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Preface

In the last decade, we have experienced a paradigm shift in the way we use com-
puters. We have moved from a world of personal computers to a world of many
different kinds of smaller devices. Many of those devices are deployed everywhere,
i.e., sensors and actuators. Others are hand-held mobile devices with unthink-
able computing capabilities years ago, i.e., smart phones and tablets. Software
is also experiencing significant changes, from single non smart applications to
a myriad of smart services accessible anytime and anywhere. Ambient-assisted
living (AAL), a research program created within the EU devoted to fostering
the development of new ICT technologies for independent living of the elderly
and disabled, can be seen as a natural consequence of such new scenario.

To enable the adoption of AAL solutions by industry, both means for val-
idation of systems and benchmarks for the comparison of ALL solutions and
platforms, are a must. The EvAAL (Evaluation of AAL Systems through Com-
petitive Benchmarking) competition was born of this aim. It is an annual inter-
national contest promoted by the AALOA association. Its main goal is to assess,
on the participant AAL platforms, the level of autonomy, independent living,
and quality of life they deliver to end users. This goal is enabled through the
establishment of suitable benchmarks and evaluation metrics.

This book is a compilation of papers describing the systems participating
in the third edition of the EvAAL competition. The first edition in 2011 was
centered on indoor localization. The second edition in 2012 included a track
on activity recognition. This third edition in 2013 maintained both tracks. The
Indoor Localization and Tracking for AAL track was held in Madrid, Spain,
during July 15, 2013. The Activity Recognition for AAL track was also held in
Spain, Valencia, during July 8–12, 2013. The first track included seven different
participants and the second track comprised four participants. A final workshop
to sum up and discuss the results was celebrated in conjunction with the AAL
Forum in September 2013 in Norrköping, Sweden. We sincerely hope the reader
finds this compilation interesting for getting acquainted with the state of the
art in two basic tasks of ambient intelligence in general and AAL systems in
particular: indoor location and activity recognition.

We would like to thank everybody who made this volume of proceedings
possible. Firstly, we thank the Organizing Committees of this initiative and the
AALOA institution for its support. Obviously, we also want to thank the au-
thors for their effort in preparing this set of high-quality papers. Special thanks
must also be given to the two living labs that hosted the (1) Indoor Localization
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and Tracking and (2) the Activity Recognition events: Polytechnic University
of Madrid’s Living Lab and the CIAmI Living Lab, respectively. And finally, a
special mention must be made of our sponsors: the UniversAAL Project, meGha,
Asus Xtion and joiiup.

June 2013 Juan A. Bot́ıa
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Catalunya - BarcelonaTech, Spain
Stefano Chessa University of Pisa, Italy
Kazuya Murao Kobe University, Japan
Roozbeh Jafari University of Texas at Dallas, USA
Luis Miguel Soria University of Seville, Spain
Fahim Kawsar Alcatel-Lucent, Belgium
Susanna Pirttikangas University of Oulu, Finland
Sozo Inoue Kyushu Institute of Technology, Japan



Organization IX

Jin-Hyuk Hong Carnegie Melon University, USA
Mitja Lustrek Jozef Stefan Institute, Slovenia
Wenwei YU Chiba University, Japan
Roberta Giannantonio Telecom Italia, Italy

Sponsoring Institutions

The EvAAL competition is hosted by AALOA and sponsored by the following
organizations:
The EU Funded UniversAAL Project.
meGha
Asus Xtion
joiiup



Table of Contents

Preface to the third edition of the EvAAL
competition

An Improved Saliency for RGB-D Visual Tracking and Control
Strategies for a Bio-monitoring Mobile Robot . . . . . . . . . . . . . . . . . . . . . . . . 1

Nevrez Imamoglu, Zhixuan Wei, Huangjun Shi, Yuki Yoshida,
Myagmarbayar Nergui, Jose Gonzalez, Dongyun Gu,
Weidong Chen, Tomonari Furukawa, Kenzo Nonami, and
Wenwei Yu

Efficient Activity Recognition and Fall Detection Using
Accelerometers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

Simon Kozina, Hristijan Gjoreski, Matjaž Gams, and Mitja Luštrek
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An Improved Saliency for RGB-D Visual Tracking  
and Control Strategies for a Bio-monitoring Mobile Robot 
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Abstract. Our previous studies demonstrated that the idea of bio-monitoring 
home healthcare mobile robots is feasible. Therefore, by developing algorithms 
for mobile robot based tracking, measuring, and activity recognition of human 
subjects, we would be able to help impaired people (MIPs) to spend more time 
focusing in their motor function rehabilitation process from their homes.  

In this study we aimed at improving two important modules in these kinds of 
systems: the control of the robot and visual tracking of the human subject. For 
this purpose: 1) tracking strategies for different types of home environments 
were tested in a simulator to investigate the effect on robot behavior; 2) a multi-
channel saliency fusion model with high perceptual quality was proposed and 
integrated into RGB-D based visual tracking.  

Regarding the control strategies, results showed that, depending on different 
types of room environment, different tracking strategies should be employed. 
For the visual tracking, the proposed saliency fusion model yielded good results 
by improving the saliency output. Also, the integration of this saliency model 
resulted in better performance of RGB-D based visual tracking application. 

Keywords: Multi-channel saliency fusion, RGB-D visual tracking, particle fil-
ter, PID control, robot control. 

1 Introduction 

In our previous studies, we were able to detect and track human subjects using the 
software development kit (SDK) of Microsoft Kinect sensor (Fig.1), which includes 
an RGB camera and a Depth sensor. We also implemented different methods that 
allowed us to improve the accuracy of the skeletal points extracted from the color and 
depth images of the Kinect [1]. Then, using this information we were able to track the 
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subject in real environments, measure his joint trajectories (Fig.2), and recognize 
different activities [1]. A Hidden Markov Model (HMM) [1, 2] was applied on human 
joint angle data for activity recognition with a higher recognition rate compared to 
other tested classification models [1]. 

One of the main tasks of the mobile robot is the detection and tracking of the sub-
ject. Once a subject is detected, the robot will move towards him avoiding any ob-
stacles on the way and keeping the subject at the middle of the visual field. Certainly, 
in order to avoid any bumping accidents the robot always keeps a fixed distance from 
the subject.  However when the robot is moving, tracking the subject becomes more 
difficult due to random environmental changes or the vibration caused by the robot’s 
motion or sensor rotation [2]. Hence, improvements both for the robot’s motion beha-
vior and visual subject tracking are required in order for it to work in the real daily 
living environment. 

Fig. 1. Robot used in the studies Fig. 2. Comparison result of knee angle calculation of the 
corrected skeleton points with original skeleton points 

Therefore in this study, 1) tracking strategies for different types of home environ-
ments were tested in a simulator to observe the effect on robot behavior; 2) an  
improved multi-channel saliency fusion model was proposed, especially for high per-
ceptual quality saliency models to decrease the irrelevant salient regions. This  
new saliency model, which utilizes principle component analysis (PCA) [3] and mul-
ti-channel pulse-coupled neural network (m-PCNN) [4], was integrated into an  
RGB-D particle filter based visual tracking [5-7] application to observe whether the 
performance improved or not. 

The paper is organized as follows: In section 2, the approach to test and analyze the 
control effect on the robot in different conditions is given. Section 3 explains the pro-
posed multi-channel saliency fusion model and its integration for visual tracking 
based on particle filter model. Experiment setup and the results are given in Section 4, 
and then following concluding remarks are stated.  
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2 Investigating the Effect of Tracking Strategies in Simulation 

In our previous works, the system has not been tested in different types of indoor 
environment, for example different size of the room, the density of furniture that 
could be the obstacle for mobile robot, the room containing dead-end or not, etc. 
(Fig.3). It is very important to test different scenarios to improve the tracking strate-
gies of the bio-monitoring robot in the real daily living environment. 

The effect of these problems can’t be separated and observed easily on real  
environment, thus we employed a Mobile Robot Simulator (Webots7.1.0, 
CYBERBOTICS) to test different tracking strategies for different types of rooms. 
Similarly to our past work, we used a reactive controller to enable the robot to avoid 
obstacles while following the subject using a position PID control. For this study we 
compared two tracking strategies for two different simulated home environments. In 
Strategy A the robot keeps tracking the target without stopping. On the other hand, in 
strategy B, the robot doesn’t move until the target goes outside of the camera’s visual 
field. In both cases a position PID control was used. We compared these two strate-
gies in a large room (8m*8m) environment, and a small room environment (4m*4m) 
as shown in Fig.3. Each trial lasted for 60 seconds. 

  

Fig. 3. A small environment(left) and a large environment(right) with obstacles and robots 

3 Visual Tracking 

The work we have done until now had relied mainly on the data acquired through the 
Kinect SDK, but a better and more reliable model should be implemented to increase 
the accuracy of visual tracking. Therefore, considering the computational visual atten-
tion (VA) models, based on the visual attention mechanisms of humans, the attentive 
or salient regions of images with respect to several features (intensity, color, motion, 
and etc.) could be used to reduce redundant information by giving priority to these 
salient cues. This will result in better representations of the scene, which could  
improve visual tracking. Hence, first, we proposed a framework for salient feature 
channel fusion for saliency approaches to improve the saliency output to decrease 
irrelevant salient regions. 
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3.1 Saliency Fusion in Eigenvector Space with an m-PCNN 

Saliency maps provide useful features by selecting significant parts and reducing the 
redundant data from the perceived visual scene locally and globally based on the con-
cept of visual attention (VA) mechanism [8-11]. This way, the resultant data can be 
used for further processing such as detection, segmentation, and data reduction. Sa-
liency computational models take advantage of internal [8] or external [9] modules to 
identify local relations among salient features or to avoid irrelevant salient regions for 
better scene representation in the computed saliency maps. Internal approaches have 
the advantage of being independent of the application and have the ability to utilize 
space projection, feature extraction, and fusion concepts as a closed approach in an 
integrated manner. Therefore, in the present paper, we apply an internal approach that 
aims at; i) local-to-global feature differences with statistical correlations among the 
feature spaces without any normalization process, and ii) improvement of the unifor-
mity around the salient regions and reduction of irrelevant small salient regions. The 
proposed model is for saliency conspicuity map fusion using two concepts such as 
input image transformation relying on principal component analysis [3] and saliency 
conspicuity map fusion with a multi-channel pulse-coupled neural network [4] with 
two different recent saliency computational models (i.e. frequency-tuned saliency 
detection (FTS) [9] and wavelet-transform-based saliency detection (WTS) [10]) sep-
arately to demonstrate the effectiveness of the proposed model. 

Procedure of the Proposed Saliency Fusion Model 
 

The proposed method inputs three transformed image channels from an RGB image 
by using the three eigenvectors obtained by PCA. Then, SCMs are generated with the 
selected saliency approach to demonstrate the effectiveness of the PCA and m-PCNN 
integration into an existing state-of-the-art saliency map algorithm. As a final step, m-
PCNN is used to fuse the three generated SCMs, which are weighted with their re-
spective eigenvalues (Fig.4). 

 

Fig. 4. Flowchart of the proposed saliency fusion model 

whereCi is the transformed data in the eigenvector space for each principal compo-
nent, SFM is the saliency conspicuity map generation, Fi is the SCM, and m-PCNN is 
the fusion model based on the multi-channel pulse-coupled neural network. 
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Input Image Transformation by PCA 
 

The initial step in the proposed system is to obtain the PCA for an RGB input image 
as in [3] to obtain the respective eigenvalues and eigenvectors. First, a Gaussian filter 
is applied for smoothing, and then, the RGB image is converted to two-dimensional 
(2D) data by making each R, G, and B channel a raw vector. Then, PCA is applied to 
the data to obtain eigenvalues and eigenvectors. The first principal component of the 
eigenvalues and eigenvector pairs has the highest eigenvalue in the set. The transfor-
mations for each eigenvector space can be done as in (1) [3]: 

 A  = ( ),T T
i i ×ξ v  (1) 

where Ai is the transformed data in the eigenvector space based on the ith principal 
component, v is the zero mean adjusted data, ξi is the ith principal eigenvector, and T 
is the transpose operation. Then, 1D Ai is remapped to 2D Ci data regarding the row 
and column size of the image, where Ciare the input images for the saliency computa-
tion. Obviously, as it can be seen in Fig.5, local and global information content can be 
controlled with PCA-based representation more practical than with other tools such as 
internal feature normalization methods [8] or an external assistive segmentation algo-
rithm [9] to enhance the saliency map. 

 

Fig. 5. Sample RGB color images, their respective eigenvector space representations (first, 
second, and third principal transformations (rows 2–4, columns 1 and 3, top to bottom, respec-
tively), and the respective WTS-based [10] SMCs of each eigenvector space representation (to 
the right of each transformation image) 

Saliency Conspicuity Maps for Each Component 
 

For more detailed information, it is necessary to have SCMs with full resolution. We 
selected two recent saliency frameworks to integrate the proposed fusion model. The 
saliency map in [9] (FTS model) computes the SCMs based on the difference between 
a Gaussian blurred image and the mean value of the image that yields more globally 
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biased saliency information. The local saliency map of [10] (WTS model) was se-
lected as another modality. It is based on inverse WT (IWT) that avoids low-pass 
signals in a multi-scale perspective, thereby providing regional differences from edge 
to texture in a more local perspective. FTS and WTS were selected because it is good 
to have local-to-global saliency models separately to show the performance of PCA 
and m-PCNN-based fusion. The m-PCNN aims to improve the final saliency result by 
considering the relations among neighboring pixels during the fusion process, and 
there is no need for a CIE Lab color space transformation in either FTS or WTS inte-
gration owing to PCA utilization. Therefore, FTS [9] and WTS [10] were adopted for 
the proposed model to compute the saliency conspicuity maps of each input channel 
separately as in Fig.4. In Fig.5, examples of WTS-based conspicuity maps are com-
puted from the PCA inputs. It can be seen that each eigenvector space has a unique 
saliency representation where the third principal components have the most global 
saliency information compared to the others.  

Fusion by m-PCNN 
 

The next step is to combine all SCMs into a final saliency map. The PCNN can be 
regarded as a promising algorithm for information fusion since its usability has been 
proven in many image processing applications [4]. In this paper, m-PCNN with auto-
nomous weighting adaptation was applied as the fusion model. The basic idea can be 
described by the fact that each input channel behaves as a feeding compartment and 
also as a linkage between other input channels as stated in [4]. The formulations for 
the structure are given as follows [4]: 

 [ ] [ ] ( ), , , ,1 * [ 1]Hk k k
i j i j H i j i jH n e H n V W Y n Iα−= − + − +  (2) 

 [ ] ( ), ,
1

1 [ ]
K

k k
i j i j

k

U n H nβ
=

= +∏  (3) 

 [ ] , ,
,

1, [ ] [ 1]

0,

i j i j
i j

U n T n
Y n

else

> −= 


 (4) 

 [ ] [ ], , ,1 [ ]T
i j i j T i jT n e T n V Y nα−= − +  (5) 

 ( ) ( )2 21 /mnW m n = +  
 (6) 

wherek = {1,2,3} refers to the input channels, W is the weight matrix (6) in which m 
and n—representing the location of the surrounding pixels—are the distances to the 
center pixel on the x–y plane, I is the input stimulus, H is the external stimulus from 
the feed function (2), U is the output (3) by combining linking structures for each 
iteration n, and Yi,j is the fired neuron that is defined by the dynamic threshold T. The 
other parameters are assigned as αH = 0.001 (2), VH = 15 (2), αT = 0.012 (5), VT = 100 
(5), βk = εk, (3),and εk is the normalized eigenvalue of the kth eigenvector space where 
∑εk = 1 should be satisfied [4]. Initially, Yi,j, Ui,j, and Ti,j are all set to zero, and Hk

i,j is 
initially valued as Ik

i,j; after the iterations are completed, the square root of U is taken 
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as the fused final saliency to decrease the high variation during fusion due to modula-
tion. Using the eigenvalues based on the PCA, we can control the weight of each 
SCM autonomously during fusion where the first input channel has the highest 
weight, since the SCM will be more representative if it has more local and global 
information, owing to the high variation in the first eigenvector space. In addition, the 
surrounding salient region will be more uniform, and noisy small false salient regions 
will be decreased or removed by the m-PCNN fusion model. 

3.2 Proposed Saliency Model and RGB-D Particle Filter Visual Tracking 

Particle filter based visual tracking is not a new approach; for example, the algorithm 
in [5] showed an adaptive color-based particle filter. The color distribution was taken 
into account as the observation model, and pixel positions are used for the state space 
for updating the state of the particles. Then, the use of 3D state space was proposed in 
[6] where depth was also used as the observation for the particles. Therefore, in our 
previous experiments, we found out that that a simplified way to integrate depth with 
2D state space definition is enough by using depth likelihood feature together with the 
color distribution to achieve particle filter visual tracking. In addition, Frintropet.al. 
[7] defined a component-based descriptor for particle observation based on the salient 
feature space from the intensity and color channels. Particle weights were updated 
based the similarity value between the particle observation and reference observation 
by using the saliency feature space [7]. Therefore, we implemented an efficient algo-
rithm to use i) proposed saliency map model instead of using several saliency feature 
maps, ii) depth likelihood just as observation rather than including it in state space, 
and iii) color distribution for particle filter visual tracking. 

First, for the subject of interest, reference color distribution [5] and depth value is 
obtained from RoI to be tracked that is defined by an ellipse. The state space for each 
particle should be defined as below [5-6]: 

 st = xt , yt , xt , yt , Hxt , Hyt ,θt{ }  (7) 

wherex, y represents the position of each particle and centroid of the ellipse to ob-
tained the observation color probability density function (pdf) of particles followed by 
their velocity, and Hx and Hy are half axes values of ellipse with orientation θ [5]. 
Then, based on this state space, particles’ state update definition over time is achieved 
by a first order motion model [5, 7].  

To find the similarity between the reference color pdf and particles’ observations, 
the Bhattacharyya cooefficient (8) can be used to calculate likelihood of the particles 
as below [5]:  

 { }[ , ] [ ] [ ] ; 1,...,p q p n q n n Nρ = ∈  (8) 

The next step is to find the depth likelihood map and saliency map to improve the 
particle update criteria where the update formulation is given below: 
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 ( )1t t t t tw N w c d s−=  (9) 

whereN(.) is the normalizing function to make the sum of weights to 1, w is the par-
ticle weight and c is the color likelihood for each particle, d is the depth based particle 
elimination weight in which d is 1 if the particle inside the segmented depth subject 
estimation, otherwise 0, and s is the saliency value color scene at the particle position.  

Depth likelihood map is generated by a Gaussian function with the depth value ob-
tained from the previous state of the tracked subject so the particles out of subject 
boundaries can be avoided during new state estimation. With the depth likelihood 
map, the weights can be kept as the color likelihood update or can be assigned to zero 
if the particle does not fall on the estimated subject depth region. Thus, particle on the 
subject boundary can keep on surviving that will increases robustness of the tracking 
without the necessity of 3D state space usage as used in the work [6]. Moreover, im-
portance of each particle can be controlled by their saliency value since it shows their 
visibility on the scene. So, the features of attentive particles are less noise free and 
more reliable compared to the particles at positions without any significance. They are 
more likely to be observed in the next state too. Hence, with a simple observation and 
an efficient saliency representation, visual tracking with particle filter defined in 2D 
state space can achieve good results with RGB-D sensor. 

4 Experiments and Results 

4.1 Simulation Results for the Robot Control 

Two different robot behaviors while tracking were examined in the simulation  
environment within the two environmental conditions. As stated before, first robot 
behavior condition keeps the robot tracking without stopping or interruption on the 
motion. However, for the second case, the robot doesn’t move until the target goes 
outside of defined limits of visual field on the scene. And, for the analysis, we deter-
mined an evaluation function as in (10) where L and Ld mean the times of target lost, 
and its maximum value (4[times] in this research), respectively. V and Vd stand for 
the standard deviation of vibration of images [pixel]), and its maximal value (10[pixel 
in this research]). E and Ed mean the error caused by exceeding a distance threshold, 
and the threshold respectively. From the Fig. 6, it is clear thatthe suitable strategy for 
large room environment is strategy A. Thereason is that in such an environment, strat-
egy B can’t keep effective camera range and must do STOP & GO many times, which 
could be a major source of camera vibration. From the Fig. 7, it is clear thatthe suita-
ble strategy for a small room environment is strategy B.  The reason is that in such 
small room, strategy B can keep effective camera range and can keep non-movement 
state. So, it is possible to say that the best strategy for different environment should be 
different. 

 Value =  
L

Ld
*100 + 

V

Vd
*100 + 

E

Ed
*100  (10) 
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Fig. 6. Results for (left) the large room environment (right) the small room environment 

4.2 Evaluation of the Proposed Multi-channel Saliency Fusion Model 

Proposed saliency fusion model is evaluated by comparing the consistency of the 
salient regions with the ground-truth regions labeled by human subjects. In this way, 
the analysis of the saliency model can be observed quantitatively by the integration of 
PCA and m-PCNN with the FTS [9] and WTS [10] models. For this purpose, datasets 
with 5000 images [12] and 1000 images [9] were used for the experiments. The data-
sets included images and their respective ground truths from various subjects [9, 12]. 
Saliency models IT [8], SR [11], FTS [9], and WTS [10] were selected for compari-
son because each model has a unique representation. FTS [9] and WTS [10] were also 
compared with the proposed model owing to their good performance in full-resolution 
saliency image quality. The 5000-image dataset of [12] was tested with precision (P), 
recall (R), and F-measure (Fm) metrics [10]. The commonly used area-under-curve 
(AUC) performance evaluation [13] was applied to the 1000-image dataset of [9]. The 
results are shown in Table 1 in favor of proposed model.  

Table 1. Quantitative measurementoftheproposedmodel 

  (5000 images) (1000 images) 
Method P R Fm AUC 
IT [9] 0.5556 0.5941 0.5640 0.8028 
SR [11] 0.5799 0.5412 0.5705 0.8025 
FTS [12]  0.5343 0.4470 0.4927 0.8198 
WTS [14] 0.6314 0.5949 0.6048 0.8813 
Proposed FTS fusion 0.6283 0.6292 0.6076 0.8979 
Proposed WTS fusion 0.6444 0.6770 0.6373 0.8925 

 
In Table 1, the improvement over FTS [9] with the current PCA and m-PCNN fu-

sion integration is significant. Further, the same improvements for these measure-
ments are visible for WTS [10] and its integration. This demonstrates that the salient 
region representing the ground truth increased with some decrease in the irrelevant 
regions in the final saliency map as shown in the examples in Fig.7. The overall anal-
ysis demonstrates the effectiveness of the fusion model with both the FTS and WTS 
saliency conspicuity map models selected. 
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(a) (b)  (c) (d) (e) (f) 

Fig. 7.  (a) Sample image, (b) FTS [9] and its segmentation (c) proposed fusion for FTS and its 
segmentation, (d) WTS [10] and its segmentation, (e) proposed fusion for WTS and its segmen-
tation, (f) RoI labeled by the subjects for the 5000-image dataset [12] 

4.3 Experimental Results for the Saliency and RGB-D Based Visual Tracking 

The experiments on visual tracking based on particle filter with saliency-depth-color 
observation model was done in dynamic condition such that the subject was moving 
in any direction in the room and Kinect sensor had rotational motion to keep the sub-
ject in the visual filed. First, the color image (Fig.8(a)) from Kinect sensor is used to 
obtain color distribution of each particle, then depth likelihood map (Fig.8(c)) is com-
puted by depth image (Fig.8(b)) by applying pdf, and finally, we compute saliency 
map (Fig.8(c)) of the color image with the proposed model. With the all observation, 
particle weights can be updated to create a more robust visual tracking.  

 

Fig. 8. (a) Sample color image, (b) depth image from Kinect sensor, (c) depth likelihood map 
obtained from the depth image in (b), (d) saliency map computed by the proposed model 
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In Fig.9, tracking samples by several frames are given from the experimental  
recordings. Particles are shown with the ellipse RoI in which ellipse state space is 
estimated by the weighted average of the particle states. To be able to make an  
evaluation, we compared particle filter visual tracking in 3 conditions: i) only color 
observation as in [5], ii) color observation supported by the depth likelihood, and iii) 
proposed saliency model integration to depth and color observation to update the 
weights. Each case was tested 20 times in a recorded sequence of video in which the 
subject was moving and Kinect sensor was rotating.  

  

Fig. 9. Sample frames for visual tracking with weighted ellipsoid region on subject body seg-
mented from the depth likelihood 

The visual tracking failure condition is defined as the estimated centroid position of 
the ellipsoid falls on the background region that is not related to the tracked subject. 
Experimental values for the success and failure numbers are given in Table 2.  First 
condition (only color) was able to complete visual tracking the data 60% of the tests 
without failure. Second case (color and depth) performed 75% success rate within the 
20 tests. On the other hand, using saliency and depth data with color distribution to 
update weights yielded best tracking success by being able to track 90% of the all tests.  

Table 2. Particlefilterbasedvisualtrackingresultsforeachobservationdatacondition 

Color Only Color - Depth Color – Depth - Saliency 
#Success #Failure #Success #Failure #Success #Failure 

12 8 15 5 18 2 

5 Conclusion 

In this study, different modules of a bio-monitoring mobile robot system were ex-
amined to develop a reliable structure. First, we investigated tracking strategies for 
different types of home environments in simulation environment. Then, we proposed 
a new multi-channel saliency fusion model to integrate saliency and depth data to 
color based particle filter visual tracking. Experimental analysis demonstrated that 



12 N. Imamoglu et al. 

 

adapting new tracking strategies for the robot can be beneficial for different types of 
room environment. Proposed saliency fusion model yielded promising results by im-
proving the saliency results of two existing state of the arts approach. Also, in the 
visual tracking experiments, updating the weights of particles with their respective 
saliency value had improvement on the success rate for the tracking tests. For the 
future work, the computational efficiency should be improved for real time tracking in 
real scenario by including human gait recognition and analysis to this system for our 
ultimate goal which is to develop autonomous mobile home healthcare bio-
monitoring robot. 

Acknowledgements. Japan JST -US NSF Research Exchange Program, 2011-2013, 
Autonomous Mobile Robots for Home Healthcare and Bio-monitoring of Motor-
function Impaired Persons. 

References 

1. Nergui, M., Imamoglu, N., Yoshida, Y., Yu, W.: Human gait behavior classification using 
hmm based on lower body triangular joint features. In: IASTED International Conference 
on Signal and Image Processing, Honolulu (2012) 

2. Nergui, M., Imamoglu, N., Yoshida, Y., Gonzalez, J., Otake, M., Yu, W.: Human Activity 
Recognition Using Body Contour Parameters Extracted from Depth Images. J. of Medical 
Imaging & Health Informatics (accepted, 2013) 

3. Smith, L.I.: A Tutorial on Principal Component Analysis,  
http://www.cs.otago.ac.nz/cosc453/student_tutorials/ 
principal_components.pdf 

4. Wang, Z., Ma, Y.: Medical image fusion using m-PCNN. Information Fusion 9, 176–185 
(2008) 

5. Paris, S.: Particle Filter Color Tracker. In: Mathworks File Exchange (2011), 
http://www.mathworks.com/matlabcentral/fileexchange/17960-
particle-filter-color-tracker 

6. Giebel, J., Gavrila, D.M., Schnörr, C.: A Bayesian Framework for Multi-cue 3D Object 
Tracking. In: Pajdla, T., Matas, J. (eds.) ECCV 2004. LNCS, vol. 3024, pp. 241–252. 
Springer, Heidelberg (2004) 

7. Frintrop, S., Konigs, A., Hoeller, F., Schulz, D.: A Component Based Approach to Visual 
Person Tracking from a Mobile Platform. Int. J. of Social Robotics 2, 53–62 (2010) 

8. Itti, L., Koch, C., Niebur, E.: Model of Saliency-Based Visual Attention for Rapid Scene 
Analysis. IEEE Trans. on Pattern Analysis and Machine Intelligence 20(11), 1254–1259 
(1998) 

9. Achanta, R., Hemami, S., Estrada, F., Susstrunk, S.: Frequency-Tuned Salient Region De-
tection. In: IEEE Int. Conf. CVPR, pp. 1597–1604 (2009) 

10. Imamoglu, N., Lin, W., Fang, Y.: A Saliency Detection Model Using Low-Level Features 
Based on Wavelet Transform. IEEE Trans. on MultiMedia 15(1), 96–105 (2013) 

11. Hou, X., Zhang, L.: Saliency Detection: A Spectral Residual Approach. In: IEEE Int. 
Conf. CVPR, pp. 1–8 (2007) 

12. Liu, T., Sun, J., Zheng, N.-N., Tang, X., Shum, H.-Y.: Learning to Detect a Salient Object. 
In: IEEE Int. Conf. CVPR, pp. 1–8 (2007) 

13. Cardillo, G.: ROC curve: compute a Receiver Operating Characteristics curve (2008), 
http://www.mathworks.com/matlabcentral/fileexchange/19950 



 

J.A. Botía et al. (Eds.): EvAAL 2013, CCIS 386, pp. 13–23, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Efficient Activity Recognition and Fall Detection  
Using Accelerometers 

Simon Kozina, Hristijan Gjoreski, Matjaž Gams, and Mitja Luštrek 

Department of Intelligent Systems, Jožef Stefan Institute 
Jamova cesta 39, 1000 Ljubljana, Slovenia 

{simon.kozina,hristijan.gjoreski,matjaz.gams, 
mitja.lustrek}@ijs.si 

Abstract. Ambient assisted living (AAL) systems need to understand the user’s 
situation, which makes activity recognition an important component. Falls are 
one of the most critical problems of the elderly, so AAL systems often incorpo-
rate fall detection. We present an activity recognition (AR) and fall detection 
(FD) system aiming to provide robust real-time performance. It uses two wear-
able accelerometers, since this is probably the most mature technology for such 
purpose. For the AR, we developed an architecture that combines rules to rec-
ognize postures, which ensures that the behavior of the system is predictable 
and robust, and classifiers trained with machine learning algorithms, which 
provide maximum accuracy in the cases that cannot be handled by the rules. For 
the FD, rules are used that take into account high accelerations associated with 
falls and the recognized horizontal orientation (e.g., falling is often followed by 
lying). The system was tested on a dataset containing a wide range of activities, 
two different types of falls and two events easily mistaken for falls. The F-
measure of the AR was 99 %, even though it was never tested on the same per-
sons it was trained on. The F-measure of the FD was 78 % due to the difficulty 
of the events to be recognized and the need for real-time performance, which 
made it impossible to rely on the recognition of long lying after a fall. 

Keywords: Ambient assisted living, Activity recognition, Fall detection, Machine 
learning, Rules, Accelerometers. 

1 Introduction 

The world’s population is aging rapidly, threatening to overwhelm the society’s  
capacity to take care of its elderly members. The percentage of persons aged 65 or 
over in developed countries is projected to rise from 7.5% in 2009 to 16% in 2050 [1]. 
This is driving the development of innovative ambient assisted living (AAL) technol-
ogies to help the elderly live independently for longer and with minimal support from 
the working-age population [2, 3]. 

This paper presents a system that recognizes the user’s activity and detects falls us-
ing wearable sensors. To provide timely and appropriate assistance, AAL systems 
must understand the user’s situation and context, making activity recognition (AR) an 
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essential component [4, 5]. Fall detection (FD) is an important component of many 
AAL systems because approximately half of the hospitalizations of the elderly are 
caused by falls [6], fear of falling is an important cause for nursing home admission 
[7], and “the long lie” (not being able to get up and call for help) is a good predictor 
of death within six months [8]. 

AR and FD require a sensor system that observes the user and intelligent software 
that infers the user’s activities from the sensor data [9, 10]. We selected wearable 
accelerometers as the sensors since they are accurate, inexpensive, can be used both 
indoors and outdoors, and can be sewn into clothing for minimal intrusiveness. For 
the AR, we developed an architecture that combines rules to recognize postures, 
which ensure the behavior of the system is predictable and robust, and classifiers 
trained with machine learning (ML) algorithms, which provide maximum accuracy in 
the cases that cannot be handled by the rules. For the FD, rules are used that take into 
account high accelerations associated with falls and the recognized horizontal orienta-
tion (e.g., falling is often followed by lying). 

The rest of this paper is organized as follows. An overview of studies related to AR 
and FD is presented in Section 2. Section 3 gives an overview of the system and  
the methodology. In Section 4, the sensors and methods used in the AR and FD are 
described. Section 5 and 6 describe the experimental setup and experimental results, 
respectively. Section 7 concludes the paper and gives directions for future work. 

2 Related Work  

AR and FD approaches can be divided into those that use wearable and non-wearable 
sensors, respectively. The most common non-wearable approach is based on cameras 
[11]. Although this approach is physically less intrusive for the user compared to one 
based on wearable sensors, it suffers from problems such as target occlusion, time-
consuming processing and privacy concerns. The most mature approach to both AR 
and FD is probably using wearable accelerometers[12, 13, 14, 15]. There are two 
common types of wearable-sensor approach that have proven successful: those that 
use domain knowledge encoded with rules, and those that use machine learning. Most 
researchers used only one of the two approaches, while our work combines both. 

The most common accelerometer-based AR approach uses only ML. Typically a 
sliding window passes over the stream of sensor data, and the data in each window is 
classified with one of the known classification methods, such as decision trees (DTs) 
and support vector machines (SVM). Examples include Kwapisz et al. [12], who used 
an accelerometer placed on the thigh and compared three classification methods on 
dynamic activities such as walking, running, and jogging. Ravi et al. [16] used an 
accelerometer in a mobile phone and tested five classification methods. The results 
showed that when a given person’s data was used for both training and testing, the 
accuracy was 90%, but when a different person’s data was used for the testing, the 
accuracy dropped to 65%. In our work we never used the same person for training  
and testing, since the developed model is intended for use by people who were not 
involved in the training. 
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An alternative approach to accelerometer-based AR is based on manually created 
rules. These rules are usually based on features that are calculated from sensor orien-
tations and accelerations. Wu et al. [13] presented an approach in which decision rules 
are used to recognize activities. Another implementation of such rules was presented 
by Lai et al. [14], who used six accelerometers, placed on the neck, waist, both wrists 
and both thighs. The reported accuracy was almost perfect (99.5%), but the number of 
sensors is excessive for everyday use.  

The most common approach to FD use rules that apply thresholds to accelerations 
and features derived from them, and sometimes consider the activity after a potential 
fall. Jantaraprim et al. [17] used a triaxial accelerometer worn on the chest; by apply-
ing a simple threshold to the acceleration, they detected falls with 98.9 % accuracy. 
Nguyen, Cho and Lee [19] used a triaxial accelerometer worn on the waist; by apply-
ing thresholds to the acceleration, they detected a potential fall and the activity after 
the fall, resulting in 100 % accurate fall detection. Some researchers used machine 
learning instead of threshold-based algorithms. Zhang et al. [20] and Shan and Yuan 
[18] both used a triaxial accelerometer worn on the waist. Using SVM machine learn-
ing algorithm on various features derived from accelerations, they detected falls  
with 96.7 % and 100 % accuracy, respectively. We opted for the rules-based ap-
proach, since rules can be understood by humans and are thus less likely to result in 
unexpected behavior in practice. 

3 System Implementation 

An overview of the system is shown in Fig. 1. Two accelerometers were attached to 
the user's chest and thigh. The placement was chosen as a trade-off between the phys-
ical intrusiveness and the performance in preliminary tests [11]. The Shimmer sensor 
platform [21] was chosen because it has a reasonable battery life and compact size, is 
completely wireless, and has the option to reprogram the sensor based on the user’s 
needs and situation. The platform has a 3-axis accelerometer, uses Bluetooth commu-
nication, and has 2 GB of storage, which is enough to store 3 months of sensor data 
when the frequency of acquisition is 50 Hz. This frequency proved sufficient to cap-
ture even the fastest human movement.Additionally, for the purpose of the EvAAL 
AR competition, a laptop with a long-rangeBluetooth antenna will be used for maxi-
mum reliability. In general, though,any kind of Bluetooth device with modest 
processing capability is sufficient, therefore a smartphone can also be used. 

 

 

Fig. 1. System overview 
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The process of the AR and FD is the following.First, the sensors transmit the raw 
acceleration data over Bluetooth to the processing unit. The data from both sensors is 
then synchronized, filtered and segmented. Then the flow splits into two. On one side 
the segmented datais transformed into feature vectors for the AR module, which  
recognizes the user's activity. On the other side, the FD module checks the accelera-
tion pattern. If a fall pattern is recognized and the predefined acceleration threshold is 
reached, the user's orientation is checked. If the orientation corresponds to lying (ho-
rizontal), a fall is detected. Both the AR and FD modules are evaluating the user’s 
situation every 250 milliseconds which is chosen with accordance to the EvAAL AR 
competition guidelines. First, the FD module checks for the fall acceleration pattern. 
If a fall is detected, the system outputs the activity falling; otherwise the AR recog-
nizes and outputs the activity. For instance, if the current system time is denoted with 
t, the FD module evaluates fall events in the [t – 2s,t – 1s] interval, and the [t – 1s,t] 
interval is used to check if the orientation of the chest sensor corresponds to lying. If 
the fall event is detected and the orientation is correct, the reported activity is falling, 
otherwise the reported activity is computed with the AR module in the [t – 2s,t] inter-
val. The system thus reports the user’s activity with a two-second delay. 

4 Methods 

4.1 Data Preprocessing 

The first step in the preprocessing phase is sensor data synchronization. This is neces-
sary when multiple sensors are used, since the data from the sensors is not all received 
at the same time.  

Once the sensor measurements are synchronized, further preprocessing is per-
formed using band-pass and low-pass filters. The acceleration is the sum of the acce-
leration due to the gravity and the acceleration due to the movement of the sensor 
(and the person wearing it). The band-pass filter thus has two goals: (1) to eliminate 
the low-frequency acceleration (gravity) that captures information about the orienta-
tion of the sensor with respect to the ground and (2) to eliminate the high-frequency 
signal components generated by noise, thus preserving the medium-frequency signal 
components generated by dynamic human motion. The band-pass-filtered data is used 
for the extraction of features relevant for dynamic activities, such as walking and 
cycling. The low-pass filter is used to eliminate most of the signals generated by dy-
namic human motion, preserving the low-frequency component, i.e., gravity [22]. The 
low-pass-filtered data thus contains sensor orientation information, which is relevant 
for the recognition of static activities (postures), such as lying, sitting and standing. 

Finally, an overlapping sliding-window technique is applied. A window of 2-
second size (width) moves across the stream of data, advancing by 250 milliseconds 
in each step. The window size was selected in correspondence to the EvAAL AR 
competition guidelines. The data within each window is used to compute the feature 
vector used for AR described in the next section. The feature vector contains  
low-pass-filtered features that measure the posture of the body. Additionally, it con-
tains band-pass-filtered features that represent: (1) the motion shape, (2) the motion 
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variance, (3) the motion energy, and (4) the motion periodicity [22]. The feature vec-
tor consists of a total of 64 features per sensor. 

4.2 Activity Recognition Module 

In the AR module, the activities are recognized by a three-level scheme shown in Fig. 
2 [23]. On the first level the feature vector is fed into a Random Forest classifier, 
which is trained to distinguish cycling from the other activities. If an activity is not 
classified as cycling, the feature vector is passed to the second level, where the activi-
ties are recognized by rule-based activity recognition (R-BAR). On this level only 
features representing average values of low-pass-filtered data are used.The following 
activities are separated at this level: sitting, lying, bending, and upright posture. If the 
selected activity is an upright posture, the third level of activity recognition is used to 
distinguish between standing and walking. The feature vector is again fed into a Ran-
dom Forest classifier, which is trained to separate these activities.The parameters used 
for the Random Forest classifier were default ones, as described in Weka’s API [24]. 
 

 

Fig. 2. A three- level AR scheme 

R-BAR, used on the second level of the AR, is used for detecting static activities, 
standing, lying, sitting and bending. Walking, which is a dynamic activity, is merged 
with its static equivalent, standing. R-BAR uses the orientation of the sensors to rec-
ognize posture. The orientation of a sensor is computed with Eq. (1), where i is one of 
the axes (x, y, or z). Additionally, the orientation is normalized to [0,1] interval. 
     

 1 · 12 
 

(1) 

  

The values computed in this way form an orientation vector O=(φx, φy,φz) for one 
sensor, which is then matched with the set of rules defined by a domain expert as the 
typical orientations of the sensors for each activity. Figure 3 shows example orienta-
tions for three activities (sitting, bending, and upright posture). The structure of the 
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rules in Fig. 3is the following: Oactivity=(φchest,x, φchest,y, φchest,z, φthigh,x, φthigh,y, φthigh,z). 
For every orientation measurement in vector O, an error is computed using Eq. (2), 
where d is the absolute difference between the value defined in the rules and the ac-
tual measurement. A higher absolute difference d denotes a higher difference between 
the actual and the typical sensor orientation, resulting in a larger value of the error e.  

0.25 ; 0 0.253 0.5; 0.25 0.51; 0.5  
 
(2) 

 

The error values form an error vector whose size is the same as that of the orientation 
vector. These components are summed up in order to obtain the overall error of an 
activity. Activity with the minimum error is selected as the correct one. 

 

Fig. 3. Example orientation for three activities: sitting, bending and standing 

4.3 Fall Detection Module 

A typical acceleration pattern during a fall, measured by a chest accelerometer, is a 
decrease in acceleration followed by an increase, as shown in Fig. 4. This is because 
an accelerometer at rest registers 1 g (the Earth’s gravity) and during free fall 0 g. 
When a person starts falling, the acceleration decreases from 1 g to around 0.5 g  
(perfect free fall is never achieved). Upon the impact with the ground, a short strong 
increase in the acceleration is measured. 

 

Fig. 4. Acceleration pattern during a fall 
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To detect falls with a threshold, we used the length of the acceleration vector, 
which means that we ignored the direction of the acceleration. The minimum and the 
maximum acceleration within a one-second window were measured. If the difference 
between the maximum and the minimum exceeded 1 g and the maximum came after 
the minimum, we declared that a fall had occurred. 

We augmented fall detection with the measurement of the person’s orientation af-
ter a potential fall. We assumed that the acceleration vector a = [ax, ay, az], which 
consists of the accelerations along the three axes of the accelerometer, generally 
points downwards (in the direction of the Earth’s gravity). Let z be the axis pointing 
downwards when the person is standing upright. The angle φ between the acceleration 
vector and the z axis thus indicates the person’s orientation, and was computed as 
follows: 

 (3) 

A person was considered to be oriented upright if –35° <φ< 35°. This was used for 
fall detection: if an acceleration fall pattern was detected that exceeded the threshold 
as described previously, and the orientation in the next second was not upright, we 
declared that a fall had occurred. 

5 Experiments 

5.1 Test Scenario 

In order to evaluate the AR and FD methods, a complex, 90-minute, scenario was 
designed in cooperation with a medical expert to capture the real-life conditions of a 
person’s behavior, although it was recorded in a laboratory. The scenario contained 
several sub-scenarios: walking on a treadmill, cycling on a stationary bicycle, elemen-
tary activities such as: sitting, lying, standing, and specialized activities such as:  
cooking, reading, typing, washing dishes, and scrubbing the floor. A special "fall" 
sub-scenario was included in order to evaluate the FD method. It contained two non-
fall-like events with large accelerations (quickly sitting down and quickly lying down) 
and two fall events – tripping and falling slowly (fainting). 

5.2 Evaluation Metrics 

The AR and FD methods were experimentally evaluated on the described test scena-
rio. The evaluation technique for the ML methods, the ones that require training a 
model, was leave-one-person-out cross validation. This means that a model was 
trained on the recordings of all the people except one. The remaining person was used 
to evaluate the model. This procedure was repeated for each person (10 times) and the 
average performance was measured. This evaluation technique was used because 
training and testing on the same person’s recordings would give overly optimistic 
results if the intended use of the model is to classify the activities of previously un-
seen people. 
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Decision Tree and Random Forest classifiers have problems separating between 
walking and standing activities. This is probably due to the fact, that both activities 
have similar average values when computed over a time window. Naive Bayes clas-
sifier however fails at accurately recognizing cycling and walking. Although AR 
module developed for EvAAL has misclassifiedsome standing and walking activities, 
it still outperforms other methods. 

6.2 Fall Detection 

The FD results (shown in Table 2) show that the first event ‒ tripping (quick uncon-
trolled fall) is detected each time (15 out of all 15 events). The next event, i.e., faint-
ing, is detected 13 out of 15 times. The next two events are the non-fall events that are 
difficult to distinguish from the fast falls because of the huge acceleration. Because 
the FD module also checks the user's orientation after a potential fall (huge accelera-
tion), it was able to distinguish quickly sitting on the chair from the classical falls 
(only 1 false detection). However, the problem still exists in the event in which the 
user quickly lies into the bed (13false detections). For correct recognition of this 
event, additional information about the user is needed, e.g., user's location. 

Table 2. Fall detection results 

Events Detected/All 

 

Recall Precision F-measure 
Tripping 15/15 

93.33% 66.67% 77.78% 

Fainting 13/15 

Quickly lying  13/15 
Quickly sitting  1/15 

Other 0 

The overall performance of the FD method shows that 93.3% of the fall events 
were detected (recall value), 66.7% of all the fall detections were actually falls (preci-
sion value), giving a final F-measure of 77.8%. 

7 Conclusion 

This paper presented an approach for AR and FD that emphasizes robustness and real-
time performance: it combines human-understandable rules with classifiers trained 
with ML. The rules can classify postures (static activities) quite accurately, and they 
ensure that the behavior of the system is as predictable as possible and that nothing 
unforeseen occurs when it is deployedin practice. However, since constructing un-
derstandable and accurate rules for dynamic activities is difficult or even impossible, 
ML classifiers are used for these activities. On the other hand, the FD method first 
recognizes the high acceleration fall pattern and then checks the user's orientation.  
If the orientation corresponds to lying, a fall is detected; otherwise the recognized 
activity from the AR module is used as system's output. 
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The system was tested on a dataset containing a wide range of activities, two dif-
ferent types of falls and two events easily mistaken for falls. The F-measure of the AR 
was 99 %, which is very good for only two accelerometers and leave-one-person-out 
cross-validation. It can partly be attributed to our AR architecture and partly to the 
high quality of the dataset, since great care was taken to include only technically per-
fect data (no corrupted signals or incorrect labels). The F-measure of the FD was 
78 %, which is not so good, but acceptable given the difficulty of the task. The main 
problem was mistaking lying down quickly for a fall, but could hardly be avoided 
without knowing that the event took place on a bed (impossible with accelerometers 
only) and without being able to observe the lying after a suspected fall for some time 
(impossible due to the emphasis on real-time performance). 

We are currently working on the ergonomics aspect of our system. The two accele-
rometers are presently attached to the user with elastic straps, but we plan to sew them 
into clothing, if this can be done without significantly decreasing the accuracy due to 
less secure attachment. It appears that there is not much room for improvement of the 
AR accuracy, but the FD accuracy is less satisfactory. Therefore we plan to investi-
gate approaches to improve this, both with additional sensors or by allowing more 
time to determine the context of a potential fall, and by improvements of the FD  
method only. 
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Abstract. Ambient Assisted Living facilities provide assistance and care
for the elderly, where it is useful to infer their daily activity for ensuring
their safety and successful ageing. In this work, we present an Activ-
ity Recognition system that classifies a set of common daily activities
exploiting both the data sampled by accelerometer sensors carried out
by the user and the reciprocal Received Signal Strength (RSS) values
coming from worn wireless sensor devices and from sensors deployed in
the environment. To this end, we model the accelerometer and the RSS
stream, obtained from a Wireless Sensor Network (WSN), using Re-
current Neural Networks implemented as efficient Echo State Networks
(ESNs), within the Reservoir Computing paradigm. Our results show
that, with an appropriate configuration of the ESN, the system reaches
a good accuracy with a low deployment cost.

Keywords: AAL, Activity Recognition, Neural Networks, Sensor Data
Fusion, WSN.

1 Introduction

Activity Recognition (AR) is an emerging field of research, that takes its moti-
vations from established research fields such as ubiquitous computing, context-
aware computing and multimedia. Recognizing everyday life activities is a
challenging application in pervasive computing, with a lot of interesting develop-
ments in the health care domain, the human behavior modeling domain and the
human-machine interaction domain [1]. From the point of view of the deploy-
ment of the activity recognition solutions, we recognize two main approaches
depending on whether the solution adopts wearable devices or not. The solu-
tions that make use of wearable devices are the more established and studied. In
these solutions the wearable devices are generally sensors (for example embed-
ding accelerometers, or transducers for physiological measures) that make direct
measures about the user activities. For example, a sensor placed on the user
ankle may detect the number of steps based on the response of an embedded
accelerometer that is shaked with a specific pattern every time the user makes

J.A. Bot́ıa et al. (Eds.): EvAAL 2013, CCIS 386, pp. 24–35, 2013.
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a step. On the other hand, the disadvantage of this approach is that wearable
devices can be intrusive on the user, even if, with recent advances in technolo-
gies of embedded systems, sensors tend to be smaller and smaller. Solutions
that avoid the use of wearable devices instead, are motivated by the need for a
less intrusive activity recognition systems. Among these solutions, those based on
cameras are probably the most common [2]. However, even though this approach
is physically less intrusive for the user, it suffers from several issues: low image
resolution, target occlusion and time-consuming processing, which is still a chal-
lenge for real-time activity recognition systems. Furthermore, user privacy is also
an important issue, especially if cameras are used to continuously monitor the
user itself. More recently, a new generation of non wearable solution is emerging.
These solution exploits the implicit alteration of the wireless channel due to the
movements of the user, which is measured by devices placed in the environment
and that measure the Received Signal Strength (RSS) of the beacon packets
they exchange among themselves [3]. In our activity recognition system we use a
mix of the two approaches. Specifically we use both wearable and environmental
sensors and we base the recognition of the user activity both on accelerometers
embedded on the wearable sensors and on the RSS of the beacon packets ex-
changed between all the sensors (both wearable and environmental). A second
important achievement of our system is the use of a distributed machine learn-
ing approach, in which the sensors themselves perform activity classification by
using embedded learning modules. Specifically, in the class of Recurrent Neural
Network, we take into consideration the efficient Reservoir Computing (RC) [4]
paradigm in general, and the Echo State Network (ESN) [5, 6] model in partic-
ular. In order to support distributed neural computation on the sensors we use
a Learning Layer: a software component developed within the framework of the
Rubicon project [7] that implements a distributed ESN embedded in the sensors
and in more powerful devices such as PCs or gateways. We base our approach
on some recent works [8–10] that classify activities based on accelerometer (in
fact, accelerometers have been widely accepted due to their compact size, their
low-power requirement, low cost, non-intrusiveness and capacity to provide data
directly related to the motion of people) and on some of our recent works in
which we used RSS and neural networks to make predictions on user movements
[11–16]. To the best of our knowledge, this is the first work that investigates the
use of common wireless sensor devices deployed in the environment in combina-
tion with wearable sensors embedding accelerometers, in order to increase the
performance of the activity recognition system. The rest of the paper is orga-
nized as follows. Section 2 presents a reference scenario, Section 3 describes the
overall architecture of the activity recognition system, and Section 4 anticipates
some experimental results about the performance of our system. Finally, Section
5 draws the conclusions.

2 Scenario

The main objective of the proposed system is to implement an activity recog-
nition system (ARS) that recognizes the following activities: Walking, standing
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up, sitting down, lying down, bending, falling and cycling (using a stationary
bike). The main critical issues for the proposed system are due to the unknown
environment (the CIAMI Living Lab in Valencia), and the unknown actor that
will perform the activities during the competition. For this reason we plan to
use a sensor network that is partly worn by the user and partly deployed in
the environment. Specifically, we plan to use 5 wearable and 4 environmental
sensors. The sensors are capable of measuring the signal strength of the incom-
ing packets, and also embed a two axis accelerometer. The wearable sensors are
placed on the chest, on the arms and on the ankles of the user. Each wearable
sensor measures accelerometer values from its embedded two-axis accelerometer.
Furthermore, the wearable sensors, which are connected in a clique, exchange
among themselves beacon packets, with the purpose of measuring the respec-
tive RSS among themselves. All the data acquired by the wearable sensors are
collected by the gateway that also runs a centralized instance of the Learning
Layer to make predictions about all the activities of the user. The environmental
sensors filters the beacon packets emitted by the wearable sensors to receive only
to the beacons emitted by the sensor on the chest. Each of these environmental
sensors embed the learning layer and make a prediction about the walking ac-
tivity. The predictions of the environmental sensors are sent to the gateway that
also implements a voting system to output the most likely activity of the user
(Fig. 1).

3 Architecture of the Proposed Solution

The implementation of the system leverages on a number of sensors (some wear-
able and some other environmental) and a gateway that run the RUBICON
Learning Layer (LL) developed in an ongoing European project [7]. The LL of-
fers a distributed, general purpose learning system where independent learning
modules are embedded on sensors and on the gateways. Such learning modules
are capable of addressing a large variety of computational learning tasks through
a scalable distributed architecture comprising independent RC learning modules
deployed on a variety of devices, including sensors. Since the LL is still under
development, due to the current software limitations it is not possible at the
moment to process on the sensors all the tasks required to detect all the activ-
ities defined in the EvAAL benchmarks. For this reason our deployed solution
leverages on the LL for the distributed detection of the walking activity, and
reverts to a centralized processing on the gateway for the other activities. In
perspective, as the RUBICON project will deliver new and more stable version
of the software, our plan is to embed all the tasks for all the activities directly
on the sensors. In this way the activity recognition will not require anymore the
presence of a gateway (which, however, may still be necessary but only to provide
the output of the activity recognition system to the user). The next subsections
describe the data processing and integration, and briefly review the RUBICON
Learning Layer.
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Fig. 1. Illustration of the RC-based multisensor data fusion algorithm

3.1 Sensor Data Processing and Integration

Depending on the tests that we will run before the actual competition, we will
use either the TMote [17] or the Iris [18] platform. Anyway, both platforms em-
bed a radio subsystem compatible with the IEEE 802.15.4 standard and they
are both capable of measuring the signal strength of the incoming packets, and
also embed a two axis accelerometers. As shown in Fig. 1 an integrated measure-
ment system, placed on the gateway in the case of a centralized processing and
on the sensor in the distributed detection of the walking activity, collects the
payloads of the beacon packets, filters data discarding bad packets and taking
into account possible packet losses, and send the filtered data to the features
extraction module. For the purpose of communications, the beacon packets are
exchanged by using a simple virtual token protocol that completes its execution
in a time slot of 0.1 seconds. As a result, each wearable sensor produces every
0.1 seconds a vector of 4 RSS values from the other sensors and its X and Y
accelerometer values (Fig. 2). The environmental sensors will produce only RSS
values between themselves and the wearable sensor placed on the chest. Fig. 2
shows in the Sensed Values section the raw data exchanced between the sensor
nodes. Instead of directly using raw sensor data that contain redundant infor-
mation as input for the ESN data fusion algorithm, time-domain features were
first extracted to train the fusion model and determine model parameters. In
this study, 40 features were extracted from the wearable sensors for every 200
ms data segment step time, corresponding to 2 time slot used by the virtual
token protocol. The step time is a configurable parameter in our system that
lets us collect more values to use in the feature extraction module when we want
to. The time-domain features, shown in the Aggregate Values section of Fig. 2,
included the mean value and standard deviation for each reciprocal RSS reading
and accelerometer on the x and y axis. Based on these features the ESN Learning
Layer and the voting system make a prediction about the activity type of the
user.
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Sample Data

Source
-------

No. Sensors: 5 Time Slot [ms]: 100 Step Time [ms]: 200

Sensed Values
-------------

Sensor i RSSi1 RSSi2 RSSi3 RSSi4 RSSi5 ACCiX ACCiY
--------------------------------------------------------------------------

1 0 24 18 25 27 534 449
2 23 0 31 18 24 481 441
3 16 31 0 27 23 494 458
4 26 18 27 0 52 500 422
5 26 24 24 51 0 514 465
1 0 24 20 26 25 532 448
2 23 0 32 17 24 482 441
3 18 31 0 27 23 493 457
4 26 18 27 0 52 499 422
5 24 24 22 51 0 514 464

Aggregate Values
----------------

Timestamp 1368548213503

M12 M13 M14 M15 M23 M24 M25 M34 M35 M45
23.50 18.00 25.75 25.50 31.25 17.75 24.00 27.00 23.00 51.50

SD12 SD13 SD14 SD15 SD23 SD24 SD25 SD34 SD35 SD45
0.50 1.41 0.43 1.12 0.43 0.43 0.00 0.00 0.71 0.50

M1X M1Y M2X M2Y M3X M3Y M4X M4Y M5X M5Y
533.00 448.50 481.50 441.00 493.50 457.50 499.50 422.00 514.00 464.50

SD1X SD1Y SD2X SD2Y SD3X SD3Y SD4X SD4Y SD5X SD5Y
1.00 0.50 0.50 0.00 0.50 0.50 0.50 0.00 0.00 0.50

Fig. 2. A sample data segment with Source, Sensed Values, and Aggregate Values for
a Step Time of 200 ms

3.2 RUBICON Learning Layer

The RUBICON Learning Layer (LL) implement a distributed, general purpose
learning system where independent learning modules are embedded on sensors
and on more powerful devices, e.g. gateways or PCs. The high-level goal of LL
is to deliver short-term predictions based on the temporal history of the input
signals. This can be easily applied to the recognition of human activities. The
software of the LL is organized into 3 subsystems:

– The Learning Network (LN) (Fig. 3(a)) that implements an adaptive envi-
ronmental memory by means of a distributed learning components. The LN
components hosted on the sensors are implemented in TinyOS [19], while
the LN components hosted on PCs or gateways are implemented in Java.
The LN modules (represented in Fig. 3(a)) reside on devices (either sen-
sors, PCs or gateways) with heterogeneous computational capabilities. The
distributed LN components cooperate through Synaptic Connections (thin
arrows in Fig. 3(a)) to perform a distributed neural computation. Each indi-
vidual module may processes local information obtained from the embedded
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transducers (if they are available) and remote inputs received from other
learning modules (such remote inputs are delivered through the Synaptic
Connection mechanism). As a whole, the LN subsystem, implements the as-
signed computational learning tasks by providing the run-time predictions.
Furthermore, the LN supports online refining the learned tasks by using on
teaching signals that may be provided by the user.

– The Learning Network Manager (LNM) that is a Java software agent hosted
on a gateway, that is responsible for the setup and management of the LL.
The Learning Network Manager (LNM) manages the learning phase and the
configuration of the LN. To this purpose it instructs the LN to set up or
destroy Synaptic Connections, to dynamically attach a learning module to
the LN when a new sensor joins the network, or to recover from the failure
(or disconnection) of a learning module by reassigning the tasks previously
run by that module to other available devices.

– The Training Manager (TN) (Fig. 3(b)) a Java software agent hosted on a
gateway that is responsible for the learning phases of the LL and for the man-
agement, training and self-adaptation of the LN. It comprises the Training
Agent, the Network Mirror and a Repository. The Training Agent manages
the activation of the training phases of the LL by processing the control
instructions received from the LNM and by orchestrating the learning in the
Network Mirror component through appropriate control messages, it receives
online learning feedbacks from the user, and administers the appropriate re-
finement signals to the LN, and it receives training data and stores them
in the Repository (training data are used for the incremental training on
novel computational tasks that, once appropriately learned, can be deployed
to the LN. The Network Mirror comprises a data structure that contains a
mirror of each of the components of the LN. This allows a centralized the
retraining of the LN, since a retraining on low power devices such as the
sensors is not feasible). The mirrored copies of the LN components are also
used to support the recovery from the loss of a device: if a LN components
disappears because the hosting device fails (or gets disconnected) a new LN
component on another device can be instructed to take over the disappeared
tasks by using the mirrored copy of the lost LN component.

In its current design, the LL is suitable to address tasks that can be modeled as
time-series prediction problems. For example, these tasks include event detection,
localization and movement prediction using signal strength information, and
basic human activities recognition.

3.3 ESN

An ESN ([5, 6])is composed of an input layer with NU unit, a reservoir layer with
NR units and a readout layer with NY units. The typical architecture of an ESN
is shown in Figure 4. The reservoir is a large layer of sparsely connected non-
linear recurrent units, used to encode the input history of the driving input signal
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(a) The Learning Network. (b) The Training Manager.

Fig. 3. The RUBICON Learning Layer
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Fig. 4. Architecture of an ESN with NU = 5 input units, NR = 9 reservoir units and
NY = 2 readout units

into a finite dimensional state. The readout is an output layer of linear feed-
forward units, and represents the only trained part of the network architecture.
At each time step t, the reservoir of the LI-ESN computes the state x(t) ∈ R

NR

according to the state transition function

x(t) = tanh(Winu(t) + Ŵx(t− 1)) (1)

where u(t) ∈ R
NU is the input for the ESN at pass t, Win ∈ RNR ×NU is the

input-to-reservoir weight matrix (possibly including a bias term), Ŵ ∈ R
NR×NR

is the reservoir recurrent weight matrix. The output of the network at pass t, i.e.
y(t) ∈ R

NY , is computed by the readout part of the ESN, as a linear combination
of the reservoir units activation:

y(t) = Woutx(t) (2)

where Wout ∈ R
NY ×NR is the reservoir-to-readout weight matrix. Reservoir

parameters are left untrained after random initialization under the constraints
given by the Echo State Property (ESP) [5, 6]. The ESP essentially states that
the reservoir state dynamics asymptotically depends only on the history of the
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input signals, and dependencies on the initial state conditions are progressively
lost. A sufficient and a necessary conditions are known in literature for the ESP to
be satisfied. For practical applications the sufficient condition is often considered
too restrictive, and the following necessary condition is typically used:

ρ(Ŵ) < 1 (3)

where ρ(Ŵ) is the spectral radius of the matrix Ŵ. Accordingly, the reservoir
weight matrix W is randomly initialized and then re-scaled such that the condi-
tion in equation 3 holds. The weight values in matrix Win are randomly chosen
from a uniform distribution over [−scalein, scalein], where scalein is an input
scaling parameter. The weight values in matrix Wout are the only one subject
to training, usually by using efficient linear methods such as Moore-Penrose
pseudo-inversion and ridge regression (see e.g. [4]). The RC approach, and the
ESN model in particular, have been recently successfully applied to real-world
problems in the field of AAL. The experiments presented in [11–14] have indeed
shown that RC modules achieve extremely good predictive performances in AAL
tasks, being able to generalize the predictions to unseen environments [11, 14].
The study of the relation between the predictive performance and the cost of
the system deployment on the one hand, and the computational cost of the ESN
(in terms of memory and time) on the other hand, pointed out the feasibility of
the RC approach in this context [11, 12]. By adopting suitable strategies for the
encoding of the network weights, it has been shown that a memory occupation
below 2 Kb or RAM is sufficient to obtain good accuracy results [11], opening
the way for practical embedding of the ESNs on the motes of a WSN for AAL
applications, within the scopes of the RUBICON project.

4 Experimental Results

Recognizing human activities depends directly on the features extracted for mo-
tion analysis. In this test we use a sensor network, worn by the user, that is
able to provide two separated accelerometer data time series, one time series for
acceleration on each axis Ax and Ay, and the RSS among each sensor of the net-
work. The accelerometer data together with the reciprocal RSS time series are
then combined by using neural computation to provide future forecasts based on
previous measurements. As a proof of concepts two out of seven activities will
be tested in laboratory: standing up and sitting down.

4.1 Setup

In these tests the sensor network is composed of five IRIS nodes embedding
a Chipcon AT86RF230 radio subsystem that implements the IEEE 802.15.4
standard (Figure 5). Five sensors, in the following Body Sensor Network (BSN),
are placed on the user (on each arm and on each ankle and one on the chest),
while a sink, always in line of sight with the BSN, collects the accelerometer
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Fig. 5. The wireless sensor devices used to collect both accelerometer and RSS data

data together with the reciprocal RSS. The x-axis of the worn accelerometers
pointed out along subject’s sagittal plane and its y-axis pointed down along his
coronal plane.

4.2 Data and Results

Test subject was asked to perform the group of activities 25 times. Sitting down
and standing up are very short time activities, so only 12 sample data for each
test were collected. Fig. 6 shows sample RSS data between sensor 3 and 4, be-
tween sensor 3 and 5, and sensor 3 accelerometer data for each test activity.
Sensor 3 is the one placed on the chest while 4 and 5 are the sensors placed
at the right and left ankles, respectively. As we can see from Fig. 6 when the
subject sits down the RSS signal quickly increases in its value, then slightly de-
creases and finally assess to an higher value than the initial one. This pattern
is due to the typical vertical momentum pattern of the sitting down activity
[20, 21]. Similarly, when the subject stands up, a first movement of the chest
toward the ankles is done, then it turns away and finally stand up reporting a
final rss value lower than the corresponding value for initial sitting position. Also
the y-axis component of the accelerometer placed on the chest shows values very
indicative of the direction of movement. The collection of all sample data from
all sensors together with their accelerometer data was used for the definition of
a benchmark dataset for activity recognition, comprising a total number of 50
input sequences. A classification task was thereby constructed by assigning a
target output value, i.e. −1 for the activity of sitting and +1 for the activity of
standing. In our experiments we used ESNs adopting an hyper-parametrization
setting inspired from our previous experimental investigations on RC applica-
tions to AAL tasks [11–14]. Specifically, we used reservoir with NR = 50 units,

spectral radius ρ(Ŵ) = 0.99, input scaling parameter scalein = 0.01. Readouts
were trained using ridge regression, with regularization parameter λr = 0.01.
The benchmark dataset described above was split in a training set and a test
set containing 32 and 18 samples, respectively. A number of 10 reservoir guesses
were considered, and the results were averaged over such guesses. The accuracy
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Fig. 6. Sample benchmark dataset for activity recognition. Each row shows mean and
standard deviation of RSSI and accelerometer data of a single sample for each test
activity. Sitting down and standing up respectively. First column shows RSSI values
between sensor 3 and 4. Second column shows RSSI values between sensor 3 and 5.
Third column shows the chest sensor accelerometer data.

achieved by the ESN modules was 100% in training and 91.11% in test. Such
good results, in line with those obtained in our previous works [11–16], represent
a clear indication of the effectiveness of our proposed approach for the activity
recognition tasks of the type considered.

5 Conclusions

In this work, we present an activity recognition system that classifies activities
exploiting both the data sampled by accelerometer sensors carried out by the
user and the RSS values coming from worn wireless sensor devices and from
sensors deployed in the environment. The proposed activity recognition system
uses a mix of two approaches, i.e. wearable and not wearable. Specifically, we use
both wearable and environmental sensors and we base the recognition of the user
activity both on accelerometers embedded on the wearable sensors and on the
RSS of the beacon packets exchanged between all the sensors (both wearable and
environmental). The accelerometer and the RSS stream thus obtained are mod-
elled by using Recurrent Neural Networks implemented as efficient Echo State
Networks (ESNs), within the Reservoir Computing paradigm. In particular, the
proposed system is able to use a distributed machine learning approach, in which
the sensors themselves perform activity classification by using embedded learn-
ing modules. Since the Learning Layer (LL) module is still under development,
due to the current software limitations it is not possible at the moment to pro-
cess on the sensors all the tasks required to detect all the activities defined in
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the EvAAL benchmarks. For this reason our deployed solution leverages on the
LL for the distributed detection of the walking activity, and reverts to a cen-
tralized processing on the gateway for the other activities. In this paper only
two out of seven activities are tested achieving 91.1% of accuracy. This result,
according with the results obtained in our previous works, represent a clear in-
dication of the effectiveness of our approach also when all the seven activity will
be considered.

Acknowledgments. This work was supported in part by the European Com-
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Abstract. This paper aims to develop a cheap, comfortable and, spe-
cially, efficient system which controls the physical activity carried out
by the user. For this purpose an extended approach to physical activ-
ity recognition is presented, based on the use of discrete variables which
employ data from accelerometer sensors. To this end, an innovative se-
lection, discretization and classification technique to make the recog-
nition process in an efficient way and at low energy cost, is presented
in this work based on Ameva discretization. Entire process is executed
on the smartphone and on a wireless health monitoring system is used
when the smartphone is not used taking into account the system energy
consumption.

Keywords: Contextual Information, Discretization Method, Mobile En-
vironment, Qualitative Systems, Smart-Energy Computing.

1 Introduction

In recent years, thanks largely to the increased interest on monitoring certain
sectors of population such as elderly people with dementia or people in rehabili-
tation, activity recognition systems have experienced an increase in both number
and quality results. However, most of them are in a high computational cost and
hence, it cannot be executed into a general purpose mobile device.

Calculation of the physical activity of a user based on data obtained from
an accelerometer is a current research topic. Furthermore, many works is going
to be analyzed showing some identified limitations that make these systems
uncomfortable for users in general.

The first difference observed between the systems developed is the type of used
sensor. There are systems using specific hardware [1], while others use general
purpose hardware [2]. Obviously, the use of generic hardware is a benefit for
users, since the cost of devices and versatility of them are points in their favor.
Not to mention decreasing the loss and forgetting risk due to they have been
integrated on an everyday object like users’ smartphones.

J.A. Bot́ıa et al. (Eds.): EvAAL 2013, CCIS 386, pp. 36–47, 2013.
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Another difference found between the surveyed proposals is the number and
position of the sensors. In [3] can be seen that the accelerometer sensor is placed
in a glove and a multitude of activities depending on the movement of the hand
are recognized. In contrast, other studies use various sensors throughout the body
[4], [5] or a wearable wireless sensor node with a static wireless non-intrusive
sensory infrastructure [6] to recognize these activities. According to some com-
parative studies and previous works based on multiple sensors, they are more
accurate.

Although, works like [2], where a sensor is at users’ pocket or in the hipe, is
more comfortable for them. By this way, place them in the monitored person is
easier, not to mention that the infrastructure is much lower.

Thus, the presented work will is focus on the recognition of physical activities
carried out by users throughout their mobile devices. So, it must be paid special
attention to energy consumption and computational cost of used methods. Also,
a wireless health monitoring system can be used to increment the user accep-
tance, i.e. the user does not carry the mobile devices all the time in an indoor
environment.

One step further, some works do not only use data from accelerometers, but
use other sources such as microphone, light sensor or voice recognition to deter-
mine the context of the user [7]. However, they present problems i.e. when the
environment is noisy or the user is alone.

There are related works where data for activities recognition are obtained
through mobile devices, but these data are sent to a server to process the infor-
mation [8]. Thus, computational cost is not a handicap and because of this more
complex methods are used. In contrast, the efficiency is a crucial issue when
processing is carried out in the mobile device [9], [10].

To reduce the cost associated to accelerometer signal analysis, this paper opts
for a novel approach based on a discretization method. Thanks to discretization
process, classification cost is much lower than working with continuous variables.
Because of this, it is possible to eliminate the correlation between variables
during the recognition process and on the other hand, to minimize the energy
consumption from the process.

Working in the domain of discrete variables to perform learning and recogni-
tion of activities is a new approach offered by this work. This decision was largely
due to the high computational cost required for learning algorithms based on
continuous variables used for this purpose over the years.

In [11], a labeling process, like a discretization process, is used to obtain a
Qualitative Similarity Index (QSI), so it can be said that a transformation of the
continuous domain to the discrete domain of values of the variables is beneficial
in certain aspects.

But, before the self-recognition or learning, it is necessary to carry out a
process of Ameva discretization from its algorithm [12]. It has a number of ad-
vantages over other well-known discretization algorithms like CAIM discretiza-
tion algorithm [13], i.e. it is unsupervised and very fast. The most notable of
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these is the small number of intervals generated which facilitates and reduces
the computational cost of the recognition process.

It should be noted that many of these studies could be seen in action during
the competition EvAAL 2012 [14] in Activity recognition track. EvAAL is an
annual international competition that addresses the challenge of evaluation and
comparison of Ambient Assisted Living (AAL) systems and platforms, with the
final goal to assess the autonomy, independent living and quality of life that
AAL systems may grant to their end users.

In this track competition, four teams participated in the challenge: CUJ (from
the University of Chiba, Japan) [15], CMU (from Carnegie Mellon and Utah
Universities, USA) [16], DCU (from Dublin City University, Ireland) [17] and
USS (from University of Seville, Spain) [12]. Finally, although CMU had the
best accuracy in the results, USS won the competition because its simplicity
and interoperability gave good marks in all the evaluated criteria.

In order to improve the accuracy problems encountered during the celebration
of the EvAAL 2012 competition, some significant improvements in Ameva dis-
cretization algorithm are proposed. Also, in addition to detect specific activities,
the barometric sensor which is being included in the latest generation of mobile
devices is used.

Finally, in order to answer the question about what would happen if you
decide not to use your mobile device in an indoor environment, as happens in
real life, a complementary wireless device is also optionally used.

There are other similar EvAAL competitions such as HARL [18], OPPOR-
TUNITY [19], HASC [20] or BSN contest [21].

The paper is organized as follows: first, the activity recognition step is pre-
sented in Section 2. Also, the data collection and the set of activities are pre-
sented. Section 3 presents the methodology to determine the activity using the
Ameva discretization. Section 4 reports the obtained results of applying the
methodology. Finally, the paper conclusions with a summary of the most impor-
tant points are in Section 5.

2 Activity Recognition

The final real system consist only of a smartphone and, optionally, a wireless
device, configured to detect the competition activities: lie, sit, stand, walk, bend,
fall and cycle.

2.1 Data Collection

In contrast to the needs of some studies that require a training set to classify a
recognized activity correctly, this paper reduces the waiting time for recognition,
providing valid information for an activity frequently.

To this end, a training set and a recognition set are obtained using 5-second-
time windows of fixed duration which has been determined empirically as opti-
mum length from a performance and an accuracy analysis of the system.
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The time length of five seconds of these windows has been chosen because for
our system is very important to ensure that in each time window there is at least
one cycle of activity, where activity cycle is defined as a complete execution of
some activity patterns. For example, two steps are a walking activity cycle and
one pedal stroke is the activity cycle for cycling. If at least one cycle of activity
can not be guaranteed in each time window, it is not possible to determine the
activity from accelerometer patterns.

This analysis is performed based on the values obtained from the accelerome-
ter, which significantly improve the precision of the body-related activities, and
a barometer to detect environment-related activities, such as going upstairs and
downstairs. The latter sensor has most often been integrated in recent mobile
devices, allow to increase the overall system accuracy detection of activities.

So, based on these time windows that contain data for each accelerometer
axis and reducing the computational cost of the new solution, signal module has
been chosen to work. This eliminates the problem caused by the device rotation
[22]. Furthermore, it increases user comfort with the system by removing the
restriction to keep the orientation during the learning and recognition process.

For each data in a time window size N , ai = (axi , a
y
i , a

z
i ), i = 1, 2, . . . , N where

x, y and z represent the three accelerometer axis, the accelerometer module is
defined as follow:

|ai| =
√
(axi )

2 + (ayi )
2 + (azi )

2

Hence, the arithmetic mean, the minimum, the maximum, the median, the stan-
dard and the mean deviation, and the signal magnitude area statistics are ob-
tained for each time window.

In addition to the above variables, hereafter called temporary variables, a new
set of statistics called frequency-domain features from the frequency domain
of the problem are generated. Thus, in order to obtain the frequency-domain
features, Fast Fourier Transform (FFT) is applied for each time window.

For the barometer sensor, two measures are obtained for each time window: at
the beginning and at the end, taking into account the difference between them.

b = bN − b1

It is important to note that in this case, the absolute value is not taken into account,
contrary to what was done with the values obtained from the accelerometer.

2.2 Set of Activities

Far from being a static system, the number and type of activities recognized
by the system depends on the user. Thanks to this proposal when users is
carrying out activities that have not been learned before can be determined.
This is achieved basing on the analysis of probability associated to each pattern
while user is performing the activities. Obviously, the number of activities to be
detected will impact on the accuracy of the system. Especially if acceleration
patterns between activities are very similar.
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For a large numbers of users could be interesting recognize a few activities,
such as walking, sitting and falling. But for another users, activities like driving
or biking would be important. However, to carry out a comparative analysis of
the accuracy and performance of the discrete recognition method proposed be-
low, 8 activities were taken into account. These activities are immobile, walking,
running, jumping, cycling, drive, walking-upstairs and walking-downstairs.

Therefore, the learning system allows the user to decide what activities he/she
wants the system to recognize. This is highly useful when the determination of
certain very specific activities on monitored users is required.

3 Methodology

3.1 Ameva Algorithm

Let X = {x1, x2, . . . , xn} be a data set of an attribute X of mixed-mode data
such that each example xi belongs to only one of the � classes of class variable
denoted by

C = {C1, C2, . . . , C�}, � ≥ 2

A continuous attribute discretization is a function D : X → C which assigns
a class Ci ∈ C to each value x ∈ X in the domain of property that is being
discretized. Let us consider a discretization D which discretizes X into k discrete
intervals:

L(k;X ; C) = {L1, L2, . . . , Lk}
where L1 is the interval [d0, d1] and Lj is the interval (dj−1, dj ], j = 2, 3, . . . , k.
Thus, a discretization variable is defined as L(k) = L(k;X ; C) which verifies
that, for all xi ∈ X , a unique Lj exists such xi ∈ Lj that for i = 1, 2, . . . , n and
j = 1, 2, . . . , k. The discretization variable L(k) of X and the class variable C are
treated from a descriptive point of view.

The main aim of the Ameva method [12] is to maximize the dependency
relationship between the class labels C and the continuous-values attribute L(k),
and at the same time to minimize the number of discrete intervals k. For this,
the following statistic is used:

Ameva(k) =
χ2(k)

k(�− 1)
where χ2(k) = N

⎛
⎝−1 +

�∑
i=1

k∑
j=1

n2
ij

n·inj·

⎞
⎠

and nij denotes the total number of continuous values belonging to the Ci class
that are within the interval Lj , ni· is the total number of instances belonging to
the class Ci and n·j is the total number of instances that belong to the interval
Lj, for i = 1, 2, . . . , � and j = 1, 2, . . . , k, fulfilling the following:

ni· =
k∑

j=1

nij , n·j =
�∑

i=1

nij , N =
�∑

i=1

k∑
j=1

nij
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The original developed algorithm to obtain the best intervals with the Ameva
discretization is based on finding the cutoff points that provide the best coeffi-
cient. To do this, the values of the variables are sorted to find the first cut (local
maximum). Then, it returns the next cut, and so on, until the Ameva coeffi-
cient does not improve. This behavior causes the complexity of the algorithm
is quadratic order, O(n2). A graphic with three local maximums can be seen in
Figure 1.

Fig. 1. An example of Ameva coefficient values with three local maximums

The presented improvement in this work allows to find all cuts, allowing the
complexity of the algorithm would be of linear order, O(n). Although there is a
loss of precision, it is negligible for the field of study of this work, since it allows
to obtain good results.

Finally, for each statistical Sp ∈ {S1, S2, . . . , Sm}, the discretization process
is performed, obtaining a matrix of order kp× 2, where kp is the number of class
intervals and 2 denotes the inf(Lp

i ) and sup(Lp
i ) interval limits i of p statistical.

Hence, a three-dimensional matrix containing the statistics and the set of interval
limits for each statistic is called Discretization Matrix and it is denoted by

W = (wpij)

where p = 1, 2, . . . ,m, i = 1, 2, . . . , kp and j = 1, 2.
Therefore, Discretization Matrix determines the interval at which each data

belongs to the different statistical associated values, carrying out a simple and
fast discretization process.

Class Integration. The aim in the next step of the algorithm is to provide a
probability associated with the statistical data for each of the activities based
on previously generated intervals. For this purpose, the elements of the training
set x ∈ X are processed to associate the label of the concrete activity in the
training set. In addition, the value of each statistic is calculated based on the
time window.
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For carrying out the previous process, a Class Matrix, V , is defined as a
three-dimensional matrix that contains the number of data from the training set
associated with a L interval in a C activity for each statistical S of the system.
This matrix is defined as follows:

V = (vpij)

where vpij = #{x ∈ X | inf(Lp
i ) < x ≤ sup(Lp

i )}, and S = Sp, C = Cj ,
p = 1, 2, . . . ,m, i = 1, 2, . . . , kp and j = 1, 2, . . . , �.

So, each position in the Class Matrix is uniquely associated with a position
in the Discretization Matrix determined by its range.

At this point, there is not only possible to determine the discretization in-
terval, but the Class Matrix helps to obtain the probability associated with the
discretization process performed with the Ameva algorithm.

Activity-interval Matrix. The next step is determined a three-dimensional
matrix, called Activity-Interval Matrix and denoted by U , which determines the
likelihood that a given value x associated to a S statistical corresponds to C
activity in a L interval. This ratio is based on obtaining the goodness of the
Ameva discretization and the aim is to determine the most probable activity
from the data and the intervals generated for the training set.

Each value of U is defined as follows:

upij =
vpij
vp·j

∑�
q=1,q �=j

(
1− vpiq

vp·q

)
�− 1

where vp·j is the total number of time windows of the training process labeled
with the j activity for the p statistic, and p = 1, 2, . . . ,m, i = 1, 2, . . . , kp and
j = 1, 2, . . . , �

Given these values, U for the p statistic is defined as

Up =

⎛
⎜⎜⎜⎜⎜⎜⎝

up00 . . . up0j . . . up0�

...
. . .

...
. . .

...
upi0 . . . upij . . . upi�

...
. . .

...
. . .

...
upkp0 . . . upkpj . . . upkp�

⎞
⎟⎟⎟⎟⎟⎟⎠

As can be seen in the definition of U , the likelihood that a data x is associated
with the interval Li corresponding to the activity Cj , depends not only on data,
but all the elements associated with the interval Li for the other activities.

Thus, each upij matrix position can be seen as a grade of belonging that a
given x is identified to Cj activity, that it is included in the Li interval of the
Sp statistic.
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Similarly, the elements of U have the following properties:

– upij = 0 ⇐⇒ vpij = 0 ∨ vpiq = vp·q, q 	= j
– upij = 1 ⇐⇒ vpij = vp·j = vpi·

Figure 2 shows the overall process described on this section for carry on data
analysis and interval determination.
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Fig. 2. Overall process of data analysis and interval determination

3.2 Classification Process

Having obtained the discretization intervals and the probabilities of belonging
to each interval, the process by which the classification is performed can be
described. This classification is based on data from the analysis of time windows.
The process is divided into two main steps: the way in which to perform the
recognition of physical activity is first described; and the process to determine
the frequency at which some particular activity is then presented.

Classifying Data. For the classification process, the more likely activity is
decided by a majority voting system. As said above, this process parts from the
Activity-Interval Matrix and a set of data x ∈ X for the S set.

Therefore, it consists in finding an activity Ci ∈ C that maximizes the like-
lihood. The above criterion is collected in the following expression, denoted by
mpa (most likely activity):

mpa(x) = Ck

where k = arg(maxj
∑m

p=1 upij | x ∈ (inf(Lp
i ), sup(L

p
i )]). The expression shows

that the weight contributed by each statistical to the likely calculation function
is the same. This can be done under the assumption that all statistical provide
the same information to the system and there is not correlation between them.
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Thus, the mpa represents the activity whose data, obtained through the pro-
cessing time window, is more suited to the value set from U . In this way, the
proposed algorithm not only determine the mpa, but its associated probability.

From this likelihood, certain activities that do not adapt well to sets of generic
classification can be identified. It is an indication that user is carrying out new
activities for which the system has not been trained previously.

Figure 3 shows the overall process described on this section for recognition
process from Activity-Interval Matrix calculated in the previous stage.
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Fig. 3. Overall recognition process from data sensors

4 Method Analysis

Once exposed the bases of the developed activities recognition algorithm, an
analysis of the new proposal was performed. To do this, the new development
was compared with a recognition system widely used based on neural network. In
this case, both learning and recognition was performed by continuous methods.

The test process was conducted in a Google Nexus One for a group of 10 users.
Notably, the activity habits of these users were radically different, since 5 of them
were under 30 years while the rest were older than this age. For this purpose, a
document was delivered to each user for describing the activity performed, start
time and end time.

Finally, the learning process consisted on the performing of each activity rec-
ognized by the system for a time of 6 minutes. As for the recognition process,
users were followed over a period of 72 hours.

Moreover, the energy consumption and the processing cost of the system when
it is working on a mobile device are considered. In this case, the conclusion
reached is that the method based on Ameva reduces the computational cost
of the system by about 50% (see Figure 4. The time needed to process a time
window by using nueral networks methods is 1.2 seconds, while, for the Ameva-
based method is 0.6 seconds.
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Fig. 4. Processing time of the Ameva and neural network methods on the device

As can be seen in 5, Ameva battery consumption is lower than neural net-
works. For the first one, the battery lifetime is close to 25 hours while for the
last one, it’s only 16 hours. In the comparison can be observed the battery life-
time for decision tree but the main problem of this method, based on statistics
chosen, is the low accuracy, not higher than 60%.
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Based on Accuracy, Recall, Specificity, Precision, and F measure, Table 1 is
presented. In this table, differences between the two methods, RNA and Ameva
can be observed. Most values presented for each measure and activity show that
the Ameva method performs better than RNA, especially as regards precision.

Table 1. Performance comparison by using measures of evaluation

���������Activity
Measure Accuracy Recall Specificity Precision F-measure (F1)

Ameva RNA Ameva RNA Ameva RNA Ameva RNA Ameva RNA

Walk 98.77% 97.93% 97.92% 93.95% 98.91% 98.57% 93.50% 91.36% 95.66% 92.64%

Upstairs 98.93% 98.17% 95.40% 90.79% 99.43% 99.22% 96.00% 94.35% 95.70% 92.54%

Downstairs 98.64% 98.25% 95.20% 92.68% 99.04% 98.89% 91.95% 90.62% 93.55% 91.64%

Cycle 99.32% 99.03% 96.13% 95.67% 99.73% 99.47% 97.91% 95.89% 97.01% 95.78%

Immobile 98.69% 99.50% 94.57% 97.37% 99.42% 99.88% 96.60% 99.29% 95.58% 98.32%

5 Conclusions

In this work, a recognition system based only on a smartphone and, optionally, a
wireless device is presented obtaining very good results. It should be noted that
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the system does not have communication with a server, thus it does not affect
too much to de battery duration life.

Also, the Ameva discretization algorithm has been modified in order to im-
proved the accuracy to obtain best results as the last implemented system. It has
therefore been possible to achieve an average accuracy of 98% for the recognition
of 7 types of activities.

In contrast, the number of activities that the system can recognize is limited,
because working only with accelerometer and barometer limits the number of
system variables that can be used, that it can cause that the correlation between
these variables tends to be high.
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Abstract. Activity recognition is an important component for the ambient as-
sisted living systems which perform home monitoring and assistance for elderly 
people or patients with risk factors. This paper presents a prototype system for 
activity recognition using information provided by four Kinects. First the post-
ure of the supervised person is detected using a set of rules created with ID3 al-
gorithm applied to a skeleton obtained by merging the skeletons provided by 
multiple Kinects. At the same time, the interaction of the user with the objects 
from the house is determined. After that, daily activities are identified using 
Hidden Markov Models in which the detected postures and the object interac-
tions are observable states. The benefit of merging the information received 
from multiple Kinects together with the detection of the interaction between the 
user and relevant objects from the room is the increase in accuracy for the rec-
ognized activities. 

Keywords: posture recognition, daily activity recognition, Kinect, Hidden 
Markov Models, smart environment. 

1 Introduction 

The percentage of elderly in today’s societies keeps on growing. As a consequence 
we are faced with the problem of supporting older adults in loss of cognitive autono-
my who wish to continue living independently in their home as opposed to being 
forced to live in a hospital. Smart environments have been developed in order to pro-
vide a solution to this problem. The term of Ambient Intelligence (AmI) was intro-
duced to describe a “ubiquitous electronic environment that would pro-actively, but 
sensibly and non-intrusively support people in their daily lives” [1]. 

The need of an intelligent house is growing fast, especially for those who wish to 
live on their own. People would feel much safer at home if they knew they had a sys-
tem that can, for example, detect when they fall and automatically call an emergency 
service. 

Also, having an organized life style is hard to achieve for most people. That is why 
a system that can monitor human activities and give feedback based on those detec-
tions would be extremely helpful. For example, one could receive feedback that 
he/she should cycle more often since this activity has been seldom detected in the past 
period of time. 
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Our goal is to build a system that recognizes activities of daily living from images 
captured from 4 Kinects. What sets our system apart and what we will determine an 
increase in detection accuracy is the fact that it merges the skeletons from strategical-
ly positioned Kinect devices, making it possible to build an accurate human model 
and to deal with situations in which the view is partially obstructed. In addition, the 
fact that object interactions of the supervised person are considered enriches the pro-
posed model and also influences the prediction accuracy in a positive way. In the 
future, this component of Activities of Daily Livings recognition is intended to be 
used in an ambient intelligent system for elderly people or people with risk factors. 

The rest of the paper is organized as follows. Section 2 presents some existing  
methods for human activity recognition in smart environments. Section 3 describes 
the proposed system used for human activity recognition. Section 4 presents the cur-
rent evaluation of the proposed system. Conclusions and future works are listed in 
Section 5. 

2 Related Work 

There are many attempts to recognize human activities using a wide range of devices, 
such as accelerometers, cameras, wearable sensors, Kinect, cell phones, etc. Jennifer 
R. Kwapisz et. al describe an interesting way of detecting activities in [2]. The authors 
use the accelerometer from smartphones in order to extract data that is afterward used 
to predict an activity. The activities are about of the same complexity as those dis-
cussed in this paper (walking, jogging, sitting, etc). The learning algorithms used in 
this article are J48, Logistic Regression and Multilayer Perceptron, but the best over-
all accuracy is obtained using the last one. The major drawback of this system is the 
fact that the information is gathered using a wireless connection. When the wireless 
signals are transferred they may be blocked by obstacles such as walls, gates and hu-
man beings. The strength of wireless signals depends upon the location. They can be 
hindered by other electronic devices, the rate of frequency and the height from the 
ground. Therefore, such noise can drastically affect the performances of the system. 
In addition, this smart phone application consumes quite a lot of energy on a device 
for which energy consumption is crucial. 

Another method that also uses smartphones for daily activity recognition is de-
scribed by Young-Seol Lee and Sung-Bae Cho in [3]. The proposed algorithm analys-
es certain time-series acceleration signal using hierarchical hidden Markov models. In 
order to address the limitations of the memory storage and computational power of 
the mobile devices, the recognition models are designed hierarchy as actions and ac-
tivities. A sequence of actions is used as input for the HMM for real-time activity 
recognition on a mobile device without using the acceleration data directly. It can 
reduce the required time for calculation and can enhance the precision. The perfor-
mance of this system is comparable with the one described in [2]. 

Although the accuracy of these two systems is quite high and the solution of incor-
porating wearable sensors into cell phones is ingenious, these systems are intrusive 
using the obtrusiveness of the wearable sensors. 
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Another approach made by Bi Song et. al in [4] develops methods for tracking and 
activity recognition using a distributed network of cameras. Processing power is  
distributed across the network and there is no central processor accumulating and 
analyzing all the data. For activity recognition, the authors derive a new consensus 
algorithm based on the recognized activity at each camera and the transition proba-
bilities between various activities. 

Our system detects daily activities based on image analyses in two phases: (i) the 
posture of the supervised person is detected using a set of rules obtained by applying 
the ID3 algorithm; (ii) Hidden Markov Models (HMM) are used for activity recogni-
tion – the detected postures are observable states for the HMM. Instead of a video 
camera we use images captured from 4 Kinect sensors. The posture recognition will 
be simplified by using the skeleton created from the joint positions obtained using the 
NiTE framework [7]. We use 4 Kinects in order to increase the accuracy of the pro-
vided skeleton. One Kinect is enough only for frontal postures. Other main differenc-
es in our model are: (i) a model of the room is created using the depth information 
provided by a Kinect sensor; (ii) interaction between the user and the objects from the 
room are used, which helps us to increase the accuracy of the recognized activities. 

3 System Description 

Further, we will present the architecture of our system (Fig. 1), which is composed of 
four Kinect devices and four software modules, as follows: Skeleton Detection Mod-
ule, Posture Detection Module, Object Detection Module and Activity Recognition 
Module. To describe the workflow of the system, let’s consider there is one user in 
the room. At least one of the Kinect devices will track the user and send data to the 
Skeleton Detection Module, which will apply fusion over the received data and de-
termine a skeleton model for the tracked user. Also, the devices will extract RGB 
images of the environment, which will be forwarded by the Skeleton Detection Mod-
ule to the Object Detection Module. The obtained skeleton model is also sent to the 
Posture Detection Module and an estimated posture of the user is computed and sent 
to the Activity Recognition Module, which will perform an estimation of the activity 
done by the tracked user, also incorporating data received from the Object Detection 
Module. This component will run an object detection algorithm, identifying some 
common objects that can be used by the user. At the same time, all the data (input, 
results, decision trees and HMM) is also stored in a common database, for further use. 

3.1 Hardware Devices 

In order to develop the application we use the infrastructure available in the ambient 
intelligence laboratory ( AmI Lab), available at our university. The AmI Lab was 
developed with the purpose of describing an in-door tracking system, addressed to 
monitoring a single elder person [6]. In the lab there is a total of 27 equipments, 
grouped into 9 T-shaped keypoints numbered K1, K2, . . . , K9, each of them contain-
ing one Kinect and 2 Arduino-based sensors. The 9 keypoints (K1 – K9) were placed 
in our 8.5m x 4.5m room as evenly spaced as possible, given the constraints (door, 
windows and cabling). Their approximate layout is specified in Fig. 2. 
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Fig. 3. Body joints 

 

Fig. 4. Skeleton Detection Module 

The Acquisition Sub-modules are based on the OpenNI [5] and NiTE [7] frame-
works and can track all the users present in the vision area. A user is considered to be 
in the vision area of a Kinect device if the distance between him and the device is 
between 0.8 m and 3.5 m. For one user, the Acquisition Sub-modules will provide a 
skeleton model. We choose to use 4 devices, in order to track the users from different 
perspectives, avoiding the occlusion of some limbs. Although one device is able to 
track multiple users, due to the fact that our system is using four Kinect devices and 
each one of them will attach different IDs to the users, our system is not able to track 
multiple users. The generalization can be made if we force the users to wear some 
distinctive accessories (for example some colorful bracelets). 

Each Kinect device projects its own infrared pattern in order to obtain the depth in-
formation which will be further used to compute the skeleton models. When placing 
more than one device in the same room, there are a set of problems that can appear, 
due to the inferences between the infrared laser patterns. Those inferences can cause 
black spots on the 3D image. This problem was approached before [8], and after re-
viewing previous researches and performing our own tests, we reached the conclusion 
that we should place the devices in such way that the optical axis would form an angle 
of less than 180 degrees. Also, regarding our configuration, if, for example, you 
choose to move K5 on the right, near the corner of the room, it will be interfering with 
K4, because the devices are too close. 

One Acquisition Sub-module will provide a skeleton model of the user, represented 
in the world coordinate system associated with the afferent Kinect device. OpenNI 
applications use two different coordinate systems: the depth representation and the 
world representation. The world coordinates are represented in a 3D cartesian coordi-
nate system, with the camera lens at the origin. The x axis is along a line that passes 
through the infrared laser, the y axis is parallel to the front face of the camera, per-
pendicular to the x axis, and should be perpendicular to the ground, if the camera is 
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upright, and the z axis runs into the scene and is perpendicular to x and y axis. The 
skeleton model will then be forwarded to the Central Sub-module, along with the ID 
number of the Kinect device. Using the depth information, this sub-module will also 
provide information regarding the position of the user, if the device captures the front 
side of the user or his back. 

The Central Sub-module is responsible for the data fusion process concerning the 
tracked users. For one user, the Central Sub-module will receive 4 different skeleton 
models, each one represented in the world coordinate system associated with the de-
vice that provided the skeleton. In order to make the fusion, we need to represent all 
the skeletons in the same coordinate system. This unique coordinate system will be 
the coordinate system associated to the room, where the y axis is perpendicular to the 
ground, and the x and z axis are parallel with the room walls. As we cannot determine 
the exact orientation of each device, we are unable to perform the direct transforma-
tion between the coordinate systems. This problem is solved by introducing a calibra-
tion process. Also, the coordinate system determined during calibration is useful for 
indoor localization. As we will describe later in this article, the Object Detection 
Module will use the location of the user within the room to determine if there are 
interactions between the user and the static objects represented in the room model. 

Calibration is performed once, when we set up the devices in the room. This 
process consists in determining how each device perceives the unique coordinate 
system. Having this information, the Central Sub-module will be able to perform the 
coordinate system transformations. The coordinate system associated with the room is 
represented by an object similar to the one in Fig. 5. 

 

Fig. 5. Calibration object 

Having this additional information for every device, the Central Sub-module will 
apply the transformation matrix to each skeleton, so all of them will be represented 
accordingly to the unique coordinate system. In order to perform the fusion, the 4 
skeleton models obtained for one user will be merged as follows: for every joint point, 
we will have 4 points available and we will select those with a high grade of confi-
dence; from those points we select a set of points, with an average distance between 
them less than a chosen threshold value α; the final joint point will be the average of 
the selected points. In conclusion, the Central Sub-module will provide the next layer 
with skeleton models with higher accuracy. 

Posture Detection Module. The next principal module, the Posture Detection Mod-
ule, receives as an input, from the previous module, a skeleton model of the tracked 
user. 
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Similar to the previous module, the Posture Detection Module consists of 3 sub-
modules (Fig. 6), the General Posture Detection Sub-module, the Coordinate System 
Transformation Sub-module and the Detailed Posture Detection Sub-module.  

 

Fig. 6. Posture Detection Module 

First of all, we need to determine the general posture of the user, meaning to identi-
fy the sustain point of the body, which can be the torso (for example, if the person is 
lying on the bed), the feet, or the backside. In order to train our system to identify 
those postures, we are using a supervised learning process. The training set is com-
posed from a set of recordings, of people performing different activities (walking, 
lying on the bed, running, etc.). Each such recording will produce a set of frames, and 
each one of these frames will be labeled with the corresponding posture and sent, as a 
training example, to the system. 

In order to classify a posture, we will use a set of attributes, which describe the 
posture of the body in one frame. Examples of attributes are: the angle between the y 
axis of the unique coordinate system (described in the previous section), and the vec-
tor between the knee and the foot; the angle between the y axis and the vector from 
knee to shoulder; the angle formed by the y axis and the vector between torso and 
shoulder, etc. We choose to consider the angles, in order to avoid the specialization of 
the system for people with certain dimensions. Also, by using angles we can directly 
determine the connection between the body posture and the floor plane, or any other 
relevant plane. In the same time, relations between body limbs can also be expressed 
using angles. 

We use an extension of the ID3 algorithm [9], [10], in order to determine a deci-
sion tree that can classify the postures. A reason for not using the classic ID3 algo-
rithm is the fact that the angles can have continuous values. Additionally, a pruning 
algorithm will be used, to optimize the decision tree. Consequently, the algorithm is 
close to the C4.5 extension. 

The sustain point can be computed only relative to the coordinate system asso-
ciated with the experiment room. After the general posture is determined, in order to 
have a more detailed look at each limb position, we choose to work in a different 
coordinate system representation (Fig. 7). The local coordinate system is centered in 
the torso joint, the positive direction of the y axis is following the neck direction and 
the positive direction of the z axis is perpendicular to the user torso. This representa-
tion is used because in further analysis the torso is used as landmark. 
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Fig. 7. Local coordinate system 

The posture of each body segment is expressed relatively to body joints. As men-
tioned before, the principal landmark is the upper part of the torso, and the postures of 
body segments are expressed relative to it. For each body segment, a set of classes is 
defined, and each such class includes a set of similar postures of that segment. The 
attributes used for the classification are the angles between the body segment and the 
x, y and z axis. For example, if we consider the hand, after analyzing the positions of 
the arm and forearm, we will be able to determine if the user is holding his hand 
pointed forward, or backward, and if the hand is close to the body, or at a certain dis-
tance, and even if it is stretched of flexed. 

The system is trained separately for each body segment, with a set of labeled 
frames where the user is performing several moves using a specific body segment. 
After the analysis of the training set, the system is able to approximate the class of a 
body segment, based on some classification rules. 

To sum up, the Posture Detection Module will provide to the next layer an approx-
imation of the general body posture and additional information about the posture of 
each body limb. 

Object Detection Module. This module is responsible with recognizing a set of  
stationary objects from RGB images provided by the Kinect devices. We use this 
module in order to obtain a higher accuracy in predicting activities in which the user 
interacts with objects. For example, the sitting down activity includes the interaction 
of the user with a chair. 

The module is trained to recognize some common types of chairs and beds using 
an OpenCV library function called Haartraining [11] (uses Viola Jones algorithm [12] 
to form a cascade file). The set of static objects to be recognized can be extended by 
obtaining the training data for the new objects and training the system to recognize 
them as well in the same manner as before. 

This module is used during the setup stage of the system in order to create a model 
of the room. For now, we are interested in static objects which preserve their position 
in the room.  

During setup, the room is scanned and the target objects are recognized within the 
room. Their position is marked inside a 2D map of the room (representing the projec-
tion of the objects on the room floor seen as a grid). A representation of the room 
model is shown in Fig. 8. 

The room model created at setup is used during the activity recognition process as 
follows: (i) the position of the torso joint of the user is projected onto the floor; (ii) if 
the cell onto which the user is projected intersects or is very close to a cell 
representing the projection of an object, then it is considered that the user interacts 
with that certain object. This information is used in order to increase the accuracy of 
the activities done by the user and is an observable state for the HMM. 
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Fig. 8. Room representation 

Activity Recognition Module. This module receives human position information at 
each frame from the Posture Detection Module and Object Detection Module and 
processes it in order to recognize human activities. The information received from the 
Posture Detection Module consists of the time stamp and the position classes with 
which are labeled the limbs, torso and head. The information received from the Object 
Detection Module is represented by a class such as: “Chair Interaction”, “Bed Inte-
raction” or “No Interaction”. 

Based on these sequences of information, the module uses a HMM to predict if an 
activity has taken place. The time interval in which the activity is performed is also 
determined using the timestamp with which each frame is labeled. At each frame, a 
certain activity with its corresponding probability is generated (this data may also be 
logged). Therefore, in order to determine the time interval of a certain activity, it is 
considered that the activity started at the moment when its probability is above a low-
er bound and it ends at a later moment in time, when a new activity is detected or 
when the probability of the current activity has gone under the lower bound. There 
may also be moments when none of the detectable activities takes place. These idle 
intervals are detected when the current predicted activities have very low probabili-
ties. The observable variables for our HMM represent the information received from 
the previous modules (the classes for the torso, limbs, head and the class representing 
object interactions). The hidden states of the HMM are the activities that we want to 
recognize.  So far, our system can recognize when a user is walking, lying down, 
sitting up and sitting down. 

The model is trained in a supervised way. Also, in order to increase the accuracy of 
the HMM, training is done with prior knowledge of some aspects of the model. 
Baum–Welch algorithm [13] is used in order to learn the parameters of the HMM. 
The training set used at this step consists of 100 sequences of observable variables. 
These sequences are used to determine both transition and emission matrices. 

Given the model parameters (the probabilities computed using Baum–Welch algo-
rithm) and a sequence of observations made up to moment t (the classes for the torso, 
limbs, head and the class representing object interactions), this module is responsible 
with computing the probability of each hidden state (activity). The activity with the 
highest probability is chosen to describe the prediction at moment t. As described 
above, after having activities with their corresponding probabilities generated at  
each discrete moment of time, we can determine the time interval for each activity. 
However, our system doesn’t deal with interleaved or concurrent activities for now. 
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As far as error handling is concerned, the Activity Recognition Module is designed 
to work even if there are errors within the information supplied by the Posture Detec-
tion Module, as long as they don't exceed a certain limit. This means that a large 
number of consecutive noise affected frames can prevent the system from successful-
ly detecting an activity, but if there are only a few frames affected by noise, and they 
are scattered throughout the entire sequence of received frames, then the system can 
still work quite well. As discussed earlier in this paper, the system can predict that a 
certain activity takes place at a moment of time if its probability is above a lower 
bound. However, in order to deal with noise, we consider that an activity has to last a 
minimum amount of time for it to be valid (there are different thresholds for each 
detectable activity). If there are predictions of activities that last less than the inferior 
limit specified earlier, then they are most likely wrong. This kind of error is handled 
by replacing the current wrong prediction with the prediction made immediately be-
fore it. Furthermore, this module will offer feedback to the Posture Detection Module 
in order to increase the accuracy of its detections. 

Errors can also occur because of the information received from the Object Detec-
tion Module. It is possible that a user can be projected extremely close to an object, 
but no interactions between the two actually occur. In such cases, the predicted activi-
ty should not be affected very much as long as the data received from the Posture 
Detection Module is accurate. In this case, only the activity's probability would be 
lower, but it would still be above the lower bound, unless the data received from the 
Posture Detection Module is also misclassified. 

4 System Evaluation 

Further, we will present the experimental results obtained by each of the software 
modules. 

The calibration process is having a rate of success of 97%. The errors appear due to 
the light reflections over the surface of the calibration object. In 3% of the situations, 
the calibration object is not completely identified, but due to its dimensions, the intro-
duced deviation is unnoticeable for the final results. 

In order to detect the interaction of the user with different static objects, the Object 
Detection Module needs to determine the position of the user inside the 2D map of the 
room. More precisely, it needs to obtain the cell onto which the user is projected. The 
correct position of the user is detected in 96% of the situations. In 4% of the tested 
scenarios, the position is incorrectly detected due to errors introduced by the Kinect 
devices.  

In order to detect objects of interest such as chairs and beds we have divided them 
into more specific categories for which we have trained individual classifiers (office 
chair, windsor chair, etc.). The training set for each object consists of around 4000 
positive examples and 3000 negative examples. In order to evaluate the performance 
of this module we used about 300 testing samples per object. 

The training set was realized using two subjects (one at a time), with different body 
structures. We built two different training sets, one for training the system in order to 
provide the detailed posture, and one for training the system to detect the general 
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posture of the body, and to detect the activity of the person. As mentioned above, for 
the detailed posture detection, we used recordings of people making different moves 
with a specific body limb. For the other training set, we used recordings of people 
performing the following activities: walking, lying down, sitting up and sitting down. 

The system was tested with three subjects, the two used for the training set and an 
additional one. The tests, along with the recordings for the training set were devel-
oped in the experiment room described in Fig. 2. The use of four Kinects is justified 
by the fact that, in our experiments, we noticed that a device may have a low accuracy 
in 20% of cases, but only in 5% of the cases the low accuracy is noticed at all the 
devices simultaneously, as the position of the user is different relative to each device. 

There were no notable differences between testing on the training subjects and test-
ing on a new subject. This proves that using the angles as attributes for classifications 
offers a high degree of independence from a specific body structure, offering a system 
able to answer correctly for every individual, without the need to train the system for 
that individual. 

Fig. 9 presents the experimental results regarding the accuracy of the software 
modules:  

 

Fig. 9. Experimental results 

5 Conclusions and Future Work 

Human activity recognition finds application in a large set of fields, as human ma-
chine interaction, security surveillance, etc. In this paper, we present an approach with 
a high grade of accuracy, which can be easily implemented in different environments. 

Our system provides room for further development, in more than one direction. 
The first approach is to increase the number of activities recognized by the system, 
meaning that the system will be able to recognize activities like running, cycling, etc. 
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Extensions can also be made in order to detect a larger number of objects relevant 
to the targeted activities and to be able to predict interactions not only with static  
objects, but also with moving ones. Another improvement can be done by increasing 
the number of subjects used for recording the training set, in order to avoid the specia-
lization of the system with a certain body structures.   

Also, the system can be extended in such way that it could be able to respond cor-
rectly in situations where one or more body parts are blocked from the line of sight of 
the Kinect devices. This can be achieved by using some advanced image processing 
algorithms, but if the experiment room is not properly lighted the best solution is to 
get use of wearable sensors. 
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Abstract. This paper presents the overview of the RealTracTMtechnology
developed by the RTL-Service ltd. It is based on the nanoLOC (IEEE
802.15.4a) radio standard. The RealTracTMtechnology features the local
positioning system including the possibility of data transfer and voice com-
munication. Radio access is provided by gateway units connected by wired
network to a system server. Repeater units are used to increase the radio
coverage area. Both gateway and repeater units serve as access points in
a system. Channels for voice communication are supported by the Aster-
isk PBX software installed at the system server. Mobile handheld units
periodically enter into active state and initiate the time-of-flight (ToF)
ranging. Access points measure received signal strength (RSS) of the in-
coming radio signal. ToF and RSS data is processed by the server using
a particle filter within localization algorithms. The following information
is taken into consideration: ToF, RSS, structure of the building, air pres-
sure value and inertial measurement unit data. The developed protocols
for the communication in the system are discussed as well.

Keywords: local positioning system, indoor navigation, RTLS, Bayesian
filter, particle filter, nanoLOC, IEEE 802.15.4a, time-of-flight, received
signal strength, LOS, NLOS, RealTrac.

1 Introduction

Recently, research and business communities show a great interest in the Local
Positioning System (LPS) technology. Unlike the Global Positioning Systems
(GPS, Galileo, GLONASS, QZSS), LPS systems allow indoors localization. In
order to locate an object within a certain area, a wireless infrastructure needs to
be installed. As a rule, indoors, the localization accuracy depends on the spatial
density of anchor nodes. Those anchors are used to measure distances to mobile
nodes.

Real-time positioning systems are based on wireless networks which can
utilize different methods of distance measurement: Time-of-Flight (ToF), Angle-
of-Arrival (AoA) andReceived Signal Strength (RSS).Methods based onTime-of-
Arrival (ToA), Time-Difference-of-Arrival (TDoA), Round-Trip-Time (RTT) are
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referred to the ToF methods group. First two methods (ToA and TDoA) do re-
quire system time synchronization between all nodes in the system, whereas the
RTT method does not. Obviously, distance measurements based on the RSS are
relatively inaccurate, especially in a case of substantial distances between nodes.
However, knowing of the RSS value is very important for applications with room-
level accuracy indoors: roomwalls create adrop ina signal strength,which is used to
reliably determine the roomwhere the mobile object is in. This technique is widely
used in RSS patterns methods [1,2].

Along with the localization capability, wireless networks provide data com-
munications channels between nodes. Commercial LPSs use various radio
technologies: Wi-Fi, ZigBee, UWB, nanoLOC, NFC RFID, etc. This paper
presents an overview of the RealTracTMtechnology developed by the RTL-
Service ltd. It is based on the nanoLOC (IEEE 802.15.4a) radio standard. The
RealTracTMtechnology combines good data transfer rates with low power con-
sumption of radio devices, location estimation and voice communication feature
at the same time.

The rest of this paper is organized as follows. Section 2 describes architec-
ture of the RealTracTMtechnology; technical characteristics of devices used; data
transfer protocols for communication between radio modules in the system and
between a client and a server. Section 3 is devoted to the applied location esti-
mation algorithms based primarily on the particle filter. ToF and RSS values,
building structure, constraints on object velocity and data acquired from the
embedded inertial measurement unit (IMU) are taken into a consideration. The
opportunity of using the precise air pressure sensor is utilized for the floor iden-
tification and for the estimation of the relative height. Those features are based
on the atmospheric pressure data of all devices in the system. Section 4 con-
cludes the development work and briefly describes possible applications of the
described technology and defines future development directions.

2 RealTracTMTechnology Description

2.1 Network Structure and Operation Algorithms

The RealTracTMradio system is based on the nanoLOC communication standard
(introduced by Nanotron Technologies GmbH, Germany). The main feature of
this standard is the automatic distance measurement using the Time-of-Flight
method. The measured distances between fixed nodes and a mobile node are
used to estimate the location of the mobile object. The brief summary of the
nanoLOC radio specifications [3] is presented in Table 1.

The RealTracTMsystem components can be divided into two parts: hardware
and software. The hardware part includes all physical devices (intercoms, gate-
ways, repeaters, servers, switches, etc.). All devices are uniquely identified by
their MAC addresses. The software part includes client software communicating
with a system server.

The network diagram of the system is presented in Fig. 1. The radio coverage
area is formed by access points (AP). They operate in either gateway or repeater



62 A. Moschevikin et al.

Table 1. NanoLOC radio standard specifications

Parameter Value

Frequency range 2.4 ... 2.48 GHz, ISM, unlicensed

Frequency band 80 MHz, 1 channel (optional: 3 channels of
22 MHz)

RF signal encoding chirp modulation

Bit rate 1 Mbit/s

TX power 100 mW (20 dBm), software control

Medium access method primarily CSMA (TDMA is possible)

The accuracy of ranging up to 1 meter

The method of ranging propagation delay, round-trip time

Range of reliable connection between
access points

up to 1500 meters (outdoors, directed an-
tennas), 50-70 meters (indoors, through
several walls)

Range of reliable connection between
an access point and a mobile node

up to 400 meters (outdoors), 50 meters (in-
doors, through several walls)

mode. The gateways are connected to the server via Ethernet cable network (via
switches). They act as a bridge between the wired and wireless segments of the
system. All data packets from the wireless part of the network are redirected
into the wired part and vice versa. When the AP is not connected by a wired
connection to the Ethernet network, it switches to the repeater mode automat-
ically. In this particular mode it retransmits all incoming broadcast traffic back
into the wireless segment, therefore increasing the radio coverage area. The AP
works as a reference point in positioning (as an anchor) in both gateway and
repeater modes.

A mobile handheld device is called intercom, since it provides voice communi-
cation. The intercom is set into a power saving mode for the larger part of a duty
cycle. In the active state it is in the listeningmode and collecting the information re-
garding neighbor units (MAC addresses of gateways, receivers and other intercom
units). The intercom receives copies of the own packets resented by repeaters and
obtains theirMACaddresses.The list of neighbors is constantlyupdated.Normally
this list is never empty for duty cycles less than 10 seconds. For the larger periods
some entries become outdated and they are deleted from the list.

The intercom performs ranging measurements to several anchors just after
waking up. The ranging results (if any) are broadcasted by the intercom in a
so-called blink packet. This packet is received by gateway(s) and then redirected
to the system server. If there are no gateways around, this packet is delivered to
the system server by repeaters, which retransmit the received broadcast packet.

The server analyzes the blink packet and issues a set of commands to a number
of gateways to execute additional ranging to intercoms if needed. There was de-
veloped number of adaptive algorithms used to determine the required number of
additional ToF distance measurements to satisfy the sufficient accuracy. This cen-
tralized control of ranging queue increases the efficiency of CSMA algorithm [4].



RealTrac Technology Overview 63

RealTrac
radio segment

mobile
Intercom

RealTrac
access point

(anchor, repeater)

RealTrac
access point

(anchor, gateway)

Internet

Ethernet

RealTrac
server

Ethernet
switch

Ethernet/WiFi
switch

PC

handheld
computer

SIP phone Ethernet/WiFi
HTTP/VNC

Eth
er

ne
t

WAN

Ethernet

WiFi
HTTP/VNC

Fig. 1. RealTracTMtechnology network diagram

For large covered areas the server may control several non-intersecting radio zones
and assign the dedicated queue to each radio zone. All the obtained ranging data
is processed and the location of the mobile node is determined.

The RealTracTMtechnology does not directly limit the maximum number of
used mobile devices. This number depends on the intercoms duty cycle and on
the volume of generated data traffic in the wireless segment.

The maximum payload size of the nanoLOC data frame is 128 bytes. There-
fore the largest frame transmission, including a preamble, duration of data radio
frame, inter-frame gap and the acknowledgement frame, lasts approximately
1.4 ms at 1 Mbps (chirp/symbol duration is 1 us) speed. The NanoLOC radio
uses RTT method for the ranging. To calculate the distance, three data frames
together with following acknowledgements should be sent. This cycle lasts ap-
proximately 3-7 ms. The average value of the time differences between the data
frame and the acknowledgement frame at local and remote sides corresponds to
the measured distance.

Single location estimation assumes up to 4-5 ranging procedures to be exe-
cuted. Accordingly, the system is able to process not more than 20-25 locations
per 1 second taking into consideration a certain reserved space in the radio
bandwidth. The system server can adjust the intercoms duty cycle in the range
between 0.3 second to 3 minutes by sending a distinct command.

The simplified rule for the maximum quantity of nodes calculation is the
following. If the intercoms duty cycle is 1 second, then the network can operate
only with 20 intercom units; if duty cycle is 10 seconds, maximum units quantity
increases up to 200. For 1200 mobile nodes the duty cycle is 20 seconds, however
location estimations are done only once per 3 minutes.
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2.2 Voice Communication

The intercom unit supports voice communication feature. That allows to make
phone calls to other intercoms and to the system server in full duplex mode.
Also it can be used like a radio set in half-duplex mode.

The bitrate of the one-way voice channel is approximately 8 kbps. Uncom-
pressed voice is sampled at 16 bit quantization depth and frequency of 8 kHz.
The hardware compression according to G.729A is applied. Sound packets by
100 bytes length are generated every 20 ms (50 packets per 1 second). In order
to increase the reliability of voice channels additional redundancy was imple-
mented. Sound packets might contain up to 5 sound fragments by 20 ms of the
compressed sound: 1 actual fragment and 4 outdated. Redundancy level adap-
tively decreases in conditions of low packet loss and increases in environment
with strong noise in 2.4 GHz band.

As it was mentioned above, data and voice packets from handheld devices are
directed to the system server for communication and data acquisition, processed
and stored (see Fig. 2). Voice communication is provided by the open source
PBX Asterisk software, featuring SIP telephony functionality. Software PBX is
responsible for redirecting calls to other intercom units and external soft-phone
clients. If the server is equipped with the special telephony adapter, then calls
can be redirected even to POTS or cellular phone network. Any client software
which supports G.729A codec might be used both on handheld computers and
laptops to accept and place voice calls from and to intercoms. If the soft-phone
does not support G.729A codec, Asterisk should be configured to transcode the
voice traffic.

RealTrac
radio segmentLocalization

server

RealTrac
server

INCP

Stand-alone
application

Web-client Asterisk
PBX

RTLSCP
(HTTP)

Fig. 2. The RealTracTMtechnology communication diagram

When the intercom unit is moving while the voice call, system server provides
automatic roaming within the network. The server sends sound packets through
the most appropriate gateway unit (the nearest to the intercom).

2.3 INCP

The RealTracTMuses the unique protocol INCP (Inter-Nano-Com Protocol),
developed for the communication between devices and software modules. The
asymmetrical protocol recognizes a dedicated system server with the certain
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roles and several clients with a limited number of functions. Every INCP mes-
sage is encapsulated in either UDP packet (over Ethernet network) or nanoLOC
frame (over wireless network).

The brief information on INCP headers is presented in Table 2.

Table 2. INCP message structure

Offset 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

0 Ver[4] Len[12]

2 Type[8] Hops[8]

4
PacketID[32]

6

8 Reserved B R R R DevType[4]

10 TxPower[8] RxPower[8]

12
DeviceID[48]14

16

18 Message payload[...]

Some fields in this table need to be explained. Due to the broadcast nature
of wireless traffic, INCP messages may be delivered to the server via different
routes. Consequently, the server may receive several copies of the same INCP
message. Data fields PacketID and DeviceID provide a way to distinguish repli-
cas of different INCP messages from each other. On one hand, the system server
must recognize duplicates of the original message and prevent from repeated
processing. On the other hand, those replicas may be useful for discovering net-
work structure of the system. PacketID is a 32 bit integer number, which is
unique across messages of certain device during certain interval (at least 10 sec).
RealTracTMdevices use internal clock counter as a PacketID value. DeviceID is
a 48 bit integer number, which corresponds to MAC address of the given device.
The system server inserts the MAC address of the destination device into this
field.

The message contains other fields, which are used for investigation process of
the network structure in general and for the position calculation of the origin
device – in particular: Hops, RxPower, TxPower. The value in the Hops field
is incremented when the message passes gateway or repeater units on its way
to the system server. Accordingly, the value 0 may be found in the messages
originated by gateways. The value 1 may be found in a message from a mobile
device when it is located in the range of a certain gateway. The values greater
than 1 may be found in a message from a device, which is out of a range of any
gateway, and thus the message was relayed by repeaters at least once.

The value in the TxPower field corresponds to the RF output power of the
origin device. The value in the RxPower field corresponds to the received signal
strength at the first repeater or gateway. These two values help to evaluate path
loss between two devices.
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All the INCP message features may be separated into three categories.

– Voice communication (CALL, BYE, SND PACKET, BANDWIDTH REQUEST).
– Firmware updates (TFTP PACKET).
– Status acquisition and configuration (ALIVE, PARAMETER).

The ALIVE message may contain series of blocks, for example: LOCATION,
VERSION, CONFIG, STATE and IMU blocks. LOCATION block is used to
deliver ToF, RSS and IMU data to the server.

Some parameters of the device may be changed by the system server. It may
set RF output power, status reporting interval, ring and voice volume by sending
the PARAMETER message. Also, the server may turn the device off or suspend /
resume IMU function.

2.4 RealTracTMAPI

The RealTracTMserver can communicate with software clients through web pro-
tocols (see Fig. 2). The Real Time Location System Communication Protocol
(RtlsCP) – the public API, was developed for this purpose. Requests and re-
sponses format is based on JSON notation.

RtlsCP covers most common features of all RTL systems and provides nec-
essary services for handling the RealTracTMhardware and visualization. The
common API provides the following data.

– Anchors and mobile nodes list.
– Anchors and mobile nodes real time locations data.
– Anchors and mobile nodes parameters and statuses.
– KML files for visualization.

KML formatted files were used in RtlsCP since KML become natively be
supported by both Google Maps and Google Earth applications. RtlsCP can op-
erate with either relative (x, y, height) or absolute (latitude, longitude, altitude)
coordinates.

3 Positioning Technique Overview

3.1 Localization Server

All the measured data, including ToF, RSS, air pressure and IMU data is pro-
cessed by the localization server. Initially, the air pressure data is used for
altitude calculation. Next, the floor in a building is determined and the cor-
responding 2D map is identified. After that, all measurements and the 2D map
are used for the estimation of a mobile node position (x, y coordinates) on the
specified floor. Finally mobile node 3D location (x,y,z) is sent to software clients
through the web using RtlsCP.
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3.2 Location Algorithms Implementation

To combine all available sources of information for accurate positioning the
Bayesian filtering [5] was used. The main goal of this method is to give an
optimal estimation of a target location x̂t which is characterized by pdf P (Xt).
By Bayes theorem

P (Xtn |Yt1,...,tn) =
P (Ytn |Xtn) ∗ P (Xtn)

P (Ytn)
. (1)

In this equation a posterior probability P (Xtn |Yt1,...,tn) represents the esti-
mated pdf of the system state. The likelihood P (Ytn |Xtn) refers to the mea-
surements model. The vector of distances Rn = [rB1 , . . . , rBk

] and the vector of
signal strengths RSSn = [rssB1 , . . . , rssBk

] measured at each time moment tn
between the set of anchors B1, . . . , Bk and a mobile node (target) are used for
the likelihood calculation. The prior P (Xt) represents the target model. For the
prior calculation it is possible to use the information about the motion model,
IMU data, and structure of the building. The P (Ytn) is used as the normalization
coefficient.

The filter is based on a recursive estimation of the system state Xtn by noisy
measurements Ytn at time tn taking into account all previous measurements
Yt1,...,tn−1. The system state Xtn consists of the target coordinates xn and ve-
locity vn. The Ytn refers to the data obtained from ranging measurements.

In the ongoing work particle filter was applied for the location calculation.
Particle filter is the implementation of the Bayesian filtering using the Sequential
Monte-Carlo Method. In this method system state is represented by the set of
random samples or particles with corresponding weights. This particle system is
located, weighted and propagated recursively according to the Bayesian rule [6].

At each moment the pdf is characterized by the set of particles xt
(i), i = 1..N ,

with weights wt
(i), i = 1..N , where particle xt

(i) corresponds to the system state
and includes information about target coordinates and velocities, wt

(i) is the
non-negative weight of the corresponding particle. The weights are normalized
the way, so that

∑
wt

(i) = 1.
The algorithm of the particle filter consists of several phases: initialization,

propagation, weights calculation, resampling, and state estimation. During the
initialization the weights are uniformly distributed in the area of the intersection
of circles corresponded to the measured distances (Fig. 3), thus w(i) = 1

N .
In propagation phase the position of a particle is calculated with the use of

the following motion model equation

xn = xn−1 + (vn−1 · t), (2)

where xn and xn−1 denote to coordinates of the target location at the corre-
sponding time moments n and n − 1, vn−1 is the vector of the target veloc-
ity at the moment n − 1, and t is the time interval between time moments n
and n − 1. The vector v of the target velocity consists of two components vr,
and vα. The components change consequently that vrn = vrn−1 + Δvr , and
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Fig. 3. Initial particles, generated inside the circles intersection area

van = van−1+Δvα. Δvr = N(0, σvr) is normally distributed random noise with
deviation σvr , corresponding to the possible changes in speed of a target, and
Δvα = R(−α, α) is the uniformly distributed random noise, corresponding to
the possible changes in target direction.

The information about vr and vα is gotten from IMU or is chosen correspond-
ing to the motion model. The errors δvr and δvα are chosen empirically.

The structure of the building information is used for increasing positioning
accuracy [7]. If the particle during its motion crosses the wall (which is impossible
for real target motion), it is removed from the current set (see Fig. 4).

Fig. 4. Particle propagation restricted due to building structure

The source ToF and RSS data is used to recalculate the weight of each par-
ticle. The procedure of the weights calculation corresponds to the calculation of
likelihood in (1). At this step it is possible to combine (or fuse) the results of
different weighting algorithms. Let indexes A1, . . . , Am correspond to different

algorithms, and let w
(i)
Aj

be the weight of i-th particle calculated from algorithm
Aj . Then after calculation of weights for each particle for each algorithm the
final particle weight is calculated as

w(i) =

∏m
k=1 w

(i)
Ak∑N

j=1

∏m
k=1 w

(j)
Ak

. (3)

In the ongoing work the RSS pattern matching algorithm [8] was used as the
basic algorithm for likelihood calculation P (Yt|Xt) since it demonstrates better
accuracy in the case of the signal shadowing and NLOS conditions [1].
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After weights calculation the multinomial resampling algorithm was used [6]
to avoid the degeneracy problem (in case if after several steps the weights of
majority of particles become zero).

Finally, the system state is calculated as the weighted sum of resampled
particles:

x̂ =

N∑
i=1

w(i)x(i). (4)

3.3 Pressure Sensor Usage

Every RealTracTMdevice is equipped with the Bosch BMP085 air pressure sen-
sor. Therefore both stationary and mobile nodes measure absolute air pressure
and send results to the system server.

The BMP085 features 4 sampling modes and has absolute accuracy ±100 Pa
and 1 Pa resolution of the output data. According to preliminary experiments
with this sensor, which was set in high and ultra-high resolution modes, the
peak-to-peak pressure values do not exceed the range of 25-30 Pa (2.5-3 m)
[9]. Thus it is possible to use the sensor for floor identification in a multistory
building and even for localization of an object on inter-floor places.

The applicability of the pressure sensor to measure the changes of relative
height is demonstrated in Fig. 5. At zero time moment two devices were at
the same height (on the floor). Approximately at the 43-th second one of the
devices (altitude values marked as rhombi) was raised to the height of 1.5 m.
Two curves were obtained by the simplest 5-point un-weighted smoothing. The
altitude in meters was calculated using the international barometric formula
with the measured pressure and the pressure at the sea level at 1013.25 hPa.
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3.4 IMU-Based Localization

The developed solution assumes that an IMU could be installed in any point at
the persons body. The IMU has 3-axis accelerometer and 3-axis gyroscope. The
accelerometer is active on permanent basis. In order to preserve the power, the
gyroscope is turned on only in case of the person motion or walking process is
detected.

The IMU-based solution includes three modules: distance, orientation and
trajectory calculation modules.

The first module calculates the total travelled distance by counting number
of steps and estimation of each steps length. The number of steps is calculated
with the high accuracy, more than 98%. Algorithms displayed excellent perfor-
mance with no regard to orientation of the device, speed of walk or other person
specific parameters. For step length estimation several methods were tested. The
following formula [10] was used as the most efficient: Lstep = K 4

√
amax − amin.

The calibration constant value was chosen empirically.
To represent the orientation of the device the quaternions were used. To avoid

heavy calculations while getting the attitude, the complementary filter was ap-
plied [11]. The heading direction is calculated as a mean of 2-dimensional vector
using quaternion observations.

The position update was performed at each foot step. When the new step is
detected, the system acquires the step length and the step heading direction.
Both the step length and the heading direction are served into the path restora-
tion module. Those values are multiplied and new position point is added to the
trajectory. Those calculations are performed by the internal MCU of handheld
devices. Compressed trajectory data is sent to the server within the INCP ALIVE

message.
During the experiments on evaluation of IMU accuracy, a researcher walked

along the corridors of O-shaped building with a perimeter about 270 m and then
returned to the starting point. The computed return position was compared with
the real one. The parameter Return Position Error (RPE) for multiple tests did
not exceed 3% of the total travelled distance.

4 Conclusion

The RealTracTMtechnology can be successfully applied for the Local Positioning
Systems development and for providing voice communication over the wireless
sensors network infrastructure. As an example, a pilot project in a collaboration
with Intelmine ltd. (Russian Federation) was started in the year of 2012. It was
devoted to the development of the positioning, data and voice communication
system in mines. Specific restrictions on intrinsic safety were applied to the
equipment. The first trial results at the coal mine ”Polysayevskaya” displayed
high reliability of the technology. The RealTracTMcan also be successfully used
in hospitals, in logistics for the large industrial areas, in hotel business, etc.

It should be noted that the current implementation of IMU does not require user
calibration and works robust with any speed of walk. However, it accumulates yaw
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error and this error could not be removed easily without additional information.
Thus one of the directions of future developmentwill be discovering newalgorithms
of the IMU-baseddata fusionwith the RSS/ToFbased data and the building struc-
ture in the localization engine. This work will also include further modification of
the particle filter.

Another area for the development concerns the altitude estimation accuracy.
The authors team plan to investigate cooperative algorithms for calculation of
relative height providing accuracy better than 0.5 m.
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Abstract. Indoor localization is a key component in context-aware ap-
plications and assisted-living technologies. In prior work, we presented
the design and implementation of the LOCOSmotion indoor person track-
ing system that uses Wireless LAN fingerprinting and accelerometer-
based dead-reckoning [5]. In this paper, we analyze the optimization
potentials of the previous implementation LOCOSmotion and propose
modifications and enhancements which address them. In particular, we
focus on reducing the time and cost of deployment, as well as on a number
of refinements to improve the localization precision. Aside from optimiza-
tion of the calibration tools and underlying localization algorithms, the
refinements also encompass the use of feedback provided by the domes-
tic robotics (domotics) in the Living Lab to improve the overall system
performance.

Keywords: Localization, Tracking, Pervasive Computing, LOCOS-
motion.

1 Introduction

Pervasive computing envisions seamless and distraction-free support for tasks by
means of context-aware applications. In many of these applications, knowledge
about the user’s location is a key requirement. However the use of the Global
Positioning System for location determination is limited by the unavailability of
its signals in indoor environments. Hence, in recent years, much attention has
been focused on developing alternative solutions for indoor localization. Rapid
advances in wireless communication technologies and the miniaturization of con-
sumer electronics have led to an increase in the deployment and accessibility of
wireless local area networks (WLAN) and WLAN-capable mobile devices. This
presents an opportunity to leverage and reuse the existing infrastructure for the
development of localization systems without incurring extra costs for setup and
maintenance. Also, most of the mobile devices today come packed with a plethora
of other sensors such as accelerometers and gyroscopes which make them ideal
for use as location sensing platforms.

J.A. Bot́ıa et al. (Eds.): EvAAL 2013, CCIS 386, pp. 72–82, 2013.
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In previous work [5], we described the design and implementation of LO-
COSmotion, a WLAN-based indoor localization system. The basic operational
principle of LOCOSmotion is similar to RADAR [2] in that it uses WLAN-
based fingerprinting for location estimation. However, in contrast to RADAR,
LOCOSmotion additionally performs accelerometer-based dead-reckoning in or-
der to improve the localization precision while guaranteeing a minimum location
update rate of 2Hz.

In this paper, we describe the implementation of several optimizations to the
LOCOSmotion system based on our experiences during the EvAAL 2012 com-
petition. To evaluate the optimizations, we present the results of a number of
experiments that we performed in our laboratory at the University of Duisburg-
Essen. The optimizations focus on a significant reduction of the calibration ef-
fort by providing better tools for the initial training, as well as improvements
to the robustness of the dead-reckoning algorithm. Furthermore, we enhance
the LOCOSmotion system to intelligently take advantage of any domotic event
notifications which may be provided in order to increase the accuracy of the
system.

The rest of this paper is broken down as follows; in the next section, we
discuss related work in the field of indoor localization and then briefly outline
the basic architecture of LOCOSmotion system in the Section 3. In Section 4,
we outline the potential optimizations and propose enhancements which address
them. Section 5 presents an evaluation of the impact of the optimizations on the
performance of the system. Finally, we conclude the paper with a short summary.

2 Related Work

Many different systems have been developed for indoor localization and they em-
ploy different technologies to perform location estimation. Vision-based systems
make use of cameras and computer vision for location estimation [6]. Other in-
door localization systems have been developed on the basis of infrared light [19],
ultrasound [20], or magnetic signals [9]. However, since LOCOSmotion is using
RF technology as basis for localization, we are focusing on RF-based systems in
the following.

One of the earliest systems that uses WLAN fingerprinting for indoor local-
ization is RADAR [2]. In RADAR, a fingerpint is a tuple of location coordinates
and signal strengths of visible WLAN networks. In a training phase, WLAN
fingerprints are collected at all locations in the target area to form a radio map.
During localization, WLAN scans are matched against this radio map to estimate
the location of the user. As described in [5], LOCOSmotion can be thought of as
an extension of RADAR with accelerometer-based enhancements for tracking.

Building a radio map by means of fingerprinting can be labor-intensive, hence
there have been several approaches which seek to reduce the mapping effort by
performing simultaneous localization and mapping [14] or using signal propaga-
tion models[12][22]. ARIADNE [12] proposes to collect only a single measure-
ment and together with a two-dimensional construction floor plan, generates a
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radio map for localization. Xiang et al [22] use a signal distribution training
scheme and achieve an accuracy of 5m with 90% probability for moving devices.
The main limitations of indoor localization using propagation models are that
due to the complexity of signal propagation in indoor environments, they either
result in a high modeling effort or they only consider some of the variables
affecting the signal distribution which reduces their precision.

In addition to WLAN, there are several indoor localization systems based on
RFID technologies. RFID has been developed for automated identification of
objects and people [13]. An RFID system usually comprises a tag and a reader.
There are both active - where the tag has a battery - and passive - where the tag
is induced by the reader - RFID based localization systems. LANDMARC [17] is
an RFID-based localization system which uses multiple reference tags instead of
multiple readers to mitigate cost. SpotON [10] is another RFID based localization
system which uses custom RFID readers to detect the tag and triangulate its
position using signal strength measurements. RFID systems can produce sub-
meter precision levels, but have the downside of requiring extra hardware and
infrastructure to be acquired and installed.

Aside from WLAN and RFID, many other RF technologies have been used
for indoor localization. For example, there are IEEE 802.15.4-based [4] systems,
Bluetooth-based indoor localization systems [1], Ultrawideband [11], and hy-
brid systems which use a combination of multiple RF technologies for indoor
positioning. One such system is proposed by Baniukevic et al in [3]. It uses a
combination of Bluetooth and WLAN signals for positioning. A good overview of
possible approaches and technologies can be found in [15] and [7]. Most of these
systems differ from LOCOSmotion in that they require extra infrastructure to
be purchased which can be sometimes expensive.

3 LOCOSmotion

LOCOSmotion relies on a dense deployment of off-the-shelf wireless access points
that continuously broadcast WLAN signals and provide good coverage of the
target area. As with every other system that is based on RF fingerprinting,
there are two phases involved in deployment; the training phase and localiza-
tion phase. In the first phase – the training phase – we calibrate the system by
performing WLAN scans with an Android-based mobile phone to capture and
store WLAN fingerprints for several known locations. In the second phase – the
localization phase – we run a background service on the mobile phone that con-
tinuously performs WLAN scans and matches the resulting fingerprint against
the stored ones. The location of the closest matching fingerprint is returned as the
estimated location. In between consecutive WLAN scans, accelerometer-based
dead-reckoning is used to extrapolate intermediate locations using the phone’s
previous movement vector.

As described in [5], the LOCOSmotion system was specifically built to address
the five goals set out by the EvAAL competition which are to provide a high
accuracy, a low installation complexity, a high user acceptance, a high availablilty
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as well as enabling interoperability. In the following, we briefly explain how
LOCOSmotion addresses these goals.

– High Accuracy – To ensure a high accuracy, LOCOSmotion relies on WLAN
fingerprinting as this approach is known to exhibit better performance than
systems which use simple forms of signal propagation modeling [7].

– Low Installation Complexity – To ensure a low installation complexity, LO-
COSmotion relies on off-the-shelf hardware with customized software. To
enable a speedy deployment in different environments, LOCOSmotion pro-
vides an Android application with a graphical user interface that allows the
on-site collection of fingerprints for different locations.

– High User Acceptance – To ensure a high user acceptance, LOCOSmotion
only requires the user to carry a mobile phone which performs all measure-
ments and computations. Consequently, it is easy to integrate in the daily
activities of users since many users will be already carrying a phone anyway.

– High Availability – Due to measurement imprecision, WLAN fingerprinting
usually requires several measurements to accurately determine the location
of the user. Thus, in order to achieve the location update rate goal of 2
Hz, LOCOSmotion combines fingerprinting with acceleration-based dead-
reckoning.

– Interoperability – To enable and ease interoperability, LOCOSmotion relies
solely on unmodified off-the-shelf hardware. To facilitate extensibility and
to ease software integration, LOCOSmotion is using the NARF component
system [8] developed by members of our research group. The NARF compo-
nent system is a generic framework for personal context recognition which
facilitates modularity and software reuse.

More technical details and a more thorough description of LOCOSmotion
including a detailed analysis of the results of deploying and using the system
during the EvAAL 2012 competition can be found in [5]. In the following sections,
we focus primarily on several enhancements that we implemented and tested to
improve overall performance of the system.

4 Enhancements

The LOCOSmotion system was designed to achieve a high accuracy, a low instal-
lation complexity, a high user acceptance, a high availability and interoperabil-
ity. As demonstrated by the results of the EvAAL 2012 competition, the system
largely fulfills the last four design goals. Yet, the results also indicate that there is
considerable optimization potential with respect to installation complexity and
accuracy. In the following, we discuss three enhancements to the original system
that address this potential.

4.1 Training Effort

With the original implementation of LOCOSmotion, the training phase was per-
formed by a person (the trainer) performing scans with one phone at discrete
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points in a grid defined on top of the target area. The scans were performed in
multiple orientations to account for signal attenuation induced by the trainer.
This improves accuracy, but is also time-consuming.

Fig. 1. Training Path and Markers

Instead of using discrete scans, we have enhanced the system to continuously
perform scans while the trainer moves around. To do this, we first define a path
through the area by specifying a sequence of points as shown in Figure 1. The
path is chosen to maximize coverage of the areas in the building where people
are likely to be found. During the training phase, the trainer then follows the
path and marks his current position whenever he reaches one of the pre-defined
points.

In addition, the trainer is equipped with multiple devices that are put into
the left and right, front and back pockets. Multiple devices enable the coverage
of different orientations to account for signal attenuation due to the human
body. Taking different orientations into consideration has been shown to provide
performance improvements of up to 67% [2]. In order to enable the correlation of
measurements from different phones, we synchronize their clocks shortly before
the training using Network Time Protocol (NTP).

Once the data collection is complete, the fingerprints from the different phones
are aggregated and the (X,Y ) coordinates are computed for each fingerprint by
interpolating the intermediate locations based on timing information. The result-
ing output is a radio map with a dense distribution of the fingerprints collected
from multiple devices facing different directions. Using this technique results in



Enhancements to the LOCOSmotion Person Tracking System 77

time savings of 75% to 83 % for training, while maintaining the accuracy of the
original implementation.

4.2 Dead-reckoning

The LOCOSmotion system uses the accelerometer of the Android phone to de-
termine its speed and extrapolate locations between WLAN scans using its pre-
vious movement vector. This enables the system to guarantee an update rate
that exceeds the WLAN scanning rate. However, our original implementation
used a simple algorithm that estimated the steps taken by a person by simply
counting events during which the acceleration exceeded a given threshold. De-
spite our positive experimental laboratory evaluation, this turned out to be not
very robust in the EvAAL 2012 setting as the person performing the test was
following a pace-setter. This, in turn, resulted in an atypical acceleration pattern
which caused imprecise intermediate estimates.

To address this issue, we completely redesigned the fundamental algorithm
to determine the speed of the phone [16]. Instead of the simple threshold-based
approach, the new implementation uses a tiered approach to determine the num-
ber of steps and the resulting distance covered. As a first step, we differentiate
between 4 typical classes of movements, namely no movement, slow walk, normal
walk and running. To do this, we determine the minimum and maximum accel-
eration as well as the variance over a 1 second frame using a simple tree classifier
that we trained with data gathered from 5 persons. If a movement is detected,
we apply a low pass filter over the signal which we parameterize with a cut-off
frequency of 2, 3 or 4 Hz depending on the modality (i.e. 2 Hz for slow walking
speed and 4 Hz for running). As a last step, we count the number of maximas
in the frame and use this as our number of steps. Finally, in order to determine
the distance covered we apply the formula described in [21]. We consistently use
a k -value of 0.55 in order to avoid personalization effort.

4.3 Domotic Events

Domestic robotic (domotic) systems in home automation typically comprise au-
tomated systems that control the heating, entertainment and energy consump-
tion and more in a home. The Living Lab in Madrid is equipped with a domotic
bus which provides notifications for events in the home such as a light switch
being triggered (as well as the position of the switch) and other such events. The
notification typically includes the location of the triggered sensor or event.

In order to leverage this potentially valuable information, we have enhanced
LOCOSmotion to enable the integration with external event providers such as
a domotic bus. The provider can increase the confidence level in the location
estimate or it can correct the estimate. However, we realize that in cases where
multiple persons are present in the target area, purely relying on external event
notifications can reduce the accuracy of the system. Thus, we only allow location
corrections in cases where the distance between the estimated and the corrected
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location is less than the average system error. If the distance is greater than
that, the external event provider is ignored.

5 Evaluation

In this section, we evaluate the performance of the enhanced LOCOSmotion
system. We first look at the performance of the improved algorithm for step
detection and distance estimation which forms the basis of our dead-reckoning.
Then we describe the results of an experimental evaluation of the improved
system in our lab and compare it to the performance of the system without any
of the optimizations made in this paper. Since our laboratory is not equipped
with domotic systems, we do not evaluate the potential gains, however, it should
be clear that they are heavily dependent on the accuracy of the available events.

5.1 Steps and Distance Estimation

To measure the effectiveness of our improved algorithm for step detection and
distance estimation, we asked three persons to walk several rounds on the park-
ing lot in front of the university building. Each person was walking three rounds
in total, each one at different speeds - representing our three movement cate-
gories (i.e. slow and normal walking and running). Before the experiment we
measured the distance of a single round and during the experiment we were
manually counting the steps taken by the different persons. After the experi-
ment, we contrasted the manually counted steps with the steps determined by
our algorithms. Depending on the person, the precision of the step detection
stage ranged between 85 and 95%. Furthermore, we contrasted the measured
distance with the computed distance which resulted in slightly lower accuracies
ranging between 80 and 85%.

5.2 LOCOSmotion Localization System

The evaluation of the system was carried out on the 5th floor of our university
office building. The path was traced through the pathways of the building and
the passable space in the office as shown in Figure 2. So basically, every place
where people are likely to be found was covered by the trainer and fingerprints
were collected. One lecture hall was not covered due to its unavailability at the
time of the measurements, hence no paths can be seen in in this room.

In total, we collected 1783 fingerprints from the 4 Galaxy Nexus Android
mobile devices which were used by the trainer. We also collected another set
of fingerprints to use for the evaluation of the system. We principally evaluate
the enhancements to the system, particularly the accuracy and precision of the
enhanced LOCOSmotion localization system and the time for initial calibration.
Due to lack of domestic home automation infrastructure at the office building,
we do not include any evaluation of the impact of considering domotic events
during localization.
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Fig. 2. Office Building Trace Path

Accuracy and Precision. The accuracy measures the average error distance of
the system. The fingerprints for the evaluation were collected in the same manner
as the training fingerprints, with the user walking around the office building with
the mobile device. The true location of the user was again interpolated from the
markers in the path and then this was compared to the location estimated by
the LOCOSmotion system. Figure 3 shows the results of the evaluation.

Fig. 3. Probability Distribution of Errors

The average error from the evaluation is 1.6m, the median error is 1.5m and
the maximum error is 7m. The curve is a Gaussian distribution which is shifted
by 1m. This is a result of the fact that for localization, we do not collect a
single fingerprint for localization, but rather multiple scans are performed and
smoothed and the result is used to generate a location estimate. The resulting
fingerprint at each point is therefore not an absolute fingerprint at that position,
but rather an aggregation of a multiple fingerprints depending on the speed at
which the user is moving. We are therefore not always localizing the person
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where they are, but rather where they were approximately 2 seconds ago (average
human walking speed is 1.4 m/s). For a user who would be running, the shift
would be even greater.

Fig. 4. Cummulative Probability Distribution of Errors

Likewise, the precision measures the success probability of location estimates
with respect to the accuracy. Figure 4 shows the cumulative probability distri-
bution of the localization system. From the figure, we can read that 60% of the
location estimates have an error of 2m or less which increases to 90% at 3m.
Only 10% of the values are between 3m and 7m. This is an improvement over
the results from the first LOCOSmotion paper where only 34% of the time the
result was within 2 neighboring cells (each of dimension 2x2m), and 83.8% of the
time within 4 neighboring cells. It is obvious that the new fingerprinting method
leads to dense fingerprinting which improves accuracy and precision.

Calibration Effort. The total time needed for the calibration of the entire 5th
floor of our office building was 11.5 minutes. In the first iteration of LOCOSmo-
tion, we overlaid a grid over the floor resulting in 90 locations where fingerprints
were to be collected for 8 different orientations. The IEEE 802.11 standard re-
quires that all channels be scanned during a WiFi scan. There are typically 14
WLAN channels in use and with most commercial access points broadcasting
for 100ms on each channel[18], it requires a total of 1.4 seconds to perform a
complete WLAN scan. Combining this with the 8 orientations and 90 points in
the building, it took a total of 1.4 hours to create a complete scan of the whole
floor using the previous implementation.

The new mapping system represents an over 86% reduction in (pure scanning)
time required to create a fingerprint radio map. The new system also has the
advantage of eliminating unnecessary points which result from a grid system and
focusing on the areas and paths where people are usually found in the first place.
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This leads to better coverage of the areas and faster deployment times for the
LOCOSmotion system.

6 Conclusion

In this paper, we presented improvements to the LOCOSmotion indoor local-
ization system. LOCOSmotion enables indoor localization by combining WLAN
fingerprinting with speed estimations gathered from acceleration measurements
and relies on standard off-the-shelf hardware which makes it very cost-efficient.
The improvements proposed to the system increase its accuracy while simultane-
ously reducing the installation effort. Consequently, we think that it is a suitable
candidate for supporting the development of many pervasive computing appli-
cations that require person tracking. At the present time, we are investigating
further drive down the cost of installation and increase accuracy by making use
of signal transmission properties and propagation modeling.
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Abstract. Systems providing tracking and localization of persons in an indoor  
environment have been continuously proposed in recent years, particularly for Per-
vasive Computing applications. AmbiTrack is a system that provides marker-free 
localization and tracking, i.e., it does not require the users to carry any tag with 
them in order to perform localization. This allows easy application in circums-
tances where wearing a tag is not viable, e.g. in typical Ambient Assisted Living 
scenarios, where users may not be well-versed technologically. In this work, we 
present the AmbiTrack system and its adaptation for the EvAAL competition 2013. 
We present a marker-free, camera-based system for usage in indoor environments  
designed for cost-effectiveness and reliability. We adapt our previously presented 
system to make it more reliable in tracking multiple persons, using context  
information for improving recognition rate and simplifying the installation. 

Keywords: Indoor localization, Computer Vision, Ambient Assisted Living. 

1 Introduction 

The reliable localization and tracking of various users is one of the main challenges in 
the research area of smart environments. The knowledge of the users’ position is a 
core contextual information for assistive systems that need to decide in periodic inter-
vals, whether or not they are supposed to influence the actual state of their environ-
ment via one or multiple of their actuators available. While basic motion sensors  
are in many cases able to deliver sufficient information when one person is con-
cerned, the tracking of multiple persons typically requires more sophisticated solu-
tions. This is equally important when the system needs to distinguish between users 
and non-critical actors in the environment, such as pets. 

Various indoor tracking and localization approaches for usage in conjunction with 
Ambient Intelligence systems have been proposed and there are even specific  
competitions with the intention of comparing the different methods’ performances 
against one another [1]. Three different categories of localization methods can be 
distinguished, active marker-based solutions, passive marker-based solutions, and 
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marker-free solutions. Both active and passive marker-based solutions require a per-
son to carry some type of tag in order to enable localization. A multitude of reasons 
make these types of solutions less favorable, such as higher cost and a user’s tendency 
to forget the tags. Marker-free solutions are capable of localizing persons indepen-
dently of whether they are carrying additional accessories. Examples for approaches 
from this latter category include capacitive sensitive floors [2], using microphones for 
the detection of subtle noises caused by movement [3], and camera-based approaches 
[4]. The three main criteria that all of these localization solutions are judged on are 
the total costs for providing them for a specific area, such as a private apartment, their 
reliability, and the amount of persons that can be tracked and distinguished by them at 
a time. 

In this work, we present AmbiTrack, a marker-free, camera-based approach for use 
in typical indoor environments, which allows the reliable localization of multiple 
persons. For EvAAL we are building upon a previously presented system that  
was able to successfully track two users in parallel [5]. This paper will present the 
findings of this previous publication in a partially shortened form and also present the 
adaptations made as relevant for the EvAAL competition in detail. 

2 Related Work 

Detecting the presence and location of persons has been a research effort for many 
decades and as such, can now be achieved using a variety of technologies. Capacitive 
sensors use oscillating electric fields to measure the properties of an electric field and 
so allow the detection of a human body’s presence. Braun et al. have presented a sys-
tem using electrodes laid out in a grid and hidden underneath the floor covering to 
detect the location of one or more persons [2]. A similar system that integrates neces-
sary electronics into a floor layer and which communicates wirelessly with a central 
system has been presented by Lauterbach et al. [6]. Both systems furthermore allow 
the realization of additional use cases, such as intrusion detection. 

Walking is creating a certain level of noise that can be picked up by microphones 
and used to infer the location of persons. Most of the systems based on this concept 
use time-of-flight techniques; that is, calculating the distance of the source by measur-
ing the time required for the signal to arrive at a specific location and triangulating its 
position [3]. While earlier system relied on speech to recognize sound sources [7], 
newer and more sensitive systems allow the detection of a person from the sound of 
her footsteps [8].  

Another popular method (that requires an active token to be worn) is based on dif-
ferent radio frequency techniques, e.g., by measuring signal strength (RSSI) on differ-
ent receivers and triangulate the positions [9]. A newer approach is using tomography 
techniques to measure the signal attenuation by human bodies [10] and allows a loca-
lization without requiring a person to wear active tokens. 

Finally, the method that our work is based on comes from the area of computer  
vision and uses different types of cameras [11], depending on visible light or infrared 
depth imaging [12]. Most systems use similar approaches that use background  
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subtraction to detect movement in single images or time-series of images to infer the 
position of an object [4].  

3 System Design 

The following section describes the design decisions that have been driving the de-
velopment of our AmbiTrack system, whereby the main requirement was to provide a 
cost-efficient solution that nonetheless achieves a high reliability. The resulting ef-
fects on hardware architecture and software platform are outlined on the next pages. 

3.1 System Requirements 

The system is based on a set of standard, off-the-shelf webcams and as such excels 
through its low cost factor – the hardware cost for an average living room should be 
less than 100 $ (provided that a PC is already available). There are three main chal-
lenges associated to the design of such a system for smart environments: 

• Scalability - it should be easy to attach additional cameras to the system and  
provide tools that allow setting the position and orientation of the video devices 
within the environment 

• Flexibility - the system should be able to distinguish between different persons and 
discard other moving objects, such as pets 

• Computational Feasibility - the algorithms used for person localization should be 
suitable for usage with low-resolution, low-bandwidth data, while still being able 
to reliably recognize moving persons 

• Abstraction - the algorithms and hardware should allow for future implementation 
in privacy-preserving smart camera systems 

The system we are using is set up using a simple configuration tool that models the 
environment and the extrinsic camera parameters by way of XML files. The video 
stream of each camera is analyzed for signs of movement and we register the results 
of each camera to the others. This allows the generation of three-dimensional data of 
moving objects and the inference of such an object’s position within the environment. 
At least two cameras must capture the moving object for the method to work. In bor-
der cases, we use approximations and historical movement data to estimate the ob-
ject’s position. We are using simple metrics to distinguish between different persons, 
based on the color of their clothing and body volume. 

3.2 Hardware Architecture 

The system is comprised of various nodes made up of a single PC with various USB 
cameras attached. They are connected to each other using either a wired LAN connec-
tion (preferably), or WiFi. The cameras used should be controllable in terms of  
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Fig. 1. Hardware architecture of the localization system 

modifying their settings, such as automatic settings of white balance, gain, contrast 
and brightness. This allows offloading the image processing to the individual nodes, 
and in consequence only higher-level features are sent through the network connec-
tions. This is reducing the required bandwidth and makes this approach feasible for 
low-speed wireless networks. One of the nodes is acting as a master, analyzes the 
high-level data and provides the overall processing of the final localization. The over-
all architecture is shown in Figure 1. 

3.3 Data Processing 

Our system is following a regular camera-based indoor localization process, as shown 
in Figure 2. Each individual system is processing the image of the camera using a 
motion detection algorithm. We use a custom variant of background subtraction that 
allows a fine-grained control of the sample window, camera parameters and feature 
size, thus guaranteeing swift adaptation to different room geometries. In a second 
step, we extract features from the detected motion, in our case the center of gravity of 
each moving region and metrics about the detected regions, which allow us to identify 
individual persons in a future iteration. Only these features (and not the entire stream) 
are then being sent over the network for further processing. Finally, the master system 
is collecting all the features, combines it with its local representation of the environ-
ment and performs the actual localization of the different persons. 

 

Fig. 2. Localization process 

We have implemented a controlling software which realizes all these steps and also 
provides various tools to support the entire AmbiTrack system setup and maintenance 
process. These tools include: 
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• Camera management: add/remove cameras, set intrinsic and extrinsic parameters 
• Environment management: read layout from image files 
• Camera placement tools: coverage analysis, coverage optimization 
• Performance analysis: show CPU load, network status, logging 

 

Fig. 3. Software’s main view 

Figure 3 shows a screenshot of the software’s main user interface. On the left, we 
can see the source image file of the environment. Using a threshold-based processing, 
the boundaries are extracted from the black areas indicating walls. On the right side of 
the figure, we can see the wizard that allows the adding of additional cameras.  

 

Fig. 4. Camera properties (left), Statistics (center), Coverage analysis (right) 

The wizards of the software enable us to modify the position and orientation of cam-
eras and check on the live camera stream. Once a camera is added, it is also possible to 
control the results of the image processing in a dedicated window and individually set 
post-processing parameters, such as white balance and color correction (Figure 4 - left). 
The statistics window, as shown on Figure 4 (center), gives an overview of the available 
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master nodes (mergers) and the load on all available CPU cores, as well as the number of 
currently active threads. Finally, the coverage map shown on Figure 4 (right) displays by 
color, which areas of the environment are currently covered by cameras, and by how 
many (red indicates blind spots, orange areas are in the view of a single camera, yellow 
areas are surveyed by two cameras, and green areas are covered by at least three cam-
eras). We have found that, as a rule of thumb, a reliable localization is achieved for all 
yellow and green areas (areas covered by at least two cameras).   

 

Fig. 5. Before and after camera placement optimization 

An interesting feature of the software related to these areas of coverage is an opti-
mization algorithm for camera placement. Using the camera coverage area as a quali-
ty metric, a genetic algorithm is used to calculate optimal camera positioning. The 
algorithm optimizes camera placement based on the number of available cameras and 
considers wall and ceiling positions as an additional restriction (Figure 5).  

The software was created using C# and the .NET runtime environment. For image 
processing, we are using EmguCV1, a .NET wrapper for OpenCV2. This is a compre-
hensive image processing and computer vision library, which already provides many 
of the methods required.  

4 Prototype 

For our prototype set-up, we selected the Playstation Eye as the camera of our choice, 
as it is available at a low price, while nevertheless allowing modifications to various 
parameters, such as frames per second (FPS), deactivation of auto-white-balance and 
auto-contrast, as well as setting exposure and gain. The ability to manually control 
these parameters is crucial for image processing applications and not typically availa-
ble for cheaper varieties of web cams. While the system is easily scalable, for our 
initial tests we have used only two nodes, with two cameras attached to each of those 
(which results in a total of four cameras). This setup has proven to be sufficient for 
covering a fairly large room (roughly 35 square meters). Both nodes were running our  
 

                                                           
1 http://www.emgu.com 
2 http://opencv.org/ 
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Fig. 6. Playstation Eye camera out-of-the-box  

software on 64-bit multi-core processors (AMD Turion 64 and Intel Core i5). The 
cameras are running at 30 FPS and VGA resolution (640x480). The CPU load and 
amounts of threads used indicate that each node would be able to handle at least twice 
the number of cameras. RAM requirements have generally shown to be low and as 
not being the limiting factor. 

The system was installed in our institute’s Living Lab, which consists of a com-
bined living room and kitchen area, a bedroom and an office. For our evaluation, only 
the combined living room and kitchen area were considered. The combined area cov-
ered is approximately 35 square meters and is occupied by several large pieces of 
furniture (cupboards, desks, and the like). Therefore, a sophisticated camera place-
ment is crucial in order to guarantee a good coverage. The software tools as described 
previously were essential for finding optimal camera positions in this setting. As a 
next logical step, we intend to extend our prototype setup to all rooms of the Living 
Lab.  

5 Evaluation 

As indicated before, we have been able to successfully test our prototype system 
(software and hardware setup) for the simultaneous tracking of two persons, using 
four cameras to cover an above average-sized room. By using the camera placement 
optimization algorithm, we positioned the four cameras on different corners of the 
room and thus maximized the area covered by at least three devices. The screenshot 
one can see on Figure 7 shows the software’s main screen with the apartment’s map 
on the left and one camera’s viewing angle highlighted. The image stream of this 
selected camera can be seen on the lower right. The frame on the upper right shows 
the persons that are currently tracked by this camera (supported by the feeds delivered 
by the other three cameras). Making use of small markers on the floor, we have been 
able to verify that our system’s distance estimation feature is actually very precise for  
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and open source software libraries, we have created a reliable, scalable and versatile 
solution for tracking multiple users in large indoor areas. The hardware costs for the 
system itself are approximately $100 for four cameras, stands and cabling. Because, 
depending on processing power, multiple cameras can be attached to a single comput-
er, the overall cost of the system remains low even if various cameras are used. Ambi-
Track in its current state is an intermediate step. As future work, we intend to scale up 
the system to be able to cover entire apartments and multiple separated rooms. Also, 
the identification of specific users as realized in its current state is rudimentary at best 
and requires further testing. As a next step, we will thus test different identification 
features and investigate, how many persons the system can be reliably differentiate. In 
terms of hardware, we would like to evaluate different types of cameras, such as the 
Microsoft Kinect for depth imaging, which should allow for a more reliable back-
ground subtraction and thus is potentially better suited for scenarios where many users 
are present. Finally, we would also like to test self-organizing networks for smart cam-
eras that perform image processing on an included chip and send features to each other 
using wireless communication systems. Self-localization and registration are further 
aspects we would like to explore in this regard. 

Acknowledgements. We would like to thank Michael Alekseew and Philipp Schillinger 
from the Technische Universität Darmstadt for their major contributions in our efforts of 
creating the AmbiTrack system. 
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Abstract. This document describes a currently developed robotic sys-
tem that tracks and analyses human gait parameters. This system is
used to conduct mobility assessments to track the user’s health status.
Mobility assessments conducted by a mobile robot provide significant ad-
vantages over current methodologies. Additionally, the robot navigation
capabilities can be enhanced by the use of mobility assessment data.
Parts of the overall concept are evaluated by the evAAL competition
2013, Track 1, Indoor Localization and Tracking.

Keywords: mobile robot, mobility assessment, laser range finder.

1 Introduction

The demographic change will cause various challenges to the society within the
next years. Along with an ageing society age-related medical conditions will pose
a growing problem. Without a large number of younger people forming the fi-
nancial base or filling the role of caregivers, the health care systems will have to
cope with major logistical and economical challenges. The individual care time
available per person will decrease when less caregiver face a growing number of
clients. Even nowadays the time spent per client is reduced to a minimum due
to economical factors. Consequential the care system has to adapt to the chang-
ing situation. One tool to ease the caregivers and their clients lives is the use
of assistive technologies [1]. These technologies are not used to replace personal
care but to release caregivers of collateral tasks that take concentration off of
the client. Assistive technologies can be used in various areas of personal care
as well as personal assistance. Typical deployment fields are work, daily living
and personal as well as professional care. They can assist in prevention, station-
ary/ambulant treatment and rehabilitation. This will both unload the caregiver
and reduce costs. Concepts like smart environments integrate components in do-
mestic environments providing special services. Their actuators and sensors can
provide service features to the residents as well as they can be used to record
health related data. However, upgrading existing residences with sensors and
actuators might be costly. In contrast, service robots can be easily integrated in
homes carrying a set of sensors and actuators. They are intended to play an im-
portant role helping to manage the demand of caregivers by assisting elderly in

J.A. Bot́ıa et al. (Eds.): EvAAL 2013, CCIS 386, pp. 94–105, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.offis.de


Mobile Robot Platform to track User Movement and Behaviour 95

their daily life [2]. Instead of static components with limited point of views and
ranges, a mobile platform provides services in-place and simultaneously gathers
information. With further developments mobile robotic platforms designed for
elderly may be available as ”off the shelf” products. Such upcoming technologies
can be used to implement long-term monitoring of residents.

The approach presented here is a service that will enable mobility assessments
using a robot. Mobility is an important factor regarding the health status of older
adults. Measuring mobility can help recognizing early signs of mental decline as
well as the risk of falls.

2 Medical Motivation

Environment Factor. If people are not able to cope with daily life activities
by themselves they need professional care that supports them. In most cases
people want to stay at home as long as possible. Moving people to a hospital
or similar facility causes a strong decline in their personal feeling of healthiness.
Furthermore, elderly people have their own habits and their own speed of life.
Bringing them to a highly optimized and scheduled environment like a hospital,
they can’t keep pace with the changed surroundings. That often leads to a further
and steeper decline of the health status. So the goal is to keep them in their
known environments.

Mobility. A key factor for perceived quality of life is a person’s mobility. From
a medical perspective, being able to move around and to keep up certain body
positions is a fundamental requirement for an independent lifestyle [3]. Mobility
normally changes during age. Starting at the age of 60 years, elderly peoples’
mobility characteristics change [4] i.e. self-selected gait velocity decreases each
decade by 12%-16% during self-imposed activities. The decrease is often caused
by a reduced step length whereas the step frequency remains stable.

Benefits of Long-Term Mobility Assessments. Two of the major factors
influencing the proportionally higher costs to the health care system caused by
elderly people are the costs due to the high need of care of demented people
[5] and fall-related costs. From a clinical perspective, long-term monitoring of
changes in mobility has a high potential for early diagnosis of various diseases.
Therefore there is a demand for assessments to determine the risk to fall [6].
This may help delaying need of care or preventing acute incidents like falls and
may thus help saving costs. On a more personal level early detection may help
supporting an independent lifestyle by enabling early and purposeful prevention
and may therefore increase quality of life for affected people, relatives, and care
givers.

3 Related Work

3.1 Mobility Trend Analysis in Domestic Environments

Environments equipped with various sensors especially from the home automa-
tion or security domain are referred to as (health) smart homes [7]. Only some
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systems which use ambient sensors for detailed mobility analysis have been de-
scribed so far. The research focus is on general mobility trend analysis instead.
Various groups use home automation technologies like motion sensors, light bar-
riers or reed contacts placed in door frames or on the ceiling. Cameron et al. [8]
presented a solution with optical and ultrasonic sensors. These were placed in
door frames to determine the walking speed and direction of a person passing.
Kaye et al. [9] presented study based on sensors covering different rooms of a
flat. The use of more precise sensors i.e. laser range finders (LRF) have been
applied to implement very precise gait analysis in domestic environments. An
approach presented by Pallejà et al. [10]. The advantage of this approach is the
very detailed analysis, but it has some requirements. The person has to walk
straightly towards the scanner and on a predefined path. In our own work us-
ing LRF [3] we do not restrict a person’s walking path while measuring. This
approach is highly precise and does not require any predefined knowledge but is
more expensive to implement compared to the approach using home automation
technology.

3.2 Precise Gait Analysis

Laboratory equipment for mobility monitoring provides the most precise mea-
surements of mobility so far. Examples of such equipment are marker-based
camera systems or fluoroscopy systems for cinematic gait analysis (overview in
[11]). Nevertheless, the equipment is too large or complicated for being applied
outside of a large laboratory and can only be handled by experts. Some systems
require the patient to perform difficult calibration tasks which are not suitable
for cognitive impaired or elderly people [12].

Body worn sensors reduce the need of external equipment and can provide
precise analysis of gait parameters. For example, Zijlstra [13] or Aminian [14] use
gyroscopes attached to the body to measure gait parameters. Another approach
is to use ’electronic textiles’, like Liu [15] did. Those approaches reduce the
number of external sensors but require the user to actively put on and wear such
devices.

Recently, LRF (previously e.g. applied in robot navigation and pedestrian
detection systems for cars) have first been used in the domain of gait analysis.
Pallejà et al. [10] utilize such a device to determine the length of stance and
swing phase within each gait cycle and then compute the additional gait param-
eters average step width and average body speed. However, applicability of the
approach is limited by requiring people to walk straightly towards the scanning
device during the measurements. Both feet have to be kept on separate sides of
drawn line which will be very difficult to apply in domestic environments and
especially with mobility-impaired or elderly people. Frenken et al. [16] have in-
tegrated a LRF into a geriatric assessment tool to be used in hospital setups as
well as domestic environments.
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3.3 Service Robotics

Service robots combine results of different fields of robotic research into systems
that are specifically targeted at an application. As technology advances, more
fields of application will be made accessible. For health care robotics research
started with fixed workstations [17], going over wheelchair mounted systems and
intelligent wheelchairs [18], to autonomous mobile robot systems [19]. Today
there are multiple mobile robots for health assistance available (commercially or
for research purposes). Such systems like Robocare [20] or Care-O-bot [19] deal
with helping, guiding, and assisting people at home. Most of these platforms
are still in (advanced) research states. Recently, tele-presence robots and mo-
bile transportation robots are deployed in hospital environments, like the RP-7i
(www.intouchhealth.com). The limiting factor despite technical challenges is the
currently high costs for such systems.

3.4 Limitation of the State of the Art

Within the domain of health care and rehabilitation service robotics there are
quite few systems commercially available. Further, there is no robotic system
that is capable of doing mobility assessments and tries to learn from such data
for optimal observation and robotic path planning. Most of the systems are in
research states. This leads to a comparably high price as well as designs that
are not feasible for daily home usage (bulky, can move only on flat floor etc.).
Acceptance of robots in terms of direct human-robot interaction is heavily exam-
ined currently. Most of the domestic monitoring systems providing data about
mobility by use of ambient sensors do not continuously observe the person con-
cerned (in terms of following the person). Only presence at specific known points
is measured. Thus this kind of monitoring is measuring mobility indirectly and
can therefore only analyse trends instead of a precise assessment to determine
the mobility of a person. Laboratory equipment for precise assessments of the
mobility is too large or complicated for being applied in domestic homes. It is
often bound to a specific place due to the large setup and difficult to use for the
non-professional. Body worn sensors require the user to actively wear them and
make him aware of the ’observation situation’ like putting on a blood pressure
meter. In summary there is currently no system or approach available that is
capable of doing precise, unobtrusive and continuous mobility assessments in do-
mestic environments and that is additionally learning from the user’s behaviour
(movement) to get optimal assessment results.

4 Approach

The approach presented here is the development of a mobile robot platform ca-
pable of doing mobility assessments in domestic environments. The user tracking
algorithm which is developed is explained in the next sections. At the current
state of development, the system is based on a single LRF sensor. This means
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Fig. 1. Concept scheme

that no complete mobility assessment can be observed currently. The sensor is
able to track peoples legs and movement of legs but no further details like move-
ment of joints or the whole body. That means that single gait parameters are
measured. We consider user tracking with a wide angle long distance sensor like
a LRF as base for unobtrusive monitoring. The Kinect sensor has a narrow field
of view and though requires a lot of re-positioning of the robot, which can be
very annoying during daily activities. Therefore we first concentrate on getting
as much useful information out of the LRF data as possible. The next step is to
integrate 3D data to enable complete mobility assessments.

Concept

The method used to analyse the user’s movement and adapt the navigation
behaviour can be broken down into six steps (Figure 1).

Exploration and Mapping of the Environment (a). Before any navigation
and further functionality can take place, the environment needs to get explored
and mapped. This should be done automatically since the goal is to deploy this
system without the need of extra administration effort. SLAM (self localization
and mapping) strategies have been heavily investigated during the past years and
research is still going on. State of the art algorithms are used in this context, no fur-
ther research has been done. Enhancements like semantic mapping would increase
the performance of the overall system but are not integrated / tested so far.

Track the User’s Walking Paths (b). Getting information of the user’s
movement paths by analysing LRF data is of major interest for this process.
This provides information of which areas in the environment are frequently used
and where the user doesn’t stay. This information is used by the following steps
of the procedure.

Navigate Using the Information of the User’s Paths (c). When infor-
mation about frequently used paths is available, the robot is able to take them
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into account for its own navigation behaviour. For example, the robot should
not stop in middle of a walking path where it becomes a dangerous obstacle.

Recognize and Rate Best Observation Places (d). In order to optimize the
mobility assessments, the robot should find places where the observation range
is maximized. This could be a spot next to a corridor where a long straight
walking path is available or a spot between the couch and the TV which is
walked regularly.

Determination of Safe Places, Paths and Avoiding Strategies (e). Be-
neath finding the best observation places, the robot should care that those places
do not endanger the user additionally. The robot should select places that are
as unobtrusive as possible, do not disturb the user and do not risk becoming
an obstacle (optimal observation lots, OOLs). If there is an encounter between
robot and user, the robot should have evading strategies that bring the robot
out of the user’s travel paths.

Execution of (long term, unobtrusive) Mobility Assessments (f). By
using all these strategies the robot should act as unobtrusive monitoring system
that is capable of assessing the mobility of the user over long periods of time.
During this time the robot is able to adapt to the user’s behaviour and re-select
optimal observation positions.

5 Implementation

The implementation is based on a TurtleBot platform developed by Willow
Garage (www.turtlebot.com) which is equipped with a laser range finder Hokuyo
URG-04LX and a Microsoft Kinect sensor. Two control PCs are used, both are
running Ubuntu 12.04 operating system and the robot control logic is using the
ROS framework [21]. Software components are developed in C++ and Python
code. The robot is depicted in (Figure 5 (a)).

5.1 User Tracking

Person Recognition. The person recognition consists of three different steps
to identify a person (in terms of recognizing a person within the LRF data).
All these have to be done dynamically since the robot can be moving during
recognition. The first step is the background subtraction. The background is
filtered out and only measurements that belong to moving objects remain. The
next step is called segmentation where the measurements are grouped into ob-
jects. These objects are filtered depending on their size. Finally objects within
a certain radius are classified as a person.

Background Subtraction.This component filters the static objects that belong
to walls or tables. Usually this is done by using a histogram for the measurements
of the LRF, but since the robot and therefore the LRF is moving this is not pos-
sible. To overcome this issue all measurements are converted into Cartesian coor-
dinates. A map of the environment is used as a reference. Using this method all
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Fig. 2. a) LRF and detected objects marked as static in the occupancy grid; b) Defi-
nition of leg segments belonging to a person: two ’legs’ are within distance r

Fig. 3. a) Map after background substraction. A: robot position, B: wall (provided by
map), C: marked static fields, D: (black dots) current LRF data, E: moving objects
(black dots outside of static fields); b) Two persons detected within a scene, marked
by an arrow.

detected objects will keep their position regardless of the movement of the robot.
However, due to sensor noise and the movement of the robot, it is very difficult to
detect the exact same spot again on the same accuracy level as a static LRF could
do. The static LRF has an accuracy of roughly 1 cm, the dynamic algorithm takes
a 5x5 cm grid for regarding measurements as static objects.

Figure 2 (a) shows an example of such a grid. The grey area is the field of
view of the LRF. The black dots illustrate the actual measurements. All detected
fields are marked with a dark grey. This indicates that a static object was found
in this field.

Figure 3 (a) shows the result of this process. In this case two human legs can
be observed (not known at this time). The current LRF measurements (D) are
used to identify moving objects. Static objects are marked in a grid (C). Fields
that have been occupied after the initial static grid map has been created are
considered as moving objects (E).

Segmentation. This component only considers measurements that belong to
moving objects since only those should contain the measurements of a moving
human. The LRF is mounted on the robot in the height of human tibia (25 cm),
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Fig. 4. Computation of safety parameters of floor segments

so all objects are filtered by their dimension. Objects that are to small or too
big to form a human leg are discarded. The actual size can be software defined.
The output should only contain objects with the size of human legs.

Clustering. After all segments are extracted persons can be detected. All seg-
ments should have a suitable dimension, but in order to assure that the segments
really belong to a leg, a certain region around each segment is checked for an-
other extracted segment (Figure 2 (b)). Normally a radius of 0.5 m was used,
which is the maximum distance between the middle of each segment. In case two
segments are found, the center of the two segments is determined as the position
of the person. This way it is also possible to detect several persons. The screen
shot (Figure 3 (b)) shows two arrows that indicate the positions of two persons.
The dots are measurements of human legs.

Movement Analysis. This component monitors the positions of the detected
persons and monitors the movement. That information is analysed and compared
to a map of the home to determine regularly used paths and rarely used spots.
This data is processed to calculate the safety of rarely used spots in order to
find qualified spots that can be used to stay and observe the person without
endangering the human.

Movement Computation. At first the path of the person is monitored. Every
position which was used by the person is marked. Similar to the grid described
for LRF data another grid is used to store this information. Each field contains
the number of uses. One field is approximately as big as the robot (Figure 4
(a)) (can be tuned to other sizes if necessary). Every time a person enters a field
the count value of that field is incremented (Figure 4 (b) top). Not all unused
fields are equally qualified. If the robot is positioned on an unused field next to
an often used field it can quickly become an obstacle. In order to take this into
account a Gaussian filter is used and the results are normalized between 0 and
1 (Figure 4 (b) middle and bottom).
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Safety Computation. This approach has been presented in more detail in
[22]. Based on the previously calculated probabilities it is possible to generate
the safety value of each field by considering walls as well as neighbour fields.
At first the avoidance factor is calculated. The bigger the number the more it
should be avoided.

fa =
1

ni

ni∑
j=0

rj (1)

The equation is shown in Equation 1. ni stands for the amount of cross-neighbours,
while i is the index of the current field. j is the index of the current neighbour field
and rj equals the probability of that field.

fs =
1

ki

(
ki∑
k=0

(1− rk)

)2

(2)

In addition the avoidance factor a stumbling factor is calculated in order to
classify the risk value of a field (Equation 2). In this equation ki stands for
the amount of all existing neighbours. In both equations walls are not counted.
Fields at the edge of the grid have fewer neighbours than fields in the middle.
rk is the current probability of the neighbour k. The complete formula can be
seen in Equation 3. The result is a value between 0 and 1 and equals the safety
of the current field. The higher the value the better the safety.

Si =
1

1 + etanh(ri+fa−fs)
(3)

The result can be seen in Figure 4 (c). Often used fields are rated bad (dark
color). The safety of a neighbour field is rated good (bright color) as long as
there is enough space for the robot to avoid an approaching human. Figure 4
(d) shows such a grid in a higher resolution (fields are smaller than the actual
robot size).

Analysis. An analysis of the tracked persons is performed while the persons
are observed. Mainly the average walking speed and the walking direction is
calculated. This is done by using the position of the detected persons and the
time between the detection. Figure 5 (b) shows a walking person. The line of dots
indicates the positions in which the person was recognized. The arrow shows the
current direction of the person. The five latest positions are used to calculate
the average velocity and the direction.

Person Observation. In order to achieve a continuous observation of the per-
son it is necessary for the robot to keep the person in sight. This component
searches for an OOL near the person by using the previously calculated safety
factors. This also assures the person staying in sight so that the observation can
continue.

Searching for the Person. The target of the observation is the person. If the
person it out of sight, the robot waits a few minutes (configurable for personal



Mobile Robot Platform to track User Movement and Behaviour 103

Fig. 5. a) Picture of the used robot; b) Person walking in front of the robot with
calculated direction indicated by an arrow

convenience) for the person to come back before moving away from its current
position. The first step is to search and find the person by guessing where it
could be. The first position which is searched is the last known and therefore
the last detected position. Starting at that location the robot moves into the
last known direction of the person. It is assumed that the robot is being used in
a domestic home with limited size. With the help of the map the robot knows
which area is left to search. If the person is still not found at the end of a search
phase the robot returns to its base position.

Observation Position. Once the person is found all fields within a certain
range are checked for a good safety value (OOL). All fields above a certain value
are potential fields. So all potential fields are checked and compared by the
number of visible fields. The robot is placed on the field with the highest value.

Pseudo code of user observation algorithm

method UserObservation (User_positions pos)

if (userRecognized = true)

reset timer;

else

timer++;

if (timer > recognitionThreshold)

move_Robot(pos.last_known_user_position);

if (userRecognized = true)

move_Robot(next_OOL_position); reset timer;

else

move_Robot(pos.last_known_direction_of_user)

end method

6 Discussion

Mobility is one of the most important factors influencing an independent lifestyle
and perceived quality of life. Especially elderly people suffer from reduced mo-
bility and require care mostly due to mobility problems. Therefore, estimation
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of remaining mobility is an essential part of each geriatric assessment. Within
clinical environments mobility is evaluated using various assessment tests among
which the ’Timed Up and Go’ is the most frequently used. Bringing such assess-
ments to the domestic domain could enable physicians to provide earlier diag-
nosis, to prevent acute incidents or to monitor patients during rehabilitation
at home. However, assessments at home will be performed in non-standardized
environments and under unclear circumstances.

This paper presented a novel approach to use a mobile robot platform as base
for a mobility assessment application. The mobility assessment on the one hand
can help in long term monitoring of elderly people in regard to recognize diseases
and increased fall risks. On the other hand, the assessed movement data and
profiles of the observed person can also be used to enhance the robot’s navigation
and observation capabilities. The medical background and technical development
has been described. To the best of our current knowledge, this approach is unique.
Initial results show that the algorithms produce reasonable data. At the time
of writing, further more intensive tests are ongoing and planned. The next step
will be to move the robot in a real user environment, i.e. bringing the robot into
an elderly person’s home.
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work Programme within the Florence project (ICT-2009-248730).
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Abstract. The SHMPS system, to be presented and experimented at EvAAL 
2013, is composed of, first of all a hierarchical positioning algorithm which 
manage a multi-positioning system composed of a GPS positioning system, a 
Wi-Fi based fingerprinting and trilateration system, and a marker analysis 
system. As soon as the latter system can provide localization information, the 
precedent running system switches to a learning process. The hypothesis, when 
running the multi-positioning system in successive outdoor and indoor 
environments is that the marker analysis based positioning is more accurate 
than Wi-Fi trilateration based one, which is more accurate than GPS' one. Our 
SHMPS (Simultaneous & Hierarchical Multi-Positioning System) system 
proposal, to compete this year to EvAAL 2013 benchmarking competition, is a 
stand-alone application embedded on a smart mobile device equipped with 
camera. This initial version associates the standard GPS application with either 
WIFISLAM or our OwlPS system and a natural and artificial marker analysis 
based on FATE or NyArtoolkit libraries. The gaps of accuracy then performed 
allow to switch from 8 meters outside to 4 to 5 meters inside and finally to 
decimeters when the instantaneous marker analysis is performing well. The 
hierarchical organization provides a practical way to handle the contextual 
download of marker information needed.  

Keywords: marker analysis, multi-positioning system, hybrid positioning 
algorithm, GPS, Wi-Fi network, fingerprinting method, RSSI cartography. 

1 A Multi-Configuration Wi-Fi Based Multi-Positioning System to 
Improve Localization Continuity and to Perform Multi-scale 
Localization 

The OMNI1  team has been engaged in a positioning program initiated by the Pays de 
Montbéliard Agglomération, since 2006.  

                                                           
1 OMNI stands for Optimization Mobility and NetworkIng. OMNI is a team from the DISC 

Department of Femto-st Institute. 
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The focus is on Wi-Fi based positioning techniques and algorithms applied to 
hostile environment. Two kinds of architectures have been studied, first, in a former 
phase, a Mobile Terminal (MT) centric one, and in a later phase, an infrastructure 
centric one. Several techniques and algorithms from the literature have been 
developed and integrated into an internal development suite, so that simulations, 
emulations and real experimentations are conducted following scenarios inside 
modern building and across indoor and canyon urban environments. 

1.1 History and Internal Related Works: Outdoor/Indoor Continuous  
Localization, Wi-Fi Access Points Optimization Placement, Automatic 
Calibration … 

When, at the very beginning the system architecture was terminal centric, indoor 
positioning researches dealt with Wi-Fi positioning or GPS-based positioning. Since 
2008, the architecture has become infrastructure-centric oriented, reducing the 
application part to being embedded in any MT, focusing on intrusive or non-intrusive 
localization, or on the illicit use of wireless network. Hence research activities have 
addressed combined positioning such as GPS and Wi-Fi in indoor environment, to 
improve the positioning service coverage significantly. Since 2010, we have 
investigated how to switch from one positioning system to another and how to 
dimension heterogeneous Wi-Fi infrastructure by adapting geometric and attenuation 
signal strength dilution of precision criteria.   

Two years ago, we have competed with the 2nd evolution of our Wi-Fi based 
Positioning System named “OwlPS”. Among the most innovative functionalities of 
this 1.2 version of OwlPS, the auto-calibration functionality reduces the off-line RSSI 
fingerprinting phase to the minimum. 

Last year, we have also competed. The system proposed was, first of all enriched with 
dynamic change exploitation that means not only the last up-to-date RSSI- fingerprinting 
calibration, but also the instantaneous RSSI variation due mainly to human presence. 
Therein, the loss of the line of sight between Wi-Fi Access Points (AP for short) and MT 
or the abnormal attenuation of signal strength between various reference points 
dynamically configured the K-angle-weighted neighbourhood algorithm proposed. 
Second, the RSSI cartography modelled the orientation of MT and the relative positioning 
of human. Third a tuning of OwlPS system development kit was performed in an off-line 
phase. It made use of a 3D dimensioning tool placing N-APs according to a GDOP_RSSI 
n-loss criteria and COST-231 propagation model. It also made use of a smartphone 
Android-based functionality to calibrate on-demand AOI reference points. 

1.2 New Problems Addressed Bridging the Gap from Decametric Precision to 
Sub Metric Precision 

This year, the system has been enriched with, first of all a hierarchical positioning 
algorithm which manage a multi-positioning system composed of a GPS positioning 
system, a Wi-Fi based fingerprinting and tri-lateration system, and a marker analysis 
system. As soon as the latter system can provide localization information, the 
precedent running system switches to a learning process. 
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1.3 Summary of Our Proposal 

In the sequel, we will briefly describe the core OwlPS system which has competed to 
EvAAL’11. We will summarize also the techniques and algorithms which have been 
conceived, developed and experimented in real experiments during the last decade, 
such as the [16] navigator monitoring interface. Then we will also describe briefly the 
contributions to EvAAL’12 which may use of dynamic changes from radio-
environment, the K-Weighted-Neighbourhood algorithm, the smart Android Interface 
to better pilot calibrations processes and adaptive real-time positioning, and the 3D 
dimensioning tooling.  

After that we will present our SHMPS, our new contributions.  SHMPS stands for 
Simultaneous & Hierarchical Multi-Positioning System.  

Finally we will discuss internal laboratory experiments and dress the perspectives 
of our proposal on a scientific view and on the EvAAL’13 competition view. 

2 OwlPS 1.2 Version which Competed at EvAAL’11:  
A Wi-Fi Based Infrastructure Centric Positioning System  

2.1 OwlPS Core Architecture 

The OwlPS is an indoor positioning system based on the IEEE 802.11 radio network 
(Wi-Fi). It mainly exploits RSSI fingerprinting and indoor propagation models, 
helped by information such as the map of the building, the mobile path, etc. 
Fingerprinting location approaches provide a 4 meter mean error for a 3-D 
positioning, with only 5 Wi-Fi access points deployed in an area of 300m². The 
previous version of the system includes a self-calibration mechanism, which avoids 
the time-consuming manual fingerprinting phase. 

The architecture of Owl Positioning System is infrastructure-centered. We first 
present its architecture and its deployment process, then the positioning algorithms 
implemented, and finally an explanation of the self-calibration mechanism. As 
summarized in Fig. 1, OwlPS is composed of several elements:   

• Mobile terminals, such as laptops, PDAs, cell phones, hand-held game 
consoles, etc., which are equipped with Wi-Fi cards. These run the owlps- 
client software, which is a classical UDP/IP application. 

• Access points (APs), which capture the frames of the Wi-Fi network by 
listening for any positioning request transmitted by the mobiles. These run 
the owlps-listener software, which uses the pcap library to capture the IEEE 
802.11 frames. The SS values are extracted from the Radiotap [4] header of 
each frame; therefore the network interface driver must support Radiotap [5]. 
It is possible to have as many APs as desired: as long as they are only 
listening to the radio network, they do not cause any interference. 

• The aggregation server, to which the APs forward the captured positioning 
requests; its task is to gather and format these requests. It runs the owlps-
aggregator software. 

• The positioning server (or computation server), which computes the position 
of each mobile from the information forwarded by the aggregation server, 
thanks to the owlps-positioner software. 
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Fig. 1. OwlPS infrastructure-centric architecture and Signal Strength acquisition process 

2.2 The OwlPS Processes: Dynamic Signal Strength Cartography, Cyclic 
Localization 

The Signal Strength Acquisition process (SSA-process for short) is used during the 
(auto-) calibration phase and the positioning/tracking phase. It helps to build the 
Signal Strength Cartography (SSC for short) from the signal transmitted either by an 
AP to other Aps or an MT to all APs. The auto-calibration phase eliminates the costly 
off-line calibration of fingerprinting based positioning algorithm. In this previous 
version of OwlPS, the auto-calibration is executed recurrently, according to a time 
period. A token ring-based algorithm assigns to each AP the right to deliver an 
explicit calibration packet to the aggregator. The positioning functionality runs under 
two modes, an explicit one and an implicit one. The former requires the MT to send a 
packet in a specific format [13], whereas the latter accepts any UDP-like packets 
which are intercepted and analyzed by APs, then transmitted to the aggregator. Hence 
the aggregator temporally collapses the SS received and transmits it to the calculator 
which computes the SS tuple respectful of an off-line configuration. The tuple 
represents the t means of n UDP packets transmitted by either an AP or the MT, with t 
the number of Aps (each visible by (t-1) others). m tuples are registered in an SSC, 
with m the size of the grid depending on the distance between each RP in a 2D-plan. 
As an illustration, if we consider2 a rectangular room of l by L m2, where l = 5.8 m., 
and L = 10.6 m., then the number of RPs nbRP= (l+1)*(L+1), considering a grid 
meshing of 1 m.  

                                                           
2 This room is located in our Multimedia Development Center NUMERICA, at the -1 level, our 

laboratory used this space to experiment automatic indoor AR-Drone navigation, and also to 
evaluate the optimal sizing and positioning of APs, and also to design and compare the 
techniques and algorithm of positioning. 
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Around the SSA-Process, numerous other processes are articulated, from the 
deployment of infrastructure and its configuration to the automated off-line 
calibration, the periodic on-line auto-calibration, the positioning and tracking of 
authorized or intrusive MTs.  

2.3 OwlPS Descriptions and Functionalities 

These processes are achieved making use of a bulk of functionalities and descriptions 
among which: wired and wireless 802.11.x communications, the description of the 
hardware characteristics (antenna gain, transmitted power, coordinates of the fixed 
elements), the description of the size and topology of the deployment area if available, 
and manual on-line calibration (fingerprinting) only if auto-calibration is not selected,  

When running the system, one positioning algorithm has to be selected among 
several3 implemented in the positioning server:  

• Nearest neighbor in Signal Strength (NSS), based on RADAR [3], a simple 
cartography-based algorithm. 

• Trilateration using the propagation formula proposed by Interlink Networks 
[1]. 

• Trilateration using the FBCM [2, 7] (Friis-Based Calibrated Model), which 
adapts the propagation formula to match the deployment area's 
characteristics better. 

• Basic FRBHM [8, 7, 9] (FBCM and Reference-Based Hybrid Model), a 
combination of the NSS and the FBCM which allows to adapt the 
propagation formula dynamically to the characteristics of the room where the 
MT is supposed to be. 

2.4 OwlPS Techniques and Tool Set Box 

When designing and developing a new positioning algorithm, some other techniques 
are usable to serve as a basis or to compare performance such as support for the 
Viterbi-enabled algorithms: 

• NSS with Viterbi-like [10],  
• Discrete and Continuous FRBHM [7, 9]. 

At the very first competition EvAAL’11, we presented a Wi-Fi based navigation 
monitoring and, in addition, an AR-Drone navigator using an itinerary scenario 
description [13]. 

3 At EvAAL’12, OwlPS Version Exploits the Dynamic Changes 
of the Radio Environment Better 

OwlPS implements an auto-calibration mechanism that allows the system to be 
operational within a few seconds after its deployment. Since the self-calibration is a 

                                                           
3 These algorithms were described and compared in [6]. 
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continuous process, it also guarantees that the system is aware of the modifications 
occurring in the radio environment. In the previous competition, we proved that the 
self-calibration process annihilates the costly previous off-line calibration phase, 
without altering the accuracy of the positioning (for a mean accuracy of 4m, for 4 APs 
deployed in the competition area). The positioning server builds a matrix of the SSs 
received by each APRx from each APTx (with Rx and Tx ϵ [1,N] and N the number 
of deployed APs). Several matrixes are computed: 

Table 1. OwlPS’ result at EvAAL’2012 Competition  

Positioning 
System  
evaluated 

Accuracy Availabi-
lity 

Installation
complexity 

User’s 
acceptan-
ce 

Integrability
in AAL 

Final 
Score 
and rank 

OwlPS 
1.3 

0,8 10 9,7 6,4 6,9 6,29 
3rd/7 

Version       

 
• MAPs represent the SSC of APs. We recommend to register an initial one, 

iMAP, performed when no human is present in the experimentation area, and 
another incrementally modified one of MAPs (CurrentTime) for which the 
refreshing period  can be parameterized  to 4 per second.  
Then, the Radio-Environment Sensible Positioning Algorithm (RESP-
algorithm for short) being invoked at CurrentTime consecutively to an 
explicit positioning demand from an MT, the RESP-algorithm first identifies 
which APRx-APTx is attenuated when differentiating iMAPs with 
MAPs(CurrentTime), and second the relative positioning of the MT with the 
human presence. Then the K-angle weighted neighborhood (KAWN) 
algorithm [13] is more appropriately applied. 

• MAPs+RPs represent the SSC of APs and RPs. The SSC of RPs is obtained 
by applying the KAWN algorithm considering a position of a virtual MT M 
which matches the RPs position defined from the topology of the 
experimentation area and the meshing of the SSC’s grid. 

The KAWN algorithm is extended when identifying a rupture of the line of sight 
between two APs, and considering where the human could be positioned when using 
the MT being tracked. 

A Smart Android Interface suited to Wi-Fi indoor positioning data repository 
(OwlPs-SAI for short) has been designed and developed. From OwlPS version 1.2, 
experimenting any new OwlPS version based system of indoor positioning, the 
deployment is guided when configuring the refreshing frequency of any SSCs, 
calibration is performed on demand, either automatically or manually. The manual 
calibration allows inserting a specific RP or modifying one, and it may be previously 
set during the initial auto-calibration phase. The MT interface proposes two modes of 
interaction, a declarative one, and a smart-sensor one. The Wi-Fi indoor positioning 
data repository is extended (see Fig.4) with the orientation and positioning of both the 
APs, and the MTs. The relative positioning of the human is registered depending on 



112 A. Salem, P. Canalda, and F. Spies 

either the explicit declaration or the sensor equipment available on the MT. Last but 
not least, data repository synchronization is performed between the SQLite local data 
repository on the MT, and the distant SQL-based server-side data repository. This is 
more robust in the face of any Wi-Fi communication disturbances, and respectful of 
the privacy and confidentiality of the user’s data. 

The OwlPS system is completed by other tools. The last decade positioning 
program has provided our team with a geometric and SS attenuation dilution of 
precision criteria for the Wi-Fi positioning system combined or not with a GPS 
positioning system. With this in mind, we have modeled and implemented a 2D AP 
placement optimizer. It optimizes the geometric positioning of APs and its impact on 
the indoor positioning accuracy. A study has been performed in a real room inside our 
laboratory, sustained by a simulation platform which involves: 

• Radio propagation models such as Friis and COST231-Hata.  
• The planning of the Wi-Fi network inside an indoor 2D topology, with or 

without walls. We will exploit this tool to determine how many APs can be 
used and where to position them in order to optimize both the maximal and 
mean Wi-Fi GDOP values.  

4 At EvAAL’13, OwlPS Version 1.3 Based Simultaneous  
and Hierarchical Multi-Positioning System Competes 

This year, the system has been enriched with, first of all a hierarchical positioning 
algorithm which manages a multi-positioning system composed of a GPS positioning 
system, a Wi-Fi based fingerprinting and tri-lateration system, and a marker analysis 
system. 
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As soon as the latter system can provide localisation information, the precedent 
running system switches to a learning process.   

The hypothesis, when running the multi-positioning system in successive outdoor 
and indoor environments is that the marker analysis based positioning is more 
accurate than Wi-Fi tri-lateration based one, which is more accurate than GPS' one. 
Our SHMPS (Simultaneous & Hierarchical Multi-Positioning System) system 
proposal, to compete this year to EvAAL 2013 benchmarking competition, is a stand-
alone application embedded on a smart mobile device equipped with camera (see 
figure Fig 2). 

 

Fig. 2. Hierarchical Multi-Positioning Algorithm 
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This initial version associate the standard GPS application with either WIFISLAM 
or our OwlPS system and a natural and artificial marker analysis based on FATE or 
NyArtoolkit libraries. Figure 2 shows the logical diagram of the Hierarchical Multi-
Positioning Algorithm implemented. Figure 3 details the Artificial Marker Analysis 
based positioning Algorithm. 

The gaps of accuracy then performed allow to switch from 8 meters outside to 4 to 
5 meters inside and finally to decimetres [15] when the instantaneous marker analysis 
is performing well.  

The hierarchical organization provides a practical way to handle the contextual 
download of marker information needed. 

 

Fig. 3. Artificial Marker Analysis based Positioning Algorithm 

5 Conclusion and Perspectives 

Our Our current proposal composed of the OwlPS' latest 1.3 version, and augmented 
with hierarchical GPS and marker analysis multi-positioning systems, tends to 
improve OwlPS v1.3 which has competed last year and obtain the 3rd position. 
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This new version proposed is more robust to wide area and also provide a good 
accuracy where luminosity is suitable.  

A very first version of this system has been experimented outdoor, since May 
2012, to provide a multimedia guide to assist during Mandeure Roman Amphitheatre 
reality augmented visit.  
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Abstract. ambient assisted living is an area of interest because of the potential 
for aid in needs and difficulties for the elderly or disabled. These systems have 
the potential to help control medication intake up to saving lives by complex 
monitoring. In this type of monitoring, an indoor localization system is neces-
sary. We propose an indoor localization system based on existing WiFi  
networks, which doubles as a platform to store positional data. This is imple-
mented through location fingerprinting with added value and precision. 

Keywords: indoor, location, position, wifi, gps, signal strength, navigation,  
calibration, user, phone, mobile, device, positioning, localization. 

1 Introduction 

The human longevity is increasing and we are facing a reality of an elderly population 
that needs special care. The ambient assisted living aims to step up to this challenge, 
assisting people with needs and assist them in different situations. 

Within a living spaceequipped with different kind of sensors, the user’s actions and 
behaviors can provide useful information about their needs and indicate an eventual 
emergency situation.As a lot of these needsare directly related to the location of the 
user, knowing its location in a system is the problem that this technology is covering, 
helping elderly people with positioning awareness problems and enabling some care-
givers to overview the activities and problems of those users, taking the appropriate 
actions to help them [1].Knowingthe users position, the caregivers can mergethis 
information with other information from sensors and filter false positives alarms etc.  

2 State of theArt 

Several different approaches for indoor localization exist, using a variety of technolo-
gies such as ultrasonic sound, UWB radio, RFID, Bluetooth, Infrared, Wi-Fi, etc. 
These approaches mostly require extrahardware or software on the devices and  
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installation site, increasing the cost and complexity of deployment significantly. Solu-
tions that use existing hardware capabilities, like Bluetooth and Wi-Fi, severely re-
duce concerns about complexity and cost, especially in the case of Wi-Fi where an 
existing network can be used as beacon sources for localization. 

Commercial solutions using a similar approach already exist. For example  the 
CISCO localization framework which provides great accuracy but is based on expen-
sive proprietary hardware, which is required to be the sole wireless network provider 
as well as internal cabled networks. Other commercial solutions, such as Ekahau can 
indeed use an existing network and work on a cloud based system to deliver real-time 
localization.  

3 Proposed Solution 

For the development of this solution, an indoor positioning system that uses Wi-Fi 
information that is available at cheap prices has beenchosen, in that it already exists in 
almost every household. Even if the target network needs improvements, it can be 
made with very affordable prices and the system is able to track most mobile devices 
that have Wi-Fi connection and can run simple application. 

In the presented solution we have developed an application for mobile phones that 
uses Android OS, localization techniques and server side logic to do the localization 
inside buildings.A general overview of the system’s architecture can be seen in Fig.1. 

 

Fig. 1. System architecture overview 

The hardware needed for the presented solution is described below: 

• A mobile device, capable of running simple applications with access to the 
wireless signals. The present solution currently requires an Android device 
with version 2.1 of the OS or better, with a very light application that can run 
easily on the majority of existing Android smartphones. 

• A wireless network with several 802.11 compatible access points. Additional 
access points may be required for a stable localization system, but existing 
access points can all be reused.  

• Network access to the localization server in the mobile device, either through 
the existing Wi-Fi network or using a mobile data service. 
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4 Used Protocols 

The technology relies mostly on the 802.11 Wi-Fi standard networks, routers, access 
points and client devices. The only exploited part of the protocol is the use of the 
access points broadcast beacon, reading its BSSID (Basic Service Set Identification) 
and RSSI (Received Signal Strength Indicator). 

To communicate with the location server, a SOAP (Simple Object Access Proto-
col) interface is used to expose web services that provide the required methods for 
calibration and localization routines.An example illustrating the location process and 
communications flow can be seen in Fig.2. 

 

Fig. 2. Sequence diagram illustrating the location process 

5 Deployment 

The deployment of the systems needs basically two 2 steps, installation and calibration.  

5.1 Installation 

For the installation the wireless emitters (access points) are either installed after as-
sessment, have to be rearranged or simply the existing network setup can be reused. 
Network connectivity within the network is not a requirement, but is an option, as a 
mobile phone can make use of all “visible” routers and use its mobile data connection 
instead of connecting to the local network.  

5.2 Calibration 

During the calibration, information of the respective rooms, etc., has to be mapped with 
the network signals, information which will later be used for the localization process.  
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This calibration typically consists of one or multiple human installers roaming the location 
with a calibration application (on a mobile phone), marking their current location on a map 
and activating a reading and calibration procedure with one touch. When all of the  
intended calibration spots are done, the system can do the data processing required to 
enhance to localization reach and precision. 

The process of calibration is simple, the user with the device will have to go to the 
specific points of the floor plan, and select the space value where he is and then he 
just has to select the option to calibrate. During this calibration, a lot of data is record-
ed: all the readings from the different access points, an average of all the readings for 
each access point, the standard deviation for the readings and the number of samples 
for each reading. 

When all the deployment steps are completed, the system is ready to be used and 
track the users’ positions. This information can be remotely viewed through a testing 
web page created especially for this purpose (shown in Fig.3). In this web page, all 
the latest known user locations can be seen placed on the floor map. 

 

Fig. 3. Test web site showing multiple users' locations 

6 Algorithms  

There are twokey algorithms used in the system: spatial data interpolation within the 
calibrated buildings and localization fingerprinting. 

The spatial data interpolation makes use of sparse linear algebra and partial diffe-
rential equation discretization to enhance and fill the spatial data, providing finger-
printing through localization information overa whole building’s floor plans without 
the need to physically calibrate every possible position. 

The basis for the system to work is the location fingerprinting, which compares the 
calibrated points to the real time readings of the device to be located (see equation 1) 
[2] [4]. This comparison and selection uses the RSSI values and processes them based 
on the location and thestandard deviation of the same signal and value, includingthe 
selection process making use of a weighted kNN (k Nearest Neighbor) solution. We 
select the best k positions and give them different weights based on the metric. With 
that information we can calculate a weighted mean of the k positions. Another good  
 

 



 Indoor Localization and Tracking Using 802.11 Networks and Smartphones 121 

 

part of this method is that it cleans a few inaccurate position estimationsgiven by the 
algorithm.  , | |   ( 1 ) 

If the system will use a non-processed calibration, without the spatial data interpola-
tion, it means that it will only have the real calibrations done by the device. With the 
real calibration we have information about standard deviation from the signals of the 
access points. 

In this case we use a Euclidean Distance based on the information of the standard 
deviation made in the calibration. We apply the weight of the standard deviation in 
the formula to balance the variations of the signals in fingerprinting [4]. 

 , | |  ( 2 ) 

 

A second option is made with an inverse weight, where we utilize all the available 
information that can improve a precision increase in the results given by the following 
formula [4]. 

 , ∑ | |  ( 3 ) 

 

After the results of the localization algorithm, a Kalman state is used to smooth  
the movement of the object in two dimensions and append inertia for short-term  
predictive positioning, all using the localization updates as they are generated in the 
device-system. 

7 Internal Data 

The internal data producedandstored in a remote database for exclusive use includes: 

• Recorded routers/access points, which are used in the calibration/localization 
process. 

• Map information, such as buildings, floor plans and their geological place-
ment, i.e. global coordinates. 

• Calibration points, which store location and visible routers, including 
BSSID, RSSI and its standard deviation. 

• User location information, updated with each successful localization. 

An example of the stored internal data is shown in Table 1, illustrating the recorded 
access points for several coordinates. 
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Table 1. Example

Location Id AP 1 (
1 -49
2 -65
3 -37
4 -47
5 -49
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complete signal strength ma

Fig. 5. Example signal stre
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5,0 -81,2 -71,6 -82,4 
7,0 -38,4 -76,2 -85,8 
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9,4 -69,4 -65,6 -69,6 

the calibration points’ data. This is the source data that w
eviously described algorithms, which results in data of 
on data, replacing all the source data and filling in t

h higher precision.  
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on from all the available data to the full extent of the fl
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After the entire floor plan is created, we need to clean some extrapolated information 
that is actually harmful to the localization algorithm. Besides occupyingunnecessary 
processor time, it is unnecessary and an inaccurate estimation. This is a side-effect of the 
processing algorithm and must be dealt with. 

 

Fig. 6. Signal strength map with bad data crossed out in red. X and Y are the positions, Z is the 
signal strength. 

In our approach this is done by filtering the data validity by a radius of real calibra-
tion points. A trust distance was used to know when to cut-off the estimated data. To 
define this trusted distance, several tests and empirical observation (Fig. 7) from a 
small data set of calibrations, from the left to the right we have the radius in the filter 
going larger every time.  

 

Fig. 7. Trusted radius of estimated readings, with increasing radius from left to right. X and y 
are the position coordinates in the floor plan. 

This kind of technique is very important for the offline version of the application to 
save battery and improve the time that the calculation needs to give a final position. 

In the Fig. 8we can see two examples of the resulting maps strengths for two floor 
plans, one where all data passed the trusted radius and on where some of the extrapo-
lations where cut due to being outside the trusted radius of non-estimated readings. 

The internal data produced for each user, consist of the position and the time that 
the certain position has been calculated. There are two types of tables that save the 
user information. The simple one only has the ID of the building and the last position  
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Fig. 8. Example of the resulting map data 

calculated for the user. The second type oftable (Table 2)saves all the positions calcu-
lated and the time that the localization was made. This way we have all the positions 
of the user for future behavior analysis. We can recreate the path that the user took or 
the place where the user stood still, or other requirements that the application needs.  

Table 2. Example of user data stored internally 

SavedLocation Id User Id Latitude Longitude Hour 

0 1 40.19237° -8.414629° hour 

1 1 40.192378° -8.414513° hour 

2 1 40.192384° -8.414381° hour 

3 1 40.192389° -8.414227° hour 

4 1 40.192356° -8.414132° hour 

8 Exploring the Technology  

The current version of the system relies on a localization server to hostall the data and 
the localization fingerprinting processing, which results in a very light client. This 
client can easily be refactored as an API (Application Programming Interface) to be 
integrated in other applications with the only requirement of access to the device re-
ceived wireless broadcast beacons. On a server side, the stored user information can 
be used for integration with existing health and other user information based systems. 
An integration in such a system is easily possible, as the universal web service inter-
face can be easily expanded to fit any web based platform, and therefore with the 
needs of any AAL application. 

An older version of the system works exclusively offline, with all the necessary da-
ta and processing being done on the client side. This has a considerably larger load on 
the client application, with all the data and processing being local. The required data 
can either be created locally, by creating a new set of floor plans and calibrations; or it 
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can be acquired bya single download online. This solution has the advantage of not 
requiring a constant network connection, but has considerable requirements on  
the data access, user procedures and processing power, which result in a high barrier 
to entry and low battery life on the mobile devices. It also exposes some of the key 
technologies IP (Intellectual Property) of the system in a managed programming  
language, which is easily decompiled. 

8.1 Performance Evaluation 

In order to assess the objective accuracy of the localization system, an evaluation 
session was performed under semi-controlled environment. 15 calibration points were 
recorded to the system (as seen in Fig. 9), in positions throughout one floor, from one 
end of the building to the other. These will be the reference points that the system 
should predict if you’re on or near them. The system guidelines indicate the calibra-
tion should be done in typical final user usage fashion. As such and for the purpose of 
a reliable test, the Android devices were positioned using a static holder, avoiding the 
interference of the human operator, both in calibration and localization. 

 

Fig. 9. Reference calibrated points 

Due to time constraints, only 6 randomly selected locations were tested, each with 
at least 3 minutes sampling time. During the calibration and localization, several real-
world factors influenced the system, including: 

• Varying temperature and humidity throughout a day 
• Access point concurrency collision 
• Multiple wireless clients connected to access points 
• Target devices maintained a roaming connection to the local wireless net-

work to access the location server 
• People walking across the building 
• Target devices heated up due to continuous usage 

The system must be able to cope to such changes without much precision loss, thus 
the tests we actually performed in a very close to a real-word scenario. 

The results were logged in files, on for each sample and compiled for analysis. The 
error metric used was absolute Geodesic degrees which indicated a hit or miss, if the 
resulting error was zero. 
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Our solution has just one simple type of calibration. We will improve this tech-
nique with several calibrations with different aspects that will personalize the signals 
for each utilization. If the user is holding the device upside down, or sideways, during 
the calibration process, the information will be saved. Later while the localization is 
performed, the algorithm will take in consideration how the device is positioned to 
choose between the different calibrations made.  

With these two improvements of new types of calibration and new sensors infor-
mation we will get a more confident result, and then we will concentrate our efforts in 
a new method to display the position of the user. It will be made a representation of 
the user positions in 3D to be accessible through a web browser using HTML5. 
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Abstract. Building the basic concept of a low cost, robust, indoor positioning
system based on magnetic resonant coupling that we have presented in previous
work we describe our entry into the EVAAL indoor location competition. The ba-
sic physical principle behind the system makes it extremely robust as the signals
are hardly influenced by the human body or objects in the environment (except
massive metal objects which however have mostly local influence only). Going
beyond previous work we provide a detailed description of the processing archi-
tecture, show how the system can be set up on the basis of the floor-plan alone
(no location specific training or measurements needed), present the software tools
that can be used for system setup and application and evaluate floor plan based
setup looking specifically into the influence of multiple people and changes in
furniture configuration.

Keywords: Indoor Localization, Resonant Oscillating Magnetic Coupling, Soft-
ware Architecture, Particle Filter.

1 Introduction

There has been tremendous progress in indoor positioning technology over recent years.
Approaches range from leveraging inertial sensors in smart phones to elaborate, ded-
icated infrastructure such as RF beacons or floor integrated sensors and include so-
phisticated methods for considering background information (e.g. building plans) and
fusion of different sensing modalities. However, for many applications, there is still no
technology that satisfies all requirement. In this paper we focus on the requirements of
activity recognition in Ambient Assisted Living applications. For such applications the
following key properties are important:
1. Positioning accuracy in the range of around 1m. This allows the system to distin-

guish basic activity relevant ”symbolic locations” such as for example ”in front
of the refrigerator”, ”at the table”, ”on the sofa” or ”in front of the pills cabinet”.
Many current systems, in particular cheap and easily deployable ones such as WiFi
location are not able to reliably achieve such accuracy.

2. Ability to deal with dynamic and cluttered environments. Thus, the system should
not be influenced by people moving around, doors being open or furniture being
moved. Again, many cheap and easily deployable systems have difficulties.

3. Low cost and most of all easy deployment. Cost of more than a few hundred Euro
and/or require complex installation (e.g. embedding sensors or RFIDs in the floor
or elaborate location specific training) are among the key obstacles for wide scale
deployment of AAL systems.

J.A. Botı́a et al. (Eds.): EvAAL 2013, CCIS 386, pp. 128–140, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In [9] we have presented the basic concept of a low cost, robust, indoor positioning sys-
tem based on magnetic resonant coupling that can achieve an accuracy of well below
1m. In this paper we describe our entry into the EVAAL indoor location competition
that is based on this concept. Going beyond [9] we provide a detailed description of the
processing architecture, show how the system can be set up on the basis of the floor-
plan alone (no location specific training or measurements needed), present the software
tools that can be used for system setup and application and evaluate floor plan based
setup looking specifically into the influence of multiple people and changes in furniture
configuration. Furthermore the current version of the system includes additional accel-
eration and gyroscope sensors which are used as input to a filter stabilizing the location
estimate.

The system is built around 3D transmitter coils (16x16x16 cm) and receiver coils
(2x2x2 cm) operating in TDMA mode. A single 3D transmitter coil can cover an area
with 8m diameter providing 3D position for the receiver badges with an accuracy below
1m2 and an update rate of up to 30Hz. Higher accuracies can be achieved by combin-
ing information from several transmitter coils. The basic physical principle behind the
system (which is well known and has been used before for motion tracking, power
transmission, or near field communication) makes it extremely robust as the signals are
hardly influenced by the human body or objects in the environment (except massive
metal objects which however have mostly local influence only).

1.1 Related Work

Giving an overview of research in indoor localization is clearly beyond the scope of
this paper (see for example [6] or [13]). On a technical level most closely related to our
system are beacon based technologies that compute user position from signal strength or
signal delay to/from several (at least 3) beacons. This includes ultrasound based systems
like Cricket [11] or Active Bat [15] and infrared (Ir) light such the Active Badge by
Want et al. [14], all based on time of flight measurements. The main disadvantages of
these systems are multi path and occlusion problems and the need to deploy at least
three appropriately distributed devices in every room (since the signal is blocked by
walls). Occlusion and multi path propagation are less of an issue with signal strength
based radio frequency (RF) systems for example based on WiFi infrastructure (e.g.
[2] or [1]. However such system require elaborate fingerprinting of specific locations
and are in general very sensitive to dynamic changes in the environment. The accuracy
is in general well above 1m. An RF indoor localization system which is often used
for applications requiring high accuracy (see for example health care applications like
presented in [4]) is the Ubisense system. Time-difference-of-arrival and angle-of-arrival
estimation between stationary receiver antennas allow a position estimation within an
accuracy of 30 cm. However, metal objects like table frames or door frames interfere
with the ultra wide band pulse and significantly disturb the position estimation process.
Other issues are the high costs of the system and the high installation and calibration
effort.

Aiming at lower installation effort Patel et al. [12] presented a system that uses
power line installations as ultra wide band antennas and finger printing and achieves
an accuracy 1 m2. The main limitation is the limited range which requires the user to



130 G. Pirkl and P. Lukowicz

be close to a power line. The use of magnetic fields for indoor location similar to this
work has been explored by Prigge et al. [10]. However, whereas our system is based on
highly energy efficient resonant coupling to filter out other magnetic fields, theirs uses
a CDMA coding scheme in a non resonant mode. According to the authors the system
needs about 100 W per Beacon and requires cables running between the Beacons for
synchronization. Our system, on the other hand, uses only 2.5W per Beacon and relies
on RF time synchronization (needing no cables). Furthermore, we use 3D transmitters
which means that we can get rough localization with just one transmitter, whereas the
Prigge setup requires at least 3.

The underlying physical principle of resonant magnetic coupling is well known and
has been used in many different applications. This includes motion tracking [3], wire-
less power transmission has been presented in [5], track the lives of underground ani-
mals, [7] and novel user interfaces for musical instruments . [8].

2 General Principle

In this section we summarize the physical principle behind our system that is described
and discussed in more detail in [9].

2.1 Properties of Oscillating Magnetic Fields

Our system is based on the principle of resonant magnetic coupling, which means that
it uses an oscillating magnetic field as the physical medium for localization. Thus, our
beacons generate a magnetic field that periodically expands and contracts (Figure 1).
Note that there is a fundamental difference with respect to for example RF or ultrasonic
beacons which both generate propagating waves. By contrast the magnetic field in our
system does not separate from the transmitter and propagate. Instead the vast majority
of energy is ”pulled back” into the oscillating circuit as the field contracts. The above

Fig. 1. Expansion and contraction of the oscillating magnetic field

principle has a number of advantages. First of all since nothing propagates and there
are no waves multi path propagation, reflections, diffraction do not occur. Furthermore,
magnetic fields are inherently difficult to block. They pass with little distortion through
most materials including human tissue and concrete walls. Only ferromagnetic mate-
rials and conductors have an influence. However, even massive metal objects do not
block the signal but have mostly local influence. While the influence of ferromagnetic
objects on the field can be complex, on an abstract level it can be described as bending
the field lines running within the object. To match the bending inside the object the field
lines outside are also deformed but to a lesser degree and mostly in the proximity of the
object. Thus we only see an effect if the object is close to the receiver or (to a lesser
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extent) to the transmitter. Unlike with RF systems the mere presence of the object in
the vicinity has virtually no effect. This means that there is no need for finger printing
to account for the specific configuration of furniture, walls etc.

2.2 Location Principle

Magnetic field is often visualized by field lines. In a 2 D representation a field line is a
curve through space drawn in such a way that all points on the curve have the same field
strength. In 3D lines become surfaces. If we look at the field of a single transmitter coil
then a single measurement restricts set of possible locations to a single surface. If we
add another coil then the set of possible locations is narrowed down to the intersection
of two surfaces. Adding yet another coil further restricts the locations to a set of points
at the intersection of the three surfaces (see Figure 3). This is very similar to the well
known principle of triangulation used in most beacon based positioning systems. The
main difference stems from the fact that if we use perpendicular coils then we can put
them all in the same location instead of having to distribute them at different spatial
locations. This is due to the non spherical structure of the magnetic field of a typical
coils as shown in figures 1 and figure 2. This means that using three perpendicular
transmitter coils placed at a single location allows the receiver position to be restricted
to a few points given by the symmetry of the magnetic field. Exact 3D positioning is
possible with two beacon nodes. Note that the above assumes the transmitter coils to be
synchronized to transmit after each other to avoid an overlap of their fields.

Signal 
Generator

3 axis receiver 
coil

0°

v

Fig. 2. Left: The transmitter sequentially generates an oscillating magnetic field in a certain fre-
quency interval with three perpendicular transmitter coils. The three perpendicular receiver coils
measure the induced voltage of the magnetic field. Right: Cubes are two versions of transmitter
coils, in the front the wearable receiver and the stationary and wearable transmitter part.

2.3 Orientation Effects

In the above discussion we have assumed a scalar value of the magnetic field strength to
be measured at any given point. However the magnetic field is a vector field. Thus, each
measurement needs to encompass the 3 vector componentsmx,my,mz from which the

scalar vector norm can be computed as
√
m2

x +m2
y +m2

z .
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The simplest way to measure the three components is to equip the receiver with three
perpendicular coils. Note that we have outlined above that the transmitter needs at least
3 perpendicular coils. With the 3 receiver coils we now have 9 measurements in that
have to be made for position estimation: the signal. Thus the signal of each transmitter
coil is measured by each of the three receiver coils. For each transmitter coil the three
measurements can be used to estimate the scalar field norm and with it the set of points
to which the receiver location can be constrained. The field direction can then be used
in one of two possible ways. If we know the absolute orientation of the receiver then it
can be used to narrow the location down to a single point (in general at each intersection
of the field line surfaces the field direction is different.). On the other hand if we already
know the exact point (e.g. through tracking or through the use of additional transmitters,
then this information can be used to infer the relative orientation of the receiver with
respect to the transmitter.

2.4 Resonant Coupling

A key concern with any indoor magnetic measurement system is noise caused by elec-
trical appliance and other environmental fields. To address this concern our system uses
the principle of narrow frequency resonant coupling. A transmitter generates an oscil-
lating magnetic field with a well defined narrow frequency. The field excites a receiver
which is essentially an oscillating circuit precisely tuned to the respective frequency.
The strength of the excitation (=induced voltage) depends on the location of the re-
ceiver in the transmitter field, which is the basic effect that we use for positioning as
described above. Due to the narrow resonant frequency the system is robust against
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Fig. 3. Oscillating circuits included in the transmitter and receiver coils filter out influences of
other electro magnetic sources and maximize the power output of the transmitter coils. The lower
signal plot depicts the sensitivity of the receiver coil linked to the frequency of the magnetic field.
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environmental magnetic fields. Only fields with that exactly match the resonant fre-
quency can disturb the measurement, which (with properly chosen frequency) is highly
unlikely. At the same time narrow frequency oscillations are unlikely to couple to any
environmental devices.

2.5 Summary

In summary, because of the underlying physical principle, magnetic resonant coupling
technology is much less sensitive to disturbance typically found in indoor environments.
Because of the structure of the field a single beacon only is needed for a basic position
estimate and the signal even contains information about receiver orientation.

On the negative side there are a number of complex problems that need to be solved
such as very large dynamic range of the signal (the energy transmitted in the field de-
creases with 1/r6), the difficulty of handling the need for a very narrow resonant range
(mostly due to manufacturing tolerances of standard components), and the difficulty in
accurate modeling of the magnetic field (the exact form of the field line surfaces). How
we have approached these problems has been discussed in [9] and will not be further
elaborated in this paper.

3 Oscillating Magnetic Field Sensor System

In this section we describe the functionality of the hard- and software.

3.1 Hardware Overview

Our system consists of two parts: Field emitters and wearable field receivers. The mag-
netic field transmitter generates magnetic fields using 3 perpendicular transmission coils
(200 turns, 16 cm× 16 cm). Each coil is sequentially excited using a 16V peak to peak
square shaped input signal at a current of 0.17A. To maximize the power output of the
magnetic field an oscillating circuit is connected to the coil. To overcome hardware
tolerances (timing / frequency issues on the signal generator, temperature effects and
therefore mistuning of the oscillating circuit) we use the so called wobbling mecha-
nism, the coil is not excited with a fixed frequency but we apply different frequencies
in the interval of [18.5kHz; 21.5kHz].

On the receiver side a 3D receiver coil measures the magnetic field at its position. The
induced voltage is filtered by an oscillating circuit, electromagnetic sources have hardly
any effects on the induced voltage. A combination of differential and programmable
/ adjustable amplifiers enable the system to deal with the high dynamic input signal
(1.5V at 20 cm, 0.004V at 4 m). In addition to the magnetic field system, gyroscope and
acceleration sensors are also sampled. The data is transferred using a serial connection
to the computer or a Zigbee based RF Connection. A on board micro SD card can
also be used to store the data for offline data processing. Using a LiPo battery, the
sensor receiver works for 8 hours, due to its current prototype state no battery saving
mechanisms are installed to increase the uptime of the system.
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3.2 Software Architecture

The used software architecture is divided into two parts, a component running on the
Microchip DsPic and a software component running on the PC. The transmitter soft-
ware is mainly controlling the signal generator part, some sensor network tasks like
time synchronisation or scheduling is organised on these network nodes. The more in-
teresting part is located on the receiver where we have to control the sampling of the
magnetic field signal.

An overview of both , the receiver part and the PC software part for position estima-
tion is depicted in figure 4.

Embedded Software on Receiver. The software on the receiver is mainly gathering the
magnetic field information. To sample the data it is necessary to strictly time synchro-
nize all clocks of the transmitters and receivers using an RF based time synchronisation
process. The synchronized real time clock fires every 2.5 ms which indicates the start
of a processing frame. A sampling cycle consists of 5 frames, the first 3 frames are
used to sample the 3 sequentially generated magnetic fields of the current transmitter,
in the other frames the micro controller processes the data, transfers data to the pc (us-
ing RF or cable bound communication) and performs sensor network tasks (like time
synchronisation or scheduling algorithms). While being in the sampling state the micro
controller samples the input voltage of the receiver coils with a sampling rate of 80kHz
for 1.6ms. This time value is the best trade off between on-board memory consumption
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Fig. 5. Estimated particle weights, random transmitter positions, measurement distances are de-
rived from the point (250,250,80). The green circles depict the used distances, the green squares
the transmitters.

of the DMA buffers on the micro controller and the time the circuits need to respond to
the magnetic field excitement. The controller then uses a peak detection algorithm on
the full buffers. In order to stabilize the signal, the controller uses the mean value of all
peaks which are in the interval of [0.9 ∗maxPeak;maxPeak] to distinguish the mag-
netic field representative. After processing is done the magnetic raw values are used to
adjust the amplifier values in order to maximize the resolution of the sensor system.

In addition to the magnetic sensor part, gyroscope and acceleration sensors are sam-
pled, this information is transferred to the processing computer for sensor data fusion,
sensor orientation estimation and signal filtering.

Position and Orientation Estimation on PC. Data processing is done on a PC be-
cause of the limited ressources of the microcontroller on the magnetic receiver. Pro-
cessing and filtering is written in Python, all visual elements are implemented in a Java
based application with a network interface to listen to magnetic localization information
broadcasts.

After retrieving the magnetic field data from the serial connection, the information is
transformed into distance values. In this step the magnetic field behaviour (described by
the law of Biot Savart) and the inhomogeneity of the magnetic field have been taken into
account to increase the accuracy of the distance estimation. A particle filter estimates
the position of the receiver, it fuses gyroscope and acceleration information for a more
accurate position and orientation estimation. A single particle described by the tuple
(x, y, z, ρ, φ, θ) represents a possible position and orientation (heading/yaw, roll and
pitch) of the receiver. A measurement is a tuple (d1, ..., dn, ρ, φ, θ) where di defines
the estimated distances between the transmitters ti and the receiver, ρ, φ, θ describe the
orientation estimation derived from the acceleration and gyroscope information.
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Magnetic Field Sensor

Distance Estimations

Labeled Path

Magnetic Transmitter

Fig. 6. Screenshot of the MagSys application, on the left hand side two different webcams
recorded the scene from different directions, on the right hand side a schematic view on the room,
the locations of the sensor components, sensor data and the possibility to annotate the position of
persons and devices

In order to weight a particle we calculate for each particle the distance to transmitter
i and compare this value with the measurement:

εi =
di−||ti−p||

di
describes the distance error for the measurement of transmitter i.

The error value εi is then statistically evaluated using a gaussian distribution (this
takes the mean error and standard deviation of the distance estimation derived from a
calibration process into account). The weight of a particle is therefore:

w(p) =
∏n

i=0 norm(εi, μ, σ)

After the measurement step, the particles are moved according to the heading and
speed information (plus a Gausian noise value). The estimated position is then presented
to the magnetic field model to flatten the effects of the inhomogeneity of the magnetic
field and to the inclusion module which tests if the position is in a region of interest.

Each module is attached to the network module which broadcasts this information to
the network. The user can therefore decide which information is important (Raw sensor
information, intermediate data or high level data as ”user is next to the TV”).

3.3 Highlevel Userinterfaces

We implemented a Java based application MagSys which can be used to retrieve the
information transmitted in the lower level position estimation program presented in
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the previous subsection. The application encapsulates several components linked to the
functions of the magnetic indoor localization system but due to the simple interfaces of
the GUI Components, new sensors can easily be integrated. The main functions are:

1. Calibration and setup of the localization system
2. Definition of region of interests
3. On- / off line illustration of the sensor data (current position, meta information like

”receiver is in a region of interest”, on-line annotation of activites and positions,
sensor data)

4. Integration of network cameras for ground truth information (online dewarping of
fisheye webcam pictures)

5. Off-line annotation and replay functionality of recorded data sets for post processing
6. Simple integration of new sensor modalities (especially Beacon based sensorsys-

tems)

MagSys’ core functionality is the sketching mechanism to draw experiment setups.
Floors with rooms and furniture can be specified and integrated in the experiment setup.
Stationary sensor systems as the magnetic field indoor localization system are easily in-
tegrated and can be configured and calibrated with this tool. MagSys connects to the
LAN and displays sensor information from the localization system. As depicted in the
upper part of figure 6 distance and position information are included in the room sketch.
Network based cameras can also be intregated, an OpenCV based diswarping function
removes lense distortions and therefore combine localization data with camera informa-
tion (figure 6 lower left part) to surveil the experiment in real time. Raw sensor infor-
mation from the magnetic field sensor, accelerometers and gyroscope can be watched
in different sections of the program to ensure the correct functionality of the system.
MagSys also supports the offline processing and annotation of position based exper-
iments, the experimenter can load webcam images and sensor data and annotate the
correct position according to the webcam supported scenes on a frame by frame basis.

4 Evaluation

Our previous work [9] where we distinguished between up to 20 different region of
interests in a typical living area has been improved, we transform the raw magnetic
values into Cartesian coordinates and evaluate the estimated positions against video
based and manually annotated groundtruth position information.

In addition to the accuracy of the system we want to show the robustness against ob-
stacles (ferromagnetic materials and furniture) or persons working in the covered area.

Four transmitters have been spread in a 37 m2 room (7.7 m × 4.9 m). To show the
robustness of our system, in particular its functionality when there is no direct line of
sight between the field emitter and the receiver, a transmitter is placed in a cabinet with
ferromagnetic shelves and closed cabinet doors, a second transmitter is placed above
a bookshelf. For these two transmitter in most positions of the room no direct line of
sight is available, the magnetic field has to permeate furniture or even persons. We
evaluate the system in three steps, the prerequisites are the same for all experiments:
The test subject carries the receiver unit attached to the belt (height approx. 80cm), and
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randomly walks in the room. During the walk, we record the measured magnetic field
strengths with a sampling rate of 20 Hz (20 position estimations per second). Two fish
eye cameras record the scenes from two different spots.

To prove our assumptions that the magnetic field is hardly influenced by persons,
furniture or ferromagnetic material, three steps are made: Data recording in

1. an empty room (see figure 7 for details)
2. the same room but with static obstacles which would alter electro magnetic fields

or change the propagation behaviour of electro magnetic waves. We therefore place
furniture and metal tripods in the center of the room and add a 1.5 m2 big metal
white board next to transmitter 4

3. the same room with 7 persons randomly strolling around in the room (dynamic
environment).

A trial takes about 10 minutes, we record the raw magnetic field values measured at the
receiver’s position, two webcams surveilling the room record the scene for later manual
position annotation (see section 3.3).

Processing and Results. After manually annotating the positions of the receiver we com-
pare the positions estimated by our magnetic field system with the real life coordinates.

Table 1.

Exp number absolute mean position error std length
1 60.32 39.05 241.2m
2 54.24 38.2 178.8m
3 62.63 41.2 235.7m

37.66 m²

4 2

1

3

Tables
Chairs

Metal Tripods

a) b)

c) d)

Fig. 7. a) Room with obstacles in the center, b) empty room setup with test subject c) room
with 7 persons randomly walking around d) schematic room setup with transmitter coils (orange
squares)
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Table 1 holds the accuracies we currently achieve in 3D position estimation. Exper-
iment 2, where we placed obstacles in the center of the room, has a higher accuracy as
the other two experiments. This phenomenon results from the currently used distance
model: due to the physical behaviour of the magnetic field (and therefore the 1

d3 drop of
the signal), the accuracy of the distance estimation decreases with rising distance (in the
real world). In Experiment 2 we block the area in the center of the room, a region where
the distances to the transmitters are more inaccurate compared to outer room regions
and therefore the performance of the positioning is poor. When excluding this area in
the other two experiments, the accuracy rises in experiment 1 (the empty room) from
60.32 to 56.64 and in experiment 3 from 62.63 to 58.3. The standard deviations of these
experiments are hardly affected.

5 Conclusion

The system described in this paper is aimed at robust, cheap and easily deployable in-
door location with an accuracy of below 1m. Within the AAL context robust means that
the system is not significantly disturbed by change in the environment such as people
moving around, doors being opened or furniture being rearranged. Easily deployable
means that, installing the system at a new location amounts to placing on average one
transmitter per room and noting the location of the transmitter on a plan of the flat using
our tools. There is no need for location specific training. Furthermore the transmitters
do not need line of site to the receivers carried by the users and can be placed out of
sight e.g. in cabinets.
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