kind of constraints through comorphisms as explained before. Any
institution model (from now on just model) is a semantic representation of a
potentially conforming SW-model. The model is composed by objects and rela-
tions between them, which must satisfy the multiplicity constraints. This allows
us to define the satisfaction relation answering the question: does the SW-model
conform to the metamodel?

In Section 5 we also define an institution for QVT-Relations check-only uni-
directional transformations. For the definition of this institution we follow the
schema shown in Figure 3. For the definition we do not consider black-box opera-
tions or rule and transformation overriding since they are advanced features not
commonly used in practice. We neither consider keys definition since they are
not used within the checking semantics. The institution takes the institutional
representation of the source and target elements and supplements the formulas
with a representation of the transformation rules. In this case, the satisfaction
relation also answers the question: is the target SW-model the result of trans-
forming the source SW-model according to the transformation rules?

As we mentioned before, the when and where clauses, as well as the predicate
of a pattern, may contain arbitrary boolean OCL expressions. From a formal
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Fig. 2. The conformance relation as an institution

Fig. 3. A model transformation as an institution

perspective we would rather have an institution for OCL which would allow
us to use the language not only for constraining the transformation rules, but
also for expressing general constraints on metamodels. Unfortunately there is
no institution for OCL, which is left for future work. However, in our work we
consider an institution for first-order logic with equality (FOL=) as defined in
[14]. With this decision we are not losing expressive power (there are works [15]
with the aim of expressing OCL into first-order logic).

3.2 Related Work

There are many works defining the semantics of MOF and the conformance re-
lation in terms of a shallow embedding of the language by providing a syntactic
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translation into another one, e.g. into first-order logic [16] and rewriting logic
[17]. We, on the contrary, do not want to depend on a general logic but to de-
fine a generic and minimal infrastructure allowing translations to other logics
as needed. There are also some works with an algebraic/institutional approach,
e.g. [18,19]. In these works the authors propose two alternatives: a generic alge-
braic representation of metamodels without an explicit representation of models,
and concrete institutions for each metamodel. Unlike these works, we avoid the
burden of defining a new institution for each metamodel, explicitly representing
models to be used within proofs. In [12,13] the authors define institutions for
simple and stereotyped UML Class Diagrams. As we said, we adapt those works
for the purpose of defining the institution for the conformance relation. Finally,
in [20] the authors define the semantics of class diagrams with OCL constraints
by defining a translation into CASL. Although this is also a shallow embedding,
as explained before, the translation (and the one proposed in [13]) could be
useful for defining the comorphism from our institution to CASL.

With respect to QVT-Relations, there are also works defining the semantics of
QVT-Relations in terms of a shallow embedding of the language, e.g. into rewrit-
ing logic [21] and coloured petri nets [22]. There are also embeddings into specific
tools, as in the case of Alloy [23] and KIV [24], which provide model checking
capabilities. As said before, we do not follow this approach. Moreover, in [18]
transformations are represented as institution comorphisms, which is somehow
restrictive since it assumes a semantic relation between metamodels. Finally, in
[25] the authors present a formal semantics for the QVT-Relations check-only
scenario based on algebraic specification and category theory. The definition of
the institution is much more complex than ours and the work does not envision
a scenario in which the elements of the transformation are translated to other
logics for verification.

4 An Institution for MOF

In this section we present the formal definition of an institution IC for the
MOF-based conformance relation. As said before, this definition is based on the
institutions for UML class diagrams defined in [12,13], but adapted for represent-
ing the conformance relation. Along the definition we will illustrate the concepts
introduced with the example presented in Section 2.

A class hierarchy is a partial order C = (C,≤C) where C is a set of class
names, and ≤C ⊆ C × C is the subclass (inheritance) relation. By T(C) we
denote the type extension of C by primitive types and type constructors. T(C) is
likewise a class hierarchy (T (C),≤T (C)) with C ⊆ T (C) and ≤C ⊆ ≤T (C). As
in [13], in order to provide generic access to primitive types, like Boolean, and
String, we treat these as built-ins with a standard meaning (they must be defined
within T (C)). All other classes are assumed to be inhabited, i.e., to contain at
least one object. However, unlike [13] in which it is assumed the existence of an
object null, we impose that if c ∈ C|abstract then there exists another c′ ∈ T (C)
downwards in the hierarchy having at least one object.
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As we mentioned before, from a metamodel we can derive a signature
Σ = (T,P,M) declaring:

– A type extension of a finite class hierarchy T = (T (C),≤T (C), C |abstract)
extended with a subset C|abstract ⊆ C denoting abstract classes.

– A properties declaration (attributes and associations) P = (R,P ) where R
is a finite set of role names and P is a finite set (pw)w∈(R×T (C))×(R×T (C))

of property names indexed over pairs of a role name and a class (or type)
name, such that for any class or type name c ∈ C, the role names of the
properties in which any c′ ≤T (C) c is involved are all different. If pw ∈ P
with w = ((r1, c1)(r2, c2)), we write p(r1 : c1, r2 : c2) ∈ P .

– A SW-model declaration (instances and links) M = (I, L) where I is a finite
set of instances of the form o : c with c ∈ T (C); and L is a finite set of links
between instances of the form pw(x, y) with pw ∈ P , w = ((r1, c)(r2, d)),
x : c, y : d ∈ I.

From a metamodel it is also possible to derive a set of formulas (multipli-
city constraints) constraining the set of SW-models conforming to it. Given a
signature as defined before, any Σ-formula is defined by:

Φ ::= #Π = n | n ≤ #Π | #Π ≤ n
Π ::= R • P

where n ∈ N. The #-expressions return the number of links in a property when
some roles are fixed. We use • as the select/partition operator in Π representing
the selection of the elements in the opposite side of role R in property P .

Let Σi = (Ti,Pi,Mi) (i = 1, 2) with Ti = (T (Ci),≤T (Ci), Ci |abstract), Pi =
(Ri, Pi), and Mi = (Ii, Li). A signature morphism σ : Σ1 → Σ2 is a tuple of
maps 〈σT , σR, σP , σI〉 between class names, role names, property names, and
instances. Signature morphisms extend to formulas over Σ1 as follows. Given a
Σ1-formula ϕ, σ(ϕ) is the canonical application of the signature morphism to
every role and property in the formula such that σ(r • p) = σR(r) • σP (p).

Given a class hierarchy C = (C,≤C), a C-object domain O is a family (Oc)c∈C

of sets of object identifiers verifying Oc1 ⊆ Oc2 if c1 ≤C c2. Given moreover a
type extension T, the value extension of a C-object domain O = (Oc)c∈C by
primitive values and value constructions, which is denoted by VT

C(O), is a T(C)-
object domain (Vc)c∈T (C) such that Vc = Oc for all c ∈ C. We consider disjoint
sets of objects within the same hierarchical level.

We adapt the definition of a Σ-interpretation in order to ’reduce’ the interpre-
tation to those elements and relations in M, i.e. there is an isomorphism between
these elements and those in the interpretation. A Σ-interpretation I consists of
a tuple (VT

C(O),A,KI) where

– VT
C(O) = (Vc)c∈T (C) is a T(C)-object domain

– A contains a relation pI ⊆ Vc1 × Vc2 for each relation name p(r1 : c1, r2 :
c2) ∈ P with c1, c2 ∈ T (C)

– KI maps each o : c ∈ I to an element of Vc

– c2 ∈ C|abstract implies Oc2 =
⋃

c1≤Cc2
Oc1
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– KI(o1 : c) �= KI(o2 : d) iff o1 : c �= o2 : d
– Vc =

⋃
c K

I(o : c) with o : c ∈ I, for all c ∈ T (C)
– pI = {(KI(x : c),KI(y : d)) | pw(x, y) ∈ L, x : c, y : d ∈ I}

Given a Σ-interpretation I = (VT
C(O),A,KI), the interpretation evaluates

relations as follows: if p(r1 : c1, r2 : c2) then (ri • p)I = {{t ∈ pI | πi(t) =
o} | o ∈ Vci} (i = 1, 2). The evaluation (ri • p)I gives a set of sets of pairs
of semantic elements connected through property p, grouped by the semantic
elements having role ri. Note that this set can be empty if the element with role
ri is not connected with any one.

Given a signatureΣ, a formula ϕ, and a Σ-interpretation I, the interpretation
satisfies ϕ, written I |=Σ ϕ, if one of the following conditions holds:

– ϕ is #(r • p) = n and |S| = n for all S ∈ (r • p)I
– ϕ is n ≤ #(r • p) and n ≤ |S| for all S ∈ (r • p)I
– ϕ is #(r • p) ≤ n and |S| ≤ n for all S ∈ (r • p)I

This means that the number of elements related through a property p with any
element with role r in such property, satisfies the multiplicity constraints. This
definition can be trivially defined for a set of formulas Φ.

Finally, the satisfaction condition holds for given signatures Σi (i = 1, 2), a
signature morphism σ : Σ1 → Σ2, a Σ2-interpretation I, and a Σ1-formula ψ:
I|σ, |=Σ1 ψ iff I |=Σ2 σ(ψ). This can be trivially extended to a set of formulas.

Given that the satisfaction condition holds we can state that IC consisting of
signatures, morphisms, formulas, interpretations, reducts, and the satisfaction
relation, defines an institution. For space reasons we omit here several definition
(e.g. signature morphisms, reducts) and proofs, which can be completely found
in [26].

4.1 Running Example

From the class metamodel and the SW-model in Figure 1 we derive the signature
(T,P,M) with T = (T (C),≤T (C), C|abstract), P = (R,P ), and M = (I, L) such
that:

T (C) = {UMLModelElement,Package, ..., String}
≤T (C) = {Package ≤T (C) UMLModelElement, ...}
C|abstract = {UMLModelElement}
R = {namespace, elements, type, typeOpposite, ...}
P = {contains(namespace : Package, elements : Classifier),

name(UMLModelElement : UMLModelElement, name : String),
typeOf(typeOpposite : Attribute, type : PrimitiveDataType), ...}

I = {p : Package, c : Class, a : Attribute, ..., String : String}
L = {contains(p, c), contains(p, pdt), has(c, a), type(a, pdt),

name(p,Package), kind(c,Persistent), name(pdt, String), ...}
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The set of formulas ϕ is defined by:

ϕ = {#(UMLModelElement • name) = 1, #(UMLModelElement • kind) = 1,
#(elements • contains) = 1, #(attribute • has) = 1, ...}

An interpretation I can be defined as follows, in which each element has a
correspondence with one in the signature:

– A T(C)-object domain consisting of
VClass = {c1}
VPrimitiveDataType = {pdt1}
VPackage = {p1}
VAttribute = {a1}
VString = {Pac, Str, Per, nul, ID, val}

– A set A consisting of relations
containsI = {(p1, c1), (p1, pdt1)}
nameI = {(p1, Pac), (c1, ID), (c2, nul), (a1, val)}
kindI = {(p1, nul), (c1, P er), (a1, nul), (pdt1, nul)}
typeI = {(a1, pdt1)}
...

The property contains(namespace : Package, elements : Classifier) represents
that a package contains classifiers. The interpretation I has the following inter-
pretation of this property: containsI = {(p1, c1), (p1, c2)(p1, pdt1), (p1, pdt2)},
such that there is only one package object p1, and it contains two classes (c1 and
c2) and two primitive datatype objects (pdt1 and pdt2). This interpretation eval-
uates (namespace • contains)I as the set {(p1, c1), (p1, c2), (p1, pdt1), (p1, pdt2)}
since there is only one object with role namespace which is the package object p1,
and those elements in the opposite side of the property are those in containsI .

Now, we check that I, β |=Σ ϕ for every formula ϕ defined before. For example
it holds in the following cases.

– #(UMLModelElement • name) = 1 and |S| = 1
for all S ∈ (UMLModelElement • name)I =
{{(p1, Pac)}, {(c1, ID)}, {(a1, val)}, {(pdt1, Str)}}

– #(elements • contains) = 1 and |S| = 1
for all S ∈ (elements • contains)I = {{(p1, c1)}, {(p1, pdt1)}}

5 An Institution for QVT-Relations

We finally introduce an institution IQVT for QVT-Relations check-only unidirec-
tional transformations, and then we continue illustrating the concepts introduced
with the example presented in Section 2.

A signature in IQVT is a triple 〈ΣC
1 , Σ

C
2 , Σ

FOL〉 with IC-signatures
ΣC

i (i = 1, 2) representing the source and target metamodels and models of
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the transformation, and a FOL= signature ΣFOL such that there are sorts for
every type (

⋃
i T (Ci) ⊆ S) and there is a predicate for each property declaration

(
⋃

i Pi ⊆ Π). We assume that there are no name clashes (types, roles and pro-
perties) between source and target metamodels. In fact, if a transformation has
the same source and target metamodels, we can use a prefix to identify elements
on each side. A signature morphism is defined as a triple of morphisms of the
corresponding institutions.

A Σ-formula is of the form 〈ϕC
1 , ϕ

C
2 , ϕ

rules〉 such that ϕC
i is a ΣC

i -formula
and ϕrules is a formula representing the transformation specification. i.e. a tuple
〈Rules, top〉 such that Rules is the set of transformation rules, and top ⊆ Rules
the set of top rules of the transformation.

A rule Rule ∈ Rules is a tuple 〈VarSet,Patterni (i = 1, 2),when,where〉 such
that VarSet ⊆ Xs with s ∈ S is the set of variables of the rule, Patterni (i = 1, 2)
are the source and target patterns, and when/where are the when/where clauses
of the rule, respectively. We will denote by k VarSet (k = 1, 2) the variables used
in pattern k that do neither occur in the other domain nor in the when clause.

A pattern Patterni (i = 1, 2) is a tuple 〈Ei, Ai, P ri〉 such that Ei ⊆ (Xc)c ∈Ci

is a set of class-indexed variables, Ai is a set of elements representing associations
of the form rel(p, x, y) with p ∈ Pi and x, y ∈ Ei, and Pri is a FOL=-formula.

A when clause is a pair 〈whenc,whenr〉 such that whenc is a FOL=-formula
with variables in VarSet, and whenr is a set of pairs of transformation rules and
set of variables which are the parameters used for the invocation of each rule.
We will denote by WhenVarSet the set of variables ocurring in the when clause.
Finally, a where clause is a pair 〈wherec,wherer〉 such that wherec is a FOL=-
formula with variables in VarSet, and wherer is a set of pairs of transformation
rules and set of variables (parameters). Only variables used in a where clause
(as prefix in the example) are contained in 2 VarSet.

A Σ-model is a triple 〈MC
1 ,MC

2 ,MFOL〉 of SignCi (i = 1, 2) models, and a
SignFOL first-order structure, such that the interpretation of elements in SignCi
must be the same in MC

i and MFOL. This means that |D|t = Vt. ∀t ∈
⋃

i T (Ci),
and pD = pI . ∀p ∈

⋃
i Pi. In the case of t ∈ T (C)\C (primitive types) we have

that Vt ⊆ |D|t since MFOL can have more elements than those in the source and
target institutions: type constants (e.g. the empty string) and elements created
using type constructors (e.g. new strings using type constructor ++).

Given variables Xs = (Xs)s ∈S , the binding of a variable xc ∈ Xc, denoted
by |xc|, is the set of possible interpretations of such a variable which corre-
sponds to the carrier set of the corresponding sort, i.e. |xc| = |D|c. Moreover,
the binding of a set of variables (x1, ..., xn), denoted by |(x1, ..., xn)|, is defined
as {(y1, ..., yn) | yi ∈ |xi| (i = 1..n)}. We can also view |(x1, ..., xn)| as a set of
variable assignments. We denote by μ[x1, ..., xn] the function with an assignment
for variables x1, ..., xn. We also denote by μ1 ∪ μ2 an assignment unifying the
former ones, assuming that if there is variable clash, the assignment takes for
those variables the values in μ2.

A when clause 〈whenc,whenr〉 is satisfied with respect to a first-order structure
MFOL and a variable assignment μ, denoted by MFOL, μ |= 〈whenc,whenr〉 if
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MFOL, μ |=FOL whenc ∧ (∀(r, v) ∈ whenr. MFOL, μ[v] |= r) Here, |=FOL is
the satisfaction relation in FOL=, and |= is the satisfaction of the parametric
transformation rule r using the variable assignment μ[v] as a parameter. The
satisfaction of a where clause is defined in the same way.

A pattern Pattern = 〈E,A, Pr〉 is satisfied with respect to a first-order struc-
ture MFOL and a variable assignment μ (which must include a valuation for the
elements in E), denoted by MFOL, μ |= Pattern if there is a matching subgraph
∀ rel(p, x, y) ∈ A. (pD(μ(x), μ(y)) ∈ MFOL), and the predicate holds in FOL=

(MFOL, μ |=FOL Pr).
A rule Rule = 〈VarSet,Patterni (i = 1, 2),when,where〉 is satisfied with re-

spect to a first-order structure MFOL and a variable assignment μ, denoted by
MFOL, μ |= Rule if one of the following properties hold.

1. If WhenVarSet = ∅

∀ μ1[x1, ..., xn] ∈ |VarSet\2 VarSet|,
( MFOL, (μ1[x1, ..., xn] ∪ μ) |= Pattern1 →

∃ μ2[y1, ..., ym] ∈ |2 VarSet|,
( MFOL, (μ1 ∪ μ2 ∪ μ) |= Pattern2 ∧

MFOL, (μ1 ∪ μ2 ∪ μ) |= where))

2. If WhenVarSet �= ∅

∀ μw[z1, ..., zo] ∈ |WhenVarSet|,
( MFOL, (μw[z1, ..., zo] ∪ μ) |= when →

∀ μ1[x1, ..., xn] ∈ |VarSet\(WhenVarSet ∪ 2 VarSet)|,
( MFOL, (μ1 ∪ μw ∪ μ) |= Pattern1 →

∃ μ2[y1, ..., ym] ∈ |2 VarSet|,
( MFOL, (μ1 ∪ μ2 ∪ μw ∪ μ) |= Pattern2 ∧

MFOL, (μ1 ∪ μ2 ∪ μw ∪ μ) |= where)))

The satisfaction relation is defined in such a way that a model M satisfies
ϕ, written M |=Σ ϕ, if MC

i |=C
ΣC

i
ϕC
i (i = 1, 2) and M |=Σ ϕrules. In other

words, a model satisfies a formula if the SW-models conform to the correspond-
ing metamodels, and they fulfill the top transformation rules. The satisfaction
relation M |=Σ ϕrules is defined to hold if for all Rulei ∈ top. MFOL, ∅ |= Rulei.
We take ∅ as the empty variable assignment, since for rules it will be used only
in the case of non top and explicit called rules.

Finally, given signatures Σi, a signature morphism σ : Σ1 → Σ2, a Σ2-
model M, a set of variables X2, and a Σ1-formula ψ with variables in X2|σ, the
following satisfaction condition holds (see [26]): M|σ|=Σ1 ψ iff M |=Σ2 σ(ψ).
Thus, we can state that IQVT consisting of the definitions given before, defines
an institution. Complete definitions and proofs can be found in [26].
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5.1 Running Example

The signature Σ = 〈ΣC
1 , Σ

C
2 , Σ

FOL〉 contains the signature ΣC
1 of the source

metamodel, which is the one presented in Section 4.1, the signature ΣC
2 of the

target metamodel, which is not shown here but can be derived in the same
way, and a FOL= signature ΣFOL with at least one sort for each type name in⋃

i T (Ci) and a predicate for each property in
⋃

i Pi.
A transformation between two SW-models is represented as a formula ϕ of

the form 〈ϕC
1 , ϕ

C
2 , ϕ

rules〉 such that, for example, ϕC
1 is the formula introduced

in Section 4.1, which represents the multiplicity constraints of the metamodel in
Figure 1, ϕC

2 is another formula representing the target SW-model (not shown
here), and ϕrules = 〈Rules, top〉 is the formula representing the transformation
specification which has three relations named PackageToSchema ∈ top,
ClassToTable ∈ top and AttributeToColumn.

As an example, the relation PackageToSchema is defined as follows:
PackageToSchema = 〈VarSet,Patterni (i = 1, 2),when,where〉 such that

– VarSet = {pn, p, s} with pn ∈ XString, p ∈ XPackage, and s ∈ XSchema.
– Pattern1 = 〈E1, A1, P r1〉 with E1 = {p}, A1 = ∅, and Pr1 = name(p,pn)

(name is also a property in the source metamodel)
– Pattern2 = 〈E2, A2, P r2〉 with E2 = {s}, A2 = ∅, and Pr2 = name(s,pn).
– when = 〈∅, ∅〉 and where = 〈∅, ∅〉.

A modelM = 〈MC
1 ,MC

2 ,MFOL〉 can be composed byMC
1 = (I, β) as defined

in Section 4.1, MC
2 = (I ′, β′) is a target model not shown in this paper, and

MFOL is a first-order structure. Binding of variables depends on the type of
elements. If the variable is of a class, we have that the set of possible values
coincides with the set of elements within the MOF institutions, e.g. |p| = VPackage

= {p1}. However, if the variable is of a primitive type, we have than Vt ⊆ |D|t
since transformation rules can use other elements besides those in the MOF
institutions, for example those strings created using the type constructor ++,
e.g. |pn| = {Pac, Str, ID, ..., pk, tid, ..., ID++tid, ID ++numb, ...}

We have that M |=Σ ϕ, if MC
i |=C

ΣC
i

ϕC
i (i = 1, 2) and M |=Σ ϕrules.

We already showed that MC
1 |=C

ΣC
1

ϕC
1 , and we prove in the same way that

MC
2 |=C

ΣC
2
ϕC
2 for a valid SW-model. Thus, we need to prove that M |=Σ ϕrules,

and this holds ifMFOL, ∅ |= ClassToTable, andMFOL, ∅ |= PackageToSchema.
As an example, we prove thatMFOL, ∅ |= PackageToSchemaconsidering a valid

target SW-model with only one schema (semantically represented as s1) having
the same name as the package (semantically represented as Pac). We know that
|pn| = VString = {Pac, Str, Per, nul, ID, val, ...}, and |p| = VPackage = {p1}, so
|{pn, p}| is {(Pac, p1), (Str, p1), (ID, p1), (nul, p1), (Per, p1), (val, p1), ...}.

We also have that |s| = VSchema = {s1}. Thus, the rule holds if

∀ μ1[pn, p] ∈ {(Pac, p1), (Str, p1), (ID, p1), (Per, p1), (val, p1), (nul, p1), ...},
( MFOL, μ1 |= Pattern1 → ∃ μ2[s] ∈ {s1},

( MFOL, (μ1 ∪ μ2) |= Pattern2 ∧MFOL, (μ1 ∪ μ2) |= where))
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For every μ1[pn, p] different from (Pac, p1) we have that Pattern1 does not
hold, since it depends on the predicate name(p,pn). Thus, in these cases the
implication holds. Now, in the case of (Pac, p1), we have that Pattern1 holds,
and that the only possible value for s is s1. In this case, we also have that
MFOL, (μ1 ∪ μ2) |= Pattern2 since the predicate name(s,pn) holds. Moreover,
since the where clause is empty, MFOL, (μ1∪μ2) |= where trivially holds. Finally,
we conclude that MFOL |= PackageToSchema indeed.

6 Conclusions and Future Work

In this paper we have defined institutions to represent the conformance relation
between MOF models and metamodels, and the satisfaction of QVT-Relations
check-only unidirectional transformations between pairs of models. These defi-
nitions neither depend on a shallow embedding of the languages by providing a
syntactic translation into other logics, nor on the definition of specific institu-
tions for each metamodel or model transformation. On the contrary, we defined
a generic and minimal infrastructure within a theory which allows the defini-
tion of semantic-preserving translations from the MDE elements to potentially
any logic defined as an institution, with the advantage that there is no need to
maintain multiple formal representations of the same MDE elements.

Unlike MOF, we do not consider some constructions (e.g. aggregation, opera-
tions on classes) since they are elements not commonly used within transforma-
tions. We neither consider black-box operations or rule and transformation over-
riding within transformations since they are advanced features not commonly
used in practice, nor keys definition since they are used for object creation not
within the checking semantics. However, an inclusion of these elements within
our institutions will strengthen the formal environment for MDE.

Our institutions contribute to the definition of a comprehensive formal envi-
ronment for the verification of model transformations. We plan to define comor-
phisms from our institutions to a host logic and supplement this information
with properties specified in the host logic. In particular, we have an initial for-
mal definition of comorphism to CASL, the main language within Hets, and we
are developing a first functional prototype of the running example using such
definition as a way to test the main concepts. The native inclusion of MOF and
QVT within Hets (by implementing the necessary Haskell code), as well as of
the comorphisms, is within our medium-term goals.

Although we are for now focusing on MOF and QVT-Relations, we envision
to extend the environment to support other transformation approaches.
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Abstract. Cloud computing platforms are considered a promising ap-
proach for provision of High Performance Computing services. HPC Storm
is an ongoing research project that is proposing a component-oriented
view of HPC resources in a cloud, towards the development and provi-
sion of large-scale parallel computing systems. In this context, a sys-
tem of contracts have been proposed for representing functional and
non-functional properties of components. This paper is interested in eval-
uating the use of the Circus specification language for specifying the func-
tional and behavioral subset of computational component contracts. For
that, a process is proposed for their development and some case studies
with real programs in the HPC domain are used to validate it in practice.

1 Introduction

The provisioning of High Performance Computing (HPC) services under the
cloud computing perspective [2] is an important challenge [21]. We envisage
HPC cloud services as interfaces where large-scale workflows are configured for
orchestrating a set of computationally intensive tasks deployed in high-end paral-
lel computing platforms, aiming at solving challenging problem by using abstrac-
tions of the application domain. Thus, through these services, the computational
resources that will perform the workflows should be transparent to the users. In
other words, the users should not be aware of the physical location and architec-
ture of the parallel computing platforms used for performing the workflow in the
prescribed timeline. However, the current cloud computing initiatives in HPC
are restricted to either IaaS (Infrastructure-as-a-Service), for provisioning of ac-
cess to virtual parallel computing platforms, or SaaS (Software-as-a-Service), for
provisioning of application services in a specific domain of interest.

We are developing HPC Storm, a general-purpose platform for provisioning of
HPC services, where parallel components represent building-block abstractions
for developing, deploying and executing parallel computing systems (hardware
and software). HPC Storm blurs the distinction between the IaaS, SaaS and PaaS
(Platform-as-a-Service) perspectives, according to the kind of user.

In HPC Storm, a workflow is an orchestration of a set of components of dif-
ferent kinds, some of which represent computations that must be deployed in
parallel computing platforms, each one represented by a contract that defines
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the requirements that must be satisfied by a set of compliant components and
the parallel computing platforms to which their performance are tuned.

The goals of this paper are twofold. Firstly, it introduces the use of formal
methods for defining a development process for building components in HPC
Storm, where they may be certified with respect to the computation specified by
their contracts. For that, we use Circus [22], a specification language that has
expressiveness for describing behavioral and computational properties of com-
ponents, as well as providing a refinement calculus for deriving component im-
plementations from contracts. We rely on an extension of Circus for specification
of parallel components developed in a previous work [7]. Secondly, the proposed
process is evaluated regarding the feasibility of refining contracts and translating
them to source code, using kernels of NPB (NAS Parallel Benchmarks) [3]. The
selected kernels have “pencil-and-paper” descriptions, from which we can derive
contracts, and realistic tuned implementations developed by HPC programmers,
which may be used for evaluating the performance of the produced code.

In HPC, the use of formal methods for code generation is poorly dissemi-
nated, despite the high cost of errors in long running programs [10]. The codes
in HPC programs are often hand-tuned for the characteristics of the target ex-
ecution platform. On the contrary, refinement and translation approaches favor
the generation of portable and generic code, using high level abstractions of pro-
gramming languages for simplifying code generation by reducing the semantic
gap. For this reason, one of the main concerns in our research, but not yet ap-
proached in this paper, is developing techniques for deriving high performance
code, which is optimal for running on the target parallel computing platforms.

This paper comprises four more sections. Section 2 overviews HPC Storm.
Section 3 motivates and describes the proposed process of formal derivation of
certified components for the requirements of HPC Storm. Section 4 presents the
case studies for evaluating the feasibility of refining and translating contracts,
written in an extension of Circus, to source code. Finally, Section 5 present our
conclusions about the contributions of this paper and a discussion about the
next steps of our research about certification of components in HPC Storm.

2 HPC Storm: The Cloud of (Parallel) Components

HPC Storm is an on-going project for implementing a cloud computing platform
that serves a collection of components of different kinds to its clients. They
are aimed at representing the hardware and software building blocks of parallel
computing systems, that implement HPC applications.

The abstraction of clouds may provide a transparent view of HPC resources
from the perspective of a set of stakeholders. They are: users, the final clients,
which access applications of the domain of their expertise; providers, which offer
applications to their target users, built from a set of components; developers,
which write optimized components for a class of parallel computing platforms;
and maintainers, which offer a set of virtual parallel computing platforms,
represented by components of kind platform, to the applications.
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HPC Storm has its basis in our previous work on the Hash component model
[5], the Hash Programming Environment (HPE) [8] and the Hash Type System
(HTS), introduced in the next sections with important concepts for understand-
ing the architecture of HPC Storm and the contributions presented in this paper.

2.1 The Hash Component Model, HPE and HTS

The Hash component model [5] brings to CBHPC (Component-Based High Per-
formance Computing) a general abstraction to represent parallel components,
i.e. components that are able to exploit the potential performance of distributed-
memory parallel computing platforms. They are so-called #-components.

A #-component is formed by a set of units, represented by processes running
at distinct processing nodes of a parallel computing platform. Thus, units may
be viewed as distributed agents that cooperate in addressing the concern of the
#-component. For that, a unit of a #-component c is specified by the orchestra-
tion of units from a set of inner components, i. e. #-components from which c
depends to address its own concern. This is so-called overlapping (hierarchical)
composition [6], since it is described by an overlapping function that maps the
units of the inner components of c to the units of c. The slices of a unit u of c are
the units of the inner components of c mapped to u by the overlapping function.
A configuration is a description of the units, inner components and overlapping
function of a #-component, using an architecture description language (ADL).
For that purpose, we have developed HCL (Hash Configuration Language).

Besides units and overlapping composition, a component platform that com-
plies with the Hash component model supports component kinds. Component
kinds group #-components that comply with the same component model, mak-
ing it possible to represent domain-specific building block abstractions.

HPE (Hash Programming Environment) [8] is a general-purpose CBHPC plat-
form that complies with the Hash component model, targeted at cluster comput-
ing platforms. It supports eight component kinds: computations, data structures,
synchronizers, topologies, platforms, environments, applications, and features.
It implements a choreography of services of three types: the Front-End, from
which a programmer build configurations and implementations of #-components
and control their life cycle; the Core, for cataloging #-components in a dis-
tributed library; and theBack-End, for managing a parallel computing platform
where #-components are deployed and executed. The interfaces of the Core and
the Back-End are Web Services. In turn, the Front-End is an Eclipse plugin
that provides a visual editor for building configurations. The Back-End has
been implemented on top of the Mono virtual execution engine [1].

HTS is the type system of HPE for dynamic discovery and binding of #-
components, through a service provided by the Core to the Back-End. An
abstract component represents a set of #-components that address the same
concern for different assumptions about the application and the target parallel
computing platforms. Such assumptions are described through context parame-
ters, each one associated to a bound subtype restriction, defined by an instantia-
tion type. In turn, an instantiation type is recursively defined by the application
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of instantiation types as arguments to each context parameter of an abstract
component by respecting its bound restrictions. In HPE, the inner components
of a #-component and #-components itself are typed by instantiation types. In
execution, a resolution procedure will traverse the subtypes of the instantiation
type of an inner component in a certain order, trying to find a #-component
whose instantiation type matches it, which will supply the inner component.

Maintainer
Front−End

User
Front−End

Provider
Front−End

Front−End
Developer

instantiationresolution

execution

deploy component

query catalogdeploy application
query catalog

component orchestration

manage platforms

HPC Storm

Back−EndCore Platform

Fig. 1. HPC Storm Architecture

2.2 The Architecture of HPC Storm

The Figure 1 depicts the main architectural elements of HPC Storm, clearly
inspired by HPE. The infrastructure is represented by the Core and the Back-
End. The Core provides the main abstraction layer, providing access and man-
agement for the catalog of contracts provided by HPC Storm.

Contracts is a key abstraction of HPC Storm, generalizing abstract compo-
nents of HPE by including number valued context parameters and the functional
specification of its set of compliant components. They make it possible the se-
lection of the most tuned components of contextual contracts that specifies the
components of an application, according to their sets of context arguments.

From the User Front-End, a user may configure an application to be per-
formed in HPC Storm, by using the domain-specific language supported by the
application. A computation of the application is mapped to a workflow specifi-
cation, described using the underlying workflow language of HPC Storm, which
specifies the orchestration of a set of components represented by contextual con-
tracts. Some of these components represent concrete computations that will be
deployed to a parallel computing platform. By submitting the workflow to the
Core, the application receives a set of candidates for each component, sorted
according to a classification strategy supported by HPC Storm, generalizing the
resolution algorithm of HTS. Then, the application selects a candidate and in-
stantiate it through the Core, which communicates with the maintainer that
provides the component through its Back-End service. A platform is instan-
tiated by the Back-End in some parallel computing platform offered by the
maintainer, where the component is instantiated. Finally, a reference to the
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component is returned to the application, which may use it to communicate
directly with the component in the workflow execution.

From the Provider Front-End, providers develop applications using the
application framework. In turn, developers write components and contracts from
the Developer Front-End. They ask the Core for querying the catalog for
finding and registering contracts, as well as deploying new components.

3 A System of Formal Contracts for Parallel Components

The users of HPC Storm may demand for guarantees from providers of pre-
vention against unexpected errors and performance bottlenecks in long-running
workflow executions. In turn, providers may demand for similar guarantees from
developers, regarding the behavior and performance of the available components
from which their applications are built.

In this context, it is relevant to provide means for helping providers and devel-
opers in certifying the applications and components they provide in HPC Storm.
For that, we propose a development process that aims at offering guarantees
that components implement the computation specified in their contracts. Using
this process, providers and developers may check whether components satisfy
properties they consider relevant.

Component’s
Source Code

Contract
(Abstract Specification) Concrete Specification

Refinement Translation

Verification

Fig. 2. Component Certification by Derivation and Verification Steps

3.1 Overview of the Formal Derivation Process

The certification process of components in HPC Storm, depicted in Figure 2,
comprises two main activities: derivation and verification. Derivation consists
in producing a component implementation tuned for a given context from a
contract, i. e. a specification that formally describes the computation performed
by the component. For that, derivation is divided in two steps: the refinement of
the contract towards a so-called concrete specification and its translation onto
the source code of the component. In turn, the verification consists in checking
whether the concrete specification of an arbitrary component in the HPC Storm
complies with a given contract, even if it has been not derived from it.

The contract abstraction introduced in this paper generalizes abstract com-
ponents of HTS, by including a way of specifying the computations that must be
performed by components. Thus, contracts also support contexts, representing
the assumptions about the architecture and requirements of the target parallel
computing platforms and applications, respectively, that will guide the deriva-
tion process towards production of tuned component implementations.
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The refinement step takes the contract and successively applies a set of re-
finement laws that turn the source specification onto a more concrete target
specification that preserves the properties of the source one. After that, the re-
sulting concrete specification may be translated to a programming language. The
case study carried out in this paper uses C� and MPI.NET, but different sets of
translation rules may exist for distinct programming languages.

With contract contexts, the translation process may take into account the
architecture of the target parallel computing platform and application require-
ments, besides the target programming language, for promoting a better use of
the available computational resources and improving the performance of individ-
ual components. For instance, one should deal with specific HPC requirements,
such as the pervasive use of multidimensional arrays, the support to complex
and floating point numbers, the ordering of loops for improving locality when
accessing memory hierarchies, and so on. However, requirements that depend
on the architecture of the target parallel computing platform are not usually
supported by formal specification languages that support refinement.

The certification process involves providers and developers of HPC Storm. In
turn, the HPC Storm infrastructure is responsible in verifying whether compo-
nents of applications comply with their contracts, giving preference to compo-
nents that assure that they respect the contract from which they were derived.
In simple terms, certified components are that ones developed using the pro-
posed process. For that, in the environment of components, it is necessary to
bundle the component and the concrete specification from which it has been
derived, in such way that this bundle is unforgeable and HPC Storm may verify
whether or not a component complies with a contract. We are planning to apply
proof-carrying code techniques [14] for accomplishing this.

3.2 The Chosen Specification Language: Circus

The formal specification language suitable for the proposed process must be able
to specify both functional and behavioral aspects of parallel components. Fur-
thermore, it must support a validated refinement calculus by means of practical
experiences on code generation from specifications [15,16,4].

Circus is a formal specification language designed around a refinement calculus
for concurrent programs. It combines the Z specification language, widely used
in academia and industry, with the CSP (Communicating Sequential Processes)
process algebra, which has been designed around the notion of refinement. Circus
also incorporates the guarded command language of Dijsktra [9]. A specification
in Circus is basically a combination of Z paragraphs [20,12], guarded commands
of Dijkstra [9] and CSP combinators [11]. Indeed, it is possible to write specifi-
cations, designs and even programs using Circus.

The Z specification language and the guarded command language may be used
to specify the computations that must be performed by a component, while CSP
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is able to describe its behavioral aspects. Also, the refinement and code gener-
ation support of Circus have been validated by other works [19,15,17,4]. These
are the reasons for choosing Circus for the specification of certifiable components
in HPC Storm, fitting the requirements of the proposed process.

3.3 Circus/HCL

Circus/HCL will be adopted for the specification of component contracts in HPC
Storm. It is an extension of Circus for specifying components in HPE [7]. HCL
stands for Hash Configuration Language, an architecture description language
(ADL) for describing configurations of components in HPE. Furthermore, ad-
ditional syntactic sugar and abstractions have been introduced to Circus/HCL,
aiming at fitting the HPC requirements of highly tuned code generation. HCL
is used by Circus/HCL as a glue for plugging together Circus specifications of
#-components. A Circus/HCL specification may be directly translated to Circus.
Indeed, all refinement rules that are valid for Circus are valid for Circus/HCL.

A grammar for Circus/HCL, and its translation to Circus, is presented in [7].

computation VecVecProduct 〈N 〉 (u, v , i)
[accelerator type = A : AcceleratorType,

number of cores = M : Integer] where

inner data u: Vector〈N 〉 [accelerator type = A,number of cores = M ]

inner data v: Vector〈N 〉 [accelerator type = A,number of cores = M ]

inner computation sum: Reduce〈N 〉 [accelerator type = A,number of cores = M ,

reduce operator = Sum]

inner data i: RealScalar〈N 〉

unit dot product =̂ ||| i : {0..N − 1} •
begin

slice u.vector [i ], v .vector [i ], sum.reduce[i ], i .value[i ]

state State =̂ [u::∗, v::∗, sum::∗, i::∗ |u::dim = v::dim]

computeLocal =̂ [ΔState | sum::k ′ =
∑v::dim−1

j=0 v::v [j ]× u::v [j ]]

updValue =̂ [ΔState | i::k ′ = sum::k ]

action perform =̂ computeLocal ; do sum; updValue

• perform

end

Fig. 3. Contract VecVecProduct for a Vector-Vector Product i = u × v

The Figure 3 shows the contract VecVecProduct, in Circus/HCL, formed
by a parallel unit identified by dot product , representing processes that perform
a dot product between vectors u and v whose result is stored in scalar i .

In a Circus/HCL component specification, the units are denoted by a set of
Circus processes. Besides a set of slices, which are described as in HCL, a unit
may declare a state, a set of actions, a set of conditions, and a protocol. The
protocol is defined by the main action of the specification.
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The unit state may inherit the state of the unit slices, by means of 〈slice〉 ::∗,
where 〈slice〉 is the name of a slice. Also, using 〈slice〉 :: 〈item〉, it may refer to a
variable (〈item〉) of the slice’s state.

Actions and conditions may be public or private and may be referred in other
actions and in the protocol. However, only public actions and conditions may be
referred in the actions and in the protocol of the enclosing unit where the unit
is a slice. Therefore, actions are defined by the combination of its own actions
and public actions from its slices, using CSP action combinators. The use of slice
actions must satisfy the restriction imposed by the protocol of their respective
slices. For instance, if an action of a unit slice is not referred in its protocol, then
this action can be used freely in the actions and in the protocol of the unit.

Units, in Circus/HCL, communicate through channels, defined as primitive
components of kind communicator that encapsulate message passing primitives.
For that, such components contain a unit called receive, for receiving messages,
and a unit called send, for sending messages.

The abstraction of parallel units is represented as processes replicated by the
interleaving CSP operator (|||), since units run independently of each other.

VecVecProduct declares four inner components, which define the slices of
dot product : u, v , sum and i . Also, there is a public action, identified by perform,
and two private actions, identified by updValue and computeLocal , referred in
perform. There is no channel, since the units do not need to communicate for
performing a parallel dot product. The protocol is simply defined by the perform
action. The vectors u and v are updated in the computeLocal action. The local
values are added by the protocol of the unit reduce of the inner component sum,
and stored in its variable k . Finally, the action updValue store this value in the
variable k in the state of the unit value of inner component i .

The reader may have noticed the context parameters accelerator type and
number of cores in VecVecProduct. They state that components that
may be derived from it may be optimized according to the kind of accelerator
coupled to the processing units (e.g. GPU, FPGA or MIC), if one exists, and
the number of cores per processor in a processing unit.

In the derivation process, implementations of components will be produced
from Circus/HCL contracts through the application of refinement steps followed
by translation to the target programming language.

3.4 Overview of Refinement Laws and Translation Rules

Circus offers a large set of proven refinement laws [19,16]. For the sake of simplic-
ity, since it is not possible to present a comprehensive resume of all these laws
in this section, we only refer to the set of six refinement laws that have been
applied in the case studies of Section 4, which are:

– Basic Conversion, which transforms a schema in the Z notation into an
instruction in the guarded command language;

– Sequential composition, which divides a complex specification instruction in
two, more simple, specification instructions;
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– Assignment Introduction, which transforms a specification instruction into
an assignment;

– Alternative/Guard - Exchange, which transforms a guard in CSP into a guard
in the guarded command language and vice-versa;

– Alternative Introduction, which transforms a specification instruction into
an alternative structure;

– Strengthen Postcondition, which transforms a specification instruction into
another specification instruction with a more strong postcondition.

Using these laws, one may build concrete specifications from contracts, tar-
geting component implementations free of loops, function calls, and recursion,
approaching the usual programming practices of HPC programming.

The translation rules from concrete specifications to C#/MPI.NET pro-
grams do not yet take contexts into consideration for applying different trans-
lation rules according to assumptions about the architecture of the target
parallel computing platforms and the requirements of the application. The
translation involves data structures, expressions and HCL declarations, which
come from the guarded command language and CSP. So, they may be trans-
lated into programming language constructions by using appropriate tech-
niques for circumventing the existing semantic gaps. One may consult [13],
at http://www.lia.ufc.br/~heron/storm/certification, for the set trans-
lation rules used in Section 4.

3.5 Automating Tools for the Certification Process

In HPC Storm, realistic component contracts written in Circus/HCLmay be quite
large and complex, making it difficult and error-prone the task of specifying, re-
fining and translating them to high performance code, even for expert developers.
Thus, automating tools are necessary to help programmers in these tasks, imple-
menting existing techniques for dealing with their complexity, such as refinement
tactics [18]. They must guide developers in choosing the appropriate translation
rules, being aware about the relevant characteristics of both the architecture of
the target parallel computing platform and the target programming language.

Before approaching the problem of designing appropriate tools for the needs
of HPC Storm, we decided to define an initial fixed set of refinement laws and
translation rules for generating typical HPC code, aiming at evaluating the pro-
posed process. For that, it is essential to work with practical HPC code whose
granularity makes them natural candidates to be encapsulated in a component
of HPC Storm. The existence of some specification of the code, formal or infor-
mal, written before implementation, would be also important, making it possible
to derive the Circus/HCL specification from them, to apply refinement laws and
translation rules for producing the code, and, finally, to compare the perfor-
mance of the generate code with the original code. In the next section, we will
present a case study that takes these premises into consideration.

http://www.lia.ufc.br/~heron/storm/certification
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4 Case Studies and Discussion

For the purpose of evaluating the feasibility of the proposed process, we have
selected two kernels from the NAS Parallel Benchmarks (NPB) [3].

The NPB is a benchmarking package developed by the NASA Advanced Su-
percomputing division (NAS) for the performance evaluation of parallel com-
puters1. It has been implemented in various programming languages such as C,
Java and Fortran, using both the message-passing model, through MPI, and the
shared memory model, through OpenMP and Java Threads.

NPB is now in version 3.3, consisting of 12 programs, among kernels and sim-
ulated applications, and five standard workload levels for each program. The two
benchmarks selected for this paper are: IS (Integer Sort), for parallel sorting of
a set of integers using the bucketsort algorithm; and CG (Conjugate Gradient),
which uses the inverse power iteration method to find the lowest eigenvalue of a
sparse positive-definite symmetric matrix.

NPB has been adopted because it provides typical hand-tuned codes from
scientific computing applications, developed by experts in the field. IS and CG
were chosen due to their simplicity and availability of official “pencil-and-paper”
specifications. Furthermore, they have the typical granularity of components in
the HPC Storm. Thus, we can derive specifications and code from the same official
specification from which the optimized codes of IS and CG were derived, making
it possible to compare the resulting code, regarding readability and performance.

The methodology of this case study starts from the “pencil-and-paper” spec-
ifications of IS and CG, used for obtaining concrete implementations of compo-
nents encapsulating them using the derivation process outlined in Section 3.1.
For that, three stages will be applied: (1) specification of the computationally
significant components of the two applications using Circus/HCL, building con-
tracts that preserve the original properties of the applications; (2) refinement of
the contracts towards concrete specifications of components; (3) translation of
concrete specifications onto components, written in C�.

Unfortunately, it is not possible to describe all the details about the appli-
cation of the derivation process to IS and CG in this paper. For details, we
recommend the Marcilon’s Master Dissertation [13] and the web
page at http://www.lia.ufc.br/~heron/storm/certification, where all the
contracts, refined specifications and derived source codes may be consulted. The
case studies results are outlined in the following sections, with our conclusions
about them.

4.1 Integer Sort

The IS kernel consists of sorting integer keys in parallel, using the bucketsort
algorithm. The key values do not exceed a predetermined value Bmax . The
value of Bmax depends on the workload level. In practice, it is widely used in
HPC applications, since it is a fundamental operation.

1 http://www.nas.nasa.gov/publications/npb.html

http://www.lia.ufc.br/~heron/storm/certification
http://www.nas.nasa.gov/publications/npb.html
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For IS, we have developed a contract named IntegerSort, written in Cir-
cus/HCL. It specifies a parallel version of the bucketsort algorithm, where each
process represents a “bucket” where the keys in a given interval will be put. It
has a parallel unit named sorter, whose state includes the following variables:

– ord, keeping the number of elements in the i-th bucket;
– rank, keeping the rank of the first key in the i-th bucket, if ord [i ] is nonzero;
– b0 and b1, storing the value of the first and last values whose ranks are to

be computed by the bucket.

The paragraph rank of unit sorter specifies the procedure for ranking the keys.
First, each unit redistributes the keys outside the [b0, b1] interval and receives
keys of this interval from other units. In the meantime, they compute the vector
ord . After this step, all units have your keys. Then, the rank of each key is
computed based on ord . The communication are performed trough the channel
c. It does not need to be connected to the component environment, since it serves
for communication between the units, being encapsulated into the component.

In what follows, for illustrating the derivation process, we present a fragment
of rank where the array rank is computed:

.

.

.

if i = 0 →rank : [∀ j : b0..b1 • rank [j ] = (
∑j−1

l=b0
ord[l]) + 1];

c.i.(i + 1)!(rank [b1] + ord[b1]) → SKIP
�(i > 0) ∧ (i < N − 1) →c.(i − 1).i?aux →

rank : [∀ j : b0..b1 • rank [j ] = (
∑j−1

l=b0
ord[l]) + aux ];

c.i.(i + 1)!(rank [b1] + ord[b1]) → SKIP

�i = N − 1 → c.(i − 1).i?aux → rank : [∀ j : b0..b1 • rank [j ] = (
∑j−1

l=b0
ord[l]) + aux ]

fi

.

.

.

For refining IntegerSort, it is necessary to refine all the specification in-
structions and Z schemas of the unit sorter. In the above fragment of rank , we
have the following specification instructions to be refined:

– rank : [∀ j : b0..b1 • rank [j ]′ =
(∑j−1

l=b0
ord [l ]

)
+ aux ]

– rank : [∀ j : b0..b1 • rank [j ]′ =
(∑j−1

l=b0
ord [l ]

)
+ 1]

In order to refine the above specification instructions, we apply the Sequential
composition and Assignment Introduction laws twice. The resulting concrete
specification of the above contract fragment is presented below:

.

.

.
if i = 0 →rank [b0] := 1; o

9 m : b0 + 1..b1 • rank [m] := rank [m − 1] + ord[m − 1];
c.i.(i + 1)!(rank [b1] + ord[b1]) → SKIP

�(i > 0) ∧ (i < N − 1) →c.(i − 1).i?aux → rank [b0] := aux ;
o
9 m : b0 + 1..b1 • rank [m] := rank [m − 1] + ord[m − 1];
c.i.(i + 1)!(rank [b1] + ord[b1]) → SKIP

�i = N − 1 →c.(i − 1).i?aux → rank [b0] := aux ;
o
9 m : b0 + 1..b1 • rank [m] := rank [m − 1] + ord[m − 1]

.

.

.
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Finally, the translation of concrete specification to source code, using the
translation rules specified in [13], is presented below:

.

.

.

i f ( getRank()==0) {
rank [ b 0 ] = 1 ;
for (m=b 0+1; m<=b 1 ; m++)

rank [m] = rank [m−1] + ord [m−1] ;
c . Send ( rank [ b 1 ]+ord [ b 1 ] , getRank()+1 , 0 ) ;

}
else i f ( ( getRank ( ) > 0) && ( getRank ( ) < ge tS i z e ( ) −1)) {

aux = c . Receive<ulong>(getRank() −1 ,0) ;
rank [ b 0 ] = aux ;
for (m=b 0+1; m<=b 1 ; m++)

rank [m] = rank [m−1] + ord [m−1] ;
c . Send ( rank [ b 1 ]+ord [ b 1 ] , getRank()+1 , 0 ) ;

}
else i f ( getRank ( ) == ge tS i z e ()−1) {

aux = c . Receive<ulong>(getRank() −1 ,0) ;
rank [ b 0 ] = aux ;
for (m=b 0+1; m<=b 1 ; m++)

rank [m] = rank [m−1] + ord [m−1] ;
}
else {

Environment . Exit ( 1 ) ;
}

.

.

.

The verification may be applied by the dynamic resolution algorithm for check-
ing whether a given component satisfies a given contract, i. e. if it is a valid
implementation of the contract, even if it was not derived from the contract. It
starts by transforming the Circus/HCL concrete specifications and the contracts
in pure Circus specification. Then, the formula [∃C .State; C .State ′ • C .Act ] ⇒
[∃A.State; A.State ′ • A.Act ] is checked, where C .Act and A.Act are the trans-
lated concrete specification and the contract, repectively.

4.2 Conjugate Gradient

The CG kernel estimates the lowest eigenvalue of a sparse, symmetric and
positive-definite matrix using the inverse power iteration method. It uses the
method of conjugate gradient to solve the system of linear equations needed to
find the smallest eigenvalue of a given matrix. The size of the array, the number
of iterations and other constants are defined according to the workload level.

The method of conjugate gradient is an iterative numeric method used to solve
systems of linear equations where the matrix that represents them are sparse,
symmetric and positive-definite.

The contract ConjugateGradient specifies the CG kernel, depending on
other contracts. They are: AllGather, MatVecProduct and Reduce. All-

Gather and Reduce specify well known collective communication operations,
whereas MatVecProduct specifies the product between a matrix and a vec-
tor. In addition to the variables inherited from the states of AllGather,
MatVecProduct and Reduce, it includes the following variables:
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– A, z and x , the operands of the system of equations A×z = x , to be solved,
which are assumed to be initialized outside the component;

– dim , the dimension of the matrix A, also assumed to be initialized before
the execution of the component;

– lines, the number of lines of matrix A and vectors x e z , in each unit;
– array r , whose i-th element is the residue (r = x −A× z ) in iteration i ;

The contractConjugateGradient describes the conjugate gradient method
where each unit contains a number of rows, represented by the value lines , of
the matrix A and vector x . The paragraph init is responsible for describing the
initialization of the component state. Its specification code is shown below for
illustrating the derivation process:

.

.

.
init =̂lines :

[
(i = N − 1 ∧ lines′ = dim − (N − 1) × � dim

N
�) ∨ (i �= N − 1 ∧ lines′ = � dim

N
�)

]
;

z : [∀ j : 0..lines − 1 • z [j ]′ = 0]; r : [∀ j : 0..lines − 1 • r [j ]′ = x [j ]];
mv::A : [∀ j : 0..lines − 1 • ∀ k : 0..dim − 1 • mv::A[j , k ]′ = A[j , k ]];
mv::dim : [mv::dim ′ = dim];
a::dim : [a::dim ′ = dim]

.

.

.

In order to refine the contracts AllGather, MatVecProduct, Reduce

and ConjugateGradient, the six laws described in Section 3.4 are enough.
The concrete specification of the init paragraph is presented below:

.

.

.
init =̂if i = N−1 → lines := dim − (N−1) × �dim/N�

�i �= N−1 → lines := �dim/N�
fi;
o
9 m : 0..lines−1 • z [m] := 0; o

9 m : 0..lines−1 • r [m] := x [m];
o
9 m : 0..lines−1 •o

9 l : 0..dim − 1 • mv::A[m, l] := A[m, l];
mv::dim := dim; a::dim := dim

.

.

.

After application of the translation rules, the above concrete specification
results in the following code:

.

.

.

void i n i t ( )
{

i f ( getRank ( ) == ge tS i z e ()−1) {
l i n e s = dim − ( g e tS i z e ()−1) ∗ System .Math . Floor ( ( ( double )dim)/ g e tS i z e ( ) ) ;

}
else i f ( getRank ( ) != ge tS i z e ()−1) {

l i n e s = Math . f l o o r ( ( ( double )dim)/ g e tS i z e ( ) ) ;
}
else { Environment . Exit ( 1 ) ; }
for ( int m = 0; m <= l i n e s −1; m++) z [m] = 0 ;
for ( int m = 0; m <= l i n e s −1; m++) r [m] = x [m] ;
for ( int m = 0; m <= l i n e s −1; m++)

for ( int l = 0 ; m <= dim−1; m++) mv.A[m, l ] = A[m, l ] ;
mv.Dim = dim ;
a .Dim = dim ;

}

.

.

.



64 T.B. Marcilon and F.H. de Carvalho Junior

The verification occurs in the same way as in the contract IntegerSort.
However, the verification process must be applied recursively for each one of its
constituent contracts (AllGather, MatVecProduct and Reduce).

4.3 Discussion

As expected, both the specification of contracts of IS and CG and manual deriva-
tion of their C� source codes from the contracts have been shown to be time
consuming and error prone tasks, requiring high mathematical skills from the
developer, as well as familiarity with proof techniques. Thus, the case study
highly enforces the need of designing and implementing appropriate tools for
guiding the derivation process towards component certification in HPC Storm.

The case study has also shown that it is possible to guide the derivation pro-
cess towards tuned code according the characteristics of the target execution
platform by choosing the appropriate sequence of refinement laws and transla-
tion rules. Indeed, we have defined translation rules according to our knowledge
about generation of scientific efficient code in C�, making use of rectangular mul-
tidimensional arrays and ordering loops for improving cache performance. For
that, the existing codes of IS and CG, in C and Fortran, respectively, were useful
as a baseline to guide definition and application of translation rules.

Also, we have confirmed that it is useful, and often necessary, to augment the
underlying specification language, i. e. Circus, with some abstractions, such as
multidimensional arrays. For the needs of the case study, the type Arrayk (T ) was
introduced to Circus/HCL, where T represents a Z primitive type, as a syntactic
sugar for functions over naturals: Arrayk (T ) == Nk � �→ T . Also, the indexing
operator is defined as: [ , , . . . , ] == Array(T ) × Nk → T . This syntactic
sugar may also be used for array update.

5 Conclusions and Lines for Further Works

The use of formal methods for derivation and verification of software parts in
HPC applications that make use of parallel computing platforms is still incipient.
This is mainly due to the tight coupling between the usual HPC programming
techniques and the hardware characteristics, for tuning software performance,
as well as the use of portable scientific computing libraries whose reliability
comes from their reputation obtained from many years of successful use. How-
ever, HPC Storm has shown to us that formal methods may be very useful for the
requirement of component certification in component-oriented parallel comput-
ing systems, in the context of general-purpose cloud computing platforms aimed
at provisioning high-level HPC services.

The contributions of this paper were twofold. First, it introduced a certifi-
cation process for ensuring that components in HPC Storm performs the com-
putations specified in their contracts, based on well-known software derivation
and verification techniques. Secondly, it presented case studies for evaluating
the use of this process for derivation and verification of typical code of HPC
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programs, aiming at collecting evidences about our main research hypotheses
and analysing the appropriateness of existing formal derivation and verification
techniques for the requirements of HPC Storm. The contracts, concrete specifi-
cations and sources codes of IS and CG, outlined in Section 4, may be consulted
at http://www.lia.ufc.br/~heron/storm/certification.

Our study has enforced the need for designing and implementing tools for
guiding the process of component certification for applying the process proposed
in this paper, provisioned as a subset of the HPC Storm’s cloud services, target-
ing developers and providers. This conclusion may appear rather obvious, but
HPC Storm introduces additional complexity in the problem. For instance, it
introduces the requirement to derive tuned component implementations, taking
into consideration assumptions about both the requirements of the enclosing
application and the architecture of the target parallel computing platform.

For addressing this problem, we plan to study how to take contexts, a con-
cept of the contract system of HPC Storm, into consideration in the derivation
process, for systematically guiding the choice of refinement laws and translation
rules. In practice, this may be viewed as the systematization of the use of con-
texts for deriving tuned component implementations, which is now performed
informally by the component developer, which codes a #-component by knowing
the context assumptions that are specified in context arguments applied to the
context parameters of the contract. As far as we know, this is an innovative part
of our research with component certification.

As pointed ou in the end of Section 3.1, we are also interested in studying
proof-carrying code techniques for component certification.

Finally, our experience with the case studies has also shown that it may be
necessary to extend the underlying specification language (Circus) with new ab-
stractions, aimed at derivation of typical HPC programming constructs. Identi-
fying them is a complex part of our further works, since it is necessary a wide
knowledge about HPC programming uses cases and techniques.
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Abstract. The Nested Context Language is a multimedia authoring language
which is part of the standard for digital television in Brazil and in Latin America
and the ITU standard for IPTV services. The need for proper support for the de-
velopment of NCL applications is growing with the increasing demand for digital
TV applications. Rigorous means to assure that multimedia presentations in NCL
will behave as expected is an example. Since NCL applications may be under-
stood as finite transition systems, standard model-based verification techniques
directly apply. This paper discusses a formalization of NCL semantics and its
realization in a verification tool.

1 Introduction

Nested Context Language (NCL) [1] is a declarative multimedia document authoring
language, that is, it allows for the specification of user interaction with multimedia
content and a temporal order for their presentation. NCL is part of the standard for
digital television in Brazil and in Latin America. It is also part of the ITU standard
for IPTV services [16]. As the use of NCL for the authoring of multimedia interac-
tive applications grows, it is also expected a growth in interest for authoring tools to
help NCL developers to create interactive applications. An NCL document with many
components, and possibly organized within a complex structure, may present specifica-
tion problems and/or fall victim of potentially undesired behaviors in its presentation.
Syntactical problems arise when the document does not follow the authoring language
grammar and multimedia players may not even be able to open a given document. Un-
desired behaviors during the presentation of a document arise when the computation
induced by the document declaration produces an unexpected presentation.

In [9] we have identified a set of desirable properties for NCL documents that appear
to be desirable by the multimedia document authoring community (e.g. [8, 18, 19]).
They are classified as structural and behavioral properties. Structural properties, part of
NCL’s static semantics, rule the authoring language syntax rules by means of invariants.
Behavioral properties, part of NCL’s dynamic semantics, are those used for representing
desired behaviors in a document’s presentation.

As part of our project [10] that aims at developing formal support for NCL docu-
ment reasoning using model-driven development techniques, we define a rewriting logic

J. Iyoda and L. de Moura (Eds.): SBMF 2013, LNCS 8195, pp. 67–82, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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theory for the specification of NCL’s semantics. Invariants representing the structural
properties and temporal logic formulas representing the behavioral properties are veri-
fied in the Maude system [7] by equational reduction and model checking, respectively,
thus guaranteeing that a given NCL document has the desired properties.

The remainder of this paper is structured as follows. Section 2 presents related work
considering the verification of multimedia documents. Section 3 discusses the proper-
ties that are currently supported by our approach. Section 4 describes the rewriting logic
semantics of NCL. Section 5 discusses the implementation of the verification of NCL
documents. Section 6 concludes this paper highlighting its contributions and pointing
to future work.

2 Related Work

The literature is rich on the discussion about the verification of multimedia documents.
In general, it describes either the behavioral or structural verification. Therefore, this
section presents related work separating contributions on the structural verification from
those focusing on the behavioral verification.

2.1 Structural Verification

Honorato and Barbosa in [13] present the NCL-Inspector tool. This tool, based on other
tools for code quality critique, supports the author in terms of code quality. With this
tool, besides the possibility of verifying the NCL code searching for coding problems,
it is possible to suggest modifications regarding best programming practices. The code
verification, or inspection, is done following a set of rules, forming a rule repository.
Each rule presents an NCL code pattern and an action realized when that pattern is
found. For the inspection of an NCL document, NCL-Inspector parses the document.
After that step, the tool creates an abstract syntax tree that represents the NCL document
being inspected. Then it walks through the tree searching for violations of the existent
rules. The violations found are presented to the user so he can correct the application
code.

Neto et al. in [18] discuss an approach for the incremental structural verification of
NCL documents. It defines a metalanguage for representing NCL elements with a set of
primitives. The primitives define rules that must be satisfied by language elements. The
structural verification is done by verifying if each element satisfies the rules defined
in its related primitives. For the incremental verification, only the elements recently
modified and the ones related to them are verified. An additional structure is used for
identifying the elements that have to be verified.

Troncy et al. in [21] present VAMP, an approach to structurally verify MPEG-7 de-
scriptions [14], created with different annotation tools. VAMP intends to allow the in-
teroperability of annotation tools by reducing the variability in the use of MPEG-7
descriptions. Besides, it is also used for verifying descriptions according to constrains
defined by the standard and the MPEG-7 profile [15] used. Although both MPEG-7
and MPEG-7 profiles define an XML Schema, it is not sufficient for the consistency
checking of MPEG-7 descriptions. In [21] authors present a set of so called violations
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in descriptions that yield perfectly valid documents with respect to the MPEG-7 XML
Schema. Therefore, to verify those descriptions structurally, VAMP uses an ontology
(OWL-DL [22]) for representing the concepts described in the profile and logical rules
(Horn clauses [2]) to represent the constrains in the use of description elements.

A common approach for the structural verification of XML documents (common
representation for multimedia documents) is using XML Schema [23] based validators.
Such approach verifies if Schema restrictions are satisfied by the XML-based language.
Restrictions are defined over element types and not over element instances. Therefore,
it can not be used, for example, to verify if two distinct element instances refer to
a common element instance. This kind of verification is important for our work and
others like [18].

2.2 Behavioral Verification

Santos et al. in [19] discuss an approach for the behavior verification of the presentation
of multimedia documents by translating them into RT-LOTOS, a real-time process al-
gebra framework. The modularity and hierarchy of RT-LOTOS allow the combination
of processes specifying the document presentation with other processes modeling the
available platform. The verification itself consists on the interpretation of the minimum
reachability graph built from the formal specification to prove if the event correspond-
ing to the document presentation end can be reached from the document’s initial state.
Each node in the graph represents a reachable state and each edge, the occurrence of
an event or temporal progression. The tool presented in [19] can verify NCM (Nested
Context Model) [20] and SMIL (Synchronized Multimedia Integration Language) [25]
documents.

Oliveira et al. in [8] introduce the Hypermedia Model Based on Statecharts (HMBS).
An HMBS multimedia application is described by a statechart that represents its struc-
tural hierarchy, regarding nodes and links, and its human-consumable components.
Those components are expressed as information units, called pages and anchors. A stat-
echart state is mapped into pages and transactions and events represent a set of possible
link activations. For the presentation behavior verification, the statechart reachability
tree for a specific configuration is used for verifying if some page is unreachable. In
a similar manner, it is possible to determine if a certain group of pages is presented
simultaneously searching state configurations containing the states associated to those
pages. The reachability graph also allows the detection of configurations from which
no other page may be reached or that present cyclical paths.

Felix in [12] presents an approach for the verification of temporal properties of mul-
timedia documents through the application of model checking techniques. The work
presents a notation used for the description of NCL relevant characteristics, as its tem-
poral characteristics. Such a description is transformed into a timed automata net that
indicates the document temporal behavior. The transformation creates a state machine
for each document media and a synchronizer machine for each document link. A syn-
chronizer machine is used for tying together the occurrence of events in the media node
state machines. The work also presents a tool where the author can define temporal-
logic formulas for verification of temporal properties. The temporal verification is done
with a model-checker.
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Bertino et al. in [3] propose an authoring model based on constraints. A multimedia
application in that model consists of several sub-presentations, each one representing a
topic composed of multimedia objects semantically related. All relations, temporal, lay-
out and structural, are specified in a single step. So, the author defines a set of high-level
constraints that will be used by the system to automatically group the objects into top-
ics. The application generation process is responsible for three main tasks: consistency
checking, presentation structure generation and topics generation.

The presentation consistency is checked by applying compatibility rules to each pair
of constraints, detecting inconsistencies. Before checking, several inference rules are
applied to the initial declaration to determine constraints that, even not defined explic-
itly, are consequences of the constraints defined. If an inconsistency arises, the system
applies relaxation techniques, reducing the constraint set until the presentation becomes
consistent or, when it is not possible, the author must review the declaration. The pre-
sentation structure generation process creates a structure that reflects the given appli-
cation declaration. The structure is represented by a direct graph where each vertex
represents a topic and the edges, connections among them. This process always returns
a consistent graph, otherwise, the author should review the declaration. After this step,
the system relates media objects to topics. According to the constraints, it creates con-
nections among topics and checks the consistency before returning the final generated
graph. If any failure occurs, the author is warned about the inconsistencies found.

Elias et al. in [11] present an algorithm for dynamic checking spatio-temporal rela-
tions. In the paper, dynamic means that the checking is done during presentation decla-
ration. Temporal inconsistencies occur when a set of constrains can not be satisfied at
the same time. Incompleteness of a constraint set occurs when there is a discontinuity
in the presentation, that is, there is a media object set that is not reached during presen-
tation. In case an inconsistency occurs in a constraint set, one of the constraints must be
removed in order to obtain a consistent set. That removal is done by relating a priority
value to each constraint. In case two inconsistent constraints present the same priority,
relaxation techniques are applied to determine the constraint to be removed.

The paper presents two operators TEMPORAL and SPATIAL, to model temporal and
spatial relations, respectively. The consistency checking is done by finding the mini-
mum spanning tree T for the graph defined by media objects (vertices) and relationships
among them (edges). In order to maintain the presentation consistency and the acyclic
nature of T, a relationship that creates cycles must be removed. The choice is done by
taking into account the priority of each relationship. For the completeness checking,
all vertices must be found in the set that contains the first media object. If this search
returns the vertex set of T, then all presentation media objects are reached directly or
indirectly from the initial object. Otherwise, the algorithm presents an error message so
the author can define restrictions that make the constraint set complete. With the use of
the SPATIAL operator, it is possible to determine if A overlaps B and vice versa. The
spatial consistency is checked the same way as the temporal one.

Bossi and Gaggi in [4,5] propose an authoring system that includes a semantic vefiri-
cation module for multimedia document temporal behavior evaluation. This is obtained
by defining a formal semantics for the SMIL language [25]. The proposed semantics is
defined through a set of inference rules inspired by Hoare logic. The main characteristic



An Executable Semantics for a Multimedia Authoring Language 71

of Hoare logic is that it describes how a command, or code part, changes the computa-
tion state. So, the SMIL structure may be enriched with assertions expressing temporal
properties that may be used during the authoring phase. Another application resulting
from the defined formal semantics is the concept of equivalence, which guarantees that
two sets of SMIL tags may be replaced, without changing the application behavior. The
verification is done during the authoring phase, whenever the author wants or when he
saves the application. This is done to diminish the occurrence of error messages during
the application creation. The assertions defined by the semantics proposed in the paper
specify the system temporal state before and after the execution of a SMIL tag or set
of tags. For the system correctness verification, the tool applies axioms, also defined by
the proposed semantics, in order to verify if a tag, or set of tags, correctly changes the
system temporal state. Otherwise, it presents to the author the problem found so it can
be corrected.

Júnior et al. in [17] use a model-driven approach for the presentation behavior veri-
fication of NCL documents. The verification is achieved by transforming an NCL doc-
ument into a Petri Net. This transformation is done in two steps. In the first step, the
document is represented in a language called FIACRE as a set of components (rep-
resenting nodes) and processes (representing the behavior of a component). The sec-
ond step transforms the FIACRE representation into a Petri Net. The verification uses
a model-checking tool and temporal logic formulas representing the properties to be
verified. The automation of the transformation process is left as a future work.

2.3 Related Work Comparison

Sections 2.1 and 2.2 presented works focusing on the verification of multimedia doc-
uments. The study of the literature cited in these sections helped us on the design of
the approach presented in this paper. The main influences are: (i) choosing a formal ap-
proach, since it brings correctness, verified with tool support, of the approach by using
precise descriptions of the multimedia language used for document authoring; (ii) the
definition of the set of common properties for NCL documents presented in Section 3.

In this section, our approach and related work from Sections 2.1 and 2.2 are com-
pared. A conceptual comparison is presented here, since most of the tools are not
currently available for practical tests.

Each work focuses on either the structural or the behavioral verification of multi-
media documents. It is important to guarantee that a multimedia document has been
structurally verified before verifying its behavior, since a failure of the former may turn
the latter impossible to be performed. However, it was not possible to identify if the
works presented in Section 2.2 perform some form of structural verification prior to the
document behavioral verification. We, on the other hand, propose a tool that addresses
both the structural and behavioral verification of multimedia documents.

In [17, 18] the authors claim to be capable of verifying a multimedia document in
an incremental way. Such kind of verification is not supported in this work, where the
complete document is verified.
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3 Verification Properties

In [9, Chapter 2] we studied different approaches to the verification of multimedia doc-
uments. We identify the properties in [8, 18, 19] as the most relevant ones and the set
of properties discussed below is based on them. The properties in [18] are similar (and
gave origin) to the structural properties here presented. On the other hand, the resource
property was discussed in [19] and the reachability property in [8]. Besides, termination
properties were found in both works.

Our set of properties are classified here as structural or behavioral properties. Struc-
tural properties are the ones used for representing the authoring language syntax rules
defined by its grammar and structural invariants induced by its static semantics. Each
structural property gives origin to a set of equations representing invariants in the rewrit-
ing logic theory, one for each element of the authoring language where the given prop-
erty is applicable.

The syntactic property specifies that the lexical and syntactic structure of a docu-
ment should be well-formed and in accordance to the authoring language’s grammar.
For example, the XML tags [24] used must be correctly closed and in the language
namespace. The hierarchical property specifies that every document element must only
contain valid child elements and in the correct cardinality. The attribute property spec-
ifies that every document element must only contain valid attributes and the required
ones must be defined. It also specifies that every element identifier must be unique and
attributes with related values must follow the constraints defined by the authoring lan-
guage (as an example, suppose attributes “type” and “subtype”).

The reference property specifies constraints on references between elements (such
as a media or a composition of medias). The compositionality property specifies that el-
ements inside a composition can not refer to the ones outside. The composition nesting
property specifies that compositions can not create loops. The reuse property specifies
that elements being reused can not create loops.

Behavioral properties are used for representing desired document presentation be-
haviors. Each behavioral property gives rise to a temporal logic formula [6].

The reachability property specifies that every document element has to be reached
during a document’s execution. The anchor termination property specifies that a doc-
ument’s element presentation must end. The document termination property specifies
that the execution of the document as a whole must end, up to an upper bound dura-
tion. The document execution ends if every anchor inside the document end and there
is no execution loops inside the document (for example an anchor restarting its pre-
sentation every time it ends). The resource property specifies that two distinct anchors
(that is, references to media elements or to parts of it) should not use the same resource
simultaneously, avoiding their superposition.

4 NCL Semantics

4.1 Rewriting Logic

A rewriting logic theory is a tuple R = (Σ,E,R), with:



An Executable Semantics for a Multimedia Authoring Language 73

– (Σ,E) an equational theory with function symbols Σ and equations E; and
– R a set of labeled rewrite rules of the general form

r : t → t′

with r a label and t, t′ Σ-terms which may contain variables in a countable set X of
variables which we assume fixed in what follows; that is, t and t′ are elements of the
term algebra TΣ(X). In particular, their corresponding sets of variables, vars(t),
vars(t′) are both contained in X .

Given R = (Σ,E,R), the sentences that R proves are rewrites of the form, t → t′,
with t, t′ ∈ TΣ(X), which are following rules of deduction:

– Reflexivity. For each t ∈ TΣ(X),

t → t

– Equality.
u → v E � u = u′ E � v = v′

u′ → v′

– Congruence. For each f : k1 . . . kn → k in Σ, and ti, t
′
i ∈ TΣ(X), 1 ≤ i ≤ n,

t1 → t′1 . . . tn → t′n
f(t1, . . . , tn) → f(t′1, . . . , t

′
n)

– Replacement. For each rule r : t → t′ in R, with, say, vars(t) ∪ vars(t′) =
{x1, . . . , xn}, and for each substitution θ : {x1, . . . , xn} → TΣ(X), with θ(xl) =
pl, 1 ≤ l ≤ n, then

p1 → p′1 . . . pn → p′n
θ(t) → θ′(t′)

where for 1 ≤ i ≤ n, θ′(xi) = p′i.
– Transitivity.

t1 → t2 t2 → t3
t1 → t3

4.2 NCL Syntax

NCL is a XML-based [23] language, which uses XML elements to represent the entities
defined by the Nested Context Model (NCM) [20].

An NCL document is divided in two parts, its head and its body. The document head
is where layout information is defined (e.g. regions of the screen in pixels and presen-
tation descriptors such as sound volume). The document body is where the document
content (i.e. its nodes) and behavior (i.e. its links) are defined. NCL defines two types
of nodes: content nodes and composite nodes. A content node represents a media ob-
ject inside the document, while a composite node represents a grouping of other nodes
(content and/or composite). A content node in NCL is called media. A composite node,
in NCL, can be either a context or a switch. A switch node is a special kind of node used
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to define alternative content to be presented, therefore only one of its inner nodes are
presented at a time. Links define a relationship among nodes inside the same context.

NCL provides the possibility of defining interfaces for each node. A node interface
is used to allow links be defined over parts of nodes. The interface for an NCL media
is an anchor. NCL contexts define ports which maps an interface to the interface of an
inner node.

Figure 2 illustrates the structure of a simple NCL document pictorially and Figure 4
exemplifies NCL’s syntax.

4.3 NCL Static Semantics

NCL static semantics is given by the equational theory NS = 〈Σ,E〉 where (i) Σ
denotes the signature of NS declaring NCL elements, such as regions, contexts, medias,
anchors, together with their attributes, types and parent element, and (ii) E denotes a
set of equations representing the invariants that any given NCL document must fulfill.
An NCL document is interpreted as a term t such that NS � inv(t), where inv is an
equation representing the conjunction of all NCL invariants in NS . An NCL document
is said well-typed when NS � inv(t) = true and ill-typed otherwise.

The invariants specify the hierarchical property, attribute property, reference prop-
erty, compositionally property, composition nesting property and reuse property, infor-
mally discussed in Section 3. These properties apply to different elements in NCL. For
instance, we have defined invariants representing the reference property for port, bind,
and mapping NCL elements. Equation 1 specifies the invariant for a bind element. A
bind element references a node and an interface. The invariant verifies if the interface
is a child element of the node in a given bind element,

eq inv refer bind(ei) = (getElement(getAttributeComponent(ei)) �= empty) ⇒
(getElement(getAttributeInterface(ei))in (1)

getChildrenReuse(getAttributeComponent(ei))).

where ei is an identifier for the bind element inside a term t representing an NCL
document. The complete set of invariants defined for the NCL language is available
in [9].

4.4 NCL Dynamic Semantics

NCL dynamic semantics is given by the rewriting logic theory ND = 〈Σ,E,R〉 where
Σ denotes the signature of ND declaring the state of a document, which is comprised
by the states of the anchors that compose the given document. Anchors are the smallest
information units of an NCL document.

From one hand, the signature Σ in ND is simpler than Σ in NS since presentation
attributes are disregarded as they are not important for the specification of the dynamic
semantics of an NCL document. Moreover, ND does not define composite nodes nor
content nodes which are essentially groups of anchors.

On the other hand, state attributes are necessary to specify the state of an anchor.
Therefore, Σ in ND includes part of Σ in NS and extends it with state information.
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Every anchor is associated to its presentation, selection or attribution events, where each
event is in one of the following states: occurring, sleeping and paused. Each multimedia
event follows the NCM (NCL’s reference model) state machine shown in Figure 1.
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Fig. 1. Multimedia event state machine

The state of anchors may be changed by links. A link has conditions and actions.
Conditions must be satisfied in order to activate the link and actions are executed as the
link is active, modifying the document’s state. A link condition is triggered by multi-
media event transitions related to its source anchors and may define tests over anchor
states or values. A link action defines a multimedia event transition that will be induced
over a multimedia event state related to its target anchor. A link action may also define
a delay in time before it is applied.

The state of the presentation of a multimedia document, specified in Definition 1
and denoted by ρ � d with ρ ∈ Env and d ∈ DocState, is represented in ND by
the environment resulting from a document’s declaration and the document’ state. The
document environment ρ is comprised by the definition of the document anchors, links
and its initial actions that should be applied as a document’s presentation begins. The
document state d is given by the state of every anchor inside the document and, possibly,
pending actions to be applied on delayed anchors.

Definition 1 (NCL document).

DocState = AnchorSet × PendingLinkActionSet ,

Env = (LinkId �→fin LinkSet)× (DocAnchors �→fin AnchorSet)×
(InitActions �→fin PendingLinkActionSet).

Sets E and R in ND specify the document’s behavior. The presentation of a docu-
ment is formalized by Rule 2 that specifies the relation docPresentation defined in R in
ND.

elapse(d1) = d2 d2 →natural 〈as3, ps3, es〉
〈as3, ps3, es〉 →applyLinks 〈as4, ps4, es′〉

d1 = 〈as1, ps1〉 →docPresentation 〈as4, ps4〉
(2)

A document state (di) is given by the state of its anchors (asi) and delayed link
actions (psi). Every anchor and delayed action has a countdown clock, representing its
presentation duration and its remaining delay, respectively. Function elapse , defined in
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E in ND, uses the value of these clocks (in d1) to calculate the maximum leap that
can be performed, i.e. the smallest clock value among the active anchors and delayed
actions. After calculating the leap value, function elapse decrements this value from
the anchor and action clocks (resulting in d2).

Relation natural , defined in R in ND, checks for event occurrences on anchors (in
d2). It can be the end of an anchor presentation (once its clock reaches zero) or the
selection of an anchor. Since every anchor being presented can be selected by the user
of the multimedia document, concurrent document states will be created, representing
the permutation of the selected anchors. Finally, relation natural applies the actions
whose delay has ended thus changing the state of document anchors (resulting in d3
and ps3)

Event occurrences (es), resulting from the evaluation of natural , may trigger links
in a document. Relation applyLinks , defined in R in ND, evaluates the document links
that are enabled by these event occurrences. A link is considered enabled when its
conditions match the document state. The application of a link consists of changing the
state of anchor presentation, selection or assignment events (resulting in as4, ps4 and
es′). All enabled links are applied to all possible orders, so different document states
can be reached after a link application.

Definition 2 specifies the transition system induced by theory ND.

Definition 2 (The transition system of an NCL document). Given an NCL document
d, the declarations resulting from N induce a transition system SN (d) as follows,

SN (d) = (Γ,→docPresentation),where

Γ = ρ � d , ρ ∈ Env , d ∈ DocState.

4.5 The Behavioral Semantics of an NCL Document

In order to obtain a transition system for a given NCL document we defined a trans-
formation τ : ΣNS → ΣN , where N is a rewriting logic theory that that extends ND

with additional signature specifying the initial state of the given document together with
sorts and operations that represent the link relations among the many anchors that a doc-
ument has. The transformation τ discards elements which are not relevant for document
behavior. The transformation “flattens” the document structure by: (i) replacing nodes
from the document structure by the set of anchors within the document’s nodes, and (ii)
adjusting links to relate anchors and not nodes.

Node Flattening. For each content node the flattening process gathers the anchors
defined for it. For every content node there is an anchor representing the node itself,
called lambda anchor. The flattening node process produces, for a given content node,
the lambda anchor together with all anchors declared for the content node.

For each composite element (context, switch and the body of an NCL document)
the transformation computes which anchors are related to the given composite by hi-
erarchical composition. Formally speaking, we compute the transitive closure of the
hierarchical composition relation for each composite. This relation is used later on by
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the link adjustment phase so that links relate only anchors and not composite ele-
ments. For example, in Figure 2, context C1 is related to anchors representing nodes
N1 and N2.

A composite may have several ports. Therefore, we need to identify, in the transitive
closure of the hierarchical composition relation of a given composite, which anchors
are associated with the ports of the given composite. This information is important in
the link adjustment phase so that only such anchors are started when the composite is
started by a link.

Theorem 1. Document structure is preserved by node flattening.

Proof. (Sketch.) Anchors are the smallest elements of NCL documents. They are pre-
served by the flattening process. NCL element composition is a hierarchical relation.
The flattening composite process computes the transitive closure of the hierarchical
composition relation. Therefore, all content information is preserved by this transfor-
mation modulo hierarchical structure, which is not relevant for behavioral semantics.
This step computes the necessary information for preservation of all actions over nodes
which are preserved by link adjustment. ��

Link Adjustment. Once the anchors of each node (composite or otherwise) have been
calculated, we only need to adjust the links such that the anchors of a given node are
referenced in a link instead of the node itself. Moreover, all the actions that apply to
a node are preserved in link adjustment taking in consideration eventual delays among
the presentation of the anchors.

Theorem 2. Document behavior is preserved by link adjustment.

Proof. (Sketch.) Link adjustment replaces content nodes and composite nodes by their
associated anchors on each link. This step also makes sure that actions are properly ap-
plied to anchors. For a content node, the start action must preserve the order of anchor
presentation. If an anchor has a delay in its presentation, with respect to the lambda
anchor, such a delay must be included in the link action. (See Section 4.4.) For a com-
posite node, the application of the start action is preserved by link adjustment because
only the anchors identified as associated with the ports of the composite are enacted.
For the remaining actions, all the anchors in the transitive closure of the composite node
are enacted. ��

Example. Figure 2 presents an NCL document in pictorial form. The document defines
two nodes N1 and N2, both inside composition C1, and port P1 that maps to node N1.
That means that node N1 will be executed as the document (composition C1) begins.
The document also defines link L1 that will start the presentation of node N2 when
node N1 is selected by the user.

Figure 3 presents the representation of the document in Figure 2 as a term in ND,
that is, after the application of transformation τ : ΣNS → ΣND . Notice that nodes N1

and N2 are represented by their lambda anchors (aN1 and aN2). Link L1 is represented
as a relation, which takes the state of the NCL document from a state where anchor



78 J. dos Santos, C. Braga, and D.C. Muchaluat-Saade

����

��

��

��

Fig. 2. NCL document example

doc = (Adoc, Ldoc , I)
Adoc = {aN1 , aN2}
Ldoc = {((aN1 , selection, start) → (aN2 , presentation, start))}
Idoc = {(aN1 , presentation, start)}

Fig. 3. ND document example

aN1 is selected to a state where anchor aN2 is being presented. The port mapping is
represented by an initial action that starts anchor aN1 as the document execution begins.

5 NCL Analyzer

We have implemented a verification tool for NCL documents as a Java library called
aNaa (API for NCL Authoring and Analysis). Further details about the API architecture
and its implementation are available in [9]. With the aNaa API we have been able to
process all NCL documents in the NCL Club1, which do not use any external language
to implement node behavior. NCL Club is a repository for NCL applications built by
the NCL community. The results given by aNaa are encouraging based on the problems
we have found (if it was the case) for each document. Each problem found was con-
firmed by a manual inspection of the application. Besides a web interface built on top
of aNaa library is available online2 for a massive test of aNaa with respect to real user
acceptance.

The verification is performed by aNaa in three steps as follows. From a given NCL
document d, aNaa creates its representation as a rewriting theory d ∈ ΣNS and ap-
plies the equations ei ∈ ENS representing the NCL invariants to d, as described in
Section 4.3. If an invariant does not hold in d, aNaa presents a message to the author
indicating that ei has failed. If all invariants hold in d then aNaa applies the transfor-
mation τ : ΣNS → ΣN to d, as described in Section 4.5, creating a term in N where
temporal formulas representing the behavioral properties in Section 3 are verified using
model checking.

The semantics described in Section 4 has been implemented in the Maude [7] system.
The implementation is quite direct since Maude is an implementation of rewriting logic.
The rewriting system in Maude is bissimilar to the transition system in Definition 2
essentially because all state information is preserved by the transformation to Maude

1 http://club.ncl.org.br
2 http://www.midiacom.uff.br/˜joel/anaa4web

http://club.ncl.org.br
http://www.midiacom.uff.br/~joel/anaa4web
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and every transition in the transition system induced by N gives rise to a rewrite in the
transition system induced by the generated Maude code.3

We now present a very simple document, where structural properties (reference,
compositionality and reuse) and behavioral properties (reachability, anchor and
document termination) do not hold. Figure 4 presents the NCL code for that document.

1 <n c l i d = ’ s c e n a r i o ’ xmlns = ’ h t t p : / / www. n c l . o rg . b r / NCL3 . 0 / EDTVProfi le ’>
2 <head>
3 <reg ionBas e>
4 <r e g i o n i d = ’ r e g ’/>
5 </ r eg ionBase>
6 <d e s c r i p t o r B a s e>
7 <d e s c r i p t o r i d = ’ des c ’ r e g i o n = ’ r e g ’/>
8 </ d e s c r i p t o r B a s e>
9 </head>

10 <body>
11 <p o r t i d = ’ p body ’ component= ’ f i g ’ i n t e r f a c e = ’ p i n n e r ’/>
12 <media i d = ’ v i d e o ’ s r c = ’ v i d e o . mp4 ’ d e s c r i p t o r = ’ des c ’/>
13 <c o n t e x t i d = ’ i n n e r ’ r e f e r = ’ i n n e r ’>
14 <p o r t i d = ’ p i n n e r ’ component= ’ f i g ’/>
15 <media i d = ’ f i g ’ s r c = ’ f i g 1 . png ’ d e s c r i p t o r = ’ des c ’/>
16 </ c o n t e x t>
17 </body>
18 </ nc l>

Fig. 4. Example document

Structural Analysis. The reference property does not hold because port p body makes
reference to node fig and interface p inner, which is not a child of node fig. The com-
positionality property does not hold because port p body makes reference to node fig,
which is not in the same composition as p body. The reuse property does not hold be-
cause context inner reuses itself through its attribute refer. Each problem is identified by
aNaa with the invariants shown in Figure 5, instances of the reference, compositionality
and composition nesting properties, where ei ∈ ElementId .

To correct the identified problems, the author should change attribute component
of port p body to inner. The port remains mapping to node fig but now respects the
compositionality property since context inner is one of its siblings. It also respects the
reference property since attribute interface now makes reference to an interface of the
node referred in attribute component. Finally, the author should remove attribute refer
from context inner so it does not reuse itself anymore.

Behavioral Analysis. The reachability property does not hold because media video
is never presented during document execution. Also, both the anchor and document
termination properties do not hold because media fig, which started its presentation at
document initialization, never ends its presentation. The document environment ρ in
ND (see Section 4.4) resulting from the document in Figure 4 is presented in Figure 6.

Each problem is identified by the Maude model checker with the linear temporal
logic (LTL) formulas described in Figure 7. Syntax F and G denote their homonymous

3 As a more technical note, all rewritings occur at the top level term, that is, the congruence rule
of the rewriting logic calculus is controlled. (See Section 4.1.)
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1 −− R e f e r e n c e p r o p e r t y i n s t a n c e i n v a r i a n t
2 ( g e t E l e m e n t ( g e t A t t r i b u t e C o m p o n e n t ( e i ) ) =/= empty ) i m p l i e s
3 ( g e t E l e m e n t ( g e t A t t r i b u t e I n t e r f a c e ( e i ) ) i n g e t C h i l d r e n R e u s e ( g e t A t t r i b u t e C o m p o n e n t (

e i ) ) )
4

5 −− C o m p o s i t i o n a l i t y p r o p e r t y i n s t a n c e i n v a r i a n t
6 ( g e t P a r e n t ( e i ) =/= empty ) i m p l i e s
7 ( g e t E l e m e n t ( g e t A t t r i b u t e C o m p o n e n t ( e i ) ) i n g e t C h i l d r e n ( g e t P a r e n t ( e i ) ) )
8

9 −− Reuse p r o p e r t y i n s t a n c e i n v a r i a n t
10 n o t ( g e t E l e m e n t ( e i ) i n r e f e r ( g e t E l e m e n t ( e i ) ) )

Fig. 5. Invariants for the example document

1 mod NCLDOC i s
2 eq DocAnchors = CONTENT( v i d e o | s l e e p i n g , 0 , 0 , −, 100 , −)
3 CONTENT( f i g | s l e e p i n g , 0 , 0 , −, INF , −) .
4

5 eq I n i t A c t i o n s = ACTION( f i g , pre , s t a r t ) .
6

7 eq DocLinks = none .
8 endm

Fig. 6. Document environment resulting from the example document

1 −− R e a c h a b i l i t y p r o p e r t y i n s t a n c e f o r m u l a
2 F pre−o c c u r r i n g ( v i d e o )
3

4 −− Anchor t e r m i n a t i o n p r o p e r t y i n s t a n c e f o r m u l a
5 GF pre−o c c u r r i n g ( f i g 1 ) i m p l i e s GF pre−s l e e p i n g ( f i g )
6

7 −− Document t e r m i n a t i o n p r o p e r t y i n s t a n c e f o r m u l a
8 GF doc−end

Fig. 7. LTL properties for the example document

modal operators, pre-occurring, pre-sleeping and doc-end are predicates specified over
the document state that hold when the given anchors (video or fig) reach their homony-
mous state, where the prefix pre denotes a state in the presentation state machine of an
anchor. The verification of the termination property is bound to a maximum document
duration which is a parameter of the Maude specification.

To correct the reachability problem, the author should either create another port map-
ping to media video or create a link to start the presentation of media video as the pre-
sentation of media fig starts. To solve the remaining problems, the author should either
create a link to stop the presentation of media fig as the presentation of media video
stops or define an explicit duration for media fig in its descriptor.
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6 Final Remarks

Multimedia document verification is an important task with the growing market of dig-
ital TV. The Nested Context Language is an important authoring language in digital
TV application development in Brazil and worldwide. Since NCL documents maybe
understood as finite transition systems standard model-based techniques apply to their
verification. In this paper we discuss NCL’s formal semantics and its implementation
in a verification tool development in the Maude system. We have been able to process
all NCL documents in the NCL Club4, a repository for NCL applications built by the
NCL community, that do not use any external language to implement node behavior.
The results are encouraging based on the problems we have found and the efficiency of
the prototype.

Future work points to two important directions: first, based on preliminary studies,
we believe that the formal semantics we propose in Section 4 may be able to represent
other multimedia authoring languages such as SMIL [25] and HTML 5 [26]. Second,
we plan to support for the verification of user defined properties.
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Abstract. Nested Petri nets have been applied for modelling interaction
protocols, mobility, adaptive systems and interorganizational workflows.
However, few results have been reported on the use of automated tools for
analyzing the behavior of these nets. In this paper we present a transla-
tion from a subclass of recursive nested Petri nets into PROMELA and
explain how some properties of these nets can be studied using SPIN
model checker.
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1 Introduction

Petri nets (PNs) are one of the most widely used formalisms for analyzing con-
current and distributed systems. The key to their success is the combination
of few and simple primitives, a convenient graphical representation and several
tools for simulation and verification. Therefore, they have been extended in sev-
eral ways in order to increase the modelling power. One of the ideas applied to
complex models was the use of nesting and recursion. For instance, recursive
nets and nets within nets have been used to specify interaction protocols and
mobility in the context of distributed multi-agent systems [25,19,13,12].

The nested Petri nets (NPNs) form a representative class of this kind of nets.
In a NPN, the tokens may be PNs which fire their transitions autonomously or in
synchrony with other net tokens [16]. This provides a high degree of modularity
and flexibility for the dynamic creation, transportation and removal of concur-
rent processes. Therefore, its application has been extended to areas such as the
coordination of inter-organizational workflows [21] and adaptive systems [18].
NPNs are more powerful than classical PNs and some properties (e.g. reachabil-
ity and boundedness) are undecidable [15]. However, for important subclasses,
such as the multi-level nets and the recursive nested nets with autonomous el-
ements, termination and the inevitability problem can be decided [16]. In spite
of this fact, to best of our knowledge, there is no automated tool for analyzing
the behavior of NPNs.
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In this paper we propose the use of SPIN for this purpose. SPIN [10] is one of
most successful tools for simulation and verification of concurrent and distributed
software systems. Given a finite-state model of the system behavior, SPIN ver-
ifies it against temporal properties by an exhaustive inspection of all possible
system states. If some property is violated, a counterexample is provided. SPIN
uses a C-like language to specify models called PROMELA (Process Meta Lan-
guage). Unlike other model checkers, SPIN allows recursive processes; besides, its
buffered channels are suitable for implementing the synchronizations in a NPN.
The model checking approach suffers from the state-space explosion problem,
but clever algorithms have been developed in SPIN to deal with it.

The subclass of NPNs that we address in this paper is introduced in Section 2
and its translation into PROMELA is presented in Section 3. Section 4 explains
how termination, boundedness and some reachability properties can be studied
using SPIN. Section 5 illustrates the feasibility of our translation with an exam-
ple of a NPN modelling an interoganizational workflow. Section 6 discusses the
related work and draws some concluding remarks and future work.

2 Nested Petri Nets

A Petri net [20] is a 4-tuple N = (P, T,A,W ) where P and T are non-empty,
finite and disjoint sets of places and transitions resp; A ⊆ (P ×T )∪ (T ×P ) is a
set of arcs and W is a function defined from A to multisets of uncolored tokens
(black dots). A marking of a N is a function attaching a multiset of tokens to
each place. Transitions represent events (called firings) which may change the
marking of the net according to W . The tokens in a PN have no structure or
information. In colored Petri nets (CPNs) [11], each place has a type; thus, it
may host tokens with different data values, i.e. colors. The arcs are labelled
by multiset expressions containing variables. Therefore, firing of a transition is
conditioned to the binding of the variables in the input arcs.

Nested Petri nets [17] are CPNs in which tokens can also be Petri nets and
thus they may fire their own internal transitions. More precisely, a NPN is a
tuple (SN,EN1, . . . , ENn) of CPNs, one of them called system net (SN) and
the rest element nets. Each ENi is considered as a type whose set of values
consists of marked net tokens. The firing of a transition t is performed according
to the classical PN rules. But in addition, a net token may synchronize the firing
with other net tokens at the same place (horizontal synchronization step) or with
the parent net (vertical synchronization step). The synchronization is defined by
means of labels that are attached to transitions.

In this paper, we deal with the subclass of NPNs with autonomous elements,
i.e. those where the vertical steps remove the net tokens involved. Therefore, the
next definition is a simplified version of the one provided in [17]. As usual in
CPNs, we have a set of basic types Σ and a set of basic constants Σc belonging
to these types. The element nets represent both types and constants. The places
are divided into two kinds, places with basic type or net type. For simplicity, we
have avoided the use of arities for places; hence the horizontal synchronization is
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restricted to two net tokens1. We slightly adapt the definition for sharing some
basic places of SN with the element nets. This way, the system net can control
the firing of some transitions in the net tokens. Nevertheless, no shared place
can be an input of a labelled transition. We assume that arc expressions are
multisets over constants, basic-typed variables and the integer 1. The latter is
used to denote a single token, regardless its value. We denote as V ar(m) the set
of variables occurring in the multiset m.

Definition 1. Let N = (Σ,Ps, L, (EN0, EN1, . . . , ENn)) be a NPN s.t. Σ is a
finite set of basic types, Ps is a finite set of shared places and L is the disjoint
union of the sets of labels Lh and Lv. The set Lv is s.t.

– for each l ∈ Lv, there is a complementary label l̄ ∈ Lv s.t. ¯̄l = l and
– for all l1, l2 ∈ L, l1 �= l2 implies l̄1 �= l̄2.

For all i = 0 . . . n, ENi = (Pi, Vi, Ci, Ii, Ti, Λi, Ai,Wi) is a colored Petri net,
called net component, where

– EN0 is called the system net, denoted as SN ,
– Pi is a finite set of places s.t. Ps ⊂ Pi if i = 0 and Pi ∩ Ps = ∅ if i > 0,
– Vi is a set of variables,
– Ci : Pi ∪ Vi → Σ ∪ P({EN1, . . . , ENn}) is a type function s.t. for all x ∈ Vi

either Ci(x) ⊆ Σ or Ci(x) = {EN1, . . . , ENn}. Furthermore, for all p ∈ Ps,
C0(p) ∈ Σ,

– Ii is the initial function defined from Pi into multisets over Σc s.t. for all
p ∈ Pi, Ii(p) ⊆ Ci(p),

– Ti is a finite set of transitions s.t. Pi ∩ Ti = ∅,
– Λi is a partial function from Ti to L,
– Ai ⊆ ((Ps ∪Pi)×Ti)∪ (Ti × (Ps ∪Pi)) is a set of arcs s.t. for all (p, t) ∈ Ai,

if Λi(t) is defined then p ∈ Pi,
– Wi is an arc expression function defined from Ai to multisets over Vi ∪Σc ∪

{EN1, . . . , ENn} s.t.
(a) the type of each element in the multiset of an input (output) arc must be

included in the type of the corresponding input (output) place,
(b) there are no net constants in input arc expressions,
(c) every variable has at most one occurrence in each input arc expression,
(d) given two different input arcs (p1, t1) and (p2, t2), V ar(Wi(p1, t1)) ∩

V ar(Wi(p2, t2)) = ∅;
(e) for each variable x ∈ V ar(Wi(t, q)), Ci(x) ⊆ Σ and there should be one

input arc of t s.t. x ∈ V ar(Wi(p, t)).

Example 1. Figure 1 depicts a NPN with two net components SN and F . Places
are drawn as ellipses and transitions as bars. We omit the arc labels {1} as well as
the braces for multisets of a single element. The element net F , adapted from [17],
simulates the recursive calls for computing the factorial function. Here F shares

1 Our translation can be extended to allow horizontal steps between several net tokens.
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two places from SN : p1 which initially may store a ≥ 0 black tokens and p5
which is initially empty. The places p3 and p7 are net-typed while the rest are
uncolored. The net SN simulates the computation of the factorial of an integer
0 ≤ b ≤ a.

Fig. 1. Example of NPN for simulating the factorial computation calls

Markings. A marking of an element net ENi over N , 1 ≤ i ≤ n, is inductively
defined as follows.

– A function M , mapping each place p ∈ Pi to a finite multiset over Σ is a
marking of ENi over N . The pair (ENi,M) is called a marked element net
or a net token of ENi.

– Let Σ̄ be a set of marked element nets. Then, a function mapping each place
p ∈ Pi to a finite multiset over Σ̄ ∪Σ, is also marking of ENi over N .

A marking of EN0 over N is a function mapping each place p ∈ P0 to a finite
multiset over Σ̄ ∪ Σ. Any marking must agree with the type definition of the
places. Hence, for all p ∈ Pi, if Ci(p) ∈ Σ, then M(p) is a multiset over Ci(p);
otherwise M(p) is a multiset of net tokens of Ci(p). To avoid confusion, it can
be assumed that places, transitions, variables and arcs of two net tokens of the
same element net are different. Notice that, no net token of SN is allowed and
places belonging to Ps are shared by all net tokens.

A marking of a NPN N is a marking of SN . The initial marking of any net
component is obtained from the initial function (Ii) which, by definition, has no
net token. The constant ENi represents the marked net (ENi, Ii). The initial
marking of N , obtained from I0, is denoted as M0.

Occurrence and Replacement. A net token nt′ = (ENi,M
′) occurs in M

if there is a place p s.t. either nt′ ∈ M(p) or there exists (ENj ,M
′′) ∈ M(p)

and nt′ occurs in M ′′. The occurrence of two net tokens at the same place in
a marking is defined analogously. The replacement of nt′ in M by a net token
nt′1 = (ENi,M

′
1) (denoted as M [nt′ → nt′1]) is defined as the marking M1 s.t.

M1(p) = M(p)− {nt′} ∪ {nt′1} if nt′ ∈ M(p); M1(p) = M(p) − {(ENj,M
′′)} ∪

{(ENj,M
′′[nt′ → nt′1])} if nt′ occurs in M ′′; and M1(p

′) = M(p′) otherwise.
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Bindings. Let t be a transition in a net token or the system net of N . Let
EN = (P,C, I, T, Λ,A,W, V ) be the CPN s.t. t ∈ T . We write V ar(t) for the set
of all variables occurring in input arcs of t. Hereafter, we assume that W (p, t)
(resp. W (t, p)) is the empty set if (p, t) /∈ A (resp. (t, p) /∈ A). A binding for t is
a function b assigning to each variable x ∈ V ar(t) a value from Σ̄ ∪ Σ (of the
corresponding type). It may be applied to multisets in a straightforward way.
The set {b(x) | x ∈ V ar(t) ∧C(x) /∈ Σ} are the net tokens involved in t w.r.t. b.

Firings. Let M be marking of a NPN N . A transition t ∈ T0 is enabled in M
w.r.t. a binding b, if for all a = (p, t) ∈ A0, b(W0(a)) ⊆ M(p). In this case, t may
fire. After the firing, a new marking Mn is obtained s.t. for any place p ∈ P0,
Mn(p) = M(p)− b(W0(p, t)) ∪ b(W0(t, p)).

Let (ENi,M
′) be a net token occurring inM at some place p′. A transition t of

(ENi,M
′) is enabled in M w.r.t. a binding b, if for all a = (p, t) ∈ Ai, b(Wi(a)) ⊆

M ′(p). If t fires, a new marking M ′′ is obtained from M ′ s.t. for any place
p ∈ Pi, M

′′(p) = M ′(p)− b(Wi(p, t)) ∪ b(Wi(t, p)). Furthermore, a new marking
Mn is obtained from M s.t. for any place p ∈ Ps, Mn(p) = M(p) ∪ b(Wi(t, p));
for any place p /∈ Ps ∪ {p′}, Mn(p) = M(p); and Mn(p

′) = M [(ENi,M
′) →

(ENi,M
′′)](p′).

Steps. An autonomous step is the firing of an unlabelled transition in SN or
in a net token of N . This step is denoted as M [t〉Mn where Mn is the resulting
marking. A horizontal step is the firing of transitions t1 and t2 in two different
net tokens nt1 and nt2 s.t. nt1 and nt2 occurs in M at the same place and
Λ(t1) = Λ(t2) ∈ Lh. This step is denoted as M [t1 t2〉Mn. A vertical step is the
firing of a transition t in some net net token that occurs in M s.t. l = Λ(t) ∈ Lv,
and the firing of a transition labelled as l̄ in all net tokens involved in the binding
of t. This step is also denoted as M [t〉Mn but the notation may also include the
transitions fired in the child net tokens. A marking M is called reachable if there
is a sequence of zero or more steps M0[〉M1[〉 . . . [〉Mk s.t. Mk = M . This is
denoted as M0[∗〉M . It is called dead if no step can be done from it.

We point out that, since labelled transitions do not share input places, the
order for firing the transitions involved in a synchronizing step is irrelevant.
Besides, by condition (e) on Wi, autonomous and vertical steps consume the net
tokens involved. Hence, all the steps of a net token occur at the same place.

Example 2. The firing sequence below corresponds to the NPN in Figure 1. We
write a marking as a sequence of pairs p : M(p) enclosed by the symbols � and
�. Uncolored places are marked with non-negative integers instead of multisets
of black dots. We use superscripts for the places and transitions in net tokens.

�p1 : 4, p2 : 1, p3 : ∅, p4 : 0, p5 : 0� [t1〉
�p1 : 4, p2 : 0, p3 : (F

1,�p16 : 1, p
1
7 : ∅, p18 : 0�), p4 : 0, p5 : 0� [t14〉

�p1 : 3, p2 : 0, p3 : (F
1,�p16 : 0, p

1
7 : (F 2,�p26 : 1, p

2
7 : ∅, p28 : 0�), p18 : 0�),

p4 : 0, p5 : 0� [t23 t15〉
�p1 : 3, p2 : 0, p3 : (F

1,�p16 : 0, p
1
7 : ∅, p18 : 1�), p4 : 0, p5 : 1� [t16 t2〉

�p1 : 3, p2 : 0, p3 : ∅, p4 : 1, p5 : 2�
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The two first steps of this sequence create two nested net tokens (say nt1 and
nt2) at p3 and p17 resp. After that, the inner net token performs a vertical step
with its parent, firing the transitions t23 and t15 resp. This step adds a black dot
at p5 and p18 and consumes nt2. Another vertical step occurs between nt1 and
SN involving the transitions t16 and t2 resp. As before a black dot is added at
p5 and also at p4; besides nt1 is consumed. Then, no further step can be done
in the net. An alternative sequence is obtained if in the second step above, we
choose the transition t13 instead of t14. In this case, the sequence is the next:

�p1 : 4, p2 : 1, p3 : ∅, p4 : 0, p5 : 0� [t1〉
�p1 : 4, p2 : 0, p3 : (F,�p16 : 1, p17 : ∅, p18 : 0�), p4 : 0, p5 : 0� [t13 t2〉
�p1 : 4, p2 : 0, p3 : ∅, p4 : 1, p5 : 1�

In general, when the net reaches a dead marking M we have M(p4) = 1,
M(p5) = b + 1 for some 0 ≤ b ≤ a (i.e. the number of net tokens - factorial
calls), M(p1) = a− b, M(p2) = 0 and M(p3) = ∅.

3 Translating Nested Petri Nets into PROMELA

In this section we explain how to translate the NPNs defined in the previous
section into PROMELA. We will assume the reader is familiar with the basics
of PROMELA and SPIN semantics of executability.

The Translation. We represent each element net using a proctype definition;
thus each net token is a process. We assume L ⊆ [1, 254] and we denote the label
of a transition t for vertical synchronization as Lv(t) and its complementary
label as -Lv(t). For unlabelled transitions, we define Lv(t)=0 and -Lv(t)=255.
We also assume that each transition has an identity number, denoted as id(t).

Uncolored places are represented as non-negative integer variables. A colored
basic place may be translated into an array or a buffered channel or it can be
unfolded into several uncolored ones. We will use the last option; hence hereafter
we deal with nets where all the basic-typed places are uncolored. A net place will
be translated as channel, intended for exchanging messages between the parent
net process and the processes corresponding to net tokens at the place. Each
message consists of four fields. The first holds the instantiation number (_pid) of
the net token process sending or receiving the message. The second and the third
fields are the label and the identity number of the transition which is enabled,
resp. The last bit field defines the type of the message: 0 for a synchronization
request and 1 for the response. The messages should be inserted in the channel
in a non-deterministic way to simulate a multiset. Nevertheless, for the sake of
readability, we will use the standard SPIN statement for sending messages.

Shared places must be declared as global variables while non-shared ones
are local to the process definition of the net component. We assume that the
initial marking is defined as part of the variable declaration. The system net is
represented in the init process. Its behavior is simulated via a do-loop where
each option corresponds to the firing of a transition [10]. The general structure
of the translation is shown in Figure 2.
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typedef NetPlace { chan d =

[Msg] of {byte,byte,byte,bit} }

/* Shared Places */

byte sp1, sp2,...;

/* Auxiliary Definitions */

inline sP(p, n)

{ set_priority(p,n) }

/* Element Nets */

init(){

/* Non-Shared Places */

/* Initial Marking */

/* Auxiliary variables */

byte nt, it;

do :: atomic{ /*(a)*/

enableTest_t ->

sP(_pid, 3);

consumeActions_t;

produceActions_t;

sP(_pid, 1) }

:: ...

od }

Fig. 2. General structure of PROMELA specification for a NPN

Firings. Each transition t in SN is translated as shown in Figure 2(a). The
expression enableTest is the conjunction of an enabling condition for each input
arc (p, t). This condition, denoted as enableTestp, depends on the label W (p, t).
Similarly, consumeActions is the sequence of instructions for removing the tokens
on each input label W (p, t). Finally, produceActions is the sequence of instruc-
tions for adding the tokens in W (t, p) to each output place p. We use priorities
to simulate the steps involving net tokens.

We assume the arcs from/to an uncolored place p are labelled by natural
numbers. Hence, if W (p, t) = n then enableTestp is the expression p >= n and
consumeActionsp is the instruction p = p - n. If W (t, p) = n, produceActionsp
is defined as p = p + n. For a net place np, the labels of the incidents arcs are
multisets. By condition (b) in Definition 1, no net constant appears in any in-
put arc label W (np, t), just variables. On the contrary, the label of an output
arc W (t, np) includes just net constants. To keep enableTestnp simple, we as-
sume that the label of any input arc W (np, t) is a single variable2. We impose
no condition on W (t, np); hence, the instructions in produceActionsnp create a
net token for each constant in W (t, np). The next table shows the PROMELA
expression and instructions for dealing with net-typed arc labels.

enable(x) consumeAction(x) produceAction(ENi)

np.d ?? [_,-Lv(t),_,0] np.d ?? nt,-Lv(t),it,0; nt = run ENi(np.d);

consNetTok(np.d); np.d ! nt,255,0,0

np.d ! nt,Lv(t),it,1;

sP(nt, 3)

As the last cell shows, a child net token nt is produced by creating a process
instance for the corresponding element net. In addition, an initial message is
sent to the the channel attached to the place np. This message represents the
net token and allows the removal of nt without vertical synchronization, e.g. by

2 We explain how to get rid of this restriction in Section 6.
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unlabelled transitions. A transition t s.t. W (np, t) is a variable may consume
nt if the channel contains a request message, previously written by nt, with
the complementary label of t. When t is enabled and fires, consumeActionsnp
removes from the channel the remaining request messages of nt (consNetTok).
Then, a response message is sent that will force the termination of the process
nt. By changing the priority of nt we ensure that once t completes the firing,
the child net processes will be executed in order to finish the synchronization.

Element Nets.We use a proctype definition with two nested do-loops, as shown
in Figure 3. The inner loop includes options for the autonomous steps and the
requests for synchronization. This loop is broken when a response message is
received, using an unless instruction. Therefore, each option is enclosed in a
deterministic region.

Autonomous Steps. Unlabelled transitions that do not produce net tokens
are translated as in Figure 2 (a). However, a process instance cannot be created
inside a d_step. Hence, the firing of the autonomous steps producing net tokens is
split into two parts. The first takes place inside the inner loop and has the form:
enableTest -> sP(_pid, 3); consumeActions; pc!_pid,0,idt,1. The inner cycle
terminates after sending the request message with the identity of the transition.
The second part of the step is performed as an if option, as shown in Figure 3(a).

proctype elNetName(chan pc){

/* Non-Shared Places */

/* Initial Marking */

/* Auxiliary Variables */

byte nt, it;

do:: {

do :: d_step{/* aut-step */}

...

:: d_step{/* sync-req */}

...

od }

unless atomic{

pc ?? eval(_pid),_,it,1;

/* autonomous steps

creating net tokens (a)*/

if :: it == idt ->

produceActions

/* horizontal steps (b)*/

:: it == idt ->

consumeActions;

produceActions

/* vertical steps (c)*/

:: it == idt ->

consumeActions;

produceActions;

break

/* net removed (d)*/

:: it == 0 -> break

fi;

sP(_pid, 1) }

od;

d_step{ /* stop child nets */

consNetsAtPlace(np1); ... }

sP(_pid, 1) }

Fig. 3. PROMELA specification for an element net

Vertical Steps. We divide the transitions labelled for vertical synchroniza-
tion into net-typed and basic-typed. The former transitions have at least an
input net place and consume the net tokens involved. For these transitions,
the translation for autonomous steps effectively applies. A basic-typed labelled
transition has all the input places of basic types; hence its firing entails the
removal of the net. Due to this, the firing is split into two steps. The first is
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performed once the transition is enabled and it simply sends a request mes-
sage to the parent. The corresponding option in the inner loop has the form:
enableTest && ! pc??[eval(_pid),Lv(t),_,0] -> pc!_pid,Lv(t),id(t),0.

The second step is executed as soon as the process receives the parent response
message, as shown in Figure 3(c). When the firing is completed, the outer loop
is broken and the child nets that may be still active at some place are removed
without synchronization. The d_step at the end deals with this situation by
means of the macro consNetsAtPlace. The last if-option (Figure 3(d)) applies
here and also when the net is consumed by an unlabelled transition.

Conflicts Involving Labelled Transitions. A labelled transition t may be
disabled by the firing of another transition t′ in the same net token (e.g. t3 and
t4 in Example 1). In this case, if a synchronizing request message from t was
already written in the parent channel, then it should be removed. This may be
done after the consumeActions for t′, using the next PROMELA macro.

inline dT(idt){ if:: ! enableTest(idt) && pc??[eval(_pid),_,idt,0] ->

pc??eval(_pid),_,idt,0

:: else fi }

Horizontal Steps. The translation of a horizontal transition is also divided into
two steps. But, in this case, the request part consists of two options. If there is
no request message with this label in the parent channel, then the message is
sent. Otherwise a test for horizontal synchronization is done. If the test is valid,
the response messages are written on the channel. The PROMELA instructions
are the next. Here the label of t is denoted as Lh(t).

enableTest_t && ! pc??[_,Lh(t),_,0] -> pc!_pid,Lh(t),id(t),0 /* fT */

enableTest_t && ! pc??[eval(_pid),Lh(t),_,0] && /* cT */

pc??[_,Lh(t),_,0] ->

sP(_pid, 3); pc??nt,Lh(t),it,0;

pc!_pid,Lh(t),id(t),1; pc!nt,Lh(t),it,1; sP(nt, 3);

The firing is executed outside the inner cycle, as shown in Figure 3(b). We
remark that, when these transitions consume net tokens, the label used for enable
and consume is the one for vertical synchronization (Lv(t)=0 as for unlabelled
transitions). Therefore, the translation of the firing is the same.

In order to demonstrate the correctness of the above translation schema first
note that all entities of a NPN are properly transformed into PROMELA con-
structions. The marking of the net is encoded in the values of global and local
variables. Each step in the net corresponds to the execution of a sequence of
atomic or deterministic regions with priority 3 in the PROMELA program. The
execution path corresponding to a sequence of NPN steps may include additional
deterministic regions between the net steps, due to the synchronization requests.
But these regions do not affect the underlying marking. Besides, they are ex-
ecuted once, before the synchronization, unless they are disabled by another
firing. Since the firings in a synchronizing step are interleaved, several execution
paths in the model may correspond to the same firing sequence in the NPN.
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4 Investigating Behavioral Properties with SPIN

The NPNs with autonomous elements is a subclass of recursive nested nets for
which termination is decidable [17]. This was proved by constructing a finite
coverability tree where each node represents a reachable marking. The method
classifies the nodes as internal, final, covering and iterative. Internal nodes have
at least one reachable marking as direct descendant while the remaining nodes
are leaves of the tree. Covering nodes represent infinite cycles in the net and are
detected by means of a quasi-ordering compatible with the relation [〉. Iterative
nodes have a nested net token leading to an infinite recursive firing sequence.
Final nodes represent dead markings; thus the net is terminating if all the leaves
are final. As far as we know, no tool has been implemented this method yet.

The translation proposed in previous section can be used for studying the
behavior of NPNs. The simulation facilities provided by SPIN may help in the
validation of specific firing sequences. Besides, some properties can be verified,
in particular termination. Those states of the PROMELA model where every
active process is blocked at the inner loop correspond to the final nodes of the
coverability tree. These states should be marked as valid end states for SPIN.
This way, the default verification will report an error if there exists an invalid
end-state. Since SPIN deals with finite-state models, iterative nodes and covering
nodes increasing the marking will lead to invalid states. But such states may also
be due to a long terminating sequence exceeding SPIN limits (number and bound
of channels, processes, etc). SPIN guided simulation or advanced options (e.g.
-DVECTORSZ, -DBITSTATE, -DCOLLAPSE) will provide insights of the real
situation. When the search is completed without errors, the verifier may report
some unreachable states. One of these states should be the end of init since
SN cannot be consumed. Other unreachable states may be due to transitions
which are never fired or net tokens which are never consumed.

If the net has cycles, a further analysis should be done in order to conclude
termination. This is because some covering nodes may lead to cycles in the space
state of the model that are not detected by the default verification. Instead
a search for acceptance cycles should be performed. To this end, we should
add accept labels in front of the inner loop of the proctype definition of each
element net and the also the loop of init. If the new search is completed and
no acceptance cycle is found by SPIN then the NPN is terminating.

It is important to remark that priorities are key to approximate the synchro-
nizing steps. This feature was recently introduced in PROMELA (SPIN Version
6.2.0 - May 2012) and some errors have been reported on the current implemen-
tation (version 6.2.5 - May 2013). Besides, it requires compilation without the
partial order reduction (-DNOREDUCE). Therefore, in order to take advantage
of the full verification power of SPIN, priorities may be disabled in the trans-
lation, just by defining sP(p, n) as skip. This entails that a number of steps
may be interleaved between the firings involved in a synchronization. However,
this does not affect the verification since labelled transitions do not share in-
put places. Hence, if a PROMELA model without priorities satisfies a property,
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the same holds for the NPN. Nevertheless, in our experiments the verification
with priorities exhibited a better performance than without using this feature.

Example 3. The translation for the element net F in Figure 1 is shown below.
Since the NPN has no cycle, termination can be proved by a default verification
of the PROMELA model3. SPIN took 0.001s for this analysis, running in a
notebook Intel Core I3, 2.4GHz, 4Gb RAM. For p1 = 34, the time was 0.211s
but for p1 = 35 the verification could not be completed. The same happens
if, as in [17], we remove the places p1 and p5, leading to an infinite recursive
firing sequence. In both cases the same error trail is obtained. However, for the
terminating version, increasing the size of state vector (-DVECTORSZ=2048)
was enough for completing the verification for p1 = 70 in 3.46s.

proctype netF(chan pc){

byte p6=1,p8,nt,it; NetPlace p7;

do:: {

do:: d_step{ p6 >0 &&

!pc ?? [eval(_pid),10,3,0]->

pc ! eval(_pid),10,3,0] }

:: d_step{ p6 > 0 && p1 > 0 ->

sP(_pid, 3);

p1--; p6--; dT(3);

pc ! _pid,0,4,1 }

:: d_step{

p7.d ?? [_,10,_,0] ->

sP(_pid, 3);

p7.d ?? nt,10,it,0;

consNetTok(p7.d, nt);

p7.d ! nt,11,it,1;

sP(nt, 3);

p8++; sP(_pid, 1); }

:: d_step{ p8 > 0 &&

!pc ?? [eval(_pid),10,6,0]->

pc ?? eval(_pid),10,6,0] }

od }

unless atomic{

pc ?? eval(_pid),_, it,1 ->

if:: it == 4 ->

nt = run netF(p7.d);

p7.d ! nt, 255,0,0 ;

:: it == 3 ->

p6--; p5++; break

:: it == 6 ->

p8--; p5++; break

:: it == 0 -> break

fi; sP(_pid, 1) }

od; sP(_pid, 1) }

Other properties can be verified for a terminating NPN. For example, bounded-
ness can also be studied with the default verification by means of bounds for the
channels and assertions on the variables for places. Some reachability conditions,
in particular those that are restricted to places in SN , can also be investigated
using LTL properties or never claims. To this end, the non-shared places of SN
should be declared as global instead local variables. Conditions involving net
tokens should be encoded in a never-claim, in order to gain access to the value
of local places through remote references. But this is only possible if the total
number of net tokens is known in advance. Never-claims may also help to analyze
some properties of non-terminating nets. However, SPIN provides support just
for process-level weak fairness; thus strong fairness should be embedded inside
the claim.

Example 4. The last statement in Example 1 can be proved with SPIN. To this
end, we declared all places of SN as global variables. Besides, we included two

3 See http://www.ime.usp.br/~mirtha/factEx.pml. We assume λ = 10 and λ̄ = 11.

http://www.ime.usp.br/~mirtha/factEx.pml
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additional variables: a for saving the initial marking of p1 and f for counting
the number of net tokens created. The statement can be specified using the
LTL property <>[](p4==1 && p2==0 && len(p3.d)==0 && p1==a-f+1 && p5==f).
The analysis took 0.02s.

The main disadvantage of SPIN is that the number of active processes and
channels is limited to 255. Hence, large nets must be analyzed by means of
smaller abstract models. To reduce the state space, it is important to avoid
large bounds for the channels and use data types such as unsigned and bit

instead of byte.

5 Application to Inter-organizational Workflow Nets

In the next we illustrate the use of our translation by means of an example of a
NPN for an inter-organizational workflow. A workflow can be modelled using a
PN in which transitions represent either tasks or routing patterns while places
represent casual dependencies. Such a net, called Workflow Net (WF-net) [26],
has a place i with no incoming arc (source node) and another place o with no
outgoing arc (sink node). Furthermore, every other place or transition is on a
path from i to o. The initial and final markings have a single token at i and o
resp. An inter-organizational WF-net (IOWF-net) is the combination of several
WF-nets with asynchronous and synchronous communication relations between
tasks [26]. An asynchronous relation (AC) between T 1 and T 2 implies that T 2
must be executed after T 1 is completed. To this end an additional place is used.
A synchronous relation (SC) between T 1 and T 2 implies that they are executed
at the same time. These transitions are merged into a single one.

IOWF-nets can be modelled as NPNs [21]. In this approach, each local WF-net
is an element net having a sink transition from o labelled for vertical synchro-
nization. The communication relations are represented using an independent
element net AC and labels for horizontal synchronization. The system net has
also source and sink places and a place for storing the WF-net tokens and a sin-
gle AC net token. Since the local WF-nets only expose the labels, this approach
provides more flexibility, modularity, autonomy and privacy.

Figure 4 shows a NPN modelling an IOWF-net. It consists of two WF-nets
LWF1 and LWF2 with labels Lh = {l1, l2, l3, l4, l5, l6, l7, l8} and Lv = {λ, λ̄}.
Transitions in different WF-nets with the same horizontal label belong to SC.
The asynchronous communication relation is modelled as the element net AC.
From the initial marking of SN, a net token of each type is created. Then, several
autonomous and horizontal steps are performed. When a WF-net reaches its final
marking, a vertical synchronization with SN occurs. Once both WF-net tokens
are consumed, the last transition fires, the AC net token is also consumed and
SN reaches its final marking. Figure 4 also includes the PROMELA translation4

for LWF1 and SN . We have used the label number as the identity for horizontal
transitions.

4 See http://www.ime.usp.br/~mirtha/ioWFEx.pml.

http://www.ime.usp.br/~mirtha/ioWFEx.pml
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proctype netLWF1(chan pc){

bit p1=1,p2,p3,p4,p5;

unsigned nt:3; unsigned it:4;

do :: {

do :: fT(p1,2) :: cT(p1,nt,2)

:: fT(p2,3) :: cT(p2,nt,3)

:: d_step{p2 > 0 ->

sP(_pid, 3); p2--; dT(3);

p3++; sP(_pid,1) }

:: fT(p3,5) :: cT(p3,nt,5)

:: fT(p3,6) :: cT(p3,nt,6)

:: fT(p4,7) :: cT(p4,nt,7)

:: fT(p5,10)

od }

unless atomic{

pc ?? eval(_pid),it,1 ->

if :: it==2 -> p1--; p2++

:: it==3 -> p2--; p3++

:: it==5 -> p3--; dT(6); p4++

:: it==6 -> p3--; dT(5); p4++

:: it==7 -> p4--; p5++

:: it==11-> break

:: it==0 -> break

fi; sP(_pid, 1) }

od; sP(_pid, 1) }

bit p4;

init{

bit p1=1; unsigned p3:2;

unsigned nt:3; NetPlace p2;

do :: atomic{ p1 > 0 ->

sP(_pid,3); p1--;

nt = run netLWF1(p2.d);

p2.d ! nt, 255,0;

nt = run netLWF2(p2.d);

p2.d ! nt, 255,0;

nt = run netAC(p2.d);

p2.d ! nt, 255,0;

sP(_pid,1) }

:: atomic{

p2.d ?? [_,10,0] ->

sP(_pid,3);

p2.d ?? nt,10,0;

consNetTok(p2.d, nt);

p2.d ! nt,11,1; sP(nt,3);

p3++; sP(_pid,1) }

:: atomic{ p3 >= 2 &&

p2.d ?? [_,255,0] ->

sP(_pid,3); p3 = p3-2;

p2.d ?? nt,255,0;

consNetTok(p2.d, nt);

p2.d ! nt,0,1; sP(nt,3);

p4++; sP(_pid,1) }

od }

Fig. 4. NPN for an IOWF-net and part of its PROMELA translation
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The behavior of a workflow is correct if its WF-net is sound [26]. Three con-
ditions are required to satisfy this property: (1) from the initial marking, it is
always possible to reach the final marking; (2) the final marking should be the
only marking reachable with a token at o; and (3) every task must be performed
for at least one execution of the workflow. In [27], it was shown how SPIN can be
used for proving soundness of acyclic WF-nets. In particular, the first property
can be verified using the LTL formula <>(o>0). An IOWF-net is sound if the
local WF-nets are sound and the condition (1) is valid for the NPN [21]. The
WF-nets LWF1 and LWF2 are sound. The soundness of the NPN in Figure 4
was verified using the PROMELA model in 1.8s.

6 Conclusions

Several variations of PNs and PN-like formalisms, (e.g. workflows, business
processes, UML diagrams) have been translated into DVE [14], LTSA [22],
NuSMV [6] and SPIN [9,7,23,27,24,2]. DVE, LTSA and NuSMV cannot be
used in this context because they have no support for recursion. Among the
PROMELA translations, the one presented in [2] is the closest to the NPN
framework. Nevertheless, it is restricted to two-level nested nets without hori-
zontal synchronization or net tokens removal. In [7], two-level object nets are
encoded into Prolog and verified using the XTL model checker. Although the
method is intended for arbitrary nesting, the encoding for the synchronization
in the multi-level case is not provided. Rewriting logic has been used to express
the semantics of recursive algebraic nets [1]. But these nets do not include hori-
zontal steps. Translating NPNs into PROMELA is simpler and more amenable
for simulation that using rewriting rules or logic programming. Regarding verifi-
cation, SPIN outperforms Maude model checker in execution time and memory
requirements [5]. According to [8], SPIN is faster than XTL model checker and
can handle a larger number of properties and instances.

As far as we know, this is the first translation integrating multi-level and
recursive nested nets as well as horizontal and vertical synchronization steps.
Our translation applies to a subclass of NPNs where the vertical steps remove
the net tokens involved. We have shown that SPIN may be an effective tool for
verifying behavioral properties of these nets such as termination, boundedness
and LTL properties. We illustrated the use of the translation in a practical
application: the verification of the soundness for an interorganizational workflow.
For simplicity and space limitations, we imposed some additional restrictions on
the nets. In particular, we did not consider basic colored places, variables and
expressions on output arcs; but these features are easily included. The input arcs
from net-typed places are labelled by a single variable. But we can get rid of this
restriction by means of an additional channel for each net place, to keep track
of the number of request messages for each label. This extension will also allow
horizontal synchronization steps involving more than two nets. The inclusion of
transportation steps can be achieved by sending channels via channels. When a
net token is moved, the parent net should send to the child process the channel
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corresponding to the new place (e.g. via a global channel). All pending requests
from the child should also be moved to the new channel.

The ideas presented in this paper constitute a first step towards the veri-
fication of recursive interaction protocols in a coordination middleware called
JamSession [3]. This middleware is composed by protocols that execute specific
services and manage distributed agents and resources by means of predicates.
The agents are hosted at locations and can be moved between them. The pro-
tocols combine movements and predicates using logical connectives and can be
nested and recursive. The movements play a relevant role in JamSession coor-
dination model. However, they may lead to synchronization errors that may be
difficult to trace. Therefore, in JamSession, it is a crucial issue to provide means
for verifying that the execution of the interactions meets the desired properties.

In [4] it was shown that when the JamSession protocols are not recursive, they
can be translated into hierarchical CPNs. The recursive protocols can be mod-
elled using a NPN where each protocol definition generates an acyclic element
net . We had run some preliminary experiments using the PROMELA transla-
tion and also a direct translation from JamSession to PROMELA. The running
times are similar for both versions but the direct approach slightly reduces the
size of the state space. However, the NPN approach allows to understand the
error traces more easily. Besides, the properties to be verified can be formu-
lated in a simpler and uniform way. As future work, we plan the construction
of an environment for the analysis of these nets, based on the ideas behind the
translation and SPIN model checking techniques.

References

1. Barkaoui, K., Hicheur, A.: Towards analysis of flexible and collaborative workflow
using recursive eCATNets. In: ter Hofstede, A.H.M., Benatallah, B., Paik, H.-Y.
(eds.) BPM Workshops 2007. LNCS, vol. 4928, pp. 232–244. Springer, Heidelberg
(2008)

2. Chang, L., He, X.: A model transformation approach for verifying multi-
agent systems using SPIN. In: Proc. ACM Symposium on Applied Computing,
pp. 37–42 (2011)
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Abstract. We show how to write a concise and elegant specification of
a linearly linked data structure that is applicable for both verification
and runtime checking. A specification of linked lists is given as an ex-
ample. The concept of a list is captured by an observer method which
is a functional version of a reachability predicate. The specification is
written in the Java Modeling Language (JML) and does not require ex-
tensions of that language. This paper addresses a mixed audience of users
and developers in the fields of formal verification, runtime checking, and
specification language design. We provide an in-depth description of the
proposed specification and analyze its implications both for verification
and for runtime checking. Based on this analysis we have developed ver-
ification techniques that fully automate the verification process, using
the KeY tool, and that are also described here.

1 Introduction

Linked data structures have been specified and verified in many works. Yet,
the specifications we found in the literature either are complex and therefore
difficult to understand by engineers or use logics and formulas which cannot be
employed by runtime checkers1 for popular languages such as Java. JML [11]
is a specification language that has been designed for verification and runtime
checking, but the language is used differently depending on which of the two
approaches is used. This often results in specifications that are incompatible
for the other approach. L. du Bousquet et al. [7] show that specifications used
for verification or for runtime checking, even if written in JML, often cannot
be exchanged for the other purpose. The combination of both approaches is,
however, important due to their complementary strengths (see, e.g., [7,18]).

We have developed JML specifications for a selection of methods that operate
on linked lists (get, size, acyclic, remove, insert). They are compatible with
deductive program verification on the actual source code level as well as with
runtime checking tools. For the verification we have used KeY [3] and for run-
time checking the testing tool JET [5]. Both tools use JML as the specification
language. The goal of the paper, however, is not only to provide ready-to-use
1 We use the term runtime checker as a synonym for testing tool. The term is motivated

by the runtime assertion checker (RAC) that is provided with JML [11].
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specifications, but to explain the design decisions with respect to verification and
runtime checking. Our goal is to explain to engineers that use runtime checkers
how to write specifications that are compatible with formal verification tools and
vice-versa.

To achieve readable and executable specifications we have decided to use
queries, also known as inspector or observer methods, instead of list abstrac-
tions using ghost fields. Since no ghost state has to be managed, (a) the
implementation can be executed as it is, without the need to extend it with code
that updates the ghost state in parallel to the normal execution, and (b) the user
does not have to think about and to specify two kinds of states. However, regard-
ing verification, reasoning with queries is not easy and has been even proposed
as a verification challenge [12]. During this research we created experiments with
over 5.000 LOC as steps towards a clear and automatically provable specifica-
tion. A great amount of work was to extend the proving techniques of the KeY
tool, as briefly described in Section 6. Specification readability and clear seman-
tics of the specification elements are crucial for ensuring correctness. We have
developed specifications that are readable and understandable also by software
engineers that are not experts in deductive verification.

Reachability is crucial for reasoning about linked data structures [14]. To il-
lustrate our approach, we specify the query method Node get(Node o,int n)
(Figure 2) which provides access to the n’th node of the list starting at node o,
following the field next. It can be seen as a functional version of a reachability
predicate but additionally it identifies the position of list nodes. Quantification
over the integer n (second parameter) results in quantification over all elements of
the list o (first parameter). This enables to express properties that involve tran-
sitive closure of the list, that a requirement holds for all elements of the list or in
a specific range, and that an element exists (is reachable) which fulfills a certain
property. Transitive closure and reachability cannot be expressed in first-order
logic, but they can be expressed in first-order logic with integers [4].

JML provides the reachability predicate \reach, which returns the set of ob-
jects reachable from a particular reference. Dealing with this predicate requires
reasoning about sets, something that we tried to avoid in order to reduce com-
plexity. Not all tools that use JML as a specification language fully support this
predicate, e.g. KeY and JET. Also, sometimes different semantics of the predi-
cate are needed [1]. In contrast, the semantics of get is given by its specification
or implementation, providing an easy way of exporting the semantics to various
tools. Using a self-defined method instead of a built-in function or predicate is
also more flexible for the user.

Structure of the Paper. Section 2 describes related work. A short introduction
to JML is given in Section 3. In Section 4 the query get is described which is
the basis for our specifications. Section 5 describes the specification of modifier
methods, i.e., methods that change the program state, as well as additional
queries. Section 6 describes verification techniques we have developed, experience
with runtime checking, and additional insights. Section 7 concludes the paper
and describes future work.
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2 Related Work

Specification Using Queries and/or Model Fields. linked list specifications mostly
either (a) describe the effect of mutator methods in terms of query methods, or
(b) use an abstraction of the concrete data structure implementation.

The usage of inspector methods within specifications to abstract away from
the concrete implementation is promoted by [8]. An explicit heap encoding limits
the information on which those methods depend. In [6], a formalization of pure
methods is presented that allows reasoning about method calls in JML specifica-
tions. Pure methods are encoded by uninterpreted function symbols and axioms.
The encoding can be applied to JML’s model fields, specification-only fields that
encode abstractions of the concrete state of a data structure.

A full JML specification for java.util.LinkedList can be found in [2]. It
has complex dependencies due to its hierarchy of containers but it hides imple-
mentation details. Our focus is different, it is on proving and testing the actual
implementation of a linked data structure. Ideas from both specifications can be
combined. Some technical differences are: they use model fields, we do not; they
use no recursive specification of the get method and it is not connected with a
“next” pointer; their specification of remove uses disjunctions (DNF versus CNF)
which is incompatible with our verification technique (item 3 in Section 6).

Dafny is used to specify and verify a linked list in [13]. The class node uses
two ghost fields: the sequence of data values stored in a node and its successors,
and a set consisting of the node and its successors. In contrast to our approach,
the specifications do not use any reachability predicate.

Specification Using FOL. Analysis of programs that manipulate linked lists by
using first-order axiomatizations of reachability information has been extensively
studied (e.g., [16,10]). The verification in [10] provides a first-order approxima-
tion of a reachability predicate. Two predicates characterize reachability of heap
cells. These predicates allow reasoning uniformly about both acyclic and cyclic
lists. While theoretically incomplete, the authors of [10] believe that the approach
is complete enough for most realistic programs.

In [14], the authors explore how to harness existing theorem provers for first-
order logic to prove reachability properties of programs that manipulate dy-
namically allocated data structures. The paper also provides a set of axioms for
characterizing the reachability predicate, which works only for acyclic lists.

Two abstractions, a predicate abstraction and a canonical abstraction, of a
(cyclic) singly-linked list are studied in [15]. The state of a program is represented
using a 3-valued FOL structure. The intuition is that a heap containing only
singly-linked lists is characterized by the connectivity relations between a set of
nodes and the length of list segments.

Specification Using HOL or Separation Logic. Zee et al. [20] verify full functional
correctness of linked data structure implementations. The correctness properties
include intractable constructs such as quantifiers and transitive closure. The
specification is written in higher-order logic (including set comprehension, λ-
expressions, transitive closure, cardinality of finite sets, etc.), and for verification



102 C. Gladisch and S. Tyszberowicz

JAVA + JML
1 public class Node {
2 //@ public model static JMLDataGroup footprint;
3 public /*@ nullable */ Node next; //@ in footprint;
4 ... }

JAVA + JML

Fig. 1. The class Node, representing list elements

the Jahob system was used. For some verifications (e.g., a sized list), additional
provers such as SPASS, MONA, and BAPA have been used by Jahob.

Separation logic, a generalization of Hoare logic, is powerful for handling the
framing problem which occurs with reasoning about heaps. In [9], linked lists
with views are investigated which is not immediately expressible in frameworks
such as JML. Separation logic is usually used for verification but it has also been
utilized for runtime checking [17]. An approach that combines separation logic
and dynamic frames is described in [19].

3 JML

Java Modeling Language (JML) is a behavioral interface specification language
used to specify the behavior of Java modules. Following is a short description of
JML clauses used in the paper. Full details can be found in [11].

The pre-state of a method call is the state of the program after passing pa-
rameters and before running the method’s code. The post-state is the state of
the program just before the method normally returns or throws an exception.

The public normal_behavior clause is used to specify behavior of method
calls that return normally. The requires clause specifies the method’s precondi-
tion, evaluated at the pre-state of the method call. The ensures clause specifies
properties that are guaranteed to hold at the end of the method call, in case
that the method returns normally. Two keywords that are used in ensures are
\old and \result. The first refers to the value of fields at the pre-state, and
the second is the value returned by the method when normally terminating. The
expression (\forall int i;φ;ψ) denotes the formula ∀i : int.(φ → ψ).

The clauses assignable and accessible declare the frame properties of a
method. The former defines which (memory) locations can be updated during
method execution and the latter states the locations that the method may read
from. A set of locations can be declared using a model field of class JMLDataGroup.
For instance, the model field footprint in Lines 2-3 of Figure 1 denotes the lo-
cation set of the field next for all receiver objects of class Node. The empty set
is denoted as \nothing.

The measured_by clause is used when the specification is recursive. It en-
ables to describe a termination argument, ensuring that the specification is well-
defined. It defines an integer-valued expression that must always be at least zero
and it has to decrease strictly for each (recursive) call.
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JAVA + JML
1 /*@ public normal_behavior
2 requires n>=0;
3 assignable \nothing;
4 accessible Node.footprint;
5 ensures (o==null || n==0) ==> \result == o;
6 ensures n>0 ==> \result == (get(o,n-1)!=null?
7 get(o,n-1).next : null);
8 measured_by n;
9 @*/

10 public static /*@nullable pure*/ Node get(/*@nullable*/Node o, int n){
11 int i=0; Node oldo = o; //oldo is a temporary variable
12 /*@ loop_invariant 0<=i && i<=n && o == get(oldo,i);
13 assignable \nothing; //syntactically not supported by JET
14 decreases n-i; @*/
15 while(i<n && o!=null) {
16 o=o.next;
17 i++;
18 }
19 return o;
20 }

JAVA + JML

Fig. 2. Specification and implementation of the query method get

Member fields, formal parameters, and method return types are by default
considered to be non_null. In order to enable them to have a null value, they
explicitly have to be annotated with the modifier nullable.

4 The Observer Method Get

In order to express properties of a list, we use the method Node get(Node o,
int n) (Figure 2) which provides access to the n’th node of the list starting
at node o, following the field next. It can be seen as a functional variant of
a reachability predicate, allowing quantification over list elements. The chosen
signature is a functional version of a get-method where the usually implicit this
pointer is made explicitly as the first argument. The rational was to allow the
first element to be the null pointer during our experiments. However, different
signatures can be used, e.g. get(int n), where o is a field or the this pointer.

4.1 Specification of the Get Query

Figure 2 presents a recursive specification of the method get. Line 5 defines
the base-case, where either the element at position 0 is accessed or the list is
empty, i.e. null. Lines 6-7 define the step-case for n>0, with a case distinction
that checks whether the element at position n-1 is null. If it is not null, then
get(o,n) is defined as get(o,n-1).next; otherwise, it is also null.
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For modular reasoning, the framing properties of get must be defined in
addition to the functional specification. Framing properties are important to
help verification and do not have to be used for runtime checking, as the latter
does not abstract the code. The assignable clause expresses what locations
might have been modified by a method (cf. Section 3). More interesting, however,
is the inverse, i.e., the locations that have not been modified. For every field f
not mentioned in the assignable clause, the implicit postcondition f==\old(f)
can be assumed. This information is important for verification to relate pre- and
post-state. The method get is (strictly) pure, thus it does not modify the heap’s
state and can be used in specifications.

The result of get depends not only on the values of the parameters o and n,
but also on the next field values of the Node objects of the list starting at node o.
Hence, whenever an assignment to next has been made, the value of the method
may have been changed. The difficulty in specification and verification when
using observer methods is in tracking the return values of the observer methods
according to the changes in states they depend on. The accessible clause, also
called dependency clause, describes which memory locations the method depends
on. The dependency clause in Line 4 of Figure 2 is an over-approximation. The
state of all locations that are not mentioned in the dependency clause can be
ignored when evaluating the method, which considerably simplifies verification.

4.2 Implementation of the Get Query

The specification of get can be used both for specifying and for verifying prop-
erties of a list. The first method that we have verified using get is the imple-
mentation of get itself. A recursive code is the most trivial to implement and to
verify. However, we demonstrate the more interesting iterative implementation,
since a loop invariant, which uses the recursively defined query get, has to be
provided or computed. As can be seen in Figure 2, the loop invariant is very
concise—which is one of our goals. The code annotations, however, bear some
problems that will be described next, together with the solutions that we have
successfully applied.

Required Lemma. The specification of get (Figure 2) implicitly implies that if
i is the last element’s index, then for all n, with i < n, get returns null. This is
needed for the verification, to prove the postcondition for the case that the loop
in Lines 15-18 terminates due to the condition o==null, and i<n evaluates to
true. If a verification system is not able to derive this knowledge automatically, it
must be provided by the user—for instance as a lemma. One possibility to do this
in JML is to declare a pure void method, say lem_getTransNull, which contains
the lemma in its postcondition (see Figure 3). A runtime checker, however, will
not be able to execute the postcondition as it uses unbounded quantification.
In such cases it may just ignore the postcondition. Since the lemma is needed
only as a hint for the verification tool, this lack of compatibility with runtime
checking is not a problem. To use it for verification, lem_getTransNull can be
inserted into the code in Figure 2 after Line 18. An implementation that ensures
i==n at loop exit does not need the lemma.
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JAVA + JML
1 /*@ public normal_behavior
2 assignable \nothing;
3 ensures (\forall int j; 0<=j && get(o,j)==null;
4 (\forall int k; j<k; get(o,k)==null)); @*/
5 public static void lem_getTransNull(/*@nullable */ Node node){};

JAVA + JML

Fig. 3. Encoding of a null transitivity lemma of the query method get

JAVA + JML
1 ... measured_by n; */
2 public /*@nullable pure*/ Node getImpl(/*@nullable*/Node o, int n){
3 int i=0; Node oldo = o;
4 /*@ loop_invariant 0<=i && i<=n && o == get(oldo,i); ...

JAVA + JML

Fig. 4. Implementation of the query method get

Well-definedness Issues: The measured_by Clause. The specification of the get
query (Figure 2) contains the measured_by n; clause. This clause requires that
each time the method is called a) the value of the argument n is decreased
and b) n ≥ 0. These conditions ensure the method’s termination and hence
its well-definedness. However, the loop invariant in Figure 2 is problematic, as it
permits i==n. When the subformula o==get(oldo,i) is evaluated and i==n, the
call get(oldo,n) is encountered which violates condition a) of the measured_by
clause. This can be a problem also for runtime checking, and not only for ver-
ification: the checker may not terminate when checking the loop invariant. To
enforce the first condition, the following two solutions can be applied:

Solution 1. Distinction between the Program and the Specification Function. This
solution explicitly distinguishes between the get query, which will be used for
specification only, and the method used for implementation, say getImpl (Fig-
ure 4). Both queries get and getImpl co-exist. The expression n following the
measured_by clause of get is independent of that employed in getImpl. In order
to use get also by a runtime checker, the implementation must be provided.

Solution 2. Expanding the Definition of get in the Loop Invariant. Since the
second argument of get is decreased in each recursion step, manual expansion
of the specification of o==get(oldo,i) ensures the satisfaction of the required
conditions of the measured_by clause. However, the specification is larger and
less readable.

5 Specification of Modifier Methods

Modifier methods, also called mutators, are non-pure ones, i.e., they can modify
fields of objects. We will show two of them: remove and insert. Figure 5 shows
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an implementation of the remove method. A trivial specification of the method
is shown in Figure 6, where Line 5 of the specification describes the effect of the
assignment in Line 3 of the implementation. The specification formalizes how
the next field is changed by the method when the precondition is satisfied. The
specification is strong and correct, but it is not suitable for our approach as it
does not specify how the result of get has changed.

The problem is that, in contrast to runtime checking, in verification a query
that uses recursion or a loop cannot be simply executed as this execution would
not terminate for arbitrary inputs. Instead, the value of the query has to be
deduced. This is not just the framing problem but the question of how exactly
values have changed. The addressed problem is typical for specifications with
queries used in modular verification. Handling this problem has been proposed
as a verification challenge [12] and is addressed in different works (see Section 2).
It can be explained using an example, summarized by the following three lines:

assume value of get(o,i) is known
assign u.next:=b
assert φ(get(o,i))

Assume that the value of get(o,i) is known, e.g. from a precondition. Then
a reference value b is assigned to the field next of an object u of class Node.
Such an assignment may occur in a modifier method, for instance remove. Since
the field next has been modified and the query is heap-dependent, the return
value of the query may have changed after the assignment. The problem is in
determining the value of the get(o,i) query after the state change in order to
check whether it fulfills some condition φ, e.g. the postcondition. In contrast to
runtime checking, in modular verification the query is not executed but rather
only the information from its specification is used2. However, whereas the value
of the field next in Figure 6 is specified, the evaluation of the get query is not.

JAVA

1 public static void remove(Node o, int i){
2 Node n=get(o,i-1);
3 n.next=n.next.next;
4 }

JAVA

Fig. 5. Implementation of the modifier method remove

A similar problem occurs also with the other queries: size and acyclic.
When verifying a program which invokes the query remove two times in a row,
e.g. remove(o,i);remove(o,k);, the postcondition of the first invocation of
remove must imply the precondition of the second invocation:

2 Also in verification the implementation of the query can be used instead of the
specification, but since the state space is infinite, or arbitrarily large, it cannot be
flattened to a finite set of executions.
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JML
1 public normal_behavior
2 requires 0<i && i<size(o) && acyclic(o);
3 assignable Node.footprint; //for KeY: get(o,i-1).next;
4 accessible Node.footprint;
5 ensures \old(get(o,i-1)).next==\old(get(o,i+1));

JML

Fig. 6. A precise specification of the method remove

JML
1 /*@ public normal_behavior
2 requires 0<i && i<size(o) && acyclic(o);
3 assignable Node.footprint; //for KeY: get(o,i-1).next;
4 accessible Node.footprint;
5 ensures (\forall int j;0<=j && j<i; get(o,j)==\old(get(o,j)));
6 ensures (\forall int k;i<k && k<=\old(size(o));
7 get(o,k)==\old(get(o,k+1)));
8 ensures size(o) == \old(size(o))-1 && acyclic(o); @*/

JML

Fig. 7. Specification of the method remove using the query get

. . .

postcondition of remove(o,i)︷ ︸︸ ︷
\old(get(o, i− 1)).next = \old(get(o, i+ 1)) →

precondition of remove(o,k)︷ ︸︸ ︷
0 < k ∧ k < size(o) ∧ acyclic(o)

where ‘. . .’ stands for additional assumptions, e.g. 0 < k < i < size(o), to ensure
validity of the formula. In order to prove this formula, knowledge is needed of
how the new information about the field next changes the evaluation of size
and acyclic. This knowledge can be provided either in the form of a lemma,
or, following our approach, in the postcondition of the modifier method.

5.1 Specification of the Method Remove Using Queries

A specification of the remove method that uses the get query is provided in
Figure 7. Since the specification describes the return value of get after calling
remove, one can regard it also as a specification of the query with respect to the
execution of remove. The specification contains three postconditions. The first

Fig. 8. Correspondence of list nodes before and after removing element B
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JAVA + JML

1 /*@ public normal_behavior
2 requires 0<i && i<=size(o) && acyclic(o);
3 requires e.next==null && (\forall int i;0<=i && i<=size(o);get(o,i)!= e);
4 assignable Node.footprint;
5 accessible Node.footprint;
6 ensures (\forall int j;0<=j && j<i;get(o,j)==\old(get(o,j)));
7 ensures get(o,i) == e;
8 ensures (\forall int k; i<k && k<=\old(size(o))+2;get(o,k)==\old(get(o,k-1)));
9 ensures size(o) == \old(size(o))+1 && acyclic(o); @*/

10 public static void insert(/*@nullable */ Node o, int i, Node e){
11 Node tmp = get(o,i-1);
12 lem_getTransNull(o); //this is a lemma, see Figure 3
13 e.next = tmp.next;
14 tmp.next = e;
15 }

JAVA + JML

Fig. 9. Specification and implementation of insert using queries

JAVA + JML
1 /*@ public normal_behavior
2 requires (\exists int i; ((o==null && i==0) ||
3 (i>0 && get(o,i-1)!=null && get(o,i)==null)) );
4 assignable \nothing;
5 accessible Node.footprint;
6 ensures ((o==null && \result==0) ||
7 (\result>0 && get(o,\result-1)!=null && get(o,\result)==null)); @*/
8 public static int /*@ pure */ size(/*@nullable */ Node o){...};

JAVA + JML

Fig. 10. Specification of the query method size

(Line 5) describes the new value of the query with respect to its old one (i.e.,
before executing the method) for the list interval that has not been changed.
The second postcondition (Lines 6 and 7) describes the interval after the re-
moved element; here the list has been shifted as depicted in Figure 8. These two
postconditions solve the problem of proving the following assertion:

assume value of get(o,i) is known
invoke remove(o,j)
assert φ(get(o,i))

If the formula φ(get(o,i)) is true, it can be proved using the specification given
in Figure 7 instead of the one in Figure 6. The reason is that full information
about get is available after invoking remove.

The third postcondition (Figure 7, Line 8) specifies the return values of size
and acyclic in the post state of remove. Hence, when calling remove twice in
a row, sufficient knowledge is provided to the theorem prover to prove that the
postcondition of the first invocation implies the precondition of the second one.

The specification of insert (Figure 9) follows similar principles to those of
remove. Programs constructed with these methods can therefore be verified using
the methods’ contracts.
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5.2 List Size and Acyclicity

The size query, which returns the list’s length, is used in Lines 2, 6, and 8
of Figure 7. Note that the length of the list is arbitrary and not fixed, i.e.,
the correctness proof is valid for every length. The specification is also cor-
rect without the upper bound \old(size(o)) of the quantification (Line 6), as
get(o,i)==null when i>size(o). Omitting the upper bound even simplifies
the verification since less queries are used, the formula is smaller, less case dis-
tinctions have to be made, and quantifier instantiation—a well-known problem
in theorem proving—is simpler. However, we have included the quantification
bound as it is important for runtime checking tools. Such tools check the quan-
tified formula explicitly for all elements of the quantification domain, e.g., by
using a for-loop, thus they usually cannot handle unbounded quantifiers.

Fig. 11. Removing element B within a
cycle of a cyclic list

Fig. 12. Removing element B at the
beginning of the cycle of a cyclic list

One way to refer to the list’s size is by storing it in a field of the class Node.
The value of this field can be defined using a class invariant and has to be
explicitly updated by the methods that modify the list. This approach simplifies
verification since in our approach the return value of size has to be deduced
from the list structure every time it is used. Nevertheless, we decided to use a
query in order to follow rigorously one approach.

Figure 10 shows the specification of size that we have used for verification.
It uses neither recursion nor quantifiers. Since the query is used inside other
specifications, keeping it small and simple is very important for reducing proof
complexity. When using other variants to specify size, e.g. a recursive specifica-
tion, automatic proof attempts of remove were more complicated or even failed.
For cyclic and infinite lists the precondition of size is false and its return value
is undefined. Acyclicity of the list must be ensured from the context where the
query is used as it is the case for the specifications of remove and insert.

Acyclicity is required for using the modifier methods (e.g., Figure 7, Line 2).
It can be implicity expressed as \exists int i;i==size(o). However, using an
explicit specification of acyclicity is much more efficient and practical. Figure 13
shows the specification of the query acyclic. A cycle exists if there are two
distinct integers i and j such that get(o,i)==get(o,j) and get(o,i)!=null.

The methods remove and insert can be generalized for cyclic lists. However,
then the specification and verification become more complicated. The problem
occurs when removing an element within the cycle, as shown in Figure 11. When
traversing the list in the pre- and poststate of remove, the size of the interval
on which the list is shifted is increased each cycle. A solution is to redefine size
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JAVA + JML
1 /*@ public normal_behavior
2 assignable \nothing;
3 accessible Node.footprint;
4 ensures \result == (\forall int i;0<=i && i<=size(o);
5 (\forall int j;i<j && j<=size(o);
6 (get(o,i)!=null==>get(o,i)!=get(o,j)))); @*/
7 public static boolean /*@ pure */ acyclic(/*@nullable*/ Node o){...};

JAVA + JML

Fig. 13. Specification of the query method acyclic

such that it will return the length of the list before the cycle repeats. To handle
cyclic lists, also the implementation of remove (Figure 5) has to be changed.
The reason is that if the element that is removed is the first in the cycle, then
two pointers, rather than one, must be changed. Otherwise, the shape of the list
may change without actually removing the element (Figure 12).

5.3 The Order of Postconditions Reflects Semantic Dependencies

The postconditions are connected via a conjunction. Nevertheless, the order of
the postconditions is structured in a specific way to assist a verification tool in
finding a proof. To prove one of the postconditions, but the first, in the specifi-
cation of remove and insert, the preceding postcondition must be assumed as
a premise. For instance, a proof of the postcondition in Lines 6-7 of Figure 7 re-
quires the postcondition in Line 5 as an assumption. The reason is that to prove
that the list has been shifted by one element after the removed element (Lines
6-7), the assumption is needed that it was not shifted on the interval before the
removed element (Line 5); see also Figure 8. The postcondition in Line 8 adds
another layer to the specification, which semantically depends on the postcondi-
tions in Line 5-7. It formalizes properties of size and acyclic in the poststate
of remove. These queries are defined in terms of get, i.e., when replacing the
queries by their postconditions, a formula is obtained that uses get as the only
query. Hence, to prove the postcondition in Line 8, those in Lines 5-7 must be
used as premises, as full information about get in the poststate of remove is
needed. A similar argumentation explains also the sequential dependency of the
postconditions of insert in Figure 9. This is a new technique, hence existing
tools need to be extended, as we did in KeY, to utilize the postcondition order.

6 Verification, Runtime Checking, and Discussion
Verification. To verify the code presented in the listings we have used an ex-
tended version of KeY, a tool that enables automatic and interactive verification.
Some techniques used by it are: symbolic execution of Java programs, handling
of pointer aliasing, first-order theorem proving with quantifier handling via E-
matching, and reasoning with integer arithmetics. It also allows applying an in-
duction rule interactively by supplying an induction hypothesis. Such features,
or equivalent ones, are needed for the verification of the code.
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To achieve fully automatic verification of the presented code we have inves-
tigated the verification conditions that arose and developed techniques that in-
crease KeY’s power by several orders of magnitude for programs with recursive
specifications and queries. I.e., each improvement eliminated a big set of user
interactions of a certain category that were needed. A detailed description of
these techniques cannot be given in this paper due to lack of space. We briefly
point out three techniques that we have developed as a result of this research:

(1) A set of strategies for replacing occurrences of queries in verification
conditions by their definitions, i.e. by their pre- and postconditions. Originally,
KeY performed such replacements randomly, but for handling recursive queries
such as get well-designed strategies are needed. Since the query get is spec-
ified recursively, the effect of the query expansion is that the second argu-
ment of the query is subtracted by one. Performing such a replacement is re-
quired in order to prove equality between terms. For instance, in order to prove
Φ → get(o, i) = get(o, i + 1), where Φ contains some assumptions that are not
shown here, it may be necessary to apply query expansion to the term get(o, i+1),
i.e., to get a term with get(o, (i+1)−1) that will match the term get(o, i). Orig-
inally KeY has chosen randomly which queries to expand but this approach
did not lead to successful proofs. We have developed several query expansion
heuristics which improved verification also of other kinds of programs than those
described in this paper. The following three query expansion heuristics are re-
quired: expansion of queries after execution of the loop body; breadth-first query
expansion (all queries expanded once, then twice, etc.); and detection and sup-
pression of infinite loops in the proof caused by unfolding of recursive queries.

(2) Automatic application of integer induction on postconditions that use
quantifiers (Figures 7 and 9). Induction is essential to prove these postcondi-
tions. A characteristic of the quantified formulas in the specifications is that
they put two terms with the query get which are evaluated in two different
states, i.e. pre- and poststate, into relation, e.g.:

get(o,j)==\old(get(o,j)). (1)

The only useful reasoning step that can be applied to this equation is unfolding
these queries which, leads among other formulas to the equation

get(o,j-1)==\old(get(o,j-1)). (2)

Hence, if we assume (2), then the original Equation (1) can be proved. However,
repeating such unfolding does not terminate, because j stands for an arbitrary
number. Only for a concrete value, e.g. where j = 0, the Equation (1) can be
proved using unfolding. Looking closely at these steps one can see that this is
induction. We have extended KeY to perform automatically integer induction on
the postconditions with quantified formulas. Fortunately, it is sufficient to use the
quantified formulas as induction hypotheses that occur in the postconditions to
prove them, hence no additional complicated techniques are needed to generate
induction hypotheses.

(3) Reuse already proved formulas as lemmas for further proofs. The post-
conditions are proved sequentially and used as premises or lemmas for proving
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following postconditions. This extension was necessary due to the semantic de-
pendencies between the postconditions (see Section 5.3). This approach mimics
the proving style of the theorem prover Isabelle. Hence, from a broad perspective
this idea is not new but we have not seen this style of specification in JML or
being applied for the specification of lists in the related work.

With these improvements the verification proof of remove involves approx-
imately 100.000 rule applications and the proof of insert is in the range of
150.000 rule applications. In comparison, using KeY to verify code of similar
size (not related to lists) that does not use recursion and that does not require
induction can be typically proved using approximately 1.000 rule applications.

Runtime Checking. For testing the code and the specifications using a runtime
checker we have used the automatic random testing tool JET [5]. No changes to
the code have been required. However, to create more meaningful tests we have
encapsulated the test code with a test driver. The goal was not to check if the
code and specification are correct—they already have been formally verified—but
rather to check if the specification is compatible with a runtime checker. KeY and
JET do not use the same JML dialect, thus we have been required to change the
way frame conditions are written (see remark in Section 4.1). Since our approach
does not use sophisticated frame conditions but rather only safe approximations,
the transformation of specifications between both dialects is safe and trivial. The
most important change we have used for an intermediate specification was to
introduce upper bounds of quantification in the specification, using the query
size. Adding the size query and the upper bound to the quantifications made
the verification more difficult, thus more improvements in KeY were required.

Discussion. We have compared our approach to alternative ones. One alter-
native is to use arrays or sequences as abstract data types for lists. Such an
abstraction stores a copy of the list and provides direct access to its elements
via an index, e.g. a[i], similar to get(o,i). The fundamental difference is that
an array (sequence) has its own (ghost-) state that exists in parallel to the state
of the actual list, whereas the method get derives a value from the state of
the list. Specification and verification of list operations using arrays (sequences)
abstraction differ from approaches employing query methods. A coupling invari-
ant that relates the content of the array (sequence) with the state of the list is
needed. When the list is modified, the array (sequence) must also be changed
explicitly using JML’s set keyword. For runtime checking this means that the
original code must be extended with ghost code. We found that these additional
annotations and ghost state simplify verification, since induction is not needed.
However, this overhead can make specifications larger and harder to understand,
issues which we tried to avoid by using the suggested approach. The approach
we followed can also be generalized for handling data types other than lists.

To ensure that the specifications of the methods also work for verification in
practice when reasoning with method contracts, we have verified some simple
programs that use these methods. Specifying and automatically verifying dis-
jointness of two lists after calling the modifier methods was no problem. We yet
have not investigated programs with shared lists, where the nodes u and o are
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distinct and there exist integers i and j such that get(u, i) = get(o, j). To verify
such programs, additional lemmas are needed. We have verified some of them,
such as ∀o, u : Node. ∀i : int.u = get(o, i) → get(u, j) = get(o, i + j).

We have experimented also with specifications for trees. Quantification over
the nodes of a tree is complicated due to the branching nature of a tree. One
possibility is using quantification over arrays which describe paths in the tree.
However, runtime checking tools have problems with such quantification and also
reasoning is difficult. Several possibilities exist for precisely indexing nodes in a
tree using integers. Quantification over integers works for runtime checking but
the arithmetics is very complicated for verification. A more suitable specification
approach for verification is using a “contains” query for specifying containment of
nodes and subtrees. This approach is, however, problematic for runtime checking
due to quantification over nodes. Whether it is possible to write specifications
for trees that are compatible with verification and runtime checking is thus an
open question.

7 Conclusion and Future Work

The paper describes how a specification of a linked data structure can be written
that is compatible with runtime checking and verification—a goal that existing
specifications often do not satisfy [7]. As an example, we presented a specification
of linked list operations using JML that is readable, that is based on first-order
logic with integers, and that is, to the best of our knowledge, unique considering
all its characteristics. Along that presentation we elaborated problems that arise,
related to verification and runtime checking, and our solutions. We developed
the ideas and techniques based on several hundred experiments consisting of
verification tasks that were conducted during this research.

Using queries for specification makes verification difficult, and has been pro-
posed as a challenge in verification [12]. However, such specifications are easily
readable, can be executed by runtime checkers, and can be used as abstractions
in verification. Using the self-defined query get rather than a special construct,
i.e. JML’s reachability predicate, enables flexibility, as users can define their
own queries. The semantics of such a query is given by its implementation and
specification, thus it can be understood by other tools.

We have investigated what verification techniques are needed for automatic
verification. Additional techniques we have developed are: strategies for replacing
(recursive) queries by their definition in formulas; automatic application of inte-
ger induction on the postconditions that contain quantifiers; and reuse of already
proven postconditions as premises for proving succeeding postconditions.

Future plans are handling of shared lists and extension of the approach to
other linked data structures. One idea is deducing of framing conditions for
queries.
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Abstract. In this paper we consider the problem of automatic repair
of models in the context of system partial specification. This problem
is a challenge involving theoretical and practical issues and the theory
of belief revision is an alternative to give theoretical support to its so-
lution. A Kripke structure is widely used to model systems, but it does
not express partial information explicitly and a set of these structures
might be required to represent several possibilities of behavior. A more
general structure is the Kripke Modal Transition System (KMTS) which
can specify systems with partial information and can be interpreted as
a set of Kripke models. In this paper, we propose a framework for the
repair of KMTS based on belief revision combined with model check-
ing as an approach to revise sets of Kripke structures. We demonstrate
the advantages of our approach, even with the existing restrictions in
representing general sets of CTL models over the KMTS formalism.

1 Introduction

In the preliminary phases of system development it can be necessary to deal
with incomplete information because generally not all requirements are already
known. To specify an undetermined system it is desirable that models can rep-
resent partial information, such as possible behaviors. When a model does not
explicitly express partial information, an alternative is to take several models
as possible candidates for the system behavior. In both cases the models should
be able to be formally verified and when a desired property is not satisfied the
models must be repaired, ideally automatically.

We consider in this work the technique of model checking [1] for the verifi-
cation of systems, particularly model checking over Kripke structures as CTL
(Computation Tree Logic) models. A CTL model checker solves the decision
problem: given a Kripke structure K, an initial state s0 and a CTL formula ϕ,
does K satisfy φ from s0? (K, s0 |= φ ?). When the property is not satisfied, the
model checker shows a counter-example that can guide the repair of the model.

A CTL model does not express partial information explicitly. A set of these
structures might be required to represent several possibilities of behavior. A more
general Kripke structure is the Kripke Modal Transition System (KMTS) which
is adequate for the specification of systems with partial information [2] and can

J. Iyoda and L. de Moura (Eds.): SBMF 2013, LNCS 8195, pp. 115–130, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



116 P.T. Guerra, A. Andrade, and R. Wassermann

be expanded in a set of CTL models. KMTS is interpreted over a 3-valued logic
and can represent behavior that must or may occur. Model checking over KMTS
[2], besides true and false values, can return indefinite meaning both values may
be consistent.

The automatic repair of models is not straightforward and presents several
challenges. The theory of belief revision [3] can be applied to this problem by
considering models as beliefs [4,5]. In [4], a revision operation is defined to repair
a set of CTL models when they are inconsistent with a desired property.

In this paper, we define the revision of a set of CTL models through the
revision of a KMTS model when the KMTS model checking returns false or
indefinite. We compare it with the revision of a set of CTL models as proposed
in [5] and show the correspondence between these two approaches. Although
there are some restrictions in representing a general set of Kripke models, we
argue that the compact representation of KMTSs has advantages during the re-
vision process. We show how revision can be implemented, using model checking
through 3-valued model checking game as proposed in [6].

To the best of our knowledge this is the first work on revision of a set of CTL
models through KMTS. In [7] the authors propose an algorithm to repair KMTS
models based on primitive changes defined in [8]. Unlike our proposal this work is
not based on belief revision and it does not make reference to any other theory
of change and its context is abstract model checking, where a KMTS model
represents an abstraction of a concrete Kripke structure as proposed by [6].

This paper is organized as follows. In Section 2, we briefly introduce CTL and
the model revision approach. In Section 3 we introduce KMTS and how it is
expanded into Kripke structures. In Section 4 we define revision of KMTS, its
operations, the minimality criterion and proofs of its correctness. We describe
how to implement KMTS revision in Section 5 based on a model checking game.
Finally in Sections 6 and 7 we discuss this approach and conclude the paper.

2 Preliminaries

2.1 Computation Tree Logic

The computation tree logic (CTL) [9,10] is a temporal logic where the future
is represented by a time-branching structure. CTL is suitable for example to
describe properties over computer program and its different execution paths.
The CTL syntax is given by the following Backus-Naur form:

φ ::=� | ⊥ | p | (¬φ) | (φ ∨ φ) | (φ ∧ φ) | (φ → φ) | EXφ |
AXφ | EFφ | AFφ | EGφ | AGφ | E[φUφ] | A[φUφ]

where its temporal operators comprise: path quantifiers (E, “there is a path”,
or A, “for all paths”); and state operators (X, “neXt state”, U, “Until”, G,
“Globally in states” or F, “some Future state”).

The semantics for CTL is defined over a labelled transition system called
Kripke structure. These structures are described by Definition 1.
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Definition 1. A Kripke structure is a tuple M = (AP, S, S0, R, L) where AP
is a set of atomic propositions; S is a finite set of states, S0 ⊆ S is the set of
initial states, R ⊆ S × S is transition relation over S, and L : S → 2AP is a
labelling function of truth assignment over states.1

For convenience, we frequently refer to Kripke structures as CTL models.

2.2 CTL Model Revision

Guerra and Wassermann [4,5] propose a model repair framework using principles
of belief revision theory [3]. Belief revision deals with how to rationally adapt
dynamic beliefs set in order to incorporate new information, even if it is inconsis-
tent with what is believed. This rationality principle usually involve a minimal
change assumption, that is also intended to the model repair: the solution should
preserve as much information as possible from the original model.

The authors define a model revision operator ◦c based on a set of basic model
change operations, as proposed by [8]. These change operations represent all
primitive structural changes over a CTL model:

PU1: Adding one pair to the relation R
PU2: Removing one pair from the relation R
PU3: Changing the labelling function on one state
PU4: Adding one state to S
PU5: Removing one isolated state of S

Let M and M ′ be two CTL models, we denote by DiffPUi(M,M ′) the struc-
tural difference between M and M ′ produced by applications of PUi, for exam-
ple, DiffPU1(M,M ′) denotes the transitions added to M in order to achieve M ′.

A model change is said to be admissible if it produces a model M ′ from
M such that M ′ satisfies the desired property and there is no model M ′′ ob-
tained from M such that DiffPUi(M,M ′′) ⊆ DiffPUi(M,M ′), i = 1, ..., 5 and
DiffPUi(M,M ′′) ⊂ DiffPUi(M,M ′), for some i = 1, ..., 5. Guerra and Wasser-
mann define a minimality criterion over admissible changes in order to select
minimal changes according to belief revision principles, therefore defining the
following revision operator:

Mod(ψ ◦c φ) = MinMod(ψ)(Mod(φ)),

where ψ, φ are CTL formulas that represent the initial beliefs and the new
information, respectively, Mod(α) all CTL models of a formula α and MinB(A)
the set of all minimal models of A according to any admissible modification on
any model of B. The authors show that ◦c satisfies the rationality postulates for
belief revision as presented in [11].

Guerra and Wasserman [4] also proposed an algorithm for CTL model revi-
sion. The algorithm receives as input a CTL formula φ and a set of CTL models

1 Usually the transition relation is defined as total. Although it makes simple the
definition of many temporal logic semantics, this requirement is not needed.
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that do not satisfy φ, then by repairing each model individually and filtering
these repaired models according to their belief revision ordering criterion, the
algorithm returns as result a set of revised models representing possible correc-
tions to the original models relative to the formula φ.

3 Kripke Model Transition System as Sets of CTL
Models

KMTS are expressive models to represent undetermined or sub-specified systems.
They have two types of transitions, transitions that must occur and transitions
that may occur, which represent necessary and possible behavior, respectively.

Specification over KMTS are written in the μ− calculus and in this work we
use this language in its negation normal form.

Definition 2. (μ − calculus). Let AP be a set of atomic propositions and V a
set of propositional variables. The set of literals over AP is defined as Lit =
AP ∪ {¬p | p ∈ AP}. The μ − calculus in its negation normal form over AP
is defined by ϕ ::= l | Z | ϕ ∧ ϕ | ϕ ∨ ϕ | AXϕ | EXϕ | μZ.ϕ | υZ.ϕ where
l ∈ Lit and Z ∈ V. AX means for all successors and EX means there ex-
ists a successor. μ denote the least fixpoint and υ denote the greatest fixpoint. A
formula ϕ is closed if all its variables Z are bounded by a fixpoint operator μ or υ.

CTL formulas can be specified in μ − calculus by the following translation:
EFφ ≡ μZ.φ ∨ EXZ;AFφ ≡ μZ.φ ∨ AXZ;EGφ ≡ υZ.φ ∧ EXZ;AGφ ≡
υZ.φ ∧AXZ;E[φUφ] ≡ μZ.φ ∨ (φ ∧EXZ); and A[φUφ] ≡ μZ.φ ∨ (φ ∧AXZ).

Definition 3. A Kripke modal transition system (KMTS) is a tuple M = 〈AP,
S, S0, R

+, R−, L〉, where S is a set of finite sates, S0 ⊆ S is the set of initail
states, R+ ⊆ S×S and R− ⊆ S×S are transition relations such that R+ ⊆ R−,
and L : S → 2Lit is a label function, such that for all state s and p ∈ AP , at
most one between p and ¬p occur. The transitions R+ e R− correspond to the
transitions must and may respectively.

The semantics defined below is presented in [6]. A complete semantics of
μ− calculus is presented in [12].

Definition 4. The semantics of three values ‖ϕ‖M3 of a closed formula ϕ with
respect to a KMTS M is a map from S to {T, F,⊥}. The interesting cases are
defined below.

‖l‖M3 (s) = T if l ∈ L(s), F if ¬l ∈ L(s),⊥ otherwise.

‖AXϕ‖M3 (s) =

⎧⎪⎨⎪⎩
T, if ∀t ∈ S, if R−(s, t) then ‖ϕ‖M3 (t) = T

F, if ∃t ∈ S such that R+(s, t) and ‖ϕ‖M3 (t) = F

⊥, otherwise.

And dually for EXϕ exchanging F and T.
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Fig. 1. (a) Example of a KMTS M (b) Expansion MK of M

3.1 Expanding KMTS into CTL Models

In this section we formally define a KMTS expansion into a set of Kripke struc-
tures showing its capacity to compactly represent CTL models and some limi-
tations of this representation.

Definition 5. Let M = 〈AP, S, S0, R
+, R−, L〉 be a KMTS, the KMTS expan-

sion of M , denoted by MK, is the set of all Kripke models K ′ = 〈AP ′, S′, S′
0, R

′,
L′〉 such that AP ′ = AP , S′ = S, S′

0 = S0, R
+ ⊆ R′ ⊆ R−and L(s) ⊆ L′(s),

for all s ∈ S.

The KMTS expansion may lead to an exponential set of Kripke models, as
stated in Proposition 1. On the other hand, it shows the capacity of this formal-
ism to compactly represent a huge set of CTL models in one single structure. It
is important to note that KMTS may not be expressive enough to represent all
possible sets of CTL models, as shown in Proposition 2.

Proposition 1. Let M = 〈AP, S, S0, R
+, R−, L〉 be a KMTS with m= |R−\R+|

genuine (strictly) may transitions and n = |{s ∈ S | p ∈ AP and p,¬p �∈ L(s)}|
state indeterminations. M can be expanded into 2m+n Kripke structures.

Proof. It follows straight from the number of possible combinations of each KMTS
indetermination that can be realized or not in the Kripke structures.

Proposition 2. Let K = {k1, ..., kn} any set of kripke structures ki = 〈AP, S,
S0, Ri, Li〉. Not necessarily exists a KMTS M = 〈AP, S, S0, R

+, R−, L〉 that can
be expanded into K.

Proof. Take for example K = {k3, k5} of Figure 1(b). No KMTS M = 〈{p}, {s0,
s1, s2}, {s0}, {(s0, s0), (s1, s2)}, R−, L}〉 can be expanded in this set. This is be-
cause the KMTS formalism does not provide any way of expressing interdepen-
dency between indeterminations. In this example, we could not express in M that
the transitions (s0, s1) and (s0, s2) should not occur at the same time.
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To represent any set of Kripke structures we have two alternatives: (1) to
associate a selection function to a KMTS that selects the desired Kripke models
among its expanded models; (2) to consider a set of KMTS models that represent
the set of Kripke models. In the second alternative, in the worse case, each KMTS
will be a Kripke model.

Proposition 3. Let M be a KMTS and K = {k1, ..., kn} the Kripke structures
expanded from M . Consider s0 the initial state of M . For all closed formula ϕ
of μ− calculus, if the semantic value of ‖ϕ‖M3 (s0) is equal to

1. ⊥, then ∃ki, kj ∈ K, i �= j such that (‖ϕ‖ki (s0) = T and ‖ϕ‖kj (s0) = F

2. T , then ∀ki ∈ K, ‖ϕ‖ki (s0) = T

3. F , then ∀ki ∈ K, ‖ϕ‖ki (s0) = F

Proof. It follows straight from the semantics of KMTS and the expansion of it.

4 Revision of KMTS Models

In this section we define the KMTS model revision operation, through the spec-
ification of minimal change criterion over KMTS models and showing its corre-
spondence to the minimal changes over sets of KMTS expanded Kripke models.
This minimality criterion is similar to that proposed by [5], but now considering
a different set of primitive operations which represent possibilities of changes in
KMTS models, as shown below.

P1: Removing one pair from the relation R−

P2: Removing one pair from the relation R+

P3: Transforming one pair (si, sj) of R
− to (si, sj) of R

+

P4: Changing a defined literal on one state label
P5: Assigning a literal to a a state label if it is undefined in it

For the definitions below we consider some notation. XPn denotes a set of
changes relative to operation Pn, 1 ≤ n ≤ 5. Each change in XPn is represented
as (si, sj) or (si, l), where l is a literal, depending on whether the change is
relative to transitions or to state labels, respectively. A change X is represented
as X = (XP1, ..., XP5), where XPn can be an empty set if no change of type
Pn occurs. We say that X = (XP1, ..., XP5) ⊂ Y = (YP1, ..., YP5) if for each
XPn ⊆ YPn and at least one XPi ⊂ YPi. The application of X to a model A
results in another model denoted by A(X). We refer to M, s0 |= ϕ is True, False
or ⊥ to indicate the result of model checking ϕ in M from s0.

Our definition of minimal change over KMTS is based on the operations P2
and P4, the operations P1, P3 and P5 are disregarded. This makes sense because
among the Kripke models expanded of the KMTS there are models without
the transitions of P1, which already have the transitions of case P3, and those
where the state label already has the literal of P5 assigned. In this sense, these
modifications should not be considered for all models. We then define minimal
changes considering a reduced change X/ of a change X as defined below.
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Definition 6. Let X = (XP1, ..., XP5), the reduced change X/ of X is defined
as X/ = (XP2, XP4).

A reduced change X/ = (XP2, XP4) over a KMTS M induces changes in
K ∈ MK : all (si, sj) ∈ XP2 induces a change (si, sj) of type PU2 in K and all
(si, l) ∈ XP4 induces a change (si, l) of type PU3 in K. So, we also refer XP2

and XP4 as changes over K meaning its corresponding induced changes.

Definition 7. Given two changes X1 = (X1P1, ..., X1P5) and X2 = (X2P1, ...,
X2P5), X1 ≤ X2 iff for all n, X1/Pn ⊆ X2/Pn. X1 < X2 iff X1 ≤ X2 and
there is at least one n, such that X1/Pn ⊂ X2/Pn. If there is no X2 such that
X2 < X1, X1 is said to be minimal.

Propositions 4, 5 and 6 show that the defined minimality criterion for KMTS
correspond to the minimality criterion (presented in section 2.2) for the set
of Kripke models expanded of the KMTS, i.e. the revision of a set of Kripke
models can be achieved by the revision of a KMTS that represents them. The
next proposition specifies that any change in a Kripke model, that belongs to
MK , can be achieved through a change in M .

Proposition 4. Let M be a KMTS, MK its corresponding expansion, K1 a
model in MK and Y = (YP2, YP4) a change in K1. Then there is a change X in
M such that M(X)K contains the model K1(Y ).

Proof. Construct X = (XP1, XP2, XP3, XP4, XP5): XP1 contains all (si, sj)
may transitions such that (si, sj) are not transitions of K1; XP2 contains (si, sj)
∈ YP2 if (si, sj) is a must transition in M , otherwise (si, sj) is included in XP1;
XP3 contains all (si, sj) may transitions which correspond to (si, sj) transitions
of K1; XP4 contains (si, l) ∈ YP4 if l or ¬l ∈ label(si) in M , otherwise include
it in XP5. Take a model K2 from MK which differs from K1 in two ways: 1) for
all (si, l) ∈ XP5, l ∈ label(si) in K2; 2) K2 does not have the transitions (si, sj)
of YP2 if they are may transitions in M (K2 exists because the expansion of
M generates all Kripke models resulting from all the possibilities of transform-
ing indetermination in M in determinations in Kripke models, in the best case
K2 = K1 and X/ = Y ). Therefore M(X)K contains the model K2(X/) which
is equal to K1(Y ).

Proposition 5. Let M be a KMTS and X = (XP1, XP2, XP3, XP4, XP5) be a
minimal change in M . Then X/ = (XP2, XP4) is a minimal change in MK .

Proof. Suppose X/ is not minimal in MK, so there is a change Y = (YP2, YP4)
in MK such that Y < X/. The transitions of YP2 are not may transitions in M
and all literals of the states in YP4 are defined literals in the respective states in
M . By the proposition 4 there is a change Z in M constructed from Y such that
Z/ = Y . So, Z/ < X/ which implies that Z < X, a contradiction.

Proposition 6. Let M be a KMTS such that M, s0 |= ϕ is False, X = (XP1,
XP2, XP3, XP4, XP5) a minimal change in M such that M(X), s0 |= ϕ is True.
So, there is a model K in MK such that K(X/), s0 |= ϕ is True.
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Proof. Take a model K of MK such that K does not have the transitions of XP1,
has the transitions of XP3 if XP3 �= ∅ and for all (si, l) in XP5, l ∈ labels of si
of K. For all Ki of M(X)K , Ki, s0 |= ϕ is True because M(X), s0 |= ϕ is True
(see proposition 3). The model K(X/) is one of the Ki models.

Minimal changes over M

X1 = ({(s0, s2)}, ∅, ∅, {(s0, p)}, {(s1, p)})
X2 = ({(s0, s1), (s0, s2)}, ∅, ∅, {(s0, p)}, ∅)
X3 = ({(s0, s2)}, {(s0, s0)}, ∅, ∅, {(s1, p)})
X4 = ({(s0, s1), (s0, s2)}, {(s0, s0)}, ∅, ∅, ∅)

Reduced changes

X1/ = (∅, {(s0, p)})
X2/ = (∅, {(s0, p)})
X3/ = ({(s0, s0)}, ∅)
X4/ = ({(s0, s0)}, ∅)

Revised KMTS:

p

s0

p

s1

¬p
s2

p

s0 s1

¬p
s2

¬p
s0

p

s1

¬p
s2

¬p
s0 s1

¬p
s2

Fig. 2. Revision by AXp of the KMTS M (Fig. 1(a))

Figures 2 and 3 show an example of the relation between minimal changes of a
KMTSM and minimal changes of the setMK . They present the minimal possible
changes (with the operations P1 to P5 above) in M to satisfy the property AXp
from s0 and their respective reduced changes which correspond to the minimal
changes of MK . Consider the change X = (∅, ∅, ∅, {(s0, p), (s2, p)} , {(s1, p)}),
it is not minimal because X1 < X . To exemplify the Proposition 4 consider
the model K4 (Fig. 1(b)) and the change Y = (∅, {(s0, p), (s1, p)}), the model
K4(Y ) = K3(X2/). As an example of Proposition 6, consider the model K3

(Fig. 1(b)) and the change X1 of M (Fig. 2), M(X1), s0 |= AXp is True and
K3(X1/), s0 |= AXp is True.

In the case that the KMTS model checking returns ⊥, the KMTS revision
selects among its expanded Kripke models those that are consistent with the
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Fig. 3. Revision by AXp of the expansion MK (Fig 1(b))
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verified property. This result is aligned to the result produced by the operator
◦c. When the KMTS model checking returns false, changes effectively modify
the KMTS model. As stated before in this paper we consider only changes in
state labels and removal of transitions. Although these changes seem relatively
restrictive, the results presented in this paper are still relevant to domains where
the KMTS completely defines the consistent information, and thus no other
information such as new states can be added. Our approach is also a step forward
in the definition of a general KMTS revision operator with all kinds of changes,
which we intend to define afterwards.

5 Implementing Revision of KMTS Models

The revision of a KMTS model M might occur when M, s0 |= ϕ is ⊥ or F .
In case ⊥ the revision consists of refining the KMTS to be expanded into only
Kripke structures where the required property is satisfied. In case F , the KMTS
should be repaired resulting in KMTSs where model checking results in T causing
changes in the expanded Kripke structures.

In this section we present the 3-valued model checking game proposed by
Grumberg in [12] and our proposal of an abstract algorithm over this game to
refine a KMTS model.

5.1 The 3-valued Model Checking Game

In the μ − calculus 3-valued model checking game proposed in [12], Grumberg
introduces the concept of non-losing strategy to identify the causes of ⊥ in model
checking besides the known concept of winning strategy. These games are defined
between two players, ∃ and ∀, where the player ∃ tries to verify the formula and
the ∀ tries to refute the formula.

The game for model checking a formula ϕ consists of a graph of configurations
of type s � ψ where s is a state of the model and ψ is a subformula of ϕ. These
configurations are determined from the decomposition of the formula ϕ in its
subformulas according to the rules presented in Figure 4, considering the states
and transitions of the KMTS model.

In Figure 5 we show an example of a graph of configurations of a 3-valued
model checking game. A configuration is classified as a ∃ configuration when ψ
is of the form of the antecedent of an ∃ rule and is represented as an ellipse
in the game graph and is classified as a ∀ configuration if ψ is of the form
of the antecedent of an ∀ rule and is represented as a rectangle in the game
graph. Dotted edges correspond to KMTS genuine may transitions (R−\R+)
and normal edges correspond to both KMTS must transitions and other moves
generated from the rules that do not involve transitions of the model.

The players move from their configurations according to a strategy. A strategy
of a player σ is a function between its configurations and all the configurations
of the game graph. A winning strategy of player σ is such that it makes σ win a
game independent of the strategy used by the other player. When neither players
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win the game, both of them have a non-losing strategy and the game results ⊥.
For example, in Figure 5 the bold edges are part of non-losing strategies of the
∀ player.

Rules of player ∃:

s � ψ0 ∨ ψ1

s � ψi
: i ∈ {0, 1}

s � EXψ

t � ψ
: R+(s, t) or R−(s, t)

s � ηZ.ψ

s � Z
: η ∈ {μ, υ}

s � Z

s � ψ
: if fp(Z) = ηZ.ψ, η ∈ {μ, υ}, and fp(Z)

is the unique subformula identified by Z

Rules of player ∀:
s � ψ0 ∧ ψ1

s � ψi
: i ∈ {0, 1}

s � AXψ

t � ψ
: R+(s, t) or R−(s, t)

Fig. 4. Rules of the model checking game

A play can be finite or infinite and it is defined as a sequence of configura-
tions C0, C1, ... such that there is an edge from Ci to Ci+1. Each configuration
of the graph is colored depending on the result of all plays starting from this
configuration: with T if the player ∃ wins, with F if the player ∀ wins, or ⊥ if
both players do not win (or do not lose). A necessary condition for a player to
win a play is to obey the restriction that all of his/her movements in the config-
urations of the play are through normal edges, meaning that the player does not
move between configurations that corresponds to genuine may transitions of the
model. Moreover, there are other conditions to determine the winner of a play
as presented below.

Conditions for the player ∃ win a play C0, C1, ...:
1. To exist a n ∈ N such that Cn = t � l and the state t of the model is

labelled with l or
2. To exist a n ∈ N such that Cn = t � AXψ and there does not exist

t′ ∈ S such that (t, t′) is a transition in the model or
3. the outermost variable that occurs infinitely often is of type υ

Conditions for the player ∀ win a play C0, C1, ...:
1. To exist a n ∈ N such that Cn = t � l and the state t of the model is

labelled with ¬l or
2. to exist a n ∈ N such that Cn = t � EXψ and does not exits t′ ∈ S

such that (t, t′) is a transition in the model or
3. the outermost variable that occurs infinitely often is of type μ

If neither player wins a play, the result of it is ⊥, meaning that both players
have a non-losing strategy for that play. A player wins a game if he/she wins all
the plays in the game from the initial configuration (s0 � ϕ).

To calculate the result of the game, one can color each configuration of the
graph bottom up with T , F or ⊥ depending on whether ∃ has a winning strat-
egy, or ∀ has a winning strategy, or both players have a non-losing strategy,
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respectively, in all plays starting from that configuration. Initially the deadend
configurations are colored (a deadend configuration is one that does not reach
another configuration), then the coloring proceeds to other configurations taking
other plays until all the configurations are colored as explained in next section.
The result of the game will be the color of the root node of the graph (configu-
ration s0 � ϕ). Figure 5 presents a game graph with the colored configurations
(represented by the symbols enclosed in parenthesis inside the node of the con-
figuration) and with edges that belong to the non-losing strategies of player ∀,
represented as bold edges.

s0 �AX((υZ.¬m ∧ AXZ)

∨ (μY.m ∨ AXY )) (⊥)
1 :

s1 � (υZ.¬m ∧ AXZ)

∨ (μY.m ∨ AXY ) (⊥)
2 :

s1 � υZ.¬m ∧ AXZ (⊥)3 :

s1 � Z (⊥)4 :

s1 � ¬m ∧ AXZ (⊥)5 :

s1 � ¬m (⊥)6 : s1 � AXZ (⊥)7 :

s0 � Z (F )8 :

s0 � ¬m ∧ AXZ (F )9 :

s0 � ¬m (F )10 : s0 � AXZ (⊥)11 :

s1 � μY.m ∨ AXY (⊥)12 :

s1 � Y (⊥)13 :

s1 � m ∨ AXY (⊥)14 :

s1 � m (⊥)15 : s1 � AXY (⊥)16 :

s0 � Y (T )17 :

s0 � m ∨ AXY (T )18 :

s0 � m (T )19 : s0 � AXY (⊥)20 :

m

s0 s1

ϕ = AX(AG¬m ∨ AFm)

ϕ = AX((υZ.¬m ∧ AXZ) ∨ (μY.m ∨ AXY ))

Fig. 5. Example of failure witnesses of non-losing strategy of player ∀

5.2 Implementing KMTS Repair

In this section we develop an algorithm to refine the KMTS (case M, s0 |= ϕ
is ⊥) based on the repair of the 3-valued model checking game. The algorithm
considers non-losing strategies (that are not winning strategies) for both players
∀ and ∃ defined in [12] to determine the witnesses of the failure. Our algorithm
consists of reducing the KMTS to represent only the Kripke structures that
satisfy the property ϕ by eliminating genuine may transitions, or transforming
genuine may transitions into must transitions, or changing the labels of undefined
states. At the end of this section we present a quick overview of an algorithm to
implement the repair when M, s0 |= ϕ is False.

From now on we will refer to the configurations of the game as nodes. Let ψ
be a subformula of ϕ. We define a witness of a failure in case M, s0 |= ψ is ⊥
one of the following transitions, which belongs to non-losing strategies of ∀ or
∃, found bottom up in the game graph: (1) a genuine may edge, coming from a
node of type AX colored ⊥, to a child node colored F or ⊥, (2) a genuine may
edge, coming from a node of type EX colored ⊥, to a child node colored T or
⊥, (3) a must edge, coming from a node of type EX colored ⊥, to a child node
colored ⊥, (4) an edge coming from a node of type si � l ∧ ψ to a node si � l
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colored with ⊥, (5) an edge from a node of type si � l ∨ ψ where its child node
si � l is colored with ⊥ and the other child is colored ⊥ or F . In Figure 5 the
bold edges are examples of failure witnesses.

In order to obtain all the Kripke models that satisfy the property, all failure
witnesses might be considered, resulting in different KMTSs. It is not necessary
to consider all possible combinations of changes in order to generate all possible
Kripke models because the KMTS expresses possibilities by the may transitions.
For example if a node s0 � EXp colored ⊥ has two may children nodes s1 �
p, s2 � p both colored T , it is enough to change only one may edge at a time
(to be a must edge), because the resultant KMTSs expresses the Kripke models
with both transitions as must.

KMTS M: AX(AG¬m ∨ AFm)

is indefinite from s0

m

s0 s1

Revised KMTSs: AX(AG¬m ∨ AFm)

is true from s0

m

s0

¬m

s1

m

s0 s1

m

s0

m

s1

m

s0 s1

Fig. 6. Example of KMTS refinement

The algorithm Revision-game controls the refinements of the model M from
the sequence of failure witnesses (Fwitness) identified by procedure Check-model,
which determines them from a the 3-valued model checker game. One failure of
Fwitness at a time is processed by Refine-game until no more failures exists in
Fwitness. For the game of Figure 5, Fwitness will be initialized with the sequence
of failure witnesses ((7, 8), (16, 13), (14, 15)), where a pair (m,n) represents the
edge from the node m to the node n of the game. Other failure witnesses are
considered by Refine-game to complement the change X = ({(s1, s0)} , ∅, ∅, ∅, ∅)
such as (5, 6) and (16, 13). The algorithm returns 4 KMTSs (see Figure 6)
that satisfy ϕ with the changes: (1) X = ({(s1, s0)} , ∅, ∅, ∅, {(s1,¬m)}), (2)
X = ({(s1, s0), (s1, s1)}, ∅, ∅, ∅, ∅), (3) X = ({(s1, s1)} , ∅, ∅, ∅, ∅), (4) X =
(∅, ∅, ∅, ∅, {(s1,m)}).

The algorithm Refine-game controls the possible refinements from a failure
witness of Fwitness. Each change X is used to the modification and recoloring
of the game graph by Recolor-game (which is supposed to call the 3-valued model
cheker). A change is done relative to the model, i.e., if an edge (m,n) corresponds
to the transition (si, sj) in the model, all edges (r, s) which correspond to (si,
sj) should be removed of the game graph and if the subgraphs from nodes s
are no more accessible from the root node they must be desconsidered by other
search for failure witnesses. If the model checker results ⊥, all the other failure
witnesses in Nwitness (determined by Recolor-game) are considered (one at a
time) to complement X by call Refine-game recursively. When the result of
model checking is T the model M(X) is returned, the game is restored to a
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previous state in order to other failures witnesses from Nwitness be considered
and achieve all possible complementations for the change X .

The algorithm Refine-play generates the change X according to Failure =
(m,n), i.e., the change generated depends on the cause of the failure which is
relative to the node m or n. Consider node m of type (si � ψ) and n of type
(sj � χ). Node m can be: a AX node (si � AXψ), a EX node (si � EXψ),
a disjunctive node of type si � ψ ∨ l, or a conjunctive node of type si � ψ ∧ l.
The conditions specified in the algorithm cover the cases described below that
represent the possible changes required.

A node EX is true if it has a must child colored with true, it is false if all
its may children are false and otherwise it is ⊥. If node m is a EX node and
n is colored T and (m,n) is a may transition, it should be transformed into a
must transition. A may edge to a node of type sk � V that represents loop in
the graph and V is a greatest fixpoint variable (ν) (formulas of type EG) is also
changed to must. A node AX is true if all its may (including must) children are
colored true, it is false if it has a must child colored false, otherwise it is ⊥. If
node n is colored F or ⊥ (not of type sj � l) the may transition (m,n) should be
cut, if it is ⊥ and of type sj � l two alternatives exits: the label of sj is changed
to contain l or the transition is cut. To consider both alternatives when a failure
witness of this type is found then this failure witness (m,n) is duplicated in the
sequence of witnesses (Fwitness or Nwitness) and in the second one the node is
represented as a negative number (−n). A node si � ψ ∧ l is colored ⊥ if it does
not have a child colored F and has one or both children colored ⊥. So, if node n
of type sj � l is colored ⊥ the label of sj should be changed. A node si � ψ ∨ χ
is colored ⊥ if it does not have a child colored T and has a child colored ⊥. So,
if node n of type si � l is colored ⊥ its label should be changed.

Algorithm 1. Revision-game()

Input: KMTS M to revise, property ϕ /* X is declared as a global variable */
Output: KMTSs resultant of the changes with s0 � ϕ colored T

1 Read(M , ϕ) ;
2 Check-model(M , ϕ, Fwitness); /* returns a 3-valued model checking game

graph and the possible failure witnesses in case s0 � ϕ colored ⊥ */
3 if s0 � ϕ colored ⊥ then
4 repeat
5 X := () ;
6 Refine-game(Fwitness, X) ;
7 Restore-game(head(Fwitness)) ;
8 Fwitness := tail(Fwitness) ;

9 until Fwitness = nil ;

10 end
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Algorithm 2. Refine-game(Fwitness, X)

Input: Fwitness - sequence of pairs (m,n) determining the failure witness edges
Output: KMTSs resultant of the changes with s0 � ϕ colored T

1 Failure := head(Fwitness);
2 Refine-play(Failure, X); /* X contains the changes to be done */
3 Recolor-game(ϕ, Nwitness, X); /* other failure witnesses are put in Nwitness if

they exists (s0 � ϕ is colored ⊥) */
4 if s0 � ϕ is colored T then
5 Return M(X) ;
6 Restore-game(Failure) /* the game is restored by removing the change

corresponding to Failure ;

7 else if s0 � ϕ is colored ⊥ then
8 while Nwtiness 
= nil do
9 Refine-game(Nwitness, X) ;

10 Nwitness := tail(Nwitness) ;

11 end

12 end

Algorithm 3. Refine-play(Change, X)

Input: Failure = (m,n) such that node m is colored ⊥ and is of type si � ψ
and node n is of type sj � χ

Output: Changes X

1 if node m is of type si � EXψ and n is colored T or (ψ = V and V is a
variable of type ν and n is colored ⊥ and (m,n) represents a loop in the game
graph then

2 X.P3 := X.P3 ∪ {(si, sj)};
3 else if node m is of type si � AXψ then
4 if node n is colored F or n is not of type sj � l and is colored ⊥ then
5 X.P1 := X.P1 ∪ {(si, sj)} ;
6 else if node n is of type sj � l and is colored ⊥ then
7 if n > 0 then X.P5 := X.P5 ∪ {(sj , l)};
8 else X.P1 := X.P1 ∪ {(si, sj)} ;

9 end

10 if node n is of type sj � l and m is not of type si � AXψ then
11 X.P5 := X.P5 ∪ {(sj , l)};
12 end

For the implementation of the repair of the KMTS when a property is in-
consistent with the model, a similar algorithm used for the refinement can be
developed. Winning strategies of player ∀ instead of non-losing strategies should
now be considered to identify some failure witnesses, combined with other failures
witnesses such as deadends nodes colored with F . The algorithm can proceed
also from bottom up changing labels or eliminating transitions that are causes
of the failure in the game.
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6 Final Remarks

As addressed before, general sets of Kripke structures cannot be represented by
a single KMTS (Proposition 2). A solution is to generalize KMTS revision to
deal with a set of KMTS instead of a single model. This solution increases the
revision complexity, but it is upperbounded by the complexity of CTL revision
(in the worst case, each KMTS will be a Kripke structure). The set of KMTS still
have on average a more compact representation, which allows the development
of more efficient revision methods.

Revision over KMTS structures is significantly more efficient than Kripke re-
vision. For example, the revision of the models of Figure 3 produces 32 repair
candidates, which have to be compared to the 8 initial models in order to select
the minimal ones, which involve approximately 256 comparisons. This compu-
tation can be even more complicated if it involves a fixpoint formula as EF or
AG, in the sense that it increases the number of repair candidates greatly, as the
number of redundant or useless change to achieve them. On the other hand, the
KMTS revision is almost straightforward from M to the solution set of 4 KMTS,
with almost no redundant or useless modifications. The algorithms used for the
repair were specified over 3-valued model checking game which can be imple-
mented as two μ− calculus 2-valued model checking game [12]. It is noteworthy
that μ− calculus 2-valued model checking game for CTL is linear in time.

6.1 Related Work

Zhang and Ding [8] proposed the first approach on this line, improving model
checking with belief update theory [11]. As shown in [4], the choice of a belief
revision approach, rather then belief update, may avoid some unnecessary loss of
information in static contexts. Zhang and Ding [8] do not deal with partial sys-
tem information. Belief revision principles were adopted in [4], but with no focus
on partial system information. Although their framework may deal with partial
information by handling sets of models, its lack of a compact representation
like KMTS that can make it difficult to be used in real applications. Grumberg
[6] addresses KMTS representation, but the context is abstract model checking,
where a KMTS model represents an abstraction of a concrete Kripke structure.
Grumberg also proposes an algorithm based on 3-valued model checking to re-
fine a KMTS with a different proposal which consists in expanding an abstract
state of the KMTS (with some undefined literal) into concrete states (states of
the concrete Kripke structure that was abstracted in the KMTS). Finally, in
[7], the authors deal with KMTS and develop an algorithm, not using 3-valued
model checking, to repair KMTS models. Two main differences distinguish their
approach from ours: the focus is on abstract model checking and not on partial
system specification; and their proposal does not refer to a known change theory.

7 Conclusion

In this paper we presented a new approach to the revision of a set of CTL
models through the revision of a KMTS model. We considered the revision of
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KMTS both when the satisfiability of a property is undefined or is inconsistent
with the model. We defined a minimality criterion relative to KMTS repair and
proved that it preserves the minimality criterion relative to the repair of its set
of expanded CTL models as in [4]. We presented an algorithm to implement the
revision in case the property is undefined. The design of an algorithm for the
repair of the KMTS in case the property is false is our next goal.

The work presented here is a first step towards a framework for the automatic
repair of partial specifications. In this version of this work we considered only
changes of labels of states and the removal of transitions. We aim to propose a
generalization of this solution from an extension of the approach presented here.
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Abstract. Information flow analysis plays a vital role in obtaining quan-
titative bounds on information leakage due to external attacks. Tradi-
tionally, information flow analysis is done using paper-and-pencil based
proofs or computer simulations based on the Shannon entropy and mu-
tual information. However, these metrics sometimes provide misleading
information while dealing with some specific threat models, like when
the secret is correctly guessed in one try. Min-Entropy and Belief Min-
entropy metrics have been recently proposed to address these problems.
But the information flow analysis using these metrics is done by sim-
ulation and paper-and-pencil approaches and thus cannot ascertain ac-
curate results due to their inherent limitations. In order to overcome
these shortcomings, we formalize Min-Entropy and Belief-Min-Entropy
in higher-order logic and use them to perform information flow analysis
within the sound core of the HOL theorem prover. For illustration pur-
poses, we use our formalization to evaluate the information leakage of a
cascade of channels in HOL.

Keywords: Information Flow, Min-Entropy, Belief-Min-Entropy, Infor-
mation Theory, Vulnerability, Theorem Proving, Higher-order Logic,
HOL4.

1 Introduction

Protecting the confidentiality of sensitive information and ensuring perfect anony-
mity are increasingly becoming a dire need in many fields like tele-communication,
electronic payments, auctioning and voting. The information flow analysis [21]
allows us to obtain quantitative estimates about information leakage, by observing
the outputs and the low security inputs in a given system, and thus plays a vital
role in developing secure and anonymous systems.

Various approaches for assessing the information flow have been proposed in
the literature. The main idea behind the possibilistic approaches [1] is to use
non-deterministic behaviors to model the given system. For example, the infor-
mation flow analysis based on epistemic logic [8], which is a logic of knowledge
and belief, and on process algebra [20], which allows us to model concurrent
systems, fall under this category. The main limitation of possibilistic approaches
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is its failure to distinguish between systems of varying degrees of protection [6].
Probabilistic approaches, based on information theory and statistics, overcome
this limitation and are thus considered more reliable for assessing information
flow. The most commonly used probabilistic measures of information flow are
Shannon’s entropy [2], mutual information [3] between the sensitive input and
the observable output and relative entropy [5]. It has been recently shown that
using such measures sometimes leads to counter-intuitive results [22]. For exam-
ple, in the case of a specific threat model where the secret is correctly guessed in
one try, a random variable with high vulnerability to be guessed can have larger
Shannon entropy.

In the one-try model, the adversary is given only one chance to get the value
of the secret. The objective here is to maximize the probability of guessing the
right value of the high input in just one try and the best strategy for her is
auctionning on the element having the maximum distribution. Renyi’s entropy
metrics [19], i.e., Min-Entropy and Belief Min-Entropy, can deal with the above
mentioned threat model more effectively and are commonly used to model and
analyze the information leakage in deterministic and probabilistic systems.

Traditionally, paper-and-pencil based analysis or computer simulations have
been used for quantitative analysis of information flow. Paper-and-pencil anal-
ysis does not scale well to complex systems and is prone to human error. Com-
puter simulation, on the other hand, makes use of numerical approximations for
rounding computer arithmetics, which leads to analysis inaccuracies. In order
to enhance the accuracy of analysis results, formal methods have been recently
proposed to be used in the safety-critical analysis domain of information flow
analysis. The probabilistic model checker PRISM has been used to assist in
computing the transition probabilities and capacity of the Dining cryptogra-
phers protocol [13]. However, the state-space explosion problem of model check-
ing limits the scope of its usage in information flow analysis. For example, only
the case for three cryptographers has been analyzed in [13]. These limitations
can be overcome by using higher-order-logic theorem proving for the analysis
of information flow. The conditional mutual information has been used to for-
mally analyse the anonymity properties of the Dining Cryptographers protocol
in the higher-order-logic theorem prover HOL4 [3]. Similarly, the information
and the conditional information leakage degrees have been formalized in [17] to
assess the security and anonymity protocols within the sound core of HOL4.
However, to the best of our knowledge, no formalization of Min-Entropy and
Belief-Min-Entropy exists in higher-order logic so far. Thus, despite their enor-
mous applications in security-critical applications, the formal analysis of the
scenarios when the secret is correctly guessed in one try is not available.

This paper presents the formalization of Min-Entropy and Belief-Min-Entropy
in higher-order logic. Our formalization can be used to formally reason about
the threat model where the system’s vulnerability is guessed in one try by an
attacker within the sound core of the HOL4 theorem prover. In this paper,
we build upon the information theory foundations in HOL4 [17] mainly due to
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their completeness and generic nature compared to the other formalizations of
probability and information theories [4,11].

In order to illustrate the effectiveness and utilization of the proposed for-
malization, we utilize it to conduct the information flow analysis of channels in
cascade [7]. A cascade channels topology in information theory is a commonly
used linear connectivity strategy where the output of each communication node
(e.g., server, router, switcher) acts as input of the next one. This structure is ba-
sically used in banking systems to ensure restorability, usability and conformity
of such systems. Due to the safety-critical applications of communication sys-
tems, modeled as a cascade of channels, their accurate analysis for the worst case
analysis is very important. The proposed Min-Entropy formalizations enables us
to achieve this goal.

The rest of the paper is organized as follows: Section 2 provides some necessary
details about the HOL theorem prover based probabilistic analysis infrastructure
as well as notions of information theory that we build upon to analyze the
information flow. Next, we describe the higher-order-logic definitions related to
the Min-Entropy and Belief Min-Entropy theories in Section 3. We utilize these
definitions in Section 4 to formally analyze the information flow. Then, we apply
our new model in Section 5 to verify the Min-Entropy leakage of channels in
cascade. Finally, Section 6 concludes the paper.

2 Preliminaries

This section describes the HOL4 environment as well as the formalization of
probability and information theories, which we would be building upon to
formalize the Min-Entropy and Belief-Min-Entropy metrics later.

2.1 HOL Theorem Prover

The HOL system is an environment for interactive theorem proving in higher
order logic. Higher-order logic is a system of deduction with a precise semantics
and is expressive enough to be used for the specification of almost all classical
mathematics theories. In order to ensure secure theorem proving, the logic in
the HOL system is represented in the strongly-typed functional programming
language ML. An ML abstract data type is used to represent higher-order-logic
theorems and the only way to interact with the theorem prover is by execut-
ing ML procedures that operate on values of these data types. The HOL core
consists of only 5 basic axioms and 8 primitive inference rules, which are im-
plemented as ML functions. Soundness is assured as every new theorem must
be verified by applying these basic axioms and primitive inference rules or any
other previously verified theorems/inference rules. The HOL system has has been
used to formalize pure mathematics and verify industrial software and hardware
systems.

One of the advantages of HOL is that it is not limited by the size of the
state space. Large systems that cannot be verified using model checking can
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still be verified by the theorem prover. Various mathematical concepts have
been formalized and saved as HOL theories. Out of this useful library of HOL
theories, we utilized the theories of sets, positive integers, real numbers, measure,
probability and information in this paper. In fact, one of the primary motivations
of selecting the HOL theorem prover for our work was to benefit from these
built-in mathematical theories.

2.2 Probability Theory

Probability provides mathematical models for random phenomena and exper-
iments. The purpose is to describe and predict relative frequencies (averages)
of these experiments in terms of probabilities of events. The HOL4 utilizes the
measure theory to formalize probability theory [16] and some of the foundational
notions of this formalization are given below:

– (Probability Space): a measure space such that the measure of the state
space is 1

– (Independent Events): Two events A and B are independent iff p(A ∩
B) = p(A)p(B).

– (Random Variable): X : Ω → R is a random variable iff X is (F,B(R))
measurable where F denotes the set of events and B is the Borel sigma alge-
bra.

– (Joint Probability): A probabilistic measure where the likelihood of two
events occurring together and at the same point in time is calculated. Joint
probability is the probability of event B occurring at the same time event A
occurs. Its notation is p(A ∩B) or p(A,B).

– (Conditional Probability): A probabilistic measure where an event A will
occur, given that one or more other events B have occurred. Its notation is

p(A|B) or p(A∩B)
p(B) .

– (Expected Value): E[X ] of a random variable X is its Lebesgue integral
with respect to the probability measure. The following properties of the
expected value have been verified in HOL4 [16]
1. E[X + Y ] = E[X ] + E[Y ]
2. E[aX ] = aE[X ]
3. E[a] = a
4. X ≤ Y then E[X ] ≤ E[Y ]
5. X and Y are independent then E[XY ] = E[X ]E[Y ]

– (Variance and Covariance): Variance and covariance have been formal-
ized in HOL4 using the formalization of expectation. The following properties
have been verified:
1. V ar(X) = E[X2]− E[X ]2

2. Cov(X,Y ) = E[XY ]− E[X ]E[Y ]
3. V ar(X) ≥ 0
4. ∀a ∈ R, V ar(aX) = a2V ar(X)
5. V ar(X + Y ) = V ar(X) + V ar(Y ) + 2Cov(X,Y )

The above mentioned definitions and properties have been utilized to formalize
the foundations of information theory in HOL4 [16].
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2.3 Information Theory

Information theory [14,5] is used in many fields of engineering and computer
science, such as signal processing, data compression, storing and communicating
data to quantify information. Recently, it found an enormous application in the
domains of cryptography and information flow analysis [23]. Various information
theoretic notions, such as the entropy, the mutual information, the relative en-
tropy, the conditional entropy and the Renyi’s entropy, are used to reason about
the uncertainty of a random variable.

Let X and Y denote discrete random variables, with x and y and X and Y
denoting their specific values and set of all possible values, respectively. Similarly,
the probability of X and Y being equal to x and y is denoted by p(x) and p(y),
respectively, their joint probability is denoted by p(x, y). Now, the widely used
information theoretic measures can be defined as:

– (The Shannon Entropy): It measures the uncertainty of a random variable

H(X) = −
∑
x∈X

p(x)log p(x)

– (The Conditional Entropy): It measures the amount of uncertainty of X
when Y is known

H(X |Y ) = −
∑
y∈Y

p(y)
∑
x∈X

p(x|y)log p(x|y)

– (The Mutual Information): It represents the amount of information that
has been leaked

I(X ;Y ) = I(Y ;X) = H(X)−H(X |Y )

– (The Relative Entropy or Kullback Leiber Distance): It measures
the inaccuracy or information divergence of assuming that the distribution
is q when the true distribution is p

D(p‖q) =
∑
x∈X

p(x)log
p(x)

q(x)

– (The Guessing Entropy): It measures the expected number of tries
required to guess the value of X optimally

G(X) =
∑

1≤i≤n

ip(xi)

– (The Rnyi Entropy): It is related to the difficulty of guessing the value
of X

Hα(X) = 1
1−α log (

∑
x∈X

P [X = x]α)
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The above measures are used to analyze the information flow from different
aspects. Entropy, Mutual Information and Relative Entropy, operate over the
quantity of information and the degree of uncertainty while the Guessing En-
tropy determines the number of attempts to decrypt a secret. Mhamdi [15] and
Coble [3] formalized the notions of Entropy, Conditional Entropy, Relative En-
tropy and Mutual Information in HOL4, while Hölzl [11] formalized the same
concepts in Isabelle/HOL.

3 Formalization of Min-Entropy and Belief Min-Entropy

Information theoretic measures of Min-Entropy and Belief Min-Entropy over-
come the limitations of Shannon’s entropy in evaluating the security of guessing
the secret in one try [23]. We explain these measures along with their correspond-
ing higher order-logic formalizations in this section. In the following subsections,
X , Y and B denote the random variables that model the high input (the secret),
the output (the observable) and the attacker’s belief about the system behavior
(the extra knowledge), respectively, and p and q denote probability spaces.

3.1 Formalization of Min-Entropy

The Min Entropy H∞ of a random variable X is a special case from the Rényi
Entropy when α = ∞.

Definition 1 (The Min-Entropy).
The Min-Entropy of a random variable X is given by

H∞(X) = −log max
x∈X

p(x)

This can be formalized in HOL4 as follows:

� ∀ X p.

min entropy X p =

- log (extreal max set (IMAGE

(λx. distribution p X {x}) (IMAGE X (p space p))))

In this definition, the function extreal max set returns the maximum of a given
set, IMAGE f s returns the image of a given set s by a function f and p space

p is the state space of the Ω of the probability space p.

It can be observed from the above definition that the Min-Entropy measure
is primarily the negative logarithm of the vulnerability, or in other words, the
worst-case probability that an adversary A can guess the secret correctly in one
try:

H∞(X) = −log(V (X)) = −log(max
x∈X

P [X = x]).

The Min-Entropy measures the initial uncertainty only and the remaining
uncertainty can be quantified by the conditional Min-Entropy.
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Definition 2 (The Conditional Min-Entropy).
Observing the output Y , the probability of guessing the secret X is

H∞(X |Y ) = −log(
∑
y∈Y

max
x∈X

P [Y = y]P [X = x|Y = y])

This can be formalized in HOL4 as follows:

� ∀ X Y p.

conditional min entropy p X Y =

- log
∑
Y (Ω)

(λy. extreal max set

(IMAGE (λx. distribution p Y{y}*
conditional distribution p X Y ({x},{y})) (X(Ω))))

In the above definition, we utilized the conditional distribution p X Y

that refers to P (X |Y ). This quantity relates two behaviors, i.e., the input X and
the output Y , and this makes the Conditional Min-Entropy a good measure to
map the remaining uncertainty, which is nothing but the probability of guessing
the secret input having the observable.

3.2 Formalization of Belief Min-Entropy

The Belief Min-Entropy allows us to deal with the attacker’s extra knowledge
or beliefs about the system behavior. This measure is actually a refinement of
the Min-Entropy since it takes into account another parameter, i.e., belief, that
is expected to increase the reliability of the analysis.

Let pρ and pβ denote the distributions related to the system behavior and
the adversary’s belief, respectively. Given an additional information B = b,
the adversary chooses a value having the maximal conditional probability ac-
cording to her belief, that is a value x′ ∈ Γb, such that Γb = argmaxx∈X
pβ(x|b), and argmaxx∈X pβ(a|b) returns the elements from A having the max-
imal conditional-distribution. In case of more than one value of A with the
maximal conditional probability, the attacker uniformly and randomly picks a
single element from Γb.

Definition 3 (The Belief Min-Entropy).
Let X be the input random variable and B the adversarys extra knowledge about
X. Then the Belief Min-Entropy of X, denoted H∞(X : B), is defined as

H∞(X : B) = −log(
∑
b∈B

1

|Γb|
p(b)

∑
x∈X

p(x|b))

In order to formalize the Belief Min-Entropy in HOL4, we first define the
belief vulnerability, which can be extended to obtain the Belief Min-Entropy by
applying the converse logarithm.
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� ∀ p1 p2 X B.

belief vulnerability p1 p2 X B =

SIGMA (λb. 1
|belief set p1 p2X B b| *

(distribution p1 B {b}) *

(SIGMA (λx. conditional distribution p1 X B ({x},{b}))
(belief set p1 p2 X B b)))

(B(Ω1))

where the function belief set p1 p2 X B b models Γb in HOL4 and Ω1 refers
to p space p1. Now, in order to model the Belief Min-Entropy, we need to define
the relationship between the attacker’s belief and the observable output. The
belief b is compatible with the observation y, if there exists an input x ∈ Γb veri-
fying pρ(y|x) > 0 and in this case, the attacker is able to choose the appropriate
values for guessing the secret.Γb,y denotes the set of the possibilities that the
adversary can choose and is defined as follows:

Γb,y =

{
argmax

x∈X
pβ(x|b, y) if b and y are compatible

argmax
x∈X

pβ(x|y) otherwise
(1)

The above definition is formalized as the HOL4 function
belief conditionned set, which we will use later to model the remain-
ing uncertainty that will be a function of the conditional belief vulnerability.

Definition 4 (The Conditional Belief Vulnerability).

V (X |Y : B) =
∑
y∈Y

∑
b∈B

pρ(y, b)
1

|Γb,y|
∑

x∈Γb p(x|y,b)

The above definition can be formalized in HOL4 as follows:

� ∀ p1 p2 X B Y. conditional belief vulnerability p1 p2 X B Y =∑
y

∑
b

joint distribution p1 B Y ({b},{y}) * 1
|Γb,y| *∑

x∈Γb,y

belief conditional distribution p1 X Y B ({x},{y},{b})

Now, we can apply the converse logarithm to get the conditional Belief Min-
Entropy.

H∞(X |Y : B) = −log(V (X |Y : B))

Based on the previous measures, we define the information leakage that de-
termines how much information has been leaked from the input to the output.

information leakage = initial uncertainty - remaining uncertainty

Next, we will use the definitions, presented in this section, to formally rea-
son about their classical properties, which in turn allow us to conduct formal
information flow analysis with the HOL4 theorem prover.
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4 Formal Analysis of Information Flow

The main focus of this paper is on the analysis of the threat model of guessing
the critical information in one try, which is usually considered as the worst case
scenario and cannot be handled by the Shannon entropy as we mentioned earlier.
In this section, we formally verify that the definitions, presented in the previous
section, can handle this particular model.

In regards to information flow analysis, Min-Entropy allows us to measure un-
certainties. The following theorem provides a lower bound to the initial
uncertainty.

Theorem 1 (Lower Bound of the Min-Entropy).

� ∀ X p b. FINITE (Ω) ∧ Ω �= Ø ∧ random variable X p Borel ∧
(∀x. x ∈ X(Ω) ⇒ (distribution p X {x}) ≤ 1

2b
)) ∧

(∀x. x ∈ Ω ⇒ {x} ∈ events p) ∧
X(Ω) ∈ subsets Borel) ⇒
b ≤ (min entropy X p)

where Ω = p space p. If this initial uncertainty is uniformly distributed over
the input set X , then the initial uncertainty is equal to |X |:

Theorem 2 (Initial Uncertainty for Uniform Distribution).

� ∀p X. FINITE (Ω) ∧
random variable X p Borel ∧
∀x. x ∈ X(Ω) ⇒ distribution p X {x} = 1 / |X(Ω)|

⇒ min entropy X p = log |X(Ω)|

The first assumption, in the above theorems, is required because the maximum
of a set is well-defined for finite sets only.

Another useful aspect related to information leakage is the remaining uncer-
tainty that represents the model of the aposteriori behavior. If a program is
deterministic and the initial distribution is uniformly distributed, then its in-
formation leakage depends on the output set only. This result can be formally
verified as the following theorem:

Theorem 3 (Information Leakage of Deterministic Program).

� ∀ X Y p c. (∀x. x ∈ X(Ω) ⇒ distribution p X {x} = 1
|X(Ω)|) ∧

deterministic cond Y c ⇒
information leakage p X Y = log (|Y(Ω)|)

where the assumptions model the determinism condition and the uniform distri-
bution. Next, we analyze the information flow considering the attacker’s belief.
For this purpose, we include another random variable B that models the ad-
versary’s extra knowledge about the high input. Under the condition of a total
inaccurate belief, the following theorem holds:
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Theorem 4 (Initial Uncertainty of Total Inaccurate Belief).

� ∀A B sp ev p1 p2. FINITE (p space (sp,ev,p2)) ∧
FINITE (p space (sp,ev,p1)) ∧
∀a b. (a,b) ∈ totally inaccurate belief set sp ev p1 p2 A B ⇒
belief min entropy sp ev p1 p2 A B = +∞

According to the above theorem, when the attacker has no information about
the secret input, the initial vulnerability of the system tends to zero. The proof
of this result is based on the Bayes’ rule and our definition of the Belief Min-
Entropy.

The following theorem verifies that the conditional Min-Entropy is always less
then or equal to the Belief Min-Entropy:

Theorem 5 (Min-Entropy and Belief Min-Entropy).

� ∀X B sp ev p1 p2.

∀x b. (b ∈ B(Ω1)) ∧
(belief set (sp,ev,p1) (sp,ev,p2) X B b �= ø) ∧
(x ∈ (belief set (sp,ev,p1) (sp,ev,p2) X B b)) ∧

conditional distribution (sp,ev,p1) B X ({b},{x}) ≤ 1
|B(Ω1)| ⇒

min entropy A (sp,ev,p1) ≤ belief min entropy sp ev p1 p2 X B

The interpretation of the previous result is that the vulnerability of a system is
greater in the presence of the extra knowledge. Similarly, the following theorem
provides the belief initial uncertainty in the deterministic case.

Theorem 6 (Deterministic Belief Initial Uncertainty).

� ∀X B sp ev p1 p2 c.

∀x b. x ∈ belief set (sp,ev,p1) (sp,ev,p2) X B b ∧
b ∈ B(Ω1) ∧

∀x. (x ∈ belief set (sp,ev,p1) (sp,ev,p2) X B b) ⇒
distribution (sp,ev,p1) X {x} = 1

|X(Ω1)| ∧
events (sp,ev,p1) = POW (Ω1) ∧
deterministic cond B c ⇒
log

|X(Ω1)|
|B(Ω1)| ≤ belief min entropy sp ev p1 p2 A B

Next, just like in the case of Min-Entropy, we verify that the remaining belief
uncertainty is lower bounded by conditional Min-Entropy joint to the adversary’s
belief, i.e. H∞(A|O,B) ≤ H∞(A|O : B), which can be expressed as the following
HOL4 theorem:

Theorem 7 (Lower Bound for Belief Remaining Uncertainty).

� ∀X B Y p1 p2. FINITE (Ω) ∧ random variable X p1 Borel ∧
random variable B p1 Borel ∧ random variable Y p1 Borel ∧
∀x. x ∈ (Ω) ⇒ {x} ∈ events p1

⇒ conditional joint min entropy p1 X B Y ≤
conditional belief min entropy p1 p2 X B Y
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Thus, the belief remaining uncertainty under the deterministic conditions is

bounded by log( |A|
|O|.|B|). Now we can formally verify the following result in HOL4.

Theorem 8 (Deterministic Remaining Belief Uncertainty).

� ∀X Y B p q c c’. FINITE Ω ∧ Ω �= Ø ∧
∀x b y. x ∈ belief conditionned set p q X B Y b y ∧
∀b. b ∈ B(Ω) ∧ ∀y. y ∈ Y(Ω) ∧
∀x. x ∈ Ω ⇒ {x} ∈ events p ∧
∀x. x ∈ x(Ω) ⇒ distribution p X {x} = 1

|X(Ω)| ∧
deterministic cond Y c ∧ deterministic cond B c’ ⇒

log (
|X(Ω)|

|Y (Ω)|.|B(Ω)|) ≤ conditional belief min entropy p q X B Y

where belief conditionned set p q X B Y b y = Γb,y denotes the set of pos-
sible adversarys choices according to her belief and low observation.

The proof of the above theorem is primarily based on the Min-Entropy prop-
erties under deterministic conditions. Finally, Theorems 6 and 8 can be used to
reason about the belief information leakage for deterministic programs.

log|Y| ≤ IL∞(X ; (Y : B))

From the above result, we conclude that the belief behavior helps the adversary
in choosing more reliable initial knowledge based on the observations. The above
mentioned properties have been verified before [9] but the main novelty of our
work was to re-verify these results using an interactive theorem prover. Based on
the soundness of theorem proving, the formally verified theorems are guaranteed
to be accurate and contain all the required assumptions. Moreover, these formally
verified results can be built upon to reason about information flow analysis of
various applications within the sound core of a theorem prover. For illustration
purposes, the information leakage of cascade of channels is formally analyzed
in the next section. These added advantages have been attained at the cost
of human effort in formalizing and interactively verifying the above mentioned
results. The proof script [10] is composed of 3400 lines of code and took about
1000 man-hours of development time.

5 Application: Channels in Cascade

A channel [7] is a triplet (A,B, CAB), where A is a finite set of the critical
inputs, B is the observable output and CAB is the channel matrix representing
the transitional probabilities from the input to the output of the channel. The
channels are frequently connected in a cascade manner such that the outputs of
the previous stage act as the input to the next one. In cascaded channels, the
final output is produced in n steps, where n represents the number of cascaded
channels.

The major goal of this section is to formally reason about the information
flow of channels in cascade and analyze the information leakage in such systems.
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We will first formalize the notions of channels and cascade of channels in higher-
order logic. These definitions, along with our formally verified results of the
previous section, will then be used to formally reason about the measure of
quantity of information and the information leakage of a two cascaded channel
model.

5.1 Formalization of Channels and Cascade of Channels

A channel can be formalized in HOL4 using the following function:

Definition 5 (Channel).

� ∀X Y p f. channel p X Y f =

random variable X p Borel ∧
random variable Y p Borel ∧
∀x y. x ∈ X(Ω) ∧
y ∈ Y(Ω) ∧
f(x,y) = conditional distribution p Y X ({y},{x})

The predicate channel accepts a probability space p, the random variables
X and Y representing the finite sets of the critical inputs and the observable
outputs, respectively, and a function f that models the channel matrix CAB in
terms of the conditional probabilities of obtaining the output b such that the
input is a.

Now the behavior of a cascade of two channels, i.e., (X ,Z, CXZ) and (Z,Y, CZY),
is equivalent to the channel (X ,Y, CXZ ∗ CZY) [7]. This definition of a cascade of
two channels can be formalized in HOL4 as follows:

Definition 6 (Cascade Channel).

� ∀X Z Y p f g. cascade channel p X Z Y f g =

channel p X Z f ∧
channel p Z Y g ∧
∀x y. joint distribution p X Y ({x},{y}) =∑

z joint distribution p X Z ({x}, {z}) *

conditional distribution p Y Z ({y}, {z})

5.2 Information Flow Analysis of Channels in Cascade

In order to analyze the information flow for the worst case scenario, i.e., when A
recovers the critical information in one guess, we model the apriori distribution
as a function of the maximum input distribution and the aposteriori behavior is
expressed as a function of the maximum over X of the distribution of guessing
a while observing b.

leakage = Min-Entropy(X) - conditional Min-Entropy(X|Y)
IL∞(X,Y ) = H∞(X)−H∞(X |Y )
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Now, the leakage in a cascade of channels can be evaluated using Min-Entropy
and the corresponding proof goal can be expressed in HOL4 as follows:

Theorem 9 (Information Leakage of Channels in Cascade).

Let (X ,Y, CXY) be the cascade of (X ,Z, CXZ) and (Z,Y, CZY). Then we have
IL∞(X ,Y) ≤ IL∞(X ,Z) This theorem can be expressed in HOL4 as

� ∀ p X Z Y f g.

cascade channel p X Z Y f g ∧
FINITE (Ω) ∧
Ω �= ∅ ∧
events p = POW (Ω) ∧
∀x. 0 < distribution p Y {x} ∧
∀x. 0 < distribution p Z {x} ∧
(∀x. x ∈ Ω ⇒ {x} ∈ events p) ⇒
information leakage p X Y ≤ information leakage p X Z

Using some arithmetic simplification, the proof goal can be simplified to the level
of vulnerabilities:

V∞(X |Y ) ≤ V∞(X |Z)

Now, using the property of cascade (third conjunct in Definition 6 ), we obtain

p(A = a|B = b) =
∑

c p(A = a, C = c) ∗ p(B = b|C = c)
≤

∑
c maxa p(A = a, C = c) ∗ p(B = b|C = c)

Next, we simplify the above subgoal by using the properties of summation along
with the fact that the sum of the conditional distributions over the first state
space of any random variable is equal to 1.

V(A | B) ≤
∑
c

max
a

p(A=a , C=c)

The above subgoal can now be verified based on arithmetic simplification. This
concludes the proof of Theorem 9, which consists of about 850 lines of HOL
code.

5.3 Discussion

Due to the formal nature of the model and the soundness of the mechanical the-
orem prover, the analysis is guaranteed to be free of approximation and precision
errors and thus the results obtained are mathematically precise and confirmed
the results of paper-and-pencil based analysis approaches. This precision of anal-
ysis is a novelty that, to the best of our knowledge, has not been achieved by
any other existing computer-based probabilistic analysis approaches. In the Def-
inition 6 of the cascade channel behavior, the transition functions, f and g, are
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general functions that provide generic results. In model checking approach pa-
rameters and functions should be specified. Furthermore the result verified in
Theorem 9 can be extended to the Min-Entropy analysis of information leak-
age of n channels in cascade using induction techniques. We can prove that the
Min-Entropy leakage of n channels in cascade will not exceed the leakage of the
first channel. The main key to verify this property is the definition of the cas-
cade condition. Mathematically, we can express the connection of n channels as
follows
Let X0 be the random variable modeling the input of the system and Xn the
one modeling the output, thus

∀ i. (0 ≤ i ≤ n) ⇒ P(X0,Xi) =
∑
Xi−1

P(X0,Xi−1) * P(Xi|Xi−1)

Based on what we defined previously and what already existed, this condition
can be formalized in HOL4 as

� ∀X p f n. n cascade channel p X n f =

∀i. (1≤i≤n) ⇒ channel p (X (i-1)) (X i) (f i) ∧
∀x y i. joint distribution p (X 0) (X i) (x,y) =∑

z

joint distribution p (X 0) (X (i-1)) (x,z) *

conditional distribution p (X (i-1)) (X i) (z,y)

The ability to express and verify generic properties, quantified for all values
of the variables, is the main strength of theorem proving as can be seen from
the above definition and the property related to the information leakage of n
channels in cascade. This property is an ongoing task, once verified, can hold for
any number of cascade of channels and can be specialized to obtain expression
and values for particular scenarios. Probabilistic model checking, which is the
other main stream formal method, cannot provide such generic results due to
the inherent state-space explosion problem.

6 Conclusion

This paper presents a formalization of vulnerability, belief-vulnerability, Min-
Entropy and Belief Min-Entropy in higher-order logic. These metrics provide
more reliable information flow analysis compared to the traditional definitions
of quantitative information flow based on Shanon entropy for some corner cases.
One such threat model being the case when an adversary can guess the secret
input value in one try, given the observable output. The proposed formalization
can be built upon to conduct the information flow analysis within the sound
core of a theorem prover and thus the analysis is guaranteed to be free of ap-
proximation and precision errors. For illustration purposes, we performed the
information flow analysis of a cascade of two channels using the HOL4 theorem
prover and the analysis results were found to be generic and accurate.
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The proposed higher-order-logic formalization can be used in analyzing many
other applications. We are particularly aiming to apply it for the formal infor-
mation flow analysis of the Crowds protocol [18] and Freenets [12]. Moreover,
our work can be extended to analyze information flow in a reverse way, i.e. start-
ing from a specific leakage bound we evaluate the input set with respect to the
output set. This formalization can be used to formally ensure a specific level of
security of critical information.
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Abstract. One way of developing reliable systems is through the use of For-
mal Methods. A Graph Grammar specification is visual and based in a simple
mechanism of rewriting rules. On the other hand, verification through theorem
proving allows the proof of properties for systems with huge (and infinite) state
space. There is a previously proposed approach that has allowed the application
of theorem proving technique to graph grammars. One of the disadvantages of
such an approach (and theorem proving in general) is the specific mathematical
knowledge required from the user for concluding the proofs. This paper proposes
proof strategies in order to help the developer in the verification process through
theorem proving, when adopting graph grammar as specification language.

1 Introduction

In the present scenario we find a wide variety of software and hardware systems that are
increasingly complex. In this situation, it is important to adopt strategies for increasing
reliability. A way of achieve such a goal is using formal specification and verification.
A formal specification is carried by a mathematical model, with well-defined syntax
and semantics and formal verification can guarantee system properties.

There are several specification languages, among them, graph grammars (GG) [1]
stand out, which are visual, based on rewriting rules and capable of describing complex
behaviours. In graph grammars, states are modelled as graphs and state changes are
described by graph rules. Likewise, there are a number of verification techniques, and
one of them is Theorem Proving [2]. In this technique both, the system and the desired
properties are described using mathematical descriptions and logic. The verification
strategy consists of finding a proof from axioms and intermediary lemmas of the system.
This technique is particularly interesting [3] for systems with big or infinite state space,
since it does not require the construction of (any fragment of) the state space.

Previous work [4,5,6] has allowed the verification of systems specified in graph
grammars through theorem proving. This technique proposed a relational and logical
approach to GG, providing the coding of graphs and rules with relations. The rela-
tions that define a grammar determine axioms that can be used to develop proofs. The
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rule application is described by an event such as an inference rule (when a set of vari-
ables satisfies guard conditions, the rule is applied). This approach was translated into
Event-B structures [7], allowing the use of theorem provers compatible with this lan-
guage (available in the Rodin platform [8]) for demonstrations of properties. The proof
process is semi-automatic, requiring user interaction.

When modelling a system in Event-B, Rodin makes a syntactic (static check) and
a dynamic verification. In these verifications the tool generates proof obligations to
ensure invariants are preserved, guard conditions and actions are well defined, formu-
las are meaningful, among others. These obligations are stated in order to ensure sys-
tem consistency. Some are completed automatically, others need user intervention. The
knowledge of both the system and the tool required for completing the proofs hinders
the use of this proposal.

This work presents the proof obligations generated by a GG specification in Rodin,
as well as establishes the provers that discharge them. Also it proposes proof strategies
to assist the developers when discharging semi-automatic proof obligations generated
by the specification of atomic properties in the model. Next sections are organised as
follows. Section 2 introduces the graph grammar formalism. Section 3 presents the
mapping of graph grammars into Event-B structures. Section 4 presents the proof obli-
gations generated by a GG in Event-B, indicating the respective provers to discharge
them. Section 5 describes strategies for discharging proof obligations generated by the
specification of atomic properties. Section 6 concludes and discusses future works.

2 Graph Grammars

Graph Grammar is a specification language suitable for representing complex situa-
tions, because it is simple and visual. A graph is defined by two sets and two functions.
A graph morphism is defined by two partial functions. The identifiers used in next defi-
nitions (prefixed with inv_, grd_, axm_ and act_) are those used in the Event-B model
(meaning respectively, invariant, guard condition, axiom and action) in Section 3.

Definition 1 (Graph and graph morphism). A graph G is a tuple (vertG, edgeG,
sourceG, targetG), where vertG is a set of vertices, edgeG is a set of edges, and
sourceG, targetG : edgeG → vertG are total functions, defining source and target
of each edge, respectively. Given two graphs G = (vertG, edgeG, sourceG, targetG)
andH = (vertH, edgeH, sourceH, targetH), a (partial) graph morphism f : G �→H
is a tuple (f_V : vertG �→ vertH, f_E : edgeG �→ edgeH) such that f commutes with
source and target functions:

grd_srctgt : ∀e ∈ dom(f_E) · f_V (sourceG(e)) = sourceH(f_E(e)) and
∀e ∈ dom(f_E) · f_V (targetG(e)) = targetH(f_E(e))

A graph morphism is said to be total or injective if both of its components are total or
injective functions, respectively.

A typed graph is defined by two graphs connected by a total graph morphism (typing
morphism). A typed graph morphism is a graph morphism that satisfies a compatibility
condition, which establishes that the mapping of components must preserve types.
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Definition 2 (Typed Graph, Typed Graph Morphism). A typed graph is given by a
tuple GT = (G, tG, T ) where G and T are graphs and tG = (tG_V, tG_E) is a typing
morphism from G over T , i.e., tG : G→ T is a total graph morphism (inv_tG_V and
inv_tG_E). A (typed) graph morphism from GT to HT is defined by a morphism
g = (g_V, g_E) from G to H , s.t. the typed morphism compatibility condition is
satisfied:

grd_vertices : ∀v ∈ dom(g_V ) · tG_V (v) = tH_V (g_V (v)) and
grd_edges : ∀e ∈ dom(g_E) · tG_E(e) = tH_E(g_E(e))

A rule is composed of two typed graphs and a morphism between them, which de-
scribes a possible behaviour of the system.

Definition 3 (Rule). A rule typed over T is a typed graph morphismα = (α_V, α_E) :
LT �� RT , where: LT and RT are graphs typed over T ; α is injective (axm_alphaV
and axm_alphaE); α_V : vertL� vertR is a total function (axm_alphaV).

Definition 4 (Graph Grammar). A (typed) graph grammar is a tupleGG=(T,G0, R),
where T is a graph, called type graph; G0 is a graph typed over T , called initial graph;
and, R is a set of rules typed over T .

The occurrence of the left-hand side (LHS) of a rule in a state graph is called match.

Definition 5 (Match). Let r = (α : LT ��RT ) be a rule, with LT and RT typed graphs
over T . Let GT = (G, tG, T ) be a typed graph with tG = (tG_V, tG_E). A match m
of rule r in GT is defined by a total typed graph morphism m = (m_V,m_E) : LT →
GT , such that m_E : edgeL� edgeG is injective.

The behaviour of a GG is given by rule applications. A rule is applied only if there
is a match of the rule in the state graph. When a rule is applied a new state is generated.

Definition 6 (Rule Application). Let r = (α : LT �� RT ) be a rule and m =

(m_V,m_E) be a match of r in a typed graph GT . A rule application GT r,m⇒ HT ,
or the application of r to GT at m, generates a typed graph HT = (H, tH, T ), with
H = (vertH, edgeH, sourceH, targetH), as follows:

– vertH = vertG � (vertR − rng(α_V )) (act_vert);
– edgeH = (edgeG− rng(m_E)) � edgeR (act_edge);
– for all e ∈ edgeH (act_src and act_tgt)

sourceH(e) =

{
sourceG(e) if e ∈ edgeG
m(sourceR(e)) otherwise

targetH(e) =

{
targetG(e) if e ∈ edgeG
m(targetR(e)) otherwise

where m : vertR→ vertH is defined by:

m(v) =

{
m_V (v′) if v ∈ rng(α_V ) and v = α_V (v′)
v otherwise
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– for all v ∈ vertH and all e ∈ edgeH , tH = (tH_V, tH_E) is defined by (act_tV
and act_tE)

tH_V (v) =

{
tG_V (v) if v ∈ vertG
tR_V (v) otherwise

tH_E(e) =

{
tG_E(v) if e ∈ edgeG
tR_E(v) otherwise

Next we use the GG language to specify the Token Ring protocol [9]. In this protocol,
a special signal, called a token, is passed from station to station in only one direction.
A message can be transmitted only by stations that hold the token (active stations). The
transmission circulates for all the ring and finishes when the message returns to the
original station. Then the station that started the transmission becomes standby and the
signal token is passed for the next station, restarting the cycle. In our example there
is only one token, so a single station can transmit at a given time. We also allows the
addition of new stations into the network at any time.
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Fig. 1. Token Ring GG

Figure1 illustrates the graph grammar for the example. The type graph T defines a

single type of node (Node), and five types of edges (Message), ����� (Token),

(Next), ��� (Active Station) and ��� (Standby Station). represents a network
station and defines a portion of data. The ����� is a special signal which enables
stations to transmit. connects each station. One station with edge ��� transmits
some information through the network. One station with edge ��� is standby, and can
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receive a message. The initial graph G0 was set with three nodes, and none of the
stations are transmitting (there is no edge of type ��� ).

The behaviour of this protocol is given by the rules. In this representation, the mor-
phism is not explicitly represented, but we consider that the items with the same name
and type are mapped. In the rule α1 a standby station that holds the token becomes
active and sends a message to the next station. It is also possible that a standby station
holding the token directly passes it to the next station (rule α2). When a message arrives
at a standby node, it goes directly to the next station (rule α3). In rule α4 the message
is received by the transmitting station, which returns to the standby mode and pass the
token to the next station. In this specification, at each instant of time new nodes can be
added into the ring, by rule α5. This model generates an infinite state-space.

3 Graph Grammars in Event-B

An Event-B model [10] consists of a context (static part) and a machine (dynamic part).
In the context are defined sets, constants and axioms. In the machine are defined vari-
ables, invariants and events. A model is called correct if all set of proof obligations
generated from the model is discharged. An extensive tool support through the Rodin
Platform [8] makes Event-B especially attractive.

The Event-B model and its behaviour is similar to a graph grammar. There is a con-
cept of state (set of variables in Event-B and a graph in GG) and a transition is con-
sidered an atomic operation in the current state (an event that updates the variables
in Event-B and a rule application in a graph grammar). Each stage should preserve the
properties of the state. In Event-B these properties are treated as invariants, and in graph
grammars, they are related to the graph structure. A graph grammar with n rules, α1 to
αn and i ∈ {1, ..., n}, can be modelled in Event-B as follows:
1. Context

(a) The sets of the model are vertT , edgeT , vertLi, edgeLi, vertRi and edgeRi
(the sets of vertices and edges of all graphs);

(b) The constants represent the vertices and edges of the type graph and rules and
also the names of typing functions tLi_V , tLi_E, tRi_V and tRi_E, source
and target functions, sourceT , targetT , sourceLi, targetLi, sourceRi and
targetRi, and rules alphaiV and alphaiE;

(c) The axioms define explicitly all sets and functions of the model.
2. Machine

(a) The model variables are specified by vertG, edgeG, sourceG, targetG, tG_V
and tG_E (current state of the system);

(b) The invariants define the types of variables;
(c) The initialisation action sets the initial values for the variables vertG, edgeG,

sourceG, targetG, tG_V and tG_E (specifying the initial graph G0);
(d) The set of events defines the rule applications. Guard conditions guarantee the

occurrence of a match (conditions for the rule to be applied).
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Fig. 2. Alternative Representations for Type Graph T , Initial Graph G0 and Rule α1

Static Part: The static part of graph grammars is specified in the context. Figure 2
presents an alternative representation for graph T and rule α1 of Figure 1.

The event-B specification is show in Figure 3. For specifying the type graph T , we
define as sets, vertT and edgeT ; as constants, the names of the vertices (Node) and the
edges (Nxt, Tok, Msg, Stb, Act), as well the names of the source and target functions
(sourceT , targetT ); in the axioms, we define these sets explicitly (e.g., axm_vertT
is defined by partition(vertT, {Node}) meaning that vertT = {Node}).

CONTEXT ctx_T
SETS

vertT, edgeT // Type graph T
vertL1, edgeL1 // Graph L1
vertR1, edgeR1 // Graph R1

CONSTANTS
Node Nxt Tok Msg Stb Act sourceT targetT // Constants of type graph T
N11 N12 Tok11 Stb11 Nxt11 sourceL1 targetL1 tL1_V, tL1_E // Constants of graph L1
N13 N14 Tok12 Act11 Nxt12 Msg11 sourceR1 targetR1 tR1_V tR1_E // Constants of graph R1
alpha1V, alpha1E // Morphism components

AXIOMS
axm_vertT : partition(vertT , {Node}) // Type graph T
axm_edgeT : partition(edgeT , {Nxt}, {Tok}, {Msg}, {Stb}, {Act}) // Type graph T
axm_srcTtype : sourceT ∈ edgeT → vertT // Type graph T
axn_srcTdef : partition(sourceT , {Nxt �→ Node}, {Tok �→ Node},

{Msg �→ Node}, {Stb �→ Node}, {Act �→ Node}) // Type graph T
axm_tgtTtype : targetT ∈ edgeT → vertT // Type graph T
axn_tgtTdef : partition(targetT , {Nxt �→ Node}, {Tok �→ Node},

{Msg �→ Node}, {Stb �→ Node}, {Act �→ Node}) // Type graph T
: . . .
axm_tR1_V : tR1_V ∈ vertR1 → vertT // Typing morphism graph R1
axm_tR1_V_def : partition(tR1_V , {N13 �→ Node}, {N14 �→ Node}) // Typing morphism graph R1
axm_tR1_E : tR1_E ∈ edgeR1 → edgeT // Typing morphism graph R1
axm_tR1_E_def : partition(tR1_E , {Tok12 �→ Tok}, {Act11 �→ Act},

{Nxt12 �→ Nxt}, {Msg11 �→ Msg}) / / Typing morphism graph R1
axm_alpha1V : alpha1V ∈ vertL1 �→ vertR1 // Vertex Morphism Component from graph L1 to R1
axm_alpha1V_def : partition(alpha1V , {N11 �→ N13}, {N12 �→ N14})
axm_alpha1E : alpha1E ∈ edgeL1 �→ edgeR1 // Edge Morphism Component from graph L1 to R1
axm_alpha1E_def : partition(alpha1E , {Tok11 �→ Tok12}, {Nxt11 �→ Nxt12})

Fig. 3. (Part of) GG Specification in Event-B
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To define a rule in Event-B, it is necessary to specify the two typed graphs and the
morphism. GraphsL1 andR1 are specified analogouslyT . The typing morphism names
tR1_V and tR1_E are declared as constants while their definitions are explicitly defined
in the axioms (axm_tR1_V , axm_tR1_V _def , axm_tR1_E, axm_tR1_E_def ).
The morphism components are also declared as constants (alpha1V , alpha1E) and ex-
plicitly specified in the axioms (axm_alpha1V , axm_alpha1V _def , axm_alpha1E,
axm_alpha1V _def ).

Dynamic Part: The dynamic part of a graph grammar is specified in the machine. A
set of variables define the state graph and a set of invariants determine its types. Both
are illustrated in Figure 4.

MACHINE mch_trAll
SEES ctx_GG
VARIABLES

vertG, edgeG, sourceG, targetG, tG_V, tG_E
INVARIANTS

inv_vertG : vertG ∈ P(N)
inv_edgeG : edgeG ∈ P(N)
inv_sourceG : sourceG ∈ edgeG → vertG
inv_targetG : targetG ∈ edgeG → vertG
inv_tG_V : tG_V ∈ vertG → vertT
inv_tG_E : tG_E ∈ edgeG → edgeT

EVENTS
Initialisation

act_vertG : vertG := {1 , 2 , 3}
act_edgeG : edgeG := {1 , 2 , 3 , 4 ,5 , 6 , 7}
act_srcG : sourceG := {1 �→ 1 , 2 �→ 1 ,3 �→ 1 , 4 �→ 2 ,5 �→ 2 , 6 �→ 3 , 7 �→ 3}
act_tgtG : targetG := {1 �→ 1 , 2 �→ 1 , 3 �→ 2 ,4 �→ 2 , 5 �→ 3 ,6 �→ 3 , 7 �→ 1}
act_tG_V : tG_V := {1 �→ Node, 2 �→ Node, 3 �→ Node}
act_tG_E : tG_E := {1 �→ Tok ,2 �→ Stb, 3 �→ Nxt, 4 �→ Stb, 5 �→ Nxt, 6 �→ Stb, 7 �→ Nxt}

Event alpha1 =̂
any

mV mE newEmsg newEact
where

grd_mV : mV ∈ vertL1 → vertG
grd_mE : mE ∈ edgeL1 � edgeG
grd_newEmsg : newEmsg ∈ N \ edgeG
grd_newEact : newEact ∈ N \ edgeG
grd_E1E2 : newEmsg �= newEact
grd_vertices : ∀v ·v ∈ vertL1 ⇒ tL1_V (v) = tG_V (mV (v))
grd_edges : ∀e ·e ∈ edgeL1 ⇒ tL1_E(e) = tG_E(mE(e))
grd_srctgt : ∀e ·e ∈ edgeL1 ⇒ mV (sourceL1 (e)) = sourceG(mE(e))∧

mV (targetL1 (e)) = targetG(mE(e))
then

act_E : edgeG := (edgeG \ {mE(Stb11 )}) ∪ {newEmsg,newEact}
act_src : sourceG := ({mE(Stb11 )}�− sourceG) ∪ {newEact �→ mV (N11 ),

newEmsg �→ mV (N12 )}
act_tgt : targetG := ({mE(Stb11 )}�− targetG) ∪ {newEact �→ mV (N11 ),

newEmsg �→ mV (N12 )}
act_tE : tG_E := ({mE(Stb11 )}�− tG_E) ∪ {newEact �→ Act,newEmsg �→ Msg}

Fig. 4. State Graph and Events in Event-B

The initial graph and rule applications are specified by events in Event-B. Figure 2
also shows an alternative representation for the initial graph G0 of the token ring ex-
ample. Vertices and edges are named with natural numbers with its types described into
the brackets. The initialisation event, depicted in Figure 4, defines G0. It is responsible
for initialising the value of each state variable.
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Other events determine the behaviour of the system, specifying the rule applications.
Figure 4 shows the specification for rule α1. Guard conditions guarantee the occur-
rence of a match, and the actions specify the value of the modified variables. If there
are values for the variables mV , mE, newEmsg, newEact satisfying the guard con-
ditions, then the rule is applied. Guard conditions grd_mV , grd_mE, grd_vertices,
grd_edges and grd_srctgt guarantee that the pair (mV , mE) defines a match of the
rule in the state graph. The conditions grd_newEmsg, grd_newEact and grd_E1E2
ensure that newEmsg and newEact are new free edges names. The actions act_E,
act_src, act_tgt and act_tE modify the state graph. In this case, an Stb edge is deleted
and two new edges are created, one of type Act and other one of type Msg.

4 Proof Obligations Generated from a GG Specification in Rodin

When specifying a system in Event-B, the Rodin platform executes a static (syntactic)
and a dynamic verification. In these verifications proof obligations are generated, which
must be demonstrated in order to ensure (part of) the correctness of the model. These
properties can be discharged using provers that comes with the tool or external ones,
which can be installed in the form of plugins. Some of the proof obligations are proved
automatically, while other ones depend on the user interaction.

Proof obligations generated by a GG specification in Rodin are basically of two
kinds, to ensure well-definedness conditions (labelled with WD) or to preserve invari-
ants (labelled with INV). In the Event-B specification, the set of variables define the
state graph and the invariants specify their types. Proof obligations are generated to
guarantee the preservation of their types by the initialisation event and by the events
that specify the rules. The corresponding proof obligation are generated whenever a
variable is modified by an event, in order to guarantee its type preservation. Other proof
obligations aim to ensure that guards conditions (conditions for applying a rule) and
actions (responsible for updating the values of some variables) are well-defined.

The main provers available for Rodin are NewPP, PP (predicate prover) and ML
(mono-lemma). The NewPP prover has three forces. In the configuration “restricted”
(nPP R), all selected hypotheses and the goal are passed to New PP. In the configuration
“after lasso” (nPP with a lasso), a lasso operation is applied to the selected hypotheses
and the goal and the result is passed to New PP. The lasso operation selects any un-
selected hypothesis that have a common symbol with the goal or a hypothesis that is
currently selected. In the configuration “unrestricted” (nPP), all the available hypothe-
ses are passed to New PP. This prover is embedded in the tool and its input language is
first-order logic with the predicate ∈. First, all function and predicate symbols that are
different from ∈ and not related to arithmetic are translated away. Then New PP trans-
lates the proof obligation to conjunctive normal form and applies a combination of unit
resolution and the Davis Putnam algorithm. The PP prover, available in the Atelier-B
as an external prover, also has three forces (P0, P1, PP). In the configuration “P0”, all
selected hypotheses and the goal are passed to PP. In the configuration “P1”, one lasso
operation is applied to the selected hypotheses and the goal and the result is passed to
PP. In the configuration “PP”, all the available hypotheses are passed to PP. The input
sequent is translated to classical B and fed to the PP prover of Atelier B. PP works in a
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manner similar to newPP but with support for equational and arithmetic reasoning. The
ML prover is also available in the Atelier-B, but different from others (PP and NewPP).
ML applies a mix of forward, backward and rewriting rules in order to discharge the
goal (or detect a contradiction among hypotheses). For more details see [10,7].

Table 1 presents the main proof obligations generated when specifying a GG in
Event-B. They can be easily discharged by running the available provers. Besides the
identification of each proof obligation, follows a brief description of it, along with the
prover that must be used to discharge it.

Proof obligations identified with INITIALISATION guarantee that variables that
define the state-graph, when initialised, preserve their types. The initial value of the
variables describes the initial graph of the graph grammar. For instance, in the to-
ken ring example, the obligation INITIALISATION /inv/_vertG/INV is used to ensure
that {1, 2, 3} ∈ P(N) (see Figure 4). Similarly, proof obligations are generated in or-
der to ensure the type preservation by the initialisation of the other variables (edgeG,
sourceG, targetG, tG_V and tG_E). All of them can be discharged by running P0.

Proof obligations labelled with rule/grd ensure that the guard conditions for the re-
spective event (or rule) are well-defined. For example, in the token ring, the obligation
rule1/grd_vertices/WD ensures that guard condition grd_vertices (see Figure 4)
is well-defined, that is, v ∈ dom(tL1_V ), v ∈ dom(mV ) and mV (v) ∈ dom(tG_V ),
with tL1_V , tG_V and mV preserving its types.

The result of a rule application can create edges, delete edges or create vertices in the
state-graph, changing the values of the corresponding variables. Proof obligations are
generated in order to guarantee that the variables with their values updated preserve its
types. These obligations are prefixed with rule/inv. In the token ring, rule 1 delete one
Stb edge and create one Act and one Msg edges (see Figure 4). In such case, variables
edgeG, sourceG, targetG and tG_E are modified, and then proof obligations are
generated to assure that these variables, after updating, preserve their types. E.g., it
must be guaranteed that (edgeG \ {mE(Stb11)}) ∪ {newEmsg, newEact} ∈ P(N).

Obligations are also generated to ensure that actions (which define the result of a rule
application) are well-defined. These obligations are prefixed with rule/act. When a rule
deletes an e edge, then variables edgeG, sourceG, targetG and tG_E are modified.
In such case, the deleted edge of the state-graph is the image of e by the mE compo-
nent of the match, i.e., mE(e) is deleted from edgeG. In the same way, are excluded
the elements (pairs) of the functions sourceG, targetG and tG_E that have mE(e)
as first component. In order to the respective actions be well-defined, the edge e must
belongs to the domain of mE and mE must preserve its type (these are the proof obli-
gations rule/act_E/WD, rule/act_src/WD, rule/act_tgt/WD, rule/act_tE/WD). Besides
that, when a rule adds an edge with source (or target) in a v vertex, that is preserved by
the rule, the source (respect. target) of the added edge must be image of v by the mV
component of the match. In this case, in order to variables sourceG and targetG be
well-defined, v must belong to the domain of mV , with mV preserving its type (these
are the proof obligations rule/act_src/WD and rule/act_tgt/WD). Proof obligations of
this type are demonstrated automatically.

The proof obligations described above are those generated when specifying a GG in
Event-B. Following this approach [5], any other property to be verified must be stated as
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Table 1. GG Proof Obligations in Event-B

Identification Description Provers

INITIALISATION/inv_vertG/INV Ensure that vertG preserves its type in G0 (at initialisation). ML or P0
INITIALISATION/inv_edgeG/INV Ensure that edgeG preserves its type in G0. ML or P0

INITIALISATION/inv_srcGtype/INV Ensure that sourceG preserves its type (a total function from
edgeG to vertG) in G0.

P0

INITIALISATION/inv_tgtGtype/INV Ensure that targetG preserves its type (a total function from
edgeG to vertG) in G0.

P0

INITIALISATION/inv_tG_V/INV Ensure that tG_V preserves its type (a total function from
vertG to vertT ) in G0.

ML, P0 or NewPP

INITIALISATION/inv_tG_E/INV Ensure that tG_E preserves its type (a total function from
edgeG to edgeT ) in G0.

P0

rule/grd_vertices/WD Ensure that the grd_vertices condition (see Fig. 4) is well-
defined, i.e. v ∈ dom(tL_V ), v ∈ dom(mV ) and mV (v)
∈ dom(tG_V ), with tL_V , tG_V and mV preserving its
types.

ML or P1

rule/grd_edges/WD Ensure that the grd_edges condition (see Fig. 4) is well-
defined, i.e. e ∈ dom(tL_E), e ∈ dom(mE) and mE(e)
∈ dom(tG_E), with tL_E, tG_E and mE preserving its
types.

ML, P1 or NewPP

rule/grd_srctgt/WD Ensure that the grd_srctgt condition (see Fig. 4) is
well-defined, i.e. e ∈ dom(sourceL), sourceL(e) ∈
dom(mV ), e∈ dom(mE), mE(e) ∈ dom(sourceG), e
∈ dom(targetL), targetL(e) ∈ dom(mV ) and mE(e)
∈ dom(targetG), with sourceL, mV , mE, sourceG,
targetL and targetG preserving its types.

ML or P1

rule/inv_vertG/INV Ensure that vertG, when modified by a rule application, pre-
serves its type.

ML or P0

rule/inv_edgeG/INV Ensure that edgeG, when modified by a rule application, pre-
serves its type.

ML or P0

rule/inv_srcGtype/INV Ensure that sourceG, when modified by a rule application, pre-
serves its type (a total function from edgeG to vertG).

P0

rule/inv_tgtGtype/INV Ensure that targetG, when modified by a rule application, pre-
serves its type (a total function from edgeG to vertG).

P0

rule/inv_tG_V/INV Ensure that tG_V , when modified by a rule application, pre-
serves its type (a total function from vertG to vertT ).

ML, P1 or NewPP

rule/inv_tG_E/INV Ensure that tG_E, when modified by a rule application, pre-
serves its type (a total function from edgeG to edgeT ).

P0

rule/act_E/WD Ensure that the modification of variable edgeG is well-defined.
When an e edge is deleted, ensure that e belongs to the domain
of the mE component of the match (i.e e ∈ dom(mE)) and
that mE preserves its type (mE: edgeL → edgeG).

Automatic

rule/act_src/WD Ensure that the modification of variable sourceG is well-
defined.
When an e edge is deleted, ensure that e belongs to the domain
of the mE component of the match (i.e e ∈ dom(mE)) and
that mE preserves its type (mE: edgeL → edgeG).
When an e edge is created with source (or target) in a vertex v,
preserved by the rule, ensure that v belongs to the domain of
the mV component of the match (i.e v ∈ dom(mV )) and that
mV preserves its type (mV : vertL → vertG).

Automatic

rule/act_tgt/WD Ensure that the modification of variable targetG is well-
defined.
When an e edge is deleted, ensure that e belongs to the domain
of the mE component of the match (i.e e ∈ dom(mE)) and
that mE preserves its type (mE: edgeL → edgeG).
When an e edge is created with source (or target) in a vertex v,
preserved by the rule, ensure that v belongs to the domain of
the mV component of the match (i.e v ∈ dom(mV )) and that
mV preserves its type (mV : vertL → vertG).

Automatic

rule/act_tE/WD Ensure that the modification of variable tG_E is well-defined.
When an e edge is deleted, ensure that e belongs to the domain
of the mE component of the match (i.e e ∈ dom(mE)) and
that mE preserves its type (mE: edgeL → edgeG).

Automatic



Theorem Proving Graph Grammars: Strategies for Discharging Proof Obligations 157

an invariant, indicating that it must be true for all reachable states of the system. Proofs
for such properties are developed by induction: in the base case, a proof obligation is
generated to guarantee the preservation of the property for the initial graph and, at the
inductive step, a proof obligation is generated for the graph resulting from the applica-
tion of each rule of the grammar. In general, the discharging of such proof obligations
requires intervention from the user, that must have knowledge of both, the tool and the
specification. The proposal of proof strategies to help the user in the development of the
demonstrations for some of these properties is addressed in the next section.

5 Proof Strategies for Atomic Properties

The translation of GG in Event-B structures has enabled the use of first-order logic to
express properties of reachable states of a graph grammar. However, during the devel-
opment of the case studies, we noticed that, although the specification of the behaviour
of the system could be rather intuitively described with graph grammars, the verification
of properties was not trivial. Properties over states are properties over graphs, typically
composed of different kinds of edges and vertices. In previous work [11] we have pro-
posed patterns for the presentation, codification and reuse of property specifications.
Here, we presents proof strategies for the demonstration of specific atomic properties
belonging to such patterns. Particularly, we describe proof strategies for discharging the
properties presented in Figure 5. Properties must be stated as invariants in the machine.

INVARIANTS
propFin : finite(tG_E � {t}) // The set of edges of type t of a reachable graph is finite.
propCard : card(tG_E � {t}) = 1 // Any reachable graph has exactly one edge of type t.
propExEdge : ∃x · x ∈ tG_E � {t} // Any reachable graph has an edge of type t.
propExVert : ∃x · x ∈ tG_V � {t} // Any reachable graph has a vertex of type t.

Fig. 5. Properties as Invariants in Event-B

For each property, we first present the steps for discharging the proof obligation
for the initial graph and after for the rules. Property propFin is required for the dis-
charging of propCard. The steps for discharging the INITIALISATION/propFin/INV
generated by propFin finite(tG_E � {t}) for the initial graph are the following:

1. Add the hypothesis tG_E � {t} = {x}, replacing tG_E by its value and consid-
ering x the result of tG_E restricted to the type t for the initial graph.

2. Execute the prover PP in force P1.
3. Run prover ML.

Figure 6 presents the proof tree1 generated for the demonstration of the proof obliga-
tion INITIALISATION/propFin/INV. Each node represents a sequent and each number
(from 1 to 5) represents the rule or the prover used to discharge the corresponding se-
quent. A set of proof tactics and rewriting rules are available within the Rodin platform
[7]. Space limitations prohibit their detailing here. After adding the hypothesis three

1 The set of hypotheses H in proof trees are omitted. In order to provide readability we denote
H different sets of hypotheses.
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sequents must be proved: (i) � �, that is discharged automatically with the � goal rule;
(ii) � tG_E � {t} = {x} which is automatically simplified (through sl/ds, that corre-
sponds to a selection/deselection of hypotheses) to the sequent H � tG_E�{t} = {x},
discharged with P1; (iii) tG_E�{t} = {x} � finite(tG_E�{t}) which is discharged
with ML.

True
2� �

PP RULES
1

H � tG_E � {t} = {x}
3� tG_E � {t} = {x}

ML RULES
4

tG_E � {t} = {x} � finite(tG_E � {t})
5� finite(tG_E � {t})

1 PP ; 2 � goal; 3 sl/ds; 4 ML; 5 ah (tG_E � {t} = {x})

Fig. 6. Proof Tree for Discharging INITIALISATION/propFin/INV

In order to conclude the proof of propFin, proof obligations must be discharged
for each rule of the graph grammar that modifies tG_E. These will be those that replace
tG_E by its new value, determined by the action of the respective rule. In general, a
rule can both delete and create new edges, then the obligation to be discharged will be
of the form finite((({mE(e1), . . . ,mE(ej))}�− tG_E)∪A)� {t}), considering that
j edges are deleted and a set of A pairs are included in tG_E. In this case, the steps for
discharging rule_i/propFin/INV for each rule i are the following:

1. Apply the tactic Range Distribution Left Rewrites, which after the application of
someautomatic tacticswillgenerate two sequents to beproved: (i)finite(({mE(e1),
. . . ,mE(ej))} �− tG_E)� {t}) and (ii) finite(A� {t}).

2. In order to prove (i), add ({mE(e1), . . . ,mE(ej))}�− tG_E)�{t} ⊆ tG_E�{t}
as hypothesis, and conclude the subgoals running ML.

3. In order to prove (ii), add A � {t} ⊆ A as hypothesis, and conclude the subgoals
running ML.

Figure 7 presents the proof tree generated for the demonstration of each proof obli-
gation rule_i/propFin/INV. After applying the tactic range distribution left rewrites in
goal, a sequence of automatic tactics are applied (rules 12 to 14 in the proof tree). They
correspond to the applications of simplification rewriting rules and typing rewriter tac-
tic (details are found in Rodin Proof Tactics [7]). Then, the tactic ∧ goal splits the
sequent into two subgoals: (i) finite(({mE(e1), . . . ,mE(ej))}�− tG_E)� {t}) and
(ii) finite(A � {t}). The subgoal (i) is discharged adding the hypothesis ({mE(e1),
. . . ,mE(ej))}�− tG_E)� {t} ⊆ tG_E � {t}, remaining three sequents to be proved:
H � e1 ∈ dom(mE)∧ . . .∧ ej ∈ dom(mE)∧mE ∈ edgeLi � Z, that is discharged
automatically, H � ({mE(e1), . . . ,mE(ej))} �− tG_E) � {t} ⊆ tG_E � {t} and
H � finite(({mE(e1), . . . ,mE(ej))} �− tG_E) � {t}), which are both discharged
running ML. The subgoal (ii) is discharged adding the hypothesis A � {t} ⊆ A,
remaining three sequents to be proved: H � �, discharged with the � goal tactic,
H � A� {t} ⊆ A and H � finite(A� {t}), both discharged with ML.

The steps for discharging the obligation INITIALISATION/propCard/INV generated
by propCard (card(tG_E � {t}) = 1) for the initial graph are the following:



Theorem Proving Graph Grammars: Strategies for Discharging Proof Obligations 159

C

ML RULES
4

H � ({mE(e1), . . . ,mE(ej))} �− tG_E) � {t} ⊆ tG_E � {t}

D

ML RULES
5

H, ({mE(e1), . . . ,mE(ej))} �− tG_E) � {t} ⊆ tG_E � {t} � finite(({mE(e1), . . . ,mE(ej))} �− tG_E) � {t})

A

True
1

H � �
2

H � � ∧ . . . ∧ �
3

H � e1 ∈ dom(mE) ∧ . . . ∧ ej ∈ dom(mE) ∧ mE ∈ edgeLi � Z C D
6

H � finite(({mE(e1), . . . ,mE(ej))} �− tG_E) � {t})

B

True
7

H � �
ML RULES

8
H � A � {t} ⊆ A

ML RULES
9

H,A � {t} ⊆ A � finite(A � {t})
10

H � finite(A � {t})

A B
11

H � finite({mE(e1), . . . ,mE(ej))} �− tG_E � {t}) ∧ finite(A � {t})
12

H � finite({mE(e1), . . . ,mE(ej))} �− tG_E � {t}) ∧ finite(A � {t})
13

H � finite({mE(e1), . . . ,mE(ej))} �− tG_E � {t}) ∧ finite(A � {t})
14

H � finite(({mE(e1), . . . ,mE(ej))} �− tG_E � {t}) ∪ (A � {t}))
15

H � finite((({mE(e1), . . . ,mE(ej))} �− tG_E) ∪ A) � {t})

1 � goal; 2 Simplification Rewrites ; 3 Generalised MP; 4 ML; 5 ML; 6 ah (({mE(e1), . . . ,mE(ej))} �− tG_E) � {t} ⊆ tG_E � {t}); 7 �
goal; 8 ML; 9 ML; 10 ah (A � {t} ⊆ A); 11 ∧ goal; 12 Simp. rewrites; 13 Type Rewrites; 14 Simp. Rewrites; 15 Range Distribution Left Rewrites in Goal

Fig. 7. Proof Tree for Discharging rule_i/propFin/INV

1. Add the hypothesis tG_E � {t} = {e �→ t}, replacing tG_E by its initial value
and considering e �→ t the pair resultant of tG_E restricted to the type t for the
initial graph.

2. Run prover PP in force P1 (lasso operation is applied to the common hypotheses).
3. Run prover PP in force P1.

Figure 8 presents the proof tree. After adding the hypothesis, three sequents must be
proved: (i) � �, that is discharged automatically with the � goal rule; (ii) tG_E�{t} =
{e �→ t} and (iii) ∃x, x0. tG_E � {t} = {x �→ x0}, both discharged with P1.

The obligations generated by propCard for each rule will be those that replace
tG_E by its new value. Since a rule can both delete and create new edges, then the
general obligation to be discharged will be card((({mE(e1), . . . ,mE(ej))}�−tG_E)∪
{ed1 �→ t1, . . . , edk �→ tk}�{t}) = 1, considering that j edges are deleted and k edges
are created. In fact, if this property is valid, the t edge or is preserved or is deleted and
created by a rule application. Then, we divide our tactic into two subcases:
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True
5� �

PP RULES
1

H � tG_E � {t} = {e 	→ t}
3� tG_E � {t} = {e 	→ t}

6� tG_E � {t} = {e 	→ t}

PP RULES
2

H � ∃x, x0 · tG_E � {t} = {x 	→ x0}
4

H � ∃x, x0 · tG_E � {t} = {x 	→ x0}
7

H � card(tG_E � {t}) = 1
8� card(tG_E � {t}) = 1

1 PP ; 2 PP ; 3 sl/ds; 4 sl/ds; 5 � goal; 6 simplification rewrites; 7 simplification rewrites;
8 ah(tG_E � {t} = {e 	→ t})

Fig. 8. Proof Tree for Discharging INITIALISATION/propCard/INV

The t edge is preserved: 1. Apply the default post-tactics, which simplifies the prop-
erty to ∃x, x0.(({mE(e1), . . . ,mE(ej))} �− tG_E) ∪ {ed1 �→ t1, . . . , edk �→
tk}� {t}) = {x �→ x0}.

2. Instantiate variables in goal with x, x0, converting the goal to ({mE(e1), . . . ,
mE(ej))} �− tG_E) ∪ {ed1 �→ t1, . . . , edk �→ tk})� {t} = {x �→ x0}.

3. Run NewPP with lasso.
Figure 9 presents the generated proof tree.

The t edge is deleted and a t edge is created: 1. Add card({mE(e1), . . . ,mE
(ej))}�−tG_E�{t}) = 0 as hypothesis, which will generate three sub-goals to
be proved: (i) finite({mE(e1), . . . ,mE(ej)} �− tG_E � {t});
(ii) {mE(e1), . . . , mE(ej))}�−tG_E�{t} = ∅; and (iii) ∃x, x0.(({mE(e1),
. . . ,mE(ej))}�− tG_E) ∪ {ed1 �→ t1, . . . , edk �→ tk}� {t}) = {x �→ x0}.

2. In order to proof (i), add {mE(e1), . . . ,mE(ej))}�−tG_E�{t} ⊆ tG_E�{t}
as hypothesis, and conclude the sub-goals running ML.

3. In order to proof (ii), add {mE(ei)} �− tG_E � {t} = ∅ as hypothesis, such
that ei is the t deleted edge, and discharge the sub-goals running NewPP with
lasso.

4. In order to proof (iii), instantiate the variable of the existential quantifier with
edi and t, such that edi is the added t edge, and discharge the sub-goal with
NewPP with lasso.
Figure 10 presents the generated proof tree.

True
2

H � �

NewPP RULES
1

H � (({mE(e1), . . . ,mE(ej)} �− tG_E) ∪ {ed1 	→ t1, . . . , edk 	→ tk}) � {t} = {x 	→ x0}
3

H � (({mE(e1), . . . ,mE(ej)} �− tG_E) ∪ {ed1 	→ t1, . . . , edk 	→ tk}) � {t} = {x 	→ x0}
4

H � ∃x, x0 · (({mE(e1), . . . ,mE(ej)} �− tG_E) ∪ {ed1 	→ t1, . . . , edk 	→ tk}) � {t} = {x 	→ x0}
5

H � ∃x, x0 · (({mE(e1), . . . ,mE(ej)} �− tG_E) ∪ {ed1 	→ t1, . . . , edk 	→ tk}) � {t} = {x 	→ x0}
6

H � ∃x, x0 · (({mE(e1), . . . ,mE(ej)} �− tG_E) ∪ {ed1 	→ t1, . . . , edk 	→ tk}) � {t} = {x 	→ x0}
7

H � ∃x, x0 · (({mE(e1), . . . ,mE(ej)} �− tG_E) ∪ {ed1 	→ t1, . . . , edk 	→ tk}) � {t} = {x 	→ x0}
8

H � card((({mE(e1), . . . ,mE(ej)} �− tG_E) ∪ {ed1 	→ t1, . . . , edk 	→ tk}) � {t}) = 1

1 NewPP ; 2 � goal; 3 sl/ds; 4 ∃ goal (inst x, x0); 5 ∃ hyp (∃x, x0 · tG_E � {t} = {x 	→ x0)});
6 simplification rewrites; 7 type rewrites; 8 simplification rewrites

Fig. 9. Proof Tree for Discharging rule_i/propCard/INV
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A = {mE(e1), . . . , mE(ej)} �− tG_E

B = {ed1 	→ t1, . . . , edk 	→ tk}
C = ej ∈ dom(mE) ∧ . . . ∧ ej ∈ dom(mE) ∧ mE ∈ edgeLi 	→ Z

D = e1 ∈ dom(mE) ∧ mE ∈ edgeLi 	→ Z

E = {me(ei)} �− tG_E

E

True
25

H � �
NewPP RULES

26
H � ((A) ∪ B) � {t} = {edi 	→ t}

24
H � ∃x, x0 · ((A) ∪ B) � {t} = {x 	→ x0}

23
H � card(((A) ∪ B) � {t}) = 1

F

True
20

H � �
19

H � � ∧ �
18

H � D
NewPP RULES

21
H � E � {t} = ∅

NewPP RULES
22

H � A � {t} = ∅

17
H � A � {t} = ∅

16
H � A � {t} = ∅

15
H � A � {t} = ∅

14
H � A � {t} = ∅

13
H � card(A � {t}} = 0

True
10

H � �
9

H � �∧, . . . ,∧�
8

H � C
ML RULES

11
H � A � {t} ⊆ tG_E � {t}

ML RULES
12

H � finite(A � {t})
7

H � finite(A � {t})
6

H � finite(A � {t})
5

H � finite(A � {t})
4

H � finite(A � {t})
3

H � �∧, . . . ,∧� ∧ finite(A � {t})
2

H � C ∧ finite(A � {t}) F E

1
H � card(((A) ∪ B) � {t})) = 1

1 ah (card({mE(e1), . . . , mE(ej)} �− tG_E � {t}) = 0); 2 generalised MP; 3 simplification rewrites; 4 type rewrites; 5 simplification rewrites;

6 ∃ hyp (∃x, x0 · tG_E � {t} = {x 	→ x0}); 7 ah(A � {t} ⊆ tG_E � {t}); 8 generalised MP; 9 simplification rewrites; 10 � goal; 11 ML;
12 ML; 13 simplification rewrites; 14 type rewrites; 15 simplification rewrites; 16 ∃ hyp (∃x, x0 · tG_E � {t} = {x 	→ x0}); 17 ah (E � {t} = ∅);

18 generalised MP; 19 simplification rewrites; 20 � goal; 21 NewPP; 22 NewPP; 23 simplification rewrites; 24 ∃ goal (inst edi, t); 25 � goal; 26 NewPP

Fig. 10. Proof Tree for Discharging rule_i/propCard/INV

In order to discharge the proof obligation INITIALISATION/propExEdge/INV gen-
erated by property propExEdge ( ∃x · x ∈ tG_E � {t}) for the initial graph just run
NewPP. Again, since a rule can preserve, delete and create edges, then we divide our
proof strategies for obligations rule_i/propExEdge/INV in three cases.

All t edges are preserved: Run NewPP with lasso.
An t edges is created: (a) Instantiate existential variable in goal with edi �→ t, such

that edi is the t edge that is created. (b) Run ML.
An t edge is deleted, but an t edge is preserved (a) Instantiate existential variable in

goal with mE(edi) �→ t, such that edi is the t edge that is preserved. (b) Run
NewPP with lasso.

In order to discharge the proof obligation INITIALISATION/propExVert/INV gen-
erated by property propExVert ( ∃x · x ∈ tG_V � {t}) for the initial graph just run
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NewPP. For such property no proof obligations are generated for rules. This is because
the component that map vertices in rules are total and injective, and then vertices can
not be deleted. Proving that we have a vertex of type t in the initial graph, no other
rule can delete it. Previous work has addressed that this restriction in the model is not a
severe limitation for many practical applications [6].

6 Conclusions and Future Work

In this paper we presented the proof obligations generated by Rodin platform when
specifying a graph grammar system in Event-B structures, indicating the strategies to
discharge them. We also propose strategies of proofs for the verification of some atomic
properties, declared as invariants in the model.

One of the disadvantages of using theorem proving as verification technique is that
it requires user interaction during the development of the proofs, but on the other hand,
it allows the verification of systems with huge or infinite state spaces. This work con-
stitutes the first step towards the reduction of expertise required from the user when
adopting such an approach. Strategies for discharging other kind of properties are be-
ing proposed. Particularly, tactics for all patterns proposed in [11] are under devel-
opment. We are also investigating to which extent the theory of refinement, which is
well-developed in Event-B, could be used to validate a stepwise development based on
graph grammars.
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Abstract. An autonomous agent is one that is not only directed by its
environment, but is also driven by internal motivation to achieve certain
goals. The popular Belief-Desire-Intention (BDI) design paradigm allows
such agents to adapt to environmental changes by calculating a new ex-
ecution path to their current goal, or when necessary turning to another
goal. In this paper we present an approach to modelling autonomous
agents using an extension to Object-Z. This extension supports both
data and action refinement, and includes the use of LTL formulas to de-
scribe an agent’s desire as a sequence of prioritised goals. It turns out,
however, that the introduction of desire-driven behaviour is not mono-
tonic with respect to refinement. We therefore introduce an additional
refinement proof obligation to enable the use of simulation rules when
checking refinement.

Keywords: Autonomous agents, BDI agents, Refinement, Object-Z,
Temporal logic.

1 Introduction

The design of autonomous agents is one of the central issues of the artificial
intelligence community [1]. Such an agent has the capability to manage its own
resources and sense its environment. Its further behaviour is often determined
dynamically based on its current perception of itself and the environment as well
as a goal to achieve. This is the main difference between autonomous agents and
conventional components.

An autonomous agent is usually described in terms of not only its “physical”
features such as variables and actions but also its “mental” features such as
beliefs, desires and intentions (BDI) [2,3]. An autonomous agent in the BDI
paradigm formulates a plan (its intention) based on its current beliefs about
itself and its environment in order to achieve its desire. Its behaviour, therefore,
is derived not only from what it is able to do, but also from what it wants to
do [1].

In this paper, we use an extension to Object-Z [4] to specify autonomous
agents. The interactions between an agent and its environment are recorded with
the inputs and outputs within action definitions. If the information obtained from

J. Iyoda and L. de Moura (Eds.): SBMF 2013, LNCS 8195, pp. 163–178, 2013.
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the environment violates the belief of the agent (which is implicitly included in
the precondition of the actions), we consider this to be divergence which can
be refined in the development process. This perspective allows us to refine an
agent to adapt to a hostile environment by introducing reaction mechanisms for
unexpected inputs.

The desire-driven behaviour of autonomous agents is captured by restricting
an agent’s behaviour to paths leading to its desire. A desire is specified as a
sequence of goals each specified in terms of linear temporal logic (LTL) [5].
Typical goals include getting a task done in the future which can be specified
with the eventually temporal operator �, or maximising a reward at each step
which can be specified with the always temporal operator �.

In this paper, we limit goals to refer to the state variables of an agent only,
i.e., a goal cannot refer to inputs and outputs from the environment. If this is
necessary, the values of such variables can be recorded as part of the agent’s
state.

The goals are ordered with priority within the desire and we assume that the
agent will have only one goal at any moment. Initially, the goal of the agent will
be set to the goal of the desire with the highest priority. The agent follows an
execution path which leads to the current goal taking into account interaction
with the environment. If there is no path to achieve the goal, the agent sets
another goal of the desire to its current goal. If none of the goals of the desire
is achievable, the agent arbitrarily performs any enabled action, which we call
unmotivated behaviour.

An alternative to unmotivated behaviour would be to remove behaviours cor-
responding to the agent’s goals being unachievable. This would lead to specifi-
cations which are unimplementable (since we cannot guarantee that the envi-
ronment will allow an agent to achieve its goals), whereas we want to be able to
develop our specifications using refinement. The unmotivated behaviour in our
specifications can be refined by introducing further goals when the current ones
are unachievable.

The refinement theory we provide is able to justify the correctness of design
and development paradigms for adapting to environments: (a) introducing local
mechanisms to increase the feasibility of the desire under different environmental
conditions, and (b) introducing further goals to the desire to reduce the possibil-
ity of not being able to achieve a goal belonging to the desire. To provide flexible
support for (a) we allow the introduction of both variables and actions in the
concrete specification. Therefore, the refinement theory and its simulation rules
are based on event refinement in Event-B [6]. As mentioned above, our notion
of unmotivated behaviour supports (b).

However, as we show, restricting unmotivated behaviour during the develop-
ment of an agent is not monotonic with respect to refinement. In order to refine
autonomous agents, therefore, we provide an additional refinement obligation. A
refinement of an autonomous agent can be verified by checking both the standard
simulation rules and the new proposed obligation.
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The remainder of the paper is organised as follows. The specification notation
and its semantics are presented in Section 2; the refinement relation and simu-
lation rules are introduced in Section 2.1. Section 3 proposes the specification
of an autonomous agent with an explicit desire presented as a sequence of LTL
formulas representing goals. In Section 4 the non-monotonicity of the behaviour
restriction is revealed, and the refinement obligation to aid the checking of re-
finement is proposed. Section 5 mentions related work and Section 6 concludes
the paper and refers to future research directions.

2 Agents

At low levels of abstraction an agent can be modelled as a state machine, or state-
transition system. But an autonomous agent is conveniently specified more ab-
stractly by stating explicitly its desire. This distinguishes an autonomous agent
from a general reactive component; such an agent adjusts its choice of actions
to meet its desire [1]. This will be considered in Section 3. For now we represent
an agent syntactically by a construct, based on the class construct of Object-Z
[4], which we will call a module.

A module includes a state schema declaring the local variables and an in-
variant constraining their values, an initial state schema and a set of actions
modelling state transitions. As in Object-Z, primed variables, e.g., x ′, denote
the value of state variables in the post-state of an action, and actions include a
Δ-list of variables whose values they may change.

Unlike standard Object-Z, an action has both a guard and a precondition.
The guard condition is stated explicitly in an action separated from the effect
predicate describing the action’s behaviour. The explicit guard is an extension
to Object-Z aimed at allowing a more flexible notion of refinement similar to
that of Event-B. Specifically, an action can be enabled in a state which is not
included as a pre-state of the effect predicate; but the result is divergence.

An action is of the following form where y denotes those state variables not
in the Δ-list.

Action
Δ(x )
u? : Type of u
v ! : Type of v
a : Type of a

guard(u?, a, x , y)

effect(u?, a, x , y, x ′, v !)

variables which action may change
input variables
output variables
auxiliary variables

In the standard semantics of Object-Z, the state variables are hidden (i.e.,
executions are represented by sequences of actions) and the interaction variables
(inputs and outputs) appear as part of the actions which occur. While such a
semantics is suited to standard data refinement [7], to allow the introduction
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of actions we require a semantics in which the actions are hidden (i.e., execu-
tions are represented by sequences of states), and hence embed the interaction
variables in the states.

The interaction variables are implicitly added to the Δ-list of every action.
Any reference in an action to an input variable is a reference to its pre-state
value. Hence, actions cannot refer to or constrain their post-state values which
represent the values of the inputs used by the next action. Any reference to an
output variable is a reference to its post-state value. In the case that an action
does not generate a value for a given output variable v ! then v ! is implicity
assigned the special null (undefined) value ε.

Semantically, a module is a tuple M = (Σ, I ,A) where

– Σ is the set of states of the module. Each state is a function mapping the
local variables and interaction variables to values which satisfy the variables’
types.

Σ =̂ {σ | σ ∈ ((Var ∪ In) → Val) ∪ (Out → (Val ∪ {ε})}

where Var is the set of local variables declared in the module, In is the set
of input variables appearing in any action of the module, and Out is the set
of output variables appearing in any action of the module. Val is the set of
all values and ε is the null value for output variables.

– I ⊆ Σ is the set of states which satisfy the module’s initial condition. The
initial value of each output variable is ε.

I =̂ {σ | σ ∈ Σ ∧ σ |= (init(Var) ∧ inv(Var)) ∧ ∀ v ! ∈ Out • σ(v !) = ε}

where init(Var) is the initialisation condition and inv(Var) is the invariant
over the state variables. The input variables are not constrained initially.
The values chosen represent the values of the inputs used by the first action
to occur.

– A ⊆ Σ ×Σ⊥ is the transition relation specified by the actions where Σ⊥ =
Σ ∪ {⊥} and ⊥ denotes a divergent state in which the values of the state
variables are undefined. Divergence occurs when the current state enables
an action but the effect of executing the action is undefined. Divergent be-
haviour is modelled as maximally nondeterministic behaviour allowing it to
be refined by any other behaviour. Hence, divergence can be used to abstract
the details of behaviour of interest only at some lower level of abstraction.
When an action results in divergent behaviour, the divergent state ⊥, as well
as any other state in Σ, may result. In this way, divergent behaviour can
be distinguished semantically from maximally nondeterministic terminating
behaviour.

Formally, an individual action named A is represented semantically as

sem A =̂ {(σ, σ′) | σ ∈ Σ ∧ σ′ ∈ Σ⊥ ∧ σ |= A.guard∧
((σ, σ′) |= E (A) ∨ �σ′′ • (σ, σ′′) |= E (A))}
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where A.guard is the guard condition of action A and

E (A) =̂ A.effect ∧ inv(Var) ∧ inv(Var ′) ∧ ∀ v ! ∈ (Out\A.out) • σ′(v !) = ε

where A.effect is the effect predicate of action A, and A.out is its set of
output variables.

Given that the set of all action names is Actions , we have

A =
⋃

A∈Actions sem A

For simplicity, we omit the notation sem in the rest of the paper when it
causes no confusion.

The behaviour of a module is the set of all possible traces of the agent, i.e.,
infinite sequences of states 〈σ1, σ2, . . .〉 where every state is a member of Σ⊥,
σ1 ∈ I , and for all i ∈ N1, (σi , σi+1) corresponds to the execution of an action
A, or to agent inactivity. By allowing unlimited agent inactivity, we model the
fact that an unmotivated autonomous agent can always choose to do nothing.
This is not the case when the agent is motivated by a desire.

Formally, the set of traces of a module is defined below where for any i ∈ N1,
s [i ] denotes the ith state in trace s .

Definition 1. (Module Traces) For a trace s and a set m ⊆ N1, let non div(s ,m)
be true iff s does not diverge at indices in m, i.e.,

non div(s ,m) =̂ ∀ i ∈ m • (s [i ], s [i + 1]) ∈ A ∪ Skip ∧ (s [i ],⊥) �∈ A

where Skip =̂ {(σ, σ′) | ∀ x ∈ Var • σ′(x ) = σ(x ) ∧ ∀ v ! ∈ Out • σ′(v !) = ε}
The behaviour of any module M is modelled as a set of traces, divided into the
following subsets distinguished by divergence.

nml(M ) denotes the set of all normal, i.e., non-divergent, traces of M .

nml(M ) =̂ {s | s [1] ∈ I ∧ non div(s ,N1)}

For n ∈ N1, div(M , n) denotes the set of traces of M that diverge after the nth
state.

div(M , n) =̂ {s | s [1] ∈ I ∧ non div(s , {1 . . n − 1}) ∧ (s [n],⊥) ∈ A}}

Note that it is not possible to recover from divergence; the behaviour following
the nth state is undefined and hence maximally nondeterministic (all behaviours
including those with the divergent state ⊥ are included).

tr(M ) denotes the set of all possible execution traces of M .

tr(M ) =̂ nml(M ) ∪ (
⋃

n≥1 div(M , n))
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Example 1. Consider an agent driving a car. The agent receives information
about the local traffic via an on-board navigation device. This information in-
cludes the time required to reach the destination on the current route, taking
into account traffic congestion, and the time on any alternative routes which are
faster than the current route. The agent can change the route it takes based on
this information.

Let Route be a given type denoting the set of all routes and let the agent’s
state have two variables current : Route denoting the current route and time :
Route �→ N denoting the travel times of the current route and all alternative
routes. Initially, the current route is the only route for which a time is displayed.
The action Update models the agent receiving route information from the navi-
gator, and the agent choosing a route based on this information.

Agent

current : Route
time : Route �→ N

INIT

dom time = {current}

Update
Δ(current , time)
time? : Route �→ N

true

current ∈ dom time?
∀ r : dom time? \ {current} • time?(r) < time?(current)
time ′ = time?
current ′ ∈ dom time ′

Let R1,R2,R3 ∈ Route. A normal trace of the agent is:

〈(current = R1, time = {R1 �→ 50}, time? = {R1 �→ 40,R2 �→ 35}),
(current = R1, time = {R1 �→ 40,R2 �→ 35}, time? = {R1 �→ 35,R3 �→ 20}),
(current = R3, time = {R1 �→ 35,R3 �→ 20}, time? = {R3 �→ 20}), . . .〉

A divergent trace of the agent is:

〈(current = R1, time = {R1 �→ 50}, time? = {R1 �→ 40,R2 �→ 35}),
(current = R1, time = {R1 �→ 40,R2 �→ 35}, time? = {R1 �→ 35,R2 �→ 40}),
⊥, . . .〉

In this case, the divergence is caused by the navigator providing an input violat-
ing the precondition ∀ r : dom time? \ {current} • time?(r) < time?(current).
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2.1 Refinement and Simulation Rules

A refinement of an agent specification guarantees that the changes of the state
variables in the concrete specification are consistent with those in the abstract
specification with respect to a retrieve relation R. Given two modules M1 and
M2, a retrieve relation R : P(Σ⊥

1 ×Σ⊥
2 ) defines a correspondence between their

states. Note that R maps the divergent state ⊥ only to itself, i.e., R(⊥) = {⊥}
and R−1(⊥) = {⊥}. As well as allowing R to be applied as a function on sets
of states (note that a single state argument is interpreted as the singleton set
containing that state), we allow it to be applied as a function on traces, sets of
traces and formulas. The results of the application of R to these constructs are
based on its application to states. For instance, the application of R to a trace
can be defined as:

R(s) = {t | ∀ i ∈ N1 • t [i ] ∈ R(s [i ])}

The application of R to a set of traces S can be defined based on its application
to traces:

R(S ) =̂
⋃

s∈S R(s)

The application of R to a formula P is also defined in terms of its application
to traces:

R(P) = {Q | ∀ s , t • t ∈ R(s) ⇒ (s |= P ⇔ t |= Q)}

Definition 2. (Refinement) Let M1 and M2 be two modules. We say M1 is
refined by M2 with respect to retrieve relation R, denoted M2 "R M1, iff tr(M2) ⊆
R(tr(M1)).

The subscript R in "R may be omitted if R is the identity relation.

Internal changes in the concrete specification may be hidden by the retrieve
relation, making some of the concrete actions appear like inactivity at the ab-
stract level. Such concrete actions are called ‘stuttering actions’. Formally, action
A defined in a concrete module is called a stuttering action if it behaves as inac-
tivity in the abstract view, i.e., R; A ⊆ Skip; R. Any concrete action not having
that property is called a change action.

To prove refinement via Definition 2 is generally intractable, requiring analysis
of all traces of the modules, and so as usual we consider simulations. The fol-
lowing simulation rules are inspired by those of Event-B [6] which allow a single
abstract state transition to be refined by a sequence of concrete transitions.

Theorem 1. (Forward Simulation) Let M1 and M2 be modules and R be a re-
trieve relation between their states. Then M2 "R M1 if

(1) I2 ⊆ R(I1)

(2) for any change action A2 of M2, there exists an action A1 of M1 where
R ; A2 ⊆ A1 ; R.
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The proof is straightforward noting that any concrete trace which has stuttering
states is related to an abstract trace with inactivity, i.e., Skip, in the correspond-
ing positions in the trace.

Condition (2) allows the guards of a concrete change action to be stronger than
that of the corresponding abstract action. This can result in the introduction of
deadlock, i.e., where no actions are enabled. While an agent can choose to be
inactive, we would not usually want to refine an agent to one which can only be
inactive in certain circumstances. Hence, as in Event-B, we propose an additional
condition to prevent the introduction of deadlock.

(3) The overall guard of M2 is weaker than that of M1, i.e.,

R({σ | σ |= g(M1)}) ⊆ {γ | γ |= g(M2)}

where the overall guard g(M ) is the disjunction of all action guards declared in
module M .

3 Autonomous Agents

A module can specify the behaviour of an agent by referring to the variables
it controls and the actions it can perform. In order to specify the autonomous
behaviour of an agent, we need to also specify the motivation for its execution: to
fulfil its desire. Hence we add a component to the standard module to represent
the agent’s desire.

An autonomous agent comprising a module M and desire Q will be denoted
by M ?Q . The desire Q is a finite sequence of goals, i.e., Q = 〈Φ1, Φ2, ..., Φn〉.
Each goal is represented by a linear temporal logic (LTL) [5] formula.

Initially, the agent sets its goal to the first element of the desire sequence.
To achieve this goal, the agent calculates execution paths based on its current
beliefs about itself and the environment and chooses to follow a path leading
to the goal. If there is no path for the agent to achieve its current goal, the
agent changes its goal to the next element of the desire sequence. If no goal
in the desire sequence is feasible, the agent’s behaviour becomes unmotivated
(choosing any enabled action). At a lower level of abstraction, the unmotivated
behaviour might be refined by, for example, introducing a new goal to the desire
sequence.

We define the desire-driven behaviour of an autonomous agent M ?Q in an
inductive manner. As the base case, an agent with an empty desire sequence
behaves as the definition of its module, i.e., M ?〈〉 =̂ M .

Consider an agent with only one goal in its desire sequence, i.e., M ?〈Φ〉. The
traces of M ?〈Φ〉 include:

– Any non-divergent trace of M which satisfies Φ.

– Any divergent trace of M which has satisfied Φ before divergence. After the
desire has been satisfied, the agent may act in any manner available to it.



A Refinement Framework for Autonomous Agents 171

– Any trace of M in which, from a certain point, the agent has no opportunity
to make a decision which will lead to its desire being satisfied while before
that point the agent made acceptable choices all along the trace. Such a
trace corresponds to unmotivated behaviour.

Note that a decision made by the agent is acceptable when there exists a path
afterward which can satisfy the desire given a cooperative environment. That is,
we do not insist the decisions of the agent guarantee that every path afterward
can satisfy the desire. This reflects the fact that such decisions would be based
on the agent’s beliefs about the future behaviour of the environment which may,
or may not, turn out to be true.

To formalise our notion of desire-driven behaviour, we first introduce some
notation.

1. We use the notation Δ to denote the set of all sequences of states which do
not include ⊥. For a trace s ∈ Δ and LTL formula Φ, we say s � Φ if and
only if the temporal property Φ is satisfied by s .

2. For traces s and t , let s =n t be true iff s and t share the same prefix of
length n, i.e.,

s =n t =̂ ∀ i ∈ 1..n • s [i ] = t [i ]

3. For a set S of traces satisfying a desire, we let Γ (s , S , i) denote a predicate
that is true when trace s is not in the set S due to either (a) the value of
inputs at point i , or (b) when i is 1, the trace’s initial state (due to either
the values of the state variables or the inputs to the first action). These
situations are ones in which the agent has no opportunity to make a decision
which will lead to the desire being satisfied.

For case (a), (1) there does not exist a trace in S which shares the prefix
of trace s up to point i , and (2) there exists a trace u ∈ S which shares
the prefix of s up to point i − 1 and differs from s at point i by the input
values only. This case indicates that the desire is unable to be satisfied due
to inputs from the environment.

For case (b), there does not exist a trace in S which shares the same initial
state as s . This case indicates that the desire is unable to be satisfied due to
the initialisation of the agent or the initial inputs from the environment.
Let V −� σ denotes the state σ with variables in set V removed.

Γ (s , S , i) =̂ i = 1 ⇒ �r ∈ S • r [1] = s [1] ∧
i > 1 ⇒ �r ∈ S • r =i s ∧

∃ u ∈ S • u =i−1 s ∧ In −� u[i ] = In −� s [i ]

Such a trace s contains unmotivated behaviour after point i . It would be
kept in the autonomous behaviour for further refinement.

Definition 3. (Autonomous behaviour) The behaviour of an autonomous agent
M ?〈Φ〉 is modeled as a set of traces, divided into the following subsets distin-
guished by divergence.
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The normal traces of M ?〈Φ〉 are those normal traces of M which either satisfy Φ
(represented by nmlsucc), or fail to satisfy Φ due to input values or their initial
state (represented by nmlfail).

nml(M ?〈Φ〉) =̂ nmlsucc(M ?〈Φ〉) ∪ nmlfail(M ?〈Φ〉) where

nmlsucc(M ?〈Φ〉) =̂ {s | s ∈ nml(M ) ∧ s |= Φ}
nmlfail(M ?〈Φ〉) =̂ {s | s ∈ nml(M ) ∧ ∃ i ∈ N1 • Γ (s , nmlsucc(M ?〈Φ〉), i)}

The divergent traces of M ?〈Φ〉 are those divergent traces which satisfy Φ (i.e.,
all non-diverging traces that do not differ before the point of divergence satisfy
Φ) or fail to satisfy Φ due to input values (represented by divfail).

div(M ?〈Φ〉, n) =̂ divsucc(M ?〈Φ〉, n) ∪ divfail(M ?〈Φ〉, n) where

divsucc(M ?〈Φ〉, n) =̂ {s | s ∈ div(M , n) ∧ ∀ t ∈ Δ • s =n t ⇒ t |= Φ}
divfail(M ?〈Φ〉, n) =̂ {s | s ∈ div(M , n) ∧ ∃ i ∈ 1..n • Γ (s , nmlsucc(M ?〈Φ〉), i)}
The set of all possible traces of M ?〈Φ〉 is

tr(M ?〈Φ〉) =̂ nml(M ?〈Φ〉) ∪ (
⋃

n≥1 div(M ?〈Φ〉, n)) .

Example 2. Reconsider the example agent of Section 2. Let the desire of the
agent be that the time cost of the current route is always no greater than the
previous current route. This can be specified in LTL as follows.

�(∃ t : N • t = time(current) ∧©(time(current) ≤ t))

In this case, the following normal trace (where the agent does not change to a
faster route) would no longer be allowed.

〈(current = R1, time = {R1 �→ 50}, time? = {R1 �→ 45,R2 �→ 35}),
(current = R1, time = {R1 �→ 45,R2 �→ 35}, time? = {R1 �→ 35,R3 �→ 40}),
. . .〉
If there is no route provided by the navigator that takes less time than the
current route, the agent would have no choice but to violate its current goal.
The behaviour after this point is considered to be unmotivated behaviour. Such
a case is shown below where the input time? in the first state gives the agent no
choice to satisfy its goal. The rest of the trace is unmotivated.

〈(current = R1, time = {R1 �→ 40}, time? = {R1 �→ 50,R2 �→ 45}),
(current = R2, time = {R1 �→ 50,R2 �→ 45}, time? = {R2 �→ 45,R3 �→ 40}),
. . .〉 �

For an agent with more than one goal in its desire sequence, the definition is
as follows.

Definition 4. (Introducing goals) Let M ?Q be an autonomous agent with Q �=
〈〉 and Φ be an LTL property. The introduction of goal Φ will take effect when the
agent cannot fulfil its original desire Q. In other words, it will further restrict
the unmotivated behaviour of the agent M ?Q. The behaviour of the autonomous

agent M ?(Q � 〈Φ〉) can be defined as follows.
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– The nmlsucc behaviour is extended by the traces which share the same prefix
as a trace satisfying the original desire Q before point i and satisfying Φ
instead from the point i + 1 where Q cannot be fulfilled.

nmlsucc(M ?(Q � 〈Φ〉)) =̂ nmlsucc(M ?Q) ∪ {s | s ∈ nmlfail(M ?Q)∧
∃ i : N1 • Γ (s , nmlsucc(M ?Q), i) ∧ si+1 |= Φ}

where si denotes the postfix of s beginning with the ith state.
– The nmlfail behaviour contains the traces which cannot satisfy the new desire

Q � 〈Φ〉 due to the inputs or their initial state.

nmlfail(M ?(Q � 〈Φ〉)) =̂ {s | s ∈ nml(M ?Q)∧
∃ i ∈ N1 • Γ (s , nmlsucc(M ?(Q � 〈Φ〉)), i)}

– A similar definition is made for the divergent behaviours.

divsucc(M ?(Q � 〈Φ〉), n) =̂ divsucc(M ?Q , n) ∪
{s | s ∈ divfail(M ?Q , n) ∧ ∀ t ∈ Δ • s =n t ∧

∃ i ∈ 1..n • Γ (t , nmlsucc(M ?Q), i) ∧ ti+1 |= Φ}

divfail(M ?(Q � 〈Φ〉), n) =̂ {s | s ∈ div(M ?Q , n) ∧
∃ i ∈ 1..n • Γ (s , nmlsucc(M ?Q � 〈Φ〉), i)}

According to the above definition, the newly introduced goal only takes effect
when the original goals are infeasible. This further restricts the behaviour of
the autonomous agent by reducing its unmotivated behaviours. It is intuitive
to obtain the conclusion that introducing a goal to the agent’s desire sequence
refines its behaviour.

Theorem 2. Let M be a module and Q1 and Q2 be desires such that Q1 is a
proper subsequence of Q2. Then we have M ?Q2 " M ?Q1.

Proof

1. If Q1 = 〈〉 and Q2 = 〈Φ〉, then from Definition 3, all traces of M ?〈Φ〉 are
traces of M , i.e., tr(M ?〈Φ〉) ⊆ tr(M ). Hence, since M ?〈〉 =̂ M, we have
tr(M ?Q2) ⊆ tr(M ?Q1) and therefore M ?Q2 " M ?Q1.

2. If Q1 �= 〈〉 and Q2 = Q1
� 〈Φ1, ..., Φn〉, then tr(M ?Q2) can be obtained

recursively from Definition 4 one goal at a time. It is straightforword to show
that in each recursive step, any trace which does not satisfy the original goals
nor the newly introduced goal but at some point has the opportunity to achieve
the new goal is removed from the behaviour of the previous step. Hence we
have tr(M ?Q2) ⊆ tr(M ?Q1) and therefore M ?Q2 " M ?Q1.

4 Refinement Obligation

The desire-driven behaviour of an autonomous agent only removes a trace where
it can choose another one with a shared prefix to achieve the desire. Otherwise,
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the behaviour is like a standard module without desires. This allows us to refine
an agent by introducing additional goals to reduce the unmotivated behaviour
of the abstract specification. However, such a restriction is non-monotonic with
respect to the refinement order. An intuitive example is shown below.

Consider the situation shown in Figure 1 which shows a subset of the be-
haviours of two agents M1 and M2. s is the only trace which shares a prefix with
t of length k and satisfies a goal Φ.

Fig. 1. Counter example for monotonicity

Consider the case where the traces s and t of agent M1 differ at point k + 1
due to a local choice made by the agent. At point k , therefore, the agent has a
chance to make a local choice and follow trace s to fulfil the goal Φ. So trace t
will be removed from the behaviour of M1?〈Φ〉.

Agent M2 has all traces of M1 apart from s . It is obvious that M2 " M1

according to Definition 2. However, with the same desire 〈Φ〉, trace t will not
be removed from the behaviour of M2?〈Φ〉 since, in this case, the agent has no
opportunity to fulfil the desire. Hence the desire-driven behaviour M1?〈Φ〉 is not
refined by M2?〈Φ〉.

This situation arises whenever we disable a choice which can lead to an agent’s
desire and hence make it impossible for the refined agent to satisfy the desire.
To avoid such refinements, we need an additional proof obligation that ensures
that the concrete agent does not introduce more unmotivated behaviour. That
is, if a concrete trace is a trace with unmotivated behaviour from a given point,
then its corresponding abstract trace is also a trace with unmotivated behaviour
from the same point.

This conclusion can be formalised by the following theorem. For simplicity,
we first explore the case of introducing a goal to the empty desire sequence.

Theorem 3. (Refinement Obligation)

Let M1 and M2 be modules linked by a retrieve relation R and Φ2 ∈ R(Φ1). We
have M2?〈Φ2〉 "R M1?〈Φ1〉 if both of the following conditions hold.

1. M2 "R M1

2. For any trace of M2 if it is impossible for the agent to make a local choice
leading to the satisfaction of Φ2 at a point in the trace, then from the same
point in the corresponding trace of M1 it is also impossible to satisfy Φ1.
That is, for all s ∈ tr(M1) and t ∈ tr(M2) where t ∈ R(s), we have

∀ i ∈ N1 • (Γ (t , nmlsucc(M2?〈Φ2〉), i) ⇒ Γ (s , nmlsucc(M1?〈Φ1〉), i))
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Proof:

Following Definition 2, we need to show that for any trace t ∈ tr(M2?〈Φ2〉),
each of its corresponding traces s, i.e., those traces where t ∈ R(s), satisfy
s ∈ tr(M1?〈Φ1〉). According to condition 1 and Theorem 2, we get s ∈ tr(M1)
(since M2?〈Φ2〉 " M2 "R M1).

The proof proceeds by a case analysis of traces s and t based on whether or
not they are in Δ (the set of traces without ⊥) and, if so, on their satisfaction
of the respective desires. Since s ∈ R(t) and R(⊥) = {⊥} ∧ R−1(⊥) = {⊥}, it
follows that t ∈ Δ ⇔ s ∈ Δ.

Assume s , t ∈ Δ. In this situation, there are two cases to consider:

1. If t |= Φ2 then its corresponding trace s satisfies Φ1 since Φ2 ∈ R(Φ1) (see
the definition of R applied to formulas). Hence, s appears in tr(M1?〈Φ1〉).

2. If t �|= Φ2 then, according to Definition 3, its appearance in tr(M2?〈Φ2〉)
implies that there exists a point in t where the agent has no opportunity to
make a choice leading to the goal Φ2.

∃ i ∈ N1 • Γ (t , nmlsucc(M2?〈Φ2〉), i)

Hence in the corresponding trace s, Γ holds at the same point i due to
condition 2. This then leads to

∃ i ∈ N1 • Γ (s , nmlsucc(M1?〈Φ1〉), i)

Hence, according to Definition 3, s also appears in tr(M1?〈Φ1〉).

The remaining case to consider is when s , t �∈ Δ. According to Definition 1, we
can find n > 1 so that t diverges at the nth place, i.e., t ∈ div(M2?〈Φ2〉, n).

1. If t ∈ divsucc(M2?〈Φ2〉, n), which means ∀ u ∈ Δ • t =n u ⇒ u |= Φ2, then
since Φ2 ∈ R(Φ1) and t ∈ R(s), we have ∀ r ∈ Δ • s =n r ⇒ r |= Φ1. Hence
s ∈ div(M1?〈Φ1〉, n).

2. If t ∈ divfail(M2?〈Φ2〉, n),whichmeans∃ i ∈ 1..n • Γ (t , nmlsucc(M2?〈Φ2〉), i),
then according to condition 2 we can conclude that
∃ i ∈ 1..n • Γ (s , nmlsucc(M1?〈Φ1〉), i). Hence we have s ∈ div(M1?〈Φ1〉, n).

In summary, we have t ∈ tr(M2?〈Φ2〉) ⇒ s ∈ tr(M1?〈Φ1〉) which means
M2?〈Φ2〉 "R M1?〈Φ1〉.

The refinement obligation implies that the refined agent has no more unmo-
tivated behaviour than the abstract agent. Reconsider the counter example of
Figure 1. The trace s is a trace with unmotivated behaviour in M2?〈Φ〉 but not
in M1?〈Φ〉.

A general version of the refinement obligation for all possible desire sequences
is as follows.
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Theorem 4. (General Obligation) Let M1?Q1 and M2?Q2 be two autonomous
agents linked by a retrieve relation R, and Φ1 and Φ2 be LTL formulas with

Φ2 ∈ R(Φ1). We have M2?(Q2
�〈Φ2〉) "R M1?(Q1

�〈Φ1〉) if both of the following
conditions hold.

1. M2?Q2 "R M1?Q1

2. For all s ∈ tr(M1?Q1) and t ∈ tr(M2?Q2) where t ∈ R(s) we have

∀ i ∈ N1 • Γ (t , nmlsucc(M2?Q2
� 〈Φ2〉), i)

⇒ Γ (s , nmlsucc(M1?Q1
� 〈Φ1〉), i)

Proof: The proof can be done inductively based on Theorem 3.

With the refinement obligation we obtain from Theorems 3 and 4, refinement
checking between two autonomous agents can be done monotonically and recur-
sively. First we can check the refinement between their modules without desires.
Then we check the obligation for each goal along their desire sequences.

The refinement obligation requires the refined agent preserve the possibility
of achieving the desire under any environmental inputs. A development strategy
which sufficiently satisfies the obligation is to introduce local mechanisms to
adapt to environmental “hostility”. The strategy includes the following three
rules.

1. Weakening the precondition of actions to accept a larger range of inputs.
This makes the agent handle more situations of the environment and hence
reduces divergence.

2. Optimizing the decision making algorithms to improve the local decision so
that the agent has a more deterministic way to achieve the desire under
certain inputs than the specification does.

For example, for the desire to take a faster route, the operation Update of
Section 2 could be refined to always choose the fastest route, i.e., by adding
the predicate time(current ′) = min(ran time).

3. Introducing additional goals to regulate the unmotivated behaviours.

For example, for the unmotivated behaviour where the navigator provides
no faster route than the current one, we introduce an alternative goal to
allow the agent to choose the fastest of the provided routes.

�(�r : dom time • time(r) < time(current))

With this alternative goal, the following trace from Section 3 is no longer
unmotivated behaviour.

〈(current = R1, time = {R1 �→ 40}, time? = {R1 �→ 50,R2 �→ 45}),
(current = R2, time = {R1 �→ 50,R2 �→ 45}, time?={R2 �→ 45,R3 �→ 40}),
. . .〉
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Rule 1 is a conventional refinement rule. Rule 2 requires the designer to ensure
the agent has a way to achieve its desire in the development. Rule 3 allows the
designer to design a sequence of alternative goals when the agent fails to satisfy
its current goal.

Following the above strategy, the refined agent has more reliable local
mechanisms to achieve the desire than it does in the abstract specification.

5 Related Work

There is some formal work developed to specify interactions between an agent
and its environment. Alternating transition systems (ATS) proposed by Alur et
al. [8] treats an agent and its environment as the opponents of a game. Agents
choose their own transitions to update the current state and the final result is
the intersection of their choices. The action-based alternating transition system
studied by Atkinson et al. [9] provides reasoning techniques for which action
should be chosen by an agent in particular situations. Zhu [10] proposes a formal
notation for specifying agent behaviour. The autonomous behaviour of the agent
is formalised by a set of rules designed for various environmental scenarios. While
the above approaches are able to specify agent-environment interactions, they
do not specify the behaviour of agents as being driven by its ‘mental’ states
(e.g., desire).

Rao et al. [2] use a possible world model to interpret the semantics of BDI
logic for autonomous agents. This is suitable for representing the belief, desire
and intention of agents by assigning each of them a set of accessible worlds.
However, unlike our approach, it lacks a theory to justify the correctness of the
development of autonomous agents by introducing mechanisms to adapt to the
environment. Aştefănoaei and de Boer [11] define a notion of refinement for BDI
agents. Unlike our approach abstract and concrete specifications are not in the
same notation. Therefore, their approach allows only a single refinement step
from an abstract to a concrete representation of an agent, not the incremental
development of an agent. More importantly, in their approach the goal of an
agent is fixed. While they allow environmental hostility to be dealt with by
changing plans, they don’t allow the goal of an agent to be changed, nor the
possibility of an agent not fulfilling its goal.

6 Conclusion

In this paper we provided a formal refinement framework to justify the cor-
rectness of the development of autonomous agents. Agents are specified in an
extension of Object-Z including a desire specified by a sequence of LTL proper-
ties. The autonomous behaviour of an agent is realised by restricting its ordinary
behaviour with the goals in its desire. Although this behaviour restriction is not
monotonic with respect to refinement, we proposed an additional refinement
obligation to allow checking refinement using ordinary simulation rules. The re-
finement framework can support the development of an autonomous agent by
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either introducing local mechanisms to adapt to environmental updates or in-
troducing alternative goals to reduce unmotivated behaviour.

As a first step, we only considered the desire part of an agent’s mental state
and organised the goals within a sequence. A more general goal selection seman-
tics will be supported in our future work as well as the explicit introduction of
beliefs and intentions.
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Abstract. In this work, we propose a semantics for Activity Diagrams
based on the COMPASS Modelling Language (CML): a formal specifi-
cation language to model systems which is based on the CSP and VDM
specification languages. A distinguishing feature of our semantics is that
it is defined as part of a larger effort to define the semantics of several
diagrams of SysML, a UML profile for systems engineering. We have
defined a fairly comprehensive semantics for Activity Diagrams, which
comprises action, object and control nodes constructors, control and ob-
ject flow, interruptible regions among other features. We illustrate our
semantics with diagrams of an emergency response system. We also dis-
cuss an analysis strategy which involves an integrated view of diagrams
like block definition and state machines.

Keywords: Activity Diagrams, SysML, semantics, CML.

1 Introduction

The increasing size and complexity of systems have lead to a great difficulty
to their description and specification. Features like concurrency and parallelism
demand notations and techniques for reasoning about system properties. In a
broader context, Systems Engineering is related to the design of whole systems
through an iterative process that leads to the development and operation of a
system. Overall, it is an interdisciplinary approach to the development of sys-
tems [2]. In this case, systems are not only software-intensive but can also involve
physical components. When systems interoperate achieving results that non-
interconnected systems cannot obtain, they are referred as a System of Systems
(SoS) [6].

The SystemsModeling Language (SysML) [11] was proposed by the OMGwith
the purpose of customising the Unified Modeling Language (UML) for systems en-
gineering applications. It allows the representation of behaviour, structure, prop-
erties, constraints, and requirements of a system. SysML has its foundations in
UML 2, but it adds two diagrams (requirements and parametric diagrams) and ex-
tends some other diagrams to the system point of view, e.g. class diagram
becomes block definition diagram.
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SysML semantics is not formally described, its specification is given in natural
language. This impacts tool construction and reasoning about system specifica-
tion. In this paper, we focus on a formal semantics of SysML Activity Diagrams
that follows the UML 2 token flow semantics. Our semantics is amenable to au-
tomatic verification and has the purpose of being compatible with the semantics
of other SysML behavioural and structural diagrams. We describe the semantics
of activity diagrams by using the Compass Modelling Language (CML) [17], a
formal specification language that enables a variety of refinement-based analysis.
Different existing formalisms have served as semantics for UML 2 and SysML
activity diagrams. Several approaches [1,19,18,15,4] use an algebraic process lan-
guage such as CSP [13]. Other formalisms used as semantic domain are Abstract
State Machines [12], Petri nets [14,3], and Activity Calculus [8]. CML allows a
better representation for object nodes and flows through the definition, assign-
ment and manipulation of typed variables.

The semantics we propose covers a rich set of elements of SysML activity
diagrams: control nodes, object nodes (action pins, and activity parameters),
control and object flows. We give semantics for different kinds of actions: call
behaviour action, send signal, accept event, call operation, opaque, and value
specification. We also deal with interruptible regions. From the meta-model that
corresponds to these elements, we define a translation function into CML model
(or part of a model). In this paper, we do not present the functions itself, but
we apply them to two different activity diagrams to exemplify the CML models
we obtain. For the complete set of semantic mappings, see [9]. Currently, the
functions of the different types of diagrams are being implemented in Artisan
Studio 1, thus, CML models can be automatically generated from SysML models.

This paper is organized as follows. We describe the Compass Modeling Lan-
guage (CML) in Section 2. In Section 3, we informally describe the semantics of
SysML activity diagrams. We present the application of our formal semantics of
SysML activity diagrams in Section 4; we use two diagrams to exemplify the use
of the translation functions. We discuss related work in Section 5. Final remarks
and future work appear in Section 6.

2 CML

The COMPASS modelling language (CML) [17] is a formal specification language
that integrates a state based notation similar to VDM++ [5], a process algebraic
notation like CSP [13] and Dijkstra’s language of guarded commands. It supports
the specification and analysis of state-rich distributed specifications. Addition-
ally, CML supports step-wise development by means of algebraic refinement laws.
The soundness of the laws is established with respect to the formal semantics
of CML, defined in the Unifying Theories of Programming [7]. CML tools in-
clude an Eclipse-based development environment (parser and type-checker) with
plug-ins that support simulation, theorem proving and model checking (still on
development).

1 http://www.atego.com/products/artisan-studio/
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A CML specification comprises two main constructs: Processes and Classes.
Global definitions can be placed at the top of the specification, where global
types and functions are defined. There are some sections to define channels
and chansets, which are used when defining the behaviour of a system. A Class
contains the definition of a state, functions and operations. A Process defines
the behaviour of a system. It may be defined either by the composition of other
processes through the use of specific operators (basically, CSP operators like
parallel or choice) or by defining an internal dynamic behaviour using a CML
Action.

An Action is the basic behavioural unit in CML. It specifies a flow of events
using communicating processes combined via CSP-like operators. Examples of
actions are Skip, Stop (canonical deadlock) and assignment; an Action prefixing
(a -> P) denotes a channel event a that is followed by an Action P. When
specifying a Process in terms of previously defined Actions, we must define a
main Action that starts the behaviour of the Process (similar to the function
main of several programming languages, like Java or C).

CML is suitable to describe activity diagram semantics due to its compo-
sitional nature. The usage of parallelism operators allows to define semantic
mappings for each constructor separately. Moreover, the representation of data
can be simplified due to the definition of state in CML processes. An example of
a subset of CML is presented in Section 4 when we show the CML models result-
ing from the application of the translation functions. For a complete description
of the CML language, please see Woodcock et al. [16].

3 SysML Activity Diagrams

SysML [11] is built as a UML profile, that is, it reuses part of the UML meta-
model [10] and extends it with some specific features from system engineering. It
consists of 9 diagrams, two of them are new (requirement and parametric), some
preserve the same semantics from UML (e.g., sequence diagrams) and the others
have the base semantics from UML with some extensions, which is the case of
activity diagrams, block definition and internal block diagrams. The latter two
are extensions of class diagram and composite structure diagram, respectively.

Activity diagrams are a visual representation of UML/SysML activities. Ac-
tivities represent a description of a coordinated behaviour with emphasis on the
sequence of actions and conditions. The representation of this organised order-
ing of execution is described in terms of control and object flows. The former
imposes an ordering of events and the latter describes the flow of data through
an activity. Nodes are used together with flows to describe the execution of some
behaviour. There are three types of nodes: control, object and actions. Control
nodes affect the ordering of execution in the behaviour; object nodes describe
the data that flows through the activity, and actions are basic units of behaviour.
An action takes a set of inputs and converts them into a set of outputs, though
either or both sets may be empty. There are a large number of action types,
each one with a specific meaning, for example, sending a signal, performing an
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operation call, or even invoking another activity diagram. Figures 1 and 2 show
two examples of activity diagrams where most of the previous elements are used.
They both represent the behaviour of how an emergency central unit must act
when receiving a critical call; they are used in Section 4 to demonstrate the usage
of our semantic mappings. Our semantics provides meaning for other elements
not depicted in theses figures, e.g. interruptible regions, for more details see [9].

Fig. 1. Activity diagram for handling an emergency call

Figure 1 details the beginning of the process for treating an emergency call.
One extension of SysML is the distinction between the two types of flows. Control
flows are represented by dashed edges, whilst object flows are depicted as solid
edges. Four control nodes are used, an initial node, represented by a solid circle,
fires the beginning of the diagram, whilst a final node, depicted as a solid circle
with a hollow circle around, ends the execution of the whole diagram. The white
diamonds represent decision and merge node. A decision node has one input and
may have multiple outputs. The output to be executed depends on the boolean
guards of each edge. The ones that are evaluated to true may be executed,
however only one may be chosen for each input arrival. Merge nodes act as
relays where they just retransmit to the output edge the input arrived.

Regarding actions, checkData and registerCall represent operation calls of
the owner of this activity and BroadcastCall is a call behaviour action, which
invokes another activity diagram, in this case it is the diagram depicted in Fig-
ure 2. Finally, input and output pins together with the input parameter of the
activity are examples of object nodes used. They have a name and the type
of the item that flows through them (e.g., call, c1, ..., c5 are object nodes of
the type EmergencyCall). Pins provide values to actions (input pin) or return
some result values (output pin) from them. Parameters have similar semantics,
however instead of working with actions, they are used in the context of an ac-
tivity. Nevertheless, sometimes a pin may correspond to a parameter when used
with a call behaviour action, which is the case of the BroadcastCall action in
Figure 1, whose pins correspond to the parameters of the activity of the same
name depicted in Figure 2.



A Formal Semantics for SysML Activity Diagrams 183

Fig. 2. Activity diagram for broadcasting an emergency call

Figure 2 illustrates the behaviour of an activity that broadcasts a call received
as parameter. As the call must be sent in parallel to the police, ambulance and fire
department, a fork node splits one control flow into three. The three pentagons
represent a send signal action and they are responsible for emitting the signals
according to their names. After the signal emissions, the three control flows are
synchronised by a join node.

Activities in SysML can be linked to blocks to specify their behaviours. Ac-
tivity diagrams can be used for different purposes. For example, in our semantics
an activity can be used to describe the behaviour of an operation from a SysML
block, thus, each time a block receives an operation call it must trigger the cor-
responding activity in order to respond to such request. In the next section, we
provide a translation of the activities presented so far to demonstrate the usage
of our semantics.

4 CML Semantics for Activity Diagram

Our approach to formalise activity diagrams involves three main elements: the
syntax of the source language (SysML/UML metamodel elements), a rich and
expressive semantic domain based on a well-defined mathematical theory (CML),
and mappings from the elements of the syntax to the semantic domain. The way
we link SysML/UML to CML is through the definition of translation functions,
which receive as input the metamodel elements of activity diagrams and provide
the corresponding CML model as output. However, in order to yield a consis-
tent CML model that allows the application of analysis techniques integrating
different types of diagrams, we must assume that the SysML model is suffi-
ciently complete (not too abstract) to allow such derivation. This completeness
is described in terms of guidelines that gives insights to the modeller on which
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information must be explicitly declared when a formal analysis is desired. The
guidelines do not affect the expressiveness of the language. Some examples of
these guidelines are expressed below:

Entity Definition. The block that owns or participate in an activity must
be defined in a block definition diagram together with its operations and
properties.

Explicit Information. Some elements must have enough information to allow
a consistent generated model. For example, guards of output edges from a
decision node must have concrete and well-defined guards according to the
properties of a block or object data that flows through the diagram.

Simplification Assumptions. This is a group of guidelines that provides al-
ternatives to the use of certain elements, where they have an equivalent
counterpart, or define how they can be used. For more details see [9].

The adequacy to the guidelines allows the generation of analysable CML code.
Nevertheless, even if the model is too abstract, in some cases we can still provide
the respective CML model, however, no analysis is guaranteed to be feasible. The
complete set of translation functions and their description can be seen in [9].
Next we illustrate our semantics by showing the result of the application of our
translation functions to the examples described in Section 3.

4.1 Structure of the CML Specification

Figure 3 gives an outline of the formal model resulting from our examples. We
use ellipsis in the CML extracts to hide possible CML code not relevant to be ex-
plained at the moment and commentary lines (starting by //) to introduce which
elements are the translation target. Here we use BC and TEC as acronyms for the
names of the activities, BroadcastCall and TreatEmergencyCall, respectively.
Our translation strategy is compositional and is based on the parallelism oper-
ator. Each diagram is represented by a pair of processes, one representing the
internal organization of the diagram (ad_internal_BC and ad_internal_TEC) and
the other composes this internal representation with other activities that may
be used inside itself as call behaviour actions (ad_BC and ad_TEC). Such compo-
sition is detailed in Section 4.6. Inside the internal representation, each node of
a diagram becomes a CML action and the transitions between nodes are repre-
sented by channels. All nodes are composed in parallel and the synchronisation
alphabet of each node is the set of all edges that arrives or leaves the node. Such
approach allows a compositional translation where each node can be translated
individually.

The channels section declares the events used to communicate information
in the activities. They are used to represent flows and specific events. Control
flows are mapped to the control channel, which is indexed by a natural num-
ber associated to the edge (we assume a diagram is preprocessed, inserting these
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index numbers). Object flows use one channel per edge where each channel is
typed according to the data that flows through itself. They are named according
to the activity diagram and the index of the edge, then obj_BC_1: EmergencyCall;

is the object edge from the BroadcastCall diagram (edge number 1) along with
data of type EmergencyCall. Some other channels are used for internal control
of the activity and they are explained further according to their usage.

channels

...

process ad_internal_BC = ...

process ad_BC = ...

process ad_internal_TEC = ...

process ad_TEC = ...

Fig. 3. Outline of the formal model of the example in Figures 1 and 2

4.2 Internal Activity Process

This process details the internal structure of an activity diagram. Every node
and possible flows between them are described through the use of CML actions
and channels. Moreover, there are CML actions for controlling the beginning
and ending of an activity. It also specifies a main action, which composes all of
these elements in parallel to simulate the connections between nodes.

Figure 4 illustrates the corresponding CML internal process corresponding
to the diagram of Figure 1. It consists of the process signature which receives
as parameter the identification of the block instance (CentralUnit_id, where
CentralUnit is the name of the block) that owns the activity. The set of channels
Hidden is used to hide communications that should only be visible internally. The
CML actions consist of the nodes definition and other control events followed by
a main action (after the @ character) that uses the previous actions.

The actions section defines CML actions for nodes and interruptible regions
(when they exist). In this example we have three control nodes (CNode1, CNode2
and CNode3) related to the initial, decision and merge nodes, whilst the final node
is handled by END_ACTIVITY. Also, we have three CML actions, one for each action
node, followed by the six object nodes: five of them are pins and one is a param-
eter of the action. The number appended to the actions uniquely identifies them
inside this process. All these nodes are composed in an alphabetised parallelism
by the CML action Nodes (omitted here due to space limitation.). Besides them,
there are two control actions responsible for the beginning (START_ACTIVITY) and
the end of the activity (END_ACTIVITY).

The CML action START_ACTIVITY provides the event that fires the beginning
of the diagram execution (the event startActivity_TEC is externally visible).
This event is indexed by the ID of the block instance (CentralUnit_id) and
receives parameters of the activity (x_call). The next step is to assign the value
of the parameters to the corresponding variables declared in the main action.
The termination of an activity diagram may happen due to different factors.
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process ad_internal_TEC = CentralUnit_id: ID @ begin
chansets

Hidden = {|control, endDiagram, endFlow, obj_BC_1, ...|}
actions

START_ACTIVITY = startActivity_TEC.CentralUnit_id?x_call ->
atomic (call := x_call)

END_ACTIVITY = control.2 -> endDiagram.TEC -> Skip
//Control Nodes
CNode1 = ...
CNode2 = ...
CNode3 = ...
//Actions
CheckData_1 = ...
BroadcastCall_2 = ...
RegisterCall_3 = ...
//Object Nodes
ObjNode_1 = ...
...
ObjNode_6 = ...
Nodes = ...
//Main Action
@
mu X @ (( dcl call: EmergenceCall := null @

START_ACTIVITY;(Nodes [|{|control.2|}|] END_ACTIVITY);
endActivity_TEC.CentralUnit_id);X )\ Hidden

end

Fig. 4. Internal process of the SysML activity diagram from Figure 1

Reaching a final node should end the diagram execution because it halts any
other flow in the diagram. On the other hand, flow final nodes only finish a flow
of execution and not the whole diagram. Therefore, when final nodes exist, the
diagram must end when any of them is reached. In their absence, the diagram
ends when all ends of flows happen. Figure 4 shows an example in which there is a
final node. It synchronises with the event that leads to this element (control.2),
then it fires the endDiagram.TEC, which halts all activity nodes because they
can be interrupted by such event stopping all activity flows. This interruption
mechanism is shown further in the translation of nodes. We use the interruption
operator of CML (/\).

At the bottom of the process, we have the main action, which is recursive.
Initially, it declares a variable for the parameter of the activity that is updated
and referenced by further CML actions. Then, it runs the START_ACTIVITY action
according to a synchronization with an external process. After that, the pro-
cess behaves as the nodes composed in parallel with the END_ACTIVITY action,
responsible for terminating the activity. After termination, the process offers the
(visible) event endActivity parametrised by the ID of the caller. As there is no
output parameter, no additional data is returned through this channel.

4.3 Control Nodes

Control nodes change the flow of execution inside an activity diagram. In Fig-
ure 1, there are some examples of control nodes like initial and final nodes, and
decision and merge nodes. The last ones are represented by the same graphical
syntax (white diamond), but with distinct semantics. Figure 5 displays a CML
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extract of the control nodes of the TEC and BC diagrams. All nodes can be
interrupted by the same CML action (END_DIAGRAM). This action is defined in
terms of the channel event (endDiagram) used by END_ACTIVITY. This is valid for
actions and object nodes as well. Such interruption mechanism, mentioned in
Section 4.2, is used to halt the active flows when the activity reaches its end.

//TreatEmergencyCall Activity

//InitialNode

CNode1 = (control.1 -> Skip) /\ END_DIAGRAM

//DecisionNode

CNode2 = (obj_TEC_2?x_2 -> ( dcl isValid: bool := false @

CentralUnit.get_isValid.CentralUnit_id?x_isValid ->

isValid := x_isValid ->

if isValid -> obj_TEC_3!x_2 -> CNode2

| not isValid -> obj_TEC_4!x_2 -> CNode2

end)) /\ END_DIAGRAM

//MergeNode

CNode3 = (obj_TEC_4?x -> obj_TEC_6!x -> CNode3 []

obj_TEC_5?x -> obj_TEC_6!x -> CNode3) /\ END_DIAGRAM

...

//BroadcastCall Activity

//ForkNode

CNode2 = (control.1 -> (||| i:{2,4,6} @ control!i -> Skip );

CNode_2) /\ END_DIAGRAM

//JoinNode

CNode3 = ( ((control.3 -> Skip ) ||| (control.5 -> Skip ) |||

(control.7 -> Skip )); control!8 -> CNode_3) /\ END_DIAGRAM

Fig. 5. Control nodes of the TEC and BC activities

The only output of initial nodes are their corresponding outgoing control
edges. This happens to CNode1 as the event control.1 relates to the control edge
number 1 that flows from the initial node. A decision node (CNode2) requires that
for each attribute of a block used in the guards of the edges, we should declare lo-
cal variables and assign the current attribute values to them. Blocks have specific
channels to get and set attribute values. The event CentralUnit...?x_isValid

acquires the value from attribute isValid of block instance CentralUnit_id of
block CentralUnit. The if expression uses these variables to check the guards.
According to the chosen guard a different edge is traversed. As this decision node
deals with object nodes, the same data received at the incoming edge (x_2) is
forwarded to the outgoing edges. The merge node CNode3 only relays the data to
the outgoing edge obj_TEC_6. As final nodes do not have body, we do not need
to create CML actions for them; their behaviour is already represented by the
END_ACTIVITY action, as shown in Section 4.2.
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The join and fork nodes appear in the BC example (Figure 2). The fork node
CNode2 receives an incoming flow from control edge 1 and combines the outgoing
control edges 2, 4 and 6 in interleaving. The join node is complementary as it
receives multiple control edges and provides only one outgoing edge. Most of
the nodes are recursive because they may receive another token during the same
execution (e.g. in a loop situation).

4.4 Actions

Actions provide basic descriptions of behaviour and they can be combined inside
activities. The TEC example demonstrates the usage of two types of actions, call
operation and call behaviour, whilst the BC example, besides a call operation,
employs three send signal actions.

Call Operation Action. This action refers to an operation of a block, which
can be the owner of the current activity or another block linked to it. If the target
block is not specified in the action, we assume that it is related to an internal
operation, which is the case of our examples for the CentralUnit block. How the
operation is designed is not relevant in these examples as we just make use of
the channels related to the calls. Synchronous operation calls use two channels,
one for starting the operation and another for its return. Asynchronous calls are
treated as signals with a single channel event.

We present in Figure 6 the CML code corresponding to the call operation
action CheckData of the TEC example. One of the issues to be treated is the
interruption of calls, because if the diagram ends it could halt the processing of an
action, leaving the entity that is actually dealing with the call in an inconsistent
state, as the activity diagram will never receive its return. This is not a desirable
feature, and to avoid that we define a boolean guard (end_guard), which forbids
the interruption of an action once its processing has been started. Notice that
the interruption mechanism at the end of the action can only happen if such
guard is true. During the period between starting the call and receiving its
return, the guard is assigned to false. We also declare variables for each one
of the pins according to their names. Next, we interleave all incoming edges
(control or object flow) and compose it sequentially with the treatment of the
action, in this case an operation call. Such behaviour provides a manner for only
starting the action behaviour once all incoming edges are enabled. The channel
event in_TEC_checkData_1 receives the value of the input pin and assigns it to
local variable c1. Then, we have the description of the action behaviour by an
operation call defined in two channels — as described earlier — and using the
c1 variable as a parameter of the operation call. After the second event, the
return is assigned to the variable c2, which is used in the output pin event
(out_TEC_checkData_2!c2).

Call Behaviour Action. The Call Behaviour Action (CBA) is a special kind
of action that starts the execution flow of another diagram. If the called di-
agram has input or output parameters, the action will have input or output
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CheckData_1 = ( dcl end_guard: bool = true @ mu X @

( dcl c1, c2: EmergenceCall: ID @

((control.1 -> Skip) ||| (in_TEC_checkData_1?inc1 -> c1 := inc1));

(checkData_I.op.CentralUnit_id!CentralUnit_id!c1) ->

end_guard := false;

checkData_O.op.CentralUnit_id!CentralUnit_id?out: checkData_O ->

(c2 := out.call -> Skip ); end_guard := true ;

(out_TEC_checkData_2!c2 -> Skip); X)

/\ end_guard & END_DIAGRAM)

Fig. 6. The CheckData call operation action

pins. They are connected through the special channels startActivity_CBA and
endActivity_CBA as shown in Figure 7. The actual behaviour of the action —
which is the behaviour of the called diagram — is achieved by putting both
called diagram process and internal process in parallel, but only considering
those special channels for CBAs. We show this parallelism later in Section 4.6.
It follows the same action structure shown in Figure 6. The only difference is the
use of the special channel that starts and ends the called activity. The number 1
after the block name CentralUnid_id avoids name clashing if there is more than
one CBA instance for the same diagram.

BroadcastCall_2 = ( dcl end_guard: bool = true @ mu X @

( dcl c3, c4: EmergenceCall: ID @

((control.3 -> Skip) ||| (in_TEC_broadcastCall_1?inc1 -> c3 := inc1));

(startActivity_CBA_TEC.CentralUnit_id.1!c3 -> end_guard := false ;

endActivity_CBA_TEC.CentralUnit_id.1?out -> c4 := out.call -> Skip);

end_guard := true;

(out_TEC_broadcastCall_3!c4 -> Skip); X)

/\ end_guard & END_DIAGRAM)

Fig. 7. The BroadcastCall call behaviour action

Send Signal Action. The send signal action communicates a signal whose
name is the action’s name. The BC activity (Figure 2) depicts three actions
of this type where an emergency call is sent to the police, ambulance and fire
department through send signal actions. One of the parameters of these signals
is the call that should be sent. However, another parameter is needed to identify
the target object that receives the event. We omitted in this diagram due to
space limitation, but each one of these actions has another input pin that relates
to each one of the emergency units. The CentralUnit block is associated to each
one of these units, then it has the values that are passed to send signal actions.

The translation of send signal actions is similar to that of the call operation
action. They have the same guarded-end mechanism. First, the incoming edges
are interleaved, then the signal event is fired. As signals are asynchronous, only
one event is needed. Afterwards, the events of the outgoing edges happen.
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4.5 Object Nodes

We use two types of object nodes in the examples, activity parameters and pins.
Both can be used for input or output data. Figure 8 shows the first three object
nodes of the TEC activity. The first is the activity input parameter and the
other two are the input pin and output pin of the checkData call operation
action. The activity parameter only communicates a call to the object edge 1 of
the TEC activity (see Section 4.2 for the declaration of call and its usage). Pins
have two channel events: one for the object edge and another for communication
with the related action. Input pins (see ObjNode_2) receive data from the object
edge and communicate it through the input event of the action (in_{Activity}_
{ActionName}_{EdgeIndex}). Output pins (see ObjNode_3) receive data by the
output event of the action (out_{Activity}_{ActionName}_{EdgeIndex}) and
send it through the object edge.

//Input Parameter

ObjNode_1 = (obj_TEC_1!call -> Skip )

//Input Pin

ObjNode_2 = mu X @ ((obj_TEC_1?x_2 -> in_TEC_checkData_1!x_2 -> X)

) /\ END_DIAGRAM

//Output Pin

ObjNode_3 = mu X @ ((out_TEC_checkData_1?x_3 -> obj_TEC_2!x_3 -> X)

) /\ END_DIAGRAM

Fig. 8. Object Nodes of the TEC activity

Output activity parameters (e.g. in the BC activity) have a different meaning
from other object nodes because they may be updated several times and they
are considered ends of flow. Thus, after receiving data from an object edge and
updating the output variable, two possibilities are given by an external choice
operator: either it finishes the flow and waits the synchronisation with other
ends of flow or it may receive more data by recursion of the CML action.

Other object nodes not illustrated in these examples (e.g. simple object nodes)
have their semantics defined in [9]. The following section describe how the main
process of activities is defined in terms of its internal representation together
with other diagrams it may reference.

4.6 Main Activity Process

The main activity process contains the constructions for the whole behaviour
of the activity diagram, as well as its internal attributes. It includes the in-
ternal behaviour and also the calls to other diagrams. For CBAs, as we men-
tioned in Section 4.4, the internal process is put in parallel with the main ac-
tivity process of the called diagrams. We achieve that by using renaming and
synchronizing on the start and end events. CBA’s inner start and end events
(startActivity_BC and endActivity_BC) are renamed to startActivity_CBA_TEC
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process ad_TEC = CentralUnit_id: ID; @

ad_internal_TEC(CentralUnit_id)

[|{|startActivity_CBA_TEC.CentralUnit_id.1,

endActivity_CBA_TEC.CentralUnit_id.1|}|]

ad_BC [[startActivity_BC.CentralUnit_id <-

startActivity_CBA_TEC.CentralUnit_id.1,

endActivity_BC.CentralUnit_id <-

endActivity_CBA_TEC.CentralUnit_id.1]]

Fig. 9. Call Behaviour Action process in parallel with the internal process

and endActivity_CBA_TEC, respectively. Then the main inner process (TEC) is put
in parallel with the BC process on the renamed channels (see Figure 9).

The parallel operator “[| |]” only synchronizes on those specified events,
even if there are other events with the same name on both diagrams. Thus, it
is safe to use any number of CBAs that points to the same called diagram. The
called diagram behaviour (ad_BC) is defined elsewhere using the same rule that
generates the TEC process (ad_TEC), however, as it does not have CBAs, it is
composed only by its internal representation.

4.7 Integration with Other Diagrams

One of our goals is to perform analysis of consistency among several diagrams. In
addition to the activity diagram, we have defined semantics for block definition
diagram, internal block diagram, state machine diagram and sequence diagram.
These diagrams communicate with each other through the events they perform,
operation calls and signals. Each one has specific purposes in the definition of
the system architecture.

Thus, the designer may use block, state machine and activity diagrams to
model the overall behaviour of the system. We call this set of models the system
design. Sequence diagrams are used to model correct flows of events in the sys-
tem, and we can call them valid traces. Once we have the CML processes from
both the system design (SYS) and valid traces (TRC), we could verify using
the forthcoming CML tool set that both are deadlock free and deterministic.
Once these properties are verified, we combine SYS and TRC in a generalised
parallelism whose synchronisation alphabet is the visible channel events of the
Sequence Diagram (SYS [|α(TRC)|] TRC). We can now use a model checker
to run a deadlock-freedom verification in order to check the correctness of the
system design with respect to its traces. If a deadlock happens, it means that
a trace of the sequence diagram cannot be reproduced by the system design.
Moreover, the counter-example returned by the model checker, which is a trace,
can be presented as a sequence diagram. This series of verification can uncover
many design problems earlier in the development life cycle.
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5 Related Work

In this section we describe previous works about the formalisation of activity
diagrams. We focus on works using CSP [13] as semantic domain because it is
the closest formalism to CML used so far to define semantics of activity diagrams.

Xu et al. [18,19] formalise UML activity diagrams and define a set of mapping
rules from the formal model for activity diagrams into CSP. They introduce a
formal meta-model for activity diagrams. This meta-model is given by a tuple
composed of elements that represent the different nodes of an activity diagram,
a set of directed edges, and the flow relationship between them. Translation
functions are defined for each diagram, so their translation is not compositional,
the diagram nodes are not translated independently. They deal strictly with
control flow. There are no mapping rules for pins. They do not treat different
kinds of actions. There is a limitation of their work concerning fork and join
nodes as they require the number of incoming edges of a join to be the same as
number of outgoing edges of a fork.

Abdelhalim et al. [1] propose the use of a subset of fUML (Foundational
Subset for Executable UML) that is mapped into CSP [13]. Their focus is on
analysis of dynamic behaviours. As control flow has been addressed by Xu et
al. [18,19], they concentrate on mapping SendSignalAction and AcceptEventAc-
tion and signals [1]. They deal with decision node as an internal choice. Also,
they map expansion region into CSP processes. They treat signals by means of an
asynchronous buffer, whereas in our translation we use a one-place synchronised
buffer that could receive data from an asynchronous buffer. Their communication
model allows storing of signals.

Varró et al. [15] define translation rules that relate edges in an activity diagram
to a process in CSP [13]. They do not deal with object nodes or object flows, just
with the translation of control flow. They translate a join node separately from
the fork node. However, a synchronisation event appears only in the process that
reaches the join node, but not in the parallel operator that is introduced in the
fork node. Also, the translation of the join node results in processes that are
not similar: only one will behave as the process after the join, all the others will
terminate in Skip. In our case, we translate fork and join nodes independently.

6 Conclusion

In this paper we proposed a semantics for SysML activity diagrams [11] by us-
ing the CML language [17] as semantic domain. Activity diagram elements are
given semantics by means of translation functions. The translation is composi-
tional, each element in a diagram can be translated independently by the use of
a specific function. Our approach requires the adherence to a set of guidelines,
however, they do not restrict the expressiveness of the language. For instance, it
is not required that fork and join nodes appear in pairs and with equal number
of output and input edges to obtain a translation. We defined a comprehensive
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set of translation rules for elements of activity diagrams: control nodes, object
and control flows, actions, input and output pins, input and output activity
parameters.

Our work is in the context of a broader effort for giving a semantics to
other SysML diagrams (block definition, internal block, state machine, and se-
quence diagrams). The communication between them is accomplished by means
of events, operation calls and signals. This allows verification of properties like
deadlock in earlier stages of a system development.

There are some limitations in our work that we consider as future direction
of work. The relation between actions of different blocks is established only by
the invocation of other actions in a different diagram. We aim to extend such
communication using activity partitions that describe the blocks responsible for
each action in an single activity diagram. We have not defined functions for
dealing with time constraints. This is also a future work direction.
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Abstract. Multi-core processors along with multi-module memories are
extensively being used in high performance computers these days. One
of the main performance evaluation metrics in such configurations is the
memory contention problem and its effect on the overall memory ac-
cess time. Usually, this problem is analyzed using simulation or numer-
ical methods. However, these methods either cannot guarantee accurate
analysis or are not scalable due to the unacceptable computation times.
As an alternative approach, this paper uses theorem proving to analyze
the memory contention problem of a multiprocessor system. For this
purpose, the paper presents the higher-order-logic formalization of the
expectation of a discrete random variable and Discrete-time Markov Re-
ward Models. These foundations are then utilized to analyze the memory
contention problem of a multi-processor system configuration with two
processors and two memory modules using the HOL theorem prover.

1 Introduction

The extensive computation requirements in complex engineering systems and
the trend to move towards smart consumer electronic devices has brought a
paradigm shift towards using multi-core processors in all sorts of embedded sys-
tems. These processors usually share information with one another by accessing
shared variables in a common memory space. In order to avoid concurrent up-
dates to these shared variables, which may lead to erroneous results, only one
processor at a time is allowed to access the memory. However, this configuration
leads to the well-known memory contention problem, which results in an overall
performance degradation as the processors may have to wait for accessing the
memory. This problem is usually alleviated by using a multi-module memory,
as depicted in Figure 1. The main idea is to divide the cache memory into sub-
modules so that the processors can simultaneously access different sub-modules
in parallel. This configuration tends to minimize the memory contention prob-
lem but cannot rectify it completely since two or more processors may want to
access the same memory sub-module as well. Thus, rigorous performance anal-
ysis is conducted to determine the optimized size of sub-modules of memory for
a given memory access rate.

Due to the random nature of time dependent memory access requests, the
above mentioned configurations are modeled as classified Discrete-time Markov
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Fig. 1. A Multiprocessor System with Multimodule Memory

Chains (DTMCs) [2]. Then performance characteristics, such as the average
number of memory accesses and the steady state probabilities of processors
waiting, can be deduced based on the properties of classified Markov chains
and Discrete-time Markov Reward Models (DMRMs) [18]. These properties are
expressed in terms of the transition probabilities of the given Markov chain and
thus provide useful insights for system optimization.

Traditionally, the above mentioned performance analysis is conducted ana-
lytically, using paper-and-pencil proof methods [19], computer simulations [5] or
numerical methods [17]. The paper-and-pencil proof methods do not scale well to
the complex multi-processor systems. Moreover, they are prone to human errors.
Computer based simulations or numerical methods are scalable but due to the
usage of computer arithmetic and pseudo random numbers and their inherent
incompleteness cannot guarantee accurate results.

The accuracy of the above mentioned performance analysis is becoming quite
important these days due to the increasing usage of multi-processor systems in
safety-critical domains like medicine and transportation. Recently, probabilistic
model checking has been used to analyze DMRMs (e.g., [4] and [8]). The typical
model checking tools are PRISM [16] and MRMC [13], which provide precise
system analysis by modeling the stochastic behaviors using probabilistic state
machines and exhaustively verifying their probabilistic properties. These tools
can be used for performance analysis of multi-processor systems as well. How-
ever, some algorithms implemented in these model checking tools are also based
on numerical methods. For example, the Power method [15], which is a well-
known iterative method, is applied to compute the steady-state probabilities (or
limiting probabilities) of Markov chains in PRISM. Thus, most of the stationary
properties analyzed in model checkers are time bounded. Moreover, probabilis-
tic model checking often utilizes unverified algorithms and optimization tech-
niques. Finally, model checking cannot be used to verify generic mathematical
expressions for statistical properties, like expectation.

In order to provide an accurate and complete approach for analyzing the mem-
ory contention problem of multi-processor systems, we propose to use higher-
order-logic theorem proving. The high expressiveness of higher-order logic allows
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us to formally express the systems that can be modeled using classified Markov
chains and DMRMs. Whereas, the soundness of theorem proving guarantees the
correctness and completeness of the analysis. In this paper, we develop the for-
malization of Discrete-time Markov Reward Models based on the formalization
of expectation and conditional expectation functions for discrete random vari-
ables along with the available formalization of Discrete-Time Markov Chains
(DTMCs) [10]. Compared to the work in [10], which is based on the formal-
ized probability theory of Hurd [7], the formalization of DTMCs in the current
paper is developed by building upon a more general probability theory devel-
oped by Mhamdi [12]. This update provides us with the flexibility to model
time-inhomogeneous DTMCs/DMRMs or several random processes (involving
DTMCs) containing distinct types of state spaces. This paper also presents the
formal verification of some classical properties of expectation and DMRMs. The
above mentioned formalizations allow us to analyze the memory contention prob-
lem of any multi-processor system. For illustration purposes, we formally analyze
a typical multi-processor system [19] using the formalization of DMRMs and the
irreducible and aperiodic Markov Chains [11].

2 Preliminaries

In this section, we present the foundations that we build upon to formalize
expectation for discrete random variables and DMRM later.

2.1 Probability Theory

A probability space is a measure space (Ω,Σ,Pr) such that Pr(Ω) = 1 [2]. Σ
is a collection of subsets of Ω called measurable sets. In [12], a higher-order
logic theory is developed where given a probability space p, the functions space
and subsets return the corresponding Ω and Σ, respectively. Mathematically,
a random variable is a measurable function between a probability space and a
measurable space. This is formalized in HOL by a predicate random variable

X p s that returns true if X is a random variable on a probability space p and
an outcome space s.

The expectation [20] of a random variable plays an important role in describing
the characteristics of probability distributions. A conditional expectation repre-
sents the expected value of a real random variable considering a conditional
probability distribution. Mhamdi [12] formalized general definitions of expecta-
tion and conditional expectation using the Lebesgue integral. These definitions
can be used to find the expectations involving both discrete and continuous ran-
dom variables. However, it is not a straightforward task to use these definitions
to reason about the expectation of discrete random variables as the proofs of
even the basic theorems require the Radon Nikodym derivative [6] and a se-
ries of intermediate theorems. In this paper, we formalize the expectation and
conditional expectation for the discrete case to avoid these complex reasoning
problems. These definitions are then used to formalize DMRM in HOL.



198 L. Liu, O. Hasan, and S. Tahar

2.2 Discrete-Time Markov Chains

Given a probability space, a stochastic process {Xt : Ω → S} represents a se-
quence of random variables X , where t represents the time that can be discrete
(represented by non-negative integers) or continuous (represented by real num-
bers) [2]. The set of values taken by each Xt, commonly called states, is referred
to as the state space. The sample space Ω of the process consists of all the
possible state sequences based on a given state space S. Now, based on these
definitions, a Markov chain is a Markov process [3], with finite or countably
infinite state space Ω, that satisfies the following :

Pr{Xtn+1 = fn+1|Xtn = fn, . . . , Xt0 = f0} = Pr{Xtn+1 = fn+1|Xtn = fn}

for 0 ≤ t0 ≤ · · · ≤ tn and f0, · · · , fn+1 in the state space. This means that the
future state is only dependent on the current state and is independent of all the
other past states. The Markov property can be formalized as follows:

Definition 1 (Markov Property).

� ∀ X p s. mc property X p s =

(∀ t. random variable (X t) p s) ∧
∀ f t n.

increasing seq t ∧ P(
⋂

k∈ [0,n−1]{x | X tk x = f k}) �= 0 ⇒
(P({x | X tn+1 x = f (n + 1)}|

{x | X tn x = f n} ∩
⋂

k∈ [0,n−1]{x | X tk x = f k}) =

P({x | X tn+1 x = f (n + 1)}|{x | X tn x = f n}))

where increasing seq t is defined as ∀ i j. i < j ⇒ t i < t j. The first
conjunct indicates that the Markov property is based on a random process
{Xt : Ω → S}. The quantified variable X represents a function of the ran-
dom variables associated with time t which has the type num. This ensures the
process is a discrete time random process. The random variables in this process
are the functions built on the probability space p and a measurable space s. The
conjunct P(

⋂
k∈ [0,n−1]{x | X tk x = f k}) �= 0 ensures that the correspond-

ing conditional probabilities are well-defined, where f k returns the kth element
of the state sequence.

A DTMC is usually expressed by specifying: an initial distribution p0 which
gives the probability of initial occurrence Pr(X0 = s) = p0(s) for every state s;
and transition probabilities pij(t) which give the probability of going from i to
j for every pair of states (i, j) in the state space [14]. For states i, j and a time
t, the transition probability pij(t) is defined as Pr{Xt+1 = j|Xt = i}, which can
be easily generalized to n-step transition probability as shown in Equation (1),
and it can be formalized in Definition 2.

p
(n)
ij (t) =

⎧⎪⎨⎪⎩
{
0 if i �= j

1 if i = j
n = 0

Pr{Xt+n = j|Xt = i} n > 0

(1)
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Definition 2 (Transition Probability).

� ∀ X p s t n i j. Trans X p s t n i j =

if i ∈ space s ∧ j ∈ space s then

if n = 0 then

if (i = j) then 1 else 0

else P({x | X (t + n) x = j}|{x | X t x = i})
else 0

Now, the Discrete Time Markov Chain (DTMC) can be formalized as follows:

Definition 3 (DTMC).

� ∀ X p s p0 pij dtmc X p s p0 pij =

mc property X p s ∧ (∀ i. i ∈ space s ⇒ {i} ∈ subsets s) ∧
∀ i. i ∈ space s ⇒ (p0 i = P{x | X t x = i}) ∧
∀ t i j. P{x | X t x = i} �= 0 ⇒

(pij t i j = Trans X p s t 1 i j)

Most of the applications actually make use of time-homogenous DTMCs, i.e.,
DTMCs with finite state-space and time-independent transition probabilities [1].
The time-homogenous property refers to the time invariant feature of a random
process: ∀ t t′. pij(t) = pij(t

′) (in the sequel, pij(t) is simply written as pij).

Definition 4 (Time homogeneous DTMC).

� ∀ X p s p0 pij. th dtmc X p s p0 pij =

dtmc X p s p0 pij ∧ FINITE (space s) ∧
∀ t i j.

P{x | X t x = i} �= 0 ∧ P{x | X (t + 1) x = i} �= 0 ⇒
(Trans X p s (t + 1) 1 i j = Trans X p s t 1 i j)

Using these fundamental definitions, we formally verified most of the classical
properties of DTMCs with finite state-space in HOL [11]. Some of the relevant
ones to the context of this paper are presented here.

The joint probability distribution of a DTMC is the probability of a chain of
states to occur:

Pr(Xt = S0, · · · , Xt+n = Sn) =∏n−1
k=0 Pr(Xt+k+1 = Sk+1|Xt+k = Sk)Pr(Xt = S0)

Theorem 1 (Joint Probability Distribution).

� ∀ X p s t n S p0 pij n.

dtmc X p s p0 pij ⇒
P(
⋂n

k=0{x | X (t + k) x = EL k S}) =∏n−1
k=0P({x | X (t + k + 1) x = EL (k + 1) S}|

{x | X (t + k) x = EL k S})P{x | X t x = EL 0 S}
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The Chapman-Kolmogorov Equation [2] p
(m+n)
ij =

∑
k∈Ω p

(m)
ik p

(n)
kj is a widely

used property of time homogeneous DTMCs. It basically gives the probability of
going from state i to j in m+n steps. Assuming the first m steps take the system
from state i to some intermediate state k and the remaining n steps then take
the system from state k to j, we can obtain the desired probability by adding
the probabilities associated with all the intermediate steps.

Theorem 2 (Chapman-Kolmogorov Equation).

� ∀ X p s i j t m n p0 pij.

th dtmc X p s p0 pij ⇒
Trans X p s t (m + n) i j =∑
k∈space s

(Trans X p s (t + m) n i k * Trans X p s t m k j)

The unconditional probabilities associated with a Markov chain are called ab-
solute probabilities, which can be computed by applying the initial distributions

and n-step transition probabilities, as p
(n)
j = Pr(Xn = j) =

∑
k∈Ω Pr(X0 =

k)Pr(Xn = j|X0 = k). Using p
(n)
i for the probability Pr(Xn = j), we verified

the following result:

Theorem 3 (Absolute Probability).

� ∀ X p s j n p0 pij.

th dtmc X p s p0 pij ⇒
P{x | X n x = j} =∑
k∈space s

P{x | X 0 x = k}P({x | X n x = j}|{x | X 0 s = k})

2.3 Aperiodic and Irreducible Markov Chain

Aperiodic and irreducible DTMCs are considered to be the most widely used
classified Markov chains in analyzing Markovian systems due to their attractive
stationary properties, i.e., their limit probability distributions are independent
of the initial distributions.

The foremost concept of classified DTMCs is the first passage time τj , or the
first hitting time, which is defined as the minimum time required to reach a state
j from the initial state i, τj = min{t > 0 : Xt = j}.

Definition 5 (First Passage Time).

� ∀ X x j. FPT X x j = MINSET {t | 0 < t ∧ (X t x = j)}

where X is a random process and x is a sample in the probability space associated
with the random variable Xt.

The conditional distribution of τj , defined as the probability of the events

starting from state i and visiting state j at time n, is expressed as f
(n)
ij =

Pr{τj = n|X0 = i}.



Formal Analysis of Memory Contention in a Multiprocessor System 201

Definition 6 (Probability of First Passage Events).

� ∀ X p i j n.

f X p i j n = P({x | FPT X x j = n}|{x | X 0 x = i})
Another important notion is the probability of the events starting from state

i and visiting state j at all times n, which is expressed as fij =
∑∞

n=1 f
(n)
ij . It

can be expressed in HOL as (λ n. f X p i j n) sums fij . Now fjj provides
the probability of events starting from state j and eventually returning back to
j. A state j in a DTMC is called persistent if fjj = 1.

The greatest common divisor (gcd) of a set is a frequently used mathematical
concept in defining classified states. For a state j, a period of j is any n such

that p
(n)
jj is greater than 0. We write dj = gcd {n : p

(n)
jj > 0} as the gcd of the

set of all periods.
A state i is said to be accessible from a state j (written j → i), if the n-step

transition probability of the events from state i to j is nonzero. Two states i, j
are called communicating states (written i ↔ j) if they are mutually accessible.
The formalization of these foundational notions is given in Table 1.

Table 1. Formalization of Classified States

Definition Condition HOL Formalization

Persistent State fjj = 1
� Persistent state X p j =

∀ x. {t | 0 < t ∧ (X t x = j)} �= ∅) ∧
(λ n. f X p j j n) sums 1

Periods of a State
0 < n
0 < pnjj

� Period set X p s j =

{n | Persistent state X p j ∧ 0 < n ∧
∀ t. 0 < Trans X p s t n j j}

gcd of a Set gcd A
� GCD SET A =

MAXSET {r | ∀ x. x ∈ A ⇒ divides r x}
gcd of a
Period Set

dj � Period X p s j = GCD SET (Period set X p s j)

Periodic State dj > 1
� Periodic state X p s j =

1 < Period X p s j ∧ Period set X p s j �= ∅

Aperiodic State dj = 1
� Aperiodic state X p s j =

(Period X p s j = 1) ∧ Period set X p s j �= ∅

Accessibility i → j
� Accessibility X p s i j =

∀ t. ∃ n. 0 < n ∧ 0 < Trans X p s t n i j

Communicating
State

i ↔ j
� Communicating states X p s i j =

Accessibility X p s i j ∧ Accessibility X p s j i

Now, a DTMC is considered as aperiodic if every state in its state space is an
aperiodic state; and a DTMC is said to be irreducible if every state in its state
space can be reached from any other state including itself in finite steps.

Definition 7 (Aperiodic DTMC).

� ∀ X p s p0 pij. Aperiodic mc X p s p0 pij =

th dtmc X p s p0 pij ∧
∀ i. i ∈ space s ⇒ Aperiodic state X p s i
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Definition 8 (Irreducible DTMC).

� ∀ X p s p0 pij. Irreducible mc X p s p0 pij =

th dtmc X p s p0 pij ∧
(∀ i j. i ∈ space s ∧ j ∈ space s ⇒

Communicating states X p s i j)

The above mentioned definitions are mainly used to formally specify and analyze
the dynamic features of Markovian systems within the sound environment of a
theorem prover. In this paper, we will be using them to formalize a behavior of
the multi-processor system in Section 4.

2.4 Long-Term Properties

The long-run probability distributions (limit probability distributions) are often
considered in the convergence analysis of random variables in stochastic systems.
It is not very easy to verify that the stationary behaviors of a certain state exists
in a generic non-trivial DTMC, because the computations required in such an
analysis are often tremendous. However, in aperiodic and irreducible DTMCs,
we can prove that any state in the state space possesses a convergent probability
distribution, by the following theorems.

For any state i in the finite state space S of an aperiodic DTMC, there exists

an N < ∞ such that 0 < p
(n)
ii , for all n ≥ N .

Theorem 4 (Positive Return Probability).

� ∀ X p s p0 pij i t.

Aperiodic DTMC X p s p0 pii ∧ i ∈ space s ⇒
∃ N. ∀ n. N ≤ n ⇒ 0 < Trans X p s t n i i

Applying Theorem 4, we can prove that, for any aperiodic and irreducible DTMC
with finite state space S, there exists an N , for all n ≥ N , such that the n-step

transition probability p
(n)
ij is non-zero, for all states i and j ∈ S.

Theorem 5 (Existence of Positive Transition Probabilities).

� ∀ X p s p0 pij i j t.

Aperiodic DTMC X p s p0 pij ∧ Irreducible DTMC X p s p0 pij ∧
i ∈ space s ∧ j ∈ space s ⇒
∃ N. ∀ n. N ≤ n ⇒ 0 < Trans X p s t n i j

Utilizing Theorems 4 and 5, the convergence of the probability distributions in
an aperiodic and irreducible DTMC can be verified as the following theorem:

Theorem 6 (Convergent Probability Distributions).

� ∀ X p s p0 pij i j.

Aperiodic DTMC X p s p0 pij ∧ Irreducible DTMC X p s p0 pij ⇒
convergent (λ t. P{x | X t x = i})
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As multiprocessor systems are usually modeled as aperiodic and irreducible
DTMCs, the theorems presented above are very useful in analyzing their long-
term behaviors. However, to the best of our knowledge, the second requirement
for analyzing multiprocessor systems, i.e., the reward or cost factors for DTMCs
have not been formalized so far. Therefore, we build upon the foundations, pre-
sented in this section, to formalize the Discrete-time Markov Reward Models in
order to facilitate the performance analysis of multi-processor systems in HOL.

3 Formalization of Discrete-time Markov Reward Models

In this section, we formally define expectation and conditional expectation of a
discrete random variable and then use these results along with the formal DTMC
definition to formalize a Discrete-time Markov Reward Model (DMRM).

3.1 Expectation

The expectation (also called expected value) of a discrete random variable X is
E[X ] =

∑
i∈space sx

iPr{X = i}. Whereas, the conditional expectation of a dis-
crete randomvariableX given a condition Y isE[Y |X ] =

∑
i∈space sx

iPr{Y |X =
i}. These definitions can be formalized as:

Definition 9 (Expectation).

� ∀ X p sx. expec X p sx =
∑

i∈space sx
iP{x | X x = i}

Definition 10 (Conditional Expectation).

� ∀ X Y y p sx.

cond expec Y X y p sx =
∑

i∈space sx
iP({x | Y x = y}|{x | X x = i})

where X is a discrete random variable, which has type ’a → real, sx is a fi-
nite state space, and {x | Y x = y} is a discrete event given in the conditional
probability to calculate the expectation.

Utilizing these two formal definitions, we can verify some interesting proper-
ties of expectation that play a vital role in the performance analysis of multi-
processor systems. We can prove that the total expectation of a random variable
X is E[Y] =

∑
j∈space sx

E[Y|Xj]Pr{Xj}. Here, Xj represents a discrete event
involved in the event space (subsets sx) and j is any state in the state space
(space sx) of random variable X .

Theorem 7 (Total Expectation).

� ∀ X Y p sx sy.

random variable X p sx ∧ random variable Y p sy ∧
(∀ x. x ∈ space sx ⇒ {x} ∈ subsets sx) ∧
(∀ x. x ∈ space sy ⇒ {x} ∈ subsets sy) ∧
FINITE (space sx) ∧ FINITE (space sy) ⇒
(expec Y p sx =∑

j∈space sx
(λj. cond expec Y X j p sx * P{x | X x = j}))
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For a random process {Xt}t≥0, with sample space sx, and discrete event {Yt =
y}t≥0, in the event space (subsets sy) (for all y in the finite state space sy), the
total expectation of the steady-state of the random variable Y is: limt→∞E[Yt]
=

∑
j∈space sx

limt→∞E[Yt|Xt = j]limt→∞Pr{Xt = j}

Theorem 8 (Total Expectation of Steady-state Probabilities).

� ∀ X Y p sx sy.

(∀ t. random variable (X t) p sx) ∧
(∀ t. random variable (Y t) p sy) ∧
(∀ x. x ∈ space sx ⇒ {x} ∈ subsets sx) ∧
(∀ x. x ∈ space sy ⇒ {x} ∈ subsets sy) ∧
(∀ j. convergent (λt. P{x | X t x = j}) ∧
(∀ i. convergent (λt. cond expec (Y t) (X t) i p sx)) ∧
FINITE (space sx) ∧ FINITE (space sy) ⇒
(lim (λ t. expec (Y t) p sy) =∑

j∈space sx (lim (λ t. cond expec (Y t) (X t) j p sx) *

lim (λ t. P{x | X t x = j})))

3.2 Discrete-time Markov Reward Models

Discrete-time Markov Reward Models (DMRMs) are extended DTMCs that con-
sider the costs, or dually bonuses (rewards). In the performance analysis of some
real-world systems, DMRMs allow numerous quantitative measures of the sys-
tem, such as the elapsed time, power consumption, size of message queue, net
profit, etc.

Mathematically, a DMRM is defined on a DTMC {Xt}t≥0 with a real valued
reward function rxy, which associates a real reward (or cost) to a state x in the
state space of X for all t, t ≥ 0 by the conditional expectation of the reward (or
cost) given the state x.

Definition 11 (Discrete-time Markov Reward Model).

� ∀ X Y p sx sy p0 pij rxy. dmrm X Y p sx sy p0 pij =

dtmc X p sx p0 pij ∧ (∀ t. random variable (Y t) p sy) ∧
(∀ y. y ∈ space sy ⇒ {y} ∈ subsets sy) ∧
(∀ x t. P{x | Y t x = y} �= 0 ⇒

(rxy t x = cond expec (Y t) (X t) x p sy))

where the quantified variable X refers to the random variables involved in the
underlying DTMC, Y indicates the random reward, p is the probability space, sx
refers to the state space of the DTMC, sy represents the measurable state space
of random variable Y, p0 and pij are the initial distribution and transition prob-
ability of the DTMC, and rxy denotes the reward function. The first conjunct
in this definition ensures that the underlying stochastic process is a DTMC,
the second and third conjuncts constrain the expected values are discrete ran-
dom variables (Y t) and the last condition gives the conditional expectation
distributions by the reward function.



Formal Analysis of Memory Contention in a Multiprocessor System 205

It is important to note that this definition provides a general DMRM, in
which the state space can be finite or infinite, the underlying DTMC can be
time-homogeneous or time-inhomogeneous, and the reward is a function of time
(this feature facilitates the modeling of the impulse reward in some systems [4]).

Very often, the underlying DTMC in a DMRM is considered as a time-
homogeneous DTMC with a finite state space and the rewards or costs are con-
sidered as constants for the corresponding states. We formalize this frequently
used DMRM as follows:

Definition 12 (DMRM with Time-homogeneous Property).

� ∀ X Y p sx sy p0 pij rxy. th dmrm X Y p sx sy p0 pij rxy =

dmrm X Y p sx sy p0 pij rxy ∧ FINITE (space sy) ∧
(∀ x t t’. rxy t x = rxy t’ x) ∧
(∀ t i j.

P{x | X t x = i} �= 0 ∧ P{x | X (t + 1) x = i} �= 0 ⇒
pij X p s (t + 1) 1 i j = pij X p s t 1 i j)

where the first conjunct states that this model is a DMRM, the second condition
constrains that the reward space is a finite space, the third one ensures the
rewards are constant for every state x in the state space of the random variable
(X t) and the last conjunct refers to the time-homogeneity of the transition
probabilities of the underlying DTMC.

If the underlying DTMC of a DMRM is an aperiodic DTMC, then the condi-
tional expectations are convergent. This property can be verified as follows:

Theorem 9 (Convergent Property).

� ∀ X Y p sx sy p0 pij rxy i.

th dmrm X Y p sx sy p0 pij rxy ∧ APERIODIC MC X p sx p0 pij ⇒
convergent (λt. cond expec (Y t) (X t) i p sy)

The expected cumulated reward over a long period is always of interest as the
cumulative property verified in the following theorem, which can be used to
obtain the expected steady-state reward.

Theorem 10 (Cumulative Property).

� ∀ X Y p sx sy p0 pij rxy i.

th dmrm X Y p sx sy p0 pij rxy ∧ APERIODIC MC X p sx p0 pij ∧
i ∈ space sx ⇒
(lim (λt. cond expec (Y t) (X t) i p sy) = lim (λt. rxy t i))

The expected steady-state reward can be achieved by applying the following
theorem:

Theorem 11 (Expected Steady-state Reward).

� ∀ X Y p sx sy p0 pij rxy i.

th dmrm X Y p sx sy p0 pij rxy ∧ APERIODIC MC X p sx p0 pij ∧
i ∈ space sx ⇒
(lim (λ t. expec (X t) p sx) =∑

y∈space sy
lim (λ t. rxy t i) lim (λ t. P{x | (Y t) x = y}))



206 L. Liu, O. Hasan, and S. Tahar

The HOL script of these formalizations is available in [9] and the verified theo-
rems are used in the next section to analyze the memory contention problem of
a particular multi-processor system.

4 Application

In this section, we present a formal performance analysis of a multiprocessor
system by reasoning about the expectation of memory access requests.

4.1 Memory Contention Problem

Consider a multi-processor system with two memory modules and two proces-
sors. This system can be modeled as a Discrete-time Markov Reward Model
(DMRM) [19], depicted in Figure 2, by assuming that access time of any mem-
ory module is a constant and all the memory modules are synchronized. The
states of the system are denoted by the pair (i, j), where i represents the num-
ber of the processors waiting for the memory module 1 and j refers to the amount
of the processors waiting for the memory module 2. Due to the fact that memory
access time is always longer than any other data transaction of the processor, it
is reasonable to assume that 0 ≤ i, 0 ≤ j, and i + j = 2 in every memory cycle.
Thus, the states set {(1, 1), (0, 2), (2, 0)} provides all the possible states of the
given system. Also, qk (k = 1, 2) represents the probabilities that a processor
requests a direct memory access. If both processors are accessing two different
memory modules (in this case, the system stays in state (1, 1)) and will complete
the task by the end of this memory cycle, then the expectation of the number
of memory requests completed in this memory cycle is 2. If there are two re-
quests to access memory module 1 in a memory cycle, then only one request can
be completed in this memory cycle. We can obtain the same expectation when
memory module 2 is requested to be accessed. We denote the random variable Y
as the number of requests completed in every memory cycle in the steady state
and the request state space is the set {0, 1, 2}. The conditional expectations of
Y can be mathematically described as:

E[Y|system in state (1,1)] = 2;
E[Y|system in state (2,0)] = 1; (2)
E[Y|system in state (0,2)] = 1.

(1,1) 
(0,2) 

 

(0,2) 

Fig. 2. The State Diagram for the Memory Interference Problem
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In order to analyze the performance of such a system, we are interested in
learning the steady probabilities of the states, in which the memory modules
are efficiently used, and the expected number of memory requests satisfied in
each memory cycle in the steady state.

4.2 Formalization of Memory Contention Problem

To formally analyze the properties of this system, we first describe this mul-
tiprocessor system in HOL. As shown in Figure 2, this kind of system can be
described as a DMRM with an aperiodic and irreducible DTMC [19]. First of
all, we define the state space for the requests as a general function in HOL:

Definition 13 (Request State Space).

� ∀ n. request n = {(r:real) | r ∈ [0, n]}
� ∀ n. request space n = (request n, POW (request n))

where variable n refers to the number of memory modules in the system and
POW (request n) is the sigma algebra of the request set. In the case of the two-
processor system, at most two requests can be created in a memory cycle, thus,
n = 2.

Now, the system state space and the transition probabilities can be formally
expressed as the functions presented in Definition 14 and the conditional ex-
pected value is described as a function in Definition 15 using higher-order logic.

Definition 14 (State Space & Transition Probabilities).

� sys state = {(0, 2); (2, 0); (1, 1)}
� sys space = (sys state, POW sys state)

� ∀ q1 q2 t i j. Lt q1 q2 t i j = case (i, j) of

((1, 1), (1, 1)) → 2q1q2 | ((0, 2), (1, 1)) → q1 |
((2, 0), (1, 1)) → q2 | ((1, 1), (0, 2)) → q22 |
((0, 2), (0, 2)) → q2 | ((2, 0), (2, 0)) → q1 |
((1, 1), (2, 0)) → q21 | ( , ) → 0

where sys space is a pair, in which the first element is a set sys state and the
second element is the sigma algebra of sys state, the function Lt returns the
transition probabilities.

Definition 15 (Conditional Expected Requests).

� ∀ t i j. rewards t (i, j) =

if (i, j) = (1, 1) then 2 else

if (i, j) = (2, 0) then 1 else

if (i, j) = (0, 2) then 1 else 0

where the function rewards corresponds to Equation (2).
These functions can now be used to model the multiprocessor system of

Figure 2 as follows:
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Definition 16 (Multiprocessor Model).

� ∀ X Y p q1 q2 p0. opera sys model X Y p q1 q2 p0 =

th dmrm X Y p sys space (request space 2) p0 (Lt q1 q2) rewards ∧
Aperiodic DTMC X p sys space p0 (Lt q1 q2) ∧
Irreducible DTMC X p sys space p0 (Lt q1 q2) ∧
0 < q1 ∧ 0 < q2 ∧ q1 < 1 ∧ q2 < 1 ∧ (q1 + q2 = 1)

where variable X indicates the system state (the pair containing the number of
requests for each memory module) at discrete time points, variable Y refers to
the requests, which is a random variable, p denotes the probability space, q1 and
q2 are the parameters in the transition probabilities described previously, and
function p0 represents a general initial distribution, the request state space is
request space and the system state space is sys space, which are defined in
Definition 13 and 14, respectively.

Note that, the definitions presented above provide the flexibility on modifying
the argument, i.e., n in Definition 13, or the functions in Definitions 14 and 15
in case of describing more complex systems.

4.3 Performance Analysis of Memory Contention

As the underlying DTMC in the model described in Definition 16 is an aperiodic
and irreducible DTMC, we can directly apply Theorem 6 to prove that for all
states in the system state space, the probability distributions are convergent in
the long-term as the following theorem.

Theorem 12 (Convergence of the State Distribution).

� ∀ X Y p q1 q2 p0 i.

opera sys model X Y p q1 q2 p0 ∧ i ∈ space sys space ⇒
convergent (λ t. P{x | X t x = i})

Applying Theorems 2, 3, 5 and 6, we obtain the steady-state probabilities
(the limit of the probability mass functions for all states in the state space):

Theorem 13 (Steady Probabilities).

� ∀ X Y p q1 q2 p0.

opera sys model X Y p q1 q2 p0 ⇒
limt→∞ P{x | X t x = (2, 0)} =

q31
1−2q1q2

∧
limt→∞ P{x | X t x = (0, 2)} =

q32
1−2q1q2

∧
limt→∞ P{x | X t x = (1, 1)} = q1q2

1−2q1q2

Utilizing the formalizations of expectation presented in Section 3.1, we can
prove the expectation of the number of memory requests completed per memory
cycle in the steady state in the following theorem:
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Theorem 14 (Expected Steady-state Rewards).

� ∀ X Y p q1 q2 p0. opera sys model X Y p q1 q2 p0 ⇒
limt→∞ (λ t. expec (Y t) p request space) = 1−q1q2

1−2q1q2

Theorems 13 and 14 can be used for optimizing the system design. For exam-
ple, we can obtain the maximum value of the expectation of completed requests
from Theorem 14 and find out the conditions to achieve the best efficiency (q1 =
q2 = 1 / 2). Similarly, when q1 = 0.97 and q2 = 0.03, we can obtain the steady-
state probability limt→∞ P{x | X t x = (0, 2)} = 2.8669e−5 by applying Theorem
13, however, classical simulators, such as Matlab, compute limt→∞ P{x | X t x
= (0, 2)} = 0 due to the underlying algorithms for accelerating the convergent
speed and the round-off error in the intermediate steps. Moreover, the algorithms
can never provide a positive transition probability matrix, which exists accord-
ing to Theorem 5, because of the round-off errors or the slow convergent speed.
Our approach can overcome all these problems and provide accurate results.

Our general definition of DMRMs offers the flexibility of describing the states
as arbitrary types, such as the pairs in this application, instead of the abstract
non-negative integers. On the other hand, this application illustrates an ap-
proach to formally analyze the distributed systems using theorem proving. It is
important to note that the system can be more complex (i.e., the number of the
processors and memory modules can be very large), and we can analyze it by
defining new functions, such as sys space, request space, Lt and rewards.

The proof script for modeling and verifying the properties of the memory
contention in a multiprocessor (two processors and two memory modules) is
about 700 lines long and is available in [9]. The ability to formally verify theorems
involving DMRMs and the short script clearly indicates the usefulness of the
formalization, presented in the previous sections in this paper, as without them
the reasoning could not have been done in such a straightforward way.

5 Conclusion

This paper presents a method to formally analyze the performance of multi-
processor systems based on the formalization of Discrete-time Markov Reward
Models (DMRMs) using higher-order logic. Due to the inherent soundness of the-
orem proving, our work guarantees to provide accurate results, which is a very
useful feature while analyzing stationary behaviors and long-term expectation
on certain key measures for a system associated with safety or mission-critical
systems. In order to illustrate the usefulness of the proposed approach, we for-
mally analyzed the memory contention problem in a system with two processors
and two memory modules, which is modeled as a DMRM with the underlying
aperiodic and irreducible DTMC, using the formalizations of DTMCs. Our re-
sults exactly matched the results obtained using paper-and-pencil analysis in
[19], which ascertains the precise nature of the proposed approach.

As DMRMs have been widely applied in performance and reliability analysis,
especially in predicting the reliability for fault-tolerant systems and software,
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the presented work opens the door to a new and promising research direction
on formally analyzing the Discrete-time Markov Reward Models. We plan to
apply the formalization presented in this paper to formally analyze some real-
world systems modeled as DMRMs. Also, we plan to extend our work to the
Continuous-time Markov Reward Models (CMRMs) and Markov Decision Pro-
cess (MDP), which will enable us to formally analyze software reliability and
hardware performance of a wider range of systems.
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Abstract. In this paper, we propose a new approach to inheritance in
the context of algebraic graph transformation by providing a suitable
categorial framework which reflects the semantics of class-based inheri-
tance in software engineering. Inheritance is modelled by a type graph
T that comes equipped with a partial order. Typed graphs are arrows
with codomain T which preserve graph structures up to inheritance. Mor-
phisms between typed graphs are “down typing” graph morphisms: An
object of class t can be mapped to an object of a subclass of t. We prove
that this structure is an adhesive HLR category, i. e. pushouts along
extremal monomorphisms are “well-behaved”. This infers validity of clas-
sical results such as the Local Church-Rosser Theorem, the Parallelism
Theorem, and the Concurrency Theorem.

Keywords: Graph transformation, Inheritance, Adhesive HLR category.

1 Introduction

Developing appropriate models to mimic reality has always been an important
part of software engineering. However, the relation between coding and modelling
has changed over time. Today, model-driven engineering focuses on generating
code from appropriately detailed and formalised models, hoping that developing
the model and using a mature and well-tested code generator is less error-prone
than letting programmers write most of the code themselves. This reasoning,
however, is only valid if model development is relatively easy. Typically, differ-
ent graphical notations help people to structure the problem in various ways.
Consequently, graphs or graph structures play an important role in software
engineering today, compare e.g. the UML [13], a modelling language which is
currently the de facto standard for modelling object-oriented systems.

If one looks more closely at object-oriented systems, one realises that it is
impossible to analyse or build object-oriented software in an efficient way without
making use of specialization or inheritance.1 Therefore, it is sensible to require
that the graphical notation supports aspects of inheritance well.
1 In this paper, we do not differentiate between type specialization (subtyping) and

class inheritance, because the differences are mostly relevant in the context of type
theory, which we do not discuss, and because most mainstream OOP languages do
not differentiate between these concepts.
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On the one side, graphs are well suited for modelling static aspects of software,
e.g. the class and inheritance structure. On the other side, behavioural aspects
of the system, e.g. state changes, can be modelled using graph transformations
which formally describe when and how a graph (here: state of an object-oriented
system) can change into another graph (here: another system state). Graph
transformations, especially algebraic graph transformations based on adhesive
HLR categories2, have been studied for a long time and are a well-known tool
in the context of software engineering.

However, if we want to combine a graphical notation supporting inheritance
with graph transformations, which therefore have to operate on graphs with
inheritance, there are relatively few approaches, which differ in flexibility and
“readability”. In this papier, we propose a new approach which binds the in-
heritance hierarchy to the type graph (only); objects are typed by providing
a typing morphism into the type graph which preserves the graph structure
up to inheritance. Morphisms between graphs are allowed to relate objects of
different types as long as the target object is at least as specialised as the
source object.3 Upon this notion of inheritance, we build a suitable category
and show that this category is an adhesive HLR category, such that many inter-
esting results from the field of algebraic graph transformations can be applied
immediately.

The paper is structured as follows: Section 2 develops some basic notions and
defines the category GT which is used in the subsequent sections. Sections 3,
4, and 5 analyse the properties of monomorphisms, pushouts, and pullbacks in
GT . In section 6, we prove the main result of this paper, namely that GT is an
adhesive HLR category. Section 7 demonstrates the usefulness of our approach
by means of a practical example. We discuss related approaches in section 8.
Finally, section 9 summarises the results and discusses future work.

Due to space limitations, some of the proofs have been omitted. They can be
found in [12].

2 Basic Definitions

G denotes the usual category of multi-graphs whose objects G = (VG, EG, sG :
E → V, tG : E → V ) have vertices, edges, and the usual source and target
mappings sG, tG : E → V , resp.4 Morphisms f : G1 → G2 are pairs of mappings
compatible with the graph structure, i.e. they obey the rules f ◦ sG1 = sG2 ◦ f
2 Adhesive high-level replacement (HLR) categories introduced in [2, 5] combine high-

level replacement systems[4] with the notion of adhesive categories[10] in order to
be able to generalize the double pushout transformation approach from graphs to
other high-level structures as e. g. Petri nets using a categorial framework. Generally,
adhesiveness abstracts from exactness properties like compatibility of union and
intersection of sets.

3 We call this property “down-typing”.
4 These notations will remain fixed in that for any X ∈ G we will always write
VX , EX , sX , tX for the constituents of X without defining them explicitly.
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and f ◦ tG1 = tG2 ◦f .5 If a graph is used as a class diagram, its vertices represent
the available classes and its edges model directed associations. We formalise
class-inheritance by an additional partial order on the vertices of a type graph:

Definition 1 (Type Graph). A type graph is a pair (T,≤) where T is a graph
and ≤ ⊆ V × V is a partial order with a largest element O ∈ VT

6.

This definition reflects the basic nature of class models. It still lacks additional
annotations like multiplicities, abstractness properties or other constraints. The
forthcoming definition of object structures, however, shows that it is reasonable
to interpret edges as associations with multiplicity ”0..∗” on both ends.

Definition 2 (Typed Graph). Let I ∈ G and (T,≤) be a type graph. A map-
ping pair (iV : VI → VT , iE : EI → ET ), written i : I → T , is called T -typed
graph if the conditions (1) and (2) hold:7

i ◦ sI ≤ sT ◦ i (1)
i ◦ tI ≤ tT ◦ i (2)

Condition (1) means that subtypes inherit all attributes of all their super-types.
Condition (2) formalises the fact that referenced objects at run-time may appear
polymorphically: They may possess any subtype of the corresponding association
target, cf. Fig. 1. This concept coincides with the definition of ”clan morphism”
if the underlying relation I in [9] is a partial order.

In the sequel, the type graph T := (T,≤) will be fixed, i.e. we speak of ”typed
graphs” instead of ”T -typed graphs”.

Definition 3 (Type-Compatible Morphism). Given two typed graphs i :
I → T, j : J → T , a graph morphism m : I → J is type-compatible, written
m : i → j, if

j ◦m ≤ i (3)

on VI and
j ◦m = i (4)

on EI . If in (3) ”≤” can be replaced by ”=”, m is called strong. A strong mor-

phism f from i to j will be denoted i
f ��� j .

It follows that type-compatible morphism can map an “object” of type c to
an “object” the type of which is a subtype of c. This is especially useful when
5 Sometimes in the literature the two components fV and fE of f are explicitly differ-

entiated. We will not do that, because it will always become clear from the context
which component is used.

6 The letter ”O” shall remind of the class ”Object” in Java, which is a super class of
all other classes, hence the inheritance order’s largest object.

7 If f, g : X → Y are two mappings into a partially ordered set Y = (Y,≤), we write
f ≤ g if f(x) ≤ g(x) for all x ∈ X.
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matching a graph transformation rule, since one can match many specialised
objects by using an object of a general type.

Strong morphisms are closed under composition:
Proposition 4. Let i : I → T , j : J → T , and k : K → T be some typed graphs,
and let m : i → j and n : j → k be two strong morphisms. Then n ◦m is also
strong.

Proof. k ◦ (n ◦m) = (k ◦ n) ◦m = j ◦m = i. ��
Definition 5 (Category GT ). Let T be a type graph. We define GT to be the
category which has typed graphs as objects and type-compatible morphisms be-
tween them as arrows.

��

��
��

�

���

�

�

��

��

��

�

�� ��
�� ����

	

Fig. 1. Typed graphs and type-compatible morphisms

The main effects are shown in UML-styled Fig. 1: T is the top graph in which
nodes are rectangles and the partial order is depicted by arrows with end-
triangles (reflexive elements and the largest element O are not shown). There are
three typed graphs i, j, k, their typing being highlighted by names :X whenever
they map to X . Since B inherits association e, i is a well-typed object structure.
Since A-objects may polymorphically be linked to C- or D-objects j is an ad-
missible typing. Moreover, m1 and m2 are two type-compatible morphisms (e.g.:
m1(:A) = :B yielding i(m1(:A)) = B < A = k(:A)8).

In the sequel, we let

τ :

{ GT → G

(g : G → T )
f �� (h : H → T ) �→ G

f �� H

be the functor which forgets the typing structure.
8 < being short for: ≤ and 
=.
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3 Monomorphisms and Epimorphisms

In order to investigate categorial properties of GT , we analyse the nature of
monomorphisms and epimorphisms: First, a straightforward argument shows
that any injective m : i → j is a monomorphism. The reverse statement is also
true, but we need the existence of the largest element O of ≤: If m : g → h
is a monomorphisms then m(v1) = m(v2) can be detected by mappings k1, k2 :
{:O} → G with ki(:O) = vi (i ∈ {1, 2}).9 If we do not require the existence of a
largest element, assume T contains the three types A, B, and C such that C < A
and C < B, then the non-injective m : {:A, :B} → {:C} with m(:A) = m(:B) =
:C is a monomorphism, as there do not exist any morphisms p, q : X → {:A, :B}
which map some element x ∈ X to :A and :B, resp., due to the missing common
supertype of A and B.

Surjective morphisms coincide with the class of epimorphisms. In contrast to
monomorphisms, however, the proof of this fact does not make use of the largest
element and is proven in the same way as the corresponding fact in G.

Proposition 6. Epimorphisms of GT are exactly the surjective morphisms.
Monomorphisms of GT are exactly the injective morphisms.

Conventionally, in category theory, extremal monomorphisms are often the right
choice if (ordinary) monomorphisms do not represent embeddings: A monomor-
phism m is said to be extremal, if any decomposition m = m′ ◦ f with an
epimorphism f already forces f to be an isomorphism. In GT a morphism
m : {:B} → {:A} with A < B is monic and epic (cf. Proposition 6) but no iso-
morphism, because a hypothetical inverse n would have to ”upcast” (n(:A) =:B),
which is not possible. Thus m is not extremal, because m = id ◦m.10

Proposition 7 (Strong Monos and Extremal Monos coincide). A mono-
morphism in GT is extremal if and only if it is strong.

Because of this result, it is reasonable to denote an extremal mono m from i to
j by i �� m ��� j .

4 Pushouts

In order to define and apply double-pushout graph transformation rules in the
category GT , we need to analyse how pushouts can be constructed. The first
observation is that pushouts do not always exist: Let T be the discrete graph11

with VT = {O,B,C} and ≤ = {(B,O), (C,O)} together with reflexive pairs.
Then

{:C} {:O}�� �� {:B}
9 The notation {x} is short for the graph ({x}, ∅, ∅, ∅).

10 In topoi, an epic monomorphisms necessarily becomes an isomorphism. Hence this
example shows that GT is not a topos. In the next sections there will be many
other aspects detecting this property (e.g. the fact that some limits and some more
co-limits do not exist).

11 A graph with empty edge set.
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obviously possesses no pushout. Even if one restricts down-typing to at most one
of the given morphisms, pushouts along monomorphisms need not exist, because

{1:B, 2:C} {1:O, 2:O}���� �� {12:O} ,

where the left leg maps according to the numbers (and hence is monic) and where
the right leg identifies the objects 1:O and 2:O by mapping them to 12:O, does
not admit a pushout. This behaviour has its roots in the fact that B and C are
incomparable and do not possess a common subtype.

Our goal is to find a feasible criterion for a span

j g
β�� α �� h (5)

to admit a pushout. For this we denote with
∧
A the greatest lower bound of a

subset A ⊆ VT if it exists12. Let furthermore G := τ(g), H := τ(h), and J := τ(j)
with the above introduced forgetful functor. We denote with [h, j] : H + J → T
the disjoint union of h and j and we need the usual relation

∼ := {(α(x), β(x)) | x ∈ G} (6)

on H+J , for which ≡ denotes the smallest (sortwise) equivalence on H+J which
contains ∼. An equivalence class of ≡ will be written [v]≡ or [v]. Let H +G J :=
(H + J)/≡ together with the canonical graph morphisms α : J → H +G J and
β : H → H +G J (which map v to [v]≡) that make up the G-pushout of α and β.

Theorem 8 (Characterisation of Pushouts). The span (5) admits a pushout
in GT if and only if

∀v ∈ VH+J :
∧

{[h, j](x) | x ∈ [v]≡}

exists. If this condition is met, the square

g
α ��

β

��

h

β

��
j

α
�� p

(7)

is a pushout in GT , where p : H +G J → T is defined by

p([v]) =
∧

{[h, j](x) | x ∈ [v]}

on vertices and p([e]) = [h, j](e) on edges.

Corollary 9. GT has all pushouts along extremal monomorphisms. In such a
pushout the extremal mono is preserved under the pushout.
12 The notation

∧
shall remind of ”intersection” (of sets): For any set X, any indexed

set (Yi)i∈I with Yi ∈ (℘(X),⊆) always has a greatest lower bound, namely
⋂

i∈I Yi.
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Proof. If α is an extremal mono, it is a strong monomorphism by Proposition 7.
This means, that for any v ∈ VH+J the set [v] is a singleton (if v ∈ VH is not in
the image of α), or it is of the form {α(y) | y ∈ β−1(β(x))} ∪ {β(x)} for some
x ∈ VG. In the first case, the greatest lower bound is h(v), in the latter case, by
strongness, it is j(β(x)). Thus, by Theorem 8, the pushout can be constructed
with the usual construction in G such that α becomes an embedding, hence a
strong (thus extremal) mono. ��

Theorem 8 can be alternatively formulated as

Corollary 10. A commutative diagram D =

g
α ��

β

��

h

δ

��
j γ

�� q

s.t. τ(D) is a pushout in G, is a pushout in GT ⇐⇒ ∀v ∈ Vτ(q) : q(v) =∧
{[h, j](x) | [γ, δ](x) = v}.

Proof. Let i : τ(q) → τ(p) be the canonical G-isomorphism between the given
pushout τ(D) and the canonical pushout in G (τ applied to (7)). Then for all
x ∈ H + J , v ∈ Vτ(q) we obtain [γ, δ](x) = v ⇔ i([γ, δ](x)) = i(v) ⇔ [α, β](x) =
i(v), thus

[γ, δ](x) = v ⇔ x ∈ i(v) (8)

”⇒”: By Theorem 8,
∧
Sv exists and (7) is pushout. Thus, i is a GT -iso-

morphism. Then q = p◦i and (8) yield q(v) = p(i(v)) =
∧
{[h, j](x) | x ∈ i(v)} =∧

{[h, j](x) | [γ, δ](x) = v}.
”⇐”: The definition of q and (8) yield the characterising condition of Theorem

8. Hence (7) is a GT -pushout. Moreover, by (8) and the definition of p we have
p(i(v)) =

∧
{[h, j](x) | x ∈ i(v)} =

∧
{[h, j](x) | [γ, δ](x) = v} = q(v), such that

i is a GT -isomorphism and the given square is a GT -pushout. ��

Note that the results of this section remain true even if we do not claim the
existence of a largest element O.

5 Pullbacks

In this section we characterise those co-spans of GT which admit pullbacks. The
situation is not dual to the situation in Section 4 because of the existence of the
largest element: If T consists of nodes {A,B,C,O} with no edges where ≤ is
generated from {(A,B), (A,C), (B,O), (C,O)}, the co-span

{:C} �� {:A} {:B}��
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possesses the pullback

{:C} {:O}�� �� {:B} .

But pullback construction fails in more complex situations: Let a type graph be
given by the class diagram in Fig. 2, in which the partial order is generated by
the depicted arrows.

Fig. 2. A type graph

Then the co-span

{:C} �� {:A} {:B}��

admits no pullback, because there are two incompatible candidates, namely the
spans

{:C} {:D}�� �� {:B} and {:C} {:E}�� �� {:B} ,

and a minimal candidate

{:C} {:D, :E}�� �� {:B} , (9)

for which, however, two different mediators exist from

{:C} {:O}�� �� {:B} .

This example shows that it seems to be difficult to find a feasible criterion for
a pullback to exist without claiming the existence of a largest element: If we
omitted O in Figure 2, there would indeed be a pullback, namely the span (9)
(which seems to be weird because the middle graph possesses two vertices – note
that monos are still preserved by pullbacks because both morphisms in (9) are
now monos, see the example in the first paragraph of Section 3).

In order to avoid these degenerate limits we return to the original situation in
which O exists. We want to find a necessary and sufficient criterion for a co-span

j
β �� g h

α�� (10)
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to admit a pullback which is feasible enough to be used in practical contexts.
It turns out that the existence of pullbacks heavily depends on the existence of
least upper bounds of two nodes of T . We use the notation B ∨ C to denote the
least upper bound if it exists.13

We abbreviate J := τ(j), G := τ(g), and H := τ(h). H ×G J is the pullback
object of α and β in G together with projections π1 : H ×G J → H and π2 :
H ×G J → J . It turns out that the two above examples fully characterise the
limitations for the existence of pullbacks:

Theorem 11 (Characterisation of Pullbacks). The co-span (10) admits a
pullback if and only if

∀(v1, v2) ∈ VH×GJ : h(v1) ∨ j(v2) exists.

If this condition is met, the square

g h
α��

j

β

��

pπ2

��

π1

�� (11)

is a pullback in GT , where p : H ×G J → T is defined by

p(v1, v2) = h(v1) ∨ j(v2)

on vertices and
p(e1, e2) = h(e1)(= j(e2))

on edges.

We obtain the following consequences:

Corollary 12.

(1) If in (10) at least one morphism is strong, the pullback exists.
(2) If in (T,≤) all pairs have a least upper bound, all pullbacks exist.
(3) If T is finite and ≤ represents a hierarchy, i.e. if each node in VT −{O} has

exactly one direct super node14, all pullbacks exist.
(4) Extremal monomorphisms as well as strong morphisms are preserved under

pullbacks.

Proof. 12(1), 12(2), and 12(4) are immediate consequences of Theorem 11 and
the fact that pullbacks preserve monos in G. 12(3) can be easily proved by in-
duction over path lengths from h(v1) to O and j(v2) to O, respectively. ��

Theorem 11 can be alternatively formulated:
13 The notation ∨ shall remind of ”union” (of sets): For any set X, any two elements

Y1, Y2 ∈ (℘(X),⊆) have always a least upper bound, namely Y1 ∪ Y2.
14 As is the case in each programming language that prohibits multiple inheritance.
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Corollary 13. A commutative diagram D =

g h
α��

j

β

��

qγ
��

δ

��

s.t. τ(D) is a pullback in G, is a pullback in GT if and only if ∀z ∈ Vτ(q) : q(z) =
h(δ(z)) ∨ j(γ(z)).

Proof. “⇒”: D and (11) yield a canonical GT -isomorphism i : q → p, such that
for z ∈ Vτ(q), q(z) = p(i(z)) = p(π1(i(z)), π2(i(z))) = p(δ(z), γ(z)) = h(δ(z)) ∨
j(γ(z)).

“⇐”: Let i : τ(q) → τ(p) be the canonical G-isomorphism between τ(D) and τ
applied to (11). Then q(z) = h(π1(i(z))) ∨ j(π2(i(z))) = p(π1(i(z)), π2(i(z))) =
p(i(z)), thus i is GT -isomorphism, hence D is GT -pullback. ��

6 Adhesiveness

In this section, we intend to show that GT is an adhesive HLR category for the
class M of all extremal monomorphisms.

Theorem 14. GT is an adhesive HLR category for the class M of all extremal
monomorphisms.

Proof. Due to Prop. 4 and [1, Prop. 7.62(2)], M is closed under composition (also
with isomorphisms) and decomposition15, resp. Moreover, GT has all pushouts
and pullbacks along M, and M-morphisms are preserved under pushouts and
pullbacks (cf. Corollaries 9 and 12). It remains to show that pushouts along M-
morphisms are VK squares, cf. [2, Def. 4.9]. Let therefore a commutative cube
be given with a pushout along the extremal mono α at the bottom and two rear
pullbacks (Fig. 3). From Corollaries 9 and 12(4) we can deduce that α and α′

are extremal monos, too (which is already indicated in Fig. 3).
We now show that the top face in Fig. 3 is a pushout ⇐⇒ the two front

faces are pullbacks.
”⇒”: By Corollary 9 and Proposition 7 α′ is strong. Applying τ to the cube
shows that front and right faces are pullbacks in G (by adhesiveness of G). By
Corollary 13 it suffices to show that c = d ◦ α′ ∨ h ◦ i1 and b = d ◦ β′ ∨ i ◦ i2 on
vertices. The first statement follows immediately, because α′ is strong and thus
for any x ∈ Vτ(c)

c(x) = d(α′(x)) and h(i1(x)) ≤ c(x)

s.t. c(x) = d(α′(x)) ∨ h(i1(x)).

15 “Decomposition” means: g ◦m an extremal mono ⇒ m an extremal mono.
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a

i0

��

β′

����
��
��

�� α′ ��� b

i2

��

β
′����

��
�

c

i1

��

α′
�� d

i3

��

g �� α ���

β����
��
��

i

β����
��
��

h ��
α

��� j

Fig. 3. Commutative cube

In order to show the second statement, we let z ∈ Vτ(b) be arbitrary. If z is in
the image of α′, i.e. z = α′(z′) for some z′ ∈ Vτ(a), we obtain

b(z) = a(z′) Strongness of α′

= c(β′(z′)) ∨ g(i0(z
′)) Cor. 13 applied to left rear pullback

= d(α′(β′(z′))) ∨ i(α(i0(z
′))) Strongness of α′ and α

= d(β
′
(z)) ∨ i(i2(z)) Top and right rear faces commute.

If z is not in the image of α′, the pushout construction of Theorem 8 shows that
β
′
(z) is not in the image of α′, such that by Corollary 10

b(z) = d(β
′
(z))

which yields b(z) = d(β
′
(z)) ∨ i(i2(z)), because i(i2(z)) ≤ b(z).

”⇐”: Assume all four side faces are pullbacks. By adhesiveness of G the top
face is a pushout in G such that by Corollary 10 it suffices to show that d◦α′ = c

and d ◦ β′
= b on τ(b)−α′(τ(a)). The first statement is immediate because α′ is

strong by Corollary 12(4).
Let z ∈ τ(b) − α′(τ(a)). Because the rear face is a pullback, i2(z) ∈ τ(i) −

α(τ(g)). By the pushout property of the bottom face, Corollary 10 yields
j(β(i2(z))) = i(i2(z)). Thus by Corollary 13

b(z) = d(β
′
(z)) ∨ i(i2(z)) = d(β

′
(z)) ∨ j(β(i2(z))) = d(β

′
(z)) ∨ j(i3(β

′
(z)))

But j ◦ i3 ≤ d, such that
b(z) = d(β

′
(z))

as desired. ��

Proposition 15. In GT , binary coproducts are compatible with M.

We conclude this section with the main result of this paper: If all graph trans-
formation rules in GT are spans L K����� �� ��� R of two extremal monomor-
phisms, we obtain the well-known concurrency theorems for the DPO-approach:
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Corollary 16. The following results for graph transformation based on GT and
the class M of all extremal monomorphisms are valid due to Theorem 14 and
Proposition 15:

– Local Church Rosser Theorem for pairwise analysis of sequential and parallel
independence [2, Thm. 5.12]

– Parallelism Theorem for applying independent rules and transformations in
parallel [2, Thm. 5.18]

– Concurrency Theorem for applying edge-related dependent rules simultane-
ously [2, Thm. 5.23]

7 Example

Consider a simple model of a file system (Fig. 4). On the one hand, we have the
file system itself and directories, which both can contain other file system objects
and, thus, are called containers. On the other hand, we have directories and
files, which are part of a (unique) container and, thus, are called containees.16
Directories can be created by the rule in Fig. 5a (file creation is done by a
similar rule). Fig. 5b allows to delete a file system object by unlinking it from
its container.17

Container (C’er) Containee (C’ee)

FileSystem Directory File

parts

Fig. 4. File system model

L = K

:C’er

R

:C’er

:Dir
:parts

r

(a) Rule “Create Directory”

L

:C’ee

:C’er

K = R

:C’ee

:C’er

:parts

l

(b) Rule “Delete Object”

Fig. 5. Example rules

16 We do not cover container uniqueness in this example.
17 Some sort of a garbage collector is needed to physically delete all objects that are

not part of any container. These rules are not shown in this example but can be
modelled by using NACs (negative application conditions) [2].
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Container (C’er) Containee (C’ee)

FileSystem Directory File Link

parts target

Fig. 6. File system model with links

Now we extend the file system model by links (see Fig. 6).18 Creating a link
is handled by the rule in Fig. 7. The rule in Fig. 8 allows to retarget a link; the
figure also demonstrates how the rule can be applied to a concrete instance G.

L

t:Containee

c:Container

K

t:Containee

c:Container

R

t:Containee

c:Container

l:Link

:parts

:targetl r

Fig. 7. Rule “Create Link”

In this example, the advantage of being able to define a graph transformation
rule on an abstract level should have become clear. For each containee, we only
need one rule to create the containee, instead of one rule for each concrete
container. It is not necessary to change or extend the rule to delete a file system
object. Retargeting a link can be specified by one single rule (independent of
whether the old and new targets of the link are directories, files, or links), whereas
without any abstraction, nine rules would be necessary.

8 Related Work

There are relatively few approaches that integrate inheritance or inheritance-
like features into graph transformation. Most of these research lines are based
on algebraic graph transformation, either on the double pushout approach [2] or
on the single-pushout approach [11].
18 A (symbolic) link is a reference to another file system object, which can be a link

itself. Typically, operating systems confine the link depth in order to sort out circular
references.
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L

t2:Containee

t1:Containee

l:Link

K

t2:Containee

t1:Containee

l:Link

R

t2:Containee

t1:Containee

l:Link

G

d:Directory

f:File

l:Link

D

d:Directory

f:File

l:Link

H

d:Directory

f:File

l:Link

:target

:target

:target

:target

l r

g h

m d n

Fig. 8. Rule “Retarget Link” and a sample application

H. Ehrig et al. [2] introduce inheritance as an additional set of inheritance
edges between vertices in the type graph. This structure is not required to be
hierarchical. Cycle-freeness is not necessary, since they do not work with the
original type graph. Instead they use a canonically flattened type structure, in
which inheritance edges are removed and some of the other edges are copied to
the “more special” vertices. By this reduction, they get rid of inheritance and are
able to reestablish their theoretical results. E. Guerra and J. de Lara [8] extend
this approach to inheritance between vertices and edges.

F. Hermann et al. [9] avoid the flattening and define a weak adhesive category
based on the original type graph with inheritance structure. The morphisms in
the rules are restricted to those which reflect the subtype structure: if an image
of a morphism possesses subtypes, all these subtypes have pre-images under the
morphism. This feature considerably restricts applicability to examples as in
section 7.

U. Golas et al. [7] also avoid the flattening process. They, however, require
that the paths along inheritance edges are cycle-free (hierarchy) and that every
vertex has at most one abstraction (single inheritance). For this set-up, they
devise an adhesive categorial framework comparable to our approach which is,
however, restricted to single inheritance.
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A. P. L. Ferreira and L. Ribeiro [6] introduced a graph transformation frame-
work for object-oriented programming based on single-pushout rewriting. They
allow vertex and edge specialisations in the type graph and show that suitably
restricted situations admit pushouts of partial morphisms. Their framework is
shown adequate as a model for object-oriented systems. They do not address
further categorial properties like adhesiveness.

9 Conclusion

Since our introduced formal foundation is enriched with inheritance, it is bet-
ter capable of modelling static structures of object-oriented systems. Although
there have been similar approaches (see Section 8), the innovation of our work
is the proof that our framework is well-behaved w.r.t. the interplay of pushouts
and pullbacks (adhesiveness). Consequently, important theorems on concurrent
applications of graph transformation rules are valid. This enables controlled ma-
nipulation and evolution of object graphs with inheritance based on the general
theory of algebraic graph transformations.

The presented inheritance concept increases the value of graph transforma-
tion techniques for applications. But beside the specification of associations (i.e.
admissible object linkings) and inheritance (property transfer between classes),
(UML-)class diagrams also specify attributes, object containment relations (com-
position), instantiation restrictions (abstract classes), arbitrary mulitiplicities,
and other limiting constraints. Hence, there is one important direction for fu-
ture research: Is adhesiveness invariant under enlargements of GT such as intro-
duction of attributes [3], addition of abstractness predicate, or sketched OCL19

constraints [14]?
It is also a goal of forthcoming research to define single pushout rewriting [11]

with inheritance: For this, transformation rules r : L → R with r a partial type-
compatible morphism have to be introduced, conflict freeness and more generally
“deletion injectivity” have to be made precise. In addition to static inheritance
features introduced above, we conjecture that simple inclusion relations of rules
lead to a better formal understanding of overwriting (a rule by a larger rule).
Consequently, the effect of replacing an application of a rule r by a super rule
r′ could also be interpreted as a negative application condition [2], if r′ is the
identity.

Finally, the overall research goal must be to integrate all important object-
orientation concepts to graph transformations, which will result in a compre-
hensive visual formal framework to be applied to object-oriented modelling and
meta-modelling.
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Abstract. Model-driven software engineering (MDSE) provides a foun-
dation for automatically generating software based on models that focus
on the problem domain while abstracting from the details of underlying
implementation platforms. Coloured Petri Nets (CPNs) have been widely
used to formally model and verify protocol software, but limited work
exists on using CPN models of protocols as a basis for automated code
generation. The contribution of this paper is a method for generating
protocol software from a class of CPN models annotated with code gen-
eration pragmatics. Our code generation method consists of three main
steps: automatically adding so-called derived pragmatics to the CPN
model, computing an abstract template tree, which associates pragmat-
ics with code templates, and applying the templates to generate code
which can then be compiled. We illustrate our method using a unidirec-
tional data framing protocol.

1 Introduction

Model-driven software engineering (MDSE) [4] provides a foundation for highly
automated generation of software based on models. The use of models allows
software designers to focus on the problem domain and abstract from the details
of underlying implementation platforms. If the MDSE process uses modelling
languages with a formal semantics, we gain the additional advantage that the
models can be verified, e. g. by model checking [2]. The combination of formally
verified models from which code is generated automatically increases the confi-
dence in the resulting implementation being correct with respect to the formally
specified properties.

Coloured Petri Nets (CPNs) [9,10] have been widely used for formal modelling
and verification of protocol designs [14,3], but limited work has been done on
developing methods that support the use of CPNmodels as a basis for automated
code generation of protocol software [13,16]. CPNs extend ordinary Petri nets
with a programming language for defining data types and using inscriptions
for modelling data and data manipulation. In addition, CPNs provide a module
concept that allows large CPN models to be structured as a hierarchically related
set of modules. CPN uses Standard ML (SML) as programming language.
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The contribution of this paper is a method for automated code generation
from CPN models based on a modelling methodology for constructing descrip-
tive models of protocols and on adding code generation pragmatics to the CPN
models. The notion of descriptive models is firstly intended as a means for creat-
ing models that are helpful in understanding and conveying the operation of the
considered protocol. Secondly, a descriptive model is close to a verifiable version
of the same model and sufficiently detailed to serve as a basis for automated
code generation when annotated with code generation pragmatics. The relation-
ship between descriptive models and verification models was discussed in [12].
In this paper, we concentrate on the pragmatics, the modelling methodology for
constructing descriptive models, and on the steps of the code generation.

The pragmatics that we integrate into the CPN language are syntactical an-
notations that are associated with CPN model elements. The primary purpose
of the pragmatics is to add enough details for generating code without cluttering
the model and making it verbose which would ultimately render it unreadable
and too complex for verification purposes. It should be noted that pragmatics
are purely syntactical annotations for code generation purposes, and hence our
method does not affect the formal semantics of CPNs. The pragmatics fall into
three types: structural, control flow, and operation pragmatics. Our method de-
fines a set of core pragmatics that are applicable to all protocols. In addition,
our method is extensible in that it allows the modeller to easily add new prag-
matics if required by a specific protocol or a specific protocol domain under
consideration.

The code generation consists of three main steps, starting from a CPN model
that the modeller has annotated with a set of pragmatics that makes the pro-
tocol structure and the control flow explicit. The first step is to automatically
compute for the CPN model, a set of derived pragmatics that identify common
control flow structures and operations, such as sending and receiving packets,
or manipulating states. In the second step, an abstract template tree (ATT) is
constructed providing an association between pragmatics and code generation
templates. Essentially, every node of the ATT will be associated with a code tem-
plate. In the third step, the ATT is traversed and code is emitted by invoking the
code templates associated with each node of the ATT rather than translating
SML. A key feature of our method is that the generated code resembles what
a human programmer would have developed. This is advantageous with respect
to code inspection, maintainability, and performance.

This paper is organised as follows. Section 2 presents our modelling method-
ology and the explicit pragmatics. In Sect. 3, we introduce automatically derived
control flow and operation pragmatics. In Sect. 4, we cover ATTs and their use
in code generation. In Sect. 5, we discuss related work, and, in Sect. 6, we sum
up conclusions and outline directions for future work. Due to space limitations,
we cannot present our method in full detail here. These can be found in the
technical report [22]. A very early and preliminary version of these ideas was
presented as an extended abstract [21]. A prototype of a tool supporting the
approach presented in this paper is available: PetriCode. For more information
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on the tool, we refer to the tool’s home page [18]. We assume that the reader
is familiar with the basic concepts of Petri nets (places, transitions, tokens, en-
abling, and firing rule), and we introduce CPN specific concepts only briefly as
we proceed. A comprehensive introduction to CPNs is given in a textbook [10].

2 Modelling Methodology and Explicit Pragmatics

To present our modelling methodology we use, as a running example, a unidi-
rectional framing protocol. The overall service provided by this protocol is to
send messages of arbitrary length from a sender to a receiver by splitting up the
message into smaller packets sent across a unidirectional channel. The channel
is assumed to be reliable and to preserve the order of the transmitted packets.
The protocol uses a final bit in each transmitted packet indicating whether the
payload of the packet is the final (last) part of the larger message. As we proceed
with presenting the CPN model, we introduce the basic set of explicit pragmat-
ics that are central to our method and which the modeller uses as part of the
construction of the CPN model. Pragmatics are by convention written in 〈〈 〉〉 to
distinguish them from, e.g., place and transition names and SML inscriptions.

2.1 Protocol System Level

Figure 1 shows the top-level module of the CPNmodel which constitutes the pro-
tocol system level . The purpose of the protocol system level is to specify the pro-
tocol principals and the channels connecting them. This module has three CPN
substitution transitions (transitions with double lined borders) named Sender,
Channel, and Receiver. Substitution transitions constitute the basic structuring
mechanism of CPNs and each substitution transition has an associated submod-
ule modelling the details of the compound behaviour represented by the substi-
tution transition. The two substitution transitions Sender and Receiver represent
the two principals of the protocol, and the substitution transition Channel rep-
resents a channel between them. We use the 〈〈principal〉〉 pragmatic to specify
which substitution transitions represent protocol principals, and the 〈〈channel〉〉
pragmatic to specify substitution transitions representing channels. The channel
pragmatic has three associated properties specifying that the channel is unidirec-
tional, reliable (i. e., the channel does not loose packets), and that it preserves the
order of packets. Our modelling methodology includes a set of channel modules
for common channel types and the specific module to be used in the model is
selected based on the properties specified for the channel pragmatic. The two
socket places (places connected to a substitution transition) SenderChannel and
ReceiverChannel connecting the principal substitution transition to the Channel
are implicitly considered channel places which means that messages (tokens)
added and removed from these places are considered to be sent and received,
respectively. In CPNs, a socket place can be associated with a port place in
the submodule of the substitution transition. This has the effect that the two
places, conceptually, become the same place; this way, sockets provide the means
by which modules in CPNs exchange tokens.
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Fig. 1. The protocol system level

We require in our modelling methodology that the protocol system module
consists of one or more substitution transitions representing principals. A socket
place at the protocol system level can be connected to at most one principal
substitution transition and at most one channel substitution transition. This
requirement is needed since we use the socket places connecting principals and
channels to identify which channel or principal a message is intended for.

The concept of a channel represents a means for communication between end-
points as determined by the colour set (data type) Endpoint which consists of
a name identifying the endpoint and an input and an output buffer for packets
transmitted on the channel. In CPNs, the data type of a place is by convention
written below the place and determines the kind of tokens that may reside on
the place. The protocol system level and the modelling of channels are param-
eterised by colour sets (data types) used to identify channels and the specific
packets transmitted. This means that we assume only the existence of these two
types and do not make any assumptions on how they are realised. The concrete
implementation of the Packet colour set in a protocol model depends on the
protocol data units exchanged among the principals in the protocol under consid-
eration. For code generation purposes, the implementation of the EndpointId
colour set depends on the concrete channel used to realise the communication
between the principals. If for instance, the channel is realised using the transport
layer of the TCP/IP protocol stack, then the Endpoint colour set will consist of
a host (IP address) and a port (a process). Hence, in a TCP/IP context, an
endpoint can be implemented as a TCP/IP socket. The colour sets also have
an associated class of functions that play a central role in being able to recog-
nize common structural patterns in the CPN models, which are captured by the
operation pragmatics to be presented in Sect. 3.

2.2 Principal Level

The submodules of principal substitution transitions in the protocol system mod-
ule constitute the principal level modules . Each principal level module specifies
the services that are provided by the corresponding principal and the life-cycle
of the principal. In addition to specifying constraints on the order of service uses,
the principal level modules may also model the state to be maintained across
invocation of the services. The explicit modelling of the methods that consti-
tute the service is required in our method in order to generate code that can be
integrated into different code contexts.
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Fig. 2. The Sender module

Here, we concentrate on the sender principal as a representative example.
Figure 2 shows the principal level CPN module for the sender. This module is
the submodule of the Sender substitution transition in Fig. 1. The module has
three substitution transitions annotated with the 〈〈service〉〉 pragmatic to indi-
cate that they represent services that are to be exposed by the implementation,
i. e., be externally visible. In this case, the sender has three services: Open (for
opening the communication with the receiver), Send (for sending a message), and
Close (for closing the communication with the receiver). The parameters of the
〈〈service〉〉 pragmatic specify the parameter and return types, and properties of
the services. In this case, all three services provided by the sender principal are
synchronous services as specified by the synchronous property of the 〈〈service〉〉
pragmatics. Our method also supports asynchronous services which, however,
are not discussed here (see [22] for details).

The principal can be in two different states as modelled by the places Idle and
Open with the colour set UNIT containing just a single value () (called unit and
representing a black token). When there is a unit token on Idle, this means that
no communication is initialised, and when there is a unit token on Open this
means that messages can be transmitted to the receiver. A third implicit state
is also possible when neither the Idle nor Open places have a token. This state is
reached when the client is busy opening, sending or closing. A place modelling
a principal life-cycle state is annotated with the 〈〈LCV〉〉 pragmatic (Life Cycle
Variable). The open service can be invoked only when the principal is in Idle
and, once Open, messages can be sent, and the communication can be closed.
In the latter case, the sender returns to the Idle state. The sender maintains
another state variable Receiver, which represents the endpoint created by Open,
and is used by Send in order to send messages. State variables are indicated using
the 〈〈state〉〉 pragmatic. The port place Sender (bottom) is associated with the
SenderChannel socket place in Fig. 1 and hence any token added (removed) to
Sender will be added (removed) to SenderChannel and vice versa. In the sender
module, the place Sender has been annotated with the 〈〈channel〉〉 pragmatic
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which is derived from the fact that the associated socket place at the protocol
system level is connected to a channel substitution transition (see Fig. 1).

The principal level modules do not specify how a wrong use of the services
should be handled, e. g. when the send service is invoked in a state where the
sender is not Open. The associated error handling is platform dependent.

2.3 Service Level

The submodules of the substitution transitions annotated with 〈〈service〉〉 on
the principal level specify the detailed behaviour of the principals for each of
the principal’s services. The detailed behaviour is modelled in a control flow
oriented manner using 〈〈ID〉〉 pragmatics on places to make the control flow
explicit. Modelling the services in a control flow oriented manner serves two main
purposes. The first purpose is to provide for comprehensible models in that the
explicit control flow provides a reading path to the model of the service. This
is in contrast to a pure event-oriented approach to modelling (as discussed in
[3] for example) from which no control flow is explicit and which consists of
modelling a protocol principal using a single place to represent its state and a
set of transitions connected to this place which changes the state of the principal
depending on packets sent and received. The second purpose of modelling in a
control flow oriented manner is to automatically generate code with a structure
that resembles what a human programmer would implement. This makes it easier
to inspect and maintain automatically generated code, and provides code with
better performance since it reflects the intended use of the constructs provided
by the target programming language.

As a representative example of a service level module, we consider the send
service of the sender principal which is shown in Fig. 3 (left). At this level,
the 〈〈service〉〉 pragmatic is used on ordinary (non-substitution) transitions to
indicate the single entry point for the corresponding service primitive. Hence, it
is possible to have only one transition annotated with 〈〈service〉〉. The message
to be sent is represented by the parameter msg of the 〈〈service〉〉 pragmatic.
Transitions representing the termination/completion of the service are annotated
with the 〈〈return〉〉 pragmatic. We assume that there is exactly one transition in
a service level module that is annotated with 〈〈return〉〉. In general, the 〈〈return〉〉
pragmatic may take parameters representing return values. The parameters for
the open service specifies the endpoint of the receiver principal. These parameters
are stored in the Receiver state variable and also an endpoint is created on the
Sender channel place which the sender will use for sending packets.

Places modelling the control flow in the send primitive are annotated with
an 〈〈ID〉〉 pragmatic. From a control flow perspective, the send operation has
an overall sequence (starting at transition Send and ending at transition Com-
pleted), and a repeat-until loop (starting at place Start and ending in place Pack-
etSent). The operation of the send primitive is to first partition the message to
be sent into a sequence of smaller sub-messages which is placed on Outgoing. In
CPNs, the expression associated with arcs specifies the tokens to be removed and
added when transitions occur. The expressions may contain free variables which
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Fig. 3. The SenderSend module with explicit pragmatics (left) and derived pragmatics
added (right). The derived pragmatics are discussed in Sect. 3

determines possible modes in which a transition may occur. As an example, the
Partition transition in Fig. 3 (top) has a variable m of type Message which in an
occurrence of Partition will be bound to the value of a token present on placeMes-
sage. When the transition occurs, it will remove the corresponding token from
Message, and add tokens to the outgoing places Start and Outgoing obtained by
evaluating the expressions on the corresponding arcs. The partition function
takes a message as argument, and constructs a list of submessages that is added
as a token on place Outgoing. Also, a unit token will be added to place Start.
The sender then executes a loop in which a packet is sent for each sub-message.

The modelling of the sender includes some intermediate states (e. g., Send-
Completed) which makes the model more verbose, but is used in our method
for recognising control flow constructs. It is worth noting that, in the model of
the send service, the token is removed from Open while the send operation is in
progress; this prevents any further sending or invocation of close while a send
operation is executed (the protocol is not designed for concurrent sends).
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3 Derived Code Generation Pragmatics

Before we discuss how the actual code generation works, we discuss some addi-
tional pragmatics which are used by the code generator. Since these pragmatics
can be automatically derived from the net (model) structure and the arc inscrip-
tions, these pragmatics are called derived pragmatics.

The first kind of pragmatics concerns the control flow, which indicate how
the net structure of a service module is decomposed into control flow blocks
that constitute the ATT (see Sect. 4 for more details). Therefore, this kind is
called control flow pragmatics. The second kind of pragmatics, called operation
pragmatics, helps generating the code for the actual operations that are to be
executed. We explain these pragmatics by the help of the SenderSend module
example, which was shown in Fig. 3.

3.1 Block Structure and Control Flow Constructs

Fig. 4. Blocks: Atomic and loop

CPNs (and Petri nets in general) do not en-
force any particular structure with respect to
the modelling of the control flow of the service
primitives. In order to be able to generate code
that uses the control flow constructs of typi-
cal programming languages, we assume that
the net structure induced by places of the ser-
vice level modules that aremarkedwith 〈〈ID〉〉
can be decomposed into control flow blocks.
For the Send primitive in Fig. 3(left), the part
corresponding to control flow blocks has been
graphically indicated in bold. Formally, the
block structure decomposition is defined by having different types of blocks, which
inductively define the block structure of a net. Due to space limitations, we can-
not go into the details of this definition here (see [22] for the technical and formal
details). There are four types of blocks: atomic, choice, loop, and sequence, and
two of these patterns are sketched in Fig. 4. The pattern in Fig. 4(left) captures
that an atomic block consists of a start place (top), a single transition, and an end
place (bottom). The pattern in Fig. 4(right) specifies that a loop block has a single
start place (top), a body (indicated by ...) and an end place (bottom) and a sin-
gle transition (right) capturing the iteration by connecting the end place and the
start place. For the SenderSend module in Fig. 3 the control flow can be decom-
posed into a block, which is a sequence, where the first element of that sequence
is an atomic block, the second is a loop, which again consists of a sequence of two
atomic blocks.

For code generation purposes we, systematically decompose each service level
module into blocks where the containment of the blocks defines the structure of
the ATT. For the actual code generation, it is sufficient to identify the start and
end of loops and choices – actually the places where they start and end – with
some additional pragmatics: 〈〈startLoop〉〉, 〈〈endLoop〉〉, 〈〈branch〉〉, and 〈〈merge〉〉.
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For the SenderSend module, these additional pragmatics are shown on the right-
hand side of Fig. 3. Note that the 〈〈endLoop〉〉 has a parameter, which represents
the exit condition of the loop. The 〈〈branch〉〉 pragmatic for a choice has a con-
dition parameter too, but we do not have a choice in this example. Our technol-
ogy comes with a simple syntax for formulating these conditions, which resembles
the syntax of Lisp. In our example, the expression (eq 1 __TOKEN__[0]) checks
whether the first component (referred to by index 0) of the control flow token (re-
ferred to by __TOKEN__) is equal to 1, which reflects the inscription of the arc
leaving the loop. We use this condition parameter and the specific syntax for con-
ditions in order to be independent of SML. By adding the condition as a param-
eter of the 〈〈endLoop〉〉 pragmatic, we do not need to restrict the annotations of
CPN models – at the price of, sometimes, being forced to add the condition of the
〈〈branch〉〉 and 〈〈endLoop〉〉 pragmatics manually.

3.2 Operation Pragmatics

The operation pragmatic is associated with transitions and describes an opera-
tion associated with the execution of the transition in a programming language
independent way.

The right-hand side of Fig. 3 shows three examples of these pragmatics. The
〈〈send〉〉 pragmatic is an example of a protocol independent pragmatic. It repre-
sents sending a message to another principal, which is represented by the pattern
for this transition. The parameters of the 〈〈send〉〉 pragmatic define the target
of the send (here identified by the end point on place Receiver) and the actual
message to be sent (here, the message is contained in the current token).

The other two operation pragmatics are more specific to this particular proto-
col: 〈〈partition〉〉 splits a message into the sequence of chunks that are supposed
to be sent – actually a list of these chunks. The 〈〈pop〉〉 operation, obtains and
removes one chunk from the list.

As mentioned above, some of the operation pragmatics are part of the general
method, and for these there will be direct code generation support available
defined by so-called template bindings. These bindings are discussed in Sect. 4.
In addition, a protocol developer can add own protocol specific pragmatics; in
that case, the developer must provide the corresponding templates and bindings
at some point in order to generate the code.

4 Abstract Template Trees and Code Generation

The actual generation of code from a CPN model annotated with explicit and
derived pragmatics proceeds in three phases: The first phase is the construction
of an ATT which serves as an intermediate representation in the code generation.
The second phase binds code generation templates to the nodes of the ATT
corresponding to the target platform under consideration. The third phase is
to traverse the ATT and invoke the code generation templates in order to emit
code. Below, we illustrate the three code generation phases using the annotated
send service module shown in Fig. 3 (right) as an example. The target platform
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considered in our example is the Groovy programming language. Groovy is a
multi-paradigm language that runs on the Java Virtual Machine. It was chosen as
a target because it is an optionally typed multi-paradigm language with features
that makes it fairly easy to generate code for while still being a realistic platform
for industrial applications.

An ATT is an ordered tree of nodes and resembles abstract syntax trees. The
two major types of nodes in the ATT are leaf (operation) nodes and container
nodes. A leaf node does not have children and contains pragmatics for one or
more sequential operations such as sending on a channel or accessing a state
variable. A container node has in addition to associated pragmatics, an ordered
list of child nodes. The types of container nodes at the service level corresponds
to the different types of blocks introduced in Sect. 3. The root node of the ATT
represents the entire protocol system. The generation of the ATT is implemented
by a guided walk through the CPN model. This walk starts at the protocol sys-
tem module and, for each 〈〈principal〉〉 pragmatic, it generates a corresponding
node in the ATT. On the next level, the generator looks for modules annotated
with a 〈〈service〉〉 pragmatic and adds corresponding nodes. Each service module
contains exactly one transition with the 〈〈service〉〉 pragmatic, which is the start-
ing point for the method modelled by the sub-module. The subsequent set of
nodes is constructed according to the block structure rules described in Sect. 3.

         Send
  <<service>>

      Partition
 <<partition>>

         Start
<<startLoop>>

     Completed
   <<return>>

 Next Message
   <<pop>> 
<<SetToken>>

   Send Packet
    <<send>>

   Packet Sent
 <<endLoop>>

Fig. 5. Sub-ATT for sender send service

The sub-ATT corresponding to
the sender send service is shown
in Fig. 5. The node at the top
represents the sender send service.
The child nodes of the Send node
correspond to the overall sequence
performed by the send service: par-
titioning the message, executing the
loop where submessages are sent,
and then completing the service.
The child nodes of the Start node
correspond to the body of the loop.

When the ATT has been generated, in order to generate code for a particular
platform, the pragmatics represented by the nodes of the ATT must be bound
to code generation templates. This is done by means of a template descriptor . A
template descriptor contains a line for each pragmatic that need to be translated
into code for a specific platform. The template binding for a pragmatic contained
in an ATT node is determined by the line for the pragmatic contained in the
template descriptor.

The template descriptor is specified in a simple domain specific language
(DSL). An extract of the binding descriptor for generating Groovy code covering
three of the pragmatics from Fig. 5 can be seen in Listing 1. Each line of the
template descriptor consists of a name followed by a left-parenthesis followed by
key value pairs where the keys can be pragmatic which contains the name of
the pragmatic, template which corresponding value is the path to the template,
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isContainer which indicates whether this pragmatic denotes a container or a
isMultiContainer. The multi-container flag is primarily an implementation
detail in our tool used to indicate whether or not the container is of type loop
or choice.

Listing 1. Extract of binding descriptor for the Groovy platform

partition(pragmatic: ’partition’, template: ’groovy/partition.tmpl’,

isContainer: false, isMultiContainer: false)

send(pragmatic: ’send’, template: ’groovy/send.tmpl’,

isContainer: false, isMultiContainer: false)

startLoop(pragmatic: ’startLoop’, template: ’groovy/loop.tmpl’,

isContainer: true, isMultiContainer: true)

Generating the protocol software consists of traversing the ATT and invok-
ing the associated templates for each node as described by the template bind-
ing. When a pragmatic is transformed to code, its template is run through the
template engine together with a number of parameters given by the pragmatic
definition and the CPN structure. The templates are sown together by replac-
ing a special tag in the container templates, %%yield%%, with the text of the
underlying templates in order.

As an example of a container template, the template for the loop pragmatic
for the Groovy language is given in Listing 2 (left). The template creates a while-
loop which continues while the __LOOP_VAR__ variable is true. The body of the
loop is populated by replacing the %%yield%% directive with the code generated
by the templates of the sub-nodes in the ATT. The __LOOP_VAR__ is updated
at the end of the loop by the 〈〈endLoop〉〉 pragmatic which is always present
as the last child element of a loop. The 〈〈send〉〉 is an example of an operation
pragmatic. Listing 2 (right) shows the template for the 〈〈send〉〉 pragmatic which
requires two parameters: one is the name of the socket that the message should
be sent on, and the other is the variable that holds the message to be sent.

Listing 2. Examples of templates for loops (left) and send (right)

%%VARS:__LOOP_VAR__%% ${params[0]}.getOutputStream()

__LOOP_VAR__ = true .newObjectOutputStream()

while(__LOOP_VAR__){ .writeObject(${params[1]})

%%yield%% } %%VARS:${params[1]}%%

As an example of the generated code, the loop in the sender service in the
Sender principal is shown in Listing 3. The loop is started by defining a variable,
__LOOP_VAR__. After the __LOOP_VAR__ is defined, the loop is entered. Inside
the loop, the next fragment is code from the template bound to the 〈〈pop〉〉
pragmatic. This code removes the first element from OutgoingMessage and
assigns it to variable m. Then, the code for the 〈〈setToken〉〉 pragmatic on the arc
between the transition NextMessage and the place Created is generated. This code
sets the __TOKEN__ variable in the code according to the conditional statement
in the pragmatic: if OutgoingMessage is empty then the message is prefixed
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by 1, otherwise it is prefixed by zero. The next pragmatic that is found on the
control flow path is the 〈〈send〉〉 pragmatic on the transition Send Packet. The
socket Receiver is used to send the value of the __TOKEN__ variable. Finally,
the template associated with the 〈〈endLoop〉〉 pragmatics has generated the code
for updating __LOOP_VAR__ according to the conditional expression given as a
parameter to the 〈〈endLoop〉〉 pragmatic.

Listing 3. The generated code for the loop of the sender send service

__LOOP_VAR__ = true

while(__LOOP_VAR__){

def m = OutgoingMessage.remove(0)

if(OutgoingMessage.size() == 0){

__TOKEN__ = [1,m]

} else {

__TOKEN__ = [0,m]

}

Receiver.getOutputStream().newObjectOutputStream().

writeObject(__TOKEN__)

__TOKEN__

__LOOP_VAR__ = 1 == __TOKEN__[0]

}

5 Related Work

The goal of our code generation method is to generate code from models close to
descriptive models that are amenable to verification with little or no modifica-
tion. Also, the code that is generated should be readable, portable and maintain-
able. Furthermore, we would like to be able to easily integrate our code into third
party software and have a great deal of flexibility in the way code is produced.

There are many methods for modelling and analysing protocol software us-
ing languages such as High Level Petri Nets [7], temporal Petri Nets [23], ES-
TELLE [5] and LOTOS [15]. Some methods support automatic code generation
such as state charts [24], SPI [20], SDL [8] and UML [1]. Due to space limita-
tions, we focus our discussion on approaches that use general purpose languages
(UML and CPNs) equipped with additional information for a specific domain.
In the rest of this section, we discuss several related works and finally, at the
end, contrast and sum up the key differences between each of the related work
items and our approach.

In [19], possible methods for code generation from high level Petri Nets
(HLPNs), such as CPNs, are discussed and a new hybrid of the discussed ap-
proaches is presented. The general methods for code generation from HLPNs are,
according to [19]: structural analysis, simulation based, and reachability graph
based. The method proposed in the paper is a hybrid of simulation based and
structural analysis methods.

In [16], the author describes an approach for generating code from CPNs for
an access control system. The generation takes advantage of the fact that CPNs
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use the SML programming language for all inscriptions. This means that it is
fairly simple to generate SML code that simulates the CPN in SML code. And
by using external libraries, the CPN can interact with other devices through a
specialized protocol for access control systems. The paper also presents a case
study where the techniques discussed are used to generate an access control
system for an industrial actor. A somewhat similar approach is also taken in [11]
where the core of a tool for scheduling courses of actions is created based on a
CPN model. The model is extracted from the modelling tool and executed as an
SML program.

Process-Partitioned CPNs (PP-CPNs) [13] have been used to automatically
generate code for several purposes including protocols. Code is generated from
PP-CPNs by first translating the PP-CPN into a control flow graph (CFG), then
translating the CFG into an abstract syntax tree (ASTs), first of an intermediary
language then to an AST that is dependent on the target platform. From the
platform dependent AST, code is generated. In [13], PP-CPNs are used to model
and obtain an implementation for the DYMO routing protocol using the Erlang
programming language and platform.

In [17], a UML profile named Graphical Protocol Description Language
(GPDL) is used together with a textual language called GAEL to model and
generate code for protocols. The approach uses stereotypes to annotate UML di-
agrams with information used for code generation. The stereotypes and GAEL
annotations are used though a series of transformations to generate code. In [17],
the authors produce SDL code, but are able to produce code for any platform.

In the terminology of [19], our code generation method is based on structural
analysis, but it is also based on user input in the form of explicit pragmatics. The
pragmatics coupled with templates makes it possible to be platform independent
and create readable and maintainable code which has an interface based on the
services described on the principal level. The template approach also gives the
modellers flexibility, by modifying the templates, to create code in their own style.
The methods presented in [19,16,11] are all based on simulating the models. The
simulation methods conflicts with our goals of readable code as the purpose of the
code can easily be lost in the details of the operations of the simulator. Also the
code generated by the simulation methods is not likely to be efficient in particular
due to the complex enabling computation that needs to be performed in each step
of the execution. The method presented in [13] constrains the models more than
our method since we have the possibility to add more pragmatics to expand the
range of functionality. Also, [13] does not model how services can be used, so it
does not allow the modeller to control how third party applications could be inte-
grated with the generated code. In contrast to our approach, the approach in [13]
is also bound to the Erlang platform where our approach, through templates is
platform independent. Also, our approach provides more flexibility in the opera-
tions that can be modelled by allowing users to define additional pragmatics. The
approach in [17], despite being based on UML, has several similarities with our
approach such as annotating the models with stereotypes which are similar to our
pragmatics. However, the stereotypes are predefined in a UML profile and does not
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offer the same flexibility in modelling as our templates that may be user defined.
Also the GPDL models use a separate language, GAEL, to provide additional in-
formation in addition to the platform information which in our case is contained
in templates and template bindings.

6 Conclusions and Future Work

In this paper, we have presented a method for automatically generating code for
protocol software from CPN models. The method was discussed by a simple, but
complete example of a communication protocol. The code generation approach
has been realized in a tool that was used to generate the code examples in this
paper. The tool can be accessed from the project website [18].

The main objective of our method is that code can be generated from what we
call descriptive models. Descriptive models are typically used for understanding
and explaining how a protocol works on a high level of abstraction. Descriptive
models focus on concepts and not on technical details and, in many cases, these
models can be used – with some tweaking – also for analysing and verifying
protocols. Today, it is typical practise to use models for analysing a protocol
and its specification and for verification of the protocol. Then, the protocol
software is implemented manually based on these models. Our method makes it
possible to use the same descriptive model for analysis and verification as well
as for code generation – in both cases, the models are moderately extended.

In our method, we chose to use Coloured Petri Nets (CPNs) [9] as modelling
language for descriptive models since they have successfully been used for mod-
elling, analysing, and verifying various kinds of systems [10] for a long time now.
Over the time, specific modelling styles, principles, and disciplines have devel-
oped for using CPN for that purpose. These styles and principles are mostly used
informally – sometimes not even mentioned at all. In our method, we needed to
make them into more rigorous rules.

Since descriptive models are conceptual in nature and on a high level of ab-
straction, they often do not capture some technical aspects and implementation
details. Examples of such information not contained in descriptive models are
the API and the interface for calling the services or operations of a protocol. Our
method caters for that by pragmatics that can be added to different elements of
the model. This way, it is possible to attach additional information without com-
promising the overall structure of the original model. And our example shows,
that all relevant technical information can easily be added to the model in this
way. We argue that adding pragmatics will not add significantly to the modelling
effort. One reason for this is that explicit pragmatics, to a large extent, repre-
sent concepts the modeller would be aware of while modelling, so adding them
should add little more time than looking up and adding the pragmatics. Also,
derived pragmatics are added automatically and therefore require no additional
action from the modeller. Adding new pragmatics is relatively simple since all
that is required is to add templates and describe the pragmatic and template
bindings in simple specialized languages. Our approach also provides the mod-
eller with a modelling framework through the required model levels. This could
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also add structure and thereby perhaps even reduce the modelling effort. Our
method comes with some predefined pragmatics which are of general use. But,
our method is open for adding more pragmatics if need should be. Moreover,
pragmatics can be used for adding more technical information which could be
derived automatically. This way, it is possible to gradually extend the degree of
automation of our method without changing the method itself.

Another objective of our method is the generation of code for different target
languages and platforms. To this end, ATTs and template bindings were intro-
duced; by replacing the templates and template binding, code for a different
platform can be generated. In a way, a set of templates along with a template
binding can be considered as a characterization of a target platform. And the
code generator can be customized for different platforms by modifying templates.
The concepts of principals and services in our approach, lend themselves nicely
to the object oriented paradigm where principals can be realized as classes, and
services can be realized as methods. The control-flow block structure fits well
with imperative paradigm with loops and conditional statements. Therefore, it
seems likely that it would be simple to create templates for languages and plat-
forms with roots in these paradigms such as Java, Python and C. For functional
languages and platforms, which do not have control flow structure such as loops
and conditionals, this could be a little more difficult. A last objective of our
method is the readability of the generated code. This might be a bit subjective,
although some metrics exists [6]. With control blocks, ATTs, and templates re-
flecting these constructs in the target language, we try to emulate code written
by human programmers. A detailed evaluation, however, is future work.

We have shown that our method works for a simple example and for one target
platform. An evaluation for larger examples and other target platforms is future
work. Likewise, we still need to show that the same CPN models can be used
for verification as well as code generation. Though verification is not the main
focus, future work will, at least, demonstrate that verification from the model is
possible in principle. A first step towards verification was taken in [12].
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dos Santos, Joel 67

Fernández Venero, Mirtha Lina 83
Foss, Luciana 147

Gladisch, Christoph 99
Guerra, Paulo T. 115

Hasan, Osman 131, 195
Helali, Ghassen 131

Kindler, Ekkart 227
König, Harald 211
Kristensen, Lars M. 227

Lemos Junior, Luiz Carlos 147
Li, Qin 163
Lima, Lucas 179
Liu, Liya 195
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