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Abstract. This paper considers questions relating formal languages to
word problems of groups with a particular emphasis on the decidability
of some problems that arise. We investigate the decidability of certain
natural conditions that characterize word problems for various classes
of languages and we then turn our attention to the question of a lan-
guage actually being a word problem. We show that this is decidable
for the classes of regular and deterministic context-free languages but
undecidable for the one-counter languages.

1 Introduction

The word problem of a finitely generated groupG (i.e. the set of words represent-
ing the identity element of G) is a fundamental notion in group theory and there
have been some intriguing connections between this and formal language theory.
In particular, various classifications have been obtained as to which groups have
their word problems lying in certain classes of languages (see Section 4). We
focus on subfamilies of the context-free languages and, given a result of Herbst
(Theorem 7) which says that, under certain closure assumptions, there are es-
sentially only three cases, we concentrate on those particular families, namely
the regular languages, the one-counter languages and the context-free languages.

There is also a simple necessary and sufficient criterion (see Theorem 9) for
a language to be the word problem of a group. This involves the conjunction of
two conditions (universal prefix closure and deletion closure - see Section 2 for
definitions of these concepts) and we consider the question of the decidability
of these two conditions in Sections 5 and 6 respectively. It is intriguing that we
have a connection between word problems of groups and natural formal language
conditions such as deletion closure as studied in [15].

Having established the decidability of these conditions for the classes of lan-
guages we are considering we turn our attention to the question of deciding their
conjunction, i.e. that of deciding whether a given language is the word problem
of a group. Whilst this is easily seen to be decidable for the regular languages we
build on the work in [17] to show that this is undecidable for one-counter lan-
guages (and hence for context-free languages as well); see Theorem 28. However,
we know that any context-free language that is the word problem of a group is
deterministic context-free and we show that the problem of deciding whether a
deterministic context-free language is the word problem of a group is actually
decidable (see Theorem 31).
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2 Background from Formal Language Theory

Throughout this paper we will be discussing regular and context-free languages
accepted by finite automata and pushdown automata respectively. We will also
be discussing one-counter languages which are those languages accepted by a
one-counter automaton, i.e. a pushdown automaton where we have only a single
stack symbol (apart from a symbol marking the bottom of the stack); these au-
tomata are nondeterministic and accept by final state. We will use some standard
definitions and properties of classes of languages (such as their closure properties
under certain operations and decidability results); see [2,11,14] for example.

In particular, it is well known (see [11] for example) that one cannot decide
whether or not a context-free language L ⊆ Σ∗ is equal to Σ∗ (the so called
universe problem). In fact, this problem remains undecidable if one restricts
oneself to the certain subsets of the context-free languages such as the one-
counter languages [13]. We will need a slight strengthening of this fact where we
restrict to the case where the alphabet has size 2:

Theorem 1. The following decision problem is undecidable:
Input: a one-counter automaton M with input alphabet Ω of size 2.

Output: “yes” if L(M) = Ω∗; “no” otherwise.

Proof. We use a standard technique to show that, if we had an algorithm A
solving this decision problem, then we would have an algorithm solving the
universe problem for alphabets of arbitrary size. So suppose that we have such
an algorithm A. Let Σ = {x1, x2, . . . , xn} be an arbitrary alphabet and let
Ω = {a, b}. Let M = (Q,Σ, Γ, τ, s, A) be a one-counter automaton and let
L = L(M). We want to determine whether or not L(M) = Σ∗.

Define ϕ : Σ∗ → Ω∗ by x1 �→ ab, x2 �→ a2b, . . . , xn �→ anb, and let K = Σ∗ϕ.
Since K is regular, R = Ω∗ − K is regular. Since ϕ is injective we have that
L = Σ∗ if and only if Lϕ = Σ∗ϕ = K which is equivalent to saying that
Lϕ ∪ R = K ∪ R = Ω∗. Since Lϕ ∪ R is a one-counter language we may use
algorithm A to decide this problem, and so we could determine whether or not
L(M) = Σ∗, a contradiction. ��
Remark 2. In Theorem 1 all we have used about the family F of one-counter
languages are the facts that the universe problem is undecidable for F and
that F is closed under homomorphism and union with regular languages; so
Theorem 1 applies to any such family of languages. ��

In this paper we will also need the idea of the prefix closure of a language
L ⊆ Σ∗ which is defined to be:

prefix(L) = {α ∈ Σ∗ : αβ ∈ L for some β ∈ Σ∗}.
In the case where prefix(L) = Σ∗, we say that L has the universal prefix closure
property.

We also say that a language L ⊆ Σ∗ is deletion closed if it satisfies the
following condition:

α, u, β ∈ Σ∗, αuβ ∈ L, u ∈ L =⇒ αβ ∈ L.
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3 Background from Group Theory

If G is a group and Σ is a finite set of symbols such that there is a surjective
(monoid) homomorphism ϕ : Σ∗ → G, then we say that Σ is a generating set for
G. Note that Σ is a monoid generating set for G as opposed to a group generating
set ; in the latter case, we have a set of symbols X and then let Σ = X ∪X−1

where X−1 is a set of symbols in a (1-1) correspondence with X (and where we
insist that x−1ϕ = (xϕ)−1). In either case the word problem of the group G is
the set of all words in Σ∗ that represent the identity element of G.

A presentation for a group G is an expression of the form 〈A : R〉 where A is a
generating set for G and R is a set of relations of the form α = β. If A is a monoid
generating set for G and R ⊆ A∗×A∗, we have a monoid presentation for G and,
if A is a group generating set for G, Σ = A∪A−1 as above, and R ⊆ Σ∗×Σ∗ we
have a group presentation for G. In each case the set R must be a set of defining
relations for G: if ≈ is the congruence generated by R (together with all pairs of
the form (x−1x, ε) or (xx−1, ε) with x ∈ X in the case of a group generating set,
where ε denotes the empty word), then G is isomorphic to Σ∗/ ≈, i.e. α ≈ β if
and only if αϕ = βϕ. The free group on a set X has the (group) presentation
〈X : ∅〉.

If P is any property of groups, then we say that a group is virtually P if it
has a subgroup of finite index with property P . We will need the following fact:

Theorem 3. Given a finite group presentation ℘ = 〈X : R〉 and the promise
that the group G presented by ℘ is virtually free, triviality of G is decidable.

Proof. We start two processes running. The first enumerates the consequences
of R, terminating if all the pairs (x, ε) with x ∈ X have been output; this
terminates if G is trivial. The second enumerates all the subgroups of finite
index (one can do this for any finitely presented group; see [16] for example) and
terminates if it finds a proper subgroup (any non-trivial virtually free group must
possess such a subgroup). Eventually one of these two processes must terminate.

��

4 Characterizing Word Problems

When examining groups based on their word problem as a formal language it
is quite common to classify groups based on what class of languages their word
problem lies in. However, there is no guarantee that the word problem will lie in
the same class F of languages for different generating sets. The following result
(see [8]) shows that, under certain mild assumptions on F , this is not a problem:

Theorem 4. If a class of languages F is closed under inverse homomorphism
and the word problem of a group G lies in F with respect to some finite generating
set then the word problem of G will lie in F for all finite generating sets.

Anisimov [1] classified the groups with a regular word problem:
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Theorem 5. A finitely generated group has a regular word problem if and only
if it is a finite group.

Further work was done by Muller and Schupp [18] which, along with a result of
Dunwoody [4], characterised the groups with a context-free word problem:

Theorem 6. A finitely generated group G has a context-free word problem if
and only if it is a virtually free group.

One might ask what other families of languages F contained in the context-free
languages give rise to interesting classes of groups. Herbst [7] showed that, if F
satisfies certain natural closure conditions, then there are not many possibilities:

Theorem 7. If F is a subset of the context-free languages closed under homo-
morphism, inverse homomorphism and intersection with regular languages then
the class of finitely generated groups whose word problem lies in F is the class of
groups with a regular word problem, the class of groups with a one-counter word
problem or the class of groups with a context-free word problem.

In the light of Theorems 5 and 6 it is natural to ask which groups have a one-
counter word problem. Herbst characterised these groups in [7] (see also [10]):

Theorem 8. A finitely generated group G has a one-counter word problem if
and only if it is a virtually cyclic group.

Given Theorem 7 it is natural to ask if one can decide if a language lying in one
of these three families of languages is a word problem of a group and we answer
this question in Section 7.

The following characterisation of word problems of groups was given in [19]:

Theorem 9. A language L over an alphabet Σ is the word problem of a group
with generating set Σ if and only if L satisfies the following two conditions:

W1 for all α ∈ Σ∗ there exists β ∈ Σ∗ such that αβ ∈ L;
W2 αuβ ∈ L, u ∈ L ⇒ αβ ∈ L.

Condition W1 says that the prefix closure prefix(L) of L is Σ∗, i.e. that L has the
universal prefix closure property, whereas condition W2 says that the language
L is deletion closed. It is natural to ask, for the families of languages in Theo-
rem 7, whether one can decide whether a language in that family satisfies these
conditions and we will answer these questions in Sections 5 and 6 respectively.

5 Universal Prefix Closure and Decidability

In this section we investigate the decidability of the question prefix(L) = Σ∗. It
is clear this is decidable if L is specified by means of a finite automaton:

Proposition 10. The following problem is decidable:
Input: a finite automaton N = (Q,Σ, τ, s, A).

Output: “yes” if prefix(L(N)) = Σ∗; “no” otherwise.
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For example, given a finite state automaton N we construct the minimal de-
terministic automaton M accepting L(N). As M has no unreachable states,
prefix(L(N)) = Σ∗ if and only if M has no fail states, which is clearly decidable.

Remark 11. We are only interested in decidability questions in this paper and
not with computational complexity. In our one non-trivial result about decid-
ability (see Theorem 31) we do not have an easily computable time complexity
(see Remark 32). For more information about the complexity of problems related
to that described in Proposition 10 see [20] for example. ��

When we consider the corresponding problem for one-counter languages we
need the idea of a counter machine. There are several ways of describing these
machines and we give one possibility here.

A counter machine M (as distinct from a one-counter automaton) is a two-
tape machine. The first tape is the input tape; it is read only and the head can
only move to the right. The second tape is a stack: whenever we move left, M
erases the symbol it moved away from. There is only one stack symbol, a say.
Intuitively M can only store a natural number (so that we can think of M as
having an input tape and a counter). As we will see, the stack is never empty.

More formally, a counter machine is a sextuple M = (Q,Σ, a, δ, q0, qf ) where
Q is a finite set of states containing two distinguished states, q0, the start state,
and qf , the final state. The input alphabet Σ is a finite set of symbols such that
a /∈ Σ. A configuration of M is a word of the form qan where q ∈ Q and n > 0
(where the current state is q and the current stack contents are an).

We take C to be {1, 2, 3, 5, 7, 12 , 1
3 ,

1
5 ,

1
7}; there is no particular significance in

our choice of 2, 3, 5 and 7, in that any four pair-wise coprime natural numbers
would suffice. The transition relation δ is a function from (Q−{qf})×Σ×C to
(Q−{q0})×(Q−{q0}); the fact that δ is a function means thatM is deterministic.
M starts with just a on its stack (i.e. with the counter set to 1) and must set
its counter to 1 again before entering qf .

A move (p, b, x, q, r) ∈ δ is interpreted as follows. If M is in state p reading an
input b and if the result of multiplying the current value n of the counter (i.e.
we have an on the stack) by the value x is an integer, then we set the counter
to xn and move to state q; if xn is not an integer then the counter remains set
at n and M moves to state r. We write pan � qaxn or pan � ran as appropriate.

Given a Turing Machine, one can effectively construct a counter machine
accepting the same language (see [11] for example). We now turn to the compu-
tations of a counter machine:

Definition 12. Let M be a counter machine. A valid computation of M is a
word C0C1 . . . Cn ∈ Q ∪ {a}∗ such that the Ci are configurations of M and

C0 = q0a � C1 � . . . � Cn−1 � Cn = qfa.

An invalid computation is a word in (Q∪{a})∗ which is not a valid computation.

In any valid computation of M , any configuration qan will have n = 2b3c5d7e

for some b, c, d, e � 1. Multiplying by 2, 3, 5 or 7 increases b, c, d or e by 1
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and multiplying by 1
2 ,

1
3 ,

1
5 or 1

7 (if possible) decreases b, c, d or e by 1; so we
effectively have four counters each of which can be increased or decreased. The
fact that we can only multiply by x if nx is an integer is effectively saying that
we can test each counter individually for zero (for example, if n = 2b3c5d7e and
we want to multiply by 1

2 , then we must have that b > 0).
Our aim is to show that the problem of deciding whether a language has the

universal prefix property is undecidable for one-counter languages. In order to
do this we need to relate the set of invalid computations of M to a one-counter
language (i.e. a language accepted by a one-counter automaton as defined above).
There have been other similar approaches to such problems (see [22] for example).

Proposition 13. If M = (Q,Σ, a, δ, q0, qf ) is a counter machine then the fol-
lowing language is a one-counter language:

K = {qanpaj : the following conditions hold:
if (q, b, k, p, r) is a quintuple of δ and kn is an integer then kn �= j;
if (q, b, k, p, r) is a quintuple of δ and kn is not an integer then j �= n}

Proof. Since δ is a finite set of quintuples (q, b, k, p, r) and the one-counter lan-
guages are closed under union, it is sufficient to show that the language

{qanpaj : (kn ∈ Z ⇒ kn �= j) ∧ (kn �∈ Z ⇒ n �= j)}
is a one-counter language for any fixed quintuple (q, b, k, p, r). Now the condition

(kn ∈ Z ⇒ kn �= j) ∧ (kn �∈ Z ⇒ n �= j)

is equivalent to
(kn ∈ Z ∧ kn �= j) ∨ (kn �∈ Z ∧ n �= j),

and (using again the fact that the one-counter languages are closed under union)
we only need to show that the languages

{qanpaj : kn ∈ Z ∧ kn �= j}, {qanpaj : kn �∈ Z ∧ n �= j}
are both one-counter languages.

If k ∈ N then the condition kn ∈ N is automatically satisfied; if k �∈ N, then
the condition kn ∈ N is equivalent to n mod 1

k being zero which we may check
in the states of the machine. As far as kn �= j or n �= j is concerned this can be
easily verified for any fixed k using the stack and the result follows. ��
We now use Proposition 13 to prove the following result:

Theorem 14. The following problem is undecidable:
Input: a one-counter automaton N = (Q,Σ, Γ, δ, s, A).

Output: “yes” if prefix(L(N)) = Σ∗; “no” otherwise.

Proof. Let M = (Q,Σ, a, δ, q0, qf ) be a counter machine and Γ = Q ∪ {a}. The
unique halting configuration of M is qfa and the following language over Γ

K = {qanpaj : the following conditions hold:
if (q, b, k, p, r) is a quintuple of δ and kn is an integer then kn �= j;
if (q, b, k, p, r) is a quintuple of δ and kn is not an integer then j �= n}

is a one-counter language by Proposition 13. We consider the following languages:
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(i) L1 = Γ ∗ − q0aΓ
∗. This is the set of all words in Γ ∗ which don’t start with

the unique initial configuration of M .
(ii) L2 = Γ ∗ − Γ ∗qfaΓ ∗. This is the set of all words not containing the unique

halting configuration of M .
(iii) L3 = L2QQΓ ∗ ∪ aΓ ∗. This is the set of all words which are badly formed

(as a sequence of configurations of M) before the halting configuration of
M appears (if it appears).

(iv) L4 = L2KΓ ∗. This is the set of words which contain two successive config-
urations where the second does not follow from the first before the halting
configuration of M appears (if it appears).

L1, L2 and L3 are regular and L4 is a one-counter language since the one-counter
languages are closed under concatenation. If L = L1∪L2∪L3∪L4 we see that L
is a one-counter language as the one-counter languages are closed under union.

L is the set of all invalid computations α of M such that no prefix of α is
a valid computation; so L is prefix-closed. We have L = Γ ∗ precisely when M
does not accept any input and so deciding if L = Γ ∗ is equivalent to deciding if
L(M) = ∅; as counter machines are Turing complete this is undecidable.

If one could decide, given a one-counter automaton N = (Q,Σ,Ω, δ, s, A), if
prefix(L(N)) = Σ∗, then one could decide if L = Γ ∗. However, L is prefix-closed;
so its prefix closure is equal to Γ ∗ precisely when L itself is equal to Γ ∗. We have
just pointed out that determining whether or not L = Γ ∗ is undecidable. ��
Remark 15. Given Theorem 14 it is immediate that the problem of deciding
whether prefix(L(N)) = Σ∗ is undecidable for pushdown automata. Given our
interest in word problems of groups, we have focussed on one-counter and context-
free languages in this paper, but the argument used in Theorem 14 would easily
apply to other classes of languages as well ��

6 Deletion Closed Languages and Decidability

We now investigate the decidability of the question as to whether a language L
is deletion closed. As with Proposition 10, we note that this is easily seen to be
decidable if L is specified by means of a finite automaton:

Proposition 16. The following problem is decidable:
Input: a finite automaton N = (Q,Σ, τ.s, A).

Output: “yes” if L(N) is deletion closed; “no” otherwise.

Proof. Given N we construct the minimal automaton P accepting L = L(N)
and then calculate the syntactic monoid M of L as the transition monoid of P .

Let ϕ be the natural map from Σ∗ to M , so that L = Sϕ−1 for some S ⊆ M .
For each element x ∈ M we can test whether or not xϕ−1 ∈ L (this is independent
of the choice of xϕ−1), and so we may determine S. Since the condition that L is
deletion closed, i.e. that αuβ ∈ L, u ∈ L ⇒ αβ ∈ L, is equivalent to

αuβ ∈ S, u ∈ S ⇒ αβ ∈ S,
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and since the latter is clearly decidable (as S is a subset of a finite monoid M),
we can decide whether or not L is deletion closed. ��

It is clear that the technique used in the proof of Proposition 16 will apply to
many other properties of regular languages.

We will use the following result from [9], known as Higman’s Lemma, in what
follows:

Theorem 17. The set of finite words over a finite alphabet, as partially ordered
by the subsequence relation, is well-quasi-ordered. This, in particular, implies
that there does not exist an infinite sequence where the elements of the sequence
are all pairwise incomparable or, equivalently, any set containing only pairwise
incomparable finite words is finite.

We will write α ≺ β if α can be obtained by deleting some symbols in β, i.e. if
α is a proper subsequence of β; if α is a (not necessarily proper) subsequence
of β, we will write α � β. The following may be of some independent interest:

Proposition 18. A language L ⊆ Σ∗ which is deletion closed and contains Σ
is regular.

Proof. Given that L is deletion closed and contains Σ, deleting any symbols
from a word in L always results in another word in L; so, if α ∈ L and β ≺ α,
then β ∈ L. If L = Σ∗ then the result is clearly true; so we will assume that
L �= Σ∗ in what follows.

First, consider words β /∈ L such that α ≺ β ⇒ α ∈ L (such words are
guaranteed to exist since ∅ �= L �= Σ∗). Given two such words γ and β we must
have that γ ⊀ β and that β ⊀ γ; so, by Theorem 17, the set U of all such words
must be finite.

Consider the language V = {α ∈ Σ∗ : ∃ β ∈ U such that β � α}. This
language is regular (as all we are doing is checking that a subsequence lies in a
finite set).

If α ∈ V then there exists β ∈ U such that β � α and so α �∈ L (as β �∈ L).
Conversely, if α �∈ L, then choose β minimal such that β � α and β �∈ L. If

γ ≺ β, then γ ∈ L by the minimality of β; so β ∈ U and hence α ∈ V .
Given this we see that Σ∗ − L = V is regular and hence L is regular. ��

Remark 19. The hypothesis that L contains Σ in Proposition 18 is necessary; for
example, the language {anbn : n � 0} is deletion closed but not regular. Indeed,
since the word problem of any finitely generated group is deletion closed and
there are finitely generated groups with unsolvable word problem, there exist
deletion closed languages that are not even recursively enumerable. ��

Recall that a language L ⊆ Σ∗ is said to be bounded if there exist non-empty
words w1, w2, . . . , wk in Σ∗ such that L ⊆ w∗

1w
∗
2 . . . w

∗
k. It is known that the

problem of deciding, given a context-free grammar G, if L(G) is bounded is
decidable (see Theorem 5.5.2 in [6] for example). Given this, we can now prove:
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Theorem 20. The following problem is undecidable:
Input: a one-counter automaton M .

Output: “yes” if L = L(M) is deletion closed; “no” otherwise.

Proof. We show that, if we could solve this decision problem, then we could solve
the universe problem for alphabets of size 2, contradicting Theorem 1.

Let us assume that we have an algorithm determining whether or not L(M)
is deletion closed for a one-counter automaton M = (Q,Σ, Γ, τ, s, A) where
Σ = {a, b}. First we note that, if the language L = L(M) is not deletion closed,
then it cannot be Σ∗. Our next observation is that, if L does not contain Σ
(which we can test as membership is decidable for one-counter languages), then
it also cannot be Σ∗; so in these cases we simply output “no” and terminate.

Now assume that L is deletion closed and contains Σ. Each non-empty word
α in L is uniquely expressible in the form an(1)bm(1) . . . an(�)bm(�) for some 
 � 1
where n(1) � 0, n(i) > 0 for i > 1, m(i) > 0 for i < 
 and m(
) � 0; let us call
this the standard decomposition for α and, given such a decomposition, let ‖α‖
denote 
. One of the following two possibilities must occur:

(i) there is a bound on ‖α‖ for α ∈ L, i.e. there exists k > 0 such that every
word of L has a standard decomposition an(1)bm(1) . . . an(�)bm(�) with 
 � k;

(ii) there is no such bound on ‖α‖ and so, for any k, we have a word of the form
an(1)bm(1) . . . an(�)bm(�) in L with 
 � k. Given this, for every k > 0 there
exists β ∈ L such that (ab)k is a subsequence of β.

If possibility (i) occurs then L is bounded and L �= Σ∗. If possibility (ii) occurs
then, as every word in Σ∗ is a subsequence of (ab)k for some k and L is deletion
closed, we must have that L = Σ∗ in this case (and so L is not bounded).

So we test if L is bounded. If L is bounded then it is not Σ∗ and we output
“no” and, if L is not bounded, then L = Σ∗ and we output ‘yes’. This gives us
our contradiction. ��
Remark 21. Given Theorem 20, it is immediate that the problem of deciding
whether or not L(M) is deletion closed is undecidable for pushdown automata.
Given our interest in word problems of groups, we have focussed on one-counter
and context-free languages in this paper, but the argument used in Theorem 20
would apply to other classes of languages as well.

If one were only interested in context-free languages then there are other ap-
proaches simpler than the one we have presented here. For example the property
of a language being deletion closed distinguishes Σ∗ from Σ∗−{w} for any word
w and one can build undecidability proofs from this based on the invalid com-
putations of a Turing machine (see [11] for example). ��

7 Word Problems and Decidability

We now turn our attention to word problems, i.e. those languages satisfying
both the conditions W1 and W2 in Theorem 9. Given Theorem 9, together with
Propositions 10 and 16, we immediately have the following result:
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Proposition 22. The following decision problem is decidable:
Input: a finite automaton N .

Output: “yes” if L(N) is the word problem of a group; “no” otherwise.

When we come to the one-counter languages, however, this problem becomes
undecidable. This was shown for context-free languages in [17] and the argument
used there extends to one-counter languages as well. This result does not follow
immediately from Theorems 14 and 20; it is possible to have two undecidable
problems whose conjunction is decidable. In order to prove the undecidability of
this problem we need the concept of a Hotz group from [12]:

Definition 23. The Hotz group H(G) of a grammar G = (V,Σ, P, S) is the
group with presentation 〈V ∪Σ : {α = β : (α → β) ∈ P}〉.
Hotz showed that the groupH(G) for a reduced context-free grammarG depends
only on L(G). We also need the idea of a collapsing group:

Definition 24. The collapsing group C(L) of a language L ⊆ Σ∗ is the group
with presentation 〈Σ : {α = β : α, β ∈ L}〉.
The following connection between these two concepts will play a central role in
what follows:

Definition 25. A language L ⊆ Σ∗ is called a language with Hotz isomorphism
if there exists a reduced grammar G = (V,Σ, P, S) with L = L(G) such that the
collapsing group of L is isomorphic to H(G).

It is known [5] that all context-free languages are languages with Hotz
isomorphism. In fact it is shown in [3] that:

Theorem 26. A language L ⊆ Σ∗ is a language with Hotz isomorphism if and
only if the collapsing group C(L) is finitely presentable.

Remark 27. The collapsing group C(L) of a language L ⊆ Σ∗, where the empty
word ε lies in L, will have every word in L representing the identity element of
C(L) but it may have other words representing the identity element as well.

Let ℘ denote the presentation 〈Σ : {α = 1 : α ∈ L}〉. If L is the word problem
of some group K, then ℘ is a presentation for K and so K is isomorphic to C(L).
If L is not the word problem of a group then the word problem of the group
with presentation ℘ must contain L as a proper subset.

In particular, if L is a context-free language which is the word problem of a
group K, then C(L) is isomorphic to K and we may obtain a finite presentation
for K using the facts that K is isomorphic to H(G) (where G is a context-free
grammar generating L) and that the definition of H(G) in Definition 23 is via
a finite presentation. ��

We are now in a position to prove our undecidability result:

Theorem 28. The following decision problem is undecidable:
Input: a one-counter automaton N = (Q,Σ, Γ, τ, s, A).

Output: “yes” if L(N) is the word problem of a group; “no” otherwise.
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Proof. Suppose we had an algorithm A which could decide, given a one-counter
automatonN , whether or not L = L(N) were the word problem of some groupG.
We will show that one could then decide whether or not L = Σ∗ which is a
contradiction by Theorem 1.

Since Σ∗ is the word problem of the group {1}, if A outputs “no”, then we
have that L �= Σ∗. On the other hand, since L is context-free, if A outputs
“yes”, then we know that the corresponding group G has a context-free word
problem, and so G is virtually free by Theorem 6. We can now obtain a finite
presentation ℘ for G as in Remark 27 and then use the presentation ℘ to test G
for triviality as in Theorem 3. Since G is trivial if and only if L = Σ∗ we now
have an algorithm for determining whether or not L = Σ∗, a contradiction. ��
Remark 29. Since every one-counter language is context-free, in that a one-
counter automaton is a special case of a pushdown automaton, it immediately
follows from Theorem 28 that there is no algorithm to decide whether or not
L(M) is the word problem of a group for a pushdown automaton M (as proved
in [17]). The proof given in Theorem 28 will, in fact, work for any family F of
context-free languages where the universe problem is undecidable (provided that
F is specified in such a way that a finite presentation for the Hotz group of any
language L in F can be effectively determined). ��

8 Deterministic Context-Free Languages

We saw in Theorem 6 that a group has a context-free word problem if and only
if it is virtually free. It is not hard to show that the word problem of a virtually
free group is deterministic context-free. So we have the following immediate
consequence of Theorem 6:

Theorem 30. If a group G has a context-free word problem, then it has a de-
terministic context-free word problem.

However, despite the fact that it is undecidable whether or not a context-free
language is the word problem of a group, this problem becomes decidable if the
language is deterministic context-free and is given by a deterministic pushdown
automaton:

Theorem 31. The following decision problem is decidable:
Input: a deterministic pushdown automaton M = (Q,Σ, Γ, τ, s, A).

Output: “yes” if L(M) is the word problem of a group; “no” otherwise.

Proof. If ε �∈ L = L(M) then L is not the word problem of a group; so we check
first that ε ∈ L (outputting “no” if that is not the case); we will assume that
ε ∈ L in what follows.

We convert our deterministic pushdown automaton to a reduced context-free
grammar Γ such that L(Γ ) = L and then use the Hotz group construction in
Remark 27 to write down a finite presentation ℘ of the group G = H(Γ ).
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As in Remark 27, if L is the word problem of a group, then it must be the
word problem of G. If W is the word problem of G with respect to the generating
set Σ, then the question is whether L = W (in which case L is the word problem
of a group) or L ⊂ W (in which case L is not the word problem of a group).

If L is the word problem of G then, as L is context-free, G must be virtually
free. With this is mind, we start a process which we will refer to as Process 1.

Process 1 enumerates the finite-index subgroups of G and enumerates all
presentations of the finite-index subgroups, checking each such presentation it
generates to see if it is a natural presentation of a free group (i.e. a presentation
with no relations). This is a semi-decision process; if G is virtually free, then
we will eventually find such a presentation and so know that G is virtually free,
but, if G is not virtually free, then this process will not terminate.

At the same time we start Process 2. Process 2 takes the finite presentation ℘
and enumerates the words in Σ∗ representing the identity element, checking each
one it generates for membership of L. If Process 2 ever finds a word which is
trivial in the group G but not a member of L then we terminate all the running
processes and output “no”. (If L were the word problem of a group then it has to
be the word problem of G, in which case no word trivial in G could lie outside L.)
Process 2 is also a semi-decision process; we continue enumerating words whilst
we do not have an output of “no”.

Eventually one of these two processes must terminate. If it is Process 1 then
we know that the group G is virtually free and we start Process 3. Process 3
uses the presentation ℘ of G and its finite-index free subgroup to construct a
deterministic pushdown automaton N which accepts the word problem of G; we
can then test N for equivalence with M by the theorem of Sénizergues in [21].
We halt all the processes and output the result of the equivalence test as our final
output. Note that, if we reach Process 3, then Process 3 will always terminate.

Eventually either Process 2 terminates (and we output “no”) or else Process 1
(and therefore Process 3) terminates. Thus we have an algorithm which outputs
“yes” if L(M) is the word problem of a group and outputs “no” if it is not, as
required. ��
Remark 32. As the reader will see, the use of the theorem of Sénizergues con-
cerning the decidability of the equivalence problem for deterministic pushdown
automata is a critical component of the proof of Theorem 31. We are also using
procedures such as the enumeration of finite-index subgroups of a group search-
ing for one that is a free group. As it is (in general) undecidable as to whether or
not a finitely presented group is virtually free, this procedure will not necessarily
terminate, and our proof relies on the fact that we can run this in parallel with
another semi-decision procedure and that, given our situation, one of these two
procedures must terminate. Given that the two procedures we have used will not
have computable time complexity in general, we are not claiming any degree of
efficiency for this decision procedure, merely that the problem is decidable. ��
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