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Abstract. Program verifiers that attempt to verify programs automat-
ically pose the verification problem as the decision problem: Does there
exist a proof that establishes the absence of errors? In this paper, we
argue that program verification should instead be posed as the follow-
ing decision problem: Does there exist an execution that establishes the
presence of an error? We formalize the latter problem as Reachability
Modulo Theories (RMT) using an imperative programming language pa-
rameterized by a multi-sorted first-order signature. We present complex-
ity results, algorithms, and the Corral solver for the RMT problem.
We present our experience using Corral on problems from a variety of
application domains.

1 Introduction

Practical program verifiers are difficult to design and implement. To be use-
ful, the verification must be automated as much as possible. At the same time,
the verifier must be able to model precisely the complex features and abstrac-
tions used in real-world programming languages. First-order provers based on
satisfiability-modulo-theories (SMT) satisfy these conflicting requirements simul-
taneously by providing both a rich modeling framework for encoding language
semantics and high-degree of automation for deciding satisfiability of expressions.
Consequently, many program verifiers use SMT solvers in their core.

Efficiently decidable satisfiability checking of expressions is necessary but in-
sufficient for building practical program verifiers. The reason is that while ver-
ification of finite executions can be encoded precisely as satisfiability checking,
verification of unbounded executions cannot be similarly encoded. The latter
problem is undecidable for the standard theories, e.g., linear arithmetic, uninter-
preted functions, arrays, etc. used in modeling program behaviors.

Program verifiers that attempt to verify programs automatically pose the
verification problem as the decision problem: Does there exist a proof that estab-
lishes the absence of errors? As mentioned above, this problem is undecidable;
in fact, it is not even recursively enumerable. Intuitively, enumerating program
proofs is so difficult because it requires a complete proof system whose asser-
tions come from a statically known and decidable language. Practical verifiers
use the Floyd-Hoare proof system and the language of expressions in the pro-
gramming langauge as the assertion language. Our experience building verifiers
for sequential programs indicates that while the Floyd-Hoare proof system is of-
ten complete enough, expressions in the programming language are inadequate

P.A. Abdulla and I. Potapov (Eds.): RP 2013, LNCS 8169, pp. 23–44, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



24 A. Lal and S. Qadeer

for capturing proofs of even simple properties. As an example, the theory of
arrays which naturally encodes program expressions for looking up and updat-
ing the heap is inadequate for expressing a Floyd-Hoare proof of correctness
of a heap-manipulating program. Such a proof would typically require a richer
theory capable of expressing both quantified facts as well as data abstractions
such as objects, lists, and trees. We have encountered this difficulty in practice
while deploying the HAVOC verifier [22] to verify simple type-state properties
on device drivers [23].

In this paper, we argue that program verification should instead be posed as
the following decision problem: Does there exist an execution that establishes the
presence of an error? This problem is undecidable but recursively enumerable
for a programming language with decidable expression language. A prototypical
semi-decision procedure for this problem would enumerate program executions
in a fair manner to provide complete search in the limit. There are several advan-
tages of this problem formulation. First, it directly matches the most important
and common uses of automatic program verification—bug-finding and debugging.
When program verification is posed as a proof discovery problem, a counterexam-
ple is a by-product of the failure of proof discovery. A direct search for counterex-
amples could potentially be more efficient at uncovering bugs. Second, it natu-
rally allows the formulation of bounded and decidable versions of the problem. It
is possible that as we develop better techniques for solving the bounded problem,
we will get incrementally better at solving the harder unbounded problem. As
anecdotal evidence from the literature on hardware verification, success in solv-
ing the bounded problem (NP-complete) via Boolean satisfiability solvers has
led to increasing success in solving the harder (PSPACE-complete) unbounded
problem. Finally, we note that stating the problem as a search for counterex-
amples does not preclude the use of proof techniques for pruning search; proofs
simply become an opportunity for optimization rather than a goal by themselves.

We present reachability modulo theories (RMT), a parameterized framework
for modeling program executions and stating verification problems. RMT em-
phasizes reachability of an error state as opposed to unreachability of all error
states. A RMT problem is specified by picking points along two orthogonal axes
defining a programming language—control and data. Control is specified using a
control-flow graph with an appropriately restricted set of features. For example,
in this paper we specifically address sequential and potentially-recursive control
flow but it is just as easy to restrict recursion or generalize to allow concur-
rency by allowing asynchronous and parallel calls. Data is specified by using
a multi-sorted first-order signature, much like in the definition of satisfiability
modulo theories. Given such a signature, we allow each program variable to be
associated with a sort and assignments from well-sorted expression to a variable
of a matching sort. In other words, RMT exposes the full power of first-order
modeling provided by the satisfiability modulo theories framework and strength-
ens it with a control flow graph, allowing us to define bounded and unbounded
operational semantics over rich data domains.



Reachability Modulo Theories 25

In addition to presenting the basic definition of RMT in Section 2, this paper
also contains the following contributions:

– To improve our understanding of the RMT problem, we studied its com-
plexity for loop-free and recursion-free programs. We call the problem for
such programs (with acyclic call graphs) the hierarchical RMT problem. In
Section 3, we present complexity results for various expression languages
that are relevant for modeling practical problems. Restricting attention to
quantifier-free expressions, we show that if the expression language is de-
cidable in NP, then hierarchical RMT is decidable in NEXPTIME; if the
only sort is Boolean , then hierarchical RMT is PSPACE-complete; if, in
addition, uninterpreted functions are available, then hierarchical RMT is
NEXPTIME-complete.

– We use the Boogie [9] language as the concrete representation for an RMT
problem. We have developed translators from C and .NET bytecode into
Boogie. In Section 4, we give examples of how the operational semantics
and verification problems for different source languages are encoded into
Boogie. Our work enables both sequential and concurrent Boogie programs,
regardless of the source language from which they are derived, to be verified
without requiring contracts such as preconditions, postconditions, and loop
invariants.

– We have implemented Corral [25], a solver for the RMT problem. Corral

will replace Slam [6] as the solver inside Static Driver Verifier in the next
release of the Microsoft Windows operating system. In Sections 5 and 6, we
describe the core techniques and architecture of Corral and our experi-
ence applying it to solve reachability problems on device drivers. We also
describe other applications, such as analyzing sequentializations of concur-
rent programs, detecting security vulnerabilities in web applications, and
solving debugging queries for .NET bytecode.

Related Work. Software model checkers [7, 21, 29] based on predicate abstrac-
tion [19] are the best known examples of program verification as proof search,
as opposed to our work which is founded in counterexample search. In addition
to this foundational difference, another difference is the programming language
on which the problem is typically stated. Software model checking has tradi-
tionally been defined for the C programming language, whose expression lan-
guage makes implicit reference to the heap and and is consequently not directly
amenable to logical reasoning. On the other hand, we define our programming
language abstractly using a multi-sorted first-order signature; consequently, the
well-understood techniques of weakest preconditions and verification-condition
generation are immediately available to us.

Recently, another attempt to state the proof search problem using first-order
signatures has been made using a formulation based on Horn clauses [12, 13].
The main difference from our work is the focus on proof discovery as opposed to
counterexample discovery; in this regard, their approach is similar to software
model checking. However, similar to our formulation, their approach is indepen-
dent of the syntax and semantics of source-level programming languages. While
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// Identifiers

Id

// Sorts

Sort

// Expressions

Expr

// Variable declarations

VarDecl ::= var Id: Sort

// Commands

Cmd ::= assume Expr | Id := Expr | call Id∗ := Id(Id∗) | havoc Id

// Basic Blocks

Block ::= Id: Cmd goto Id∗ | Id: return

// Procedures

Proc ::= procedure Id (VarDecl∗) returns VarDecl∗ { VarDecl∗ Block+ }

// Program

Program ::= Proc∗

Fig. 1. The grammar of programs

RMT uses control flow and variables whose values can be updated, the Horn
clause formulation uses side-effect free logical expressions. The Horn clause for-
mulation has the advantage that the representation can encode not just program
semantics but various proof systems such as Floyd-Hoare for sequential programs
and Owicki-Gries for concurrent programs. Our formulation has the advantage
that we can reason directly about sequential or concurrent program executions.

2 Reachability Modulo Theories

We define the RMT problem over a simple imperative programming language.
The syntax of the language is shown in Fig. 1. A program (Program) is a list of
procedure declarations. A procedure (Proc) can have any number of input and
output parameters. The procedure body is a list of local variable declarations
followed by a list of basic blocks; the first block is the one where execution of
the procedure starts. The output variables of a procedure (if any) act like any
other local variable, except that their value at a return command is the tuple
of values returned on a call to the procedure. A basic block (Block) is a label
followed by a list of commands. A command (Cmd) is either an assume command,
or an assignment, or a havoc command, or a procedure call. The command
havoc x non-deterministically assigns an arbitrary value (of the right type) to
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x. The rest of the commands have the standard meaning. We disallow loops in
our programs (they can be encoded using tail-recursion). Thus, the control-flow
graph of a procedure is always acyclic. We refer to a recursion-free program as
a hierarchical program.

We leave the syntax of expressions and sorts unspecified in the syntax and
require only the following two properties:

– Expr is generated from a multi-sorted first-order signature containing the
Boolean sort and the equality relation =.

– It is decidable to check satisfiability of Boolean -valued expressions in Expr.

The smallest expression language that satisfies the above properties is quantifier-
free and contains only Boolean sort. For this expression language, the satisfiabil-
ity problem is NP-complete.

P � (l : assume e; goto ls ′) l′ ∈ ls ′ e(M,σ) = true

P,M � (σ, l) · ss →b (σ, l′) · ss

P � (l : x := e; goto ls ′) l′ ∈ ls ′ e(M,σ) = v

P,M � (σ, l) · ss →b (σ[x := v], l′) · ss

P � (l : havoc x; goto ls ′) l′ ∈ ls ′ v ∈ M(Sort(x))

P,M � (σ, l) · ss →b (σ[x := v], l′) · ss

P � (l : call y := p(x); goto ls ′)
a = Ins(p) b = Outs(p) c = Locals(p) ∀i. σ′(ai) = σ(xi)

∀j. σ′(bj) = M(Sort(bj)) ∀k. σ′(ck) = M(Sort(ck)) Count((σ, l) · ss , p) < b

P,M � (σ, l) · ss →b (σ′,Start(p)) · (σ, l) · ss

P � (l : return) P � (l′ : call y := p(x); goto ls ′) l′′ ∈ ls ′ b = Outs(p)

P,M � (σ, l) · (σ′, l′) · ss →b (σ′[y := σ(b)], l′′) · ss

Fig. 2. Operational semantics

Figure 2 presents the operational semantics of our programming language.
The semantics is given using the derivation P,M � ss →b ss

′ that refers to the
following elements:

– P is a program.

– M is a model for the first-order signature of program P .

– Each of ss and ss ′ is a stack of activation records, essentially a list of pairs,
with each pair comprising a label and a valuation to program variables.

– →b is the transition relation for an integer bound b > 0.
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The semantics also use an auxiliary derivation of the form P � l : c;goto ls
or P � l : return. This derivation indicates that the program P contains an
appropriately labeled basic block. We assume that all labels in the program are
distinct.

The first rule in Figure 2 is for the assume statement; it allows execution
to proceed only if the expression e evaluates to true. The next rule is for the
assignment statement. The rule for havoc updates the variable x to an arbitrary
value belonging to the interpretation of Sort(x) in the model M . Next are the
rules for procedure call and return. The activation record of the called procedure
gets arbitrary initial values for the output and local variables. Upon return,
actual output parameters in the caller are updated by looking up the appropriate
variables in the callee. For any stack ss and procedure p, Count(ss , p) returns
the total number of activation records of procedure p on the stack. The call rule
ensures that the number of activation records for any procedure does not go
beyond b. We further define

→ =
⋃

b>0

→b

as the full transition relation of the program.
Let p be a procedure with no input or output parameters. We say that p has

a terminating execution if and only if there is a model M , label l, and variable
evaluations σ, σ′ such that P � (l : return) and P,M � (Start(p), σ) →∗ (l, σ′).
We say that p has a b-terminating execution for some b > 0 if and only if there
is a model M , label l, and variable evaluations σ, σ′ such that P � (l : return)
and P,M � (Start(p), σ) →∗

b (l, σ′). Using these definitions, we can define the
following two decision problems.

Reachability Modulo Theories. Given a program P and a procedure p in the
program with no input or output parameters, return Yes if p has a terminating
execution and return No otherwise. We use RMT(P, p) to denote an instance of
this problem. If P is hierarchical, the problem is referred to as the hierarchical
reachability modulo theories problem.

Bounded Reachability Modulo Theories. Given a program P , a procedure
p in the program with no input or output parameters, and a bound b > 0,
return Yes if p has a b-terminating execution and return No otherwise. We use
RMT(P, p, b) to denote an instance of this problem.

Fig. 3 shows a simple program P for which RMT(P,main) and
RMT(P,main , 100) holds, but RMT(P,main , b) does not hold for b < 100.

3 Complexity of the RMT Problem

The RMT problem is undecidable in general. The presence of recursion along
with say, linear arithemetic in expressions, is enough to encode Turing-powerful
computations. However, the bounded and hierarchical RMT problems are decid-
able. This section first gives an algorithm for deciding bounded RMT and then
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procedure main() {
call bar(0);

}

procedure bar(i: int) {
i f (i < 100) {

i := i + 1;
call bar(i);

}
}

Fig. 3. An example program over Boolean and Integer sorts. Structured command if

is used for convenience and can be easily compiled to labeled blocks.

refines the complexity analysis depending on the choice of the expression lan-
guage. We first consider the special case of call-free single-procedure programs.
Deciding RMT in this case can be reduced to the satisfiability of a single expres-
sion (which is decidable) through a process called Verification Condition (VC)
generation.

3.1 Verification-Condition Generation

Let Expr be the expression language and P be a program consisting of a single
call-free procedure f . The VC generation algorithm converts the body of f to a
Boolean expression VC (f)(i,o, t) such that i is the list of all input parameters to
the procedure, o is the list of all output parameters, and t are some temporary
variables. We call the tuple (i,o) the interface variables of f . The expression
VC (f) satisfies two important properties. First, VC (f) is an expression in Expr.
Second, VC (f) is satisfiable if and only if some execution of f starting in state i
can return with state o. Therefore, RMT(P, f) can be decided by checking the
satisfiability of VC (f).

We now describe a standard VC generation algorithm [10]. The first step is
to passify f by converting all commands to assume statements. Consider the
single procedure shown on the left of Fig. 4. Its passified version is shown on the
right of the figure. Passification can be done in two steps: first, do single-static
assignment (SSA renaming) [28] by introducing fresh variable incarnations so
that each variable has at most one assignment. Next, push the φ functions to
their definitions. For instance, the SSA renaming of Fig. 4 would create the
statement x4 := φ(x2,x3) at label l3 where control-flow merges. This state-
ment can be realized by instead having the statements assume x4 = x2 and
assume x4 = x3 right after the definitions of x2 and x3, respectively. Next,
as is standard, an assignment x := e after SSA renaming can be replaced by
assume x = e, and havoc statements can be dropped (assuming that uninitial-
ized variables are unconstrained). Finally, we add an assume statement at each
return stating that the output parameters are constrained to the appropriate
incarnation. This results in the passified version shown in Fig. 4 (right). Note
that passification requires Expr to be closed under =.

Once the body of procedure f is passified, it can be converted to VC (f)
as follows. Let l be an arbitrary block label in f . We define C(l) to be the
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procedure f(w: int)
returns (x: int, y: int , z: int)

{
start:

havoc x;
y := x + w;
goto l1, l2;

l1:
x := x + 1;
goto l3;

l2:
x := x + 2;
goto l3;

l3:
assume !(x > y);
return;

}

procedure f(w: int)
returns (x: int, y: int, z: int)

{
var x0 , x1, x2, x3, x4: int;
var y0 , y1: int;
var z0: int;

start:
assume y1 = x1 + w;
goto l1, l2;

l1:
assume x2 = x1 + 1;
assume x4 = x2;
goto l3;

l2:
assume x3 = x1 + 2;
assume x4 = x3;
goto l3;

l3:
assume !(x4 > y1);
assume (x = x4 && y = y1 && z = z0);
return;

}

Fig. 4. A program and its passified version

conjunction of the expressions in the assume statements in the block. We also
define Succ(l) to be the set of successor labels of block l if l ends with a goto and
the empty set otherwise. We create a set of fresh Boolean variables {. . . , bl, . . .},
one for each block l in f . We define the equation E(l) of a block l as bl = C(l)
if the block ends with a return and bl = c(l)∧∨

n∈Succ(l) bn otherwise. Then we

get the following expression for VC (f):

VC (f) = be ∧
∧

l

E(l)

The expression VC (f) refers to input and output variables of f ; the temporary
variables are the incarnation variables created for the SSA renaming. As an
example, for the program in Figure 4, the block equations are as follows:

bstart ≡ y1 = x1 + w ∧ (bl1 ∨ bl2 )
bl1 ≡ x2 = x1 + 1 ∧ x4 = x2 ∧ bl3
bl2 ≡ x3 = x1 + 2 ∧ x4 = x3 ∧ bl3
bl3 ≡ ¬(x4 > y1 ) ∧ x = x4 ∧ y = y1 ∧ z = z0

We capture the correctness of VC generation in the following lemma.

Lemma 1. Let P be a call-free program and p be a procedure in P . Then the
answer to RMT(P, p) is Yes iff VC (p) is satisfiable.

The above VC generation algorithm shows that RMT for call-free programs
is decidable. This result can be extended to the hierarchical RMT problem for
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arbitrary (non-recursive) programs: one can simply inline all procedures to ob-
tain a single call-free procedure (because there is no recursion) and then decide
reachability using VC generation. We call this algorithm the static inlining al-
gorithm. This algorithm is easily extended to to the bounded RMT problem as
well. Given a program P with a procedure p and bound b, it is possible to cre-
ate a recursion-free program P ′ with a procedure p′ such that RMT(P, p, b) is
equivalent to RMT(P ′, p′). Therefore, bounded RMT is decidable as well. The
decision procedure for bounded RMT also implies that RMT is recursively enu-
merable: one can start with b = 1 and increment b until a witness for RMT is
found.

Theorem 1. Let P be a program and p be a procedure in P . Then RMT(P, p, b)
is decidable and RMT(P, p) is recursively enumerable.

It is worth contrasting the RMT(P, p) problem with a different UMT (P, p)
problem which asks the question where there is no terminating execution of
procedure p in program P . Let us consider Expr such that RMT(P, p) is un-
decidable (easy as soon as either arithmetic or uninterpreted sorts are intro-
duced). If UMT (P, p) is recursively enumerable, then we can use Theorem 1 to
conclude that RMT(P, p) is decidable which would be a contradiction. There-
fore, UMT (P, p) is neither decidable nor recursively enumerable. The UMT (P, p)
problem captures the problem definition being solved by software model checkers
whose goal is to discover program proofs automatically. Intuitively, it appears
that searching for a proof is more difficult than searching for a feasible path and
an RMT solver is solving an “easier” problem than the one being solved by a
software model checker.

3.2 Complexity of Hierarchical RMT

In this section, we demonstrate certain complexity results for the hierarchical
RMT problem. As discussed earlier, the hierarchical RMT problem is decidable.
We can refine the complexity analysis further by restricting the sorts in Expr.

Theorem 2. If checking satisfiability of Boolean expressions in Expr is decidable
in NP, then hierarchical RMT is decidable in NEXPTIME.

Proof. Let D be a non-deterministic machine that does satisfiability of expres-
sions in polynomial time. Let P be a non-recursive program. Then the length of
any execution σ of P will be at most exponential in the size of P . Construct a
non-deterministic machine M that guesses an execution σw of P , then rewrites
it as straightline program Pw. (The size of Pw is at most exponential in the size
of P .) Next, M does VC generation on Pw to obtain a single expression ew and
feeds it to D. M says that RMT(P ) holds if and only if D says “satisfiable”. It
is easy to see that M solves RMT(P ) in time at most exponential in the size
of P .
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The upper bound of NEXPTIME can be tightened if we restrict programs
to use only the Boolean sort. When we only allow the Boolean sort, then we end
up with the class of programs commonly known as Boolean programs [8, 18] that
have been extensively studied in the literature.

Theorem 3. If Expr is quantifier-free and contains only Boolean sort, hierachi-
cal RMT is PSPACE-complete.

Proof. It is known that reachability for recursion-free Boolean programs is
PSPACE-complete [1]; this result is enough to show membership in PSPACE.
We only need to show that the problem is PSPACE-hard. We do that by reduc-
tion from the PSPACE-complete problem of checking whether there is a path
from an initial state to a bad state in a transition system over a vector x of n
Boolean variables. Let Init be the predicate representing the set of initial states,
Good the predicate representing the set of good states, and Trans the transition
relation. We construct a program P with procedure p

procedure p() {
var y;
assume Init(y);
call y := p0(y);

}

procedure pi for i ∈ [0, n)

procedure pi(x) returns (y) {
y := x;
call y := pi+1(y);
. . .
call y := pi+1(y);

}

and procedure pn

procedure pn(x) returns (y) {
assert Good(x);
assume Trans(x,y);

}

The desired problem is RMT (P, p). A transition system over n Boolean variables
can have non-repeating paths of length at most 2n; thus, the executions of p
encode all non-repeating paths of the input program. The procedure pn uses the
assert statement; we show in Section 6 that assert statements can be compiled
away with at most a linear cost.

Theorem 4. If Expr is quantifier-free and contains only uninterpreted sorts (in
addition to Boolean sort), hierarchical RMT is NEXPTIME-complete.

Proof. Checking satisfiability of quantifier-free first-order logic is decidable in
NP. Therefore, Theorem 2 gives membership inNEXPTIME. To show hardness,
we demonstrate a polynomial-time reduction from the satisfiability problem for
the EPR fragment of first-order logic. This fragments is given as ∃x. ∀y. ϕ(x,y),
where x = x1, . . . , xm and y = y1, . . . , yn and ϕ refers only to uninterpreted re-
lation symbols. The problem of checking satisfiability of EPR formulas is known
to be NEXPTIME-complete [27]. The decision procedure is straightforward.
Skolemize x and then create a ground formula by taking the conjunction of ϕ
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for all possible instantiations of y using only the skolem constants. The result-
ing ground formula is exponentially larger and equisatisfiable to the original. We
show how to encode this decision procedure using a polynomial-size hiearchical
RMT problem over a single uninterpreted sort S.

Let P be a hierachical program constructed as follows. First, declare m con-
stants named x1, . . . , xm each of sort S. Next, declare procedures p0, p1, . . . , pn
such that procedure pi has i input parameters each of sort S and no output
parameters. Finally, define procedures pi for i ∈ [0, n)

procedure pi(v) {
call pi+1(v, x1);
. . .
call pi+1(v, xm);

}

and procedure pn
procedure pn(v) {

assume ϕ(x,v);
}

The desired RMT problem is RMT(P, p0).

4 Encoding Verification Problems

The Boogie language [9] is a concrete instance of an RMT language. In par-
ticular, the expression language of Boogie consists of the usual SMT theories
(uninterpreted functions, theory of arrays, etc.) whose quantifier-free subset can
be decided in NP using SMT solvers. The presence of such an expressive lan-
guage offers a convenient way to encode many software verification tasks.

In this section, we briefly survey past effort on compiling programs in lan-
guages such as C and C# down to Boogie. Instead of rigorously describing the
compilers, we illustrate using examples how source-level features are modeled in
Boogie using decidable theories. More details can be obtained from the original
papers on HAVOC, for C to Boogie [22] and the ByteCode Translator (BCT),
for C# to Boogie [11].

Fig. 5 shows the encoding of a simple C program in Boogie, focusing on the
treatment given to pointers and the heap in C. The HAVOC tool treats a pointer
as simply an int. Memory allocation happens through a special variable called
alloc that monotonically increases, as captured by the procedure malloc. It is
easy to verify that successive calls to malloc will return distinct pointers.

The heap is modeled using arrays. Conceptually, the entire heap can be en-
coded using a single map Mem of type int → int, and each dereference *x can
be translated to Mem[x]. However, for efficiency reasons, HAVOC splits the Mem
map to multiple maps, one for each type and field, assuming certain type safety
conditions on the program [14]. In Fig. 5, the use of two maps, one for field f and
the other for g statically encodes the non-aliasing constraint that x->f cannot
alias y->g, irrespective of the values of x and y. Such a constraint enables local
reasoning.

HAVOC supports the option of encoding pointers using bitvectors as well.
In that case, arithmetic operations are compiled to bitvector operations that
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struct S {
int f;
int g;

};

void main() {
S *x = malloc( sizeof (S));
S *y = malloc( sizeof (S));
x->f = 1;
y->g = 2;
assert(x->f == 1);

}

var Mem.f_S: [int]int;
var Mem.g_S: [int]int;

var alloc: int;

procedure malloc(size: int)
returns (ptr: int) {

var old_alloc: int;

assume size >= 0;
old_alloc := alloc;
havoc alloc;
assume alloc >
old_alloc + size;

ptr := alloc;
}

procedure main() {
var x: int;

assume alloc > 0;

call x := malloc (8);
call y := malloc (8);

Mem.f_S[x] := 1;
Mem.g_S[y] := 2;

assert Mem.f_S[x] == 1;
}

Fig. 5. A C program (left) and the corresponding compiled Boogie program (right)

still fall under the QFBV theory (quantifier-free bit-vectors) supported by SMT
sovlers.

The SMACK compiler [32] is another tool for compiling C programs to Boogie.
It has the option of using a memory model where pointers are not ints but
rather a type that encapsulates the actual pointer value and meta-data such as
the block of memory the pointer belongs to and the size of that block. Such a
memory model allows asserting of memory safety (i.e., every pointer dereference
is inside allocated memory).

The compilation of a C# program to Boogie, using BCT, also encodes the
heap using a series of maps, one for each field declared in the program. However,
C# being a higher-level language than C, BCT has to model several other fea-
tures of C#. For instance, the sub-typing relation can be encoded using a series
of axioms (written in Boogie syntax):

// a type for C# types

type Type;

// an uninterpreted function

function SubType(Type,Type): bool;

// whenever A inherits from B

axiom SubType(A, B);
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// reflexive, transitive, anti-symmetric

axiom forall t: Type :: SubType(t, t);

axiom forall t1, t2, t3: Type :: SubType(t1, t2) && SubType(t2, t3

) ==> SubType(t1, t3);

axiom forall t1, t2: Type :: t1 != t2 && SubType(t1, t2) ==> !

SubType(t2, t1)

Axioms are structural constraints that are assumed to hold in any valid pro-
gram state. Such an encoding of subtyping, even though it uses quantifiers, falls
under the effectively propositional class of formulas [30] that turns out to be
decidable.

The use of SMT theories allows Boogie to capture many verification tasks,
but there are still certain important aspects of software that are hard to model.
For example, there is no easy way to encode floating-point computation or string
operations in a decidable theory. One can use quantifiers or recursive procedures
to model string operations, but it remains to be seen if this leads to an effective
end-to-end solution for string-manipulating programs.

5 Stratified Inlining

Section 4 shows that even the most common software verification tasks requires
the use of linear arithmetic, uninterpreted functions and maps. For these prob-
lems, the bounded RMT problem is NEXPTIME-hard (Section 3) and one can-
not hope for a better algorithm than static inlining, in the worst case. On one
hand, it is unlikely that a polynomially-sized formula captures a bounded RMT
problem; on the other hand, static inlining is inefficient on practical problems. In
an experiment on safety verification of device drivers [25], we found that static
inlining ran out of memory during VC generation. Even when the VC did fit
in memory, the SMT solver (Z3) was overwhelmed by its size and timed out in
many instances.

This section presents the stratified inlining (SI) algorithm for solving the
bounded RMT problem with respect to a bound b > 0. SI tries to delay the
construction of an exponentially-sized formula as much as possible, in hope of
efficiently solving RMT for most programs. Instead of inlining all procedures up-
front, SI inlines procedures on-demand, in a goal-directed manner. Experiments
validated stratified inlining to be much more efficient than static inlining in
practice [25].

Overview. SI works as follows: at any point in time, SI maintains a partially-
inlined program P , along with the set of call-sites C of P that have not been
inlined so far. Initially, P is main and C is the set of all call-sites in main. Next,
it queries the theorem prover to see if P has a valid execution of main that does
not go through any call-site in C. If so, it returns this execution. If not, then it
queries the theorem prover again, this time allowing executions to go through
C and simulating the effect that open call-sites can modify state arbitrarily.
This query represents an over-approximation of the input program. If no valid
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procedure main() {
var i: int;
i := 0;
i f ( * )

call i := foo(i);
else

call i := bar(i);
assume i >= 5;

}

procedure foo(i: int)
returns (i: int) {

i f ( * ) {
i := i + 1;
call i := foo(i);
call i := bar(i);

}
}

procedure bar(i: int)
returns (i: int) {

i f ( * ) {
i := 2*i;
call i := bar(i);

}
}

Fig. 6. An example program

procedure main() {
var i1,i2,i3,i4: int;
assume i1 = 0;
i f ( * )

call i2 := foo(i1);
assume i4 = i2;

else
call i3 := bar(i1);
assume i4 = i3;

assume i4 >= 5;
}

procedure main() {
var i1,i2,i3,i4: int;
var c1,c2: bool;

assume i1 = 0;
i f ( * )

assume c1;
assume i4 = i2;

else
assume c2;
assume i4 = i3;

assume i4 >= 5;
}

c1 �→ (foo, (i1, i2))
c2 �→ (bar, (i1, i3))

Fig. 7. The passified version of main of Fig. 6; replacing procedure calls with fresh
Boolean constants; and the mapping between such constants and the input-output
variables of the corresponding procedure call

execution of P is found, then the original program is safe, i.e., RMT does not
hold. If there is a valid execution of P , then it must go through some call-sites
in C. These call-sites are inlined, provided they are under the recursion bound,
and the process continues. We now describe this process in more detail.

The VC generation algorithm used by SI is similar to the one described in
Section 3, with slight modifications to handle procedure calls. Given a passified
procedure f, we replace each procedure call with assume c for a fresh Boolean
constant c, and then do the VC generation as usual. An example is shown in
Fig. 7. In this case: (1) constraining c to false blocks executions that go through
the call, underapproximating the behaviors of the call, and (2) constraining c to
true allows executions in which the return values of the call can be arbitrary. For
example, in Fig. 7, if c1 is true then there is no constraint between i1 and i2, i.e.,
the call to foo could return any output. This represents an overapproximation
to the call. When these Boolean constants are introduced, we also record the
mapping between them and the input-output variables of the calls that they
replace, as shown on the right of Fig. 7.

For a procedure f, let VcGen(f) be a tuple (φ(io, t), d) such that φ(io, t)
is the VC of f, io are the interface (input, output) variables of f, t are some
internal variables and d is a map from Boolean variables to information about
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Procedure Init(main)

1: Let (φ(io, t), d) = VcGen(main)
2: CallTree := (main)
3: Assert φ(io, t)
4: for all c �→ (f, io′) in d do
5: Create edge (main, (f, io′, c))

in CallTree
6: end for

Procedure Instantiate(Node n)

1: Let (f, io′, c) = n
2: Let (φ(io, t), d) = VcGen(f)
3: Let t′ be fresh variables
4: Assert c ⇒ φ(io′, t′)
5: Let d′ = d[ t′/t ][ io′/io ]
6: for all c �→ (b,v) in d′ do
7: Create edge (n, (b,v, c))

in CallTree
8: end for

Fig. 8. Procedures for initializing and growing the CallTree

Procedure QueryUnder()

1: Push
2: for all leaves l = ( , , c) do
3: Assert ¬c
4: end for
5: Check
6: if Satisfiable then
7: return “RMTb holds”
8: end if
9: Pop

Procedure QueryOver()

1: Push
2: for all leaves l = ( , , c) do
3: if RB(l) > b then
4: Assert ¬c
5: end if
6: end for
7: Check
8: if Unsatisfiable then
9: return “RMTb does not hold”
10: end if
11: Let τ be the error trace
12: Pop
13: for all leaves l on τ do
14: Instantiate(l)
15: end for

Fig. 9. Querying the theorem prover with under- and over-approximations

the procedure calls that they replaced. For Fig. 7, d(c1) = (foo, (i1, i2))

and d(c2) = (bar, (i1, i3)).
The SI algorithm maintains a partially-inlined program in the form of a tree,

called the CallTree. Nodes of the tree represent a dynamic instance of a proce-
dure and children of a node are the procedures called by that node. Thus, the
CallTree is a partial unrolling of the call graph of the program. Internal nodes of
the tree are all the procedure that have been inlined so far by SI, and leaves rep-
resent non-inlined procedure calls. We also use the term “open call-sites” to refer
to leaves or the non-inlined calls. SI maintains the invariant that at any time,
the VCs of all internal nodes are asserted in the theorem prover stack. All nodes
in the CallTree, except the root node, are a triple (f, io, c) where f is the name
of the procedure, io are the input-output variables of this particular dynamic
instance of f, and c is the unique Boolean variable that substituted the call to
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Fig. 10. The shape of the CallTree after initialization (left) and after instantiating foo

(right)

f from its parent node during VC generation. SI uses the standard SMT solver
API:

– Push: Creates a backtracking point.
– Pop: Undo all asserted formulae until the most recent backtracking point.
– Assert: Add (conjoin) a formula to already asserted formulae.
– Check: Check for satisfiability of asserted formulae.

The procedures Init and Instantiate, shown in Fig. 8, initialize and grow
the CallTree, respectively. Init takes the name of the starting procedure (main)
and creates a tree with root labeled main and one leaf for each procedure
called by main. Fig. 10 shows the initial tree for our running example of Fig. 6.
Instantiate takes a leaf node and inlines the procedure represented by that
node. It does so by generating the VC (line 2), renaming the interface variables
and asserting the VC (line 4). The asserted formula says that if c is true, then
the constraint imposed by f must be satisfied. Next, we then create new leaves
for all callees of f (line 7).

Given a CallTree, SI makes two kinds of queries, shown in Fig. 9.
QueryUnder tries to see if RMTb holds: it first blocks all open call-sites (line
3) and then checks if the currently asserted formula is satisfiable (line 5). If so,
then we have found a valid program execution (because it only goes through
inlined calls) and RMTb holds. QueryOver tries to see if RMTb does not hold.
First, it blocks all open call-sites whose recursion bound exceeds b (line 4). The
sub-routine RB takes a leaf node, say l = (f, , ) and simply counts the number
of instances of f along the path from l to the root. (RB simulates the Count
function of Figure 2.) It is easy to see that this count is the number of times f
must appear on the call-stack when execution reaches l. For example, RB of the
leaf node foo in Fig. 10 is 1. If the check on line 7 is satisfiable, then we use
the model to construct the corresponding program execution. Next, we inline all
open calls on this path using Instantiate (line 13). Note: (1) QueryOver will
never inline a leaf that has crossed the recursion bound b because such open calls
are blocked (line 4), and (2) the blocking of open calls in both QueryUnder

and QueryOver is nested inside Push-Pop operations, hence this blocking does
not persist beyond a single query.
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We can now write down the full SI algorithm. It simply calls the two queries
in alternation, until one of them returns “RMTb holds” or “RMTb does not
hold”.

1: Init(main)
2: while true do
3: QueryUnder();
4: QueryOver();
5: end while

The SI algorithm is guaranteed to terminate because each iteration of the
while loop, if it is not the last iteration, must grow the CallTree. This is because
when QueryUnder is not able to find a path within the inlined part, it must
be that the trace τ on line 11 of QueryOver passes through some open call.
Moreover, the size of CallTree is bounded because of the recursion bound. Hence,
SI will terminate in bounded time. SI makes at most exponential number of
queries on formulas that are atmost exponential in the size of the program.
Asymptotically, SI has the same complexity as static inliining.

Related Work. Stratified Inlining draws inspiration from multiple sources.
Previous work on structural abstraction [4] and inertial refinement [33] has
similarities with SI. However, work on structural abstraction does not use an
underapproximation-based query (by blocking open call sites). Inertial refine-
ment does use both over and under approximations to iteratively build a view of
the program that is then analyzed. A distinguishing factor is our use of recursion
bounding as well as using lazy inlining to construct a single VC for the entire
program view.

It has been illustrated in the SMT community that dealing with eager instan-
tiation of either theory lemmas or quantifiers (e.g. as done in UCLID tool [24])
does not provide the most scalable way to reason about SMT. Instead lazy in-
stantiation tends to scale much better. Similarly, we believe that lazy approaches
like SI have much better chance of being successful than full static inlining.

6 The Corral Solver

The Corral tool is a practical realization of a solver for bounded RMT. It is
designed for the Boogie programming language. It takes a Boogie program (with
assertions) as input, the name of the starting procedure (main) and a recursion
bound. The assertions in the input program are removed using a source-to-source
transformation to obtain a usual bounded RMT problem as follows.

– Introduce a Boolean variable error and initialize it to false at the entry to
main.

– Replace assert e with error := e; if(error) return.
– After each procedure call, insert if(error) return.

– At the exit of main, assume that error is true.
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Fig. 11. Corral’s architecture

After such a transformation, there is an execution that exits main if and only if
the original program had a failing assertion.

As output, Corral can either return a feasible path that ends in an assertion
violation (i.e., RMT holds), or a message saying that no such path exists (i.e.,
RMT does not hold), or a message saying that no such path was found within
the recursion bound (i.e., bounded RMT does not hold, but no conclusion can be
made for unbounded RMT). Corral was the subject of a previous publication
[25]. This paper only briefly covers the ideas and algorithms behind Corral.

The design of Corral is shown in Fig. 11. The main component of Corral

is the stratified inlining (SI) algorithm that was described in Section 5. Instead
of directly giving the input RMT problem to SI, Corral uses two optimizations
to reduce the computational burden on SI.

The first optimization is to compute program invariants. In principle, any
technique for invariant generation may be used. Corral uses the Houdini algo-
rithm [17] to compute invariants in the form of procedure summaries. The user
provides, as additional input to Corral, candidate expressions for procedure
summaries. Houdini uses theorem prover queries, each on the VC of at most
one procedure, to compute the strongest inductive summaries within the given
candidates. The number of single-procedure queries is quadratic in the worst
case but linear in the common case. The invariants, once computed, are injected
back into the program as assume statements. These invariants can help SI prune
search because they (soundly) constrain the over-approximate query used by SI,
which can rule out many abstract counterexamples.

The second optimization is an abstraction-refinement loop. Corral uses a
very simple abstraction in this loop, called variable abstraction. Let G be the set
of global variables of the input program. Note that G is always a finite set. Vari-
able abstraction is parameterized by a set T of tracked variables, where T ⊆ G.
Variable abstraction works by abstracting away all variables in G − T , using a
simple source rewriting. For instance, the assignment x := e, where x ∈ T and
the expression e has some variable in G− T , is re-written to havoc x. The ab-
stracted program is fed to SI. This abstraction can lead to SI returning spurious
counterexamples. These counterexamples are used to refine the abstraction by
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increasing T . The variable-abstraction based refinement loop substantially dif-
fers from one based on predicate abstraction that is used by most software model
checking tools: (1) variable abstraction is easy to compute, unlike predicate ab-
straction that may need an exponential number of SMT queries, and (2) the
refinement loop of variable abstraction is bounded because T is bounded above
by G, unlike predicate abstraction where the number of predicates is unbounded.

The abstraction-refinement loop of Corral is useful when only a few vari-
ables are relevant in solving the RMT problem. Abstracting away variables con-
siderably reduces the size of the program and allows the theorem prover to focus
only on the relevant part of the program’s data. Moreover, VC generation is
quadratic in the number of variables, and a reduction in the number of variables
also significantly decreases the VC size.

6.1 Experience Using Corral

Corral is ideally suited for applications where one is more interested in finding
bugs than in finding proofs, or when finding proofs is simply too difficult. We
now describe our experience with such applications.

The first application is the Static Driver Verifier (SDV), a product supported
by the Driver Quality team of Microsoft Windows. SDV supports any driver
written using one of four diferent driver models: WDM, KMDF, NDIS, STOR-
PORT. It also comes with a list of rules (or properties) that drivers must satisfy.
A driver and rule pair forms a verification instance that is fed to the verification
engine. SDV has traditionally used Slam as the verification engine. After a com-
prehensive evaluation, a dual-engine system of Corral and Yogi [20, 29] will
replace Slam inside SDV in the next release of the Microsoft Windows operating
system. Going into the details of the evaluation is outside the scope of this paper.
We briefly present our experience with Corral in comparison to Slam.

Corral is executed with a modest recursion bound of 3 to 6, depending
on the driver model. In an initial study [25], this bound was sufficient to find
all but 9 defects in a test suite containing around 400 defects in total. The
missed defects were due to loops with a constant upper bound, for example, the
loop for(int i = 0; i < 27; i++) requires a bound of at least 27 before code
after the loop is reachable. We designed custom techniques to deal with such
loops, after which Corral was able to find almost all defects reported by Slam.
Furthermore, Corral has 2.5X reduction in timeouts and 40% improvement in
running time.

While Corral was able to overtake Slam in the number of defects found, it
was also important to compare the number of instances that were proved correct.
This will indicate a measure of confidence that Corral will not miss defects in
yet unseen drivers. Along with each verification instance, we also supplied sum-
mary candidates for Houdini. The candidates are derived heuristically looking
solely at the property (not the driver) being verified. On an initial test suite,
Corral was able to prove correctness in 91% of the cases (regardless of the re-
cursion bound), with summaries inferred by Houdini playing an important role
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in establishing proofs. This means that for most part our heuristically-generated
invariant candidates were sufficient.

We obvserved similar speedups against the Yogi tool as well. We now list
some other lessons learned from these comparisons.

– While Slam and Yogi were designed and trained on drivers for SDV,
Corral was initially designed for finding concurrency bugs. The fact that
Corral performed well inside SDV demonstrates a degree of robustness of
Corral in handling programs from multiple sources.

– Slam avoided using array theory to model the heap, and instead relied on
a logical memory model [5]. This decision was justified because implementa-
tions of array-theory might have been inefficient ten years ago. Yogi inher-
ited a similar memory model as Slam. Corral, on the other hand, makes
heavy use of array theory because the entire heap is modeled using maps.
Thus, as theorem-prover technology changes, it is reasonable to expect the
design of software verifiers to change as well.

– We found Corral to be much more dependent on the performance of Z3
thanYogi. For instance, upgrading Z3 almost always resulted in a significant
speedup of Corral, whereas, we did not observe such speedups in Yogi.
In retrospect, this is not surprising because Yogi was designed to avoid
invoking the theorem prover to the greatest extent possible.

The second class of applications for Corral are what are now called se-
quentializations of concurrent programs. The original sequentialization was a
program transformation that converted a safety property on a multi-threaded
concurrent program to a safety property on a sequential program, given a bound
on the number of context switches between threads [31, 26]. Subsequently, more
sequentializations were proposed: for asynchronous task-buffer programs [16],
for liveness properties of concurrent programs [15, 2], and for programs on weak-
memory models [3]. In each of these cases, Corral was used as the solver for
finding defects in the generated sequential program. These applications have
two common aspects. First, they require bounding the set of program behaviors
(e.g., context switches). Thus, verifying correctness cannot be a goal. Second,
the generated sequential programs are complicated and so are their invariants.
Consequently, software verifiers like Slam do not perform well on such programs.
On the other hand, Corral, which builds off the robustness of SMT solvers, is
able to work well uniformly across such programs.

Corral has been used to automatically detect security vulnerabilities in mod-
els of web applications. In one study, Cashier-as-a-Service web payment systems
were modeled in the C language; Corral was used to find vulnerabilities that
would allow an attacker to shop for free [34]. In another study, authentication
and authorization SDKs were modeled in the C# language; Corral was used
to find improper use of SDK APIs leading to insecure access [35].
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Besides these applications, Corral is also used inside a debugging tool for
.NET, called GetMeHere, where it is able to successfully operate on Boogie
programs compiled from C#. We also evaluated Corral on the Software Ver-
ification Competition (SV-COMP) benchmarks and obtained favorable results
compared to all the other tools participating in the competition. More details
are available in the original Corral paper [25].
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