
Machine Learning for Image Classification and
Clustering Using a Universal Distance Measure

Uzi Chester and Joel Ratsaby�

Electrical and Electronics Engineering Department,
Ariel University of Samaria, ARIEL 40700

ratsaby@ariel.ac.il
http://www.ariel.ac.il/sites/ratsaby/

Abstract. We present a new method for image feature-extraction which
is based on representing an image by a finite-dimensional vector of dis-
tances that measure how different the image is from a set of image proto-
types. We use the recently introduced Universal Image Distance (UID) [1]
to compare the similarity between an image and a prototype image. The
advantage in using the UID is the fact that no domain knowledge nor any
image analysis need to be done. Each image is represented by a finite di-
mensional feature vector whose components are the UID values between
the image and a finite set of image prototypes from each of the feature
categories. The method is automatic since once the user selects the pro-
totype images, the feature vectors are automatically calculated without
the need to do any image analysis. The prototype images can be of differ-
ent size, in particular, different than the image size. Based on a collection
of such cases any supervised or unsupervised learning algorithm can be
used to train and produce an image classifier or image cluster analysis.
In this paper we present the image feature-extraction method and use it
on several supervised and unsupervised learning experiments for satel-
lite image data. The feature-extraction method is scalable and is easily
implementable on multi-core computing resources.

1 Introduction

Image classification research aims at finding representations of images that can
be automatically used to categorize images into a finite set of classes. Typically,
algorithms that classify images require some form of pre-processing of an image
prior to classification. This process may involve extracting relevant features and
segmenting images into sub-components based on some prior knowledge about
their context [2,3].

In [1] we introduced a new distance function, called Universal Image Distance
(UID), for measuring the distance between two images. The UID first trans-
forms each of the two images into a string of characters from a finite alphabet
and then uses the string distance of [4] to give the distance value between the
images. According to [4] the distance between two strings x and y is a normalized
� Corresponding author.

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 59–72, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.ariel.ac.il/sites/ratsaby/

60 U. Chester and J. Ratsaby

difference between the complexity of the concatenation xy of the strings and the
minimal complexity of each of x and y. By complexity of a string x we mean the
Lempel-Ziv complexity [5].

In the current paper we use the UID to create a finite-dimensional represen-
tation of an image. The ith component of this vector is a feature that measures
how different the image is from the ith feature catgory. One of the advantages of
the UID is that it can compare the distance between two images of different sizes
and thus the prototypes which are representative of the different feature cate-
gories may be relatively small. For instance, the prototypes of an urban category
can be small images of size 45× 70 pixels of various parts of cities.

In this paper we introduce a process to convert the image into a labeled case
(feature vector). Doing this systematically for a set of images each labeled by
its class yields a data set which can be used for training any supervised and
unsupervised learning algorithms. After describing our method in details we
report on the accuracy results of several classification-learning algorithms on
such data. As an example, we apply out method to satellite image classification
and clustering.

We note that our process for converting an image into a finite dimensional fea-
ture vector is very straightforward and does not involve any domain knowledge
about the images. In contrast to other image classification algorithms that ex-
tract features based on sophisticated mathematical analysis, such as, analyzing
the texture, the special properties of an image, doing edge-detection, or any of
the many other methods employed in the immense research-literature on image
processing, our approach is very basic and universal. It is based on the complex-
ity of the ’raw’ string-representation of an image. Our method extracts features
automatically just by computing distances from a set of prototypes. It is there-
fore scalable and can be implemented using parallel processing techniques, such
as on system-on-chip and FPGA hardware implementation [6,7,8].

Our method extracts image features that are unbiased in the sense that they
do not employ any heuristics in contrast to other common image-processing
techniques [2]. The features that we extract are based on information implicit
in the image and obtained via a complexity-based UID distance which is an
information-theoretic measure. In our method, the feature vector representation
of an image is based on the distance of the image from some fixed set of rep-
resentative class-prototypes that are initially and only once picked by a human
user running the learning algorithm.

Let us now summarize the organization of the paper: in section 2 we review
the definitions of LZ-complexity and a few string distances. In section 3 we
define the UID distance. In section 4 we describe the algorithm for selecting class
prototypes. In section 5 we describe the algorithm that generates a feature-vector
representation of an image. In section 6 we discuss the classification learning
method and in section we conclude by reporting on the classification accuracy
results.

Machine Learning for Image Classification and Clustering 61

2 LZ-Complexity and String Distances

The UID distance function [1] is based on the LZ- complexity of a string. The
definition of this complexity follows [4,5]: let S,Q and R be strings of characters
that are defined over the alphabet A. Denote by l(S) the length of S, and S(i)
denotes the ith element of S. We denote by S(i, j) the substring of S which
consists of characters of S between position i and j (inclusive). An extension
R = SQ of S is reproducible from S (denoted as S → R) if there exists an
integer p ≤ l(S) such that Q(k) = R(p+k− 1) for k = 1, . . . , l(Q). For example,
aacgt → aacgtcgtcg with p = 3 and aacgt → aacgtac with p = 2. R is obtained
from S (the seed) by first copying all of S and then copying in a sequential
manner l(Q) elements starting at the pth location of S in order to obtain the Q
part of R.

A string S is producible from its prefix S(1, j) (denoted S(1, j) ⇒ R), if
S(1, j) → S(1, l(S) − 1). For example, aacgt → aacgtac and aacgt → aacgtacc
both with pointers p = 2. The production adds an extra ’different’ character at
the end of the copying process which is not permitted in a reproduction.

Any string S can be built using a production process where at its ith step we
have the production S(1, hi−1) ⇒ S(1, hi) where hi is the location of a character
at the ith step. (Note that S(1, 0) ⇒ S(1, 1)).

An m-step production process of S results in parsing of S in which H(S) =
S(1, h1) ·S(h1+1, h2) · · ·S(hm−1+1, hm) is called the history of S and Hi(S) =
S(hi−1+1, hi) is called the ith component of H(S). For example for S = aacgtacc
we have H(S) = a · ac · g · t · acc as the history of S.

If S(1, hi) is not reproducible from S(1, hi−1) then the component Hi(S) is
called exhaustive meaning that the copying process cannot be continued and the
component should be halted with a single character innovation. Every string S
has a unique exhaustive history [5].

Let us denote by cH(S) the number of components in a history of S. The LZ
complexity of S is c(S) = min {cH(S)} where the minimum is over all histories of
S. It can be shown that c(S) = cE(S) where cE(S) is the number of components
in the exhaustive history of S.

A distance for strings based on the LZ-complexity was introduced in [4] and is
defined as follows: given two strings X and Y , denote by XY their concatenation
then define

d(X,Y) := max {c(XY)− c(X), c(Y X)− c(Y)} .
In [1] we have found that the following normalized distance

d(X,Y) :=
c(XY)−min {c(X), c(Y)}

max {c(X), c(Y)} . (1)

performs well in classification and clustering of images.
We note in passing that (1) resembles the normalized compression distance

of [9] except that here we do not use a compressor but instead resort to the
LZ-complexity c of a string. Note that d is not a metric since it does not satisfy

62 U. Chester and J. Ratsaby

the triangle inequality and a distance of 0 implies that the two strings are close
but not necessarily identical. We refer to d as a universal distance because it
is not dependent on some specific representation of a string nor on heuristics
common to other string distances such as edit-distances [10]. D only depends on
the LZ-complexity of each of the two strings and their concatenation and this is
a pure information-quantity which depends on the string’s context but not its
representation.

3 Universal Image Distance

Based on d we now define a distance between images. The idea is to convert
each of two images I and J into strings X(I) and X(J) of characters from a
finite alphabet of symbols. Once in string format, we use d(X(I), X(J)) as the
distance between I and J . The details of this process are described in Algorithm
1 below.

Algorithm 1. UID distance measure
1. Input: two color images I , J in jpeg format (RGB representation)
2. Transform the RGB matrices into gray-scale by forming a weighted sum of the

R, G, and B components according to the following formula: grayscaleV alue :=
0.2989R + 0.5870G + 0.1140B, (used in Matlab c©). Each pixel is now a single
numeric value in the range of 0 to 255 . We refer to this set of values as the
alphabet and denote it by A.

3. Scan each of the grayscale images from top left to bottom right and form a string
of symbols from A. Denote the two strings by X(I) and X(J).

4. Compute the LZ-complexities: c
(
X(I)

)
, c

(
X(J)

)
and the complexity of their con-

catenation c
(
X(I)X(J)

)

5. Output: UID(I, J) := d
(
X(I), X(J)

)
.

Remark 1. The transformation into gray-scale is a matter of representational
convenience. To deal with color images without this transformation one can
create a 3D alphabet whereby each ’letter’ in this alphabet corresponds to an
RGB triple with each component in the range 0 to 255. This way the image color
information remains in the string representation.

4 Prototype Selection

In this section we describe the algorithm for selecting image prototypes from
each of the feature categories . This process runs only once before the stage of
converting the images into finite dimensional vectors, that is, it does not run

Machine Learning for Image Classification and Clustering 63

once per image but once for all images. For an image I we denote by P ⊂ I a
sub-image P of I where P can be any rectangular-image obtained by placing a
window over the image I where the window is totally enclosed by I. The size
of the window depends on how much information a single prototype will convey
about the associated feature-category.

In the following algorithm we use clustering as a simple means of valida-
tion that the prototypes selected maintain the inherent differences between the
feature-categories (the clustering algorithm is not given the feature-category in-
formation but only the inter-prototype distance information).

Algorithm 2. Prototypes selection
1. Input: M image feature categories, and a corpus CN of N unlabeled colored images

{Ij}Nj=1 .
2. for (i := 1 to M) do

(a) Based on any of the images Ij in CN , let the user select Li prototype images{
P

(i)
k

}Li

k=1
and set them as feature category i. Each prototype is contained by

some image, P (i)
k ⊂ Ij , and the size of P

(i)
k can vary, in particular it can be

much smaller than the size of the images Ij , 1 ≤ j ≤ N .
(b) end for;

3. Enumerate all the prototypes into a single unlabeled set {Pk}Lk=1, where L =
∑M

i=1 Li and calculate the distance matrix H =
[
UID

(
X(Pk), X(Pl)

)]L
k=1,l=1

where the (k, l) component of H is the UID distance between the unlabeled pro-
totypes Pk and Pl.

4. Run hierarchical clustering on H and obtain the associated dendrogram (note: H
does not contain any ’labeled’ information about feature-categories, as it is based
on the unlabeled set).

5. If there are M clusters with the ith cluster consisting of the prototypes
{
P

(i)
k

}Li

k=1
then terminate and go to step 7.

6. Else go to step 2.

7. Output: the set of labeled prototypes PL :=

{{
P

(i)
k

}Li

k=1

}M

i=1

where L is the

number of prototypes.

From the theory of learning pattern recognition, it is known that the dimen-
sionality M of a feature-vector is usually taken to be small compared to the
data size N . A large L will obtain better feature representation accuracy of the
image, but it will increase the time for running Algorithm 3 (described below).

Algorithm 2 convergence is based on the user’s ability to select good prototype
images. We note that from our experiments this is easily achieved primarily be-
cause the UID permits to select prototypes P

(i)
k which are considerably smaller

than the size of the full images Ij . For instance, in our experiments we used 45×70

64 U. Chester and J. Ratsaby

pixels prototype size for all feature categories. This fact makes it easy for a user
to quickly choose typical representative prototypes from every feature-category.
This way it is easy to find informative prototypes, that is, prototypes that are
distant when they are from different feature-categories and close when they are
from the same feature category. Thus Algorithm 2 typically converges rapidly.

As an example, Figure 1 displays 12 prototypes selected by a user from a
corpus of satellite images. The user labeled prototypes 1, . . . , 3 as representative
of the feature category urban, prototypes 4, . . . , 6 as representatives of class sea,
prototypes 7, . . . , 9 as representative of feature roads and prototypes 10, . . . , 12
as representative of feature arid. The user easily found these representative pro-
totypes as it is easy to fit in a single picture of size 45×70 pixels a typical image.
The dendrogram produced in step 4 of Algorithm 2 for these set of 12 prototypes
is displayed in Figure 2. It is seen that the following four clusters were found
{10, 12, 11} , {1, 2, 3} , {7, 8, 9} , {4, 6, 5} which indicates that the prototypes se-
lected in Algorithm 2 are good.

Fig. 1. Labeled prototypes of feature-categories urban, sea , roads, and arid (each
feature has three prototypes, starting from top left and moving right in sequence)

5 Image Feature-Representation

In the previous section we described Algorithm 2 by which the prototypes are
manually selected. This algorithm is now used to create a feature-vector rep-
resentation of an image. It is described as Algorithm 3 below (in [1] we used
a similar algorithm UIC to soft-classify an image whilst here we use it to only
produce a feature vector representation of an image which later serves as a single
labeled case for training any supervised learning algorithm or a single unlabeled
case for training an unsupervised algorithm).

Machine Learning for Image Classification and Clustering 65

Fig. 2. Dendrogram of prototypes of Figure 1

Algorithm 3. Feature-vector generation
1. Input: an image I to be represented on the following feature categories 1 ≤ i ≤ M ,

and given a set PL :=

{{
P

(i)
k

}Li

k=1

}M

i=1

of labeled prototype images (obtained from

Algorithm 2).
2. Initialize the count variables ci := 0, 1 ≤ i ≤ M
3. Let W be a rectangle of size equal to the maximum prototype size. (See remark

below)
4. Scan a window W across I from top-left to bottom-right in a non-overlapping way,

and let the sequence of obtained sub-images of I be denoted as {Ij}mj=1.
5. for (j := 1 to m) do

(a) for (i := 1 to M) do
i. temp := 0
ii. for (k := 1 to Li) do

A. temp := temp+
(
UID(Ij , P

(i)
k)

)2

B. end for;
iii. ri :=

√
temp

iv. end for;
(b) Let i∗(j) := argmin1≤i≤Mri, this is the decided feature category for sub-image

Ij .
(c) Increment the count, ci∗(j) := ci∗(j) + 1
(d) end for;

6. Normalize the counts, vi := ci∑
M
l=1

cl
, 1 ≤ i ≤ M

7. Output: the normalized vector v(I) = [v1, . . . vM] as the feature-vector represen-
tation for image I

66 U. Chester and J. Ratsaby

Remark 2. In Step 3, we choose the size of W to be the maximal size of a
prototype but this is not crucial since D can measure the distance between two
images of different sizes. From our experiments, the size of W needs to be large
enough such that the amount of image information in W is not smaller than
that captured in any of the prototypes.

6 Supervised and Unsupervised Learning on Images

Given a corpus C of images and a set PL of labeled prototypes we use Algorithm
3 to generate the feature-vectors v(I) corresponding to each image I in C. At this
point we have a database D of size equal to |C| which consists of feature vectors
of all the images in C. This database can be used for unsupervised learning, for
instance, discover interesting clusters of images. It can also be used for supervised
learning provided that each of the cases can be labeled according to a value of
some target class variable which in general may be different from the feature
categories. Let us denote by T the class target variable and the database DT

which consists of the feature vectors of D with the corresponding target class
values. The following algorithm describes the process of learning classification of
images.

Algorithm 4. Image classification learning
1. Input: (1) a target class variable T taking values in a finite set T of class categories,

(2) a database DT which is based on the M -dimensional feature-vectors database
D labeled with values in T (3) any supervised learning algorithm A

2. Partition DT using n-fold cross validation into Training and Testing sets of cases
3. Train and test algorithm A and produce a classifier C which maps the feature

space [0, 1]M into T
4. Define Image classifier as follows: given any image I the classification is F (I) :=

C(v(I)), where v(I) is the M -dimensional feature vector of I
5. Output: classifier F

7 Computational Time

Given an image I let us denote by τ(I) the total time that it takes Algorithm
3 to generate the case (vector-representation) v(I) of I that can be used as a
training case or as an input to the classifier F in order to classify the image I.

As mentioned above, Algorithm 2 involves a one-time manual selection of pro-
totypes and the speed is dictated by the user (not the computer). Algorithms 3
is where the computational time is relevant. Step 5 of Algorithm 3 is the time-
critical section which governs the overall computational time of the algorithm.
This step iterates over all subimages Ij , 1 ≤ j ≤ m, of the input image I, and
for each subimage it computes the values ri, 1 ≤ i ≤ M , one for each feature-
category. In order to compute ri it computes the UID distance between Ij and

Machine Learning for Image Classification and Clustering 67

prototype P
(i)
k , 1 ≤ k ≤ Li. To compute UID(I, J) requires building the ex-

haustive history of both strings X(I), X(J) and of their concatenation X(I)X(J).
So the time to compute UID(I, J) is O(c(X(I)X(J))) where c(X(I)X(J)) is the
length of the exhaustive history of their concatenation. Denoting by τ(I, J) the
time to compute UID(I, J) then it is clear that τ(I, J) depends on the images
I, J and not just on their sizes. That is, τ(I, J) depends on the LZ-complexity of
the two images and on their similarity–the more similar the two, the less complex
the concatenation string X(I)X(J) and the smaller τ(I, J) is.

The time to compute the decided feature-category for subimage Ij of I is
big-O the time that it takes to perform the jth iteration of the outer for-loop of
step 5. We refer to this as subimage-time and denote it by τj(I). We have

τj(I) : = O

(
M∑
i=1

Li∑
k=1

τ(Ij , P
(i)
k)

)

where M is the number of categories, and Li is the number of prototypes for
category i.

Hence if we run on a single processor (single core) the case-generation time
τ(I) of an image I is

τ(I) =

m∑
j=1

τj(I) (2)

where m is the number of subimages in a single image I. It is clear from this
formula that parallel computations (in particular, stream processing where the
same function is applied to different data) can be very advantegeous for reducing
the case-generation time τ(I).

For instance, on a processor with n cores, where n ≥ m, each of the cores can
compute in parallel a different subimage. This yields a total time

τ(I) = O(max
1≤j≤m

τj(I)).

If the number of cores n satisfies m > n ≥ M then we can let each core compute
a different category-sum. This takes a single sub-image-category time

τ
(i)
j (I) : = O

(
Li∑
k=1

τ
(
Ij , P

(i)
k

))

and in this case the total time is

τ(I) =

m∑
j=1

max
1≤i≤M

τ
(i)
j (I). (3)

If the number of cores n ≥ m ·∑M
i=1 Li then the total time to generate v(I) from

I is

τ(I) = O

⎛
⎜⎜⎝ max

1≤j≤m
1≤i≤M
1≤k≤Li

τ
(
Ij , P

(i)
k

)
⎞
⎟⎟⎠ . (4)

68 U. Chester and J. Ratsaby

8 Experimental Setup and Results

We created a corpus C of 60 images of size 670×1364 pixels from GoogleEarth c©of
various types of areas. Figure 3 displays a few scaled-down examples of such
images. From these images we let a user define four feature-categories: sea, urban,
arid, roads and choose three relatively-small image-prototype of size 45×70 pixels
from each feature-category, that is, we ran Algorithm 2 with M = 4 and Li = 3
for all 1 ≤ i ≤ M . We then ran Algorithm 3 to generate the feature-vectors for
each image in the corpus and obtained a database D.

We then let the user label the images by a target variable Humidity with
possible values 0 or 1. An image is labeled 0 if the area is of low humidity and
labeled 1 if it is of higher humidity. We note that an image of a low humidity
region may be in an arid (dry) area or also in the higher-elevation areas which are
not necessarily arid. Since elevation information is not available in the feature-
categories that the user has chosen then the classification problem is hard since
the learning algorithm needs to discover the dependency between humid regions
and areas characterized only by the above four feature categories.

With this labeling information at hand we produced the labeled database
DHumidity . We used Algorithm 4 to learn an image classifier with target Hu-
midity. As the learning algorithm A we used the following standard supervised
algorithms: J48, CART , which learn decision trees, NaiveBayes and Multi-Layer
Perceptrons (backpropagation) all of which are available in the WEKA c©toolkit.

We performed 10-fold cross validation and compared their accuracies to a
baseline classifier (denoted as ZeroR) which has a single decision that corre-
sponds to the class value with the highest prior empirical probability. As seen in
Table 1 (generated by WEKA c©) J48, CART, NaiveBayes and Backpropagation
performed with an accuracy of 86.5%, 81.5%, 89.25%, and 87.25%, respectively,
compared to 50% achieved by the baseline ZeroR classifier. The comparison
concludes that all three learning algorithms are significantly better than the
baseline classifier, based on a T-test with a significance level of 0.05.

Next, we performed clustering on the unlabeled database D. Using the k-
means algorithm, we obtained 3 significant clusters, shown in Table 2.

One can read the information directly from Table 2 and see that the first
cluster captures images of highly urban areas that are next to concentration of
roads, highways and interchanges. The second cluster contains less populated
(urban) areas in arid locations (absolutely no sea feature seen) with very low
concentration of roads. The third cluster captures the coastal areas and here we
can see that there can be a mixture of urban (but less populated than images of
the first cluster) with roads and extremely low percentage of arid land.

Machine Learning for Image Classification and Clustering 69

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Examples of images in the corpus

70 U. Chester and J. Ratsaby

Table 1. Percent correct results for classifying Humidity

Dataset DHumidity (1) (2) (3) (4) (5)
Classify Image into Humidity: 50.00 86.50 ◦ 81.50 ◦ 89.25 ◦ 87.25 ◦

◦, • statistically significant improvement or degradation

(1) rules.ZeroR ” 48055541465867954
(2) trees.J48 ’-C 0.25 -M 2’ -217733168393644444
(3) trees.SimpleCart ’-S 1 -M 2.0 -N 5 -C 1.0’ 4154189200352566053
(4) bayes.NaiveBayes ” 5995231201785697655
(5) functions.MultilayerPerceptron ’-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a’ -5990607817048210779

Table 2. k-means clusters found on unsupervised database D

Feature Full data Cluster#1 Cluster#2 Cluster#3
urban 0.3682 0.6219 0.1507 0.2407
sea 0.049 0.0085 0 0.1012
road 0.4074 0.2873 0.0164 0.655
arid 0.1754 0.0824 0.8329 0.003

The fact that such interesting knowledge can be extracted from raw images
using our feature-extraction method is very significant since as mentioned above
our method is fully automatic and requires no image or mathematical analysis
or any sophisticated preprocessing stages that are common in image pattern
analysis.

Let us report on some computational time statistics. The hardware we used
is a 2.8Ghz AMD Phenom c©II X6 1055T Processor with number of cores n = 6.
The operating system is Ubuntu Linux 2.6.38-11-generic. The corpus consists
of images of size 670 × 1364 pixels, with a sub-image and prototype sizes of
45× 70 pixels, the number of subimages per image is m = 266. For this test we
chose the number of feature-categories M = 3 with a total number of prototypes∑M

i=1 Li = 11. We implemented the algorithms in Matlab c©in standard code
style, that is, with no time-efficiency optimization, except in step 5.a. where the
for statement is implemented using a parfor statement of Matlab. Note that in
this case m > n > M hence the total time to compute one image I is as stated
in (3).

We obtained the set of average computational times

T iming
¯
Data =

{
τ
(i)
j : 1 ≤ j ≤ m, 1 ≤ i ≤ M

}
where

τ
(i)
j :=

1

Li

Li∑
k=1

τ
(
Ij , P

(i)
k

)
.

Figure 4 shows the histogram for this T iming
¯
Data, where the horizontal axis

is time in units of seconds. The mean time is 0.851 sec. and the standard deviation

Machine Learning for Image Classification and Clustering 71

is 0.264 sec. Some of the state-of-the-art Graphics Processor Unit (GPU) accel-
erators have thousands of execution cores (see for instance, NVIDIA Tesla c©
K20 which has 2, 496 cores) and are offered at current prices of approximately
$2, 000. On the NVIDIA Tesla c© K10 the number of execution cores is n = 3072
and is greater than m

∑M
i=1 Li = 2, 926 so the total computation time τ(I) to

process a single image I in the corpus will be as in (4), which for this example
is approximately 0.851 sec. using Matlab with no optimization. We have not
yet done so but we expect that transforming the code from Matlab to C and
rewriting it with parallel processing code optimization can yield an average τ(I)
which is lower by several orders of magnitude.

Fig. 4. Histogram of the computational times τ
(i)
j , 1 ≤ j ≤ m, 1 ≤ i ≤ M , m = 266,

M = 3. The mean is 0.851.

9 Conclusion

We introduced a method for automatically defining and measuring features of
colored images.The method is based on a universal image distance that is mea-
sured by computing the complexity of the string-representation of the two images
and their concatenation. An image is represented by a feature-vector which con-
sists of the distances from the image to a fixed set of small image prototypes, de-
fined once by a user. There is no need for any sophisticated mathematical-based
image analysis or pre-processing since the universal image distance regards the
image as a string of symbols which contains all the relevant information of the
image. The simplicity of our method makes it very attractive for fast and scal-
able implementation, for instance on a specific-purpose hardware acceleration
chip. We applied our method to supervised and unsupervised machine learning
on satellite images. The results show that standard machine learning algorithms
perform well based on our feature-vector representation of the images.

72 U. Chester and J. Ratsaby

Acknowledgements. We gratefully acknowledge the support of NVIDIA Cor-
poration with the donation of the Tesla K20 GPU used for this research.

References

1. Chester, U., Ratsaby, J.: Universal distance measure for images. In: 2012 IEEE
27th Convention of Electrical Electronics Engineers in Israel (IEEEI), pp. 1–4
(November 2012)

2. Canty, M.J.: Image Analysis, Classification and Change Detection in Remote Sens-
ing: With Algorithms for Envi/Idl. CRC/Taylor & Francis (2007)

3. Lillesand, T.M., Kiefer, R.W., Chipman, J.W.: Remote sensing and image inter-
pretation. John Wiley & Sons (2008)

4. Sayood, K., Otu, H.H.: A new sequence distance measure for phylogenetic tree
construction. Bioinformatics 19(16), 2122–2130 (2003)

5. Ziv, J., Lempel, A.: On the complexity of finite sequences. IEEE Transactions on
Information Theory 22(3), 75–81 (1976)

6. Ratsaby, J., Sirota, V.: Fpga-based data compressor based on prediction by partial
matching. In: 2012 IEEE 27th Convention of Electrical Electronics Engineers in
Israel (IEEEI), pp. 1–5 (November 2012)

7. Ratsaby, J., Zavielov, D.: An fpga-based pattern classifier using data compression.
In: Proc. of 26th IEEE Convention of Electrical and Electronics Engineers, Israel,
Eilat, November 17-20, pp. 320–324 (2010)

8. Kaspi, G., Ratsaby, J.: Parallel processing algorithm for Bayesian network infer-
ence. In: 2012 IEEE 27th Convention of Electrical Electronics Engineers in Israel
(IEEEI), pp. 1–5 (November 2012)

9. Cilibrasi, R., Vitanyi, P.: Clustering by compression. IEEE Transactions on Infor-
mation Theory 51(4), 1523–1545 (2005)

10. Deza, M., Deza, E.: Encyclopedia of Distances. Series in Computer Science, vol. 15.
Springer (2009)

	Machine Learning for Image Classification and Clustering Using a Universal Distance Measure
	1 Introduction
	2 LZ-Complexity and String Distances
	3 Universal Image Distance
	4 Prototype Selection
	5 Image Feature-Representation
	6 Supervised and Unsupervised Learning on Images
	7 Computational Time
	8 Experimental Setup and Results
	9 Conclusion
	References

