
Nieves Brisaboa
Oscar Pedreira
Pavel Zezula (Eds.)

 123

LN
CS

 8
19

9

6th International Conference, SISAP 2013
A Coruña, Spain, October 2013
Proceedings

Similarity Search
and Applications

Lecture Notes in Computer Science 8199
Commenced Publication in 1973
Founding and Former Series Editors:
Gerhard Goos, Juris Hartmanis, and Jan van Leeuwen

Editorial Board

David Hutchison
Lancaster University, UK

Takeo Kanade
Carnegie Mellon University, Pittsburgh, PA, USA

Josef Kittler
University of Surrey, Guildford, UK

Jon M. Kleinberg
Cornell University, Ithaca, NY, USA

Alfred Kobsa
University of California, Irvine, CA, USA

Friedemann Mattern
ETH Zurich, Switzerland

John C. Mitchell
Stanford University, CA, USA

Moni Naor
Weizmann Institute of Science, Rehovot, Israel

Oscar Nierstrasz
University of Bern, Switzerland

C. Pandu Rangan
Indian Institute of Technology, Madras, India

Bernhard Steffen
TU Dortmund University, Germany

Madhu Sudan
Microsoft Research, Cambridge, MA, USA

Demetri Terzopoulos
University of California, Los Angeles, CA, USA

Doug Tygar
University of California, Berkeley, CA, USA

Gerhard Weikum
Max Planck Institute for Informatics, Saarbruecken, Germany

Nieves Brisaboa Oscar Pedreira
Pavel Zezula (Eds.)

Similarity Search
and Applications
6th International Conference, SISAP 2013
A Coruña, Spain, October 2-4, 2013
Proceedings

13

Volume Editors

Nieves Brisaboa
Oscar Pedreira
Universidade da Coruña
Department of Computer Science, A Coruña, Spain
E-mail: {brisaboa, opedreira}@udc.es

Pavel Zezula
Masaryk University
Department of Computer Systems and Communications
Brno, Czech Republic
E-mail: zezula@fi.muni.cz

ISSN 0302-9743 e-ISSN 1611-3349
ISBN 978-3-642-41061-1 e-ISBN 978-3-642-41062-8
DOI 10.1007/978-3-642-41062-8
Springer Heidelberg New York Dordrecht London

Library of Congress Control Number: 2013948103

CR Subject Classification (1998): H.3.1, I.5.3, E.1, H.3.3, H.2.4, H.2.8, F.2.2, G.1.2-3

LNCS Sublibrary: SL 3 – Information Systems and Application, incl. Internet/Web
and HCI

© Springer-Verlag Berlin Heidelberg 2013
This work is subject to copyright. All rights are reserved by the Publisher, whether the whole or part of
the material is concerned, specifically the rights of translation, reprinting, reuse of illustrations, recitation,
broadcasting, reproduction on microfilms or in any other physical way, and transmission or information
storage and retrieval, electronic adaptation, computer software, or by similar or dissimilar methodology
now known or hereafter developed. Exempted from this legal reservation are brief excerpts in connection
with reviews or scholarly analysis or material supplied specifically for the purpose of being entered and
executed on a computer system, for exclusive use by the purchaser of the work. Duplication of this publication
or parts thereof is permitted only under the provisions of the Copyright Law of the Publisher’s location,
in its current version, and permission for use must always be obtained from Springer. Permissions for use
may be obtained through RightsLink at the Copyright Clearance Center. Violations are liable to prosecution
under the respective Copyright Law.
The use of general descriptive names, registered names, trademarks, service marks, etc. in this publication
does not imply, even in the absence of a specific statement, that such names are exempt from the relevant
protective laws and regulations and therefore free for general use.
While the advice and information in this book are believed to be true and accurate at the date of publication,
neither the authors nor the editors nor the publisher can accept any legal responsibility for any errors or
omissions that may be made. The publisher makes no warranty, express or implied, with respect to the
material contained herein.

Typesetting: Camera-ready by author, data conversion by Scientific Publishing Services, Chennai, India

Printed on acid-free paper

Springer is part of Springer Science+Business Media (www.springer.com)

Preface

This volume contains the papers presented at the 6th International Conference
on Similarity Search and Applications (SISAP 2013), held at A Coruña, Spain,
during October 2–4, 2013.

The International Conference on Similarity Search and Applications (SISAP)
is an annual forum for researchers and application developers in the area of sim-
ilarity data management. It aims at the technological problems shared by many
application domains, such as data mining, information retrieval, computer vi-
sion, pattern recognition, computational biology, geography, biometrics, machine
learning, and many others that need similarity searching as a necessary support-
ing service.

Traditionally, SISAP conferences have put emphasis on the distance-based
searching, but in general the conference concerns both the effectiveness and
efficiency aspects of any similarity search approach.

In this edition, we had the ambition of widening SISAP’s scope to cover even
more aspects related to similarity. As a result, we have attracted a higher number
of applications covering a wider range of approaches and application domains
than in previous editions. In this way, we have achieved a more competitive
conference, attractive to a larger part of the computer science community. In the
future, we will keep that intent wishing SISAP to become a relevant conference
on similarity search, bringing together a wide community of researchers and
practitioners and welcoming contributions that range from theoretical aspects
to innovative developments for which similarity search plays the central role.

The call for papers welcomed three types of contributions: (i) research papers
(full or short papers) presenting previously unpublished research contributions,
(ii) case studies and application papers (short papers) describing existing appli-
cations of similarity search in real scenarios, and (iii) demo papers describing
real or prototype systems for which similarity search technology is a core com-
ponent, presented at the conference with a system demonstration.

We received 44 submissions, from which 31 were full papers, 11 were short
papers, and 2 were demo papers. The Program Committee (PC) comprised 29
researchers from 17 different countries. Each submission was assigned to at least
three PC members. Reviews were discussed by the chairs and PC members
when the reviews diverged and no sound decision had been reached. The final
selection of papers was made by the PC chairs based on the reviews received by
each submission. Finally, the conference program includes 19 full papers, 6 short
papers, and 2 demo papers, which results in a 61,29% acceptance ratio for full
papers and a 54,54% acceptance ration for short papers.

The conference program and the proceedings are organized into five parts.
The first one comprises papers dealing with new scenarios or presenting new
approaches to similarity search. A second part is devoted to papers proposing

VI Preface

improvements to different methods and techniques for similarity search. The
third part focuses on particular metrics and their effectiveness. The fourth part
of the conference program includes papers devoted to solutions for similarity
search in specific application domains, such as recommender systems, search en-
gines, computational biology, and image and video retrieval. Finally, the last
part comprises those papers dealing with efficient implementation and engineer-
ing solutions for similarity search in real settings.

The conference program also includes two invited talks from well-known re-
searchers in the field. The first one, “Similarity in Web Search”, by Ricardo
Baeza-Yates, surveys different aspects of Web search in which similarity search
plays an important role, considering the variety of objects that need to be com-
pared, and the nature and features of the metrics involved in each case. The
second one, “Large Scale Visual Object Retrieval”, by Jiri Matas, presents the
state of the art in visual retrieval of specific objects, and describes two new
methods for large scale object retrieval.

As in previous editions, the proceedings are published by Springer-Verlag,
in the Lecture Notes in Computer Science series. A selection of the best papers
presented at the conference were recommended for publication in the journal
Information Systems. The selection of best papers was made by the PC, based on
the reviews received by each paper, and on the discussion during the conference.

SISAP conferences are organized by the SISAP initiative (www.sisap.org),
which aims to become a forum to exchange real-world, challenging and innova-
tive examples of applications, new indexing techniques, common test-beds and
benchmarks, source code and up-to-date literature through its web page, serving
the similarity search community.

We would like to acknowledge the generous collaboration and financial sup-
port from University of A Coruña, Spain (hosting instution), the Fields Institute
for Research in Mathematical Sciences, Canada, and the Center for Research and
Development in Information Technologies (CITIC) of University of A Coruña.
We want to express our gratitude to the PC members for their effort and con-
tribution to the conference. All the submission, reviewing, and proceedings gen-
eration processes were carried out through the EasyChair platform.

October 2013 Nieves Brisaboa
Oscar Pedreira
Pavel Zezula

Organization

Program Committee Chairs

Nieves R. Brisaboa Universidade da Coruña, Spain
Pavel Zezula Masaryk University, Czech Republic

Program Committee Members

Giuseppe Amato Istituto di Scienza e Tecnologie
dellInformazione (CNR), Italy

Laurent Amsaleg Institut de Recherche en Informatique et
Systèmes Aléatoires, France

Nieves Brisaboa Universidade da Coruña, Spain
Benjamin Bustos Universidad de Chile, Chile
Edgar Chavez Universidad Nacional Autónoma de México,

Mexico
Paolo Ciaccia University of Bologna, Italy
Richard Connor University of Strathclyde, UK
Andrea Esuli Instituto di Scienza e Tecnologie

dell’Informazione (CNR), Italy
Rosalba Giugno University of Catania, Italy
Michael Houle National Institute of Informatics, Japan
Alexis Joly Inria, France
Björn Jónsson Reykjav́ık University, Iceland
Daniel Keim Universität Konstanz, Germany
Eamonn Keogh University of California at Riverside, USA
Magnus Lie Hetland Norwegian University of Science and

Technology (NTNU), Norway
Yannis Manolopoulos Aristotle University of Thessaloniki, Greece
Rui Mao Shenzhen University, China
Luisa Micó Universidad de Alicante, Spain
Henning Müller University of Applied Sciences Western

Switzerland, Switzerland
Gonzalo Navarro Universidad de Chile, Chile
Arlindo Oliveira Lisbon Technical University, Portugal
José Oncina Universidad de Alicante, Spain
Apostolos Papadopoulos Aristotle University of Thessaloniki, Greece
Marco Patella University of Bologna, Italy
Oscar Pedreira Universidade da Coruña, Spain
Vladimir Pestov University of Ottawa, Canada

VIII Organization

Matthias Renz Ludwig-Maximilians-Universität München,
Germany

Hanan Samet University of Maryland, USA
Tomas Skopal Charles University in Prague, Czech Republic
Pavel Zezula Masaryk University, Czech Republic

Additional Reviewers

Bartolini, Ilaria
Buisson, Olivier
Falchi, Fabrizio
Hoksza, David
Krulis, Martin
Li, Hao
Lokoc, Jakub
Moss, Robert
Paredes, Rodrigo

Pedreira, Oscar
Reyes, Nora
Spretke, David
Stoffel, Andreas
Stoffel, Florian
Symeonidis, Panagiotis
Tellez, Eric Sadit
Wanner, Franz

Table of Contents

Invited Papers

Similarity in Web Search . 1
Ricardo Baeza-Yates

Image Retrieval for Online Browsing in Large Image Collections 3
Andrej Mikulik, Ondřej Chum, and Jǐŕı Matas

New Scenarios and Approaches

Rank Cover Trees for Nearest Neighbor Search . 16
Michael E. Houle and Michael Nett

A New Concept of Sets to Handle Similarity in Databases:
The SimSets . 30

Ives R.V. Pola, Robson L.F. Cordeiro, Caetano Traina Jr., and
Agma J.M. Traina

Similarity Search on Uncertain Spatio-temporal Data 43
Johannes Niedermayer, Andreas Züfle, Tobias Emrich,
Matthias Renz, Nikos Mamoulis, Lei Chen, and Hans-Peter Kriegel

List of Clustered Permutations for Proximity Searching 50
Karina Figueroa and Rodrigo Paredes

Machine Learning for Image Classification and Clustering Using a
Universal Distance Measure . 59

Uzi Chester and Joel Ratsaby

Faster Algorithms for Tree Similarity Based on Compressed
Enumeration of Bounded-Sized Ordered Subtrees . 73

Kunihiro Wasa, Kouichi Hirata, Takeaki Uno, and Hiroki Arimura

Improving Similarity Search Methods and Techniques

Principal Directions-Based Pivot Placement . 85
Fabrizio Angiulli and Fabio Fassetti

Pivot Selection Strategies for Permutation-Based Similarity Search 91
Giuseppe Amato, Andrea Esuli, and Fabrizio Falchi

Quantized Ranking for Permutation-Based Indexing 103
Hisham Mohamed and Stéphane Marchand-Maillet

X Table of Contents

Extreme Pivots for Faster Metric Indexes . 115
Guillermo Ruiz, Francisco Santoyo, Edgar Chávez,
Karina Figueroa, and Eric Sadit Tellez

Quicker Similarity Joins in Metric Spaces . 127
Kimmo Fredriksson and Billy Braithwaite

Metrics and Evaluation

Evaluation of Different Metrics for Shape Based Image Retrieval Using
a New Contour Points Descriptor . 141

Maŕıa Teresa Garćıa-Ordás, Enrique Alegre,
Oscar Garćıa-Olalla, and Diego Garćıa-Ordás

Evaluation of LBP Variants Using Several Metrics and
kNN Classifiers . 151

Oscar Garćıa-Olalla, Enrique Alegre,
Maŕıa Teresa Garćıa-Ordás, and Laura Fernández-Robles

Evaluation of Jensen-Shannon Distance over Sparse Data 163
Richard Connor, Franco Alberto Cardillo, Robert Moss, and
Fausto Rabitti

A Multi-way Divergence Metric for Vector Spaces . 169
Robert Moss and Richard Connor

Optimal Distance Bounds for the Mahalanobis Distance 175
Tobias Emrich, Gregor Jossé, Hans-Peter Kriegel, Markus Mauder,
Johannes Niedermayer, Matthias Renz, Matthias Schubert, and
Andreas Züfle

Applications and Specific Domains

Text Categorization via Similarity Search: An Effcient and Effective
Novel Algorithm . 182

Hubert Haoyang Duan, Vladimir G. Pestov, and Varun Singla

Efficient Approximate Indexing in High-Dimensional Feature Spaces 194
Simone Santini

Semi-supervised Tag Extraction in a Web Recommender System 206
Vasily A. Leksin and Sergey I. Nikolenko

A Similarity Model for 3D Objects Based on Stable Sub-clouds 213
Markus Mauder, Peer Kröger, and Karl-Ludwig Schinner

Accurate and Efficient Search Prediction Using Fuzzy Matching and
Outcome Feedback . 219

Christopher Shaun Wagner, Sahra Sedigh, and Ali R. Hurson

Table of Contents XI

Beyond Bag of Words for Concept Detection and Search of Cultural
Heritage Archives . 233

Costantino Grana, Giuseppe Serra, Marco Manfredi, and
Rita Cucchiara

Large Scale Image Retrieval Using Vector of Locally Aggregated
Descriptors . 245

Giuseppe Amato, Paolo Bolettieri, Fabrizio Falchi, and
Claudio Gennaro

Longest Common Subsequence in k Length Substrings 257
Gary Benson, Avivit Levy, and B. Riva Shalom

Implementation and Engineering Solutions

Database Similarity Join for Metric Spaces . 266
Yasin N. Silva, Spencer S. Pearson, and Jason A. Cheney

Engineering Efficient and Effective Non-metric Space Library 280
Leonid Boytsov and Bilegsaikhan Naidan

Designing Similarity Indexes with Parallel Genetic Programming 294
Tomáš Bartoš and Tomáš Skopal

(Very) Fast (All) k-Nearest Neighbors in Metric and Non Metric Spaces
without Indexing . 300

Natalia Miranda, Edgar Chávez, Maŕıa Fabiana Piccoli, and
Nora Reyes

On Scalable Approximate Search with the Signature Quadratic Form
Distance . 312

Jakub Lokoč, Tomáš Grošup, and Tomáš Skopal

Demo Papers

PFMFind: A System for Discovery of Peptide Homology and
Function . 319

Aleksandar Stojmirović, Peter Andreae, Mike Boland,
Thomas William Jordan, and Vladimir G. Pestov

Retrieving Similar Movements in Motion Capture Data 325
Jan Sedmidubsky and Jakub Valcik

Author Index . 331

Similarity in Web Search

Ricardo Baeza-Yates

Yahoo! Labs Barcelona
Barcelona, Spain

Abstract. In this talk we survey how similarity plays an important
role in many aspects of Web search, from crawling to indexing and from
ranking to query recommendations. This implies similarity of different
objects including text of web pages, web links, and web queries. Some
similarities are measured directly while other similarities are inferred
indirectly. Sometimes the similarity measure can be precomputed while
other times needs to be calculated online.

1 Summary

Web search engines are crucial to find information among more than 660 million
websites active at the middle of 20131. In this ocean of data, users not only
expect to find good results, also they expect the search engine to be fast and
free.

A Web search engine has three major parts: the crawler that recollects data
from the Web, the indexer that transforms that data to a compressed searchable
representation (an index), and the query processor, which uses the index to
return the most relevant web pages to a user query [4].

During the crawling phase, text similarity is used for de-duplication of web
pages (e.g. finding mirrored websites [7]) and also for web text spam detection
[10]. Given the volume of the web, text similarity has to be very efficient, so
probabilistic techniques are used such as shingles [8].

Another important use of text similarity is to rank web pages by using stan-
dard information retrieval measures such as the cosine distance in a word-based
vector model with weighting techniques such as BM25. Less known applications
of text similarity are the lexical and semantic clustering of the Web [9], and the
study of the genealogy of the Web, that is, how pages are created from other
pages [3].

Similarity measures based on link attributes are mainly used for link spam
detection [6] and also as part of web search ranking or web page recommenda-
tions.

Similarity measures for queries are very useful to generate query suggestions
as well as query recommendations [2]. More over, similarity measures can also
be used to extract semantic relations among queries [5]. As the query space is
sparse, most of the query similarity measures are indirect [1].

1 According to Netcraft, July 2013.

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 1–2, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

2 R. Baeza-Yates

References

1. Baeza-Yates, R.: Graphs from search engine queries. In: van Leeuwen, J., Italiano,
G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F. (eds.) SOFSEM 2007.
LNCS, vol. 4362, pp. 1–8. Springer, Heidelberg (2007)

2. Baeza-Yates, R., Hurtado, C.A., Mendoza, M.: Improving search engines by query
clustering. JASIST 58(12), 1793–1804 (2007)

3. Baeza-Yates, R., Pereira, A., Ziviani, N.: Genealogical trees on the Web: A search
engine user perspective. In: WWW 2008: Proceedings of the 17th International
Conference on World Wide Web, Beijing, China, pp. 367–376 (2008)

4. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval: The Concepts
and Technology Behind Search, 2nd edn. Addison-Wesley (January 2011)

5. Baeza-Yates, R.A., Tiberi, A.: Extracting semantic relations from query logs. In:
Berkhin, P., Caruana, R., Wu, X. (eds.) KDD, pp. 76–85. ACM, San Jose (2007)

6. Becchetti, L., Castillo, C., Donato, D., Leonardi, S., Baeza-Yates, R.: Link-based
characterization and detection of Web Spam. In: Second International Workshop
on Adversarial Information Retrieval on the Web (AIRWeb), Seattle, USA (August
2006)

7. Bharat, K., Broder, A.Z., Dean, J., Henzinger, M.R.: A comparison of techniques to
find mirrored hosts on the WWW. Journal of the American Society of Information
Science 51(12), 1114–1122 (2000)

8. Broder, A.: On the resemblance and containment of documents. In: SEQUENCES:
Conf. on Compression and Complexity of Sequences, pp. 21–29. IEEE Computer
Society, Salerno (1997)

9. Menczer, F.: Lexical and semantic clustering by web links. Journal of the American
Society for Information Science and Technology 55(14), 1261–1269 (2004)

10. Ntoulas, A., Najork, M., Manasse, M., Fetterly, D.: Detecting spam web pages
through content analysis. In: Proceedings of the World Wide Web Conference,
Edinburgh, Scotland, pp. 83–92 (May 2006)

Image Retrieval for Online Browsing

in Large Image Collections

Andrej Mikulik, Ondřej Chum, and Jǐŕı Matas

Center of Machine Perception, Department of Cybernetics,
Faculty of Electrical Engineering, Czech Technical University in Prague

Abstract. Two new methods for large scale image retrieval are pro-
posed, showing that the classical ranking of images based on similarity
addresses only one of possible user requirements. The novel retrieval
methods add zoom-in and zoom-out capabilities and answer the “What
is this?” and “Where is this?” questions.

The functionality is obtained by modifying the scoring and ranking
functions of a standard bag-of-words image retrieval pipeline. We show
the importance of the DAAT scoring and query expansion for recall of
zoomed images.

The proposed methods were tested on a standard large annotated im-
age dataset together with images of Sagrada Familia and 100000 image
confusers downloaded from Flickr. For completeness, we present in de-
tail components of image retrieval pipelines in state-of-the-art systems.
Finally, open problems related to zoom-in and zoom-out queries are dis-
cussed.

1 Introduction

A rapid increase in the size and ubiquity of shared image collections has mo-
tivated recent significant developments in image and specific-object retrieval.
Most object-retrieval methods take into account the requirements for efficient
content-based navigation and browsing of large-scale image collections.

Text search engines have provided the inspiration for the canonical approach
to visual retrieval [30]. The user provides a query against which the retrieval en-
gine ranks image relevance (or similarity). The performance of such an approach
is typically assessed by a measure inherited from the text retrieval community:
the average precision (AP). The state of the art and the standard components
of the visual retrieval pipeline are reviewed in Section 2.

We show, however, that a similarity or relevance ranking of image-query
results is not always suitable for browsing an image collection. This is demon-
strated in the Fig. 1 rows denoted “nn”, which depict the output of a query
in a large-scale image-retrieval system. All the results are similar to the origi-
nal image in scale and viewpoint, providing little additional information. The
phenomenon is an inherent problem of ranking by approaches using similarity.
The problem becomes more pronounced as the size of the collection increases,
since more images from similar viewpoints and of similar scales are present in

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 3–15, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

4 A. Mikulik, O. Chum, and J. Matas

the dataset. On the other hand, the rows of Fig. 1 denoted “zoom in” show re-
gions of interest in the highest detected resolution. We advocate that “the most
detailed view” or, in, short “zoom-in”, is very probably the user intention after
bounding-box selection.

Fig. 1. Comparison of outputs of the standard and novel approaches. Two queries dif-
fering only by bounding-box were issued on the image in the leftmost column. The
standard “most similar image” approach (nn, top rows) retrieves nearest neighbor
matches, which provide no detailed images local to the bounding box and produce
nearly identical results. The novel “most detailed view” approach or, zoom-in, maxi-
mizes the number of pixels inside the bounding box resulting in very different results
(zoom in, bottom rows).

In the paper we address two tasks the user might be interested in: “What is
this?” and “Where is this?”. The user expresses the first by selecting a bounding
box from an image or simply moving a pointer over an image and forward-
scrolling the mouse wheel. The expected result is a detailed image of the scene
selected by the bounding box or of the local region centered around the pointer.
The second expresses a desire for a broader contextual query.

In principle there are many tasks that might be of user interest: “What is to
the left or right of this?”; “On which backgrounds can this object be seen?”;
“Which objects can be seen on this background?”; “How does this object look
like in the dark?”. To demonstrate the concept we focus exclusively on the zoom-
in and zoom-out tasks 2.

Image Retrieval for Online Browsing in Large Image Collections 5

Fig. 2. Comparison of outputs of the standard and the proposed approach. The
standard “most similar image” approach (nn, top rows) retrieves nearest neighbour
matches, while the “context view” approach answers the question “Where is this?” by
maximizing the scene content surrounding the bounding box, in this case, the whole
query image (zoom out, bottom rows).

2 Standard Components and State-of-the-Art Methods
in Large Scale Image Retrieval

In this section we review three popular approaches that each use vector represen-
tations for images. Additionally, we present image retrieval approaches derived
from techniques used in text search as well as standard methods for increasing
precision and recall after scoring in the index file.

2.1 The Bag of Words Image Representation

One of the most popular image representations is the bag of words (BoW).
Images are represented as collections of local features. A local feature has its
visual appearance represented by a visual word and its spatial extent defined by
a point and an ellipse.

Features, typically affine covariant regions, are detected for each image in
the dataset. The most frequently used detectors in image retrieval engines are
the Harris-affine [19,29], Hessian-affine [19] and MSER [18], which have different
detection characteristics, but collectively represent the state-of-the art. A com-
prehensive performance survey of features detectors is given by Mikolajczyk et
al. [20], which confirms the high performance of the above listed detectors.

Detected interest regions are described by a feature descriptor. The SIFT
descriptor [17], which describes an interest region by a point in a 128-dimensional
space, is ubiquitous in state-of-the-art systems. Many modifications have been
proposed in the literature, including two effective and popular variants: rootSIFT
[2] and SURF [5].

Feature descriptors are vector quantized into visual words [30] creating a
visual vocabulary. Many approaches have been studied in the literature, with
modifications addressing different goals and constraints.

The canonical vocabulary construction method is the unsupervised k-means
clustering. The parameter k denotes the number of visual words in the vocab-
ulary. The choice of k varies: from k ≈ 103, usually suitable for classification

6 A. Mikulik, O. Chum, and J. Matas

Fig. 3. Visualization of the bag of word image representation computation with geom-
etry compression. Courtesy of Michal Perd’och.

tasks, up to k ≈ 107 [21]. To efficiently construct large vocabularies, Nister et al.
[23] proposed the use of a hierarchical vocabulary tree and Philbin et al. [26] use
approximate nearest neighbour. Following the approach of Perdoch et al. [25],
spatial information can be also compressed using unsupervised clustering with-
out significant loss of precision. The process of image description is visualized in
Figure 3.

2.2 Image Representation with VLAD

The vector of locally aggregated descriptors (VLAD) [15] is another successful
image representation method. It combines the advantages of the bag of words
and the Fisher kernel [12]. As in the BoW representation, local features are de-
tected and described. The vocabulary is created with k-means, but, unlike the
BoW method, only a small number of visual words k are used. Jegou et al. [15]
show that good results are achieved for k ∈ [16, 256] visual words. Visual words
are constructed by finding k cluster centers as before, but the descriptor assigned
to a cluster center is computed as a sum of signed differences between the clus-
ter center and its nearest feature descriptors, resulting in a k × d dimensional
vector (d is the dimension of the local descriptor, e.g. 128 for SIFT). Product
quantization [14] is used to construct the final quantized descriptor creating a
compact representation that fits into 20 bytes.

Image Retrieval for Online Browsing in Large Image Collections 7

2.3 GIST Descriptor

A different approach to image representation is to create a global descriptor that
captures the spatial layout and spatial relationships between regions or blobs of
similar size, and the arrangement of basic geometric forms. One example is GIST,
proposed by Oliva and Torralba [24]. A single GIST descriptor is used to rep-
resent an image, which results in a small memory footprint. The representation
prevents partial matching of the image, it is sensitive to occlusion and there are
no keypoints that can be used for spatial verification.

2.4 Image Retrieval

The nearest neighbor (NN) search for similar images is slow for large datasets,
even if it uses sophisticated data structures avoiding exhaustively examination
of the image database. Approximate NN search offers a big improvement.

Text search engines [1,4] face similar scalability problems for document re-
trieval, and the computer vision community has looked there for inspiration. In
particular, image database indexing by the inverted file data structure leads to a
dramatic speedup over the nearest neighbor search [30]. Inverted files map visual
words to documents containing the words. The inverted file serves as in index
into the database: upon a query, a subset of matching documents is returned,
i.e., those that contain the visual words of the query. The document ranking pro-
ceeds by calculating the similarity between the query vector and the matching
document vectors. For sparse queries, the use of an inverted file ensures that only
documents that contain query words are examined, which leads to a substantial
speedup over the alternative of examining every document vector.

Efficient computation of the relevance of an image to a query is achieved
by traversing the inverted file and reading the posting lists associated with the
visual words of the query. The posting list (one row of the inverted file) associated
with a visual word W is the list of image identifiers that contain visual word
W . The standard tf-idf weighting scheme [3], also adopted from the document
search community, is used to weight the document’s relevance by de-emphasizing
commonly occurring, less discriminative words.

Application of this approach is straightforward for sparse BoW vectors. For
VLAD, similar speedup is achieved by combining the inverted file with asym-
metric distance computation (IVFADC) proposed by Jegou et al. [14].

2.5 Spatial Verification and Query Expansion

As shown in [26,25], retrieval results are significantly improved by using the
locations of features to verify their spatial consistency with the query region.
This is achieved by a fast and robust hypothesize-and-test procedure that esti-
mates an affine transformation between the query region and the target image.
The RANSAC algorithm with local optimization [8] is widely used for spatial
verification in state-of-the-art retrieval systems.

8 A. Mikulik, O. Chum, and J. Matas

A caveat is that spatial verification is significantly more time consuming than
BoW scoring. Thus it is performed only on the shortlist consisting of top scoring
images. Furthermore, Chum et al. [9] show that if the model of the query (bag of
words with feature geometries) is updated with newly spatially verified images
by adding their visual words and geometries during the spatial verification, the
probability of verifying other related images increases. Verified images in the
shortlist are subsequently re-ranked.

Fig. 4. Visualization of image retrieval with spatial verification for the bag of words
representation. Courtesy of Michal Perd’och.

Chum et al. [10] proposed a query expansion (QE) method – another technique
inspired by text retrieval [6,28] – to image retrieval and demonstrated impressive
gains to recall. In QE, visual words from highly ranked images are composed
in a new, expanded query. Unlike in text retrieval, features come with spatial
information, typically keypoints, so geometric constraints and can be checked
with spatial verification to ensure that the expanded query does not include
visual words from a false positive image.

Chum et al. [9] added spatial context to queries by incorporating matching fea-
tures that locally surround the initial query boundary into the query expansion.
A latent model of the context of the query object is constructed by exploiting
features surrounding the bounding-boxes of images verified by incremental spa-
tial verification. A consistent context is learned and features belonging to the
context can aid the expanded query, thus further improving recall. The process
of image retrieval for BoW representation is summarized in Figure 4.

Image Retrieval for Online Browsing in Large Image Collections 9

3 Overview of the Zooming Algorithm

The zooming algorithm, which implements the novel “What is this?” and “Where
is this?” functionalities, is based on the standard bag of words image retrieval
method. The distinction is in the choice of ranking function. Instead of ordering
images according to similarity, it is designed to address new goals: maximizing
detail or maximizing content.

To encourage a scale change, the ranking function requires knowledge of the
geometric transformation between the query and the shortlisted images. The
transformation is estimated by the RANSAC algorithm. The ranking function re-
orders only verified images, i.e., the images for which a geometric transformation
was found, preferring zoomed-in or zoomed-out images.

To increase recall, scoring with the inverted file is weighted to account for
scale change. To achieve this, compressed geometric information of the features
is stored with their visual words and the document at a time (DAAT) scoring [31]
is used to process the posting lists. Using DAAT, the geometry of the features
is examined concurrently with computation of image scores, and the standard
tf-idf score is re-weighted according to the scale change of features and user
intention.

Query expansion plays an important role in the method, and the incremental
spatial verification and context learning as proposed in [9] is used. In our ex-
periments, good results were achieved when images selected for query expansion
were chosen with the same ranking function as used for final ranking. Option-
ally, the query expansion step can be repeatedly issued until the requested zoom
is found or the system fails to retrieve new, zoomed-in images. The method is
summarized in Algorithm 1.

Algorithm 1. Overview of the zooming algorithm. Note that step 5 represents
a trade-off between the query time and output quality.

Input: Bag-of-words of the query image
Output: Ranked list of images

1.Fetch posting lists for query visual words and score in DAAT order for
each scale band separately.

2.Re-weight scores in scale bands to prefer desired change in scale and
create a shortlist.

3. Spatially verify images in the shortlist, incrementally building an ex-
panded query.

4.Rank images according to the desired goal (zoom-in/zoom-out)
5.Return the result or form the expanded query with context learning and
goto 1

10 A. Mikulik, O. Chum, and J. Matas

3.1 Ranking Functions

Many different tasks might be addressed with specific ranking functions. There
are several options for zooming which can be useful for different tasks.

Zoom in. The simple option of ordering images according to the determinant of
the geometric transformation between the query and the database image returns
maximally zoomed images first. However, the top ranked images often cover only
a small part of the scene selected by the bounding box. This ranking can be still
useful if the images are going to be further processed, i.e., compiled to a super-
resolution image, used in a new expanded query, etc..

We suggest that a user who browses the database expects to see the whole
scene in the retrieved image. However, simply restricting the results to images
that contain the whole bounding box often rejects significantly zoomed images
with only a small fraction of the scene missing. Such images might be easily ac-
cepted by the user who usually does not want to be very precise while specifying
the query bounding box.

A good trade-off between the zoom-in and a bounding box coverage was ob-
served for the following ranking function:

zin =

√
Ar

Aq
,

where Ar is the area inside the bounding box within the retrieved image and Aq

is the area inside the query bounding box. The square root plays no role in the
raking. It allows interpreting zin as an estimate of the scaling of lengths (not the
areas), which is consistent with zoom factor specification.

Zoom out. In this case, the naive “determinant of transformation” solution re-
trieves just images with similar scene content at lower resolution, providing no
additional information.

To achieve the “where is this” or zoom-out goal, the user intuitively expects to
see a large context of the query image. For this purpose, we propose the ranking
function

zout =

√
Ar

Aw
,

where Ar is the area inside the bounding box and Aw is the area of the whole
retrieved image. In this case, we add the constraint that the whole bounding box
must be visible in the result.

4 Experiments

A search engine was built for an expanded Oxford dataset (5063 images of Oxford
landmarks) [26], which was augmented with 100000 confuser images and 15000

Image Retrieval for Online Browsing in Large Image Collections 11

Sagrada - Horse (9.54×) Sagrada - Jesus (6.63×)

All Souls (1.09×) Ashmolean (1.89×)

Balliol (2.02×) Bodleian (3.20×)

Christ Church (5.44×) Cornmarket (3.93×)

Hertford (1.65×) Pitt Rivers (1.57×)

Radcliffe Camera (3.95×)

Fig. 5. Query images (on the left in each column) and the top results using the zoom-in
method with DAAT scoring and query expansion. The effective zoom is in parentheses.

12 A. Mikulik, O. Chum, and J. Matas

Table 1. Comparison of the standard method (nn) and zoom-in. We report the zoom
of the first ranked image (top 1), and the average zoom of the top five images (top 5
average). Four methods were compared: 1. the baseline nearest neighbor search with
query expansion (nn, QE), 2. Zoom-in only by shortlist re-ranking (rank), 3. DAAT
scoring and re-rank (DAAT), 4. DAAT scoring, ranking function and query expansion
(DAAT+QE). In all four cases, incremental spatial verification was used.

top 1 top 5 average
nn zoom-in nn zoom-in

query QE rank DAAT DAAT+QE QE rank DAAT DAAT+QE

Sagrada - Horse 0.98 1.82 4.09 9.54 1.16 1.41 2.04 8.03
Sagrada - Jesus 0.86 2.75 2.75 6.63 1.22 1.22 1.87 6.00
All Souls 1.03 2.31 2.31 1.09 1.03 1.41 1.50 1.08
Ashmolean 1.43 1.43 1.43 1.89 1.28 1.28 0.77 1.45
Balliol 0.95 2.02 2.02 2.02 1.00 1.00 0.61 0.81
Bodleian 0.92 1.82 2.85 3.20 1.10 1.08 1.20 2.11
Christ Church 1.77 1.77 5.44 5.44 1.52 1.52 2.57 1.77
Cornmarket 1.57 3.93 3.93 3.93 1.39 1.97 1.97 1.97
Hertford 1.28 1.65 1.65 1.65 1.02 1.35 1.35 1.35
Pitt Rivers 1.30 1.36 1.57 1.57 1.30 1.22 1.10 1.10
Radcliffe Camera 1.29 3.95 3.95 3.95 1.23 2.03 2.04 2.35

landmark images. The Oxford dataset, as well as other standard datasets, is not
very suitable for demonstrating the zoom capabilities since it does not contain
significantly zoomed-in or zoomed-out images. For this reason we added 15000
images downloaded from flickr containing the tag Sagrada Familia. This favorite
landmark is very well covered with photos from the distance up to the greatest
details on the Sagrada Familia facade.

4.1 Design Choices

Following most of the recent work on image retrieval, multi-scale Hessian-affine
features were used for feature detection. As we are interested in zooming, a
global descriptor cannot be used, because it does not allow parts-based search
of images.

Features were described by the 128-dimensional SIFT descriptor. The stan-
dard K-means algorithm with approximate nearest neighbor [22] is used to learn
a vocabulary with one million visual words. The vocabulary is learned on the
independent standard Paris dataset [27] (6412 images).

As in [25], feature geometries are compressed. Four bits are allocated for scale
and 12 bits for shape compression. The compressed geometries are stored in the
inverted file along with the visual words for fast access during DAAT scoring.

After scoring using the inverted file, a shortlist of the top 100 images is created.
Incremental spatial verification is used and images are reordered with a chosen
rank function. Optionally, the context of the query is learned and an expanded
query is issued.

Image Retrieval for Online Browsing in Large Image Collections 13

4.2 Evaluation Protocol

To our knowledge there is no standard dataset with an evaluation protocol suit-
able for testing zooming capabilities. To demonstrate the method, we chose 2
queries from Sagrada Familia and 9 queries from the Oxford dataset. The queries
and the top results retrieved with the zoom-in method are shown in Figure 5.
Note that even if the Oxford dataset is not well covered with detailed views of
landmarks, the user can, for instance, use the zoom-in to view architectural de-
tail (Sagrada), read street names (Cornmarket), boards (Bodleian) or virtually
navigate through the scene (going through the archway at Christ Church).

Table 1 shows, for 11 selected queries, the zoom-in result in top ranked image
and an average zoom in top 5 retrieved images. The baseline nearest neigh-
bour (nn) search with context based query expansion (QE) is compared with
three zoom-in methods. First includes only ranking function (rank), second uti-
lizes DAAT scoring in inverted file (DAAT), and the last adds query expansion
(DAAT+QE).

5 Conclusions

We have presented two new methods for large scale image retrieval demonstrat-
ing that the classical ranking of the images based on similarity is only one of
many retrieval problems. In very large databases, the standard retrieval of the
most similar images is unlikely to be useful as in many cases it returns just near
duplicates.

The newly proposed retrieval methods add zooming capabilities and answer
the “What is this?” and “Where is this?” questions. The functionality has been
achieved by modifying two steps of the standard bag-of-words retrieval pipeline,
namely the scoring and ranking functions.

We show the importance of the DAAT scoring and query expansion for recall
of zoomed images. The proposed methods were tested on a standard large anno-
tated image dataset together with images of Sagrada Familia and 100000 image
confusers downloaded from Flickr.

Open Problems. Ordering images according to criteria other than similarity
aggravates the problem of false positives. In a standard retrieval system, im-
ages are spatially verified and re-ordered according to the number of verified
correspondences – the inliers of a geometric transformation obtained by the
RANSAC algorithm. Irrelevant but highly similar (in the bag of words sense)
images usually have only a small number of incidentally geometrically verified
correspondences and are ranked after the true positive images. However, in the
case of zooming, an incorrectly verified image often score as the zoomed version
of the query. Such false positives are immediately recognized by the user. More-
over, the false positives are used in the subsequent query expansion which may
lead to a complete failure of the system, i.e. to an irrelevant response to the
query.

Retrieval with zooming is also sensitive to the presence of repetitive structures
[16,11,32]. Zooming in on man-made objects very often reveals small repetitive

14 A. Mikulik, O. Chum, and J. Matas

patterns – textures on facades of building, bricks, fences, bars etc., which can
often cause failure of spatial verification and consequently of query expansion.
Attention to burstiness [13], co-occurring features [7] and automatic failure re-
covery [9] alleviates the problem.

Acknowledgments. The research was supported by ERC-CZ-LL1303, the Czech
Science Foundation Project GACR P103/12/G084 and Microsoft scholarship.

References

1. Aasheim, Y., Lidal, M., Risvik, K.M.: Multi-tier architecture for web search en-
gines. In: Proceedings of First Latin American Web Congress (2003)

2. Arandjelovic, R., Zisserman, A.: Three things everyone should know to improve
object retrieval. In: Proc. CVPR, pp. 2911–2918. IEEE (2012)

3. Baeza-Yates, R., Ribeiro-Neto, B.: Modern Information Retrieval. ACM Press,
ISBN: 020139829 (1999)

4. Barroso, L.A., Dean, J., Holzle, U.: Web search for a planet: The google cluster
architecture. IEEE Micro 23 (2003)

5. Bay, H., Tuytelaars, T., Van Gool, L.: SURF: Speeded up robust features. In:
Leonardis, A., Bischof, H., Pinz, A. (eds.) ECCV 2006, Part I. LNCS, vol. 3951,
pp. 404–417. Springer, Heidelberg (2006)

6. Buckley, C., Salton, G., Allan, J., Singhal, A.: Automatic query expansion using
smart: Trec 3, pp. 69–69. NIST Special Publication Sp (1995)

7. Chum, O., Matas, J.: Unsupervised discovery of co-occurrence in sparse high di-
mensional data. In: Proc. CVPR (2010)

8. Chum, O., Matas, J., Kittler, J.: Locally optimized RANSAC. In: Michaelis, B.,
Krell, G. (eds.) DAGM 2003. LNCS, vol. 2781, pp. 236–243. Springer, Heidelberg
(2003)

9. Chum, O., Mikulik, A., Perdoch, M., Matas, J.: Total recall ii: Query expansion
revisited. In: Proc. CVPR, pp. 889–896. IEEE Computer Society, Los Alamitos
(2011) CD-ROM

10. Chum, O., Philbin, J., Sivic, J., Isard, M., Zisserman, A.: Total recall: Automatic
query expansion with a generative feature model for object retrieval. In: Proc.
ICCV (2007)

11. Doubek, P., Matas, J., Perdoch, M., Chum, O.: Image matching and retrieval by
repetitive patterns. In: 2010 20th International Conference on Pattern Recognition
(ICPR), pp. 3195–3198. IEEE (2010)

12. Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classi-
fiers. In: Advances in Neural Information Processing Systems, pp. 487–493 (1999)

13. Jégou, H., Douze, M., Schmid, C.: On the burstiness of visual elements. In: Proc.
CVPR (2009)

14. Jégou, H., Douze, M., Schmid, C.: Product quantization for nearest neighbor
search. IEEE PAMI 33(1), 117–128 (2011)

15. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a
compact image representation. In: Proc. CVPR (2010)

16. Leung, T., Malik, J.: Detecting, localizing and grouping repeated scene elements
from an image. In: Buxton, B.F., Cipolla, R. (eds.) ECCV 1996. LNCS, vol. 1064,
pp. 546–555. Springer, Heidelberg (1996)

Image Retrieval for Online Browsing in Large Image Collections 15

17. Lowe, D.G.: Distinctive image features from scale-invariant keypoints. In: Proc.
ICCV, vol. 60(2), pp. 91–110 (2004)

18. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from max-
imally stable extremal regions. In: Rosin, P.L., Marshall, D. (eds.) Proc. BMVC,
vol. 1, pp. 384–393. BMVA, London (2002)

19. Mikolajczyk, K., Schmid, C.: An affine invariant interest point detector. In: Heyden,
A., Sparr, G., Nielsen, M., Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350,
pp. 128–142. Springer, Heidelberg (2002)

20. Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaf-
falitzky, F., Kadir, T., Van Gool, L.: A comparison of affine region detectors.
IJCV 65(1/2), 43–72 (2005)

21. Mikulik, A., Perd’och, M., Chum, O., Matas, J.: Learning vocabularies over a fine
quantization. IJCV, 1–13 (2012)

22. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algo-
rithm configuration. In: VISSAPP (2009)

23. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: Proc.
CVPR (2006)

24. Oliva, A., Torralba, A.: Building the gist of a scene: The role of global image
features in recognition. Visual Perception, Progress in Brain Research 155 (2006)

25. Perdoch, M., Chum, O., Matas, J.: Efficient representation of local geometry for
large scale object retrieval. In: Proc. CVPR (2009)

26. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with
large vocabularies and fast spatial matching. In: Proc. CVPR (2007)

27. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Lost in quantization:
Improving particular object retrieval in largescale image databases. In: Proc. CVPR
(2008)

28. Salton, G., Buckley, C.: Improving retrieval performance by relevance feedback. In:
Readings in Information Retrieval, pp. 355–364 (1997)

29. Schaffalitzky, F., Zisserman, A.: Multi-view matching for unordered image sets,
or how do I organize my holiday snaps? In: Heyden, A., Sparr, G., Nielsen, M.,
Johansen, P. (eds.) ECCV 2002, Part I. LNCS, vol. 2350, pp. 414–431. Springer,
Heidelberg (2002)

30. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching
in videos. In: Proc. ICCV, pp. 1470–1477 (2003)

31. Stewénius, H., Gunderson, S.H., Pilet, J.: Size matters: Exhaustive geometric veri-
fication for image retrieval accepted for ECCV 2012. In: Fitzgibbon, A., Lazebnik,
S., Perona, P., Sato, Y., Schmid, C. (eds.) ECCV 2012, Part II. LNCS, vol. 7573,
pp. 674–687. Springer, Heidelberg (2012)

32. Torii, A., Sivic, J., Pajdla, T.: Okutomi M. Visual place recognition with repetitive
structures. In: Proc. CVPR (2013)

Rank Cover Trees for Nearest Neighbor Search

Michael E. Houle1 and Michael Nett1,2

1 National Institute of Informatics, Tokyo 101-8430, Japan
{meh,nett}@nii.ac.jp

2 The University of Tokyo, Tokyo 113-8656, Japan
michael nett@mist.i.u-tokyo.ac.jp

Abstract. This paper introduces a k-NN search index, the Rank Cover
Tree (RCT), whose pruning tests rely solely on the comparison of similar-
ity values; other properties of the underlying space, such as the triangle
inequality, are not employed. A formal theoretical analysis shows that
with very high probability, the RCT returns a correct query result in
time that depends competitively on a measure of the intrinsic dimen-
sionality of the data set. Experiments show that the RCT is capable of
meeting or exceeding the level of performance of state-of-the-art methods
that make use of metric pruning or selection tests involving numerical
constraints on distance values.

1 Introduction

Motivated at least in part by the impact of similarity search on problems in
data mining, pattern recognition, and statistics, the design and analysis of scal-
able and effective similarity search structures has been the subject of inten-
sive research for many decades. While early spatial index structures targeted
low-dimension vector representations and Lp norms [16], more recently devel-
oped structures have focused on higher-dimensional vector representations and
a wider variety of distance metrics [2, 4, 14]. Despite their advantages, spatial
and metric search structures are limited by an effect referred to as the curse
of dimensionality, in which distance values tend to concentrate strongly around
their mean values as the dimension increases [1–3, 15].

The performance of search indices depends crucially on the way in which they
use similarity information for the identification of objects relevant to a query.
Most existing indices make use of numerical constraints, such as the triangle in-
equality or distance ranges, for pruning and selection [2, 5, 8]. A serious drawback
of operations based on numerical constraints is that the number of objects actu-
ally examined can be highly variable. In an attempt to improve the scalability
of applications that depend upon similarity search, researchers have investigated
practical methods for speeding up the computation of neighborhood information
at the expense of accuracy [5, 7, 8, 17].

In this paper, we propose a new similarity search structure, the Rank Cover
Tree, whose internal operations avoid the use of numerical constraints involving
similarity values. Instead, all internal selections of the RCT can be regarded as
ordinal, in that objects are selected or pruned solely according to their rank with
respect to the sorted order of distance from the query object. Rank thresholds
precisely determine the number of objects to be selected, thereby avoiding a

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 16–29, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Rank Cover Trees for Nearest Neighbor Search 17

Algorithm CT-Find-Nearest (Cover Tree T , query point q)

1. Initialize the root-level cover set, Vh, to contain all nodes at the root level of T .
2. For j from h− 1 down to 0, do:

(a) Let V ∗
j be the set of all children of nodes of Vj+1.

(b) Form cover set Vj = {v ∈ V ∗
j | d(q, v) ≤ d(q, V ∗

j) + 2j}, where d(q, V ∗
j) is the

minimum distance between q and the points of V ∗
j .

3. Return as the nearest neighbor the point u ∈ V0 minimizing d(q, u).

Fig. 1. Cover tree routine for finding the nearest neighbor of q

major source of variation in the overall query execution time. As ordinal prun-
ing involves only direct pairwise comparisons of similarity values, the RCT is
also an example of a combinatorial similarity search algorithm [6]. The main
contributions of this paper are as follows:

– A similarity search index in which only ordinal pruning is used for node
selection — no use is made of metric pruning or of other constraints involving
distance values.

– Experimental evidence indicating that for practical k-NN search applica-
tions, our rank-based method is very competitive with approaches that make
explicit use of similarity constraints.

– A formal theoretical analysis of performance showing that RCT k-NN queries
produce correct results with very high probability. The performance bounds
are expressed in terms of a measure of intrinsic dimensionality, indepen-
dently of the full representational dimension of the data set. Due to space
limitations, in this preliminary version of our report, some of the proofs in
the analysis have been either sketched or omitted.

Very few efficient similarity search methods are known to use rank information
as the sole basis for access or pruning. One approach, RanWalk [6], performs
a random walk through a precomputed neighbor graph; however, its quadratic
preprocessing time and space requirements are prohibitively large for many appli-
cations. The SASH similarity search structure [7] performs point location within
a network of interconnected samples to efficiently find approximate query results.
However, no theoretical guarantee of performance is known for this heuristic. To
the best of our knowledge, the RCT is the first practical similarity search index
that both depends solely on ordinal pruning, and admits a formal theoretical
analysis of correctness and performance.

2 Cover Trees and the Expansion Rate

In [9], Karger and Ruhl introduced a measure of intrinsic dimensionality, the
expansion rate. The complexity of many search algorithms strongly depends
on the rate at which the number of visited elements grows as the search ex-
pands. Accordingly, Karger and Ruhl limited their attention to sets which satis-
fied the following smooth-growth property. Let BS(v, r) denote the set of points
of S contained in the closed ball of radius r centered at v ∈ S. S is said

18 M.E. Houle and M. Nett

CT RCT (h = 3) RCT (h = 4) RCT (h = 5) LSH

Space n n n n ≈ n1+ρ

Build δ6n log n cδ4n5/3 cδ5n3/2 cδ6n7/5 ≈ n1+ρ log n

Query δ12 log n cδ4kn2/3 cδ5kn1/2 cδ6kn2/5 ≈ nρ log n

RCT (fixed Δ ≥ 2, h ≈ logΔ n) RCT (fixed h ≥ 3)

Space n n

Build cδ1+�logφ(
√

5h)�n log2 n cδ1+�logφ(
√

5h)�n1+(2/h)

Query cδ1+�logφ(
√

5h)�(k + log n) log n cδ1+�logφ(
√

5h)�kn2/h

Fig. 2. Asymptotic complexities of Rank Cover Tree (RCT), Cover Tree (CT), and
LSH, stated in terms of n = |S|, neighbor set size k, and 2-expansion rate δ. For the
RCT, we show the k-NN complexity bounds derived in Section 5 for several sample
rates, both constant and sublinear. φ is the golden ratio (1 +

√
5)/2. For the stated

bounds, the RCT results are correct with probability at least 1− 1
nc . The query com-

plexity stated for the CT algorithm is for single nearest-neighbor (1-NN) search, in
accordance with the published description and analysis for this method [2]. Although
a scheme exists for applying LSH to handle k-NN queries (see Section 6), LSH in fact
performs (1 + ε)-approximate range search. Accordingly, the complexities stated for
LSH are for range search; only the approximate dependence on n is shown, in terms
of ρ, a positive-valued parameter that depends on the sensitivity of the family of hash
functions employed. The dimensional dependence is hidden in the cost of evaluating
distances and hash functions (not shown), as well as the value of ρ.

to have (b, δ)-expansion if for all v ∈ S and r > 0, |BS(q, r)| ≥ b implies
|BS(q, 2r)| ≤ δ · |BS(q, r)|. The expansion rate of S is the minimum value of
δ such that the above condition holds. The value of log2 δ can be considered
a measure of the intrinsic dimension, since doubling the radius of a Euclidean
sphere in Rm increases its volume by a factor of 2m. Upon sampling Rm by
a uniformly distributed point set, the expanded sphere would contain propor-
tionally as many points. However, as pointed out by the authors themselves,
low-dimensional subsets in very high-dimensional spaces can have low expansion
rates, whereas even for one-dimensional data the expansion rate can be linear in
the size of S.

More recently, Beygelzimer, Kakade and Langford have proposed the Cover
Tree, a similarity search structure with execution costs depending only on a
constant number of factors of δ [2]. The organization of the Cover Tree satisfies
the following invariants: for every node u at level l − 1 of the structure, its
parent v at level l is such that d(u, v) < 2l. Nearest-neighbor search progresses
by identifying a cover set of nodes Cl at every tree level l whose descendants
are guaranteed to include all nearest neighbors. Figure 1 shows the method by
which the cover sets are generated, adapted from the original description in [2].

The asymptotic complexities of the Cover Tree are summarized in Figure 2.
Experimental results for the Cover Tree show good practical performance for
many real data sets [2], but the formal analysis still depends very heavily on δ.

Rank Cover Trees for Nearest Neighbor Search 19

3 Preliminaries

In this section, we introduce some of the basic concepts needed for the description
of the RCT structure, and prove a technical lemma needed for the analysis.

3.1 Level Sets

The nodes in a Rank Cover Tree for S are organized in a random leveling L =
(L0, L1, . . .) of subsets of S. Each node of the bottom level L0 is associated with a
unique element of S. For any integer j ≥ 0 the membership of Lj+1 is determined
by independently selecting each node v ∈ Lj for inclusion with probability 1

Δ
for some real-valued constant Δ > 1. The smallest index h such that Lh = ∅
is the height of the random leveling. The probability that v ∈ S belongs to the
(non-empty) level set Lj is Δ−j . The expected height h of L is log |S|, and the
probability of h exceeding its expectation by more than a multiplicative factor
of (c+ 1) is |S|−c.

3.2 Rank Function

Let S be a data set contained in some domain U . We assume the existence of
an oracle which, given a query point q ∈ U and two objects in S, determines
the object most similar to the query. The rank function ρS : U × S → N yields
ρS(q, v) = i if and only if (v1, . . . , vn) is the ordering provided by the oracle for
q and v = vi.

To facilitate the analysis of the RCT, we assume that the oracle rankings
are induced by an underlying distance metric. For simplicity, we will assume
the absence of tied distance values. Furthermore, the total ranking of S can
also serve to rank any subset of S. For each level set Lj ∈ L, we define the
rank function ρLj : U × Lj → N as ρLj (q, v) = | {u ∈ Lj | ρ(q, u) ≤ ρ(q, v)}|, and
henceforth we take ρj and ρ to refer to ρLj and ρS , respectively.

3.3 Expansion Rate

As with the Cover Tree, the RCT is analyzed in terms of Karger and Ruhl’s
expansion rate. With respect to a query set U , a random leveling L that, for all
q ∈ U and Lj ∈ L, satisfies

∣∣BLj(q, ir)
∣∣ ≤ δi ·

∣∣BLj (q, r)
∣∣ for some real value δi > 0

and some integer i > 1, is said to have an i-expansion of δi. We consider random
levelings with 2- and 3-expansion rates δ2 and δ3, respectively. For simplicity,
in this version of the paper we will place no constraints on the minimum ball
size, although such constraints can easily be accommodated in the analysis if
desired. Henceforth, we shall take Bj(q, r) to refer to BLj(q, r). Note also that
the expansion rates of random levelings may be higher than those based only on
the data set itself (level 0).

One of the difficulties in attempting to analyze similarity search performance
in terms of ranks is the fact that rank information, unlike distance, does not sat-
isfy the triangle inequality in general. To this end, Goyal, Lifshits and Schütze [6]
introduced the disorder inequality, which can be seen as a relaxed, combina-
torial generalization of the triangle inequality. A point set S has real-valued
disorder constant D if all triples of points x, y, z ∈ S satisfy ρ(x, y) ≤ D ·

20 M.E. Houle and M. Nett

(ρ(z, x) + ρ(z, y)) , and D is minimal with this property. We can derive a similar
relationship in terms of expansion rates of a set S.

Lemma 1 (Rank Triangle Inequality). Let δ2 and δ3 be the 2- and 3-
expansion rates for U and the random leveling L of S. Then for any level set
Ll ∈ L, and any query object q ∈ U and elements u, v ∈ S,

ρl(q, v) ≤ max
{
δ2 · ρl(q, u),min{δ22 , δ3} · ρl(u, v)

}
.

Proof. From the triangle inequality, we know that d(q, v) ≤ d(q, u) + d(u, v).
There are two cases to consider, depending on the relationship between d(q, u)
and d(q, v). First, let us suppose that d(q, u) ≥ d(u, v). In this case, we have
d(q, v) ≤ 2d(q, u). Since Bl(q, d(q, v)) ⊆ Bl(q, 2d(q, u)), and since ρl(q, v) =
|Bl(q, d(q, v))|, we see that ρl(q, v) ≤ |Bl(q, 2d(q, u))| ≤ δ2|Bl(q, d(q, u))| ≤
δ2 ρl(q, u).

Now assume that d(q, u) ≤ d(u, v). Let w be any point contained in the ball
Bl(q, d(q, v)). Since

d(u,w) ≤ d(u, q) + d(q, w) ≤ d(q, u) + d(q, v)

≤ d(q, u) + d(q, u) + d(u, v) ≤ 3d(u, v),

the ball Bl(u, 3d(u, v)) entirely encloses Bl(q, d(q, v)). Therefore, we obtain the
bound ρl(q, v) ≤ |Bl(u, 3d(u, v)| ≤ δ3|Bl(u, d(u, v))| ≤ δ3 ρl(u, v). Alternatively,
ρl(q, v) ≤ |Bl(u, 4d(u, v)| ≤ δ22 |Bl(u, d(u, v))| ≤ δ22 ρl(u, v). Combining the two
bounds on ρl(q, v), the result follows. 	

Henceforth, as a simplification, we shall take δ to refer to δ2, and use only
the weaker claim that ρl(q, v) ≤ max

{
δ · ρl(q, u), δ2 · ρl(u, v)

}
. In [10], Lifshits

and Zhang showed that disorder inequalities and expansion rates are related, in
that D ≤ δ2. Note that our bound is tighter than that presented in [10]; this
improvement will be crucial to the analysis of the RCT.

4 Rank Cover Tree

The proposed Rank Cover Tree blends some of the design features of the SASH
similarity search structure and the Cover Tree. Like the SASH (and unlike the
Cover Tree), we shall see that its use of ordinal pruning allows for tight control
on the execution costs associated with approximate search queries. By restricting
the number of neighboring nodes to be visited at each level of the structure, the
user can reduce the average execution time at the expense of query accuracy. The
algorithmic descriptions of RCT construction and query processing are outlined
in Figures 3 and 4 respectively.

The underlying structure of the RCT is that of a tree T imposed on a random
leveling L of the data set S. Given any 0 ≤ l < h, the subtree Tl ⊂ T spanning
only the level sets Ll, Ll+1, . . . , Lh−1 ∈ L is also a Rank Cover Tree for the set
Ll; Tl will be referred to as the partial Rank Cover Tree of T for level l. Now, for
any u ∈ Ll and any choice of l < j < h, we define aj(u) ∈ Lj to be the unique
ancestor of u in Tl at level j.

Rank Cover Trees for Nearest Neighbor Search 21

Algorithm RCT-Build (leveling L, coverage parameter ω)

1. Level assignment.
For each item u ∈ S, determine level λ(u). Introduce u into each of the level sets
L0, L1, . . . , Lλ(u).

2. Let h be the smallest level index such that Lh = ∅. Produce partial RCT Th−1 by
connecting an artificial node notionally at level h to each of the items of Lh−1.

3. Insertion loop.
For j = h− 2 down to 0, and for every item u ∈ Lj , insert u into Tj as follows:
(a) If a copy of u also belongs to level set Lj+1, then set this copy to be the parent

of u.
(b) Otherwise, set the parent of u to be the element

v = RCT-Find-k-Nearest(Tj+1, u, 1, ω).
4. Return tree T0 as the RCT for L.

Fig. 3. Offline construction routine for the Rank Cover Tree

RCT search proceeds from the root of the tree, by identifying at each level
j a set of nodes Vj (the cover set) whose subtrees will be explored at the next
iteration. For an item u to appear in the query result, its ancestor at level j must
appear in the cover set associated with level j. Vj is chosen so that, with high
probability, each true k-nearest neighbor u satisfies the following conditions: the
ancestor uj = aj(u) of u is contained in Vj , and for any query point q, the rank
ρj(q, uj) of uj with respect to Lj is at most a level-dependent coverage quota
kj = ωmax

{
k
Δj , 1

}
. The real-valued parameter ω is the coverage parameter. It

influences the extent to which the number of requested neighbors k impacts upon
the accuracy and execution performance of RCT construction and search, while
also establishing a minimum amount of coverage independent of k. The effects of
this parameter on RCT performance is the subject of the analysis in Section 5.

Offline construction of the RCT is performed by level-ordered insertion of the
items of the random leveling, with the insertion of node v ∈ Lj performed by
first searching for its nearest neighbor w ∈ Lj+1 using the partial Rank Cover
Tree Tj+1, and then linking v to w. The construction steps are summarized in
Figure 3.

A Rank Cover Tree T will be said to be well-formed if for all nodes u ∈ T with
parent v �= u, the parent v is the nearest neighbor of u from among the nodes at
that level — that is, if ρλ(u)+1(u, v) = 1. In the analysis to follow, we determine
conditions upon the choice of the coverage parameter ω for which the construc-
tion algorithm produces a well-formed RCT with high probability. We also derive
bounds on the error probability for k-NN queries on a well-formed RCT.

5 Analysis

In this section, we prove that an RCT can be constructed using O(n) space and

O(δ1+�logφ(
√
5h)�n1+ 2

h) time, and correctly answer k-nearest neighbor queries in

O(δ1+�logφ(
√
5h)�kn

2
h) time, all with high probability. Here, n is the size of the

22 M.E. Houle and M. Nett

Algorithm RCT-Find-k-Nearest (RCT T , query point q, neighborhood size k, cover-
age parameter ω)

1. Set Vh−1 = Lh−1.
2. For j from h− 2 down to 0 do:

(a) Consider the set of children of Vj+1: V
∗
j =

⋃
v∈Vj+1

C(v).

(b) Let kj = ωmax
{

k
Δj , 1

}
be the quota of children to be retained at level j.

i. If
∣∣V ∗

j

∣∣ ≤ kj , then choose Vj ← V ∗
j .

ii. Otherwise, let Vj be the set of items of V ∗
j attaining the 	kj
 smallest

distances from q — that is, satisfying |Vj | = 	kj
 and d(q, v) < d(q, w) for
all v ∈ Vj and w ∈ V ∗

j \ Vj .
3. Return the k elements of V0 closest to q according to d.

Fig. 4. k-nearest neighbor search for the Rank Cover Tree

data set S, h ≥ 3 is the height of the random leveling L, φ = 1+
√
5

2 is the golden
ratio, and δ is the maximum over the expansion rates of S and each level of L.

We begin the RCT analysis with two technical lemmas, one of which relates
the ranks of a query-neighbor pair with respect to two different level sets. The
other bounds the average degree of nodes in an RCT.

Lemma 2. Let v be any item of level set Lj, 0 < j < h. Let α > e and β > 0
be real-valued constants. For any query item q ∈ U , with respect to any level set
Ll with 0 ≤ l < j, we have

Pr
[
ρj(q, v) > max

{ α

Δj−l
ρl(q, v), β

}]
≤ max

{(e
α

)α·ρl(q,v)
Δj−l

,

(
e · ρl(q, v)
β ·Δj−l

)β
}
.

Proof. Let U = {u ∈ Ll | ρl(q, u) ≤ ρl(q, v)} be the set of ρl(q, v)-nearest neigh-
bors of q in Ll. With respect to q, the rank of v restricted to Lj is thus
ρj(q, v) = |U ∩ Lj |. Since Lj is formed via independent selection of the members
of Ll with probability 1/Δj−l, the expected size of U ∩ Lj is μ = ρl(q, v)/Δ

j−l.
We analyze two cases according to how the maximum of αμ and β is determined.

Suppose that αμ ≥ β. Applying the standard Chernoff bound technique [11]
for the upper tail probability of ρj(q, v) yields

Pr[ρj(q, v) > αμ] <
1

eμ

(e
α

)αμ
<
(e
α

)αμ
.

If on the other hand αμ ≤ β, by using the Chernoff bound technique again, we
obtain

Pr[ρj(q, v) > β] = Pr

[
ρj(q, u) >

β

μ
· μ
]
≤
(
eμ

β

)β

.

	

Lemma 3. Let T be a well-formed Rank Cover Tree, and let v be a node of T
at level j, where h > j > 0. Then the expected number of children of v is at most
δΔ.

Rank Cover Trees for Nearest Neighbor Search 23

Proof. Omitted in this version.

Let u ∈ S be a k-nearest neighbor of a query point q ∈ U . Consider the unique
ancestors u1, u2, . . . , uh of u on each level. Since the RCT is a tree, the search
finds u if and only if the coverage parameter ω is chosen such that the kj ≥
ρj(q, uj) for each level 0 ≤ j < h (see Figure 4). The following lemma provides
a useful bound on the ranks of these ancestors with respect to their levels.

Lemma 4. Let T be a well-formed Rank Cover Tree of height h > 0 on data set
S. For any given query item q ∈ U and size k ≥ 1, let u be a k-nearest neighbor
of q with respect to L0 = S, and let uj = aj(u) be the unique ancestor of u at
level j. Furthermore, let uj = aj(u) be the unique ancestor of u at level j, for
0 ≤ j < h, and let u−1 = q. The rank of uj with respect to q is at most

ρj(q, uj) ≤ χj · max
0≤i≤j

ρj(ui−1, ui),

where χj ≤ δ�logφ(
√
5 (j+1))�, and φ = 1+

√
5

2 is the golden ratio.

Proof. (Sketch.) Consider the sequence u−1, . . . , uj , where u−1 = q. By applying
the rank triangle inequality (Lemma 1) with respect to q = u−1, ui, and uj, for
any choice of 0 ≤ i < j, we obtain the bound

ρj(q, uj) ≤ min
0≤i<j

max
{
δ · ρj(u−1, ui), δ

2 · ρj(ui, uj).
}

Repeated application of the rank triangle inequality over the resulting subse-
quences ultimately yields a bound of the form

ρj(q, uj) ≤ max
0≤i≤j

{δai · ρj(ui−1, ui)},

where ai is the maximum number of factors of δ accumulated by the term
ρj(ui−1, ui) during the expansion. Let f(m) be the minimum worst-case number
of factors of δ necessarily incurred in deriving a bound of the form stated above,
for a sequence of m+ 1 points (or m gaps). The bound would then become

ρj(q, uj) ≤ δf(j+1) · max
0≤i≤j

{ρj(ui−1, ui)},

and therefore it suffices to show that f(m) ≤ �logφ(
√
5m)�. Clearly, the bound

holds for m = 1.
Suppose for some s ∈ N thatm is the s-th Fibonacci number Fs, which satisfies

F1 = 1, F2 = 1, and for any integer s > 2,

Fs =
1√
5

(
φs −

(
− 1

φ

)s)
= Fs−1 + Fs−2.

Observe that f(F1) = f(F2) = f(1) = 0 and f(F3) = f(2) = 2. Over a subse-
quence (ua, ua+Fb

) with b > 2, we may apply the rank triangle inequality at ua,
ua+Fb−1

, and ua+Fb
, yielding the recurrence

f(Fs) ≤ max {1 + f(Fs−1), 2 + f(Fs−2)} .

24 M.E. Houle and M. Nett

This recurrence has solution f(Fs) ≤ s− 1 for all s ∈ N.
Even if m is not a Fibonacci number, for m ≥ 2 one can always find a unique

integer s ≥ 3 such that Fs−1 + 1 ≤ m ≤ Fs. Since f is a monotonically non-
decreasing function, f(m) ≤ f(Fs) ≤ s − 1. The proof can be completed by
showing that �logφ(

√
5m)� ≥ s− 1; the details are omitted. 	

On its own, Lemma 4 is not sufficient to provide a deterministic performance
bound, since neither u nor its ancestors are known until the search has reached
the leaf level of the RCT. However, by combining Lemmas 2 and 4, we can derive
a bound on the probability of an ancestor uj of a true k-nearest neighbor u not
being found at level j. This error probability decreases exponentially with ω.

Lemma 5. Let T be a well-formed Rank Cover Tree of height h > 0 on data
set S. For any given query item q ∈ U and size k ≥ 1, let u be an element of the
k-nearest-neighbor set U of q with respect to L0 = S. Consider the cover sets Vj

(0 ≤ j < h) generated as a result of a call to RCT-Find-k-Nearest (T , q, k, ω).
If the coverage parameter satisfies ω > eχj, the probability that ancestor uj = aj(u)
fails to appear in cover set Vj whenever ancestor uj+1 = aj+1(u) appears in Vj+1

is at most

Pr[uj /∈ Vj | uj+1 ∈ Vj+1] ≤
(eχj

ω

) ω
χj

.

Proof. Omitted in this version.

As with the previous lemma, which bounds the probability of an ancestor
of a neighbor failing to belong to the cover set at a given level, we can bound
the overall probability of the failure of the search and construction operations by
summing these individual error rates over all ancestors involved in the operation.

Theorem 1. Let T be a well-formed Rank Cover Tree of height h = logΔ n on
data set S. For any given query item q ∈ U and size 1 ≤ k ≤ n, consider the
k-nearest neighbor set U of q with respect to S. Given some constant c > 0, if
the coverage parameter ω is chosen such that ω ≥ χh−1 (ch+max {2h, eΔ}) ,
then with probability at least 1− 1

nc , a call to
RCT-Find-k-Nearest (T, q, k, ω) correctly returns the entire set U , with the
expected number of calls to the distance oracle being in O(ωΔδ(k + h)).

Proof. Omitted in this version.

Note that Theorem 1 bounds the number of calls to the oracle made during
the processing of a query. The asymptotic complexity bounds also apply to the
additional cost incurred at runtime, such as that of maintaining a set of tentative
nearest neighbors.

Theorem 2. Let S ⊆ U be a finite set, and let L be a random leveling for S of
height h = logΔ n > 1. Let the 2-expansion rates of S and any level set L ∈ L be
no greater than δ. Consider the RCT produced via a call to RCT-Build(h, L, ω).
If the coverage parameter is chosen such that

ω ≥ χh−1 (ch+max {2h, eΔ}) ,

Rank Cover Trees for Nearest Neighbor Search 25

then with probability at least 1− 1
nc , the tree is well-formed, and the execution

time required is in O(δΔωnh).

Proof. Analogous to Theorem 1.

The RCT complexity bounds can be further simplified if one assumes either
that the sampling rate Δ is constant, or the number of levels h is constant
(Δ = n

1
h). These cases are shown in Figure 2. It should be noted that when

the number of levels is fixed to h = 3 or h = 4, the dependence of the RCT
search time bound on δ is δ4 or δ5, respectively. For small fixed choices of h,
the dependence is much less than that of the Cover Tree (at δ12), while still
maintaining sublinear dependence on n.

6 Evaluation

We investigated and compared the performance of different approaches to exact
and approximate k-nearest neighbor search in general metric spaces. In particu-
lar, we compared the fixed-height variant of the RCT (for heights 3, 4, 8 and 16)
against the Cover Tree, the SASH, and (for those instances in which the L2-norm
is applicable) the popular E2LSH 1 implementation of LSH. The accuracy of LSH
may be influenced by the choice of a parameter governing failure probability. For
the Cover Tree, we used an implementation provided by the authors [2] that is
capable of handling k-NN queries. In addition, we compared the performance
of RCT against two libraries for approximate k-NN search based on the KD-
Tree: the first library, ANN [12], provides implementations of the KD-Tree and
BD-Tree (box decomposition tree). The BD-Tree was run as recommended by
the authors, using the ‘sliding midpoint’ and ‘simple shrinking’ rules. The accu-
racies of the KD-Tree and BD-Tree may be influenced by parameters governing
admissible distance error. The second library, FLANN [13], uses an ensemble
of KD-Tree indices and clustering-based KMeans trees, along with automatic
parameter tuning of these indices for optimized performance. The experimenta-
tion was performed with the FLANN default parameter settings. These methods
were also tested against a sequential search (linear scan) over random samples
of the data, of varying sizes.

We chose a variety of publicly available data sets in order to demonstrate the
behavior of the investigated methods across different data types, set sizes, di-
mensions and similarity measures. For each individual data set, we selected 100
objects uniformly at random as query locations. We measured the average time
required to find the 100-nearest neighbors for each of these queries. For those
methods making use of randomization, we averaged the results across 10 succes-
sive builds of the index structure. Except when otherwise stated, the distance
measure employed was the Euclidean distance. For those data sets for which
some other distance measure is more appropriate, the E2LSH, KD-Tree, BD-
Tree and FLANN were not evaluated (as the available implementations require
the use of the L2 or Lp norms).

1 www.mit.edu/andoni/LSH/

26 M.E. Houle and M. Nett

Table 1. Construction times (in seconds) for the various methods tested. For the
RCT experiments, the trees were constructed using a coverage parameter value of
ω = 64. The measurements presented for E2LSH were obtained by setting the success
probability ρ to 90%.

ANN Library RCT

Data Set Size Dim. BDTree KDTree CT LSH FLANN SASH h = 3 h = 4

ALOI 109500 641 164 2.6 12 6787 140 58 399 340
Chess 28056 6 — — 0.1 — — 1 2.3 2.6

CoverType 581012 55 53 4.7 5.6 3097 93 82 884 498
Gisette 7000 5000 11 3.7 243 3106 36 16 25 42
MNIST 70000 784 110 33 145 8236 94 43 219 201
Poker 1022771 10 — — 5.9 — — 112 1044 641
Reuters 554651 320647 — — 97435 — — 415 4393 2736

We measure the accuracy of the individual methods in terms of the achieved
recall rates. The recall is defined as the proportion of true nearest neighbors
returned by an index structure. Note that we do not penalize missing a true
k-nearest neighbor, if instead another point with identical query-distance is re-
turned.

6.1 Results

The experimental evaluation assessed the query performance of the various meth-
ods in terms of the tradeoff between accuracy and execution time; the results
are presented in Figures 5a-6c, with accuracy plotted in terms of recall rates.
The construction costs for the various indices are reported in Table 1.

In all instances tested, the fixed-height variants of the RCT for heights 3 and
4 performed very well, in that speed-ups over sequential search of more than 10
times (and in some cases, 100 times or more) were obtained for recall rates in
excess of 90%. The performances of the RCT and the SASH were generally com-
petitive with those of the other methods for the lower-dimensional data sets; for
the higher-dimensional sets, the RCT and SASH dominated. Their main com-
petitor was the ensemble method FLANN, which tended to outperform RCT
for those data sets for which the Euclidean distance was appropriate. However,
it must be noted that these data sets were of relatively small representational
dimension. In order to show the relative performance of FLANN and RCT (with
h = 3) on data sets of extremely high (but sparse) dimensionality, we compared
their performance on projections of a document data set along randomly-selected
dimensions between 512 and 4096 (see Figure 6d). In order that FLANN could be
applied, the resulting vectors were normalized, and the L2 distance was employed
as the similarity measure for both methods. Although the accuracies achieved by
FLANN were high, the results show that FLANN query times become imprac-
tically large as the dimensionality rises, due to their computation of dense mean
vectors. On the other hand, as can be seen in Figure 6c, the RCT is capable of
good performance even for the full 320,647-dimensional data set.

Although LSH is known to provide fast approximations of high quality for
range-based queries, it performed rather poorly on all but one of the sets tested

Rank Cover Trees for Nearest Neighbor Search 27

 50

 60

 70

 80

 90

 100

 0.01 0.1 1 10 100

A
ve

ra
ge

 R
ec

al
l [

%
]

Average Query Time [ms]

Amsterdam Library of Object Images

Linear Scan
Cover Tree

SASH
ANN KD-Tree

ANN BD-Tree
FLANN
EELSH

RCT (h=3)

RCT (h=4)
RCT (h=8)

RCT (h=16)

(a) The Amsterdam Library of Object Im-
ages contains 110,250 vectors, each con-
taining 641 color and texture histogram
features.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.01 0.1 1 10 100

A
ve

ra
ge

 R
ec

al
l [

%
]

Average Query Time [ms]

MNIST Database of Hand-Written Digits

Linear Scan
Cover Tree

SASH
ANN KD-Tree

ANN BD-Tree
EELSH

RCT (h=3)
RCT (h=4)

RCT (h=8)
RCT (h=16)

(b) The MNIST Database of Hand-written
Digits accommodates 70,000 recordings of
hand-written digits by 500 writers. The set
contains 784 features.

 50

 60

 70

 80

 90

 100

 0.01 0.1 1 10 100

A
ve

ra
ge

 R
ec

al
l [

%
]

Average Query Time [ms]

Forest Cover Type

Linear Scan
Cover Tree

SASH
ANN KD-Tree

ANN BD-Tree
EELSH

RCT (h=3)
RCT (h=4)

RCT (h=8)
RCT (h=16)

(c) The Forest CoverType consists of
581,012 instances of topological informa-
tion on forest cells of 900m2 each. The 53
attributes include elevation, slope, soil and
vegetation cover types.

 0
 10
 20
 30
 40
 50
 60
 70
 80
 90

 100

 0.001 0.01 0.1 1 10 100

A
ve

ra
ge

 R
ec

al
l [

%
]

Average Query Time [ms]

Poker Hands

Linear Scan
Cover Tree

SASH

RCT (h=3)
RCT (h=4)
RCT (h=8)

RCT (h=16)

(d) The Poker Hand data set consists of
1,025,010 poker hands. A hand is rep-
resented by 10 categorical attributes de-
scribing the suit and rank of each individ-
ual card in the hand.

Fig. 5. Comparison of query performances of the compared methods on the ALOI,
MNIST, Forest CoverType and Poker Hand data sets

(those for which the Euclidean distance was used as a similarity measure). The
time-accuracy trade-off controlled by the failure probability parameter of the
LSH was in many cases so erratic that performance curves could not be gener-
ated; instead, the measurements are displayed as a scatter plot. The performance
of the Cover Tree was more competitive than E2LSH, substantially improving
upon sequential search for the Forest Cover Type (Figure 5c) and the Poker Hand
(Figure 5d) data sets. However, it was generally outperformed by the RCT, even
for very high recall rates. Trends observable among the results for the KD-Tree
show that it is somewhat competitive on data sets of low representational di-
mensionality. Its performance, however, degrades to that of the sequential scan
on data sets of moderate to high representational dimension. On only one of the
investigated instances did the KD-Tree outperform the RCT variants of heights
3 and 4 (the 53-dimensional Forest Cover Type set, shown in Figure 5c).

28 M.E. Houle and M. Nett

 50

 60

 70

 80

 90

 100

 0.01 0.1 1

A
ve

ra
ge

 R
ec

al
l [

%
]

Average Query Time [ms]

Chess (King vs. King-Rook)

Linear Scan
Cover Tree

SASH

RCT (h=3)
RCT (h=4)
RCT (h=8)

RCT (h=16)

(a) The UCIML Chess data set contains
28,056 King vs. King-Rook chess game
situations. The vectors span 6 categorical
features.

 50

 60

 70

 80

 90

 100

 0.001 0.01 0.1 1 10 100

A
ve

ra
ge

 R
ec

al
l [

%
]

Average Query Time [ms]

Gisette

Linear Scan
Cover Tree

SASH
ANN KD-Tree

ANN BD-Tree
EELSH

RCT (h=3)
RCT (h=4)

RCT (h=8)
RCT (h=16)

(b) The Gisette data set contains 13,500
recordings of the hand-written digits 4 and
9. The 5,000 features also includes artifi-
cial noise and distractors.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0.001 0.01 0.1 1 10 100 1000 10000

A
ve

ra
ge

 R
ec

al
l [

%
]

Average Query Time [ms]

Reuters Corpus

Linear Scan
SASH

RCT (h=3)
RCT (h=4)

RCT (h=8)
RCT (h=16)

(c) A selection of 554,651 documents
drawn from the Reuters Corpus Vol. 2
newspaper article set. The (sparse) vectors
spanned 320,647 keyword dimensions.

 50

 60

 70

 80

 90

 100

 0.01 0.1 1 10 100 1000

A
ve

ra
ge

 R
ec

al
l [

%
]

Average Query Time [ms]

Reuters Corpus Projections

RCT(h=3, 512 features)
RCT (h=3, 1024 features)
RCT (h=3, 2048 features)
RCT (h=3, 4096 features)

FLANN (512 features)
FLANN (1024 features)
FLANN (2048 features)
FLANN (4096 features)

(d) Comparison of FLANN and RCT on
projections of the RCV2 set, consisting of
512, 1024, 2048 and 4096 dimensions, se-
lected randomly.

Fig. 6. Comparison of query performances of the compared methods on the Chess,
Gisette, and Reuters data sets, as well as (dense) projections of the Reuters data set

Finally, we note that the consistently good RCT performance for h = 3 and
h = 4 compared with higher choices of h reflects the importance of reducing the
dependence of the execution cost on the (intrinsic) dimensionality of the data.
This trend in the performance of the fixed-height variants of the RCT has been
validated on categorical data as well as numerical data, and for text data as well
as image data and other data types.

Acknowledgments. Michael Houle acknowledges the financial support of JSPS
Kakenhi Kiban (A) Research Grant 25240036, the JST ERATO Kawarabayashi
Large Graph Project, and the JST ERATO Minato Discrete Structure Manipu-
lation System Project. We are also grateful to Ilia Zvedeniouk for providing us
with patches that allowed us to include the ANN library in our experimental
evaluation.

Rank Cover Trees for Nearest Neighbor Search 29

References

1. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is nearest neighbor
meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
217–235. Springer, Heidelberg (1998)

2. Beygelzimer, A., Kakade, S., Langford, J.: Cover trees for nearest neighbor. In:
ICML 2006: Proc. 23rd Intern. Conf. on Machine Learning, pp. 97–104 (2006)

3. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

4. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity
search in metric spaces. In: Proc. 23rd Intern. Conf. on Very Large Data Bases,
VLDB 1997, pp. 426–435 (1997)

5. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: VLDB 1999: Proc. 25th Intern. Conf. on Very Large Data Bases, pp.
518–529 (1999)

6. Goyal, N., Lifshits, Y., Schütze, H.: Disorder inequality: a combinatorial approach
to nearest neighbor search. In: WSDM 2008: Proc. Intern. Conf. on Web Search
and Web Data Mining, pp. 25–32 (2008)

7. Houle, M.E., Sakuma, J.: Fast approximate similarity search in extremely high-
dimensional data sets. In: ICDE 2005: Proc. 21st Intern. Conf. on Data Engineer-
ing, pp. 619–630 (2005)

8. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: STOC 1998: Proc. 30th ACM Symp. on Theory of
Computing, pp. 604–613 (1998)

9. Karger, D.R., Ruhl, M.: Finding nearest neighbors in growth-restricted metrics.
In: STOC 2002: Proc. 34th ACM Symp. on Theory of Computing, pp. 741–750
(2002)

10. Lifshits, Y., Zhang, S.: Combinatorial algorithms for nearest neighbors, near-
duplicates and small-world design. In: SODA, pp. 318–326 (2009)

11. Motwani, R., Raghavan, P.: Randomized Algorithms. Cambridge University Press,
New York (1995)

12. Mount, D.M., Arya, S.: ANN: A library for approximate nearest neighbor searching
(2010)

13. Muja, M., Lowe, D.G.: Fast approximate nearest neighbors with automatic algo-
rithm configuration. In: International Conference on Computer Vision Theory and
Application (VISAPP 2009), pp. 331–340. INSTICC Press (2009)

14. Navarro, G.: Searching in metric spaces by spatial approximation. In: SPIRE 1999:
Proceedings of the String Processing and Information Retrieval Symposium & In-
ternational Workshop on Groupware, p. 141. IEEE Computer Society, Washington,
DC (1999)

15. Pestov, V.: On the geometry of similarity search: dimensionality curse and concen-
tration of measure. Inf. Process. Lett. 73(1-2), 47–51 (2000)

16. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann, San Francisco (2006)

17. Ye, N.: The Handbook of Data Mining. Lawrence Erlbaum (2003)

A New Concept of Sets to Handle Similarity
in Databases: The SimSets

Ives R.V. Pola, Robson L.F. Cordeiro, Caetano Traina Jr., and Agma J.M. Traina

Computer Science Department - ICMC
University of São Paulo at São Carlos, Brazil
{ives,robson,caetano,agma}@icmc.usp.br

Abstract. Traditional DBMS are heavily dependent on the concept that a set
never includes the same element twice. On the other hand, modern applications
require dealing with complex data, such as images, videos and genetic sequences,
in which exact match of two elements seldom occurs and, generally, is mean-
ingless. Thus, it makes sense that sets of complex data should not include two
elements that are “too similar”. How to create a concept equivalent to “sets” for
complex data? And how to design novel algorithms that allow it to be naturally
embedded in existing DBMS? These are the issues that we tackle in this paper,
through the concept of “similarity sets”, or SimSets for short. Several scenarios
may benefit from our SimSets. A typical example appears in sensor networks, in
which SimSets can identify sensors recurrently reporting similar measurements,
aimed at turning some of them off for energy saving. Specifically, our main con-
tributions are: (i) highlighting the central properties of SimSets; (ii) proposing the
basic algorithms required to create them from metric datasets, which were care-
fully designed to be naturally embedded into existing DBMS, and; (iii) evaluat-
ing their use on real world applications to show that our SimSets can improve the
data storage and retrieval, besides the analysis processes. We report experiments
on real data from networks of sensors existing within meteorological stations,
providing a better conceptual underpinning for similarity search operations.

1 Introduction

Traditional Database Management Systems (DBMS) are heavily dependent on the con-
cept that a set never includes the same element twice. In fact, the Set Theory is the
main mathematical foundation for most existing data models, including the Relational
Model [3]. On the other hand, applications are nowadays demanding the DBMS to han-
dle increasingly complex data, such as images, audio, long texts, multidimensional time
series, large graphs and genetic sequences, in which exact match on pairs of elements
seldom occurs or makes sense. Therefore, the usual concept of “sets” blurs for these
data, suggesting that a new, equivalent concept must take place. Thus, the questions we
pose are: What is a concept equivalent to “sets” for complex data? Furthermore, how to
design novel algorithms that allow it to be naturally embedded in existing DBMS?

The problem stems from the need to compare complex data elements by similarity,
as opposed to comparing them by equality, which is the standard strategy for traditional
data (i.e., data in numeric or in short character string domains). Then, data is repre-
sented in a metric space M =< S, d > where S is the data domain and d : S×S→ R+ is

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 30–42, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

A New Concept of Sets to Handle Similarity in Databases 31

the distance function, that holds the following properties for any s1, s2, s3 ∈ S: Identity:
d(s1, s2) = 0 → s1 = s2; Non-negativity: 0 < d(s1, s2) < ∞ , s1 � s2; Symmetry:
d(s1, s2) = d(s2, s1) and Triangular inequality: d(s1, s2) ≤ d(s1, s3)+d(s3, s2). As a mat-
ter of fact, similarity evaluation is what people naturally do for complex data, as it is
generally senseless to use identity to compare them [6]. A typical example is the deci-
sion making process that physicians do when analyzing medical images. Exact match
provides very little help here, since it is highly unlikely that identical images exist in the
data, even within images of exams from the same patient. On the other hand, it is often
important to retrieve related past cases to take advantage of their analysis and treat-
ment, by searching for similar images from previous patients’ exams. Thus, similarity
search is almost mandatory, for this example and also for many others, such as in data
mining [11], duplicate document detection [5] and complex data analysis in general.

In such a context, this paper introduces a concept equivalent to “sets” for complex
data: the “similarity sets”, or SimSets for short. Briefly, a SimSet is one set of complex
elements where there are no two elements “too similar” to each other, following the def-
inition that a set of scalar elements does not contain the same element twice. Although
intuitive, this concept brings some interesting issues, such as:

– Among many “too similar” elements, how to select the one that pertains to a Sim-
Set?

– What properties hold for SimSets?
– How to handle SimSets on real data?

In this paper we formally define the concept of SimSets and develop basic resources to
handle SimSets in a database environment. Specifically, our main contributions are:

1. Concept and properties: We introduce the new concept of SimSets, its termino-
logy and its most important properties;

2. Algorithm: We propose the algorithm Distinct to extract SimSets from any metric
dataset, carefully designing it to be naturally embedded in existing DBMS.

3. Evaluation on real data: We evaluate SimSets on real world applications, showing
that SimSets can improve data storage and retrieval, besides analysis processes.

Several scenarios may benefit from SimSets. For example, Information Retrieval
Systems would be more effective in querying sets of documents if they avoid reporting
similar texts. In a Movie Library, video sequences may be identified by selecting frames
significantly distinct from others, even within the same video. In Social Networks, one
may better rank images by discarding those that are similar to others already posted.
Sensor networks can turn off stations recurrently reporting similar measurements to
save power.

To validate our proposal we decided to investigate this latter scenario. We analyzed
sensor networks using SimSets to identify sensors that recurrently report similar mea-
surements, aimed at turning some of them off for energy saving. Specifically, we report
experiments on simulated data for sensor networks of ground-based weather stations
from Brazil. Our findings point out which areas would require more or less sensors
based on the similarity from the data estimated by a climate forecasting model.

The rest of the paper follows a traditional organization: background and related work
(Sections 2 and 3), proposed concepts and algorithms (Sections 4 and 5), experiments
(Section 6) and conclusions (Section 7). Table 1 lists the symbols of our notation.

32 I.R.V. Pola et al.

Table 1. Table of symbols

Symbol Description
R,S,T Data domain
R,S,T Database relations
R,S, T Sets of elements
ri, si, ti Elements in a set (ri ∈ R, si ∈ S, ti ∈ T)

σ Relational selection operator
σ̈ Similarity selection operator
σ̂ Similarity extraction operator

Symbol Description
ξ Similarity threshold
d Distance function (metric)
=̂ξ Sufficiently similar operator

R̂ξ, Ŝ ξ, T̂ ξ ξ-similarity-sets
Ĝξ A ξ-Similarity Graph

PŜ ξ(S) The ξ-Similarity Cover of a set S
λ Extraction policy

2 Background

The problem of extracting SimSets from a set S involves representing all similarities
occurring among pairs of elements in S as a graph. Extracting SimSets from a set S is
therefore closely related to the concept of independent dominant sets, from the Graph
Theory [4]. For a graph G = {V, E} composed of a set of vertices V and set of edges
E, one independent dominating set is another graph Ĝ = {V̂ , Ê}, V̂ ⊂ V and Ê = ∅
such that, for any vertex v, v ∈ V and v � V̂ , the vertex v has at least one edge e ∈ E
connecting it to at least a vertex in V̂ . Finding independent dominant sets is a NP-hard
optimization problem and may take a polinomial time to solve it [4]. To complete the
formulation of our SimSets, in this paper we propose the algorithm Distinct, an approx-
imate solution to quickly and accurately find both maximum and minimum independent
dominant sets.

3 Related Work

There are several work in the literature aimed at developing or improving similarity
operators. Silva et. al. [10] investigate how the similarity-based operators interact with
each other. The work describes architectural changes required to implement several
similarity operators in a DBMS, and it also shows how these operators interact both
with each other and with regular operators. The work of Budikova et. al. [2] proposes
a query language that allows to formulate content-based queries supporting complex
operations, such as similarity joins.

The work of Xiao [12] presents an algorithm to handle duplicates in string data,
aimed at tackling diverse problems, such as web page duplicate detection and document
versioning, considering that each object is composed of a list of tokens that can be
ordered. Zhu et. al. [13] investigated the cosine similarity problem. As many studies
require a minimum threshold to perform the computation, this work proposes to use the
cosine similarity to retrieve the top-k most correlated object pairs. They first identify an
upper bound property, by exploiting a diagonal traversal strategy, and then retrieve the
required pairs. Some related works also focus on solving particular problems, such as
sensor placement [8] and classification [7].

The selection of representative objects that are not too similar to each other has
already been addressed in metric spaces as a selection of pivots. The method Sparse

A New Concept of Sets to Handle Similarity in Databases 33

Spatial Selection – SSS [9] is a greedy algorithm able to choose a set of objects (i.e.,
pivots) that are not too close to each other, based on a distance threshold α. Although
the set of pivots refers to a SimSet, SSS targets the use of a few pivots to improve the
efficiency of similarity searches in metric spaces, being not appropriate to cases where
the number of pivots can be large, such as in our problem formulation of SimSets.
Unfortunately, SSS has a quadratic time complexity on the number of pivots selected,
and the largest such number seen in its original experiments is only 258.

In spite of the several qualities found in the existing techniques to handle similarity
operations, none of them throughly consider the existence of “too similar” elements in
the dataset, which is necessary for the creation of a concept equivalent to “sets” for
complex data. In this paper we tackle that problem by formally defining the concept of
SimSets and developing fundamental resources to handle SimSets in a database environ-
ment.

4 The Similarity-Set Concept

Comparing two elements by equality has very little interest when performing queries
over complex data. Thus, exact comparison must give ground to similarity comparison,
where pairs of elements close enough should be accounted as representing “the same”
real world object for the purposes of the application at hand. The relational model de-
pends upon the concept that two values in a given domain compared by the equality
comparison operator “=” results true if and only if the two values represent the same
object. When an application requires that two very similar (but not exactly equal) va-
lues si and s j refer to the same object, the equality operator should be replaced by a
“sufficiently similar” comparison operator, as defined as follows.

Definition 1 (Sufficiently ξ-similar). Given a metric space M = 〈S, d〉 and two ele-
ments si, s j ∈ S, we say that si and s j are sufficiently similar up to ξ if d(si, s j) ≤ ξ,
where ξ stands for the minimum distance that two elements must be separated to be
accounted as distinct. Whenever that condition applies, it is denoted as si=̂

ξs j and we
say that si is ξ-similar to s j

1, where ξ is also called the “similarity threshold”.

Taking into account the properties of a metric space, it follows that the =̂ξ comparison
operator is reflexive (si=̂

ξsi) and symmetric (si=̂
ξs j ⇒ s j=̂

ξsi), but it is not transitive. In
fact, it is easy to prove that the =̂ξ comparison operator is transitive if and only if ξ = 0,
and in this case “=̂0” is equivalent to “=”.

The idea that a set never has the same element twice must be acknowledged when
pairs of ξ-similar elements are accounted as the same, so they should not occur twice in
the set. To represent this idea we propose the concept of “similarity-set” as follows.

Definition 2 (ξ-Similarity-Set). A ξ-similarity-set Ŝ ξ is a set of elements from a metric
domain M = 〈S, d〉, Ŝ ξ ⊂ S, such that there is no pair of elements si, s j ∈ Ŝ ξ where
si=̂
ξs j. We say that Ŝ ξ is a ξ-similarity-set (or a “ξ-simset” for short) that has ξ as its

similarity threshold.

1 The symbol “ ˆ ” superimposed to an operator indicates that the operator is similarity-based.

34 I.R.V. Pola et al.

Note that varying ξ generates different similarity-sets. This is why the symbol ξ is
attached to the ξ-simset Ŝ ξ. The value of ξ depends on the application, on the metric
d and on the features extracted from each element si to allow comparisons. Given a
bag of elements (that is, a collection where elements can repeat), extracting a set from
it is straightforward. But, extracting a ξ-simset Ŝ ξ from a set S is not. The increased
complexity derives from the fact that there may exist many distinct ξ-simsets within a
set S. For example, let us consider a set of points in a 2-dimensional space using the
Euclidean distance, as shown in Figure 1(a). A set of points associated with distance ξ =
2 produces many distinct 2-simsets. Examples are {p2, p5} from Figure 1(b), {p1, p3, p4}
from Figure 1(c) and {p3, p4, p5} from Figure 1(d), since the distance between p2 and
p5 is bigger than to 2, and it also happens for p1, p3 and p4, and for p3, p4 and p5.

0 1 x

1

y

p1p2

p3

p4

p5

(a) 2-dimensional toy dataset

0 1 x

1

y

ξ
=

2.0

p1p2

p3

p4

p5

(b) Example of a 2-simset

0 1 x

1

y

ξ
=

2.0
ξ = 2.0

p1p2

p3

p4

p5

(c) Example of a 2-simset

0 1 x

1

y
ξ = 2.0

ξ = 2.0

p1p2

p3

p4

p5

(d) Example of a 2-simset

p1p2

p3

p4

p5

(e) The 2-similarity graph

Fig. 1. (a) A 2-dimensional toy dataset; (b),(c),(d) Examples of 2-simsets produced from our toy
dataset using the Euclidean distance; (e) Corresponding ξ-similarity graph for ξ = 2.

Our proposal to extract a ξ-simset Ŝ ξ from a set S involves representing in a graph
all ξ-similarities occurring among pairs of elements in S as we define as follows.

Definition 3 (ξ-Similarity Graph). Let S be a dataset in a metric space and ξ a si-
milarity threshold. Then, the corresponding ξ-similarity graph Ĝξ(S) = {V, E} is a
graph where each node vi ∈ V corresponds to an element si ∈ S, and there is an
edge

〈
ei, e j

〉
∈ E if and only if si=̂

ξs j. We name Ĝξ(S) as the ξ-simgraph of S.

Figure 1(e) illustrates the ξ-similarity graph for the example dataset in Figure 1(a),
considering ξ = 2. It is important to note that, given the ξ-simgraph of S, the following
rule allows checking if S is a ξ-simset or not: “The ξ-Similarity Graph Ĝξ(S) has the
set of edges E = ∅ if and only if S is a ξ-simset.”

A New Concept of Sets to Handle Similarity in Databases 35

If a set S is not a ξ-simset, it is always possible to select some of its elements to
extract a Ŝ ξ from S. As already said, there are several ways to perform this task. There-
fore, rules must be defined to efficiently drive the selection process. We name a rule
employed to select elements from S to extract Ŝ ξ as a “policy”. In this paper we con-
sider two policies, as follows.

[min] – This policy aims at selecting elements to extract a ξ-simset Ŝ ξ with the mi-
nimum possible cardinality from S, such that ∀si ∈ S : ∃s j ∈ Ŝ ξ : si=̂

ξs j;
[Max] – This policy aims at selecting elements to extract a ξ-simset Ŝ ξ with the ma-

ximum possible cardinality from S, such that ∀si ∈ S : ∃s j ∈ Ŝ ξ : si=̂
ξs j.

In the context of the Relational Model, the statement that an attribute is able to store
values from a ξ-simset can be expressed as a constraint over the attribute. It must in-
dicate the similarity threshold, and one of the policies for selecting ξ-simsets. For ex-
ample, let us suppose that SQL is extended to allow representing similarity-based con-
straints. A possibility for a table constraint syntax is shown as follows:

CONSTRAINT <name> CHECK

(SIMILARITY <attribute> UP TO <ξ> USING <distance f unction>
<selecting_policy>)

In this way, the creation of a table with a primary key PK of type CHAR(10) and an
attribute Img of type STILLIMAGE that is a ξ-simset under the LP2 distance function
would be expressed as follows:

CREATE TABLE Tab AS (

PK CHAR(10) PRIMARY KEY,

Img STILLIMAGE,

CONSTRAINT SimSet_Img CHECK (SIMILARITY Img UP TO 2 USING LP2 MAX));

In this example, we assume that STILLIMAGE is a data type over a metric domain
using the Lp2 (euclidean) distance function, and a similarity radius of 2 units define the
similarity threshold under that distance function. The 2-simset is selected by the MAX
policy. Note that a 1-SimSet is easy to obtain: every unit set is a SimSet. However, we
are interested in SimSets that express the information stored in a set of elements. Thus
we are interested in SimSets “extracted” from sets, as we will define following.

It is straightforward to maintain the consistency of a ξ-SimSet when it is created
starting from the empty set and new elements are incrementally inserted. However,
when the constraint is stated over an already existing set, it is required the ξ-simset to
be extracted following either the [min] or the [Max] selecting policies. The extraction
must execute the Distinct operation, which is defined as follows.

Definition 4 (Similarity-set extraction). A ξ-simset Ŝ ξ is extracted from a set S ⊂ S
existing in a metric domain M = 〈S, d〉 by a mapping Distinct : S × ξ × λ �→ Ŝ ξ, where
the result has no pair of elements si, s j ∈ Ŝ ξ, such that si=̂

ξs j, and for every element
sk ∈ S there is at least one element sl ∈ Ŝ ξ, such that sk=̂

ξsl. Policy λ can be either
[min] or [Max], and we say that Ŝ ξ is an extraction of S under policy λ for the similarity
threshold ξ.

36 I.R.V. Pola et al.

Following this definition, the ξ-similarity graph Ĝξ(Ŝ) is a maximum/minimum in-
dependent dominant set of graph Ĝξ(S). Notice that although a ξ-simset Ŝ ξ ⊆ S ⊂ S
exists independent from S, an extracted ξ-simset is associated to S. Also, note that the
function Distinct generates possibly non-univocal queries, that is, two extractions with
the same parameters can produce distinct results even if the database does not change,
due to the NP-hard problem complexity involved when finding independent dominant
sets, as discussed in Section 2. We name the set of all possible extractions of ξ-simsets
from S as its ξ-Similarity cover, which is defined as follows.

Definition 5 (Similarity-cover). The power set PŜ ξ(S), named as the ξ-Similarity
Cover of a set S ⊂ S existing in a metric domain M = 〈S, d〉, is the set of all ξ-
similarity-sets that can be extracted from S. The power set λPŜ ξ(S) ⊆ PŜ ξ(S) includes
all ξ-simsets that can be extracted from S following policy λ.

For example, the power set [min]PŜ 2(S) for the example dataset S, shown in Fig-
ure 1, under policy [min] and using the similarity threshold ξ = 2 is [min]PŜ 2(S) =
{{p2, p5}}, as there is only one possible ξ-simset extraction from S with the minimum
number of elements 2. However, [Max]PŜ 2(S) = {{p1, p3, p4}, {p3, p4, p5}}, since both
ξ-simsets have the same, largest cardinality 3.

To include support for similarity sets in a DBMS, the ξ-simset extraction can be
seen as a selection operation: it selects every tuple from a relation such that the value
of a given attribute is in the corresponding ξ-simset. However, the algebraic selection
operator, represented by σ in the Relational Model, selects each tuple based solely on
the attribute values existing in that tuple. Distinctly, the extraction operator depends on
values not only from the current tuple, but from the entire active attribute domain. Thus,
we assume that “extract” is a new unary operator, and we use the following notation
to represent the ξ-simset extraction operator in the Relational Algebra, according to
Definition 4: σ̂(A,d,ξ,λ)T , where T is a database relation, A is the attribute (or set of
attributes) in T that is employed to perform the extraction, d is the distance function of
the metric space for the domain of A, ξ is the similarity threshold and λ is the extraction
policy, which can assume either the min or the Max policies.

5 The Distinct Algorithm

The problem of extracting a ξ-simset Ŝ ξ from a set S involves representing in the ξ-
similarity graph Ĝξ(S) the set of all ξ-similarities occurring among pairs of elements
from S. It can be inferred from Definitions 2, 3 and 4 that extracting SimSets is therefore
closely related to the concept of independent dominant sets described in Section 2: The
vertices of an independent dominant set extracted from graph Ĝξ(S) define one ξ-simset
Ŝ ξ for S. Finding independent dominant sets is a NP-hard optimization problem and
may take a polinomial time to solve it. To complete the formulation of our SimSets, in
this section we propose the algorithm Distinct, an approximate solution to quickly and
accurately find maximum and minimum independent dominant sets, thus giving support
to the Similarity-set extraction using both the [Max] and [min] policies.

The algorithm Distinct(S, ξ, λ) generates approximate independent dominant sets
guaranteeing the properties of SimSets. Given the maximum radius ξ among elements

A New Concept of Sets to Handle Similarity in Databases 37

[Max] policy [min] policy

Legend of nodes: Original set Similarity-set Removed

(a)

p0

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10 p11

p12

p13

p14

p15

p16

p17 p18

p19 p20 p21

p22 p23

p24

p25

(b) .

(c)

(d)
16

(e)

(f)

(g)
10

Fig. 2. Steps performed by algorithm Ŝ ξ = Distinct(S, ξ, λ) to obtain a ξ-simset from Ĝξ, using
policy λ. (a): The original dataset. (b), (c) and (d): Steps to obtain the ξ-simset using the [Max]
policy. (e), (f) and (g): Steps to obtain the ξ-simset using the [min] policy.

that are considered “too similar”, it can always extract a ξ-simset from a dataset S
following either the [min] or the [Max] policy. In a nutshell, the Distinct algorithm is
twofold:

1. Generate a ξ-similarity graph Ĝξ from a metric dataset S: Ĝξ = SimGraph(S, ξ);
2. Obtain the ξ-similarity-set Ŝ ξ from graph Ĝξ, following the λ ∈ {[min], [Max]}

policies: Ŝ ξ = Distinct(S, ξ, λ).

The first phase generates a ξ-similarity graph Ĝξ from the metric dataset S. It can
be performed executing an auto range-join with the range radius as the ξ value, using
any of the several range join algorithms available in the literature. Each element si ∈ S
becomes a node in the graph, and the auto range-join creates an edge linking every pair
(si,s j) whenever d(si, s j) ≤ ξ. The second phase must extract a similarity-set SimSet
using graph Ĝξ , based on either the [min] or the [Max] policy. We propose the Distinct
algorithm to tackle that problem, which is described in Algorithm 1. In order to get an
intuition on how it works, we use the graph shown in Figure 2(a).

According to Algorithm 1, isolated nodes such as node p0 in Figure 2(a) correspond
to elements in the original dataset having no neighbors within the ξ-similarity threshold,
so they are sent to the ξ-simset and dropped from the graph, in Line 4. The algorithm
is based on the node degrees, which are evaluated in lines 6 to 8. During the execution,
as nodes are being dropped from the graph, the variables Totals, Min0 and INodes

38 I.R.V. Pola et al.

Algorithm 1. Ŝ ξ = Distinct(S, ξ, λ)
Input: Dataset S, Radius ξ, Policy λ
Output: ξ-simset SimSet

1 Array Totals [|S|];
2 Set INodes, JNodes, SimSet;
3 SimSet← ∅; GraphS← S imGraph(S, ξ);
4 foreach node si in GraphS with zero degree do
5 remove si from GraphS and insert it into SimSet;
6 Totals [i]← degree of node si in graph GraphS;
7 Min0←smallest value in Totals;
8 INodes← nodes having degree Min0;
9 while edges exist in GraphS do

10 if λ is Max then
11 randomly select a node si from INodes;
12 remove every node linked to si from GraphS;
13 remove si from GraphS and insert it into SimSet;
14 if λ is min then
15 JNodes← set of nodes linked to nodes in INodes;
16 foreach si in JNodes do
17 C1[i] =number of nodes with degree Min0 linked to si;
18 foreach si in JNodes do
19 C2[i] = −C1[i];
20 foreach s j in JNodes connected to si do
21 C2[i] = C2[i] +C1[j];
22 Min1←smallest value in C2;
23 randomly select a node si from JNodes having C2[i] = Min1;
24 remove every node linked to si from GraphS;
25 remove si from GraphS and insert it into SimSet;
26 update Totals;
27 foreach Node si in GraphS with zero degree do
28 remove si from GraphS and insert it into SimSet;
29 update Min0 and INodes;
30 end

are maintained updated, in Lines 26 and 29. Nodes that become isolated during the
execution are moved from the graph into the ξ-simset, in Line 27. Notice that evaluating
the node degrees requires a full scan over the dataset, but thereafter, as those variables
are locally maintained, no scan is required anymore.

Let us first exemplify how the λ = [Max] policy is evaluated over
our example graph from Figure 2. In the first iteration of Line 9, nodes
{p1, p2, p5, p6, p12, p13, p19, p21, p22, p24, p25} have the smallest count of edges (degree).
So, one of them is removed from the graph and inserted into the result in Line 10. Fig-
ure 2(b) depicts the case when one of such nodes (in this example node p13) is inserted
in the result, and all the nodes linked to it are removed from the graph (in this example
node p11 is removed). Figure 2(c) shows the graph after all of those nodes have been

A New Concept of Sets to Handle Similarity in Databases 39

inserted into the result and the nodes linked to them removed, in successive interactions
of Line 9. Now, as nodes {p7, p10, p14, p17} have two edges each, they are inserted into
the result in the next iterations of Line 9, as shown in Figure 2(d). As no other node
remains in the graph, the result set is the final ξ-simset, which in this example has 16
nodes. In fact, no SimSet with more than 16 nodes can exist.

Let us now exemplify how the algorithm works for policy λ = [min], processed
in Line 14. Once more we employ the graph in Figure 2(a) to be our running exam-
ple. In the first iteration of Line 9, the nodes having the smallest count of edges are
the same ones selected for the λ =[Max] policy. However, now these nodes are em-
ployed in Line 15 to select those nodes directly linked to them, which results in the set
{p3, p4, p11, p18, p20, p23}. In Line 16, it is counted how many neighbors each of the se-
lected nodes have in INodes, resulting in the counting vector C1 = {p3 : 2, p4 : 2, p11 :
2, p18 : 1, p20 : 2, p23 : 2}. Following, these counts are discounted from the total number
of nodes with minimum degree linked to each of their neighbors in Line 18, resulting
in the counting vector C2 = {p3 : 0, p4 : 0, p11 : −2, p18 : 3, p20 : −1, p23 : −1}. As p11

is the single node having the minimum count (-2) in C2, it is moved into the result, also
removing all of its neighbors from the graph, what is performed in Lines 22 to 25.

In the next iteration of Line 9, the same values result in the counting vectors C1
and C2, this time without node p11. Thus, now both nodes p20 and p23 tie with the
minimum count −1, so either of them can be inserted into the result. Figure 2(e) shows
the graph just after this second iteration. Proceeding, nodes p5 and p23 are moved to the
result, as shown in Figure 2(f). Finally, nodes p9 and p15 are successively moved, so the
SimSet that corresponds to the final graph shown in Figure 2(g) is obtained, which in
this example has 10 nodes. In fact, no SimSet with fewer than 10 nodes can be extracted.

Whenever a node is moved from the graph into the result, the graph and the corres-
ponding degree of the remaining nodes are updated in Line 26. Disconnected nodes
are also moved to the resulting SimSet in Line 27. Algorithm 1 was canonically stated
for the sake of simplicity, but it can be easily improved. First of all, Line 26 can be
performed locally to Lines 12 and 24, precluding the need to re-process large graphs.
Second, when the minimum degree is pursued for the λ = [min] policy, all nodes in the
INodes set can be removed at once (provided whenever a node is removed from the
graph it is also removed from the remaining INodes), thus reducing the overhead of
Line 27. In order to improve the access to INodes and JNodes, it is recommended that
both be kept in bitmap indexes.

It is important to highlight that this algorithm does not aim at finding “the” maximum
independent dominant sets of a graph (or its corresponding minimum counterpart), but a
very good approximation of them. We evaluated an implementation of Distinct in C++
that really chooses random nodes at steps 11 and 23, and we executed it one thousand
times with the same setting over several, varying sized graphs, and for every set of
executions it always returned answers with the same number of nodes. This result gives
us a strong indication that, although it does not guarantee that the theoretical solution is
always found, the algorithm in practice finds it almost always.

40 I.R.V. Pola et al.

6 Experiments

We performed experiments to validate our proposal using an implementation of the
Ŝ ξ = Distinct(S , ξ, λ) algorithm in C++, exploring meteorological data.

We use as raw data the results of climate forecasting models. A climate model is a
mathematical formulation of atmospheric behavior based on Navier-Stokes equations
over a detailed representation of the land. The equations are iteratively evaluated over
the atmosphere segmented as cubes of fixed sizes, executing the simulation in time steps
that span several years in few hours steps. A simulation run usually takes several weeks
of processing in large supercomputers of the climate research centers. For the experi-
ment reported here, we used the Eta-CPTEC climate model [1]. The model analyzed
the entire South America creating a 0.4 × 0.4 degrees (Latitude × Longitude) grid.

We took the first simulated value of each geographical coordinate for three atmo-
spheric measures: maximum temperature, minimum temperature and precipitation, for
each month of year 2012. Thus, there are 9507 geographic points, and each point is
represented by an array of 3 ∗ 12 = 36 climate measurements, plus its latitude and lon-
gitude. To evaluate the similarity, we used the weighted Euclidean distance where the
geographical coordinates weights 25% (12.5% each) and the climate measures equally
share the other 75%. Our objective is to answer the following question: “If we want
to validate the climate model (and improve our ability to make accurate climate pre-
dictions), where should we put a limited number of meteorological stations across the
Brazilian territory so that we can take the measurements that are the most distinct from
the full set of grid points?” The similarity metric was defined to measure the distinctness
of each point, and we included the geographical coordinates to force the distribution of
sensor stations over the full territory.

(a) Real station network. (b) Resulting SimSet [min] policy.

Fig. 3. (a) Distribution of the existing network of meteorological stations in Brazil. (b) Distribu-
tion of stations selected from the Climate dataset using Distinct with min policy.

A New Concept of Sets to Handle Similarity in Databases 41

For comparison purposes, Figure 3(a) shows the distribution of the real meteorolog-
ical network of sensor stations currently existing in Brazil 2. As it can be seen, most
of the stations are concentrated on regions of high population density (south and east
regions). SimSets may benefit from this scenario, pointing out which stations could be
turned off and suggesting the best locations to install new ones.

Figure 3(b) shows a SimSet obtained by the Distinct(S, ξ, λ) algorithm, using ξ = 1.0
and λ =min, which suggests the best places to install sensors over the Brazilian territory.
The Distinct algorithm took approximately 10 minutes to execute in a machine with
Intel Pentium I7 2.67GHz processor and 8Gb RAM. This setting produces a smaller
number of sensors, compared to the number of existing ones, and we set the experiment
in this way so that it is easy to visualize and interpret the results in the low resolution
we are able to plot in this paper. SimSets with higher cardinalities can be generated by
changing those parameters. In fact, we generated several different SimSets extensively
modifying the parameters. However, although the number of suggested stations and
their exact location varies between runs with distinct settings, the overall distribution
closely follows the one shown in Figure 3(b) and the corresponding analyses always
remain equivalent.

Analyzing the sensors selected, we see that forests (Amazon rainforest on the north-
west and the Highlands in the central region) require more sensors than the desert or
semi-arid areas (north and northeast). This finding reveals that the best places to build
stations with regard to climate monitoring were not followed by the existing network,
which was historically driven from the economics and the easiness of access point of
view. In fact, interestingly, using the model, our SimSets kind of “refuse” to put sensors
close to densely populated areas (cities of São Paulo, Rio de Janeiro and Recife). We
also see in Figure 3(b) that the rivers indeed require close monitoring, like those close
to the Amazon River and along the São Francisco River at the east region. Moreover,
the headwaters of the drainage basins were selected as requiring more stations than the
main water stream (as it can be seen at the Amazon, São Francisco and Paraná basins).
Finally, note that all of those analyses are consistent with the theory and are confirmed
by meteorologists.

7 Conclusion

In this paper we introduced the novel concept of “similarity-sets”, or SimSets for short.
A “set” is a data structure storing a collection of objects that has no duplicates. A SimSet
Ŝ ξ is a data structure without any pair of elements si, s j ∈ Ŝ ξ such that d(si, s j) ≤ ξ,
where d(si, s j) measures the (dis)similarity between both elements and ξ is a similarity
threshold. Thus, the ξ-simset concept extends the idea of “sets” in a way that SimSets
with similarity threshold ξ do not include two elements more similar than ξ, that is,
in a ξ-simset Ŝ ξ there are no two elements si, s j ∈ Ŝ ξ such that si=̂

ξs j. Similarity-sets
are in fact a generalization of sets: a set is a ξ-simset where ξ = 0, because the =̂ξ

comparison operator is equivalent to “=” for ξ = 0. Therefore, the concept of SimSets
is adequate to perform similarity queries and gives the underpinning to include them
into the Relational Model, and in most DBMS.

2 Source: http://www.agritempo.gov.br/estacoes.html

http://www.agritempo.gov.br/estacoes.html

42 I.R.V. Pola et al.

The operator to extract a ξ-simset from a metric dataset S was presented as the
Ŝ ξ = Distinct(S, ξ, λ) algorithm, that is able to generate ξ-simsets following either
the [min] or the [Max] policies and guaranteeing the Ŝ ξ extraction properties to vali-
date our proposal. We analyzed sensor networks using SimSets to identify sensors that
recurrently report similar measurements, aimed at turning some of them off for en-
ergy saving. Specifically, we reported experiments on real data from sensor networks of
ground-based weather stations.

The concepts of ξ-simsets presented here fulfills the fundamental requirements to use
them to query real world applications. However, more elaborated theoretical studies
will be developed in future work, including the definition and property statement of
operations with ξ-simsets as well as the definition of set theoretical operators that take
into account maintaining the relationship among the original set S and its extracted
ξ-simset Ŝ ξ.

References

1. Black, T.L.: The new NMC mesoscale eta model: Description and forecast examples.
Weather and Forecasting 9, 265–284 (1994)

2. Budikova, P., Batko, M., Zezula, P.: Query language for complex similarity queries. In:
Morzy, T., Härder, T., Wrembel, R. (eds.) ADBIS 2012. LNCS, vol. 7503, pp. 85–98.
Springer, Heidelberg (2012)

3. Garcia-Molina, H., Ullman, J.D., Widom, J.: Database Systems: The Complete Book, 2nd
edn. Prentice Hall Press, Upper Saddle River (2008)

4. Godsil, C., Royle, G.: Algebraic Graph Theory. Springer (April 2001)
5. Henzinger, M.: Finding near-duplicate web pages: a large-scale evaluation of algorithms. In:

ACM SIGIR, pp. 284–291 (2006)
6. Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces (survey article).

ACM Transactions on Database Systems 28(4), 517–580 (2003)
7. Kuncheva, L.I., Jain, L.C.: Nearest neighbor classifier: Simultaneous editing and feature se-

lection (1999)
8. Lin, F.-S., Chiu, P.L.: A near-optimal sensor placement algorithm to achieve complete

coverage-discrimination in sensor networks. IEEE Communications Letters 9(1), 43–45
(2005)

9. Pedreira, O., Brisaboa, N.R.: Spatial selection of sparse pivots for similarity search in metric
spaces. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C., Sack, H., Plášil, F.
(eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 434–445. Springer, Heidelberg (2007)

10. Silva, Y.N., Aly, A.M., Aref, W.G., Larson, P.-A.: Simdb: a similarity-aware database system.
ACM SIGMOD, 1243–1246 (2010)

11. Wu, X., Kumar, V., Ross Quinlan, J., Ghosh, J., Yang, Q., Motoda, H., McLachlan, G.J., Ng,
A., Liu, B., Yu, P.S., Zhou, Z.-H., Steinbach, M., Hand, D.J., Steinberg, D.: Top 10 algorithms
in data mining. Knowledge and Information Systems 14(1), 1–37 (2007)

12. Xiao, C., Wang, W., Lin, X., Yu, J.X., Wang, G.: Efficient similarity joins for near-duplicate
detection. ACM Transactions on Database Systems, 36,15:1–15:41 (2011)

13. Zhu, S., Wu, J., Xiong, H., Xia, G.: Scaling up top-k cosine similarity search. Data and
Knowledge Engineering 70(1), 60–83 (2011)

Similarity Search on Uncertain Spatio-temporal Data

Johannes Niedermayer1, Andreas Züfle1, Tobias Emrich1, Matthias Renz1,
Nikos Mamoulis2, Lei Chen3, and Hans-Peter Kriegel1

1 Institute for Informatics, Ludwig-Maximilians-Universität München
{niedermayer,zuefle,emrich,renz,kriegel}@dbs.ifi.lmu.de

2 University of Hong Kong
nikos@cs.hku.hk

3 Hong Kong University of Science and Technology
leichen@cse.ust.hk

Abstract. In this work, we address the problem of similarity search in a database
of uncertain spatio-temporal objects. Each object is defined by a set of observa-
tions ((time,location)-tuples) and a Markov chain which describes the objects
uncertain motion in space and time. To model similarity - which is an impor-
tant building block for many applications such as identifying frequent motion
patterns or trajectory clustering - we employ the well-known Longest Common
Subsequence (LCSS) measure, which becomes a distribution on uncertain spatio-
temporal data (ULCSS). We show how the aligned version (without time shifting)
of the ULCSS can be exactly computed in PTIME, which is also verified by ex-
tensive experiments.

1 Introduction

Similarity search on trajectory data has an increasing number of applications, especially
after the widespread availability of location data, such as GPS tracks. Exemplarily, data
analysis tasks such as identifying frequent motion patterns or trajectory clustering re-
quire finding objects that moved in a similar way or followed a certain motion pattern.
A number of similarity measures have been proposed for trajectory data. One of these is
the Longest Common Subsequence (LCSS). The LCSS between two trajectories (i.e.,
moving objects) can be interpreted as the maximum amount of time the two objects
were located at the same position. However, most of the previous work on similarity
search in trajectory databases assumes the data to be certain or deterministic, which is
not the case in many real applications. For example, even though we can get snapshots
of the positions of a mobile object through RFID technology, the trajectory data is in-
complete and uncertain: because the locations of the object between two consecutive
RFID readers are unknown, they have to be derived from the observations which intro-
duces uncertainty. Therefore, it is essential to develop new techniques to find similar
trajectories on uncertain data. In this paper we study how the LCSS can be extended
to apply to uncertain trajectories (ULCSS). Since in our scenario the exact motion of
an object is unknown, we can model the ULCSS as a distribution of all possible LCSS
results. The LCSS over uncertain data has many applications. For example, it can be
used to evaluate the spread of flu or other diseases. Suppose that an object was diag-
nozed with a serious communicable disease (source object). To curtail such diseases,

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 43–49, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

44 J. Niedermayer et al.

a facebook app could identify all individuals possibly been infected by the source ob-
ject. Let us assume that enough virus cells are transmitted between two individuals if
the two persons share the same location for at least k points in time. To identify indi-
viduals that might have been infected, the app could run an ULCSS query to find all
objects having a large enough probability of being at the same location as the source
object for at least k points in time, warning the affected persons.

2 Problem Definition

A spatio-temporal database D stores triples (oid, location, time), where
oid ∈ {o1, ..., o|D|} is a unique object identifier, location ∈ S is a spatial position
and time ∈ T is a point in time. Semantically, each such triple corresponds to an obser-
vation that object oi has been seen at some location at some time. In D, an object can
be described by a function troi : T → S that maps each point in time to a location in
space; this function is called trajectory. In this work, we assume a discrete time domain
T = {0, . . . , n}. Thus, a trajectory becomes a sequence, i.e., a function on a discrete
and ordinal scaled domain. Furthermore, we assume a discrete state space of possible
locations (states) S = {s1, ..., s|S|} ⊂ Rd.

Uncertain Trajectory Model. Since we consider uncertainty, a trajectory may not be
modeled by a simple single path but rather by a (possibly large) set of paths, i.e., a
set of possible worlds. In particular, let D = {o1, ..., o|D|} be a database containing
|D| uncertain moving objects. For each object o ∈ D we store a set of observations
Θo = {< to1, θ

o
1 >,< to2, θ

o
2 >, . . . , < to|Θo|, θ

o
|Θo| >} where toi ∈ T denotes the time

and θoi ∈ S the location of observation Θo
i . W.l.o.g. let to1 < to2 < . . . < to|Θo|. Accord-

ing to [EKM+12], we can interpret the location of an uncertain spatio-temporal object
o ∈ D at time t as a realization of a random variable o(t). Given a time interval [t0, t1],
the set of corresponding uncertain locations becomes an uncertain trajectory. A formal
definition of uncertain trajectories can be found in [EKM+12].

This technique allows us to assess the probability of a possible trajectory (i.e., a real-
ization of all random variables). In this work we follow the approaches from [EKM+12]
and employ the first-order Markov Chain model as a specific instance of a stochas-
tic process. Markov Chains have been employed for modelling human movement in
[MJS11]; furthermore, according to [EKM+12] they enable query processing of a class
of queries in polynomial time while following possible worlds semantics. A Markov
chain T is a matrix containing the conditional transition probabilities T o

ij(t) := P (o(t+
1) = sj |o(t) = si) of o from state si to state sj at a given time t. Let so(t) =
(p1, . . . , p|S|)

T be the distribution vector of an object o at time t, where soi (t) =
P (o(t) = si). The distribution vector so(t + 1) can be inferred from so(t) as follows:
so(t+ 1) = T o(t)T · so(t)

Similarity between Uncertain Trajectories. Given two database objects o1 and o2,
our goal is to assess the similarity between these two uncertain objects by employing
the LCSS [VGK02]. Let A and B be two trajectories of moving objects with size n
and m respectively, where A = (a1, . . . , an) and B = (b1, . . . , bm). Let Head(A) :=

Similarity Search on Uncertain Spatio-temporal Data 45

(a1, . . . , an−1). Given an integer δ and a real number ε, the Longest Common
Subsequence is defined as follows: LCSSδ,ε(A,B) :=⎧⎪⎨⎪⎩

0 if A = ∅ or B = ∅,
1 + LCSSδ,ε(Head(A), Head(B)) if dist(an − bm) < ε and |n−m| ≤ δ

max(LCSSδ,ε(Head(A), B), LCSSδ,ε(A,Head(B))) otherwise

Parameter ε constraints the spatial distance between two locations in order to match in
space; in many applications, objects rarely visit the same locations, but being ”close
enough” is equivalent to meeting. Parameter δ controls how far in time we can expand
in order to match a given point from one trajectory to a point in another trajectory. In
this work, we aim at working towards efficiently computing LCSSδ,ε(o1, o2) for two
uncertain trajectories o1 and o2. According to possible world semantics, the result of
LCSSδ,ε(o1, o2) is not a single scalar, but rather a probability density function on N,
mapping each possible outcome k ≤ min(length(o1), length(o2)) to a probability
P (LCSSδ,ε(o1, o2) = k).

Definition 1 (ULCSS). Let o1 and o2 be two uncertain trajectories. The Uncertain
Longest Common Subsequence (ULCSS) between o1 and o2 is a random variable, de-
fined by the following probability density function:

ULCSSδ,ε(o1, o2) : D ×D → (N → [0, 1] ∈ R)

ULCSSδ,ε(o1, o2) := pdf(x ∈ N) = P (LCSSδ,ε(o1, o2) = x)
However, calculating the exact distribution and the expected value of the length of the
LCSS between two random sequences can currently only be achieved by employing
exponential algorithms [FL08]. Therefore, we study the special case of ULCSS, where
δ = 0; for this case, we propose a PTIME algorithm for its exact computation:

Definition 2 (UALCSS). Let o1, o2 be two uncertain trajectories. The Uncertain
Aligned Longest Common Subsequence is defined by UALCSSε(o1, o2) = ULCSS0,ε
(o1, o2).

3 Related Work

The stochastic model used in this paper is taken from [EKM+12], where window
queries in an uncertain setting have been addressed. Existing approaches for measur-
ing trajectory similarity mainly adapt to trajectories in a certain setting. [VGK02] re-
laxed this assumption by taking the effect of noise into account. Uncertain trajectory
similarity has been investigated in the context of trajectory clustering by [PKK+09].
However this work addresses position (e.g. GPS) uncertainty instead of motion uncer-
tainty, where neither position nor motion are known at a given point in time, but might
have been known at some time in the past. Recently, [LG12] addressed the problem
of computing the windowed LCSS on strings. However, the different characters in a
word are drawn independently in this context, whereas the state at time t depends on
the previous state in our problem setting. Statistical work such as [AW85] provides sta-
tistical approximations of the length of the (unaligned) longest common subsequence
on the Markov model, e.g. under the assumption that the underlying Markov chains are

46 J. Niedermayer et al.

aperiodic and irreducible and if the length of the underlying sequence is large. Another
common application area of Markov models is in the area of bioinformatics where gene
sequences have to be matched (e.g.[HK96]). When employing hidden Markov models,
viterbi-like algorithms and extensions that can handle insertions and deletions (c.p. e.g.
[AV98]) are usually employed for computing the maximum likelihood, and not a dis-
tribution. Besides their advantage of estimating the edit distance between sequences,
these approaches can only be used to match sequences to Markov chains but not two
Markov chains. There further exists an exponential approach for calculating the exact
distribution and the expected value of the length of the LCSS between two random se-
quences [FL08]. This algorithm neither considers observations, nor the amount of time
shifting δ. Furthermore, the size of its transition matrix depends on the length of the
time interval for which the LCSS has to be computed.

4 UALCSS Computation

Overview. While it remains unsolved how to compute the exact ULCSS in the general
case, in this section we show how to exactly compute the UALCSS (ULCSS for the
special case of δ = 0) between two uncertain spatio-temporal objects, which represents
the pdf over all possible lengths of the LCSS between the two evaluated objects with
a polynomial time algorithm. The UALCSS is relevant to many spatial applications,
like the infection application mentioned in the introduction; virus particles in a droplet
infection can only be spread through space, but not through time.

Fig. 1. Possible worlds {w1−4} of two uncertain
objects

Figure 1 (left) shows the uncertain tra-
jectory of objects o1 (represented by the
solid line) and o2 (represented by the
dotted line). From these, we derive four
possible worlds as illustrated in Figure 1
(right). We can see that in w1 the (cer-
tain) LCSS equals 3, in worlds w2 and
w4 LCSS=2, while in w3 LCSS=1. If we
assume, in this example, that for each
object each alternative trajectory has a
probability of 0.5, we get a probability

vector [0,0.25,0.5,0.25] for the UALCSS, where the kth element in the list denotes
k hits between two paths. Clearly, such an approach of enumerating all possible worlds,
and aggregating their probabilities is not a viable option, since in general, the num-
ber of possible trajectories of an uncertain trajectory is exponential in the length of the
uncertain trajectory.

Algorithm. Algorithm 1 is a pseudocode of the UALCSS algorithm. For computing
UALCSS, we have to take certain dependencies of the two objects into account, i.e.,
the relative position of o1 to o2 at time t = 0 (w.l.o.g. we assume that the first ob-
servations of o1 and o2 are at time t = to11 = to21 = 0) will affect the length of
the UALCSS at a later time t > 0. For this reason, we have to take the conditional
probabilities of object o1 being in state si when o2 is in state sj into account: At the
initial time t = 0 we assume both object locations to be independent, and therefore

Similarity Search on Uncertain Spatio-temporal Data 47

we can write P (o1(0) = si ∧ o2(0) = sj) = P (o1(0) = si) · P (o2(0) = sj).
Let M(t) be a probability matrix with Mij(t) = P (o1(t) = si ∧ o2(t) = sj), de-
noting that the corresponding objects are within state si and sj at time t. The matrix
M0(0) can be easily computed as follows (the superscript 0 denotes the numbers of hits
gained so far): M0(0) = so2(0) · so1(0)T . This is the case because we have M0

ij(0) =

so1(0)i · so2(0)j = P (o1(0) = si) · P (o2(0) = sj). The elements M0
ii(0) denote the

probabilities that both uncertain objects are located within the same state i at time 0, in-
creasing the longest common subsequence by 1, such that these possible worlds have to
be marked. This can be simply achieved by moving them into a second matrix M1(0),
where M1

ii(0) = M0
ii(0) and M1

ij(0) = 0 for i �= j. Besides, the shifted elements
have to be deleted from M0(0) by performing M0

ii(0) = 0. Now both matrices contain
possible worlds, split by their number of hits.

Algorithm 1. UALCSS(o1, o2, tmax)

1: M0 = so2(0) · so1(0)T

2: M1
i�=j = 0

3: M1
ii = M0

ii

4: M0
ii = 0

5: for t = 1; t ≤ tmax; t++ do
6: for k = t; k ≥ 0; k −− do
7: Mk = T o1(t− 1)T ·Mk ·T o2(t− 1)

8: Mk+1
ii = Mk+1

ii +Mk
ii

9: Mk
ii = 0

10: end for
11: if ∃to1i : to1i = t ∨ ∃to2j : to2j = t then
12: reweight({Mk}, θo1i , θo2j)
13: end if
14: end for
15: p = Array[tmax + 1]
16: for t = 0; t ≤ tmax; t++ do
17: pk = |Mk|L1

18: end for
19: return p

After initialization, this method can
be applied in a similar manner to com-
pute the equivalence classes of possible
worlds within each time t �= 0, which
is achieved by updating all state matrices
Mk(t − 1). As a first step, the states of
o1 and o2 in Mk(t− 1) have to be transi-
tioned. Given a state vector soi(t − 1),
this transition is usually performed by
multiplying soi(t − 1) with its corre-
sponding, pre-determined, transition ma-
trix T oi(t−1), i.e., soi(t) = T oi(t−1)T ·
soi(t− 1). However, in our scenario, we
do not have a single state vector, but a
state matrix Mk(t − 1), containing con-
ditional probabilities of both objects. The
elements in this matrix have to be tran-
sitioned according to both transition ma-
trices T o1(t − 1) and T o2(t − 1). It can
be proven that Mk(t) = T o1(t − 1)T ·
Mk(t− 1) · T o2(t− 1).

After performing the transition, the
matrix element Mk

ij(t) again contains the
conditional probabilities at time t that o1

is in state j while o2 is in state i. After transitioning, the hits are extracted from the
matrix, by shifting the diagonal elements to Mk+1

ii (t) and removing them from Mk
ii(t).

Therefore each of the t transitions leads to at most one additional matrix; thus, the total
space complexity of this algorithm is at most O(|S|2 · t) and the runtime complex-
ity is O(Δt2 · |S|3), with Δt beeing the number of considered timesteps. In practice,
these costs are much lower since vectors soi(t) and T oi(t) are both sparse and we can
save space and computations by employing sparse matrix operations on compressed
representations. After having completed t transitions, we can derive the probability
distribution for the relative frequency of worlds that had a given number k of hits:

48 J. Niedermayer et al.

Fig. 2. Experimental Results

P (|{x ∈ T |o1(x) = o2(x)}| = k) =
∑

∀i,j M
k
ij(t) Incorporating further observations

(function reweight() in Algorithm 1) can be achieved as follows. Let us first assume
that o1 was observed at state s. Then all columns j �= s in Mk have to be set to 0
and all matrices have to be reweighted such that

∑
x∈tM

k = 1. Accordingly, if o2 has
been observed at a given state, the corresponding rows have to be set to zero. Further-
more, the algorithm can be easily adapted for ε > 0. In this case, not only diagonal
elements from Mk have to be shifted, but also further matrix elements that correspond
to locations with a distance ≤ ε to a given location of an uncertain object.

5 Experiments

The experiments are based on a discrete state space in the two-dimensional Euclidean
space, consisting of n states. Each of these states is drawn uniformly from the [0, 1]2

space. Afterwards, a graph was created from these states by connecting points with

an Euclidean distance smaller than r =
√

b
n∗π , with b being the average number of

neighbours of a state, i.e. the branching factor. The graph’s edge weights, i.e. the tran-
sition probabilities were assigned indirectly proportionally to the distance of a state to
its neighbour, assuming that it is more probable that during a transition an object moves
to a closer state than to a state further away. Based on the resulting transition matrix, a
random trajectory was drawn to construct (certain) observations of an uncertain object,
and every i-th point from this trajectory was used as an observation of the uncertain
object. In the evaluation, we varied the number of states n from 100 to 50K (default
10000), the length l from 25 to 125 (default 50), and the range r from 0.01 to 0.075

(default
√

b
n∗π). The interval between two observations is 10 timestamps. In the first

experiment we aimed at varying the worlds size (n), keeping the graph’s branching fac-
tor constant, while increasing r (the next experiment) can be interpreted as increasing
the resolution of a world, i.e. the branching factor. As shown in Figure 2 (left), with
increasing n, matrix operations become more costly such that the performance of the
UALCSS drops. Varying the range of connectivity r (Figure 2 (center)) clearly shows
a negative impact on the performance of the UALCSS algorithm. With a higher con-
nectivity, the filling degree of transition matrices increases, such that more states can be
reached in a shorter amount of time. Increasing the length of the time interval for which
the UALCSS has to be computed (Figure 2 (right)) increases the number of iterations
such that more matrix multiplications have to be performed. Note that the number of
matrix multiplications for this algorithm is O(t2).

To compute the general ULCSS, we plan to investigate sampling techniques. The
main problem for sampling approaches is to incorporate observations.

Similarity Search on Uncertain Spatio-temporal Data 49

References

[AV98] Amengual, J.C., Vidal, E.: Efficient Error-Correcting Viterbi Parsing. IEEE Trans-
actions on Pattern Analysis and Machine Intelligence 20, 1109–1116 (1998)

[AW85] Arratia, R., Waterman, M.S.: An Erdös-Rényi Law with Shifts (1985)
[EKM+12] Emrich, T., Kriegel, H.-P., Mamoulis, N., Renz, M., Züfle, A.: Querying Uncertain

Spatio-Temporal Data. In: Proc. ICDE (2012)
[FL08] Fu, J.C., Wendy Lou, W.Y.: Distribution of the length of the longest commmon

subsequence of two multi-state biological sequences. Journal of Statistical Plan-
ning and Inference 138, 3605–3615 (2008)

[HK96] Hughey, R., Krogh, A.: Hidden Markov models for sequence analysis: extension
and analysis of the basic method (1996)

[LG12] Li, Z., Ge, T.: Online windowed subsequence matching over probabilistic se-
quences. In: Proc. SIGMOD, pp. 277–288 (2012)

[MJS11] Moghadam, A., Jebara, T., Schulzrinne, H.: A markov routing algorithm for mo-
bile DTNs based on spatio-temporal modeling of human movement data. In: Proc.
WSIM (2011)

[PKK+09] Pelekis, N., Kopanakis, I., Kotsifakos, E.E., Frentzos, E., Theodoridis, Y.: Clus-
tering Trajectories of Moving Objects in an Uncertain World. In: Proc. ICDM,
pp. 417–427 (2009)

[VGK02] Vlachos, M., Gunopulos, D., Kollios, G.: Discovering Similar Multidimensional
Trajectories. In: Proc. ICDE, pp. 673–684 (2002)

List of Clustered Permutations

for Proximity Searching�

Karina Figueroa1 and Rodrigo Paredes2

1 Facultad de Ciencias F́ısico-Matemáticas,Universidad Michoacana, Mexico
2 Departamento de Ciencias de la Computación, Universidad de Talca, Chile

karina@fismat.umich.mx, raparede@utalca.cl

Abstract. The permutation based algorithm has been proved unbeat-
able in high dimensional spaces, requiring O(|P|) distance evaluations
when solving similarity queries (where P is the set of permutants); but
needs n evaluations of the permutant distance to compute the order to
review the metric dataset, requires O(n|P|) space, and does not take
much benefit from low dimensionality. There have been several propos-
als to avoid the n computations of the permutant distance, however all
of them lost precision. Inspired in the list of cluster, in this paper we
group the permutations and establish a criterion to discard whole clus-
ters according the permutation of their centers. As a consequence of our
proposal, we now reduce not only the space of the index and the number
of distance evaluations but also the cpu time required when comparing
the permutations themselves. Also, we can use the permutations in low
dimensions.

1 Introduction

Several modern applications —for instance, pattern recognition or multimedia
retrieval— require similarity retrieval systems to find relevant objects when solv-
ing a query. In these applications the pattern is the same, the search problem
is often stated in terms of expensive comparison between two objects in a huge
database.

The problem can be mapped into a metric space (X, d), where a metric d com-
pares objects out of a universe X and reveals how close is an object with respect
to other. This metric must satisfy the follow properties: positiveness d(x, y) ≥ 0,
symmetry d(x, y) = d(y, x) and triangle inequality d(x, y) ≤ d(x, z) + d(z, y).
Given a dataset U ⊂ X, this kind of queries can be classify basically in two: range
and k-nearest neighbor queries. The first one consists in retrieving those objects
out of U within a radius to a given query, that is,R(q, r) = {d(u, q) ≤ r, ∀ u ∈ U};
the second one is to retrieve the k elements of U that are closest to q.

In general metric spaces, the (black-box) distance function is the only way to
distinguish between objects, and usually, the distance function is expensive to

� This work is partially funded by National Council of Science and Technology (CONA-
CyT) of México, Universidad Michoacana de San Nicolás de Hidalgo, México, and
Fondecyt grant 1131044, Chile.

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 50–58, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

List of Clustered Permutations for Proximity Searching 51

compute (e.g., consider comparing two multimedia objects). Hence the complex-
ity is absorbed by the distances evaluated.

Since this kind of datasets lack of total order, to avoid a full linear scan, a
dataset preprocessing, consisting in building an index structure that allows to
get the answer with less effort, is common. In this respect, the list of cluster
[5] is one of the most efficient algorithms in high dimensional spaces, however it
takes O(n2) distances computation to make the index.

In other hand, the permutation based algorithm [3] has been proved unbeatable
in practice but only works well in high dimensions, as the authors claim. To use
this index, we have to compute the permutation of the query and compare it
with all the dataset permutations so as to compute the order to review the
permutations. This takes at least O(|P|) distances computations (|P| is the size
of the permutations) and O(n) evaluations of the permutation distance. There
have been several proposal to avoid the sequential scanning in the permutation
based algorithm, however all of them lost precision with respect to the original
technique [7,10].

In this article we combine the ideas of the list of cluster and the permutation
based index and present a new metric index that improves on both of them. The
rest of this paper is organized as follows. In Section 2 we introduce some basic
concepts. Next, in Section 3 we describe the List of Clustered Permutations and
in Section 4 we show the experimental evaluation of our technique. Finally, we
draw our conclusions and future work directions in Section 5.

2 Previous Work

One can approach the similarity search problem in either an exact or approxi-
mated way. In the first case, we want to retrieve all the objects satisfying the
similarity query. The main families of this kind of algorithms are the pivot based
indices and the ones based on compact partitions [6,1]. In the second, the idea
is to retrieve most of the relevant elements that fulfill the similarity query. In
this case, we accept to miss some relevant elements for the sake of speed up the
query solving. There are already some non-exact approaches [4,3,12,9].

In this paper, we combine the list of clusters with the permutation based
algorithm. Hence, in the next sections we describe both indices.

2.1 List of Clusters

There are many indices in metric spaces [6,1]. One of the most economical and
rather efficient is the list of clusters (LC) [5], because it uses O(n) space and has
an excellent performance in high dimension. Regretably, its construction requires
O(n2) distance evaluations, which is very expensive. The LC is built as follows:

Firstly, a center c is selected from the database and a bucket size b is given.
c chooses its b-closest elements out of the database and build the set I, which is
the answer of a b-nearest neighbour query. Let crc be the distance from c to its
farthest neighbor in I. The tuple (c,I,crc) is called a cluster. (Notice that the

52 K. Figueroa and R. Paredes

parameter b could be replaced by specifying the global covering radius, but this
alternative has worse performance [5].) This process is repeated recursively with
the rest of the non-clustered objects.

To solve queries, the query object is compared with all the cluster centers. So,
for each cluster, if the distance from its center to the query is larger than the its
covering radius plus the query radius we can discard its whole bucket, otherwise
we review it exhaustively.

2.2 Permutation Based Algorithm

In [3], the authors introduce the permutation based algorithm (PBA), a novel
technique that shows a different way to sort the space. During the preprocessing
time, a subset of objects P = {p1, p2, . . . , p|P|} ⊂ U is selected out of the database,
which are called the permutants. Each u ∈ U, computes its distance to all the
permutants (that is, compute d(u, p) for all p ∈ P) and sort them increasingly by
proximity. Then, for each object u ∈ U, we store just the order of the permutants
(not the distances) in the index.

If we define Πu as the permutation of (1 . . . |P|) for object u, so Πu(i) is
the i-th cell in the u’s permutation and pΠu(i) denotes the i-th permutant. For
instance, if Πu = (5, 1, 2, 4, 3) then pΠu(3) = p2. Within the permutation, for
all 1 ≤ i < |P| it holds either d(pΠu(i), u) < d(pΠu(i+1), u) or, if there is a tie
(d(pΠu(i), u) = d(pΠu(i+1), u)), then the permutant with the lowest index appears
first in Πu. We call the i-th permutant Πu(i), the inverse permutation Π−1

u , and
the position of i-th permutant Π−1

u (pi). The set of all the permutations stored
in the index needs O(n|P|) memory cells.

At query time, we compute the distance from the query q to all the permutants
in P and calculate the query permutation Πq. Next, Πq is compared with all the
permutations stored in the index, that is O(n) permutation distances. In [11],
authors introduce how to index the permutations’ space as a new metric space,
however they do not mix both kind of distances and they use a bigger index.
Authors in [3] claim that the order induced by Πq is extremely promising and a
reviewing a small fraction of the dataset is enough to get a good answer.

The permutation distance is calculated as follows: letΠu andΠq permutations
of (1 . . . |P|). We compute how different is a permutation from the other using
Spearman Rho Sρ metric. In [8], Sρ is defined as:

Sρ(Πu, Πq) =

√ ∑
1≤i≤|P|

(
Π−1

u (i)−Π−1
q (i)

)2
(1)

Since Sρ is monotonic we omit the square root as it preserves the ordering.
The main disadvantage of the PBA is that its memory requirement could

be prohibitive in some scenarios, especially where n is huge. Also, like other
indices, the dimension of the space has an impact on the index performance; in
particular, it has an effect on how long is the fraction to consider when solving
the approximated query.

List of Clustered Permutations for Proximity Searching 53

3 List of Clustered Permutations

The simplest way to reduce the time consumed when building a list of clusters is
to avoid distance computations. For this sake, we have two possibilities: a bigger
bucket size, or using another, cheaper, way to construct the structure. Follow the
second possibility, we propose to combine the PBA with the LC. We choose a set
of permutants, where each one within this set has a double role, as permutant
and as a cluster center; and only the cluster centers store their permutation. We
call this structure the List of Clustered Permutations (LCP).

When solving a proximity query q with the standard PBA, we need to spend
|P| distance evaluations to compute the query permutationΠq, plus n evaluations
of the permutation distance to compute the order induced by Πq, and O(fn)
distance evaluations to compare q with the fraction f of the dataset objects that
are the most promising to be relevant for the query. With the LCP, we spend
only |P| (< n) evaluations of the permutation distance to compare Πq with the
permutation of each cluster center, and distances evaluations needed to review
non-discarded clusters. In our experiments, we verify that this is an improvement
over the traditional LC.

3.1 Building

Firstly, we randomly select a set P of centers and we compare every object within
the database with this set. This way, we compute permutations for all the objects
in the dataset. Then, we choose the first center and group its b = n

|P| − 1 most

similar objects according to the permutation distance (excluding all the cluster
centers, so that no center can be inside the bucket of another one). We continue
the process iteratively with the rest of elements in the dataset until every element
is clustered. Every center keeps its covering radius crc (that is, the distance to
the farthest object in the bucket), its bucket and its permutation (hence, we
discard the permutations of all the objects within a bucket).

The space used is n + |P|2 cells, and the construction time is O(n|P|) evalu-
ations of both the space distance and the permutation distance. Note that we
can pack the whole LCP index using just (n+ |P|2) log2 |P| bits.

3.2 Querying

The standard LC discards clusters with the covering radius rule. Let d(q, c) be
the distance between the query and the center, r the query radius, and crc the
covering radius of center c. So, if d(q, c) > r + crc the cluster is discarded.

Since we have permutations, we introduce a heuristic method to discard a
cluster, modifying the criteria explained in [5]. Our preliminary experimental
results shown that if we have an object (for instance, a cluster center), and its
permutation has (just) one permutant that moved far away with respect to its
position inside query permutation, then this object is not relevant, so we can
discard it (and also its bucket). For instance, if the permutation of the query

54 K. Figueroa and R. Paredes

is (1,2,3,4) and the permutation of the center is (4,1,2,3), even though most of
both permutations are similar, the position shifting of permutant 4 suggests that
the object can be discarded.

Of course, we need to establish a criterion to measure our finding. Basically,
we need to know how much could a permutant move away inside the permutation
of an object. So, using the query permutation and the range query radius, we
estimate how far a permutant can shift. To do that, for a pair of permutants
pi, pj , where pi is closer to the query than pj, and d(pj , q) − d(pi, q) ≤ r, our
method does not discard an object whose permutation has an inversion of these
permutants; this is, it does not discard an object that is closer to pj than to
pi. But, if the distance difference is larger, even though permutant inversion is
possible there as a big chance that the object were irrelevant so the object can
be discarded. Therefore, we take note of how many slots the permutant moves;
this is computed in Algorithm 1.

Algorithm 1. ComputingShift(Q, r)

1: Let Q the set of pairs (permutant, distance) to q, sorted by distance
2: permShift ← 0
3: for i ← 0 to |P| − 2 do
4: cont ← 0, j ← i+ 1
5: while j < |P| AND Q[j].dist −Q[i].dist ≤ r do
6: cont ← cont + 1, j ← j + 1
7: end while
8: permShift ← max {permShift, cont}
9: end for
10: return permShift

In the query procedure, we discard a cluster center (and its bucket) when a
permutant shifts more than tolerated.

4 Experiments

In this section we evaluate and compare the performance of our technique in
different metric spaces, such as synthetic vectors on the unitary cube and a real
life database. The experiments were run on an Intel Xeon workstation with 2.4
GHz CPU and 32 GB of RAM with Ubuntu server, running kernel 2.6.32-22.

4.1 Synthetic Databases

In these experiments we used a synthetic database with vectors uniformly dis-
tributed on the unitary cube. We use 100,000 points in different dimensions
under Euclidean distance. As we can precisely control the dimensionality of the
space, we use these experiments to show how much the predictive power of our
technique varies with the dimensionality.

List of Clustered Permutations for Proximity Searching 55

Since ours is an approximated method, we relax the discarding criteria by
accepting bigger shifts and tabulate the results. They are shown in Figures 1,
2, and 3. In this plots, the labels bx000 indicates the size b of the LCP buckets.
Since b = n

|P| − 1, bx000 also fixes a value for |P|.

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 2 4 6 8 10 12 14 16

D
is

ta
nc

es
 p

er
 q

ue
ry

Permutant shift times

Dimension 8 using 100,000 objects

LC

LCP b1000

LCP b2000

LCP b3000

LCP b4000

LCP b5000

LCP b6000

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

 90000

 100000

 0 2 4 6 8 10 12 14 16
D

is
ta

nc
es

 p
er

 q
ue

ry

Permutant shift times

Dimension 10 using 100,000 objects

LC

LCP b1000

LCP b2000

LCP b3000

LCP b4000

LCP b5000

LCP b6000

Fig. 1. Unitary cube using 100,000 vectors. (Left) Dimension 8, (right) dimension 10.

 50

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 2 4 6 8 10 12 14 16

%
 R

ec
al

l

Permutant shift times

Dimension 8, 100,000 objects

LCP b1000
LCP b2000
LCP b3000
LCP b4000
LCP b5000
LCP b6000

 55

 60

 65

 70

 75

 80

 85

 90

 95

 100

 2 4 6 8 10 12 14 16

%
 R

ec
al

l

Permutant shift times

Dimension 10, 100,000 objects

LCP b1000
LCP b2000
LCP b3000
LCP b4000
LCP b5000
LCP b6000

Fig. 2. The plots show the percentage of recall using the distances show in Figure 1

In Figures 1 and 3, the solid line is the original LC. For this line, the axis
x represent the bucket size per thousand (from 1,000 to 10,000). As expected,
Figure 1 shows that the smaller the bucket size the better the query results, since
it is easier to discard a cluster with any of both criteria (this applies both for LC
and LCP). On the other hand, Figure 2 illustrates that as long as the shifting
criterion is relaxed, the recall of the method improves; but, it also increases
the number of distance evaluations needed to solve the query. In several cases,
accepting eight times in the permutant shift is enough to obtain an acceptable
recall, saving distance computations and cpu time. Finally, the time computed
for our method is lower than the standard LC, as evidenced in Figure 3.

In order to illustrate the performance of our method, in dimension 10, using
buckets of 1,000 objects and accepting eight times in the permutation shifting,

56 K. Figueroa and R. Paredes

 0

 2

 4

 6

 8

 10

 12

 14

 0 2 4 6 8 10 12 14 16

Q
ue

ry
 ti

m
e

(s
ec

on
ds

)

Permutant shift times

Dimension 8 using 100,000 objects

LC
LCP b1000
LCP b2000
LCP b3000
LCP b4000
LCP b5000
LCP b6000

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 2 4 6 8 10 12 14 16

Q
ue

ry
 ti

m
e

(s
ec

on
ds

)

Permutant shift times

Dimension 10 using 100,000 objects

LC
LCP b1000
LCP b2000
LCP b3000
LCP b4000
LCP b5000
LCP b6000

Fig. 3. Time consumed for experiments showed in Figures 1 and 2

our method requires 44% of distance evaluations of LC, obtains a 88% of recall
and uses 48% of LC cpu time.

Note that the LCP index uses very little space: one identifier for each non-
center object and only |P|2 cells for the permutations of centers. In this case,
when using buckets of 1,000 objects (so |P| = 100), this translates approximately
to 7.7 bits per object.

Figure 4 compares the LTC with standar PBA. In order to perform a fair
comparison, we allow 8 bits for each permutation, that is, four permutants coded
in two bits. As can be seen, LTC with buckets of 1,000 objects outperforms by
far the recall of standard PBA.

4.2 Real Databases

In this section we show the performance of our heuristic in a real-world space of
images.

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 1 10 100

R
ec

al
l

% database compared

PBA, using 4 permutants per object

D8−PBA
D10−PBA

D8−LCP b1000
D10−LCP b1000

Fig. 4. Comparison between LCP and standard PBA

List of Clustered Permutations for Proximity Searching 57

Cophir Database. In this section we show the experiments made on a large
database. The CoPhIR is Content-based Photo Image Retrieval, with 1,000,000
of images [2] and buckets de 2,000 objects per cluster. For each image, the
standard MPEG-7 image feature have been extracted. So, each image is a vector
of 208 components.

In Figure 5, the label List of Cluster is the original technique retrieving the
exact nearest neighbors. It shows that the LC requires to review almost 30% of
the images. The label Recall is our proposal (it reviews from 1 to 7 % of the
database) and the label Distances is the distance evaluation used to retrieval that
recall. In this space, LCP performance is rather good. For instance, accepting
forty times of shifting, we get the best retrieval (94%), reviewing just 7% of the
database, in compare with LC that requires almost the 30% of the database.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0 5 10 15 20 25 30 35 40

P
er

ce
nt

ag
e

permutant shift times

Cophir 1 Million

Recall
List of Cluster

Distances

Fig. 5. 1 million of images. The solid line is the recall and the dashed line is the
percentage of distance evaluations. The dotted line is the original LC.

5 Contributions and Future Work

Similarity searching is a very important operation in multimedia databases nowa-
days. It involves finding objects in a dataset similar to a query object q, based on
some distance measure d. To do so, it is common to compute an index structure
in order to solve similarity queries efficiently. One of the most successful indices
is the permutation based algorithm. In this paper, we present a novel way to
index permutations so that we can save space when computing the distance be-
tween permutations. The advantage of our proposal is that it is now possible
to use the permutations in low dimensions and also we propose a parameter to
avoid to sequential scanning in the permutation based algorithm.

As a future work we consider two lines, namely:

58 K. Figueroa and R. Paredes

1. For the sake of maintain small clusters, we can divide the LCP construction
in three phases. In the first, we choose the permutants and compute the
permutations for all the objects. In the second, we compute the clusters for
the permutants, and finally, we compute the other clusters. This way, we
expect to compute the LCP using very few distance computations, but the
amount of work computing the permutation distances should increase.

2. Since our method uses very little memory, we want to explore the possibility
of using short permutations for objects inside the clusters. This is supported
by the facts that the beginning of the permutation is the most important
data portion to process and that we can trade space in order to improve the
recall results.

References

1. Böhm, C., Berchtold, S., Keim, D.A.: Searching in high-dimensional spaces: Index
structures for improving the performance of multimedia databases. ACM Comput-
ing Surveys 33(3), 322–373 (2001)

2. Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., Rabitti, F.:
CoPhIR: A test collection for content-based image retrieval. CoRR abs/0905.4627v2
(2009), http://cophir.isti.cnr.it

3. Chávez, E., Figueroa, K., Navarro, G.: Proximity searching in high dimensional
spaces with a proximity preserving order. In: Gelbukh, A., de Albornoz, Á.,
Terashima-Maŕın, H. (eds.) MICAI 2005. LNCS(LNAI), vol. 3789, pp. 405–414.
Springer, Heidelberg (2005)

4. Chávez, E., Navarro, G.: Probabilistic proximity search: Fighting the curse of di-
mensionality in metric spaces. Information Processing Letters 85(1), 39–46 (2003)

5. Chávez, E., Navarro, G.: A compact space decomposition for effective metric in-
dexing. Pattern Recognition Letters 26(9), 1363–1376 (2005)

6. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.: Proximity searching in
metric spaces. ACM Computing Surveys 33(3), 273–321 (2001)

7. Esuli, A.: Mipai: using the pp-index to build an efficient and scalable similarity
search system. In: Proc. 2nd Intl. Workshop on Similary Searching and Applications
(SISAP 2009), pp. 146–148. IEEE Computer Society (2009)

8. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. SIAM J. Discrete
Math. 17(1), 134–160 (2003)

9. Figueroa, K., Chávez, E., Navarro, G., Paredes, R.: Speeding up spatial approxima-
tion search in metric spaces. ACM Journal of Experimental Algorithmics (JEA) 14,
article 3.6, 21 pages (2009), doi: http://doi.acm.org/10.1145/1498698.1564506

10. Figueroa Mora, K., Paredes, R., Rangel, R.: Efficient group of permutants for prox-
imity searching. In: Mart́ınez-Trinidad, J.F., Carrasco-Ochoa, J.A., Ben-Youssef
Brants, C., Hancock, E.R. (eds.) MCPR 2011. LNCS, vol. 6718, pp. 42–49.
Springer, Heidelberg (2011)

11. Figueroa, K., Frediksson, K.: Speeding up permutation based indexing with in-
dexing. In: Proceedings of the 2009 Second International Workshop on Similar-
ity Search and Applications, SISAP 2009, pp. 107–114. IEEE Computer Society,
Washington, DC (2009), http://dx.doi.org/10.1109/SISAP.2009.12

12. Patella, M., Ciaccia, P.: Approximate similarity search: A multi-faceted problem.
Journal of Discrete Algorithms 7(1), 36–48 (2009)

13. Skala, M.: Counting distance permutations. J. of Discrete Algorithms 7(1), 49–61
(2009), http://dx.doi.org/10.1016/j.jda.2008.09.011

http://cophir.isti.cnr.it
http://doi.acm.org/10.1145/1498698.1564506
http://dx.doi.org/10.1109/SISAP.2009.12
http://dx.doi.org/10.1016/j.jda.2008.09.011

Machine Learning for Image Classification and
Clustering Using a Universal Distance Measure

Uzi Chester and Joel Ratsaby

Electrical and Electronics Engineering Department,
Ariel University of Samaria, ARIEL 40700

ratsaby@ariel.ac.il
http://www.ariel.ac.il/sites/ratsaby/

Abstract. We present a new method for image feature-extraction which
is based on representing an image by a finite-dimensional vector of dis-
tances that measure how different the image is from a set of image proto-
types. We use the recently introduced Universal Image Distance (UID) [1]
to compare the similarity between an image and a prototype image. The
advantage in using the UID is the fact that no domain knowledge nor any
image analysis need to be done. Each image is represented by a finite di-
mensional feature vector whose components are the UID values between
the image and a finite set of image prototypes from each of the feature
categories. The method is automatic since once the user selects the pro-
totype images, the feature vectors are automatically calculated without
the need to do any image analysis. The prototype images can be of differ-
ent size, in particular, different than the image size. Based on a collection
of such cases any supervised or unsupervised learning algorithm can be
used to train and produce an image classifier or image cluster analysis.
In this paper we present the image feature-extraction method and use it
on several supervised and unsupervised learning experiments for satel-
lite image data. The feature-extraction method is scalable and is easily
implementable on multi-core computing resources.

1 Introduction

Image classification research aims at finding representations of images that can
be automatically used to categorize images into a finite set of classes. Typically,
algorithms that classify images require some form of pre-processing of an image
prior to classification. This process may involve extracting relevant features and
segmenting images into sub-components based on some prior knowledge about
their context [2,3].

In [1] we introduced a new distance function, called Universal Image Distance
(UID), for measuring the distance between two images. The UID first trans-
forms each of the two images into a string of characters from a finite alphabet
and then uses the string distance of [4] to give the distance value between the
images. According to [4] the distance between two strings x and y is a normalized
� Corresponding author.

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 59–72, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.ariel.ac.il/sites/ratsaby/

60 U. Chester and J. Ratsaby

difference between the complexity of the concatenation xy of the strings and the
minimal complexity of each of x and y. By complexity of a string x we mean the
Lempel-Ziv complexity [5].

In the current paper we use the UID to create a finite-dimensional represen-
tation of an image. The ith component of this vector is a feature that measures
how different the image is from the ith feature catgory. One of the advantages of
the UID is that it can compare the distance between two images of different sizes
and thus the prototypes which are representative of the different feature cate-
gories may be relatively small. For instance, the prototypes of an urban category
can be small images of size 45× 70 pixels of various parts of cities.

In this paper we introduce a process to convert the image into a labeled case
(feature vector). Doing this systematically for a set of images each labeled by
its class yields a data set which can be used for training any supervised and
unsupervised learning algorithms. After describing our method in details we
report on the accuracy results of several classification-learning algorithms on
such data. As an example, we apply out method to satellite image classification
and clustering.

We note that our process for converting an image into a finite dimensional fea-
ture vector is very straightforward and does not involve any domain knowledge
about the images. In contrast to other image classification algorithms that ex-
tract features based on sophisticated mathematical analysis, such as, analyzing
the texture, the special properties of an image, doing edge-detection, or any of
the many other methods employed in the immense research-literature on image
processing, our approach is very basic and universal. It is based on the complex-
ity of the ’raw’ string-representation of an image. Our method extracts features
automatically just by computing distances from a set of prototypes. It is there-
fore scalable and can be implemented using parallel processing techniques, such
as on system-on-chip and FPGA hardware implementation [6,7,8].

Our method extracts image features that are unbiased in the sense that they
do not employ any heuristics in contrast to other common image-processing
techniques [2]. The features that we extract are based on information implicit
in the image and obtained via a complexity-based UID distance which is an
information-theoretic measure. In our method, the feature vector representation
of an image is based on the distance of the image from some fixed set of rep-
resentative class-prototypes that are initially and only once picked by a human
user running the learning algorithm.

Let us now summarize the organization of the paper: in section 2 we review
the definitions of LZ-complexity and a few string distances. In section 3 we
define the UID distance. In section 4 we describe the algorithm for selecting class
prototypes. In section 5 we describe the algorithm that generates a feature-vector
representation of an image. In section 6 we discuss the classification learning
method and in section we conclude by reporting on the classification accuracy
results.

Machine Learning for Image Classification and Clustering 61

2 LZ-Complexity and String Distances

The UID distance function [1] is based on the LZ- complexity of a string. The
definition of this complexity follows [4,5]: let S,Q and R be strings of characters
that are defined over the alphabet A. Denote by l(S) the length of S, and S(i)
denotes the ith element of S. We denote by S(i, j) the substring of S which
consists of characters of S between position i and j (inclusive). An extension
R = SQ of S is reproducible from S (denoted as S → R) if there exists an
integer p ≤ l(S) such that Q(k) = R(p+k− 1) for k = 1, . . . , l(Q). For example,
aacgt → aacgtcgtcg with p = 3 and aacgt → aacgtac with p = 2. R is obtained
from S (the seed) by first copying all of S and then copying in a sequential
manner l(Q) elements starting at the pth location of S in order to obtain the Q
part of R.

A string S is producible from its prefix S(1, j) (denoted S(1, j) ⇒ R), if
S(1, j) → S(1, l(S) − 1). For example, aacgt → aacgtac and aacgt → aacgtacc
both with pointers p = 2. The production adds an extra ’different’ character at
the end of the copying process which is not permitted in a reproduction.

Any string S can be built using a production process where at its ith step we
have the production S(1, hi−1) ⇒ S(1, hi) where hi is the location of a character
at the ith step. (Note that S(1, 0) ⇒ S(1, 1)).

An m-step production process of S results in parsing of S in which H(S) =
S(1, h1) ·S(h1+1, h2) · · ·S(hm−1+1, hm) is called the history of S and Hi(S) =
S(hi−1+1, hi) is called the ith component of H(S). For example for S = aacgtacc
we have H(S) = a · ac · g · t · acc as the history of S.

If S(1, hi) is not reproducible from S(1, hi−1) then the component Hi(S) is
called exhaustive meaning that the copying process cannot be continued and the
component should be halted with a single character innovation. Every string S
has a unique exhaustive history [5].

Let us denote by cH(S) the number of components in a history of S. The LZ
complexity of S is c(S) = min {cH(S)} where the minimum is over all histories of
S. It can be shown that c(S) = cE(S) where cE(S) is the number of components
in the exhaustive history of S.

A distance for strings based on the LZ-complexity was introduced in [4] and is
defined as follows: given two strings X and Y , denote by XY their concatenation
then define

d(X,Y) := max {c(XY)− c(X), c(Y X)− c(Y)} .

In [1] we have found that the following normalized distance

d(X,Y) :=
c(XY)−min {c(X), c(Y)}

max {c(X), c(Y)} . (1)

performs well in classification and clustering of images.
We note in passing that (1) resembles the normalized compression distance

of [9] except that here we do not use a compressor but instead resort to the
LZ-complexity c of a string. Note that d is not a metric since it does not satisfy

62 U. Chester and J. Ratsaby

the triangle inequality and a distance of 0 implies that the two strings are close
but not necessarily identical. We refer to d as a universal distance because it
is not dependent on some specific representation of a string nor on heuristics
common to other string distances such as edit-distances [10]. D only depends on
the LZ-complexity of each of the two strings and their concatenation and this is
a pure information-quantity which depends on the string’s context but not its
representation.

3 Universal Image Distance

Based on d we now define a distance between images. The idea is to convert
each of two images I and J into strings X(I) and X(J) of characters from a
finite alphabet of symbols. Once in string format, we use d(X(I), X(J)) as the
distance between I and J . The details of this process are described in Algorithm
1 below.

Algorithm 1. UID distance measure
1. Input: two color images I , J in jpeg format (RGB representation)
2. Transform the RGB matrices into gray-scale by forming a weighted sum of the

R, G, and B components according to the following formula: grayscaleV alue :=
0.2989R + 0.5870G + 0.1140B, (used in Matlab c©). Each pixel is now a single
numeric value in the range of 0 to 255 . We refer to this set of values as the
alphabet and denote it by A.

3. Scan each of the grayscale images from top left to bottom right and form a string
of symbols from A. Denote the two strings by X(I) and X(J).

4. Compute the LZ-complexities: c
(
X(I)

)
, c

(
X(J)

)
and the complexity of their con-

catenation c
(
X(I)X(J)

)

5. Output: UID(I, J) := d
(
X(I), X(J)

)
.

Remark 1. The transformation into gray-scale is a matter of representational
convenience. To deal with color images without this transformation one can
create a 3D alphabet whereby each ’letter’ in this alphabet corresponds to an
RGB triple with each component in the range 0 to 255. This way the image color
information remains in the string representation.

4 Prototype Selection

In this section we describe the algorithm for selecting image prototypes from
each of the feature categories . This process runs only once before the stage of
converting the images into finite dimensional vectors, that is, it does not run

Machine Learning for Image Classification and Clustering 63

once per image but once for all images. For an image I we denote by P ⊂ I a
sub-image P of I where P can be any rectangular-image obtained by placing a
window over the image I where the window is totally enclosed by I. The size
of the window depends on how much information a single prototype will convey
about the associated feature-category.

In the following algorithm we use clustering as a simple means of valida-
tion that the prototypes selected maintain the inherent differences between the
feature-categories (the clustering algorithm is not given the feature-category in-
formation but only the inter-prototype distance information).

Algorithm 2. Prototypes selection
1. Input: M image feature categories, and a corpus CN of N unlabeled colored images

{Ij}Nj=1 .
2. for (i := 1 to M) do

(a) Based on any of the images Ij in CN , let the user select Li prototype images{
P

(i)
k

}Li

k=1
and set them as feature category i. Each prototype is contained by

some image, P (i)
k ⊂ Ij , and the size of P

(i)
k can vary, in particular it can be

much smaller than the size of the images Ij , 1 ≤ j ≤ N .
(b) end for;

3. Enumerate all the prototypes into a single unlabeled set {Pk}Lk=1, where L =∑M
i=1 Li and calculate the distance matrix H =

[
UID

(
X(Pk), X(Pl)

)]L
k=1,l=1

where the (k, l) component of H is the UID distance between the unlabeled pro-
totypes Pk and Pl.

4. Run hierarchical clustering on H and obtain the associated dendrogram (note: H
does not contain any ’labeled’ information about feature-categories, as it is based
on the unlabeled set).

5. If there are M clusters with the ith cluster consisting of the prototypes
{
P

(i)
k

}Li

k=1
then terminate and go to step 7.

6. Else go to step 2.

7. Output: the set of labeled prototypes PL :=

{{
P

(i)
k

}Li

k=1

}M

i=1

where L is the

number of prototypes.

From the theory of learning pattern recognition, it is known that the dimen-
sionality M of a feature-vector is usually taken to be small compared to the
data size N . A large L will obtain better feature representation accuracy of the
image, but it will increase the time for running Algorithm 3 (described below).

Algorithm 2 convergence is based on the user’s ability to select good prototype
images. We note that from our experiments this is easily achieved primarily be-
cause the UID permits to select prototypes P

(i)
k which are considerably smaller

than the size of the full images Ij . For instance, in our experiments we used 45×70

64 U. Chester and J. Ratsaby

pixels prototype size for all feature categories. This fact makes it easy for a user
to quickly choose typical representative prototypes from every feature-category.
This way it is easy to find informative prototypes, that is, prototypes that are
distant when they are from different feature-categories and close when they are
from the same feature category. Thus Algorithm 2 typically converges rapidly.

As an example, Figure 1 displays 12 prototypes selected by a user from a
corpus of satellite images. The user labeled prototypes 1, . . . , 3 as representative
of the feature category urban, prototypes 4, . . . , 6 as representatives of class sea,
prototypes 7, . . . , 9 as representative of feature roads and prototypes 10, . . . , 12
as representative of feature arid. The user easily found these representative pro-
totypes as it is easy to fit in a single picture of size 45×70 pixels a typical image.
The dendrogram produced in step 4 of Algorithm 2 for these set of 12 prototypes
is displayed in Figure 2. It is seen that the following four clusters were found
{10, 12, 11} , {1, 2, 3} , {7, 8, 9} , {4, 6, 5} which indicates that the prototypes se-
lected in Algorithm 2 are good.

Fig. 1. Labeled prototypes of feature-categories urban, sea , roads, and arid (each
feature has three prototypes, starting from top left and moving right in sequence)

5 Image Feature-Representation

In the previous section we described Algorithm 2 by which the prototypes are
manually selected. This algorithm is now used to create a feature-vector rep-
resentation of an image. It is described as Algorithm 3 below (in [1] we used
a similar algorithm UIC to soft-classify an image whilst here we use it to only
produce a feature vector representation of an image which later serves as a single
labeled case for training any supervised learning algorithm or a single unlabeled
case for training an unsupervised algorithm).

Machine Learning for Image Classification and Clustering 65

Fig. 2. Dendrogram of prototypes of Figure 1

Algorithm 3. Feature-vector generation
1. Input: an image I to be represented on the following feature categories 1 ≤ i ≤ M ,

and given a set PL :=

{{
P

(i)
k

}Li

k=1

}M

i=1

of labeled prototype images (obtained from

Algorithm 2).
2. Initialize the count variables ci := 0, 1 ≤ i ≤ M
3. Let W be a rectangle of size equal to the maximum prototype size. (See remark

below)
4. Scan a window W across I from top-left to bottom-right in a non-overlapping way,

and let the sequence of obtained sub-images of I be denoted as {Ij}mj=1.
5. for (j := 1 to m) do

(a) for (i := 1 to M) do
i. temp := 0
ii. for (k := 1 to Li) do

A. temp := temp+
(
UID(Ij , P

(i)
k)

)2

B. end for;
iii. ri :=

√
temp

iv. end for;
(b) Let i∗(j) := argmin1≤i≤Mri, this is the decided feature category for sub-image

Ij .
(c) Increment the count, ci∗(j) := ci∗(j) + 1
(d) end for;

6. Normalize the counts, vi := ci∑
M
l=1

cl
, 1 ≤ i ≤ M

7. Output: the normalized vector v(I) = [v1, . . . vM] as the feature-vector represen-
tation for image I

66 U. Chester and J. Ratsaby

Remark 2. In Step 3, we choose the size of W to be the maximal size of a
prototype but this is not crucial since D can measure the distance between two
images of different sizes. From our experiments, the size of W needs to be large
enough such that the amount of image information in W is not smaller than
that captured in any of the prototypes.

6 Supervised and Unsupervised Learning on Images

Given a corpus C of images and a set PL of labeled prototypes we use Algorithm
3 to generate the feature-vectors v(I) corresponding to each image I in C. At this
point we have a database D of size equal to |C| which consists of feature vectors
of all the images in C. This database can be used for unsupervised learning, for
instance, discover interesting clusters of images. It can also be used for supervised
learning provided that each of the cases can be labeled according to a value of
some target class variable which in general may be different from the feature
categories. Let us denote by T the class target variable and the database DT

which consists of the feature vectors of D with the corresponding target class
values. The following algorithm describes the process of learning classification of
images.

Algorithm 4. Image classification learning
1. Input: (1) a target class variable T taking values in a finite set T of class categories,

(2) a database DT which is based on the M -dimensional feature-vectors database
D labeled with values in T (3) any supervised learning algorithm A

2. Partition DT using n-fold cross validation into Training and Testing sets of cases
3. Train and test algorithm A and produce a classifier C which maps the feature

space [0, 1]M into T
4. Define Image classifier as follows: given any image I the classification is F (I) :=

C(v(I)), where v(I) is the M -dimensional feature vector of I
5. Output: classifier F

7 Computational Time

Given an image I let us denote by τ(I) the total time that it takes Algorithm
3 to generate the case (vector-representation) v(I) of I that can be used as a
training case or as an input to the classifier F in order to classify the image I.

As mentioned above, Algorithm 2 involves a one-time manual selection of pro-
totypes and the speed is dictated by the user (not the computer). Algorithms 3
is where the computational time is relevant. Step 5 of Algorithm 3 is the time-
critical section which governs the overall computational time of the algorithm.
This step iterates over all subimages Ij , 1 ≤ j ≤ m, of the input image I, and
for each subimage it computes the values ri, 1 ≤ i ≤ M , one for each feature-
category. In order to compute ri it computes the UID distance between Ij and

Machine Learning for Image Classification and Clustering 67

prototype P
(i)
k , 1 ≤ k ≤ Li. To compute UID(I, J) requires building the ex-

haustive history of both strings X(I), X(J) and of their concatenation X(I)X(J).
So the time to compute UID(I, J) is O(c(X(I)X(J))) where c(X(I)X(J)) is the
length of the exhaustive history of their concatenation. Denoting by τ(I, J) the
time to compute UID(I, J) then it is clear that τ(I, J) depends on the images
I, J and not just on their sizes. That is, τ(I, J) depends on the LZ-complexity of
the two images and on their similarity–the more similar the two, the less complex
the concatenation string X(I)X(J) and the smaller τ(I, J) is.

The time to compute the decided feature-category for subimage Ij of I is
big-O the time that it takes to perform the jth iteration of the outer for-loop of
step 5. We refer to this as subimage-time and denote it by τj(I). We have

τj(I) : = O

(
M∑
i=1

Li∑
k=1

τ(Ij , P
(i)
k)

)
where M is the number of categories, and Li is the number of prototypes for
category i.

Hence if we run on a single processor (single core) the case-generation time
τ(I) of an image I is

τ(I) =

m∑
j=1

τj(I) (2)

where m is the number of subimages in a single image I. It is clear from this
formula that parallel computations (in particular, stream processing where the
same function is applied to different data) can be very advantegeous for reducing
the case-generation time τ(I).

For instance, on a processor with n cores, where n ≥ m, each of the cores can
compute in parallel a different subimage. This yields a total time

τ(I) = O(max
1≤j≤m

τj(I)).

If the number of cores n satisfies m > n ≥ M then we can let each core compute
a different category-sum. This takes a single sub-image-category time

τ
(i)
j (I) : = O

(
Li∑
k=1

τ
(
Ij , P

(i)
k

))
and in this case the total time is

τ(I) =

m∑
j=1

max
1≤i≤M

τ
(i)
j (I). (3)

If the number of cores n ≥ m ·
∑M

i=1 Li then the total time to generate v(I) from
I is

τ(I) = O

⎛⎜⎜⎝ max
1≤j≤m
1≤i≤M
1≤k≤Li

τ
(
Ij , P

(i)
k

)⎞⎟⎟⎠ . (4)

68 U. Chester and J. Ratsaby

8 Experimental Setup and Results

We created a corpus C of 60 images of size 670×1364 pixels from GoogleEarth c©of
various types of areas. Figure 3 displays a few scaled-down examples of such
images. From these images we let a user define four feature-categories: sea, urban,
arid, roads and choose three relatively-small image-prototype of size 45×70 pixels
from each feature-category, that is, we ran Algorithm 2 with M = 4 and Li = 3
for all 1 ≤ i ≤ M . We then ran Algorithm 3 to generate the feature-vectors for
each image in the corpus and obtained a database D.

We then let the user label the images by a target variable Humidity with
possible values 0 or 1. An image is labeled 0 if the area is of low humidity and
labeled 1 if it is of higher humidity. We note that an image of a low humidity
region may be in an arid (dry) area or also in the higher-elevation areas which are
not necessarily arid. Since elevation information is not available in the feature-
categories that the user has chosen then the classification problem is hard since
the learning algorithm needs to discover the dependency between humid regions
and areas characterized only by the above four feature categories.

With this labeling information at hand we produced the labeled database
DHumidity . We used Algorithm 4 to learn an image classifier with target Hu-
midity. As the learning algorithm A we used the following standard supervised
algorithms: J48, CART , which learn decision trees, NaiveBayes and Multi-Layer
Perceptrons (backpropagation) all of which are available in the WEKA c©toolkit.

We performed 10-fold cross validation and compared their accuracies to a
baseline classifier (denoted as ZeroR) which has a single decision that corre-
sponds to the class value with the highest prior empirical probability. As seen in
Table 1 (generated by WEKA c©) J48, CART, NaiveBayes and Backpropagation
performed with an accuracy of 86.5%, 81.5%, 89.25%, and 87.25%, respectively,
compared to 50% achieved by the baseline ZeroR classifier. The comparison
concludes that all three learning algorithms are significantly better than the
baseline classifier, based on a T-test with a significance level of 0.05.

Next, we performed clustering on the unlabeled database D. Using the k-
means algorithm, we obtained 3 significant clusters, shown in Table 2.

One can read the information directly from Table 2 and see that the first
cluster captures images of highly urban areas that are next to concentration of
roads, highways and interchanges. The second cluster contains less populated
(urban) areas in arid locations (absolutely no sea feature seen) with very low
concentration of roads. The third cluster captures the coastal areas and here we
can see that there can be a mixture of urban (but less populated than images of
the first cluster) with roads and extremely low percentage of arid land.

Machine Learning for Image Classification and Clustering 69

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 3. Examples of images in the corpus

70 U. Chester and J. Ratsaby

Table 1. Percent correct results for classifying Humidity

Dataset DHumidity (1) (2) (3) (4) (5)
Classify Image into Humidity: 50.00 86.50 ◦ 81.50 ◦ 89.25 ◦ 87.25 ◦

◦, • statistically significant improvement or degradation

(1) rules.ZeroR ” 48055541465867954
(2) trees.J48 ’-C 0.25 -M 2’ -217733168393644444
(3) trees.SimpleCart ’-S 1 -M 2.0 -N 5 -C 1.0’ 4154189200352566053
(4) bayes.NaiveBayes ” 5995231201785697655
(5) functions.MultilayerPerceptron ’-L 0.3 -M 0.2 -N 500 -V 0 -S 0 -E 20 -H a’ -5990607817048210779

Table 2. k-means clusters found on unsupervised database D

Feature Full data Cluster#1 Cluster#2 Cluster#3
urban 0.3682 0.6219 0.1507 0.2407
sea 0.049 0.0085 0 0.1012
road 0.4074 0.2873 0.0164 0.655
arid 0.1754 0.0824 0.8329 0.003

The fact that such interesting knowledge can be extracted from raw images
using our feature-extraction method is very significant since as mentioned above
our method is fully automatic and requires no image or mathematical analysis
or any sophisticated preprocessing stages that are common in image pattern
analysis.

Let us report on some computational time statistics. The hardware we used
is a 2.8Ghz AMD Phenom c©II X6 1055T Processor with number of cores n = 6.
The operating system is Ubuntu Linux 2.6.38-11-generic. The corpus consists
of images of size 670 × 1364 pixels, with a sub-image and prototype sizes of
45× 70 pixels, the number of subimages per image is m = 266. For this test we
chose the number of feature-categories M = 3 with a total number of prototypes∑M

i=1 Li = 11. We implemented the algorithms in Matlab c©in standard code
style, that is, with no time-efficiency optimization, except in step 5.a. where the
for statement is implemented using a parfor statement of Matlab. Note that in
this case m > n > M hence the total time to compute one image I is as stated
in (3).

We obtained the set of average computational times

T iming
¯
Data =

{
τ
(i)
j : 1 ≤ j ≤ m, 1 ≤ i ≤ M

}
where

τ
(i)
j :=

1

Li

Li∑
k=1

τ
(
Ij , P

(i)
k

)
.

Figure 4 shows the histogram for this T iming
¯
Data, where the horizontal axis

is time in units of seconds. The mean time is 0.851 sec. and the standard deviation

Machine Learning for Image Classification and Clustering 71

is 0.264 sec. Some of the state-of-the-art Graphics Processor Unit (GPU) accel-
erators have thousands of execution cores (see for instance, NVIDIA Tesla c©
K20 which has 2, 496 cores) and are offered at current prices of approximately
$2, 000. On the NVIDIA Tesla c© K10 the number of execution cores is n = 3072
and is greater than m

∑M
i=1 Li = 2, 926 so the total computation time τ(I) to

process a single image I in the corpus will be as in (4), which for this example
is approximately 0.851 sec. using Matlab with no optimization. We have not
yet done so but we expect that transforming the code from Matlab to C and
rewriting it with parallel processing code optimization can yield an average τ(I)
which is lower by several orders of magnitude.

Fig. 4. Histogram of the computational times τ
(i)
j , 1 ≤ j ≤ m, 1 ≤ i ≤ M , m = 266,

M = 3. The mean is 0.851.

9 Conclusion

We introduced a method for automatically defining and measuring features of
colored images.The method is based on a universal image distance that is mea-
sured by computing the complexity of the string-representation of the two images
and their concatenation. An image is represented by a feature-vector which con-
sists of the distances from the image to a fixed set of small image prototypes, de-
fined once by a user. There is no need for any sophisticated mathematical-based
image analysis or pre-processing since the universal image distance regards the
image as a string of symbols which contains all the relevant information of the
image. The simplicity of our method makes it very attractive for fast and scal-
able implementation, for instance on a specific-purpose hardware acceleration
chip. We applied our method to supervised and unsupervised machine learning
on satellite images. The results show that standard machine learning algorithms
perform well based on our feature-vector representation of the images.

72 U. Chester and J. Ratsaby

Acknowledgements. We gratefully acknowledge the support of NVIDIA Cor-
poration with the donation of the Tesla K20 GPU used for this research.

References

1. Chester, U., Ratsaby, J.: Universal distance measure for images. In: 2012 IEEE
27th Convention of Electrical Electronics Engineers in Israel (IEEEI), pp. 1–4
(November 2012)

2. Canty, M.J.: Image Analysis, Classification and Change Detection in Remote Sens-
ing: With Algorithms for Envi/Idl. CRC/Taylor & Francis (2007)

3. Lillesand, T.M., Kiefer, R.W., Chipman, J.W.: Remote sensing and image inter-
pretation. John Wiley & Sons (2008)

4. Sayood, K., Otu, H.H.: A new sequence distance measure for phylogenetic tree
construction. Bioinformatics 19(16), 2122–2130 (2003)

5. Ziv, J., Lempel, A.: On the complexity of finite sequences. IEEE Transactions on
Information Theory 22(3), 75–81 (1976)

6. Ratsaby, J., Sirota, V.: Fpga-based data compressor based on prediction by partial
matching. In: 2012 IEEE 27th Convention of Electrical Electronics Engineers in
Israel (IEEEI), pp. 1–5 (November 2012)

7. Ratsaby, J., Zavielov, D.: An fpga-based pattern classifier using data compression.
In: Proc. of 26th IEEE Convention of Electrical and Electronics Engineers, Israel,
Eilat, November 17-20, pp. 320–324 (2010)

8. Kaspi, G., Ratsaby, J.: Parallel processing algorithm for Bayesian network infer-
ence. In: 2012 IEEE 27th Convention of Electrical Electronics Engineers in Israel
(IEEEI), pp. 1–5 (November 2012)

9. Cilibrasi, R., Vitanyi, P.: Clustering by compression. IEEE Transactions on Infor-
mation Theory 51(4), 1523–1545 (2005)

10. Deza, M., Deza, E.: Encyclopedia of Distances. Series in Computer Science, vol. 15.
Springer (2009)

Faster Algorithms for Tree Similarity

Based on Compressed Enumeration
of Bounded-Sized Ordered Subtrees

Kunihiro Wasa1, Kouichi Hirata2, Takeaki Uno3, and Hiroki Arimura1

1 Hokkaido University, N14 W9, Sapporo 060-0814, Japan
{wasa,arim}@ist.hokudai.ac.jp

2 Kyushu Institute of Technology, Kawazu 680-4, Iizuka 820-8502, Japan
hirata@ai.kyutech.ac.jp

3 National Institute of Informatics, 2-1-2 Hitotsubashi, Tokyo 101-8430, Japan
uno@nii.jp

Abstract. In this paper, we study efficient computation of tree simi-
larity for ordered trees based on compressed subtree enumeration. The
compressed subtree enumeration is a new paradigm of enumeration al-
gorithms that enumerates all subtrees of an input tree T in the form of
their compressed bit signatures. For the task of enumerating all com-
pressed bit signatures of k-subtrees in an ordered tree T , we first present
an enumeration algorithm in O(k)-delay, and then, present another enu-
meration algorithm in constant-delay using O(n) time preprocessing that
directly outputs bit signatures. These algorithms are designed based on
bit-parallel speed-up technique for signature maintenance. By experi-
ments on real and artificial datasets, both algorithms showed approx-
imately 22% to 36% speed-up over the algorithms without bit-parallel
signature maintenance.

1 Introduction

Similarity search is a fundamental problem in modern information and knowl-
edge retrieval [14]. In particular, we focus on tree similarity between two trees,
which plays a key role in a number of information and knowledge retrieval prob-
lems from semi-structured data such as similarity search, clustering, recommen-
dation, and classification for structured data in the real world [2–4, 8, 13].

In this paper, we study the efficient computation of the frequency-based tree
similarities using classes of ordered trees. Ordered trees are rooted trees which
have total ordering among siblings. They are useful for modeling semi-structured
documents such as HTML and XML, chemical compounds, natural language
data, and Web access logs. In one direction, ordered tree similarities based on
substructures have been extensively studied [9–11], where the focuses are on
substructures of restricted forms such as paths [9] and q-grams [10]. In other di-
rection, Kashima and Koyanagi [8] presented an efficient dynamic programming
algorithm to compute the ordered subtree kernel of two ordered trees T1 and T2

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 73–84, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

74 K. Wasa et al.

19 20

15

1

13

2

3

4

8

9

10

5

7

11 126

T1 14 16

17 18

i Subtree Si Signature Bi Freq. fi
1 S1 = {1, 2, 14, 15, 16} (()()()()) 1
2 S2 = {1, 2, 14, 16, 17} (()()(())) 6
3 S3 = {2, 3, 8, 9, 13} (()(()())) 5
4 S4 = {2, 3, 8, 9, 10} (()((()))) 10
5 S5 = {1, 2, 3, 14, 15} ((())()()) 6
6 S6 = {2, 3, 5, 8, 13} ((())(())) 8
7 S7 = {2, 3, 4, 5, 8} ((()())()) 7
8 S8 = {8, 9, 10, 11, 12} ((()()())) 1
9 S9 = {1, 2, 3, 8, 9} ((()(()))) 5
10 S10 = {1, 2, 3, 16, 17} (((()))()) 13
11 S11 = {1, 2, 3, 4, 8} (((())())) 5
12 S12 = {1, 2, 3, 16, 18} (((()()))) 6
13 S13 = {1, 2, 8, 9, 11} ((((())))) 5

Fig. 1. An ordered tree T1, the corresponding k-subtrees, and the feature vector φSk (T)
for T1, where k = 5. The set of nodes surrounded by a dashed circle indicates the
subtree S4 = {2, 3, 8, 9, 10}, which has occurrences S1

4 = {1, 15, 16, 18, 19} and S2
4 =

{2, 3, 8, 9, 12} in T isomorphic to itself.

in O(|T1|×|T2|) time using general ordered subtrees of unbounded size. Besides
the efficient DP algorithms for ordered trees of unbounded size [8], some authors
pointed out the usefulness of the semi-structured features using bounded sized
substructures [12]. However, it does not seem easy to extend the DP algorithm
[8] for bounded sized ordered trees.

The enumeration-based approach [2,12,16] is another way of computing such
a tree distance based on a general class of substructures, which is a simple and
flexible approach that one uses a pattern enumeration algorithm [2, 17, 19], to
find all substructures contained in an input data to construct a feature vector,
and then to solve a variety of tasks for information retrieval, data mining, and
machine learning using similarity measure obtained from the constructed feature
vectors. One problem in this approach is the high computational complexity
of enumerating all small substructures. Hence, our goal is to devise efficient
algorithms for frequency-based similarity by employing the recent development
of efficient enumeration and mining algorithms for semi-structured data [2,17,19].

In this paper, we study efficient computation of tree similarity between two
ordered trees using as features the class of bounded sized ordered subtrees in
unrestricted shape. We present two new efficient algorithms for enumerating the
compressed bit-signatures of all ordered k-subtrees in an input ordered tree using
bit-parallel speed-up technique. The first one runs in O(k) time per signature,
and the second one runs in constant time per signature using O(n) time pre-
processing [1,7]. From these compressed signatures, we can quickly compute the
tree similarity between two ordered trees. We note that these algorithm are the
first compressed pattern enumeration algorithms [18] for a subclass of trees and
graphs. They directly enumerate the compressed representation of all substruc-
tures by incrementally constructing their compressed form on-the-fly without
encoding/decoding.

Tree Similarity Based on Compressed Enumeration 75

Finally, we ran the experiments on real and artificial datasets to evaluate the
proposed methods. We observed that the improved versions of the algorithms
equipped with our bit-parallel speed-up technique showed around 36% speed-up
from the algorithm without speed-up.

Organization of This Paper: In Sec.2, we give the definitions of the tree
similarities with ordered k-subtrees. In Sec. 3, we present the first algorithm
using at most k-subtrees, and in Sec.4, the second algorithm using exactly k-
subtrees. In Sec.5, we ran experiments to evaluate these algorithms, and in Sec.6,
we conclude this paper.

2 Preliminaries

In this section, we give basic definitions and notation on the tree similarities over
ordered trees. We denote by |A| the number of elements in a set A. For every
integers i ≤ j, we denote by [i, j] = {i, i+ 1, . . . , j}.
Trees and k-Subtrees: An ordered tree is a rooted tree T = (V,E, r) with
a node set V = V (T) = {1, . . . , n}, an edge set E = E(T), and the root r =
root(T) such that there exists a fixed ordering among children Ch(u) of each
internal node u ∈ T . The size of T is |T | = |V |. We assume the standard
definitions of the parent, children, leaves, and paths [5]. We denote by pa(v) the
parent of node v, Ch(v) the set of all children of v, and Lv(T) ⊆ V (T) the set
of all leaves of T . The border set is the set Bd(S) = { y ∈ Ch(x) |x ∈ S, y /∈ S },
that is, the set of all nodes that are not contained in S, but are children of some
nodes in S. We denote by T the countable set of all ordered trees.

A subtree with size k of T , or simply a k-subtree, is any connected subgraph
T [S] = (S,E(S), root(S)) of T induced in a subset S ⊆ V (T) consisting of
exactly k nodes of T . Since such a subtree can be completely specified by a
connected node set S, we identify any subset S ⊆ V (T) with the subtree T [S] if
it is clear from the context. We denote by Sk(T) the set of all distinct k-subtrees
appearing in T modulo isomorphism. A k-subtree S ∈ Sk(T) appears in T if
there is some subset U ⊆ V (T) such that T [U] is isomorphic to T [S]. We assume
that the nodes are ordered as v1 ≤ · · · ≤ vn by the preorder traversal of T [5].

Bit Signatures: As the succinct representation of ordered trees, the balanced
parentheses representation (BP) [1] of an ordered tree T of k nodes is a bit
sequence BP (T) = b2k−1 · · · b0 defined by the depth-first traversal of T starting
from root(T) the left and right parentheses, “(” = 0 and “)” = 1, when it visits
a node at the first and last times, respectively. We call BP (T) the bit signature
of T . For example, the BP of a tree S3 = {2, 3, 8, 9, 13} of size 5 is “(()(()()))”.

For each node v ∈ T , lpos(v) and rpos(v) ∈ [0, 2k−1] denotes the bit positions
for the left and right parentheses in BP (S) corresponding to v, respectively. For
any subset R ⊆ S, RPOS(R) denotes the bit-vector X ∈ {0, 1}2k such that, for
every v ∈ S, X [rpos(v)] = 1 iff v ∈ R. The compressed subtree enumeration on
T is the task of enumerating all subtrees in T in the form of bit signature.

76 K. Wasa et al.

Tree Similarity: In this subsection, we give the tree similarity for ordered
trees [8,11]. Let T be an input ordered tree and S = {S1, . . . , SM} ⊆ T , M ≥ 1,
be a class of possible subtrees in T . Each elements of S are called a subtree-
feature. The subtree-feature vector of T based on S is the vector φS(T) of the
number of counts that subtrees of S appear in T . Below, we will omit the su-
perscript S if it is clear from context. Formally, the subtree-feature vector φ(T)
for T based on S is defined by

φ(T) = (f1(T), . . . , fM (T)) ∈ N
M , (1)

where for every i ∈ [1,M], fi(T) = Occ(Si, T) is the number of all occurrences
of the i-th subtree Si in T . Then, we consider the the tree similarity Sim(T, T ′)
between T and T ′ in one of the following forms [14]:

– Lp-tree distance for every p = 1, 2, . . .:

Sim(T, T ′) = ||φ(T)− φ(T ′)||p =

(∑
i

|fi(T)− fi(T
′)|p
)1/p

. (2)

– Cosine-tree distance:

Sim(T, T ′) = Cosine(φ(T), φ(T ′)) =

∑
i fi(T)×fi(T

′)

(
∑

i fi(T))
1
2 × (

∑
i fi(T

′))
1
2

(3)

Once the feature vectors φ(T) and φ(T ′) are computed by a subtree enumer-
ation algorithm for class S, Sim(T, T ′) can be computed in linear time in the
length of the vectors. In Fig.1, we show examples of an ordered tree T1, the
corresponding k-subtrees, and the feature vector φSk(T1) for T1 based on all
k-subtrees for k = 5.

Model of Computation: We assume the Word RAM [1,7] with standard bit-
wise Boolean and arithmetic operations (“+” and “∗”) on w = Θ(log n) bits
registers including bitwise and “&”, bitwise or “|”, bitwise not “∼”, left shift
“�”, and right shift “�”, where n is an input size. We write a constant variable-
length bit-vector as “1011”. In this paper, a bit vector of length L is written as
X = bL−1 · · · b0 ∈ {0, 1}L, where the MSB bL−1 and LSB b0 come in this order.
For every i, we define the length and i-th bit of B by |B| = L and B[i] = bi,
respectively.

An enumeration algorithm A receives an instance of size n and outputs all
of m solutions without duplicates (See, e.g. [6]). For a polynomial p(·), A is
of O(f(n))-delay using preprocessing p(n) if the delay, which is the maximum
computation time between two consecutive outputs, is bounded by f(n) after
preprocessing in p(n) time.

3 Enumeration of At-Most k-Subtrees in a Tree

In Sec.3 and Sec.4, we present algorithms for computing the subtree-feature
vector of T based on efficient compressed subtree enumeration.

Tree Similarity Based on Compressed Enumeration 77

Algorithm 1. The algorithm EnumAtMost for computing the feature vector
H for the bit signatures of all subtrees with at most k nodes in an input tree T

1: procedure EnumAtMost(T, k)
2: H ← ∅; // A hash table H representing a feature vector
3: for r ← 1, . . . , n do
4: Initialize bit-vectors B and X;
5: RecAtMost({r}, T, k);
6: return H ;

7: procedure RecAtMost(S, T, k)
8: If H [S] is defined, then H [S] ← H [S] + 1 else H [S] ← 1;
9: Output BS(S);
10: If |S| = k, then return;
11: for each extension point v on RMB(S) do
12: Attach a new leaf u to v as the youngest child;
13: Let S ∪ {u} be the resulting subtree;
14: RecAtMost(S ∪ {u}, T, k);

The first algorithm that we present in this section is the compressed enu-
meration version of the constant delay enumeration algorithm for uncompressed
subtrees of at most size k in an ordered tree by [2, 15, 19].

The Outline of the Enumeration Algorithm: In Algorithm 1, we show our
algorithm EnumAtMost for at most k-subtrees and its subprocedure RecAt-
Most. This is a simple backtrack algorithm, which starts from a singleton tree
as 0-subtree, and recursively expands the current (i− 1)-subtree by attaching a
new node u to some node v = pa(u) on the current rightmost branch RMB(S)
to generate a new i-subtrees, until its size i becomes k (See [2]). Then, we say
that some node v ∈ T \ S can be added to S as a child of a node u = pa(v) on
RMB(S) if v is the younger than any child of u contained in S. Such a parent
node v on RMB(S) is called the extension point and u is called the associated
new child. If there is no such a node u, then the algorithm backtracks to the
parent subtree. The extension point set is the set XP (S) ⊆ RMB(S) of all
extension points of S. The next lemma gives the characterization of XP (S).

Lemma 1. For any u ∈ RMB(S), u ∈ XP (S) iff there exists some v ∈ T \ S
such that (i) v > max(S) and (ii) v is younger than the youngest child of u in S.

Example 1. For the 5-subtree S3 = {2, 3, 8, 9, 10} in Fig.1, Lv(S4) = {3, 10} and
Bd(S4) = {4, 5, 11, 12, 13}, RMB(S4) = {2, 8, 9, 10}, and XP (S4) = {8, 9}.

We will show how to incrementally maintain the extension set XP (S) by
growing S. For a singleton tree S consisting with the root r = root(S) only, if
r has a child in T then XP (S) = {r}, and otherwise XP (S) = ∅. For a subtree
with more than one nodes, we have the next lemma.

Lemma 2. Let S be any k-subtree of T with k ≥ 2. Suppose that k ≥ 2 and a
k-subtree R = S ∪ {v} is obtained from a (k − 1)-subtree S by attaching a new

78 K. Wasa et al.

child v to its extension point u = pa(v) ∈ XP (S). Then, XP (R) is the set of
vertices that satisfies the following (a)–(c):

(a) For the parent, pa(v) ∈ XP (R) iff v has a properly younger sibling in T .
(b) For the child, v ∈ XP (R) iff v has some child in T .
(c) For any old extension point x ∈ XP (S) other than pa(v), x ∈ XP (R) iff x

is an ancestor of pa(v).

In condition (c) of the above lemma, we note that any extension point x is
either an ancestor or a descendant of pa(v) in XP (S) since XP (S) is a subset
of RMB(S), a branch in S.

Fast Update of Bit Signatures: In our bit-parallel implementation of Enu-
mAtMost, for each k-subtree, we maintain two bit-vectors of length 2k, B =
BP (S) and X = RPOS(XP (S)), that represent the current subtree S and
its extension point set XP (S), respectively. For simplicity, we first describe
the algorithm with bit-vectors whose length is no larger than the word length
w = Θ(log n). We efficiently update the bit-vectors B and X as follows.

Let i ≥ j and ONE �
i:j = 0i−11j−1+10�−j ∈ {0, 1}� be the bit-mask of length

� whose i to j bits are filled with 1 bits and the other bits are filled with 0
bits, which can be computed by shift and subtraction in constant time for i, j =
O(log n).

First, we initialize the bit-vectors B and X for the sets S = {r} and XP (S)
by the following code: B ← “01”; if r has a child on T then X ← “01” else
X ← “00”;

Next, the following code correctly updates the bit-vectors B and X when we
compute the extension point set XP (S ∪ {v}) for the new subtree S ∪ {v} from
XP (S) for the old one S, where q = rpos(v) and � = len(B):

– B is updated as follows.

B ← (B & ONE �
�−1:q+1) � 2 | (“01” � q) | (B & ONE �

q:0);

– X is updated as follows.

X ← { (“1” � q − 1) if v has a properly younger sibling } // a parent
| { (“1” � q) if v has some child }; // a child
| (X & ONE �

q−1:0) � 2 // others

From Lemma 2, we have the following lemma.

Lemma 3 (Update in the small subtree case). If 2k ≤ w, the above codes
correctly updates the bit-vectors B and X in constant time using O(1) words.

Lemma 4 (Update in the large subtree case). If k = O(2w), the bit-vectors
B and X can be correctly updated in constant time using O(k/w) words.

Proof. Proof sketch: We represent bit-vectors B and X as a doubly linked list of
b = O(log n)-bits blocks, each of which are maintained to store consecutive bits
of length �b/2� < � ≤ b (bits) similarly to [7]. In the update of B and X , we need
to update only constant number of blocks, and thus, takes constant time. 	

Tree Similarity Based on Compressed Enumeration 79

Theorem 1 (Compressed enumeration of at most k-subtrees). For every
k ≥ 1, Algorithm 1 enumerates all compressed representations of the at most k-
subtrees appearing in an ordered tree T in O(1) time per solution, generated on
the bit-vector B ∈ {0, 1}2k, using O(k/w) words of space in addition to the space
for an enumeration algorithm.

From the above theorem, we observe that for every k ≥ 1, all compressed
representations of exact k-subtrees in T can be enumerated in O(k) time per
compressed representation using the same amount of space as above.

4 Enumeration of Exact k-Subtrees in a Tree

The second algorithm that we present in this section is the compressed enu-
meration version of the constant delay enumeration algorithm for uncompressed
k-subtrees in an ordered tree by Wasa et al. [17].

The Outline of the Algorithm: The basic idea of Wasa et al.’s algorithm
is as follows: Given a k-subtree S in an input tree T , we can obtain the other
k-subtree S′ from S by deleting one node from S and adding one node to S.

By repeating this process recursively using backtracking, for each node r in
T , starting from the lexicographically least k-subtree with r as its root, we can
enumerate all k-subtrees with root r appearing in T by recursively transforming
the current k-subtree by the above process. This algorithm runs in O(1) time
per k-subtree by maintaining the node lists DL(S) ⊆ Lv(S) and AL(S) ⊆
Bd(S) to delete and to add, respectively. In Algorithm 2, we show our algorithm
EnumExact and its subprocedure RecExact.

Fast Update of Bit Signatures: In the implementation with bit-operations,
we use three bit-vectors B, L, and A ∈ {0, 1}∗, where B is the BP-vector as
defined in the previous section, L is the leaf-vector representing the set of leaves
to delete, and A is the add-vector representing the set of nodes to add.

In this section, we give the efficient method for updating bit-vectors using bit
parallel technique. A node v is an exact extension point in S if one of children
of v can be attached to S. We define the sets AL(S) and DL(S) of nodes to add
and to delete, and the set EXP (S) of exact extension points by

DL(S) = { x ∈ Lv(S) |x < minbord(S) }. (4)

AL(S) = { x ∈ Bd(S) |x > maxleaf(S) }. (5)

EXP (S) = { x ∈ S |x = pa(v), v ∈ AL(S) }. (6)

We give the following recurrence relation for Lv(S), Bd(S), and EXP (S). In
this subsection, ≤ denotes the DFS-ordering on T .

Lemma 5. Then, set is defined for any subset S.

(a) If S = Ik is an initial k-subtree rooted at u, then AL(Ik) is the set XP (Ik)
of all extension points, and DL(Ik) is the set Lv(Ik) of all leaves.

80 K. Wasa et al.

Algorithm 2. The algorithm EnumExact for computing the feature vector H
for the bit signatures of all subtrees with exactly k nodes in an input tree T
based on constant delay enumeration

1: procedure EnumExact(T, k)
2: H ← ∅; // A hash table H representing a feature vector
3: Number the nodes of T by the DFS-numbering;
4: Compute the initial k-subtree Ik;
5: Initialize the related lists and pointers;
6: RecExact(Ik, B, L,X; T, k);
7: return H ;

8: procedure RecExact(S,B,L,X;T, k)
9: Output BS(S); p ← MSB(L);
10: for each � ∈ DelList(S) do
11: for each β ∈ AddList(S) such that β �∈ Ch(max(Lv(S))) do
12: S ← Child1(S, �, β) by updating the related lists and pointers;
13: Update bit sequences B,L,X;
14: RecExact(S,B,L,X;T, k);
15: S ← P1(S) by restoring the related lists and pointers;
16: Restore bit sequences B,L,X;
17: Modify X;

18: Proceeds p; // to the next leaf position in L

19: if S is a k-pre-serial tree then
20: S ← Child2(S) by updating the related lists and pointers;
21: Update bit sequences sig(S),A, L;
22: RecExact(S,B,L,X; T, k);
23: S ← P2(S) by restoring the related lists and pointers;
24: Restore bit sequences sig(S),A, L;

(b) Let S be any k-subtree, v ∈ AL(S), and u ∈ DL(S) such that v is not a child
of u. For any node x, the following conditions hold:

(i) S′ = (S \ {u}) ∪ {v}.
(ii) Lv(S′) = { x ∈ Lv(S) |x �= u } ∪ { x ∈ T \ Lv(S) |Ch(x) ∩ S = {u} }.
(iv) DL(S′) = { x ∈ DL(S) |x < u } ∪ { x ∈ T \DL(S) |Ch(x) ∩ S = {u} }.
(vi) AL(S′) = { x ∈ AL(S) |x > v } ∪ { x ∈ T \AL(S) |x �∈ Lv(T) }.

During the enumeration, the algorithm explicitly maintains the lists Lv(S),
Bd(S), and EXP (S). Using these lists and the pointers to the maximum leaf
maxleaf(S) and to the minimum border node minbord(S), the algorithm im-
plicitly represents the lists DL(S) and AL(S).

Next, we consider the generation of children of type I from Line 10 to Line 18
in Algorithm 2, and give the bit-parallel implementation of the update procedure
for bit-vectors B, L, X , and pointers p and q to them, while the lists Lv(S),
Bd(S) and EXP (S) are maintained by the algorithm. During the enumeration,
we maintain B, L, and X such that B = BP (S), L[rpos(v)] = 1 iff v ∈ Lv(S),
and X [rpos(v)] = 1 iff v ∈ EXP (S) for every v ∈ T . For initialization, we set

Tree Similarity Based on Compressed Enumeration 81

B = BP (Ik), L = RPOS(Lv(Ik)), and X = RPOS(EXP (Ik)) in O(k) time
by traversing the initial k-subtree Ik).

Definition 1 (Update for children of type I). Suppose that we generate a
child k-subtree S′ = (S\{u})∪{v} of type I from the parent S. Then, we update
the bit-vectors B, L and X as follows, where p = rpos(u) and � = len(B):

– The right position q = rpos(v) can be computed from the bit-vector X using
MSB by the following code: q ← MSB(X);

– B is updated by deleting the two bits “01” from right position p for node u,
and inserting the two bits “01” for node v at right position q − 1.

B ← (B & ONE �
�−1:p+2) | (B & ONE �

p−1:q+1) � 2;

B ← B | (“01” � q) | (B & ONE �
q:0);

– L is updated similarly to B. In addition, the two bits surrounding the delete
position for u are overwritten with “01”:

L ← (L & ONE �
�−1:p+3) | (L & ONE �

p−1:q+1) � 2 | (“01” � q)

| (L & ONE �
q−1:0) | { (“01” � p+ 1) if Ch(pa(u)) = {u} };

– X is updated similarly to B. In addition, the two bits surrounding the delete
position for u are overwritten with “01”:

X ← (X & ONE�
q−1:0) | { (“1” � q) if v has a child }

| (“1” � q − 1) if (∃younger sibling r of v) r �∈ S;

Moreover, after the for-loop at line 17, we update X by deleting the extension
point at the highest position one by one:

X ← X & (∼(“1” � (MSB(X)− 1))) if v has no younger sibling in T ;

– We proceed the pointer p = rpos(u) at line 18 by: p ← MSB(L & ONE �
1:p−1);

Next, the code from Line 19 to Line 24 generates the children of type II
updating the bit-vectors B, L, and X .

Definition 2 (Update for children of type II). Suppose that we generate
a child k-subtree S′ = (S \ {u}) ∪ {v} of type II from the parent S. Then, we
update the bit-vectors B, L and X as follows:

– The right position q can be computed q ← MSB(X);
– B is updated by deleting the most left bit of B and the most right bit of B,

and inserting the two bits “01” for node v position q.

B ← (B & ONE2k
2k−2:q+1) � 1 | (“01” � q − 1) | (B & ONE2k

q:1) � 1;

– L is updated similarly to B. In addition, the right position bit of the inserting
node v, is overwritten with “0”.

L ← (L & ONE2k
2k−2:q+1) � 1 | (“01” � q−1) | (L & ONE2k

q−1:1) � 1;

– X is updated by overwriting bits in the left of q with “0”. In addition, two
bits are overwritten with “1” if corresponding nodes satisfy some conditions.

X ← (X & ONE2k
q−1:1) � 1 | { (“1” � q − 1) if v has a child; }

| (“1” � q − 2) if (∃younger sibling r of v) r �∈ S;

82 K. Wasa et al.

In the small tree case that 2k ≤ w, it follows from Lemma 5 that the above
procedure correctly updates the data structure in constant time per iteration
using O(1) words. In the large tree case that k = O(2w), a similar discussion
to Lemma 4 shows that the procedure also run in constant time using O(k/w)
words. Therefore, we have the following theorem.

Theorem 2 (Compressed enumeration of exact k-subtrees). Let T be an
input tree and k be a positive integer. The algorithm EnumExact in Algorithm 2
enumerates all compressed representations of the exact k-subtrees appearing in
T in O(1) time per compressed representation, generated on the bit-vector B ∈
{0, 1}2k, using O(k/w) words of space in addition to the space for an enumeration
algorithm.

From the above theorem, we obtained a constant-delay algorithm for com-
pressed enumeration for exact k-subtrees, which improves on the O(k)-delay
algorithm in Sec. 3 by a factor of O(k).

5 Experiments

In the experiments, we compared the running time of the algorithms in Sec. 3 and
Sec. 4 on artificial and real datasets. We implemented in C++ the algorithms
EnumAtMost in Sec.3 and EnumExact in Sec.4, denoted by Atmost(α) and
Exact(α), respectively, where α indicates the types of algorithms as follows:

– “Enum” enumerates subtrees without printing them.
– “Naive” is the original algorithm that first enumerates a subtree and then

computes its bit signature.
– “Fast” is the modified algorithm that directly enumerates the bit signature

of a subtree with bit-parallel signature maintenance.

The algorithms were complied by g++ 4.2.1 and were run on a PC (CPU Intel R©

Xeon(R) 3.6GHz, 34GB RAM) operating on Ubuntu OS 13.04.

Comparison of Algorithms on Real Data: As input, we use a phylogenetic
tree of influenza virus of n = 4240 nodes, which was constructed from virus data
in NCBI Influenza Virus Resource1 by neighbor-joining method. In Fig.2, we
show the running time of algorithms for computing the feature vector φ(T) of
an input tree T varying the size of subtrees for k = 15 to 19. From this figure,
for each of Exact and Atmost, the fast version (Fast) was faster than the naive
version (Naive). For example, the speedup ratio for k = 19 were 36% for Exact,
and 22% for Atmost. It depends on the type of update α which is faster between
Exact and Atmost. In the case of Exact, the overhead of computing bit signatures
over enumeration only (Enum) are 6 times for Fast and 9.5 times for Naive.

Comparison of Algorithms on Artificial Data: We used a artificial tree
with size n = 35, which has depth one and consists of a root node and 34 leaves.

1 http://www.ncbi.nlm.nih.gov/genomes/FLU/

http://www.ncbi.nlm.nih.gov/genomes/FLU/

Tree Similarity Based on Compressed Enumeration 83

Fig. 2. The running time against the sub-
tree size k on the real phylogenetic tree
with n = 4240 nodes

Fig. 3. The running time against the sub-
tree size k on the artificial tree with n =
35 nodes and depth one

Fig.3 shows the result of experiment. The fastest algorithm was Exact(Fast),
which was 34% faster than Exact(Naive) for k = 18.

Computing the Gram Matrix of a Set of Trees: To evaluate the usefulness
of our algorithms in the context of tree mining [8,12], we applied Exact(Fast) to
similarly matrix computation [10, 11]. We computed M = 70, 532 dependency
trees, one tree per one Japanese sentence, in total size 1, 140, 098 nodes and 3.8
MB from a Japanese newspaper corpus2 in 44.9 MB by CaboCha.3 Their average
and standard deviation sizes are 16.16 and 12.65 (nodes). Applying Exact(Fast)
to this dataset with k = 4, we computed the M × M -similarly matrix for 4-
subtrees using cosine-tree distance in 1, 276.12 seconds, where only 0.1% (1.61
seconds) of the time was spent for computing feature vectors and 99.9% for
matrix computation.

Summary of Experimental Results: Overall, the proposed method (Fast)
achieved around 22% to 30% speedup over the naive method (Naive). From the
last experiment, the proposed method seems to have reasonable performance for
data mining from middle size datasets.

6 Conclusion

In this paper, we studied the tree similarity based on bounded-sized ordered
subtrees using fast compressed k-subtree enumeration. We presented two speed
up techniques for bit signature generation based on bit-parallel approach. It is
an interesting future problem to extend this work for various types of subtrees
will be another future research problem including unordered subtrees.
2 http://www.ndk.co.jp/yomiuri/e_yomiuri/e_index.html
3 http://code.google.com/p/cabocha/

http://www.ndk.co.jp/yomiuri/e_yomiuri/e_index.html
http://code.google.com/p/cabocha/

84 K. Wasa et al.

Acknowledgements. The authors would like thank anonymous reviewers for
their comments which improved the correctness and the presentation of this pa-
per very much, and thank Shin-ichi Nakano, Kunihiko Sadakane, and Tetsuji
Kuboyama for helpful discussions and comments. This research was partly sup-
ported byMEXTGrant-in-Aid for Scientific Research (A), 24240021,FY20122015,
and Grant-in-Aid for JSPS Fellows (25·1149).

References

1. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: Proc. KDD 2002,
pp. 71–80 (2002)

2. Asai, T., Abe, K., Kawasoe, S., Arimura, H., Sakamoto, H., Arikawa, S.: Efficient
substructure discovery from large semi-structured data. In: Proc. SDM 2002 (2002)

3. Chim, H., Deng, X.: A new suffix tree similarity measure for document clustering.
In: Proc. WWW 2007, pp. 121–130 (2007)

4. Collins, M., Duffy, N.: Convolution kernels for natural language. In: Proc. of Ad-
vances in Neural Information Processing Systems, NIPS, pp. 625–632 (2001)

5. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
2nd edn. The MIT Press (2001)

6. Goldberg, L.A.: Polynomial space polynomial delay algorithms for listing families
of graphs. In: Proc. ACM STOC 1993, pp. 218–225. ACM (1993)

7. Jansson, J., Sadakane, K., Sung, W.-K.: CRAM: Compressed random access mem-
ory. In: Czumaj, A., Mehlhorn, K., Pitts, A., Wattenhofer, R. (eds.) ICALP 2012,
Part I. LNCS, vol. 7391, pp. 510–521. Springer, Heidelberg (2012)

8. Kashima, H., Koyanagi, T.: Kernels for semi-structured data. In: Proc. 19th ICML
2002, pp. 291–298. Morgan Kaufmann Publishers Inc. (2002)

9. Kimura, D., Kuboyama, T., Shibuya, T., Kashima, H.: A subpath kernel for rooted
unordered trees. In: Huang, J.Z., Cao, L., Srivastava, J. (eds.) PAKDD 2011, Part
I. LNCS, vol. 6634, pp. 62–74. Springer, Heidelberg (2011)

10. Kuboyama, T., Hirata, K., Aoki-Kinoshita, K.F.: An efficient unordered tree kernel
and its application to glycan classification. In: Washio, T., Suzuki, E., Ting, K.M.,
Inokuchi, A. (eds.) PAKDD 2008. LNCS(LNAI), vol. 5012, pp. 184–195. Springer,
Heidelberg (2008)

11. Kuboyama, T., Hirata, K., Kashima, H., Aoki-Kinoshita, K.F., Yasuda, H.: A spec-
trum tree kernel. Information and Media Technologies 22(2), 292–299 (2007)

12. Kudo, T., Maeda, E., Matsumoto, Y.: An application of boosting to graph classifi-
cation. In: Proc. NIPS 2004 (2004)

13. Lakkaraju, P., Gauch, S., Speretta, M.: Document similarity based on concept tree
distance. In: Proc. 19th ACM HT 2008, pp. 127–132 (2008)

14. Manning, C.D., Raghavan, P., Schütze, H.: Introduction to information retrieval.
Cambridge University Press (2008)

15. Nakano, S.: Efficient generation of plane trees. IPL 84(3), 167–172 (2002)
16. Tsuda, K., Kudo, T.: Clustering graphs by weighted substructure mining. In: Proc.

23rd ICML, pp. 953–960. ACM (2006)
17. Wasa, K., Kaneta, Y., Uno, T., Arimura, H.: Constant time enumeration of

bounded-size subtrees in trees and its application. In: Gudmundsson, J., Mestre,
J., Viglas, T. (eds.) COCOON 2012. LNCS, vol. 7434, pp. 347–359. Springer, Hei-
delberg (2012)

18. Xin, D., Han, J., Yan, X., Cheng, H.: Mining compressed frequent-pattern sets. In:
Proc. VLDB 2005, pp. 709–720 (2005)

19. Zaki, M.J.: Efficiently mining frequent trees in a forest. In: Proc. KDD 2002,
pp. 71–80 (2002)

Principal Directions-Based Pivot Placement

Fabrizio Angiulli and Fabio Fassetti

DIMES Department, University of Calabria, Rende, Italy
{f.angiulli,f.fassetti}@dimes.unical.it

Abstract. Determining a good sets of pivots is a challenging task for
metric space indexing. Several techniques to select pivots from the data
to be indexed have been introduced in the literature. In this paper, we
propose a pivot placement strategy which exploits the natural data ori-
entation in order to select space points which achieve a good alignment
with the whole data to be indexed. Comparison with existing methods
substantiates the effectiveness of the approach.

1 Introduction

The similarity search in metric spaces [7,12,14] is a fundamental task in a huge
set of fields. In particular, range queries, which are of interest here, take as input
the query object q and a radius R, and return all the objects of the dataset lying
within distance R from q.

One of the main techniques for indexing objects from a metric space, is the
pivoting based one [13,10,6,7,14,2]. In such approaches, the idea is to select a
certain number of objects, called pivots. Due to the reverse triangle inequality,
given two generic objects x and y, their distance cannot be smaller than the dis-
tance between x and p minus the distance between y and p, for any other object
p. Hence, in order to answer to a range query, this lower bound can be exploited
to discard those objects which do not lie within distance R from the query object
q, namely whose lower bound is greater than R. By sketchily summarizing, at
indexing time all the pairwise distances among the objects of the dataset and
the pivots are stored in the index. At query time, first of all, the distances be-
tween the query object q and all the pivots are computed. Then, a candidate
selection phase follows, which is accomplished by selecting those objects which
are not discarded by exploiting the lower bounds computed through the pivots.
The true neighbors of q are eventually retrieved by a filtering phase consisting
in computing the actual distances among q and each candidate object.

In the best case, the objects returned by the candidate selection phase coincide
with the query answer. However, minimizing the number of the spurious objects
is a hard challenge. Usually, the greater the number of pivots, the smaller the
number of spurious objects in the candidate set. By keeping fixed the number of
pivots, it is known that a clever selection of pivots can drastically improve index
performances. Given a dataset and an integer k, the pivot selection problem
accounts for selecting a good set of k objects to be employed as pivots [1].
Normally, pivots are selected among the set of objects to be indexed. In some

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 85–90, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

86 F. Angiulli and F. Fassetti

scenarios this may be the unique option, since it can be difficult to figure what
a reasonable object out of those actually belonging to the data at hand can be.
This is precisely the assumption made by all pivot selection techniques so far
introduced in the literature [4,11,5].

Authors of [4] propose three different techniques, detailed in the following. Ac-
cording to the Selection of N Random Groups strategy, N groups each consisting
in k pivots are randomly chosen from the dataset. For each group, the quality of
the set of pivots is measured and the group scoring the maximum value of quality
is returned. As for the Incremental Selection strategy, the idea is to randomly
select N objects from the dataset. Then, the object (among the N selected ones)
that alone scores the maximum value of quality is chosen as the first pivot p1.
The second pivot is the object p2 such that maximizes the quality of the set of
pivots {p1, p2} and so on until k pivots are chosen. Finally, the Local Optimum
Selection strategy consists in selecting an initial set of k pivots and a set of A
pairs of objects. For N ′ times a so-called victim in the set of pivots is singled
out and replaced by a better pivots chosen in a sample of X dataset objects.
In order to individuate the victim, it is built a A × k matrix M , where M(i, j)
is the distance between the objects of the ith pair computed through the pivot
pj . For each row, the maximum (dM) and the second maximum (dM2) values are
computed. The contribution of each pivot pj is computed as the sum over the
A pairs of the difference between dM and dM2, if dM is achieved in the column j
and 0 otherwise. The victim is the pivot scoring the lowest contribution.

In [11] the Sparse Spatial Selection technique is proposed. The approach is
based on the idea that if the pivots are well-distributed in the metric space
they are able to discard more objects. The set of pivots is initially a singleton
consisting in the first dataset object. Then, for each dataset object, this is chosen
as a new pivot if and only if its distance from any pivot currently in the set is
greater than Mα where M is the maximum distance between any pair of dataset
objects and α is a parameter whose empirically proven good value is 0.4. Such
a method has next been extended in [5] where not only new pivots are added to
the current set, but it is also checked if some pivot has become redundant and,
in such a case, it is replaced by a better one. This latter task is accomplished
by a estimating the contribution of an object in a fashion similar to the Local
Optimum Selection approach.

As a main contribution, in this work we take a different perspective by con-
sidering the whole object domain in order to single out pivots, that is pivots can
be objects that do not belong to the current dataset. We call this instance of the
problem as pivot placement problem. Specifically, we consider here as reasonable
scenario the case in which the object domain coincides with the d-dimensional
Euclidean space R

d. We describe a technique singling out the most promising
directions which pivots should lie on. To the best of our knowledge this is the
first work considering the pivot placement problem.

The remainder of the paper is organized as follows. Section 2 describes the
pivot placement technique. Section 3 compares the approach here introduced
with competitors. Finally, Section 4 draws the conclusions.

Principal Directions-Based Pivot Placement 87

Algorithm 1: PPP(D, k)

Input: D, set of objects; k, number of required
pivots

1: n = |D|
// Compute small clusters

2: K = K0 // number of small clusters
3: C = GetSmallClusters(D,K)

// Compute intra-cluster directions

4: N = K(K+1)
2

// number of directions
5: for i = 1 to K do
6: vi = PCA(Ci)

7: wi =
|Ci|(|Ci|−1)

n(n−1)

8: ci =
1

|Ci|
∑

x∈Ci
x

// Compute inter-cluster directions
9: l = K + 1
10: for i = 1 to K − 1 do
11: for j = i+ 1 to K do

12: wl =
|Ci|(|Cj |−1)

n(n−1)/2

13: vl =
ci−cj

‖ci−cj‖
14: l = l + 1

// Compute angles between directions
15: for i = 1 to N-1 do
16: for j = i to N do
17: αi,j = arccos(|〈vi,vj〉|)
18: αj,i = αi,j

// Perform prioritized fixed-width clustering
19: θ = θ0 // cone angle
20: 〈�, c〉 = PFWC(α, w, θ)

// Determine the best pivots

21: M =
1

n

n∑
i=1

xi

22: L =
n

max
i=1

‖xi −M‖
23: T = T0 // pivot displacement
24: for i = 1 to min{c, k} do
25: Ji = {j : �j = i}

26: pi = M − T · L ·
∑

j∈Ji wjvj∑
j∈Ji wj

27: return p

Algorithm 2: PFWC(α, w, θ)

Input: α, pairwise angles; w, direction weights;
θ, angle threshold

Output: �, labels (cluster numbers) assigned to
directions; c, number of obtained
clusters

1: for i = 1 to N do
2: for j = 1 to N do
3: βi,j = 0

4: if αi,j ≤ θ
2
then

5: βi,j = 1

6: m = N
7: c = 0
8: while m > 0 do
9: c = c+ 1

10: � = β · w
11: i = argmaxi �i
12: for j = 1 to N do
13: if βi,j = 1 then
14: m = m− 1
15: �j = c
16: βj,· = 0
17: β·,j = 0

18: return 〈�, c〉

2 Principal Directions-Based Pivot Placement Algorithm

In this section, the PPP (for Principal directions-based Pivot Placement) algo-
rithm is presented. The pseudo-code of the algorithm is reported in figure. It
receives in input the dataset D and the number k of required pivots.

First, data is partitioned into a numberK of homogeneous clusters C1, . . . , CK ,
also called small clusters in the sequel. With this aim, the K-means algorithm is
employed, that outputs a controlled number of prototypes having the property
of minimizing the average distance to the associated groups. The small clusters
are then exploited to determine directions connecting the data objects. A set

v1, . . . ,vN of N = K(K+1)
2 directions, that are versors associated with either a

single small cluster (1 ≤ i ≤ K) or a pair of small clusters (K < i ≤ N), is
populated. Each direction has also a weight wi which represents the significance
of the direction.

88 F. Angiulli and F. Fassetti

Directions vi associated with single small clusters intend to capture the main
direction along which the cluster objects spread. This direction is naturally cap-
tured by the first principal component of the cluster which is computed by ex-
ploiting Principal Component Analysis (PCA). PCA is [9] an orthogonal linear
transformation to a new coordinate system such that the greatest variance by
any projection of the data comes to lie on the first coordinate (called the first
principal component). The weight wi of the direction vi consists in the number
of pairwise objects of the cluster. As for the directions vl (K < l ≤ N) asso-
ciated with pairs Ci and Cj of different small clusters, they are defined in the
terms of the vector linking the center of mass ci of Ci and cj of Cj , and the
associated weight is given by the number of distinct pairs consisting of objects
coming from the two clusters. Once intra-cluster and inter-cluster directions have
been obtained, together with their importance, the matrix α of pairwise angles
αi,j (1 ≤ i, j ≤ N) formed by the directions vi and vj is computed, where
αi,j = arccos(|〈vi,vj〉|), in order to be exploited to determine directions along
which pivots will be placed.

With this aim directions are grouped according to a prioritized fixed width
clustering strategy (see algorithm PFWC in figure). Specifically, at each main
iteration of PFWC, a seed direction vi is selected and all the directions vj (not
already assigned to a group) such that αi,j ≤ θ/2 are assigned to the same
group. These are the directions lying in the double cone having apex in the
origin and axis collinear to vi and forming an angle between surface and axis of
θ/2 radians. Seed directions are selected by assigning a priority �i (1 ≤ i ≤ N)
to those not already grouped and, then, by selecting the direction scoring the
maximum priority. Priorities are computed as � = β · w, that is to say �i is the
sum of the weights associated with the directions that will become part of the
group obtained by using direction vi as seed.

Let M and L be the center of mass and the radius, respectively, of the dataset
D. Moreover, let T a positive number, also called displacement, which is used
to locate the hyper-sphere S of radius T · L centered in M . The c groups of
directions returned by PFWC are finally exploited in order to place pivots. Pivot
pi (1 ≤ i ≤ k) is obtained from the i-th group of directions, that are the directions
vj such that �j = i. Specifically, pi corresponds to one of the two points located
at the intersection of the surface of the sphere S and the straight line passing
through M whose direction is given by the mean of the versors in the i-th group.

3 Experiments

We used some collections of data available in the Metric Spaces Library [8] and
in the UCI KDD Repository [3]: COLOR (112,682 points with 112 features),
LANDSAT (275,465 points with 60 features), and NASA (40,150 points with 20
features). The PPP method has been compared with the Selection of Random
Groups (RAND), Incremental Selection (INCR), Local Optimum Selection (LO-
CAL), and Sparse Spatial Selection (SSS) strategies. The parameters of PPP
employed are the following: number of small clusters K0 = 100, cone angle

Principal Directions-Based Pivot Placement 89

0 20 40 60 80 100 120
0.02

0.03

0.04

0.05

0.06

0.07

Number of pivots

R
e
l
a
t
i
v
e

n
u
m
b
e
r

o
f

d
i
s
t
a
n
c
e
s

COLOR dataset (R=0.110, sel=0.533%)

PDP
SSS
RAND
INCR
LOCAL

0 20 40 60 80 100 120

0.02

0.03

0.04

0.05

Number of pivots

R
e
l
a
t
i
v
e

n
u
m
b
e
r

o
f

d
i
s
t
a
n
c
e
s

COLOR dataset (R=0.101, sel=0.356%)

PDP
SSS
RAND
INCR
LOCAL

0 20 40 60 80 100 120

0.01

0.02

Number of pivots

R
e
l
a
t
i
v
e

n
u
m
b
e
r

o
f

d
i
s
t
a
n
c
e
s

COLOR dataset (R=0.081, sel=0.126%)

PDP
SSS
RAND
INCR
LOCAL

0 10 20 30 40 50 60 70
0.5

1

1.5

2
x 10−3

Number of pivots

R
e
l
a
t
i
v
e

n
u
m
b
e
r

o
f

d
i
s
t
a
n
c
e
s

Landsat (R=0.010, sel=0.011%)

PDP
SSS
RAND
INCR
LOCAL

0 10 20 30 40 50 60 70
2

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7
x 10−3

Number of pivots

R
e
l
a
t
i
v
e

n
u
m
b
e
r

o
f

d
i
s
t
a
n
c
e
s

Landsat (R=0.017, sel=0.065%)

PDP
SSS
RAND
INCR
LOCAL

0 10 20 30 40 50 60 70
0.009

0.01

0.011

0.012

0.013

0.014

0.015

0.016

0.017

0.018

0.019

Number of pivots

Landsat (R=0.027, sel=0.277%)

PDP
SSS
RAND
INCR
LOCAL

0 5 10 15 20 25
0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

Number of pivots

R
e
l
a
t
i
v
e

n
u
m
b
e
r

o
f

d
i
s
t
a
n
c
e
s

NASA dataset (R=0.430, sel=0.460%)

PDP
SSS
RAND
INCR
LOCAL

0 5 10 15 20 25
0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

0.15

Number of pivots

R
e
l
a
t
i
v
e

n
u
m
b
e
r

o
f

d
i
s
t
a
n
c
e
s

NASA dataset (R=0.380, sel=0.289%)

PDP
SSS
RAND
INCR
LOCAL

0 5 10 15 20 25
0

0.01

0.02

0.03

0.04

0.05

0.06

0.07

0.08

0.09

Number of pivots

R
e
l
a
t
i
v
e

n
u
m
b
e
r

o
f

d
i
s
t
a
n
c
e
s

NASA dataset (R=0.243, sel=0.078%)

PCA
SSS
RAND
INCR
LOCAL

Fig. 1. Experimental results

θ0 = π/3, and pivot displacement T0 = 10. As for the parameters of the com-
petitors, we set them to the values suggested in [4]. Specifically, for RAND the
number of sets of pivots is N = 50; for INCR the size of the sample is N = 50;
for LOCAL the number of pairs A is set to 100,000, the number of iterations N ′

is set to k and the size of the sample is X = N − 1; finally, for SSS α has been
set so that the number of selected pivots were close to k.

We performed a number of range query searches. Specifically, for each dataset,
we considered three different radiuses. Radius values are such that on average
the 0.01%, 0.05% and 0.1% of the dataset objects are selected. As for the queries,
5,000 objects have been picked out at random from the dataset. Experimental
results are reported in Figure 1. We varied the number of pivots up to about
the number of dimensions (reported on the x-axis) and compared the number of
distances computed during both the candidate selection and the filtering phase,
reported on the y-axis. Figures highlight that PPP performs better than com-
petitors on the COLOR and LANDSAT datasets, and comparably to the other
methods (INCR and LOCAL) on the NASA dataset. Experiments are encour-
aging, since they confirm that PPP may exhibit state-of-the-art performances
as a method for pivot selection.

90 F. Angiulli and F. Fassetti

4 Conclusions

We addressed the pivot placement problem and provided a suitable algorithm
to deal with it. Experiments confirmed that the proposed method, based on the
idea of placing the pivots in the space by determining directions which achieve
the better alignment with the whole dataset, improves indexing effectiveness.
As for the future work, we are going to preform a more extensive experimental
campaign, including further datasets and a comprehensive parameter sensitivity
analysis. Also, theoretical assessment of the proposed strategy and extending it
to general metric spaces is of interest.

References

1. Angiulli, F., Fassetti, F.: Indexing uncertain data in general metric spaces. IEEE
Trans. Knowl. Data Eng. 24(9), 1640–1657 (2012)

2. Ares, L., Brisaboa, N., Esteller, M., Pedreira, O., Places, A.: Optimal pivots to
minimize the index size for metric access methods. In: International Workshop on
Similarity Search and Applications (SISAP), pp. 74–80 (2009)

3. Bache, K., Lichman, M.: UCI machine learning repository (2013)
4. Bustos, B., Navarro, G., Chávez, E.: Pivot selection techniques for proximity

searching in metric spaces. Pattern Recognition Letters 24(14), 2357–2366 (2003)
5. Bustos, B., Pedreira, O., Brisaboa, N.R.: A dynamic pivot selection technique for

similarity search. In: ICDE Workshops, pp. 394–401 (2008)
6. Chávez, E., Marroqúın, J.L., Baeza-Yates, R.A.: Spaghettis: An array based algo-

rithm for similarity queries in metric spaces. In: Symp. on String Processing and
Information Retrieval (SPIRE), pp. 38–46 (1999)

7. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.: Searching in metric
spaces. ACM Computing Surveys 33(3), 273–321 (2001)

8. Figueroa, K., Navarro, G., Chávez, E.: Metric spaces library (2007),
http://www.sisap.org/Metric_Space_Library.html

9. Jolliffe, I.T.: Principal Component Analysis, 2nd edn. Springer (October 2002)
10. Micó, L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approxi-

mating and eliminating search algorithm (aesa) with linear preprocessing time and
memory requirements. Pattern Recognition Letters 15(1), 9–17 (1994)

11. Pedreira, O., Brisaboa, N.R.: Spatial selection of sparse pivots for similarity search
in metric spaces. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C.,
Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 434–445. Springer,
Heidelberg (2007)

12. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann Publishers Inc. (2005)

13. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in gen-
eral metric spaces. In: ACM-SIAM Symp. on Discrete Algorithms (SODA), pp.
311–321 (1993)

14. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems, vol. 32. Springer (2006)

http://www.sisap.org/Metric_Space_Library.html

Pivot Selection Strategies

for Permutation-Based Similarity Search

Giuseppe Amato, Andrea Esuli, and Fabrizio Falchi

Istituto di Scienza e Tecnologie dell’Informazione “A. Faedo”,
via G. Moruzzi, 1, Pisa 56124, Italy
firstname.lastname@isti.cnr.it

Abstract. Recently, permutation based indexes have attracted interest
in the area of similarity search. The basic idea of permutation based
indexes is that data objects are represented as appropriately generated
permutations of a set of pivots (or reference objects). Similarity queries
are executed by searching for data objects whose permutation represen-
tation is similar to that of the query. This, of course assumes that similar
objects are represented by similar permutations of the pivots.

In the context of permutation-based indexing, most authors propose to
select pivots randomly from the data set, given that traditional pivot se-
lection strategies do not reveal better performance. However, to the best
of our knowledge, no rigorous comparison has been performed yet. In this
paper we compare five pivots selection strategies on three permutation-
based similarity access methods. Among those, we propose a novel strat-
egy specifically designed for permutations. Two significant observations
emerge from our tests. First, random selection is always outperformed by
at least one of the tested strategies. Second, there is not a strategy that
is universally the best for all permutation-based access methods; rather
different strategies are optimal for different methods.

Keywords: permutation-based, pivot, metric space, similarity search,
inverted files, content based image retrieval.

1 Introduction

Given a set of objects C from a domain D, a distance function d : D ×D → R,
and a query object q ∈ D, a similarity search problem can be generally defined
as the problem of finding a subset S ⊂ C of the objects that are closer to q with
respect to d. Specific formulations of the problem can, for example, require to
find the k closest objects (k-nearest neighbors search, k-NN).

Permutation-based indexes have been proposed as a new approach to ap-
proximate similarity search [1,8,11,20]. In permutation-based indexes, data ob-
jects and queries are represented as appropriate permutations of a set of pivots
P = {p1 . . . pn} ⊂ D. Formally, every object o ∈ D is associated with a per-
mutation Πo that lists the identifiers of the pivots by their closeness to o, i.e.,
∀j ∈ {1, 2, . . . , n − 1}, d(o, pΠo(j)) ≤ d(o, pΠo(j+1)), where pΠo(j) indicates the

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 91–102, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

92 G. Amato, A. Esuli, and F. Falchi

pivot at position j in the permutation associated with object o. For convenience,
we denote the position of a pivot pi, in the permutation of an object o ∈ D, as
Π−1

o (i) so that Πo(Π
−1
o (i)) = i.

The similarity between objects is approximated by comparing their represen-
tation in terms of permutations. The basic intuition is that if the permutations
relative to two objects are similar, i.e. the two objects see the pivots in a similar
order of distance, then the two objects are likely to be similar also with respect
to the original distance function d.

Once the set of pivots P is defined it must be kept fixed for all the indexed ob-
jects and queries, because the permutations deriving from different sets of pivots
are not comparable. A selection of a “good” set of pivots is thus an important
step in the indexing process, where the “goodness” of the set is measured by the
effectiveness and efficacy of the resulting index structure at search time.

The paper is structured as follows. In Section 2 we discuss related work.
Section 3 presents the strategies being compared. The tested similarity search
access methods are presented in Section 4. Section 5 describes the experiments
and comments their results. Conclusion and future work are given in Section 6.

2 Related Work

The study of pivot selection strategies for access methods usually classified as
pivot-based [25] has been an active research topic, in the field of similarity search
in metric spaces, since the nineties. Most access methods make use of pivots for
reducing the set of data objects accessed during similarity query execution. In an
early work by Shapiro [23], it was noticed that good performance were obtained
by locating pivots far away from data clusters. In [24,18,5], following this intu-
ition, several heuristics were proposed to select pivots between the outliers and
far away from each other. Pivot selection techniques that maximize the mean of
the distance distribution in the pivoted space were exploited in [7]. It was also
argued that while good pivots are usually outliers, the reverse is not true. In
[22,6], the problem of dynamic pivot selection as the database grows is faced. In
[17] Principal Component Analysis (PCA) has been proposed for pivot selection.
Principal components (PC) of the dataset are identified by applying PCA on it
(actually a subset to make the method computationally feasible) and the objects
in the dataset that are best aligned with PC vectors are selected as pivots.

Works that use permutation-based indexing techniques have mostly performed
a random selection of pivots [1,8,11] following the observation that the role of
pivots in permutation-based indexes appears to be substantially different from
the one they have in traditional pivot-based access methods and also because
the use of previous selection strategies did not reveal significant advantages. At
the best of our knowledge, the only report on the definition of a specific selection
techniques for permutation-based indexing is in [8], were it was mentioned that
no significant improvement, with respect to random selection, was obtained by
maximizing or minimizing the Spearman Rho distance through a greedy algo-
rithm.

Pivot Selection Strategies for Permutation-Based Similarity Search 93

3 Pivot Selection Strategies

Permutation based access methods use pivots to build permutation that repre-
sent data objects. This paper compares four promising selection strategies used
in combination with different permutation based indexes to make a comprehen-
sive evaluation, and also to identify the specific features that can be exploited
in the various cases.

As the baseline we tested the random (rnd) strategy, which samples pivots
from the dataset following a uniform probability distribution.

3.1 Farthest-First Traversal (FFT)

A very well known topic in metric spaces is the k-center NP-hard problem that
asks: given a set of objects C and an integer k, find a subset P of k objects in
C that minimizes the largest distance of any object in C from its closest object
in P . FFT (so called by Dasgupta in [9]) finds a solution close to optimal by
selecting an arbitrary object p1 ∈ C and choosing, at each subsequent iteration,
the object pi ∈ C for which min

1≤j≤i
d(pi, pj) is maximum. In [14], it has been proved

that FFT achieves an approximation, with respect to the optimal solution, of
at most a factor of 2. Note that FFT actually tries to maximize the minimum
distance between the pivots, which intuitively could be a desirable property of
the resulting pivot set. The computational cost of this algorithm is O(n|C|),
where n is the number of requested pivots.

3.2 k-Medoids (kMED)

Originally proposed in [15], k-medoids is a partitional clustering algorithm that
tries to minimize the average distance between objects and selected cluster
medoids. k-medoids is very similar to k-means. The difference is that it uses
objects from the dataset as representatives of the centers of the clusters rather
than computing centroids, which could be not possible in general metric spaces.
Moreover, k-medoids is also more robust to noise and outliers because it min-
imizes the distances instead of their square. While FFT minimizes the largest
distance of an object from its closest pivot, k-medoids minimizes the average
distance of the objects from their closest pivot.

3.3 Pivoted Space Incremental Selection (PSIS)

In [7] several strategies for selecting pivots were proposed and tested considering
the average distance of the transformed space obtained leveraging on the set of
selected pivots and on the triangle inequality of the original metric space [25].
The presented algorithms try to maximize the average distance in the pivoted
space defined as: DP (x, y) = max

1≤i≤n
|d(x, pi)− d(y, pi)|.

The goal of the proposed algorithm is to have good lower bounds DP for the
original distance d. Bustos et al. observed that the chosen pivots are outliers but

94 G. Amato, A. Esuli, and F. Falchi

that not all outliers are good pivots for maximizing the average DP . The overall
best between the proposed methods is the incremental selection technique. This
technique greedily selects the first and subsequent pivots maximizing DP on a
set of pairs of objects in C.

3.4 Balancing Pivot-Position Occurences (BPP)

While the other pivot selection approaches mainly originate from the literature
on similarity search in metric spaces and clustering, in this section we propose
an algorithm specifically intended for permutation-based access methods. The
intuition suggests that each pivot should appear in the various positions in the
permutations uniformly. In fact, if a pivot pi ∈ P appears in the same position
in all the permutations, such pivot is useless.

Let c(pi, j) = |{Πo : Π−1
o (i) = j}| be the number of permutations where pi

appears in position j. The mean value of c(pi, j), 1 ≤ j ≤ n is independent of
the specific set of pivots and is always equal to |C|/n. BPP tries to minimize the
deviation of c(pi, j) values from their mean. The algorithm starts by randomly
selecting a set P ∈ C of n̂ > n candidate pivots and evaluating the permu-
tations for all the objects o ∈ C (or a subset S ⊂ C). At each iteration, the
algorithm evaluates the effect of removing each pi ∈ P (or a fixed number t of
candidate pivots) on the distribution of c(pi, j) and removes the pivot for which
the minimum average standard deviation is obtained. The algorithm ends when
the number of candidate pivots satisfies the request, i.e. |P | = n.

In [1] it was observed that the first pivots in the permutations, i.e. the nearest
to the object, have been proved to be more relevant. Thus, in our experiments,
we applied this general algorithm considering c(pi, j) for 1 ≤ j ≤ l where l is
the actual length of the permutation we are considering. The complexity of the
algorithm is thus O(n̂|S|) for initialization using the distance d, and O(tn̂2|S|)
for the iterative selection where the cost is the evaluation of each candidate pivot
occurrence in the permutations.

4 Similarity Access Methods

We have compared the pivot selection strategies on three permutation based in-
dex structures that reasonably cover the various approaches adopted in literature
by methods based on permutations.

4.1 Permutations Spearman Rho (PSR)

The idea of predicting the closeness between elements comparing the way they
“see” a set of pivots was originally proposed in [8]. As distance between permu-
tations, Spearman Rho, Kendall Tau and Spearman Footrule [12] were tested.
Spearman Rho revealed better performance. Given two permutations Πx and
Πy, Spearman Rho is defined as:

Pivot Selection Strategies for Permutation-Based Similarity Search 95

Sρ(Πx, Πy) =

√ ∑
1≤i≤n

(Π−1
x (i)−Π−1

y (i))2

When a k-NN search is performed, a candidate set of results of size k >
k′ is retrieved considering the similarity of the permutations based on Sρ (in
our experiments we fixed k′ = 10k). This set is then reordered considering the
original distance d. In [8] an optimal incremental sorting [21] was used to improve
efficiency when the candidate set of results to be retrieved using the Spearman
Rho is not known in advance. In this work we just perform a linear scan of the
permutations defining the size of the candidate set in advance.

As already mentioned, the most relevant information of the permutation Πo

is in the very first, i.e. nearest, pivots. Thus, we decided to test also truncated
permutations. In this case we used the Spearman Rho distance with location
parameter Sρ,l defined in [12], which is intended for the comparison of top-l

lists. Sρ,l differs from Sρ for the use of an inverted truncated permutation Π̃−1
o

that assumes that pivots further than pΠo(l) from o being at position l + 1.

Formally, Π̃−1
o (i) = Π−1

o (i) if Π−1
o (i) ≤ l and Π̃−1

o (i) = l + 1 otherwise.

4.2 MI-File

The Metric Inverted File approach (MI-File) [2,1] uses an inverted file to store
relationships between permutations. It also uses some approximations and op-
timizations to improve both efficiency and effectiveness. The basic idea is that
entries (the lexicon) of the inverted file are the pivots P . The posting list asso-
ciated with an entry pi ∈ P is a list of pairs (o,Π−1

o (i)), o ∈ C, i.e. a list where
each object o of the dataset C is associated with the position of the pivot pi in
Πo.

As already mentioned, in [1] it was observed that truncated permutations
can be used without huge lost of effectiveness. MI-File allows truncating the
permutation of both data and query objects independently. We denote with lx
the length of the permutation used for indexing and with ls the one used for
searching (i.e. the length of the query permutation).

The MI-File also uses a strategy to read just a small portion of the accessed
posting lists, containing the most promising objects, further reducing the search
cost. The most promising data objects in a posting list, associated with a pivot
pi for a query q, are those whose position of the pivot pi, in their associated
permutation, is closer to the position of pi in the permutation associated with
q. That is, the promising objects are the objects o, in the posting list, having
a small |Π−1

o (i) − Π−1
q (i)|. To control this, a parameter is used to specify a

threshold on the maximum allowed position difference (mpd) among pivots in
data and query objects. Provided that entries in posting lists are maintained
sorted according to the position of the associated pivot, small values of mpd
imply accessing just a small portion of the posting lists.

Finally, in order to improve effectiveness of the approximate search, when the
MI-File execute a k-NN query, it first retrieves k ·amp objects using the inverted

96 G. Amato, A. Esuli, and F. Falchi

file, then selects, from these, the best k objects according to the original distance.
The factor amp ≥ 1, is used to specify the size of the set of candidate objects
to be retrieved using the permutation based technique, which will be reordered
according to the original distance, to retrieve the best k objects.

The MI-File search algorithm computes incrementally a relaxed version of the
Footrule Distance with location parameter l between the query and data objects
retrieved from the read portions of the accessed posting lists.

4.3 PP-Index

The Permutation Prefix Index (PP-Index) [10,11] associates each indexed object
o with the short prefix Π l

o, of length l, of the permutation Πo. The permutation
prefixes of the indexed objects are indexed by a prefix tree kept in main memory.
All the indexed objects are serialized sequentially in a data storage, kept on disk,
following the lexicographic order defined by the permutation prefixes.

At search time the permutation prefix Π l
q of the query q is used to find, in the

prefix tree, the smallest subtree which includes at least z ≥ k candidates (z is a
parameter of the search function). All the z′ ≥ z candidates that are included in
that subtree, i.e., o1 . . . oz′ , are then retrieved from the data storage and sorted,
using a max-heap of k elements, by their distance d(q, oi), thus determining the
approximated k-NN result.

A key property of PP-Index is that any subtree of the prefix tree maps directly
into a single sequence of contiguous objects in the data storage. The sequential
access to disk is crucial for the search efficiency. For example, in our experimental
setup, random access read from disk of data representing 10,000 objects from the
test dataset (described in Section 5.1) takes 87.4 seconds, while a sequential read
of the same number of objects takes 0.14 seconds. Computing 10,000 distances
between objects in the test dataset takes only 0.0046 seconds, which indicates
how having good disk access patterns is the key aspect for efficiency.

The approach of PP-Index to similarity search is close to the one of M-Index
[19] , which uses permutation prefixes to compute a mapping of any object to a
real number that is then used as the key to sequentially sort the indexed objects
in a secondary memory data structure such as a sequential file of a B+-tree.

Both PP-Index and M-Index share many intuitions with the Locality-Sensitive
Hashing (LSH) model [13,20]. For example, following the same principle of Multi-
Probe LSH [16], the PP-Index adopts a multiple-query strategy that gener-
ates additional queries by performing local permutations on the original per-
mutation prefix of the query object, i.e. retrieving additional candidates that
are still close to the query because their permutation prefix differ only for a
swap in a pair of adjacent pivots. The first pair that is swapped is the one
that has the minimum difference of distances with respect to the query, i.e.
min
j

(d(q, pΠq(j+1))− d(q, pΠq(j)), and so on. Note that it may happen that some

of the additional queries end up in selecting the same subtree of other queries,
so that the number of sequences of candidates objects accessed on disk may be
less than the number of queries.

Pivot Selection Strategies for Permutation-Based Similarity Search 97

5 Experiments

5.1 Experimental Settings

Datasets and Groundtruth: Experiments were conducted using the CoPhIR
dataset [4], which is currently the largest multimedia metadata collection avail-
able for research purposes. It consists of a crawl of 106 millions images from the
Flickr photo sharing website. We have run experiments by using as the distance
function d a linear combination of the five distance functions for the five MPEG-7
descriptors that have been extracted from each image. As weights for the linear
combination we have adopted those proposed in [3]. As the ground truth, we
have randomly selected 1,000 objects from the dataset as test queries and we
have sequentially scanned the entire CoPhIR to compute the exact results.

Evaluation Measures: All the tested similarity search techniques re-rank a
set of approximate result using the original distance. Thus, if the k-NN results
list R̃k returned by a search technique has an intersection with the ground truth
Rk, the objects in the intersection are ranked consistently in both lists. The most
appropriate measure to use is then the recall : |R̃k ∩ Rk|/k. In the experiments
we fixed the number of results k requested to each similarity search techniques
to 100 and evaluated the recall@r defined as |R̃r ∩Rr |/r where R̃r indicates the
sub-list of the first r results in R̃k (1 ≤ r ≤ k). Note that, being the two lists
consistently ordered, R̃k ∩Rr ⊂ R̃r always holds and thus R̃r ∩Rr = R̃k ∩Rr,
i.e. none of the results in R̃k after the r-th position can give a contribute to
recall@r. Given that the queries were selected from the dataset and that all the
tested access methods always found them, we decided to remove each query from
the relative approximate result list. In fact, not removing them would result in
artificially raising the recall@r for small values of r.

The average query cost of each tested technique was measured adopting a
specific cost model that will be specified in Section 5.2.

Selection Techniques Parameters: Given previous results reported in
[2,1,10,11] we decided to use 1,000 pivots. The parameters used for each se-
lection strategy were selected so that they required almost the same time to be
computed (about 10 hours):

– FFT: We selected the pivots among a subset of 1 million randomly selected
objects performing at each iteration 100,000 tries for selecting the added
pivot.

– kMED: We performed the clustering algorithm on a subset of 1 million ran-
domly selected objects.

– PSIS: We randomly selected 10,000 pairs of objects from the dataset and
performed 10 trials at each iteration.

– BPP: We randomly selected a set of 10,000 candidate pivots and tested them
on 100,000 randomly selected objects performing at each iteration no more
than 100 trials for selecting the pivot to be removed.

98 G. Amato, A. Esuli, and F. Falchi

5.2 Results

For all the tested similarity access methods we show a pair of figures. On the
first one we report recall@r obtained by the various selection strategies keeping
the parameters of the access method settings. Even if the parameters are fixed,
the use of different sets of pivots results in different average query cost which
can not be inferred from this figure. For this reason, in the second figure we
report an orthogonal evaluation that compares the recall@10 versus the query
cost while varying some parameters of the access methods.

.3

.4

.5

.6

.7

.8

.9

1.0

1 10 100

R
ec

al
l@

r

r

FFT

kMED

rnd

BPP

PSIS

Fig. 1. Recall@r obtained by PSR for
l=100 varying r

.0

.1

.2

.3

.4

.5

.6

.7

.8

.9

1 10 100 1000

R
ec

al
l@

10

Spearman Rho Location Parameter l

FFT

kMED

rnd

BPP

PSIS

Fig. 2. Recall@10 obtained by PSR for
various location parameters

.10

.15

.20

.25

1 10 100

R
ec

al
l@

r

r

kMED

FFT

rnd

BPP

PSIS

Fig. 3. Recall@r varying r obtained by the
PP-Index using the multiple-query search
(eight additional queries)

.05

.10

.15

.20

2000 4000 8000 16000

R
ec

al
l@

10

mean n. of Candidates

kMED

FFT

rnd

BPP

PSIS

Fig. 4. Recall@10 versus the number of
candidates accessed (z′) by the PP-Index
when using the multiple-query search
method with zero (lower left corner) to
eight (upper right) of additional queries

Pivot Selection Strategies for Permutation-Based Similarity Search 99

.15

.20

.25

.30

.35

.40

1 10 100

R
ec

al
l@

r

r

BPP

rnd

kMED

FFT

PSIS

Fig. 5. Recall@r obtained by the MI-File
using ls = 5, varying the number of re-
trieved objects r from 1 to 100

.0

.1

.2

.3

100 1000 10000 100000

R
ec

al
l@

10

Index Block Reads

BPP

rnd

kMED

FFT

PSIS

Fig. 6. Recall@10 obtained by MI-File
ranging ls from 1 to 5

PSR: In Figure 1 we report the recall@r obtained by PSR for location pa-
rameter l = 100. The results show that FFT outperforms the other techniques
in terms of effectiveness. PSIS performs significantly worse than all the others
while the rest of the strategies obtained very similar results. In Figure 2 we
tested various values of location parameter l, which directly impacts the query
cost by reducing the index size and the permutation comparison cost. The re-
sults confirm that FFT significantly outperforms the others but also reveal that
the differences are more relevant when l is closer to n, i.e. when more complete
permutations are used. For values of l greater than 100, none of the techniques
reported significant variations. The values of l used for the results reported in
Figure 1 was chosen according to this observation.

PP-Index: Following the results of [11], we tested the PP-index by setting the
length of the prefixes l to 6, and the values of z to 1,000. We tested both single-
and multiple-query search, exploring a range of additional queries from 1 to 8. As
the reference configuration we have chosen the one using a multiple-query search
method with eight additional queries (nine total). As already noted in Section
4.3, some of the additional queries may result in selecting the same subtree of
candidates. In fact, only 4.61 sequential blocks of candidates are accessed on
disk on average for the above configuration.

Figure 3 shows that the PP-Index obtains its best results when using the
kMED strategy, which is clearly better than the other strategies. FFT and PSIS
form a group of second best strategies, followed by rnd and BPP, which are the
worst performing ones. With respect to the other tested access methods, the PP-
Index resulted to be more robust (or less sensitive) to the change of the pivot
selection strategy. The recall curves for the various strategies have an almost
identical slope and there is only an average difference of 1.3% between the best
and worst strategies, almost constant across all the recall levels.

100 G. Amato, A. Esuli, and F. Falchi

For the PP-Index, we have measured the query cost induced by the various
strategies in terms of number of candidate objects selected by the queries on
the prefix tree. Figure 4 shows that the best two strategies with respect to
the recall/cost tradeoff are kMED and FFT, followed by rnd and PSIS, with
BPP being the worst one. On the nine queries setup BPP needs about 20%
more candidates to score a slightly worse recall than FFT. Again, the differences
between the various strategies are smaller than those observed for the other
access methods.

Note that the X axis of Figure 4 has a logarithmic scale. The almost straight
lines indicate that the number of candidates grows with a logarithmic trend as
more queries are used with the multiple-query search strategy, while the recall
grows linearly, indicating that the multiple-query strategy has a very convenient
recall/cost trend.

In summary, the kMED strategy resulted to be the best one, resulting in
higher recall at a competitive cost.

MI-File: MI-File was tested indexing data objects using the closest 100 pivots
(lx = 100). Queries were executed ranging the number of closest pivots from 1 to
5, i.e. ls ∈ {1, . . . 5} (see Section 4.2). The maximum allowed position difference
among pivots in data and query objects was 5 (mpd = 5). The size of the set of
candidate objects retrieved was set to be 50 times k, (amp = 50).

Figure 5 shows the results obtained using ls fixed to 5. For r < 10, BPP and
rnd reveal better performance, while for r > 10 all the strategies almost overlap,
except PSIS that is always the worst.

Figure 6 shows the results varying ls from 1 to 5. Larger values of ls imply
larger number of disk blocks reads. It can be seen that once a target recall value
is fixed, the cost needed by the MI-File to achieve such recall, varies significantly
among the strategies. The cost needed to achieve a specific recall using the BPP
method is one order of magnitude smaller than using the FFT method. For
instance, the cost needed to obtain a recall@10 of 0.26 is 3,000 disk block reads
using BPP, while the same recall requires 25,000 disk block reads using FFT.

The BPP method is overall the one offering the best performance with MI-
File. The recall value obtained using ls = 5 is mostly at the top. The cost needed
to execute queries is significantly lower than all the other methods. This can be
explained by the fact that, as discussed in Section 3.4, the BPP strategy has
been designed to distribute the positions of the various pivots uniformly across
the various permutations. This means that the posting lists of the MI-File are
well balanced and that they tend to contain blocks of entries, related to the same
pivot position, of equal size. As a consequence, there are no posting lists that
are very long and that are also mostly accessed for any query, simultaneously
improving effectiveness and efficiency.

6 Conclusion and Future Work

In this paper we compared five pivots selection strategies on three permutation-
based access methods. For all the tested access methods we found at least one

Pivot Selection Strategies for Permutation-Based Similarity Search 101

strategy that significantly outperforms the random selection. Another interest-
ing point is that there is not a strategy that is universally the best for all the
access methods. The PSR method, i.e. the sequential scan of the permutations
adopting the Spearman Rho with location parameter l distance, largely bene-
fited from the use of FFT. For PP-Index the best strategy has been kMED even
if the performance differences are small. The novel proposed BPP strategy sig-
nificantly outperformed the others when used in combination with the MI-File.
This means that even if all the tested access methods are permutation-based,
they significantly differ in the way they exploit the permutation space.

The CoPhIR collection is one of largest non-synthetic collections available for
experiments on similarity search and its objects have a relatively high dimen-
sionality. The results we have observed on this collection should thus be a good
reference for practical applications that have similar characteristics (e.g., large
collections of images). We are planning to extend the comparison on other col-
lections with different characteristics in terms of data type, collection size and
dimensionality. For the future we also plan to expand the comparison to other
data structures, such as the M-Index [19], and to test novel strategies that make
use of information on the queries, e.g., from a query log (as suggested in [11]).

References

1. Amato, G., Gennaro, C., Savino, P.: Mi-file: Using inverted files for scalable ap-
proximate similarity search. Multimedia Tools and Applications- An International
Journal (November 2012) (online first)

2. Amato, G., Savino, P.: Approximate similarity search in metric spaces using in-
verted files. In: Proceedings of the 3rd International Conference on Scalable In-
formation Systems, InfoScale 2008, pp. 28:1–28:10. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering, Brussels (2008)

3. Batko, M., Falchi, F., Lucchese, C., Novak, D., Perego, R., Rabitti, F., Sedmidub-
sky, J., Zezula, P.: Building a web-scale image similarity search system. In: Multi-
media Tools and Applications

4. Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., Rabitti, F.:
Cophir: a test collection for content-based image retrieval. CoRR, abs/0905.4627
(2009)

5. Brin, S.: Near neighbor search in large metric spaces. In: Proceedings of 21th Inter-
national Conference on Very Large Data Bases, VLDB 1995, Zurich, Switzerland,
September 11-15, pp. 574–584. Morgan Kaufmann (1995)

6. Bustos, B., Pedreira, O., Brisaboa, N.: A dynamic pivot selection technique for
similarity search. In: IEEE 24th International Conference on Data Engineering
Workshop, ICDEW 2008, pp. 394–401 (2008)

7. Bustos, B., Navarro, G., Chávez, E.: Pivot selection techniques for proximity
searching in metric spaces. Pattern Recogn. Lett. 24(14), 2357–2366 (2003)

8. Chávez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering
permutations. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1647–1658 (2008)

9. Dasgupta, S.: Performance guarantees for hierarchical clustering. In: Kivinen, J.,
Sloan, R.H. (eds.) COLT 2002. LNCS(LNAI), vol. 2375, pp. 351–363. Springer,
Heidelberg (2002)

102 G. Amato, A. Esuli, and F. Falchi

10. Esuli, A.: Mipai: Using the pp-index to build an efficient and scalable similarity
search system. In: SISAP, pp. 146–148 (2009)

11. Esuli, A.: Use of permutation prefixes for efficient and scalable approximate simi-
larity search. Information Processing & Management 48(5), 889–902 (2012)

12. Fagin, R., Kumar, R., Sivakumar, D.: Comparing top k lists. In: Proceedings of the
Fourteenth Annual ACM-SIAM Symposium on Discrete Algorithms, SODA 2003,
pp. 28–36. Society for Industrial and Applied Mathematics, Philadelphia (2003)

13. Gionis, A., Indyk, P., Motwani, R.: Similarity search in high dimensions via hash-
ing. In: Proceedings of 25th International Conference on Very Large Data Bases,
VLDB 1999, pp. 518–529 (1999)

14. Gonzalez, T.F.: Clustering to minimize the maximum intercluster distance. Theor.
Comput. Sci. 38, 293–306 (1985)

15. Kaufman, L., Rousseeuw, P.J.: Finding groups in data: an introduction to cluster
analysis. John Wiley and Sons, New York (1990)

16. Lv, Q., Josephson, W., Wang, Z., Charikar, M., Li Multi-probe, K.: lsh: efficient
indexing for high-dimensional similarity search. In: Proceedings of the 33rd In-
ternational Conference Very Large Data Bases, VLDB 2007, Vienna, Austria, pp.
950–961 (2007)

17. Mao, R., Miranker, W.L., Miranker, D.P.: Dimension reduction for distance-based
indexing. In: Proceedings of the Third International Conference on SImilarity
Search and APplications, SISAP 2010, pp. 25–32. ACM, New York (2010)

18. Micó, M.L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approxi-
mating and eliminating search algorithm (aesa) with linear preprocessing time and
memory requirements. Pattern Recogn. Lett. 15(1), 9–17 (1994)

19. Novak, D., Batko, M., Zezula, P.: Metric index: An efficient and scalable solution
for precise and approximate similarity search. Inf. Syst. 36(4), 721–733 (2011)

20. Novak, D., Kyselak, M., Zezula, P.: On locality-sensitive indexing in generic metric
spaces. In: Proceedings of the Third International Conference on SImilarity Search
and APplications, SISAP 2010, pp. 59–66. ACM, New York (2010)

21. Paredes, R., Navarro, G.: Optimal incremental sorting. In: In Proc. 8th Workshop
on Algorithm Engineering and Experiments (ALENEX), pp. 171–182. SIAM Press
(2006)

22. Pedreira, O., Brisaboa, N.R.: Spatial selection of sparse pivots for similarity search
in metric spaces. In: van Leeuwen, J., Italiano, G.F., van der Hoek, W., Meinel, C.,
Sack, H., Plášil, F. (eds.) SOFSEM 2007. LNCS, vol. 4362, pp. 434–445. Springer,
Heidelberg (2007)

23. Shapiro, M.: The choice of reference points in best-match file searching. Commun.
ACM 20(5), 339–343 (1977)

24. Yianilos, P.N.: Data structures and algorithms for nearest neighbor search in gen-
eral metric spaces. In: Proceedings of the Fourth Annual ACM-SIAM Symposium
on Discrete Algorithms, SODA 1993, pp. 311–321. Society for Industrial and Ap-
plied Mathematics, Philadelphia (1993)

25. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search - The Metric Space
Approach. Advances in Database Systems, vol. 32, pp. 1–191. Kluwer (2006)

Quantized Ranking for Permutation-Based Indexing

Hisham Mohamed and Stéphane Marchand-Maillet

Université de Genève, Geneva, Switzerland
{hisham.mohamed,stephane.marchand-maillet}@unige.ch

Abstract. Similarity search, translating into the nearest neighbor search prob-
lem, finds many applications for information retrieval and visualization, machine
learning and data mining. The large volume of data that typical applications
should handle imposes to find approximate solutions for the similarity search
problem. Permutation-based indexing is one of the most recent techniques for
approximate similarity search. Objects are represented by lists ordering their dis-
tances to a set of selected reference objects, following the idea that two neigh-
boring objects have the same surrounding. In this paper, we propose a quantized
representation of the permutation lists with its related data structure for effective
retrieval. Our novel permutation-based indexing strategy is built to be fast, mem-
ory efficient and scalable without excessively sacrificing on search precision. This
is experimentally demonstrated in comparison to existing proposals using several
large-scale dataset of millions of documents and different dimensions.

Keywords: Metric Permutation table, Quantized Ranking, Permutation-Based
Indexing, Approximate Similarity Search, Large-Scale Indexing.

1 Introduction

Similarity search [1] aims to extract the most similar objects to a given query. It is
a fundamental operation for many applications, such as text plagiarism to track the
similarity between an article against a database of texts, multiple genome comparison
to find all the similarities between one or more genes, and multimedia retrieval to find
the most similar picture or video to a given example.

Various indexing/search structures have been proposed to perform similarity search
over high dimensional data. Unfortunately, it turns out that the search complexity in-
creases when the dimensional increases, due to the curse of dimensionality [2]. When-
ever the data dimension exceeds 8 to 20, K-d tree and similar data structures require
scanning a large part of the database [3]. Accordingly, their performance becomes sim-
ilar to the brute-force linear search techniques [4, 5].

In metric spaces, there are two common search scenarios, namely the range query
and the K-nearest neighbor search. Several techniques have been developed for im-
proving the performance in responding such queries, by decreasing the final number of
direct distance calculations [5]. One of the most promising approaches is to perform
approximate searching [6, 7]. This offers solutions to improve the retrieval time at the
price of a slightly reduced precision.

Permutation-based indexing [8, 9] is a recent technique for approximate search in
metric spaces. The idea is to represent each object by a list of permutations of selected

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 103–114, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

104 H. Mohamed and S. Marchand-Maillet

reference items based on distance information. The information of similarity between
any two objects is then derived by comparing the two corresponding permutation lists
(see section 3 for details). In this work, we propose a new technique to reduce memory
usage and improve the search precision and the running time. Our proposed technique is
based on a quantized representation of the permutation lists. We then map our technique
to a novel data structure (Metric Permutation Table (MPT)). We show that it is effective
than the recent implementations for permutation based indexing [9–13].

The rest of the paper is organized as follows. In section 2, we review the literature
related to similarity search and, in particular to permutation-based indexing. In section
3, we introduce our modeling for permutation-based indexing and build a formal justifi-
cation for our data structure from here. Section 4 proposes the data structure and details
the associated indexing and searching procedures. Our setup is evaluated in section 5
on a large dataset. Section 6 finally discusses our contributions.

2 Related Work

We use the principles of permutation-based indexing to efficiently perform approximate
similarity search in large-scale datasets.

The idea of permutation-based indexing was first proposed in [8, 9]. It relies on the
selection and ordering of reference objects by their distance to database objects. Order
permutations are used as encoding to estimate the real ordering of distance values be-
tween the submitted query and the objects in the database (see section 3 for details).
Amato and Savino [9, 13] introduced the metric inverted files (MIF), as a disk based
data structure to store the permutations in an inverted file. The inverted list for a ref-
erence object stores the object-id and the ranking of this reference object relative to
all objects in the database. Then, Spearman Footrule Distance (SFD) is used to esti-
mate the similarity between the query and the database objects. To further reduce the
storage, each object is encoded using the only nearest reference points. Mohamed and
Marchand-Maillet [14] proposed a distributed implementation of the MIF, through three
levels of parallelization. They were able to achieve high speed up compared to the se-
quential implementation.

In [15], authors propose the prefix permutation index (PP-Index). The PP-Index only
stores the prefix of the permutations in the main memory and the data objects are saved
in blocks on the hard disk. Objects which share the same prefix are saved close to each
other. Hence, once a query is submitted all the objects in the block sharing the same
prefix are used for a direct distance calculation with the query. The PP-Index requires
less memory than the (MIF) and uses the permutations prefix in order to quickly retrieve
the relevant objects, in a hash-like manner. The proposed technique initially gives a
lower recall value. An improvement is made using multiple queries. When a query is
received, the permutation list for the query is computed. Different combination of the
query permutation list are then submitted to the tree as new queries.

In [12], authors proposed the Neighborhood Approximation (NAPP). The main idea
of the NAPP is to try to get the objects located in the intersection region of reference
objects shared between the query and database objects. This data structure is similar to
the MIF except for data compression on the inverted lists for saving storage.

Quantized Ranking for Permutation-Based Indexing 105

Mohamed and Marchand-Maillet [11] further proposed the MSA a memory-based,
fast and an effective data structure for storing the permutations. The main idea is to
concatenate the permutation lists in one string and use the suffixes of this string to
retrieve the relevant objects in an effective way.

Our proposal here builds from the original permutations-based indexing and uses
quantization as an approximation.

3 Indexing Model

We first detail our formal view of permutation-based indexing on which we build our con-
tribution. Section 4 then proposes the corresponding algorithmic setup for this scheme.

Given a set of N objects oi, D = {o1, . . . , oN}, we identify each object oi as a point
xi in some m-dimensional space Rm within which a distance function d(., .) applies. A
range query (q, ε) from a point q ∈ Rm (object q) aims at locating all points xi (objects
oi in D) such that d(q, xi) ≤ ε. With no loss of generality, in our formal model, a K-
nearest neighbour query is seen as a range query with an appropriate range value ε∗ so
as to return K results.

The definition of a set R = {r1, . . . , rn} of n reference points and their distance
to all points is known to carry sufficient information to generate a set of points x̂i

approximating the original set (eg using FastMap [16]). The strategy to set the number
and the position of the reference points is not discussed here and may be found in several
studies [17–19]. From this point on, an object oi refers to both the database object and
the corresponding point xi ∈ Rm, however best appropriate.

In [8], the use of a set R of reference objects (called pivots) is motivated by the
intuitive (necessary and sufficient) assumption that for any query q, neighboring objects
oi will view the reference set R in the same way as q does. Conversely, if the distance
ordering of the set R from two objects is similar, then these objects should be close one
to another. We express this formally using the following definitions.

Definition 1. Given a set R = {r1, . . . , rn} and an object o, we define the ordered
list of R relative to o, L(o,R), as the ordering of elements in R with respect to their
increasing distance from o:

L(o,R) = {ri1 , . . . , rin} such that d(o, rij) ≤ d(o, rij+1) ∀j = 1, . . . , n− 1

Then, for any r ∈ R, L(o,R)|r indicates the position of r in L(o,R). In other words,
L(o,R)|r = j such that rij = r. Further, given ñ > 0, L̃(o,R) is the pruned ordered
list of the ñ first elements of L(o,R).

Figure 1(b) gives the ordered lists L(oi, R) for D and R illustrated in Figure 1(a).
In K-NN similarity queries, we are interested in ranking objects (to extract the K

first elements) and not so much in the actual inter-object distance values. As discussed
above, permutation-based indexing approximates distance calculations by assuming
that the distances between objects will be approximated in terms of their ordering
and then comparing the ordered lists of these objects. Here, we consider the Spearman
Footrule Distance (dSFD) between ordered lists. Formally,

d(q, oi)
rank! dSFD(q, oi) (1)

106 H. Mohamed and S. Marchand-Maillet

r1

o1

r2

r3

o5

o6

o2

o3 L(o1,R) =(r3,r4,r1,r2) L(o2,R) =(r3,r2,r4,r1)
L(o3,R) =(r3,r4,r1,r2) L(o4,R) =(r2,r3,r1,r4)

L(o5,R) =(r2,r1,r3,r4) L(o6,R) =(r2,r3,r1,r4)
L(o7,R) =(r1,r2,r4,r3) L(o8,R) =(r4,r1,r3,r2)
L(o9,R) =(r1,r4,r2,r3) L(o10,R) =(r4,r1,r3,r2)

L(q,R) =(r4,r3,r1,r2)

(a) (b)

q

o8

o7o10

o9

o4

r4

(c)

(o1,R) =(r3,r4) (o2,R) =(r3,r2)
(o3,R) =(r3,r4) (o4,R) =(r2,r3)

(o5,R) =(r2,r1) (o6,R) =(r2,r3)
(o7,R) =(r1,r2) (o8,R) =(r4,r1)
(o9,R) =(r1,r4) (o10,R) =(r4,r1)

(q,R) =(r4,r3)

Fig. 1. Data setup (a) ◦ data objects oi; • reference objects rj ; the gray circle is the query object
q (b) Ordered lists for all the objects L(oi, R) using full permutations. (c) Pruned ordered lists
for all the objects L̃(oi, R) with ñ = 2.

where,

dSFD(q, oi) =

n∑
j=1

|L(q, R)|rj − L(oi, R)|rj |

As mentioned in [8], the extent of the approximation made is difficult to assess due to
the non-continuous nature of ranking.

It is intuitively clear that objects may be encoded relatively to a reduced set of ref-
erence objects only. Several criteria may be introduced to prune the list of reference
objects from the query. In practice, we use a locality criterion. This is supported in the
neighbor search problem by the fact that NN-search is essentially a local process. How-
ever, reference objects will typically be chosen to cover the complete object space. For
a given query q, nearest reference objects from q will suffice to discriminate objects as
a response to the query.

Such a locality criterion may be translated on ranking L(oi, R)|rj by pruning lists

L(oi, R) to a length ñ into L̃(oi, R), including all reference objects rj such that
L(oi, R)|rj ≤ ñ. This corresponds to considering only the ñ closest reference objects
to encode oi.

Thus, Eq.(1) further translates into

d(q, oi)
rank!

∑
rj∈L̃(q,R)

rj∈L̃(oi,R)

|L̃(q, R)|rj − L̃(oi, R)|rj | (2)

Figure 1(c) gives the ordered lists L̃(oi, R) for ñ = 2 and D and R illustrated in Figure
1(a).

Eq.(2) is then the base for the construction of our indexing scheme. The main idea
is to simplify further the distance approximation by quantizing the ranks within the
ordered lists into B ≤ ñ intervals (buckets). We define

bij =

⌈
B

ñ
.L̃(oi, R)|rj

⌉
and bqj =

⌈
B

ñ
.L̃(q, R)|rj

⌉
(3)

as regular quantization scheme. Eq.(2) now transforms into

d(q, oi)
rank!

∑
rj∈L̃(q,R)

rj∈L̃(oi,R)

|bqj − bij | (4)

Quantized Ranking for Permutation-Based Indexing 107

In the next section, we detail the corresponding data structure and the corresponding
indexing and search procedures.

4 Practical Setup

The previous section proposes a formal model for efficient reference-based approxi-
mate similarity search. The model is built around the approximation of distance-based
ranking, extending the permutation-based indexing strategy. We show here how we con-
struct an efficient data structure to support our indexing strategy and explicit the search
procedure, based on this data structure.

4.1 Indexing

Eq.(3) above defines a bucket index bij as the quantized rank of reference object rj with
respect to object oi. Considering how these factors will be used, it is useful to center
the construction of our data structure on the fact of efficiently answering the selection

rj ∈ L̃(q, R) and rj ∈ L̃(oi, R)

used in Eq.(4).
At query time, L̃(q, R) will be computed. We therefore need to characterise the set

{oi s.t rj ∈ L̃(oi, R), ∀rj ∈ L̃(q, R)}

which is the typical use case of an inverted file. Since we quantize L̃(oi, R)|rj index
into B buckets, we construct the inverted file at the time of quantization. More formally
the indexing procedure is given in Algorithm 1, using the data structure presented in
Figure 2a, which we call the metric permutation table (MPT).

Algorithm 1
IN: D of size N , R of n and ñ ≤ n and B ≤ ñ
OUT: MPT
1. For oi ∈ D

2. Build L̃(oi, R)

3. For rj ∈ L̃(oi, R)

4. bij = �B
ñ
.L̃(oi, R)|rj � (Eq.(3))

5. Store the ID i of oi in the list l of bucket number bij

Indexing Optimization. We propose two further optimisation steps that help reducing
costs in memory and disk access.

Compression: Since any given object oi may appear in several buckets. The direct stor-
age of objects IDs within the buckets is inefficient. Buckets store lists of IDs (large in-
tegers) and may thus be efficiently compressed using delta encoding [20]. This strategy
consists in replacing a series of large integers (given values) by a series of smaller inte-
gers (their successive difference). For example, the sequence {562895, 562896, 562900,

108 H. Mohamed and S. Marchand-Maillet

1 2
r2

1 2 1 2

o7

o9

o5

o8

o10

o4

o5

o6

o2

o7

o1

o2

o3

o4

o6

r4
2

o8

o10

o1

o3

o9

Memory

D
is

k
o7 o8 o9 o10 o4 o6 o5 o3 o2 o1

c1 c2 c3

Compressed

M
em

or
y

/D
is

k
r3r1

1 1 2
r2

1 2 1 2

o7

2

o5

3
5

o4

1
2

o2

5

o1

1
2

o4

2

r4
2

o8

2

o1

2
8

r3r1
1Buckets

R

(a) (b)

(c)

Fig. 2. The MPT data structure

562910} requires 16 bytes (4 bytes per value) and may be replaced by {562895, 1, 4, 10}
that may be stored using 4 bytes for the first value and 2 bytes for each subsequent value
(hence 10 bytes in total). This simple strategy is applied individually to buckets, lead-
ing to significant memory savings. Our compressed data structure is presented in Figure
2(b). This compressed lists can be saved on the hard-disk if they can not be fitted in the
main memory.

Clustering: We cluster the original objects into a given number of clusters using K-
Means. Our motivation is to optimize disk access overhead. This overhead depends
on the size of the database and the hard disk. We cluster the database into C clusters
(C1, . . . , Cc) with the idea that objects sharing the same clusters will be accessed to-
gether. At query time, a reduced number of clusters should be accessed, containing
the necessary points for further filtering (direct distance calculation, DDC). Figure 2(c)
shows the clustered data for points in figure 1(a).

4.2 Searching

Equation (4) is the base for our search procedure. Essentially, it counts the discrep-
ancy in quantized ranking from common reference objects between each object and the
query. In practice, we further reduce the access to buckets. Instead of a soft (sum) count-
ing of the difference in bucket index, we count the co-occurrences of each object with
the query in the same bucket or neighbouring buckets. That is, each object oi scores

si =
∣∣∣{rj ∈ L̃(q, R) such that (rj ∈ L̃(oi, R) and |bij − bqj | ≤ 1)

}∣∣∣ (5)

This computation is efficiently supported by the above data structure. Objects oi are
then sorted according to their decreasing si scores. This sorted candidate list provides
an approximate ranking of the database objects relative to the submitted query. This
approximate ranking can be improved by direct distance calculation (DDC). Similar to
the proposals in [14] (DDC factor) and [13] (amplification factor), for a K-NN query
we apply DDC on the Kc = Δ.K first objects in our sorted candidate list and call
Δ > 1 the DDC factor. The use of this parameter will be explored in our performance
evaluation (section 5).

The search procedure uses the above data structure as described in Algorithm 2.

Quantized Ranking for Permutation-Based Indexing 109

Algorithm 2
IN: q, R of size n, Δ
OUT: Sorted Objects list: out
1. Create a list of counters s[0 . . . N] and set them to 0

2. Build L̃(q,R)

3. For rj ∈ L̃(q,R)

4. bqj = �B
ñ
.L̃(q,R)|rj � (Eq.(3))

5. For k = bqj − 1 to bij + 1
6. start Obj = l[k][0]
7. For i = 1 to l[k].size()
8. s[start Obj + l[k][i]]++
9. start Obj=start Obj+l[k][i]
10. sort(s)
11. Kc = KNN ×Δ
12. A ← s(0, Kc)
13. out=calc distance(A,Kc, q)
14. sort(out)

First the pruned ordered list L̃(q, R) is constructed (Line 2). Equation (3) is used to
characterise the active buckets (Line 4-5), which are decompressed (Line 6-9) to get
the stored object IDs. For each such object, a count of co-occurrence is computed using
Eq.(5). Line 10 sorts the candidate list in decreasing order of their score(counters s).
Final DDC filtering is performed in lines 11-13.

The average complexity for accessing the reference lists and the buckets is O(1).
While it is O(z) for the lists of each bucket, where z is the average size of a list. Hence,
the total average searching complexity is O(ñz).

5 Results

Our data structure was implemented in C++. The experiments were run on a 2.70GHz
CPU with 128Gb of memory and linked with 512GB storage capacity. We measure re-
call (RE), position error (PE) [5], and the response time. In 5.1, we measure the general
performance of our data structure on a dataset of about 9-millions color features (84-
dimensional) extracted from the 12-million ImageNet corpus [21]1. In section 5.2, we
compare the performance of our proposed structure to that proposed in [9–13], based
on the datasets reported in these publications.

5.1 General Performance

Recall and Position Error. The selection of the number of buckets B and the param-
eter for direct distance calculation Δ affects the performance of the structure (response
time and memory usage) and the precision of the search. These parameters mainly de-
pend on the dataset and the distribution of the reference objects. We observe empirically
that B = 5 and Δ = 40 are good trade off values between performance and efficiency.

1 The feature dataset comprises 9’175’426 elements of 84 dimensions, a set of 100 NN queries
with ground truth and is available by contacting the authors.

110 H. Mohamed and S. Marchand-Maillet

Two sets of reference objects of size n = 1′000 and n = 2′000 were selected using the
distributed references selection technique proposed in [11]. This greedy selection tech-
nique ensures that the minimum distance between any two reference objects is larger
than a given threshold value. This leads to an appropriate coverage of the dataset by the
selected reference objects.

The experiments were thus performed fixing the number of buckets B = 5 and Δ = 40
for pruned ordered lists of sizes ñ = {10, 20, 50} for n = 1000 and n = 2000 reference
objects and for the 1-NN, 10-NN and 100-NN search scenarios. Figures 3(a) and 3(b)
show the average RE and PE using 100 queries, selected randomly from the dataset.

(a) (b)

0.2

0.4

0.6

0.8

1

10 20 50 10 20 50

R
E

(K
)

1KNN 10KNN 100KNN

Out of 1000R Out of 2000R

0

0.00001

0.00002

0.00003

0.00004

10 20 50 10 20 50

PE
(K

)

1KNN 10KNN 100KNN

Out of 1000R Out of 2000R

Fig. 3. Using Δ = 40 B = 5 a) RE using ñ = {10, 20, 50} nearest reference objects out of
n = 1000 and n = 2000 for 1-NN, 10-NN and 100-NN queries. b) PE using ñ = {10, 20, 50}
nearest references out of n = 1000 and n = 2000 for 1-NN, 10-NN and 100-NN queries.

We note that RE increases while PE decreases when the size of the pruned lists ñ
increases. This shows that ñ directly impacts the quality of approximation (as suggested
in Eq.(2)).

When comparing the RE and PE for the same number of nearest reference objects ñ
out of an increasing total number of reference objects n, we see that the RE increases
and PE decreases. This is reasonable, since a higher n indicates a more dense set of
reference objects and therefore a lower number of objects located in the same bucket
for each reference object, thus decreasing the number of false positive. For example,
for 10-NN, if ñ = 50 out of n = 1000 and n = 2000 reference objects, RE= 0.74
and RE= 0.8, respectively. The number of direct distance calculation Kc for 1-NN,
10-NN and 100-NN queries is 40, 400 and 4000, respectively. This is about 0.0004%,
0.004% and 0.04% of the number of database objects. Hence, using our technique, we
significantly decrease the number of direct distance calculations between the query and
the database objects even with a small set of reference objects.

Indexing Time, Searching Time and Memory Usage. Table 1 shows the average
indexing time, searching time, uncompressed and compressed memory based on 100
queries.

Quantized Ranking for Permutation-Based Indexing 111

Table 1. Average indexing time, searching time, uncompressed and compressed memory for the
MPT based on 100 queries

n ñ Indexing Time Searching Time Uncompressed memory Compressed memory

1000R
10

52min
0.37s 367MB 252 MB

20 0.48s 720MB 427 MB
50 0.75s 1773MB 955 MB

2000R
10

102min
0.3s 370MB 267 MB

20 0.4s 719MB 442 MB
50 0.62s 1773MB 973 MB

When the number of reference objects n increases, the indexing time consistently
increases. On the other hand, the value of ñ does not affects the indexing time, since
the costly operations essentially depend on n.

The size of the lists assigned to each bucket decreases as n increases, which leads to
a decreasing running time (at the cost of a more rough approximation). The searching
time however increases along with the number of nearest reference objects ñ.

The last two columns in Table 1 show the uncompressed and compressed memory
usage. Using the delta technique, we are able to achieve around 50% decrease in mem-
ory usage. This percentage decreases when the number of reference objects increases.
The main reason is that the distribution of the objects changes. When the number of ref-
erence objects increases consecutive objects are not anymore close to each other (they
are located in different lists), so that the compression technique is less effective.

In summary, increasing the number n of reference objects increases the memory usage
but decreases the running time and improves the RE and PE.

5.2 Comparative Experiments

It is difficult to run exhaustive comparative tests with previous work since each pro-
posal generally tests its implementation on a specific dataset, which is not always made
available. And even if so, often not all parameters of the experiments are reported.

We compare MPT to earlier proposals (NAPP [12], Perms [22], PP-Index [15], MIF
[9]). At the time of writing, we did not gain access to the CoPhIR dataset, so our evalu-
ation focuses on the available datasets.

In [12], the authors made a comparison based on the recall between their implemen-
tation and previous implementations using the color histogram dataset available on the
SISAP website [23]. This dataset is a set of 112,544 color histogram (112-dimensional
vector) from an image database. We use the same dataset and compare our results with
that summarized in [12]. Figure 4(a) shows the recall RE for the 30-KNN scenario us-
ing different numbers n of reference objects. In [12], the number of nearest reference
objects is ñ = 7 for NAPP, PP-Index, Perms and MIF with at maximum 3000 direct
distance calculations for NAPP. For the PP-Index, query expansion is not considered.

We compare to MPT using the same values for n and ñ with B = 7 and Δ =
{40, 100}, so that Kc is between 1200 and 3000 for the 30-NN scenario. MPT using

112 H. Mohamed and S. Marchand-Maillet

(a) (b)

0.2

0.4

0.6

0.8

1

64 128 256 512 1024 2048

MPT(3000) MPT(1200) NAPP

MIF Perms PP-Index

R
E

(3
0)

References

0

0.2

0.4

0.6

0.8

1

1 3 10 50

RE
(K

)

K

MPT PP-Index-1 PP-Index-4 MIF

Fig. 4. a) Recall comparison between MPT, MIF, NAPP, Perms and PP-Index for top 30-NN. The
recall values for these structures are taken from [12] (our experiments are based on averaging
200 queries). b) Recall comparison between MPT, MIF and PP-Index for 1, 3, 10 and 50 top
K-NN. The Recall values for PP-Index and MIF are taken from [15] (our experiments are based
on averaging 100 queries).

Kc = 1200 (Δ = 40) was able to achieve the same performance as NAPP [12] using
3000 DDC. Our MPT is then 2.5 faster, thanks to the bucketing technique we propose.
NAPP uses the full range of nearest reference objects and compares it to the full range
of nearest reference objects of the query, leading to a high number of false positive
objects. Since in MPT, we care only about the shared buckets, we achieve a higher
recall while saving calculations. The best searching time for NAPP is 0.0054s, opposed
to 0.0031s for MPT using 2048 reference objects.

In [15] author proposed a comparison between PP-Index and the MIF [9] using a
smaller dataset available from the UCI knowledge Discovery in Database Archive 2.
The dataset consists of 50,000 HSV color histograms (32-dimensional vector) from an
image database. We use the same dataset and compare our results to the results pub-
lished in [15] (Figure 4b). MIF indexing used 50 out of a set of 100 reference objects.
PP-index indexing used 50 references with a prefix length of 6 (experiments were made
using queries with an expansion factor = 4). Our MPT indexing used 50 out of 100
nearest reference objects selected randomly from the dataset. With no query expansion,
our MPT data structure outperforms the PP-Index (PP-Index-1 and PP-Index-4) and the
MIF for different numbers of K-NN. Our proposal is also more effective in terms of
indexing and searching time than PP-Index and MIF. MPT requires 2 seconds for in-
dexing and 0.009s for searching, while PP-Index requires 4.9s for indexing and 0.01s
and 0.02s for searching using 1 and 4 queries respectively. For MIF, it needs around 1
min for indexing.

We finally compare our proposal to the MSA proposed in [11] using the same dataset
of 4’594’734 visual shape features (21-dimensional), extracted from the 12-million
ImageNet corpus [21]. RE and PE were computed using the nearest ñ = {50, 250,
500, 750, 1000} reference objects out of totals of n = {100, 500, 1000, 1500, 2000},

2 http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.
data.html

http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.data.html
http://kdd.ics.uci.edu/databases/CorelFeatures/CorelFeatures.data.html

Quantized Ranking for Permutation-Based Indexing 113

respectively. RE= 0.7 for 100-NN using 1000 nearest references and no DDC. Our
proposed MPT achieves a higher recall value using less nearest reference objects. For
only ñ = 50 out of n = 1000 reference objects, the recall value is 0.8 with Δ = 4
(Kc = 400 objects have been compared to the query). Further, our data structure re-
quires only 0.13s for the search while MSA needs 1.9s. The main saving is made in
not using the SFD but an approximate version of its induced ranking Eq.(4) and (5).
Memory saving is also significant with 490MB needed for MPT while MSA requires
17GB (due to the large number of reference objects needed to avoid DDC).

6 Conclusion

We present a new strategy for approximate search in metric spaces, based on permutation-
based indexing. We develop a formal model where we exhibit the approximation made
by quantizing the ranking of values of distance between objects and reference objects.
A candidate selection strategy for answering a K-NN query is detailed and implemented
with the support of our data structure, called the Metric Permutation Table (MPT).

The evaluation is performed using standard and large-scale datasets. We demonstrate
empirically the validity of our claims by comparing the performance of our setup with
that of state-of-the-art methods.

We now work at improving the estimation of the number of buckets with respect n
and ñ. We also wish to relate the performance of our strategy with various techniques
for selecting the set of reference objects, which is critical to obtain an accurate encoding
of the neighboring information.

Acknowledgment. This work is jointly supported by the Swiss National Science Foun-
dation (SNSF) via the Swiss National Center of Competence in Research (NCCR) on
Interactive Multimodal Information Management (IM2) and the European COST Ac-
tion on Multilingual and Multifaceted Interactive Information Access (MUMIA) via the
Swiss State Secretariat for Education and Research (SER).

References

1. Jagadish, H.V., Mendelzon, A.O., Milo, T.: Similarity-based queries. In: Proceedings of the
Fourteenth ACM SIGACT-SIGMOD-SIGART Symposium on Principles of Database Sys-
tems, PODS 1995, pp. 36–45. ACM, New York (1995)

2. Samet, H.: Foundations of multidimensional and metric data structures. The Morgan Kauf-
mann series in computer graphics and geometric modeling. Elsevier/Morgan Kaufmann
(2006)

3. Chávez, E., Navarro, G., Baeza-Yates, R.A., Marroquı́n, J.L.: Searching in metric spaces.
ACM Comput. Surv. 33(3), 273–321 (2001)

4. Lee, D.T., Wong, C.K.: Worst-case analysis for region and partial region searches in multi-
dimensional binary search trees and balanced quad trees. Acta Inf. 9, 23–29 (1977)

5. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space Approach.
Advances in Database Systems, vol. 32. Springer (2006)

114 H. Mohamed and S. Marchand-Maillet

6. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the curse of di-
mensionality. In: Proceedings of the Thirtieth Annual ACM Symposium on Theory of Com-
puting, STOC 1998, pp. 604–613. ACM, New York (1998)

7. Patella, M., Ciaccia, P.: Approximate similarity search: A multi-faceted problem. J. of Dis-
crete Algorithms 7(1), 36–48 (2009)

8. Gonzalez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering permu-
tations. IEEE Transactions on Pattern Analysis and Machine Intelligence 30(9), 1647–1658
(2008)

9. Amato, G., Savino, P.: Approximate similarity search in metric spaces using inverted files. In:
Proceedings of the 3rd International Conference on Scalable Information Systems, InfoScale
2008, pp. 28:1–28:10. ICST, Brussels (2008)

10. Esuli, A.: Mipai: Using the pp-index to build an efficient and scalable similarity search sys-
tem. In: Proceedings of the 2009 Second International Workshop on Similarity Search and
Applications, SISAP 2009, pp. 146–148. IEEE Computer Society, Washington, DC (2009)

11. Mohamed, H., Marchand-Maillet, S.: Metric Suffix Array For Large-Scale Similarity Search.
In: ACM WSDM 2013 Workshop on Large Scale and Distributed Systems for Information
Retrieval, Rome, IT (February 2013)

12. Tellez, E.S., Chávez, E., Navarro, G.: Succinct nearest neighbor search. Inf. Syst. 38(7),
1019–1030 (2013)

13. Amato, G., Gennaro, C., Savino, P.: Mi-file: using inverted files for scalable approximate
similarity search. In: Multimedia Tools and Applications (2012)

14. Mohamed, H., Marchand-Maillet, S.: Parallel Approaches to Permutation-Based Indexing
using Inverted Files. In: 5th International Conference on Similarity Search and Applications
(SISAP), Toronto, CA (August 2012)

15. Esuli, A.: Pp-index: Using permutation prefixes for efficient and scalable approximate simi-
larity search. In: Proceedings of LSDSIR 2009, pp. 1–48 (2009)

16. Faloutsos, C., Lin, K.I.: Fastmap: a fast algorithm for indexing, data-mining and visualization
of traditional and multimedia datasets. SIGMOD Rec. 24(2), 163–174 (1995)

17. Bustos, B., Pedreira, O., Brisaboa, N.: A dynamic pivot selection technique for similarity
search. In: Proceedings of the First International Workshop on Similarity Search and Appli-
cations, SISAP 2008, pp. 105–112. IEEE Computer Society, Washington, DC (2008)

18. Ares, L.G., Brisaboa, N.R., Esteller, M.F., Pedreira, O., Places, A.S.: Optimal pivots to min-
imize the index size for metric access methods. In: Proceedings of the 2009 Second Inter-
national Workshop on Similarity Search and Applications, SISAP 2009, pp. 74–80. IEEE
Computer Society, Washington, DC (2009), doi:10.1109/SISAP.2009.21

19. Bustos, B., Navarro, G., Chávez, E.: Pivot selection techniques for proximity searching in
metric spaces. Pattern Recognition Letters 24(14), 2357–2366 (2003)

20. Smith, S.W.: The scientist and engineer’s guide to digital signal processing. California Tech-
nical Publishing, San Diego (1997)

21. Deng, J., Dong, W., Socher, R., Li, L.J., Li, K., Fei-Fei, L.: ImageNet: A Large-Scale Hier-
archical Image Database. In: CVPR 2009 (2009)

22. Téllez, E.S., Chávez, E., Camarena-Ibarrola, A.: A brief index for proximity searching. In:
Bayro-Corrochano, E., Eklundh, J.-O. (eds.) CIARP 2009. LNCS, vol. 5856, pp. 529–536.
Springer, Heidelberg (2009)

23. Figueroa, K., Navarro, G., Chávez, E.: Metric spaces library (2007),
http://www.sisap.org/Metric_Space_Library.html

http://www.sisap.org/Metric_Space_Library.html

Extreme Pivots for Faster Metric Indexes

Guillermo Ruiz1, Francisco Santoyo1, Edgar Chávez2,
Karina Figueroa1, and Eric Sadit Tellez1

1 Universidad Michoacana de San Nicolás de Hidalgo, México
{gruiz,psantoyo}@dep.fie.umich.mx,

{karina,sadit}@fismat.umich.mx
2 Universidad Nacional Autónoma de México

elchavez@matem.unam.mx

Abstract. Pivot tables are popular for exact metric indexing. It is well known
that a large pivot table produces faster indexes. The rule of thumb is to use as
many pivots as the available memory allows for a given application. To further
speedup searches, redundant pivots can be eliminated or the scope of the pivots
(the number of database objects covered by a pivot) can be reduced.

In this paper, we apply a different technique to speedup searches. We as-
sign objects to pivots while, at the same time, enforcing proper coverage of the
database objects. This increases the discarding power of pivots and in turn leads
to faster searches. The central idea is to select a set of essential pivots (without
redundancy) covering the entire database. We call our technique extreme pivoting
(EP).

A nice additional property of EP is that it balances performance and memory
usage. For example; using the same amount of memory, EP is faster than the
List of Clusters and the Spatial Approximation Tree. Moreover, EP is faster than
LAESA even when it uses less memory.

The EP technique was formally modeled allowing performance prediction
without an actual implementation. Performance and memory usage depend on
two parameters of EP, which are characterized with a wide range of experiments.
Also, we provide automatic selection of one parameter fixing the other. The for-
mal model was empirically tested with real world and synthetic datasets finding
high consistency between the predicted and the actual performance.

1 Introduction

We are interested in the proximity search problem, where a metric space (X , d) is given.
For a finite subset S of X , and an element q ∈ X , the goal is to find elements in
S near q. One proximity query of interest is range query, given r ≥ 0 we seek for
(q, r) = {s ∈ S | d(s, q) ≤ r}. It is also useful the notion of k nearest neighbor query
(KNN), given an integer k > 0 find k nearest elements of S to q. KNN queries are
equivalent to range queries if the search radius can be bounded. The ball centered at q
with radius r is named the query ball (an analogous definition exists for KNN queries).
The set X is often referred as the universe of objects, S is called the database, and q is
called the query object.

The proximity search problem can be trivially solved with a sequential scan. This solu-
tion makes sense when the set S is small and the distance function d is cheap.

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 115–126, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

116 G. Ruiz et al.

For large datasets and/or expensive distance functions, metric indexing takes advantage
of transitive properties of the metric to avoid a sequential scan. This problem has impor-
tant practical applications in machine learning, pattern recognition, statistics, bioinfor-
matics and textual and multimedia information retrieval, to name a few. There are several
books and surveys (Chavez et al. [1], Samet [2], Zezula et al. [3]) describing with detail
the different discarding rules, we will assume some familiarity of the reader with the
subject.

There are two popular approaches to metric indexing, namely pivot based indexes
and compact partitions. The later divides the data in spatially coherent regions, and at
query time, regions without intersection with the query ball are discarded. The pivoting
scheme consists in an implicit contractive mapping, where a distance δ(x, y) with the
property δ(q, x) ≤ d(q, x)∀x ∈ X is built using a set of objects (named pivots).

1.1 Related Work

For a long time, the main measure for performance comparison has been the number of
distance computations to answer a query. The rationale behind this measure is because
distances are the most expensive operation in a query. However, when measuring the
actual time for answering a query it can be a surprise that a good index under this
measure could be very slow when measuring the time. This may be led by a combination
of a cheap distance and an expensive indexing structure.

AESA [4] stores O(n2) distances, and hence the construction cost is of the same
order. At query time it performs a constant number of distance computations for a fixed
database. However, they compute a linear number of arithmetic and logical operations
at query time. A linear size restriction of the same idea is presented in LAESA [5]. The
table of pivots comes from this initial idea.

Chavez et al. [1], proved that any pivot based metric index requires at least a loga-
rithmic (on the database size) number of pivots (randomly selected from the database);
however, the base of the logarithm depends on the intrinsic dimension of the database,
needing larger indexes as the intrinsic dimension increases. This optimal number of
pivots could not fit in main memory; hence, the rule of thumb is to use as much pivots
as they fit.

Many of the pivots used are redundant if they are selected randomly. Hence, pivot se-
lection became popular. Bustos et al. [6] present different strategies to this matter, show-
ing that the proper selection of pivots is driven by datasets and queries. Remarkably,
randomly chosen pivots can be good enough in any case. Finally, Celik [7,8] presents
the priority vantage point method (Kvp). The Kvp is a structure where only the K most
promising pivots are stored per object. It experimentally shows that the most promising
pivots are those either near or far from the object.

Another approach consists in making a compact partition of the data. Here, two in-
dexes are representative. The Spatial Approximation Tree (SAT) [9] is a metric tree
where each node c is selected from S; c has N(c) nodes, defined as u ∈ N(c) if
d(u, c) < d(u, v), v ∈ N(c), for all u ∈ S \ {c}. This procedure is recursively repeated
for each u ∈ N(c) with S as the set items in S \ {N(c) ∪ {c}} having u as its closer
object in N(c). Since N(c) depends on the construction order, there are many N(c).
The author proposes to review S in the natural order imposed by the distance value

Extreme Pivots for Faster Metric Indexes 117

of each object to c. This index has good performance and no construction parameters
(other than the order of the objects in N(c)); this simplicity of use makes the SAT a fair
choice when there is not much knowledge of the database. Chavez and Navarro [10]
present a robust and memory efficient alternative, dubbed as the List of Clusters (LC).
The LC needs linear memory and up to quadratic construction time. At equality of
memory, it remains unbeatable on datasets with very high intrinsic dimensionality.

2 Extreme Pivots

An Extreme Pivoting (EP) Index consists on a set of pivot groups (PG). Each group is
a tuple (P, α), where α > 0 and P is a subset of S. For every p ∈ P there exists a set
A(p) ⊂ S such that for every x ∈ A(p) we have that |μp − d(p, x)| ≥ α. Here, μp is
for the expected value of d(u, p) for all u ∈ S. We must ensure that

⋃
p∈P

A(p) = S
and A(pi) ∩ A(pj) = ∅ for i �= j; hence, both P and α define a partition of S. The
proper selection of these parameters is deferred and discussed in upcoming sections.
Let p ∈ P, define

←−
A (p) = {u ∈ A(p) | d(u, p) ≤ μp − α}, and

−→
A (p) = {u ∈ A(p) |

d(u, p) ≥ μp +α} as depicted by Figure 1. For u in S, let piv(u) be the pivot such that
u ∈ A(p).

Fig. 1. The regions being controlled by α, from the perspective of pivot p

The elements of A(p) will be called associates of p. Our construction depends criti-
cally on α, and in turn, the optimum value of α depends on the distribution of objects in
the database. We will estimate α using some probabilistic assumptions, for now, please
notice that when α = 0, then just a pivot is required and our approach degrades to a
pivot in a pivot table. If α is arbitrarily large, then A(p) will be arbitrarily small. The
parameter α governs more than just the size of associates of a pivot, as we will see.

Given an element u and a pivot p, let a = Pr(u ∈ A(p)), a is the probability of
covering u with the pivot p. If a ≤ 1 is a fixed value for a fixed database, then the
number of pivots per group is m = ln (an+1)

ln (1/(1−a)) .
In this expression, m is a function of a (or more precisely, it depends on α). The

proper value of a is tightly coupled with the searching performance (based on the dis-
carding probability induced by a pivot group), which is estimated in the following para-
graphs.

Given a query (q, r), the probability that u is not discarded by � pivots is

Pr(|d(q, p1)− d(u, p1)| ≤ r, . . . , |d(q, p�)− d(u, p�)| ≤ r).

118 G. Ruiz et al.

In order to simplify the analysis, we suppose all objects to be described by indepen-
dent identical distributed random variables (i.i.d.r.v). Therefore, the previous expression
can be rewritten as follows

Pr(|d(q, p) − d(u, p)| ≤ r)�.

To bound the above probability we will use the distribution of distances from the
pivot to all the database elements.

In addition to i.i.d.r.v. assumption we assume that probability functions are symmet-
ric around the mean. Let X be the random variable such that X(u) ∼ d(piv(u), u), and
let Y be Y (u) ∼ d(u, v) for u, v ∈ X . Thus, the probability function of X is defined
in the extremes of Y , i.e., X(u) corresponds to the shaded area in Figure 1, and Y (u)
matches the whole region.

Since we assume symmetry, then for every u ∈ ←−
A (piv(u)) there exists an element

v ∈ −→
A (piv(v)) such that X(u) + X(v) = D with D a constant. We assume as well

that for every element u there exists an element v such that Y (u) + Y (v) = D. Using
these assumptions, E[X] = E[Y] = D/2, hence E[X − Y] = 0. Let σ2

X and σ2
Y be

the variance of X and Y respectively.
Now, Pr(|d(p, u) − d(p, q)| > r) = Pr(|X − Y | > r) and, using the Chebychev

inequality1 we have Pr(|X − Y | > r) < (σ2
X + σ2

Y)/r
2.

The probability that a given u would not be discarded by its covering pivot piv(u),
is 1− Pr(|X − Y | > r) ≥ 1− (σ2

X + σ2
Y)/r

2.
The number of distances the algorithm would compute is

cost = m�+ n (1− Pr (|X − Y | > r))
� (1)

≥ m�+ n

(
1− σ2

X + σ2
Y

r2

)�

(2)

for a database of size n, and using m pivots for each of � pivot groups. We obtained
a lower bound for the average number of distances computed using this technique. We
could minimize this last equation to get the optimum values for m and �.

Fixing m, we obtain the optimal number of groups � as

� =
lnm/n− ln ln (1/s)

ln (s)
, (3)

where s = 1− σ2
X+σ2

Y

r2 .
And using this optimal � we can compute the minimum cost

cost ≥
m
(
ln n

m + ln ln (1/s) + 1
)

ln (1/s)
(4)

= m log1/s
n

m
+ o(m ln (1/s)). (5)

1 For a random variable Z with mean μZ and variance σ2
Z , Pr(|Z − μZ | > ε) < σ2

Z/ε
2.

Extreme Pivots for Faster Metric Indexes 119

This expression is similar to the cost obtained by Chavez et al. [1] for randomly
selected pivots; i.e., cost ≥ lnn+ ln ln (1/t)+ 1/ ln (1/t), with t = 1− 2σ2

Y /r
2. This

expression gets an optimal number of pivots,

k =
lnn+ ln ln(1/t)

ln(1/t)
(6)

= log1/t n+ o(ln(1/t)). (7)

Using random pivots (as analyzed by Chavez et al), the query cost depends on the
database and the query radius, that is why the only way to improve the search speed is
to increment �. Our analysis also depends of σX , a parameter that we set at construction
time, adjusting α. Please remember that σ2

X = E[(d(u, p)−μp)
2], and by construction

|d(u, p)− μp| ≥ α, thus σ2
X ≥ α2. So, we have the chance to make adjustments to get

better results on average, once we know the database. Also, in our cost equation, we
can set the � and m parameters (m depends on α) at construction time, � can control the
memory needed by the index. A greater m will reduce the probability of not discarding
an element, even on fixed memory setups.

3 EP Table

A simple implementation of EP is a table. A set of � pivot groups will be called an
EP Table. Each group is computed as follows given the number of pivots m, and the
number of instances (groups) �. The construction consists on creating � groups using
Algorithm 1, which was sketched and analyzed in the previous section.

Algorithm 1. Randomized construction of the EP Table
Input: The input database S = {u1, . . . , un}, and the number of pivots m
Output: The set of pivots P , and the array g of n tuples (piv(u), d(u, piv(u))) ∀u ∈ S.

1: Select a random pivot p1, P ← P ∪ {p1}
2: Initialize g[1, n] = (p1, d(u1, p1)), (p1, d(u2, p1)), . . . , (p1, d(un, p1))
3: for i = 2 to m do
4: Select pi randomly from S, P ← P ∪ {pi}
5: for j = 1 to n do
6: g[j] = (pi, d(uj , pi)) if |d(uj , pi)− μ| > |d(uj , piv(uj))− μ|.
7: end for
8: end for

3.1 Optimizing α

In the previous construction, all parameters are assumed fixed. We can optimize the
parameters using the model and the analysis described previously. The optimal α is
achieved maximizing the probability of discarding an object u, which is approximated
by 1 − (σ2

X + σ2
Y)/r

2. Using this expression, we observe that σX =
√
r2 − σ2

Y ≥ α.

120 G. Ruiz et al.

This σX value implies that for high intrinsic dimensional datasets, α will be large, and
it will not be useful (because it will produce a very large m). In this case, a suboptimal
α value can be used and the whole performance could be improved using several pivot
groups, i.e., increasing �.

A better option consists in fixing � controlling how much memory is used by the
metric index. Once fixed �, we can approximate the optimal m numerically. For this
purpose we use Expression 2 as detailed in Algorithm 2. Here, the idea is to be in-
crementing m by one, and stop the algorithm whenever the derivative of Expression 2
becomes zero or positive. This procedure will create a single group, so it must be called
� times.

Algorithm 2. Numerically optimized construction of the EP-Table
Input: The input database S = {u1, u2, · · · , un}, and the number of groups �.
Output: The set of pivots P , and the array g of n tuples (piv(u), d(u, piv(u))) ∀u ∈
S.

1: Estimate σ2
Y and r2.

2: Define prev ← n.
3: Select a random pivot p1, P ← P ∪ {p1}
4: Initialize g[1, n] = (p1, d(u1, p1)), (p1, d(u2, p1)), · · · , (p1, d(un, p1))
5: Define m ← 1
6: Compute cost1 = m� + n(1 − (σ2

X + σ2
Y)/r2)�. {At any step, σ2

X is computed with the
current tuples in g}.

7: while True do
8: Select pi randomly from S, P ← P ∪ {pi}
9: for j = 1 to n do

10: g[j] = (pi, d(uj , pi)) if |d(uj , pi)− μ| > |d(uj , piv(uj))− μ|.
11: end for
12: m ← m+ 1.
13: Update σ2

X with the current tuples in g.
14: costi = m�+ n

(
1− (σ2

X + σ2
Y)/r2

)�
.

15: if costi ≥ costi−1 then
16: stop loop
17: end if
18: end while

It is important to notice that this procedure depends heavily on the estimated values
σ2
Y and r2. Also, for real world databases the i.i.d.r.v. assumption can be far from true.

For this reason, we add a damping constant β ≤ 1 for the discarding probability in

lines 6 and 14, resulting on costi = m�+n
(
1− β(σ2

X + σ2
Y)/r

2
)�

. The precise value
of β is dependent on how much both the database and the query set disparate from the
i.i.d.r.v. assumption.

4 Experimental Performance

In this section we present the performance as a function of the dimension, and for
different standard databases used by the community. As usual, vector spaces are indexed

Extreme Pivots for Faster Metric Indexes 121

without using the coordinates. Results are reported in both time and the fraction of the
database revised for a given query.

— Nasa This database is a collection of 40150 vectors of dimension 40 obtained from
the SISAP project (http://www.sisap.org). It uses L2 as distance function.

— Colors The second benchmark is a set of 112682 color histograms (112-dimensional
vectors) from SISAP, under the L2 distance.

— CoPhIR-1M We use a subset of the CoPhIR database, of one million objects se-
lected from the CoPhIR project [11]. Each object is a 208-dimensional vector and
we use the L1 distance.

— RVEC We generate random vectors in the unitary cube, in five dimensions 4, 8, 12,
16 and 20.

Each plot represents 256 nearest neighbor queries. The query object was not indexed.
We used four searching algorithms as baseline for comparison.

1. The Sequential scan to bound the searching time when the dimension is large.
2. The LAESA, the standard pivot table.
3. The List of Clusters (LC) [10], which until now it holds the best performance for

equality of memory (on the right setup).
4. The fourth baseline is a version of Navarro’s SAT [9] built using a random order.

The SAT is probably the best index having no parameters.

We show that with a simple tweak (essentially adjusting the number of groups) we
can be faster than LAESA using as much as 64 pivots, for a fraction of the memory us-
age, or several times faster than LAESA using the same index size. The LC is reported
as the best setup for the given dataset among the bucket sizes 16, 32, 64, 128, 256, 512,
1024, and 2048. We tested EP Table with 3, 10, 30, 100, 300, and 1000 pivots per in-
stance, and up to 16 instances; we fix β = 0.8 (Section 3.1) in the numerically opti-
mized EP Table in order to diminish the effect of the i.i.d.r.v. assumption. The optimal
value of β can be very tricky, however, values around 1 produce good indexes with-
out reducing the performance on well known distributions, and 0.8 seems to be simply
enough for most setups. A detailed study on β is beyond the scope of this paper.

The algorithms were implemented in C# with the Mono framework2. Algorithms
and indexes are available as open source software in the natix library3. All experiments
were executed in a 4x quadcore Intel Xeon 2.40 GHz workstation with 32GiB of RAM,
running CentOS Linux without exploiting the multicore architecture.

4.1 Performance of Our Indexes per Database

Figure 2 shows the performance for the Nasa database. The left side of the figure
presents the performance as the fraction of the database revised. The EP Table is the best
option, specially in setups with few instances and few pivots per instance. As shown in
Figure 2(b), the search speed decreases when either the number of instances or the num-
ber of pivots per instance is large. This slowdown is because the internal computation

2 http://www.mono-project.org
3 http://github.com/sadit/natix/

http://www.sisap.org
http://www.mono-project.org
http://github.com/sadit/natix/

122 G. Ruiz et al.

2
0

2
1

2
2

2
3

2
4

2
5

2
6

number of instances

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
.
n
u
m

b
e
r

o
f

d
is

ta
n
c
e
s

EPTable (3)

EPTable (30)

EPTable (300)

EPTable Optimized

LAESA

LC

SAT Random

Sequential

(a) Average ratio of evaluated distances

2
0

2
1

2
2

2
3

2
4

2
5

2
6

number of instances

0.000

0.002

0.004

0.006

0.008

0.010

0.012

a
v
g
.
s
e
a
rc

h
 t

im
e

EPTable (3)

EPTable (30)

EPTable (300)

EPTable Optimized

LAESA

LC

SAT Random

Sequential

(b) Average search time

Fig. 2. Performance comparison of the nearest neighbour search in the Nasa database. We show
curves only for m = 3, 30, and 300 in order to simplify the analysis of the figure.

increases. Please notice that the performance of the numerically optimized EP Table is
very close to the best setups (on both review and real time).

In practical applications we need to optimize both memory and real query time, not
the amount of computed distances. At some point, increasing the number of instances
to reduce the fraction of the database revised, slowdowns the query time. Please notice
that the EP Table remains as the fastest index, faster than our baselines. The speed
difference is especially noticeable in setups with few instances and many pivots.

The performance of Colors is similar to the one of Nasa when the instance is nu-
merically optimized. Figure 3(a) compares the fraction of the database revised. Notice
that EP Table with few instances and several pivots per instance produce very fast in-
dexes, surpassing the performance of LAESA, LC, and SAT. The real time, Figure 3(b)
shows a similar performance for real time; however, the performance degrades for a
large number of instances and pivots since the distance function is not very expensive
and the internal cost becomes of matter.

The last real world database is CoPhIR-1M. Figure 4 shows how LAESA and EP
Table shows a decreasing tendency as the number of instances increases. The optimum
number of instances is not reached, because the database is large and the distance func-
tion is more expensive. However, both indexes increase the searching time at some
point. Compared to SAT, EP Table is faster even using a single instance. As compared
with LC, EP Table is faster, and equally faster with a single instance, however the LC
requires more than 15 thousand centers, and EP Table is fixed with 1000 pivots, which
means that EP Table is faster to construct (this is really important on databases with a
costly distance function). In any case, it is possible to allow the EP Table to use more
pivots per group to achieve faster indexes. In CoPhIR-1M, as in other databases, the
numerically optimized EP Table is very close to the best setups of EP Table, however
it decreases its performance as the number of instances increase. This can be an effect
of our i.i.d. assumption. In contrast, the performance of the optimized EP Table in syn-
thetic databases (e.g. RVEC-20) easily surpass LAESA (see Figure 5). This last fact is

Extreme Pivots for Faster Metric Indexes 123

2
0

2
1

2
2

2
3

2
4

2
5

2
6

number of instances

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
.
n
u
m

b
e
r

o
f

d
is

ta
n
c
e
s

EPTable (3)

EPTable (30)

EPTable (300)

EPTable (1000)

EPTable Optimized

LAESA

LC

SAT Random

Sequential

(a) Average ratio of evaluated distances

2
0

2
1

2
2

2
3

2
4

2
5

2
6

number of instances

0.00

0.01

0.02

0.03

0.04

0.05

0.06

a
v
g
.
s
e
a
rc

h
 t

im
e

EPTable (3)

EPTable (30)

EPTable (300)

EPTable (1000)

EPTable Optimized

LAESA

LC

SAT Random

Sequential

(b) Average search time

Fig. 3. Performance comparison of the nearest neighbour search in the Colors database. We show
curves only for m = 3, 30, 300, and 1000 in order to simplify the analysis of the figure.

2
0

2
1

2
2

2
3

2
4

2
5

2
6

number of instances

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
.
n
u
m

b
e
r

o
f

d
is

ta
n
c
e
s

EPTable (100)

EPTable (300)

EPTable (1000)

EPTable Optimized

LAESA

LC

SAT Random

Sequential

(a) Average ratio of evaluated distances

2
0

2
1

2
2

2
3

2
4

2
5

2
6

number of instances

0.0

0.5

1.0

1.5

2.0

a
v
g
.
s
e
a
rc

h
 t

im
e

EPTable (100)

EPTable (300)

EPTable (1000)

EPTable Optimized

LAESA

LC

SAT Random

Sequential

(b) Average search time

Fig. 4. Performance comparison of the nearest neighbor search in the CoPhIR-1M database. We
show curves only for m = 100, 300, and 1000 in order to simplify the analysis of the figure.

not surprising, since all the objects were generated exactly with the same random pro-
cess as we have modeled. It is important to notice that for this high intrinsic dimensional
dataset with a cheap distance function, our EP Table is faster than other indexes.

4.2 The Effect of the Dimension on the Search Performance

The curse of dimensionality stands for the odd situation where a (clever) index is slower
than a plain sequential scan of the data, it is well documented in the literature [1]. The
last experiment consist in testing how the indexes handle the dimensionality. We used
random vectors of several dimensions in RVEC-*. Figure 6(a) shows the fraction of
the database revised. Each point of EP Table represents the best performance setup
in that dimension. This setup consists on six different number of pivots per instance
(3, 10, 30, 100, 300, and 1000). In the same figure, the optimized versions of EP Table

124 G. Ruiz et al.

2
0

2
1

2
2

2
3

2
4

2
5

2
6

number of instances

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
.
n
u
m

b
e
r

o
f

d
is

ta
n
c
e
s

EPTable (30)

EPTable (300)

EPTable (1000)

EPTable (3000)

EPTable Optimized

LAESA

LC

SAT Random

Sequential

(a) Average ratio of evaluated distances

2
0

2
1

2
2

2
3

2
4

2
5

2
6

number of instances

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

a
v
g
.
s
e
a
rc

h
 t

im
e

EPTable (30)

EPTable (300)

EPTable (1000)

EPTable (3000)

EPTable Optimized

LAESA

LC

SAT Random

Sequential

(b) Average search time

Fig. 5. Performance comparison of the nearest neighbour search in the RVEC-20 database. We
show curves only for m = 30, 300, 1000, and 3000 in order to simplify the analysis of the figure.

4 8 12 16 20

dimension

0.0

0.2

0.4

0.6

0.8

1.0

a
v
g
.

n
u
m

b
e
r

o
f

d
is

ta
n
c
e
s

EPTable-16

EPTable-8

EPTable-4

EPTable-2

EPTable-1

EPTable-16 Optimized

EPTable-8 Optimized

EPTable-4 Optimized

EPTable-2 Optimized

EPTable-1 Optimized

LAESA-16

LAESA-8

LAESA-4

LAESA-2

LAESA-1

LC

SAT Random

Sequential

(a) Average ratio of evaluated distances

4 8 12 16 20

dimension

0.0

0.1

0.2

0.3

0.4

a
v
g
.

s
e
a
rc

h
 t

im
e

EPTable-16

EPTable-8

EPTable-2

EPTable-16 Optimized

EPTable-4 Optimized

EPTable-1 Optimized

LAESA-16

LAESA-8

LAESA-2

LC

SAT Random

Sequential

(b) Average search time

Fig. 6. Performance comparison of the nearest neighbor search in terms of the dimensionality
(random vectors). On the right side, we ommit some curves in order to improve the readability.

shows the performance for the index numerically optimized for the desired number of
instances, see Section 3.1. Also, the figure shows the performance for LAESA with
several pivots (1, 2, 4, 8, and 16), implying that both LAESA and EP Table use about
the same amount of memory.

It is remarkable that EP Table outperforms all indexes, and it rapidly surpasses the
performance of LAESA. Please also notice that EP Table is better in the majority of
the setups. Also, notice that SAT rapidly degrades its performance with increasing di-
mension. Remarkably, the LC is quite robust (please remember that we show only the
best setup for each dimension); however, EP Table surpasses both SAT and LC in most
configurations. The numerically optimized EP Table shows a similar performance than
the best non optimized EP Table and surpasses the performance of LAESA, SAT, and
LC (even on a single instance and large dimensions). These experimental results verify
the closeness of our theoretical analysis to the real performance.

Extreme Pivots for Faster Metric Indexes 125

Measuring the query time (Figure 6(b)), EP Table (and the numerically optimized
version) produces the fastest indexes, specially in large dimensions. However, the or-
der of the time curves is not the same than the order found measuring the amount of
evaluated distances. This also remarks that minimizing the number of distances not nec-
essarily produces faster indexes.For example, in this experiment, the faster indexes are
those having a medium number of instances.

5 Conclusions

We presented EP Table, a new index for proximity searching. It can be seen as a gen-
eralization of the pivot based indexes. The indexing technique incorporates a model
which proved to be accurate if the distance distribution from the objects to the pivots
is known. This has been proved with uniform multidimensional synthetic data, and we
postulate that once characterized the distance distributions, the same performance boost
exhibited with the synthetic database will be attained with real world databases. The re-
sulting index may have a fixed number of instances, with each instance using essentially
one machine word per database element. We have shown that EP Table surpasses the
performance of both pivot tables and compact partitioning indexes.

We are working on incorporating the cost of the distance function and the size of
the database in the analysis and the pivot optimization. Also, the β parameter needs
a deeper study to fully understand its functionality and capabilities, this is one of our
current research trends. Finally, we are studying how to substitute the table search with
faster structures using the internal structure of the partition to speed up searches.

References

1. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquı́n, J.L.: Searching in metric spaces. ACM
Comput. Surv. 33(3), 273–321 (2001)

2. Samet, H.: Foundations of Multidimensional and Metric Data Structures, 1st edn. The Mor-
gan Kaufman Series in Computer Graphics and Geometic Modeling. Morgan Kaufmann
Publishers, University of Maryland at College Park (2006)

3. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search - The Metric Space Ap-
proach, 1st edn. Advances in Database Systems, vol. 32. Springer (2006)

4. Vidal Ruiz, E.: An algorithm for finding nearest neighbours in (approximately) constant av-
erage time. Pattern Recognition Letters 4, 145–157 (1986)

5. Micó, M.L., Oncina, J., Vidal, E.: A new version of the nearest-neighbour approximating
and eliminating search algorithm (aesa) with linear preprocessing time and memory require-
ments. Pattern Recogn. Lett. 15, 9–17 (1994)

6. Bustos, B., Navarro, G., Chávez, E.: Pivot selection techniques for proximity searching in
metric spaces. Pattern Recognition Letters 24(14), 2357–2366 (2003)

7. Celik, C.: Priority vantage points structures for similarity queries in metric spaces. In:
Shafazand, H., Tjoa, A.M. (eds.) EurAsia-ICT 2002. LNCS, vol. 2510, pp. 256–263.
Springer, Heidelberg (2002)

8. Celik, C.: Effective use of space for pivot-based metric indexing structures. In: SISAP
2008: Proceedings of the First International Workshop on Similarity Search and Applications
(sisap 2008), pp. 113–120. IEEE Computer Society, Washington, DC (2008)

126 G. Ruiz et al.

9. Navarro, G.: Searching in metric spaces by spatial approximation. The Very Large Databases
Journal (VLDBJ) 11(1), 28–46 (2002)

10. Chávez, E., Navarro, G.: A compact space decomposition for effective metric indexing. Pat-
tern Recogn. Lett. 26, 1363–1376 (2005)

11. Bolettieri, P., Esuli, A., Falchi, F., Lucchese, C., Perego, R., Piccioli, T., Rabitti, F.: CoPhIR:
a test collection for content-based image retrieval. CoRR abs/0905.4627v2 (2009)

Quicker Similarity Joins in Metric Spaces

Kimmo Fredriksson and Billy Braithwaite

School of Computing, University of Eastern Finland
firstname.lastname@uef.fi

Abstract. We consider the join operation in metric spaces. Given two
sets A and B of objects drawn from some universe U, we want to com-
pute the set A �� B = {(a, b) ∈ A × B | d(a, b) ≤ r} efficiently, where
d : U×U → R

+ is a metric distance function and r ∈ R
+ is user supplied

query radius. In particular we are interested in the case where we have
no index available (nor we can afford to build it) for either A or B. In
this paper we improve the Quickjoin algorithm (Jacox and Samet, 2008),
based on the well-know Quicksort algorithm, by (i) replacing the low level
component that handles small subsets with essentially brute-force nested
loop with a more efficient method; (ii) showing that, contrary to Quick-
sort, in Quickjoin unbalanced partitioning can improve the algorithm;
and (iii) making the algorithm probabilistic while still obtaining most
of the relevant results. We also show how to use Quickjoin to compute
k-nearest neighbor joins. The experimental results show that the method
works well in practice.

1 Introduction

Many important problems in information and multimedia retrieval, pattern recog-
nition, data mining and computational biology, to name a few, can be seen as
proximity or similarity searching in metric spaces. Metric space is a pair (U, d),
where U is an universe of objects, and d(·, ·) is a distance function d : U×U → R+.
The distance function is metric, if it satisfies for all x, y, z ∈ U

d(x, y) = 0 iff x = y (reflexivity),

d(x, y) = d(y, x) (symmetry),

d(x, y) ≤ d(x, z) + d(z, y) (triangular inequality).

In the point of view of the applications, we have some subset S ⊆ U of objects,
|S| = n, and we are interested in the proximity of the objects towards them-
selves, or towards some query objects. The most fundamental type of query is
range query: retrieve all objects in the database S that are within a certain sim-
ilarity threshold r to the given query object q, that is, compute R(S, q) = {o ∈
S | d(q, o) ≤ r}. Another common query is to retrieve the k-nearest neighbors of
q in S. A large number of different data structures and query algorithms have
been proposed, see e.g. [1–3].

� Corresponding author.

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 127–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

128 K. Fredriksson and B. Braithwaite

In this paper we consider similarity join, a query that has several solutions in
vector spaces (a particular case of a metric space), but only a few methods exist
for general metric spaces. More precisely, the range join operation for two sets
A and B is defined as

A ��
r
B = {(a, b) ∈ A×B | d(a, b) ≤ r, a ∈ A, b ∈ B}.

Sometimes we may be interested in self join, which is defined simply as A �� A.
The two basic solutions to solve join queries are to use two nested loops and
compute all the pairwise distances, or to utilize an index build to support range
queries in either set. In this paper we are interested in the case where we have
no index available, nor it is feasible to build such an index for various reasons,
see Sec. 2 for justifications of this assumption. Still we aim to do much better
than the nested loop approach.

Finally, we note that in general metric spaces the (black-box) distance func-
tion is the only way to distinguish between the objects. Moreover, the distance
function is often very expensive to evaluate (consider e.g. comparing documents
or images). Hence the usual complexity measure is the number of distance func-
tion evaluations required to answer the query. For example, the basic solution
to compute A �� B by using two nested loops has therefore the complexity
Θ(|A| |B|).

Our contributions are as follows. We improve the Quicksort [4] inspired Quick-
join algorithm [5] in three ways. (1) The original algorithm is based on parti-
tioning the data set to smaller pieces, and the small pieces are joined essentially
by brute-force. We discuss several method to improve that phase. The result
can also be used as is rather than just being a component of Quickjoin. (2) We
show that, contrary to Quicksort, in Quickjoin (controllably) mildly unbalanced
partitioning can improve the algorithm. (3) We show how to make the algo-
rithm probabilistic, to gain faster execution with a price of possibly missing a
small fraction of the relevant results. All the improvements can be combined
into a single algorithm. We also sketch a method to adapt Quickjoin to handle
k-nearest neighbor joins. The experimental results show that the running time
of the algorithm is substantially improved in practice.

The paper is organized as follows. In Sec. 2 we briefly cover some previous
work on similarity joins, giving a more detailed look of the Quickjoin algorithm in
Sec. 2.1, as this is the basis of our work. Section 3 describes our improvements to
Quickjoin, and in Sec. 4 we adapt the algorithm to compute k-NN joins. Section
5 gives experimental results and Sec. 6 concludes.

2 Previous Work

As already mentioned, the basic solution is to compute all the pairwise dis-
tances, which leads to quadratic complexity (Alg. 4 gives the pseudocode). To
get subquadratic time on average, one can take the smaller of the two data sets,
preprocess it to use (almost) any of the various off-the-self indexes [1–3] sup-
porting range queries, and query the objects from the other set from the index

Quicker Similarity Joins in Metric Spaces 129

(see Alg. 7). This method can be reasonably good, if the time for building the
index is subquadratic, which is often but not always true (e.g. AESA [6] needs
quadratic time to build the index, effectively solving the self join problem while
doing so). However there is often a trade-off between the efficiency of the build
time and query time, an illustrative example of this is the List of Clusters [7].

For spatial joins in vector spaces there are many specific methods that support
the join operation, some but not all of them are based on indexing. While it is
possible to map general metric spaces to vector spaces, the applicability of these
methods are limited. For discussion and references, see [5].

To the best of our knowledge, there are only two indexing based methods to
solve similarity joins in general metric spaces. The first is eD-index [8] (refine-
ment of its predecessor, D-index [9]), which effectively uses the strategy to build
an index supporting range queries, and then use it repeatedly to solve the join
query. The eD-index is a tree structure based on search-separable buckets. Ba-
sically the index uses ball partitioning technique, but it replicates objects that
are at distance of at most r from the partition boundaries to the “exclusion” set.
This guarantees that there always exist a bucket for any pair (a, b) if d(a, b) ≤ ε
(it is assumed that r ≤ ε). Quickjoin uses somewhat similar strategy, although
it is not an indexing technique.

More recently, an index called List of Twin Clusters [10] (extension of List
of Clusters [7]) was proposed. This method indexes two different datasets si-
multaneously, using compact ball partitioning technique. Their method support
range searching in either indexed set, and (range) join operation between the
two indexed sets. They also considered k-nearest neighbor joins.

Finally, Quickjoin algorithm [5] solves the range join efficiently without any
index. We cover the algorithm in detail in Sec. 2.1. Some of the various pros and
cons of range searching in general, eD-index, LTC and Quickjoin are as follows:

– While using off-the-self range searching methods immediately offers a wide
variety of solutions, they are not necessarily better than Quickjoin.

– Sometimes the datasets can be large, and building an index may be costly
if it does not fit into main memory. Quickjoin uses relatively little memory.

– If one wants to join a certain dataset repeatedly against several others (or
using different query radii), then the use of some good indexes with high
construction cost may be amortized.

– The indexing techniques support other queries besides join as well.
– While eD-index has some attractive properties, it is dependent on the pa-

rameters ρ and ε, and the index need to be rebuilt for query radii r > ε. The
authors considered only a self join operation.

– LTC supports join only for two fixed datasets, and need to be rebuilt for
joining against a third set, unless one resorts to the basic range searching
strategy. The construction cost is also high.

– Quickjoin does not directly support k-nearest neighbor joins (however, see
Sec. 4).

On the other hand, as shown in Secs. 3.1 and 5, Quickjoin can be improved by
combining it with indexing only small subsets of the input.

130 K. Fredriksson and B. Braithwaite

G

L

Lw

Gw

p1

p2

ρ

r

r

Fig. 1. Quickjoin ball partitioning. The input data set S is partitioned to four sets.
Note that L ∪G = S, Lw ⊆ L, Gw ⊆ G and L ∩G = Lw ∩Gw = ∅.

2.1 Quickjoin

We concentrate on self join. The general case of A �� B is easily solved by setting
S = A ∪ B and solving S �� S, and adding a simple check that does not report
a pair (u, v) if u and v both belong to either in A or B.

Algorithms 1–4 show the complete pseudocode (except for SelfJoinBF,
which is almost identical to JoinBF shown in Alg. 4). In high level, the al-
gorithm is based on partitioning the data set S recursively into small subsets,
until the subset size is at most some small constant c, in which case the algo-
rithm switches to a brute-force nested loop approach. The (ball) partitioning
algorithm divides the set into four partly overlapping subsets. To this end, the
algorithm chooses (randomly) two pivots p1 and p2 from S, and uses the distance
ρ = d(p1, p2) and the pivot p1 to define a ball that partitions the space in two.
More precisely, the algorithm computes

L = {u ∈ S | d(u, p1) < ρ} (1)

G = {u ∈ S | d(u, p1) ≥ ρ}. (2)

Figure 1 illustrates (note: the original paper used inequalities “≤” and “>” for L
and G respectively). Both sets are then joined recursively, separately. However,
there may be some object u ∈ L and another object v ∈ G such that d(u, v) ≤ r.
The objects near the partition boundary are therefore replicated into two window
partitions:

Lw = {u ∈ S | ρ− r ≤ d(u, p1) < ρ} = {u ∈ L | ρ− r ≤ d(u, p1)} (3)

Gw = {u ∈ S | ρ ≤ d(u, p1) ≤ ρ+ r} = {u ∈ S | d(u, p1) ≤ ρ+ r}. (4)

These are again joined against each other recursively, using Alg. 3 (a slight
variation of Alg. 1). Note that this algorithm computes Lw �� Gw, and not
(Lw ∪Gw) �� (Lw ∪Gw), as Lw �� Lw and Gw �� Gw are already solved as a part
of L �� L and G �� G. All four partitions can be computed with O(|S|) distance
computations with a single pass through S.

Quicker Similarity Joins in Metric Spaces 131

Alg. 1. QuickJoin (S, r)

1 if |S| ≤ c then return SelfJoinBF (S, r)
2 p1 ← Pivot(S)
3 p2 ← Pivot(S \ {p1})
4 ρ ← d(p1, p2)
5 (L,G, Lw, Gw) ← Partition(S, p1, r, ρ)
6 R ← QuickJoin(L, r) ∪QuickJoin(G, r) ∪QuickJoinWin(Lw, Gw, r)
7 return R

Alg. 2. Partition (S, p, r, ρ)

1 L ← {u ∈ S | d(u, p) < ρ}
2 G ← {u ∈ S | d(u, p) ≥ ρ}
3 Lw ← {u ∈ L | ρ− r ≤ d(u, p1)}
4 Gw ← {u ∈ S | d(u, p1) ≤ ρ+ r}
5 return (L,G,Lw , Gw)

Alg. 3. QuickJoinWin (S1, S2, r)

1 if |S1|+ |S2| ≤ c then return JoinBF (S1, S2, r)
2 p1 ← Pivot(S1 ∪ S2)
3 p2 ← Pivot((S1 ∪ S2) \ {p1})
4 ρ ← d(p1, p2)
5 (L1, G1, L

w
1 , G

w
1) ← Partition(S1, p1, r, ρ)

6 (L2, G2, L
w
2 , G

w
2) ← Partition(S2, p1, r, ρ)

7 R ← QuickJoinWin(L1, L2, r) ∪QuickJoinWin(G1, G2, r)
8 W ← QuickJoinWin(Lw

1 , G
w
2 , r) ∪QuickJoinWin(Gw

1 , L
w
2 , r)

9 return R ∪W

Alg. 4. JoinBF (S1, S2, r)

1 R ← ∅
2 for i ← 1 to |S1| do
3 for j ← 1 to |S2| do
4 if d(S1[i], S2[j]) ≤ r then R ← R ∪ {(S1[i], S2[j])}
5 return R

The algorithm was shown to make O(n(1+w)log n) = O(n1+log(1+w)) distance
computations on average, where w ≤ 1 is the fractional average size of the win-
dow partitions. They gave some experimental evidence that w is nearly linearly
dependent on r (however, see also Sec. 3.3), the total time approaching O(n2)
for large r. The worst case is O(n2n), i.e. when w approaches 1 and the recur-
sion depth approaches n (very unbalanced partitioning). The algorithm can use
generalized hyperplane partitioning instead of ball partitioning, can partition
the data to more subsets, can base the partitioning in coordinate data in case
of vector spaces, and it can be made to perform reasonably well on secondary
memory as well. For more details refer to [5].

132 K. Fredriksson and B. Braithwaite

3 Improved Quickjoin

We give three improvements to Quickjoin. The first two can in principle also be
used as is to solve A �� B, without being a building block for Quickjoin.

3.1 Handling Small Subsets

The Quickjoin algorithm spends most of its time in Alg. 4 (depending also on
the cut-off constant c). There are many possibilities to improve it.

Our first alternative is to use pivot based strategy. Given some small constant
k < |S1|, we first compute the distances d(S1[i], S2[j]), for 1 ≤ i ≤ k and
1 ≤ j ≤ |S2|, saving the distance to P [i, j] and reporting a match if P [i, j] ≤ r.
In the next phase the items S1[i] for 1 ≤ i ≤ k are used as pivots to filter out
objects from S2. That is, given S1[l] for l > k, we first compute all distance
d(S1[l], S1[i]), again for all 1 ≤ i ≤ k. The triangular inequality can then be
used to discard some object, in particular, if |d(S1[i], S1[l])− d(S1[i], S2[j])| > r
for some i (note that these distances are known at this point), then we know
that d(S1[l], S2[j]) > r without actually evaluating the distance. Alg. 5 gives
the pseudocode. The number of distance computations is still O(|S1| |S2|) in the
worst case, but note that the algorithm needs also some extra CPU time (the
time besides evaluating the distance function) as compared to Alg. 4.

Another approach, which is also very simple to implement, has lower extra
CPU time and has lower memory footprint, is to adapt the technique proposed
in [11]. Assume that we are interested in d(q, p), and that we know d(q, q′), where
q, q′ ∈ S1, and p ∈ S2, and dL(p) and dU (p) denote the known lower and upper
bound distances to d(q, q′).

Lemma 1 ([11]). Let dL(p) ≤ d(p, q′) ≤ dU (p), and e = d(q, q′) and l =
max{e− dU (p), dL(p)− e, 0} and u = e+ dU (p). It holds that l ≤ d(q, p) ≤ u.

In our case we initialize dL(p) = 0 and dU (p) = ∞ for all p ∈ S2, and maintain
e = d(q, q′) by using q = S1[i] and q′ = S1[i − 1]. The algorithm takes each
q ∈ S1 in turn and matches it against all p ∈ S2. Based on Lemma 1, we can
immediately report a matching pair (q, p) if u ≤ r (in practice this is rather
unlikely), or deduce that (q, p) is not in our result if l > r (in practice this is
where the improvement comes from), both without ever evaluating d(q, p). Only
if r ≤ l we must evaluate the actual distance, and in this case we also update
dL(p) = dU (p) = d(q, p). Otherwise we set dL(p) = l and dU (p) = u. In either
case, we effectively have now dL(p) ≤ d(q, p) ≤ dU (p), ready to handle the next
item from S1. Alg. 6 shows the pseudocode.

As the method is used to filter single objects, rather than balls with covering
radius as in the original algorithm, as a part of an index, it works better in our
context. In the worst case the algorithm is slightly slower than Alg. 4, but not
asymptotically, and in practice it is substantially better. Moreover, both Alg. 6
and Alg. 5 can easily be made probabilistic, contrary to Alg. 4, see Sec. 3.2. Also,
the two algorithms could be combined, but we leave this avenue as a future work.

Quicker Similarity Joins in Metric Spaces 133

Alg. 5. JoinPivots (S1, S2, r)

1 R ← ∅
2 for i ← 1 to k do for j ← 1 to |S2| do
3 P [i, j] ← d(S1[i], S2[j])
4 if P [i, j] ≤ r then R ← R ∪ {(S1[i], S2[j])}
5 for i ← k + 1 to |S1| do
6 for l ← 1 to k do D[l] ← d(S1[l], S1[i])
7 for j ← 1 to |S2| do
8 f ← false
9 for l ← 1 to k do if |P [l, j]−D[l]| > r then f ← true; break
10 if not f and d(S1[i], S2[j]) ≤ r then R ← R ∪ {(S1[i], S2[j])}
11 return R

Alg. 6. JoinDC (S1, S2, r)

1 for j ← 1 to |S2| do dL[j] ← 0; dU [j] ← ∞
2 R ← ∅; e ← ∞
3 for i ← 1 to |S1| do
4 if i > 1 then e ← d(S1[i], S1[i− 1])
5 for j ← 1 to |S2| do
6 dL[j] ← max{e− dU [j], dL[j]− e, 0}
7 dU [j] ← e+ dU [j]
8 if dU [j] ≤ r then R ← R ∪ {(S1[i], S2[j])}
9 else if dL[j] ≤ r then
10 dL[j] ← dU [j] ← d(S1[i], S2[j])
11 if dU [j] ≤ r then R ← R ∪ {(S1[i], S2[j])}
12 return R

Note that the efficiency of Alg. 6 depends partly on how close S1[i − 1] and
S1[i] are to each other. That is, the permutation of the set S1 affects the com-
plexity. One possible way to improve the algorithm is to permute the set so that∑

d(S1[i − 1], S1[i]) is minimized. However, deciding if a given permutation is
optimal in this sense is NP-complete problem even for vector spaces with two
dimensions, which is easily seen by reducing from TSP on Euclidean plane. We
use a simple greedy heuristic that selects the next query object from a small
sample at each step, which improves the algorithm in some cases.

Finally, we note that any known indexing technique with a reasonably low
construction cost supporting range queries can be used to replace Alg. 4. If the
construction cost is subquadratic, the total average time including the queries
will be as well. Alg. 7 gives a generic code. In our experiments we used Vantage
Point Tree (VPT) [12].

In Sec. 5 we experimented with replacing JoinBF (Alg. 4) with the presented
alternatives. Similarly we replaced SelfJoinBF with the above methods mod-
ified to compute self join. The modifications are trivial, so we omit the details.

134 K. Fredriksson and B. Braithwaite

Alg. 7. JoinRQ (S1, S2, r)

1 if |S1| > |S2| then S1 ↔ S2

2 I ← IndexBuild(S1); R ← ∅
3 for i ← 1 to |S2| do R ← R ∪ IndexSearch(I, S2[i], r)
4 return R

3.2 Making It Probabilistic

In [13] a general probabilistic method was given to “stretch the triangle inequal-
ity”. In indexing point of view, the normal triangle inequality allows us to discard
any element u in the database that satisfies |d(u, p)− d(q, p)| > r, where q is the
query object, and p is some pivot object, without evaluating d(u, q). “Stretch-
ing” means that we will now discard u if |d(u, p) − d(q, p)| > (1 − ε) × r holds,
for some 0 ≤ ε < 1. They show that this method can dramatically reduce the
number of distance computations, while keeping the error probability low, i.e.
only a small fraction of relevant results is missed. To apply this idea to Alg. 5,
we replace the line 9 with:

9 if |P [l, j]−D[l]| > (1− ε)× r then f ← true; break

Similarly, we can reduce the number of distance computations by replacing the
line 8 of Alg. 6 with:

8 else if dL[j] ≤ (1 − ε)× r then

As shown by the experimental results, the algorithm is very tolerant to quite
large values of ε. Similar adjustment can be often made for Alg. 7, we used the
the method described in [14].

3.3 Optimizing by Unbalancing

Recall that the average time for Quickjoin is O(n(1+w)log n). The exponent logn
comes from the fact that the depth of the recursion is O(log n) if the partitioning
is balanced. See also [5, Sec. 3.1, p. 13] for a discussion how to enforce a balanced
partition. It should be obvious that the complexity decreases as the depth of the
recursion is decreased. In fact, if the ratio between the size of the partitions
is α : (1 − α), for some constant 0 < α ≤ 1

2 , the depth of the recursion is
O(log1/(1−α) n), which is O(log2 n) for α = 1

2 . However, the complexity depends
also on w, and that decreases (for a constant r) when the partition becomes
unbalanced, towards L, i.e. when the recursion depth increases in a certain way.
This should be apparent on Fig. 1; when ρ decreases, the “volume” of the window
partitions (the “rings”) decrease. Note that this assumes ball partitioning, for
generalized hyperplane partitioning balanced partitioning seems to be the best
strategy. We experimented with this idea simply by replacing the line 4 in both
QuickJoin and QuickJoinWin with:

4 ρ ← β × d(p1, p2)

Quicker Similarity Joins in Metric Spaces 135

where β is some constant ≤ 1. As shown in Sec. 5 decreasing β improves the
time complexity of the algorithm up to a certain point. We leave more detailed
analysis for a future work.

4 k-NN Join

We now show how Quickjoin can be adapted to compute the k-nearest neighbor
joins. More precisely, we want to compute a subset A �� B ⊂ A × B, such that
|A �� B| = k and for all (a, b) ∈ A �� B and (u, v) ∈ A×B \A �� B it holds that
d(a, b) ≤ d(u, v).

Disregarding k-NN joins, there there exists few specific algorithms for “nor-
mal” k-NN queries, retrieving the set k-NN(q), the k closest object to the query
object q. However, there are two related general methods to use range queries
to compute the k-NN query that can be applied to almost any index support-
ing range queries [1]. The first is to start with r = ∞ and update (decrease)
r as more and more objects from the index are compared against q, namely,
keeping r equal to the largest distance to the k nearest neighbors seen so far.
The second strategy is to start with some small r, and doubling (or using some
smaller constant factor) it until the range query retrieves at least k objects. Our
method is also based on range joins, and can be seen as a combination of the
two alternatives above.

Our solution is to run the range join algorithm twice. The first time we use r =
0. This effectively means that the window partitions are empty, and the cost is
O(n log n) distance evaluations on average for the partitioning process. However,
the algorithm still makes calls to SelfJoinBF, when the size of the subset is≤ c.
We modify this so as to keep track (with a heap) of the k smallest distances (and
the corresponding object pairs) encountered. Thus, when the algorithm ends, we
have approximation of the true result, i.e. some relevant object pairs are likely
missed (and replaced by some inferior pairs). For the second pass of the range
join we use r := r′, where r′ is the largest distance between the object pairs found
in the first pass. Note that r′ is the upper bound for the largest distance between
the object pairs of the true result, if the first pass computes at least k distances in
SelfJoinBF. This can be guaranteed by using c ≥ �4k/n�+1 in the first pass,
assuming self-join and balanced partitioning. (It is also easy to handle wildly
unbalanced partitioning by simply stopping the recursion early.) The second pass
can use whatever value for c. It is also easy to further optimize the algorithm
by always keeping r as the largest distance between the object pairs found so
far, effectively decreasing it over time. Clearly the second pass dominates the
running time. Notice that the variants that improve over JoinBF may skip
distance computations, hence reducing r over time may work less effectively.

5 Preliminary Experimental Results

We have implemented the algorithms in C and ran experiments with different
datasets comparing the performance of our variants with varying parameters

136 K. Fredriksson and B. Braithwaite

against the original Quickjoin. We made experiments with random vectors in
uniformly distributed unitary cube (this allows us to easily control the dimension
and the size of the input data), nasa dataset of 40,150 feature vectors in 20-
dimensional space (although the intrinsic dimension is much lower), and with
a dictionary of 69,069 English words. Both real world datasets were obtained
from http://www.sisap.org/library/dbs/. For vector data we used Euclidean
distance and for strings edit distance.

We have many parameters to test out. The problem specific parameters are
r, n, dimension, or specific dataset. In addition we have several parameters
controlling the behavior of the algorithm itself, the bucket size (c in Algs. 1 and
3), which algorithm to use to handle the buckets (Alg. 4, 6, 5 or 7), ε to control
the probabilistic variant(s) and β to control the balance of the recursion. Alg. 5
also depends on the number of pivots to use. It is not feasible to test all possible
combinations systematically, so we test them mostly separately, picking some
default or promising values for the free parameters.

We report only the number of distance evaluations made, neglecting the actual
running times, which grow approximately linearly with the number of distance
evaluations. For easier comparison among the different datasets, we report the
numbers as (e/b)× 100%, where e is the number of actual distance evaluations,
b = n(n− 1)/2 is the number of distance evaluations needed by the näıve brute-
force approach for self join, where n is the size of the dataset. For Alg. 5 we
used simply k = max(1,min(16, |S1|/8)) pivots. The value of k can have a large
impact on the performance (as well as the choice of the pivots), but we did not
make any efforts to optimize this.

Figure 2 shows for random vector space the effects of the bucket size c and
the balance factor β (for c = 30) when using either Alg. 4 (JoinBF = BF), 5
(JoinPivots = Pivots), 6 (JoinDC = DC) or 7 (JoinRQ = RQ) to handle
the small subsets in QuickJoin and QuickJoinWin. We omit the result for
optimizing the query order for Alg. 6, as the results were usually just slightly
worse or better than for plain Alg. 6. In general it seems to be good only for high
dimensions and large query radii. All alternatives to BF beat it. For experiment
with huge values of c, see Fig. 4. Combined with unbalanced partitioning we can
almost double the performance as compared to the original algorithm.

Figure 3 shows the effect of the dimension, while keeping the number of results
retrieved constant. Here we used JoinBF to handle the small subsets in all cases.
Again, unbalancing the partitioning helps considerably.

Figure 4 shows the results for probabilistic search. BF, which is not probabilis-
tic, is shown just for reference. For fixed c the number of distance evaluations
decrease approximate linearly with increasing ε. For ε � 0.4 all the methods
start quickly miss relevant results. Pivots is able to prune the number of dis-
tance evaluations the most, but it is also the least accurate. Note however, the
the number of pivots used greatly affect this [13], the more pivots used, the more
relevant results are missed in general, although the algorithm also gets faster.
The reason is quite clear, the more pivots, the more opportunities to make a

http://www.sisap.org/library/dbs/

Quicker Similarity Joins in Metric Spaces 137

 0.04

 0.05

 0.06

 0.07

 0.08

 0.09

 0.1

 0.11

 0.12

 0 10 20 30 40 50 60 70 80 90 100

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

c

dimension 10, n = 100,000, r = 0.2

BF
DC

Pivots
RQ

 16

 18

 20

 22

 24

 26

 28

 30

 32

 0 10 20 30 40 50 60 70 80 90 100

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

c

dimension 15, n = 100,000, r = 0.4

BF
DC

Pivots
RQ

 1

 1.2

 1.4

 1.6

 1.8

 2

 2.2

 2.4

 2.6

 0.5 0.6 0.7 0.8 0.9 1

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

β

dimension 10, n = 100,000, r = 0.2, c = 30

BF
DC

Pivots
RQ

 10

 15

 20

 25

 30

 35

 0.5 0.6 0.7 0.8 0.9 1

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

β

dimension 15, n = 100,000, r = 0.4, c = 30

BF
DC

Pivots
RQ

 0

 5

 10

 15

 20

 25

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

r

dimension 10, n = 100,000, c = 30, β = 1.0

BF
DC

Pivots
RQ

 0
 2
 4
 6
 8

 10
 12
 14
 16
 18

 0.1 0.15 0.2 0.25 0.3 0.35 0.4

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

r

dimension 10, n = 100,000, c = 30, β = 0.66

BF
DC

Pivots
RQ

Fig. 2. Top row: the effect of c. Middle: optimum unbalance is close to β ≈ 2
3
. Bottom

row: the effect of increasing radius, for β = 1.0 and β = 0.66 (dimension = 10).

 0.1

 1

 10

 100

 4 6 8 10 12 14 16 18 20

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

dimension

n = 100,000, c = 30, β = 1.0

10-NN
100-NN

1000-NN
10000-NN

100000-NN
 0.1

 1

 10

 100

 4 6 8 10 12 14 16 18 20

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

dimension

n = 100,000, c = 30, β = 0.66

10-NN
100-NN

1000-NN
10000-NN

100000-NN

Fig. 3. Performance for k-NN for different dimensions and for β = 0.66 and β = 1.0

138 K. Fredriksson and B. Braithwaite

 1

 1.1

 1.2

 1.3

 1.4

 1.5

 1.6

 1.7

 0 0.2 0.4 0.6 0.8 1

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

ε

dimension 10, n = 100,000, r = 0.2, c = 30, β = 0.66

BF
DC

Pivots
RQ

 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.2 0.4 0.6 0.8 1fr
ac

tio
n

of
 r

es
ul

ts
 r

et
rie

ve
d

(%
)

ε

dimension 10, n = 100,000, r = 0.2, c = 30, β = 0.66

BF
DC

Pivots
RQ

 12
 12.5

 13
 13.5

 14
 14.5

 15
 15.5

 16
 16.5

 0 0.2 0.4 0.6 0.8 1

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

ε

dimension 15, n = 100,000, r = 0.4, c = 30, β = 0.66

BF
DC

Pivots
RQ

 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.2 0.4 0.6 0.8 1fr
ac

tio
n

of
 r

es
ul

ts
 r

et
rie

ve
d

(%
)

ε

dimension 15, n = 100,000, r = 0.4, c = 30, β = 0.66

BF
DC

Pivots
RQ

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 10 100 1000 10000 100000

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

c

dimension 10, n = 100,000, r = 0.2, β = 0.66, ε = 0.4

Pivots
RQ

 70

 75

 80

 85

 90

 95

 100

 10 100 1000 10000 100000fr
ac

tio
n

of
 r

es
ul

ts
 r

et
rie

ve
d

(%
)

c

dimension 10, n = 100,000, r = 0.2, β = 0.66, ε = 0.4

Pivots
RQ

Fig. 4. Probabilistic search. Top and middle rows: the number of distance evaluations
and the results retrieved as a function of ε. Bottom row: increasing c close to n, with
ε = 0.4. In all cases β = 0.66.

(wrong) decision to filter out some object. The bucket size c also affects the
performance. For larger c the algorithm gets faster, but especially Pivots starts
to miss even more relevant results (for fixed ε).

Finally, Fig. 5 repeats some of the experiments on real data. The results are
similar, but small discrete range for radii flattens out the plot for β on string
data somewhat. For the same reason, we omit the plots for probabilistic search
on string data, since e.g. for r = 2 any 0.5 ≤ ε < 1 is effectively the same. Note
also that the balance factor (β) plot for Nasa dataset deviates from the plot with
random data. This is mostly due to the relatively low intrinsic dimension of the
Nasa dataset.

We mention some additional results without plots. When combining all the
improvements and comparing against plain Quickjoin, we can get respectable

Quicker Similarity Joins in Metric Spaces 139

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 0 10 20 30 40 50 60 70 80 90 100

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

c

dimension 20 (nasa), n = 40,050, r = 0.1

BF
DC

Pivots
RQ

 0
 0.1
 0.2
 0.3
 0.4
 0.5
 0.6
 0.7
 0.8
 0.9

 1

 0.5 0.6 0.7 0.8 0.9 1

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

β

dimension 20 (nasa), n = 40,050, r = 0.1, c = 30

BF
DC

Pivots
RQ

 0.2

 0.25

 0.3

 0.35

 0.4

 0.45

 0.5

 0.55

 0.6

 0 0.2 0.4 0.6 0.8 1

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

ε

dim 20 (nasa), n = 40,050, r = 0.1, c = 30, β = 0.75

BF
DC

Pivots
RQ 10

 20
 30
 40
 50
 60
 70
 80
 90

 100

 0 0.2 0.4 0.6 0.8 1fr
ac

tio
n

of
 r

es
ul

ts
 r

et
rie

ve
d

(%
)

ε

dim 20 (nasa), n = 40,050, r = 0.1, c = 30, β = 0.75

BF
DC

Pivots
RQ

 4

 5

 6

 7

 8

 9

 0 10 20 30 40 50 60 70 80 90 100

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

c

English dictionary, r = 1

BF
DC

Pivots
RQ

 20

 25

 30

 35

 40

 45

 0 10 20 30 40 50 60 70 80 90 100

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

c

English dictionary, r = 2

BF
DC

Pivots
RQ

 0

 1

 2

 3

 4

 5

 6

 7

 8

 0.5 0.6 0.7 0.8 0.9 1

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

β

English dictionary, r = 1, c = 30

BF
DC

Pivots
RQ

 0

 5

 10

 15

 20

 25

 30

 35

 40

 0.5 0.6 0.7 0.8 0.9 1

di
st

 e
va

ls
. v

s.
 n

ai
ve

 (
%

)

β

English dictionary, r = 2, c = 30

BF
DC

Pivots
RQ

Fig. 5. Performance on real data, Nasa and English dictionary

improvements. For example, using the English dictionary and r = 2, c = 100,
β = 0.66 and RQ, we get about 2.6 fold improvement against standard Quickjoin
(c = 30, β = 1.0, BF). Similarly for random vector space of dimension 15,

140 K. Fredriksson and B. Braithwaite

n = 100, 000, r = 0.4, c = 1000, β = 0.66, ε = 0.4 and RQ, we get 3.2 fold
improvement against Quickjoin, while still retrieving 99.8% of the results.

6 Concluding Remarks and Future Work

We have shown three ways to improve Quickjoin algorithm. The algorithms work
well in practice, improving the performance by up to 3 fold. We plan to make
more comprehensive experiments in the future. Many improvements are still pos-
sible. For example, using range queries to handle the small buckets seems promis-
ing, but there are many other alternatives to the structures we have considered
here. It would be interesting to tailor some index specifically for Quickjoin, so
that the build and search times are balanced, and keeping the memory consump-
tion low. Saving some distance evaluations during the partitioning process seems
also possible, using technique similar to Alg. 6.

References

1. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.: Searching in metric
spaces. ACM Computing Surveys 33(3), 273–321 (2001)

2. Hjaltason, G., Samet, H.: Index-driven similarity search in metric spaces. ACM
Transactions Database Systems 28(4), 517–580 (2003)

3. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann Publishers Inc., San Francisco (2005)

4. Hoare, C.A.R.: Quicksort. Comput. J. 5(1), 10–15 (1962)
5. Jacox, E.H., Samet, H.: Metric space similarity joins. ACM Trans. Database Syst.

33(2) (2008)
6. Vidal, E.: An algorithm for finding nearest neighbors in (approximately) constant

average time. Pattern Recognition Letters 4, 145–157 (1986)
7. Chávez, E., Navarro, G.: A compact space decomposition for effective metric in-

dexing. Pattern Recognition Letters 26(9), 1363–1376 (2005)
8. Dohnal, V., Gennaro, C., Zezula, P.: Similarity join in metric spaces using eD-

index. In: Mař́ık, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS,
vol. 2736, pp. 484–493. Springer, Heidelberg (2003)

9. Dohnal, V., Gennaro, C., Savino, P., Zezula, P.: D-index: Distance searching index
for metric data sets. Multimedia Tools Appl. 21(1), 9–33 (2003)

10. Paredes, R., Reyes, N.: Solving similarity joins and range queries in metric spaces
with the list of twin clusters. Journal of Discrete Algorithms (JDA) 7, 18–35 (2009)

11. Fredriksson, K.: Exploiting distance coherence to speed up range queries in metric
indexes. Information Processing Letters 95(1), 287–292 (2005)

12. Uhlmann, J.: Satisfying general proximity/similarity queries with metric trees.
Information Processing Letters, 175–179 (1991)

13. Chávez, E., Navarro, G.: Probabilistic proximity search: Fighting the curse of di-
mensionality in metric spaces. Information Processing Letters 85, 39–46 (2003)

14. Fredriksson, K.: Engineering efficient metric indexes. Pattern Recognition Letters
(PRL) 28(1), 75–84 (2007)

Evaluation of Different Metrics

for Shape Based Image Retrieval
Using a New Contour Points Descriptor

Maŕıa Teresa Garćıa-Ordás, Enrique Alegre,
Oscar Garćıa-Olalla, and Diego Garćıa-Ordás

University of León, León, Spain
{mgaro,enrique.alegre,ogaro,dgaro}@unileon.es

http://pitia.unileon.es/varp

Abstract. In this paper, an image shape retrieval method was evalu-
ated using Euclidean, Intersect, Hamming and Cityblock distances and
different kinds of k-nearest neighbours classifiers such as the original
kNN, mean distance kNN and Weighted kNN. Shapes were described
using a new method based on the description of the contour points,
CPDH36R, obtaining better results than with the original CPDH shape
descriptor. The efficiency in the retrieval was tested using Kimia99,
Kimia25, MPEG7 and MPEG2 datasets obtaining an 84% of success
rate in Kimia25, 94% in Kimia99, 91% in MPEG2 and 82% in MPEG7
datasets using our CPDH36R method, cityblock distance and original
kNN against the 68%, 91%, 74% and 59% respectively obtained using
the original CPDH. The greatest difference between the original method
and our proposal can be seen clearly using MPEG2 dataset. Another
advantage of our retrieval method, apart from the success rate, is the
computational cost which is clearly better than the one achieved with
the original Earth Mover Distance classifier used in the CPDH original
method.

Keywords: image retrieval, shape description, kNN, contour.

1 Introduction

Image Retrieval is a technique that consists on searching and retrieving images
from an image dataset. More and more images are stored on the internet every-
day, so it is necessary to develop new image retrieval methods that ensure high
accuracy dealing with million of images. This process can be divided into two
well defined steps: The image description and the retrieval method.

In the last few years, many research groups have been working on new image
description and retrieval methods based on different features such as texture,
colour and shape. In [1], Zakariya et al. proposed a method for images retrieval
that combines features based on texture color and shape with variable weights.
For the retrieval process they used a simple k-nearest neighbours, taking into
account different values of k. Zhang et al. proposed in [2] a retrieval system based

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 141–150, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://pitia.unileon.es/varp

142 M.T. Garćıa-Ordás et al.

on shape and texture watermarks which shows the advantages of combining
different features in datasets with colour images.

However, there are multiple datasets based only in the objects contour. For
that reason, it is important to find shape descriptors that achieve good perfor-
mance by themselves. In [3], Ayyalasomayajula et al. proposed a method based
on DCT (discrete cosine transform) for occluded image retrieval. Also, several
methods based on DCT were proposed in the last few years for shape based
image retrieval [4,5].

Other shape descriptor methods have been evaluated with promising results
such as ICA Zernike Moment and top 80 matches as retrieval method [6], wavelet
based shape features with L1 Norm Distance Function [7] or global feature space
representation of contours [8].

Methods based on nearest neighbours are highly used in image retrieval sys-
tems. In [9], Zheng et al. proposed an improvement to optimize the kNN method
that decrease the search of the nearest neighbour in more than a 98% retaining
the same accuracy. In 2009, Zhang et al. proposed a method for image retrieval
called “bayesian information fusion” based on nearest neighbours combined with
an estimate likelihood [10]. Weighted kNN is a really interesting algorithm widely
used by many researchers. In [11] a kNN was developed based on the kernel dif-
ference weighted. Recently, Gu et al. proposed in [12] a kNN variant based on a
semi-supervised weighted Mahalanobis distance metric.

Our descriptor, CPDH36R, is based on the one developed by Shu et al. [13]
which is a shape contour descriptor for shape matching and retrieval. They
used the EMD (Earth Movers Distance) metric as matching method but we
have selected another matching method, taking into account the work developed
by Graham and his group [14], kNN variants and 4 different distance metrics,
resulting in a save of time in the retrieval process.

The rest of the paper is organised as follows. In section 2, CPDH original
method and our contribution are described. Used classifiers are described in
section 3. Datasets and results are shown in section 4 and finally, in section 5,
our conclusions are shown.

2 Methods

2.1 CPDH Method

The original method, Contour Points Distribution Histogram (CPDH), was pro-
posed by Shu et al. [13]. The first step is to obtain the points representing the
contour of the image under polar coordinates. The contour points that are used
to describe the image, can be obtained by different methods. In this case, they
used the standard Canny operator to detect the object boundary. See [15]. Once
the points are extracted, the centroid is set as the origin. After that, they con-
struct the minimum circumscribed circumference and the region defined by that
circumference is divided into several bins using some concentric circumferences
and equal interval angles. The final step is to construct the CPDH descriptor

Shape Based Image Retrieval Using a New Contour Points Descriptor 143

taking into account the number of points belonging to each division, and the
angle and radius of each division.

2.2 CPDH36R Method

In our case, we used the method proposed by Belongie et al. [15], obtaining a
contour like the one shown in figure 1.

Fig. 1. Contour points extraction using Belongie method

This contour can be represented as a points collection as

P ={(x1, y1), (x2, y2), ..., (xm, ym)}
/(xi, yi) ∈ R

2
(1)

where m denotes the number of points on the contour. After that, the centroid
of the previous points is obtained using the expression 2 in order to obtain the
minimum shape circumscribed circumference.

(xc, yc) =

m∑
i=1

(xi, yi)

m
(2)

The centroid is set as the origin and the points collection, P , is translated into
polar coordinates using ec. 3

P = {(ρ1, α1), (ρ2, α2), ..., (ρm, αm)} ∈ R
2 (3)

where
ρi =

√
(xi − xc)2 + (yi − yc)2 (4)

144 M.T. Garćıa-Ordás et al.

and

αi =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩

arctan((yi−yc)
(xi−xc)

ifx > 0, y ≥ 0

arctan((yi−yc)
(xi−xc)

+ 2π ifx > 0, y < 0

arctan((yi−yc)
(xi−xc)

+ π ifx < 0

arctan(π2) ifx = 0, y > 0
arctan(3π2) ifx = 0, y < 0

(5)

So the circumscribed circumference has as centre the centroid C (xc, yc) and
radius ρmax = max(ρi), i = 1, 2, ...,m.

Then, the circle defined by the circumscribed circumference is divided into
several bins partitioning its area into u×v bins being u the parts in which ρmax
is divided and v the sectors in which the circle is divided. The result of this
process is shown in figure 2.

Fig. 2. Circumference circunscribed to the image contour (left) and circle partition in
36 bins (v=12, u=3) (Right)

After these previous steps, we can build the descriptor by counting the num-
ber of points belonging to each bin. The original CPDH is composed by a triplet
for each bin Hi = (ρi, θi, ni) where ρi denotes the radius of the concentric cir-
cumferences, θi denotes the angle space and ni denotes the number of points
located in the bin ri.

The authors of CPDH, used the EMD classifier in order to make their descrip-
tor invariant to rotation. The main disadvantage of EMD is its slowness, thus
one of our motivations in developing Contour Points Distribution Histogram Ra-
dius using 36 features (CPDH36R) was the necessity of making a new descriptor
containing just the most relevant features, and for this reason obtaining even
better hit rates than with the base-line method but being much more efficient
in terms of computational cost.

The proposed CPDH36R descriptor uses the first and third element of each
of the previous triplets, that are the radius and number of points in the bin

Shape Based Image Retrieval Using a New Contour Points Descriptor 145

Fig. 3. First step to construct CPDH36R: 36SEQ extraction

respectively, obtaining the 36SEQ shown in figure 3. Radius are normalized
following equation 6

rp =
ρ1..u
ρmax

(6)

Where ρmax is the biggest radius and p ∈ [1..36]. CPDH36R is created multiply-
ing the number of points of each bin (figure 3) by its corresponding normalized
radius (first element of the triplet), that contains just the most relevant features
for kNN classification given that the second element is constant to all the images
because the number of circumference divisions is always the same. See figure 4.
As shown in section 3, this proposal combined with kNN outperforms the CPDH
original descriptor with EMD.

Fig. 4. CPDH36R constructed by multiplying the number of points of each bin by its
corresponding normalized radius

3 kNN Classifiers

Three different kNN classifiers were used. Original kNN, mean distance kNN in
which the average distance between the query and the samples is calculated and
the class is assigned taking in account this distance, and finally weighted kNN
in which we want to weigh the nearest neighbours taking in account its assigned
weight.

3.1 Mean Distance kNN

The main idea of using mean distance kNN is to assign the query sample to the
class whose mean distance to the query sample is smaller, instead of assign it
to the most represented class. In figure 5, we can see that although the most
represented class is the X class, four samples against three, the query sample
belongs to ’−’ class because the mean distance is smaller.

146 M.T. Garćıa-Ordás et al.

Fig. 5. kNN mean distance example taking k=7

3.2 Weighted kNN

In weighted kNN, a weight is assigned to each sample. This weight wi is the
difference between the farthest sample from the query and the proper distance
from the query sample. See equation 7

wi = |dmax − di| (7)

Each class is weighted adding the weight of each sample of the class. Finally, the
query sample belongs to the heavier class.

4 Experiments and Results

4.1 Datasets

Four datasets were used to test our descriptor. Kimia25 and Kimia99 datasets,
the original MPEG7 and a subset of MPEG7 dataset composed of 400 images
from MPEG7 called MPEG2. Kimia25 is composed of 6 classes. Each of them
contains four shapes except the “hand class” which is composed of 5 samples.
Kimia99 is composed of 9 classes, each one containing 11 shapes. Kimia dataset
with 25 and 99 images are shown in figure 6. MPEG7 contains 70 classes with 20
samples for each of them. MPEG2 is an MPEG7 subset composed for 20 of the
classes of MPEG7 dataset. Some examples of the shapes contained in MPEG7
and MPEG2 datasets are shown in figure 7.

Shape Based Image Retrieval Using a New Contour Points Descriptor 147

Fig. 6. Kimia dataset composed by 25 samples divided in 6 classes on the left and
Kimia dataset composed by 99 samples divided in 11 classes on the right

Fig. 7. Example of 4 classes with 20 samples of MPEG2 and MPEG7 datasets

4.2 Results

Our proposal was classified using kNN, kNN Mean and Weigthed kNN with
euclidean, intersect, hamming and cityblock distances and they were tested on 4
datasets: kimia25, kimia99, MPEG7 and MPEG2 datasets. Classification results
for each dataset using the original kNN with k=1 are shown in tables 1 and
2. Using Kimia25 is the only case in which the best result was achieved using
EMD because of the small number of samples, (see table 1) obtaining a 90%
of succes rate against our 84%. In table 1, we can see that results are better
testing the descriptors against kimia99 dataset than against kimia25 because of
the small number of samples and in most cases they are slightly better with our
proposal CPDH36R than with the original CPDH except when using Euclidean
distance. In table 2 we can see the efficiency of our retrieval system. Using
MPEG7 dataset, once again, our proposal CPDH36R outperforms the other one
with all the distances except with Hamming. Using MPEG2 dataset our method
outperforms the other one classifying with all the distances and achieving a
91.25% of success rate using cityblock distance. Although on simpler dataset
as Kimia25, the original CPDH with EMD offered better results, in the more

148 M.T. Garćıa-Ordás et al.

Table 1. Kimia25 and Kimia99 classification using CPDH original and CPDH36R
method with k=1

Kimia25 Kimia99

Classifier CPDH CPDH36R CPDH CPDH36R

kNN Euclidean 76% 72% 96.96% 91.91%
kNN Intersect 60% 80% 83.83% 93.93%
kNN Hamming 72% 76% 91.91% 94.94%
kNN Cityblock 68% 84% 91.91% 94.94%
EMD 90% - 86.41% -

Table 2. MPEG7 and MPEG2 classification using CPDH original and CPDH36R
method with k=1

MPEG7 MPEG2

Classifier CPDH CPDH36R CPDH CPDH36R

kNN Euclidean 64.85% 81.29% 78.25% 90.25%
kNN Intersect 50.36% 82.07% 67.50% 91.25%
kNN Hamming 66.71% 66.29% 85.00% 85.00%
kNN Cityblock 59.14% 82.14% 74.75% 91.25%
EMD - - 44.25% -

Fig. 8. Hit rate of the different kNN methods applied on the CPDH36R descriptor
using Kimia25 dataset (left) and Kimia99 dataset (right)

complex dataset, CPDH36R has obtained a significant improvement of the hit
rate against the original method with either EMD or kNN.

In figures 8 and 9 we can see the results with the other two classifiers, kNN
mean distance and weighted kNN for different values of k and Cityblock distance.
As we can see in all the figures, using original kNN, the retrieval hit rate is
decreasing for higher values of k. This problem is solved using kNNmean distance
or weighted kNN in which the hit rate variations is less than using the original
kNN. In figure 8, using Kimia25 dataset, we can see that the original kNN

Shape Based Image Retrieval Using a New Contour Points Descriptor 149

performance is really bad for higher values of k, obtaining more stable results
using kNN mean distance or weighted kNN. In the rest of the datasets, 8, 9, it
is shown that the most stable results are achieved using kNN mean distance.

Fig. 9. Hit rate of the different kNN methods applied on the CPDH36R descriptor
using MPEG2 (left) and MPEG7 (right) datasets

5 Conclusions

In this paper, a new method was proposed in order to retrieve image shapes.
The original method, CPDH descriptor, was classified using EMD distance, a
very slow and time consuming method. Our descriptor can be classified using
kNN with classical metrics such as Euclidean, Intersect, Hamming and Cityblock
distances obtaining results in a few seconds while with EMD and these same
datasets it takes days. The tests carried out using the original CPDH method us-
ing the classical metrics offered worse results than our proposal CHPD36R. Our
proposal was tested using 4 datasets: kimia25, kimia99, MPEG7 and MPEG20
obtaining really good results achieving the highest differences in the more chal-
lenging dataset, the MPEG7.

Acknowledgment. This work has been supported by grant DPI2012-36166
and via the pre-doctoral FPU fellowship program from the Spanish government.

References

1. Zakariya, S.M., Ali, R., Ahmad, N.: Combining visual features of an image at dif-
ferent precision value of unsupervised content based image retrieval. In: 2010 IEEE
International Conference on Computational Intelligence and Computing Research
(ICCIC), pp. 1–4 (2010)

2. Zhang, H., Chen, H., Yu, F.-X., Lu, Z.-M.: Color image retrieval system based on
shape and texture watermarks. In: 2012 Second International Conference on In-
strumentation, Measurement, Computer, Communication and Control (IMCCC),
pp. 573–576 (2012)

150 M.T. Garćıa-Ordás et al.

3. Ayyalasomayajula, P., Grassi, S., Farine, P.: Retrieval of occluded images using dct
phase and region merging. In: 2012 19th IEEE International Conference on Image
Processing (ICIP), pp. 2441–2444 (2012)

4. He, D., Gu, Z., Cercone, N.: Efficient image retrieval in dct domain by hypothesis
testing. In: 2009 16th IEEE International Conference on Image Processing (ICIP),
pp. 225–228 (2009)

5. Seyedin, S., Fauzi, M., Anuar, F.: 1-d dct shape feature for image retrieval. In:
2009 IEEE International Conference on Signal and Image Processing Applications
(ICSIPA), pp. 431–436 (2009)

6. Mei, Y., Androutsos, D.: Robust affine invariant shape image retrieval using the
ica zernike moment shape descriptor. In: 2009 16th IEEE International Conference
on Image Processing (ICIP), pp. 1065–1068 (2009)

7. Jian, M., Xu, L.: Trademark image retrieval using wavelet-based shape features.
In: International Symposium on Intelligent Information Technology Application
Workshops, IITAW 2008, pp. 496–500 (2008)

8. Khalid, S.: Robust shape matching using global feature space representation of
contours. In: 2012 International Conference on Computing, Networking and Com-
munications (ICNC), pp. 724–728 (2012)

9. Zheng, W.-M., Lu, Z.-M., Burkhardt, H.: Fast progressive image retrieval schemes
based on updating enhanced equal-average equal-variance k nearest neighbour
search in vector quantised feature database. In: 2007 6th International Conference
on Information, Communications Signal Processing, pp. 1–5 (2007)

10. Zhang, R., Guan, L.: Multimodal image retrieval via bayesian information fusion.
In: IEEE International Conference on Multimedia and Expo, ICME 2009, pp. 830–
833 (2009)

11. Zuo, W., Lu, W., Wang, K.Q., Zhang, H.: Diagnosis of cardiac arrhythmia using
kernel difference weighted knn classifier. In: Computers in Cardiology, pp. 253–256
(2008)

12. Gu, F., Liu, D., Wang, X.: Semi-supervised weighted distance metric learning for
knn classification. In: 2010 International Conference on Computer, Mechatronics,
Control and Electronic Engineering (CMCE), vol. 6, pp. 406–409 (2010)

13. Shu, X., Wu, X.-J.: A novel contour descriptor for 2d shape matching and its
application to image retrieval. Image and Vision Computing 29(4), 286–294 (2011)

14. McNeill, G., Vijayakumar, S.: Hierarchical procrustes matching for shape retrieval.
In: 2012 IEEE Conference on Computer Vision and Pattern Recognition, vol. 1,
pp. 885–894 (2006)

15. Belongie, S., Malik, J., Puzicha, J.: Shape matching and object recognition us-
ing shape contexts. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 24, 509–522 (2001)

Evaluation of LBP Variants Using Several

Metrics and kNN Classifiers

Oscar Garćıa-Olalla, Enrique Alegre, Maŕıa Teresa Garćıa-Ordás,
and Laura Fernández-Robles

University of León, León, Spain
{ogaro,enrique.alegre,mgaro,l.fernandez}@unileon.es

http://pitia.unileon.es/VARP

Abstract. In this paper, we demonstrate that the Adaptive Local Bi-
nary Pattern with oriented Standard deviation (ALBPS) method outper-
forms the original local binary pattern (LBP) as well as some of its most
recent variants: Adaptive Local Binary Pattern (ALBP), Complete Lo-
cal Binary Pattern (CLBP) and Local Binary Pattern Variance (LBPV).
All the descriptors have been tested using two different dataset, KTH-
TIPS 2a, a challenging multiclass dataset for material recognition and
a binary sperm dataset for vitality classification. Three variants of the
non parametric method of nearest neighbours combined with four metric
distances have been used in the retrieval step in order to draw a more de-
cisive conclusion. Best results were achieved when describing the images
with ALBPS in both datasets. In regard to the KTH-TIPS 2a, the best
performance is obtained using the weighted kNN with a 61.47% of hit
rate using ALBPS and Chi Square distance, outperforming the ALBP
in 1,07% and the original LBP in 6,76%. In relation to the binary sperm
dataset, the best result was obtained with ALBPS and a kNN classi-
fier (k=9), reaching a 72.66% of hit rate using the Chi Square metric,
outperforming the original LBP in 22,47% and the ALBP in 1,22%. In
the latter case, the weighted kNN did not improve the results achieved
using just kNN. Taking this results into account, we can determine that
ALBPS has more discriminant power for image retrieval than the rest of
the tested LBP variants in different image contexts.

Keywords: ALBPS, LBP, kNN, weighted kNN, image retrieval.

1 Introduction

Texture analysis and retrieval is a challenging open problem in the computer
vision field. For this reason, nowadays many different methods and algorithms are
being proposed in order to deal with it. It is considered an important task to solve
because multiple fields require texture analysis to classify images. For example,
there are a lot of tasks that can be automatized using texture analysis in fabric
environments. Behravan et al [1], proposed a hybrid scheme for on-line detection
and classification of textural fabric defects. Paniagua-Paniagua et al developed a
method to outperform the quality detection in the cork industry [2]. Another field

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 151–162, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://pitia.unileon.es/VARP

152 O. Garćıa-Olalla et al.

of application is the sperm assessment such as in porcine industry. Few works
deal with making this process automatic. In general, computer-based systems
designed for semen analysis tasks should reliably segment the sperm heads [3],
extract the features that better describe them and classify those patterns in
order to estimate how many damaged spermatozoa are present in the sample. It
is possible to find a number of works using texture or shape analysis to classify
the spermatozoon heads as intact or damaged. Those approaches evaluate the
acrosome integrity in different ways, sometimes using complex descriptors such
as the Curvelet transform [4] and, other times, evaluating a broad range of
texture and based-moments descriptors [5]. However there are few works that
try to classify the vitality of boar sperm. In recent works, Alegre et al. [6,7]
obtained a hit rate of 76.80% using texture descriptors on images captured at
100×.

Retrieval step is as important as the description of the image. One of the
most widely used classifiers is k Nearest Neighbours (kNN). There are a lot
of works based on improvements of the classic kNN. In 2011, a multi-label text
categorization based on fuzzy similarity and k Nearest Neighbors was carried out
by Jung et al [8]. Moreover, metric distances are crucial components in matching
processes. Several distances have been used in the past years in order to get the
higher performance of the classifier. Weinberger et al. [9] proposed Mahanalobis
learned distance to simulate the Support vector machine behaviour using nearest
neighbours.

Recently, a lot of Local Binary Pattern (LBP) [10] variants have been pro-
posed in order to make this method adaptive as shown in the next relevant
approaches. In [11], Li et al introduced a new LBP method invariant to scale
and rotation using adaptive textons. Garćıa-Olalla et al [12] proposed a new LBP
method combining Adaptive Local Binary Pattern with the standard deviation
of the image along different orientations (ALBPS), achieving a 85.63% of hit
rate classifying the vitality of boar sperm. However, this method has just been
evaluated with Support Vector machines for a binary classification task, leaving
a gap about its performance in other kind of scenarios. Furthermore, no more
recent LBP variants were tested to describe the spermatozoa heads in order to
compare their results.

In this paper we demonstrate the robustness of ALBPS evaluating its per-
formance using two texture datasets with different goals against LBP and some
state-of-the-art LBP variants (ALBP, CLBP, LBPV). The first dataset, KTH-
tips 2a, is composed of images belonging to 11 classes for materials recognition
whereas the sperm dataset used in [12], is focused on a concrete binary classifi-
cation problem where classes are very close to each other. The good behaviour of
ALBPS using the parametric classifier SVM was showed in [12]. On the contrary,
in this work several modifications of the most acknowledged non parametric clas-
sifier, Nearest Neighbours, have been tested with several distance metrics.

The rest of the paper is organised as follows. In section 2, the method used and
the retrieval system is described. Experiments and datasets are show in section
3 and finally, in section 4, conclusions are discussed.

Evaluation of LBP Variants Using Several Metrics and kNN Classifiers 153

2 Methodology

2.1 Texture Description

Local Binary Pattern. Local Binary Pattern (LBP) [13] is an algorithm used
to describe the texture of grayscale images extracting their local spatial struc-
ture. Given a pixel, a pattern code is computed by comparing this pixel with
the value of its neighbours:

LBPP,R =

P−1∑
p=0

s(gp − gc)2
p , s(x) =

{
1 if x ≥ 0
0 if x < 0

(1)

where gc is the value of the central pixel, gp is the value of its neighbour p, P
are the number of neighbours and R is the radius of the neighbourhood.

After LBP is obtained for each pixel, in this work, a histogram with just
P + 2 bins is built in order to describe the whole image instead of the typical
256 element histogram. This is due to the use of the uniform LBP which allows
just P + 2 values for the histogram.(see equation 2)

LBP riu2
P,R =

⎧⎪⎨⎪⎩
P−1∑
p=0

s(gp − gc)2
p if U(LBPP,R) ≤ 2

P + 1 otherwise

(2)

where U(LBPP,R) is defined as the number of spatial transitions in the pattern.

Adaptive Local Binary Pattern. Guo et al. [14] proposed an adaptive de-
scriptor based on Local Binary Pattern motivated by the lack of information
about the orientation in the classical Local Binary Pattern algorithm. The
method that they presented takes into account the mean and the standard devia-
tion along different orientations over all the pixels in order to make the matching
more robust against local spatial structure changes. To minimize the variations
of the mean and standard deviation of the directional differences, Guo et al.
proposed a scheme to minimize the directional difference |gc − wp ∗ gp| adding
to equation 1 an extra parameter w.

The objective function is defined as follows:

wp = argw min

⎧⎨⎩
N∑
i=1

M∑
j=1

|gc(i, j)− w · gp(i, j)|2
⎫⎬⎭ (3)

where wp is the weight element used to minimize the directional difference and
N and M are the number of rows and columns in the image respectively. Each
weight wp is estimated along one orientation 2pπ/P for the whole image.

Therefore, adding this extra parameter w, the ALBP method is defined as:

LBPP,R =

P−1∑
p=0

s(gp − wp · gc)2p , s(x) =

{
1 if x ≥ 0
0 if x < 0

(4)

154 O. Garćıa-Olalla et al.

Adaptive Local Binary Pattern with Standard deviation (ALBPS).
The main disadvantage of the previous proposal is the need of including statisti-
cal information in the matching step. Adding this information to the descriptor
instead of to the classifier allows us to combine the ALBP approach with all
kind of classifiers. In [12], Garćıa-Olalla et al proposed a combination of ALBP
with standard deviation features called ALBPS. The standard deviation vector
σ is obtained using the equation 5.

σp =

√√√√ N∑
i=1

M∑
j=1

(gc(i, j)− gp(i, j)− μp)
2/(M ·N) (5)

where N and M are the numbers of rows and columns respectively, gc(i, j) is the
center pixel at position (i, j), gp(i, j) is the neighbourhood of gc(i, j) lying along
orientation 2pπ/P with radius R and μp the oriented mean obtained by:

μp =

N∑
i=1

M∑
j=1

|gc(i, j)− gp(i, j)|/(M ·N) (6)

ALBPS descriptor is formed by concatenating the P +2 bins histogram values
of the uniform LBP approach together with the P-dimensional standard devi-
ation vector, yielding a descriptor of 2P + 2 features being P the size of the
neighbourhood.

Local Binary Pattern Variance. LBPV [15], is a proposal by Guo et al which
consists of a combination of LBP and a contrast distribution method. First, the
uniform LBP is calculated on the whole image. Then, the variance of the image
is used as an adaptive weight to adjust the contribution of the LBP code in the
histogram calculation. The LBPV histogram is computed as:

LBPVP,R(k) =

N∑
i=1

M∑
j=1

w(LBPP,R(i, j), k), k ∈ [0,K] (7)

where k is each bin of the histogram, K the maximum value of LBP and w is
defined as:

w(LBPP,R(i, j), k) =

{
V ARP,R(i, j), LBPP,R(i, j) = k
0 otherwise

(8)

where V ARP,R is the variance of the neighbourhood.

V ARP,R =
1

P

P−1∑
p=0

(gp − u)2 (9)

where u is the mean over the different neighbours: u = 1/P
P−1∑
p=0

gp.

Evaluation of LBP Variants Using Several Metrics and kNN Classifiers 155

Completed Local Binary Pattern. In [16], Guo et al proposed another
method called CLBP to generalize and complete the classical LBP. In that
method, a local region is represented by its center pixel and a local difference
sign - magnitude transform called LDSMT. LDSMT decomposes the image lo-
cal structure into two complementary components: the difference signs and the
difference magnitudes. In order to code both components, they proposed two
operators, CLBP-Sign (CLBP S) and CLBP-Magnitude (CLBP M). Since all
of them are in binary format, they can be combined to form the final CLBP
histogram. CLBP S is equal to the classical LBP histogram defined in 1, and
CLBP M is defined in the equation 10.

CLBP MP,R =

P−1∑
p=0

t(mp, c)2
p , t(x, c) =

{
1 if x ≥ c
0 if x < c

(10)

where c is a threshold determined adaptively.
Finally, CLBP is obtained either concatenating or merging both operators.

In our case, we have chosen the concatenation due to its higher similarity with
ALBPS method.

2.2 Nearest Neighbours Variants

Appart from the standard kNN, two variants of the original kNN have been used
in this work, mean distance kNN and weighted kNN.

Mean Distance kNN. The main idea of this metric is to assign the query
sample to the class whose k nearest neighbours are closer to it. To do that, the
k nearest neighbours are selected obtaining the mean distance of each classes.
Finally, we assign the query sample to the class of the set with lower mean
distance.

Weighted kNN. In weighted kNN, each sample has a weight wp depending on
the query selected which is the difference between the farthest sample from the
query and the proper distance from the query sample. See equation 11.

wp = |dmax − dp| (11)

Each class is weighted adding the weight of each sample of the class. Finally, the
query sample belongs to the heaviest class.

3 Experiments

3.1 Datasets

ALBPS has been evaluated using two different datasets. A binary and gray scale
sperm head dataset used to classify them as dead or alive and the multi class
KTH-tips 2a texture dataset for material recognition [17].

156 O. Garćıa-Olalla et al.

KTH-tips 2a Dataset. This dataset is composed by several images for ma-
terial categorization [17]. It contains 11 materials (lettuce, brown bread, white
bread, aluminium, corduroy, cork, cotton, cracker, linen, wood and wool) with
a number of images for four different samples from each material. All the sam-
ples were taken at 3 poses, 4 different illumination conditions and 9 scales. All
this variations make a very challenging dataset. In figure 1(a), we can see some
examples of some textures under different conditions.

Boar Spermatozoa Dataset. This set of images has been captured in CEN-
TROTEC, an Artificial Insemination Center that is a University of Leon spin-
off. The sperm was obtained from boars of three different races: Piyorker, Large
White and Landrace. The dataset contains 351 dead and 450 alive spermatozoa
heads in gray scale.

A 3× 3 texture range filter had been applied on the whole dataset in order to
reduce the non-informative areas and therefore facilitate the subsequent dataset
description and classification. Figure 1(b) shows examples of dead and alive
spermatozoon heads.

Fig. 1. (a) Examples of the KTH-tips 2a dataset. In the first row, different images of
the aluminium texture. In the second, corduroy images and in the third, lettuce leaves
under different scales and illumination. (b) Sperm dataset. The first row shows dead
spermatozoon heads and the second row alive ones.

3.2 Experimental Setup

KTH-Tips 2a Dataset. The experimental setup used for the KTH-tips 2a
dataset is the standard protocol developed by Caputo et al and used in several
works [17,18]. Basically, it takes one of the samples of each material for test and
the rest for training, which conforms a more challenging setup than using random
images for test and training. In this work, we carried out four classifications
using this method to increase its robustness, one classification for each sample

Evaluation of LBP Variants Using Several Metrics and kNN Classifiers 157

in the test class. The final hit rate is obtained as the mean of the hit rates in
each iteration. We show the comparison of the three k-NN approaches shown
previously (standard kNN, mean distance kNN and Weighted kNN).

Boar Spermatozoa Dataset. Again the three k-NN approaches have been
used to classify the spermatozoa images as dead or alive. We have used the one
versus all paradigm which consists of classifying each image taking into account
the rest of the images in the dataset. This process has been repeated using several
values of neighbours (1, 3, 5, 7, 9 and 11).

3.3 Multiclass Dataset Results

NN Variants Evaluation. Three different classifiers based on the Nearest
Neighbours method have been implemented in order to evaluate the different
LBPs descriptors proposed in this paper. Four distances have been selected due
to their good general behaviour: euclidean, intersect distance, Chi square and
Cityblock. In the figure 2 we can observe the mean performance along different
values of k of all the classifiers for each pair of LBP descriptor and distance. As
we can see, the best results are obtained using the Weighted kNN for all the test
except for the LBP-Chi square in which standard kNN performs better.

LBP Variants Performance with Weighted NN. Once we have deter-
mined the best classifier (Weighted KNN), a comparison between the proposed
ALBPS and the rest of LBP methods evaluated was carried out. In figure 3, we
can see the mean performance along different k values of the descriptors using
different distances and the weighted kNN classifier. It can be appreciated that
the proposed ALBPS outperforms all the others methods with all the distances
except in the euclidean experiment where ALBPS and ALBP get the same re-
sults. The best performance was obtained using Chi Square and ALBPS with a
60.23% of hit rate.

Best k Neighbour Value. As it has been proven, the best result was achieved
using Chi Square and ALBPS. However, this result is the mean value along
different numbers of neighbours. In figure 4, we can see the performance of
ALBPS for all the k values and all the distances evaluated. The results show
that the best distance remains the Chi square with a hit rate of 61.47% for k=1.

In table 1, we can see the results achieved using the weighted kNN method
for all the distances highlighting the best k for each method.

3.4 Binary Dataset Results

NN Variants Evaluation. The same Nearest Neighbours methods have been
also evaluated in order to classify the boar sperm heads as dead or alive. The
best descriptor of the multi class experiment (ALBP) was compared with the

158 O. Garćıa-Olalla et al.

Fig. 2. Results achieved on the KTH-tips 2a dataset using different classifiers. The hit
rate value corresponds with the mean hit rate along different values of k (1, 3, 5, 7, 9,
11) for all the pairs Descriptor-Distance.

Fig. 3. Results achieved on the KTH-tips 2a dataset using different descriptors and the
weighted kNN classifier. The hit rate value corresponds with the mean hit rate along
different values of k (1, 3, 5, 7, 9, 11) for each distance.

Fig. 4. Results achieved on the KTH-tips 2a dataset using weighted kNN and different
values of k and distances

Evaluation of LBP Variants Using Several Metrics and kNN Classifiers 159

Table 1. Hit rate in % using weighted kNN with several distances on the KTH tips
2a dataset

Classifier method ALBPS ALBP LBP CLBP LBPV

kNN weighted

Euclidean 58.00 58.00 56.90 55.18 52.97
Intersect 60.50 60.06 56.88 58.31 51.47
ChiSquare 61.47 60.82 57.58 58.08 54.78
Cityblock 60.29 59.85 56.57 58.12 53.79

original LBP method and our ALBPS approach. In figure 5, we can observe the
performance of different configurations of ALBP and our ALBPS proposal using
three distances: Euclidean, Chisquare and Cityblock. In this experiment we have
excluded the Intersect distance due to its poor performance. As in the previous
section, the results show the mean performance along different values of k. As
we can see, in the binary classification problem, the weighted classifier does not
improve the original kNN whereas the kNN with mean distances obtains lower
performance in all cases. As the simple kNN has lower computational cost than
the weighted kNN, we selected the former one as the best classifier.

LBP Variants Performance with Weighted NN. The proposed ALBPS
method has been compared with the ALBPmethod and the original LBP in order
to determine its performance. In figure 6, we can see the results obtained by these
descriptors using kNN and different distance metrics. ALBPS outperforms the
others in all the experiments, achieving an improvement of 1.05% with respect
to ALBP and a 18,80% respect the original LBP method. This figure shows
that the Chi Square distance, as well as in the multi class dataset, proves to
outperform the rest.

Best k Neighbour Value. In order to determine the best configuration, In
figure 7 we show the performance of ALBPS for all the k values and all the
distances evaluated. Results show that the best distance remains the Chi square
with a hit rate of 72,66% for k=9.

In table 2, the results obtained using kNN with all the distances choosing the
best k for each descriptor are numerically presented.

Table 2. Hit rate in % using kNN on the sperm dataset

Classifier method ALBPS ALBP LBP

kNN
Euclidean 71.03 71.41 43.82
ChiSquare 72.66 71.79 59.30
Cityblock 72.16 71.54 43.80

160 O. Garćıa-Olalla et al.

Fig. 5. Results achieved on the boar sperm dataset using different descriptors and the
simple kNN classifier. The hit rate value corresponds with the mean hit rate along
different values of k (1, 3, 5, 7, 9, 11) using different distances.

Fig. 6. Results achieved on the boar sperm dataset using ALBP, ALBPS and the
original LBP. The hit rate value corresponds with the mean hit rate along different
values of k (1, 3, 5, 7, 9, 11) for all the pairs Descriptor-Distance.

Fig. 7. Results achieved on the boar sperm dataset using kNN with different k values
and distances

Evaluation of LBP Variants Using Several Metrics and kNN Classifiers 161

4 Conclusions

In this paper, we have demonstrated that the method ALBPS[12] outperforms
recent LBP descriptors variants, such as ALBP, CLBP and LBPV as well as the
classical LBP method for several kNN-based methods with multiple distances on
two datasets: the multi class KTH-tips 2a dataset for material recognition and
a binary dataset for vitality sperm classification. With regard to the multi class
dataset, the results show that the best descriptor was ALBPS using a weighted
kNN and the ChiSquare distance achieving a 61.47% of hit rate. Moreover, for the
binary dataset, ALBPS proved to outperform the rest of the methods reaching
a hit rate of 72.66%. However in the latter dataset, the weighted kNN does
not show any improvement with respect to the standard kNN, being the simple
kNN method with k=9 and ChiSquare distance the best classifier. Taking into
account all the results obtained, we can conclude that adding standard deviation
information to the feature descriptor, as proposed with ALBPS, the accuracy was
incremented on both datasets with all combinations of evaluated non parametric
classifiers and metrics. These results, together with the results showed in Garćıa-
Olalla et al work [12] using SVM, give a positive insight on the use of ALBPS
in different scenarios.

Acknowledgments. This work has been supported by grants DPI2009-08424
and DPI2012-36166 and via the pre-doctoral FPU fellowship program from the
Spanish government.

References

1. Behravan, M., Boostani, R., Tajeripour, F., Azimifar, Z.: A hybrid scheme for on-
line detection and classification of textural fabric defects. In: Second International
Conference on Machine Vision, ICMV 2009, pp. 118–122 (December 2009)

2. Paniagua-Paniagua, B., Vega-Rodriguez, M.A., Bustos-Garcia, P., Gomez-Pulido,
J.A., Sanchez-Perez, J.M.: Advanced texture analysis in cork quality detection.
In: 2007 5th IEEE International Conference on Industrial Informatics, vol. 1, pp.
311–315 (June 2007)

3. Gonzalez-Castro, V., Alegre, E., Morala-Arguello, P., Suarez, S.: A combined and
intelligent new segmentation method for boar semen based on thresholding and
watershed transform. International Journal of Imaging 2, 70–80 (2009)

4. González-Castro, V., Alegre, E., Garćıa-Olalla, O., Garćıa-Ordás, D., Garćıa-
Ordás, M.T., Fernández-Robles, L.: Curvelet-based texture description to classify
intact and damaged boar spermatozoa (Aveiro), pp. 448–455 (2012)

5. Alegre, E., González-Castro, V., Aláiz-Rodŕıguez, R., Garćıa-Ordás, M.T.: Texture
and moments-based classification of the acrosome integrity of boar spermatozoa
images. In: Computer Methods and Programs in Biomedicine (2012)

6. Alegre, E., Garćıa-Olalla, O., González-Castro, V., Joshi, S.: Boar spermatozoa
classification using longitudinal and transversal profiles (LTP) descriptor in digi-
tal images. In: Aggarwal, J.K., Barneva, R.P., Brimkov, V.E., Koroutchev, K.N.,
Korutcheva, E.R. (eds.) IWCIA 2011. LNCS, vol. 6636, pp. 410–419. Springer,
Heidelberg (2011)

162 O. Garćıa-Olalla et al.

7. Alegre, E., Garćıa-Ordás, M.T., González-Castro, V., Karthikeyan, S.: Vitality as-
sessment of boar sperm using N concentric squares resized (NCSR) texture descrip-
tor in digital images. In: Vitrià, J., Sanches, J.M., Hernández, M. (eds.) IbPRIA
2011. LNCS, vol. 6669, pp. 540–547. Springer, Heidelberg (2011)

8. Jiang, J.-Y., Tsai, S.-C., Lee, S.-J.: Fsknn: Multi-label text categorization based on
fuzzy similarity and k nearest neighbors. Expert Systems with Applications 39(3),
2813–2821 (2012)

9. Weinberger, K.Q., Blitzer, J., Saul, L.K.: Distance metric learning for large margin
nearest neighbor classification. In: NIPS. MIT Press (2006)

10. Ojala, T., Pietikainen, M., Harwood, D.: Performance evaluation of texture mea-
sures with classification based on kullback discrimination of distributions. In: Pro-
ceedings of the 12th IAPR International Conference on Pattern Recognition, ICPR
1994 (1994)

11. Li, Z., Liu, G., Yang, Y., You, J.: Scale- and rotation-invariant local binary pattern
using scale-adaptive texton and subuniform-based circular shift. IEEE Transactions
on Image Processing 21, 2130–2140 (2012)

12. Garćıa-Olalla, O., Alegre, E., Fernández-Robles, L., Garćıa-Ordás, M.T.: Vitality
assessment of boar sperm using an adaptive LBP based on oriented deviation.
In: Park, J.-I., Kim, J. (eds.) ACCV Workshops 2012, Part I. LNCS, vol. 7728,
pp. 61–72. Springer, Heidelberg (2013)

13. Ojala, T., Pietikainen, M., Harwood, D.: A comparative study of texture measures
with classification based on featured distributions. Pattern Recognition 29(1), 51–
59 (1996)

14. Guo, Z., Zhang, L., Zhang, D., Zhang, S.: Rotation invariant texture classification
using adaptive lbp with directional statistical features. In: 2010 17th IEEE Inter-
national Conference on Image Processing (ICIP), pp. 285–288 (September 2010)

15. Guo, Z., Zhang, L., Zhang, D.: Rotation invariant texture classification using lbp
variance (lbpv) with global matching. Pattern Recognition 43(3), 706–719 (2010)

16. Guo, Z., Zhang, L., Zhang, D.: A completed modeling of local binary pattern
operator for texture classification. IEEE Transactions on Image Processing 19(6),
1657–1663 (2010)

17. Caputo, B., Hayman, E., Mallikarjuna, P.: Class-specific material categorisation.
In: ICCV (2005)

18. Chen, J., Shan, S., He, C., Zhao, G., Pietikainen, M., Chen, X., Gao, W.: Wld: A
robust local image descriptor. PAMI (2010)

Evaluation of Jensen-Shannon Distance

over Sparse Data

Richard Connor1, Franco Alberto Cardillo2, Robert Moss1, and Fausto Rabitti2

1 Department of Computer and Information Sciences,
University of Strathclyde, Glasgow, G1 1XH, United Kingdom

2 ISTI (Information Science and Technology Institute)
National Research Council of Italy, Via Moruzzi 1, 56124 Pisa, Italy

{richard.connor,robert.moss}@strath.ac.uk,
{franco.alberto.cardillo,fausto.rabitti}@isti.cnr.it

Abstract. Jensen-Shannon divergence is a symmetrised, smoothed ver-
sion of Küllback-Leibler. It has been shown to be the square of a proper
distance metric, and has other properties which make it an excellent
choice for many high-dimensional spaces in R

∗.
The metric as defined is however expensive to evaluate. In sparse

spaces over many dimensions the Intrinsic Dimensionality of the metric
space is typically very high, making similarity-based indexing ineffectual.
Exhaustive searching over large data collections may be infeasible.

Using a property that allows the distance to be evaluated from only
those dimensions which are non-zero in both arguments, and through
the identification of a threshold function, we show that the cost of the
function can be dramatically reduced.

1 Introduction

Jensen-Shannon divergence is the name given in [8] to a divergence function
probably first identified in [10]. It is a simple derivation from Küllback-Leibler
[7] yet is positive, symmetric, bounded, and well-defined in the presence of zero
values.

Two authors [4,9] have independently established that one form of Jensen-
Shannon divergence is the square of a proper metric. Since then the metric
has attracted some more interest in both statistics and information theory, and
deeper analysis e.g. [5] shows that it has some properties that, in short, should
lend it to being an excellent semantic distance function in many contexts.

The fact that a form exists which is a proper metric immediately leads to the
possibility of its use within metric indexing techniques. However many probabilis-
tic spaces are high-dimensional and sparse, and typical Intrinsic Dimensionality
[1] is very high: metric indexing techniques are unlikely to be effective.

In this paper we show a way of significantly reducing the cost of similarity
search using Jensen-Shannon, showing how an equivalent metric can be derived
which requires access only to the intersecting dimensions of the objects being
compared. This allows a much more efficient evaluation, and in particular an

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 163–168, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

164 R. Connor et al.

evaluation which can be performed over inverted indices, thus also subject to
parallel evaluation.

2 Definitions and Algebraic Derivations

Jensen-Shannon divergence is defined in terms of Küllback-Leibler divergence:

JS(v, w) = 1
2KL(v,m) + 1

2KL(w,m)

where m is the vector mean of v and w. If logs are taken to base two, then the
outcome is bounded in [0,1].

Some simple algebra gives some other forms of interest for the same function:

JS(v, w) = H(m)− 1
2H(v)− 1

2H(w) (1)

where H is Shannon’s entropy function. This can be evaluated as:

JS(v, w) = 1
2

∑
i

(
vi log(vi) + wi log(wi)− (vi + wi) log

1
2 (vi + wi)

)
(2)

From this also can be derived:

JS(v, w) = 1− 1
2

∑
i

F(vi, wi) (3)

for a kernel function F defined by

F(x, y) = h(x) + h(y)− h(x+ y)

where h(x) = −x log2(x).
From this form it may be observed that the evaluation of JS can be achieved

with reference only to those dimensions where vi and wi are both non-zero. A
similar form to Equation 3 was given in [3] where the observation was made that
this could give an efficient evaluation, but was not quantified.

2.1 Threshold Calculation

If the purpose of the distance calculation is as a part of a threshold search, the
threshold requirement (using the proper metric form) is:√

1− 1

2

∑
i

F(vi, wi) < t

for threshold t. The function F can be seen as a similarity accumulator, reaching
the value of 2 for perfect similarity, and the term 2t2 can be viewed as the max-
imum shortfall which may occur in order for the threshold t not to be exceeded.

A cost-saving strategy may be used based on this observation. At any point
of the iterative calculation, if it can be determined that it is impossible for the

Jensen-Shannon: Evaluation over Sparse Data 165

value of
∑

iF(vi, wi) to reach the threshold of 2− 2t2, then the calculation may
be abandoned.

If stage k of the calculation is considered:∑
i

F(vi, wi) =
∑

i=1..k

F(vi, wi) +
∑

i=k+1..n

F(vi, wi)

the value of the left hand term is known, and an upper bound for the right-hand
term can be found using the Jensen inequality, as F is a convex function:

∑
i=j..k

F(vi, wi) ≤ F

⎛⎝∑
i=j..k

vi,
∑
i=j..k

wi

⎞⎠ (4)

where the value
∑

i=k+1..n vi is simply the complement of
∑

i=1..k vi. Therefore,
at any stage k of the calculation, the following inequality can be tested:∑

i=1..k

(F(vi, wi)) + F
(
1−

∑
i=1..k

vi, 1−
∑

i=1..k

wi

)
< 2− 2t2

and, if the outcome is true, the final distance calculation will be greater than t.

3 Evaluation

3.1 Definitions

For each test sparse vectors and inverted indices were implemented in a straight-
forward manner, such that no zero values are stored. Based on the above ob-
servations, five different versions of the metric over sparse vector spaces were
tested1:

Definition 1. An algorithm based on Equation 2, accessing all dimensions of
the sparse vectors being compared.

Definition 2. An algorithm based on Equation 3. The algorithm iterates through
all nodes of each argument vector, but no calculation is performed if the di-
mension is not present in both vectors.

Definition 3. The same algorithm as Defn. 2, but at each stage the current
accumulator value is checked against a calculated threshold derived from
Equation 4, and the calculation is abandoned when possible.

Definition 4. The accumulation of values is performed over inverted index data
structures. The calculation proceeds one dimension at a time, with a separate
accumulator being maintained for each object in the set

Definition 5. Again over the inverted index structures, this time maintaing a
threshold based on Equation 4; if the accumulator for any object in the set
drops below the required threshold, this is set to -1 and no further calcula-
tions are performed over other dimensions of that vector.

The thresholds in Definitions 3 and 5 cause each test to return 10−5 of the data.
1 All implementations are in Java; the source code is available from the authors.

166 R. Connor et al.

3.2 Framework

For each data set tested, 105 separate objects were considered and each one
measured against the other members of the set to perform 1010 calculations.
All code was implemented in Java and executed on a 1.8 GHz Intel Core i7
processor with 4GB of memory; all nonessential processes and network access
were disabled. All data structures fitted within the Java heap. Each test was
repeated until the standard error of the mean time measured was less than 1%,
with a garbage collection being called between each iteration.

Fig. 1. Cost per calculation using the different implementations

3.3 Generated Spaces

To test the mechanisms over sparse Cartesian spaces a number of generated
spaces were used. For each of these, the generator was set to populate a mean
of 50 dimensions within all of those available, with the maximum number of
dimensions being set between 50 (i.e. a dense space) and 2000.

3.4 Real Spaces

We used the following data sets: colors, taken from the colors.ascii file of the
SISAP data collection; english, taken from the English.dic file of the SISAP
collection, from which vectors are generated by the probabilistic technique given
in [2]; occs, a file of occupations taken from census data using the same generation
technique; and MF-eh, MF-ht taken from the MIR-flickr collection [6]. The key
characteristics of these sets is given in Table 1.

Results. The results of applying the five techniques to the different data sets
are given in Table 2. Definitions 2 to 5 over the generated data are repeated in
the graph shown in Figure 1. As well as giving the costs for the five definitions,
the cost of Manhattan distance over the sparse representations is also shown.

Jensen-Shannon: Evaluation over Sparse Data 167

The results certainly vindicate the techniques described; it is notable that for
every truly sparse data set, Jensen-Shannon evaluated by Definition 5 outper-
forms Manhattan distance, clearly because less data is being moved though the
processor. It is equally interesting to note that, even for non-sparse data, the
use of inverted indices with a threshold cutoff performs an order of magnitude
better than doing per-object comparisons. While the threshold cutoff is highly
effective for some data sets, it is much less so for others for reasons we do not
yet fully understand.

Table 1. Data set characteristics

Data set

Implementation colors english occs MF-eh MF-ht

Total Dimensions 78 483 865 150 43
Mean non-zero dimensions 40.1 16.0 38.3 142.9 43.0
IDIM 5.79 87.6 74.7 5.57 2.37

Table 2. Time (μs) per distance calculation

Generated Sets Real data sets

Implementation 50 125 250 500 1000 2000 colors english occs MF-eh MF-ht

Defn. 1 3.926 5.325 5.641 6.003 5.952 6.099 3.556 1.838 4.229 11.638 3.391
Defn. 2 3.775 1.995 1.276 1.061 0.772 0.692 2.416 0.410 1.180 10.558 3.335
Defn. 3 2.711 1.404 1.307 1.232 1.162 1.195 1.396 1.139 1.157 2.158 1.934
Manhattan 0.222 0.675 0.652 0.655 0.651 0.649 0.256 0.206 0.429 0.646 0.197
Defn. 4 2.622 1.109 0.550 0.286 0.159 0.103 1.631 0.185 0.603 7.420 2.275
Defn. 5 1.739 0.422 0.253 0.208 0.178 0.140 0.205 0.152 0.199 1.127 0.260

4 Conclusions and Further Work

In this paper we have shown how two algebraic deductions from the Jensen-
Shannon distance can be used to give a very significant cost saving in its evalua-
tion. The inverted index implementation is also perfectly suited to parallelisation,
and in particular can use parallel threads on a graphics accelerator rather than
specialist hardware. In combination, we believe this metric is made much more
accessible.

We have not yet fully investigated the threshold cutoff. In particular, the
results shown here evaluate the threshold at every stage of the algorithms, which
applies a significant cost for little benefit at the early stages. Different collections
behave in different ways, but it should be easily possible to determine a better
strategy when the calculation is made only when there is a significant chance of
aborting the calculation.

168 R. Connor et al.

Acknowledgements. The authors would like to acknowledge funding from the
UK Research Councils for the related project EP/G012407/1. Richard Connor
was supported by the National Research Council of Italy (CNR) for a Short-
term Mobility Fellowship (STM), which funded a stay at ISTI-CNR in Pisa
where much of this work was done.

References

1. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

2. Connor, R.C.H., Simeoni, F., Iakovos, M., Moss, R.: Towards a universal infor-
mation distance for structured data. In: Ferro, A. (ed.) SISAP, pp. 69–77. ACM
(2011)

3. Dagan, I., Lee, L., Pereira, F.C.N.: Similarity-based models of word cooccurrence
probabilities. Mach. Learn. 34(1-3), 43–69 (1999)

4. Endres, D.M., Schindelin, J.E.: A new metric for probability distributions. IEEE
Transactions on Information Theory 49(7), 1858–1860 (2003)

5. Fuglede, B., Topsoe, F.: Jensen-shannon divergence and hilbert space embedding.
In: Proceedings of International Symposium on Information Theory, ISIT 2004,
p. 31 (2004)

6. Huiskes, M.J., Lew, M.S.: The mir flickr retrieval evaluation. In: MIR 2008: Pro-
ceedings of the 2008 ACM International Conference on Multimedia Information
Retrieval. ACM, New York (2008)

7. Küllback, S., Leibler, R.A.: On information and sufficiency. Ann. Math.
Statist. 22(1), 79–86 (1951)

8. Lin, J.: Divergence measures based on the shannon entropy. IEEE Transactions on
Information Theory 37(1), 145–151 (1991)

9. Österreicher, F., Vajda, I.: A new class of metric divergences on probability spaces
and and its statistical applications. Ann. Inst. Statist. Math. 55, 639–653 (2003)

10. Radhakrishna Rao, C.: Diversity: Its measurement, decomposition, apportionment
and analysis. Sankhyā: The Indian Journal of Statistics, Series A (1961-2002) 44(1),
1–22 (1982)

A Multi-way Divergence Metric

for Vector Spaces

Robert Moss and Richard Connor

Department of Computer and Information Sciences,
University of Strathclyde, Glasgow, G1 1XH, United Kingdom

{robert.moss,richard.connor}@strath.ac.uk

Abstract. The majority of work in similarity search focuses on the ef-
ficiency of threshold and nearest-neighbour queries. Similarity join has
been less well studied, although efficient indexing algorithms have been
shown. The multi-way similarity join, extending similarity join to multi-
ple spaces, has received relatively little treatment.

Here we present a novel metric designed to assess some concept of a
mutual similarity over multiple vectors, thus extending pairwise distance
to a more general notion taken over a set of values. In outline, when
considering a set of values X, our function gives a single numeric outcome
D(X) rather than calculating some compound function over all of d(x, y)
where x, y are elements of X.

D(X) is strongly correlated with various compound functions, but
costs only a little more than a single distance to evaluate. It is derived
from an information-theoretic distance metric; it correlates strongly with
this metric, and also with other metrics, in high-dimensional spaces. Al-
though we are at an early stage in its investigation, we believe it could
potentially be used to help construct more efficient indexes, or to con-
struct indexes more efficiently.

The contribution of this short paper is simply to identify the function,
to show that it has useful semantic properties, and to show also that it
is surprisingly cheap to evaluate. We expect uses of the function in the
domain of similarity search to follow.

Keywords: distance metric, multi-way divergence.

1 Introduction

Much of the research on similarity search focuses on the similarity (or distance)
between two vectors. For many situations, however, ascertaining the mutual
similarity of a set of vectors would be useful. Applications could be, for example,
similarity joins, clustering, cluster analysis, and potentially many more that are
dependent upon these techniques.

The calculation of density, or multi-way divergence as the analogue to dis-
tance, has been rarely used and is typically calculated through some compound
function over the set of pair-wise distances within the set of vectors: for example,
the mean intra-set distance or the mean distance from each vector to a centroid.

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 169–174, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

170 R. Moss and R. Connor

In this paper, we derive a function to calculate the divergence of a set of
vectors that is based on an existing distance function. This new metric, which
is grounded in information theory, avoids the problem of repeated calls to the
distance metric through a direct, calculable notion of multi-way divergence with-
out relying on approximation. It reuses the notion of complexity offered in the
definition of the original distance metric and reverts to this definition when the
size of the set is two. It is bounded, giving a maximum value when there is no
commonality, allowing absolute comparisons to be made. And finally, it is only
a little more expensive than a single distance to evaluate.

We show that multi-way divergence offers a cheaper alternative to compound
functions whilst giving similar, or better, semantic properties. Although we are
at an early stage in our investigation, we believe it could be applied usefully
to construct new metric indices or to execute more complex queries, such as
similarity joins, efficiently.

2 Related Work

The notion of a multi-way distance metric is not new, motivation coming from
geometry and topology. Recently a few papers have analysed the generalisation
to multi-way for any existing metric [3, 5, 6]. They consider whether various
axioms are observed in these generalisations. For example, a metric space with
a simple dyadic metric has the following axioms:

d(x, y) = 0 ⇔ x = y

d(x, y) = d(y, x)

d(x, y) ≤ d(x, z) + d(y, z)

The first of these, is simply generalised to D(x1, . . . , xn) = 0 if and only if
all xi are equal; the second to D(xπ(1), . . . , xπ(n)) = D(x1, . . . , xn) for every
permutation π of {1, 2, . . . , n}; while the third, triangle inequality, has been
generalised in numerous ways [6], such as polyhedron inequality:

(n− 1) ·D(x1, . . . , xn) ≤
n∑

i=1

D(x1, . . . , xi−1, xi+1, . . . , xn+1)

These generalised axioms are interesting in their own right, and the first two
are desirable properties of a multi-way divergence function, but it is not clear if
polyhedron inequality aids similarity search at this stage.

Deza and Rosenberg introduced the multi-way extension of the star distance
in [3], while perimeter distance [6] gives a geometrical “average distance”. Both
of these, however, are compound functions and do not fundamentally look at
generalising any specific metric.

3 Structural Entropic Divergence

We consider structural entropic distance (SED) proposed by [2] as a metric
over trees, and shown as a vector distance in [1]. This metric operates over

A Multi-way Divergence Metric for Vector Spaces 171

probability vectors where the sum of a vector’s components equals 1. It is a ratio
of the complexity of the mean vector to the geometric mean of complexities of
individual vectors, where complexity is defined in terms of Shannon entropy [4]
and is the amount of information required to describe the vector.

D(x1, x2) =
C(x1+x2

2)√
C(x1)C(x2)

− 1

where C(x) = b−
∑

i xi logb xi . They observe that the complexity of the mean
vector will be the same as each individual complexity when both vectors are
equal; that when the vectors have no intersecting components, the complexity
of the mean vector is equal to the sum of individual complexities; and, for any
other point, the complexity of the mean vector lies between these bounds.

3.1 Generalisation to a Multi-way Function

We observe a generalisation of this function to multiple arguments (MSED),
while preserving the essence of these properties. Considering the numerator first,
we can easily extend to multiple arguments as follows:

C

(
x1 + x2

2

)
⇒ C

(
n∑

i=1

xi

n

)

Now consider the denominator, a geometric mean, this too we extend to the
following form: √

C(x1)C(x2) ⇒ n

√√√√ n∏
i=1

C(xi)

The ratio of these two terms turns out to give a function in the range [1, n],
which can be scaled back into [0, 1]:

D(x1, . . . , xn) =
1

n− 1
·
(
C(1

n

∑n
i=1 xi)

n
√∏n

i=1 C(xi)
− 1

)
This generalised function remains a ratio of the complexity of a centroid to the

geometric mean of its neighbours’ complexities, and has the following properties:

– If all vectors are identical it gives 0
– If all vectors are different it gives 1
– All other inputs give a value between these bounds

Consider now the metric space axioms described in Section 2. SED has already
been shown to be a proper metric in [2]. For MSED, we have stated that the lower
bound is achieved when all elements are the same, so the first axiom holds. Since
all operations involved in both the numerator and denominator are commutative,
total symmetry holds too. We do not yet know whether polyhedron inequality
holds.

172 R. Moss and R. Connor

4 Evaluation

We compared MSED to three other measures of multi-way divergence, based
both on the SED metric and on Euclidean distance. Tuples of 2, 4, 8, 16 and 32
were chosen over randomly generated 5 and 15 dimensional probability vectors.

Table 1. Pearson’s correlation coefficients for MSED

PCC

5 dimension SED 2-tuple 4-tuple 8-tuple 16-tuple 32-tuple

mean intra-cluster distance 1 0.9892284 0.9918476 0.9935051 0.9947683
mean distance to a centroid 0.9976659 0.9929966 0.9942112 0.9946998 0.9951615
max intra-cluster distance 1 0.9015272 0.8148037 0.7273526 0.6234713

5 dimension Euclidean

mean intra-cluster distance 0.9245572 0.9587758 0.966835 0.9741714 0.9770738
mean distance to a centroid 0.9245572 0.9558159 0.9616505 0.964643 0.9684536
max intra-cluster distance 0.9245572 0.8799614 0.7991186 0.7164785 0.6081154

15 dimension SED

mean intra-cluster distance 1 0.9910392 0.9927492 0.9932659 0.9945081
mean distance to a centroid 0.9979758 0.994636 0.995117 0.9945673 0.9949007
max intra-cluster distance 1 0.8558546 0.764015 0.6177353 0.5374743

15 dimension Euclidean

mean intra-cluster distance 0.943713 0.9630723 0.9692825 0.9727428 0.97439
mean distance to a centroid 0.943713 0.9618546 0.9676469 0.9700614 0.9718063
max intra-cluster distance 0.943713 0.8333269 0.7624881 0.6385571 0.5282632

The best correlation comes with the mean distance to a centroid. This method
is calculated by making a centroid using the mean vector then averaging all
distances in the cluster to it. Since MSED is a ratio of the complexity of a
centroid to the geometric mean of individual complexities, there is much more
in common with this definition. Even when the comparison distance metric is
Euclidean distance, a very strong correlation exists (figure 2b).

The mean intra-cluster distance also correlates well with MSED. Figure 2a
shows the correlation with the mean intra-cluster distance, which appears to be
strongest at the, more commonly used, lower end.

MSED correlates – less strongly than the other methods – with both SED
and Euclidean maximum intra-cluster distance, and the correlation drops as the
cluster size increases. Rather than assessing the mutual similarity, the maximum
distance simply describes the two farthest points in the cluster. These two points
must lie on the cluster perimeter and describe the spread of points across the
space. Using only two points, however, fails to account for the spread in other
dimensions, further verified by the drop in correlation in the higher dimensional
space.

A Multi-way Divergence Metric for Vector Spaces 173

(a) triples with mean structural en-
tropic distance

(b) 5-tuples with mean euclidean dis-
tance to a centroid

Fig. 1. Correlation with divergence in 15-dimensional space

(a) Performance vs SED (b) Performance vs Euclidean Distance

Fig. 2. Performance

4.1 Performance

When many calculations are performed over a given metric space, the complex-
ity of individual vectors need only be calculated once and stored for later use,
thus amortising the cost of the calculation when multiple calls to divergence
are required. The only calculation required is the complexity of the centroid,
followed by some simple arithmetic, making the calculation really quite cheap.

The performance of the compound functions depend on the number of internal
distance calls required: mean distance to centroid is linear, while mean and
maximum intra-cluster distances are quadratic. We measured this to compare

174 R. Moss and R. Connor

with MSED, Figure 2 shows the average time in nanoseconds to evaluate each
function. While MSED clearly grows linearly it is approximately 3 times faster
than mean distance to centroid using euclidean distance, and 4 times faster when
using SED.

5 Conclusion

We have shown a formulation of MSED in a single calculation that is based upon
information theory; that it is semantically comparable to other more expensive
techniques that approximate mutual similarity through averaging, and that the
cost to evaluate it is low in comparison with other approximations.

At this point, we find the divergence metric interesting in its own right, and
have no very clear idea how it may be usefully deployed. However we have shown
that it gives a useful semantic measure of some concept such as density within
a set of objects, and yet is surprisingly cheap to evaluate compared with other
approximations to this concept. We believe that this function will turn out to
be useful in the domain of similarity search.

References

1. Connor, R., Moss, R.: A multivariate correlation distance for vector spaces. In:
Navarro, G., Pestov, V. (eds.) SISAP 2012. LNCS, vol. 7404, pp. 209–225. Springer,
Heidelberg (2012)

2. Connor, R., Simeoni, F., Iakovos, M., Moss, R.: A bounded distance metric for
comparing tree structure. Inf. Syst. 36(4), 748–764 (2011)

3. Deza, M.-M., Rosenberg, I.G.: n-semimetrics. European Journal of Combina-
torics 21(6), 797–806 (2000)

4. Shannon, C.E.: A mathematical theory of communication. SIGMOBILE Mob. Com-
put. Commun. Rev. 5(1), 3–55 (2001)

5. Warrens, M.J.: k-adic similarity coefficients for binary (presence/absence) data.
Journal of Classification 26(2), 227–245 (2009)

6. Warrens, M.J.: N-way metrics. Journal of Classification 27(2), 173–190 (2010)

Optimal Distance Bounds for the Mahalanobis Distance

Tobias Emrich, Gregor Jossé, Hans-Peter Kriegel, Markus Mauder,
Johannes Niedermayer, Matthias Renz, Matthias Schubert, and Andreas Züfle

Institute for Informatics, Ludwig-Maximilians-Universität München
{emrich,josse,kriegel,mauder,niedermayer,

renz,schubert,zuefle}@dbs.ifi.lmu.de

Abstract. The Mahalanobis distance, or quadratic form distance, is a distance
measure commonly used for feature-based similarity search in scenarios where
features are correlated. For efficient query processing on such data effective distance-
based spatial pruning techniques are required. In this work we investigate such
pruning techniques by means of distance bounds of the Mahalanobis distance in
the presence of rectangular spatial approximations. Specifically we discuss how
to transform the problem of computing minimum and maximum distance approx-
imations between two minimum bounding rectangles (MBRs) into a quadratic
optimization problem. Furthermore, we show how the recently developed con-
cept of spatial domination can be solved under the Mahalanobis distance by a
quadratic programming approach.

1 Introduction

The most common distance measure for adaptive similarity search and metric learning
is the Mahalanobis distance or quadratic form distance. It is frequently used for feature-
based similarity search and relies on correlation matrices. The Mahanolobis distance
allows us to integrate correlations into the distance computation while working with
the original set of features and index structures, whereas the Euclidean distance often
proves inadequate. Although it can be shown that any matrix under which the Ma-
halanobis distance is a metric is equivalent to a linear transformation of the feature
space [9], transforming the database is usually not an option: the matrix describing
correlations might vary between queries and generating index structures for all possi-
ble transformations is infeasible. There exists a wide variety of methods for learning
Mahalanobis distances [10].

When processing similarity queries such as ε-range queries, k-nearest neighbor (kNN)
queries, reverse-kNN queries in a feature space, an important efficiency aspect is early
pruning of objects which cannot be part of the result set. Such pruning is facilitated
by appropriate approximation techniques. For example, such approximations include
minimal bounding rectangles (MBRs) of complex spatial polygons, MBRs of sets of
data points and rectangular approximations of uncertain objects. During query execu-
tion costly distance functions or I/O operations can be avoided by using lower/upper
bound distances on these approximations. For decades, the minimum and maximum
distance between MBRs have been used to decide whether an object can be discarded
(pruned) from any further consideration. Recently, it has been shown that these metrics
can be improved under various settings using the concept of spatial domination [4].

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 175–181, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

176 T. Emrich et al.

In this work, we extend the concept of spatial domination to similarity search using
the Mahalanobis distance. We start by reviewing methods to compute the minimum
and maximum distance between a point and an MBR. Then we provide a solution for
computing these bounds between two MBRs. Finally, we develop a spatial domination
decision criterion based on the quadratic form distance and evaluate it experimentally.

2 Related Work

The Mahalanobis distance and its extensions [2,3] are a frequently used distance mea-
sure, particularly in the context of multimedia databases. To make this application
feasible, techniques to improve its processing speed have been developed. In [1] the
Mahalanobis distance is conservatively bounded by distance approximations based on
parametrized MBRs and spheres. If the similarity matrix is query-independent, the un-
derlying space can be transformed before indexing, reducing the problem to a query
in Euclidean space [9]. In contrast, in this paper we assume that the similarity ma-
trix is query-dependent. Examples for this scenario are also given in [9]. Recently, a
specialized index structure for an extension of the Quadratic Form Distance has been
proposed [6]. While such index structures can be useful for specialized applications, our
spatial pruning method can be used in general R-trees, making it extremely versatile.
A similarly widely applicable method is described in [8]. The authors determine the
shortest distance using a gradient descent method while limiting the search to feasible
points. In addition, they generate a lower bound of the Mahalanobis distance through
a lower-dimensional approximation of the similarity matrix. However, the authors do
not investigate the problem of computing the maximum distance and the problem of
spatial domination. In [5] the authors aim at conservatively bounding the maximum
Mahalanobis distance between each point and the sample’s mean given that the applied
similarity matrix is the sample’s covariance.

3 Problem Definition

Formally, the Mahalanobis distance is defined as follows:

Definition 1. Let x, y ∈ Rd be d-dimensional points (column-vectors) and A ∈ Rd×d

be a symmetric positive definite matrix. The Mahalanobis distance dA between the two
points x and y is defined by: dA(x, y) =

√
(x− y)T ·A · (x− y)

Minimum distance and maximum distance in the presence of MBR approximations
are well-studied for Lp-norms [7]. In this work, we show how these distance bounds
can be computed for the Mahalanobis distance. In particular, we show how to compute
the minimum/maximum distance between point and MBR and between two MBRs.

Optimal Distance Bounds for the Mahalanobis Distance 177

Definition 2. Let x, y ∈ Rd be a be d-dimensional point, X,Y ⊂ Rd be MBRs and
A ∈ Rd×d be a symmetric positive definite matrix. We define the following bounds:

dmin
A (x, Y) = min

y∈Y
dA(x, y) (point-MBR minimum distance)

dmax
A (x, Y) = max

y∈Y
dA(x, y) (point-MBR maximum distance)

dmin
A (X,Y) = min

x∈X,y∈Y
dA(x, y) (MBR-MBR minimum distance)

dmax
A (X,Y) = max

x∈X,y∈Y
dA(x, y) (MBR-MBR maximum distance)

Furthermore, we want to examine spatial domination under the Mahalanobis distance.

Definition 3. Let X,Y,R ⊂ Rd be MBRs and A ∈ Rd×d be a symmetric positive
definite matrix. X spatially dominates Y w.r.t. R if:

DomA(X,Y,R) := ∀x ∈ X, y ∈ Y, r ∈ R : dA(x, r) < dA(y, r)

Informally spatial domination checks if “X is definitely closer to R than Y ” (see Fig-
ure 1(a) illustrating a Euclidean case of domination, while Figure 1(b) shows the same
situation under a quadratic form transformation). This relation can be utilized for prun-
ing in the context of many spatial query predicates (e.g. for nearest and reverse near-
est neighbor queries). For example, if R approximates the query object for a nearest
neighbor query then Y can safely be pruned if Dom(X,Y,R) holds. The reason is that
Dom(X,Y,R) implies that X must be closer to R than Y . We refer to any criterion
whose fulfillment implies domination as a domination decision criterion (DDC).

In the following, we will show that the minimum and maximum distances as well
as the decision about spatial domination can be rewritten as quadratic optimization
problems of the general form: f(x) = 1

2x
T · Q · x + c · x subject to the constraint

xlb < x < xub. Using quadratic programming the minimum of f(x) (with respect to
x) satisfying the above constraints can be computed in polynomial time.

4 Minimum and Maximum Distance Bounds

Point and MBR: In order to find a lower bound for the Mahalanobis distance between
point and MBR, we define:

dmin
A (x, Y) = min

y∈Y

√
(x− y)T · A · (x− y) (1)

The constraint y ∈ Y can be rewritten as ylb < y < yub where ylb (yub) is the lower
(upper) bound vector of Y consisting of the minimum (maximum) values of Y in each
dimension. Since the square root does not affect the pruning decision, the function (see
Equation 1) can be rewritten to match the optimization term:

178 T. Emrich et al.

R

X MinDist

MaxDist

R

Y
(a) Domination on MBRs

X ()A = 0.47 0.45
0.45 0.60

R

Y

(b) Transformed Space (c) DDCMM not decisive

Fig. 1. Minimum / Maximum Distance and Spatial Domination

min
y

√
(x− y)T · A · (x− y) =̂ min

y
[(x− y)T ·A · (x− y)] =

min
y

[xTAx− xTAy − yTAx+ yTAy] = min
y

[−xTAy − yTAx + yTAy]

=

min
y

[−(Ay)Tx− yTAx+ yTAy] = min
y

[yTATx− yTAx+ yTAy] =

min
y

[−yTAx− yTAx+ yTAy] = min
y

[
1

2
· yT (2 · A)y − 2 · xTAT y]

The above holds due to the symmetry of A (A = AT) and because transposing a
scalar (namely ((Ay)Tx)T at �) can be ignored.

The maximum distance between point and MBR can be computed analogously by
using −A, since

0 < max
y

dA(x, y) = −min
y

(
(−(x− y)TA(x− y))

)
= −min

y
d−A(x, y).

MBR and MBR: Extending the above definitions of minimum and maximum distance
to the case where X,Y ⊂ R

d are MBRs is straightforward. Given a (symmetric, posi-
tive definite) matrix A, the minimum distance of X and Y w.r.t. A is defined as:

dmin
A (X,Y) = min

x∈X,y∈Y

√
(x− y)T ·A · (x− y) (2)

Ignoring the square root the function to be minimized can be rewritten as follows:

(x − y)T · A · (x− y) = (xTA− yTA) · (x− y) =

xTAx− xTAy − yTAx+ yTAy =
1

2
·
(x
−y

)T ·
(
2A 2A
2A 2A

)
·
(x
−y

)
Following from this observation we can define proper boundary conditions:(xlb

−yub

)
≤
(x
−y

)
≤
(xub
−ylb

)
Again we are able to derive dmax

A (X,Y) by replacing A with −A.

Optimal Distance Bounds for the Mahalanobis Distance 179

5 Domination Decision Criterion

To derive a DDC the minimum and maximum distance may be utilized as follows:

Dom(A)(X,Y,R) ⇐ dmax
(A) (X,R) < dmin

(A) (Y,R) (3)

However, this so called MinMax criterion (DDCMM or DDCMM
A ifA is of particular inter-

est) does not always yield the best possible result. To see this, it suffices to consider the
simplified case where X and Y are points (as depicted in Figure 1(c)). In this example
each point above the equi-distance-potential of x and y ({z ∈ Rd | ‖x−z‖ = ‖y−z‖})
is obviously closer to x than to y. Thus y is spatially dominated by x w.r.t. R, although
this would not have been detected by DDCMM (Equation 3). Recently an optimal crite-
rion was developed to correctly detect this relation and therefore enhancing the DDCMM

under allLp-Norms [4]. However this optimal criterion can not be directly applied under
the Mahalanobis distance, since the matrix A implies a rotation and scaling of the origi-
nal feature space. Figure 1(b) illustrates this transformation of the original example from
Figure 1(a). Note that even for computing maximum and minimum distance between the
transformed MBRs now different corners realize these distances.

Definition 4. Let X,Y,R be MBRs, the optimal domination decision criterion under
the quadratic form matrix A, DDCOPT

A , is defined as:

DDCOPT
A (X,Y,R) := DomA(X,Y,R) = ∀x ∈ X, y ∈ Y, r ∈ R : dA(x, r) < dA(y, r)

This can be reformulated as follows:

∀x ∈ X, ∀y ∈ Y, ∀r ∈ R : dA(y, r)
2 − dA(x, r)

2 > 0 ⇔
min

x∈X,y∈Y,r∈R
[dA(y, r)

2 − dA(x, r)
2] > 0 ⇔

min
x∈X,y∈Y,r∈R

[(y − r)T ·A · (y − r) − (x− r)T ·A · (x − r)] > 0

The function to minimize can then be expanded:

yTAy − yTAr − rTAy + rTAr − (xTAx− xTAr − rTAx + rTAr) =

yTAy − yTAr − rTAy − xTAx+ xTAr + rTAx =(
x
−y
r

)T
·
(

A 0 A
0 A A
A A 0

)
·
(

x
−y
r

)
=

1

2
·
(

x
−y
r

)T
·
(

2A 0 2A
0 2A 2A
2A 2A 0

)
·
(

x
−y
r

)
The constraints are straightforwardly given by(xlb

−yub
rlb

)
≤
(

x
−y
r

)
≤
(xub

−ylb
rub

)
By reformulating the dominance decision criterion under a quadratic form as above,
we improve the selectivity and reduce the problem to an efficiently solvable quadratic
programming problem as is demonstrated in the next section.

180 T. Emrich et al.

6 Experiments

Our goal is to reduce the number of candidates for a query predicate (k nearest neighbor,
reverse k nearest neighbors, etc.) by efficiently pruning dominated objects and therefore
avoiding costly I/O operations. To test our approach, we implemented the decision crite-
ria DDCMM and DDCOPT in Matlab using the built-in solver for quadratic programming
problems which relies on trust region optimization. In the first setting we randomly
created MBRs within the unit cube as well as symmetric positive definite matrices and
compared the overall decision power of DDCMM and DDCOPT, varying the maximal ex-
tent of the MBRs as well as the number of dimensions. As shown in Figure 2, DDCOPT

is superior to DDCMM, but efficiency decreases as dimensionality and extent increase.
In order to monitor the relative behavior of DDCMM in comparison to DDCOPT we
tested in how many positive DDCOPT cases DDCMM would detect dominance as well
(see Figure 3). The gain is striking: if the MBRs are relatively small, DDCOPT is only
slightly better than DDCMM, but it outperforms DDCMM by orders of magnitude when
dimensionality increases and the MBRs expand. In the most demanding setting (6 di-
mensional MBRs with a maximal extent of 0.6) DDCMM can only verify dominance
in less than 1 percent of the cases where DDCOPT detected dominance. Nevertheless,
DDCOPT is less costly than DDCMM, as displayed in Figure 4 which shows the average
runtime of one dominance decision. It is conceivable that the runtime results may be
improved by using a different algorithm for the quadratic programming problem, such
as an interior point method.

Fig. 2. Absolute number of
positive dominance decisions
(on 1000 random MBRs)

Fig. 3. DDCMM pruning selec-
tivity relative to 1000 positive
DDCOPT decisions

Fig. 4. Average runtime of
DDCMM and DDCOPT in mil-
liseconds

7 Conclusions

In this paper we have defined conservative minimum and maximum distance approx-
imations for MBRs under the Mahalanobis distance by formulating the problam as a
quadratic optimiziation problem under constraints. In addition, we have shown that the
spatial domination problem can also be described as a quadratic optimization problem.
Our experiments show that especially with large MBRs the spatial domination approach
outperforms the traditional MinMaxdist approach by orders of magnitude.

We plan to extend this work into several directions. First we want to apply the pro-
posed bounds to actual query predicates such as nearest- and reverse nearest neighbor

Optimal Distance Bounds for the Mahalanobis Distance 181

queries in the presence of an index. Second we plan to consider the underlying geometry
to find more efficient solutions than the methods presented here.

References

1. Warrens, M.J.: N-way metrics. Journal of Classification 27(2), 173–190 (2010)
2. Beecks, C., Uysal, M.S., Seidl, T.: Signature quadratic form distance. In: Proc. CIVR, pp.

438–445 (2010)
3. Beecks, C., Uysal, M.S., Seidl, T.: Similarity matrix compression for efficient signature

quadratic form distance computation. In: Proc. SISAP, pp. 109–114 (2010)
4. Emrich, T., Kriegel, H.-P., Kröger, P., Renz, M., Züfle, A.: Boosting spatial pruning: On

optimal pruning of MBRs. In: Proc. SIGMOD, pp. 39–50 (2010)
5. Gath, E.G., Hayes, K.: Bounds for the largest mahalanobis distance. Linear Algebra

Appl. 419(1), 93–106 (2006)
6. Lokoc, J., Hetland, M.L., Skopal, T., Beecks, C.: Ptolemaic indexing of the signature

quadratic form distance. In: Proc. SISAP, pp. 9–16 (2011)
7. Roussopoulos, N., Kelley, S., Vincent, F.: Nearest neighbor queries. In: Proc. SIGMOD, pp.

71–79 (1995)
8. Seidl, T., Kriegel, H.-P.: Efficient user-adaptable similarity search in large multimedia

databases. In: Proc. VLDB, pp. 506–515 (1997)
9. Skopal, T., Bartos, T., Lokoc, J.: On (not) indexing quadratic form distance by metric access

methods. In: Proc. EDBT, pp. 249–258 (2011)
10. Yang, L.: An overview of distance metric learning. Technical report, Department of Com-

puter Science and Engineering, Michigan State University (2007)

Text Categorization via Similarity Search

An Efficient and Effective Novel Algorithm�

Hubert Haoyang Duan1, Vladimir G. Pestov1, and Varun Singla2

1 University of Ottawa, Ottawa, Ontario K1N 6N5, Canada
{hduan065,vpest283}@uottawa.ca

2 Indian Institute of Technology Delhi, Hauz Khas, New Delhi-110 016, India
ee5080429@ee.iitd.ac.in

Abstract. We present a supervised learning algorithm for text cate-
gorization which has brought the team of authors the 2nd place in the
text categorization division of the 2012 Cybersecurity Data Mining Com-
petition (CDMC’2012) and a 3rd prize overall. The algorithm is quite
different from existing approaches in that it is based on similarity search
in the metric space of measure distributions on the dictionary. At the
preprocessing stage, given a labeled learning sample of texts, we asso-
ciate to every class label (document category) a point in the space of
question. Unlike it is usual in clustering, this point is not a centroid of
the category but rather an outlier, a uniform measure distribution on a
selection of domain-specific words. At the execution stage, an unlabeled
text is assigned a text category as defined by the closest labeled neigh-
bour to the point representing the frequency distribution of the words
in the text. The algorithm is both effective and efficient, as further con-
firmed by experiments on the Reuters 21578 dataset.

1 Introduction

The amount of texts readily available in the world is growing at an astonishing
rate; classifying these texts through machine learning techniques, promptly and
without much human intervention, has thus become an important problem in
data mining. Much research, in the field of supervised learning, has been done to
find accurate algorithms to classify documents in a dataset to their appropriate
categories, e.g. see [27] or [1] for a detailed survey of text categorization.

The most widely used model for text categorization is the Vector Space Model
(VSM) [24]. Under this model, a data dictionary T consisting of unique words
across the documents in the dataset is constructed. The documents are repre-
sented by real-valued vectors in the space RT with dimension equaling to the
size of the dictionary. Given t ∈ T , the t-th coordinate of a vector is the relative
frequency of the word t in a given document. When some of the documents’

� This work has been partially supported by a 2012 NSERC Canada Graduate Scholar-
ship and a 2013 Ontario Graduate Scholarship (Hubert Haoyang Duan), 2012–2017
NSERC Discovery Grant “New set-theoretic tools for statistical learning” (Vladimir
Pestov), and the 2012 Mitacs Globalink Program (Varun Singla).

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 182–193, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Text Categorization via Similarity Search 183

actual class labels are known and used for training, many well-known classifiers
in supervised machine learning, such as SVM [6], k-NN [7], and Random Forest
[3], can then be applied to categorize documents.

Text categorization decidedly comes across as a problem of detecting sim-
ilarities between a given text and a collection of texts of a particular type.
Although distance-based learning rules for text categorization, such as the k-
nearest neighbour classifier, e.g. [18], are not new, they are currently based on
the entire feature space, while any dimension reduction steps are done indepen-
dently beforehand [27].

We aim to fill this gap by suggesting a novel supervised learning algorithm
for text categorization, called the Domain-Specific classifier. It discovers specific
words for each category, or domain, of documents in training and classifies based
on similarity searches in the space of word frequency distributions supported on
the respective domain-specific words.

For each class label, j = 1, 2, . . . , k, our algorithm extracts class, or domain,
specific words from labeled training documents, that is, words that appear in the
class j more frequently than in all the other document classes combined (modulo
a given threshold). Now a given unlabeled document is assigned a label j if the
normalized frequency of domain-specific words for j in the document is higher
than for any other label.

To see that this classifier is indeed similarity search based, let xj ∈ RT be
a binary vector whose t-th coordinate is 1 if and only if t is domain-specific
to j, and 0 otherwise. Normalize xj according to the �p distance, and let a
document be represented by a vector w ∈ RT . Then the label assigned to w
is that of the closest neighbour to w among x1, x2, . . . , xk with regard to the
simplest similarity measure, the inner product on RT . In other words, we seek
to maximize the value of 〈w, xj〉 over j = 1, 2, . . . , k. Notice that the well-known
cosine similarity measure, cf. e.g. [27], corresponds to the special case p = 2.

This algorithm was first used in the 3rd Cybersecurity Data Mining Competi-
tion (CDMC 2012) to notable success, as the team of authors placed second in the
text categorization challenge, and first in classification accuracy [19]. In addition,
the classification performance of the algorithm was validated on a sub-collection
of the popular Reuters 21578 dataset [16], consisting of single-category docu-
ments from the top eight most frequent categories, with the standard “modApté”
training/testing split. In terms of accuracy, our classifier performs slightly better
than SVM with a linear kernel, and is significantly faster.

This paper is organized as follows. Section 2 surveys common feature selection
and extraction methods and classifiers considered in the text categorization lit-
erature. Section 3 explains the new Domain-Specific classifier in detail and casts
it as a similarity search problem. Section 4 discusses results from the CDMC
2012 Data Mining competition and experiments from the competition and on
the Reuters 21578 dataset. Finally, Section 5 concludes the paper with some
discussion and directions for future work.

184 H.H. Duan, V.G. Pestov, and V. Singla

2 Related Work

In this section, we describe the VSM model and provide a brief survey on widely
known methods for text categorization.

From this section onwards, following notation similar to [27], we let D =
{d1, d2, . . . , dn} denote the dataset of documents, with size n = |D|, and T =
{t1, t2, . . . , tm} the data dictionary of all unique words from documents in D,
with size m = |T |. Given a document d and a word t ∈ T , |d| denotes the
number of words in d and t ∈ d indicates that the word t is found in d.

2.1 Vector Space Model

The Vector Space Model (VSM) [24] is the most common model for document
representation in text categorization. According to [1], there is usually a standard
preprocessing step for the documents in D, where all alphabets are converted
to lowercase and all stop words, such as articles and prepositions, are removed.
Sometimes, a stemming algorithm, such as the widely used Porter stemmer [20],
is applied to remove suffices of words (e.g. the word “connection” → “connect”).

In VSM, the data dictionary, consisting of all unique words that appear in
at least one document in D, is first constructed. Sometimes, n-grams, which are
phrases of words, are also included in the dictionary; however, the benefit of
these additional phrases is still up for debate [27]. Given the data dictionary,
each document can be represented as a vector in the real-valued vector space
with dimension equaling the size of the dictionary. Two common methods for
associating a document to a vector are explained below.

The simplest method assigns to a document d the vector consisting of the
relative term frequencies for d, see e.g. [11]. The second, known as the tf -idf
method, assigns d to the vector consisting of the products of term and inverse
document frequencies [23]. Mathematically speaking, a document d is mapped
to a real-valued vector of length m: d %−→ (w1, w2, . . . , wm) ∈ IRm, for

wi =
c(ti, d)

|d| (frequency method) (1)

or

wi = c(ti, d) log

(
n

|{d ∈ D : ti ∈ d}|

)
(tf -idf method), (2)

where c(ti, d) denotes the number of times the word ti appears in d. Other
representations include binary and entropy weightings and the normalized tf -
idf method [1].

Once the documents are represented as vectors, the dataset can be interpreted
as a data matrixM of size (n×m). However, a main challenge for text categoriza-
tion is that the size of the data dictionary is usually immense so the data matrix
is extremely high dimensional. Dimension reduction techniques must often be
applied before classification to reduce complexity [1].

Text Categorization via Similarity Search 185

2.2 Feature Selection and Extraction Methods

Due to the potentially large size of the data dictionary, feature selection and ex-
traction methods are often applied to reduce the dimension of the data matrix.
Feature selection methods assign to each feature, a word in the data dictio-
nary, a statistical score based on some measure of importance. Only the highest
scored features, past some defined threshold, are kept and a lower dimensional
data matrix is created from only these features. Some known feature selection
methods in text categorization include calculating the document frequency, e.g.
[31], mutual information [5], and χ2 statistics, e.g. [26]. See e.g. [10] or [31] for a
thorough study of text feature selection methods.

Feature extraction methods transform the original list of features to a smaller
list of new features, based on some form of feature dependency. Common well-
known feature extraction techniques, as surveyed in [22], are Latent Semantic In-
dexing (LSI) [8], Linear Discriminant Analysis (LDA) [28], Partial Least Squares
(PLS) [32], and Random Projections [2].

2.3 Classification Algorithms

Well-known classifiers that have been applied to text categorization include the
k-nearest neighbour classifier [18], Support Vector Machines [12], the Naive
Bayes classifier [15], and decision trees [13]. We ask the reader to refer to in-
dicated references, or to survey articles, such as [27], [11], and [1]. The paper
[30] provides comparable empirical results on some of these classifiers.

The standard approach in literature for text categorization is that one, or
more, feature selection or extraction technique is first applied to a data matrix,
since the original data matrix is often extremely high-dimensional. A learning al-
gorithm, independent of the dimension reduction process, is then used for classi-
fication [27]. The novel approach in this paper is that we consider a new classifier
based only on extracted class specific words, which naturally reduces time com-
plexity and the dimension of the dataset. In other words, the Domain-Specific
classifier both performs dimension reduction and classifies, in consecutive and
dependent steps.

3 The Domain-Specific Classifier

Our algorithm consists of two distinct stages: extraction of domain-specific words
from training samples and classification of documents based on the closest la-
beled point determined by these domain-specific words.

3.1 Preprocessing Stage: Domain-Specific Words

Fix an alphabet Σ and denote Σ∗ as the set of all possible “words” formed from
Σ. A document d is then simply an ordered sequence of “words”, d ∈ (Σ∗)|d|, and
the data dictionary T is a subset of Σ∗. Given a set of labeled documents, we can

186 H.H. Duan, V.G. Pestov, and V. Singla

denote it as Dlab = {(d1, l1), (d2, l2), . . . , (dn, ln)} , where di is a document and
li ∈ {1, 2, 3, . . . , k} is its label, out of a possible k different labels. In addition,
we can partition Dlab into subsets of documents according to their labels:

Dlab =

k⋃
j=1

Dj
lab (3)

where Dj
lab = {(d, l) ∈ Dlab : l = j} is the set of documents of label j. Then, for

a particular label j and a word t ∈ T in the data dictionary, we denote fj(t) as
the average proportion of times the word t appears in documents with label j:

fj(t) =
1

|Dj
lab|

∑
(d,j)∈Dj

lab

c(t, d)

|d| . (4)

Domain-specific words are those words which appear, on average, proportion-
ally more often in one label type of documents in Dlab than other types.

Definition 1. Let α ≥ 0. A word t ∈ T in the data dictionary is domain (or
class) j specific if

fj(t) > α
∑
j′ �=j

fj′ (t). (5)

This definition of domain-specific words depends on the parameter α and
hence, so does the Domain-Specific classifier. As α increases from 0, the number
of domain-specific words for each class label decreases; as a result, α can be
thought of as a threshold parameter, and an optimal choice for α is determined
through cross-validation using training data.

3.2 Classification Stage

Let now d be an unclassified document. We associate to it a vector w = wd ∈ RT

(a relative frequency distribution of words) as in Eq. (1), that is, for every t ∈ T ,

w(t) =
c(t, d)

|d| . (6)

Let j be a label. Denote CSj = CSj,α the set of domain-specific words to j.
Define the total relative frequency of domain j specific words found in d:

w[CSj] =
∑

t∈CSj

w(t) =
1

|d|
∑

t∈CSj

c(t, d). (7)

The classifier assigns to d the label j for which the following ratio is the highest:

j = argmaxi
w[CSi]

|CSi|1/p
. (8)

Here, p ∈ (0,∞] is a parameter, which normalizes a certain measure with regard
to the �p distance, cf. below in Section 3.3.

Text Categorization via Similarity Search 187

3.3 Space of Positive Measures on the Dictionary

A (positive) measure on a finite set T is simply an assignment t %→ w(t) to
every t ∈ T of a non-negative number w(t); a probability measure also satisfies∑

t∈T w(t) = 1. Denote M(T) the set of all positive measures on T .
Fix a parameter p ∈ (0,∞]. The following is a positive measure on T :

xj(t) =

{ 1
|CSj|1/p , if t ∈ CSj ,

0, otherwise.
(9)

If p = 1, we obtain a probability measure uniformly supported on the set of
domain j specific words. In general, values of p ∈ (0,∞] correspond to different
normalizations of the uniform measure supported on these words, according to
the �p distance. (The case when p = ∞, that is, the �∞ distance, corresponds to
non-normalized uniform measure.)

Among the similarity measures on M(T), we single out the standard inner
product

〈w, v〉 =
∑
t

wtvt. (10)

Notice that for every w ∈ M(T) and each j,

〈w, xj〉 =
w[CSj]

|CSj |1/p
, (11)

and for this reason, the classification algorithm (8) can be rewritten as follows:

j = argmaxi 〈w, xi〉. (12)

Our classifier is based on finding the closest point xi to the input point w in the
sense of the simplest similarity measure, the inner product.

The similarity workload is a triple (U, S,X), consisting of the domain U =
M(T), the similarity measure S(w, v) = 〈w, v〉 equal to the standard inner prod-
uct (a rather common choice in the problems of statistical learning, cf. [25]), and
the dataset X = {x1, x2, . . . , xk} of normalized uniform measures corresponding
to the text categories and domain-specific words extracted at the preprocessing
stage.

Note that the well-known cosine similarity measure arises in the special case
when the normalizing parameter is p = 2; hence, it is not necessary to consider
this measure separately. Our experiments have shown that different datasets
require different normalizing parameters for xj , and that the optimal normal-
ization depends on the sizes of the document categories; Section 5 includes a
discussion on this topic.

4 Experiments and Results

This section details the experiments and results obtained for the Domain-Specific
classifier, in the 2012 Cybersecurity Data Mining Competition and on the Reuters

188 H.H. Duan, V.G. Pestov, and V. Singla

21578 dataset. All of the programming for this section were done with standard
packages in R [21] and with the specialized packages e1071 [9] and randomForest

[17], on a desktop running Windows 7 Enterprise, with a Intel i5 3.10 GHz pro-
cessor and 4GB of RAM.

4.1 The 2012 Cybersecurity Data Mining Competition

The 3rd Cybersecurity Data Mining Competition (CDMC 2012) [19], associ-
ated with the 19th International Conference on Neural Information Processing
(ICONIP 2012) in Doha, Qatar from November 12 - 15, 2012 [29], included three
supervised classification tasks: electronic news (e-News) text categorization, in-
trusion detection, and handwriting recognition.

The Domain-Specific classifier was first developed by the team of authors
for the e-News text categorization challenge, which required classifying news
documents to five topics: business, entertainment, sports, technology, and travel.
The documents were collected from eight online news sources. The words in these
documents were obfuscated, and all punctuations and stop words removed. Here
is a sample scrambled text document paragraph from the competition:

HUJR Xj gjXZMUXe fAJjAeK UO jwXeA URSek UYjmX xjI K SeeW eOWrjJeeR ZARWZDek
UAk WDjkmzXZMeKXR UA eRReAXZUr BmeRXZjA RZAze zjOWUAZeR XjkUJ OmRX
UzzjOWrZRx OjDe IZXx weIeD WejWre uxe OjRX RmzzeRRwmr RXUDXmWR OmRX

In total, 1063 e-News documents for training, each labeled as one of the k = 5
topics, were given for the goal of classifying 456 documents.

Table 1. Information on the dataset size for e-News classification task

Label j Topic # of documents

1 Business 205
2 Entertainment 215
3 Sport 193
4 Technology 223
5 Travel 227

Training set 1063

Classification task 456

4.2 Competition Experiments

After a pre-processing step, where all document words of length less or equal to
3 were removed, a data dictionary of all unique words from the training and clas-
sification documents, consisting of m = 55822 words, was constructed. The 1063
labeled documents were converted to vectors of length m = 55822, according to
the Vector Space Model. Then, 5-fold cross-validation on the training dataset
was performed to test the performance of the classifier.

For comparison purposes, the Support Vector Machines (SVM) classifier [6],
using the Gaussian Radial Basis (GRB) and linear kernels with cost 10, and the

Text Categorization via Similarity Search 189

Random Forest classifier [3], using 50 trees, were also tested. The performance
measures considered were classification accuracy and the F-Measure (F1) [1].
See Table 2, where the computation times for both the training and predicting
stages are also indicated.

Table 2. Classification performance of the Domain-Specific classifier (DSC) through
5-fold cross validation on the training set, compared to SVM with the Gaussian Radial
Basis (GRB) and linear kernels and Random Forest (RF)

DSC DSC DSC DSC DSC DSC DSC DSC SVM SVM RF
α 0 0.25 0.5 0.75 1 2 5 10 GRB linear

Accuracy 0.575 0.854 0.887 0.896 0.896 0.915 0.901 0.882 0.613 0.821 0.882
F1 Business 0.491 0.765 0.839 0.833 0.765 0.794 0.774 0.868 0.576 0.740 0.853
F1 Entertainment 0.400 0.925 0.915 0.896 0.928 0.949 0.926 0.897 0.530 0.784 0.845
F1 Sport 0.899 0.962 0.946 1.000 0.987 1.000 0.974 0.944 0.847 0.886 0.943
F1 Technology 0.548 0.767 0.850 0.825 0.871 0.891 0.891 0.848 0.597 0.785 0.842
F1 Travel 0.600 0.883 0.892 0.947 0.916 0.920 0.911 0.867 0.641 0.896 0.917

Computational Time
DSC SVM SVM RF

GRB linear
Training stage 1.5 secs 3.99 mins 3.25 mins 3.96 mins
Predicting stage 0.6 secs 14.3 secs 16.9 secs 0.4 secs

The choice α = 2 resulted in the best accuracy of 0.915 for the Domain-Specific
classifier, and the optimal normalizing parameter was p = 1, corresponding to the
choice of x1, x2, . . . , xk normalized as probability measures uniformly supported
on the domain-specific words. Consequently, these two values were used for the
classification of the 456 documents in the competition. Note that the accuracy
score and the F-Measure for 4 out of the 5 categories, for α = 2, were higher
than the respective scores obtained with SVM with the GRB and the linear
kernels and Random Forest. Experiments had also shown that the Domain-
Specific classifier was extremely fast and efficient, since distance calculations are
only based on domain-specific words, not the entire data dictionary. As a result,
no dimension reduction technique prior to classification was required.

4.3 Competition Results

The submissions for the three tasks for the 2012 Cybersecurity Data Mining
Competition [19] were strictly evaluated based on the F-Measure with respect
to each class label to determine the overall rankings. However, the classification
accuracy scores for the three tasks were also sent to the participants.

The team of authors finished 1st in pure accuracy and 2nd in the e-News text
categorization task with the Domain-Specific classifier, see Table 3. Overall, the
team received 3rd place in the entire competition.

4.4 Experiments on the Reuters 21578 Dataset

The Reuters 21578 dataset, consisting of documents from the Reuters newswire
in 1987 and categorized by Reuters Ltd. and Carnegie Group, Inc., is a clas-

190 H.H. Duan, V.G. Pestov, and V. Singla

Table 3. Results of the Domain-Specific classifier for the e-News task

Label 1 Label 2 Label 3 Label 4 Label 5 Accuracy Task Ranking
F-Measure 0.847 0.943 0.991 0.805 0.947 - 2nd
Accuracy - - - - - 0.912 1st

sical benchmark for text categorization classifiers [16]. To further test the ef-
fectiveness and efficiency of the Domain-Specific classifier, we considered single-
category documents from the top eight most frequent classes (known as the R8
subset) from the Reuters 21578 dataset and divided according to the standard
“modApté” training/testing split. These documents were downloaded from [4].

Table 4 provides the category sizes for this dataset. Standard pre-processing
of the dataset consisted of removing all stop words and words of length two or
less; afterwards, the size of the dictionary of all unique words from the training
and testing documents was m = 22931 words.

Table 4. Information on the Reuter 21578 dataset considered

Label j Topic # of training documents # of testing documents

1 acq 1596 696
2 crude 253 121
3 earn 2840 1083
4 grain 41 10
5 interest 190 81
6 money-fx 206 87
7 ship 108 36
8 trade 251 75

Total 5485 2189

In this case, evaluation of the Domain-Specific classifier, based on the accu-
racy, F-Measure, and computational time, has shown that α = 0.45 and p = ∞
(non-normalized measures on domain-specific words) were optimal. The SVM,
using the linear kernel and a class weight adjustment (2840 divided by the num-
ber of documents in each category) to address the varying sizes of the categories,
and Random Forest, using 50 trees, classifiers were also tested to compare against
our novel algorithm. Table 5 provides the classification results obtained by the
Domain-Specific classifier at those values, SVM, and Random Forest.

The Domain-Specific classifier performed slightly better than SVM with the
linear kernel, and better than Random Forest in terms of accuracy. With respect
to the F-Measure, our classifier performed better than SVM for categories with
large sizes, and better than Random Forest in 6 of the 8 categories, while SVM
had a higher F-Measure on two of the smaller categories, undoubtably due to
SVM’s class weight adjustment. Computationally, our classifier ran considerably
faster than SVM and Random Forest.

Text Categorization via Similarity Search 191

Table 5. Classification performance of the Domain-Specific classifier (DSC) compared
to SVM with the linear kernel and Random Forest (RF) on the Reuters 21578 dataset

Accuracy F1 acq F1 crude F1 earn F1 grain F1 interest F1 money-fx F1 ship F1 trade

DSC α = 0.45 0.952 0.961 0.954 0.978 0.800 0.857 0.859 0.836 0.807
SVM linear 0.946 0.948 0.913 0.970 0.900 0.834 0.844 0.833 0.947

Random Forest 0.926 0.917 0.911 0.983 0.462 0.775 0.556 0.326 0.877

Computational Time
DSC SVM RF

linear
Training stage 6.6 secs 1.43 hours 54.55 mins
Predicting stage 2.3 secs 55.9 secs 1.08 secs

5 Conclusion

In this paper, we have introduced a novel text categorization algorithm, the
Domain-Specific classifier, based on similarity searches in the space of measures
on the data dictionary. The classifier finds domain-specific words for each docu-
ment category, which appear in this category relatively more often than in the
rest of the categories combined, and associates to it a normalized uniform mea-
sure supported on the domain-specific words. For an unlabeled document, the
classifier assigns to it the category whose associated measure is most similar to
the document’s vector of relative word frequencies, with respect to the inner
product. The cosine similarity measure arises as a special case corresponding to
the �2 normalization.

Our classifier involves a similarity search problem in a suitably interpreted
domain. We believe that this is the right viewpoint with the aim of further
improvements. It is worthwhile noting that our algorithm is unrelated to previ-
ously used distance-based algorithms (e.g. the k-NN classifier [18]). The dataset
in the similarity workload is completely different, and as a result, unlike most
algorithms in text categorization, this classifier does not require any separate
dimension reduction step beforehand.

The process of selecting domain-specific words in our algorithm is actually an
implicit feature selection method which is class-dependent, something we have
not seen before from a classifier in text categorization. For each class, instead of a
centroid, we are choosing an outlier, a uniform measure supported on the domain-
specific words, which is representative of this class and not of any other class.
Not only does each uniform measure lead to a reduction in the dimension of the
feature space (as most words are not domain-specific) for similarity calculations,
it does so dependent of the class labels, since domain-specific words are chosen
relative to all classes.

This algorithm was first developed for the 2012 Cybersecurity Data Mining
Competition and brought the team of authors 2nd place in the text categoriza-
tion challenge, and 1st place in accuracy. This is evidence that our algorithm
outperformed many existing text categorization algorithms, as surveyed in Sec-
tion 2. In addition, our algorithmwas evaluated on a sub-collection of the Reuters

192 H.H. Duan, V.G. Pestov, and V. Singla

21578 dataset against two state-of-the-art classifiers, and shown to have a slightly
higher classification accuracy than SVM, with a higher F-Measure for the larger
categories, and overall performed better than Random Forest. Computationally,
our classifier ran significantly faster than either, especially in the training stage.

The normalizing parameter p plays a significant role: it is to account for class
imbalance. When there are categories with very few documents, p = ∞ should
be used to avoid over-emphasizing the smaller categories; and small values of p
should be used when the categories have roughly the same number of documents.

For future work, we hope to test the Domain-Specific classifier on biological
sequence databases. Other definitions of domain-specific words can be investi-
gated, for instance the one proposed in [14]. We would like to experiment with
assigning non-uniform measures on the domain-specific words, for instance, by
putting weights based on their relative occurrences or on α. Finally, we would
like to extend the process of selecting domain-specific words to a general clas-
sification context, by defining class-specific features relative to the classes and
performing classification on only these class-dependent features.

References

1. Aas, K., Eikvil, L.: Text Categorization: A Survey. In: Technical Report 941. Nor-
wegian Computing Center (1999)

2. Bingham, E., Mannila, H.: Random projection in dimensionality reduction: Applica-
tions to image and text data. In: Proceedings of 7th ACMSIGKDDInt. Conf. Knowl-
edgeDiscovery andDataMining,KDD2001,SanFrancisco,USA,pp. 245–250 (2001)

3. Breiman, L.: Random Forests. Machine Learning 45(1), 5–32 (2001)
4. Cardoso-Cachopo, A.: Datasets for single-label text categorization,

http://web.ist.utl.pt/acardoso/datasets

5. Church, K.W., Hanks, P.: Word association norms, mutual information and lexi-
cography. In: Proceedings of ACL 27, Vancouver, Canada, pp. 76–83 (1989)

6. Cortes, C., Vapnik, V.: Support-vector networks. Machine Learning 20, 273–297
(1995)

7. Cover, T., Hart, P.: Nearest neighbor pattern classification. IEEE Transactions on
Information Theory 13, 21–27 (1967)

8. Deerwester, S., Dumais, S.T., Harshman, R.: Indexing by Latent Semantic Analy-
sis. Journal of the American Society for Information Science 41(6), 391–407 (1990)

9. Dimitriadou, E., Hornik, K., Leisch, F., Meyer, D., Weingessel, A.: e1071: Misc
functions of the Department of Statistics (e1071), TU Wien. R package version 1.6
(2011), http://CRAN.R-project.org/package=e1071

10. Forman, G.: An Extensive Empirical Study of Feature Selection Metrics for Text
Classification. Journal of Machine Learning Research 3, 1289–1305 (2003)

11. Ikonomakis, M., Kotsiantis, S., Tampakas, V.: Text Classification Using Machine
Learning Techniques. WSEAS Transactions on Computers 4(8), 966–974 (2005)

12. Joachims, T.: Text Categorization with Support Vector Machines: Learning with
Many Relevant Features. In: Nédellec, C., Rouveirol, C. (eds.) ECML 1998. LNCS,
vol. 1398, pp. 137–142. Springer, Heidelberg (1998)

13. Johnson, D.E., Oles, F.J., Zhang, T., Goetz, T.: A decision-tree-based symbolic
rule induction system for text categorization. IBM Systems Journal 41(3), 428–
437 (2002)

http://web.ist.utl.pt/acardoso/datasets
http://CRAN.R-project.org/package=e1071

Text Categorization via Similarity Search 193

14. Keim, D.A., Oelke, D., Rohrdantz, C.: Analyzing document collections via context-
aware term extraction. In: Horacek, H., Métais, E., Muñoz, R., Wolska, M. (eds.)
NLDB 2009. LNCS, vol. 5723, pp. 154–168. Springer, Heidelberg (2010)

15. Kim, S.B., Rim, H.C., Yook, D.S., Lim, H.S.: Effective Methods for Improving
Naive Bayes Text Classifiers. In: Ishizuka, M., Sattar, A. (eds.) PRICAI 2002.
LNCS (LNAI), vol. 2417, pp. 414–423. Springer, Heidelberg (2002)

16. Lewis, D.D.: Test Collections, Reuters-21578,
http://www.daviddlewis.com/resources/testcollections/reuters21578/

17. Liaw, A., Wiener, M.: Classification and Regression by randomForest. R News 2(3),
18–22 (2002)

18. Lim, H.-S.: Improving kNN Based Text Classification with Well Estimated Param-
eters. In: Pal, N.R., Kasabov, N., Mudi, R.K., Pal, S., Parui, S.K. (eds.) ICONIP
2004. LNCS, vol. 3316, pp. 516–523. Springer, Heidelberg (2004)

19. Pang, P.S., Ban, T., Kadobayashi, Y., Song, J., Huang, K.: The 3rd Cybersecurity
Data Mining Competition (2012), http://www.csmining.org/cdmc2012

20. Porter, M.F.: An algorithm for suffix stripping. Program 14(3), 130–137 (1980)
21. R Development Core Team: R: A Language and Environment for Statistical

Computer. R Foundation for Statistical Computing, Vienna, Austria (2008),
http://www.R-project.org ISBN 3-900051-07-0

22. Radovanovic, M., Ivanovic, M.: Text Mining: Approaches and Applications. Novi
Sad J. Math 38(3), 227–234 (2008)

23. Salton, G., McGill, M.J.: An Introduction to Modern Information Retrieval.
McGraw-Hill (1983)

24. Salton, G., Wong, A., Yang, C.S.: A Vector Space Model for Automatic Indexing.
Communications of the ACM 18(11), 613–620 (1975)

25. Schölkopf, B., Smola, A.: A Short Introduction to Learning with Kernels. In:
Mendelson, S., Smola, A.J. (eds.) Advanced Lectures on Machine Learning. LNCS
(LNAI), vol. 2600, pp. 41–64. Springer, Heidelberg (2003)

26. Schütze, H., Hull, D.A., Pedersen, J.O.: A Comparison of Classifiers and Document
Representations for the Routing Problem. In: Proceedings of 18th ACM Interna-
tional Conference on Research and Development in Information Retrieval, SIGIR
1995, Seattle, USA, pp. 229–237 (1995)

27. Sebastiani, F.: Machine Learning in Automated Text Categorization. ACM Com-
puting Surveys 34, 1–47 (2002)

28. Torkkola, K.: Linear Discriminant Analysis in Document Classification. In: Pro-
ceedings of 2001 IEEE ICDM Workshop on Text Mining, ICDM 2001, San Jose,
USA, pp. 800–806 (2001)

29. Weichold, M., Huang, T.W., Lorentz, R., Qaraqe, K.: The 19th International Con-
ference on Neural Information Processing, ICONIP 2012 (2012),
http://www.iconip2012.org

30. Yang, Y., Liu, X.: A re-examination of text categorization methods. In: Proceedings
of the 22nd Annual International ACM SIGIR Conference on Research and Devel-
opment in Information Retrieval, SIGIR 1999, Berkeley, USA, pp. 42–49 (1999)

31. Yang, Y., Pedersen, J.O.: A Comparative Study on Feature Selection in Text Cate-
gorization. In: Proceedings of 14th International Conference on Machine Learning,
ICML 1997, Nashville, USA, pp. 412–420 (1997)

32. Zeng, X.Q., Wang, M.W., Nie, J.Y.: Text Classification Based on Partial Least
Square Analysis. In: Proceedings of ACM, Seoul, Korea, pp. 834–838 (2007)

http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.csmining.org/cdmc2012
http://www.R-project.org
http://www.iconip2012.org

Efficient Approximate Indexing
in High-Dimensional Feature Spaces

Simone Santini

Escuela Politécnica Superior
Universidad Autónoma de Madrid

Abstract. In this paper we present a fast approximate indexing method for high
dimensional feature space that uses the error probability as an independent vari-
able.

The idea of the algorithm is to define a low-dimensional feature space in which
a significant portion of the inter-distance variance is concentrated, to search for
the nearest neighborhood of the query in this space, and then to extend the search
by a factor ζ to include a number of objects “near” this nearest neighborhood. We
shall show that, under reasonable hypotheses on the distribution of items in the
feature space, it is possible to derive a relation between the value ζ and the error
probability.

We study the error probability and the complexity of the algorithm, validate
the model using a data set of images, and show how the results can be used to
design indexing schemes.

1 Introduction

Attempts to create fast indices in high dimensional metric feature spaces have been
(possibly inevitably) hampered by the peculiar characteristics of the metric of such
spaces. In particular, given a data base of N elements D = {q1, . . . , qN} in the space,
a point x, and the distance between x and its nearest neighbor Δ̄ = minq∈D{Δ(x, q)},
it is known that a fraction 1 − ε of the elements of D will be within a distance Δ̄ + ε
from x, where ε = Θ(1/N) [11].

This phenomenon, colloquially known as the curse of dimensionality all but prevents
the efficient application of divide and conquer techniques that partition the space. Tree-
based techniques such as R- and R∗-trees [9,2], K-D-trees [3], SS-trees [13], M-trees
[6], etc. or techniques based on variations of Linear Hashing such as Interpolation-
Based Index Maintenance (IBIM) [4] perform reasonably well for spaces of limited
dimensionality, but their performance degrades as the dimensionality of the space in-
creases and, in very high dimensional spaces such as those typical of multimedia data,
they are basically equivalent to a linear search, that is, they entail the determination of
the distance between the query and all elements in the data base.

Finding the actual nearest neighborhood in high dimensional feature spaces seems
inherently hard [5], and there has been a certain interest in approximate algorithms.

� This work was supported by the Ministerio de Educacion y Ciencia under the grant N.
TIN2011-28538-C02, Novelty, diversity, context and time: new dimensions in next-generation
information retrieval and recommender systems.

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 194–205, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Efficient Approximate Indexing in High-Dimensional Feature Spaces 195

Approximate nearest neighbor algorithms [1] guarantee that they will return a point at
a distance at most (1 + ε) times that of the nearest neighbor, but have been shown to
suffer the curse of dimensionality as well [7]. Probably Approximately Correct (PAC)
algorithms [7] return a point with a relative error of (1 + ε) with probability (1 − δ),
and ar more immune from the curse of dimensionality. The algorithm presented in this
paper belongs to this family, but it is based on different assumptions than other common
algorithms in this class. The algorithm in [7], for example, perform search in the full
space, and gains efficiency by finding an early candidate and then using the probability
distibution of the distance to cut further search. Here we use a filtering approach, similar
to that of [12]: we perform a search in a low-dimensional feature space to retrieve a set
of candidates among which we search the nearest neighbor in the full feature space. We
show that, under reasonable hypotheses on the distribution of the points in the space,
this allows us to guarantee that the nearest neighbor is found with a certain probability
and that, in case it is not found, its distance from the actual nearest neighbor is limited
with a given probability.

2 The Approximate Indexing Model

Consider a data base with N objects, each described by a m-dimensional feature vector.
A standard procedure in data base indexing is to rotate the feature space in such a
way that the variance of the data base is concentrated in a relatively small number
of axes. Let D ∈ RN×d a matrix containing all the feature vectors. We can apply
singular value decomposition [8] obtaining a decomposition D = UΣV ′, where Σ =
diag(σ1, . . . , σd) is a d × d diagonal matrix containing the eigenvalues of D (σ1 ≥
σ2 ≥ · · · ≥ σd), V is a d × d matrix containing the corresponding eigenvectors in the
columns, and U is a N × d orthogonal matrix.

The matrixV defines a transformation into a new feature space in which the data base
has variance σi in the ith axis. Since the eigenvalues are in descending order, most of the
variance is concentrated in the lowest dimensions of the space. In many applications,
this property is used for dimensionality reduction, discarding the last dimensions and
using only the first ones as a reduced feature space.

This facilitates indexing, as it reduces the dimensionality of the feature space, but it
presents two main disadvantages:

i) in order to guarantee acceptable results, the dimensionality reduction is in general
insufficient to guarantee efficient search; that is, even in the reduced space, search
is linear, and the algorithm must analyze the whole data base in order to determine
the nearest neighbor;

ii) discarding the higher elements may result, in certain cases, in retrieving a false near-
est neighbor; this is not necessarily a problem in most application (the method that
we present here does the same), but a simple pruning of the feature space does not
allow the designer to control or at least determine the probability of error.

The method that we present here is based on the same idea of operating in spaces of
reduced dimensionality, but it permits to operate a first search on a much smaller space
(thereby taking better advantage of fast search methods), and permits the designer to

196 S. Santini

tune the method to reach a controllable compromise between efficiency and precision.
We partition the feature space F into two orthogonal subspaces X and Y (viz. F =
X ⊕ Y ≈ X × Y) where X contains the first few axes of the transformed space, with a
variance σX in the distribution of features, and Y contains the rest of dimensions with
a variance σY . We choose the dimension of X in such a way that

ν =
σ2
X

σ2
Y

> 1 (1)

We then proceeds as follows:

i) given a query point q, we find the nearest neighbor n using only the feature space X ;
let d(q, n) be the distance between q and n in the sub-space X ;

ii) we increase the square of the distance by an amount α, and we do a range query on
the space X again for all items x such that d2(q, x) ≤ d2(q, n) + α; let T be the
set of items resulting from this search, i.e.

Tq = {x|d2(q, x) ≤ d2(q, n) + α} (2)

iii) We use the whole space, with a distance measure Δ, to find the closest neighbor to
q in Tq:

r = arg min
x∈Tq

Δ2(q, x) (3)

If X has a small dimensionality, the first and the second steps can be done in time
|Tq| logN , while the third requires at most time |Tq|.

The hypothesis that we make is that, if ν > 1 (viz. if the variance of the data base
is sufficiently concentrated in X), most of the times the true nearest neighbor will be
close enough to the one that we estimated in step i) using only the distance function of
X , therefore even with a small value of α (that is, with a small Tq), we shall be able to
retrieve the true nearest neighbor with sufficient probability.

Let distances be Euclidean. Let d : X ×X → R+ be the distance in the space X ,
δ : Y × Y → R+ the distance function in Y , and Δ : F × F → R+ the distance
function in F , with Δ2 = d2 + δ2.

In step i), we do a search on X , and we find a “bogus” nearest neighbor, b, at a
distance Δ2(q, b) = Δ2

b = d2b + δ2b . Suppose we have missed the true nearest neighbor.
Then there is an item t at a distance Δ2

t = d2t + δ2t with Δ2
t < Δ2

b .
We have found b as the nearest neighborhood on X , which entails db ≤ dt. Not only,

we have checked all items that, on X , were within a distance d2b+α from the query. Had
the true nearest neighbor been within this distance on X , it would have been included
in Tq and in step iii) we should have found it. If we have made a mistake, then t �∈ Tq,
that is, d2t > d2b + α. The situation is illustrated in figure 1. The true nearest neighbor,
t, is, in X , at a distance d2t > d2b + α, therefore will not be included in Tq and will not
be detected. Nevertheless, because of its very small component δt, its distance from the
query is smaller than that of the detected nearest neighbor.

We are interested in the probability that this happens, that is, in the probability

PE = P{Δ2
t < Δ2

b |d2t − d2b > α} = P{d2t − d2b < δ2b − δ2t |d2t − d2b > α} (4)

Efficient Approximate Indexing in High-Dimensional Feature Spaces 197

X

Y

�
�
�
�
�
�
�
�
�

���������

db
dt

α

δt

δb

Δt

Δb

Fig. 1. A situation in which the algorithm leads to a wrong detection of nearest neighbor: the
nearest neighbor that is being detected on X is b, with a distance Δb from the query. In X , the
true nearest neighbor is at a distance greater than d2b + α from the query, so it is not retrieved.
Nevertheless, the component δ, which is not considered in the determination of Tq , is much
smaller than that of the detected nearest neighbor, so that Δt < Δb.

If the objects have Gaussian distribution in the data base, the distances have a χ2

distribution with a number of degrees of freedom that depends on the dimension of
the respective sub-spaces1. We shall make a significant approximation, and assume that
the distances have a χ2 distribution with two degrees of freedom, that is, that they are
exponentially distributed. The variance of these distributions is the variance of the data
bases in the respective sub-spaces, i.e.

pd(u) =
1

2σ2
X

exp(− u

2σ2
X

) pδ(u) =
1

2σ2
Y

exp(− u

2σ2
Y

) (5)

The differences of distances that appear in PE have a Laplace distribution:

pΔd(u) =
1

4σ2
X

exp(− |u|
2σ2

X

)

pΔδ(u) =
1

4σ2
Y

exp(− |u|
2σ2

Y

)

(6)

So we have

PE =

∫ ∞

α

dxpΔd(x)

∫ ∞

x

dypΔδ(y)

=

∫ ∞

α

dx
1

4σ2
X

exp(− x

2σ2
X

)

∫ ∞

x

dy
1

4σ2
Y

exp(− y

2σ2
Y

)

=
1

2

σ2
Y

σ2
X + σ2

Y

exp

[
−1

2

σ2
X + σ2

Y

σ2
Y

α

σ2
X

] (7)

1 Not all data sets have a Gaussian distribution. However, as we shall see when comparing with
sampled data, in many cases the distributions that we obtain assuming a Gaussian distribution
do have a reasonable fit with the distribution of the actual data.

198 S. Santini

The parameter α is the additional distance that we consider in the space X . The param-
eter ζ = α/σ2

X can be seen as a distance expressed in units of σ2
X , that is, as a form

of natural distance, a number that does not depend on the unit that we use to measure
distances and coordinates in X , but only on the distribution of the data base. With this
definition we have:

PE =
1

2(1 + ν)
exp

[
−1 + ν

2
ζ

]
(8)

If we look for the nearest neighbor in X and then we “peek” forward for a (natural)
distance ζ, this is the probability that we will make a mistake in the determination of
the nearest neighbor.

In general, we are more interested in using this formula the other way around: given
a target error probability p, we want to know how far we have to peek in the data base
in order to attain it. This value is given by

ζ =
2

1 + ν
log

1

2(1 + ν)p
(9)

3 Complexity

if X is a low-dimensional feature space, the search for the nearest neighbor in X takes
time logN . If there are m objects within a distance ζ from the nearest neighbor, we
can find them in time m (this can be done, for example, using methods based on linear
hashing [4]). A further time m goes into finding the nearest neighbor in the whole
feature space among these objects (we assume that the whole feature space is high
dimensional, so that no indexing method performs better than linear scan). The total
execution time is therefore logN +2m. The first term is fixed, so in order to determine
the complexity of the algorithm we have to estimate the value of m. We find the nearest
neighbor at a distance d2b from the query, and we keep searching for a distance α. That
is, we put an element u in Tq if d2u − d2b < α. With the distribution for the difference of
distances given in 6, we have

P{d2u − d2b < α|d2u > d2b} =
P{d2u − d2b < α, d2u > d2b}

P{d2u > d2b}

= 2
1

4σ2
X

∫ α

0

dx exp[− x

2σ2
X

]

= 1− exp[− α

2σ2
X

]

= 1− exp[−ζ

2
]

def
= π(ζ)

(10)

The probability that in a data base of N elements, n are at a distance greater than ζ is
then

Pζ [n] =

(
N
n

)
π(ζ)n(1− π(ζ))N−n

≈ (Nπ(ζ))n

n!
exp[−Nπ(ζ)]

(11)

Efficient Approximate Indexing in High-Dimensional Feature Spaces 199

where the Poisson approximation is valid for N large. Then

m(ζ) = E[Pζ [n]] = Nπ(ζ) = N

(
1− exp

(
−ζ

2

))
(12)

If we are interested in the complexity for a prescribed error probability p, we plug in
eq. (9) obtaining:

m(p) = N

(
1− exp

(
− 1

1 + ν
log

1

2(1 + ν)p

))
= N

[
1− (2(1 + ν)p)

1
1+ν

]
def
= Nμ(ν, p)

(13)

The value μ(ν, p) represents the fraction of the data base that is necessary to search in
order to obtain the nearest neighborhood with probability p.

* * *

Before proceeding to the validation of the model and to some general considerations
on its predictions, we summarize here the results obtained. Remember that we divide
the search space into a low-dimensional one in which the distance measures have a
variance σ2

X and a high dimensional one in which the variance is σ2
Y < σ2

X .

i) If we search the nearest neighbor in the low-dimensional space and we extend the
search for a distance α = ζσ2

X we find the nearest neighbor with a probability:

PS(ζ) = 1− PE(ζ) = 1− 1

2(1 + ν)
exp

(
−1 + ν

2
ζ

)
(14)

ii) Correspondingly, if we want to find the nearest neighbor with probability 1 − p we
shall have to find it X and then extend the search up to a distance α = ζσ2

X , with

ζ =
2

1 + ν
log

1

2(1 + ν)p
(15)

iii) Given a value of ζ, the average complexity of the search (assuming that search is
efficient in the low-dimensional space) is

C(ζ) = logN +N

(
1− exp

(
−ζ

2

))
(16)

iv) If we want to find if we want to find the nearest neighbor with probability 1 − p ,
the complexity is

C(p, ν) = logN +N
[
1− (2(1 + ν)p)

1
1+ν

]
= logN +Nμ(ν, p) (17)

200 S. Santini

4 Validation

For the purpose of model validation, we use the Im2Text data base [10]. The data base
contains 1.000.000 annotated images, although in this case we didn’t use the captions.
All the statistical results are based samples of 10.000 images selected at random from
the data base, with several independent sampling used in order to confirm that the values
are significant.

As a feature vector, we used a block histogram on the luminance channel of the
images. Images were resized to a standard size of 1024 by 1024 and divided into blocks
of size 128 (8 by 8 blocks). For each block, the mean and variance of the histogram
were computed and united to form a feature vector of 128 double precision numbers.
Singular value decomposition was then applied so as to obtain a feature space (the
transformed space) in which the variance was concentrated in a relatively small number
of dimensions.

The distributions of interests for this data base are shown in figure 2 for one of the
samples. All the distribution have been obtained through random samples of the data
set [10] and cross-validated using other data sets: they are highly representative of the
distributions that one obtains when applying singular value decomposition to actual
data sets in a wide range of multimedia applications (which are the ones that motivated
this work), and reasonably representative of other high-dimensional data sets.

Figure 2(a) shows the singular values obtained through singular value decomposi-
tion; figure 2(b) shows the distribution of the distance d2 between images (computed
over the whole feature space), and figure 2(c) shows the distribution of the distance dif-
ference d2i − d2j . The latter is superimposed to the theoretical model that we use in this
paper.

Fig. 2. The distributions of interest for the validation set: the singular values (a), the distribution
of the inter-image distances d2 (b), and the distribution of the distance differences d2i − d2j (c).
The distance differences are superimposed to the theoretical Laplace distribution, for comparison
purposes.

The coincidence is not perfect (for high dimensional feature spaces the actual dif-
ference is a Normal distribution). Moreover, the distribution of d2 doesn’t look at all

Efficient Approximate Indexing in High-Dimensional Feature Spaces 201

like the exponential that the model hypothesizes. The distribution of d2 for features of
reduced dimensions (the first n components of the features in the transformed space) is
shown in figure 3 This is not necessarily a problem for our model, as the distribution

Fig. 3. The distribution of the square of the inter-image distance (d2) for feature spaces of reduced
dimensionality n

of d2 never enters the equations: only the distribution of Δ2 does and this, even in the
worst case of a high dimensional feature space, is close enough to the actual distribu-
tion so that the advantage of a closed-form solution, afforded by the Laplace distribution
outweighs the disadvantages of the imprecision of the model.

Figure 4 shows the comparison between the theoretical value of the error probability
and the measured one as a function of ν for several values of ζ.

The model underestimates somewhat the actual performance for the highest values
of ν (viz., in this experiments, when the initial search is done in a space of dimension
10 or more), as the experiment always finds the nearest neighbor. . As ν increases, the
theoretical model converges rapidly to 1, so the model and the measurements converge
once again (albeit trivially: the area of very high ν will result in searches that are just as
inefficient as those carried out on the whole feature vector).

We have attempted a validation of the search complexity (viz. of the number m(ζ)).
The results obtained were formally significant, but the variance of the number of objects
actually retrieved in the data base was so high that almost any reasonable estimation
of m would have been correct. This might indicate that the complexity depends on
parameters other than ν and ζ, parameters that, left uncontrolled in our validation, cause
the high variance. For the purposes of the following section, we shall take a formalist
point of view and assume that, since the prediction is well within the variance of the
data, it can be assumed to be correct.

202 S. Santini

Fig. 4. Comparison between the error probability in finding the nearest neighbor predicted by the
model and that measured on the Im2Text data base using the features described in the paper

5 Some Analytical Considerations

We begin by noticing that, in equation (14), if ζ = 0, then

PE(0) =
1

2(1 + ν)

def
= P

↑
E(ν)

PS(0) =
1 + 2ν

2(1 + ν)

def
= P

↓
S(ν)

(18)

P
↓
S(ν) is the minimal success probability (for a given value of ν) that requires looking

beyond the nearest neighbor found in the first step of the algorithm. If the desired suc-
cess probability is less than P

↓
S(ν) (or, equivalently, if the desired error probability is

higher than P
↑
E(ν)) then one can simply search for the nearest neighbor in the reduced

feature space. This cut probability is shown in table 1 for various values of ν. As ex-
pected, for high values of ν it is often a good strategy to simply ignore the rest of the
feature space (this is what ζ = 0 amounts to) and do the search in the reduced space.
For smaller ν and/or if a very high success probability is desired, then the full algorithm
should be applied.

Efficient Approximate Indexing in High-Dimensional Feature Spaces 203

Table 1. The probability of success P↓
S beyond which it is convenient just to search the reduced

feature space, as a function of ν

ν 0.2 0.5 1 2 4 8 16 20
P
↓
S 0.583 0.667 0.750 0.833 0.900 0.944 0.971 0.976

Fig. 5. Speedup of the method proposed here with respect to the baseline. The saturation point
depends on the size of the data base, being roughly proportional to N/ log N . The values shown
are for N = 106. After saturation the curve decreases as N(1− p)/ log N .

In order to compare the proposed method with a baseline, we consider a very simple
method that also finds the nearest neighbor with a prescribed probability. The method
is simply this: given the desired error probability p, reduce the data base considering
a random sample of N(1 − p) objects, and search the nearest neighbor only in this
reduced data base. It is easy to see that the search will yield the actual nearest neighbor
with a probability p and even with a linear method, we have reduced the search time by
a factor (1− p).

The complexity of the method proposed here, for a prescribed error probability, is
given by eq. (17). The speed-up of this method, with respect to to the baseline, is:

ρ(p, ν) =
N(1− p)

logN +Nμ(p, ν)
=

1− p
logN
N + μ(p, ν)

(19)

For large data bases, (logN)/N is very small, so we can approximate the speed-up as

ρ(p, ν) =
1− p

μ(p, ν)
=

1− p

1− (2(1 + ν)p)
1

1+ν

(20)

It is easy to see that, for all ν > 0, (2(1+ν)p)
1

1+ν > p, from which we derive ρ(p, ν) >
1, i.e. using the low-dimensional space as a filter always yields better performance
(apart from the negligible factor (logN)/N). Figure 5 plots the logarithm of the speed-
up as a function of p for various values of ν. Note that in the graph the value of ρ as given

204 S. Santini

Fig. 6. Values of ζ (a) and μ (b) as a function of the desired error probability for several values of
ν

by (20) goes to infinity. This doesn’t happen in practice because, when μ(p, ν) becomes
zero, that is, for p = P

↓
S(ν), the term (logN)/N dominate. The speed up, therefore,

increases with p according to (20) for p < P
↓
S(ν), and has a value ρ = N(1−p)/ logN

for p > P
↓
S(ν).

Finally, we propose some of the data to be used to the design of indexing solution
using the method introduced here. For the designer, the most important independent
variable is the error probability p. Given a system with a low dimensional space (with
an efficient index) and a desired error probability p, the designer will derive the value
of ζ used in the second step of the method of page 196 and then will estimate the
complexity of the method, that is, the value of μ. Figure 6.a shows the predicted values
of ζ as a function of the desired error probability for given values of ν. Figure 6.b shows
the value of μ (which determines the execution time of the algorithm) as a function of
the desired error probability for various values of ν.

6 Some Final Remarks

One of the major uncertainties of the model, as it stands now, is the high variance
measured in the measurement of the number of accessed data items as a function of ζ for
a given value of ν. This makes the model formally correct, but it makes its complexity
predictions quite imprecise. The most likely explanation is that the complexity depends
on variables other than ν and ζ and the fact that these variables are not controlled causes
the high variance. A more detailed model is necessary to reveal what are these variables.

The algorithm, as it is, begins by looking for the nearest neighbor in the space X .
This element is needed only in order to determine its distance d2 from the query so that
we can determine the range to search in X as d2 + ζσ2

X . It should be possible to avoid
this step–and consequently eliminate the factor log N from the complexity expression–
by deriving a statistical characterization of d2. This would make the algorithm faster

Efficient Approximate Indexing in High-Dimensional Feature Spaces 205

for a given value of ζ, but the additional uncertainty introduced by the statistical deter-
mination will probably require a larger ζ for a given target error probability. It will be
necessary to analyze whether, and in what circumstances, this is advantageous.

References

1. Arya, S., Mount, D.M., Netanyahu, N.S., Silverman, R., Wu, A.Y.: An optimal algorithm
for approximate nearest neighbor searching in xed dimensions. Journal of the ACM 45(6),
891–923 (1998)

2. Beckmann, N., Kriegel, H.P., Schneider, R., Seeger, B.: The r∗-tree: an efficient and robust
access method for points and rectangles. In: Proceedings of the ACM SIGMOD International
Conference on the Management of Data (1990)

3. Bentley, J.L.: K-D trees for semidynamic point sets. In: Proceedings of the Sixth ACM An-
nual Symposium on Computational Geometry (1990)

4. Burkhard, W.: Interpolation/based index maintenance. In: Proceedings of the ACM Sympo-
sium on Principles of database systems (PODS), pp. 76–89 (1983)

5. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquı́n, J.L.: Searching in metric spaces. ACM
Computing Surveys (CSUR) 33(3), 273–321 (2001)

6. Ciaccia, P., Patella, M., Zezula, P.: M-tree: An efficient access method for similarity search
in metric spaces. In: Proceedings of the 23rd VLDB (Very Large Data Bases) Conference,
Athens, Greece (1997)

7. Ciaccia, P., Patella, M.: Pac nearest neighbor queries: Approximate and controlled search in
high-dimensional and metric spaces. In: Proceedings of the International Conference on Data
Engineering, ICDE (2000)

8. Deerwester, S., Dumais, S.T., Furnas, G.W., Landauer, T.K., Harshman, R.: Indexing by la-
tent semantic analysis. Journal of the American Society for Information Science 41(6), 391–
407 (1990)

9. Gravila, D.M.: The R-Tree index optimization. In: Waugh, T., Healey, R. (eds.) Advances in
GIS Research. Taylor & Francis (1994)

10. Ordoñez, V., Kulkarni, G., Berg, T.L.: Im2text: Describing images using 1 million captioned
photographs. Neural Information Processing Systems (2011)

11. Pestov, V.: On the geometry of similarity search: dimensionality curse and concentration of
measure. Information Processing Letters 73(1-2), 47–51 (2000)

12. Seidl, T., Kriegel, H.-P.: Optimal multi-step k-nearest neighbor search. In: Proceedings of
the ACM SIGMOD, International Conference on Management of Data, Seattle, USA, pp.
154–165 (1998)

13. White, D., Jain, R.: Similarity indexing with the SS-tree. In: Proc. 12th IEEE International
Conference on Data Engineering (1996)

Semi-supervised Tag Extraction

in a Web Recommender System

Vasily A. Leksin1 and Sergey I. Nikolenko1,2,3

1 Surfingbird LLC, ul. Bazhova, d. 24, korp. 2, 129128 Moscow, Russia
vasily.leksin@gmail.com

2 Laboratory of Internet Studies,
National Research University Higher School of Economics,

ul. Soyuza Pechatnikov, d. 16, 190008 St. Petersburg, Russia
3 Steklov Mathematical Institute, nab. r. Fontanka, 27, St. Petersburg, Russia

sergey@logic.pdmi.ras.ru

Abstract. An important characteristic feature of recommender systems
for web pages is the abundance of textual information in and about the
items being recommended (web pages). To improve recommendations
and enhance user experience, we propose to use automatic tag (key-
word) extraction for web pages entering the recommender system. We
present a novel tag extraction algorithm that employs semi-supervised
classification based on a dataset consisting of pre-tagged documents and
(for the most part) partially tagged documents whose tags are automat-
ically mined from the content. We also compare several classification
algorithms for tag extraction in this context.

Keywords: tag extraction, recommender systems, text mining.

1 Introduction

One characteristic feature of recommender systems dealing with web pages (e.g.,
Surfingbird or StumbleUpon) is that unlike many classical recommender systems
with media or product items (Netflix, Amazon etc.) web pages as recommenda-
tion objects contain a lot of textual information. This textual information can
augment pure collaborative filtering methods to improve recommendations, es-
pecially in cold start situations, and enhance user experience. One important
aspect of improving user experience with content information is tagging. Tags
let users easily find similar objects, quickly assess a new object and so on.

In one typical scenario of using tags in recommender systems, the tags are
already in existence, and the purpose is to make recommendations, either prod-
uct [1, 2] or social [3], by an existing set of tags assigned to users and/or items.
Another class of algorithms includes using variations of collaborative filtering
algorithms, based on either cooccurrence analysis [4], nearest neighbors [5], or
matrix and/or tensor factorizations [6, 7], to recommend tags for users to apply
to an item (e.g., for further use with a recommender system).

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 206–212, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Semi-supervised Tag Extraction in a Web Recommender System 207

������
�	
����

��	�
���	�
�����	�
����

���
���
������

��
���	�
��
��	

�
��	��

���
�����

���	�

�����	�
����

�
��	�� �
��	��

�������
���	�

��������	��

��� �	
	��

���	�

�����	�
���

Fig. 1. General scheme of our tag extraction approach

However, in the case of a web page recommender system like Surfingbird the
problem is not how to utilize an already existing wealth of information for rec-
ommendations but rather how to assign tags to web pages for further use: there
are many pages, and collaborative filtering algorithms are oriented towards the
“heavy tail” that would find personalized recommendations for each user. Thus,
we cannot assume that users and/or moderators will cover the database with
tags all by themselves, or at the very least we have to begin with a sufficiently
good tag coverage for the existing database and then rely upon existing tag
recommendation algorithms.

Most systems that use tags rely on either users or external structured on-
tologies (e.g., a movie database) to provide them and usually face problems like
fuzzy string searching to cope with misprints and spelling variations. However,
in the context of a large-scale content-based recommender system for web pages
(or other texts) user-created tags are insufficient: new web pages are mostly
added automatically, and a user who has already read a recommended web page
is unlikely to spend time to tag it. Therefore, in this context we have to solve
a harder problem: suggest tags for web pages based on content analysis for web
pages and a “seed” training dataset Re of tags for web pages that come pre-
tagged (e.g., from well kept RSS streams). We call this problem semi-supervised
tag extraction. In this work, we present a novel approach to semi-supervised tag
extraction for web pages as recommender system objects and show promising
empirical results.

2 Tag Extraction

Our algorithm for automated tag extraction consists of three main stages, as
shown on Fig. 1:

(1) extract tags from the pre-tagged part of the dataset Re and social networks;

(2) perform partial tag labeling for the untagged part of the datasets based on
key phrase occurrence, getting a partially tagged dataset Rp;

208 V.A. Leksin and S.I. Nikolenko

Gadgets Games Books Music Movies

android assassin creed stories bahh tee the matrix
hardware video games albert camus britney spears pearl harbor
google rally o. henry whitney houston sherlock holmes
software development ryunosuke akutagawa george watsky apocalypse now
iphone reviews audiobook rap titanik
samsung call of duty steve jobs slipknot ocean’s thirteen
apple star wars arkady gaidar emma hewitt comedy
ios half-life pierre gamarra james blunt south tablet
park pc releases biography ellie white avatar
smartphones angry birds guy endore izzy johnson the green mile

Fig. 2. Most popular tags from some of Surfingbird’s categories (mostly translated
from Russian)

(3) learn a tagging model (classifier) from Re ∪ Rp and apply it to Rp, getting
a completely tagged dataset as well as a model ready to tag new resources
(web pages).

In this section, we deal with the first two stages.
On the first stage, tag dictionaries are constructed. In the Surfingbird recom-

mender system, web pages are divided into thematic categories (e.g., “Gadgets”,
“Games”, “Books”, “Music”, “Movies”, or “TV”), so we construct dictionaries
for each category independently. The first source of tags is the “seed” training
dataset, in which the correct tags are provided by publishers in RSS streams. For
many important categories, there is also a very convenient source of tags in the
form of social networks. Many (about half) users log in through social networks
(the most popular ones in Russia being vkontakte and facebook), and it becomes
possible to mine information about a user’s interests. Thus, we can extract a list
of tag candidates provided by all users interested in a specific thematic category.
After dictionaries have been constructed for each thematic category, we prune
uninformative tags, i.e., tags that are either too rare or too popular (we choose
a threshold for that purpose). We take the union of social networks tags and
predefined tags as the total vocabulary of tags; a sample of the most popular
tags in some popular categories is given in Fig. 2.

On the second stage, we search for occurrences of tags in the content of web
pages for which tags are unknown (note that both individual words and phrases
can become tags). To do so, we extract useful textual content from each web
page, transform the tag phrase into a search query by making a conjunction of
all words and use text search to find the corresponding web pages. Note that
this step can be efficiently implemented on the database level with, e.g., the
PostgreSQL full text search feature. For each search result, we check whether all
words indeed occur as the tag phrase (e.g., that the document actually mentions
“Stephen King” rather than Stephen Fry making fun of Elvis Presley); due to
possible variations and different syntactic forms, this is done with an inexact
string matching algorithm that would be infeasible to run on each document.

Semi-supervised Tag Extraction in a Web Recommender System 209

As a result of the first two stages, we get a list of tags T and a training dataset
of resources R. The dataset consists of two parts: pre-tagged web pages Re in
the “seed” dataset where we know the tags exactly and partially tagged web
pages Rp whose known tags are extracted from occurrences in content. However,
there are many useful tags that can be assigned to a web page but do not
actually occur on it; e.g., a web page from the “Books” category devoted to Alice
in Wonderland could be supplied with tags “children’s literature”, “classical
literature”, or “Lewis Carroll” even if these phrases do not actually appear in
the text. This is the subject of the third, main step in our approach.

3 Tag Recommendation

Consider the set F = (T,R, Y), where T is a finite set (dictionary) of tags,
R = Re ∪Rp is a finite set of resources (web pages) divided into exactly tagged
resources Re and partially tagged resources Rp, and Y ⊆ T ×R is the available
assignment of tags to resources. Let Tr = {t ∈ T | (t, r) ∈ Y } denote the
set of tags occurring in the content of a resource r. The semi-supervised tag
recommendation problem is to find, for a given training set F , which of the tags
t ∈ T should match the resources r ∈ Rp in addition to the ones already specified
by Y . We pose this problem as a classification problem in the space of resource
content, transforming each r ∈ R into a bag of words and denoting by rw the
number of times a word w occurs in a resource r.1 Tag recommendation here
can be considered as a binary classification problem: does a given tag t match
a given page r? We compare two different sets of resource features: word counts
rw and tf-idf weights

tf-idf(w, r,R) = tf(w, r)idf(w,R) =
rw∑

w∈W rw
log

|R|
|{r ∈ R | w ∈ r}| .

For the classification methods, in this work we concentrate on methods re-
lated to the general approach of support vector machines (SVM). We apply and
compare the following classification algorithms.

1. Regularized Least Squares Classification (RLSC) [8] with linear kernel: solve
a minimization problem with the square loss function, i.e., find the weights w
that solve the following optimization problem:

min
w∈Rd

1

2

n∑
i=1

‖yi −w�xi‖22 +
λ

2
‖w‖22.

2. Support Vector Machine (SVM) with l2-SVM loss trained with the mod-
ified Newton method [9], i.e., find the weights w that that solve the following
optimization problem:

min
w∈Rd

1

2

∑
d∈D

l2
(
yiw

�xi

)
+

λ

2
‖w‖2, l2(z) = max

(
0, 1− z2

)
;

1 Note that although we discard word order information in classification, it may and
will be used to construct the training set Rp.

210 V.A. Leksin and S.I. Nikolenko

3. Multi-switch Transductive SVM (MTSVM) [10], a semi-supervised version
of SVM with l2 loss function based on the following optimization problem:

min
w,y′

[
λ

2
‖w‖2 + 1

2|D|
∑
i∈D

l2
(
yiw

�xi

)
+

λ′

2|U |‖w‖2
]
, l2(z) = max(0, 1− z2),

subject to
1

|U |
∑
j∈U

max
(
0, sign

(
w�xj

))
= r,

where U is the unlabeled part of the data, y′ are labels for unlabeled data that
are also being optimized, and r is a predefined fraction of unlabeled data that
is expected to have positive labels (r can be estimated from the labeled part of
the data). MTSVM is reported to be very successful on large sparse partially
labeled datasets [10].

4. Deterministic Annealing Semi-supervised SVM (DASVM) [10], a relaxation
of the MTSVM problem with a loss function close to squared loss for large values
of temperature (i.e., in the beginning of the annealing process) and converging to
the l2 loss function used in TSVM as temperature drops to zero. This approach
lets DASVM overcome the problems related to the fact that l2 loss is nonconvex:
we begin with a convex squared loss function, where a global optimum is easy
to find, and then gradually move to the nonconvex l2 loss, hopefully staying in
the global optimum and avoiding local ones. We refer to [10] for details of the
training algorithm.

We consider the first two algorithms, RLSC and SVM, in order to compare
traditional fully supervised approaches to tag recommendation to our semi-
supervised approach. In particular, in [11] an SVM classifier with tf-idf features
showed the best classification results in a tag recommendation system.

4 Evaluation

Experiments were conducted on the real life Surfingbird collection of web pages.
To evaluate the performance of our method, we selected all web pages from the
“Gadgets” category, among them 608 pre-tagged web pages in the “seed” dataset
from RSS streams and 9,442 untagged web pages that were tagged on the first
two stages of our algorithm. A tag is included in the dictionary if (i) it appears
in the web page title, and (ii) it appears at least 5 times in the body of the web
page. As a result, we selected 421 tags in the category “Gadgets”.

To get training features for documents, we applied basic text mining proce-
dures (extracting useful text, stop word removal, and lemmatization) for all web
pages in the dataset. Then we discarded words that appear in the dictionary of
tags from the resulting documents (an important step since otherwise a classifier
would simply learn that a tag is characterized by words occurring in it). The
final vocabulary consisted of 52,383 terms; each document was then converted to
vectors of word counts rw and tf-idf weights tf-idf(w, r,R). The training dataset
consisted of all partially tagged web pages and randomly chosen 60% of web

Semi-supervised Tag Extraction in a Web Recommender System 211

Table 1. A comparison of different classification algorithms

Algorithm RLSC SVM MTSVM DASVM

Micro-F, term occurrence count features 0.21 0.25 0.31 0.30
Micro-F, tf-idf features 0.24 0.27 0.35 0.33
Micro-F, counts, tags not occurring in the text 0.13 0.15 0.20 0.21
Micro-F, tf-idf, tags not occurring in the text 0.14 0.17 0.21 0.23

pages from the “seed” dataset with known tags; the testing dataset included the
remaining 40% of the “seed” dataset.

To test classifiers, we converted tag extraction to a set of binary classification
problems. For fully supervised classification (RLSC and regular l2-SVM), the
problem was reduced to a binary classification task for each tag t ∈ T by assign-
ing labels from {−1,+1} as follows: for r ∈ Re, assign label +1 if r is labeled
by t and −1 otherwise; for r ∈ Rp, assign label +1 if r is labeled by t (but no
negative examples from Rp – our purpose here is to add more tags to Rp). For
semi-supervised classification, those r ∈ Rp that do not have t assigned to them
are added to the training set as unlabeled data.

Table 1 shows microaverage F-measure (micro-F) values [12] for different clas-
sification algorithms. To understand the advantages of this method over key
phrase extraction methods [13], we also computed the micro-F measure sepa-
rately on those tags from the validation part of Re that do not occur in the
page’s content, i.e., tags that generalize and augment the content. These re-
sults are shown in the bottom row of Table 1. The best classification quality
was shown by semi-supervised methods in every case; tf-idf weights consistently
outperform word counts as classification features. The results show an improve-
ment over traditional approaches presented in, e.g., [11]. Importantly, even new
tags that do not occur in the text are predicted with reasonable micro-F values
comparable to other tag recommendation methods based on tf-idf weights.

5 Conclusion

We present a novel approach to tag extraction based on semi-supervised learning.
Our approach works well even in the case of relatively small amounts of pre-
tagged web pages (in our case, 5-10% of the total amount of web pages). Further
work may include finding synonyms among tags with ideas similar to [14] to
reduce tag space and thus improve the training set for classification. Another
promising approach is to pair our method with topic modeling in a unified system
similar to the ones proposed in [15, 16]; this will further enhance tag mining in
the semi-supervised case.

Acknowledgements. This work has been supported by the Russian Presiden-
tial Grant Programme for Young Ph.D.’s, grant no. MK-6628.2012.1, Russian
Presidential Grant Programme for Leading Scientific Schools grant no. NSh-

212 V.A. Leksin and S.I. Nikolenko

3229.2012.1, and Russian Fund for Basic Research grants 12-01-00450-a, 11-01-
12135-ofi-m-2011, and 11-01-00760-a.

References

1. Guy, I., Zwerdling, N., Ronen, I., Carmel, D., Uziel, E.: Social media recommen-
dation based on people and tags. In: Proceedings of the 33rd Annual ACM SIGIR
Conference, pp. 194–201 (2010)

2. Sen, S., Vig, J., Riedl, J.: Tagommenders: Connecting users to items through tags.
In: 18th International World Wide Web Conference, p. 671 (April 2009)

3. Zhou, T.C., Ma, H., King, I., Lyu, M.R.: UserRec: A user recommendation frame-
work in social tagging systems. In: Proceedings of the 24th AAAI Conference on
Artificial Intelligence, pp. 1486–1491 (2010)

4. Sigurbjörnsson, B., van Zwol, R.: Flickr tag recommendation based on collective
knowledge. In: Proceedings of the 2nd ACM Conference on Recommender Systems,
pp. 327–336 (2008)

5. Jäschke, R., Marinho, L., Hotho, A., Schmidt-Thieme, L., Stumme, G.: Tag recom-
mendations in folksonomies. In: Kok, J.N., Koronacki, J., Lopez de Mantaras, R.,
Matwin, S., Mladenič, D., Skowron, A. (eds.) PKDD 2007. LNCS(LNAI), vol. 4702,
pp. 506–514. Springer, Heidelberg (2007)

6. Rendle, S., Schmidt-Tieme, L.: Pairwise interaction tensor factorization for person-
alized tag recommendation. In: Proceedings of the 3rd ACM International Confer-
ence on Web Search and Data Mining, pp. 81–90 (2010)

7. Symeonidis, P., Nanopoulos, A., Manolopoulos, Y.: Tag recommendations based
on tensor dimensionality reduction. In: Proceedings of the 2nd ACM Conference
on Recommender Systems, pp. 43–50 (2008)

8. Rifkin, R.M., Yeo, G., Poggio, T.: Regularized least-squares classification. In: Ad-
vances in Learning Theory: Methods, Model and Applications. NATO Science Se-
ries III: Computer and Systems Sciences, vol. 1, pp. 131–154. IOS Press, Amster-
dam (2011)

9. Keerthi, S.S., DeCoste, D.: A modified finite Newton method for fast solution of
large scale linear SVMs. Journal of Machine Learning Research 6, 341–361 (2005)

10. Sindhwani,V.,Keerthi, S.S.: Large scale semi-supervised linear svms. In:Proceedings
of the 29th Annual ACM SIGIR Conference, pp. 477–484. ACM, New York (2006)

11. Illig, J., Hotho, A., Jäschke, R., Stumme, G.: A comparison of content-based
tag recommendations in folksonomy systems. In: Wolff, K.E., Palchunov, D.E.,
Zagoruiko, N.G., Andelfinger, U. (eds.) KONT/KPP 2007. LNCS(LNAI), vol. 6581,
pp. 136–149. Springer, Heidelberg (2011)

12. Fan, R.E., Lin, C.J.: A study on threshold selection for multi-label classification.
Technical report, National Taiwan University (2007)

13. Medelyan, O., Frank, E., Witten, I.H.: Human-competitive tagging using automatic
keyphrase extraction. In: Proceedings of the Conference on Empirical Methods in
Natural Language Processing (EMNLP 2009), vol. 3, pp. 1318–1327 (2009)

14. Turney, P.D.: Mining the Web for Synonyms: PMI-IR versus LSA on TOEFL. In:
Flach, P.A., De Raedt, L. (eds.) ECML 2001. LNCS(LNAI), vol. 2167, pp. 491–502.
Springer, Heidelberg (2001)

15. Si, X., Sun, M.: Tag-LDA for scalable real-time tag recommendation. Journal of
Computational Information Systems 6, 23–31 (2009)

16. Krestel, R., Fankhauser, P.: Personalized topic-based tag recommendation. Neural
Computation 76(1), 61–70 (2012)

A Similarity Model for 3D Objects
Based on Stable Sub-clouds

Markus Mauder1, Peer Kröger1, and Karl-Ludwig Schinner2

1 Institute for Computer Science, Ludwig-Maximilians-Universität München, Germany
{mauder,kroeger}@dbs.ifi.lmu.de

2 Opdi-Tex GmbH, Eresing, Germany
schinner@opdi-tex.de

Abstract. We present an idea of a novel similarity model for objects represented
by 3D point clouds that were generated by scans of real-world objects. Various
existing approaches find descriptive points on the object surface or extract fea-
tures of groups of points. However, 3D object scans when conducted outside a
lab environment often suffer from imprecisions and noise artifacts, which many
existing approaches do not handle well. To better tolerate these imperfections,
our model extracts stable sub-clouds from the input point cloud, which represent
classes of adjacent sub-clouds sharing similar features. We demonstrate experi-
mentally that features generated from these sub-clouds can be used to establish a
measure of similarity between objects. We show preliminary results of an applica-
tion of this technique to point clouds of models scanned from real-world objects
and demonstrate that this technique has good potential to deal with imperfect data
by showing how the computed distance relates to degrees of modification of the
data. Our technique extracts features from particularly resilient portions of the
object and is thus better able to accommodate deficiencies in the input data.

1 Introduction

Large numbers of 3D objects from devices like scanners or LIDAR sensors are now
being generated in areas such as archeology or geography. Typically, this data consists
of 3D point clouds representing real objects. Object recognition and 3D model acquisi-
tion, e.g. for classification and tagging, is a crucial step for processing this data. Since
manual processing of such big amounts of data is not feasible, automatic methods for
acquiring such models are required [2]. One key part of an automatic acquisition of
objects is a similarity model for 3D point cloud representations that can be used by any
classifier. The majority of 3D point cloud data exhibits a considerable amount of noise
or artifacts due to limitations of the devices generating the raw data. Traditional sim-
ilarity models (cf. [3]) often cannot handle noise effectively and accurately and, thus,
are quite limited for automatic 3D model acquisition. In this paper, we sketch a novel
similarity model for 3D point clouds that has the potential to be quite robust against
those artifacts. It follows a data-partitioning approach and proposes a novel object par-
titioning, stable sub-clouds, that have descriptive power and can be used for extracting
an object descriptor. The presented approach consists of three steps: First, the point
cloud representing the entire object is partitioned into sub-clouds. Second, features are

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 213–218, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

214 M. Mauder, P. Kröger, and K.-L. Schinner

Fig. 1. Example of stable sub-clouds

extracted. Features of the most stable sub-clouds are generated to derive a descriptor of
the original object. Third, a distance measure is defined to compute the similarity be-
tween any two objects. The main contribution is the computation of stable sub-clouds
and their processing to derive a descriptive feature vector. This technique is similar
in spirit to the image analysis technique Maximally Stable Extremal Regions[6] which
identifies pixel sub-sets that are unchanged by environmental influence.

The presented object partitioning is based on the observation that adjacent cross
sections through any object normally have very similar shapes. As the distance be-
tween two cross sections increases their shapes will become less similar. The rate of
this change is an indication of the prevalence of this particular cross section’s shape
throughout the object. In the presented model, each cross section is represented by a
sub-set of the model’s points, which approximate the cross section’s shape. These sub-
clouds can be compared with one another to establish a rate of change at the current
position. Comparing sub-clouds that are close is expected to yield a lower difference
value than that of farther spaced sub-clouds. This difference is indicative of its suit-
ability for matching to a sub-cloud from a differently represented version of the same
object. We call the length of the range in which no sub-cloud differs to a reference
sub-cloud by more than a threshold, the stability of the reference sub-cloud. Sub-clouds
with larger stability are more likely to be matched. The most stable sub-clouds’ features
form the descriptor for the entire cloud. Figure 1 depicts the five most stable sub-cloud
sequences in a down-sampled version of the Stanford Bunny from the Stanford 3D
Scanning Repository1. We postulate that the extracted features are invariant to artifacts
introduced by the acquisition. The extracted descriptor is both low-dimensional and ro-
bust. It is invariant to the resolution and orientation of the scan (as long as the scan line
is preserved). Additionally, we define a distance measure for comparing point cloud
objects using these sub-cloud features.

In the following section our technique is presented. Section 3 describes preliminary
experiments showing our model’s response to noise. Section 4 concludes the paper.

2 A Similarity Model Based on Stable Sub-clouds

Our method for the automatic recognition of 3D objects intends to be resistant to the
influence of noise in the acquisition process. Toward this end it represents the original

1 http://graphics.stanford.edu/data/3Dscanrep, retrieved on 2013-02-25.

http://graphics.stanford.edu/data/3Dscanrep

A Similarity Model for 3D Objects Based on Stable Sub-clouds 215

Require: pts
1: i := 0
2: d := inf
3: while i < pts.length do
4: for t ∈ 1 . . . rest do
5: s1, s2 := subclds(pts[i], t)
6: if diff (s1, s2) > d then
7: break
8: end if
9: end for

10: end while
11: yield(s1)
12: i := i+ 2 · t

Algorithm 1. Shape detection Fig. 2. Locally stable sub-cloud, stability graph

point cloud through a short descriptor and defines an accompanying distance measure
to quantify differences between objects. This section considers finds regions of partic-
ular resilience to potential modifications during acquisition. In Section 2.1 we describe
how our technique extracts subsets from a set of points to represent the original object.
Section 2.2 explains the properties required of features that can be used to establish
differences between these sub-clouds. Finally, Section 2.3 details how the individual
distances between sub-clouds can be used to establish a global distance and how to
reduce the magnitude of the descriptor to just the most relevant features.

2.1 Locally Stable Sub-clouds

In a first step, point sub-sets which correspond to the cross sections of the object at a
given position need to be determined to serve as means to determine stability. To achieve
this, we postulate that over a range of the scan axis only little change occurs to appropri-
ately designed features. Point sets are then called locally stable if they are the smallest
set that minimizes the difference to its immediate neighbor. This step is detailed in Al-
gorithm 1. Stability is determined by progressively growing sub-clouds (from the point
cloud pts) while comparing them with an immediate neighbor of the same magnitude
until the determined difference value passes a minimum. This minimum can be expected
to exist, because more points are at best redundant, at worst degrading to the shape de-
scriptor, resulting in a larger difference value. To avoid random points influencing the
difference and causing a premature stop of the sub-cloud detection, it is advisable to
smooth the similarity values over an appropriate range. We take the smoothed stability
values and detect the first local minimum to establish a magnitude where the sub-cloud
is stable. Figure 2 shows a typical sub-cloud in an example object. The image on the
left depicts points that are part of the current sub-cloud as empty and filled circles. The
depicted sub-cloud is defined by the size indicated by the vertical line at position 47 in
the graph on the right. On the right, the gray lines depict the difference value between
sub-cloud candidates, the black line its smoothed counterpart.

216 M. Mauder, P. Kröger, and K.-L. Schinner

Require: clds , thresh
1: i := 0
2: while i < clds.length do
3: j := i
4: d := diff (clds[i], clds[j])
5: while d < thresh do
6: j := j + 1
7: end while
8: stability [i] := j − i
9: i := j

10: end while

Algorithm 2. Determine sub-cloud
stability.

Fig. 3. Differences between sub-clouds. Without
(dotted) and with (solid) reference updates.

2.2 Features and Sub-cloud Comparison

A feature that is suitable for the previously mentioned similarity computation must
degrade continuously with progressively changing point positions. A simple example
that satisfies this condition is the area of the sub-cloud’s hull. Comparing these features
requires a suitable distance function. To get a result that considers only the relative mag-
nitude of the features, the function expresses the ratio between both values in terms of
a relative change to the original value. Concretely, we calculate the ratio of the smaller
feature to the absolute difference between the features: d(f1, f2) =

|f1−f2|
min(f1,f2)

2.3 Object Descriptor and Distance Calculation

The extracted sub-clouds are combined into a single object descriptor. We propose to
use a list of sub-cloud features as the object’s descriptor. The used sub-cloud descrip-
tors should be invariant to resolution, rotation, and scale. Examples of features that can
be used satisfying these requirements is (again) the area of the convex hull of the sub-
cloud’s points or a measure of the sub-cloud’s shape. One possibility is to use the pre-
viously extracted feature (used to establish the sub-cloud’s stability), which has already
been computed. While it is possible to use all extracted features to establish a difference
between objects, this requires a very complex object distance function. In contrast, ro-
bustly reducing the descriptor’s dimensionality also reduces the number of candidates
to erroneously establish matches with and to prune unreliable shapes. To achieve this
only sub-clouds that were most stable are used. Algorithm 2 shows the process of de-
termining sub-cloud stability in detail. The sequence of locally stable sub-clouds (clds)
extracted in the previous step is examined for their relative similarity. Once they become
more different than a threshold (thresh), the following cloud becomes the reference.
This step does not backtrack to keep complexity low. While this potentially undervalues
a regions stability, a single run over the point clouds is sufficient to determine it. We call
the length of the range of similar features, a sequence’s stability. Ranking the sequences
by their stability allows us to extract only the k most stable features. Figure 3 shows the

A Similarity Model for 3D Objects Based on Stable Sub-clouds 217

ranges generated in the example object. The dotted lines illustrate that it is acceptable
to re-assign the reference value. The dotted lines depict how the solid line would have
progressed had the reference cloud not been re-assigned. While a global view might
have suggested other split points, the chosen positions are still valid features.

These features are similarly strongly represented in other depictions of the same
objects, but differences in the features must be anticipated. To this end, we aggregate
the feature differences into an object-wide value using Dynamic Time Warping (DTW)
[1]. This technique allows additional sub-clouds in either of the compared objects, while
preserving the order of matched elements. Under normal circumstance, the difference
between varying representatives of the same sub-cloud sequence in different models
changes only slightly and DTW will still find a match.

3 Experiments

In this section some preliminary results of experiments conducted using the presented
technique are shown. We show the influence the algorithm’s parameters have on its
performance and give guidelines for choosing initial values. To be able to judge the
effect on the noise tolerance we use three variations of the original model, to which we
applied varying amount of noise. In addition the difference to another model is included,
which has been scaled and sampled to have similar properties as the reference model.

We used the Stanford Bunny and Happy Buddha [4] models to test our method’s
descriptive capabilities. The graphs presented in this section all show the distance of
the original Bunny model with – from left to right – three progressively worse repre-
sentations of the original model as well as the Buddha model. The feature used to both
determine and represent sub-clouds is the area of the convex hull of the point set. The
modifications we applied to the Bunny are 1) to sample its points down to 10% of the
original number of points, 2) an addition of normally distributed noise of 1%, then 5%
of the distance to the model’s center (limited to the two orthogonal axes to preserve the
points’ order). The Buddha model too has been downsampled by a factor of 100 to have
a comparable number of points as the original Bunny model.

As our technique depends on a few parameters, we evaluate a number of settings
for each. We expect progressively growing differences between the original model and
modified versions. The difference to the other model should be significantly larger.
Unless otherwise specified the smoothing range of the locally stable sub-cloud detector
has been set to 40, the similarity threshold to 0.1, and the descriptor length to 5.

In a first experiment, we examined how many difference measures need to be com-
bined to sufficiently dampen the influence of outliers when finding the first minimum
in a series of differences in detecting locally stable sub-clouds. In this experiment we
set this parameter to 20, 30, and 40 in turn and observed how the results (see Figure 4a)
changed. Clearly it is necessary that this parameter is chosen sufficiently large. Beyond
that, the performance degrades, but not particularly quickly. The threshold by which
we judge whether a sequence of point clouds is still considered stable could potentially
influence the result negatively. Smaller difference value force more stable sub-cloud
candidates, which should lead to better results. In this experiment we set the maximum
allowed difference value to 0.10, 0.20, and 0.30. The results can be seen in Figure 4b.

218 M. Mauder, P. Kröger, and K.-L. Schinner

(a) Smoothing length. (b) Sequence similarity. (c) Descriptor length.

Fig. 4. Effect of changing the algorithm’s parameters

As expected allowing a maximum difference of 0.1 is quite sufficient. At 0.3 the results
begin to degrade strongly. Finally, the length of the extracted descriptor contributes to
the runtime of the comparison step. The results can be seen in Figure 4c. A descriptor
length of 5 produced the expected results. The reason that longer descriptors produce
worse results than shorter ones is that a high maximum difference within a stable sub-
cloud can subsume many sub-clouds into one. If the length of the descriptor exceeds the
number of available significantly stable sub-clouds, its discriminative power suffers.

4 Summary

We have sketched a similarity model for 3D point cloud data designed to be robust
against noise and, can be used within a pipeline for automatic annotation of 3D objects
from scanners and sensors. Our method extracts subsets of point clouds that can be reli-
ably detected under varying scanning conditions. First experiments on real data support
this claim. For future work we plan to conduct more experiments on larger data sets like
SHREC [5] and include models with real noise. With the results of these experiments,
we plan to improve our descriptors and try other sub-cloud features.

References

1. Bellman, R., Kalaba, R.: On adaptive control processes. IRE Transactions on Automatic Con-
trol 4(2), 1–9 (1959)

2. Bernardini, F., Rushmeier, H.: The 3d model acquisition pipeline. Computer Graphics Fo-
rum 21, 149–172 (2002)

3. Castellani, U., Bartoli, A.: 3d shape registration. In: 3D Imaging, Analysis and Applications,
pp. 221–264. Springer London (2012)

4. Curless, B., Levoy, M.: A volumetric method for building complex models from range im-
ages. In: Proceedings of the 23rd Annual Conference on Computer Graphics and Interactive
Techniques, pp. 303–312. ACM (1996)

5. Boyer, E., et al.: Shrec 2011: robust feature detection and description benchmark. In: Proceed-
ings of the 4th Eurographics Conference on 3D Object Retrieval, EG 3DOR 2011, pp. 71–78.
Eurographics Association, Aire-la-Ville (2011)

6. Matas, J., Chum, O., Urban, M., Pajdla, T.: Robust wide baseline stereo from maximally stable
extremal regions. In: British Machine Vision Conference (BMVC), pp. 384–393 (2002)

Accurate and Efficient Search Prediction

Using Fuzzy Matching and Outcome Feedback

Christopher Shaun Wagner, Sahra Sedigh, and Ali R. Hurson

Missouri University of Science and Technology, Rolla MO 65409, USA
{csw6g3,sedighs,hurson}@mst.edu

Abstract. While search engines have demonstrated improvement in
both speed and accuracy, the response time to queries is prohibitively
long for applications that require immediate and accurate responses to
search queries. Examples include identification of multimedia resources
related to the subject matter of a particular class, as it is in session.
This paper begins with a survey of recommendation and prediction al-
gorithms, each of which applies a different method to predict future
search activity based on the search history of a user. To address the
shortcomings identified in existing techniques, we draw inspiration from
bioinformatics and latent semantic indexing to propose a novel predictive
approach based on local alignment and feedback-based neighborhood re-
finement. We validate our proposed approach with tests on real-world
search data. The results support our hypothesis that a majority of users
exhibit search behavior that is predictable. Modeling this behavior en-
ables our predictive search engine to bypass the common query-response
model and proactively deliver a list of resources to the user.

1 Introduction

Search engine development began as a study on indexing techniques - a topic
as old as information storage itself [1]. Early on, search engines used keywords
to allow people to refer to an index in a collection of resources without actu-
ally understanding how the resources were indexed. Providing a search query of
keywords and seeing a list of resources has become the standard query-response
model of search engines [1]. Improvement of search engines focuses on two main
aspects of performance: accuracy and speed [2–4]. Accuracy refers to how well
the search engine ties a search query to a relevant information resource. It is
subjective and determined by the user’s perception of what is relevant and what
is not. Speed refers to how quickly the search engine is able to process a query
and return results and is commonly denoted as “response time.”

Our research focuses on the use of recommendation (proactively returning
responses to queries that the user is expected to make) to improve both accuracy
and speed of search engines. Successful recommendation improves accuracy, as
the resources recommended will be relevant to the user’s interests. Eliminating
the need for query entry improves speed. In a perfect system, resources in which
a user is interested will be recommended and waiting on the user, rather than
the user waiting on the search engine.

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 219–232, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

220 C.S. Wagner, S. Sedigh, and A.R. Hurson

Amazon uses recommendation to direct users to products that they are an-
ticipated to purchase. Netflix uses recommendation to direct users to movies
they are anticipated to find of interest. Recommendation has proven successful
in guiding a user to resources of interest to him or her; however it is of limited
use in applications with time constraints as it generally ignores the context and
presents a user with a “wholesale” list of items of potential interest. [5, 6].

Prediction is a specialized form of recommendation that recommends the re-
sources a user will want in a particular context [6]. Using the previous examples,
prediction would identify the item an Amazon user will want to purchase next
Tuesday or the movie a Netflix user will want to watch tonight.

A predictive search engine does not need to identify the exact time that a
resource will be requested. It is enough to identify the order in which resources
will be requested. Given a user’s search history, the resources that are likely to
be requested next are recommended. Accuracy and speed are improved.

The success of search prediction is entirely dependent on the ability to model
user behavior. Typical behavioral models divide a population into groups of
users whose past behavior has been similar. These groups are denoted as neigh-
borhoods of similarity, or simply neighborhoods. Algorithms that carry out the
grouping are known as k-nearest neighbor (k-NN) algorithms. All variants of
these algorithms are based on forming a neighborhood around a target user [7].

The contribution of this paper is in proposing a novel k-NN algorithm, where
the outcome of grouping the users is used to refine the classifier and improve
accuracy. Group members who “do not belong” are replaced to increase the prob-
ability of successful prediction. Avoiding comparisons for members who “belong”
reduces complexity and improves accuracy. Allowing for fuzzy, rather than per-
fect matches further improves the accuracy of our technique.

We elaborate on and justify these statements in the remainder of this paper.
Section 2 provides a background, through a survey of common prediction and
grouping algorithms. Our proposed grouping algorithm and general approach to
search prediction is described in Section 3. The design of experiments we carried
out for validating our work is presented in Section 4; where our specific hypoth-
esis, test methods, real-world search engine data used, and scoring methods are
described. Section 5 details the results of this validation. We conclude the paper
with Section 6, which summarizes our findings on the viability of our search
prediction approach.

2 Background

Electronic storage capacities have grown rapidly over the last decade. Interac-
tion and communication between storage devices and data centers has similarly
increased. The explosion of demand for information has resulted in a plethora
of recommendation algorithms designed to limit the result set that a user must
examine when attempting to find a resource of interest. In this section, we sur-
vey recommendation and grouping algorithms and discuss their use in search
prediction.

Accurate and Efficient Search Prediction Using Fuzzy Matching 221

General recommendation techniques are not necessarily acceptable for pre-
diction. Consider an Amazon user who has just purchased volume five of the
Harry Potter series. Recommendation would identify volumes one through four
as being of interest to this target user, even though he or she is likely to have
read them already. Prediction would correctly identify volume six as the next
book likely to be of interest to the user. As such, prediction is context-aware
recommendation.

In the Amazon example, it is obvious that the books are what the algorithm
should recommend or predict. In a search engine setting, prediction could target
either the query that a user will type or the information resource that he or she
will deem useful. Google and Bing have produced algorithms for predicting what
a user will type as a query. Their algorithms attempt to complete or revise a
query. However, the user is actually searching for an information resource, not
a query. Further, a query is not a discrete index to a specific resource. As an
example, a search for “hedgehog” may refer to a small spiny mammal, a popular
chocolate treat, or an old anti-submarine mine. Prediction of the query is not as
effective as predicting the exact resource that the user will want to select.

2.1 Recommendation/Prediction Algorithms

While there are many specific implementations of recommendation, most are
based on a few simple strategies, such as recommending items based on frequency
or sequential order. The simplest form of recommendation is the rank model.
Items are ranked by the frequency with which they are selected, and the highest
ranking (most popular) items are suggested to the user. This strategy is likely
to be effective, as the most popular items will be selected more than half of the
time (Zipf’s law) [8].

A refinement of the rank model has become popularly known as the “people
who bought X also bought Y ” algorithm from Amazon. Instead of identifying
the items most popular among all users, this “also” model considers popular-
ity among only those users whose purchase history includes a specific item - a
neighborhood of (slightly) similar users. This similarity should cause the results
to be more accurate than the rank model.

Neither model takes the time or sequence of purchases into account. Such con-
sideration would make these algorithms useful for search prediction. Specifically,
the resulting algorithm would make the more accurate statement of “people who
bought X then bought Y .”

It may be possible to improve the results further by considering the last n
items selected by the target user. This sequence, denoted as an n-gram, is then
used to constrain the neighborhood of users considered in determining the most
popular items. The fact that these users accessed the same n items in the same
order should increase accuracy.

Humans are not automatons, and as such, there is variance in human behavior
- a human may carry out the same action slightly differently in each repetition.
The n-gram model does not capture such variance. Instead of a seeking perfect
match between the target user’s most recent n-gram and an n-gram in another

222 C.S. Wagner, S. Sedigh, and A.R. Hurson

user’s history, using a fuzzy match will allow for variance in search behavior and
should be more accurate than a perfect n-gram match.

All of the aforementioned methods, except the simple rank model, are essen-
tially creating a neighborhood of similar users for the target user. How these
neighborhoods are created directly impacts the success of prediction.

2.2 Neighborhoods of Similarity

Neighborhoods of similarity are nearly synonymous with the k-nearest neighbor
(k-NN) algorithm [9–11]. The task is to identify other users similar (or dissim-
ilar) to a target user, and as such defining a suitable measure of similarity is
critical. Measuring similarity between users, or more generally, objects; is not
straightforward, especially when multiple attributes are to be considered. Some
algorithms characterize each object as a vector, where each attribute is an ele-
ment (dimension) in the vector space [12]. Two vectors that point in the same
direction (regardless of magnitude) are considered identical. The angle between
two vectors becomes the measure of similarity. Often, the cosine of the angle is
used instead, producing -1 for opposite and 1 for identical vectors.

If all of the attributes are binary, the Jaccard similarity coefficient captures
a set comparison between two entities [13]. The more attributes the two entities
have in common, the more similar they are. This is very similar to Hamming
distance, which identifies the number of bits in which two binary strings differ. If
each bit of the binary string is considered an attribute, the Jaccard and Hamming
measures may be used interchangeably to measure either similarity or difference.

Neither vector or set comparison algorithms require attributes to maintain a
specific order. Consider comparing two users based on gender, age, and nation-
ality. The result will be the same, regardless of whether the order of attributes
is {gender, age, nationality} or {age, gender, nationality}. For prediction, order
is important, and hence the attributes must be stored as ordered sequences of
values (i.e., strings) and the comparison algorithm must be sensitive to the order.

String-based comparison measures are extensions of Hamming distance, which
is not truly sensitive to order - if we swap the first and second bits of each
of two binary strings, their Hamming distance will remain the same. The fact
that the difference occurs in a different bit is not captured by the measure - a
shortcoming addressed by string-based comparison measures. One such measure,
Levenshtein distance, has become the foundation of most string-based compar-
ison algorithms [14–16]. Levenshtein distance identifies how many changes are
required to turn one string of values into another string of values. The Wagner-
Fischer algorithm is a popular matrix solution for Levenshtein distance [17].
The Needleman-Wunsch and Smith-Waterman algorithms, are matrix solutions
that can align one string to another to produce a global (full string) or local
(substring) alignment; respectively, with minimum difference.

In developing a predictive search algorithm, we seek to model the selection of
search results by the user and predict the result that will be selected next. This
necessitates comparison of the search histories of users. It is possible to consider
demographic attributes such as gender or age in addition to the search history

Accurate and Efficient Search Prediction Using Fuzzy Matching 223

of a user, but these demographic attributes rarely have a bearing on Internet
search, and considering them may lead to inaccurate results.

Search histories are ordered sequences of items, implying that a string-based
comparison is necessary in creating neighborhoods. Simply counting the results
selected by both of two users is a simpler and less effective measure. In string-
based comparison, the target user’s search history is represented as an n-gram
and compared to the respective n-grams representing the search history of other
uses. The existence of long sequences in common between two n-grams indicates
similar search behavior of the corresponding users. Computational complexity
is the problem with this approach - the complexity of algorithms for identifying
the longest common substring between two strings of data is O(n2).

As noted in section 2.1, human behavior has natural variance. Defining simi-
larity as a perfect behavioral match will omit users with slight variances from the
resulting neighborhood. Using local alignment, it is possible to obtain a fuzzy
match between parts of the respective search histories of different users. The
longer the matching substring, and the less difference in the local alignment,
the greater the similarity. Allowing for slight variance in the search histories has
lower computational complexity than finding a perfect match, and serves as the
basis of our search prediction technique. We present and validate our approach
in the remaining sections of this paper.

3 Proposed Approach to Search Prediction

In this paper, we present a search prediction technique with lower computa-
tional complexity than existing alternatives. This improvement is achieved by
using fuzzy matching, which allows for the slight variations typical of human
behavior in determining similarity among search histories. Without allowing for
this variance, the number of users that can be used for prediction drops dra-
matically, often to zero. A fuzzy match increases the size of the neighborhood of
similar users.

The search prediction process centers around creating a neighborhood of up to
k users whose search behavior is similar. In practice, a background process would
continually scan the universal population of search engine users for users that
are more similar to the target user than the most dissimilar user currently in the
neighborhood, updating and refining the neighborhood. Similarity is measured
by performing a local alignment of the target user’s most recent history against
the other user’s complete history. The number of gaps and omissions present in
the local alignment serve as the measure of distance.

Prediction is carried out by performing a local alignment of the target user’s
most recent search history against the complete history of each user in its neigh-
borhood. As local alignment was performed to create the neighborhood, the bulk
of this calculation has already been performed. For each user in the neighbor-
hood, the item that follows the local alignment is a suggestion for the target
user. The most popular suggestion, or list of most popular suggestions, is shown
to the target user as the result of predictive search.

224 C.S. Wagner, S. Sedigh, and A.R. Hurson

Local alignment is a costly operation to perform. To further reduce process-
ing time, outcomes are used to refine the neighborhood of similar users. Users
who supply the correct prediction are kept in the neighborhood without further
calculation. Those who fail at prediction are replaced.

The novelty of our approach is in the use fuzzy matching in conjunction with
outcome feedback. We anticipate that the proposed scheme will offer a higher
performance in accuracy with limited increase in processing time. Experimental
validation, as described in the remainder of this paper, confirmed this result.

4 Design of Validation Experiment

The goals of our experimental validation were to a) demonstrate the superiority
of our approach over the existing alternatives described in Section 2 and b)
shed light on the tradeoff between computational complexity and accuracy. To
this end, we implemented each of the following methods. When used with a
neighborhood, the prediction algorithm is carried out only for the members of
the neighborhood. Otherwise, the algorithm uses the entire population of users
for prediction. The algorithms implemented are:

1. Random: suggests s random resources and is used as a baseline comparison.
2. Popular : suggests the s most frequently selected resources.
3. Also: suggests the s most frequently selected resources from users who also

selected the last n resources as the target user, regardless of selection or-
der. Application of this algorithm in conjunction with certain neighborhood
models yields no additional information.

4. Next : is a variant of the Also algorithm, with the added constraint that
any resources to be suggested must have been selected after the common
resource between the users was selected.

5. n-gram: suggests the s resources most frequently selected following (with a
perfect ordered match) the last n resources in common with the target user.

6. Fuzzy: suggests the s resources most frequently selected following (with a
fuzzy ordered match) the last n resources in common with the target user.
Local alignment is used as the fuzzy matching algorithm.

Multiple methods exist for measuring similarity; hence, multiple neighborhood
models were tested. The underlying methods of similarity comparison are the
same as the similarity methods used to identify the resources to suggest. Each
time a prediction is made, a neighborhood of similar users is also determined.
The algorithms used are:

1. None: is the baseline - produces no neighborhood, forcing prediction to use
the entire population.

2. Common: selects users who selected the target user’s smost recently selected
resources.

3. n-gram: selects users who selected, in the same order, the target user’s s
most recently selected resources.

Accurate and Efficient Search Prediction Using Fuzzy Matching 225

4. Fuzzy: selects users who have a similar local alignment of the target user’s s
most recently selected resources.

As a separate test, we added outcome-based feedback to all of the neigh-
borhood algorithms, with the exception of None. After the prediction is tested
against the target user’s actual selection, members of the neighborhood that cor-
rectly predicted the resource selected by the target user are kept in the neighbor-
hood. Those who did not correctly predict the target user’s selection are replaced
when the following prediction is made.

4.1 Test Data

While it is possible to theorize how well recommendation or prediction may
perform, tests on actual data sets from actual search engines demonstrate per-
formance in a real-world setting. Data sets were collected from multiple forms
of search engines. Many had little or no longitudinal data to develop user search
history, because their use was limited to a very short time period or was heavily
manipulated for a specific purpose other than complete analysis. The following
six data sets were deemed acceptable for use in our validation experiments.

1. Set A, from AOL. In 2006, AOL Research released a data set of three months
of Internet searches with anonymized users and identified resource informa-
tion. The user, query time, and resource selection are considered in our
validation experiment, without use of the actual query supplied by the user.

2. Set E, from one year of log data for Every Busy Woman, an online catalog
of women-friendly businesses. The log files from the website’s search engine
store the id of the user making the query, the time of the query, and the
business listing selected from the results.

3. Set L, a testing file of one year of data from MovieLens. As a recommender
system, MovieLens is not truly a search engine. However, the use of data
set N (described below) to predict the movie a user will watch made one
aspect of the MovieLens data set interesting. The data set includes the user,
the rating the user gave to a movie, the movie, and when the movie was
watched. This can be translated into user, time seen, and movie selection,
predicting which movie will be seen next.

4. SetM , from the Medical University of South Carolina, includes three months
of log files from a search engine for employee training resources. Being small,
it is used primarily as a very quick code test before the larger data sets are
tested.

5. SetN , from Netflix. Many Netflix data sets are available, each heavily pruned
to focus on a specific data mining task. Most are designed to predict the
rating that a user will give a movie. The most complete data set contained
the user, movie, and the time the movie was watched. In this research, it is
not important to know how the user will rate a movie. We are attempting
to identify the movie that will be selected for watching, based on the past
history of movies watched.

226 C.S. Wagner, S. Sedigh, and A.R. Hurson

6. Set Y , from Yandex, the largest search engine in Russia. Unlike American
search engines, Yandex regularly produces anonymized data sets for research.
Similar to data set A, this is a data set of real Internet searches performed
by real people, but it is limited to one week of data.

All data sets were normalized such that users and resources were identified
by a unique integer. The time of each resource selection was converted to a
timestamp indicating the number of seconds since 1970-01-01 00:00:00. Each
database was stored in the format {user, selection time, resource selected, pre-
vious selection time}. The previous selection time was necessary to easily link
sequences of resource selections.

When the same user selected the same resource more than once in succession,
it may be assumed that this is simply a reload or refresh of the resource and not
a true selection of a new resource. Repeated selections of the same resource in
succession were flagged as repeats and ignored. A selection sequence of {1, 2, 2,
3} would then become {1, 2, 3}. However, a selection sequence of {1, 2, 3, 2}
would not be altered, because a different resource was selected in between the
two selections of resource 2. Most sets had no repetitions.

Both recommendation and prediction require knowledge of user behavior.
Some users in the data sets have only one recorded resource selection. There
is no behavior based on which to make a recommendation or prediction. These
selections were flagged as short and ignored in testing.

The resulting test sets are radically different from one another. As shown in
Table 1, some are extremely large. Some are small. Some have many resources
selected per user, creating long history sequences. Some have many users per
resource, allowing for large neighborhoods of similarity.

Table 1. Statistics of data sets used in validation

Set Records Users Resources Users per Resource Resources per User

A 114,494 18,526 57,018 0.32 3.08

E 168,387 12,857 10,458 1.23 0.81

L 1,000,209 68,404 3,708 18.36 0.05

M 3,168 45 255 0.18 5.67

N 23,168,232 463,616 17,755 26.11 0.04

Y 30,655 3,121 27,910 0.11 8.94

A legitimate concern regarding these data sets is whether they truly reflect
true user behavior. The distribution of frequencies in a natural environment
should be inversely proportional to the rank of the frequencies, according to
Zipf’s law [8]. If the distribution of frequencies is linear, it may be assumed that
an intervention has altered the data in some way.

The respective frequencies of users per resource and resources per user were
checked for natural distribution. Set A is capped on the maximum number of

Accurate and Efficient Search Prediction Using Fuzzy Matching 227

records allowed per user, which matches the description of how the data was gen-
erated. Set N has nearly the same number of users per resource, which matches
the description of how the data was generated. Set L exhibits fixed user/resource
and resource/user frequency, indicating that it is a very manipulated, very un-
natural representation of search queries. Data that is manipulated may not allow
for acceptable prediction, indicating that sets A, L, and N will likely have poor
results.

If it is possible to predict one user’s behavior based on the behavior of another
user, it is expected that there must be common sequences of events between the
two users. In other words, in a large population of search engine users, prediction
is dependent on the existence of common sequences of resource selections. If so,
it is possible to replace the common sequences with a new resource identifier
that indicates the sequence was selected. This is similar to file compression, in
which a common sequence of bits is replaced with a much shorter identifier or
placeholder.

Andrey Kolmogorov, one of the founders of algorithmic complexity theory,
described this form of compression as a measure of entropy [18]. The greater the
number of common sequences, the less complexity there is in the data. A lack of
common sequences indicates entropy. In this research, lack of entropy is referred
to as order, indicating that there is a common (and predictable) order to the
selection of search results.

Within each data set, common sequences of five resource selections were iden-
tified. Order is measured as the total number of records, divided by the number
of unique sequences of five resource selections. Table 2 shows the order of the
data sets. Sets E and M have higher order, indicating that prediction should
work well on those sets. Set Y has nearly no order. With nearly complete entropy,
it should not be possible to use prediction on set Y .

Table 2. Order (predictability) of the data sets

Set Records Sequences Order

A 114494 14847 0.13

E 168387 189111 1.12

L 1000209 995253 1.00

M 3168 2484 0.78

N 23168232 12004826 0.52

Y 30655 1539 0.05

A combination of distribution and order is denoted as convergence. If the data
set is naturally distributed and there is order, the sequences of data selections
should converge on a subset of the total resources in the data set.

Measuring convergence begins with identifying the distribution of data. The
resources selected are ranked from most to least selected. A best fit logarith-

228 C.S. Wagner, S. Sedigh, and A.R. Hurson

mic trend line is calculated to match the frequency counts. It has the form
f(x) = −a ln(x) + c, where a is the natural logarithmic coefficient and c is a
constant. The trend lines of the data sets cannot be compared directly, due to
the radical differences in population sizes. Dividing a by c will produce an es-
timate of convergence that can yield a meaningful comparison. The greater the
magnitude of the result, the more convergent the resource selections.

Sets A, E, and M were found to exhibit the greatest convergence, indicating
that prediction should be successful. Set Y showed nearly no convergence, indi-
cating that prediction will not be possible. Numerical details have been omitted
for brevity.

4.2 Evaluation of Algorithms

With test algorithms and data sets, the evaluation method must demonstrate
how effective the algorithms are in predicting the resource the target user will
select. In a very simple form, the score is a percent of tests in which the algorithm
produces a suggestion that is the resource the target user selects. The suggestion
will be returned as a set of resources most to least likely to be selected, a weighted
score will lower the success rate when the suggestion is not the most likely
selection.

In recommendation systems, weighted testing uses the interest level in each
suggestion when weighting the success rate. For prediction systems, interest is
limited to absolute interest in the one suggestion that is selected and no interest
in the suggestions that are not selected. Therefore, the weighting is merely the
rank of the suggestion. For each test, 1/r is added to the success count, where
r is the rank (in the suggestion list) of the resource selected . The final success
rate is the success count, divided by the number of tests.

The success rate of interest is the total success rate over all tests on a data set.
As the users do not have equally lengthy resource selection histories, some users
will affect the overall success rate more than others. To determine the skew of
the overall score, the average success rate per user is also calculated. The average
success rate per user should be close to the overall success rate if a single user
does not heavily skew the outcome.

The duration of complete testing of each algorithm over each complete data
set was also recorded. The average number of tests per second and the average
number of seconds per test can be calculated using this duration. The amount
of time that the tests require is important in justifying the extra complexity for
algorithms that should have a higher success rate.

5 Results of Experimental Validation

This section presents the results of the experiment described in Section 4. The
results of testing prediction algorithms are presented first, followed by the results
for neighborhood algorithms. For the latter, the effect of using outcome feedback
is examined - we expected a decrease in prediction time and an increase in
accuracy.

Accurate and Efficient Search Prediction Using Fuzzy Matching 229

5.1 Prediction Results

The initial prediction results were measured without the benefit of neighbor-
hoods. The results, shown in Table 3, were not far from expectations. Set M is
very small and does not follow the normal trend. In general, each subsequent
algorithm shows an improvement over preceding algorithms, with the exception
of n-gram.

The n-gram algorithm is very restrictive, requiring an exact match on n consec-
utive resource selections (n=5 in this test). For sets A and Y , it was very rare for
two users to have five identical sequences of resource selections. Allowing variance
with the fuzzy match allowed near matches to be included, increasing accuracy.

The unweighted results imply that fuzzy yields little improvement over next.
Examining the weighted results makes it obvious that fuzzy has placed the se-
lected resource near the top of the list of suggestions, while next places it near
the bottom. Therefore, if the result list was cut in half, the fuzzy algorithm
would retain nearly the same accuracy, while the next algorithm would become
drastically less accurate.

Table 3. Unweighted (weighted)success rate of prediction algorithms

Set Random Popular Also Next N-gram Fuzzy

A 1% (0%) 3% (0%) 4% (1%) 8% (3%) 1% (1%) 10% (7%)

E 10% (2%) 30% (5%) 54% (7%) 58% (6%) 51% (28%) 59% (42%)

L 0% (0%) 12% (2%) 14% (2%) 20% (5%) 19% (12%) 27% (16%)

M 56% (12%) 77% (10%) 73% (9%) 75% (7%) 39% (30%) 45% (30%)

N 0% (0%) 1% (0%) 5% (1%) 9% (3%) 6% (4%) 14% (8%)

Y 0% (0%) 1% (0%) 3% (1%) 4% (1%) 0% (0%) 3% (2%)

5.2 Neighborhood Results

Each neighborhood algorithm was tested separately, using the next prediction
algorithm, chosen because next is not similar to any of the neighborhood algo-
rithms being tested. As shown in Table 4, the success rate improves successively
from the none to the fuzzy algorithm. Once again, sets A and Y did not improve
much with the n-gram algorithm because of the rarity of users who share exact
sequences of n resources selected.

Each prediction algorithm was tested a second time, with the use of outcome
feedback to refine the neighborhood. Every prediction improved, as may be seen
by comparing Tables 4 (results without outcome feedback) and 5 (results with
outcome feedback).

5.3 Timing Results

Each algorithm was optimized to facilitate rapid testing on a single-processor
machine. As expected, the number of tests per second decreases with algorithm

230 C.S. Wagner, S. Sedigh, and A.R. Hurson

Table 4. Unweighted (weighted) success rate of neighborhood algorithms

Set None Common N-gram Fuzzy

A 4% (1%) 5% (2%) 9% (7%) 10% (7%)

E 54% (7%) 55% (14%) 58% (28%) 59% (42%)

L 14% (2%) 13% (6%) 19% (12%) 27% (16%)

M 73% (9%) 81% (80%) 39% (30%) 45% (30%)

N 5% (1%) 8% (2%) 11% (5%) 16% (8%)

Y 3% (1%) 4% (2%) 0% (0%) 6% (4%)

Table 5. Unweighted (weighted) success rate of neighborhood algorithms with feedback

Set None Common N-gram Fuzzy

A 4% (1%) 12% (6%) 14% (10%) 15% (12%)

E 54% (7%) 61% (27%) 69% (41%) 72% (51%)

L 14% (2%) 25% (14%) 31% (17%) 32% (20%)

M 73% (9%) 82% (80%) 52% (41%) 57% (41%)

N 5% (1%) 17% (10%) 21% (13%) 25% (16%)

Y 3% (1%) 6% (4%) 4% (1%) 11% (9%)

complexity. Overall, popular was the fastest, with 4 to 26 tests per second, de-
pending on the size of the data set. The n-gram test was the slowest, with 0.5 to
8 tests per second. Fuzzy, with 1 to 9 tests per second, was not significantly faster
than n-gram. It was expected that the n-gram algorithm would be significantly
faster than fuzzy, as it eliminates more users from comparison. Customized im-
plementation, tailored to these specific tests, allowed for a linear implementation
of fuzzy string matching rather than a polynomial implementation.

Using outcome feedback provided measurable improvement for every neigh-
borhood algorithm tested. The extent of improvement was directly related to the
complexity of the neighborhood algorithm, with n-gram and fuzzy showing the
greatest improvement. However, the improvement in runtime was not significant
enough to suggest using outcome feedback to increase efficiency. Improvement
in prediction accuracy is the primary reason to consider using outcome feedback
in refining the neighborhood.

5.4 Correlation

While successful prediction is important, it is also important to identify a simple
attribute (of the data set) that can be used to predict this success. This can help
in identifying data sets for which prediction would be ineffective. All three of the
measures introduced in Section 4.1; distribution, order, and convergence; exhibit
correlation with the success rate. Distribution has the weakest correlation, -

Accurate and Efficient Search Prediction Using Fuzzy Matching 231

0.22. Order and convergence have correlations of 0.84 and 0.6, respectively. As
convergence is a measure of both distribution and order, it is reasonable to
assume that convergence alone may be used to identify data sets for which
prediction is likely to be successful.

6 Conclusion

In this paper, we demonstrated through extensive testing that search predic-
tion is at least as effective as common recommendation algorithms that do not
consider selection order in making recommendations. Prediction is often consid-
erably more successful in identifying the resource that will be selected by the
user. It is also faster, as it eliminates the time associated with entering a query.
With a predictive search engine; the user a) accesses the search engine, b) sees
a list of suggested resources, and selects a resource. Search prediction eliminates
the need for query entry, query analysis, and index searching.

Apart from performance, the implementation of a predictive search engine
causes a fundamental change in how electronic resources are perceived. Currently,
each resource is a single entity. Prediction will suggest a sequence of resources,
aggregating individual resources into a meaningful whole.

References

1. Levene, M.: An Introduction to Search Engines and Web Navigation, 2nd edn.
John Wiley & Sons (2010)

2. Mostafa, J.: Seeking better web searches. Scientific American 292(2), 66–73 (2005)
3. Hawking, D., Craswell, N., Brailey, P., Griffihs, K.: Measuring search engine quality.

Information Retrieval 4(1), 33–59 (2001)
4. Wickelgren, W.A.: Speed-accuracy tradeoff and information processing dynamics.

Acta Psychologica 41(1), 67–85 (1977)
5. Konstan, J.A., Riedl, J.: Recommender systems: From algorithms to user experi-

ence. User Modeling and User-Adapted Interaction 22, 101–123 (2012)
6. Cleger-Tamayo, S., Fernández-Luna, J.M., Huete, J.F., Pérez-Vázquez, R.,

Rodŕıguez Cano, J.C.: A proposal for news recommendation based on clustering
techniques. In: Garćıa-Pedrajas, N., Herrera, F., Fyfe, C., Beńıtez, J.M., Ali, M.
(eds.) IEA/AIE 2010, Part III. LNCS, vol. 6098, pp. 478–487. Springer, Heidelberg
(2010)

7. Tellez, E.S., Chavez, E., Navarro, G.: Succinct nearest neighbor search. In: Pro-
ceedings of the 4th International Conference on Similarity Search and Applications
(SISAP), pp. 33–40 (June 2011)

8. Zipf, G.K.: The psycho-biology of language. Language 12, 196–210 (1936)
9. Cover, T.M., Hart, P.E.: Nearest neighbor pattern classification. IEEE Transac-

tions on Information Theory 13(1), 21–27 (1967)
10. Xiong, L., Xiang, Y., Zhang, Q., Lin, L.: A novel nearest neighborhood algorithm

for recommender systems. In: Proceedings of the Third Global Congress on Intel-
ligent Systems(GCIS), pp. 156–159 (November 2012)

11. Dasarathy, B.V.: Nearest neighbor (NN) norms: NN pattern classification tech-
niques. IEEE Computer Society Press, Los Alamitos (1991)

232 C.S. Wagner, S. Sedigh, and A.R. Hurson

12. Tan, P.-N., Steinbach, M., Kumar, V.: Introduction to Data Mining, 1st edn. Pear-
son Addison-Wesley (2005)

13. Jaccard, P.: Étude comparative de la distribution florale dans une portion des alpes
et des jura. Bulletin del la Société Vaudoise des Sciences Naturelles 37, 547–579
(1901)

14. Levenshtein, V.I.: Binary codes capable of correcting deletions, insertions, and
reversals. Soviet Physics Doklady 10, 707–710 (1966)

15. Bertsekas, D.P.: Dynamic Programming and Optimal Control, 3rd edn. Athena
Scientific (2007)

16. Cormen, T.H., Leiserson, C.E., Rivest, R.L., Stein, C.: Introduction to Algorithms,
3rd edn. The MIT Press (2009)

17. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. Journal of
the ACM 21(1), 168–173 (1974)

18. Kolmogorov, A.N.: On tables of random numbers. Theoretical Computer Sci-
ence 207, 387–395 (1963)

Beyond Bag of Words for Concept Detection

and Search of Cultural Heritage Archives

Costantino Grana, Giuseppe Serra, Marco Manfredi, and Rita Cucchiara

Università degli Studi di Modena e Reggio Emilia, Modena MO 41125, Italy

Abstract. Several local features have become quite popular for concept
detection and search, due to their ability to capture distinctive details.
Typically a Bag of Words approach is followed, where a codebook is
built by quantizing the local features. In this paper, we propose to rep-
resent SIFT local features extracted from an image as a multivariate
Gaussian distribution, obtaining a mean vector and a covariance matrix.
Differently from common techniques based on the Bag of Words model,
our solution does not rely on the construction of a visual vocabulary,
thus removing the dependence of the image descriptors on the specific
dataset and allowing to immediately retargeting the features to different
classification and search problems. Experimental results are conducted
on two very different Cultural Heritage image archives, composed of il-
luminated manuscript miniatures, and architectural elements pictures
collected from the web, on which the proposed approach outperforms
the Bag of Words technique both in classification and retrieval.

Keywords: cultural heritage, bag of words, local descriptors, concept
detection, image retrieval, similarity search.

1 Introduction

The creation of large digital archives of cultural heritage images, requires ex-
perts from different areas to explore the issues of digital collections [7], for the
development of information systems and operating platforms able to support
both the organization and the access to these repositories [12]. The success of
text-based retrieval has raised user expectations about the possibilities of re-
search on media collections, but search engines based only on textual keywords
demonstrated their intrinsic limits: the entire content of an image cannot be eas-
ily summarized in few keywords. Cultural heritage repositories —incorporating
by definition images, texts and often videos, 3D data etc.— should be considered
as multimedia repositories so as to adopt all multimedia techniques for digging,
understanding and handling such a heterogeneous amount of data.

To cope with multimedia collections, it is necessary to manage the content
itself, which may require specific storage and presentation devices, and to man-
age the associated metadata that can be of different nature and be generated
according to a variety of standards. In cultural heritage collections, in which
objects are generally subject to some kind of expert analysis, an information

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 233–244, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

234 C. Grana et al.

system must meet two objectives: the first is to allow the association of elements
with their descriptive metadata, and the second is to offer content based retrieval
using state-of-the-art technologies. In the last five years most of the proposals
for managing multimedia content assume the Bag of Words (BoW) paradigm as
an effective approach to provide a compact representation, by clustering local
features in a codebook and exploiting visual keyword data for search, concept
detection and content understanding.

Recently a novel approach was proposed [9], which represents local features
extracted form an image as a multivariate Gaussian distribution, obtaining a
mean vector and a covariance matrix. In contrast with the BoW approaches this
solution does not require the construction of a visual vocabulary, thus extracting
the image descriptor independently from the specific dataset. Allowing the use
of linear classifiers, the proposed representation exploits on-line solvers able to
deal with large scale datasets that do not fit in memory.

In this paper, we propose to use this novel local features summarization tech-
nique for two different tasks, image retrieval and automatic annotation, on two
archives of cultural heritage data: the first scenario targets image retrieval on pic-
tures extracted from a Renaissance illuminated manuscript, the second scenario
aims at automatically enrich a large dataset of images (automatically crawled
from the web) with tags in a concept detection system. For the visual search task
(content-based retrieval) we compare different metrics and show which distance
is better suited for which descriptor configuration. For the semantic concept de-
tection problem, Stochastic Gradient Descent on-line solver is used, which allows
to deal with large scale datasets and high dimensional feature spaces. Differently
from the previous use of the descriptor, we evaluate its applicability to coarsely
annotated training datasets, showing its ability to deal with the semantic noise,
that is the uncertainty of the automatically crawled labels.

2 Related Work

Recently, several local features such as SIFT, SURF, ORB, HOG have become
quite popular in representing images due to their ability to capture distinctive
details of the images [14]. As introduced, a common approach to integrate the
local features into a global representation is to use the the BoW approach, given
its simplicity and effectiveness. It consists in three steps: extract local features,
generate a codebook and then encode the local features into codes; pool all the
codes together to generate the global image representation. The histogram is
then fed to a classifier to predict the category [4]. In this approach a key step is
the codebook generation, because it is the base to define a high-dimensional BoW
histogram. Typically a codebook is built by quantizing local feature descriptors
extracted from training images. In recent years, there have been numerous vector
quantization approaches to build visual codebooks, such as k-means clustering,
or vocabulary trees [15]. However, generated codebooks are not sufficiently flexi-
ble to model heterogeneous kinds of new datasets. This is an underlying problem
of the BoW approach, because every time the dataset (or more generally the

Beyond Bag of Words for Concept Detection 235

context) changes, the feature vector of an image must be recomputed. Other
elements that have attracted research efforts are the encoding and pooling. The
simplest encoding in the literature assigns a local feature to the closest visual
word and computes a histogram of visual word frequencies [5]. A recent ap-
proach replaces the hard quantization of features with soft-assignment in which
each local feature is assigned to multiple visual words [6]. In spite of their sim-
plicity, BoW approaches often introduce large quantization errors and limits in
the classification performance. To alleviate these problems, several authors have
proposed alternative encodings that retain more information about the original
image features [21,16,10]. The Locality-constrained Linear Coding [21] applies
locality constraint to select similar basis of local descriptors from a codebook,
and learns a linear combination weight of these basis to reconstruct each descrip-
tor. Fisher encoding [16], captures the average first and second order differences
between the image descriptors and the centers of a Gaussian mixture model;
while the Vector of Locally Aggregated descriptors [10] (VLAD) is a non proba-
bilistic version of Fishers kernels. All of these techniques represent an image by
exploiting different strategies to describe relationships between local descriptors
and visual words of a codebook.

Instead, we propose to use a parametric distribution and compare its capa-
bilities and proprieties to histogram based approaches. A reasonable first choice
is to assume that our data follows a Gaussian distribution, because it has useful
mathematical properties, it was extensively used and studied, and its represen-
tation requires few parameters [1]. In statistical learning a main aspect is to
define function to measure similarity/dissimilarity between two distributions.
Several measures in closed form expressions between two multivariate Gaussian
densities have been proposed, such as the Bhattacharyya divergence and the
symmetric Kullback-Leibler (KL) divergence [11]. Based on these dissimilarities,
it is possible to build a non-linear kernel function, which can be used in the classi-
fication process. However, this would require an enormous computational effort
and would soon become prohibitive when moving to large scale classification
problem with high-dimensional feature vectors.

3 Multivariate Gaussian Descriptor

The proposed image signature represents local features extracted from an image
(or a sub-region) by a multivariate Gaussian distribution. Let F = {f1 . . . fN} be
a set of local features (e.g. SIFT descriptors, where d = 128) extracted through
densely sampling in a regular grid on an image W (or a sub-region of W , when
Spatial Pyramid Matching is used), we describe them with a multivariate Gaus-
sian distribution supposing that they are normally distributed. The multivariate
Gaussian distribution of a set of d-dimensional vectors F is given by

N (f ;m,C) =
1

|2πC| 12
e−

1
2 (f−m)TC−1(f−m), (1)

236 C. Grana et al.

where | · | is the determinant, m is the mean vector and C is the covariance
matrix (f ,m ∈ Rd and C ∈ S

d×d
++ , with S

d×d
++ the space of real symmetric positive

semi-definite matrices).
Although the covariance matrix encodes information about the variance of

the features and their correlation, it does not lie in a vector space. In fact, the
covariance space is a Riemannian manifold and is not closed under multiplication
with a negative scalar. Since most of the common machine learning algorithms
assume that the data lies in a vector space, we need to define a suitable transfor-
mation. The covariance matrix is symmetric positive definite therefore we can
adopt the Log-Euclidean metric. The basic idea of the Log-Euclidean metric is
to construct an equivalent relationship between the Riemannian manifold and
the vector space of the symmetric matrix.

In [19] an approach to map from Riemannian manifolds to Euclidean spaces
is described. The first step is the projection of the covariance matrices on an
Euclidean space tangent to the Riemannian manifold, on a specific tangency
matrix P. The second step is the extraction of the orthonormal coordinates
of the projected vector. In the following, matrices (points in the Riemannian
manifold) will be denoted by bold uppercase letters, while vectors (points in the
Euclidean space) by bold lowercase ones. The projection of C on the hyperplane
tangent to P becomes:

c = vecI

(
log
(
P− 1

2CP− 1
2

))
, (2)

where log is the matrix logarithm operator and I is the identity matrix, while
the vector operator on the tanget space at identity of a symmetric matrix Y is
defined as:

vecI(Y) =
[
y1,1

√
2y1,2

√
2y1,3 . . . y2,2

√
2y2,3 . . . yd,d

]
. (3)

Thus, after selecting an appropriate projection origin, every covariance matrix
is projected to an Euclidean space. Since c is a symmetric matrix of size d × d
a (d2 + d)/2-dimensional feature vector is obtained.

The projection point P is arbitrary and even if, as observed in [13], it could
influence the performance (distortion) of the projection, from a computational
point of view, the best choice is the identity matrix, which simply translates the
mapping into a standard matrix logarithm.

The image descriptor is the concatenation of the mean vector and the pro-
jected covariance matrix on a Euclidean space obtaining, in the case of SIFT
descriptor, a feature with 8384 dimensions. Finally, we empirically observe that
most of the values in the concatenated descriptor are low, while few are high.
In order to distribute the values more evenly, we adopt the power normalization
method proposed by Perronnin et al. [16].

4 Image Similarity Search

The extracted features can be used for a visual search system. In particular
we have considered three different metrics which allow to directly compare the

Beyond Bag of Words for Concept Detection 237

similarity of two images: Cosine Similarity, Euclidean Distance, Kullback-Leibler
(KL) divergence.

The cosine distance treats both vectors as unit vectors by normalizing them,
giving a measure of the angle between the two vectors. It does provide an ac-
curate measure of similarity but with no regard to magnitude, in contrast to
the Euclidean distance which gives the magnitude of difference between the two
feature vectors.

The third metric, KL divergence, is a measure of the dissimilarity between
two completely determined probability distributions. It is based on Kullback’s
measure of discriminatory information:

I(P1, P2) = −
∫
ε

p1log(p1/p2) dx. (4)

Kullback realizes the asymmetry of I(P1, P2) and describes it as the directed
divergence. To achieve symmetry, Kullback defines the divergence as I(P1, P2)+
I(P2, P1). The closed form expression for the symmetric KL (sKL) divergence
between two multivariate Gaussian densities, N1 and N2, can be written as:

dKL(N1,N2) =
1

2
uT (C−1

1 +C−1
2)u+

1

2
tr(C−1

1 C2 +C−1
2 C1 − 2I), (5)

where tr is the matrix trace, u = (m1 − m2) and I is the identity matrix. Note
that since the sKL divergence directly compares the Gaussian distributions is not
necessary to project the covariance matrices in a vector space through matrix log-
arithm.

5 Large Scale Online Learning

Multivariate Gaussian Descriptors can be used to learn SVM for classication, in
order to automatically enrich a large dataset with detection of semantic concept.
Batch-type SVM solvers, such as LibSVM/LIBLINEAR are effective and well
known solutions for train classifiers, however they are not feasible for training
large digital archives of cultural heritage images. In fact, they are batch methods
which require to go through all data to compute gradient in each iteration and
most of them require to pre-load training data into memory, which is impossible
when the size of the training data explodes.

To deal with large datasets, we propose to use the stochastic gradient descent
(SGD) algorithm, recently introduced for SVM classifiers training, because it is
an online method and can be easily parallelized to simultaneously train several
classifiers. In fact it updates the learning system on the basis of the loss function
measured for a single example.

We have training data that consists of N feature-label pairs, denoted as
{xt, yt}Nt=1, where xt is a s × 1 feature vector representing an image and yt ∈
{−1,+1} is the label of the image. The selected cost function for binary SVM
classification is the hinge loss, that can be written as:

238 C. Grana et al.

(1)

(2)

(3)

(6)

(5)

(4)

(7)

(8)

(9)

(12)

(11)

(10)

(13)

Fig. 1. Example of pictures grouped by class

L =

T∑
t=1

λ

2
‖w‖2 +max

[
0, 1− yt(w

Txt + b)
]
, (6)

where w is s × 1 SVM weight vector, λ (nonnegative scalar) is a regularization
parameter, and b (scalar) is a bias term. In the SGD algorithm, training data are
fed to the system one by one, and the update rule forw and b respectively are:

wt = (1− λη)wt−1 + ηytxt

bt = bt−1 + ηyt
(7)

if margin Δt = yt(w
Txt + b) is less than 1; otherwise, wt = (1 − λη)wt−1 and

bt = bt−1. The parameter η is the step size. We set η = (1+λt)−1, following the
vl pegasos implementation [20].

In order to parallelize the computation for training SVM classifiers, we random-
ize the data on disk and we load the data in chunks which fit in memory. We then
train the classifiers on further randomizationsof the chunks, so thatdifferent epochs
(one training epoch is definedasproviding all training samples to the classifier once)
will get the chunks data with different orderings. This last step of randomization
turns out to be essential to make the SGD algorithm work properly.

6 Experimental Results

6.1 Datasets Description

We perform the experiments on two different datasets: the first one is a set of pic-
tures from an illuminatedmanuscript used for image retrieval purposes, the second
one was created by querying GoogleImages and used for concept detection.

Beyond Bag of Words for Concept Detection 239

Inscription Church,
Gothic_glass_wall

Musical instruments,
Concerts, Orchestra,
Ceremony

Capitel Church, Bell_tower,
Building,
Gothic_glass_wall

Fig. 2. Sample images extracted from the GoogleCH dataset, with the corresponding
ground truth annotations

The first dataset (“Bible dataset”) was created from digitalized pages of the
Holy Bible of Borso d’Este, duke of Ferrara (Italy) from 1450 A.D. to 1471 A.D.
It is one of the best Renaissance illuminated manuscripts in the world, whose
original is held in the Biblioteca Estense Universitaria in Modena (Italy). It is
composed by 640 pages, with two-column layered text in Gothic font, spaced
out with some decorated drop caps, enclosing thousands of painted masterpieces
surrounded by rich decorations. These pages have been digitized at 10 Mpixels.
Then an automatic procedure [8] has been adopted to segment the miniature
illustrations. The set of images obtained from the segmentation process has been
manually refined to define the final dataset of 2281 pictures, publicly available for
scientific purposes [2] 1. In collaboration with a group of art experts, the authors
performed a manual classification obtaining a subset of 13 classes, characterized
by a clear semantic meaning and a significant search relevance (see Fig. 1). As
a result, 41% of the original dataset (903 images) has been uniquely annotated
into those classes, while the remaining pictures are considered as distractors,
often with similar color, shape and texture distribution.

The second dataset (“GoogleCH dataset”, see sample images in Fig. 2) was
automatically crawled from GoogleImages, by searching for 20 semantic concepts
related to cultural heritage (altar, archaeological sites, bell tower, bridge, build-
ing, capital, ceremony, church, city square, concerts, crown, Gothic glass wall,
inscription, manuscript, mosaic, musical instruments, orchestra, rose window,
statue, Tuscany food). For each concept, about 500 images were downloaded
and, excluding some which were wrong links, resized to a fixed width of 640 pix-
els, with a proportional height scaling. The final dataset contains 9594 images,
each annotated with the single concept used on the query. Another 1000 images
was downloaded, and manually annotated selecting all the concepts present in
the image. In this way the training set can be considered a noisy source of in-
formation, but definitely containing some useful information. Of course some of
the images thus obtained suffer from the ambiguity of the concept terms or their
different meaning in different languages (e.g. “inscription” is the French word
for “subscription”).

1 Download the Bible dataset at
http://imagelab.ing.unimo.it/files/bible_dataset.zip

http://imagelab.ing.unimo.it/files/bible_dataset.zip

240 C. Grana et al.

6.2 Content-Based Visual Similarity Retrieval

In order to propose a valuable comparison, a large variety of visual descriptors
based on BoW has been tested in addition to the Multivariate Gaussian Model on
the Bible dataset. In particular, we relied on the code and the implementation
proposed by [17], employing the following descriptors: RGB Color Histogram
(localCH), a combination of three 1D histograms based on the R, G, and B
channels of the RGB color space; Transformed Color Histogram (localTCH),
RGB histogram obtained by normalizing the pixel value distributions, achieving
scale-invariance and shift-invariance with respect to light intensity; Color Mo-
ments (localCM), generalized color moments up to the second order, giving a
27-dimensional shift-invariant descriptor; SIFT descriptor (128-dimensional fea-
ture vector); RGB-SIFT descriptor (rgbSIFT), for a total 3 × 128-dimensional
feature vector; RG-SIFT descriptor (rgSIFT), computed for R and G channels
independently, for a total 2×128-dimensional feature vector; HSV-SIFT descrip-
tor (hsvSIFT), computed converting the original image into the HSV color space,
and considering each channel independently, for a total 3× 128-dimensional fea-
ture vector; Opponent-SIFT descriptor (oppSIFT), describing all of the chan-
nels in the opponent color space [18] using SIFT descriptors; C-SIFT descriptor
(cSIFT), as proposed by [3], using the C-invariant color space which eliminates
the remaining intensity information from the opponent channels; SURF, a scale-
and rotation-invariant interest point detector and descriptor which uses integral
images and other optimization and approximations to reduce the computational
time.

All these descriptors were extracted using the Harris-Laplace region detector.
A codebook has been created for every descriptor through a k-means clustering
over 10% of the annotated dataset, randomly selected among all the classes
in order to ensure an equal amount of visual information for each of them.
The employed distance function is the histogram intersection. The sizes k of
the codebooks have been determined empirically. In fact, since the clustering
is a process of data compression, too small k’s (large compression ratio) will
force diverse keypoints into the same visual word reducing the quality of the
representation; instead too large k’s (small compression ratio) might lead to a
sparse representation with similar keypoints mapped into different visual words,
increasing the computational requirements without any real benefit. Therefore
in our experiments we tested values of k between 29 and 214.

Table 1 reports the detailed results obtained using the different features in
terms of Mean Average Precision (MAP). For the BoW approaches every col-
umn reports the performance using several codebook sizes. The bottom part of
the table reports the results obtained with the proposed descriptor, changing
the similarity measure. When using the Cosine similarity or the Euclidean dis-
tance, the covariance matrix is projected on the tangent space with the matrix
logarithm, while the symmetric KL divergence works directly on the covariance
matrix. It is possible to observe that the best results are achieved with the Mul-
tivariate Gaussian Model of the rgbSIFT descriptors using the dot product, and
the result is significantly better then the best result obtained with the BoW

Beyond Bag of Words for Concept Detection 241

Table 1. Detailed MAP results obtained using the different features. For the BoW
approaches (top of the table) every column reports the performance using several code-
book sizes. The distance used is always Histogram Intersection. The bottom part of the
table reports the results obtained with the proposed descriptor, changing the similarity
measure.

512 1024 2048 4096 8192 16384

localCH 0.142 0.145 0.147 0.147 0.149 0.147
localTCH 0.129 0.135 0.139 0.141 0.145 0.147
localCM 0.135 0.141 0.146 0.150 0.152 0.155
SIFT 0.134 0.136 0.138 0.139 0.142 0.144
rgbSIFT 0.136 0.137 0.138 0.139 0.139 0.142
rgSIFT 0.144 0.147 0.149 0.152 0.152 0.150
hsvSIFT 0.137 0.137 0.138 0.140 0.141 0.139
oppSIFT 0.138 0.141 0.141 0.142 0.143 0.145
cSIFT 0.139 0.139 0.140 0.143 0.143 0.143
SURF 0.119 0.127 0.130 0.129 0.129 0.128

Cosine Similarity Euclidean sKL divergence

mgm-SIFT 0.146 0.134 0.151
mgm-rgbSIFT 0.191 0.119 0.130

approaches (i.e. the local color moments). Fig. 3 shows the performance com-
parison of the best configuration for each feature summarization method.

6.3 Concept Detection for Image Enrichment

For the concept detection task, we employ the proposed descriptor and compare
it with the state-of-the-art BoW approach setting the histogram size, i.e. the
number of cluster centers for the k-means algorithm, to 4000. For this task, the
rgbSIFT descriptors are extracted at four scales, defined by setting the width of
the spatial bins to 4, 6, 8, and 10 pixels respectively, over a dense regular grid
with a spacing of 3 pixels. We use the function vl phow provided by the vl feat

library [20] and, apart from the spacing step, the defaults options are used. Since
the rgbSIFT descriptor is a 384-dimensional feature, the multivariate Gaussian
descriptor of an image (or a sub-region) would become an extremely large vector.
For this reason, we obtain the image feature by concatenating the multivariate
Gaussian descriptors computed for each color channel separately. Images are
hierarchically partitioned into 1 × 1, 2 × 2 and 1 × 3 blocks on 3 levels respec-
tively. The resulting descriptors are then concatenated for both methods. The
Mean Average Precision (MAP) is used to evaluate the performance, because
commonly adopted in concept annotation scenarios.

With this dataset, we apply SGD, which allows us to deal with the large
number of images available. Loading the entire training set on memory (9594
samples) occupies about 8.0GB, requiring to split the data in chunks, each loaded

242 C. Grana et al.

0.000

0.020

0.040

0.060

0.080

0.100

0.120

0.140

0.160

0.180

0.200

Fig. 3. Comparison of the best MAP values obtained using the different features

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30 32

M
AP

Epochs

MGM

BoW

Fig. 4. Mean Average Precision values obtained on the GoogleCH dataset, using the
proposed approach and BoW

in turns. To select an appropriate regularization parameter λ for the SGD solver,
we randomly split the training set in two and run the SGD varying λ from 10−3

to 10−7 in power of 10 steps. Based on this preliminary experiments we fix
λ = 10−5. Fig. 4 reports the results of both the proposed approach and BoW in
term of MAP at different number of training epochs. Note that the performance
rapidly increases in the first 10 epochs, and later tends to remain quite constant.
In addition, our method obtains a MAP of 0.83 compared to 0.74 of the BoW
approach (at the 30th epoch) and presents better performance at all epochs.

Beyond Bag of Words for Concept Detection 243

7 Conclusions

In this paper we propose a novel approach for image retrieval and automatic
annotation of cultural heritage images. For image retrieval scenario we analyzed
three different metrics, while for the automatic annotation we explored the pos-
sibility to use noisy data in the training set. The experimental results, on the
Bible and GoogleCH datasets, show interesting results both in classification and
similarity search with respect to a large variety of visual signatures based on
BoW.

References

1. Ali, S., Silvey, S.: A general class of coefficients of divergence of one distribution
from another. J. of the Royal Stat. Soc (B) 28(1), 131–142 (1966)

2. Borghesani, D., Grana, C., Cucchiara, R.: Miniature illustrations retrieval and
innovative interaction for digital illuminated manuscripts. In: Multimedia Systems
(2013)

3. Burghouts, G.J., Geusebroek, J.M.: Performance evaluation of local colour invari-
ants. Computer Vision and Image Understanding 113, 48–62 (2009)

4. Chatfield, K., Lempitsky, V., Vedaldi, A., Zisserman, A.: The devil is in the details:
an evaluation of recent feature encoding methods. In: BMVC (2011)

5. Csurka, G., Dance, C.R., Fan, L., Willamowski, J., Bray, C.: Visual categorization
with bags of keypoints. In: ECCV Workshop Stat. Learn. Comput. Vision (2004)

6. van Gemert, J.C., Geusebroek, J.-M., Veenman, C.J., Smeulders, A.W.M.: Kernel
codebooks for scene categorization. In: Forsyth, D., Torr, P., Zisserman, A. (eds.)
ECCV 2008, Part III. LNCS, vol. 5304, pp. 696–709. Springer, Heidelberg (2008)

7. Gonçalves, M.A., Fox, E.A., Watson, L.T., Kipp, N.A.: Streams, structures, spaces,
scenarios, societies (5s): A formal model for digital libraries. ACM Trans. Inf.
Syst. 22(2), 270–312 (2004)

8. Grana, C., Borghesani, D., Cucchiara, R.: Automatic segmentation of digitalized
historical manuscripts. In: Multimedia Tools and Applications, pp. 1–24 (2010)

9. Grana, C., Serra, G., Manfredi, M., Cucchiara, R.: Image classification with mul-
tivariate gaussian descriptors. In: ICIAP (2013)

10. Jegou, H., Douze, M., Schmid, C., Perez, P.: Aggregating local descriptors into a
compact image representation. In: 2010 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3304–3311 (2010)

11. Kailath, T.: The divergence and Bhattacharyya distance measures in signal selec-
tion. IEEE T. Commun. Techn. 15(1), 52–60 (1967)

12. Lagoze, C., Payette, S., Shin, E., Wilper, C.: Fedora: an architecture for complex
objects and their relationships. Int. J. Digit. Libr. 6(2), 124–138 (2006)

13. Martelli, S., Tosato, D., Farenzena, M., Cristani, M., Murino, V.: An FPGA-based
Classification Architecture on Riemannian Manifolds. In: DEXAWorkshops (2010)

14. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
T. Pattern Anal. 27(10), 1615–1630 (2005)

15. Nister, D., Stewenius, H.: Scalable recognition with a vocabulary tree. In: IEEE
International Conference on Computer Vision and Pattern Recognition (2006)

16. Perronnin, F., Sánchez, J., Mensink, T.: Improving the fisher kernel for large-scale
image classification. In: Daniilidis, K., Maragos, P., Paragios, N. (eds.) ECCV 2010,
Part IV. LNCS, vol. 6314, pp. 143–156. Springer, Heidelberg (2010)

244 C. Grana et al.

17. van de Sande, K.E.A., Gevers, T., Snoek, C.G.M.: Evaluating color descriptors for
object and scene recognition. IEEE T. Pattern Anal. 32(9), 1582–1596 (2010)

18. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: A survey. Foun-
dations and Trends in Computer Graphics and Vision 3(3), 177–280 (2007)

19. Tuzel, O., Porikli, F., Meer, P.: Pedestrian Detection via Classification on Rieman-
nian Manifolds. IEEE T. Pattern Anal. 30(10), 1713–1727 (2008)

20. Vedaldi, A., Fulkerson, B.: VLFeat: An open and portable library of computer
vision algorithms (2008), http://www.vlfeat.org/

21. Wang, J., Yang, J., Yu, K., Lv, F., Huang, T., Gong, Y.: Locality-constrained linear
coding for image classification. In: CVPR (2010)

http://www.vlfeat.org/

Large Scale Image Retrieval Using Vector

of Locally Aggregated Descriptors

Giuseppe Amato, Paolo Bolettieri, Fabrizio Falchi, and Claudio Gennaro

ISTI - CNR, Pisa, Italy
{giuseppe.amato,paolo.bolettieri,

fabrizio.falchi,claudio.gennaro}@isti.cnr.it

Abstract. Vector of locally aggregated descriptors (VLAD) is a promis-
ing approach for addressing the problem of image search on a very large
scale. This representation is proposed to overcome the quantization er-
ror problem faced in Bag-of-Words (BoW) representation. However, text
search engines have not be used yet for indexing VLAD given that it is
not a sparse vector of occurrence counts. For this reason BoW approach
is still the most widely adopted method for finding images that represent
the same object or location given an image as a query and a large set of
images as dataset.

In this paper, we propose to enable inverted files of standard text
search engines to exploit VLAD representation to deal with large-scale
image search scenarios. We show that the use of inverted files with VLAD
significantly outperforms BoW in terms of efficiency and effectiveness on
the same hardware and software infrastructure.

Keywords: bag of features, bag of words, local features, compact codes,
image retrieval.

1 Introduction

In the last few years, local features [16] extracted from selected regions [22] have
emerged as a promising method of representing image content in such a way
that tasks of object recognition, and other similar (e.g. landmark recognition,
copy detection, etc.) can be effectively executed. A drawback of the use of local
features is that a single image is represented by a large set (typically thousands)
of (local) descriptors that should be individually matched and processed in order
to compare the visual content of two images. In principle, a query image should
be compared with each dataset object independently. In fact, each local feature of
the query should be compared with all the local features of any dataset image in
order to find a possible match. Moreover, candidate matches should be validated
evaluating a geometric transformation (typically an Homography) able to map a
region of the query to a region of the dataset image. Even though data structures
as kd-tree [9] are used to efficiently search candidate matching pairs in any two
images, still the approach is not scalable.

A very popular method to achieve scalability is the Bag-of-Words (BoW) [21]
(or bag-of-features) approach that consists in replacing original local descriptors

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 245–256, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

246 G. Amato et al.

with the id of the most similar descriptor in a predefined vocabulary. Follow-
ing the BoW approach, an image is described as a histogram of occurrence of
visual words over the global vocabulary. Thus, the BoW approach used in com-
puter vision is very similar to the traditional BoW approach in natural language
processing and information retrieval [5]. However, as mentioned in [24], “a fun-
damental difference between an image query (e.g. 1500 visual terms) and a text
query (e.g. 3 terms) is largely ignored in existing index design”. From the very
beginning [21] a words reduction technique was used (e.g. removing 10% of the
more frequent images). In [2], removing query words with small tf*idf [20] re-
vealed very good performance in improving efficiency of the BoW approach with
a reduced lost in effectiveness. In this work, we make use of the parametric tf*idf
approach for facilitating trade-offs between efficiency and effectiveness in the
BoW approach.

Efficiency and memory constraints have been recently addressed by aggre-
gating local descriptors into a fixed-size vector representation that describe the
whole image. In particular, Fisher Vector (FV) [18] and VLAD [12] have shown
better performance than BoW [15]. In this work we will focus on VLAD which
has been proved to be a simplified non-probabilistic version of FV. Despite its
simplicity, VLAD performance is comparable to that of FV [15].

Euclidean Locality-Sensitive Hashing [7] is, as far as we know, the only index-
ing technique tested with VLAD. While may other similarity search indexing
techniques [23] could be applied to VLAD, in this work we decide to investi-
gate the use of inverted files for allowing comparison of the VLAD and BoW
approach on the same index. Permutation-Based Indexing [6,4,8] allows using
inverted files to perform similarity search with an arbitrary similarity function.
Moreover, in [10,1] a Surrogate Text Representation (STR) derivated from the
MI-File has been proposed. The conversion of the image description in a textual
form allows us to employ the search engine off-the-shelf indexing and searching
abilities with a little implementation effort.

In this paper, we applied the STR technique to the VLAD method compar-
ing both effectiveness and efficiency with the state-of-the-art BoW approach on
the very same hardware and software infrastructure using the publicly available
and widely adopted 1M photos dataset. Given that the STR combination gives
approximate results with respect to a complete sequential scan, we also com-
pare the effectiveness of VLAD-STR with the one of standard VLAD. Moreover,
we considered balancing efficiency and effectiveness with both BoW and VLAD-
STR approaches. For the VLAD-STR, a similar trade-off is obtained varying the
number of results used for re-ordering. Thus, we do not only compare VLAD-
STR and BoW on specific settings but we show efficiency vs effectiveness graphs
for both. For the VLAD-STR, a trade-off is obtained varying the number of
results used for re-ordering.

Results confirm the higher performance obtained by VLAD with respect to
BoW already showed in [12,15] even when VLAD is combined with STR a off-
the-shelf text search engine (i.e., Lucene) is used. Thus, our main contribution is
proving that the proposed VLAD-STR approach, can be used, in place of BoW,

Large Scale Image Retrieval Using Vector of Locally Aggregated Descriptors 247

in combination with traditional text search engines achieving good scalability
and preserving the improvement in effectiveness already showed in [15]

The paper is organized as follows. Section 2 presents relevant previous works.
In Section 3 we present the STR approach that is used for indexing VLAD with
a text search engine. Results are presented in Section 4. Finally, in Section 5 we
present our conclusions and describe future work.

2 Related Work

2.1 Local Features

Local features [16] describe the visual content of local interest regions computed
for local interest regions [22]. Good local features should be distinctive and at
the same time robust to changes in viewing conditions as well as to errors of
the detector. Developed mainly in Computer Vision, their typical applications
include finding locations and particular objects, detecting image near duplicates
and deformed copies. A drawback of the use of local features is that a single
image is represented by a large set (typically thousands) of descriptors that
should be individually matched and processed in order to compare the visual
content of two images.

2.2 Bag of Words (BoW)

State-of-the art techniques for performing large scale content based image re-
trieval using local features typically involve the BoW approach. BoW was ini-
tially proposed in [21] and has been studied in many other papers. The goal of
the BoW approach is to substitute each local descriptor of an images with visual
words obtained from a predefined vocabulary in order to apply traditional text
retrieval techniques to CBIR.

The first step is selecting some visual words creating a vocabulary. The visual
vocabulary is typically built clustering, using k-means, local descriptors of the
dataset ad selecting the centroids. The second step assigns each local descriptor
to the identifier of the first nearest word in the vocabulary. For speeding-up this
second phase approximate kd-tree is often used at a small effectiveness price. At
the end of the process, each image is described as a set of visual words. The
retrieval phase is then performed using text retrieval techniques considering a
query image as disjunctive text-query. Typically, the cosine similarity measure in
conjunction with a term weighting scheme is adopted for evaluating the similarity
between any two images.

Even though inverted files offer a significant improvement in efficiency, in
many cases efficiency is not yet satisfactory. In fact, a query image is associated
with thousands of visual words. Therefore, the search algorithm on inverted files
has to access thousands of different posting lists. From the very beginning [21]
words reduction techniques were used (e.g. removing 10% of the more frequent
images). However, as far as we know, no experiments have been reported on the
impact of the reduction on both efficiency and efficacy.

248 G. Amato et al.

In [2], various techniques to reduce the number of words describing an image
obtained with the BoW approach were evaluated. tf*idf [20] revealed very good
performance in improving efficiency with a reduced lost in effectiveness. In this
work, we make use of the parametric tf*idf approach to allow trade-offs between
efficiency and effectiveness.

2.3 Fisher Vector

Fisher kernels [11] describe how the set of descriptors deviates from an average
distribution, modeled by a parametric generative model. Fisher kernels have been
applied in the context of image classification [17] and large scale image search
[18]. In [15] it has been proved that Fisher vectors (FVs) extend the BoW. While
the BoW approach counts the number of descriptors assigned to each region in
the space, FV also encodes the proximate location of the descriptors in each
region and has a normalization that can be interpreted as an IDF term. The FV
image representation proposed by [17] assumes that the samples are distributed
according to a Gaussian Mixture Model (GMM) estimated on a training set.
Results reported in [15] reveal that FV indexed using LSH outperforms BoW.

2.4 VLAD

The VLAD representation was proposed in [12]. As for the BoW, a codebook
{μ1, . . . , μK} is first learned using a cluster algorithm (e.g. k-means). Each lo-
cal descriptor xt in each image is then associated to its nearest visual word
NN(xt) in the codebook. For each codeword the differences between the vectors
xt assigned to μi are accumulated:

vi =
∑

xt:NN(xt)=i

xt − μi

VLAD is the concatenation of the accumulated vectors, i.e. V = [vT1 . . . vTK].
Please note that all vi (i = 1, ...K) have the same size which is equal to the size
of the used local feature (e.g. 128 for SIFT). Given a codebook {μ1, . . . , μK},
K is fixed (typically 16 ≤ K ≤ 128. Thus the dimensionality of the whole
vector V describing any image is fixed too. In other words, VLAD evaluates a
global descriptor statistically describing a set of local features with respect to a
predefined codebook.

In order to improve the effectiveness of the VLAD approach, two normaliza-
tion are performed: first, a power normalization with power 0.5; second, a L2
normalization. After this process two global descriptor V1 and V2 related to any
two images can be compared using the inner product.

The observation that VLAD descriptor has high dimensionality but is rela-
tively sparse and very structured suggests a principal component analysis (PCA)
that is usually performed to reduce the size of the K-dimensional VLAD vectors.
In this work, we decide not to use dimensionality reduction techniques because
we will show that our space transformation approach is independent from the

Large Scale Image Retrieval Using Vector of Locally Aggregated Descriptors 249

original dimensionality of the description. In fact, the STR approach that we
propose, transforms the VLAD description in a set of words from a vocabulary
that is independent from the original VLAD dimensionality. In our proposal,
PCA could be used to increase efficiency of the STR trasformation.

In [15], it has been shown that VLAD is a simplified non-probabilistic ver-
sion of FV: VLAD is to FV what k-means is to GMM clustering. The k-means
clustering can be viewed as a non-probabilistic limit case of GMM clustering.

In [15] Euclidean Locality-Sensitive Hashing and its variant have been pro-
posed to efficiently search VLAD descriptors.

3 Perspective Transformation and Surrogate Text
Representation

In this paper, we propose to index the VLAD descriptors using a surrogate text
representation. This allows using any text retrieval engine to perform image
similarity search. As discussed later, for the experiments, we implemented these
ideas on top of the Lucene text retrieval engine.

The approach to encode global features (as VLAD) used in this paper lever-
ages on the perspective based space transformation developed in [4,10]. The
idea at the basis of this technique is that when two descriptors are very similar,
with respect to a given similarity function, they ’see’ the ’world around’ them
in the same way. In the following, we will see that the ’world around’ can be
encoded as a surrogate text representation (STR), which can be managed with
an inverted index by means of a standard text-based search. The conversion of
the visual descriptor in a textual form allows us to employ the search engine
off-the-shelf indexing and searching abilities with a little implementation effort.

3.1 STR Generation

Let D be the domain of the global descriptors o, and d : D × D → R a dis-
tance function able to assess the dissimilarity between any two o1, o2 ∈ D.
Let R ∈ Dm, be a vector of m distinct reference descriptors (or pivots) ri,
i.e., R = (r1, . . . , rm). We denote the vector of positions of the reference ob-
jects in R ranked by increasing distance with respect to an object o ∈ D as
P (o) = (p1(o), . . . , pm(o)). As an example, if p3(o) = 2 then r3 is the 2nd near-
est object to o among those in R.

The objective is to define a function that transforms a global descriptor into
a sequence of terms (ie, a textual document) that can be fed into a text search
engine as for instance Lucene. Of course, the ultimate goal is to obtain that the
distance between the documents and the query is an approximation of the origi-
nal distance function of the global descriptors. To achieve this, we associate each
element ri ∈ R with a unique alphanumeric keyword τi, and define a function
tk(o) that returns a space-separated concatenation of zero or more repetitions
of τi keywords, as follows:

250 G. Amato et al.

tk(o) =

m⋃
i=1

⎛⎝(k+1)−pk
i (o)⋃

j=1

τi

⎞⎠
where pki (o) = pi(o) if pi(o) < k and pki (o) = k otherwise. By abuse of notation,
we denote the space-separated concatenation of keywords with the union opera-
tor ∪. The inner ∪ simply repeat (k+1)−pki (o) times the alphanumeric keyword
τi used for indicating the reference object ri ∈ R. The outer ∪ concatenates the
repeated occurrences, if any, of keywords τi for i = 1...m. The function tk(o) is
used to generate the STR to be used for both indexing and querying purposes.
k is used to consider only the k nearest reference object in R to o, and typically
assumes two distinct values for the query q and for the objects in the dataset (kx
for indexing and kq for querying). For instance, consider the case exemplified in
Figure 1, and let us assume τ1 =A, τ2 =B, etc. The function tk will generate the
following outputs

tkx(o1) = “E E E B B A”
tkx(o2) = “D D D C C E”
tkq (q) = “E E A”
As can be seen intuitively, strings corresponding to o1 and q are more similar to

those corresponding to o2 e q, this approximate the original distance d. Without
going to the mathematical details, we leverage on the fact that a text based
search engine will generate a vector representation of STRs generated with tkx(o)
and tkq (q) containing the number of occurrences of words in texts. This is the
case of the simple term-frequency weighting scheme. This means that, if for
instance keyword τi corresponding to the reference object ri ∈ R appears n
times, the i-th element of the vector will contain the number n, and whenever
τi does not appear it will contain 0. With simple mathematical manipulations,
it is easy to see how applying the cosine similarity on the query vector and a
vector in the database corresponding to tkx(o) and tkq (q) respectively, we get
a degree of similarity that reflects the similarity order of reference descriptors
(pivots) around descriptors in the original space.

For more information on how the technique works from the mathematical
point of view, we remind the reader to [10,1]. The impact of kx on the effective-
ness of the search has been studied in [3].

3.2 Reordering Search Results

The idea described so far uses a textual representation of the descriptors and a
matching measure based on a similarity offered by standard text search engines
to order the descriptors in the dataset in decreasing similarity with respect to
the query. The result set is more precise if we order it using the original distance
function d.

Suppose we are searching for the k most similar (nearest neighbors) descriptors
to the query. We can improve the quality of the approximation by re-ranking,
using the original distance function d, the first c (c ≥ k) descriptors from the

Large Scale Image Retrieval Using Vector of Locally Aggregated Descriptors 251

Fig. 1. Example of perspective based space transformation and Surrogate Text Rep-
resentation. a) Black points are reference objects; white points are data objects; the
gray point is a query. b) Encoding of the data objects in the STR.

approximate result set at the cost of more c distance computations. We will show
that this technique significantly improves the accuracy, though only requiring a
very low search cost. In fact, when c is much smaller than the size of the dataset,
this extra cost can be considered negligible with respect to the cost of accessing
the inverted file. For instance, when k is 10 and c =1,000, with a dataset size of
1,000,000 it means that we have to reorder a number of descriptors equivalent
to just 0.1% of the entire dataset. Usually, this is not true for other access
methods, for instance tree-based access methods, where the efficiency of the
search algorithms strongly depends on the amount of descriptors retrieved.

4 Experiments

4.1 Setup

INRIA Holidays [14,15] is a collection of 1,491 holiday images. The authors se-
lected 500 queries and, for each of them, a list of positive results. To evaluate the
approaches on a large scale, we merged the Holidays dataset with the Flickr1M1

collection as in [13,12,15]. The ground–truth is the one built on the INRIA Hol-
idays dataset alone, but it is largely accepted that no relevant images can be
found between the Flickr1M images. SIFT descriptors and various vocabulary
were made publicly available by Jegou et al. for both the Holidays and the Flickr
1M datasets2. For the BoW approach we used the 20K vocabulary.

For representing the images using the VLAD approach, we selected 64 ref-
erence descriptors using k-means over a subset of the Flickr1M dataset. As ex-
plained Section 3, a drawback of the perspective based space transformation used
for indexing the VLAD with a text search engine is that it is an approximate
technique. However, to alleviate this problem, we reorder the best results using

1 http://press.liacs.nl/mirflickr/
2 http://lear.inrialpes.fr/~jegou/data.php

http://press.liacs.nl/mirflickr/
http://lear.inrialpes.fr/~jegou/data.php

252 G. Amato et al.

Table 1. Effectiveness (mAP) and effi-
ciency (mSec) with respect to the average
number of distinct words per query ob-
tained with the BoW approach varying the
query size

avg#Words mAP avg mSec
7 0.03 525
16 0.07 555
37 0.11 932
90 0.14 1463
233 0.15 2343

BoW

Table 2. Effectiveness (mAP) and effi-
ciency (mSec) obtained with the VLAD
approach in combination with STR, with
respect to the number of results used for
reordering

#reordered mAP avg mSec
0 0.13 139
100 0.24 205
1000 0.29 800
2000 0.30 1461
4000 0.31 2784

VLAD

the actual distance between the VLAD descriptors. For the STR we used 4,000
references (i.e., m = 4, 000) randomly selected from the Flickr1M dataset.

During the experimentation also 256 references for VLAD and up to 10,000
references for the STR were selected but the results were only slightly better
than the ones presented while efficiency significantly reduced.

All experiments were conducted on a Intel Core i7 CPU, 2.67 GHz with 12.0
GB of RAM a 2TB 7200 RPM HD for the Lucene index and a 250 GB SSD
for the VLAD reordering. We used Lucene v3.6 running on Java 6 64 bit over
Windows 7 Professional.

The quality of the retrieved images is typically evaluated by means of precision
and recall measures. As in many other papers [19,13,18,15], we combined this
information by means of the mean Average Precision (mAP), which represents
the area below the precision and recall curve.

4.2 Results

In Table 1, we report the mAP obtained with the BoW approach varying the
size of the query in terms of average number of distinct words. The query words
have been filtered using the tf*idf approach as mentioned in Section 2.2. The
average number of words per image, as extracted by the INRIA group, is 1,471
and they were all inserted in the index without any filtering. The filtering was
used only for the queries and results are reported for average number of distinct
words up to 250. In fact, bigger queries result in heavy load of the system. It is
worth to mention that we were able to obtain 0.23 mAP performing a sequential
scan of the dataset with the unfiltered queries.

The results show that while the BoW approach is in principle very effective
(i.e. performing a sequential scan), the high number of query visual words needed
for achieve good results significantly reduces his usability. As mentioned in [24],
“a fundamental difference between an image query (e.g. 1,500 visual terms) and

Large Scale Image Retrieval Using Vector of Locally Aggregated Descriptors 253

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

BoW

233

90

37

16

7

Fig. 2. Precision and recall curves ob-
tained with the BoW approach in combi-
nation with STR for various query size

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1

Pr
ec

is
io

n

Recall

VLAD

4000

2000

1000

100

0

Fig. 3. Precision and recall curves ob-
tained with the VLAD-STR for various
number of results used for reordering

a text query (e.g. 3 terms) is largely ignored in existing index design. This
difference makes the inverted list inappropriate to index images”.

In Table 2, we report the results obtained using the VLAD approach in combi-
nation with the use of the STR illustrated in Section 3. As explained in 4.1, given
that for indexing the images we used a STR, it is useful to reorder the better
results obtained from the text search engine using the actual VLAD distance.
Thus, we report mAP and avg mSec per query for the non–reordering case and
for various values of results used for reordering. The reordering phase dominates
the average query time but it significantly improves effectiveness especially if
only 100 or 1,000 objects are considered for reordering. As mentioned before, we
make use of SSD for speed-up reordering phase but even higher efficiency could
be obtained using PCA as proposed in [15]. Please note that even though the
reordering phase cost for VLAD can be reduced, the reported results already
show that VLAD outperform BoW.

It is worth to mention that we also performed a sequential scan of the entire
dataset obtaining amAP of 0.34 for VLAD. In fact, as depicted in 3, the results ob-
tainedwith theVLAD-STR approachare an approximation of the results obtained
with a complete pair wise comparison between the query and the dataset object.
The same is true when LSH indexing is used as in [15]. Results show that the ap-
proximation introduced byt STR does not impact significantly the effectiveness of
the system when at least 1,000 objects are considered for reordering.

In Figures 2 and 3 we report the precision and recall curves for BoW and
VLAD. The results essentially confirm the ones reported in Table 1 and 2. In
fact, no significant differences can be found in the distribution of the precision
with respect to the recall.

In Figure 4 we plot mAP with respect to the average query execution time for
both BoW and VLAD as reported in Table 1 and Table 2. The graph underlines
both the efficiency and effectiveness advantages of the VLAD with respect to
the BoW approach.

254 G. Amato et al.

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0 500 1000 1500 2000 2500 3000

m
A

P

mSec

Efficiency vs Effectiveness

VLAD BoW

Fig. 4. Effectiveness (mAP) with respect to efficiency (mSec per query) obtained by
VLAD and BoW for various settings

5 Conclusions and Future Work

In this work, we proposed the usage of STR in combination with VLAD de-
scriptions in order to index VLAD with off-the-shelf text search engines. Using
the very same hardware and text search engine (i.e., Lucene), we were able to
compare with the state-of-the-art BoW. Results obtained for BoW confirm that
the high number of visual terms in the query significantly reduces efficiency of
inverted lists. Even though results showed that this can be mitigated reducing
the number of visual terms in the query with a tf*idf weighting scheme, the
VLAD-STR significantly outperforms BoW in terms of both efficiency and ef-
fectiveness. The efficiency vs effectiveness graph reveals that VLAD-STR is able
to obtain the same values of mAP obtained with BoW for an order of magnitude
less in response time. Moreover, for the same response time, VLAD-STR is able
to obtain twice the mAP of BoW.

Future work includes VLAD-STR improving the reordering phase. With re-
gards to efficiency, PCA could be used on VLAD as suggested in [15]. Moreover,
in recognition scenarios (e.g., landmark recognition) the reordering phase typ-
ically involves geometric consistency checks performed using RANSAC. This
could be also done with the VLAD description.

As mentioned in the paper, VLAD is essentially a non probabilistic version
of the Fisher Kernels that typically results in almost the same performance. It
would be interesting to test the STR approach also with Fisher Kernels compar-
ing with both VLAD-STR and BoW.

Large Scale Image Retrieval Using Vector of Locally Aggregated Descriptors 255

References

1. Amato, G., Bolettieri, P., Falchi, F., Gennaro, C., Rabitti, F.: Combining local and
global visual feature similarity using a text search engine. In: 2011 9th International
Workshop on Content-Based Multimedia Indexing (CBMI), pp. 49–54 (June 2011)

2. Amato, G., Falchi, F., Gennaro, C.: On reducing the number of visualwords in
the bag-of-features representation. In: Battiato, S., Braz, J. (eds.) VISAPP 2013
- Proceedings of the International Conference on Computer Vision Theory and
Applications, Barcelona, Spain, February 21-24, vol. 1, pp. 657–662. SciTePress
(2013) ISBN: 978-989-8565-47-1

3. Amato, G., Gennaro, C., Savino, P.: Mi-file: using inverted files for scalable approx-
imate similarity search. In: Multimedia Tools and Applications, pp. 1–30 (2012)

4. Amato, G., Savino, P.: Approximate similarity search in metric spaces using in-
verted files. In: Proceedings of the 3rd International Conference on Scalable In-
formation Systems, InfoScale 2008, pp. 28:1–28:10. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), Brussels (2008)

5. Baeza-Yates, R.A., Ribeiro-Neto, B.A.: Modern Information Retrieval - the con-
cepts and technology behind search, 2nd edn. Pearson Education Ltd., Harlow
(2011)

6. Chávez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering
permutations. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1647–1658 (2008)

7. Datar, M., Immorlica, N., Indyk, P., Mirrokni, V.S.: Locality-sensitive hashing
scheme based on p-stable distributions. In: Proceedings of the Twentieth Annual
Symposium on Computational Geometry, SCG 2004, pp. 253–262. ACM, New York
(2004)

8. Esuli, A.: Mipai: Using the pp-index to build an efficient and scalable similarity
search system. In: Proceedings of the 2009 Second International Workshop on Simi-
larity Search and Applications, SISAP 2009, pp. 146–148. IEEE Computer Society,
Washington, DC (2009)

9. Friedman, J.H., Bentley, J.L., Finkel, R.A.: An algorithm for finding best matches
in logarithmic expected time. ACM Trans. Math. Softw. 3(3), 209–226 (1977)

10. Gennaro, C., Amato, G., Bolettieri, P., Savino, P.: An approach to content-based
image retrieval based on the lucene search engine library. In: Lalmas, M., Jose, J.,
Rauber, A., Sebastiani, F., Frommholz, I. (eds.) ECDL 2010. LNCS, vol. 6273, pp.
55–66. Springer, Heidelberg (2010)

11. Jaakkola, T., Haussler, D.: Exploiting generative models in discriminative classi-
fiers. In: Advances in Neural Information Processing Systems 11, pp. 487–493. MIT
Press (1998)

12. Jégou, H., Douze, M., Sánchez, J., Pérez, P.: Aggregating local descriptors into a
compact image representation. In: 2010 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3304–3311 (June 2010)

13. Jegou, H., Douze, M., Schmid, C.: Packing bag-of-features. In: 2009 IEEE 12th
International Conference on Computer Vision, September 29 - October 2, pp. 2357–
2364 (2009)

14. Jégou, H., Douze, M., Schmid, C., Pérez, P.: Aggregating local descriptors into a
compact image representation. In: IEEE Conference on Computer Vision & Pattern
Recognition, pp. 3304–3311 (June 2010)

15. Jégou, H., Perronnin, F., Douze, M., Sánchez, J., Pérez, P., Schmid, C.: Aggregating
local image descriptors into compact codes. In: IEEE Transactions on Pattern
Analysis and Machine Intelligence (September 2012) QUAERO

256 G. Amato et al.

16. Mikolajczyk, K., Schmid, C.: A performance evaluation of local descriptors. IEEE
Transactions on Pattern Analysis and Machine Intelligence 27(10), 1615–1630
(2005)

17. Perronnin, F., Dance, C.: Fisher kernels on visual vocabularies for image cate-
gorization. In: IEEE Conference on Computer Vision and Pattern Recognition,
CVPR 2007, pp. 1–8 (June 2007)

18. Perronnin, F., Liu, Y., Sanchez, J., Poirier, H.: Large-scale image retrieval with
compressed fisher vectors. In: 2010 IEEE Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 3384–3391 (June 2010)

19. Philbin, J., Chum, O., Isard, M., Sivic, J., Zisserman, A.: Object retrieval with large
vocabularies and fast spatial matching. In: Proceedings of the IEEE Conference on
Computer Vision and Pattern Recognition (2007)

20. Salton, G., McGill, M.J.: Introduction to Modern Information Retrieval. McGraw-
Hill, Inc., New York (1986)

21. Sivic, J., Zisserman, A.: Video google: A text retrieval approach to object matching
in videos. In: Proceedings of the Ninth IEEE International Conference on Computer
Vision, ICCV 2003, vol. 2. IEEE Computer Society, Washington, DC (2003)

22. Tuytelaars, T., Mikolajczyk, K.: Local invariant feature detectors: a survey. Found.
Trends. Comput. Graph. Vis. 3(3), 177–280 (2008)

23. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search - The Metric Space
Approach. Advances in Database Systems, vol. 32. Kluwer (2006)

24. Zhang, X., Li, Z., Zhang, L., Ma, W.-Y., Shum, H.-Y.: Efficient indexing for large
scale visual search. In: 2009 IEEE 12th International Conference on Computer
Vision, September 29-October 2, vol. 2, pp. 1103–1110 (2009)

Longest Common Subsequence

in k Length Substrings

Gary Benson1,, Avivit Levy2, and B. Riva Shalom2

1 Department of Computer Science, Boston University, Boston, MA 02215
gbenson@bu.edu

2 Department of Software Engineering, Shenkar College, Ramat-Gan 52526, Israel
{avivitlevy,rivash}@shenkar.ac.il

Abstract. In this paper we define a new problem, motivated by com-
putational biology, LCSk aiming at finding the maximal number of k
length substrings, matching in both input string while preserving their
order of appearance in the input strings. The traditional LCS definition
is a spacial case of our problem, where k = 1. We provide an algorithm,
solving the general case in O(n2) time, where n is the length of the in-
put, equaling the time required for the special case of k = 1. The space
requirement is O(kn). In order to enable backtracking of the solution
O(n2) space is needed.

Keywords: Longest Common Subsequence, Similarity of strings, Dy-
namic Programming.

1 Introduction

The Longest Common Subsequence problem, whose first famous dynamic pro-
gramming solution appeared in 1974 [18], is one of the classical problems in
Computer Science. The widely known string version appears in Definition 1.

Definition 1. The String Longest Common Subsequence (LCS) Problem:
Input: Two sequences A = a1a2 . . . an, B = b1b2 . . . bn over alphabet Σ.
Output: The length of the longest subsequence common to both strings,

where a subsequence is a sequence that can be derived from
another sequence by deleting some elements without changing
the order of the remaining elements.

For example, for the sequences appearing in Figure 1. LCS(A,B) is 5, where a
possible such subsequence is T T G T G.

The LCS problem has been very well studied. For a survey, see [6]. The prob-
lem is mainly motivated by the need to measure similarity over the input se-
quences. The well known dynamic programming solution [16] requires running
time of O(n2), for two input strings of length n.

� This work was partially funded by NSF grant IIS-1017621.

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 257–265, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

258 G. Benson, A. Levy, and B.R. Shalom

The LCS problem had also been investigated on more general structures such
as trees and matrices [3], run-length encoded strings [4], weighted sequences [2],
[7] and more. Many variants of the LCS problem were studied as well, among
which LCS alignment [15], [14], [13], constrained LCS [17], [8], restricted LCS
[10] and LCS approximation [12].

Motivation. The LCS has been used as a measure of sequence similarity for bi-
ological sequence comparison. Its strength lies in its simplicity which has allowed
development of an extremely fast, bit-parallel computation which uses the bits
in a computer word to represent adjacent cells a row of the LCS scoring matrix
and computer logic operations to calculate the scores from one row to the next
[1], [9], [11]. For example, in a recent experiment, 25,000,000 bit-parallel LCS
computations (sequence length = 63) took approximately 7 seconds on a typical
desktop computer [5] or about 60 times faster than a standard algorithm. This
speed makes the LCS attractive for sequence comparison performed on high-
sequencing data. The disadvantage of the LCS is that it is a crude measure of
similarity because consecutive matching letters in the LCS can have different
spacings in the two sequences, i.e., there is no penalty for insertion and deletion.
What is proposed here is a definition of LCS that makes the measure of similar-
ity more accurate because it forces adjacent letters in the LCS to be adjacent in
both sequences. In our problem, the common subsequence is required to consist
of k length substrings. A formal definition appears in Definition 2.

Definition 2. The Longest Common Subsequence in k Length Substrings Prob-
lem (LCSk):
Input: Two sequences A = a1a2 . . . an, B = b1b2 . . . bn over alphabet Σ.
Output: The maximal � s.t. there are � substrings,

ai1 ...ai1+k−1
. . . ai	 ...ai	+k−1, identical to bj1b...j1+k−1 . . . bj	 ...bj	+k−1

where {aif } and {bjf } are in increasing order for 1 ≤ f ≤ � and
where two k length substrings in the same sequence, do not overlap.

We demonstrate LCSk considering the sequences appearing in Figure 1.

A =
1 2 3 4 5 6 7 8
T G C G T G T G

B =
1 2 3 4 5 6 7 8
G T T G T G C C

Fig. 1. An LCS2 example

A possible common subsequence in pairs (k = 2) is GTTG obtained from a4,
a5, a7, a8 and b1, b2, b5, b6. Though a6 = b4, and such a match preserves the order
of the common subsequence, it cannot be added to the common subsequence in
pairs, since it is a match of a single symbol. For k = 3, one of the possible
solutions is TGC achieved by matching a1, a2, a3, with b5, b6, b7. For k = 4 a
possible solution is TGTG obtained from matching a5, a6, a7, a8 and b3, b4, b5, b6.
Note that in the last two cases the solution contains a single triple, quadruplet.

Longest Common Subsequence in k Length Substrings 259

The paper is organized as follows: Section 2 gives some preliminaries. The
solution for the LCSk problem is detailed in Section 3. Section 4 concludes the
paper.

2 Preliminaries

The LCSk problem is a generalization of the LCS problem. We might consider
using the solution of the latter in order to solve the former. If we perform the LCS
algorithm on the input sequences, we can backtrack the dynamic programming
table and mark the symbols participating in the common subsequence. We can
then check whether those symbols appear in consecutive k length substrings
in both input sequences, and delete them if not. Such a procedure guarantees
a common subsequence in k length substrings but not necessarily the optimal
length of the common subsequence. For example consider LCS2 of the sequences
appearing on Figure 1. Applying the LCS algorithm on these strings may yield
T T G T G, containing a single non-overlapping pair matching while there exists
LCS2 of T G T G having two pair matchings. Hence, a special algorithm designed
for LCSk is required.

As the LCSk problem considers matchings of k consecutive symbols, we call
such a matching, throughout this paper, a k matching and define the following
definitions:

Definition 3

kMatch(i, j) =

{
1 if ai+f = bj+f , for every 0 ≤ f ≤ k − 1
0 Otherwise

If kMatch(i, j) = 1, the matching substring is denoted (i,j).

Definition 4. Predecessors. Let candidates(i, j) be the set of all longest com-
mon subsequences, consisting of k matchings, of prefix A[1...i + k − 1] and pre-
fix B[1...j + k − 1]. Then let pred(i, j) be all the possible last k matchings
in candidates(i, j). That is, pred(i, j) = {(s, t)|∃c ∈ candidates(i, j), where
(s, t) is the last k matching in c}.

We define the length of p ∈ pred(i, j) derived from candidate c, to be the
number of k matchings in c and denote it by |p|.

Example. Consider LCS2 of the sequences of Figure 1. Let candidates(5, 3) be
the common subsequences in pairs of B[1...4] = G T T G and of A[1...6] =
T G C G T G, thus, candidates(6, 4) contains{TG,GT }. TG can be obtained
in two ways: a1a2 matched to b3b4, or a5a6 matched to b3b4, and GT by a4a5
matched to b1b2 therefore, we have pred(i, j) = {(1, 3), (5, 3), (4, 1)}. In this
example all predecessors are of length 1. Keeping the predecessors enables back-
tracking to reveal the longest common subsequence in k length substrings itself.

The following Lemma is necessary for the correctness of the solution.

Lemma 1. Let p1,p2 ∈ pred(i, j), then if |p1| + 1 = |p2|, then any maximal
common subsequence of k length substrings using the k matching p2 has length
greater or equal to that using the k matching p1.

260 G. Benson, A. Levy, and B.R. Shalom

Proof: Suppose p1 = (s, t) and p2 = (s′, t′). Several cases are possible for p1, p2:

1. If s′ < s and t′ < t, then the candidate whose last k matching is p2 might be
further extended till A[s] and B[t], enlarging the difference between p1 and
p2.

2. If s′ = s and t′ = t both predecessors have the same opportunities for
extension.

3. If s+ k − 1 < s′ and t+ k − 1 < t′, the k matching (s′, t′) can be added to
the candidate whose last k matching is (s, t), contradicting its maximality.

4. If there is an overlap between the k matchings represented by the predeces-
sors, s < s′ < s+ k or t < t′ < t+ k, starting from as′+k, every k matching
can be used to extend the common subsequence in k length substring, rep-
resented by both predecessors. However, the subsequence using p1 cannot
have an additional k matching before as′+k, as overlaps are forbidden. Con-
sequently, the difference between the length of p1 and p2 is preserved in the
extended maximal common subsequences.

3 Solving the LCSk Problem

As in other LCS variants, we solve the problem using a dynamic programming
algorithm. We denote by LCSki,j the longest common subsequence, consisting
of k matchings in the prefixes A[1...i + k − 1] and B[1...j + k − 1]. Lemma 2
below, formally describes the computation of LCSki,j .

Lemma 2. The Recursive Rule

LCSKi,j = max

⎧⎨⎩
LCSki,j−1,
LCSki−1,j ,
LCSki−k,j−k + kMatch(i, j)

Proof: LCSKi,j contains the maximal number of common k length substrings,
preserving their order in the input sequences. A possible subsequence can be
constructed by matching the substrings ai, . . . , ai+k−1 with bj , . . . , bj+k−1, in
case all ai+f and all bj+f , for 0 ≤ f ≤ k−1, are not part of previous k matchings.
This is guaranteed when considering the prefixes A[1..i−k] and B[1..j−k] while
trying to extend by one the common subsequence for cell LCSki,j. Another
option of extending the subsequence is by using the k matching (s, j) , for s < i.
Similarly, we can use the k matching (i, t) for t < j. Note that the options of
extending LCSki−f,j−f , for 1 ≤ f ≤ k − 1 is included in both LCSki,j−1 and
LCSki−1,j . These claims can be easily proven using induction.

According to Lemma 2 we can solve the LCSk problem using a dynamic pro-
gramming algorithm working on a two dimensional table of size (n − k + 1)2

where the rows represent the A sequence and the columns stand for sequence
B. Cell LCSk[i, j] contains the value LCSki,j and the appropriate predeces-
sors. Nevertheless, when we wish to attain the common subsequence itself, we
encounter a complication.

Longest Common Subsequence in k Length Substrings 261

In the original LCS algorithm, computing the common subsequence, requires
maximizing three options of possible prefixes of the LCS. When some of these
prefixes have the same length, there is no significance which of them is chosen, as
a single common subsequence is sought and the selection has no effect on future
matches. However, in the LCSk problem the situation is different. For example,
consider LCS2. Let A = a c a b and B = c a c a b. LCS2[3,3] equals 1 due
to the 2 matching (1, 2) (matching a1a2 to b2, b3) (”ac”), or by the 2 matching
(2, 1) (”ca”). In spite of the fact that both common subsequences, share the same
length, the former is part of the final solution as it enables a further 2 matching
(3, 4) while the latter cannot be extended due to the overlap restriction. It, there-
fore, seems that all possibilities of common subsequence in k length substrings,
that is, all predecessors should be saved at every calculation in order to enable
a correct backtracking of the optimal solution. As the dynamic programming
proceeds, this information can exponentially increase. Nevertheless, we prove in
Lemma 3 that in the LCSk problem only one maximal previously computed
subsequence is required.

The three options of forming LCSki,j , appearing in Lemma 2 form
candidates(i, j), hence pred(i, j). Therefore, the pred(i, j) set should be updated
after computing LCSki,j .

Corollary 1. If LCSki,j−1 = LCSki−1,j = LCSki−2,j−2+1, andkMatch(i,j)=1
then pred(i, j) = pred(i, j − 1)

⋃
pred(i − 1, j)

⋃
(i, j).

If LCSki,j−1 = LCSki−1,j and kMatch(i,j)=0 then
pred(i, j) = pred(i, j − 1)

⋃
pred(i − 1, j) .

In both cases, if one or more of the relevant LCSkx,y, x ≤ i, y ≤ j has shorter
length, its corresponding pred is not included in pred(i, j).

Proof: Note, that the length of a predecessor p ∈ pred(i, j) equals the value of
LCSki,j . Due to Lemma 1 there is no necessity to consider the shorter prede-
cessors. Suppose all three sets contain predecessors representing common subse-
quences of the same length. Without further information, we cannot determine
which common subsequence ending in pred(i, j−1), pred(i−1, j), or in k match-
ing of (i, j), will be in the maximal output, therefore, all predecessors must be
considered.

3.1 The Backtrack Process

Using the recursive rule of Lemma 2, the value computed for LCSki−k+1,j−k+1

is the length of the common subsequence in k length substrings of sequences
A and B. In order to obtain the common subsequence itself we perform the
following procedure. Consider the value saved in cell LCSk[i, j], where i and j
are initialized by n−k+1.We suppose that each cell contains a single predecessor,
as will be proven hereafter in Lemma 3. Let the predecessor saved in the current
cell be (x, y). Two cases are regarded as long as i, j > 0.

262 G. Benson, A. Levy, and B.R. Shalom

1. if x = i and y = j, then a k matching starts in these indices, therefore
ai+f for every 0 ≤ f ≤ k − 1 can be added to the constructed output,
preserving the increase of the indices. In order to proceed we decrease both
i, j by k to avoid previous k matchings overlapping (i, j).

2. Otherwise, no k matching occurs in the current indices. The predecessor
(x, y) directs us to the cell containing a k matching which is part of an LSCk
with the value LCSki,j. Therefore, we decrease the indices i = x and j = y

3.2 Predecessors Elimination

We aim at minimizing the number of predecessors per LCSk[i, j] and therefore
define a process of predecessors elimination. Eliminating a predecessor p, that
is, deleting it from pred(i, j) can be safely done if a maximal common subse-
quence in k length substrings of the same length can be attained using another
predecessor from pred(i, j). Lemma 3 provides the elimination procedure and its
correctness.

Lemma 3. Elimination Lemma Let p1, p2 ∈ pred(i, j) be k matchings,
where |p1| = |p2|, then one of p1, p2 can be arbitrarily eliminated.

Proof: Let p1 = (s, t) , p2 = (s′, t′). In case kMatch(i, j) = 0 then, if the
backtracking pass through table cell [i,j] it implies that the previously found k
matching is (i+ k, j + k) due to the second case of the backtracking procedure.
Moreover, according to Corollary 1, both {s, s′} ≤ i and {t, t′} ≤ j. As a con-
sequence, there is no preference to one of the equal length predecessors as both
cannot overlap the previous k matching.

Suppose then that kMatch(i, j) = 1 and p2 = (i, j). According to the back-
tracking procedure, we get to cell [i, j] either by the first case of the procedure
where there is a k matching (i+k, j+k) or by its second case where at cell [i′, j′]
there is no k matching but it contains a predecessor (i,j). The latter implies that
the previously found k matching is (i + k + f, j + k + h) for f, h > 0.

There are two cases to consider.

1. If no optimal solution uses the k matching (i, j) it implies that the optimal
solution includes k matchings (i′, j′) and (i′′, j′′) where i′ < i < i′ + k and
i′′ − k < i < i′′ or j′ < j < j′ + k and j′′ − k < j < j′′. If only one inequality
holds for i or j then some optimal solution will include (i, j), contradicting
the case definition. According to the first case of the backtrack procedure,
when backtracking from cell [i”, j”], including the k matching (i′′, j′′), we
decrease both indices by k. Since i′′ − k < i and j′′ − k < j cell [i,j] will not
be considered, therefore even if we saved p2, that is we eliminated p1, it has
no consequence on the optimal solution.

2. If there exists an optimal solution including p2 but we arbitrarily eliminated
it. Since we proved that the previously found k matching is (i+k+f, j+k+h)
for f, h ≥ 0 there is no preference to p2 over p1 as they are both of the same
length and both do not overlap the previously found k matching according
to Corollary 1. Apparently, p1 is included in another optimal solution.

Longest Common Subsequence in k Length Substrings 263

Example. Figure 2 depicts an LCS2 table. We demonstrate the two cases in
Lemma 3 where kMatch(i, j) = 1. For the first case, consider cell LCS2[5, 6]
including pred5,6 = {(4, 5), (5, 6)}. Suppose we arbitrarily eliminate (4, 5). The
LCS2 may contain the 2 matching (5, 6) that overlaps with (4,1),(4,5) and on the
same time overlaps also (6, 7) what can decrease the length of the solution. Nev-
ertheless, according to the backtracking procedure, after considering LSC2[6, 7]
we decrease the indices and go to LCS2[4, 5] in which (5, 6) cannot exist, due to
Corollary 1.

For the second case consider cell LCS2[2, 3] including pred2,3 = {(1, 1), (2, 3)}.
(2,3) is included in one of the optimal solution. Suppose we eliminated it and
retained (1, 1). The backtracking path goes through cells [7, 7] to [6, 7] to [4, 5]
to [2, 3] where it finds a non overlapping predecessor (1, 1) with the same length
as the deleted (2, 3).

Theorem 1 The LCSK(A,B) problem can be solved in O(n2) time and O(kn)
space, where n is the length of the input sequences A, B. Backtracking the solu-
tion requires time of O(�) where � is the number of k matchings in the solution,
and O(n2) space.

Proof: The algorithm fills a table of size (n−k+1)2. Each entry is filled according
to Lemma 2 in constant time as we perform a constant number of comparisons.
We assume that k is rather a small constant thus computing kMatch(i, j) is
done in constant time. In addition unifying three pred sets of size one each,
does not increase the time requirements per entry. The Elimination procedure
requires also constant time according to Lemma 3. All in all, constant time

1 2 3 4 5 6 7 8
C T T G C T T T

1 C 1 1 1 1 1 1 1 -
(1,1) (1,1) (1,1) (1,1) (1,1)(1,5) (1,5) (1,5) -

2 T 1 1 1 1 1 1 1 -
(1,1) (1,1) (1,1)(2,3) (1,1) (1,1)(1,5) (1,5) (1,5) -

3 G 1 1 1 1 1 1 1 -
(1,1) (1,1) (1,1) (1,1) (1,1)(1,5) (1,5) (1,5) -

4 C 1 1 1 1 2 2 2 -
(4,1) (4,1) (1,1),(4,1) (4,1) (4,5) (4,5) (4,5) -

5 T 1 1 1 1 2 2 2 -
(4,1) (4,1),(5,2) (4,1) (4,1) (4,5) (4,5),(5,6) (4,5),(5,7) -

6 T 1 1 1 1 2 2 3 -
(4,1) (4,1),(6,2) (4,1) (4,1) (4,5) (4,5),(6,6) (6,7) -

7 T 1 1 2 2 2 2 3 -
(4,1) (4,1) (7,3) (7,3) (7,3),(4,5) (7,3)(6,6) (6,7) -

8 G - - - - - - - -

Fig. 2. An LCS2 Table. The numbers represent the length of the common subsequence.
The pairs in parenthesis stand for the predecessors. Each cell contains all possible pre-
decessors according to Corollary 1. Due to the Elimination Lemma only one predecessor
is retained in the to following cells.

264 G. Benson, A. Levy, and B.R. Shalom

operations are performed for each of the table entries, concluding in O(n2) time
requirement for computing the optimal length of the common subsequence in k
length substrings.

During the backtracking process we go through the cells representing the k
matchings of one optimal solution. If the difference between two such k matchings
is more than k, we will go through an intermediate cell whose predecessor directs
us to the next k matching. Hence finding the common subsequence in k length
substrings requires O(�) where � is the number of k matchings in the solution.

Regarding space: Each of the n2 entries contains, according to Corollary 1
three predecessors and the Eliminate function, due to Lemma 3, results in a
single predecessor before considering further entries, implying O(n2) space re-
quirement. Nevertheless, due to Lemma 2, during the computation of LCSk[i, j]
we need only row i − k and column j − k. As a consequence, at each step we
save only k rows and columns implying the space requirement is O(kn). In or-
der to backtrack the solution, the whole table is needed, implying O(n2) space
requirement.

4 Conclusion

In this paper we defined a generalization of the LCS problem, where each match-
ing must consist of k consecutive symbols. We proved that using the known LCS
algorithm does not always output an optimal solution. However, by thoroughly
understanding the traits of the problem we proved a similar algorithm with the
same time complexity can solve the problem. Due to the importance of the LCS
problem as a measure of similarity between the inputs, more generalizations may
be thought of.

References

1. Allison, L., Dix, T.I.: A bit-string Longest-Common-Subsequence. Information Pro-
cessing Letters 23(5), 305–310 (1986)

2. Amir, A., Gotthilf, Z., Shalom, R.: Weighted LCS. J. Discrete Algorithms 8(3),
273–281 (2010)

3. Amir, A., Hartman, T., Kapah, O., Shalom, R., Tsur, D.: Generalized LCS. Theor.
Comput. Sci. 409(3), 438–449 (2008)

4. Apostolico, A., Landau, G.M., Skiena, S.: Matching for run-length encoded strings.
Journal of Complexity 15(1), 4–16 (1999)

5. Benson, G., Hernandez, Y., Loving, J.: A bit-parallel, general integer-scoring se-
quence alignment algorithm. In: Fischer, J., Sanders, P. (eds.) CPM 2013. LNCS,
vol. 7922, pp. 50–61. Springer, Heidelberg (2013)

6. Bergroth, L., Hakonen, H., Raita, T.: A survey of longest common subsequence al-
gorithms. In: Proc, 7th Symposium on String Processing and Information Retrieval
(SPIRE), pp. 39–48 (2000)

7. Blin, G., Jiang, M., Vialette, S.: The Longest Common Subsequence Problem with
Crossing-Free Arc-Annotated Sequences. In: Calderón-Benavides, L., González-
Caro, C., Chávez, E., Ziviani, N. (eds.) SPIRE 2012. LNCS, vol. 7608, pp. 130–142.
Springer, Heidelberg (2012)

Longest Common Subsequence in k Length Substrings 265

8. Chen, Y.C., Chao: On the generalized constrained longest common subsequence
problems. Journal of Combinatorial Optimization 21(3), 383–392 (2011)

9. Crochemore, M., Iliopoulos, C.S., Pinzon, Y.J., Reid, J.F.: A fast and practical bit-
vector algorithm forthe longest common subsequence problem. Information Pro-
cessing Letters 80(6), 279–285 (2001)

10. Gotthilf, Z., Hermelin, D., Landau, G.M., Lewenstein, M.: Restricted LCS. In:
Chavez, E., Lonardi, S. (eds.) SPIRE 2010. LNCS, vol. 6393, pp. 250–257. Springer,
Heidelberg (2010)

11. Hyyro, H.: Bit parallel LCS- length computation revisited. In: Proc. 15th Aus-
tralasian Workshop on Combinatorial Algorithms, AWOCA (2004)

12. Landau, G.M., Levy, A., Newman, I.: LCS approximation via embedding into lo-
cally non-repetitive strings. Inf. Comput. 209(4), 705–716 (2011)

13. Landau, G.M., Myers, E.W., Ziv-Ukelson, M.: Two Algorithms for LCS Consec-
utive Suffix Alignment. In: Sahinalp, S.C., Muthukrishnan, S.M., Dogrusoz, U.
(eds.) CPM 2004. LNCS, vol. 3109, pp. 173–193. Springer, Heidelberg (2004)

14. Landau, G.M., Schieber, B., Ziv-Ukelson, M.: Sparse LCS Common Substring
Alignment. In: Baeza-Yates, R., Chávez, E., Crochemore, M. (eds.) CPM 2003.
LNCS, vol. 2676, pp. 225–236. Springer, Heidelberg (2003)

15. Landau, G.M., Ziv-Ukelson, M.: On the Common Substring Alignment Problem.
J. Algorithms 41(2), 338–359 (2001)

16. Hirschberg, D.S.: A Linear space algorithm for Computing Maximal Common Sub-
sequences. Commun. ACM 18(6), 341–343 (1975)

17. Tsai, Y.T.: The constrained longest common subsequence problem. Information
Processing Letters 88(4), 173–176 (2003)

18. Wagner, R.A., Fischer, M.J.: The string-to-string correction problem. J. ACM 21,
168–173 (1974)

Database Similarity Join for Metric Spaces

Yasin N. Silva, Spencer S. Pearson, and Jason A. Cheney

Arizona State University,
4701 W. Thunderbird Road, Glendale, AZ 85306, USA

{ysilva,sspearso,jcheney1}@asu.edu

Abstract. Similarity Joins are recognized among the most useful data
processing and analysis operations. They retrieve all data pairs whose
distances are smaller than a predefined threshold ε. While several stan-
dalone implementations have been proposed, very little work has ad-
dressed the implementation of Similarity Join as a physical database
operator. In this paper, we focus on the study, design and implementa-
tion of a Similarity Join database operator for any dataset that lies in a
metric space (DBSimJoin). We describe the changes in each query engine
module to implement DBSimJoin and provide details of our implemen-
tation in PostgreSQL. The extensive performance evaluation shows that
DBSimJoin significantly outperforms alternative approaches.

1 Introduction

Similarity Joins (SJs) have been studied and extensively used in multiple appli-
cation domains, e.g., data cleaning and sensor networks. Several SJ algorithms
have been previously proposed. Very little work, however, has addressed the
implementation of SJ as a first-class database operator. This type of implemen-
tation would enable interesting similarity queries that combine SJ with other
operators. In this paper, we present a SJ database operator for any dataset that
lies in a metric space. The main contributions of this paper are:

– We present DBSimJoin, a SJ database operator that is fully integrated
into the database engine and incorporates techniques to: (1) enable a non-
blocking behavior, (2) prioritize the early generation of results, and (3) sup-
port the database iterator interface (functions open, getNext, and close).

– To the best knowledge of the authors, DBSimJoin is the first SJ database
operator that can be used with any dataset that lies in a metric space. The
operator can be used with various distance functions and data types.

– We present multiple guidelines to implement DBSimJoin as an integrated
component of a database system. We also provide details of our implemen-
tation in PostgreSQL, a popular open-source database system.

– We thoroughly evaluate the performance of DBSimJoin with multiple data
types and show that it significantly outperforms alternative approaches.

– We show that DBSimJoin can be combined with other operators in complex
similarity queries and can be used in important query transformation rules
that enable cost-based query optimization, e.g., pushing selection below join,
and Eager and Lazy aggregation transformations.

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 266–279, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Database Similarity Join for Metric Spaces 267

The rest of this paper is organized as follows. Section 2 presents the related
work. Section 3 describes DBSimJoin. The performance evaluation is presented
in Section 4. Section 5 concludes the paper.

2 Related Work

Significant work has been carried out on the study of the SJ (retrieves all
data pairs whose distances are smaller than a threshold ε). This work proposed
techniques to implement them primarily as standalone algorithms outside of a
database system. Some implementation techniques rely on the use of pre-built
indices, e.g., eD-index [8], D-index [7], and List of Twin Clusters (LTC) [13].
They strive to partition the data while clustering together the similar objects.
While these indexing techniques support the SJ operation they also have some
shortcomings: D-index and eD-index may require rebuilding the index to support
queries with different ε, eD-index is applicable only to the case of self-joins, and
LTC requires indexing each pair of input sets jointly. Several non-index-based
techniques have also been proposed, e.g., EGO, GESS, and QuickJoin. The Ep-
silon Grid Order (EGO) algorithm [3] imposes an ε-sized grid over the space
and uses a schedule of reads of blocks that minimizes I/O. The Generic External
Space Sweep (GESS) algorithm [6] creates hypersquares centered on each data
point with epsilon length sides, and joins these hypersquares using a spatial join
on rectangles. The Quickjoin algorithm [12] recursively partitions the data until
the subsets are small enough to be efficiently processed using a nested loop join.
Quickjoin has been shown to outperform EGO and GESS [12]. DBSimJoin, the
operator presented in this paper, builds on Quickjoin’s approach to partition
the data. However, the focus of our work is the design and implementation of an
efficient database operator. The differences with the work in [12] are: (1) DB-
SimJoin uses a different partitioning sequence that prioritizes early generation of
results and minimizes query response time, (2) DBSimJoin uses a non-blocking
implementation approach that fully supports the database iterator interface, (3)
DBSimJoin assumes a limited number of memory buffers, (4) our experimental
section evaluates the effect on performance of key parameters not evaluated in
[12], e.g., dimensionality and number of pivots, and (5) we study how DBSimJoin
can be combined with other operators and used in query transformation rules.

Also, of importance is the work on SJ techniques in the context of database
systems. Some work has focused on the implementation of SJs using standard
database operators [4,5,10]. These techniques are applicable only to string or set-
based data. The general approach decomposes data and query strings into sets of
grams (substrings of a string that are used as its signature), and stores the results
on separate tables. Then, the result of the SJ can be obtained using standard
SQL queries. DBSimJoin is experimentally compared with one such technique
(SSJoin [4]) in Section 4.1. More recently, the work in [15,14] proposed a SJ
database operator for 1D numerical data based on a plane-sweep algorithm. This
approach, however, cannot be easily extended to other data types. DBSimJoin
is more generic and can be used with any dataset that lies in a metric space.

268 Y.N. Silva, S.S. Pearson, and J.A. Cheney

DBSimJoin supports multiple data types and distance functions. In a recent
demo paper [17], we showed how DBSimJoin can be used to identify similar
images (feature vectors), and similar publications in a bibliographic database.

3 The DBSimJoin Operator

The Similarity Join (SJ) operation between two datasets R and S is defined
as: R ��θε(r,s) S = {〈r, s〉|θε(r, s), r ∈ R, s ∈ S}, where θε(r, s) represents the
Similarity Join predicate, i.e., dist(r, s) ≤ ε. Even though the tuples of relations
R and S are combined by DBSimJoin, each tuple is assumed to have an attribute
that identifies its relation. DBSimJoin iteratively partitions the input data into
smaller partitions until each partition is small enough to be efficiently processed
by an in-memory SJ routine. The overall process is divided into a sequence of
rounds. The initial round partitions the input data while any subsequent round
partitions the data of a previously generated partition. Each round produces:
(1) result pairs (links) for the small partitions that can be processed by an
in-memory SJ routine, and (2) intermediate data for the partitions that will
require further partitioning. Intermediate data is stored on disk (hibernated).
The DBSimJoin operator executes the required rounds until all the input and
intermediate data is processed. While rounds other than the first one can be
processed in any order, DBSimJoin uses a partitioning sequence that favors the
early generation of result links.

3.1 DBSimJoin Rounds

A goal of the partitioning step in each round is to divide the round input data into
a set of partitions such that all the result links in the input data are obtained
by combining the links found in each partition independently. To accomplish
this, the input data is partitioned into: (1) non-overlapping partitions (base par-
titions), and (2) partitions that contain the records in the boundary of each pair
of base partitions (window-pair partitions). Partitioning is performed using a set
of K pivots, i.e., a random subset of the records to be partitioned. Each base
partition contains all the records that are closer to a given pivot than to any
other pivot. Each window-pair partition contains the records in the boundary
between two base partitions. The window-pair records should be a superset of
the records whose distance to the hyperplane that separates the base partitions
is at most ε. This hyperplane does not always explicitly exist in a metric space.
Instead, it is implicit and known as a generalized hyperplane. Since the distance
of a record t to the generalized hyperplane between two partitions with pivots P0

and P1 cannot always be computed exactly, a lower bound of the distance is used
[11]: gen hyperpln dist(t, P0, P1) = (dist(t, P0)− dist(t, P1))/2. This distance is
replaced with the exact distance if this can be computed, e.g., in Euclidean
spaces. Processing the window-pair partitions guarantees the identification of
the links between records that belong to different base partitions. A round that
repartitions a base partition or the initial input data is referred to as a base

Database Similarity Join for Metric Spaces 269

Base Partitions Window-pair
Partition

P0 P1

P0 P1 P0_P1

A B

A B

T

Fig. 1. Repartitioning a base parti-
tion

Base Partitions Window-pair Partitions

Q0

Q1

Q1

Q0 Q0_Q1{1} Q0_Q1{2}

P0_P1

E

F
D

C C
D

E

F

A B A B

Fig. 2. Repartitioning a window-pair parti-
tion

partition round, a round that repartitions a window-pair partition is referred to
as a window-pair partition round.

Fig. 1 shows the repartitioning of a base partition using pivots P0 and P1. In
this case, the result of the SJ operation on the input dataset T is the union of
the links in partitions P0 and P1, and the links in window-pair partition P0 P1
where one element belongs to window A and the other one to window B. We
refer to this last type of link as window link. Fig. 2 shows the repartitioning of
the window-pair partition P0 P1 of Fig. 1 using pivots Q0 and Q1. In this case,
the set of window links in P0 P1 is the union of the window links in Q0, Q1,
Q0 Q1{1} and Q0 Q1{2}. Note that windows C and F do not form a window-
pair partition since their window links are a subset of the window links in Q0.
Similarly, the window links between E and D are a subset of the ones in Q1.

Figures 3 and 4 represent the processing performed by DBSimJoin in round
0 and a generic round I, respectively. Round 0, shown in Fig. 3, partitions the
original input data (R∪S) into k partitions. Some generated partitions are small
enough to be processed by the in-memory SJ routines, e.g., P1, P4, P5. Result
links and window links are generated in these routines. The remaining partitions
are stored on disk, e.g., P2, P3, Pk. Any other round further repartitions a
previously generated partition. For instance the round represented in Fig. 4
repartitions partition P2. This round also generates some partitions that can be
processed by the in-memory SJ routines, e.g., Q1, Q3, Q4, Q5, and partitions
that need further processing, e.g., Q2, Qk. While rounds other than the first
one can be processed in any order, DBSimJoin uses a partitioning sequence
that favors the early generation of result links. The algorithmic details of this
approach are presented in Section 3.3. The remaining part of this section presents
the guidelines to implement the DBSimJoin operator inside the query engine of
standard DBMSs. Although the presentation is intended to be applicable to any
DBMS, some specific details refer to our implementation in PostgreSQL.

270 Y.N. Silva, S.S. Pearson, and J.A. Cheney

...

Disk Main memory

Pivots

Partitions that are small
enough for in-memory SJ

...

Disk

...

Records of
R and S

Partitions that
require further
repartitioning

P1
P2
P3
P4
P5

Pk

In-memory
Similarity Join

Result links

P2...

P3...

Pk...

Fig. 3. Round 0

Main memory

Pivots

Partitions that are small
enough for in-memory SJ

...

Disk

...

Partitions that
require further
repartitioning

Q1
Q2

Q4
Q5
Qk

In-memory
Similarity Join

Result links

Disk

Partitions that
require further
repartitioning

...
...

P2...

P3...

Pk...

P3...

Pk...

Q2...

Qk...

Q3

Fig. 4. Round I

3.2 The Parser and Planner

To add support for Similarity Joins in the parser, the raw-parsing grammar rules,
e.g., yacc rules in the case of PostgreSQL, are extended to recognize the syntax of
the new SJ predicate. The parse-tree and query-tree data structures are extended
to include the information of the new operator, i.e., type of join, value of ε and
distance function. The routines in charge of transforming the parse tree into the
query tree are updated accordingly to process the new fields in the parse tree.
To add support for the operator in the planner, a new plan node is created to
represent the SJ operator. This node is similar to the regular join node but also
stores information about ε and the distance function. If a query has multiple SJ
predicates, they are processed one at a time, i.e., multiple SJ nodes are pipelined.
It is important to observe that key transformation rules to optimize queries with
SJ [15,16], e.g., associativity of SJ operators and pushing selection below SJ, can
be applied to plans with DBSimJoin operators. We evaluate the use of several
transformation rules with DBSimJoin in Section 4.3.

3.3 The Executor

DBSimJoin Executor Routine. DBSimJoin’s main routine is presented in
Fig. 5. The routine first creates two lists to keep track of the base and window-
pair partitions (line 1). Each partition is assigned a space in memory (memT)
and if it needs to grow beyond this space, it is stored on disk and the memory
space is used as a buffer. The routine partitions the initial input data (R ∪ S)
into base and window-pair partitions (line 2). The main loop will be executed
while there is at least one base partition that needs to be processed (lines 3-16).
In each iteration, the routine processes all the base partitions executing Inmem-
orySimJoin (in-memory routine) to identify SJ links in small partitions (line
5) and hibernating larger partitions, i.e., transferring any in-memory data to
disk (line 6). Then, the routine processes the window-pair partitions (and their
sub-partitions) until all their SJ links have been produced (lines 7-13). When
all the window-pair partitions have been fully processed, the routine gets the

Database Similarity Join for Metric Spaces 271

DBSimJoin(R, S, eps, numPiv, memT)
Input: R and S (input data), eps, numPiv (No. of pivots), memT (memory threshold)
Output: the result of the Similarity Join between R and S
1. create basePList and winPairPList
2. PartitionBasePart(R U S, basePList, winPairPList, eps, numPiv)
3. while basePList.size > 0 do
4. for each partition P of basePList do
5. if P memT then InmemorySimJoin(P, eps)
6. else HibernatePartition(P)
7. while winPairPList.size > 0 do
8. for each partition W of winPairPList do
9. if W memT then InmemorySimJoinWin(W, eps)
10. else HibernatePartition(W)
11. if winPairPList.size > 0 then
12. W winPairPList.getFirst()
13. PartitionWinPairPart(W, winPairPList, eps, numPiv)
14. if basePList.size > 0 then
15. P basePList.getFirst()
16. PartitionBasePart(P, basePList, winPairPList, eps, numPiv)
17. delete basePList and winPairPList

Fig. 5. DBSimJoin’s main executor routine

first base partition that needs further processing and repartitions it calling Par-
titionBasePart (lines 14-16). The main DBSimJoin routine prioritizes the early
generation of links. After any partitioning step, the algorithm will process first
all the partitions that can be solved in-memory. The routine has the potential
to produce links starting at the first round. This behavior enables the support
of the iterator interface and its getNext function. The algorithm also prioritizes
the processing of window-pair partitions before base partitions. This reduces the
number of partitions that the routine needs to keep track of. Window-pair par-
titions are in general significantly smaller than base partitions. Thus, in general,
it takes less time to reach the point where they can be processed in memory.

The main routine calls PartitionBasePart and PartitionWinPairPart to par-
tition a base and a window-pair partition, respectively. PartitionBasePart ran-
domly selects numPiv pivots and processes each tuple t adding it to the new
base (basePList) and window-pair (winPairPList) partitions this tuple belongs
to. This involves: (1) adding t to the base partition corresponding to its closest
pivot p, and (2) adding t to all the window-pair partitions (corresponding to
pivots p and i) where gen hyperpln dist(t, p, i) ≤ eps. Fig. 6 shows an example
of the partitions generated by PartitionBasePart with pivots P0 and P1. T is
partitioned into P0, P1 and P0 P1. Note that the tuples of the window-pair
partition have an extra attribute that specifies their previous partition. This
is used during the generation of window links and also to correctly repartition
this partition. PartitionWinPairPart is similar to PartitionBasePart but distin-
guishes between the two window-pair partitions of any pair of pivots. Also, all
the generated partitions are added to winPairPList since the links generated in
a window-pair partition should always be window links (links between tuples of
different previous partitions). Fig. 7 shows a partitioning generated by Parti-
tionWinPairPart. P0 P1 is partitioned into Q0, Q1, Q0 Q1{1}, and Q0 Q1{2}.

272 Y.N. Silva, S.S. Pearson, and J.A. Cheney

Base Partitions Window-pair Partition

P0 P1

P0 P1

t3: (rel3,elem3) t4: (rel4,elem4)
t6: (rel6,elem6)t5: (rel5,elem5)

t1: (rel1,elem1)
t2: (rel2,elem2)

t1: (rel1,elem1)
t2: (rel2,elem2)

t3: (rel3,elem3) t4: (rel4,elem4)
t6: (rel6,elem6)t5: (rel5,elem5)

t5: (rel5,elem5, P0)
t6: (rel6,elem6, P1)

P0_P1

T

Fig. 6. Partitioning the tuples of a base partition

Base Partitions Window-pair Partitions

Q0

Q1

Q1

Q0 Q0_Q1{2}

Q0_Q1{1}
t2: (rel2,elem2, P1)

t1: (rel1,elem1, P0)

t3: (rel3,elem3, P0)

P0_P1

t4: (rel4,elem4, P1)
t5: (rel5,elem5, P1)

t6: (rel6,elem6, P0)

t2: (rel2,elem2, P1)t1: (rel1,elem1, P0)

t3: (rel3,elem3, P0)

t6: (rel6,elem6, P0)

t4: (rel4,elem4, P1)

t5: (rel5,elem5, P1)

t4: (rel4,elem4, P1)

t3: (rel3,elem3, P0)

t5: (rel5,elem5, P1)

t1: (rel1,elem1, P0)

Fig. 7. Partitioning the tuples of a window-pair partition

Implementation Using the Iterator Interface. The DBSimJoin algorithms
presented in the previous subsection are realized in a way that enables generating
links one at a time, i.e., using the iterator interface and its function getNext.
DBSimJoin is a non-blocking operator. That is, it does not require the full
generation of results before it can start reporting results. Database queries are
commonly composed of a tree of operators where tuples flow bottom-up. The
process is initiated by calls to the getNext function at the root operator. Each call
in turn calls the getNext function of its children nodes until it gets the required
information to produce a result tuple. This process is propagated top-down. A
non-blocking behavior reduces query response time. When getNext is called in
a DBSimJoin node, the operator executes the described process only until the
next result link is found. Since small partitions that can be solved using the in-
memory routines can be generated starting at the first round, DBSimJoin will
quickly find the next link. The getNext routine is implemented in the fashion of
a state machine that uses the states and transitions presented in Fig. 8. When

Database Similarity Join for Metric Spaces 273

Process Next
Base Partition

Process Next
Window-Pair

InMemSJBase
(outputs SJ

links)

Base partition can
be processed

in-memory
All base
partitions

processed

Partition Next
Large

Window-Pair

All window-
pairs

processed

Partition Next
Large Base

Partition

Unprocessed
base

partitions
exist

Window-pair can
be processed

in-memory

Unprocessed
window-pairs

exist

No window-
pairs exist

Hibernate
Partition

Base partition cannot
be processed in-memory

Hibernate
Window-Pair

Window-pair cannot
be processed

in-memory

InMemSJWin
(outputs SJ

window links)

Initial
Partitioning

No more base
partitions or

window-pairs exist

1

2

3

4

5

6

7
8

9

Fig. 8. DBSimJoin’s GetNext

Process Next
InMem Base

Partition

Process Next
inMem

Window-Pair

Nested Loop
Join (outputs

SJ links)

InMem base partition
is small enough to

be processed by NLJAll inMem
base

partitions
processed

Partition Next
Large inMem
Window-Pair

All inMem
window-

pairs
processed

Partition Next
Large inMem

Base Partition

Unprocessed
inMem
base

partitions
exist

InMem window-pair is
small enough to be
processed by NLJ

Unprocessed
inMem

Window-pairs
exist

No inMem
window-

pairs exist

Nested Loop
Join (outputs SJ

window links)

Initial inMem
Partitioning

No more inMem base
partitions or

window-pairs exist

10

11

12

13

14

15

16

Fig. 9. Details of InMemSJBase

getNext is called in the DBSimJoin operator, the routine transitions over the
states until it produces the next tuple. The system keeps track of the current
state and other required information to resume execution when the next getNext
is invoked. The states InMemSJBase and InMemSJWin (4 and 7) represent the
in-memory SJ routines. These two routines are also implemented using a state
machine approach to further reduce the time to produce the next link. The states
and transitions of InMemSJBase are presented in Fig. 9. Observe that states 12
and 14 produce the links using a Nested Loop Join approach. The states and
transitions of InMemSJWin are very similar to the ones of InMemSJBase with
the difference that InMemSJWin only produces window links.

3.4 Analysis of I/O Cost and Number of Pivots

The work in [12] showed that the average I/O cost of the external Quickjoin
algorithm is O(N(1 + w)�log(N/M)�). N and M are the number of blocks of the
input data and the number of tuples that fit in internal memory, respectively. w
is the fraction of tuples that lie within ε of the partition boundary. DBSimJoin’s
analysis is similar to the one of Quickjoin but considers we have a limited number
of buffer pages B to store the partitions. Moreover, each partition is assigned L
buffer pages to store its data. If the partition grows beyond this space, it is stored
on disk. The maximum number of new partitions generated by the algorithm in

274 Y.N. Silva, S.S. Pearson, and J.A. Cheney

a round will be limited by Pmax = B
L . Also, the value of M in our case is the

number of tuples that fit in L buffer pages. That is M = T × L, where T is the
number of tuples that fit in a single page. Using these properties, we have that

the average I/O cost of DBSimJoin is O(N(1 +w)�log(
N×Pmax

B×T)�). This cost will
be close to O(N) for small ε and close to O(N2) for large ε.

P (No. of partitions in a round) is related to the number of pivots K. Given
K pivots, DBSimJoin generates K base partitions and K2 − K window-pair

partitions, that is P = K2. Since P ≤ B
L , we have that K ≤ �

√
B
L �. We use

K = �
√

B
L � as an initial value of K. Also note that the number of partitions P

is not affected by the number of dimensions.

4 Performance Evaluation

We implemented DBSimJoin in PostgreSQL 8.2.4. In this section we compare
DBSimJoin with other approaches proposed for database systems. We do not
compare DBSimJoin with standalone algorithms. These algorithms can outper-
form database implementations since they are not affected by database features
like transaction processing, recovery, etc. The experiments used an Intel Core i5
2.27 GHz machine (4GB RAM, 500GB/5400RPM hard disk, Linux). We use the
following datasets:

– SynthData This is a synthetic vector dataset. A version of this dataset was
created for each evaluated number of dimensions, i.e., 4D, 6D and 8D. The
components of each vector are randomly generated numbers in the range [0
- 100]. The dataset for scale factor 1 (SF1) contains 80,000 records.

– ColorData This dataset contains feature vectors extracted from a Corel
image collection [9]. Each record is a 9D vector with components in the
range [-4.8 - 4.4]. The SF1 dataset contains 68,040 records.

– DBLPData This dataset is a subset of the DBLP bibliographic dataset
[1]. Each extracted record contains a unique identifier and the title. The
SF1 dataset contains 2,500 records. The minimum, maximum and average
lengths of the title attribute are 33, 281, and 57, respectively.

The datasets for SF greater than 1 were generated in such a way that the
number of links of any SJ operation in SFN is N times the number of links in
SF1. For vector data, the datasets for higher SF were obtained adding shifted
copies of the SF1 dataset where the distance between copies were greater than the
maximum value of ε. For string data, the datasets for higher SF were obtained
adding a copy of the SF1 data where characters are shifted similarly to the
process in [18]. The records of each dataset are equally divided between R and
S. We used Euclidean and Levenshtein distance functions for vector and string
data, respectively. The number of pivots (numPiv) in the experiments was 30
for SynthData and Colordata and 50 for DBLPData, the threshold to switch to
in-memory SJ was 4KB and the threshold to switch to nested loop join in the
in-memory SJ routines was 20 tuples.

Database Similarity Join for Metric Spaces 275

0

5

10

15

20

25

30

0

5000

10000

15000

20000

25000

1 2 3 4

O
ut
pu

tS
ize

(n
o.
of

lin
ks
)

Ex
ec
ut
io
n
Ti
m
e
(s
ec
on

ds
)

Scale Factor (SF)

DBLPData, Eps: 4

Output Size
Exec. Time DBSimJoin
Exec. Time SSJoin

Fig. 10. Increasing SF - DBLPData

0

10

20

30

40

0

20000

40000

60000

80000

100000

2 4 6 8 10

O
ut
pu

tS
ize

(n
o.
lin
kS
)

Ex
ec
ut
io
n
Ti
m
e
(s
ec
on

ds
)

Epsilon (edit distance)

DBLPData, SF2
Output Size
Exec. Time DBSimJoin
Exec. Time SSJoin

Fig. 11. Increasing Epsilon - DBLPData

4.1 Performance Evaluation with DBLP String Data

We compare DBSimJoin with an implementation of SSJoin (q=3), the q-gram
based approach proposed in [4] and explained in Section 2. SSJoin’s execution
times do not include q-gram generation. Sample queries are presented next.

SSJoin query: SELECT R.pka, R.origstringa, S.pkb, S.origstringb

FROM qgramsR R, qgramsS S WHERE R.qgrama = S.qgramb

GROUP BY R.pka, R.origstringa, S.pkb, S.origstringb

HAVING count(*) >= (char_length(R.origstringa) - 3 + 1 - 3 * 2)

AND editdist(R.origstringa, S.origstringb) <= 2;

DBSimJoin query: SELECT R.pka, R.origstringa, S.pkb, S.origstringb FROM

R, S WHERE R.origstringa WITHIN 2 OF S.origstringb USING EditDistance;

Increasing Scale Factor. Fig. 10 shows the performance when data size in-
creases. DBSimJoin’s execution time is between 7% (SF1) and 24% (SF4) of the
one of SSJoin. DBSimJoin also uses significantly less space than SSJoin. In our
experiments, for SF1, SSJoin’s q-gram tables have about 55 times the number
of rows of the original tables. DBSimJoin uses only the original tables.

Increasing Epsilon. Fig. 11 compares the performance when ε increases. DB-
SimJoin’s execution time is 13% of that of SSJoin for ε=2, and only 3% for ε=10.
While for very low values of ε the number of tuples returned by the join used in
SSJoin is relatively small, this number grows quickly when ε increases affecting
negatively its execution time. DBSimJoin’s execution time increases moderately
when ε increases since larger values of ε generate larger window-pair partitions.

4.2 Performance Evaluation with Vector Data

We run all the tests using both vector datasets and found the same performance
trends. We present the results using one dataset (specified in each figure) due to
space constraints. We compare DBSimJoin with queries that produce the same
results using only regular (non-similarity) database operators (RegDBOps). To

276 Y.N. Silva, S.S. Pearson, and J.A. Cheney

0

500

1000

1500

2000

0

50000

100000

150000

200000

1 2 3 4

O
ut
pu

tS
iz
e
(n
o.
of

lin
ks
)

Ex
ec
ut
io
n
Ti
m
e
(s
ec
on

ds
)

Scale Factor (SF)

SynthData(6D), Eps:2.5%
Output Size
Exec. Time DBSimJoin
Exec. Time RegDBOps

Fig. 12. Increasing SF - SynthData

0

50000

100000

150000

200000

1 2 3 4

Ex
ec
ut
io
n
Ti
m
e
(s
ec
on

ds
)

Scale Factor (SF)

SynthData(4D,6D,8D), Eps:2.5%
DBSimJoin 4D
DBSimJoin 6D
DBSimJoin 8D
RegDBOps 4D
RegDBOps 6D
RegDBOps 8D

Fig. 13. Increasing SF and Number of Di-
mensions - SynthData

the best of our knowledge, no previous work has proposed an alternative ap-
proach to support SJ over vectors in a DBMS. PostGIS, a spatial database ex-
tender for PostgreSQL [2], is not considered since it only supports 2D/3D data.
Also, PostGIS’ spatial distance function (ST-Distance) does not use indexes and
thus SJ will perform like RegDBOps. Some sample queries are presented below.

RegDBOps query: SELECT R.r1, R.r2, S.s1, S.s2 FROM R, S

WHERE sqrt((R.r1-S.s1)^2 + (R.r2-S.s2)^2) <= 0.5;

DBSimJoin query: SELECT R.r1, R.r2, S.s1, S.s2 FROM R, S

WHERE [R.r1, R.r2] WITHIN 0.5 OF [S.s1, S.s2] USING EuclideanDistance;

Increasing Scale Factor. Fig. 12 shows how DBSimJoin and RegDBOps scale
when the data size increases. This experiment uses 6D vectors and a value of ε of
2.5% of the maximum possible distance. DBSimJoin performs significantly better
than RegDBOps for all the values of SF. RegDBOps’ execution time grows from
being 33 times the one of DBSimJoin for SF1 to 87 times for SF5. RegDBOps’
poor performance is due to a nested loop join between the joined relations.

Increasing SF and Number of Dimensions. DBSimJoin perform much
better than RegDBOps also for different number of dimensions as shown in Fig.
13. In all cases, the execution time of DBSimJoin is a small fraction of that of
RegDBOps. Moreover, when the number of dimensions increases, DBSimJoin
takes a smaller fraction of the execution time of RegDBOps. Specifically, for 4D
data the execution time of DBSimJoin is at most 15% of that of RegDBOps.
The percentage is 3% for 6D data and only 2% for 8D data. Fig. 14 shows that
the execution time of DBSimJoin decreases when the number of dimensions
increases. This is mainly due to the large difference between the links reported
in 4D data (46,109-184,436) and the ones reported in 6D and 8D data (< 1,500).

Increasing Epsilon. Fig. 15 shows that, for all the evaluated values of ε,
DBSimJoin significantly outperforms RegDBOps. The execution time of DB-
SimJoin is only 0.42% of that of RegDBOps for ε=0.5% and 2.97% for ε=2.5%.

Database Similarity Join for Metric Spaces 277

0

1000

2000

3000

4000

5000

1 2 3 4

Ex
ec
ut
io
n
Ti
m
e
(s
ec
on

ds
)

Scale Factor (SF)

SynthData(4D,6D,8D), Eps:2.5%

DBSimJoin 4D

DBSimJoin 6D

DBSimJoin 8D

Fig. 14. Increasing SF and Number of Di-
mensions (DBSimJoin) - SynthData

0

100

200

300

400

0

2000

4000

6000

8000

10000

0.5 1.0 1.5 2.0 2.5

O
ut
pu

tS
iz
e
(n
o.
of

lin
ks
)

Ex
ec
ut
io
n
Ti
m
e
(s
ec
on

ds
)

Epsilon (%)

SynthData(6D), SF1

Output Size
Exec. Time DBSimJoin
Exec. Time RegDBOps

Fig. 15. Increasing Epsilon - SynthData

0

2000

4000

6000

8000

10000

12000

14000

0.5 1.0 1.5 2.0 2.5

Ex
ec
ut
io
n
Ti
m
e
(s
ec
on

ds
)

Epsilon (%)

SynthData(4D,6D,8D), SF1

DBSimJoin 4D RegDBOps 4D
DBSimJoin 6D RegDBOps 6D
DBSimJoin 8D RegDBOps 8D

Fig. 16. Increasing Epsilon and Number of
Dimensions - SynthData

0

100

200

300

400

500

0 10 20 30 40 50Ex
ec
ut
io
n
Ti
m
e
(s
ec
on

ds
)

Number of Pivots

ColorData(9D), SF1, Eps:1%

Fig. 17. Increasing No. of Pivots - Color-
Data

RegDBOps’ execution time remains almost constant because it always executes
a nested loop join checking the SJ predicate. DBSimJoin’s execution time in-
creases slightly with larger values of ε since they generate larger window-pair
partitions.

Increasing Epsilon and Number of Dimensions. DBSimJoin performs
significantly better than RegDB-Ops also for different numbers of dimensions
as shown in Fig. 16. For 4D data the execution time of DBSimJoin is at most
14.5% of that of RegDBOps. The percentage is 3% for 6D and only 1.9% for 8D.

Varying Number of Pivots. Fig. 17 shows DBSimJoin’s execution time when
the number of pivots (K) increases from 2 to 50. As K increases, the execution
time decreases at first due to fewer rounds required to reach the point where all
partitions can be processed in memory. When K increases past the optimal value
(K = 8), the execution time grows because the extra data duplication and I/O
costs of the window-pair partitions outweigh the effect of decreased partition
size and number of rounds.

278 Y.N. Silva, S.S. Pearson, and J.A. Cheney

0
500

1000
1500
2000
2500

SJ-Sel-NoPush SJ-Sel-PushInner SJ-Sel-PushBoth SJ-GB-Lazy SJ-GB-Eager

Ex
ec

ut
io

n
Ti

m
e

(s
ec

on
ds

)

R

S

S

o

R

S

S

o o

GB

S

R S

GB

GB

S

R

S

R

S

S

o

Fig. 18. Combining DBSimJoin with other Operators

4.3 Combining DBSimJoin with other Database Operators

This section shows that DBSimJoin can be combined with other database oper-
ators and used in important transformation rules. We use the following queries.

Combining SJ and Selection (SJ-Sel): SELECT * FROM R, S

WHERE [R.r1 ... R.r9] WITHIN 0.28 OF [S.s1 ... S.s9] USING

EuclideanDistance AND EucDist([S.s1 ... S.s9],[0.02 ... 0.02])<=1.38;

Combining SJ and Group-by (SJ-GB): SELECT count(*), S.s1 ... S.s9

FROM R, S WHERE [R.r1 ... R.r9] WITHIN 0.28 OF [S.s1 ... S.s9]

USING EuclideanDistance GROUP BY [S.s1 ... S.s9];

This section uses ColorData (SF1) with the following changes. Table S in SJ-
GB has 1,000 randomly selected 9D vectors that are used as reference points
around which the points of R are grouped. Also, in order to generate dupli-
cate tuples, table R in SJ-GB is generated taking 20% of the original dataset
and duplicating each tuple 5 times. The thresholds 0.28 and 1.38 correspond
to ε=1.0% and ε=5.0%, respectively. SJ-Sel-NoPush, SJ-Sel-PushInner and SJ-
Sel-PushBoth in Fig. 18 are different ways to execute SJ-Sel. SJ-Sel-NoPush
executes the SJ first and then the selection operator. In SJ-Sel-PushInner, the
selection operator (σEucDist(S,Const)≤1.38) is pushed to S. SJ-Sel-PushInner’s ex-
ecution time is 17% of that of SJ-Sel-NoPush. In SJ-Sel-PushBoth, the filtering
benefit is further improved by pushing selection operations on both inputs of the
join (σEucDist(S,Const)≤1.38 on S and σEucDist(R,Const)≤(1.38+0.28) on R). SJ-Sel-
PushBoth’s execution time is only 5% of the one of SJ-Sel-NoPush. SJ-GB-Lazy
and SJ-GB-Eager correspond to the eager and lazy aggregation plans of SJ-GB.
SJ-GB-Lazy executes SJ first and then group-by. Grouping is split into two parts
in SJ-GB-Eager. The first part groups on R.r and calculates the count before the
SJ. The second part groups on S.s and uses the intermediate data to calculate
the final results (sum of the intermediate counts) after the SJ. The execution
time of SJ-GB-Eager is only 4% of that of SJ-GB-Lazy.

5 Conclusions and Future Work

This paper presents DBSimJoin, an efficient and non-blocking SJ database op-
erator. DBSimJoin supports the iterator interface and uses a sequence of rounds

Database Similarity Join for Metric Spaces 279

that prioritizes the quick generation of results. DBSimJoin can be used with mul-
tiple data types and distance functions. We present the implementation details of
DBSimJoin and extensively evaluate its performance showing that DBSimJoin
outperforms alternative approaches. We also present queries that combine DB-
SimJoin with other database operators and show that important transformation
rules can be effectively applied to queries with DBSimJoin. Our paths for future
work include the study of: (1) other similarity operations as database operators,
(2) indexing techniques to improve the efficiency of similarity queries, and (3)
database queries with multiple similarity operators.

References

1. Dblp bibliography, http://www.informatik.uni-trier.de/~ley/db/
2. PostGIS, http://postgis.net/documentation
3. Böhm, C., Braunmüller, B., Krebs, F., Kriegel, H.-P.: Epsilon grid order: an algo-

rithm for the similarity join on massive high-dimensional data. In: SIGMOD 2001,
pp. 379–388 (2001)

4. Chaudhuri, S., Ganti, V., Kaushik, R.: A primitive operator for similarity joins in
data cleaning. In: ICDE 2006, p. 5 (2006)

5. Chaudhuri, S., Ganti, V., Kaushik, R.: Data debugger: An operator-centric ap-
proach for data quality solutions. IEEE Data Eng. Bull. 29(2), 60–66 (2006)

6. Dittrich, J.-P., Seeger, B.: Gess: a scalable similarity-join algorithm for mining
large data sets in high dimensional spaces. In: KDD 2001, pp. 47–56 (2001)

7. Dohnal, V., Gennaro, C., Rabitti, F., Zezula, P.: Similarity join in metric spaces. In:
Sebastiani, F. (ed.) ECIR 2003. LNCS, vol. 2633, pp. 452–467. Springer, Heidelberg
(2003)

8. Dohnal, V., Gennaro, C., Zezula, P.: Similarity join in metric spaces using ed-
index. In: Mař́ık, V., Štěpánková, O., Retschitzegger, W. (eds.) DEXA 2003. LNCS,
vol. 2736, pp. 484–493. Springer, Heidelberg (2003)

9. Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

10. Gravano, L., Ipeirotis, P.G., Jagadish, H.V., Koudas, N., Muthukrishnan, S., Sri-
vastava, D.: Approximate string joins in a database (almost) for free. In: VLDB
2001, pp. 491–500 (2001)

11. Hjaltason, G.R., Samet, H.: Index-driven similarity search in metric spaces (survey
article). ACM Trans. Database Syst. 28(4), 517–580 (2003)

12. Jacox, E.H., Samet, H.: Metric space similarity joins. ACM Trans. Database Syst.,
33(2), 7:1–7:38 (2008)

13. Paredes, R., Reyes, N.: Solving similarity joins and range queries in metric spaces
with the list of twin clusters. J. of Discrete Algorithms 7(1), 18–35 (2009)

14. Silva, Y.N., Aly, A.M., Aref, W.G., Larson, P.-A.: SimDB: a similarity-aware
database system. In: SIGMOD 2010, pp. 1243–1246 (2010)

15. Silva, Y.N., Aref, W.G., Ali, M.H.: The similarity join database operator. In: ICDE
2010, pp. 892–903 (2010)

16. Silva, Y.N., Aref, W.G., Larson, P.-A., Pearson, S., Ali, M.H.: Similarity queries:
their conceptual evaluation, transformations, and processing. VLDB Journal 22(3),
395–420 (2013)

17. Silva, Y.N., Pearson, S.: Exploiting database similarity joins for metric spaces.
Proc. VLDB Endow. 5(12), 1922–1925 (2012)

18. Vernica, R., Carey, M.J., Li, C.: Efficient parallel set-similarity joins using mapre-
duce. In: SIGMOD 2010, pp. 495–506 (2010)

http://www.informatik.uni-trier.de/~ley/db/
http://postgis.net/documentation
http://archive.ics.uci.edu/ml

Engineering Efficient and Effective Non-metric

Space Library

Leonid Boytsov1 and Bilegsaikhan Naidan2

1 Language Technologies Institute,
Carnegie Mellon University,

Pittsburgh, PA, USA
leo@boytsov.info

2 Department of Computer and Information Science,
Norwegian University of Science and Technology,

Trondheim, Norway
bileg@idi.ntnu.no

Abstract. We present a new similarity search library and discuss a
variety of design and performance issues related to its development. We
adopt a position that engineering is equally important to design of the
algorithms and pursue a goal of producing realistic benchmarks. To this
end, we pay attention to various performance aspects and utilize modern
hardware, which provides a high degree of parallelization. Since we focus
on realistic measurements, performance of the methods should not be
measured using merely the number of distance computations performed,
because other costs, such as computation of a cheaper distance function,
which approximates the original one, are oftentimes substantial. The
paper includes preliminary experimental results, which support this point
of view. Rather than looking for the best method, we want to ensure
that the library implements competitive baselines, which can be useful
for future work.

Keywords: benchmarks, (non)-metric spaces, Bregman divergences.

1 Introduction

A lot of domains, including content-based retrieval of multimedia, computa-
tional biology, and statistical machine learning, rely on similarity search meth-
ods. Given a finite database of objects {oi}, a search query q and a dissimilarity
measure (which is typically represented by a distance function d(oi, q)), the goal
is to find a subset of database objects sufficiently similar to the query q.

Two major retrieval tasks are typically considered: a nearest neighbor and a
range search. The nearest neighbor search aims to find the least dissimilar object,
i.e., the object at the smallest distance from the query. Its direct generalization
is the k-nearest neighbor (or the k-NN) search, which looks for the k most closest
objects. Given a radius r, the range query retrieves all objects within a query
ball (centered at the query object q) with the radius r, or, formally, all the
objects {oi} such that d(oi, q) ≤ r.

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 280–293, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Engineering Efficient and Effective Non-metric Space Library 281

The queries can be answered either exactly, i.e., by returning a complete re-
sult, or, approximately, e.g., by finding only some nearest neighbors. The exact
versions of near neighbor and range search received a lot of attention. Yet, in
many applications exact searching is not essential, because the notion of simi-
larity, e.g., between two images, is not specified rigorously. Applying an exact
retrieval method does not necessarily mean that we will find the image that is
most similar to a query from a human perspective. Likewise, a k-NN classifier
may perform well even if the search method does not produce a precise and/or
a complete result [4,32].

Search methods for non-metric spaces are especially interesting. This domain
does not provide sufficiently generic exact search methods. We may know very
little about analytical properties of the distance or the analytical representation
may not be available at all (e.g., if the distance is computed by a black-box device
[36]). Hence, employing an approximate approach is virtually unavoidable.

Approximate search methods are typically more efficient than exact ones.
Yet, it is harder to evaluate them, because we need to measure retrieval speed
at different levels of recall (or any other effectiveness metric). To the best of our
knowledge, there is no publicly available software suit that (1) includes state-of-
the-art approximate search methods for both non-metric and metric spaces and
(2) provides capabilities to measure search quality. Thus, we developed our own
test framework and presented it in this paper.

1.1 Related Work

There is large body of literature devoted to exact search methods in metric
spaces, which are thoroughly surveyed in the books by Faloutsos [12], Samet
[33], and Zezula et al. [41] (see also a survey by Chávez et al. [5]). Exact meth-
ods have a limited value in high-dimensional spaces, which exhibit phenomena
of the empty space [34] and measure concentration [5]. Experiments show that,
as the dimensionality increases, every nearest neighbor search method degrades
to sequential searching [40]. This is commonly known as the “curse of dimen-
sionality”. In that, methods, which are allowed to return inexact answers, are
less affected by the curse [31]. For a discussion of these phenomena, we address
the reader to the papers of Indyk [21] and Pestov [31].

To answer the approximate nearest neighbor queries, Indyk and Motwani [22]
as well as Kushilevitz et al. [26] proposed to use random projections. The locality
sensitivity hashing (LSH) is one of the most well-known implementations of
this idea [22,21]. The LSH indexing uses several hash functions, such that a
probability of a collision (hashing to the same value) is sufficiently high for close
objects, but is small for distant ones.

The LSH works best in Lp spaces where p ∈ (0, 2]. There exists an extension of
the LSH for an arbitrary metric space [29] as well as for symmetric non-metric
distances [28]. Performance of the LSH depends on the choice of parameters,
which can be tuned to fit the distribution of a data set [7].

Most exact search methods can be transformed into approximate ones by
applying an early termination strategy. In particular, Zezula et al. [42] demon-

282 L. Boytsov and B. Naidan

strated that this approach works well for M-trees. One of the most efficient strate-
gies relies on density estimates for a distribution of distances [42,1]. The density-
based approach to space pruning was also discussed by Chávez and Navarro [6]
(in the context of pivoting methods), who called it “stretching” of the triangle
inequality.

Let us consider a metric space, where we selected a single reference point π,
known as pivot. The pivot is used to prune space during searching. Imagine that
we computed a distance from the pivot π to every other data point. Then, points
are sorted in the order of increasing distances from π. The median distance is
m and points are divided into two buckets. If the distance from a point to π
is smaller than m, the point is put into the first bucket. Points with distances
larger than (or equal to) m are placed into the second bucket.

Let q be a query point and r be a radius of the range query. If r < m−d(π, q),
an answer can be only in the first bucket. If r ≤ d(π, q) −m, an answer can be
only in the second bucket. Otherwise, the answer can be in both buckets and
no pruning is possible (without risking to miss an answer). In the “stretched”
triangle inequality, we choose constants α1, α2 ≥ 1.1 If r < α1(m− d(π, q)), we
check only the left bucket. If r < α2(d(π, q)−m), we check only the right bucket.
This is an example of an oracle procedure that defines a pruning algorithm
of a pivoting method. Note that (1) it is possible to learn the oracle in both
metric and non-metric spaces, (2) we can learn a pivot-specific oracle, instead
of the global one, (3) most existing methods designed for metric spaces can
be converted into non-metric search methods by simply replacing the triangle-
inequality based pruning method with a search oracle. We plan to present these
learning approaches in detail elsewhere.

In a recent survey [37], Skopal and Bustos discussed several types of non-
metric access methods, which we divide into the following categories: (1) projec-
tive and lower/upper bounding approaches, (2) methods that prune the space
using properties other than the triangle inequality (e.g., the Ptolemaic inequality
[27]), and (3) domain-specific methods. Inverted files are a classic domain-specific
algorithm applicable to high-dimensional, but sparse, vector spaces, where the
distance function is the cosine similarity (or a similar distance).

Jacobs et al. [23] review various projection methods and argue that a projec-
tion is not always feasible, for instance, when the similarity cannot be expressed
by a numeric distance function, or the distance function is not symmetric. In the
case of symmetric, non-negative, and reflexive distance, one can use the TriGen
algorithm [36], which applies a monotonic transformation to the distance func-
tion. Consider, e.g., the squared Euclidean distance, which is a (non-metric)
Bregman divergence. By taking the square root, we obtain the metric function.
Similarly, the TriGen algorithm allows one to convert a distance into a function
that satisfies the triangle inequality only approximately. In addition, it provides
control over the degree of approximation.

Chávez et al. [18] proposed a projective method, which is applicable to both
metric and non-metric spaces. The method, called the permutation index, selects

1 Chávez and Navarro [6] employed only one stretching constant.

Engineering Efficient and Effective Non-metric Space Library 283

k pivots {πi} and for every data point o it creates a permutation of pivots: a
list where pivots are sorted in the order of increasing distances d(πi, o). Inde-
pendently, this method was invented by Amato and Savino [2], who additionally
proposed to index permutations using an inverted file.

To answer the query, the correlation is computed between the permutation
of the vector and the permutation of every data point. Then, all data points
are sorted in the order of ascending correlation values and a given fraction of
objects are compared directly with the query (by computing the distance in the
original space). Performance of the permutation index can be improved by using
incremental sorting [17] or by indexing permutations using an inverted file [2], a
permutation prefix tree [11], or a metric space index [14].

Bregman divergences is a class of non-metric distance functions. This diver-
gences include the squared Euclidean distance, the KL-divergence:

d(x, y) =
∑

xi log(xi/yi) (1)

and the Itakura-Saito distance:

d(x, y) =
∑

xi/yi − log(xi/yi)− 1. (2)

For the Bregman divergences, there exist two exact search methods. The Breg-
man ball tree (bbtree) [4], which recursively divides the space using two covering
Bregman balls at each recursion step, and a mapping method due to Zhang et
al. [43]. Both approaches use properties of Bregman divergences to lower/upper
bound distance values.

2 Methodology

2.1 Evaluation Approach

Performance of approximate methods is typically represented by a curve that
plots efficiency against effectiveness. Two most common efficiency metrics are
retrieval time and a number of distance computations. Additionally, we use the
improvement in efficiency (with respect to the single-thread sequential search
algorithm) and the improvement in the number of distance computations.

Recall is a commonly used effectiveness metric. It is equal to the fraction
of all correct answers retrieved. The relative error [42] is defined for a pair of
points o and õ, such that o is an exact and õ is an approximate answer. It
is simply a ratio of the distances d(õ, q) and d(o, q). The relative error can be
misleading, especially in high dimensional spaces. Due to high concentration
of measure, an increase in relative error can be very small, but the method can
return the 1,000th nearest-neighbor instead of the most closest one. This concern
was also expressed by Cayton [4]. Similarly, recall does not account for position
information and has the same issue [1].

Let pos(oi) represent a positional distance from oi to the query, i.e., the num-
ber of objects closer to the query than oi plus one. In the case of ties, we assume

284 L. Boytsov and B. Naidan

that the object with a smaller index is closer to the query. Note that pos(oi) ≥ i.
A relative position error is equal to pos(oi)/i and is more informative than a rel-
ative distance error and/or recall. We average relative position errors using the
geometric mean [24].

Zezula et al. [42] proposed to use the average value of the inverse relative
position error (called the precision of approximation) as a performance metric
(m is the number of found objects):

1

m

m∑
i=1

i

pos(oi)
(3)

Amato et al. [1] suggested the metric that measures the absolute position
error. It is equal to:

1

m

m∑
i=1

pos(oi)− i

#of indexed points
(4)

Unfortunately, this metric produces results that are not comparable across col-
lections and result sets of different sizes. Consider an example of the result set,
where pos(oi) = 2i. The absolute position error is equal to:

1

m

m∑
i=1

2i− i

#of indexed points
=

0.5(m+ 1)

#of indexed points

We have no good explanation why the position error should grow with m, while
the relative position error and the degree of approximation remain constant (in
this case). Even worse, due to the large factor in the denominator of Eq. 4, the
computed error is generally very small. It is easy to make a wrong conclusion
that the algorithm works almost ideally, whereas, in truth, it provides a poor
approximation.

If we have a separate test set, testing is straightforward. Otherwise, we need to
randomly divide the original data set into indexable data and testing data. This
method is based on the assumption that distributions of test queries and indexed
data objects are similar. The random division should be repeated several times
(an approach known as bootstrapping), and performance metrics computed for
each split should be aggregated.

One may be tempted to select queries among indexed data objects, or, alter-
natively, to create test vectors by randomly perturbing the indexed data. Both
approaches are not ideal and can lead to overly optimistic or pessimistic re-
sults, especially, in the case of the nearest neighbor searching. We experimented
with the Colors data set[13], indexed using the Vantage Point tree (VP-tree)
[38]. If we selected queries from the vectors that were already indexed, it took
on average only 20 distance computations to find the query’s nearest neighbor.
Since the query and the found vector were identical, the pruning algorithm was
unrealistically efficient. For the randomly selected held-out test data, it took
about 6,000 distance computations to answer the nearest neighbor query! If we
used a query obtained by random additive (and uniform) perturbations of vector

Engineering Efficient and Effective Non-metric Space Library 285

elements, the results depended on the amount of noise. In our experiment, we
got 800 distance computations in one case and 105 distance computations (i.e.,
the algorithm degraded to the linear scan) in another.

We speculate that queries obtained by random perturbations can be useful
if the model of random perturbations fits data well. This assumption is ap-
parently reasonable for the Euclidean data, but additive transformations may
significantly change the histogram of distances in the case of the KL-divergence.
In one example, the application of the additive noise led to a 2x decrease in the
median distance value between two randomly selected vectors. The multiplica-
tive log-normal noise seemed to produce more realistic results, yet, additional
experimentation is needed to understand applicability of this approach.

2.2 Choice of Programming Language

C,C++, and Java are the three most popular general-purpose programming
languages[25]. 2 The authors are familiar with all three and considered them as
implementation languages. According to “The Computer Language Benchmarks
Game”, C and C++ have comparable performance.3 Major C/C++ compilers
(GNU C++ and Microsoft Visual C) support Single Instruction Multiple Data
(SIMD) commands, which allows one to compute distances more efficiently.

Yet, only C++ supports run-time and compile-time polymorphism. The new
C++ specifications standardize multi-threading and simplify the use of STL
containers (threads are not standardized in the pure C). 4 There is evidence,
including anecdotal experience of authors, that C++ allows programmers to be
more productive than does C [3]

Even though performance of Java sometimes matches performance of C++
[39,35], Java is generally 2-3 times slower than C or C++ [20,16]. Unlike C/C++,
there is no built-in support for the SIMD instructions [30]. Java objects are
heavy and programmers have to use parallel arrays as well as manual memory
management (e.g., reusing small objects) to work around this problem [10]. Thus,
writing “algorithmic-intensive” applications in Java may sometimes be harder
than in C++.

Because C++ is largely a superset of C, reusing the code already implemented
in the Metric Spaces Library would be straightforward. Yet, it is harder to port
C-code to Java. There are tools for seamless integration of C++ and R. In
particular, one can call R scripts directly from a C++ program [9]. All in all,
using the latest C++ compiler that implements the new standard is the most
appealing choice for us.

2 See, also http://www.langpop.com/ and http://spectrum.ieee.org/at-work/

tech-careers/the-top-10-programming-languages
3 According to at least this page: http://benchmarksgame.alioth.debian.org/

u64/benchmark.php
4 See http://www.open-std.org/jtc1/sc22/wg21/

http://www.langpop.com/
http://spectrum.ieee.org/at-work/tech-careers/the-top-10-programming-languages
http://spectrum.ieee.org/at-work/tech-careers/the-top-10-programming-languages
http://benchmarksgame.alioth.debian.org/u64/benchmark.php
http://benchmarksgame.alioth.debian.org/u64/benchmark.php
http://www.open-std.org/jtc1/sc22/wg21/

286 L. Boytsov and B. Naidan

2.3 Design

Our software was designed in the spirit of the Metric Spaces Library [13], but
there are multiple important differences. We have classes that represent an
Object, a Space, and an Index. The Space abstraction is necessary to encap-
sulate the computation of the distance. We can have multiple Space sub-classes
implementing different distance functions. In addition, the Space class provides
functionality to read objects from a file.

A distance can be integer-valued, real-valued, or represented by an arbitrarily
complex object (if, e.g., we compare objects using multiple criteria). Similarly
to the Metric Spaces Library, the same implementation can work with different
distance types (e.g., the VP-tree can be used with both the integer-valued edit
distance and with the real-valued L1 metric). This is effectively supported by the
compile-time polymorphism of C++ (templates). All implementations (including
indices for real-valued and integer-valued distances) co-exist in the same binary
and there is no need to update makefiles when a new method or a distance is
implemented.

The Object has an identifier and can store arbitrary data (of any type). When
necessary objects are transformed: One may need to reduce the dimensionality
or precompute the logarithms to accelerate evaluation of the KL-divergence (see
Section 2.4). Unlike the Metric Spaces Library, a distance function accepts point-
ers to the objects rather than object ids.

A Query object proxies distance evaluations during search time, which allows
us to get the average number of computations carried out by a search method
as well as to compute confidence intervals (even in the multi-threading testing
mode). It is still possible to access the distance function through a Space object,
but this should be done only at indexing time. If (due to programmer’s error)
an instance of the Index tried to access distance through the Space object, the
program would terminate. 5

There are two types of query classes and both classes have the Radius func-
tion. For the range queries, this function returns the constant value specified by
the user. For the k-NN queries, the value returned by Radius changes during the
search, because it represents the distance from the query to the k-th closest ob-
ject found so far. Because of this abstraction, it is often sufficient to implement
a single (template) function that handles both the range and the k-NN search.

The distance function can be non-symmetric, thus two types of queries (left
and right are possible). Currently, the framework directly supports only the left
queries (q is the second argument of the distance function). For some methods,
e.g., permutation-based approaches, right queries can be implemented by simply
swapping arguments of the distance function. Yet, a different distance function
as well as a transformation of original data may be necessary for Bregman di-
vergences [4]. We plan to address this issue in the future.

5 We actually have two versions of the Space distance function. The public, restricted,
version “knows” the current phase (indexing or searching). It terminates the program
if called during the search phase. The unrestricted, but private, function is accessible
by a Query object at search time, because the latter is a friend of Space.

Engineering Efficient and Effective Non-metric Space Library 287

As explained in Section 1.1, one can use the concept of the search oracle to
convert metric access methods into non-metric ones. We implement two oracle
classes (one is based on sampling and another on “stretching” of the triangle
inequality). Currently, only the VP-tree can use the generic search oracle, but
we plan to embed the search oracle into other metric indices. In addition, most
tree-based methods in our library implement a simple early termination strategy,
where the search stops after visiting a given number of buckets.

There is a special function that governs the test process. It creates a Space

object, which loads a data set into memory, divides the data into testing and
training sets or loads a separate test set (see Section 2.1). Then, the Factory

creates instances of specific methods. Parsing of method-specific command line
parameters, though, is delegated to the Index. Search methods explicitly return
pointers/ids of found objects. Thus, we can verify methods’ correctness, as well
compute recall and other effectiveness metrics discussed in Section 2.1.

Because there are no exact search methods for generic non-metric spaces, eval-
uation involves comparing a query object against every object in the database.
This expensive procedure can be optimized: When we test several different meth-
ods in a single session, we compute exact answers only once for each query object.
This is reasonably fast on our current data sets, but in the future we may mem-
orize answers, so that they can be re-used when we run multiple tests (using the
same data set).

The testing module saves evaluation results to a CSV-file and produces a
human readable report. Note that the plots in Section 3 are produced by a
Python script that read and processed such CSV-files.

We decided to focus on memory-resident indices. On one hand, modern servers
have plenty of memory and a typical high-performance search application would
keep most of its index in memory. On the other hand, we do not have to imple-
ment serialization/de-serialization or, the code that searches data stored on disk.
This simplification allows us to be more productive coders. Our implementations
create essentially static indices from scratch. In the future, we plan to consider
incremental indexing approaches as well.

One purpose of serialization is to estimate space requirements. Yet, it is pos-
sible to obtain an approximate size of the index by measuring the amount of
memory used by the program before and after the index is created (one should
also include memory to store data objects). There is an opinion that better es-
timates can be achieved, if we compute the size of allocated memory ourselves,
by writing the special code that traverses the index and measures the size of
atomic index elements (such as vectors). Yet, we believe that this approach is
error prone.

2.4 Efficiency Issues

Even though some distance functions are expensive, it can be quite cheap to com-
pare two vectors using an Lp norm. Furthermore, it can be done even faster using
special SIMD instructions [15]. Currently, most x86 CPUs support operations
with 128-bit registers containing, e.g., 4 single-precision or 2 double-precision

288 L. Boytsov and B. Naidan

Table 1. The number of computations per second for optimized and unoptimized
distance functions

128 elements 1024 elements

Distance L1 L2 Itakura-Saito KL-div. L1 L2 Itakura-Saito KL-div.

C++ (no logs) 9.6 · 106 9.1 · 106 1.9 · 105 5.3 · 105 1.2 · 106 1.2 · 106 2.4 · 104 6.7 · 104

SIMD (precomp. logs) 2.7 · 107 3.3 · 107 8.3 · 106 2.8 · 107 3.4 · 106 4.5 · 106 1.04 · 106 2.4 · 106

Note: vector elements are randomly, uniformly, and independently drawn from (0, 1]

numbers. Some CPUs already support operations with 256-bit registers, which
can process 8-element vectors of single-precision numbers.6 This fact is rather
well known, but it appears to be underappreciated. In addition, evaluation of
some distance functions can be accelerated at the expense of higher storage re-
quirements (or by dimensionality reduction). In the case of the KL-divergence
and the Itakura-Saito distance we can precompute and memorize logarithms of
vector elements.

According to Table 1, a single CPU core can carry out more than 30 mil-
lion computations of the Euclidean distance between two 128-element vectors
and more than 4 million distance computations between two 1024-element vec-
tors. In that, the efficient SIMD version spends about one CPU cycle per vec-
tor element. 7 The optimized versions of the L1, L2 and distances, which use
SIMD, are 3 times faster than pure C++ versions. The optimized versions of the
KL-divergence and of the Itakura-Saito distance are about 30-50 times as fast as
the original ones. In comparison, for a data set of dimensionality 128, the bbtree,
which is designed to search using the KL-divergence, is only 5 times faster than
sequential scan [4]. It should now be clear that (1) distance computations are not
necessarily expensive and (2) optimizing computation of the distance function
can be more important than designing data structures.

It has been claimed that a random memory access may take hundreds of CPU
cycles [8]. Yet, our experiments showed the cost of a random access on our server
to be only 60 cycles. Thus, reducing memory fragmentation may not necessarily
lead to substantial improvements in performance. In particular, storing vectors
of a VP-tree bucket in adjacent memory regions did not allow us to get more
than a 2x speedup. Perhaps, more importantly, the SIMD-based algorithms of
distance computations are so fast that communications with RAM can become
a major bottleneck in a multi-threading environment. Indeed, to sustain the
processing speed of one vector element per CPU cycle (see Table 1) we need
to read from memory at the speed of ≈ 12 GB/sec (one element is a 4-byte
single-precision number). Our server’s memory bandwidth of 20 GB/sec can be
exhausted with just two threads.

6 See, e.g., http://software.intel.com/en-us/avx
7 Reading unaligned data does not apparently hurt performance, even for SIMD op-
erations.

http://software.intel.com/en-us/avx

Engineering Efficient and Effective Non-metric Space Library 289

100 101 102 103

100

101

102

103

Relative position error (log. scale)

Im
p
ro
ve
m
en
t
o
f
effi

ci
en

cy
(l
o
g
.
sc
a
le
)

multi-probe LSH

perm. pref.
vp-tree

perm. vp-tree

perm. incr.

100 101 102

10−1

100

101

102

Relative position error (log. scale)

multi-probe LSH

perm. pref.
vp-tree

perm. vp-tree

perm. incr.

100 101 102 103

100

101

102

103

Relative position error (log. scale)

multi-probe LSH

perm. pref.
vp-tree

perm. vp-tree

perm. incr.

100 101 102 103

100

101

102

103

Relative position error (log. scale)Im
p
ro
ve
m
en
t
o
f
d
is
t.

co
m
p
u
ta
ti
o
n
s
(l
o
g
.
sc
a
le
)

multi-probe LSH

perm. pref.
vp-tree

perm. vp-tree

perm. incr.

(d) Colors, L2

100 101 102

100

101

102

103

Relative position error (log. scale)

multi-probe LSH

perm. pref.
vp-tree

perm. vp-tree

perm. incr.

(e) Unif-64, L2

100 101 102 103
100

101

102

103

Relative position error (log. scale)

multi-probe LSH

perm. pref.
vp-tree

perm. vp-tree

perm. incr.

(f) RCV-128, L2

Fig. 1. Improvement in efficiency and in the number of distance computations for 1-NN
search in L2

3 Experiments

Experiments were carried out on a Linux server equipped with Intel Core i7 2600
(3.40 GHz, 8192 KB of L3 CPU cache) and 16 GB of DDR3 RAM (transfer
rate 20GB/sec). The code was compiled using GNU C++ 4.7 (optimization
flag -Ofast) and tested in a single-thread (using 1,000 queries). The library can
be downloaded from GitHub.8

The following collections were used:

1. Colors: 112-dimensional data set from the Metric Spaces Library [13];
2. Unif64: 64-dimensional vectors with elements generated randomly, indepen-

dently, and uniformly;
3. RCV-16 and RCV-128: 16- and 128-dimensional topic histograms [4];
4. SIFT: the normalized 1111-dimensional SIFT signatures [4].

We extracted the first 105 vectors from collections (1)-(3) and used the whole
collection (4), which contained only 104 vectors.

We carried out two series of experiments (both involving 1-NN search). In the
first series (see Fig. 1), we used collections Colors, Unif-64, and RCV-128. The
distance was Euclidean. We measured both the improvement in efficiency and
in the number of distance computations. The values of efficiency metrics were

8 https://github.com/searchivarius/NonMetricSpaceLib

https://github.com/searchivarius/NonMetricSpaceLib

290 L. Boytsov and B. Naidan

plotted against the relative position error. In the second experimental series (see
Fig. 2), we measured how the improvement in efficiency corresponded to the
relative position error. Two Bregman divergences were used: the KL-divergence
(see Eq. 1) and the Itakura-Saito distance (see Eq. 2). Implemented methods
included domain specific and permutation-based approaches as well the VP-tree.

– The VP-tree employed the search oracle that “stretched” the triangle in-
equality (see Section 1.1). Optimal stretching coefficients were found using
a simple grid search. We indexed a small database sample (≈ 1,000 vectors),
executed the 1-NN search for various values of stretching coefficients and
measured performance. Then, we selected coefficients resulting in the fastest
search at given recall values.

– Permutation-based approaches were: an improved permutation index with
incremental sorting [17], a permutation prefix tree [11], and the method
where permutations were indexed using a metric space index, as proposed
by Figueroa and Fredriksson [14]. Unlike Figueroa and Fredriksson, we used
an approximate method (the VP-tree that stretched the triangle inequality
using α1 = α2 = 2). In all cases, we used 16 pivots and the prefix length
was 4. The maximum fraction of the objects exhaustively compared against
the query depended on the data set and varied from 0.01 to 0.05. The mini-
mum fraction of the database objects to be scanned was 0.0002. The number
of candidate objects in the permutation prefix index varied from 1 to 24,000.

– The bbtree [4] is the exact indexing method for Bregman divergences. It was
extended by the early termination strategy, where the search stopped after
visiting a certain number of buckets (the number varied from one to 1,000).

– The multi-probe LSH is designed only for L2. We used the LSHKit imple-
mentation with the following parameters: H = 1017881, T = 10, L = 50.9

All methods, including the multi-probe LSH, relied on optimized distance func-
tions. The correlation function (Spearman’s rho) was also optimized and imple-
mented using SIMD instructions. The vectors in the buckets of the VP-tree and
bbtree were stored in contiguous chunks of memory (the bucket size was 50).

From Fig. 1 we learn that both the classic permutation method (without the
index over permutations) and the multi-probe LSH carried out fewer distance
computations than most other methods. Yet, they were generally outperformed
by the VP-tree and the methods that index permutations (using either the prefix
tree or the VP-tree). The reason is that exhaustive comparison of data-object
permutations against the permutation of the query vector is costly. In that, the
permutation index worked better for high-dimensional data (see Fig. 2f and 2c).
Again, we see that the number of distance computations is not necessarily a good
predictor of method’s performance. Yet, it may give insights into scalability of
methods with respect to the size of the data set and data dimensionality.

As can be seen from Fig. 2, we implemented strong baselines that worked well
in non-metric spaces with non-symmetric distance functions. Note that the bb-
tree, which was tailored to spaces with Bregman divergences, was outperformed

9 Remaining parameters were automatically computed by the LSHKit [7].

Engineering Efficient and Effective Non-metric Space Library 291

100 100.2 100.4 100.6 100.8
10−1

100

101

102

103

Relative position error (log. scale)

Im
p
ro
ve
m
en
t
o
f
effi

ci
en
cy

(l
o
g
.
sc
a
le
)

perm. pref.

bbtree
vp-tree

perm. vp-tree

perm. incr.

(a) RCV-16, KL-div.

100 101

100

101

102

103

Relative position error (log. scale)

perm. pref.

bbtree
vp-tree

perm. vp-tree

perm. incr.

(b) RCV-128, KL-div.

100 101 102

100

101

102

Relative position error (log. scale)

perm. pref.

bbtree
vp-tree

perm. vp-tree

perm. incr.

(c) SIFT, KL-div.

100 101
10−1

100

101

102

103

Relative position error (log. scale)

Im
p
ro
ve
m
en
t
o
f
effi

ci
en
cy

(l
o
g
.
sc
a
le
)

perm. pref.

bbtree
vp-tree

perm. vp-tree

perm. incr.

(d) RCV-16, Itakura-Saito

100 101 102

100

101

102

103

Relative position error (log. scale)

perm. pref.

bbtree
vp-tree

perm. vp-tree

perm. incr.

(e) RCV-128, Itakura-Saito

100 101 102

100

101

102

Relative position error (log. scale)

perm. pref.

bbtree
vp-tree

perm. vp-tree

perm. incr.

(f) SIFT, Itakura-Saito

Fig. 2. Improvement in efficiency of 1-NN search for the KL-divergences and Itakura-
Saito distance

by the VP-tree (which is a generic method) in most cases. These are encourag-
ing results, but more work needs to be done. We plan to employ new complex
domains and implement additional search methods.

Acknowledgments. We would like to thank Lawrence Cayton for providing
the data sets, Vladimir Pestov for the discussion on the curse of dimensionality,
and anonymous reviewers for helpful suggestions.

References

1. Amato, G., Rabitti, F., Savino, P., Zezula, P.: Region proximity in metric spaces
and its use for approximate similarity search. ACM Trans. Inf. Syst. 21(2), 192–227
(2003)

2. Amato, G., Savino, P.: Approximate similarity search in metric spaces using in-
verted files. In: Proceedings of the 3rd International Conference on Scalable In-
formation Systems, InfoScale 2008, pp. 28:1–28:10. ICST (Institute for Computer
Sciences, Social-Informatics and Telecommunications Engineering), Brussels (2008)

3. Bhattacharya, P., Neamtiu, I.: Assessing programming language impact on develop-
ment and maintenance: a study on C and C++. In: 33rd International Conference
on Software Engineering (ICSE), pp. 171–180 (2011)

4. Cayton, L.: Fast nearest neighbor retrieval for bregman divergences. In: Pro-
ceedings of the 25th International Conference on Machine Learning, ICML 2008,
pp. 112–119. ACM, New York (2008)

292 L. Boytsov and B. Naidan

5. Chávez, E., Navarro, G., Baeza-Yates, R., Marroquin, J.L.: Searching in metric
spaces. ACM Computing Surveys 33(3), 273–321 (2001)

6. Chávez, E., Navarro, G.: Probabilistic proximity search: Fighting the curse of di-
mensionality in metric spaces. Information Processing Letters 85(1), 39–46 (2003)

7. Dong, W., Wang, Z., Josephson, W., Charikar, M., Li, K.: Modeling lsh for perfor-
mance tuning. In: Proceedings of the 17th ACM Conference on Information and
Knowledge Management, CIKM 2008, pp. 669–678. ACM, New York (2008)

8. Drepper, U.: What every programmer should know about memory (2007),
http://www.akkadia.org/drepper/cpumemory.pdf (last checked August 2012)

9. Eddelbuettel, D., Francois, R.: Rcpp: Seamless R and C++ integration. Journal of
Statistical Software 40(8), 1–18 (2011)

10. Elizarov, R.: Millions quotes per second in pure Java (2013),
http://blog.devexperts.com/millions-quotes-per-second-in-pure-java/

(last accessed on May 14, 2013)
11. Esuli, A.: Use of permutation prefixes for efficient and scalable approximate simi-

larity search. Inf. Process. Manage. 48(5), 889–902 (2012)
12. Faloutsos, C.: Searching Multimedia Databases by Content. Kluwer Academic Pub-

lisher (1996)
13. Figueroa, K., Navarro, G., Chávez, E.: Metric Spaces Library (2007),

http://www.sisap.org/Metric_Space_Library.html
14. Figueroa, K., Fredriksson, K.: Speeding up permutation based indexing with in-

dexing. In: Proceedings of the 2009 Second International Workshop on Similar-
ity Search and Applications, SISAP 2009, pp. 107–114. IEEE Computer Society,
Washington, DC (2009)

15. Fredriksson, K.: Engineering efficient metric indexes. Pattern Recognition Let-
ters 28(1), 75–84 (2007)

16. Fulgham, B.: The computer language benchmarks game (2013),
http://benchmarksgame.alioth.debian.org/ (last accessed on May 14, 2013)

17. Gonzalez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by order-
ing permutations. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 30(9), 1647–1658 (2008)

18. Gonzalez, E.C., Figueroa, K., Navarro, G.: Effective proximity retrieval by order-
ing permutations. IEEE Transactions on Pattern Analysis and Machine Intelli-
gence 30(9), 1647–1658 (2008)

19. Hedges, L.V., Vevea, J.L.: Fixed-and random-effects models in meta-analysis. Psy-
chological Methods 3(4), 486–504 (1998)

20. Hundt, R.: Loop recognition in C++/Java/Go/Scala. In: Proceedings of Scala
Days 2011 (2011)

21. Indyk, P.: Nearest neighbors in high-dimensional spaces. In: Goodman, J.E.,
O’Rourke, J. (eds.) Handbook of Discrete and Computational Geometry,
pp. 877–892. Chapman and Hall/CRC (2004)

22. Indyk, P., Motwani, R.: Approximate nearest neighbors: towards removing the
curse of dimensionality. In: Proceedings of the Thirtieth Annual ACM Symposium
on Theory of Computing, STOC 1998, pp. 604–613. ACM, New York (1998)

23. Jacobs, D., Weinshall, D., Gdalyahu, Y.: Classification with nonmetric distances:
Image retrieval and class representation. IEEE Transactions on Pattern Analysis
and Machine Intelligence 22(6), 583–600 (2000)

24. King, G.: How not to lie with statistics: Avoiding common mistakes in quantitative
political science. American Journal of Political Science, 666–687 (1986)

25. King, R.S.: The top 10 programming languages (the data). IEEE Spectrum 48(10),
84–84 (2011)

http://www.akkadia.org/drepper/cpumemory.pdf
http://blog.devexperts.com/millions-quotes-per-second-in-pure-java/
http://www.sisap.org/Metric_Space_Library.html
http://benchmarksgame.alioth.debian.org/

Engineering Efficient and Effective Non-metric Space Library 293

26. Kushilevitz, E., Ostrovsky, R., Rabani, Y.: Efficient search for approximate nearest
neighbor in high dimensional spaces. In: Proceedings of the 30th Annual ACM
Symposium on Theory of Computing, STOC 1998, pp. 614–623. ACM, New York
(1998)

27. Lokoč, J., Hetland, M.L., Skopal, T., Beecks, C.: Ptolemaic indexing of the sig-
nature quadratic form distance. In: Proceedings of the Fourth International Con-
ference on SImilarity Search and APplications, SISAP 2011, pp. 9–16. ACM, New
York (2011)

28. Mu, Y., Yan, S.: Non-metric locality-sensitive hashing. In: AAAI (2010)
29. Novak, D., Kyselak, M., Zezula, P.: On locality-sensitive indexing in generic metric

spaces. In: Proceedings of the Third International Conference on SImilarity Search
and APplications, SISAP 2010, pp. 59–66. ACM, New York (2010)

30. Parri, J., Shapiro, D., Bolic, M., Groza, V.: Returning control to the programmer:
Simd intrinsics for virtual machines. Commun. ACM 54(4), 38–43 (2011)

31. Pestov, V.: Indexability, concentration, and VC theory. Journal of Discrete Al-
gorithms 13, 2–18 (2012); Best Papers from the 3rd International Conference on
Similarity Search and Applications (SISAP 2010)

32. Pestov, V.: Is the k-NN classifier in high dimensions affected by the curse of di-
mensionality? Computers & Mathematics with Applications (2012)

33. Samet, H.: Foundations of Multidimensional and Metric Data Structures. Morgan
Kaufmann Publishers Inc. (2005)

34. Scott, D.W., Thompson, J.R.: Probability density estimation in higher dimensions.
Technical Report, Rice University, Texas Huston (1983)

35. Shafi, A., Carpenter, B., Baker, M., Hussain, A.: A comparative study of java and
c performance in two large-scale parallel applications. Concurrency and Computa-
tion: Practice and Experience 21(15), 1882–1906 (2009)

36. Skopal, T.: Unified framework for fast exact and approximate search in dissimilarity
spaces. ACM Trans. Database Syst. 32(4) (November 2007)

37. Skopal, T., Bustos, B.: On nonmetric similarity search problems in complex do-
mains. ACM Comput. Surv. 43(4), 34:1–34:50 (October 2011)

38. Uhlmann, J.: Satisfying general proximity similarity queries with metric trees. In-
formation Processing Letters 40, 175–179 (1991)

39. Vivanco, R.A., Pizzi, N.J.: Scientific computing with Java and C++: a case study
using functional magnetic resonance neuroimages. Software: Practice and Experi-
ence 35(3), 237–254 (2005)

40. Weber, R., Schek, H.J., Blott, S.: A quantitative analysis and performance study
for similarity-search methods in high-dimensional spaces. In: Proceedings of the
24th International Conference on Very Large Data Bases, pp. 194–205. Morgan
Kaufmann (August 1998)

41. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach (Advances in Database Systems). Springer-Verlag New York, Inc., Se-
caucus (2005)

42. Zezula, P., Savino, P., Amato, G., Rabitti, F.: Approximate similarity retrieval
with m-trees. The VLDB Journal 7(4), 275–293 (1998)

43. Zhang, Z., Ooi, B.C., Parthasarathy, S., Tung, A.K.H.: Similarity search on breg-
man divergence: towards non-metric indexing. Proc. VLDB Endow. 2(1), 13–24
(2009)

Designing Similarity Indexes

with Parallel Genetic Programming

Tomáš Bartoš and Tomáš Skopal

Charles University in Prague, Faculty of Mathematics and Physics
Department of Software Engineering, SIRET Research Group

Malostranské nám. 25, 118 00 Prague 1, Czech Republic
{bartos,skopal}@ksi.mff.cuni.cz

Abstract. The increasing diversity of unstructured databases leads to
the development of advanced indexing techniques as the metric indexing
model does not fit to the general similarity models. Once the most critical
postulate, namely the triangle inequality, does not hold, the metric model
produces notable errors during the query evaluation. To overcome this
situation and to obtain more qualitative results, we want to discover
better indexing models for databases using arbitrary similarity measures.
However, each database is unique in a specific way, so we outline the
automatic way of exploring the best indexing method. We introduce the
exploration approach using parallel genetic programming principles in
a multi-threaded environment built upon recently introduced SIMDEX
Framework. Furthermore, we introduce smart pivot table which is an
intelligent indexing method capable of incorporating obtained results.
We supplement the theoretical background with experiments showing the
achieved improvements in comparison to the single-threaded evaluations.

1 Introduction

The current trends such as Big Data leads us to the challenge of finding infor-
mation in large-scale databases of unstructured data. We know how to model
data, how to store it, and which similarity model provides the best results for
specific databases when searching for the most similar objects to the given query.
However, we still struggle with the speed of query evaluations and we try to find
optimizations in terms of query efficiency with respect to the accuracy of results.

In the similarity search domain, which affects our daily lives to a considerable
extent (social network data, multimedia or biometric databases, etc.), a big
challenge is how to handle distinct similarity models. The metric model already
has its ideal solution – using metric access methods [17] for efficient database
indexing. But for nonmetric similarity models [16] which better correspond to
demanding user requirements, the situation is different. In most cases, each query
degrades to slow sequential scanning which is applicable only to small-sized data.

There are various ways of how to deal with the situation when the metric
space model is not applicable. We can tune the data [13,14], modify the indexing
model [9,1], reveal the applicability of a specific method [12], or we can explore
all potential indexing expression to find the best fit [15,2,3].

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 294–299, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Designing Similarity Indexes with Parallel Genetic Programming 295

One common thing is to address the problematic triangle inequality and the
corresponding triangle lowerbounding LB� [17] which applies to the metric
spaces using a single reference point (pivot p):

LB�(δ(q, o)) = |δ(q, p)− δ(p, o)| ≤ δ(q, o) (1)

It is a cheap and effective lowerbound method but for nonmetric distances
it usually leads to false dismissals [14]. In this paper, we focus on this issue
in a consistent way and demonstrate how to solve challenges with nonmetric
similarity models by introducing the smart pivot table index (Section 4) which
leverages the outcomes of parallelized SIMDEX Framework (Section 3.1).

2 Related Work

One of the most commonly used method dealing with the nonmetric models
is TriGen algorithm [13,14] which converts nonmetric similarity spaces to semi-
metric or metric ones. It uses a database sample and tunes the modified distance
g(δ) with respect to the rate of non-triangular triplets (T -error) while minimiz-
ing the intrinsic dimensionality ρ [5]. The resulting modified distance g(δ) is
directly employed into the pivot table [17] and it is used for exact but slower
or approximate but fast similarity search. However, in some cases the distance
modifications lead to large retrieval error or low indexability [16].

A similar concept based on the Lambda Tuning Algorithm has been studied
for the nonmetric databases in which the triangle inequality does not hold [1].
Authors focus on tuning nine fuzzy T-norm operators also with the connection
to the pivot table indexing. As they state, these alternative methods provide
increased efficiency but together with higher error rate.

The introduction of Ptolemaic indexing [9,12] shows a way of replacing the
problematic triangle lowerbound (Equation 1) with Ptolemy’s inequality which
for any database objects x, y, u, and v defines the following relation

δ(x, v) · δ(y, u) ≤ δ(x, y) · δ(u, v) + δ(x, u) · δ(y, v) (2)

If the distance function δ holds the properties of identity, positivity, symmetry,
and satisfies Ptolemy’s inequality, we can use ptolemaic lowerbound (LBptol). To
do so, we first define the candidate bound δC using two pivots p and s:

δC(q, o, p, s) =
|δ(q, p) · δ(o, s)− δ(q, s) · δ(o, p)|

δ(p, s)
(3)

For simplicity, we let δC(q, o, p, s) = 0 if δ(p, s) = 0. Considering a set of pivots
P, we maximize the candidate bound δC over all pairs of distinct pivots:

LBptol(δ(q, o)) = max
p,s∈ P

δC(q, o, p, s) ≤ δ(q, o) (4)

Ptolemaic method is valid for signature quadratic form distance [12] applied
to image signatures [4], however it is difficult to determine which preconditions
must hold, so it performs better than any other approach.

296 T. Bartoš and T. Skopal

Algorithm 1. Parallel GP-SIMDEX (Mδ,S, P)

Require: Distance matrix Mδ,S , Number of parallel instances P
1: coordinator ← new PGPCoordinator(instances)
2: for i = 1 to P do {P denotes the level of parallelism}
3: instances[i] ← new GP-SIMDEX() {[A] Init}
4: instances[i].SetRandomInitialPopulation()
5: instances[i].RunExplorationInBackground() {[B] Map}
6: end for
7: coordinator.WaitForInstancesToFinish() {[C] Process in the background}
8: return coordinator.BestResults; {[D] Reduce and consolidate results}

More consolidated approach of dealing with nonmetric similarity spaces uses
the recently introduced SIMDEX Framework [15,2,3] which explores the poten-
tially infinite space of all lowerbound expressions and tries to find the best fit
for indexing a given database. Our previous work outlines two approaches, one
based on iterative searching [15] and another utilizing genetic algorithms [2,3].

3 Exploration Method

In this section, we introduce the parallel enhancements of the recently proposed
GP-SIMDEX Framework [2] which applies genetic programming [10,11] for dis-
covering suitable lowerbounds. The main contribution is in the revalidation of
GP-SIMDEX in multi-threaded environment while further improving the quali-
tative results by employing nontrivial parallel genetic programming methods.

3.1 Parallel Genetic Programming

The idea of driving the exploration of new indexing methods by genetic pro-
gramming (GP) principles is not completely new. Our recent work [2] reveals the
potential of GP for lowerbound discovery. However, we admit that greater bene-
fits will come with the parallel implementation of the proposed (single-threaded)
GP-SIMDEX Framework. As we strongly believe its potential, we build a pro-
totype that applies the framework to the multi-threaded environment. We im-
plement intelligent Parallel Genetic Programming (PGP) exploration method
using island-population model [7,8] together with the map-reduce approach [6].
Algorithm 1 outlines the high-level overview of the individual stages (A-D).

3.2 Parallel GP-SIMDEX Algorithm

PGP-SIMDEX uses more sophisticated evaluation than just running multiple
independent evaluations of GP-SIMDEX at the same time. During the initial
phase (A), we create a selected number of GP-SIMDEX instances (so called
islands), each built with a random initial population of expressions. Every in-
stance then repeatedly apply genetic operations to build further populations

Designing Similarity Indexes with Parallel Genetic Programming 297

Coordinator

Parallel
GP-SIMDEX

Best
Results

I1

I2

I3

IP

[A] Init [B] Map [C] Process [D] Reduce

…

Propagate best results (immigrants) Push received results to the population+

+ + +

+++

+++

+

Fig. 1. PGP-SIMDEX – High-level overview of the parallel approach

(B,C) and it also regularly propagates the best results (immigrants) to another
instance through the coordinator (C). These expressions are appended to the
next population of the target instance and provide ”fresh food” to drive the
exploration efficiency. This approach is recommended to obtain better results
more quickly [7,8]. The redistribution of expressions between running instances
is completely random, so one instance might receive more immigrants than the
others. Figure 1 outlines a sample visualization of this process.

3.3 Comparing GP-SIMDEX vs. PGP-SIMDEX

To validate our concept and to compare it with GP-SIMDEX, we generated eight
smaller datasets of 11,000 random objects (represented as points in 4D space)
and applied several nonmetric similarity models1 mostly with nonzero triangle
inequality errors (see Triangle Error in Table 1). For the exploration, we used
database samples consisting of 1,000 objects and sampled 10,000 N -tuples for
evaluating each candidate expression. We run all experiments multiple times and
provide only the best results.

The initial population includes 1,000 expressions which evolved in 1,000 gen-
erations. PGP-SIMDEX uses 10 islands and only 100 generations.

During evaluations, we studied the comparison of best fitness values (PGP-
SIMDEX slightly outperforms GP-SIMDEX), the number of immigrants (ad-
ditional expressions that ”helped” PGP-SIMDEX) and how they relate to the
overall improvement (see Table 1). With initial evaluations, we validated the
applicability of parallel processing and its power to improve results, however till
now we have obtained only small efficiency increase. To overcome this, we need
to find the relation between the improvements and ideal PGP-SIMDEX settings.

1 We selected Lp distances to demonstrate the variability of similarity models.

298 T. Bartoš and T. Skopal

Table 1. Dataset overview

Distance
Triangle Best Fitness PGP Total PGP
Error GP PGP Improvement immigrants

1 Jeffrey Divergence 14.0 % 38.08 38.40 0.86 % 7,198
2 L0.2 7.6 % 23.82 24.44 2.61 % 9,452
3 L0.4 5.5 % 22.53 23.13 2.65 % 6,984
4 L0.6 3.8 % 21.18 22.09 4.32 % 8,150
5 L0.8 2.5 % 20.75 21.19 2.15 % 7,671
6 L1 0.3 % 19.94 20.39 2.25 % 7,278
7 L2 0.0 % 16.82 17.40 3.46 % 7,343
8 L∞ 0.3 % 12.27 12.50 1.85 % 6,923

4 Smart Pivot Table

The previous section shows the first steps towards building the smart pivot table
indexing scheme that will be suitable for any data combined with arbitrary
similarity measures. Based on the pivot table index [17], we extend the standard
functionality by deriving the lowerbounding mechanism that will fit for the data.

The concept behind the intelligent indexing is based on the double-pivot con-
straint [17] and it follows the approach introduced with ptolemaic filtering [12].
During the query evaluation, we compute the lowerbound value

LB Value = max
Sk⊆P

(
LB(q, o, Sk)

)
(5)

where Sk is a set of pivots from the pivot set P, q is the query object and o
is a database object. The number of evaluated sets Sk corresponds to all N -
tuples or to a constant C while the cardinality of Sk depends on the number of
independent variables N in the lowerbound expression LB, precisely |Sk| = N .

This approach allows us to use any valid lowerbound expression and filter out
objects oi without computing the generally expensive distance δ(q, oi) for which
the lowerbound value is greater than the given radius or the distance to the k-th
nearest neighbor, i.e. LB Value > maxRadius.

Currently, we still use a small database sample with sampling N -tuples for
evaluating candidates [2,3] in order to discover the best indexing method. As
the next step, we will focus only on the data stored within/inserted to the pivot
table to provide the indexing mechanism based purely on the indexed data –
this is feasible as we modify the filtering options, not the data.

As the next step, we intend to extensively evaluate the smart pivot table and
compare our concept with existing methods such as LAESA [17], the combination
of LAESA and TriGen, or fuzzy approaches [1] on larger real-world databases.

5 Conclusions

In this paper, we introduce a new way of discovering lowerbound expressions for
indexing databases. Compared to previous methods, it improves the efficiency

Designing Similarity Indexes with Parallel Genetic Programming 299

within the multi-threaded environment using the parallel genetic programming
combined with map-reduce principles. We perceive the proposed PGP-SIMDEX
as the shift towards an intelligent indexing method (smart pivot table) applicable
to any similarity model. To achieve this, we need to make two additional steps –
dismiss the required database sampling and run the experiments in the extremely
large scale which remain as the future work.

Acknowledgments. This research has been supported by Grant Agency of
Charles University (GAUK) project 567312 and by Czech Science Foundation
(GAČR) project 202/11/0968.

References

1. Bartoš, T., Eckhardt, A., Skopal, T.: Fuzzy Approach to Non-metric Similarity
Indexing. In: SISAP 2011, pp. 115–116. ACM (2011)

2. Bartoš, T., Skopal, T., Moško, J.: Efficient Indexing of Similarity Models with
Inequality Symbolic Regression. In: GECCO 2013. ACM (2013)

3. Bartoš, T., Skopal, T., Moško, J.: Towards Efficient Indexing of Arbitrary Similar-
ity. SIGMOD Record 42(2), 5–10 (2013)

4. Beecks, C., Uysal, M.S., Seidl, T.: Signature quadratic form distance. In: Proc.
ACM International Conference on Image and Video Retrieval, pp. 438–445 (2010)

5. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Comp. Surveys 33(3), 273–321 (2001)

6. Dean, J., Ghemawat, S.: MapReduce: simplified data processing on large clusters.
Commun. ACM 51(1), 107–113 (2008)

7. Fernandez, F., Spezzano, G., Tomassini, M., Vanneschi, L.: Parallel genetic pro-
gramming. In: Parallel Metaheuristics, pp. 127–153. Wiley Interscience (2005)

8. Gagné, C., Parizeau, M., Dubreuil, M.: The Master-Slave Architecture for Evo-
lutionary Computations Revisited. In: Cantú-Paz, E., et al. (eds.) GECCO 2003.
LNCS, vol. 2724, pp. 1578–1579. Springer, Heidelberg (2003)

9. Hetland, M.L.: Ptolemaic indexing. arXiv:0911.4384 [cs.DS] (2009)
10. Koza, J.R.: Genetic programming. MIT Press, Cambridge (1992)
11. Koza, J.R., Poli, R.: Genetic programming. In: Search Methodologies: Introductory

Tutorials in Optimization and Decision Support Techniques. Springer (2005)
12. Lokoč, J., Hetland, M., Skopal, T., Beecks, C.: Ptolemaic indexing of the signature

quadratic form distance. In: SISAP 2011, pp. 9–16. ACM (2011)
13. Skopal, T.: On fast non-metric similarity search by metric access methods. In:

Ioannidis, Y., et al. (eds.) EDBT 2006. LNCS, vol. 3896, pp. 718–736. Springer,
Heidelberg (2006)

14. Skopal, T.: Unified framework for fast exact and approximate search in dissimilarity
spaces. ACM Transactions on Database Systems 32(4), 1–46 (2007)

15. Skopal, T., Bartoš, T.: Algorithmic Exploration of Axiom Spaces for Efficient Sim-
ilarity Search at Large Scale. In: Navarro, G., Pestov, V. (eds.) SISAP 2012. LNCS,
vol. 7404, pp. 40–53. Springer, Heidelberg (2012)

16. Skopal, T., Bustos, B.: On nonmetric similarity search problems in complex do-
mains. ACM Comp. Surv. 43, 1–50 (2011)

17. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems. Springer, USA (2005)

(Very) Fast (All) k-Nearest Neighbors in Metric

and Non Metric Spaces without Indexing

Natalia Miranda1, Edgar Chávez2, Maŕıa Fabiana Piccoli1, and Nora Reyes1

1 Universidad Nacional de San Luis, Argentina
2 Universidad Nacional Autónoma de México

Abstract. Proximity queries consists in retrieving objects near a given
query. To avoid a brute force scan over a large database, an index can
be used. However, for some problems, indexes are mostly useless (their
running times are worst than sequential scan).

On the other hand, researchers have tried massively parallel hardware
(as GPGPU) in the quest of faster query times. The results have been
modest because current algorithms are cumbersome, while GPGPU ar-
chitectures favor simple kernels, have a clear memory hierarchy and need
close to zero cross-talk between processing units. We have engineered
very fast algorithms for proximity queries taking into account this prin-
ciples, all of them are presented in this paper.

In our approach no index is built, the cross-talk between threads is
eliminated, and the higher (faster) levels of memory hierarchy are consis-
tently used. The absence of data structures allows to use all the available
memory for the database, and furthermore makes possible to do stream
processing on very large data collections.

1 Introduction

Due to an increasing interest in manipulating and retrieving complex data, the
problem of proximity searching has received a lot of attention, while simultane-
ously give hard times to practitioners. Obtaining the k-Nearest Neighbors (k -
NN) of a query object is central to many complex data operations such as query
by content, copy detection, object tracking, and a large set of other applications.
The problem is pervasive and it is found in many areas of research, from statis-
tics, pattern recognition, computer vision to multimedia databases, and much
more applications. For this and other proximity searching problems a sequential
scan over the database can solve the problem, but for large instances it does not
scale. This is a very active topic of research well documented in the literature[1–
3]. The goal of indexing is to avoid a sequential scan to answer proximity queries.
Indexing is a two stage problem, firstly the database is preprocessed and then it
is ready to be queried. Indexing can be very time consuming, some indexes use
quadratic time and/or quadratic space. Moreover, there are situations where the
need to query is immediate. In those cases building a index is not even an op-
tion. An example is object tracking. As soon as an object is marked for tracking
it needs to be reported in real time in every frame; there is no time to index.

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 300–311, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

(Very) Fast (All) k-Nearest Neighbors in Metric and Non Metric Spaces 301

Another example is duplicate detection in video and/or audio streams. Indexing
is very slow and furthermore, in some applications the database will be queried
only a few times making the amortized cost higher than a few sequential scans.

The above scenario is very restrictive and the usual (sequential and massively
parallel) techniques documented in the literature are of no use for the problem.
In this paper we present algorithms to query on the fly databases for proxim-
ity, using massive parallel hardware, more specifically, we are interested in the
General Purpose Graphics Processing Unit (GPGPU). Current solutions for the
GPU architecture are translated from the sequential counterparts, the net re-
sult is a very modest speedup due to auxiliary data structures, and/or the need
to precompute an index. In this paper, by using a very strict adherence to the
design principles and recommendations for the GPU architecture we report a so-
lution orders of magnitude faster than sequential indexes and faster than other
massively parallel approaches reported in the literature. Since we use no index,
the data is readily available for querying on load, leveraging streaming applica-
tions where massive data is seeing only once and there is no time to preprocess
or index.

1.1 Metric Space and Proximity Searching

A database for proximity searching is usually modeled as a finite subset of a
metric space. A metric load is (X,S, d), with X a set (possibly infinite), a
finite subset S ⊆ X the database, and a distance d : X × X → R+. Dis-
tances are preferred to plain (dis)similarity functions because they can be in-
dexed, in principle, exploiting the triangle inequality. Non metric spaces have
been also indexed making a reduction to metric spaces. We will not make use
of triangle inequality, hence our model is more general. Queries of interest in-
clude Range Searching and the k Nearest Neighbors (k-NN). A range search
is defined as (q, r)d = {x ∈ U/d(q, x) ≤ r}). In a k-NN query the goal is to
retrieve the k closest elements in S to a query q, namely |k-NN(q)| = k and
{∀x ∈ k-NN(q), v ∈ S ∧ v /∈ k-NN(q), d(q, x) ≤ d(q, v)}. Other problem of inter-
est is the All-k -NN, solving the above problem for all x in S.

The goal of indexing is to avoid a sequential scan, but there is a well docu-
mented phenomenon known as the curse of dimensionality [1–3]. The measurable
effect is that using an index can be slower than a sequential scan over the data.
To avoid this odd behavior, approximate algorithms have been proposed, they
usually have a threshold ε as parameter, so that the retrieved elements are guar-
anteed to have a distance to the query q at most (1+ ε) times of what was asked
for, or they have probabilistic guarantees[4].

1.2 GPGPU

The GPU is a dedicated graphic card for personal computers, workstations or
video game consoles. It is an interesting architecture for high performance com-
puting. The GPU was developed with a highly parallel structure, high memory
bandwidth and more chip surface dedicated to data processing than to data

302 N. Miranda et al.

caching and flow control. It offers, in principle, a speedup to any standard graph-
ics application[5]. Mapping general-purpose computation onto GPU implies the
use of the graphics hardware to solve any applications, not necessarily of graphic
nature. This is called GPGPU (General-Purpose GPU), GPU computational
power is used to solve general-purpose problems[5, 6]. The parallel programming
over GPUs has many differences from parallel programming in typical parallel
computer, the most relevant are: The number of processing units, the CPU-GPU
memory structure and the Number of parallel threads.

Every GPGPU program have some basic steps. Firstly the input data should
be transferred to the graphics card from the CPU(host). Once the data is in
place, a massive amount of threads can be started (with little overhead). Each
thread works over its data and, at the end of the computation, the results should
be copied back to the host main memory. Not every class of problem can be
solved with the GPU architecture, the most suitable problems are those imple-
mentable with stream processing and using limited memory size, i.e. applications
with abundant data parallelism without cross-talking among processes. The pro-
gramming model is Single Instruction Multiple Data (SIMD).

The CUDA, supported since the NVIDIA Geforce 8 Series, enables to use GPU
as a highly parallel computer for non-graphics applications [5, 7]. CUDA pro-
vides an essential high-Level development environment with standard C/C++
language. It defines the GPU architecture as a programmable graphic unit which
acts as a coprocessor for the CPU. It has multiple streaming multiprocessors
(SMs), each of them contains several (eight, thirty-two or forty-eight) scalar
processors (SPs).

The CUDA programming model has two main characteristics: the parallel
work through concurrent threads and the memory hierarchy. The user supplies a
single source program encompassing both host (CPU) and kernel (GPU) code.
Each CUDA program consists of multiple phases that are executed on either
CPU or GPU. All phases that exhibit little or no data parallelism are imple-
mented in CPU. In opposition, if the phases present much data parallelism, they
are implemented as kernel functions in the GPU. A kernel function defines the
code to be executed by all the threads launched in a parallel phase. The GPU
resources are much more efficiently used if the kernel do not make branching
(represented as if instructions), in other words, if all the threads follow the
same execution path.

GPU computation considers a hierarchy of abstraction layers: grid, blocks
and threads. The threads, basic execution unit that executes kernel funtion, in
the CUDA model are grouped into blocks. All threads in a block are executed on
one SM and can communicate among them through the shared memory. Threads
in different blocks can communicate through global memory. Besides shared and
global memory, the threads have their own local data space for variables. All
Thread− blocks form a grid. The number of grids, blocks per grid and threads
per block are parameters fixed by the programmer, they can be adjusted to
improve the performance.

(Very) Fast (All) k-Nearest Neighbors in Metric and Non Metric Spaces 303

With respect to the memory hierarchy, CUDA threads may access data from
multiple memory spaces during their execution. Each thread has private local
memory and each block has shared memory visible to all its threads. These
memories have the same lifetime than the kernel. All threads have access to the
global memory and two additional read-only memory spaces: the constant and
texture memory spaces. The constant and texture memory spaces are optimized
for different memory usages. The global, constant and texture memory spaces
are persistent all the application life time. Each kind of memory has its own
access cost, in order of speed it will be local, shared and global memory which is
the most expensive to access. Please notice that local and shared memory have
higher throughput and smaller latency than standard RAM in the CPU. Please
bear that in mind, because this contributes to the very large speedup of our
algorithms.

1.3 Related Work on GPU Proximity Searching

There are many massively parallel algorithms for metric indexes implemented
in a GPU. Querying for k-NN has obtained most of the attention of researchers
in the area. In [8–14] improve explicity the brute force algorithm (or sequential
scan) to find the k-NN. They differ in the parts parallelized or the methodology
applied. Other works [8, 15, 16] implemented some well known sequential metric
indices, such as the List of Clusters (LC) and the SSS-Index. For the case of
vector data authors in [17, 17–19] use Kd-trees for finding the k-NN and [18]
apply a variant of the Kd-tree for the all k-NN problem.

All algorithms in the literature [8–13, 15, 16, 19] for k-NN using GPU, so-
lutions have high complexity in the data structures. Furthermore, they have a
high granularity. Kernels are not uniform and have a lot of branching. This im-
plies synchronization and serialization of the threads, which means all of them
have to wait to be in the same path again to resume. In a nutshell, they use
conditionals and do diverse tasks depending on comparisons. On the other hand
the algorithms demand a lot of memory resources for the data structures and
intermediate data, e.g. distances to pivots, and allocate only very small instances
of the metric databases. For example in [16] they use only one thread block for
the actual k-NN search, this implies overloading all the threads in the block
and consequently suboptimal GPU resources usage, most of the threads are not
used. In [10–12] they propose to solve several queries at a time, but they use just
the same amount of threads than for a single query. This again implies thread
overload, memory starvation and idle processing units in the GPU. In [13] is also
suboptimal in resource usage, to the point of letting a single thread to finish the
searching process, implying all other threads are idle.

We have learned from all the above examples and in our proposal, detailed
below, we have closely tailored a solution which is uniform, with a single branch
which maximize the GPU usage. We have carefully selected the number of
threads, have coalescent memory access, using sharing memory and with data in-
dependence which implies zero cross talk between threads. Additionally we have
zero overload in the data structures, which implies all the available memory can

304 N. Miranda et al.

be used for the database. Other researchers in High Performance Computing
arrived to similar conclusions parallelizing matrix to matrix multiplication[20].
Shared memory is faster than GPU memory, and by avoiding branching they
have obtained super linear speedup for their problem.

2 Our Approach

In the GPU we have enough juice to compute the distances from a query to all
the database elements in one step. Even more, there will be much more threads
available than the number of database elements allocated in the global GPU
memory. After all the distances are computed, the objects with the smallest
distances have to be identified, this is the real challenge. Those objects have to
be selected avoiding crosstalk. In this context crosstalk is simply comparing the
result of two threads. We will exemplify the problem with an unplugged setup.
Please also notice that for a range query, all threads having distances smaller
than the query radius can report themselves without the need to compare with
anyone else, the problem is relevant only for k-NN queries.

The above problem is equivalent to the following: In a room with one thousand
(say N) people everybody gets a number in a piece of paper. How can you know
if you are among the k people with the smallest number in the piece of paper?
A sorting algorithm is overkill, and looking at every other number is also very
slow. Please notice that we have dropped the condition of a central process
selecting the k smallest, the person have to claim the place without talking
to others. We have devised a mechanism to obtain those k smallest numbers
without exchanging information between everyone in the room. The kernel of a
GPU/CPU CUDA program works better if the code is simple. Our contribution
relies precisely in this step. We essentially need an algorithm to find the Top-k
smallest elements in an array without a central supervisor.

Following the people in the room example, what we do is to arrange people
in small groups and all of them show their paper among each other. If all of the
numbers are bigger than mine I have the smaller one. I know I will be among the
finalists and silently move to the finalist stage without talking to anyone else.
The process can be repeated until only the smaller one remains. Extending the
algorithm to k elements is straightforward.

We have implemented three different solutions for obtaining the Top−k small-
est elements in the array. Please notice that it is not necessary to sort all the
objects in the stream, since we need only the k smallest. Figure 1 illustrates this
stage.

The process iterates while the size of k -NNP list is grater than k. The Partition
and Join-K stages are implicitly computed. Each launched thread determines
the sub-list of work (Partition). Each thread determines over which element it
has to work based on the local information brought from IdThread in the block
and IdBlock that thread belongs. The Select k stage is a computation unit that
is responsible to choose k -NN objects of list Li (∪Li = L∀i = 0 · · ·x − 1 and
x = #B) and store in partial list k -NNP (Join−K). The first time L is equal

(Very) Fast (All) k-Nearest Neighbors in Metric and Non Metric Spaces 305

P

L=Distances(q,DB)

Select_k-NN(L0)

join-K(k-NN0, k-NN1, ..., k-NNx-1)

F

Pk-NN

Select_k-NN(L1) Select_k-NN(Lx-1)...

Partition(L)

L0 L1 Lx-1

k-NN0
k_NN1

k-NN(x-1)

PL=k-NN

k-NN(q)

Fig. 1. Generic GPU Process to obtain the k nearest neighbor of a query q

to distances list. The next iteration, L has only all k -NN objects of each block.
In the next sections, we explain different implementations of the Select k stage.

2.1 TopK AA

This is the implementation of the algorithm we designed to solve the problem,
we named it TopK AA (AA=All-to-All). The Select k stage selects k -NN objects
from the local list. Each thread in its block determines if its distance is among k -
NN of its block. The comparison is one-to-all, each thread in the block contrasts
its distance against all distances in the block. There are as many threads as
distances in the local list. Once each thread establishes which is its order, it
analyses if its distance is one of k -NN. If true, it reports its object to k -NNP ,
otherwise it finishes. In the next iteration, the k -NNP size is equal to k ×#B,
where #B is the number of blocks.

TopK AA has been designed taking into account the GPU characteristics such
as shared memory, coalesced access to global memory and number of threads
by block. In the code we avoid central decisions. For example each thread will
compute where in the shared memory she can write and when she is among
the top k results. Using atomic functions over the shared memory is faster than
serialization over the global memory operations. Even more, the shared memory
of the GPU is faster than the RAM memory in the CPU.

2.2 QuickSelect

The well known QuickSelect algorithm finds the x smallest elements of an un-
sorted array of z elements. In this case, Select k stage applies the QuickSelect
(QSeP) algorithm to choose the k -NN objects of a local list (in shared memory)
by block. This process is applied iteratively while the pivot position is not equal
to k. For each iteration, we select the pivot (it is a mean of three values in the
local list), and partition the local list. If pivot position is equal to k, the parti-
tion with smaller elements than pivot is the k -NN of local list. Otherwise, two

306 N. Miranda et al.

cases are possible: the position pivot is greater than k, or it is lower than k. In
the first case, we run the QuickSelect over the partition with smaller elements.
Otherwise, we work only over the second partition of local list (it has elements
larger than the pivot).

2.3 TopK AA + QuickSelect

This implementation of Select k stage is a combination of the two routines above.
We called as QSeH (H for Hybrid). In this case, the first time we select the k-NN
elements of local list applying QuickSelect algorithm (The local list is equal to
distances list calculated in Distances stage). In the next steps, we determine the
local k-NN using TopK AA algorithm. We tried this implementation to see if
the combination of the two approaches can boost the performance.

2.4 Thrust Library

There are many Sort libraries for CUDA, one of them is Thrust. It is part of the
CUDA repositories. In this solution, we used the Thrust library to obtain the
k -NN. Using the Thrust library is just a global sort, the k -NN stage is replaced
by a call to sort algorithm of Thrust library, its output is the k-NN of each q.
Sort algorithm is a black box, its implementation details are hidden to the user.

3 Solving Many k-NN Queries in Parallel

In large-scale systems it is not enough to speedup one query at a time, but
it is necessary to leverage the capabilities of the GPU to answer in parallel
several queries. Thereby we have to show how to achieve efficient and scalable
performance in this context. We need to devise algorithms and optimizations
specially tailored to support high-performance parallel query processing in the
GPU.

In order to answer many queries in parallel, the GPU receives a query set and
solves all of them at once. Each query, in parallel, applies a k -NN routing as
explained in the previous sections, therefore the number of resources for this is
equal to the resource amount to compute one query multiplied the number of
queries solved in parallel. The number of queries to solve in parallel is determined
according to the GPU resources, mainly the available memory.

Solving many queries in parallel involves carefully managing the blocks and
their threads. At the same time, blocks of different queries are accessed in par-
allel. Hence, it is important a good administration of threads: which query is
solved and which database element correspond to the query outcome. This can
be easily accomplished by establishing a relationship among Thread Id, Block Id,
Query Id, and Database Element.

(Very) Fast (All) k-Nearest Neighbors in Metric and Non Metric Spaces 307

4 The All-k-NN Problem

We need to determine the k-NN for each object in the database. Since we have
solved one instance, it is enough to iterate through all the elements in the
database considering them as queries. One just need to be careful to codify
the results appropriately before sending the results back to the CPU. Consider-
ing these characteristic and the possibility of solving many queries in parallel,
the solution is simple. If X queries are answered in parallel, we can compute
All-k -NN in N

X iterations, the value of X depends of GPU characteristics and
the size of database.

5 Experimental Results

In this section we show and analyze the experimental results for the solutions
of k -NN and All-k -NN problems. Please notice that range queries are trivial
since it naturally avoids crosstalk between threads. We have not included this
experiments, but they are faster than 1-NN queries. We selected two widely used
benchmark databases from the SISAP Metric Library (www.sisap.org).

– NASA images: a set of 40,700 20-dimensional feature vectors, generated from
images downloaded from NASA. The distance is euclidean.

– COLORS histograms: a set of 112,682 feature vectors of dimension 112, ob-
tained from color histograms from an image database. Any quadratic form
can be used as a distance, so we chose Euclidean distance as the simplest
meaningful alternative.

Each reported value is the average of many executions of the corresponding
algorithm. We use for both databases k values of: 1, 2, 4, 8, and 16. The
analysis was made for two generations of GeForce GPU whose characteris-
tics (Global Memory, SM, SP, Clock rate, Compute Capability) are GTX330:
(512MB,6,8,1.04GHz,1.2), GTX470: (1280MB, 14, 32, 1.2GHz, 2.0) and
GTX550Ti: (1024MB, 4, 48, 1.96GHz,2.1). The CPU is an Intel core i3, 2.13 GHz
and 3 GB of memory. The results are expressed in Speed up (Sp = TimeSec

TimePar
). For

lack of space, the shown results are only on architectures GTX330 and GTX470.
To evaluate the behavior of our solutions against a good sequential solution, we

did choose the SAT+ metric index. It is a new version of Spatial Approximation
Tree (SAT) [21], improved by a new selection order of the neighbors in the
tree (distal nodes). SAT+ has shown to be one of the most competitive exact
proximity searching index in the literature, and it is very scalable and resistant
to the curse of dimensionality [22]. It is implemented in the C language.

Figure 2 shows the obtained speed up by k-NN queries for two before men-
tioned metric spaces. For all GPUs, we achieve very good results. The best speed
up is obtained by our implementation, it can noticed that the Thrust solution
reaches a significantly lower speedup compared to the others three proposed
solutions.

308 N. Miranda et al.

 0

 2000

 4000

 6000

 8000

 10000

1 2 4 8 16

S
p
e
e
d
U
p

k

k-NN SpeedUp - DB:NASA

TopK_AA
QSeP
QSeH

Thrust

(a) GTX 470

 0

 2000

 4000

 6000

 8000

 10000

1 2 4 8 16

S
p
e
e
d
U
p

k

k-NN SpeedUp - DB:NASA

TopK_AA
QSeP
QSeH

Thrust

(b) GTX 330M

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

1 2 4 8 16

S
p
e
e
d
U
p

k

k-NN SpeedUp - DB: COLORS

TopK_AA
QSeP
QSeH

Thrust

(c) GTX 470

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

1 2 4 8 16

S
p
e
e
d
U
p

k

k-NN SpeedUp - DB: COLORS

TopK_AA
QSeP
QSeH

Thrust

(d) GTX 330M

Fig. 2. Speedup of k-NN query implementations for NASA and COLORS databases,
on two different GPUs

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4 8 16

S
p
e
e
d
U
p

k

All k-NN SpeedUp - DB:NASA

TopK_AA
QSeP
QSeH

Thrust

(a) GTX 470

 0

 2000

 4000

 6000

 8000

 10000

 12000

1 2 4 8 16

S
p
e
e
d
U
p

k

k-NN SpeedUp - DB:NASA

TopK_AA
QSeP
QSeH

Thrust

(b) GTX 330M

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

1 2 4 8 16

S
p
e
e
d
U
p

k

All k-NN SpeedUp - DB: COLORS

TopK_AA
QSeP
QSeH

Thrust

(c) GTX 470

 0

 10000

 20000

 30000

 40000

 50000

 60000

 70000

 80000

1 2 4 8 16

S
p
e
e
d
U
p

k

All k-NN SpeedUp - DB: COLORS

TopK_AA
QSeP
QSeH

Thrust

(d) GTX 330M

Fig. 3. Speedup of All-k-NN query implementations for NASA and COLORS
databases, on two different GPUs

(Very) Fast (All) k-Nearest Neighbors in Metric and Non Metric Spaces 309

The accelerations are different because they depend of GPU resources, but
in all cases they are significant. Figure 3 resumes the behavior of four proposed
solutions of All-k -NN query. Like k-NN solutions, the accomplished speedups by
our three implementation are much higher than the one obtained using Thrust.

The speedup increase as both the database size and k, the number of neigh-
bors, increase. Tables 1 and 2 show the obtained throughput (number of queries
by second) by all implementations evaluated. Table 1 illustrates the throughput
obtained for the sequential index used SAT+. For lack of space, we only report
the results obtained for k = 1 and k = 16. The results clearly show the benefits
for all GPU architectures. In every case and k value, the number of queries by
second is impressively high.

Table 1. Throughput of k-NN query for SAT+

DB k PC

NASA
1 35160,14
16 1219,08

COLORS
1 4608,80
16 163,49

Table 2. Throughput of k-NN query, for four algorithms in two GPUs

Algorithm k
NASA COLORS

GTX 470 GTX 330M GTX 470 GTX 330M

TopK AA
1 6779661,02 3883495,15 6106870,23 3827751,20
16 6851612,90 3919909,50 6666666,67 3903703,70

QSeP
1 9913258,98 4938271,60 9720534,63 4040404,04
16 11428571,43 4993449,78 10624169,99 4444444,44

QSeH
1 7272727,27 3960396,04 6153846,15 3418803,42
16 7666666,67 3982439,02 7272727,27 3448275,86

Thrust
1 94,35 41,31 94,35 41,31
16 94,45 41,35 94,45 41,35

 50

 100

 150

 200

 250

 300

 350

 400

10 20 30 40 50 60 70 80 90 100

S
p
e
e
d
U
p

Percentage of DB

SpeedUp vs DB Size

TopK_AA, k=1
QseP, k=1
QseH, k=1

TopK_AA, k=4
QseP, k=4
QseH, k=4

TopK_AA, k=16
QseP, k=16
QseH, k=16

(a) SP without construction cost

 100

 200

 300

 400

 500

 600

 700

 800

10 20 30 40 50 60 70 80 90 100

S
p
e
e
d
U
p

Percentage of DB

SpeedUp vs DB Size

TopK_AA, k=1
QseP, k=1
QseH, k=1

TopK_AA, k=4
QseP, k=4
QseH, k=4

TopK_AA, k=16
QseP, k=16
QseH, k=16

(b) SP with construction cost

Fig. 4. Speedup of k-NN query implementations for COLORS databases, considering
increasing database sizes

310 N. Miranda et al.

6 Conclusions, Remarks and Future Work

We have shown a very fast algorithm for the k-Nearest Neighbors and the All k-
Nearest Neighbors problems. Our proposal is several orders of magnitude faster
than state of the art sequential and massively parallel approaches. We have not
included other GPU implementations in our benchmark because they used dif-
ferent hardware, we can only deduct from the published results that the speedup
obtained is very modest. Our dramatic speedup is due to a combination of faster
memory, non blocking parallel processing and adherence to the design principles.
A more detailed experimental evaluation is needed to know if the speedup can
be considered super linear on the number of processing units.

We do not need to build an index beforehand, widening the applications of
our algorithms. Also notice that our approach can easily solve range queries,
much faster than nearest neighbor queries because Top-k selection is skipped.
We are working on a randomized (exact) version of the k-NN algorithm using
repeated calls to a range query routine. Others properties of our approach is the
absence of the curse of dimensionality, and the possibility to query non-metric
(dis)similarity databases.

References

1. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach. Advances in Database Systems, vol. 32. Springer (2006)

2. Samet, H.: Foundations of Multidimensional and Metric Data Structures. The Mor-
gan Kaufmann Series in Computer Graphics and Geometric Modeling. Morgan
Kaufmann Publishers Inc., San Francisco (2005)

3. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.: Searching in metric
spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

4. Benjamin, B., Navarro, G.: Probabilistic proximity searching algorithms based on
compact partitions. Discrete Algorithms 2(1), 115–134 (2004)

5. Kirk, D., Hwu, W.: Programming Massively Parallel Processors, A Hands on Ap-
proach. Elsevier, Morgan Kaufmann (2010)

6. Owens, J., Houston, M., Luebke, D., Green, S., Stone, J., Phillips, J.: GPU Com-
puting, pp. 879–899. IEEE (2008)

7. NVIDIA. Nvidia cuda compute unified device architecture, programming guide
version 4.2. In: NVIDIA (2012)

8. Barrientos, R., Gomez, J., Tenllado, C., Prieto, M.: Heap based k-nearest neighbor
search on gpus. In: XXI Jornadas de Paralelismo, pp. 559–566 (September 2010)

9. Garcia, V., Debreuve, E., Barlaud, M.: Fast k nearest neighbor search using GPU.
In: CVPR Workshop on Computer Vision on GPU (CVGPU), Anchorage, Alaska,
USA (June 2008)

10. Garcia, V., Debreuve, E., Nielsen, F., Barlaud, M.: k-nearest neighbor search:
fast GPU-based implementations and application to high-dimensional feature
matching. In: IEEE International Conference on Image Processing, Hong Kong
(September 2010)

11. Kato, K., Hosino, T.: Solving k-nearest neighbor problem on multiple graphics pro-
cessors. In: ACM (ed.) 2010 10th IEEE/ACM International Conference on Cluster,
Cloud and Grid Computing, CCGRID, pp. 769–773 (2010)

(Very) Fast (All) k-Nearest Neighbors in Metric and Non Metric Spaces 311

12. Kuang, Q., Zhao, L.: A practical gpu based knn algorithm. In: International Sympo-
sium on Computer Science and Computational Technology (ISC-SCT), pp. 151–155
(2009)

13. Liang, S., Liu, Y., Wang, C., Jian, L.: Design and evaluation of a parallel k-nearest
neighbor algorithm on CUDA-enabled GPU. In: IEEE 2nd Symposium on Web
Society (SWS), p. 53 (2010)

14. Rozen, T., Boryczko, K., Alda, W.: Gpu bucket sort algorithm with applications
to nearest-neighbour search. Journal of WSCG 16(1-3), 161–167 (2008)

15. Barrientos, R., Gomez, J., Tenllado, C., Prieto, M.: Query processing in metric
spaces using gpus. In: XXII Jornadas de Paralelismo (2011)

16. Barrientos, R.J., Gómez, J.I., Tenllado, C., Matias, M.P., Marin, M.: kNN Query
Processing in Metric Spaces Using GPUs. In: Jeannot, E., Namyst, R., Roman, J.
(eds.) Euro-Par 2011, Part I. LNCS, vol. 6852, pp. 380–392. Springer, Heidelberg
(2011)

17. Zhou, K., Hou, Q., Wang, R., Guo, B.: Real-time kd-tree construction on
graphics hardware. In: ACM SIGGRAPH Asia, Papers, SIGGRAPH Asia 2008,
pp. 126:1–126:11. ACM, New York (2008)

18. Brown, S., Snoeyink, J.: Gpu nearest neighbors using a minimal kd-tree. In: Second
Workshop on Massive Data Algorithmics (MASSIVE 2010), Snowbird, Utah, USA
(June 2010)

19. Qiu, D., May, S., Nüchter, A.: Gpu-accelerated nearest neighbor search for 3d reg-
istration. In: Fritz, M., Schiele, B., Piater, J.H. (eds.) ICVS 2009. LNCS, vol. 5815,
pp. 194–203. Springer, Heidelberg (2009)

20. Djinevski, S.R.L., Gusev, M.: Superlinear speedup for matrix multiplication in gpu
devices. In: ICT Innovations 2012, pp. 285–294 (2013)

21. Navarro, G.: Searching in metric spaces by spatial approximation. The Very Large
Databases Journal (VLDBJ) 11(1), 28–46 (2002)

22. Chavez, E., Ludueña, V., Reyes, N., Roggero, P.: Faster proximity searching with
the distal sat (2012) (submitted, draft)

On Scalable Approximate Search

with the Signature Quadratic Form Distance

Jakub Lokoč, Tomáš Grošup, and Tomáš Skopal

SIRET Research Group, Department of Software Engineering,
Faculty of Mathematics and Physics, Charles University in Prague

{lokoc,skopal}@ksi.mff.cuni.cz, tomasgrosup@gmail.com

Abstract. The signature quadratic form distance and feature signatures
have become a respected similarity space for effective content-based re-
trieval. Furthermore, the similarity space is configurable by a parameter
alpha affecting both retrieval precision and intrinsic dimensionality, and
thus interesting trade-offs can be achieved when a metric index is used for
exact search. In this paper we combine such configurable model with state
of the art approximate search techniques developed for the M-Index. In
the experiments, we show that employing a configuration resulting in the
best effectiveness of the measure leads also to very competitive approx-
imate search effectiveness when using the M-Index, regardless the high
intrinsic dimensionality of the corresponding similarity space.

Keywords: Similarity Search, Approximate Search, Content-based Re-
trieval, Signature Quadratic Form Distance, M-Index.

1 Introduction and Related Work

The metric space approach [6,15] has become a widely accepted model for ef-
ficient similarity search in huge collections of unstructured data. However, the
efficiency of the metric space approach remains still a big challenge for distance
spaces and data suffering from high intrinsic dimensionality [6]. Furthermore,
there are emerging more effective retrieval models based on metric spaces com-
prising more complex descriptors and more expensive (combinations of) distance
metrics [3,9]. Such new complex metric spaces are designed for maximal effective-
ness and thus often suffer from high intrinsic dimensionality. As a consequence,
the database experts developing efficient metric indexing techniques face more
often the problem of the “indexability” of the metric spaces.

Recently, several papers have investigated a novel approach which tries to
face the problem of high intrinsic dimensionality by synergistic modeling. The
approach tries to synergistically combine the domain specific knowledge to find
optimal compromises between effectiveness and indexability already in the dis-
tance modeling phase (i.e., model indexable spaces). Since the indexability can be
simply indicated by the intrinsic dimensionality, the distance modeling process
is not overloaded too much. The signature quadratic form distance [3] (SQFD)

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 312–318, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

On Scalable Approximate Search with the Signature Quadratic Distance 313

designed to compare two feature signatures is a typical candidate for such syner-
gistic modeling, because it provides an inner parameter α (used in the Gaussian
similarity function) that can be utilized to fine-tune the retrieval performance.
As has been recently shown [1], the α parameter affects both precision and
intrinsic dimensionality and so the domain experts can provide various configu-
rations of modeled SQFD distance spaces. Such domain specific configurations
provided to database experts can result in interesting trade-offs, where at least
two orders of magnitude speedup can be achieved for the price of only slightly
decreased quality of the measure. Let us denote, low intrinsic dimensionality is
crucial especially in cases where fast exact search is required.

However, the modern retrieval modalities (e.g., an interactive multimedia ex-
ploration [2]) do not require exact search and thus can benefit also from the
approximate search techniques [10,14,5,13,11] that are orthogonal to the previ-
ously mentioned synergistic modeling approach. Hence in this paper, we focus on
the combination of the synergistic modeling of the signature quadratic form dis-
tance and the approximate search techniques represented by the state of the art
metric access method the M-Index [11,12]. More specifically, we investigate the
effectiveness of the approximate nearest neighbor search using M-Index for var-
ious configurations of SQFD distance spaces. In the following section, we focus
on the configurations resulting in the best quality of the measure but resulting
also in the worst intrinsic dimensionality. We experimentally demonstrate, the
best quality of the measure is sufficient criterion, while the high intrinsic dimen-
sionality is not an obstacle, when the approximate nearest neighbor search using
M-Index is utilized.

2 Experimental Evaluation

In this section, we describe the test settings and then we compare approximate
search performance of SQFD spaces for various values of α. Finally, we discuss
the results and point on the future work.

The Testbed

For the experiments, we make use of three different datasets, each with differ-
ent source of ground truth. Specifically, we use a subset of the ALOI dataset
[7] comprising 12,000 images divided into 1,000 classes, each class contains 12
images of a 3D object rotated by 30 degrees; a subset of the Profimedia dataset
[4] comprising 21,993 images divided into 100 classes, where the ground truth
was collected semi-automatically and verified by users; the TWIC dataset [9]
comprising 11,555 images forming 197 classes, where each class represents im-
ages obtained by a keyword query to the google images search engine. Each
TWIC class was further manually filtered by users. The feature signatures were
extracted using a GPU extractor tool [8]. As the query objects, one representa-
tive from each class was selected for all three datasets1, resulting in 1000 query

1 Profimedia dataset is already provided with a set of query objects.

314 J. Lokoč, T. Grošup, and T. Skopal

Fig. 1. Mean average precision and intrinsic dimensionality

objects for ALOI, 100 query objects for Profimedia and 197 query objects for
TWIC. To create the PivotTable and the M-Index, we have used only 10 ran-
domly selected pivots. In order to obtain more robust results, we have run all
the experiments for each dataset four times and averaged the results. For each
run, we have randomly selected one group of ten pivots from the corresponding
dataset.

In Figure 1, the mean average precision evaluated for the query objects and the
intrinsic dimensionality are depicted for all three datasets for varying α. We may
observe there is an optimal value of α (≈ 1) for the mean average precision for all
three datasets, which is probably caused by similar feature extraction settings
for all the datasets. We may also observe the intrinsic dimensionality is almost
always increasing function of the α parameter until some point is reached and
then the function becomes constant. Let us also denote the x axis is logarithmic
in both graphs, while the y axis is logarithmic only in the second graph. In Figure
2, we may observe the practical impact of low α on the efficiency of the exact
metric search. We may also observe the interesting trade-off between precision
and efficiency. For example, considering α = 0.32 for the Profimedia dataset,
the query processing according to α = 1.28 is almost three times faster while
the precision decreases just by 5.5%. However, as we show in the next section,
the benefits of small α are neglected when using approximate search methods
designed for the M-Index.

Approximate Search Results

As an approximate search method we have used a three level static variant of the
M-Index with the same ordering heuristic for the kNN search as in section 3.5 of
[11]. We use an early termination strategy controlled by the fixed number of al-
lowed distance computations (10, 25, 50, 100, 200, 400 and 800). We also reorder

On Scalable Approximate Search with the Signature Quadratic Distance 315

Fig. 2. Precision and query costs of the exact search using pivot table

the objects in each retrieved bucket according to the lower bound estimation of
the distance to the query object (using Lmax on vectors in the pivot space). In
almost all the experiments, we focus on the precision defined by the percentage
of relevant objects (the same class as of the query object) in the query result.
For the lack of the space, we present mostly graphs for 10NN queries, however,
the similar behavior was observed also for higher query cardinalities. Let us also
denote fixing the number of allowed distance computations to 10 is equivalent
to just reading of the first ten objects from the first bucket. We use this option
to demonstrate the quality of the default ordering implied by the pivots.

Let us start with the number of visited buckets for particular configurations
of the SQFD space for the ALOI dataset depicted in the upper left graph of
Figure 3. Since for lower values of α ≤ 0.04 the intrinsic dimensionality is low,
the filtering power of the pivots is high which enables nearly all buckets to
be visited when the number of enable distance evaluations is fixed to 800. For
higher values of α, the percentage of visited buckets is much lower because all
the enabled distances are spent in the first visited buckets. As expected, the
similar behavior was observed for all three datasets.

The most important results concerning the retrieval effectiveness are depicted
in the last three graphs of Figure 3. In the upper right graph, the approximate
search precision for the ALOI dataset is depicted. We may observe a slightly bet-
ter performance of the configurations resulting in lower intrinsic dimensionality
when high level of the approximation is required. On the other side, if the query
can spend more distance evaluations, the precision can reach better values for
α = 0.64 because of the better quality of the measure. In the bottom graphs of
Figure 3, a slightly different behavior can be detected for Profimedia and TWIC
datasets, where configurations with α ∈ {0.32, 0.64, 1.28} clearly outperforms
the configurations with lower α. Let us emphasize, although the intrinsic di-
mensionality of the signature quadratic form distance configured by α = 1.28 is

316 J. Lokoč, T. Grošup, and T. Skopal

Fig. 3. Results of the approximate search controlled by the fixed number of allowed
distance computations

almost 45 for the TWIC dataset, the configuration takes almost always the top
precision. In the last set of experiments depicted in Figure 4, we may observe
very similar behavior also for the changing size of the query result, where the
configuration with highest α results in the best precision and visits on average
just two buckets. To sum up the results, the configurations resulting in the best
mean average precision but worst intrinsic dimensionality are highly competitive
in approximate search.

Discussion and Future Work

The experiments show high intrinsic dimensionality is not an obstacle for the
signature quadratic form distance when a set of k relevant objects is retrieved
approximately using the M-Index. Furthermore, the high intrinsic dimensionality
results also in a lower number of visited buckets for early termination strategies

On Scalable Approximate Search with the Signature Quadratic Distance 317

Fig. 4. Precision and number of visited buckets for growing number of nearest neigh-
bors

that use fixed number of distance evaluations. Such performance can be bene-
ficial for scenarios where the precision can be relaxed (exploration, browsing).
However, in cases the real nearest neighbors are desired, the intrinsic dimension-
ality can become a serious problem. In the future, we plan some experiments
focusing on the real nearest neighbor retrieval, however, such experiments are
much more complicated because they require query objects with annotated or-
dering of the result. Furthermore, we plan to perform experiments on larger
and more noisy datasets. Although the synergistic modeling can be beneficial
in some cases, the approach has one main drawback – it requires an index for
each utilized configuration. Therefore, we would also like to concentrate on such
distance spaces, where the effectiveness of the approximate search techniques
deteriorates rapidly and so the synergistic modeling could be the only clue to
index the data.

3 Conclusions

In this paper we have combined various configurations of the signature quadratic
form distance with the state of the art approximate search techniques developed
for the M-Index. In the experiments, we show that employing a configuration
resulting in the best effectiveness of the measure leads also to very competitive
approximate search effectiveness when using the M-Index, regardless the high
intrinsic dimensionality of the corresponding similarity space. We conclude the
signature quadratic form distance trained for the best effectiveness can be also
a good choice for effective and efficient approximate search using the M-Index.

318 J. Lokoč, T. Grošup, and T. Skopal

Acknowledgments. This research has been supported in part by the grant
SVV-2013-267312 and by Czech Science Foundation projects P202/11/0968 and
P202/12/P297.

References

1. Beecks, C., Lokoč, J., Seidl, T., Skopal, T.: Indexing the signature quadratic form
distance for efficient content-based multimedia retrieval. In: Proc. ACM Int. Conf.
on Multimedia Retrieval, pp. 24:1–24:8 (2011)

2. Beecks, C., Skopal, T., Schöffmann, K., Seidl, T.: Towards large-scale multime-
dia exploration. In: Proc. 5th International Workshop on Ranking in Databases
(DBRank 2011), Seattle, WA, USA, pp. 31–33 (2011)

3. Beecks, C., Uysal, M.S., Seidl, T.: Signature quadratic form distance. In: Proceed-
ings of the ACM International Conference on Image and Video Retrieval, CIVR
2010, pp. 438–445. ACM, New York (2010)

4. Budikova, P., Batko, M., Zezula, P.: Evaluation platform for content-based image
retrieval systems. In: Gradmann, S., Borri, F., Meghini, C., Schuldt, H. (eds.)
TPDL 2011. LNCS, vol. 6966, pp. 130–142. Springer, Heidelberg (2011)

5. Chávez, E., Figueroa, K., Navarro, G.: Effective proximity retrieval by ordering
permutations. IEEE Trans. Pattern Anal. Mach. Intell. 30(9), 1647–1658 (2008)

6. Chávez, E., Navarro, G., Baeza-Yates, R., Marroqúın, J.L.: Searching in metric
spaces. ACM Comput. Surv. 33(3), 273–321 (2001)

7. Geusebroek, J.-M., Burghouts, G.J., Smeulders, A.W.M.: The Amsterdam Library
of Object Images. IJCV 61(1), 103–112 (2005)

8. Krulǐs, M., Lokoč, J., Skopal, T.: Efficient extraction of feature signatures us-
ing multi-GPU architecture. In: Li, S., El Saddik, A., Wang, M., Mei, T., Sebe,
N., Yan, S., Hong, R., Gurrin, C. (eds.) MMM 2013, Part II. LNCS, vol. 7733,
pp. 446–456. Springer, Heidelberg (2013)

9. Lokoč, J., Novák, D., Batko, M., Skopal, T.: Visual image search: Feature signatures
or/and global descriptors. In: Navarro, G., Pestov, V. (eds.) SISAP 2012. LNCS,
vol. 7404, pp. 177–191. Springer, Heidelberg (2012)

10. Navarro, G.: Searching in metric spaces by spatial approximation. The VLDB
Journal 11(1), 28–46 (2002)

11. Novak, D., Batko, M., Zezula, P.: Metric index: An efficient and scalable solution
for precise and approximate similarity search. Inf. Syst. 36(4), 721–733 (2011)

12. Novak, D., Batko, M., Zezula, P.: Large-scale similarity data management with
distributed metric index. Inf. Process. Manage. 48(5), 855–872 (2012)

13. Patella, M., Ciaccia, P.: Approximate similarity search: A multi-faceted problem.
J. Discrete Algorithms 7(1), 36–48 (2009)

14. Skopal, T.: Unified framework for fast exact and approximate search in dissimilarity
spaces. ACM Trans. Database Syst. 32(4) (2007)

15. Zezula, P., Amato, G., Dohnal, V., Batko, M.: Similarity Search: The Metric Space
Approach (Advances in Database Systems). Springer-Verlag New York, Inc, Secau-
cus (2005)

PFMFind: A System for Discovery

of Peptide Homology and Function

Aleksandar Stojmirović1,, Peter Andreae2, Mike Boland3,
Thomas William Jordan4, and Vladimir G. Pestov5

1 National Center for Biotechnology Information, National Library of Medicine,
National Institutes of Health, Bethesda, MD 20894, United States

2 School of Engineering and Computer Science, Victoria University of Wellington,
PO Box 600, Wellington 6140, New Zealand

3 Riddet Institute, Massey University, PB 11 222, Palmerston North 4442,
New Zealand

4 School of Biological Sciences, Victoria University of Wellington, PO Box 600,
Wellington 6140, New Zealand

5 Department of Mathematics and Statistics, University of Ottawa,
585 King Edward Ave., Ottawa, ON K1N 6N5, Canada

Abstract. Protein Fragment Motif Finder (PFMFind) is a system that
enables efficient discovery of relationships between short fragments of
protein sequences using similarity search. It supports queries based on
amino acid similarity matrices and position specific score matrices
(PSSMs) obtained through an iterative procedure. PSSM construction is
customisable through plugins written in Python. PFMFind consists of a
GUI client, an index for fast similarity search and a relational database
for storing search results and sequence annotations. It is written mostly
in Python. The components of PFMFind communicate through TCP/IP
sockets and can be located on different physical machines. PFMFind
is freely available for download (under a GPL licence) from
http://pfmfind.stojmirovic.org.

Keywords: similarity search, indexing, protein fragments.

1 Introduction

The biological functions of proteins are as much a function of particular motifs
of peptide sequence as they are of the overall protein structure. It is of interest
to the biologist to search for examples of convergent motifs as they are likely
to indicate a functional role. While many approaches exist for finding longer
sequence motifs (50 amino acids or more), finding relationships between short
fragments (3–18 amino acids long) of full protein sequences also promises great
rewards in understanding novel aspects of protein structure and function. These

� To whom correspondence should be addressed. Current affiliation: Janssen Research
& Development LLC, 1400 McKean Rd., Spring House, PA 19477, United States.

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 319–324, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://pfmfind.stojmirovic.org

320 A. Stojmirović et al.

relationships might be evolutionary in origin or might arise by convergence, that
is, by acquisition of the same biological function in evolutionarily distant species.

Finding short motifs presents significant challenges because many of the ap-
parent relationships between short fragments could have arisen by chance and
thus have no functional significance. Furthermore, most widely available tools
for sequence database search and motif finding were designed with longer motifs
in mind. For example, Watt and Doyle [11] observed that the NCBI BLAST [1]
family of programs, the best known set of tools for searching biological sequence
datasets, is not suitable for identifying shorter sequences with particular con-
straints and proposed a pattern search tool to find DNA or protein fragments
that match a given sequence or a pattern exactly. This paper outlines the Protein
Fragment Motif Finder (PMFind), a tool that uses database search to identify
the conserved short peptide motifs of a query sequence and associates them with
the available functional annotations.

2 Overview

The PFMFind system consists of three major components: a search engine for
fast similarity search of datasets of short peptide fragments called FSIndex,
a relational database, and the PFMFind graphical user interface (GUI) client
(Fig. 1). PFMFind client takes user input, and communicates with FSIndex and
the database through its components. It passes search parameters in batches to
FSIndex and receives the results of searches that are then stored in the database.
It also retrieves the results from the database and displays them, together with
available annotations, to the user. The annotations are stored in a separate
(BioSQL) schema in the database.

Most of PFMFind was written in the Python programming language, and
uses both the standard Python library and additional modules such as Biopy-
thon (http://www.biopython.org). The components communicate using the
standard TCP/IP socket interface and can therefore be located on different ma-
chines. Since PFMFind is highly modular, the GUI client can be replaced by a
Python script for non-interactive use.

2.1 Similarity Search

PFMFind supports searches of datasets of short peptide fragments of fixed length
using an ungapped similarity score obtained by summing similarity scores at each
position of the fragments being compared. The positional similarity scores can
be defined by standard score matrices such as PAM [3] or BLOSUM [6], or by
position specific score matrices (PSSMs) [4]. A fragment dataset consists of all
fragments of a specified length from a given protein sequence dataset (where the
fragments may overlap).

Iterative construction of PSSM, similar to that used by PSI-BLAST [1], is
supported through plugins – Python routines that take the results of a previous
search and construct a PSSM. The default plugin uses the weighting procedure of

http://www.biopython.org

PFMFind: A System for Discovery of Peptide Homology and Function 321

Search Setup Query retrieval and strorage Display of results

FSIndex
Client

FSIndex Master Server

Database
Client

Interface

FSIndex
Slave

PFMFind Client Database

Search
Results

Features
(BioSQL)

Fig. 1. Structure of PFMFind system

Henikoff and Henikoff [5] to assign weights to fragments and Dirichlet mixtures
[9] for regularising the amino acid frequency counts at each position. Users with
some knowledge of Python can create their own plugins and use them for searches
by placing then in the appropriate directory.

Search criteria can be specified according to threshold raw similarity scores,
distances, p-values and E-values (range search), as well as the number of closest
data points to retrieve (kNN search). The probability model for calculation of p-
values assumes that the score of each fragment is the sum of independent random
variables corresponding to the score at each position and the score distribution
is calculated using discrete Fast Fourier Transform.

2.2 FSIndex

The heart of PFMFind is FSIndex, an efficient indexing scheme for similarity
search of very large datasets of short protein fragments of fixed length [8,10].
FSIndex is based on two principles: reduction of the amino acid alphabet to clus-
ters largely based on their biochemical properties (hydrophobic, polar, charged,
aromatic ...) and combinatorial generation of neighbours. The design of FSIn-
dex means that a typical search involves scanning less than 1% of the fragment
dataset, but ensures that no neighbours satisfying search criteria are ever missed.

FSIndex is implemented in the C programming language and embedded into
Python, with the whole data structure as well as the indexed sequences stored
in primary memory. For even greater efficiency, computation of searches can
be distributed among several machines using a master/slave model: the master
handles p-value computations, distributes queries to slaves, each of which is
indexing a different part of the dataset, and communicates with the client.

322 A. Stojmirović et al.

Fig. 2. A screenshot of PFMFind GUI showing search results associated with their
annotations

2.3 Database

The second major component of PFMFind is a relational database, used both
for storage of search results and the sequence annotation. We use PostgreSQL,
a freely available modern database management system.

Each user of the system has their own schema for storing search results. The
database also stores all search parameters, including PSSMs and the results of
each iteration, facilitating reversion to a previous iteration without repeating
the whole procedure.

The database stores sequence annotations in a standard BioSQL schema avail-
able to all users. PFMFind also contains scripts for loading four types of infor-
mation beyond the protein sequence: Uniprot [2] keywords and features, Uniref
clusters [2] and InterPro [7] domains. When retrieved for display, annotations
are joined to search results through accession numbers.

2.4 GUI Client

The final PFMFind component is a GUI client that connects to both the FSIn-
dex master and the database component. To perform fragment searches, the
user specifies a query sequence, usually a long sequence that is broken into over-
lapping fragments of fixed length, and chooses the fragment lengths, threshold
parameters and the actual fragments in the query sequences that will be used
for the search.

The GUI client can display search results both as lists of hits associated with
a particular location in the query sequence and as a feature vs location dot plot –

PFMFind: A System for Discovery of Peptide Homology and Function 323

each location matching a particular feature is marked by a coloured dot (Fig. 2).
Dots are colour coded by the number of hits matching the feature to distinguish
frequently represented features from those that appear only a few times in the
hit list. The GUI client also performs all computations for constructing PSSMs.

3 Conclusion

PFMFind is an efficient, flexible, and extensible framework for similarity search
of datasets of short peptide fragments. It supports fast similarity search with
selectivity and sensitivity specified by PSSMs and associates search results with
biological function by using sequence features and annotations.

Acknowledgements. We wish to thank Pavle Mogin and Danyl McLauchlan
for their help with PostgreSQL and testing the software, respectively. A.S. was
supported by a Bright Future PhD scholarship awarded by the NZ Tertiary
Education Commission jointly with the Fonterra Research Centre, by a Fields
Institute/University of Ottawa postdoctoral fellowship, and by the Intramural
Research Program of the National Library of Medicine at the National Institutes
of Health. V.G.P. and A.S. acknowledge support from NSERC discovery grant
program and University of Ottawa internal grants.

References

1. Altschul, S.F., Madden, T.L., Schaffer, A.A., Zhang, J., Zhang, Z., Miller, W., Lip-
man, D.J.: Gapped BLAST and PSI–BLAST: a new generation of protein database
search programs. Nucleic Acids Res. 25, 3389–3402 (1997)

2. Bairoch, A., Apweiler, R., Wu, C.H., Barker, W.C., Boeckmann, B., Ferro,
S., Gasteiger, E., Huang, H., Lopez, R., Magrane, M., Martin, M.J., Natale,
D.A., O’Donovan, C., Redaschi, N., Yeh, L.S.L.: The Universal Protein Resource
(UniProt). Nucleic Acids Res 33 Database Issue, 154–159 (2005)

3. Dayhoff, M.O., Schwartz, R.M., Orcutt, B.C.: A model of evolutionary change in
proteins. In: Dayhoff, M.O. (ed.) Atlas of Protein Sequence and Structure, vol. 5,
ch.22, pp. 345–352. National Biomedical Research Foundation (1978)

4. Gribskov, M., McLachlan, A.D., Eisenberg, D.: Profile analysis: detection of dis-
tantly related proteins. Proc Natl. Acad. Sci. USA 84, 4355–4358 (1987)

5. Henikoff, S., Henikoff, J.G.: Position-based sequence weights. J. Mol. Biol. 243(4),
574–578 (1994)

6. Henikoff, S., Henikoff, J.G.: Amino acid substitution matrices from protein blocks.
Proc. Natl. Acad. Sci. USA 89, 10915–10919 (1992)

7. Hunter, S., Jones, P., Mitchell, A., Apweiler, R., Attwood, T.K., Bateman, A.,
Bernard, T., Binns, D., Bork, P., Burge, S., de Castro, E., Coggill, P., Corbett,
M., Das, U., Daugherty, L., Duquenne, L., Finn, R.D., Fraser, M., Gough, J., Haft,
D., Hulo, N., Kahn, D., Kelly, E., Letunic, I., Lonsdale, D., Lopez, R., Madera,
M., Maslen, J., McAnulla, C., McDowall, J., McMenamin, C., Mi, H., Mutowo-
Muellenet, P., Mulder, N., Natale, D., Orengo, C., Pesseat, S., Punta, M., Quinn,
A.F., Rivoire, C., Sangrador-Vegas, A., Selengut, J.D., Sigrist, C.J.A., Scheremet-
jew, M., Tate, J., Thimmajanarthanan, M., Thomas, P.D., Wu, C.H., Yeats, C.,
Yong, S.Y.: Interpro in 2011: New developments in the family and domain predic-
tion database. Nucleic Acids Res. 40(Database issue), D306–D312 (2012)

324 A. Stojmirović et al.

8. Pestov, V., Stojmirović, A.: Indexing schemes for similarity search: an illustrated
paradigm. Fundam. Inform. 70(4), 367–385 (2006)

9. Sjölander, K., Karplus, K., Brown, M., Hughey, R., Krogh, A., Mian, I., Haussler,
D.: Dirichlet mixtures: A method for improving detection of weak but significant
protein sequence homology. Comput. Appl. Biosci. 12(4), 327–345 (1996)

10. Stojmirović, A., Pestov, V.: Indexing schemes for similarity search in datasets of
short protein fragments. Inf. Syst. 32(8), 1145–1165 (2007)

11. Watt, T.J., Doyle, D.F.: ESPSearch: a program for finding exact sequences and
patterns in DNA, RNA, or protein. Biotechniques 38(1), 109–115 (2005)

Retrieving Similar Movements

in Motion Capture Data

Jan Sedmidubsky and Jakub Valcik

Masaryk University, Botanicka 68a, 602 00 Brno, Czech Republic

Abstract. Efficient and effective similarity retrieval in large human mo-
tion databases is valuable in many fields such as computer animation, se-
curity research, sports, and medicine. This demonstration paper presents
a content-based retrieval system that is able to examine database mo-
tions and locate all their sub-motions similar to a query motion example.
The proposed system does not require any textual annotations nor ex-
plicit knowledge of the data and can deal with spatio-temporal variances
of individual human motions. The system is presented as an online web
application indexing a real-life 68-minute human motion database.

1 Introduction

The development of motion capturing technologies (e.g., Microsoft Kinect) has
caused an explosion in the usage of human motion data in different fields. For
example, motion data are analyzed in sports to compare performance aspects of
athletes, in security research to identify special-interest persons, in health care to
determine the success of rehabilitative treatments, and in computer animation to
synthesize realistic motions. In particular, production of high-quality computer
games and animations requires an expensive and time-consuming synthesis of
motions performed by specialized actors. Therefore, there is a rising need to reuse
the recorded data, which makes animation and game production more efficient.
One way is to manually or automatically annotate the motion data by textual
descriptions [4]. Although it is very efficient in text retrieval, textual descriptions
cannot always sufficiently express desired movements and limit users to search
for only certain classes of movements. To overcome this limitation, content-based
search techniques are used to retrieve motions that are similar to a query motion
example. Although some existing content-based retrieval systems [1] focus on
matching of the whole motions only, we especially concentrate on a much harder
task of sub-motion retrieval. A lot of research on subsequence retrieval of general
time series has been already done [2].

The main contribution of this paper is to demonstrate capabilities of our
content-based subsequence retrieval algorithm proposed in [8]. This algorithm
(see Section 3) examines database motions and identifies all their sub-motions
that are similar to a query. To retrieve sub-motions effectively and efficiently,
motion features in form of joint-angle rotations (see Section 2) are extracted and
indexed. Indexing this kind of features does not require any user intervention in

N. Brisaboa, O. Pedreira, and P. Zezula (Eds.): SISAP 2013, LNCS 8199, pp. 325–330, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

326 J. Sedmidubsky and J. Valcik

contrast to the approach in [5] that needs to manually tune each query in order
to select a subset of features describing important aspects of the given query
activity. In contrast to [4], queries in our system are specified by a single motion
only without necessity of having several positive examples. In contrast to [7,9],
we present the retrieval effectiveness and efficiency and make the whole system
available as an online web application (see Section 4).

2 Pose Feature Extraction

Motion capture data can be seen as a sequence of frames that consist of 3D
coordinates describing the positions of specific joints of human skeletons at a
given time. We process the 3D joint coordinates to extract motion features in
form of joint-angle rotations. A joint-angle rotation constitutes a discrete time
series expressing how the angle related to the specific joint changes in time.
Individual angles are computed independently of the observer view plane – they
are computed in planes defined relatively to the examined joint and relevant
joints in its surrounding (see [8] for more information).

We adopt the skeletal model in Figure 1a to extract joint-angle rotations of
18 important joints that significantly influence the human motion. In particular,
we process each frame to extract (1) a single angle for 8 joints (left and right
wrist, left and right elbow, left and right knee, and left and right ankle) moving
in one plane and (2) two angles for 10 joints (left and right shoulder, head,
upperneck, lowerneck, thorax, upperback, lowerback, and left and right hip)
that move in two planes (see Figure 1b,c). In total, 28 angles are computed in
each frame. Then we can define a database motion D of K frames as a sequence
D = (PD

1 , PD
2 , . . . , PD

K) of poses PD
i (i ∈ [1,K]), where each pose PD

i constitutes
a 28-dimensional vector of specific angles captured in the i-th frame.

Fig. 1. (a) Skeletal model. (b) Elbow angle (α). (c) Shoulder angles (α, β).

3 Key-Pose Similarity Retrieval Algorithm

Let D = (PD
1 , PD

2 , . . . , PD
K) and Q = (PQ

1 , . . . , PQ
M) be sequences of poses rep-

resenting a database motion and query motion, respectively. The objective of

Retrieving Similar Movements in Motion Capture Data 327

the key-pose algorithm is to explore each database motion D and retrieve all its
sub-motions (PD

s , . . . , PD
t), 1 ≤ s < t ≤ K, that are similar to the query motion

Q. The retrieval process (Section 3.2) is based on efficient location of database
poses that are similar to specific query poses (Section 3.1).

3.1 Indexing

We index database motions to be able to efficiently retrieve the set of database
poses that are similar to a query pose. We define similarity sim(PQ

i , PD
j) between

the query pose PQ
i (i ∈ [1,M]) and database pose PD

j (j ∈ [1,K]) as the Manhat-

tan distance: sim(PQ
i , PD

j) =
∑28

k=1(|P
Q
i [k] − PD

j [k]|), where PQ
i [k] and PD

j [k]
stand for the k-th angle extracted in the i-th query and j-th database frame,
respectively. To enable spatial variances, two poses PQ

i and PD
j are considered

as similar if their similarity is up to a fixed threshold τ , i.e., sim(PQ
i , PD

j) ≤ τ .
There are a lot of existing metric-based and vector-space-based index struc-

tures that can be utilized to index database poses. We chose the Metric-Index
(M-Index) [6] that supports execution of precise as well as approximate range
and k-nearest-neighbor queries. In particular, we used the range query to re-
trieve query-similar database poses up to the threshold τ = 150. We have ex-
perimentally observed that M-Index needed to access roughly 6% of indexed
28-dimensional poses to answer a single range query on average. In the future,
we plan to utilize approximate queries to be able to index large database motions.

3.2 Retrieval

The retrieval algorithm locates all sub-motion candidates (within each database
motion D) that could be similar to the query motion Q. The detailed algorithm
description is available in [8]. The algorithm principally works as follows:

1. The query is processed to determine query key poses PQ
q1 , P

Q
q2 , . . . , P

Q
qN . These

key poses are simply selected as each δ-th query pose, starting from the
first one. The parameter δ ∈ N determines the fixed spacing between two
consecutive query key poses, where N =

⌊
M
δ

⌋
and qi = (i − 1) · δ + 1;

2. For each query key pose PQ
qi , M-Index is used to retrieve the set of sim-

ilar database poses {PD
j | sim(PQ

qi , P
D
j) ≤ 150, j ∈ [1,K]}. To be further

independent of the τ threshold, we could retrieve only k-nearest neighbors;
3. A single sub-motion candidate is constructed for each pose retrieved in the

previous step by picking the retrieved pose and its carefully-selected neigh-
boring poses. In particular, the neighboring poses are scanned to identify the
candidate key poses PD

r1 , P
D
r2 , . . . , P

D
rN that are similar to the query key poses.

To enable temporal variances of retrieved sub-motions, the distance (in
frames) of two consecutive candidate key poses PD

ri and PD
ri+1

(i ∈ [1, N−1]) is

not fixed to δ frames but is kept within the tolerated time bound
[
δ · 1

σ , δ · σ
]
,

where the stiffness parameter σ ∈ (0, 1] controls the degree of temporal de-
formations. The sub-motion candidate is then represented by database poses
occurring between the first PD

r1 and last PD
rN identified key pose;

328 J. Sedmidubsky and J. Valcik

���
�� ���

��
���

� ����

�
��	

�

 � ���gl
e

360° 360° Sub�motion�candidate

��	
��

15 15
�
Jo

in
t�a

ng

170° 170°
130° 130°

15

0�
Q ti D t b ti FramesFrames

0�
35° 40°

111 21 288 4123 33 48

Query�motion Database�motion FramesFrames

Fig. 2. Schematic process of retrieval of a sub-motion candidate that is similar to the
query motion represented by three query key poses PQ

q1 , P
Q
q2 , P

Q
q3 (for better clarity, only

a single joint-angle rotation is shown, instead of illustrating all 28 dimensions).

4. The similarity between the query motion and each constructed candidate is
computed as the average similarity value of corresponding pairs of key poses:
1
N ·
∑N

i=1 sim(PQ
qi , P

D
ri). Since we want to ignore motion variances between

consecutive key poses, we don’t use sophisticated similarity measures such
as DTW or EDR. Finally, all the candidates are ranked according to their
similarity and less-similar overlapping ones are ignored.

On the graphically illustrated example in Figure 2, we explain how to retrieve
a sub-motion that is similar to the query Q of length 25 (M = 25). By fixing the
parameter δ = 10, the three query key poses PQ

q1 , P
Q
q2 , and PQ

q3 are determined,

where q1 = 1, q2 = 11, and q3 = 21. For each database pose PD
j that M-Index

retrieved as similar to the i-th query key pose PQ
qi , a single sub-motion candidate

is constructed by locating its key poses PD
r1 , P

D
r2 , and PD

r3 . The i-th candidate key
pose PD

ri is directly represented by the j-th retrieved database pose, i.e., ri = j.
For instance, assume that the 28-th database pose PD

28 was retrieved as similar to
the 2-nd query key pose PQ

q2 ⇒ r2 = 28. Further, we set the stiffness parameter
σ = 0.5 to allow sub-motion candidates to be maximally two times shorter or
longer with respect to the query length. Both the parameters σ = 0.5 and δ = 10
force the consecutive candidate key poses to be distant from 5 to 20 frames.
To determine the first key pose PD

r1 , the database poses PD
r2−20, . . . , P

D
r2−5 (i.e.,

PD
8 , . . . , PD

23) are sequentially scanned to find the most similar database pose to
the query key pose PQ

q1 . The most similar pose then corresponds to the desired

pose PD
r1 . The third key pose PD

r3 is determined as the most similar pose to the
query key pose PQ

q3 within PD
r2+5, . . . , P

D
r2+20 (i.e., PD

33, . . . , P
D
48).

4 Online Demonstration

The functionality of the retrieval system is demonstrated by an online web ap-
plication (see Section 4.1). The system indexes 491, 847 poses extracted from the
68-minute motion capture database HDM05 [3] (the database is logically divided
into 102 motion parts). We used the same ground truth as the authors of [4] to
evaluate retrieval effectiveness and efficiency (see Section 4.2).

Retrieving Similar Movements in Motion Capture Data 329

Fig. 3. Screenshot of the web application illustrating retrieved sub-motions

4.1 Web Application

The system is available at http://mufin.fi.muni.cz/motion-retrieval/. It
allows users to specify a query motion from randomly chosen database motions
and display the retrieved query results. This functionality is described in the
following two paragraphs.

Random Motions & Query Selection By clicking the Random selection button,
five randomly chosen sub-motions are selected from the motion database and
presented to the user. Each such motion is represented by a sequence of poses that
are drawn on the canvas in form of human stick figures. Stick figures originating
from the same database motion have the same color. The displayed stick figure
is drawn for a current frame that can be changed by moving a range slider
located under the canvas (the slider length corresponds to the motion length).
The slider also contains two handlers that can be used to define a query-motion
example. By moving both the handlers, the start and end query frame is set.
In addition, each motion is associated with two play buttons – Play the whole
motion and Play the query motion – that automatically draw stick figures of
consecutive poses on the canvas with a fixed sampling rate in order to show the
human motion in real time. To obtain a new batch of random motions, the user
can reload the page or click the Random selection button.

Query Results After selecting a query motion and clicking the Retrieve query-
relevant motions button, the key-pose retrieval algorithm is executed. The re-
trieved query-similar sub-motions are then displayed on a web page and ordered
from the left to right according to their similarity score. The number of the re-
trieved sub-motions is limited to the 50 most similar ones. A new query can also
be defined by selecting a query motion from the retrieved results. The screenshot
in Figure 3 illustrates the query with three retrieved sub-motions.

4.2 Effectiveness and Efficiency Evaluation

To evaluate search effectiveness objectively, we compared retrieved results of our
system against predefined ground truth in order to measure precision and recall
on the frame-level approach [4]. The recall and precision were evaluated for 1476
ground-truth queries divided to 15 classes of motions. The setting δ = 10, σ = 0.5

http://mufin.fi.muni.cz/motion-retrieval/

330 J. Sedmidubsky and J. Valcik

and τ = 150 achieved the 57% precision and 75% recall per query on average.
When τ = 100, the average 80% precision and 46% recall was obtained. These
results approached the annotation standard stated in [4]. Remark that it is much
harder to achieve very high values of recall and precision on the whole database
in contrast to the top-k results, which was considered in [1].

Efficiency was evaluated by analyzing the number of similarity comparisons
(the sim() function calls) needed to answer a query. The system needed a sub-
linear number of 432, 352 function calls to evaluate a single ground-truth query
on average with respect to the total number of 491, 847 frames of all database
motions. The average query took about 1.5 s to be evaluated. A more detailed
evaluation of both the effectiveness and efficiency is available in [8].

5 Conclusions

We introduced a content-based subsequence retrieval system that is able to locate
similar sub-motions with spatio-temporal variances. The retrieval effectiveness
achieved the annotation standard stated in [4]. From the efficiency point of view,
the system needed about 1.5 s to evaluate a single query on average.

Acknowledgements. This research was supported by the national project
GAP103/12/G084.

References

1. Choensawat, W., Choi, W., Hachimura, K.: Similarity Retrieval of Motion Capture
Data Based on Derivative Features. Journal of Advanced Computational Intelligence
and Intelligent Informatics 16(1), 13–23 (2012)

2. Esling, P., Agon, C.: Time-Series Data Mining. ACM Computing Surveys 45(1),
12:1–12:34 (2012)

3. Müller, M., Röder, T., Clausen, M., Eberhardt, B., Krüger, B., Weber, A.: Documen-
tation Mocap Database HDM05. Tech. Rep. CG-2007-2, Universität Bonn (2007)

4. Müller, M., Baak, A., Seidel, H.-P.: Efficient and Robust Annotation of Motion
Capture Data. In: ACM SIGGRAPH/Eurographics Symposium on Computer Ani-
mation (SCA 2009), p. 10. ACM Press, USA (2009)

5. Müller, M., Röder, T., Clausen, M.: Efficient Content-based Retrieval of Motion
Capture Data. In: SIGGRAPH, pp. 677–685. ACM Press, USA (2005)

6. Novak, D., Batko, M., Zezula, P.: Metric Index: An Efficient and Scalable Solution
for Precise and Approximate Similarity Search. Inf. Sys. 36(4), 721–733 (2011)

7. Ren, C., Lei, X., Zhang, G.: Motion Data Retrieval from Very Large Motion
Databases. In: International Conference on Virtual Reality and Visualization
(ICVRV 2011), pp. 70–77 (2011)

8. Sedmidubsky, J., Valcik, J., Zezula, P.: A Key-Pose Similarity Algorithm for Mo-
tion Data Retrieval. In: 12th International Conference on Advanced Concepts for
Intelligent Vision Systems (ACIVS 2013), p. 12. Springer, Heidelberg (2013)

9. Wang, P., Lau, R.W., Zhang, M., Wang, J., Song, H., Pan, Z.: A real-time database
architecture for motion capture data. In: 19th International Conference on Multi-
media (MM 2011), pp. 1337–1340. ACM, USA (2011)

Author Index

Alegre, Enrique 141, 151
Amato, Giuseppe 91, 245
Andreae, Peter 319
Angiulli, Fabrizio 85
Arimura, Hiroki 73

Baeza-Yates, Ricardo 1
Bartoš, Tomáš 294
Benson, Gary 257
Boland, Mike 319
Bolettieri, Paolo 245
Boytsov, Leonid 280
Braithwaite, Billy 127

Cardillo, Franco Alberto 163
Chávez, Edgar 115, 300
Chen, Lei 43
Cheney, Jason A. 266
Chester, Uzi 59
Chum, Ondřej 3
Connor, Richard 163, 169
Cordeiro, Robson L.F. 30
Cucchiara, Rita 233

Duan, Hubert Haoyang 182

Emrich, Tobias 43, 175
Esuli, Andrea 91

Falchi, Fabrizio 91, 245
Fassetti, Fabio 85
Fernández-Robles, Laura 151
Figueroa, Karina 50, 115
Fredriksson, Kimmo 127

Garćıa-Olalla, Oscar 141, 151
Garćıa-Ordás, Diego 141
Garćıa-Ordás, Maŕıa Teresa 141, 151
Gennaro, Claudio 245
Grana, Costantino 233
Grošup, Tomáš 312

Hirata, Kouichi 73
Houle, Michael E. 16
Hurson, Ali R. 219

Jordan, Thomas William 319
Jossé, Gregor 175

Kriegel, Hans-Peter 43, 175
Kröger, Peer 213

Leksin, Vasily A. 206
Levy, Avivit 257
Lokoč, Jakub 312

Mamoulis, Nikos 43
Manfredi, Marco 233
Marchand-Maillet, Stéphane 103
Matas, Jǐŕı 3
Mauder, Markus 175, 213
Mikulik, Andrej 3
Miranda, Natalia 300
Mohamed, Hisham 103
Moss, Robert 163, 169

Naidan, Bilegsaikhan 280
Nett, Michael 16
Niedermayer, Johannes 43, 175
Nikolenko, Sergey I. 206

Paredes, Rodrigo 50
Pearson, Spencer S. 266
Pestov, Vladimir G. 182, 319
Piccoli, Maŕıa Fabiana 300
Pola, Ives R.V. 30

Rabitti, Fausto 163
Ratsaby, Joel 59
Renz, Matthias 43, 175
Reyes, Nora 300
Ruiz, Guillermo 115

Santini, Simone 194
Santoyo, Francisco 115
Schinner, Karl-Ludwig 213
Schubert, Matthias 175
Sedigh, Sahra 219
Sedmidubsky, Jan 325
Serra, Giuseppe 233
Shalom, B. Riva 257
Silva, Yasin N. 266
Singla, Varun 182

332 Author Index

Skopal, Tomáš 294, 312
Stojmirović, Aleksandar 319

Tellez, Eric Sadit 115
Traina, Agma J.M. 30
Traina Jr., Caetano 30

Uno, Takeaki 73

Valcik, Jakub 325

Wagner, Christopher Shaun 219

Wasa, Kunihiro 73

Züfle, Andreas 43, 175

	Preface
	Organization
	Table of Contents
	Invited Papers
	Similarity in Web Search
	1 Summary
	References

	Image Retrieval for Online Browsing in Large Image Collections
	1 Introduction
	2 Standard Components and State-of-the-Art Methods in Large Scale Image Retrieval
	2.1 The Bag of Words Image Representation
	2.2 Image Representation with VLAD
	2.3 GIST Descriptor
	2.4 Image Retrieval
	2.5 Spatial Verification and Query Expansion

	3 Overview of the Zooming Algorithm
	3.1 Ranking Functions

	4 Experiments
	4.1 Design Choices
	4.2 Evaluation Protocol

	5 Conclusions
	References

	New Scenarios and Approaches
	Rank Cover Trees for Nearest Neighbor Search
	1 Introduction
	2 Cover Trees and the Expansion Rate
	3 Preliminaries
	3.1 Level Sets
	3.2 Rank Function
	3.3 Expansion Rate

	4 Rank Cover Tree
	5 Analysis
	6 Evaluation
	6.1 Results

	References

	A New Concept of Sets to Handle Similarity in Databases: The SimSets
	1 Introduction
	2 Background
	3 Related Work
	4 The Similarity-Set Concept
	5 The Distinct Algorithm
	6 Experiments
	7 Conclusion
	References

	Similarity Search on Uncertain Spatio-temporal Data
	1 Introduction
	2 Problem Definition
	3 Related Work
	4 UALCSS Computation
	5 Experiments
	References

	List of Clustered Permutations for Proximity Searching
	1 Introduction
	2 Previous Work
	2.1 List of Clusters
	2.2 Permutation Based Algorithm

	3 List of Clustered Permutations
	3.1 Building
	3.2 Querying

	4 Experiments
	4.1 Synthetic Databases
	4.2 Real Databases

	5 Contributions and Future Work
	References

	Machine Learning for Image Classification and Clustering Using a Universal Distance Measure
	1 Introduction
	2 LZ-Complexity and String Distances
	3 Universal Image Distance
	4 Prototype Selection
	5 Image Feature-Representation
	6 Supervised and Unsupervised Learning on Images
	7 Computational Time
	8 Experimental Setup and Results
	9 Conclusion
	References

	Faster Algorithms for Tree Similarity Based on Compressed Enumeration of Bounded-Sized Ordered Subtrees
	1 Introduction
	2 Preliminaries
	3 Enumeration of At-Most k-Subtrees in a Tree
	4 Enumeration of Exact k-Subtrees in a Tree
	5 Experiments
	6 Conclusion
	References

	Improving Similarity Search Methods and Techniques
	Principal Directions-Based Pivot Placement
	1 Introduction
	2 Principal Directions-Based Pivot Placement Algorithm
	3 Experiments
	4 Conclusions
	References

	Pivot Selection Strategies for Permutation-Based Similarity Search
	1 Introduction
	2 Related Work
	3 Pivot Selection Strategies
	3.1 Farthest-First Traversal (FFT)
	3.2 k-Medoids (kMED)
	3.3 Pivoted Space Incremental Selection (PSIS)
	3.4 Balancing Pivot-Position Occurences (BPP)

	4 Similarity Access Methods
	4.1 Permutations Spearman Rho (PSR)
	4.2 MI-File
	4.3 PP-Index

	5 Experiments
	5.1 Experimental Settings
	5.2 Results

	6 Conclusion and Future Work
	References

	Quantized Ranking for Permutation-Based Indexing
	1 Introduction
	2 Related Work
	3 Indexing Model
	4 Practical Setup
	4.1 Indexing
	4.2 Searching

	5 Results
	5.1 General Performance
	5.2 Comparative Experiments

	6 Conclusion
	References

	Extreme Pivots for Faster Metric Indexes
	1 Introduction
	1.1 RelatedWork

	2 ExtremePivots
	3 EPTable
	3.1 Optimizing

	4 Experimental Performance
	4.1 Performance of Our Indexes per Database
	4.2 The Effect of the Dimension on the Search Performance

	5 Conclusions
	References

	Quicker Similarity Joins in Metric Spaces
	1 Introduction
	2 Previous Work
	2.1 Quickjoin

	3 Improved Quickjoin
	3.1 Handling Small Subsets
	Lemma 1 ([11]).
	3.2 Making It Probabilistic
	if
	then
	break
	else if
	then
	3.3 Optimizing by Unbalancing

	4 k-NN Join
	5 Preliminary Experimental Results
	6 Concluding Remarks and Future Work
	References

	Metrics and Evaluation
	Evaluation of Different Metrics for Shape Based Image Retrieval Using a New Contour Points Descriptor
	1 Introduction
	2 Methods
	2.1 CPDH Method
	2.2 CPDH36R Method

	3 kNN Classifiers
	3.1 Mean Distance kNN
	3.2 Weighted kNN

	4 Experiments and Results
	4.1 Datasets
	4.2 Results

	5 Conclusions
	References

	Evaluation of LBP Variants Using Several Metrics and kNN Classifiers
	1 Introduction
	2 Methodology
	2.1 Texture Description
	2.2 Nearest Neighbours Variants

	3 Experiments
	3.1 Datasets
	3.2 Experimental Setup
	3.3 Multiclass Dataset Results
	3.4 Binary Dataset Results

	4 Conclusions
	References

	Evaluation of Jensen-Shannon Distance over Sparse Data
	1 Introduction
	2 Definitions and Algebraic Derivations
	2.1 Threshold Calculation

	3 Evaluation
	3.1 Definitions
	3.2 Framework
	3.3 Generated Spaces
	3.4 Real Spaces

	4 Conclusions and Further Work
	Acknowledgements.

	References

	A Multi-way Divergence Metric for Vector Spaces
	1 Introduction
	2 Related Work
	3 Structural Entropic Divergence
	3.1 Generalisation to a Multi-way Function

	4 Evaluation
	4.1 Performance

	5 Conclusion
	References

	Optimal Distance Bounds for the Mahalanobis Distance
	1 Introduction
	2 Related Work
	3 Problem Definition
	4 Minimum and Maximum Distance Bounds
	5 Domination Decision Criterion
	6 Experiments
	7 Conclusions
	References

	Applications and Specific Domains
	Text Categorization via Similarity Search
	An Efficient and Effective Novel Algorithm
	1 Introduction
	2 Related Work
	2.1 Vector Space Model
	2.2 Feature Selection and Extraction Methods
	2.3 Classification Algorithms

	3 The Domain-Specific Classifier
	3.1 Preprocessing Stage: Domain-Specific Words
	3.2 Classification Stage
	3.3 Space of Positive Measures on the Dictionary

	4 Experiments and Results
	4.1 The 2012 Cybersecurity Data Mining Competition
	4.2 Competition Experiments
	4.3 Competition Results
	4.4 Experiments on the Reuters 21578 Dataset

	5 Conclusion
	References

	Efficient Approximate Indexing in High-Dimensional Feature Spaces
	1 Introduction
	2 The Approximate Indexing Model
	3 Complexity
	4 Validation
	5 Some Analytical Considerations
	6 Some Final Remarks
	References

	Semi-supervised Tag Extraction in a Web Recommender System
	1 Introduction
	2 Tag Extraction
	3 Tag Recommendation
	4 Evaluation
	5 Conclusion
	References

	A Similarity Model for 3D Objects Based on Stable Sub-clouds
	1 Introduction
	2 A Similarity Model Based on Stable Sub-clouds
	2.1 Locally Stable Sub-clouds
	2.2 Features and Sub-cloud Comparison
	2.3 Object Descriptor and Distance Calculation

	3 Experiments
	4 Summary
	References

	Accurate and Efficient Search Prediction Using Fuzzy Matching and Outcome Feedback
	1 Introduction
	2 Background
	2.1 Recommendation/Prediction Algorithms
	2.2 Neighborhoods of Similarity

	3 Proposed Approach to Search Prediction
	4 Design of Validation Experiment
	4.1 Test Data
	4.2 Evaluation of Algorithms

	5 Results of Experimental Validation
	5.1 Prediction Results
	5.2 Neighborhood Results
	5.3 Timing Results
	5.4 Correlation

	6 Conclusion
	References

	Beyond Bag of Words for Concept Detection and Search of Cultural Heritage Archives
	1 Introduction
	2 Related Work
	3 Multivariate Gaussian Descriptor
	4 Image Similarity Search
	5 Large Scale Online Learning
	6 Experimental Results
	6.1 Datasets Description
	6.2 Content-Based Visual Similarity Retrieval
	6.3 Concept Detection for Image Enrichment

	7 Conclusions
	References

	Large Scale Image Retrieval Using Vector of Locally Aggregated Descriptors
	1 Introduction
	2 Related Work
	2.1 Local Features
	2.2 Bag of Words (BoW)
	2.3 Fisher Vector
	2.4 VLAD

	3 Perspective Transformation and Surrogate Text Representation
	3.1 STR Generation
	3.2 Reordering Search Results

	4 Experiments
	4.1 Setup
	4.2 Results

	5 Conclusions and Future Work
	References

	Longest Common Subsequence in k Length Substrings
	1 Introduction
	2 Preliminaries
	3 Solving the LCSk Problem
	3.1 The Backtrack Process
	3.2 Predecessors Elimination

	4 Conclusion
	References

	Implementation and Engineering Solutions
	Database Similarity Join for Metric Spaces
	1 Introduction
	2 Related Work
	3 The DBSimJoin Operator
	3.1 DBSimJoin Rounds
	3.2 The Parser and Planner
	3.3 The Executor
	3.4 Analysis of I/O Cost and Number of Pivots

	4 Performance Evaluation
	4.1 Performance Evaluation with DBLP String Data
	4.2 Performance Evaluation with Vector Data
	4.3 Combining DBSimJoin with other Database Operators

	5 Conclusions and Future Work
	References

	Engineering Efficient and Effective Non-metric Space Library
	1 Introduction
	1.1 Related Work

	2 Methodology
	2.1 Evaluation Approach
	2.2 Choice of Programming Language
	2.3 Design
	2.4 Efficiency Issues

	3 Experiments
	References

	Designing Similarity Indexes with Parallel Genetic Programming
	1 Introduction
	2 Related Work
	3 Exploration Method
	3.1 Parallel Genetic Programming
	3.2 Parallel GP-SIMDEX Algorithm
	3.3 Comparing GP-SIMDEX vs. PGP-SIMDEX

	4 Smart Pivot Table
	5 Conclusions
	References

	(Very) Fast (All) k-Nearest Neighbors in Metric and Non Metric Spaces without Indexing
	1 Introduction
	1.1 Metric Space and Proximity Searching
	1.2 GPGPU
	1.3 Related Work on GPU Proximity Searching

	2 Our Approach
	2.1 TopK AA
	2.2 QuickSelect
	2.3 TopK AA + QuickSelect
	2.4 Thrust Library

	3 Solving Many k-NN Queries in Parallel
	4 The All-k-NN Problem
	5 Experimental Results
	6 Conclusions, Remarks and Future Work
	References

	On Scalable Approximate Search with the Signature Quadratic Form Distance
	1 Introduction and Related Work
	2 Experimental Evaluation
	3 Conclusions
	References

	Demo Papers
	PFMFind: A System for Discovery of Peptide Homology and Function
	1 Introduction
	2 Overview
	2.1 Similarity Search
	2.2 FSIndex
	2.3 Database
	2.4 GUI Client

	3 Conclusion
	References

	Retrieving Similar Movements in Motion Capture Data
	1 Introduction
	2 Pose Feature Extraction
	3 Key-Pose Similarity Retrieval Algorithm
	3.1 Indexing
	3.2 Retrieval

	4 Online Demonstration
	4.1 Web Application
	4.2 Effectiveness and Efficiency Evaluation

	5 Conclusions
	References

	Author Index

