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Abstract. Ambient assisted living (AAL) systems need to understand the user’s 
situation, which makes activity recognition an important component. Falls are 
one of the most critical problems of the elderly, so AAL systems often incorpo-
rate fall detection. We present an activity recognition (AR) and fall detection 
(FD) system aiming to provide robust real-time performance. It uses two wear-
able accelerometers, since this is probably the most mature technology for such 
purpose. For the AR, we developed an architecture that combines rules to rec-
ognize postures, which ensures that the behavior of the system is predictable 
and robust, and classifiers trained with machine learning algorithms, which 
provide maximum accuracy in the cases that cannot be handled by the rules. For 
the FD, rules are used that take into account high accelerations associated with 
falls and the recognized horizontal orientation (e.g., falling is often followed by 
lying). The system was tested on a dataset containing a wide range of activities, 
two different types of falls and two events easily mistaken for falls. The F-
measure of the AR was 99 %, even though it was never tested on the same per-
sons it was trained on. The F-measure of the FD was 78 % due to the difficulty 
of the events to be recognized and the need for real-time performance, which 
made it impossible to rely on the recognition of long lying after a fall. 

Keywords: Ambient assisted living, Activity recognition, Fall detection, Machine 
learning, Rules, Accelerometers. 

1 Introduction 

The world’s population is aging rapidly, threatening to overwhelm the society’s  
capacity to take care of its elderly members. The percentage of persons aged 65 or 
over in developed countries is projected to rise from 7.5% in 2009 to 16% in 2050 [1]. 
This is driving the development of innovative ambient assisted living (AAL) technol-
ogies to help the elderly live independently for longer and with minimal support from 
the working-age population [2, 3]. 

This paper presents a system that recognizes the user’s activity and detects falls us-
ing wearable sensors. To provide timely and appropriate assistance, AAL systems 
must understand the user’s situation and context, making activity recognition (AR) an 
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essential component [4, 5]. Fall detection (FD) is an important component of many 
AAL systems because approximately half of the hospitalizations of the elderly are 
caused by falls [6], fear of falling is an important cause for nursing home admission 
[7], and “the long lie” (not being able to get up and call for help) is a good predictor 
of death within six months [8]. 

AR and FD require a sensor system that observes the user and intelligent software 
that infers the user’s activities from the sensor data [9, 10]. We selected wearable 
accelerometers as the sensors since they are accurate, inexpensive, can be used both 
indoors and outdoors, and can be sewn into clothing for minimal intrusiveness. For 
the AR, we developed an architecture that combines rules to recognize postures, 
which ensure the behavior of the system is predictable and robust, and classifiers 
trained with machine learning (ML) algorithms, which provide maximum accuracy in 
the cases that cannot be handled by the rules. For the FD, rules are used that take into 
account high accelerations associated with falls and the recognized horizontal orienta-
tion (e.g., falling is often followed by lying). 

The rest of this paper is organized as follows. An overview of studies related to AR 
and FD is presented in Section 2. Section 3 gives an overview of the system and  
the methodology. In Section 4, the sensors and methods used in the AR and FD are 
described. Section 5 and 6 describe the experimental setup and experimental results, 
respectively. Section 7 concludes the paper and gives directions for future work. 

2 Related Work  

AR and FD approaches can be divided into those that use wearable and non-wearable 
sensors, respectively. The most common non-wearable approach is based on cameras 
[11]. Although this approach is physically less intrusive for the user compared to one 
based on wearable sensors, it suffers from problems such as target occlusion, time-
consuming processing and privacy concerns. The most mature approach to both AR 
and FD is probably using wearable accelerometers[12, 13, 14, 15]. There are two 
common types of wearable-sensor approach that have proven successful: those that 
use domain knowledge encoded with rules, and those that use machine learning. Most 
researchers used only one of the two approaches, while our work combines both. 

The most common accelerometer-based AR approach uses only ML. Typically a 
sliding window passes over the stream of sensor data, and the data in each window is 
classified with one of the known classification methods, such as decision trees (DTs) 
and support vector machines (SVM). Examples include Kwapisz et al. [12], who used 
an accelerometer placed on the thigh and compared three classification methods on 
dynamic activities such as walking, running, and jogging. Ravi et al. [16] used an 
accelerometer in a mobile phone and tested five classification methods. The results 
showed that when a given person’s data was used for both training and testing, the 
accuracy was 90%, but when a different person’s data was used for the testing, the 
accuracy dropped to 65%. In our work we never used the same person for training  
and testing, since the developed model is intended for use by people who were not 
involved in the training. 
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An alternative approach to accelerometer-based AR is based on manually created 
rules. These rules are usually based on features that are calculated from sensor orien-
tations and accelerations. Wu et al. [13] presented an approach in which decision rules 
are used to recognize activities. Another implementation of such rules was presented 
by Lai et al. [14], who used six accelerometers, placed on the neck, waist, both wrists 
and both thighs. The reported accuracy was almost perfect (99.5%), but the number of 
sensors is excessive for everyday use.  

The most common approach to FD use rules that apply thresholds to accelerations 
and features derived from them, and sometimes consider the activity after a potential 
fall. Jantaraprim et al. [17] used a triaxial accelerometer worn on the chest; by apply-
ing a simple threshold to the acceleration, they detected falls with 98.9 % accuracy. 
Nguyen, Cho and Lee [19] used a triaxial accelerometer worn on the waist; by apply-
ing thresholds to the acceleration, they detected a potential fall and the activity after 
the fall, resulting in 100 % accurate fall detection. Some researchers used machine 
learning instead of threshold-based algorithms. Zhang et al. [20] and Shan and Yuan 
[18] both used a triaxial accelerometer worn on the waist. Using SVM machine learn-
ing algorithm on various features derived from accelerations, they detected falls  
with 96.7 % and 100 % accuracy, respectively. We opted for the rules-based ap-
proach, since rules can be understood by humans and are thus less likely to result in 
unexpected behavior in practice. 

3 System Implementation 

An overview of the system is shown in Fig. 1. Two accelerometers were attached to 
the user's chest and thigh. The placement was chosen as a trade-off between the phys-
ical intrusiveness and the performance in preliminary tests [11]. The Shimmer sensor 
platform [21] was chosen because it has a reasonable battery life and compact size, is 
completely wireless, and has the option to reprogram the sensor based on the user’s 
needs and situation. The platform has a 3-axis accelerometer, uses Bluetooth commu-
nication, and has 2 GB of storage, which is enough to store 3 months of sensor data 
when the frequency of acquisition is 50 Hz. This frequency proved sufficient to cap-
ture even the fastest human movement.Additionally, for the purpose of the EvAAL 
AR competition, a laptop with a long-rangeBluetooth antenna will be used for maxi-
mum reliability. In general, though,any kind of Bluetooth device with modest 
processing capability is sufficient, therefore a smartphone can also be used. 

 

 

Fig. 1. System overview 
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The process of the AR and FD is the following.First, the sensors transmit the raw 
acceleration data over Bluetooth to the processing unit. The data from both sensors is 
then synchronized, filtered and segmented. Then the flow splits into two. On one side 
the segmented datais transformed into feature vectors for the AR module, which  
recognizes the user's activity. On the other side, the FD module checks the accelera-
tion pattern. If a fall pattern is recognized and the predefined acceleration threshold is 
reached, the user's orientation is checked. If the orientation corresponds to lying (ho-
rizontal), a fall is detected. Both the AR and FD modules are evaluating the user’s 
situation every 250 milliseconds which is chosen with accordance to the EvAAL AR 
competition guidelines. First, the FD module checks for the fall acceleration pattern. 
If a fall is detected, the system outputs the activity falling; otherwise the AR recog-
nizes and outputs the activity. For instance, if the current system time is denoted with 
t, the FD module evaluates fall events in the [t – 2s,t – 1s] interval, and the [t – 1s,t] 
interval is used to check if the orientation of the chest sensor corresponds to lying. If 
the fall event is detected and the orientation is correct, the reported activity is falling, 
otherwise the reported activity is computed with the AR module in the [t – 2s,t] inter-
val. The system thus reports the user’s activity with a two-second delay. 

4 Methods 

4.1 Data Preprocessing 

The first step in the preprocessing phase is sensor data synchronization. This is neces-
sary when multiple sensors are used, since the data from the sensors is not all received 
at the same time.  

Once the sensor measurements are synchronized, further preprocessing is per-
formed using band-pass and low-pass filters. The acceleration is the sum of the acce-
leration due to the gravity and the acceleration due to the movement of the sensor 
(and the person wearing it). The band-pass filter thus has two goals: (1) to eliminate 
the low-frequency acceleration (gravity) that captures information about the orienta-
tion of the sensor with respect to the ground and (2) to eliminate the high-frequency 
signal components generated by noise, thus preserving the medium-frequency signal 
components generated by dynamic human motion. The band-pass-filtered data is used 
for the extraction of features relevant for dynamic activities, such as walking and 
cycling. The low-pass filter is used to eliminate most of the signals generated by dy-
namic human motion, preserving the low-frequency component, i.e., gravity [22]. The 
low-pass-filtered data thus contains sensor orientation information, which is relevant 
for the recognition of static activities (postures), such as lying, sitting and standing. 

Finally, an overlapping sliding-window technique is applied. A window of 2-
second size (width) moves across the stream of data, advancing by 250 milliseconds 
in each step. The window size was selected in correspondence to the EvAAL AR 
competition guidelines. The data within each window is used to compute the feature 
vector used for AR described in the next section. The feature vector contains  
low-pass-filtered features that measure the posture of the body. Additionally, it con-
tains band-pass-filtered features that represent: (1) the motion shape, (2) the motion 
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variance, (3) the motion energy, and (4) the motion periodicity [22]. The feature vec-
tor consists of a total of 64 features per sensor. 

4.2 Activity Recognition Module 

In the AR module, the activities are recognized by a three-level scheme shown in Fig. 
2 [23]. On the first level the feature vector is fed into a Random Forest classifier, 
which is trained to distinguish cycling from the other activities. If an activity is not 
classified as cycling, the feature vector is passed to the second level, where the activi-
ties are recognized by rule-based activity recognition (R-BAR). On this level only 
features representing average values of low-pass-filtered data are used.The following 
activities are separated at this level: sitting, lying, bending, and upright posture. If the 
selected activity is an upright posture, the third level of activity recognition is used to 
distinguish between standing and walking. The feature vector is again fed into a Ran-
dom Forest classifier, which is trained to separate these activities.The parameters used 
for the Random Forest classifier were default ones, as described in Weka’s API [24]. 
 

 

Fig. 2. A three- level AR scheme 

R-BAR, used on the second level of the AR, is used for detecting static activities, 
standing, lying, sitting and bending. Walking, which is a dynamic activity, is merged 
with its static equivalent, standing. R-BAR uses the orientation of the sensors to rec-
ognize posture. The orientation of a sensor is computed with Eq. (1), where i is one of 
the axes (x, y, or z). Additionally, the orientation is normalized to [0,1] interval. 
     

 1 · 12 
 

(1) 

  

The values computed in this way form an orientation vector O=(φx, φy,φz) for one 
sensor, which is then matched with the set of rules defined by a domain expert as the 
typical orientations of the sensors for each activity. Figure 3 shows example orienta-
tions for three activities (sitting, bending, and upright posture). The structure of the 
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rules in Fig. 3is the following: Oactivity=(φchest,x, φchest,y, φchest,z, φthigh,x, φthigh,y, φthigh,z). 
For every orientation measurement in vector O, an error is computed using Eq. (2), 
where d is the absolute difference between the value defined in the rules and the ac-
tual measurement. A higher absolute difference d denotes a higher difference between 
the actual and the typical sensor orientation, resulting in a larger value of the error e.  

0.25 ; 0 0.253 0.5; 0.25 0.51; 0.5  
 
(2) 

 

The error values form an error vector whose size is the same as that of the orientation 
vector. These components are summed up in order to obtain the overall error of an 
activity. Activity with the minimum error is selected as the correct one. 

 

Fig. 3. Example orientation for three activities: sitting, bending and standing 

4.3 Fall Detection Module 

A typical acceleration pattern during a fall, measured by a chest accelerometer, is a 
decrease in acceleration followed by an increase, as shown in Fig. 4. This is because 
an accelerometer at rest registers 1 g (the Earth’s gravity) and during free fall 0 g. 
When a person starts falling, the acceleration decreases from 1 g to around 0.5 g  
(perfect free fall is never achieved). Upon the impact with the ground, a short strong 
increase in the acceleration is measured. 

 

Fig. 4. Acceleration pattern during a fall 
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To detect falls with a threshold, we used the length of the acceleration vector, 
which means that we ignored the direction of the acceleration. The minimum and the 
maximum acceleration within a one-second window were measured. If the difference 
between the maximum and the minimum exceeded 1 g and the maximum came after 
the minimum, we declared that a fall had occurred. 

We augmented fall detection with the measurement of the person’s orientation af-
ter a potential fall. We assumed that the acceleration vector a = [ax, ay, az], which 
consists of the accelerations along the three axes of the accelerometer, generally 
points downwards (in the direction of the Earth’s gravity). Let z be the axis pointing 
downwards when the person is standing upright. The angle φ between the acceleration 
vector and the z axis thus indicates the person’s orientation, and was computed as 
follows: 

 (3) 

A person was considered to be oriented upright if –35° <φ< 35°. This was used for 
fall detection: if an acceleration fall pattern was detected that exceeded the threshold 
as described previously, and the orientation in the next second was not upright, we 
declared that a fall had occurred. 

5 Experiments 

5.1 Test Scenario 

In order to evaluate the AR and FD methods, a complex, 90-minute, scenario was 
designed in cooperation with a medical expert to capture the real-life conditions of a 
person’s behavior, although it was recorded in a laboratory. The scenario contained 
several sub-scenarios: walking on a treadmill, cycling on a stationary bicycle, elemen-
tary activities such as: sitting, lying, standing, and specialized activities such as:  
cooking, reading, typing, washing dishes, and scrubbing the floor. A special "fall" 
sub-scenario was included in order to evaluate the FD method. It contained two non-
fall-like events with large accelerations (quickly sitting down and quickly lying down) 
and two fall events – tripping and falling slowly (fainting). 

5.2 Evaluation Metrics 

The AR and FD methods were experimentally evaluated on the described test scena-
rio. The evaluation technique for the ML methods, the ones that require training a 
model, was leave-one-person-out cross validation. This means that a model was 
trained on the recordings of all the people except one. The remaining person was used 
to evaluate the model. This procedure was repeated for each person (10 times) and the 
average performance was measured. This evaluation technique was used because 
training and testing on the same person’s recordings would give overly optimistic 
results if the intended use of the model is to classify the activities of previously un-
seen people. 
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Decision Tree and Random Forest classifiers have problems separating between 
walking and standing activities. This is probably due to the fact, that both activities 
have similar average values when computed over a time window. Naive Bayes clas-
sifier however fails at accurately recognizing cycling and walking. Although AR 
module developed for EvAAL has misclassifiedsome standing and walking activities, 
it still outperforms other methods. 

6.2 Fall Detection 

The FD results (shown in Table 2) show that the first event ‒ tripping (quick uncon-
trolled fall) is detected each time (15 out of all 15 events). The next event, i.e., faint-
ing, is detected 13 out of 15 times. The next two events are the non-fall events that are 
difficult to distinguish from the fast falls because of the huge acceleration. Because 
the FD module also checks the user's orientation after a potential fall (huge accelera-
tion), it was able to distinguish quickly sitting on the chair from the classical falls 
(only 1 false detection). However, the problem still exists in the event in which the 
user quickly lies into the bed (13false detections). For correct recognition of this 
event, additional information about the user is needed, e.g., user's location. 

Table 2. Fall detection results 

Events Detected/All 

 

Recall Precision F-measure 
Tripping 15/15 

93.33% 66.67% 77.78% 

Fainting 13/15 

Quickly lying  13/15 
Quickly sitting  1/15 

Other 0 

The overall performance of the FD method shows that 93.3% of the fall events 
were detected (recall value), 66.7% of all the fall detections were actually falls (preci-
sion value), giving a final F-measure of 77.8%. 

7 Conclusion 

This paper presented an approach for AR and FD that emphasizes robustness and real-
time performance: it combines human-understandable rules with classifiers trained 
with ML. The rules can classify postures (static activities) quite accurately, and they 
ensure that the behavior of the system is as predictable as possible and that nothing 
unforeseen occurs when it is deployedin practice. However, since constructing un-
derstandable and accurate rules for dynamic activities is difficult or even impossible, 
ML classifiers are used for these activities. On the other hand, the FD method first 
recognizes the high acceleration fall pattern and then checks the user's orientation.  
If the orientation corresponds to lying, a fall is detected; otherwise the recognized 
activity from the AR module is used as system's output. 
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The system was tested on a dataset containing a wide range of activities, two dif-
ferent types of falls and two events easily mistaken for falls. The F-measure of the AR 
was 99 %, which is very good for only two accelerometers and leave-one-person-out 
cross-validation. It can partly be attributed to our AR architecture and partly to the 
high quality of the dataset, since great care was taken to include only technically per-
fect data (no corrupted signals or incorrect labels). The F-measure of the FD was 
78 %, which is not so good, but acceptable given the difficulty of the task. The main 
problem was mistaking lying down quickly for a fall, but could hardly be avoided 
without knowing that the event took place on a bed (impossible with accelerometers 
only) and without being able to observe the lying after a suspected fall for some time 
(impossible due to the emphasis on real-time performance). 

We are currently working on the ergonomics aspect of our system. The two accele-
rometers are presently attached to the user with elastic straps, but we plan to sew them 
into clothing, if this can be done without significantly decreasing the accuracy due to 
less secure attachment. It appears that there is not much room for improvement of the 
AR accuracy, but the FD accuracy is less satisfactory. Therefore we plan to investi-
gate approaches to improve this, both with additional sensors or by allowing more 
time to determine the context of a potential fall, and by improvements of the FD  
method only. 
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