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Abstract. We investigate gcf-Petri nets, a generalization of communica-
tion-free Petri nets allowing arbitrary edge multiplicities, and character-
ized by the sole restriction that each transition has at most one incoming
edge. We use canonical firing sequences with nice properties for gcf-PNs
to show that the RecLFS, (zero-)reachability, covering, and boundedness
problems of gcf-PNs are in PSPACE. By showing, how PSPACE-Turing
machines can be simulated by gss-PNs, a subclass of gcf-PNs where ad-
ditionally all transitions have at most one outgoing edge, we ultimately
prove the PSPACE-completess of these problems for gss/gcf-PNs. Last,
we show PSPACE-hardness as well as a doubly exponential space bound
for the containment and equivalence problems of gss/gcf-PNs.

1 Introduction

In [12], Mayr proposed a non-primitive recursive algorithm for the general Petri
net reachability problem, thus proving its decidability. For many restricted Petri
net classes, a better complexity of the reachability problem can be shown. How-
ever, the nets of most Petri net classes for which the complexity of the reacha-
bility problem could be refined are subject to the restriction that all edges from
places to transitions have multiplicity one. Well known examples of such nets
with NP-complete reachability problems are communication-free Petri nets (cf-
PNs/BPP-PNs), [3, 18], conflict-free Petri nets [7] and normal as well as sinkless
Petri nets [8] (for the latter two, the promise problem variation of the reacha-
bility problem was considered). Remarkable examples for Petri net classes with
general edge multiplicities and matching lower and upper bounds for the reach-
ability problem are single-path Petri nets [6] (PSPACE-complete) and reversible
Petri nets [13] (EXPSPACE-complete). For a more comprehensive overview, the
reader is referred to [4].

Our ultimate goal is to gain insight into how general edge multiplicities in-
fluence the complexity of the reachability problem and several other classical
problems. In this paper, we investigate a generalization of communication-free
Petri nets. A cf-PN is a Petri net such that each transition has exactly one input
place, connected by an edge with multiplicity one. Cf-PNs are closely related to
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Basic Parallel Processes defined in [1, 2] as well as to context-free (commuta-
tive) grammars [4, 10]. We call our generalization generalized communication-
free Petri nets (gcf-PNs). The nets of this class are characterized by a single
topological constraint, namely, that each transition has at most one input place,
connected by an edge with arbitrary multiplicity.

For cf-PNs, tight bounds for the reachability problem are known. Esparza
[3] showed NP-completeness while Yen [18] gave an alternative proof for NP-
membership, based on canonical firing sequences. Both proofs (implicitly) rely
on the fact that the RecLFS problem (recognize legal firing sequence, see [17])
is decidable in polynomial time due to a very easily checkable criterion. (The
problem RecLFS asks if a given Parikh vector is enabled at some given marking.)
For gcf-PNs, no such criterion exists (under the assumption P �= PSPACE) since
the problem is PSPACE-complete as shown in Section 3.

In Section 3, we show PSPACE-hardness for the RecLFS, the reachability,
the covering, and the boundedness problems of generalized S-Systems (gss-PNs)
which are a subclass of gcf-PNs where each transition has at most one incoming
and at most one outgoing edge, each with arbitrary edge multiplicity. This is
interesting because almost all the problems considered in this paper have very
low complexity for S-Systems (e.g., they are always bounded, the reachability
problem is decidable in polynomial time [5], etc.). Furthermore, the covering, and
the boundedness problems of cf-PNs are known to be NP-complete, and linear
time (on RAMs), respectively [15]. Then, we derive canonical permutations of
firing sequences of gcf-PNs, and use them to show PSPACE-completeness for
the RecLFS, the reachability, and the covering problems of gcf-PNs.

In Section 4, we show the existence of canonical firing sequences that have
stronger properties than the firing sequences obtained by canonical permuta-
tions. These canonical firing sequences resemble those given in [18] for cf-PNs.
We use them to show PSPACE-completeness for the boundedness problem of
gcf-PNs, and that the equivalence and containment problems of gcf-PNs are
PSPACE-hard as well as decidable in doubly exponential space.

Due to space limitations, we provide detailed proofs for the lemmata and
theorems in the technical report [14]. In this paper, we give proof sketches and
the essential proof ideas. An exception is Lemma 6 where we derive the most
central result, the existence of canonical permutations, for which a full proof is
provided here.

2 Preliminaries

Z, N0, and N denote the set of all integers, all nonnegative integers, and all
positive integers, respectively, while [a, b] = {a, a + 1, . . . , b} � Z, and [k] =
[1, k] � N. For two vectors u, v ∈ Z

k, we write u ≥ v if ui ≥ vi for all i ∈ [k], and
u > v if u ≥ v and ui > vi for some i ∈ [k]. When k is understood, a denotes,
for a number a ∈ Z, the k-dimensional vector with ai = a for all i ∈ [k].

A Petri net N is a 3-tuple (P, T, F ) where P is a finite set of n places, T is
a finite set of m transitions with P ∩ T = ∅, and F : P × T ∪ T × P → N0
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is a flow function. Throughout this paper, n and m will always refer to the
number of places resp. transitions of the Petri net under consideration, and
W = max{F (p, t), F (t, p) | p ∈ P, t ∈ T } to the largest value of its flow function.
Usually, we assume an arbitrary but fixed order on P and T , respectively. With
respect to this order on P , we can consider an n-dimensional vector v as a func-
tion of P , and, abusing the notation, write v(p) for the entry of v corresponding
to place p. Analogously, we write v(t) in context of an m-dimensional vector and
a transition t.

A marking μ (of N) is a vector of N
n
0 . A pair (N,μ(0)) such that μ(0) is a

marking of N is called a marked Petri net, and μ(0) is called its initial marking.
We will omit the term “marked” if the presence of a certain initial marking is
clear from the context.

For a transition t ∈ T , •t (t•, resp.) is the preset (postset, resp.) of t and
denotes the set of all places p such that F (p, t) > 0 (F (t, p) > 0, resp.). Analo-
gously, the sets •p and p• of transitions are defined for the places p ∈ P . A Petri
net (P, T, F ) is a generalized communication-free Petri net (gcf-PN) if |•t| ≤ 1 for
all t ∈ T . A gcf-PN is a generalized S-System Petri net (gss-PN) if additionally
|t•| ≤ 1 for all t ∈ T .

A Petri net naturally corresponds to a directed bipartite graph with edges
from P to T and vice versa such that there is an edge from p ∈ P to t ∈ T (from
t to p, resp.) labelled with w if 0 < F (p, t) = w (if 0 < F (t, p) = w, resp.). The
label of an edge is called its multiplicity. If a Petri net is visualized, places are
usually drawn as circles and transitions as bars. If the Petri net is marked by
μ, then, for each place p, the circle corresponding to p contains μ(p) so called
tokens.

For a Petri net N = (P, T, F ) and a marking μ of N , a transition t ∈ T can
be applied at μ producing a vector μ′ ∈ Z

n with μ′(p) = μ(p)−F (p, t) +F (t, p)
for all p ∈ P . The transition t is enabled at μ or in (N,μ) if μ(p) ≥ F (p, t) for
all p ∈ P . We say that t is fired at marking μ if t is enabled and applied at μ. If
t is fired at μ, then the resulting vector μ′ is a marking, and we write μ

t−→ μ′.
Intuitively, if a transition is fired, it first removes F (p, t) tokens from p and then
adds F (t, p) tokens to p.

An element σ of T ∗ is called a transition sequence, and |σ| denotes its length.
For the empty transition sequence σ = (), we define μ

σ−→ μ. For a nonempty
transition sequence σ = t1 · · · tk, ti ∈ T , we write μ(0) σ−→ μ(k) if there are
markings μ(1), . . . , μ(k−1) such that μ(0) t1−→ μ(1) t2−→ μ(2) . . .

tk−→ μ(k). We write
σ(i,j) for the subsequence σi · σi+1 · · ·σj , and σ(i) for the prefix of length i of σ,
i.e., σ(i) = σ(1,i).

A Parikh vector Φ, also known as firing count vector, is simply an element of
N

m
0 . The Parikh map Ψ : T ∗ → N

m
0 maps each transition sequence σ to its Parikh

image Ψ(σ) where Ψ(σ)(t) = k for a transition t if t appears exactly k times in σ.
Note that each Parikh vector Φ is the Parikh image of some transition sequence.
Furthermore, we write t ∈ Φ if Φ(t) > 0, and t ∈ σ if t ∈ Ψ(σ). For a transition
sequence σ ∈ T ∗, we define •σ =

⋃
t∈σ

•t. Ψfirst(σ) is the Parikh vector such
that, for all transitions t, Ψfirst(σ)(t) = 1 if •t̄ �= •t for all transitions t̄ in front
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of the first occurrence of t in σ, and Ψfirst(σ)(t) = 0 otherwise. For σ, τ ∈ T ∗,
σ –� τ ∈ T ∗ is obtained by deleting the first min{Ψ(σ)(t), Ψ(τ)(t)} occurences of
each transition t from σ.

If there is a marking μ′ with μ
σ−→ μ′, then we say that σ (the Parikh vector

Ψ(σ), resp.) is enabled at μ and leads from μ to μ′. For a marked Petri net
(N,μ(0)), we call a transition sequence that is enabled at μ(0) a firing sequence.
A marking μ is called reachable if μ(0) σ−→ μ for some σ. The reachability set
R(N,μ(0)) of (N,μ(0)) consists of all reachable markings. We say that a marking
μ can be covered if there is a reachable marking μ′ ≥ μ.

The displacement Δ : Nm
0 → Z

n maps Parikh vectors Φ ∈ N
m
0 onto the change

of tokens at the places p1, . . . , pn when applying transition sequences with Parikh
image Φ. That is, we have Δ(Φ)(p) =

∑
t∈T Φ(t) · (F (t, p)−F (p, t)) for all places

p. Accordingly, we define the displacement Δ(σ) of a transition sequence σ by
Δ(σ) := Δ(Ψ(σ)).

A Parikh vector or a transition sequence having nonnegative displacement
at all places is called a nonnegative loop since, if it is fired at some mark-
ing, the loop can immediately be fired again at the resulting marking. A non-
negative loop having positive displacement at some place p is a positive loop
(for p). A nonnegative loop with displacement 0 at all places is a zero-loop.
For a marking μ, a transition sequence σ, and a subset S ⊆ P of places,
we define max(μ, S) := maxp∈S μ(p), and max(μ) := max(μ, P ), as well as
max(μ, σ, S) := maxi∈[0,|σ|]max(μ+Δ(σ(i)), S), and max(μ, σ) := max(μ, σ, P ).

The wipe-extension P− = (P, T−, F−) of a Petri net P = (P, T, F ) is obtained
from P by introducing, for each place pi ∈ P , a transition t−i with F−(pi, t−i ) = 1.

Some marked Petri nets have reachability sets that are semilinear. A set
S ⊆ N

n
0 is semilinear, if there are a k ∈ N0 and linear sets L1, . . . , Lk ⊆ N

n
0

such that S =
⋃

i∈[k] Li. A set L ⊆ N
n
0 is linear, if there are � ∈ N0 and vec-

tors b, p1, . . . , p� ∈ N
n
0 such that L = {b + ∑

i∈[�] aipi | ai ∈ N0, i ∈ [�]}. The
vector b is the constant vector of L, while the vectors pi are the periods of L.
A semilinear representation of a semilinear set S is a set consisting of k pairs
(bi, {pi,1, . . . , pi,�i}), i ∈ [k], for some k ∈ N0, such that S =

⋃
i∈[k] Li where

Li = {bi +
∑

j∈[�i]
ai,jpi,j | ai,j ∈ N0, j ∈ [�i]}. If two Petri nets allow the con-

struction of semilinear representations of the respective reachability sets within
a certain space bound, then many problems are decidable that are undecidable
for Petri nets in general, and space bounds can be given as well. We will use this
well known approach for the containment and the equivalence problems.

Throughout this paper we use a succinct encoding scheme. Every number is
encoded in binary representation. A Petri net is encoded as an enumeration of
places p1, . . . , pn and transitions t1 . . . , tm followed by an enumeration of the
edges with their respective edge weight. A vector of Nk

0 is encoded as a k-tuple.
If we regard a tuple as an input (e.g. a marked Petri net), then it is encoded
as a tuple of the encodings of the particular components. size(P) denotes the
encoding size of a marked Petri net P . Analogously, size(P , μ) is the encoding
size of P together with an additional marking μ.
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In this paper, we study the following problems for gcf-PNs.

• RecLFS: Given a gcf-PN P and a Parikh vector Φ, is Φ enabled in P?
• Reachability: Given a gcf-PN P and a marking μ, is μ reachable in P?
• Zero-Reachability: Given a gcf-PN P , is the empty marking reachable in P?
• Covering: Given a gcf-PN P and a marking μ, is μ coverable in P?
• Boundedness: Given a gcf-PN P , is there, for each k ∈ N, a reachable marking
μ with max(μ) ≥ k?
• Containment: Given two gcf-PNs P and P ′, is R(P) ⊆ R(P ′)?
• Equivalence: Given two gcf-PNs P and P ′, is R(P) = R(P ′)?

We remark that the input size of a problem instance consists of the encodings of
all entities that are declared as being “given” in the respective problem statement.

3 Canonical Permutations, and the RecLFS,
(Zero-)Reachability, and Covering Problems

In this section, we first show PSPACE-completeness of the RecLFS problem.
Then, we describe a procedure that, given a gcf-PN P = (P, T, F, μ(0)), and a
firing sequence σ with μ(0) σ−→ μ, produces a permutation σ′ of σ enabled at μ(0)

such that every marking reached while firing σ′ has encoding size polynomial in
size(P , μ). We use these sequences to decide the reachability, and the covering
problems in polynomial space, proving their PSPACE-completeness.

Lemma 1. The RecLFS, the zero-reachability, the reachability, the covering,
and the boundedness problems of gss-PNs are PSPACE-hard.

Proof (Please note that, as indicated in the introduction, most of the proofs give
the ideas. Fully detailed proofs are available in [14]). The proof is based on a
generic reduction from each language L ∈ PSPACE to each of the problems
of interest mentioned in the lemma. We use the existence of a PSPACE-Turing
machine M with certain properties deciding an arbitrary language L ∈ PSPACE.
Our logspace reduction maps the given word x to a gss-PN P and to a Parikh
vector or a marking, corresponding to M and x. P simulates M in such a way
that the Parikh Vector is enabled or the marking can be reached if and only if
M accepts x. ��
Theorem 1. The RecLFS problem of general Petri nets is PSPACE-complete,
even if restricted to gss-PNs.

Proof. The PSPACE-hardness of the RecLFS problem is shown in Lemma 1.
Now observe that we can guess the order in which the transitions of the given
Parikh vector Φ can be fired. Each marking obtained when firing this sequence
has encoding size polynomial in the size of the Petri net and Φ. ��
Next, we propose four essential lemmata for the construction of canonical per-
mutations of firing sequences in gcf-PNs.
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Lemma 2. Let σ be a firing sequence of a gcf-PN (N,μ(0)). If a transition
t ∈ Ψfirst(σ(i+1,|σ|)) is enabled at μ(0) +Δ(σ(i)), then σ(i) · t · (σ(i+1,|σ|) –� t) is a
firing sequence.

Proof. We can shift a transition which first consumes tokens of a place p to the
front of the sequence, given that the initial marking has enough tokens for the
transition. Iteratively applying this argument yields the lemma. ��
Lemma 3. Let (P, T, F ) be a gcf-PN, σ a transition sequence, and μ, μ′ mark-
ings with μ + Δ(σ) = μ′ and μ(p), μ′(p) ≥ W for all p ∈ •σ. Then, there is a
permutation of σ enabled at μ (and leading to μ′).

Proof. The proof uses induction over the length of σ. Using Lemma 2, we gener-
ate a permutation σ̃ · σ̄ of σ such that σ̃ is enabled at the marking with W tokens
at all places of S and Δ(σ̃)(p) ∈ [−W,−1] for all p ∈ •σ̄. Applying the induction

hypothesis to σ̄ and σ̃ yields permutations σ̄′ and σ̃′ with μ
σ̄′·σ̃′−−−→ μ′. ��

Lemma 4. Let P = (P, T, F ) be a gcf-PN with largest edge multiplicity W , and
S ⊆ P a subset of places. Further, let σ = σ1 · · ·σk, σi ∈ T , be a transition
sequence of P with μ(0) σ1−→ μ(1) . . . μ(k−1) σk−→ μ(k) such that

(a) •σ ⊆ S,
(b) μ(i−1)(•σi) = max(μ(i−1), S) for all i ∈ [k] (i.e., each transition removes

tokens from a place of S with the maximum number of tokens), and
(c) max(μ(k), S) > max(μ(0), S) + 2|S|W .

Then, for some i ∈ [1, k − 1], the suffix σ(i,k) is a positive loop.

Proof. By (c), there is an interval [x, y] � [max(μ(0), S),max(μ(k), S)] of size 2W
such that μ(k)(p) /∈ [x, y] for all places p ∈ S. Let i ∈ [0, k − 1] be the smallest
index such that max(μ(j), S) ≥ x+W for all j ∈ [i, k].

For all p ∈ S with μ(i)(p) ∈ [x, y] we have μ(k)(p) > b. By (a), (b) and the
choice of i, the numbers of tokens of these places will never be below x at all
μ(j) with j ∈ [i, k]. Additionally, the numbers of tokens at all other places are
monotonically increasing from μ(i) to μ(k). Hence, σ(i+1,k) is a positive loop. ��
Lemma 5. Let N = (P, T, F ) be a Petri net with n places and m transitions,
and let W be the largest edge multiplicity of N . Then, there is a finite set H(N) =
{Φ(1), . . . , Φ(k)} � N

m
0 of nonnegative loops of N such that each loop of H(N)

consists of at most (1 + (n + m)W )n+m transitions, and such that, for each
nonnegative loop Φ of N , there are a1, . . . , ak ∈ N0 with Φ = a1Φ

(1)+. . .+akΦ
(k).

Proof. We can formulate the set of all nonnegative loops as the set of solutions
of an appropriately formulated system of linear diophantine inequalities. Using
Theorem 1 of [16], we obtain the result. ��

Using these lemmata, we can show that firing sequences have canonical per-
mutations with nice properties.
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Lemma 6. There is a constant c such that, for each gcf-PN P = (P, T, F, μ(0))
and each firing sequence σ leading from μ(0) to μ, there is a permutation ϕ of
σ leading from μ(0) to μ, and satisfying max(μ(0), ϕ) ≤ (2nmW + max(μ(0)) +
max(μ))c(n+m).

Proof. Let P = (P, T, F, μ(0)) be a gcf-PN, and σ a firing sequence leading
to some marking μσ. We define two special levels �big := max{W,max(μ(0)),
max(μσ) + 1} and �fire := �big + W . Additionally, for i ∈ [0, n], we define the
levels �i := �fire +W + i · (max{(1+ (n+m)W )n+m, 2n}+1)W . A place p is big
at a marking μ if μ(p) ≥ �big, and firing if μ(p) ≥ �fire.

Consider the following invariants for two transition sequences σ̃ and σ̄:

(i) σ̃ · σ̄ is a permutation of σ with μ(0) σ̃−→ μσ̃ σ̄−→ μσ,
(ii) max(μ(0), σ̃) ≤ �n, and
(iii) if there are b ≥ 1 big places at μσ̃, then max(μσ̃) ≤ �b−1.

For σ̃ = () and σ̄ = σ, these invariants are obviously satisfied. Assume |σ̃| < |σ|,
and that σ̃ and σ̄ satisfy the invariants. We show how to extend σ̃ at the end
to a longer transition sequence σ̃new and obtain a corresponding sequence σ̄new

such that σ̃new and σ̄new again satisfy the invariants.
First, consider the case that there are no firing places at μσ̃. Then, we set

σ̃new := σ̃ · σ̄(1), and σ̄new := σ̄(2,|σ̄|). σ̃new and σ̄new obviously satisfy property
(i). For (ii) and (iii) notice that, for each big place p of μσ̃ +Δ(σ̄(1)), we have
(μσ̃ +Δ(σ̄(1)))(p) ≤ μσ̃(p) +W < �fire +W = �0.

Next, consider the case that there are firing places at μσ̃. Let S be the set of
big places at μσ̃ and b = |S| ≥ 1 their number. The number of tokens of a big
place p∗ ∈ S as a function of time is illustrated in (a) of Figure 1. We initialize
an empty transition sequence α ← (), as well as σ̄′ ← σ̄. As long as there is
a firing place p ∈ S at μσ̃ + Δ(α), we select the transition t ∈ Ψfirst(σ̄

′) with
p = •t, and set α ← α · t, as well as σ̄′ ← σ̄′ –� t. Notice that t must exist since
σ̄′ must reduce the number of tokens at p in order to reach μσ(p). By Lemma 2,

σ̃ · α · σ̄′ is a firing sequence with μ(0) σ̃−→ μσ̃ α−→ μα σ̄′
−→ μσ , and α is nonempty

since μσ̃ has a firing place, see (b) of Figure 1.
Now, consider the nonnegative loop Φ with the largest component sum such

that Φ ≤ Ψ(α). Using Lemma 5, we decompose Φ into short nonnegative loops
Φ(1), . . . , Φ(k), each with component sum at most (1 + (n + m)W )n+m. Since
μσ̃(p) ≥ W for all p ∈ S and •t ∈ S for all t ∈ Φ(j), j ∈ [k], we can use
Lemma 3 to find transition sequences τ (1), . . . , τ (k) with Ψ(τ (j)) = Φ(j), j ∈ [k],
such that τ := τ (1) · · · τ (k) is enabled at μσ̃. Let μσ̃ τ−→ μτ . For each p ∈ S, we
observe Δ(Φ)(p) < W . To see this, assume Δ(Φ)(p) ≥W . By the maximality of
Φ, Ψ(α) − Φ doesn’t contain a transition t with p = •t. Therefore, Δ(α)(p) =
Δ(Φ)(p)+Δ(Ψ(α)−Φ)(p) ≥W . But then, μσ̃(p)+Δ(α)(p) ≥ �big+W = �fire, a
contradiction to the fact that no place of S is firing. Since all τ (j) are nonnegative
loops, we obtain Δ(τ (1) · · · τ (j))(p) ≤W for all p ∈ S and j ∈ [k]. Furthermore,
|τ (j)| < (1 + (n + m)W )n+m implies Δ(τ

(j)
(i) )(p) ≤ (1 + (n + m)W )n+mW for

all i ∈ [|τ (j)|] and p ∈ P . We obtain max(μσ̃ + Δ(τ (1) · · · τ (j−1)), τ (j), S) ≤



216 E.W. Mayr and J. Weihmann

μσ(p∗)

�big

�fire

�0

�b−1

�b

μσ̃ μσ
σ̄

(a)

μσ(p∗)

�big

�fire

�0

�b−1

�b

μσ̃ μα μσ
α σ̄′

(b)

μσ(p∗)

�big

�fire

�0

�b−1

�b

μσ̃ μτ μα μσ
τ (1) τ (2) · · · τ (k−1) τ (k) ᾱ σ̄′

(c)

μσ(p∗)

�big

�fire

�0

�b−1

�b

μσ̃ μτ
μβ μσ

τ (1) τ (2) · · · τ (k−1) τ (k) β ᾱ′ · σ̄′

(d)

Fig. 1. (a)–(d) illustrate the development of the number of tokens at a place p∗ which
is big at μσ̃ during certain steps of the permutation procedure described in Lemma 6.
The number of tokens is bounded from above by the respective curve. The number of
big places at μσ̃ is b. Dashed lines symbolize that the number of tokens can become
arbitrarily big.

�b−1 + W + (1 + (n + m)W )n+mW ≤ �b for all j ∈ [k], and thus our first
important intermediate result of the proof: max(μσ̃, τ, S) ≤ �b.



Generalized Communication-Free Petri Nets 217

In other words, the token numbers of places of S at all markings obtained
while firing τ at μσ̃ are at most �b.

We now consider Ψ(α) − Φ. Observing μτ (p) ≥ μσ̃(p) ≥ W and μσ(p) ≥ W
for all p ∈ S, and •ᾱ ⊆ S for some transition sequence ᾱ with Ψ(ᾱ) = Ψ(α)−Φ,
we use Lemma 3 to find a transition sequence ᾱ with Ψ(ᾱ) = Ψ(α) − Φ that is
enabled at μτ , see (c) of Figure 1.

We initialize another empty transition sequence β ← (), as well as ᾱ′ ← ᾱ.
As long as there is a firing place of S at μτ +Δ(β), we select a place p ∈ S with
max(μτ +Δ(β), S) = (μτ+Δ(β))(p) and the transition t ∈ Ψfirst(ᾱ

′) with p = •t,
and set β ← β · t, as well as ᾱ′ ← ᾱ′ –� t. It is important to note the difference of
this selection procedure compared to the one before. Here, we select a place of
S with the largest number of tokens. Also note that β is nonempty since μσ̃ has
a firing place in S and μτ ≥ μσ̃. Let μβ := μτ +Δ(β). By Lemma 2, we observe

μτ β−→ μβ , and ᾱ′ is enabled at μβ. In total, we have μσ̃ τ−→ μτ β−→ μβ ᾱ′·σ̄′
−−−→ μσ.

We observe max(μτ , S) = max(μσ̃ + Δ(τ), S) ≤ max(μσ̃, S) + W ≤ �b−1 +
W . Now, for the sake of contradiction, assume that max(μτ , β, S) > �b. Then,
max(μτ +Δ(β(i)), S) > �b ≥ �b−1+W +2nW ≥ max(μτ , S)+2nW for some i ∈
[|β|]. But then, Lemma 4 implies that β contains a positive loop, a contradiction
to the maximality of Φ. Therefore, max(μτ , β, S) ≤ �b. We merge τ and β and
obtain the nonempty transition sequence γ := τ · β.

Our observations can now be summarized as our second important interme-
diate result, also see (d) of Figure 1:

μσ̃ γ−→ μβ ᾱ′·σ̄′−−−→ μσ, |γ| > 0, max(μσ̃, γ, S) ≤ �b, andmax(μβ , S) < �fire.

As the last step, consider the smallest j ∈ [|γ|] such that the number of big
places at μσ̃ +Δ(γ(j)) is at least b + 1. If such a j does not exist, set j := |γ|.
Now define σ̃new := σ̃ · γ(j), as well as σ̄new := γ(j+1,|γ|) · ᾱ′ · σ̄′. Observe that
σ̃new is longer than σ̃, and, together with σ̄new, satisfies the invariants (i)–(iii).
In particular, if there is still a big place at the end of the step, then every place
that is big at some time during the step is also big at the end of it.

By iteratively applying this procedure, we obtain a permutation ϕ of σ such
that μ(0) ϕ−→ μσ and max(μ(0), ϕ) ≤ �n, i.e., all markings obtained while firing ϕ
contain at most �n tokens at each place. Note that if one of the values n,m,W
is 0, then only the initial marking μ(0) is reachable. Therefore, we can choose an
appropriate constant c such that �n ≤ (2nmW +max(μ(0))+max(μ))c(n+m) for
all possible inputs as defined at the beginning. ��

We can use Lemma 6 to show that the reachability and the covering problems
of gcf-PNs are PSPACE-complete.

Theorem 2. The zero-reachability, the reachability, and the covering problems
of gcf-PNs are PSPACE-complete, even if restricted to gss-PNs.

Proof. The PSPACE-hardness of the RecLFS problem is shown in Lemma 1. By
Lemma 6, we can guess a firing sequence to a reachable marking such that all in-
termediately observed markings have size polynomial in the input. Furthermore,
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we can use the wipe-extension of the Petri net to reduce the covering problem
to the reachability problem. ��

4 Canonical Firing Sequences, and the Boundedness,
Containment, and Equivalence Problems

The canonical permutation obtained in Section 3 is, by itself, not strong enough
to show the membership of the boundedness problem in PSPACE or to yield al-
gorithms deciding the containment and equivalent problems. Therefore, our first
objective in this section is to distill a strong form of canonical firing sequences
from canonical permutations.

Lemma 7. There is a constant c > 0 such that, for each reachable marking μ
of a gcf-PN P = (N,μ(0)), there are transition sequences ξ, ξ̄, α(1), . . . , α(k),
τ (1), . . . , τ (k) for some k ≤ n ·max(μ) having the following properties.

(a) ξ = α(1) · τ (1) · α(2) · τ (2) · · ·α(k) · τ (k) is a firing sequence leading from μ(0)

to μ.
(b) ξ̄ = α(1) · α(2) · · ·α(k) is fireable with |ξ̄| ≤ (2nmW +max(μ(0)))cn(n+m).
(c) Each τ (i), i ∈ [k], is a positive loop with |τ (i)| ≤ (2nmW+max(μ(0)))cn(n+m)

enabled at some marking μ∗ with max(μ∗) ≤ (2nmW+max(μ(0)))c(n+m) and
μ∗ ≤ μ(0) +Δ(α(1) · α(2) · · ·α(i)).

Proof. Consider the wipe-extension P− = (P, T−, F−, μ(0)) of P . Each firing
sequence σ of P can be extended by transitions T− \T yielding a firing sequence
σ′ of P− leading to the empty marking. By Lemma 6 there is a permutation
of ϕ of σ′ which intermediately only touches markings whose token numbers
are at most exponential in the size of only P−.We partition ϕ into subsequences
ϕ(1), . . . , ϕ(�) which witness all markings which can potentially enable a zero-loop
contained in ϕ. From these subsequences, we iteratively cut out all zero-loops
which don’t contain a zero-loop themselves, and store them for later use. Now,
we discard all zero-loops which don’t contain transitions of T− \ T since they
are also zero-loops in P , and therefore not needed. Let L denote the set of zero-
loops that are kept. We remove all transitions of T− \ T from the sequences
ϕ(i), i ∈ [�], and all τ ∈ L. The positive loops τ ∈ L constitute, appropriately
numbered, the loops τ (j) while an appropriate partition of ϕ(1) · · ·ϕ(�) yields the
sequences α(1) . . . α(k). The bound on the length of these sequences follows from
the iterative removal of all zero-loops, and from the fact that each loop that was
cut out, didn’t contain a zero-loop itself. ��
We call the sequence ξ̄ the backbone of the canonical sequence under considera-
tion. Using canonical firing sequences as constructed in Lemma 7, we can show
the following lemma.

Lemma 8. There is a constant c such that, for each gcf-PN P = (P, T, F, μ(0)),
P is unbounded if and only if there is a reachable marking μ with max(μ) ≥
max(μ(0)) + δ + 1 if and only if there is a reachable marking μ with max(μ) ∈
[max(μ(0))+δ+1,max(μ(0))+2δ+1] where δ = (2nmW+max(μ(0)))cn(n+m) ·W .
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Proof. The proof can be found in [14]. ��

We can now prove the following theorem.

Theorem 3. The boundedness problem of gcf-PNs is PSPACE-complete, even
if restricted to gss-PNs.

Proof. Since the PSPACE-hardness was shown in Lemma 1, it remains to be
shown that it is in PSPACE. By Lemma 8, we have to check if a reachable
marking μ as defined in the lemma exists. Hence, in order to check if P is
unbounded, we guess μ in polynomial time, and check in polynomial space if μ
is reachable by using Theorem 2. ��

In the following, we show a doubly exponential space upper bound for the
containment and the equivalence problems.

Lemma 9. Given a gcf-PN P = (P, T, F, μ(0)), we can construct a semilinear
representation of R(P) in doubly exponential time in size(P).
Proof. Let P and P ′ be the gcf-PNs of interest. We consider all possible back-
bones of canonical firing sequences of P . Each of these backbones ξ̄ constitutes its
own linear set, where the constant vector is the marking reached by the backbone,
and the set of periods is the set of the displacements of all short positive loops
enabled at some marking obtained while firing the backbone. Here, we use (c) of
Lemma 7 to find all short loops enabled at a small marking μ∗, i.e., we compute
all relevant periods before we start enumerating all relevant backbones. Lemma 7
ensures that the constructed semilinear representation represents R(P). ��
Theorem 4. The containment and the equivalence problems of gcf-PNs are
PSPACE-hard and decidable in doubly exponential space, even if restricted to
gss-PNs.

Proof. The idea for the lower bound is to extend the given gss-PN P to a net
P ′ in which all markings are reachable if and only if P is unbounded. Using this
net, we can answer the boundedness problem by asking if R(P∗) ⊆ R(P ′) (or
R(P∗) = R(P ′)) where P∗ is a gss-PN in which all markings are reachable. The
upper bound for our problems is implied by Lemma 9, and bounds of [9] or [11]
for semilinear representations. ��

Our construction is similar to that given in [15] for cf-PNs which uses results
of [18], and yields a semilinear representation of the reachability set of cf-PNs
having single exponential encoding size, implying single exponential space algo-
rithms for the containment and equivalence problems. The difference in the en-
coding sizes of these semilinear representation between cf-PNs and gcf-PNs does
not result from the slight differences in the canonical firing sequences themselves
(in fact, our canonical sequence can also be used to generate the semilinear rep-
resentations for cf-PNs in single exponential time), rather, it results from the
following.
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p1 p2 p3t1 t2

t32 2

Fig. 2. The firing sequences t1t1t2t2 and t1t2t1t2 have the same Parikh image but only
the first sequence intermediately enables the positive loop t3

For cf-PNs, we used that each nonnegative loop that is intermediately enabled
by some backbone can be partitioned into suitable nonnegative loops which are
intermediately enabled by every other backbone with the same Parikh image.
Therefore, it is sufficient to only consider one of these backbones. This results
in a single exponential number of relevant backbones, and therefore in a single
exponential number of linear sets, each of single exponential size. However, the
same strategy fails in the case of gcf-PNs since the order of the transitions is
much more relevant for gcf-PNs than for cf-PNs: firing transitions in a certain
order can intermediately enable loops that cannot be partitioned further and
that are not intermediately enabled by firing the same transitions in some other
order. This is illustrated in Figure 2. Hence, to improve the doubly exponential
space bound for the equivalence problem, some other or a refined approach will
have to be found.
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