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Natalia Miranda1, Edgar Chávez2, Maŕıa Fabiana Piccoli1, and Nora Reyes1

1 Universidad Nacional de San Luis, Argentina
2 Universidad Nacional Autónoma de México

Abstract. Proximity queries consists in retrieving objects near a given
query. To avoid a brute force scan over a large database, an index can
be used. However, for some problems, indexes are mostly useless (their
running times are worst than sequential scan).

On the other hand, researchers have tried massively parallel hardware
(as GPGPU) in the quest of faster query times. The results have been
modest because current algorithms are cumbersome, while GPGPU ar-
chitectures favor simple kernels, have a clear memory hierarchy and need
close to zero cross-talk between processing units. We have engineered
very fast algorithms for proximity queries taking into account this prin-
ciples, all of them are presented in this paper.

In our approach no index is built, the cross-talk between threads is
eliminated, and the higher (faster) levels of memory hierarchy are consis-
tently used. The absence of data structures allows to use all the available
memory for the database, and furthermore makes possible to do stream
processing on very large data collections.

1 Introduction

Due to an increasing interest in manipulating and retrieving complex data, the
problem of proximity searching has received a lot of attention, while simultane-
ously give hard times to practitioners. Obtaining the k-Nearest Neighbors (k -
NN) of a query object is central to many complex data operations such as query
by content, copy detection, object tracking, and a large set of other applications.
The problem is pervasive and it is found in many areas of research, from statis-
tics, pattern recognition, computer vision to multimedia databases, and much
more applications. For this and other proximity searching problems a sequential
scan over the database can solve the problem, but for large instances it does not
scale. This is a very active topic of research well documented in the literature[1–
3]. The goal of indexing is to avoid a sequential scan to answer proximity queries.
Indexing is a two stage problem, firstly the database is preprocessed and then it
is ready to be queried. Indexing can be very time consuming, some indexes use
quadratic time and/or quadratic space. Moreover, there are situations where the
need to query is immediate. In those cases building a index is not even an op-
tion. An example is object tracking. As soon as an object is marked for tracking
it needs to be reported in real time in every frame; there is no time to index.
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Another example is duplicate detection in video and/or audio streams. Indexing
is very slow and furthermore, in some applications the database will be queried
only a few times making the amortized cost higher than a few sequential scans.

The above scenario is very restrictive and the usual (sequential and massively
parallel) techniques documented in the literature are of no use for the problem.
In this paper we present algorithms to query on the fly databases for proxim-
ity, using massive parallel hardware, more specifically, we are interested in the
General Purpose Graphics Processing Unit (GPGPU). Current solutions for the
GPU architecture are translated from the sequential counterparts, the net re-
sult is a very modest speedup due to auxiliary data structures, and/or the need
to precompute an index. In this paper, by using a very strict adherence to the
design principles and recommendations for the GPU architecture we report a so-
lution orders of magnitude faster than sequential indexes and faster than other
massively parallel approaches reported in the literature. Since we use no index,
the data is readily available for querying on load, leveraging streaming applica-
tions where massive data is seeing only once and there is no time to preprocess
or index.

1.1 Metric Space and Proximity Searching

A database for proximity searching is usually modeled as a finite subset of a
metric space. A metric load is (X,S, d), with X a set (possibly infinite), a
finite subset S ⊆ X the database, and a distance d : X × X → R+. Dis-
tances are preferred to plain (dis)similarity functions because they can be in-
dexed, in principle, exploiting the triangle inequality. Non metric spaces have
been also indexed making a reduction to metric spaces. We will not make use
of triangle inequality, hence our model is more general. Queries of interest in-
clude Range Searching and the k Nearest Neighbors (k-NN). A range search
is defined as (q, r)d = {x ∈ U/d(q, x) ≤ r}). In a k-NN query the goal is to
retrieve the k closest elements in S to a query q, namely |k-NN(q)| = k and
{∀x ∈ k-NN(q), v ∈ S ∧ v /∈ k-NN(q), d(q, x) ≤ d(q, v)}. Other problem of inter-
est is the All-k -NN, solving the above problem for all x in S.

The goal of indexing is to avoid a sequential scan, but there is a well docu-
mented phenomenon known as the curse of dimensionality [1–3]. The measurable
effect is that using an index can be slower than a sequential scan over the data.
To avoid this odd behavior, approximate algorithms have been proposed, they
usually have a threshold ε as parameter, so that the retrieved elements are guar-
anteed to have a distance to the query q at most (1+ ε) times of what was asked
for, or they have probabilistic guarantees[4].

1.2 GPGPU

The GPU is a dedicated graphic card for personal computers, workstations or
video game consoles. It is an interesting architecture for high performance com-
puting. The GPU was developed with a highly parallel structure, high memory
bandwidth and more chip surface dedicated to data processing than to data
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caching and flow control. It offers, in principle, a speedup to any standard graph-
ics application[5]. Mapping general-purpose computation onto GPU implies the
use of the graphics hardware to solve any applications, not necessarily of graphic
nature. This is called GPGPU (General-Purpose GPU), GPU computational
power is used to solve general-purpose problems[5, 6]. The parallel programming
over GPUs has many differences from parallel programming in typical parallel
computer, the most relevant are: The number of processing units, the CPU-GPU
memory structure and the Number of parallel threads.

Every GPGPU program have some basic steps. Firstly the input data should
be transferred to the graphics card from the CPU(host). Once the data is in
place, a massive amount of threads can be started (with little overhead). Each
thread works over its data and, at the end of the computation, the results should
be copied back to the host main memory. Not every class of problem can be
solved with the GPU architecture, the most suitable problems are those imple-
mentable with stream processing and using limited memory size, i.e. applications
with abundant data parallelism without cross-talking among processes. The pro-
gramming model is Single Instruction Multiple Data (SIMD).

The CUDA, supported since the NVIDIA Geforce 8 Series, enables to use GPU
as a highly parallel computer for non-graphics applications [5, 7]. CUDA pro-
vides an essential high-Level development environment with standard C/C++
language. It defines the GPU architecture as a programmable graphic unit which
acts as a coprocessor for the CPU. It has multiple streaming multiprocessors
(SMs), each of them contains several (eight, thirty-two or forty-eight) scalar
processors (SPs).

The CUDA programming model has two main characteristics: the parallel
work through concurrent threads and the memory hierarchy. The user supplies a
single source program encompassing both host (CPU) and kernel (GPU) code.
Each CUDA program consists of multiple phases that are executed on either
CPU or GPU. All phases that exhibit little or no data parallelism are imple-
mented in CPU. In opposition, if the phases present much data parallelism, they
are implemented as kernel functions in the GPU. A kernel function defines the
code to be executed by all the threads launched in a parallel phase. The GPU
resources are much more efficiently used if the kernel do not make branching
(represented as if instructions), in other words, if all the threads follow the
same execution path.

GPU computation considers a hierarchy of abstraction layers: grid, blocks
and threads. The threads, basic execution unit that executes kernel funtion, in
the CUDA model are grouped into blocks. All threads in a block are executed on
one SM and can communicate among them through the shared memory. Threads
in different blocks can communicate through global memory. Besides shared and
global memory, the threads have their own local data space for variables. All
Thread− blocks form a grid. The number of grids, blocks per grid and threads
per block are parameters fixed by the programmer, they can be adjusted to
improve the performance.
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With respect to the memory hierarchy, CUDA threads may access data from
multiple memory spaces during their execution. Each thread has private local
memory and each block has shared memory visible to all its threads. These
memories have the same lifetime than the kernel. All threads have access to the
global memory and two additional read-only memory spaces: the constant and
texture memory spaces. The constant and texture memory spaces are optimized
for different memory usages. The global, constant and texture memory spaces
are persistent all the application life time. Each kind of memory has its own
access cost, in order of speed it will be local, shared and global memory which is
the most expensive to access. Please notice that local and shared memory have
higher throughput and smaller latency than standard RAM in the CPU. Please
bear that in mind, because this contributes to the very large speedup of our
algorithms.

1.3 Related Work on GPU Proximity Searching

There are many massively parallel algorithms for metric indexes implemented
in a GPU. Querying for k-NN has obtained most of the attention of researchers
in the area. In [8–14] improve explicity the brute force algorithm (or sequential
scan) to find the k-NN. They differ in the parts parallelized or the methodology
applied. Other works [8, 15, 16] implemented some well known sequential metric
indices, such as the List of Clusters (LC) and the SSS-Index. For the case of
vector data authors in [17, 17–19] use Kd-trees for finding the k-NN and [18]
apply a variant of the Kd-tree for the all k-NN problem.

All algorithms in the literature [8–13, 15, 16, 19] for k-NN using GPU, so-
lutions have high complexity in the data structures. Furthermore, they have a
high granularity. Kernels are not uniform and have a lot of branching. This im-
plies synchronization and serialization of the threads, which means all of them
have to wait to be in the same path again to resume. In a nutshell, they use
conditionals and do diverse tasks depending on comparisons. On the other hand
the algorithms demand a lot of memory resources for the data structures and
intermediate data, e.g. distances to pivots, and allocate only very small instances
of the metric databases. For example in [16] they use only one thread block for
the actual k-NN search, this implies overloading all the threads in the block
and consequently suboptimal GPU resources usage, most of the threads are not
used. In [10–12] they propose to solve several queries at a time, but they use just
the same amount of threads than for a single query. This again implies thread
overload, memory starvation and idle processing units in the GPU. In [13] is also
suboptimal in resource usage, to the point of letting a single thread to finish the
searching process, implying all other threads are idle.

We have learned from all the above examples and in our proposal, detailed
below, we have closely tailored a solution which is uniform, with a single branch
which maximize the GPU usage. We have carefully selected the number of
threads, have coalescent memory access, using sharing memory and with data in-
dependence which implies zero cross talk between threads. Additionally we have
zero overload in the data structures, which implies all the available memory can
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be used for the database. Other researchers in High Performance Computing
arrived to similar conclusions parallelizing matrix to matrix multiplication[20].
Shared memory is faster than GPU memory, and by avoiding branching they
have obtained super linear speedup for their problem.

2 Our Approach

In the GPU we have enough juice to compute the distances from a query to all
the database elements in one step. Even more, there will be much more threads
available than the number of database elements allocated in the global GPU
memory. After all the distances are computed, the objects with the smallest
distances have to be identified, this is the real challenge. Those objects have to
be selected avoiding crosstalk. In this context crosstalk is simply comparing the
result of two threads. We will exemplify the problem with an unplugged setup.
Please also notice that for a range query, all threads having distances smaller
than the query radius can report themselves without the need to compare with
anyone else, the problem is relevant only for k-NN queries.

The above problem is equivalent to the following: In a room with one thousand
(say N) people everybody gets a number in a piece of paper. How can you know
if you are among the k people with the smallest number in the piece of paper?
A sorting algorithm is overkill, and looking at every other number is also very
slow. Please notice that we have dropped the condition of a central process
selecting the k smallest, the person have to claim the place without talking
to others. We have devised a mechanism to obtain those k smallest numbers
without exchanging information between everyone in the room. The kernel of a
GPU/CPU CUDA program works better if the code is simple. Our contribution
relies precisely in this step. We essentially need an algorithm to find the Top-k
smallest elements in an array without a central supervisor.

Following the people in the room example, what we do is to arrange people
in small groups and all of them show their paper among each other. If all of the
numbers are bigger than mine I have the smaller one. I know I will be among the
finalists and silently move to the finalist stage without talking to anyone else.
The process can be repeated until only the smaller one remains. Extending the
algorithm to k elements is straightforward.

We have implemented three different solutions for obtaining the Top−k small-
est elements in the array. Please notice that it is not necessary to sort all the
objects in the stream, since we need only the k smallest. Figure 1 illustrates this
stage.

The process iterates while the size of k -NNP list is grater than k. The Partition
and Join-K stages are implicitly computed. Each launched thread determines
the sub-list of work (Partition). Each thread determines over which element it
has to work based on the local information brought from IdThread in the block
and IdBlock that thread belongs. The Select k stage is a computation unit that
is responsible to choose k -NN objects of list Li (∪Li = L∀i = 0 · · ·x − 1 and
x = #B) and store in partial list k -NNP (Join−K). The first time L is equal
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Fig. 1. Generic GPU Process to obtain the k nearest neighbor of a query q

to distances list. The next iteration, L has only all k -NN objects of each block.
In the next sections, we explain different implementations of the Select k stage.

2.1 TopK AA

This is the implementation of the algorithm we designed to solve the problem,
we named it TopK AA (AA=All-to-All). The Select k stage selects k -NN objects
from the local list. Each thread in its block determines if its distance is among k -
NN of its block. The comparison is one-to-all, each thread in the block contrasts
its distance against all distances in the block. There are as many threads as
distances in the local list. Once each thread establishes which is its order, it
analyses if its distance is one of k -NN. If true, it reports its object to k -NNP ,
otherwise it finishes. In the next iteration, the k -NNP size is equal to k ×#B,
where #B is the number of blocks.

TopK AA has been designed taking into account the GPU characteristics such
as shared memory, coalesced access to global memory and number of threads
by block. In the code we avoid central decisions. For example each thread will
compute where in the shared memory she can write and when she is among
the top k results. Using atomic functions over the shared memory is faster than
serialization over the global memory operations. Even more, the shared memory
of the GPU is faster than the RAM memory in the CPU.

2.2 QuickSelect

The well known QuickSelect algorithm finds the x smallest elements of an un-
sorted array of z elements. In this case, Select k stage applies the QuickSelect
(QSeP) algorithm to choose the k -NN objects of a local list (in shared memory)
by block. This process is applied iteratively while the pivot position is not equal
to k. For each iteration, we select the pivot (it is a mean of three values in the
local list), and partition the local list. If pivot position is equal to k, the parti-
tion with smaller elements than pivot is the k -NN of local list. Otherwise, two
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cases are possible: the position pivot is greater than k, or it is lower than k. In
the first case, we run the QuickSelect over the partition with smaller elements.
Otherwise, we work only over the second partition of local list (it has elements
larger than the pivot).

2.3 TopK AA + QuickSelect

This implementation of Select k stage is a combination of the two routines above.
We called as QSeH (H for Hybrid). In this case, the first time we select the k-NN
elements of local list applying QuickSelect algorithm (The local list is equal to
distances list calculated in Distances stage). In the next steps, we determine the
local k-NN using TopK AA algorithm. We tried this implementation to see if
the combination of the two approaches can boost the performance.

2.4 Thrust Library

There are many Sort libraries for CUDA, one of them is Thrust. It is part of the
CUDA repositories. In this solution, we used the Thrust library to obtain the
k -NN. Using the Thrust library is just a global sort, the k -NN stage is replaced
by a call to sort algorithm of Thrust library, its output is the k-NN of each q.
Sort algorithm is a black box, its implementation details are hidden to the user.

3 Solving Many k-NN Queries in Parallel

In large-scale systems it is not enough to speedup one query at a time, but
it is necessary to leverage the capabilities of the GPU to answer in parallel
several queries. Thereby we have to show how to achieve efficient and scalable
performance in this context. We need to devise algorithms and optimizations
specially tailored to support high-performance parallel query processing in the
GPU.

In order to answer many queries in parallel, the GPU receives a query set and
solves all of them at once. Each query, in parallel, applies a k -NN routing as
explained in the previous sections, therefore the number of resources for this is
equal to the resource amount to compute one query multiplied the number of
queries solved in parallel. The number of queries to solve in parallel is determined
according to the GPU resources, mainly the available memory.

Solving many queries in parallel involves carefully managing the blocks and
their threads. At the same time, blocks of different queries are accessed in par-
allel. Hence, it is important a good administration of threads: which query is
solved and which database element correspond to the query outcome. This can
be easily accomplished by establishing a relationship among Thread Id, Block Id,
Query Id, and Database Element.
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4 The All-k-NN Problem

We need to determine the k-NN for each object in the database. Since we have
solved one instance, it is enough to iterate through all the elements in the
database considering them as queries. One just need to be careful to codify
the results appropriately before sending the results back to the CPU. Consider-
ing these characteristic and the possibility of solving many queries in parallel,
the solution is simple. If X queries are answered in parallel, we can compute
All-k -NN in N

X iterations, the value of X depends of GPU characteristics and
the size of database.

5 Experimental Results

In this section we show and analyze the experimental results for the solutions
of k -NN and All-k -NN problems. Please notice that range queries are trivial
since it naturally avoids crosstalk between threads. We have not included this
experiments, but they are faster than 1-NN queries. We selected two widely used
benchmark databases from the SISAP Metric Library (www.sisap.org).

– NASA images: a set of 40,700 20-dimensional feature vectors, generated from
images downloaded from NASA. The distance is euclidean.

– COLORS histograms: a set of 112,682 feature vectors of dimension 112, ob-
tained from color histograms from an image database. Any quadratic form
can be used as a distance, so we chose Euclidean distance as the simplest
meaningful alternative.

Each reported value is the average of many executions of the corresponding
algorithm. We use for both databases k values of: 1, 2, 4, 8, and 16. The
analysis was made for two generations of GeForce GPU whose characteris-
tics (Global Memory, SM, SP, Clock rate, Compute Capability) are GTX330:
(512MB,6,8,1.04GHz,1.2), GTX470: (1280MB, 14, 32, 1.2GHz, 2.0) and
GTX550Ti: (1024MB, 4, 48, 1.96GHz,2.1). The CPU is an Intel core i3, 2.13 GHz
and 3 GB of memory. The results are expressed in Speed up (Sp = TimeSec

TimePar
). For

lack of space, the shown results are only on architectures GTX330 and GTX470.
To evaluate the behavior of our solutions against a good sequential solution, we

did choose the SAT+ metric index. It is a new version of Spatial Approximation
Tree (SAT ) [21], improved by a new selection order of the neighbors in the
tree (distal nodes). SAT+ has shown to be one of the most competitive exact
proximity searching index in the literature, and it is very scalable and resistant
to the curse of dimensionality [22]. It is implemented in the C language.

Figure 2 shows the obtained speed up by k-NN queries for two before men-
tioned metric spaces. For all GPUs, we achieve very good results. The best speed
up is obtained by our implementation, it can noticed that the Thrust solution
reaches a significantly lower speedup compared to the others three proposed
solutions.
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Fig. 2. Speedup of k-NN query implementations for NASA and COLORS databases,
on two different GPUs
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databases, on two different GPUs
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The accelerations are different because they depend of GPU resources, but
in all cases they are significant. Figure 3 resumes the behavior of four proposed
solutions of All-k -NN query. Like k-NN solutions, the accomplished speedups by
our three implementation are much higher than the one obtained using Thrust.

The speedup increase as both the database size and k, the number of neigh-
bors, increase. Tables 1 and 2 show the obtained throughput (number of queries
by second) by all implementations evaluated. Table 1 illustrates the throughput
obtained for the sequential index used SAT+. For lack of space, we only report
the results obtained for k = 1 and k = 16. The results clearly show the benefits
for all GPU architectures. In every case and k value, the number of queries by
second is impressively high.

Table 1. Throughput of k-NN query for SAT+

DB k PC

NASA
1 35160,14
16 1219,08

COLORS
1 4608,80
16 163,49

Table 2. Throughput of k-NN query, for four algorithms in two GPUs

Algorithm k
NASA COLORS

GTX 470 GTX 330M GTX 470 GTX 330M

TopK AA
1 6779661,02 3883495,15 6106870,23 3827751,20
16 6851612,90 3919909,50 6666666,67 3903703,70

QSeP
1 9913258,98 4938271,60 9720534,63 4040404,04
16 11428571,43 4993449,78 10624169,99 4444444,44

QSeH
1 7272727,27 3960396,04 6153846,15 3418803,42
16 7666666,67 3982439,02 7272727,27 3448275,86

Thrust
1 94,35 41,31 94,35 41,31
16 94,45 41,35 94,45 41,35
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6 Conclusions, Remarks and Future Work

We have shown a very fast algorithm for the k-Nearest Neighbors and the All k-
Nearest Neighbors problems. Our proposal is several orders of magnitude faster
than state of the art sequential and massively parallel approaches. We have not
included other GPU implementations in our benchmark because they used dif-
ferent hardware, we can only deduct from the published results that the speedup
obtained is very modest. Our dramatic speedup is due to a combination of faster
memory, non blocking parallel processing and adherence to the design principles.
A more detailed experimental evaluation is needed to know if the speedup can
be considered super linear on the number of processing units.

We do not need to build an index beforehand, widening the applications of
our algorithms. Also notice that our approach can easily solve range queries,
much faster than nearest neighbor queries because Top-k selection is skipped.
We are working on a randomized (exact) version of the k-NN algorithm using
repeated calls to a range query routine. Others properties of our approach is the
absence of the curse of dimensionality, and the possibility to query non-metric
(dis)similarity databases.

References

1. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems, vol. 32. Springer (2006)

2. Samet, H.: Foundations of Multidimensional and Metric Data Structures. The Mor-
gan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan
Kaufmann Publishers Inc., San Francisco (2005)
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