
Extreme Pivots for Faster Metric Indexes

Guillermo Ruiz1, Francisco Santoyo1, Edgar Chávez2,
Karina Figueroa1, and Eric Sadit Tellez1

1 Universidad Michoacana de San Nicolás de Hidalgo, México
{gruiz,psantoyo}@dep.fie.umich.mx,
{karina,sadit}@fismat.umich.mx

2 Universidad Nacional Autónoma de México
elchavez@matem.unam.mx

Abstract. Pivot tables are popular for exact metric indexing. It is well known
that a large pivot table produces faster indexes. The rule of thumb is to use as
many pivots as the available memory allows for a given application. To further
speedup searches, redundant pivots can be eliminated or the scope of the pivots
(the number of database objects covered by a pivot) can be reduced.

In this paper, we apply a different technique to speedup searches. We as-
sign objects to pivots while, at the same time, enforcing proper coverage of the
database objects. This increases the discarding power of pivots and in turn leads
to faster searches. The central idea is to select a set of essential pivots (without
redundancy) covering the entire database. We call our technique extreme pivoting
(EP).

A nice additional property of EP is that it balances performance and memory
usage. For example; using the same amount of memory, EP is faster than the
List of Clusters and the Spatial Approximation Tree. Moreover, EP is faster than
LAESA even when it uses less memory.

The EP technique was formally modeled allowing performance prediction
without an actual implementation. Performance and memory usage depend on
two parameters of EP, which are characterized with a wide range of experiments.
Also, we provide automatic selection of one parameter fixing the other. The for-
mal model was empirically tested with real world and synthetic datasets finding
high consistency between the predicted and the actual performance.

1 Introduction

We are interested in the proximity search problem, where a metric space (X , d) is given.
For a finite subset S of X , and an element q ∈ X , the goal is to find elements in
S near q. One proximity query of interest is range query, given r ≥ 0 we seek for
(q, r) = {s ∈ S | d(s, q) ≤ r}. It is also useful the notion of k nearest neighbor query
(KNN), given an integer k > 0 find k nearest elements of S to q. KNN queries are
equivalent to range queries if the search radius can be bounded. The ball centered at q
with radius r is named the query ball (an analogous definition exists for KNN queries).
The set X is often referred as the universe of objects, S is called the database, and q is
called the query object.

The proximity search problem can be trivially solved with a sequential scan. This solu-
tion makes sense when the set S is small and the distance function d is cheap.

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 115–126, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

116 G. Ruiz et al.

For large datasets and/or expensive distance functions, metric indexing takes advantage
of transitive properties of the metric to avoid a sequential scan. This problem has impor-
tant practical applications in machine learning, pattern recognition, statistics, bioinfor-
matics and textual and multimedia information retrieval, to name a few. There are several
books and surveys (Chavez et al. [1], Samet [2], Zezula et al. [3]) describing with detail
the different discarding rules, we will assume some familiarity of the reader with the
subject.

There are two popular approaches to metric indexing, namely pivot based indexes
and compact partitions. The later divides the data in spatially coherent regions, and at
query time, regions without intersection with the query ball are discarded. The pivoting
scheme consists in an implicit contractive mapping, where a distance δ(x, y) with the
property δ(q, x) ≤ d(q, x)∀x ∈ X is built using a set of objects (named pivots).

1.1 Related Work

For a long time, the main measure for performance comparison has been the number of
distance computations to answer a query. The rationale behind this measure is because
distances are the most expensive operation in a query. However, when measuring the
actual time for answering a query it can be a surprise that a good index under this
measure could be very slow when measuring the time. This may be led by a combination
of a cheap distance and an expensive indexing structure.

AESA [4] stores O(n2) distances, and hence the construction cost is of the same
order. At query time it performs a constant number of distance computations for a fixed
database. However, they compute a linear number of arithmetic and logical operations
at query time. A linear size restriction of the same idea is presented in LAESA [5]. The
table of pivots comes from this initial idea.

Chavez et al. [1], proved that any pivot based metric index requires at least a loga-
rithmic (on the database size) number of pivots (randomly selected from the database);
however, the base of the logarithm depends on the intrinsic dimension of the database,
needing larger indexes as the intrinsic dimension increases. This optimal number of
pivots could not fit in main memory; hence, the rule of thumb is to use as much pivots
as they fit.

Many of the pivots used are redundant if they are selected randomly. Hence, pivot se-
lection became popular. Bustos et al. [6] present different strategies to this matter, show-
ing that the proper selection of pivots is driven by datasets and queries. Remarkably,
randomly chosen pivots can be good enough in any case. Finally, Celik [7,8] presents
the priority vantage point method (Kvp). The Kvp is a structure where only the K most
promising pivots are stored per object. It experimentally shows that the most promising
pivots are those either near or far from the object.

Another approach consists in making a compact partition of the data. Here, two in-
dexes are representative. The Spatial Approximation Tree (SAT) [9] is a metric tree
where each node c is selected from S; c has N(c) nodes, defined as u ∈ N(c) if
d(u, c) < d(u, v), v ∈ N(c), for all u ∈ S \ {c}. This procedure is recursively repeated
for each u ∈ N(c) with S as the set items in S \ {N(c) ∪ {c}} having u as its closer
object in N(c). Since N(c) depends on the construction order, there are many N(c).
The author proposes to review S in the natural order imposed by the distance value

Extreme Pivots for Faster Metric Indexes 117

of each object to c. This index has good performance and no construction parameters
(other than the order of the objects in N(c)); this simplicity of use makes the SAT a fair
choice when there is not much knowledge of the database. Chavez and Navarro [10]
present a robust and memory efficient alternative, dubbed as the List of Clusters (LC).
The LC needs linear memory and up to quadratic construction time. At equality of
memory, it remains unbeatable on datasets with very high intrinsic dimensionality.

2 Extreme Pivots

An Extreme Pivoting (EP) Index consists on a set of pivot groups (PG). Each group is
a tuple (P, α), where α > 0 and P is a subset of S. For every p ∈ P there exists a set
A(p) ⊂ S such that for every x ∈ A(p) we have that |μp − d(p, x)| ≥ α. Here, μp is
for the expected value of d(u, p) for all u ∈ S. We must ensure that

⋃
p∈P

A(p) = S
and A(pi) ∩ A(pj) = ∅ for i
= j; hence, both P and α define a partition of S. The
proper selection of these parameters is deferred and discussed in upcoming sections.
Let p ∈ P, define

←−
A (p) = {u ∈ A(p) | d(u, p) ≤ μp − α}, and

−→
A (p) = {u ∈ A(p) |

d(u, p) ≥ μp +α} as depicted by Figure 1. For u in S, let piv(u) be the pivot such that
u ∈ A(p).

Fig. 1. The regions being controlled by α, from the perspective of pivot p

The elements of A(p) will be called associates of p. Our construction depends criti-
cally on α, and in turn, the optimum value of α depends on the distribution of objects in
the database. We will estimate α using some probabilistic assumptions, for now, please
notice that when α = 0, then just a pivot is required and our approach degrades to a
pivot in a pivot table. If α is arbitrarily large, then A(p) will be arbitrarily small. The
parameter α governs more than just the size of associates of a pivot, as we will see.

Given an element u and a pivot p, let a = Pr(u ∈ A(p)), a is the probability of
covering u with the pivot p. If a ≤ 1 is a fixed value for a fixed database, then the
number of pivots per group is m = ln (an+1)

ln (1/(1−a)) .
In this expression, m is a function of a (or more precisely, it depends on α). The

proper value of a is tightly coupled with the searching performance (based on the dis-
carding probability induced by a pivot group), which is estimated in the following para-
graphs.

Given a query (q, r), the probability that u is not discarded by � pivots is

Pr(|d(q, p1)− d(u, p1)| ≤ r, . . . , |d(q, p�)− d(u, p�)| ≤ r).

118 G. Ruiz et al.

In order to simplify the analysis, we suppose all objects to be described by indepen-
dent identical distributed random variables (i.i.d.r.v). Therefore, the previous expression
can be rewritten as follows

Pr(|d(q, p) − d(u, p)| ≤ r)�.

To bound the above probability we will use the distribution of distances from the
pivot to all the database elements.

In addition to i.i.d.r.v. assumption we assume that probability functions are symmet-
ric around the mean. Let X be the random variable such that X(u) ∼ d(piv(u), u), and
let Y be Y (u) ∼ d(u, v) for u, v ∈ X . Thus, the probability function of X is defined
in the extremes of Y , i.e., X(u) corresponds to the shaded area in Figure 1, and Y (u)
matches the whole region.

Since we assume symmetry, then for every u ∈ ←−A (piv(u)) there exists an element

v ∈ −→A (piv(v)) such that X(u) + X(v) = D with D a constant. We assume as well
that for every element u there exists an element v such that Y (u) + Y (v) = D. Using
these assumptions, E[X] = E[Y] = D/2, hence E[X − Y] = 0. Let σ2

X and σ2
Y be

the variance of X and Y respectively.
Now, Pr(|d(p, u) − d(p, q)| > r) = Pr(|X − Y | > r) and, using the Chebychev

inequality1 we have Pr(|X − Y | > r) < (σ2
X + σ2

Y)/r
2.

The probability that a given u would not be discarded by its covering pivot piv(u),
is 1− Pr(|X − Y | > r) ≥ 1− (σ2

X + σ2
Y)/r

2.
The number of distances the algorithm would compute is

cost = m�+ n (1− Pr (|X − Y | > r))
� (1)

≥ m�+ n

(

1− σ2
X + σ2

Y

r2

)�

(2)

for a database of size n, and using m pivots for each of � pivot groups. We obtained
a lower bound for the average number of distances computed using this technique. We
could minimize this last equation to get the optimum values for m and �.

Fixing m, we obtain the optimal number of groups � as

�� =
lnm/n− ln ln (1/s)

ln (s)
, (3)

where s = 1− σ2
X+σ2

Y

r2 .
And using this optimal � we can compute the minimum cost

cost� ≥ m
(
ln n

m + ln ln (1/s) + 1
)

ln (1/s)
(4)

= m log1/s
n

m
+ o(m ln (1/s)). (5)

1 For a random variable Z with mean μZ and variance σ2
Z , Pr(|Z − μZ | > ε) < σ2

Z/ε
2.

Extreme Pivots for Faster Metric Indexes 119

This expression is similar to the cost obtained by Chavez et al. [1] for randomly
selected pivots; i.e., cost ≥ lnn+ ln ln (1/t)+ 1/ ln (1/t), with t = 1− 2σ2

Y /r
2. This

expression gets an optimal number of pivots,

k� =
lnn+ ln ln(1/t)

ln(1/t)
(6)

= log1/t n+ o(ln(1/t)). (7)

Using random pivots (as analyzed by Chavez et al), the query cost depends on the
database and the query radius, that is why the only way to improve the search speed is
to increment �. Our analysis also depends of σX , a parameter that we set at construction
time, adjusting α. Please remember that σ2

X = E[(d(u, p)−μp)
2], and by construction

|d(u, p)− μp| ≥ α, thus σ2
X ≥ α2. So, we have the chance to make adjustments to get

better results on average, once we know the database. Also, in our cost equation, we
can set the � and m parameters (m depends on α) at construction time, � can control the
memory needed by the index. A greater m will reduce the probability of not discarding
an element, even on fixed memory setups.

3 EP Table

A simple implementation of EP is a table. A set of � pivot groups will be called an
EP Table. Each group is computed as follows given the number of pivots m, and the
number of instances (groups) �. The construction consists on creating � groups using
Algorithm 1, which was sketched and analyzed in the previous section.

Algorithm 1. Randomized construction of the EP Table
Input: The input database S = {u1, . . . , un}, and the number of pivots m
Output: The set of pivots P , and the array g of n tuples (piv(u), d(u, piv(u))) ∀u ∈ S.

1: Select a random pivot p1, P ← P ∪ {p1}
2: Initialize g[1, n] = (p1, d(u1, p1)), (p1, d(u2, p1)), . . . , (p1, d(un, p1))
3: for i = 2 to m do
4: Select pi randomly from S, P ← P ∪ {pi}
5: for j = 1 to n do
6: g[j] = (pi, d(uj , pi)) if |d(uj , pi)− μ| > |d(uj , piv(uj))− μ|.
7: end for
8: end for

3.1 Optimizing α

In the previous construction, all parameters are assumed fixed. We can optimize the
parameters using the model and the analysis described previously. The optimal α is
achieved maximizing the probability of discarding an object u, which is approximated
by 1 − (σ2

X + σ2
Y)/r

2. Using this expression, we observe that σX =
√
r2 − σ2

Y ≥ α.

120 G. Ruiz et al.

This σX value implies that for high intrinsic dimensional datasets, α will be large, and
it will not be useful (because it will produce a very large m). In this case, a suboptimal
α value can be used and the whole performance could be improved using several pivot
groups, i.e., increasing �.

A better option consists in fixing � controlling how much memory is used by the
metric index. Once fixed �, we can approximate the optimal m numerically. For this
purpose we use Expression 2 as detailed in Algorithm 2. Here, the idea is to be in-
crementing m by one, and stop the algorithm whenever the derivative of Expression 2
becomes zero or positive. This procedure will create a single group, so it must be called
� times.

Algorithm 2. Numerically optimized construction of the EP-Table
Input: The input database S = {u1, u2, · · · , un}, and the number of groups �.
Output: The set of pivots P , and the array g of n tuples (piv(u), d(u, piv(u))) ∀u ∈
S.

1: Estimate σ2
Y and r2.

2: Define prev← n.
3: Select a random pivot p1, P ← P ∪ {p1}
4: Initialize g[1, n] = (p1, d(u1, p1)), (p1, d(u2, p1)), · · · , (p1, d(un, p1))
5: Define m← 1
6: Compute cost1 = m� + n(1 − (σ2

X + σ2
Y)/r2)�. {At any step, σ2

X is computed with the
current tuples in g}.

7: while True do
8: Select pi randomly from S, P ← P ∪ {pi}
9: for j = 1 to n do

10: g[j] = (pi, d(uj , pi)) if |d(uj , pi)− μ| > |d(uj , piv(uj))− μ|.
11: end for
12: m← m+ 1.
13: Update σ2

X with the current tuples in g.
14: costi = m�+ n

(
1− (σ2

X + σ2
Y)/r2

)�
.

15: if costi ≥ costi−1 then
16: stop loop
17: end if
18: end while

It is important to notice that this procedure depends heavily on the estimated values
σ2
Y and r2. Also, for real world databases the i.i.d.r.v. assumption can be far from true.

For this reason, we add a damping constant β ≤ 1 for the discarding probability in

lines 6 and 14, resulting on costi = m�+n
(
1− β(σ2

X + σ2
Y)/r

2
)�

. The precise value
of β is dependent on how much both the database and the query set disparate from the
i.i.d.r.v. assumption.

4 Experimental Performance

In this section we present the performance as a function of the dimension, and for
different standard databases used by the community. As usual, vector spaces are indexed

Extreme Pivots for Faster Metric Indexes 121

without using the coordinates. Results are reported in both time and the fraction of the
database revised for a given query.

— Nasa This database is a collection of 40150 vectors of dimension 40 obtained from
the SISAP project (http://www.sisap.org). It uses L2 as distance function.

— Colors The second benchmark is a set of 112682 color histograms (112-dimensional
vectors) from SISAP, under the L2 distance.

— CoPhIR-1M We use a subset of the CoPhIR database, of one million objects se-
lected from the CoPhIR project [11]. Each object is a 208-dimensional vector and
we use the L1 distance.

— RVEC We generate random vectors in the unitary cube, in five dimensions 4, 8, 12,
16 and 20.

Each plot represents 256 nearest neighbor queries. The query object was not indexed.
We used four searching algorithms as baseline for comparison.

1. The Sequential scan to bound the searching time when the dimension is large.
2. The LAESA, the standard pivot table.
3. The List of Clusters (LC) [10], which until now it holds the best performance for

equality of memory (on the right setup).
4. The fourth baseline is a version of Navarro’s SAT [9] built using a random order.

The SAT is probably the best index having no parameters.

We show that with a simple tweak (essentially adjusting the number of groups) we
can be faster than LAESA using as much as 64 pivots, for a fraction of the memory us-
age, or several times faster than LAESA using the same index size. The LC is reported
as the best setup for the given dataset among the bucket sizes 16, 32, 64, 128, 256, 512,
1024, and 2048. We tested EP Table with 3, 10, 30, 100, 300, and 1000 pivots per in-
stance, and up to 16 instances; we fix β = 0.8 (Section 3.1) in the numerically opti-
mized EP Table in order to diminish the effect of the i.i.d.r.v. assumption. The optimal
value of β can be very tricky, however, values around 1 produce good indexes with-
out reducing the performance on well known distributions, and 0.8 seems to be simply
enough for most setups. A detailed study on β is beyond the scope of this paper.

The algorithms were implemented in C# with the Mono framework2. Algorithms
and indexes are available as open source software in the natix library3. All experiments
were executed in a 4x quadcore Intel Xeon 2.40 GHz workstation with 32GiB of RAM,
running CentOS Linux without exploiting the multicore architecture.

4.1 Performance of Our Indexes per Database

Figure 2 shows the performance for the Nasa database. The left side of the figure
presents the performance as the fraction of the database revised. The EP Table is the best
option, specially in setups with few instances and few pivots per instance. As shown in
Figure 2(b), the search speed decreases when either the number of instances or the num-
ber of pivots per instance is large. This slowdown is because the internal computation

2 http://www.mono-project.org
3 http://github.com/sadit/natix/

http://www.sisap.org
http://www.mono-project.org
http://github.com/sadit/natix/

122 G. Ruiz et al.

2
0

2
1

2
2

2
3

2
4

2
5

2
6

number of instances

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
.
n
u
m

b
e
r

o
f

d
is

ta
n
c
e
s

EPTable (3)

EPTable (30)

EPTable (300)

EPTable Optimized

LAESA

LC

SAT Random

Sequential

(a) Average ratio of evaluated distances

2
0

2
1

2
2

2
3

2
4

2
5

2
6

number of instances

0.000

0.002

0.004

0.006

0.008

0.010

0.012

a
v
g
.
s
e
a
rc

h
 t

im
e

EPTable (3)

EPTable (30)

EPTable (300)

EPTable Optimized

LAESA

LC

SAT Random

Sequential

(b) Average search time

Fig. 2. Performance comparison of the nearest neighbour search in the Nasa database. We show
curves only for m = 3, 30, and 300 in order to simplify the analysis of the figure.

increases. Please notice that the performance of the numerically optimized EP Table is
very close to the best setups (on both review and real time).

In practical applications we need to optimize both memory and real query time, not
the amount of computed distances. At some point, increasing the number of instances
to reduce the fraction of the database revised, slowdowns the query time. Please notice
that the EP Table remains as the fastest index, faster than our baselines. The speed
difference is especially noticeable in setups with few instances and many pivots.

The performance of Colors is similar to the one of Nasa when the instance is nu-
merically optimized. Figure 3(a) compares the fraction of the database revised. Notice
that EP Table with few instances and several pivots per instance produce very fast in-
dexes, surpassing the performance of LAESA, LC, and SAT. The real time, Figure 3(b)
shows a similar performance for real time; however, the performance degrades for a
large number of instances and pivots since the distance function is not very expensive
and the internal cost becomes of matter.

The last real world database is CoPhIR-1M. Figure 4 shows how LAESA and EP
Table shows a decreasing tendency as the number of instances increases. The optimum
number of instances is not reached, because the database is large and the distance func-
tion is more expensive. However, both indexes increase the searching time at some
point. Compared to SAT, EP Table is faster even using a single instance. As compared
with LC, EP Table is faster, and equally faster with a single instance, however the LC
requires more than 15 thousand centers, and EP Table is fixed with 1000 pivots, which
means that EP Table is faster to construct (this is really important on databases with a
costly distance function). In any case, it is possible to allow the EP Table to use more
pivots per group to achieve faster indexes. In CoPhIR-1M, as in other databases, the
numerically optimized EP Table is very close to the best setups of EP Table, however
it decreases its performance as the number of instances increase. This can be an effect
of our i.i.d. assumption. In contrast, the performance of the optimized EP Table in syn-
thetic databases (e.g. RVEC-20) easily surpass LAESA (see Figure 5). This last fact is

Extreme Pivots for Faster Metric Indexes 123

2
0

2
1

2
2

2
3

2
4

2
5

2
6

number of instances

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
.
n
u
m

b
e
r

o
f

d
is

ta
n
c
e
s

EPTable (3)

EPTable (30)

EPTable (300)

EPTable (1000)

EPTable Optimized

LAESA

LC

SAT Random

Sequential

(a) Average ratio of evaluated distances

2
0

2
1

2
2

2
3

2
4

2
5

2
6

number of instances

0.00

0.01

0.02

0.03

0.04

0.05

0.06

a
v
g
.
s
e
a
rc

h
 t

im
e

EPTable (3)

EPTable (30)

EPTable (300)

EPTable (1000)

EPTable Optimized

LAESA

LC

SAT Random

Sequential

(b) Average search time

Fig. 3. Performance comparison of the nearest neighbour search in the Colors database. We show
curves only for m = 3, 30, 300, and 1000 in order to simplify the analysis of the figure.

2
0

2
1

2
2

2
3

2
4

2
5

2
6

number of instances

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
.
n
u
m

b
e
r

o
f

d
is

ta
n
c
e
s

EPTable (100)

EPTable (300)

EPTable (1000)

EPTable Optimized

LAESA

LC

SAT Random

Sequential

(a) Average ratio of evaluated distances

2
0

2
1

2
2

2
3

2
4

2
5

2
6

number of instances

0.0

0.5

1.0

1.5

2.0

a
v
g
.
s
e
a
rc

h
 t

im
e

EPTable (100)

EPTable (300)

EPTable (1000)

EPTable Optimized

LAESA

LC

SAT Random

Sequential

(b) Average search time

Fig. 4. Performance comparison of the nearest neighbor search in the CoPhIR-1M database. We
show curves only for m = 100, 300, and 1000 in order to simplify the analysis of the figure.

not surprising, since all the objects were generated exactly with the same random pro-
cess as we have modeled. It is important to notice that for this high intrinsic dimensional
dataset with a cheap distance function, our EP Table is faster than other indexes.

4.2 The Effect of the Dimension on the Search Performance

The curse of dimensionality stands for the odd situation where a (clever) index is slower
than a plain sequential scan of the data, it is well documented in the literature [1]. The
last experiment consist in testing how the indexes handle the dimensionality. We used
random vectors of several dimensions in RVEC-*. Figure 6(a) shows the fraction of
the database revised. Each point of EP Table represents the best performance setup
in that dimension. This setup consists on six different number of pivots per instance
(3, 10, 30, 100, 300, and 1000). In the same figure, the optimized versions of EP Table

124 G. Ruiz et al.

2
0

2
1

2
2

2
3

2
4

2
5

2
6

number of instances

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
.
n
u
m

b
e
r

o
f

d
is

ta
n
c
e
s

EPTable (30)

EPTable (300)

EPTable (1000)

EPTable (3000)

EPTable Optimized

LAESA

LC

SAT Random

Sequential

(a) Average ratio of evaluated distances

2
0

2
1

2
2

2
3

2
4

2
5

2
6

number of instances

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

a
v
g
.
s
e
a
rc

h
 t

im
e

EPTable (30)

EPTable (300)

EPTable (1000)

EPTable (3000)

EPTable Optimized

LAESA

LC

SAT Random

Sequential

(b) Average search time

Fig. 5. Performance comparison of the nearest neighbour search in the RVEC-20 database. We
show curves only for m = 30, 300, 1000, and 3000 in order to simplify the analysis of the figure.

4 8 12 16 20

dimension

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
.

n
u
m

b
e
r

o
f

d
is

ta
n
c
e
s

EPTable-16

EPTable-8

EPTable-4

EPTable-2

EPTable-1

EPTable-16 Optimized

EPTable-8 Optimized

EPTable-4 Optimized

EPTable-2 Optimized

EPTable-1 Optimized

LAESA-16

LAESA-8

LAESA-4

LAESA-2

LAESA-1

LC

SAT Random

Sequential

(a) Average ratio of evaluated distances

4 8 12 16 20

dimension

0.0

0.1

0.2

0.3

0.4

a
v
g
.

s
e
a
rc

h
 t

im
e

EPTable-16

EPTable-8

EPTable-2

EPTable-16 Optimized

EPTable-4 Optimized

EPTable-1 Optimized

LAESA-16

LAESA-8

LAESA-2

LC

SAT Random

Sequential

(b) Average search time

Fig. 6. Performance comparison of the nearest neighbor search in terms of the dimensionality
(random vectors). On the right side, we ommit some curves in order to improve the readability.

shows the performance for the index numerically optimized for the desired number of
instances, see Section 3.1. Also, the figure shows the performance for LAESA with
several pivots (1, 2, 4, 8, and 16), implying that both LAESA and EP Table use about
the same amount of memory.

It is remarkable that EP Table outperforms all indexes, and it rapidly surpasses the
performance of LAESA. Please also notice that EP Table is better in the majority of
the setups. Also, notice that SAT rapidly degrades its performance with increasing di-
mension. Remarkably, the LC is quite robust (please remember that we show only the
best setup for each dimension); however, EP Table surpasses both SAT and LC in most
configurations. The numerically optimized EP Table shows a similar performance than
the best non optimized EP Table and surpasses the performance of LAESA, SAT, and
LC (even on a single instance and large dimensions). These experimental results verify
the closeness of our theoretical analysis to the real performance.

Extreme Pivots for Faster Metric Indexes 125

Measuring the query time (Figure 6(b)), EP Table (and the numerically optimized
version) produces the fastest indexes, specially in large dimensions. However, the or-
der of the time curves is not the same than the order found measuring the amount of
evaluated distances. This also remarks that minimizing the number of distances not nec-
essarily produces faster indexes.For example, in this experiment, the faster indexes are
those having a medium number of instances.

5 Conclusions

We presented EP Table, a new index for proximity searching. It can be seen as a gen-
eralization of the pivot based indexes. The indexing technique incorporates a model
which proved to be accurate if the distance distribution from the objects to the pivots
is known. This has been proved with uniform multidimensional synthetic data, and we
postulate that once characterized the distance distributions, the same performance boost
exhibited with the synthetic database will be attained with real world databases. The re-
sulting index may have a fixed number of instances, with each instance using essentially
one machine word per database element. We have shown that EP Table surpasses the
performance of both pivot tables and compact partitioning indexes.

We are working on incorporating the cost of the distance function and the size of
the database in the analysis and the pivot optimization. Also, the β parameter needs
a deeper study to fully understand its functionality and capabilities, this is one of our
current research trends. Finally, we are studying how to substitute the table search with
faster structures using the internal structure of the partition to speed up searches.

References

1. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquı́n, J.L.: Searching in metric spaces. ACM
Comput. Surv. 33(3), 273–321 (2001)

2. Samet, H.: Foundations of Multidimensional and Metric Data Structures, 1st edn. The Mor-
gan Kaufman Series in Computer Graphics and Geometic Modeling. Morgan Kaufmann
Publishers, University of Maryland at College Park (2006)

3. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search - The Metric Space Ap-
proach, 1st edn. Advances in Database Systems, vol. 32. Springer (2006)

4. Vidal Ruiz, E.: An algorithm for finding nearest neighbours in (approximately) constant av-
erage time. Pattern Recognition Letters 4, 145–157 (1986)

5. Micó, M.L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approximating
and eliminating search algorithm (aesa) with linear preprocessing time and memory require-
ments. Pattern Recogn. Lett. 15, 9–17 (1994)

6. Bustos, B., Navarro, G., Chávez, E.: Pivot selection techniques for proximity searching in
metric spaces. Pattern Recognition Letters 24(14), 2357–2366 (2003)

7. Celik, C.: Priority vantage points structures for similarity queries in metric spaces. In:
Shafazand, H., Tjoa, A.M. (eds.) EurAsia-ICT 2002. LNCS, vol. 2510, pp. 256–263.
Springer, Heidelberg (2002)

8. Celik, C.: Effective use of space for pivot-based metric indexing structures. In: SISAP
2008: Proceedings of the First International Workshop on Similarity Search and Applications
(sisap 2008), pp. 113–120. IEEE Computer Society, Washington, DC (2008)

126 G. Ruiz et al.

9. Navarro, G.: Searching in metric spaces by spatial approximation. The Very Large Databases
Journal (VLDBJ) 11(1), 28–46 (2002)

10. Chávez, E., Navarro, G.: A compact space decomposition for effective metric indexing. Pat-
tern Recogn. Lett. 26, 1363–1376 (2005)

11. Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., Rabitti, F.: CoPhIR:
a test collection for content-based image retrieval. CoRR abs/0905.4627v2 (2009)

	Extreme Pivots for Faster Metric Indexes
	1 Introduction
	1.1 RelatedWork

	2 ExtremePivots
	3 EPTable
	3.1 Optimizing

	4 Experimental Performance
	4.1 Performance of Our Indexes per Database
	4.2 The Effect of the Dimension on the Search Performance

	5 Conclusions
	References

