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Abstract. In this paper we define a new problem, motivated by com-
putational biology, LCSk aiming at finding the maximal number of k
length substrings, matching in both input string while preserving their
order of appearance in the input strings. The traditional LCS definition
is a spacial case of our problem, where k = 1. We provide an algorithm,
solving the general case in O(n2) time, where n is the length of the in-
put, equaling the time required for the special case of k = 1. The space
requirement is O(kn). In order to enable backtracking of the solution
O(n2) space is needed.

Keywords: Longest Common Subsequence, Similarity of strings, Dy-
namic Programming.

1 Introduction

The Longest Common Subsequence problem, whose first famous dynamic pro-
gramming solution appeared in 1974 [18], is one of the classical problems in
Computer Science. The widely known string version appears in Definition 1.

Definition 1. The String Longest Common Subsequence (LCS) Problem:
Input: Two sequences A = a1a2 . . . an, B = b1b2 . . . bn over alphabet Σ.
Output: The length of the longest subsequence common to both strings,

where a subsequence is a sequence that can be derived from
another sequence by deleting some elements without changing
the order of the remaining elements.

For example, for the sequences appearing in Figure 1. LCS(A,B) is 5, where a
possible such subsequence is T T G T G.

The LCS problem has been very well studied. For a survey, see [6]. The prob-
lem is mainly motivated by the need to measure similarity over the input se-
quences. The well known dynamic programming solution [16] requires running
time of O(n2), for two input strings of length n.
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The LCS problem had also been investigated on more general structures such
as trees and matrices [3], run-length encoded strings [4], weighted sequences [2],
[7] and more. Many variants of the LCS problem were studied as well, among
which LCS alignment [15], [14], [13], constrained LCS [17], [8], restricted LCS
[10] and LCS approximation [12].

Motivation. The LCS has been used as a measure of sequence similarity for bi-
ological sequence comparison. Its strength lies in its simplicity which has allowed
development of an extremely fast, bit-parallel computation which uses the bits
in a computer word to represent adjacent cells a row of the LCS scoring matrix
and computer logic operations to calculate the scores from one row to the next
[1], [9], [11]. For example, in a recent experiment, 25,000,000 bit-parallel LCS
computations (sequence length = 63) took approximately 7 seconds on a typical
desktop computer [5] or about 60 times faster than a standard algorithm. This
speed makes the LCS attractive for sequence comparison performed on high-
sequencing data. The disadvantage of the LCS is that it is a crude measure of
similarity because consecutive matching letters in the LCS can have different
spacings in the two sequences, i.e., there is no penalty for insertion and deletion.
What is proposed here is a definition of LCS that makes the measure of similar-
ity more accurate because it forces adjacent letters in the LCS to be adjacent in
both sequences. In our problem, the common subsequence is required to consist
of k length substrings. A formal definition appears in Definition 2.

Definition 2. The Longest Common Subsequence in k Length Substrings Prob-
lem (LCSk):
Input: Two sequences A = a1a2 . . . an, B = b1b2 . . . bn over alphabet Σ.
Output: The maximal � s.t. there are � substrings,

ai1 ...ai1+k−1
. . . ai� ...ai�+k−1, identical to bj1b...j1+k−1 . . . bj� ...bj�+k−1

where {aif } and {bjf } are in increasing order for 1 ≤ f ≤ � and
where two k length substrings in the same sequence, do not overlap.

We demonstrate LCSk considering the sequences appearing in Figure 1.

A =
1 2 3 4 5 6 7 8
T G C G T G T G

B =
1 2 3 4 5 6 7 8
G T T G T G C C

Fig. 1. An LCS2 example

A possible common subsequence in pairs (k = 2) is GTTG obtained from a4,
a5, a7, a8 and b1, b2, b5, b6. Though a6 = b4, and such a match preserves the order
of the common subsequence, it cannot be added to the common subsequence in
pairs, since it is a match of a single symbol. For k = 3, one of the possible
solutions is TGC achieved by matching a1, a2, a3, with b5, b6, b7. For k = 4 a
possible solution is TGTG obtained from matching a5, a6, a7, a8 and b3, b4, b5, b6.
Note that in the last two cases the solution contains a single triple, quadruplet.
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The paper is organized as follows: Section 2 gives some preliminaries. The
solution for the LCSk problem is detailed in Section 3. Section 4 concludes the
paper.

2 Preliminaries

The LCSk problem is a generalization of the LCS problem. We might consider
using the solution of the latter in order to solve the former. If we perform the LCS
algorithm on the input sequences, we can backtrack the dynamic programming
table and mark the symbols participating in the common subsequence. We can
then check whether those symbols appear in consecutive k length substrings
in both input sequences, and delete them if not. Such a procedure guarantees
a common subsequence in k length substrings but not necessarily the optimal
length of the common subsequence. For example consider LCS2 of the sequences
appearing on Figure 1. Applying the LCS algorithm on these strings may yield
T T G T G, containing a single non-overlapping pair matching while there exists
LCS2 of T G T G having two pair matchings. Hence, a special algorithm designed
for LCSk is required.

As the LCSk problem considers matchings of k consecutive symbols, we call
such a matching, throughout this paper, a k matching and define the following
definitions:

Definition 3

kMatch(i, j) =

{
1 if ai+f = bj+f , for every 0 ≤ f ≤ k − 1
0 Otherwise

If kMatch(i, j) = 1, the matching substring is denoted (i,j).

Definition 4. Predecessors. Let candidates(i, j) be the set of all longest com-
mon subsequences, consisting of k matchings, of prefix A[1...i + k − 1] and pre-
fix B[1...j + k − 1]. Then let pred(i, j) be all the possible last k matchings
in candidates(i, j). That is, pred(i, j) = {(s, t)|∃c ∈ candidates(i, j), where
(s, t) is the last k matching in c}.

We define the length of p ∈ pred(i, j) derived from candidate c, to be the
number of k matchings in c and denote it by |p|.
Example. Consider LCS2 of the sequences of Figure 1. Let candidates(5, 3) be
the common subsequences in pairs of B[1...4] = G T T G and of A[1...6] =
T G C G T G, thus, candidates(6, 4) contains{TG,GT }. TG can be obtained
in two ways: a1a2 matched to b3b4, or a5a6 matched to b3b4, and GT by a4a5
matched to b1b2 therefore, we have pred(i, j) = {(1, 3), (5, 3), (4, 1)}. In this
example all predecessors are of length 1. Keeping the predecessors enables back-
tracking to reveal the longest common subsequence in k length substrings itself.

The following Lemma is necessary for the correctness of the solution.

Lemma 1. Let p1,p2 ∈ pred(i, j), then if |p1| + 1 = |p2|, then any maximal
common subsequence of k length substrings using the k matching p2 has length
greater or equal to that using the k matching p1.
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Proof: Suppose p1 = (s, t) and p2 = (s′, t′). Several cases are possible for p1, p2:

1. If s′ < s and t′ < t, then the candidate whose last k matching is p2 might be
further extended till A[s] and B[t], enlarging the difference between p1 and
p2.

2. If s′ = s and t′ = t both predecessors have the same opportunities for
extension.

3. If s+ k − 1 < s′ and t+ k − 1 < t′, the k matching (s′, t′) can be added to
the candidate whose last k matching is (s, t), contradicting its maximality.

4. If there is an overlap between the k matchings represented by the predeces-
sors, s < s′ < s+ k or t < t′ < t+ k, starting from as′+k, every k matching
can be used to extend the common subsequence in k length substring, rep-
resented by both predecessors. However, the subsequence using p1 cannot
have an additional k matching before as′+k, as overlaps are forbidden. Con-
sequently, the difference between the length of p1 and p2 is preserved in the
extended maximal common subsequences.

3 Solving the LCSk Problem

As in other LCS variants, we solve the problem using a dynamic programming
algorithm. We denote by LCSki,j the longest common subsequence, consisting
of k matchings in the prefixes A[1...i + k − 1] and B[1...j + k − 1]. Lemma 2
below, formally describes the computation of LCSki,j .

Lemma 2. The Recursive Rule

LCSKi,j = max

⎧⎨
⎩

LCSki,j−1,
LCSki−1,j ,
LCSki−k,j−k + kMatch(i, j)

Proof: LCSKi,j contains the maximal number of common k length substrings,
preserving their order in the input sequences. A possible subsequence can be
constructed by matching the substrings ai, . . . , ai+k−1 with bj , . . . , bj+k−1, in
case all ai+f and all bj+f , for 0 ≤ f ≤ k−1, are not part of previous k matchings.
This is guaranteed when considering the prefixes A[1..i−k] and B[1..j−k] while
trying to extend by one the common subsequence for cell LCSki,j. Another
option of extending the subsequence is by using the k matching (s, j) , for s < i.
Similarly, we can use the k matching (i, t) for t < j. Note that the options of
extending LCSki−f,j−f , for 1 ≤ f ≤ k − 1 is included in both LCSki,j−1 and
LCSki−1,j . These claims can be easily proven using induction.

According to Lemma 2 we can solve the LCSk problem using a dynamic pro-
gramming algorithm working on a two dimensional table of size (n − k + 1)2

where the rows represent the A sequence and the columns stand for sequence
B. Cell LCSk[i, j] contains the value LCSki,j and the appropriate predeces-
sors. Nevertheless, when we wish to attain the common subsequence itself, we
encounter a complication.
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In the original LCS algorithm, computing the common subsequence, requires
maximizing three options of possible prefixes of the LCS. When some of these
prefixes have the same length, there is no significance which of them is chosen, as
a single common subsequence is sought and the selection has no effect on future
matches. However, in the LCSk problem the situation is different. For example,
consider LCS2. Let A = a c a b and B = c a c a b. LCS2[3,3] equals 1 due
to the 2 matching (1, 2) (matching a1a2 to b2, b3) (”ac”), or by the 2 matching
(2, 1) (”ca”). In spite of the fact that both common subsequences, share the same
length, the former is part of the final solution as it enables a further 2 matching
(3, 4) while the latter cannot be extended due to the overlap restriction. It, there-
fore, seems that all possibilities of common subsequence in k length substrings,
that is, all predecessors should be saved at every calculation in order to enable
a correct backtracking of the optimal solution. As the dynamic programming
proceeds, this information can exponentially increase. Nevertheless, we prove in
Lemma 3 that in the LCSk problem only one maximal previously computed
subsequence is required.

The three options of forming LCSki,j , appearing in Lemma 2 form
candidates(i, j), hence pred(i, j). Therefore, the pred(i, j) set should be updated
after computing LCSki,j .

Corollary 1. If LCSki,j−1 = LCSki−1,j = LCSki−2,j−2+1, andkMatch(i,j)=1
then pred(i, j) = pred(i, j − 1)

⋃
pred(i − 1, j)

⋃
(i, j).

If LCSki,j−1 = LCSki−1,j and kMatch(i,j)=0 then
pred(i, j) = pred(i, j − 1)

⋃
pred(i − 1, j) .

In both cases, if one or more of the relevant LCSkx,y, x ≤ i, y ≤ j has shorter
length, its corresponding pred is not included in pred(i, j).

Proof: Note, that the length of a predecessor p ∈ pred(i, j) equals the value of
LCSki,j . Due to Lemma 1 there is no necessity to consider the shorter prede-
cessors. Suppose all three sets contain predecessors representing common subse-
quences of the same length. Without further information, we cannot determine
which common subsequence ending in pred(i, j−1), pred(i−1, j), or in k match-
ing of (i, j), will be in the maximal output, therefore, all predecessors must be
considered.

3.1 The Backtrack Process

Using the recursive rule of Lemma 2, the value computed for LCSki−k+1,j−k+1

is the length of the common subsequence in k length substrings of sequences
A and B. In order to obtain the common subsequence itself we perform the
following procedure. Consider the value saved in cell LCSk[i, j], where i and j
are initialized by n−k+1.We suppose that each cell contains a single predecessor,
as will be proven hereafter in Lemma 3. Let the predecessor saved in the current
cell be (x, y). Two cases are regarded as long as i, j > 0.
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1. if x = i and y = j, then a k matching starts in these indices, therefore
ai+f for every 0 ≤ f ≤ k − 1 can be added to the constructed output,
preserving the increase of the indices. In order to proceed we decrease both
i, j by k to avoid previous k matchings overlapping (i, j).

2. Otherwise, no k matching occurs in the current indices. The predecessor
(x, y) directs us to the cell containing a k matching which is part of an LSCk
with the value LCSki,j. Therefore, we decrease the indices i = x and j = y

3.2 Predecessors Elimination

We aim at minimizing the number of predecessors per LCSk[i, j] and therefore
define a process of predecessors elimination. Eliminating a predecessor p, that
is, deleting it from pred(i, j) can be safely done if a maximal common subse-
quence in k length substrings of the same length can be attained using another
predecessor from pred(i, j). Lemma 3 provides the elimination procedure and its
correctness.

Lemma 3. Elimination Lemma Let p1, p2 ∈ pred(i, j) be k matchings,
where |p1| = |p2|, then one of p1, p2 can be arbitrarily eliminated.

Proof: Let p1 = (s, t) , p2 = (s′, t′). In case kMatch(i, j) = 0 then, if the
backtracking pass through table cell [i,j] it implies that the previously found k
matching is (i+ k, j + k) due to the second case of the backtracking procedure.
Moreover, according to Corollary 1, both {s, s′} ≤ i and {t, t′} ≤ j. As a con-
sequence, there is no preference to one of the equal length predecessors as both
cannot overlap the previous k matching.

Suppose then that kMatch(i, j) = 1 and p2 = (i, j). According to the back-
tracking procedure, we get to cell [i, j] either by the first case of the procedure
where there is a k matching (i+k, j+k) or by its second case where at cell [i′, j′]
there is no k matching but it contains a predecessor (i,j). The latter implies that
the previously found k matching is (i + k + f, j + k + h) for f, h > 0.

There are two cases to consider.

1. If no optimal solution uses the k matching (i, j) it implies that the optimal
solution includes k matchings (i′, j′) and (i′′, j′′) where i′ < i < i′ + k and
i′′ − k < i < i′′ or j′ < j < j′ + k and j′′ − k < j < j′′. If only one inequality
holds for i or j then some optimal solution will include (i, j), contradicting
the case definition. According to the first case of the backtrack procedure,
when backtracking from cell [i”, j”], including the k matching (i′′, j′′), we
decrease both indices by k. Since i′′ − k < i and j′′ − k < j cell [i,j] will not
be considered, therefore even if we saved p2, that is we eliminated p1, it has
no consequence on the optimal solution.

2. If there exists an optimal solution including p2 but we arbitrarily eliminated
it. Since we proved that the previously found k matching is (i+k+f, j+k+h)
for f, h ≥ 0 there is no preference to p2 over p1 as they are both of the same
length and both do not overlap the previously found k matching according
to Corollary 1. Apparently, p1 is included in another optimal solution.
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Example. Figure 2 depicts an LCS2 table. We demonstrate the two cases in
Lemma 3 where kMatch(i, j) = 1. For the first case, consider cell LCS2[5, 6]
including pred5,6 = {(4, 5), (5, 6)}. Suppose we arbitrarily eliminate (4, 5). The
LCS2 may contain the 2 matching (5, 6) that overlaps with (4,1),(4,5) and on the
same time overlaps also (6, 7) what can decrease the length of the solution. Nev-
ertheless, according to the backtracking procedure, after considering LSC2[6, 7]
we decrease the indices and go to LCS2[4, 5] in which (5, 6) cannot exist, due to
Corollary 1.

For the second case consider cell LCS2[2, 3] including pred2,3 = {(1, 1), (2, 3)}.
(2,3) is included in one of the optimal solution. Suppose we eliminated it and
retained (1, 1). The backtracking path goes through cells [7, 7] to [6, 7] to [4, 5]
to [2, 3] where it finds a non overlapping predecessor (1, 1) with the same length
as the deleted (2, 3).

Theorem 1 The LCSK(A,B) problem can be solved in O(n2) time and O(kn)
space, where n is the length of the input sequences A, B. Backtracking the solu-
tion requires time of O(�) where � is the number of k matchings in the solution,
and O(n2) space.

Proof: The algorithm fills a table of size (n−k+1)2. Each entry is filled according
to Lemma 2 in constant time as we perform a constant number of comparisons.
We assume that k is rather a small constant thus computing kMatch(i, j) is
done in constant time. In addition unifying three pred sets of size one each,
does not increase the time requirements per entry. The Elimination procedure
requires also constant time according to Lemma 3. All in all, constant time

1 2 3 4 5 6 7 8
C T T G C T T T

1 C 1 1 1 1 1 1 1 -
(1,1) (1,1) (1,1) (1,1) (1,1)(1,5) (1,5) (1,5) -

2 T 1 1 1 1 1 1 1 -
(1,1) (1,1) (1,1)(2,3) (1,1) (1,1)(1,5) (1,5) (1,5) -

3 G 1 1 1 1 1 1 1 -
(1,1) (1,1) (1,1) (1,1) (1,1)(1,5) (1,5) (1,5) -

4 C 1 1 1 1 2 2 2 -
(4,1) (4,1) (1,1),(4,1) (4,1) (4,5) (4,5) (4,5) -

5 T 1 1 1 1 2 2 2 -
(4,1) (4,1),(5,2) (4,1) (4,1) (4,5) (4,5),(5,6) (4,5),(5,7) -

6 T 1 1 1 1 2 2 3 -
(4,1) (4,1),(6,2) (4,1) (4,1) (4,5) (4,5),(6,6) (6,7) -

7 T 1 1 2 2 2 2 3 -
(4,1) (4,1) (7,3) (7,3) (7,3),(4,5) (7,3)(6,6) (6,7) -

8 G - - - - - - - -

Fig. 2. An LCS2 Table. The numbers represent the length of the common subsequence.
The pairs in parenthesis stand for the predecessors. Each cell contains all possible pre-
decessors according to Corollary 1. Due to the Elimination Lemma only one predecessor
is retained in the to following cells.
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operations are performed for each of the table entries, concluding in O(n2) time
requirement for computing the optimal length of the common subsequence in k
length substrings.

During the backtracking process we go through the cells representing the k
matchings of one optimal solution. If the difference between two such k matchings
is more than k, we will go through an intermediate cell whose predecessor directs
us to the next k matching. Hence finding the common subsequence in k length
substrings requires O(�) where � is the number of k matchings in the solution.

Regarding space: Each of the n2 entries contains, according to Corollary 1
three predecessors and the Eliminate function, due to Lemma 3, results in a
single predecessor before considering further entries, implying O(n2) space re-
quirement. Nevertheless, due to Lemma 2, during the computation of LCSk[i, j]
we need only row i − k and column j − k. As a consequence, at each step we
save only k rows and columns implying the space requirement is O(kn). In or-
der to backtrack the solution, the whole table is needed, implying O(n2) space
requirement.

4 Conclusion

In this paper we defined a generalization of the LCS problem, where each match-
ing must consist of k consecutive symbols. We proved that using the known LCS
algorithm does not always output an optimal solution. However, by thoroughly
understanding the traits of the problem we proved a similar algorithm with the
same time complexity can solve the problem. Due to the importance of the LCS
problem as a measure of similarity between the inputs, more generalizations may
be thought of.
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