
Constructing Minimal Coverability Sets

Artturi Piipponen and Antti Valmari

Department of Mathematics
Tampere University of Technology

P.O. Box 553, FI–33101 Tampere, Finland
{artturi.piipponen,antti.valmari}@tut.fi

Abstract. This publication addresses two bottlenecks in the construc-
tion of minimal coverability sets of Petri nets: the detection of situations
where the marking of a place can be converted to ω, and the manipulation
of the set A of maximal ω-markings that have been found so far. For the
former, a technique is presented that consumes very little time in addition
to what maintaining A consumes. It is based on Tarjan’s algorithm for
detecting maximal strongly connected components of a directed graph.
For the latter, a data structure is introduced that resembles BDDs and
Covering Sharing Trees, but has additional heuristics designed for the
present use. Results from initial experiments are shown. They demon-
strate significant savings in running time and varying savings in memory
consumption compared to an earlier state-of-the-art technique.

Keywords: coverability set, Tarjan’s algorithm, antichain data struc-
ture.

1 Introduction and Notation

The background of this work would be very difficult to introduce without first
making certain notions precise. Therefore, this section is an interleaving of defi-
nitions and the discussion of the background.

A very well-known form of Petri nets is place/transition net (P, T,W, M̂).
It consists of a set P of places, set T of transitions (such that P ∩ T = ∅),
function W : (P × T) ∪ (T × P) �→ N of weights and the initial marking M̂ .
In this publication P and T are finite. A marking M is a vector of |P | natural
numbers. A transition t is enabled at M , denoted with M [t〉, if and only if
M(p) ≥ W (p, t) for every p ∈ P . Then t may occur yielding the marking M ′

such that M ′(p) = M(p) −W (p, t) +W (t, p) for every p ∈ P . This is denoted
with M [t〉M ′. It is also said that t is fired at M yielding M ′. The notation
is extended to sequences of transitions in the natural way. A marking M ′ is
reachable from M if and only if there is σ ∈ T ∗ such that M [σ〉M ′.

The set of reachable markings (that is, markings that are reachable from the
initial marking) of a finite place/transition net is not necessarily finite. However,
there always is a finite coverability set of certain kind of extended markings that
can be used for some of the same purposes as the set of reachable markings
is often used [6]. We call them ω-markings. An ω-marking is a vector of |P |

P.A. Abdulla and I. Potapov (Eds.): RP 2013, LNCS 8169, pp. 183–195, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

184 A. Piipponen and A. Valmari

elements of the set N ∪ {ω}, where ω intuitively denotes “unbounded”. The
enabledness and occurrence rules of transitions are extended to ω-markings with
the conventions that for every i ∈ N, ω ≥ i and ω + i = ω − i = ω.

We say that M ′ covers M if and only if M(p) ≤ M ′(p) for every p ∈ P .
We say that M is a limit of a set M of ω-markings if and only if M contains
M0 ≤ M1 ≤ . . . such that for every p ∈ P , either M(p) = ω and Mi(p) grows
without limit as i grows, or there is i such that M(p) = Mi(p) = Mi+1(p) =

A coverability set is any set M that satisfies the following conditions:

1. Every reachable marking M is covered by some M ′ ∈ M.
2. Every M ∈ M is a limit of reachable markings.

A coverability set is not necessarily finite. Indeed, the set of reachable markings
is a coverability set. Fortunately, there is a unique minimal coverability set that
is always finite [4]. It has no other coverability set as a subset, and no ω-marking
in it is covered by another ω-marking in it. It consists of the maximal elements
of the set of the limits of the set of reachable markings.

The construction of coverability sets resembles the construction of the set
of reachable markings but has additional features. A central idea is that if
M0 [σ〉M [t〉M ′ > M0, then the sequence σt can occur repeatedly without limit,
making the markings of those p grow without limit that have M ′(p) > M0(p),
while the remaining p have M ′(p) = M0(p). The limit of the resulting markings
is M ′′, where M ′′(p) = ω if M ′(p) > M0(p) and M ′′(p) = M0(p) otherwise.

Roughly speaking, instead of storing M ′ and remembering that M [t〉M ′,
most if not all algorithms store M ′′ and remember that M −t

ω→M ′′, where
M −t

ω→M ′′ denotes that M ′′ was obtained by firing t at M and then possi-
bly adding ω-symbols to the result. However, this is not precisely true for four
reasons.

First, the algorithms need not remember that M −t
ω→M ′′. It suffices to re-

member that there is t such that M −t
ω→M ′′. Second, instead of M0 [σ〉M the

algorithms use M0 −σ
ω→M , because they only have access to the latter.

Third, after firing t at M , an algorithm may use more than one M0 and σ that
have M0−σ

ω→M to add ω-symbols. The pumping operation assigns ω to those
M ′(p) that have M0(p) < M ′(p) < ω. It may be triggered when the algorithm
detects that the pumping condition holds with M0. It holds with M0 when there
is σ ∈ T ∗ such that M ′ > M0 −σ

ω→M , where M ′ has been obtained by firing
t at M and then doing zero or more pumping operations. The algorithms in [9]
and this publication never fail to do the pumping operation when the pumping
condition holds, but this is not necessarily true of all algorithms.

Fourth, after firing M [t〉M ′ and doing zero or more pumping operations, an
algorithm may reject the resulting M ′, if it is covered by some already stored ω-
marking M ′′. The intuition is that whatever M ′ could contribute to the minimal
coverability set, is also contributed by M ′′. So M ′ need not be investigated.

Whether M −t
ω→M ′ holds depends on not just M , t, and M ′, but also on

what the algorithm has done before trying t at M . So the precise meaning of the
notation M −t

ω→M ′ depends on the particular algorithm. The meaning used in
this publication will be made precise in Section 2.

Constructing Minimal Coverability Sets 185

Some ideas for speeding up the construction of minimal coverability sets have
been suggested [4,5,7]. However, [9] gave both theoretical, heuristic, and ex-
perimental evidence that a straightforward approach is very competitive, when
ω-markings are constructed in depth-first or so-called most tokens first order
and pumping conditions are always detected when possible. Nevertheless, as
was pointed out in [9], performance measurements must be taken with more
than one grain of salt. The running time of an algorithm may depend dramat-
ically on the order in which the transitions are listed in the input, and sorting
the transitions according to a natural heuristic does not eliminate this effect.

The algorithm in [9] maintains the set A of maximal ω-markings that have
been constructed so far, and most others maintain something similar (but not
necessarily precisely the same). (“A” stands for “antichain”.) At a low level, the
most time-consuming operations in [9] — and probably also in most, if not all,
other minimal coverability set construction algorithms — are the manipulation
of A and the detection of pumping conditions. In this publication we present a
significant improvement to both.

The overall structure of our new algorithm is presented in Section 2. The
detection of the pumping condition involves finding out that M0−σ

ω→M . Sec-
tion 3 describes how Tarjan’s algorithm for detecting maximal strongly con-
nected components of a directed graph [8,1] can be harnessed to convert this
otherwise expensive test to only consume constant time. A data structure that
improves the efficiency of maintaining A is introduced in Section 4. It uses ideas
from BDDs [2] and covering sharing trees [3], and has heuristics designed for
coverability sets. An additional optimisation is discussed in Section 5. Section 6
presents some performance measurements without and with using the new ideas.

2 Overall Algorithm

Figure 1 shows the new minimal coverability set construction algorithm of this
publication in its basic form. Variants of it will be discussed in Section 6.

Lines 1, 3–6, 13–16, 18, 20–24, and 27 implement most of the coverability set
construction algorithm of [9]. Let us discuss them in this section. The remaining
lines may be ignored until they are discussed in later sections.

The set A contains the maximal ω-markings that have been found so far.
Upon termination it contains the result of the algorithm. Its implementation
will be discussed in Section 4. In addition to what is explicit in Fig. 1, the call
on line 22 may remove elements from A in favour of a new element M ′ that
strictly covers them. We will discuss this in detail later.

The set F is a hash table. ω-Markings are added to it at the same time as to
A, but they are never removed from it. So always A ⊆ F . The attributes of an
ω-marking such as M.tr (discussed soon) are stored in F and not in A. That is,
F contains records, each of which contains an ω-marking and some additional
information. The reason is that, as we will see later, some information on an ω-
marking may remain necessary even after it has been removed from A. Like in [9],
F is also used to implement an optimisation that will be discussed together with

186 A. Piipponen and A. Valmari

1 F := {M̂}; A := {M̂}; W.push(M̂); M̂.tr := first transition

2 S.push(M̂); M̂ .ready := false; nf := 1; M̂.index := 1; M̂ .lowlink := 1
3 while W �= ∅ do
4 M := W.top; t := M.tr; if t �= nil then M.tr := next transition endif
5 if t = nil then
6 W.pop
7 activate transitions as discussed in Section 5
8 if M.lowlink = M.index then
9 while S.top �= W.top do S.top.ready := true; S.pop endwhile

10 else if W �= ∅ then
11 W.top.lowlink := min{W.top.lowlink,M.lowlink}
12 endif
13 go to line 3
14 endif
15 if ¬M [t〉 then go to line 3 endif
16 M ′ := the ω-marking such that M [t〉M ′

17 if M ′ ≤ M then passivate t; go to line 3 endif
18 if M ′ ∈ F then
19 if ¬M ′.ready then M.lowlink := min{M.lowlink,M ′.lowlink} endif
20 go to line 3
21 endif
22 Cover-check(M ′, A) // only keep maximal — may update A and M ′

23 if M ′ is covered then go to line 3 endif
24 F := F ∪ {M ′}; A := A ∪ {M ′}; W.push(M ′); M ′.tr := first transition
25 S.push(M ′); M ′.ready := false
26 nf := nf + 1; M ′.index := nf ; M

′.lowlink := nf

27 endwhile

Fig. 1. A coverability set algorithm that uses Tarjan’s algorithm and some heuristics

lines 18 and 20. Hash tables are very efficient, so F does not cause significant
extra cost.

For efficiency, instead of the common recursive implementation, depth-first
search is implemented with the aid of a stack which is called W (for work-set).
The elements of W are pointers to records in F . Each ω-marking M has an
attribute tr that points to the next transition that should be tried at M .

The algorithm starts on lines 1 and 2 by putting the initial marking to all
data structures. Roughly speaking, lines 3 to 27 try each transition t at each en-
countered ω-marking M in depth-first order. (This is not strictly true, because
heuristics that are discussed later may prematurely terminate the processing of
M and may cause the skipping of some transitions at M .) If M has untried tran-
sitions, line 4 picks the next, otherwise lines 6–13 that implement backtracking
are executed. Lines 7–12 will be discussed later.

If the picked transition t is disabled at the current ω-marking M , then it is
rejected on line 15. Otherwise t is fired at M on line 16. Lines 17 and 19 will
be discussed later. If M ′ has already been encountered, it is rejected on lines 18
and 20. This quick rejection ofM ′ is useful, because reaching the same ω-marking

Constructing Minimal Coverability Sets 187

again is expected to be very common, because M [t1t2〉M12 and M [t2t1〉M21

imply thatM12 = M21. Without lines 18 and 20,M ′ would be rejected on line 23,
but after consuming more time. Line 18 is also needed because of line 19.

The call Cover-check(M ′, A) first checks whether M ′ is covered by any ω-
marking in A. If yes, then M ′ is rejected on line 23.

In the opposite case, Cover-check checks whether the pumping condition holds
with any M0 ∈ A. (In [9], the pumping condition was detected for M0 ∈ F .
Theorem 4 will tell why it suffices to use A instead.) If yes, it changes M ′(p)
to ω for the appropriate places p. Cover-check also removes from A those ω-
markings that the updated M ′ covers strictly. When M is removed, M.tr is set
to nil, so that even if the algorithm backtracks to M in the future, no more
transitions will be fired at it. The addition of ω-symbols makes M ′ grow in the
“≤” ordering and may thus make the pumping condition hold with some other
M0. Cover-check continues until there is no M0 ∈ A with which the pumping
condition holds but the pumping operation has not yet been done. The details
of Cover-check will be discussed in later sections.

If M ′ was not covered, its updated version is added to the data structures on
lines 24–26. This implements the entering to M ′ in the depth-first search.

It is the time to make the notation M −t
ω→M ′ precise. It denotes that t was

fired at M on line 16 resulting in some M ′′ such that M ′′ �≤ M , and either
M ′′ ∈ F held on line 18 (in which case M ′ = M ′′), or M ′′ was transformed to
M ′ on line 22 and then added to F on line 24.

Thus M −t
ω→M ′ is either always false or becomes true during the execution

of the algorithm. Even if M ∈ F and M [t〉, it may be that there never is any

M ′ such that M −t
ω→M ′. This is the case if M is removed from A and M.tr is

set to nil before t is tried at M , or if the result of trying t at M is rejected on
line 17 or 23. With the following Petri net, the latter happens although M ∈ A

when the algorithm has terminated:
t2

.
The correctness of this approach has been proven in detail in [9]. Intuitively,

every ω-marking that is put into F is a limit of reachable markings, because for
each p, M −t

ω→M ′ either mimics M [t〉M ′, copies ω from M(p) to M ′(p), or sets
M ′(p) to ω as justified by some pumping condition. Pumping operations make
progress towards termination. The algorithm does not terminate prematurely,
because each time when something is rejected or passivated, something else is
kept or remains active that makes at least the same contribution to the final A.

The following details are essential for this publication.

Lemma 1. For every ω-markings M and M ′, p ∈ P , t ∈ T , and σ ∈ T ∗,

1. If M −σ
ω→M ′ and M(p) = ω, then M ′(p) = ω.

2. Assume that M −t
ω→M ′ and M(p) < ω = M ′(p). After constructing the

edge M −t
ω→M ′, the algorithm does not backtrack from M ′ before it has

investigated all M ′′ that have σ ∈ T ∗ such that M ′ −σ
ω→M ′′.

3. For every M0 ∈ F , there is M ′
0 ∈ A such that M0 ≤ M ′

0.
4. Every M constructed by the algorithm is a limit of M1,M2, . . . such that

there are σ1, σ2, . . . such that M̂ [σi〉Mi for i ≥ 1.

188 A. Piipponen and A. Valmari

In depth-first search, an ω-marking M is white if it has not been found (that
is, M /∈ F); grey if it has been found but not backtracked from (that is, M ∈
W); and black if it has been backtracked from. If M is black and M −t

ω→M ′,
then M ′ is grey or black. The grey ω-markings M g

i (where M g
0 = M̂) and the

M g
i−1 −ti

ω→M g
i via which they were first found constitute a path from the initial

to the current ω-marking.
Lemma 1(1) follows trivially from the transition firing rule. It implies that if

M has been found and has ω in some place where the current ω-marking Mc

does not have ω, then there is no path from M to Mc. As a consequence, M and
all its descendants are black. They remain black from then on, because a black
ω-marking no longer changes colour. This implies Lemma 1(2).

Inspired by the above, we say that M is ripe if and only if M ∈ F and either
the algorithm has terminated, or after finding M there has been an instant of
time such that for some place p, Mc(p) < ω = M(p), where Mc was the current
ω-marking at that time. All descendants of all ripe ω-markings are black.

The following lemma says that the “future” of each ripe ω-marking has been
fully covered. This result does not immediately follow from the fact that the
descendants of each ripe ω-marking are black, because any such descendant may
have been rejected in favour of another ω-marking that strictly covers it (cf.

t2

). For the same reason, the lemma does not promise that its

M ′
n is obtained via the sequence M ′

0 −t1 · · · tn ω→M ′
n.

Lemma 2. If M ′
0 is ripe and M ′

0 ≥ M0 [t1 · · · tn〉Mn, then there is M ′
n such

that M ′
n is ripe and M ′

n ≥ Mn. A similar claim holds for M0 −t1 · · · tn ω→Mn.

Proof. To prove the first claim, consider the moment when M ′
0 became ripe.

We use induction on 1 ≤ i ≤ n. By Lemma 1(3), there was M ′′
i−1 ∈ A such

that M ′
i−1 ≤ M ′′

i−1. The algorithm had tried ti at M
′′
i−1. If the result was kept,

it qualifies as M ′
i , otherwise it was rejected because it was covered by an ω-

marking that qualifies as M ′
i . By Lemma 1(1), M ′

i has ω-symbols in at least the
same places as M ′

i−1. So M ′
i is ripe and M ′

i ≥ Mi.
The above proof referred to a certain moment in time to ensure thatM ′′

i−1 ∈ A.
LaterM ′′

i−1 ∈ A may cease to hold, but what was proven remains valid. We point
out for the sequel that if M ′

i−1(p) < ω then M ′
i(p)−M ′

i−1(p) ≥ Mi(p)−Mi−1(p),
because the firing of ti has the same effect to the ω-marking of p in both cases,
and the possible additional operations may not reduce M ′

i(p).

With Mi−1 −ti
ω→Mi, there may be p1, . . . , pk such that Mi−1(pj) < ω =

Mi(pj). Given M ′
i−1, we apply induction on 1 ≤ j ≤ k to obtain an M ′

i that
has the required properties. Let Mi,j be the ω-marking just after the algorithm
made Mi(pj) = ω. So Mi−1 [ti〉Mi,0 and Mi,k = Mi. The first claim yields M ′

i,0.

Let σj be the sequence that justified converting Mi,j−1 to Mi,j . There are Ṁi,j

and M̈i,j such that Mi,j−1 [σj〉 Ṁi,j [σj〉 M̈i,j . The first claim can be applied to

this sequence, yielding Ṁ ′
i,j and M̈ ′

i,j . If Ṁ
′
i,j(p) < ω, then M̈ ′

i,j(p)− Ṁ ′
i,j(p) ≥

M̈i,j(p) − Ṁi,j(p) ≥ 0. Therefore, Ṁ ′
i,j ≤ M̈ ′

i,j . Because of the use of A in the

proof of the first claim, Ṁ ′
i,j �< M̈ ′

i,j . So M̈ ′
i,j = Ṁ ′

i,j , implying M̈ ′
i,j(p) = ω if

Constructing Minimal Coverability Sets 189

M̈i,j(p) > Ṁi,j(p), that is, if Mi,j(p) = ω > Mi,j−1(p). With the remaining p,

M̈ ′
i,j(p) ≥ M ′

i,j−1(p) ≥ Mi,j−1(p) = Mi,j(p). These yield Mi,j ≤ M̈ ′
i,j . So M̈ ′

i,j

qualifies as the M ′
i,j . Choosing M ′

i = M ′
i,k completes the proof of step i. �

3 Constant-Time Reachability Testing

A maximal strongly connected component or strong component of a directed
graph (V,E) is a maximal set of vertices V ′ ⊆ V such that for any two vertices
u and v in V ′, there is a path from u to v. The strong components constitute
a partition of V . Tarjan’s algorithm [8,1] detects strong components in time
O(|V | + |E|). It is based on depth-first search of the graph. It is slower than
depth-first search only by a small constant factor.

In our case, V consists of all ω-markings that are encountered during the
construction of the minimal coverability set, that is, those that are (eventually)
stored in F . The edges are defined by (M,M ′) ∈ E if and only if there is t ∈ T

such that M −t
ω→M ′. This notion, and thus also V and E, depends on the order

in which transitions are picked on lines 1, 4, and 24 in Fig. 1. Fortunately, this
does not confuse Tarjan’s algorithm, because an edge is introduced either when
the algorithm is ready to investigate it or not at all.

In Fig. 1, Tarjan’s algorithm is represented via lines 2, 8–12, 19, and 25–26.
In addition to W , it uses another stack, which we call S. Also its elements are
pointers to records in F .

Tarjan’s algorithm also uses two attributes on each ω-marking called index
and lowlink. The index is a running number that the ω-marking gets when it
is encountered for the first time. It never changes afterwards. The lowlink is
the smallest index of any ω-marking that is known to belong to the same strong
component as the current ω-marking.When backtracking and when encountering
an ω-marking that has already been visited and is in the same strong component
with the current ω-marking, the lowlink value is backward-propagated and the
smallest value is kept. The lowlink value is not backward-propagated from ω-
markings that belong to already completed strong components.

Each ω-marking is pushed to S when it is found and popped from S when
its strong component is ready, and it never returns to S. Presence in S is tested
quickly via an attribute ready that is updated when S is manipulated.

The following is the central invariant property of Tarjan’s algorithm:

Lemma 3. Let M0 ∈ F . There is a path from M0 to the M of Fig. 1 if and
only if M0 ∈ S. If M0 /∈ S, then every ω-marking to which there is a path from
M0 is neither in S nor in W .

Cover-check(M ′, A) has to find each M0 such that M0 ∈ A and M0 < M ′,
because they have to be removed fromA. When it has found such anM0, it checks
whether M0.ready = false, that is, whether M0 ∈ S. This is a constant-time test
that reveals whether there is a path from M0 to M ′. In this way Cover-check
detects each valid pumping condition where M0 ∈ A with a constant amount of
additional effort per removed element of A.

190 A. Piipponen and A. Valmari

If ω-symbols are added to M ′, then the checking is started again from the
beginning, because the updated M ′ may cover strictly elements of A that the
original M ′ did not cover strictly. Also they have to be removed and checked
against the pumping condition. When Cover-check terminates, there are no un-
used instances of the pumping condition whereM0 ∈ A, and A no longer contains
ω-markings that are strictly covered by M ′.

This method only detects the cases where M0 ∈ A, while [9] uses M0 ∈ F .
Fortunately, the following theorem tells that it does not make a difference.

Theorem 4. The algorithm in Fig. 1 constructs the same ω-markings as it
would if F were used instead of A in the pumping conditions.

Proof. In this case the pumping condition is M ′ > M0 −σ
ω→M [t〉M#, where

σ ∈ T ∗ andM ′ has been made fromM# by replacing the contents of zero or more
places by ω. By Lemma 3, from each ω-marking in S and from no ω-marking
in F \ S there is a path to M . The pumping condition triggers the updating
of M ′ to M ′′ such that for every p ∈ P , either M0(p) = M ′(p) = M ′′(p) or
M0(p) < M ′(p) ≤ M ′′(p) = ω.

We prove the claim by induction. We show that in every pumping operation,
A causes (at least) the same updates as F , the induction assumption being that
also in the previous times A caused the same updates as F . At least the same
updates implies precisely the same updates, because A ⊆ F .

Let the pumping condition hold such that M0 ∈ F . If M0 ∈ A, then the
induction step holds trivially. From now on M0 /∈ A.

Lemma 1(3) yields M ′
0 ∈ A such that M0 < M ′

0. It was found after M0,

because otherwise M0 would have been rejected on line 23. Because M0−σ
ω→M

now, M0 is now in S. So M0 was in S when M ′
0 was found. At that moment

there was a path from M0 to what was then M , that is, there is ρ such that
M0−ρ

ω→M ′
0. So the pumping condition held with M0 ∈ F . By the induction

assumption, ω-symbols were added to M ′
0. Therefore, for every p ∈ P , either

M ′
0(p) = M0(p) or M

′
0(p) = ω.

Return to the moment when ω-symbols are added to M ′. If M ′
0 ∈ S, there is

a path from M ′
0 to M . If M ′

0(p) = ω, then also M ′(p) = ω by Lemma 1(1). We
already saw that if M ′

0(p) �= ω, then M ′
0(p) = M0(p). So the pumping condition

holds with M ′
0 and causes precisely the same result as M0 causes.

The case remains where M ′
0 /∈ S. If there is M ′′ such that M ′

0 −σ
ω→M ′′, then

M ′′ �= M . Furthermore, M ′′ ≥ M , because M0 < M ′
0, and M0−ρ

ω→M ′
0 implies

that ω-symbols are added to (or are already in) at least the same places along

M ′
0−σ

ω→M ′′ as along M0 −σ
ω→M . So M ′′ > M . But that is a contradiction

with the fact that M is the current ω-marking.
So there are σi, ti, σ

′
i, and M ′

i such that σitiσ
′
i = σ, M ′

0−σi
ω→M ′

i , but ti was
not tried at M ′

i or the result of trying it was rejected. We discuss the case that
ti was not tried. The other case is similar.

Failure to try ti implies that there was M ′′
i such that M ′

i < M ′′
i . If Mi is the

ω-marking such that M0−σi
ω→Mi, then Mi ≤ M ′

i . Thus M
′′
i was found after ti

was fired at Mi but before M
′
i was backtracked from. Because Mi is in S now, it

Constructing Minimal Coverability Sets 191

was in S when M ′′
i was found. So there was a path fromMi to M ′′

i , triggering the
pumping condition. There is at least one p such that Mi(p) ≤ M ′

i(p) < M ′′
i (p).

Therefore, M ′′
i has more ω-symbols than M ′

i . So M ′′
i is ripe. Lemma 2 says that

M is covered by some ripe M ′′
n , which is a contradiction with the fact that M is

the current ω-marking. �

4 A Data Structure for Maximal ω-Markings

This section presents a data structure for maintaining A. It has been inspired
by Binary Decision Diagrams [2] and Covering Sharing Trees [3]. However, ω-
markings are only added one at a time. So we are not presenting a symbolic
approach. The purpose of using a BDD-like data structure is to facilitate fast
detection of situations where an ω-marking covers another. The details of the
data structure have been designed accordingly. We will soon see that they make
certain heuristics fast.

We call the M ′ on line 22 of Fig. 1 the new ω-marking, while those stored in
A are old. Cover-check first uses the data structure to detect if M ′ is covered by
any old ω-marking. If yes, then nothing more needs to be done. In the opposite
case, Cover-check then searches for old ω-markings that are covered by M ′. By
the first search, they are strictly covered. This search cannot be terminated when
one is found, because Cover-check has to remove all strictly covered ω-markings
from A and use them in the pumping test. Therefore, finding the first one quickly
is less important than finding quickly the first old ω-marking that covers M ′. As
a consequence, the data structure has been primarily optimised to detect if any
old ω-marking covers the new one, and secondarily for detecting covering in the
opposite order.

Let M(p) = M(p) if M(p) < ω and M(p) = 0 otherwise. Let M(p) = 1 if
M(p) = ω and M(p) = 0 otherwise. In this section we assume without loss of
generality that P = {1, 2, . . . , |P |}.

The data structure consists of |P |+1 layers. The topmost layer is an array of
pointers that is indexed with the total number of ω-symbols in an ω-marking,

that is,
∑|P |

p=1 M(p). This number can only be in the range from 0 to |P |, so a
small array suffices. An array is more efficient than the linked lists used at lower
layers. The pointer at index w leads to a representation of the set of ω-markings
in A that have w ω-symbols each.

Layer |P | consists of |P | + 1 linked lists, one for each total number of ω-
symbols. Each node v in the linked list number w contains a value v.m, a pointer
to the next node in the list, and a pointer to a representation of those ω-markings

in A that have
∑|P |

p=1 M(p) = w and
∑|P |

p=1 M(p) = v.m. The list is ordered in
decreasing order of the m values, so that the ω-markings that have the best
chance of covering M ′ come first.

Let 1 ≤ � < |P |. Each node v on layer � contains two values v.w and v.m, a
link to the next node on the same layer, and a link to a node on layer �− 1. Of
course, this last link is nil if � = 1. The node represents those ω-markings in A
that have

∑�
p=1 M(p) = v.w,

∑�
p=1 M(p) = v.m, and the places greater than

192 A. Piipponen and A. Valmari

� have the unique ω-markings determined by the path that leads to v, as will
be discussed below. If more than one path leads to v, then v represents more
than one subset of A. They are identical with respect to the contents of the
places from 1 to �, but differ on at least one place above �. The lists on these
layers are ordered primarily in increasing order of the w values and secondarily
in increasing order of the m values.

Like in BDDs, nodes with identical values and next-layer pointers are fused.
To be more precise, when a node is being created, it is first checked whether a
node with the desired contents already exists, and if yes, it is used instead. A
specific hash table makes it fast to find existing nodes based on their contents.

Because every ω-marking that is in A is also in F , it has an explicit rep-
resentation there. As a consequence, unlike with typical applications of BDDs,
the storing of dramatically big numbers of ω-markings is not possible. As was
mentioned above, the goal is not to do symbolic construction of ω-markings.
Even so, the fusing of identical nodes pays off. Otherwise, for each ω-marking,
A would use a whole node on layer 1 and additional partially shared nodes on
other layers, while F represents the ω-marking as a dense vector of bytes. So A
would use much more memory for representing each ω-marking than F uses.

Consider the checking whether M ′ ≤ M , where M ′ is the new and M is
any old ω-marking. After entering a node v at level � − 1, M(�) is computed
as u.w − v.w and u.m − v.m, where u is the node at level � from which level
� − 1 was entered. If M ′(�) > M(�), then the traversal backtracks to u. This is
because, thanks to the ordering of the lists, both v and the subsequent nodes in
the current list at level �− 1 correspond to too small a marking in M(�).

On the other hand, M may be rejected also if
∑�−1

p=1 M
′
(p) >

∑�−1
p=1 M(p).

To quickly detect this condition, an array wsum is pre-computed such that

wsum[�] =
∑�

p=1 M
′
(p):

wsum[1] := M
′
(1)

for p := 2 to |P | do wsum[p] := wsum[p− 1] +M
′
(p) endfor

This pre-computation introduces negligible overhead. The condition becomes
wsum[� − 1] > v.w, which is a constant time test. If this condition is detected,
layer �− 2 is not entered from the current node, but the scanning of the list on
layer �− 1 is continued.

The current node v (but not the current list) is rejected also if wsum[�− 1] =

v.w and msum[�− 1] > v.m, where msum[�] =
∑�

p=1 M
′(p). There also is a third

pre-computed array mmax with mmax[�] being the maximum of M(1), M(2),
. . . , M(�). It is used to reject v when

wsum[�− 1] < v.w and (v.w−wsum[�− 1]) ·mmax[�− 1]+ v.m < msum[�− 1] .

The idea is that considering the places from 1 to �−1, each extra ω-symbol in M
covers at most mmax[�− 1] ordinary tokens in M ′. There is thus a fast heuristic
for each of the cases wsum[�−1] < v.w, wsum[�−1] = v.w, and wsum[�−1] > v.w.

These heuristics are the reason for storing
∑�

p=1 M(p) and
∑�

p=1 M(p) into the
node instead of M(�).

Constructing Minimal Coverability Sets 193

Consider the situation where none of the above heuristics rejects v. Then layer
�− 2 is entered from v. If it turns out that M ′ is covered, then the search need
not be continued. In the opposite case, it is marked into v that layer � − 2 was
tried in vain. If v is encountered again during the processing of the same M ′, this
mark is detected and v is not processed further. To avoid the need of frequently
resetting these marks, the mark is a running number that is incremented each
time when the processing of a new M ′ is started. The marks are reset only when
this running number is about to overflow the range of available numbers. This
trick is from [9].

Similar heuristics are used for checking whether the new ω-marking strictly
covers any ω-marking in A. The biggest difference is that now the search cannot
be stopped when such a situation is found, as has been explained above. The
condition “strictly” need not be checked, because if M ′ ∈ A, then M ′ is rejected
by the first search or already on line 20. The third heuristic mentioned above
is not used, because information corresponding to mmax[�] cannot be obtained
cheaply for ω-markings in A. It would not necessarily be unique, and it would
require an extra field in the record for the nodes.

5 Transition Removal Optimisation

By Lemma 1(1), if M −t
ω→M ′ and there is p such that M(p) < M ′(p) = ω,

then the ω-marking of p will remain ω until the algorithm backtracks to M .
If the firing of a transition does not increase the ω-marking of any place, that
is, if M −t

ω→M ′ and M ′ ≤ M , then t is useless. Lines 22 and 23 would reject
M ′, had it not already been done on line 17. A transition that is not originally
useless in this sense becomes useless, if ω-symbols are added to each p such that
W (p, t) < W (t, p).

Lines 7 and 17 implement an additional optimisation based on these facts. The
“first transition” and “next transition” operations in Fig. 1 pick the transitions
from a doubly linked list which we call the active list. When t that is in the
active list has become useless, that is detected on Line 17. Then t is linked out
from the active list and inserted to a singly linked list that starts at passive[c],
where c is the number of locations in W where ω-symbols have been added, and
passive is an array of size |P |+1. There also is a similarly indexed array toW such
that toW[c] points to the most recent location in W where ω-symbols have been
added. The forward and backward links of t still point to the earlier successor
and predecessor of t in the active list. This operation takes constant time.

From then on, t is skipped at no additional cost until the algorithm backtracks
toM . This moment is recognized from the current top ofW getting below toW[c].
Then all transitions from passive[c] are removed from there and linked back to
their original places in the active list, and c is decremented. Because each passive
list is manipulated only at the front, it releases the transitions in opposite order
to in which they were inserted to it. This implies that the original ordering of
the active list is restored when transitions are linked back to it, and the “next
transition” operation is not confused. Also the linking back is constant time per
transition.

194 A. Piipponen and A. Valmari

Table 1. Initial measurements with some versions of the new algorithm

mesh2x2 mesh3x2 AP13a smallT5x2 largeT2x15x2

|A| |F | 256 316 6400 7677 1245 1281 31752 31752 32768 32768
|S| 316 7677 65 50 32768

≈ [9] 4 5 23 696 739 718 60 66 467 3151 3182 1736 7121 7142 3328
no node fusion 2 2 70 46 48 1389 49 56 4393 67 72 4058 231 237 20736
basic new 3 4 24 52 68 732 57 62 850 80 89 1738 248 273 4224
no tr. rem. 4 4 24 64 76 732 56 60 850 81 91 1738 261 270 4224
partial F 3 4 22 55 61 672 54 71 401 152 162 4 250 258 3968

If the check on line 17 were removed, the algorithm would still reject M ′, but
in the worst case that might happen much later in Cover-check. This heuristic
is very cheap and may save time by rejecting M ′ early. Unfortunately, in our
initial experiments (Section 6) it did not perform well.

6 Experiments and Conclusions

In this section we present some of the first experiments that we have made
with an implementation of our new algorithm. To make comparison of running
times reasonable, we compare the new implementation to a slightly improved
version of the implementation in [9] (better hash function, etc.). Both have been
written in the same programming language (C++) and were executed on the
same computer.

The Petri net mesh2x2 is the heaviest example from [5,7]. It has been included
to point out that the examples from [5,7] are not challenging enough for testing
the new implementation. Mesh3x2 is a bigger version of it. AP13a has been mod-
ified from users.cecs.anu.edu.au/∼thiebaux/benchmarks/petri/ by Henri Hansen,
to present a somewhat bigger challenge. SmallT5x2 was designed for this pub-
lication, to have a small S and offer many possibilities for fusing nodes in the
representation of A. LargeT2x15x2 had precisely the opposite design goal.

The results are in Table 1. The second row shows the final sizes of the sets
A and F , assuming that ω-markings are never removed from F . The third row
shows the maximal sizes of S. The sizes of W are not shown, because always
|W | ≤ |S|.

The next five rows show results for various implementations. “≈ [9]” was ex-
plained above. “Basic new” is the algorithm described in this publication. “No
node fusion” is otherwise the same as “Basic new”, but nodes in the data struc-
ture for A that have the same values and next-layer pointers are not fused. “No
tr. rem.” is otherwise the same as “Basic new”, but the optimization discussed
in Section 5 is not in use. “Partial F” is otherwise the same as “Basic new”,
but when an ω-marking is removed from S it is also removed from F . If such an
ω-marking is constructed anew, it is covered by some ω-marking in A, and thus
will be rejected on line 23 at the latest.

For each implementation and Petri net, the first two numbers report the short-
est and longest running times for five identical measurements in milliseconds.

Constructing Minimal Coverability Sets 195

The third number is the amount of memory consumed, measured in kilobytes
(1024 bytes), assuming that memory is reserved for A, S, and the base table
of F only as needed. For W , the same amount of memory was reserved as for
S. These numbers are theoretical in the sense that the implementation did not
use dynamically growing arrays in reality. We plan to fix this defect in future
measurements.

To protect against programming errors, we checked for each Petri net that
every version returned the same A.

All new versions are significantly faster than the one in [9] excluding AP13A
where all versions are roughly equally fast, and mesh2x2 that is too small for a
meaningful comparison. Although precise comparison is not possible, the results
on mesh2x2 make it obvious that the new implementation outperforms the one
in [7]. The memory consumptions of the four new versions relate to each other as
one would expect. Compared to [9] whose A was a doubly linked list of the same
records that F used, the new versions consume much more memory except when
the fusion of nodes and the removal of ω-markings from F have a big effect.
While [9] uses two additional pointers per ω-marking to represent A, the new
versions have the complicated structure described in Section 4. Furthermore, S
was absent from [9].

Acknowledgements. We thank the anonymous reviewers for their effort.

References

1. Aho, A.V., Hopcroft, J.E., Ullman, J.D.: The Design and Analysis of Computer
Algorithms. Addison-Wesley, Reading (1974)

2. Bryant, R.E.: Graph-Based Algorithms for Boolean Function Manipulation. IEEE
Transactions on Computers C-35(8), 677–691 (1986)

3. Delzanno, G., Raskin, J.-F., Van Begin, L.: Covering Sharing Trees: A Compact
Data Structure for Parameterized Verification. Software Tools for Technology Trans-
fer 5(2-3), 268–297 (2004)

4. Finkel, A.: The Minimal Coverability Graph for Petri Nets. In: Rozenberg, G. (ed.)
APN 1993. LNCS, vol. 674, pp. 210–243. Springer, Heidelberg (1993)

5. Geeraerts, G., Raskin, J.-F., Van Begin, L.: On the Efficient Computation of the
Minimal Coverability Set of Petri Nets. International Journal of Foundations of
Computer Science 21(2), 135–165 (2010)

6. Karp, R.M., Miller, R.E.: Parallel Program Schemata. Journal of Computer and
System Sciences 3(2), 147–195 (1969)

7. Reynier, P.-A., Servais, F.: Minimal Coverability Set for Petri Nets: Karp and Miller
Algorithm with Pruning. In: Kristensen, L.M., Petrucci, L. (eds.) PETRI NETS
2011. LNCS, vol. 6709, pp. 69–88. Springer, Heidelberg (2011)

8. Tarjan, R.E.: Depth-First Search and Linear Graph Algorithms. SIAM J. Comput-
ing 1(2), 146–160 (1972)

9. Valmari, A., Hansen, H.: Old and New Algorithms for Minimal Coverability Sets. In:
Haddad, S., Pomello, L. (eds.) PETRI NETS 2012. LNCS, vol. 7347, pp. 208–227.
Springer, Heidelberg (2012) (Extended version has been accepted to Fundamenta
Informaticae)

	Constructing Minimal Coverability Sets
	1 Introduction and Notation
	2 Overall Algorithm
	3 Constant-Time Reachability Testing
	4 A Data Structure for Maximal -Markings
	5 Transition Removal Optimisation
	6 Experiments and Conclusions
	References

