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Abstract. This paper deals with verification of reachability properties on Time
Petri Nets (TPN). TPNs allow the specification of real-time systems involving
timing constraints explicitly. The main challenge of the analysis of such systems
is to construct a finite abstraction of the corresponding (infinite) state graph pre-
serving timed properties. Thus, we propose a new finite graph, called Timed Ag-
gregate Graph (TAG), abstracting the behaviour of bounded TPNs with strong
time semantics. The main feature the TAG compared to existing approaches is
the encoding of the time information within the nodes of this graph. This allows
to compute the minimum and maximum elapsed time in every path of the graph.
The TAG preserves runs and reachable states of the corresponding TPN which
allows for the verification of both event- and state-based properties.
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1 Introduction

Time Petri nets are one of the most used formal models for the specification and the
verification of systems where the explicit consideration of time is primordial. The main
extensions of Petri nets with time are time Petri nets [14] and timed Petri nets [18].
In the first, a transition can fire within a time interval whereas, in the second, time
durations can be assigned to the transitions; tokens are meant to spend that time as
reserved in the input places of the corresponding transitions. Several variants of timed
Petri nets exist: time is either associated with places (p-timed Petri nets), with transitions
(t-timed Petri nets) or with arcs (a-timed Petri nets) [19]. The same holds for time Petri
nets [7]. In [17], the authors prove that p-timed Petri nets and t-timed Petri nets have the
same expressive power and are less expressive than time Petri nets. Several semantics
have been proposed for each variant of these models. Here we focus on t-time Petri
nets, which we simply call TPNs. There are two ways of letting the time elapse in a
TPN [17]. The first way, known as the Strong Time Semantics (STS), is defined in such
a manner that time elapsing cannot disable a transition. Hence, when the upper bound
of a firing interval is reached, the transition must be fired. In contrast to that, the Weak
Time Semantics (WTS) does not make any restriction on the elapsing of time.
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For real-time systems, dense time model (where time is considered in the domain
R≥0) is the unique possible option, raising the problem of handling an infinite number
of states. In fact, the set of reachable states of the TPN is generally infinite due to the
infinite number of time successors a given state could have. Two main approaches are
used to treat this state space: region graphs [1] and the state class approach [3]. The
other methods [2,20,4,8,5,13,6,9] are either refinements or improvements or derived
from these basic approaches. The objective of these representations is to yield a state-
space partition that groups concrete states into sets of states with similar behaviour with
respect to the properties to be verified. These sets of states must cover the entire state
space and must be finite in order to ensure the termination of the verification process.
In this work, we propose a new contribution for the abstraction and the verification of
timed systems and especially those modelled by bounded TPNs.

This paper is organised as follows: In Section 2, some preliminaries about TPNs and
the corresponding semantics are recalled. In Section 3, we define the Timed Aggregate
Graph (TAG) associated with a TPN. In Section 4, we propose algorithms for the ver-
ification of some usual time properties based on TAGs. In Section 5, we discuss the
experimental results obtained with our implementation compared to two well-known
tools with respect to the size of the obtained abstraction size. Finally, a conclusion and
some perspectives are given in Section 6.

2 Preliminaries and Basic Notations

A t-time Petri net (TPN for short) is a P/T Petri net [16] where a time interval [tmin; tmax]
is associated with each transition t.

Definition 1. A TPN is a tuple N = 〈P, T,Pre,Post , I〉 where:

– 〈P, T,Pre,Post〉 is a P/T Petri net where:
• P is a finite set of places;
• T is a finite set of transitions with P ∩ T = ∅ ;
• Pre : T −→ N

P is the backward incidence mapping;
• Post : T −→ N

P is the forward incidence mapping;
– I : T −→ N × (N ∪ {+∞}) is the time interval function such that: I(t) =

(tmin, tmax), with tmin ≤ tmax, where tmin (resp. tmax) is the earliest (resp. latest)
firing time of transition t.

A marking of a TPN is a function m : P −→ N where m(p), for a place p, denotes
the number of tokens in p. A marked TPN is a pair N = 〈N1,m0〉 where N1 is a
TPN and m0 is a corresponding initial marking. A transition t is enabled by a marking
m iff m ≥ Pre(t) and Enable(m) = {t ∈ T : m ≥ Pre(t)} denotes the set of
enabled transitions in m. If a transition ti is enabled by a marking m, then ↑(m, ti)
denotes the set of newly enabled transitions [2]. Formally, ↑(m, ti) = {t ∈ T | (m −
Pre(ti) + Post(ti)) ≥ Pre(t) ∧ (m − Pre(ti)) < Pre(t)}. If a transition t is in
↑(m, ti), we say that t is newly enabled by the successor of m by firing ti. Dually,
↓(m, ti) = {t ∈ T | (m− Pre(ti) + Post(ti)) ≥ Pre(t) ∧ (m− Pre(ti)) ≥ Pre(t)}
is the set of oldly enabled transitions. The possibly infinite set of reachable markings of
N is denoted Reach(N ). If the set Reach(N ) is finite we say that N is bounded.
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The semantics of TPNs can be given in terms of Timed Transition Systems (TTS)
[12] which are usual transition systems with two types of labels: discrete labels for
events (transitions) and positive real labels for time elapsing (delay). States of the TTS
are pairs s = (m,V ) where m is a marking and V : T −→ R≥0∪{⊥} a time valuation.
If a transition t is enabled in m then V (t) is the elapsed time since t became enabled,
otherwise V (t) = ⊥. Given a state s = (m,V ) and a transition t, t is said to be firable
in s iff t ∈ Enable(m) ∧ V (t) �= ⊥ ∧ tmin ≤ V (t) ≤ tmax.

Definition 2 (Semantics of a TPN). Let N = 〈P, T,Pre,Post , I,m0〉 be a marked
TPN. The semantics of N is a TTS SN = 〈Q, s0,→〉 where:

1. Q is a (possibly infinite) set of states
2. s0 = (m0, V0) is the initial state such that:

∀t ∈ T, V0(t) =

{
0 if t ∈ Enable(m0)
⊥ otherwise

3. → ⊆ Q× (T ∪R≥0)×Q is the discrete and continuous transition relations:

(a) the discrete transition relation:
∀t ∈ T : (m,V )

t−→ (m′, V ′) iff:
⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t ∈ Enable(m) ∧m′ = m− Pre(t) + Post(t)
tmin ≤ V (t) ≤ tmax

∀t′ ∈ T : V ′(t′) =

⎧⎨
⎩

0 if t′ ∈ ↑(m, t)
V (t′) if t′ ∈ ↓(m, t)
⊥ otherwise

(b) the continuous transition relation: ∀d ∈ R≥0, (m,V )
d−→ (m′, V ′) iff:

⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

∀t ∈ Enable(m), V (t) + d ≤ tmax

m′ = m
∀t ∈ T :

V ′(t) =
{
V (t) + d if t ∈ Enable(m);
V (t) otherwise.

First, the delay transitions respect the STS semantics: an enabled transition must
fire within its firing interval unless disabled by the firing of others. Second, a state
change occurs either by the firing of transitions or by time elapsing: The firing of a
transition may change the current marking while the time elapsing may make some
new transitions firable.

Given a TPN N and the corresponding TTS SN , a path π = s0
α1−→s1

α2−→ . . . ,
where αi ∈ (T ∪R≥0), is a run of SN iff (si, αi, si+1) ∈→ for each i = 0, 1, . . . . The
length of a run π can be infinite and is denoted by | π |. Without loss of generality, we
assume that for each non empty run π = s0

α1−→s1
α2−→ . . . of a STS corresponding to a

TPN, αi and αi+1 are not both in R≥0. Then, π can be written, involving the reachable

markings of N , as π = m0
(d1,t1)−→ . . . s.t. di is the time elapsed at marking mi−1 before

firing ti. In order to associate a run π of SN with a run of N , denoted P(π), we define
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the following projection function, where � denotes the concatenation operator between
paths and πi, for i = 0, 1 . . . , denotes the suffix of π starting at state si.

P(π) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

s0.m if | π |= 0

s0.m
(0,α1)−→ � P(π1) if α1 ∈ T

s0.m
(α1,α2)−→ � P(π2) if α1 ∈ R≥0∧ | π |≥ 2

s0.m
α1−→ � P(π1) if α1 ∈ R≥0∧ | π |= 1

In the following, we define, for a given finite run π of a TPN N , the time elapsed before
reaching (resp. firing) a marking (resp. a transition) belonging to this run.

Definition 3. Let N be a TPN and let π = m0
(d1,t1)−→ . . .

(dn,tn)−→ mn (resp.

π = m0
(d1,t1)−→ . . .

(dn,tn)−→ mn
dn+1−→) be a run of N . The access (resp. firing) time of mark-

ing m (resp. transition t) in π, denoted ATπ(m) (resp. FTπ(t)), is defined as follows:

– ATπ(m0) = 0

– ∀1 ≤ i ≤ n, ATπ(mi) = FTπ(ti) =
∑i

k=1 dk.

3 Timed Aggregate Graph

In this section, we propose to abstract the reachability state space of a TPN using a new
graph called Timed Aggregate Graph (TAG) where nodes are called aggregates and are
grouping sets of states of a TTS. The key idea behind TAGs is that time information is
encoded inside aggregates. It includes the time the system is able to stay in the aggregate
as well as a dynamic interval associated with each enabled transition. The first feature
allows to encapsulate the delay transitions of the corresponding TTS (the arcs of a TAG
are labeled with transitions of the corresponding TPN only), while the second allows
to dynamically update the earliest and latest firing times of enabled transitions. It also
allows to maintain the relative differences between the firing times of transitions.

Before we formally define the TAG and illustrate how the attributes of an aggregate
are computed, let us first formally define aggregates.

Definition 4 (Timed Aggregate). A timed aggregate associated with a TPN N =
〈P, T, Pre, Post, I〉 is a 4-tuple a = (m,E, h,H), where:

– m is a marking
– E = {〈t, αt, βt〉 | t ∈ Enable(m), αt ∈ (Z ∪ {−∞})∧ βt ∈ N ∪ {+∞}} is a set

of enabled transitions each asssociated with two time values.
– h = min〈t,αt,βt〉∈E(max(0, αt)): the minimum time the system can stay in a
– H = min〈t,αt,βt〉∈E(βt): the maximum time the system can stay in a

Each aggregate is characterised by three attributes that are computed dynamically: first,
a marking m. Second, a set E of enabled transitions, each associated with two time
values. For a given enabled transition t, αt represents the minimum time the system
should wait before firing t and βt represents the maximum time the system can delay
the firing of t. Note that,αt can be negative which means that t can be fired immediately.
Otherwise, αt represents the earliest firing time of t. Starting from this aggregate, the
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firing of t can occur between max(0, αt) and βt. In the rest of this paper, αt will be
abusively called the dynamic earliest firing time of t and βt its dynamic latest firing
time. Finally, the h and H attributes represent the minimum and the maximum time,
respectively, the system can spend at the current aggregate.

Figure 1 illustrates an example of an aggregate. The associated marking is the mark-
ing of the left hand TPN. In this figure, we assume that this aggregate is the initial one.
The h (resp. H) attribute corresponds to the minimum earliest firing time (resp. lat-
est firing time) of the enabled transitions. Enabled transitions are associated with their
static time intervals.

p1

p2

p3

t1[2; 4]t2 [0; 2]

t3 [1; 3]

(a) Time Petri Net

m = (1, 0, 1)

h = 1
H = 3
E = {〈t1, 2, 4〉, 〈t3, 1, 3〉}

(b) Aggregate a

Fig. 1. Example of aggregate

The TAG is a labeled transition system where nodes are timed aggregates. It has an
initial aggregate, a set of actions (the set of transitions of N ) and a transition relation.
The initial aggregate is easily computed by considering static information of the TPN.

Definition 5 (Timed Aggregate Graph). A TAG associated with a TPN N = 〈P, T,
Pre,Post , I,m0〉 is a tuple G = 〈A, T, a0, δ〉 where:

1. A is a set of timed aggregates;
2. a0 = 〈m0, h0, H0, E0〉 is the initial timed aggregate s.t.:

(a) m0 is the initial marking of N .
(b) h0 = mint∈Enable(m0 )(tmin)
(c) H0 = mint∈Enable(m0 )(tmax)
(d) E0 = {〈t, tmin, tmax〉 | t ∈ Enable(m0 )}

3. δ ⊆ A× T ×A is the transition relation such that:
for an aggregate a = 〈m,h,H,E〉, a transition t s.t. 〈t, αt, βt〉 ∈ E and an aggre-
gate a′ = 〈m′, h′, H ′, E′〉, (a, t, a′) ∈ δ iff the following holds:
(a) m′ = m− Pre(t) + Post(t)
(b) αt ≤ H
(c) ∀〈t′, αt′ , βt′〉 ∈ E,

tmin > t′max ⇒ (tmin − αt)− (t′min − αt′) ≥ (tmin − t′max)
(d) E′ = E′

1 ∪ E′
2, where:

• E′
1 =

⋃
t′∈↑(a,t){〈t′, t′min, t

′
max〉}

• E′
2 =

⋃
t′∈↓(a,t){〈t′, αt′ −H, βt′ −max(0, αt)〉}

(e) h′ = min〈t′,αt′ ,βt′〉∈E′(max(0, αt′))
(f) H ′ = min〈t′,αt′ ,βt′〉∈E′(βt′)



164 K. Klai, N. Aber, and L. Petrucci

Given an aggregate a = 〈m,h,H,E〉 and a transition t ∈ T , t is said to be enabled
by a, denoted by a t−→, iff: (1) ∃(αt, βt) ∈ (Z∪{−∞})×(N∪{+∞}) s.t. (t, αt, βt) ∈
E and αt ≤ H , and, (2) there is no other transition t′, enabled by a.m, that should be
fired before t. In fact, the first condition is not sufficient when tmin is greater than
t′max for some other transition t′. The firing of t from a leads to a new aggregate a′ =
〈m′, h′, H ′, E′〉 whose attributes are computed as follows:

– The elements of E′ are processed by taking the transitions that are enabled by m′

and computing their earliest and latest firing times depending on their membership
to ↑ (a, t) and ↓ (a, t). For each transition t′ ∈ Enable(a′.m), if t′ is newly
enabled, then its dynamic earliest and latest firing times are statically defined by
t′min and t′max respectively. Otherwise, let 〈t′, αt′ , βt′〉 ∈ a.E and 〈t′, α′

t′ , β
′
t′〉 ∈

a′.E, then the maximum time elapsed by the system at a.m (i.e., a.H) is subtracted
from αt′ and the minium time is substracted from βt′ . Indeed, more the system can
stay in a.m less it can stay in a′.m (and vice versa). Thus, the earliest firing time of t
starting from a′ is max(0, αt′−a.H) while its latest firing time is βt′−max(0, αt).

– The computation of a′.h (resp. a′.H) is ensured by taking the minimum of the
dynamic earliest (resp. latest) firing time of enabled transitions.

According to Definition 5, the dynamic earliest firing time of a transition can de-
crease infinitely which could lead to an infinite state space TAG. Thus, an equivalence
relation allowing to identify equivalent aggregates has been introduced in [11]. This
equivalence relation is used in the construction of a TAG so that each newly built ag-
gregate is not explored as long as an already built equivalent aggregate has been. More-
over, in [11], we have established that the TAG, built under this equivalence relation is
finite when the corresponding TPN is bounded. We also demonstrated that the TAG is
an exact representation of the reachability state space of a TPN. For each path in the
TAG (resp. in the TPN) it is possible to find a path in the TPN (resp. TAG) involving the
same sequence of transitions and where the time elapsed within a given state is between
the minimum and the maximum stay time of the corresponding aggregate.

Figure 2 illustrates the TAG corresponding to the TPN of Figure 1.
For the verification of time properties, an abstraction-based approach should allow

the computation of the minimum and maximum elapsed time over any path.

Definition 6. Let N be a TPN and let G = 〈A, T, a0, δ〉 be the corresponding TAG.
Let π = a0

t1−→a1−→ . . . tn−→an be a path in G.

– For each aggregate ai (for i = 0 . . . n), MinATπ(ai) (resp. MaxATπ(ai)) de-
notes the minimum (resp. maximum) elapsed time between a0 and ai. In particular,
MinAT (a0) = 0 and MaxAT (a0) = a0.H .

– For each transition ti (for i = 1 . . . n), MinFTπ(ti) (resp. MaxFTπ(ti)) denotes
the minimum (resp. maximum) elapsed time before firing ti.

Proposition 1. Let N be a TPN and let G = 〈A, T, a0, δ〉 be the corresponding TAG.
Let π = a0

t1−→a1−→ . . . tn−→an be a path in G. We denote by αit (resp. βit ) the dy-
namic earliest (resp. latest) firing time of a transition t at aggregate ai, for i = 1 . . . n.
Then, ∀i = 1 . . . n, the following holds:
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a0

m0 (1, 3)
{〈t1, 2, 4〉, 〈t3, 1, 3〉}

a1

m1 (0, 1)
{〈t2, 0, 2〉, 〈t3,−3, 1〉}

a2

m0 (0, 1)
{〈t1, 2, 4〉, 〈t3,−4, 1〉}

a3

m0 (1, 3)
{〈t1, 1, 4〉, 〈t3, 1, 3〉}

a4

m0 (0, 3)
{〈t1,−1, 3〉, 〈t3, 1, 3〉}

a5

m0 (0, 2)
{〈t1,−4, 2〉, 〈t3, 1, 3〉}

a6

m0 (0, 1)
{〈t1,−6, 1〉, 〈t3, 1, 3〉}

a7

m0 (0, 0)
{〈t1,−7, 0〉, 〈t3, 1, 3〉}

a8

m1 (0, 2)
{〈t2, 0, 2〉, 〈t3,−2, 3〉}

a9

m1 (0, 2)
{〈t2, 0, 2〉, 〈t3,−2, 2〉}

a10

m0 (0, 2)
{〈t1, 2, 4〉, 〈t3,−4, 2〉}

a11

m1 (0, 0)
{〈t2, 0, 2〉, 〈t3,−6, 0〉}

a12

m0 (0, 0)
{〈t1, 2, 4〉, 〈t3,−6, 0〉}

a13

m0 (0, 3)
{〈t1,−1, 4〉, 〈t3, 1, 3〉}

a14

m1 (0, 2)
{〈t2, 0, 2〉, 〈t3, 1, 3〉}

a15

m0 (0, 3)
{〈t1, 2, 4〉, 〈t3, 0, 3〉}

a16

m1 (0, 1)
{〈t2,−2, 1〉, 〈t3, 1, 3〉}

a17

m1 (0, 0)
{〈t2,−3, 0〉, 〈t3, 1, 3〉}

a1

t1

t3

t2

t3

t3

t3

t1

t3
t1

t3

t1

t3

t1

t1

t3

t2

t2

t3

t1

t3

t2

t3

t3

t3

t1

t2

t3

t3

t1

t2

t3

t2

Fig. 2. The TAG of Fig. 1

– Minimum and maximum access time
• MinATπ(ai) = MinATπ(ai−1) + max(0, βi−1ti

− (timax − timin))
• MaxATπ(ai) = MaxAT (ai−1)+
min(mint∈↑(ai−1,ti)(tmin),mint∈↓(ai−1,ti)(βi−1t

− ai−1.H))
– Minimum and maximum firing time

• MinFTπ(ti) = MinATπ(ai)
• MaxFTπ(ti) = MaxATπ(ai−1)

4 Checking Time Reachability Properties

Our ultimate goal is to be able, by browsing the TAG associated with a TPN, to check
timed reachability properties. For instance, we might be interested in checking whether
some state-based property ϕ is satisfyied within a time interval [d,D), with d ∈ R≥0

and D ∈ (R≥0∪∞), starting from the initial marking. The following usual reachability
properties belong to this category.

1. ∃♦[d;D]ϕ : There exists a path starting from the initial state, consuming between d
and D time units and leading to a state that satisfies ϕ.
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aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa
aaaaa

a0

d

D

temps

Region1

MaxAT < d

Region2

MaxAT ≥ d
MinAT ≤ D
|= M?

Region3

MinAT > D

Fig. 3. Reachability analysis on the TAG

2. ∀�[d;D]ϕ : For all paths starting from the initial state, all the states, that are reached
after d and before D time units, satisfy ϕ.

3. ∀♦[d;D]ϕ : For all paths starting from the initial state, there exists a state in the path,
reached after d and before D time units that satisfies ϕ.

4. ∃�[d;D]ϕ : There exists a path from the initial state where all the states, that are
reached after d and before D time units, satisfy ϕ.

Because of lack of space, we do not give the detailed algorithms for checking the above
formulae, but give the main intuition.

In order to check any of the above properties, we propose on-th-fly approach where
the TAG is represented as a tree which is partitioned into three regions (see. Figure 3).
The first region (Region1) contains the aggregates that are reachable strictly before
d time units. The second region (Region2) contains the aggregates that are reachable
between d and D time units and the last region contains the aggregates that are reach-
able strictly after D time units. In case D = ∞ Region3 is empty. By doing so, the
verification algorithms behave as follows: only aggregates belonging to Region2 are
analysed with respect to ϕ. Region1 must be explored in order to compute the maximal
and minimum access time of the traversed aggregates, but Region3 is never explored.
In fact, as soon as an aggregate is proved to belong to Region3 the exploration of the
current path is stopped.

For instance checking the fromula number 1 is reduced to the search of an aggregate
a in Region2 that satisfies ϕ. As soon as such an aggregate is reached the checking
algorithm stops the exploration and returns true. When, all the aggregates of Region2

are explored (none satisfies ϕ) the checking algorithm return false. Dually, the formula
number 2 is proved to be unsatisfied as soon as an aggregate in Region2 that do not
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satisfy ϕ is reached. When all the aggregates of Region2 are explored (each satisfies
ϕ) the checking algorithm return true.

Checking formulae number 3 and 4 is slightly more complicated. In fact, checking
formula number 3 is reduced to check if, along any path in Region2, there exists at least
one aggregate satisfying ϕ. As soon as a path in Region2 is completely explored with-
out encountering an aggregate satisfying ϕ, the exploration is stopped and the check-
ing algorithm returns false. Otherwise, it returns true. Finally, checking formula 4 is
reduced to check that there exists a path in Region2 such that all the aggregates be-
longing to this path satisfy ϕ. This formula is proved to be true as soon as such a path
is found. Otherwise, when all the paths of Region2 are explored (none satisfies the
desired property), the checking algorithm returns false.

A similar approach can be trivially imagined for event-based approaches.

5 Experimental Results

The efficiency of the verification of timed reachability properties is closely linked with
the size of the explored structure to achieve this verification. Thus, it was important to
first check that the TAG is a suitable/reduced abstraction before performing verification
on it. Our approach for building TAG-TPN was implemented in a prototype tool (written
in C++), and used for experiments in order to validate the size of the graphs generated
by the approach (note that the prototype was not optimised for time efficiency yet, there-
fore no timing figures are given in this section). All results reported in this section have
been obtained on 2.8 gigahertz Intel with four gigabytes of RAM. The implemented
prototype allowed us to have first comparison with existing approaches with respect to
the size of obtained graphs. We used the TINA tool to build the SCGs, ROMEO tool for
the ZBGs and our tool for the TAGs. We tested our approach on several TPN models
and we report here the obtained results. The considered models are representative of
the characteristics that may have a TPN, such as: concurrency, synchronisation, disjoint
firing intervals and infinite firing bounds. The two first models (Figure 4(a) and Fig-
ure 4(b)) are two parametric models where the number of processes can be increased.
In Figure 4(a), the number of self loops (pn → tn → pn is increased while in Fig-
ure 4(b) the number of processes, whose behavior is either local, by transition ti, or
global by synchronization with all the other processes, by transition t0, is increased.

In addition to these two illustrative examples, we used two well known other para-
metric TPN models. The first one [10] represents a composition of producer/consumer
models. The second (adapted from [15]) is the Fischer’s protocol for mutual exclusion.

Table1 reports the results obtained with the SCG, the ZBG and the TAG-TPN ap-
proaches, in terms of graph size number of nodes/number of edges). The obtained
results for the producers/consumers models show that the TAG yields better abstrac-
tion (linear order) than the SCG and the ZBG approaches. Each time a new module of
producer/consumer is introduced, the size of graphs increases for all three approaches.
However, the SAG achieves a better performance than the two other approaches. For the
TPN of Figure 4(a), the obtained results show that the size of the TAG exponentially
increases when the the parallelism occur in the structure of TPN. This is also the case
also for the ZBG and the SCG methods, and we can see that our method behaves better
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Table 1. Experimentation results

SCG (with Tina) ZBG (with Romeo) TAG-TPN
Parameters (nodes / arcs) (nodes / arcs) (nodes / arcs)

Nb. prod/cons TPN model of producer/consumer
1 34 / 56 34 / 56 34 / 56
2 748 / 2460 593 / 1 922 407 / 1 255
3 4 604 / 21891 3 240 / 15 200 1 618 / 6 892
4 14 086 / 83 375 9 504 / 56 038 3 972 / 20 500
5 31 657 / 217 423 20 877 / 145 037 8 175 / 48 351
6 61 162 / 471 254 39 306 / 311 304 15 157 / 99 539
7 107 236 / 907 708 67 224 / 594 795 26 113 / 186 363
8 175 075 / 1 604 319 107 156 / 1 044 066 42 503 / 324 600
9 270 632 / 2 655 794 161 874 / 1 718 104 66 103 / 534 055
10 400 648 / 4 175 413 234 398 / 2 687 147 99 036 / 839 011

Nb. self-loops TPN example with concurrency (Figure 4(a))
1 39 / 72 40 / 74 39 / 72
2 471 / 1 296 472 / 1 299 354 / 963
3 6 735 / 25 056 6 736 / 25 060 2 745 / 9 888
4 119 343 / 563 040 119 344 / 563 045 19 488 / 87 375
5 2 546 679 / 14 564 016 ? / ? 130 911 / 701 748

Nb. processes TPN example with synchronization (Figure 4(b))
1 1 / 2 2 / 4 1 / 2
2 13 / 35 14 / 38 13 / 35
3 157 / 553 158 / 557 118 / 409
4 2 245 / 10 043 2 246 / 10 048 915 / 3 909
5 3 9781 / 21 7681 39 782 / 217 687 6 496 / 33 071
6 848 893 / 5 495 603 848 894 / 5 495 610 43 637 / 258 051
7 ? / ? ? / ? 282 514 / 1.90282e+06

Nb. processes Fischer protocol
1 4 / 4 4 / 4 4 / 4
2 18 / 29 19 / 32 20 / 32
3 65 / 146 66 / 153 80 / 171
4 220 / 623 221 / 652 308 / 808
5 727 / 2 536 728 / 2 615 1 162 / 3 645
6 2 378 / 9 154 2 379 / 10 098 4 274 / 15 828
7 7 737 / 24 744 7 738 / 37 961 15 304 / 66 031
8 25 080 / 102 242 25 081 / 139 768 53 480 / 265 040

when we increment the self-loop structures in the model. The ZBG’s and the SCG’s
execution have aborted due to a lack of memory when the number of self-loops was
equal to 5. The number of edges of the obtained graphs follows the same proportion.
In the synchronisation pattern exmaple, our approache behaves well as well. Indeed,
with, 1, 2 and 3 processes, the sizes of the obtained graphs are almost similar with the
three approaches. But, from 4 synchronised processes, the size of the SCGs and the
ZBGs increase exponentially, leading to a state explosion with 7 processes, whereas the
TAGs have been computed successfully with 7 processes (and even more). The Fischer
protocol model is the only model where our approach leads to relatively bad results
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Fig. 4. TPN models used in the experiments

(although the difference with the two other approaches is linear). Our first explanation
is that, in case of disjoint firing intervals, the abstraction can be weak in some cases. In
fact, when a transition t is enabled by an aggregate t and there exists a trasnition t′, not
enabled by a, s.t. tmin > t′max, a is considered non equivalent (while it could be) to
all aggregates where the earliest firing time of t is not the same. However, it could be
that t and t′ are never enabled simultanously. We think that taking into account some
structural properties of the model could allow to refine our abstraction.

The experimental results show (in most cases) an important gain in performances in
terms of graph size (nodes/arcs) compared to the SCG and the ZBG approaches for the
tested examples. This promises performant verification approaches based on the TAG .

6 Conclusion

We proposed adapted algorithms for reachability analysis of time properties based on
a new finite abstraction of the TPN state space. Unlike, the existing approaches, our
abstraction can be directly useful to check both state and event-based logic properties.
Our ultimate goal is to use the TAG traversal algorithm for the verification of timed
reachability properties expressed in the TCTL logic. Several issues have to be explored
in the future: We first have to implement and experiment our verification algorithms.
Second, we believe that the size of the TAG can be further reduced while preserving
time properties without necessarily preserving all the paths of the underlying TPN. We
also plan to design and implement model checking algorithms for full TCTL logic.
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