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Abstract. Counter reachability games are played by two players on a
graph with labelled edges. Each move consists in picking an edge from
the current location and adding its label to a counter vector. The objec-
tive is to reach a given counter value in a given location. We distinguish
three semantics for counter reachability games, according to what hap-
pens when a counter value would become negative: the edge is either
disabled, or enabled but the counter value becomes zero, or enabled.
We consider the problem of deciding the winner in counter reachability
games and show that, in most cases, it has the same complexity under
all semantics. Surprisingly, under one semantics, the complexity in di-
mension one depends on whether the objective value is zero or any other
integer.

1 Introduction

Counter reachability games are played by two players, a Reacher and an Oppo-
nent, on a counter system. Such a system is represented by a labelled directed
graph (Q,E), where Q is a finite set of locations and E ⊆ Q×Z

d ×Q is a set of
edges. The integer d is the dimension of the system. We associate to a counter
system a vector of d counters, which is updated when an edge (q, v, q′) is taken
by adding v to it. The locations are partitioned into a set Q1 of Reacher loca-
tions and a set Q2 of Opponent locations. A configuration in a counter system
is a pair (location, counter vector).

A play is an infinite sequence (q0, v0)(q1, v1) · · · ∈ (Q × Z
d)ω, starting at

a given initial location q0 with the initial counter vector v0. At any stage i,
the owner of the location qi chooses an edge (qi, v, qi+1), then the next configu-
ration is (qi+1, vi + v). The objective is given by a subset C of Q× Z

d: Reacher
wins every play that reaches a configuration in C. Here, we deal with cases where
it is equivalent to consider only subsets C that are singletons.

In many works on counter systems, there are only nonnegative counter values,
e.g., in vector addition systems with states (VASS, in short) [1], an edge is
disabled whenever it would make a counter become negative. In energy games
[2,3], the objective is to bound counter values, especially with 0 as lower bound.
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In order to capture common behaviours around zero, we consider three se-
mantics for counter systems:

– Z semantics : A counter can have any value in Z.
– VASS semantics : An edge is disabled if taking it would make any counter

value become negative.
– non-blocking VASS semantics : Every time an edge is taken, negative values

are replaced by 0.

The decision problem associated to a counter reachability game is to determine
whether Reacher has a winning strategy. We study decidability and complexity
of this problem under the three semantics. Most of our results assume that
the set of edges is restricted to a subset of Q × {−1, 0, 1}d × Q; we call this
the short-range property and we say that counter systems are short-ranged.
Any counter system can be transformed into a short-ranged counter system
at the cost of an exponential blowup, by splitting the edges with labels not in
{−1, 0, 1}d. However, we need to be careful when we deal with reachability issues,
because a run in the short-ranged counter system visits configurations that the
corresponding run of the first counter system does not visit.

We prove in Section 3 that the decision problem is undecidable for reacha-
bility games on counter systems of dimension two under the Z semantics, by
an adaptation of the undecidability proof for reachability games on VASS of
dimension two in [4].

We prove in Section 4 that the decision problem is PSPACE-complete for
reachability games on short-ranged counter systems of dimension one under the
Z semantics when the objective is (qf , 0), and under the non-blocking VASS se-
mantics when the objective is (qf , 1). The proof is based on mutual reductions
from the decision problem for reachability games on short-ranged counter sys-
tems of dimension one under the VASS semantics when the objective is (qf , 0),
which has been proved PSPACE-complete in [4]. The case of a reachability games
on short-ranged counter systems of dimension one under the non-blocking VASS
semantics when the objective is (qf , 0) is considered separately. Surprisingly, the
decision problem is then in P.

Without the short-range property, we have an immediate EXPSPACE upper
bound for counter reachability games in dimension one. There are at least two
particular cases of counter reachability games for which the decision problem is
EXPTIME-hard in dimension one: countdown games [5] and robot games [6].
To the best of our knowledge, it is not known whether counter reachability games
in dimension one are in EXPTIME.

2 Definitions

When we write “positive” or “negative”, we always mean “strictly positive” or
“strictly negative”. We write −N for the set of nonpositive integers.

A counter system is a directed graph (Q,E), where Q is a finite set of locations
and E ⊆ Q× Z

d ×Q is a finite set of edges, with d ∈ N \ {0}. The vector in Z
d
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is called the label of an edge. A configuration in a counter system is a pair
(q, x), where q ∈ Q and x ∈ Z

d. A run of a counter system (Q,E) is an infinite
sequence r = (q0, x0)(q1, x1) . . . starting from an arbitrary initial configuration
(q0, x0) ∈ Q×Z

d and such that (qi, xi+1−xi, qi+1) ∈ E for every i ∈ N. A counter
system has the short-range property if the integers in the labels of the edges are
always in {−1, 0, 1}.

A counter reachability game is played by two players, a Reacher and an Oppo-
nent, on a counter system (Q,E). We partition the set of locations into Q1

⊎
Q2;

Reacher owns Q1, and Opponent owns Q2. In our figures, we use © to represent
Reacher locations, � to represent Opponent locations and � when the owner of
the location does not matter.

A play is represented by an infinite path of configurations that players form by
moving a token on (Q,E) and updating a counter as follows. At the beginning,
the token is at a location q0 and the counter is initialized with x0, hence the
initial configuration is (q0, x0). If the token is at p ∈ Q1, then Reacher chooses
an edge (p, v, q), otherwise Opponent chooses. The token is moved to q, the
counter is updated to x+ v, and the configuration (q, x+ v) is appended to the
play. There is a special configuration, called the objective of the game, such that
Reacher wins every play that visits the objective.

A play prefix starting from the configuration (q0, x0) is a finite sequence
(q0, x0)(q1, x1) . . . (qk, xk) of configurations in the underlying counter system.
A strategy for a player is a function that takes as argument a play prefix and
returns an edge that is available from the end of the play prefix. Given an con-
figuration (q0, x0), two strategies s1 and s2 for the players, the outcome of these
strategies from the configuration is the play starting at (q0, x0) and obtained
when each player always chooses edges according to his strategy. A strategy s
is winning for a player, from a given configuration, if he wins the outcome of
s with any strategy of the other player from the configuration. A configuration
(q0, x0) in the game is winning if Reacher has a winning strategy from (q0, x0).
The decision problem associated to a counter reachability game is to determine
whether Reacher has a winning strategy from a configuration in input.

A Vector Addition System with States (VASS, in short) is a counter system
where the vectors in the configurations are always nonnegative. In order to main-
tain this property, an edge in a VASS is disabled if a counter would then become
negative. A non-blocking VASS is a counter system where every negative counter
value is replaced by 0.

We introduce a notation for the decision problems that we deal with, and
we write Reach-semantics1d(xf ) with the following parameters: a subscript d
for the dimension, an argument xf for the counter value in the objective and
a superscript 1 to point out, if present, when the system is short-ranged. The
counter value in the objective is also optional. We omit the location in the
objective, because only the counter value is relevant here. For example, let us
look at two notations that appear in the next two sections.

– The problem of deciding the winner on a counter system of dimension two
with an arbitrary objective is denoted by Reach-CS2.
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– The problem of deciding the winner on a short-ranged non-blocking VASS of
dimension one with 1 as objective value is denoted by Reach-NBVASS11(1).

3 Counter Reachability Games in Dimension Two or
More

3.1 Reduction from VASS to General Counter Systems

We present a construction that we use in this section to prove undecidability
of counter reachability games in dimension two, and in the next section to give
lower complexity bounds.

In order to show the reduction from VASS to general counter systems, we
simulate in the winning condition the deactivation of edges in VASS, which
makes the difference to the Z semantics. We here denote by 0d the d-dimensional
vector (0, . . . , 0).

Proposition 1. Reach-VASSd(0d) reduces to Reach-CSd(0d) in polynomial time
for any dimension d.

Proof. Let (Q,E) be a VASS of dimension d, let (q0, x0) and (qf , xf ) be con-
figurations of (Q,E). We consider the reachability game on (Q,E) where the
objective is (qf , xf ).

The following hypothesis makes most proofs of this work simpler, without loss
of generality. We assume that qf is a Reacher location. Else, we could simply
create a Reacher location q′f that has only one outgoing edge to qf with label
(0) and choose as objective (q′f , xf ).

We want to build a general counter system on which Reacher has a winning
strategy from a particular configuration if, and only if, he has a winning strategy
from (q0, x0) in the VASS. The key property is that each player must be able
to win whenever his adversary makes a counter value become negative. We can
then simulate the VASS semantics.

In order to have this property, let (Q′, E′) be a counter system with locations
Q′ = Q ∪ {teste | e = (p, v, q) ∈ E, v �∈ N

d} ∪ {check, check1, . . . , checkd}, where
Reacher owns Q1, the check locations and exactly the locations teste for which
the source of e belongs to Opponent in (Q,E). The set of edges E′ is obtained
from E, first by splitting every edge e = (p, v, q) such that v �∈ N

d into two edges
(p, v, teste) and (teste, 0, q), and second by adding moves from every location
teste to the new locations of Q′, as depicted in Figures 1 and 2.

More precisely, E′ is the union of the following sets of edges, where (x)i,d is
the vector with x as ith component and 0 everywhere else:

– {(p, v, q) ∈ E | v ∈ N
d};

– {(p, v, teste), (teste, (0), q) | e = (p, v, q) ∈ E, v �∈ N
d};

– {(teste, (0), check) | e = (p, v, q) ∈ E, p ∈ Q1};
– {(teste, (0), checki) | e = (p, v, q) ∈ E, p ∈ Q2, 1 ≤ i ≤ d};
– {(check, (−1)i,d, check) | 1 ≤ i ≤ d};
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p teste check ⊥

q

(−1,−2) (0, 0)

(0, 0)

(0,−1)

(−1, 0)

(0, 0)

(0, 0)

Fig. 1. Gadget to replace an edge e = (p, (−1,−2), q) from a Reacher location in the
reduction from Reach-VASS2((0, 0)) to Reach-CS2((0, 0))

p

teste

check1

check2

⊥

q

(−1,−2) (1, 0)

(0, 1)(0, 0)

(1, 0)

(0,−1)(0, 1)

(0, 0)

(0, 1)

(1, 0) (−1, 0)
(0, 0)

(0, 0)

Fig. 2. Gadget to replace an edge e = (p, (−1,−2), q) from an Opponent location in
the reduction from Reach-VASS2((0, 0)) to Reach-CS2((0, 0))

– {(checki, (−1)j,d, checki) | 1 ≤ j ≤ d, j �= i};
– {(checki, (1)j,d, checki) | 1 ≤ j ≤ d};
– {(qf ,−xf ,⊥)} ∪ {(p, 0,⊥) | p ∈ {⊥, check, check1, . . . , checkd}}.
The objective of the counter reachability game is (⊥, (0, . . . , 0)). Hence, in

the location check, Reacher has a winning strategy if, and only if, every counter
is nonnegative, and in the location checki, Reacher has a winning strategy if,
and only if, the ith counter, which has been incremented when the play reached
checki, is nonpositive. Consequently, as soon as a player makes a counter become
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negative, his adversary has a winning strategy by going to a check location. If all
counters remain positive, then Reacher has a winning move once the play visits
the objective of the game on (Q,E), and only in this case.

The reduction is polynomial: we have |Q′| ≤ d + 2 + |Q| + |E| and |E′| ≤
(d+2)|E|+2d(d+1)+2. Moreover, the short-range property is preserved when
it holds for the reduced VASS, provided that the objective in the VASS is a
vector that contains only values in {−1, 0, 1}. 
�

3.2 Undecidability of Counter Reachability Games on VASS

The following proposition rephrases Proposition 4 from [4].

Theorem 2 ([4]). Let (Q,E) be a short-ranged VASS of dimension two. Con-
sider a reachability game on (Q,E) with QZ×(({0}×N)∪(N×{0})) as objective,
where QZ ⊆ Q. The problem of deciding the winner of this game is undecidable.

To apply Proposition 1, there must be only one configuration in the objective.

Proposition 3. Let (Q,E) be a VASS of dimension two. Consider a reachability
game on (Q,E) with QZ × (({0}×N)∪ (N×{0})) as objective, where QZ ⊆ Q.
We can build a VASS (Q′, E′) such that Reacher wins the reachability game on
(Q,E) if, and only if, he wins the reachability game on (Q′, E′) with objective
(⊥, (0, 0)), where ⊥ ∈ Q′ \Q.

Proof. We suppose that QZ contains Reacher locations only. This is without loss
of generality as in the proof of Proposition 1. Let Q′ = Q ∪ {∅1, ∅2,⊥}, and let

E′ = E ∪ {(q, (0, 0), ∅1), (q, (0, 0), ∅2) | q ∈ QZ}
∪ {(∅1, (−1, 0), ∅1), (∅2, (0,−1), ∅2)}
∪ {(∅1, (0, 0),⊥), (∅2, (0, 0),⊥), (⊥, (0, 0),⊥)}.

Note that the short-range property is preserved. If Reacher has a winning strat-
egy in the game on (Q,E), then he can follow the same strategy on (Q′, E′)
and reach a configuration where the location is in QZ and one of the two coun-
ters is zero. At this point, he can go to the location where he resets the second
counter and, after that, go to ⊥ and win. Conversely, if Reacher has a win-
ning strategy in the game on (Q′, E′), then he can enforce that the play visits
QZ × (({0} × N) ∪ (N× {0})), as this is the only possibility to reach a location
∅i with the (3− i)th counter at zero and, after that, to reach the objective. 
�

Theorem 4. Reach-CS12 is undecidable.

Proof. We make two successive reductions from the decision problem of Theo-
rem 2 using Propositions 3 and 1. 
�
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4 Counter Reachability Games in Dimension One

In [4], counter reachability games are played on short-ranged VASS, where the
winning condition in the one-dimensional case is to reach QZ × {0} for a given
subset QZ of Q. It can be seen as the objective (⊥, 0), once we add a gadget
that permits Reacher to go from any location in QZ to ⊥ without any further
modification of the counter value. The decision problem is PSPACE-complete in
general and it is in P when QZ = Q.

In this section, we establish mutual reductions between the decision prob-
lem for counter reachability games under the three semantics in dimension one.
The complexity classes follow from the reductions.

4.1 Relative Integers Semantics

We recall that Proposition 1 implies that there is a polynomial-time reduction
from Reach-VASS11(0) to Reach-CS11(0), hence Reach-CS11(0) is PSPACE-hard.

The main idea of the construction in this section is to simulate, with nonneg-
ative integers only, a counter value in Z. For this purpose, we use two copies of
the set of locations and explain how to move from one copy to another.

Theorem 5. Reach-CS11(0) is PSPACE-complete.

Proof. We reduce Reach-CS11(0) to Reach-VASS11(0) in polynomial time. Con-
sider a reachability game on a short-ranged counter system (Q,E), where the
objective is (qf , 0), with qf ∈ Q1. Note that when the objective counter value is
not 0, we can always shift initial and objective value in a general counter system.

Let Q+ = {q+ | q ∈ Q} and Q− = {q− | q ∈ Q} be two copies of Q, and
let QE be the set {qe | ∃p, q ∈ E, v ∈ {±1}, e = (p, v, q) ∈ E}. We build the
short-ranged VASS (Q′, E′), where Q′ = Q+ ∪Q− ∪QE ∪ {no,⊥} is partitioned
into Q′

1 = {q+, q− | q ∈ Q1} ∪ {qe ∈ QE | e ∈ Q2 × {0,±1} × Q} ∪ {no,⊥}
and Q′

2. The set of edges E′ contains two copies of E, i.e., edges (p+, v, q+) and
(p−,−v, q−) for each edge (p, v, q) ∈ E. The other edges of E′ are used to move
between Q+ and Q− via the new locations of QE , as depicted in Figures 3 and 4.

More precisely, E′ is the union of the following sets of edges:

– {(p+, v, q+), (p−,−v, q−) | (p, v, q) ∈ E};
– {(p−, 0, qe), (qe, 0,⊥), (qe, 1, q+) | e = (p, 1, q) ∈ E, p ∈ Q′

1};
– {(p+, 0, qe), (qe, 0,⊥), (qe, 1, q−) | e = (p,−1, q) ∈ E, p ∈ Q′

1};
– {(p−, 0, qe), (qe,−1, no), (qe, 1, q+) | e = (p, 1, q) ∈ E, p ∈ Q′

2};
– {(p+, 0, qe), (qe,−1, no), (qe, 1, q−) | e = (p,−1, q) ∈ E, p ∈ Q′

2};
– {(no,−1, no), (no, 0,⊥), (qf,+, 0,⊥), (qf,−, 0,⊥), (⊥, 0,⊥)}.
The VASS (Q′, E′) is designed such that a play in it corresponds to a play in

the counter system (Q,E). Hence, a configuration (q, x) ∈ Q × −N in (Q,E) is
associated to the configuration (q−,−x) ∈ Q− × N in (Q′, E′). That is why the
labels of the edges between locations in Q− are the opposite of the labels of the
edges in Q.
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The objective of the game on (Q′, E′) is (⊥, 0). In fact, Reacher loses whenever
a play reaches ⊥ with another counter value. Furthermore, if a player makes a
move to a location qe in QE and the counter value is not 0, then his adversary,
who owns qe, has a winning move. 
�

p−

p+

q−

qe q+

⊥ 1

−1
0

0
1

0

Fig. 3. Gadget to replace an edge e = (p,−1, q) from a Reacher location in the reduc-
tion from Reach-CS1

1(0) to Reach-VASS1
1(0)

p+

p−

q+

qe q−

no⊥ 1

−1
0

−1 1

−1
0

0

Fig. 4. Gadget to replace an edge e = (p, 1, q) from an Opponent location in the
reduction from Reach-CS1

1(0) to Reach-VASS1
1(0)

A consequence of Theorem 5 is that Reach-CS1 is in EXPSPACE: It suffices
to split every edge with another label than −1, 0 or 1. However, we do not know
yet whether EXPSPACE is an optimal upper bound, but we have the following
lower bound.

Theorem 6 ([5,6]). Reach-CS1 is EXPTIME-hard.

This lower bound is inherited from countdown games [5] and robot games [6],
which we can express as counter reachability games.

4.2 Non-blocking VASS Semantics

When we simulate a game on a non-blocking VASS, we need, like for VASS, to
handle the behaviour around the value 0. The idea is the following: For every
edge labelled by −1 in a short-ranged non-blocking VASS, there are two choices
for Opponent in the VASS: decrement the counter or leave it unchanged, de-
pending on whether it is positive or zero. The winning condition is designed
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so that Reacher has a checking move that makes him win whenever Opponent
chooses the wrong move, e.g., he leaves the counter unchanged whereas he should
decrement it. Moreover, Opponent wins if Reacher abuses his checking move.

Theorem 7. Reach-NBVASS11(1) is PSPACE-complete.

Proof (PSPACE-hardness). We reduce Reach-NBVASS11(1) to Reach-VASS11(0)
in polynomial time. Consider a reachability game on a short-ranged non-blocking
VASS (Q,E), where the objective is (qf , 1), with the assumption that qf ∈ Q1.
Let QE be the set {qe, q>0

e , q=0
e | e ∈ E ∩ (Q × {−1} × Q)}. We build the

short-ranged VASS (Q′, E′), where Q′ = Q ∪ QE ∪ {no,⊥} is partitioned into
Q′

1 = Q1 ∪ {q>0
e , q=0

e | e ∈ E} ∪ {no,⊥} and Q′
2. The set of edges is

E′ ={(p, v, q) | (p, v, q) ∈ E, v ∈ {0, 1}}
∪ {(p, 0, qe), (qe, 0, q>0

e ), (qe, 0, q
=0
e ), (q=0

e , 0, q), (q>0
e ,−1, q),

(q>0
e , 0,⊥), (q=0

e ,−1,⊥) | e = (p,−1, q) ∈ E}
∪ {(no,−1, no), (no, 0,⊥), (qf ,−1,⊥), (⊥, 0,⊥)}.

Intuitively, every time a play visits an edge with a decrement in (Q′, E′),
Opponent has to guess whether the counter value is zero or positive, and move
accordingly to an intermediate location, where Reacher can move to the actual
target of the edge in (Q,E) or to a checking module where the game ends.

The objective of the game on (Q′, E′) is (⊥, 0). As we can see in Figure 5,
Reacher has a winning strategy in every location q=0

e when the counter value is
positive, and in every location q>0

e when the counter value is zero. 
�

In the construction for the reverse reduction, when a player chooses any edge
with a negative label and the counter value is less than the value that should
be subtracted, then the adversary of this player has a winning move. Whereas
this is no problem in a non-blocking VASS, such an edge would be forbidden in
a VASS.

p qe

q=0
e

q>0
e

q no ⊥0

0

0

0

−1

−1
0

−1

0

0

Fig. 5. Gadget to replace an edge e = (p,−1, q) in the reduction from Reach-
NBVASS1

1(1) to Reach-VASS1
1(0)
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Proof (PSPACE-membership). We show a polynomial-time reduction, that pre-
serves the short-range property, from Reach-VASS1(0) to Reach-NBVASS1(1).
Consider a reachability game on a VASS (Q,E), where the objective is (qf , 0),
with qf ∈ Q1. Let QE be the set {qe | e ∈ E ∩ (Q × (Z \ N) × Q)}. We
build the non-blocking VASS (Q′, E′), where Q′ = Q ∪ QE ∪ {noR, noO,⊥},
Q′

1 = Q1 ∪ {qe ∈ QE | e ∈ Q2 × Z × Q} ∪ {noR, noO,⊥}, Q′
2 = Q′ \ Q′

1, and
E′ is obtained from E by splitting every edge (p, v, q) such that v ∈ −N into
two edges (p, 0, qe) and (qe, v, q) and by adding an edge from every location qe
to the “no”-location that corresponds to the owner of p, as well as additional
edges between noO, noR and ⊥, as depicted in the Figures 6 and 7.

More precisely, E′ is the union of the sets of edges:

– {(p, v, q) | (p, v, q) ∈ E, x ∈ N};
– {(p, 0, qe), (qe, v, q) | e = (p, v, q) ∈ E, x < 0};
– {(qe, x+ 1, noR) | e = (p, v, q) ∈ E, v < 0, p ∈ Q1};
– {(qe, x+ 1, noO) | e = (p, v, q) ∈ E, v < 0, p ∈ Q2};
– extra edges {(noR,−1, noR), (noR, 0,⊥), (noO, 1,⊥), (qf , 1,⊥), (⊥, 0,⊥)}.
The non-blocking VASS (Q′, E′) is designed such that a play in it corresponds

to a play in the VASS (Q,E). Let us consider a location qe ∈ QE , for an edge
(p, v, q) in E. Note that v < 0 and that the owner of qe is not the owner of p.
In the play on the VASS, the edge (p, v, q) can only be taken if the counter value
is at least −v. If a player goes to qe, i.e., simulates the choice of the edge (p, v, q),

p qe noR ⊥

q

0 −4

−5 −1

0

0

Fig. 6. Gadget to replace an edge e = (p,−5, q) from a Reacher location in the reduc-
tion from Reach-VASS1

1(0) to Reach-NBVASS1
1(1)

p qe noO ⊥

q

0 −4

−5

1

0

Fig. 7. Gadget to replace an edge e = (p,−5, q) from an Opponent location in the
reduction from Reach-VASS1

1(0) to Reach-NBVASS1
1(1)
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his adversary should win whenever the counter value is less than −v, by going
to a “no”-location, as we can see in the Figures 6 and 7. 
�

4.3 The Case of Zero-Reachability on Non-blocking VASS

For non-blocking VASS, we prove that the set of winning configurations is down-
ward closed when the reachability objective is (qf , 0) for a given qf . Hence, to
decide whether Reacher has a winning strategy, we compute for all locations the
maximal initial value for which the pair (location, value) is winning and we look
at the initial configuration.

Lemma 8. Let (Q,E) be a non-blocking VASS. Consider a reachability game
on (Q,E), where the objective is (qf , 0), where qf ∈ Q. If the initial configuration
(q0, x) is winning, then every configuration (q0, x

′) for x′ < x is winning.

Proof. Let (q0, x) be a winning configuration, and let s be a winning strategy
for Reacher from (q0, x). Consider any strategy s′ for Opponent. The outcome
of the strategies s and s′ from (q0, x) is a play π that Reacher wins, i.e., the
play π eventually visits (qf , 0). Now, let us look at the outcome of the strategies
s and s′ from (q0, x

′) for x′ < x. It is a play π′ that visits the same locations
as π, and no edge is disabled because of the semantics of a non-blocking VASS.
Moreover, the counter value in π′ is after each move less than or equal to the
counter value in the corresponding move of π. In particular, π′ eventually visits
qf with counter value 0, hence Reacher wins. 
�

Algorithm 1 determines the winner of a reachability game on a non-blocking
VASS when the objective counter value is 0. Its time complexity is exponential
in the initial counter value. Accordingly, we call it only with 0 as initial counter
value in the proof of Theorem 9.

Theorem 9. Reach-NBVASS11(0) is in P.

Proof. According to Lemma 8, we just need to compute for every location q ∈ Q
the maximal value xm such that (q, xm) is winning. We even do more: First,
we compute the set QZ of locations from which Reacher has a winning strategy
with initial counter value 0. For this purpose, we use the previous algorithm, and
here the time complexity is polynomial. Second, we build the VASS (Q′, E′),
where Q′ = QZ ∪ {⊥} and E′ is the union of E ∩ (QZ × Z × QZ) and of
{(q, 1,⊥) | (q, v, q′) ∈ E, q ∈ QZ , q

′ �∈ QZ} ∪ {(⊥, 0,⊥)}. In (Q′, E′), the value 0
can only be reached in a location that belongs to QZ . Consider the reachability
game on (Q′, E′), where the objective is Q × 0, like defined in [4]; deciding the
winner in this game is in P. Moreover, Reacher has a winning strategy if, and
only if, he has a strategy in Q to reach (q, 0) for any q ∈ QZ , hence to reach
(qf , 0). Indeed, if a play visits a location outside of QZ , then Opponent has a
winning strategy. We conclude that deciding the winner of the reachability game
is in P too. 
�
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Algorithm 1. Solves Reach-NBVASS1(0)

Data: A non-blocking VASS (Q,E), a location qf , and a configuration (q0, x0)
Result: Does Reacher have a winning strategy to reach (qf , 0) from (q0, x0)?
begin

Create a table Mq with q ∈ Q as indices initialized to −∞;
Mqf ← 0;

repeat
foreach e = (q, v, q′)) ∈ E do

Mq ← max(Mq,M
′
q − v)

until a fixpoint is reached or Mq0 ≥ x0;
if Mq0 ≥ x0 then return true;
else return false;

Note that we need the short-range property for our non-blocking VASS, else
the algorithm could still require exponential time. For example, consider that
there is an edge from q0 to qf with label 2n and a self-loop on qf with label −1.
The algorithm would need 2n+1 iterations to conclude that (q0, 0) is a winning
configuration, whereas the size of the non-blocking VASS is linear in n because
of the binary encoding.

5 Conclusion

In this paper, we studied three simple semantics for games on counter systems,
and compared the complexity of reachability problems. In dimension two, every
problem that we considered is undecidable. In dimension one, the decision prob-
lems associated to the counter value 0 are in P for the case of the non-blocking
VASS semantics and PSPACE-complete for the two other semantics, when the
counter system is short-ranged. Without this property, which guarantees that
the set of all visited counter values is an interval, the complexity is not settled
yet, to the best of our knowledge, and lies between EXPTIME and EXPSPACE.
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