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Abstract. We consider two-player zero-sum finite (but infinite-horizon)
stochastic games with limiting average payoffs. We define a family of sta-
tionary strategies for Player I parameterized by ε > 0 to be monomial,
if for each state k and each action j of Player I in state k except pos-
sibly one action, we have that the probability of playing j in k is given
by an expression of the form cεd for some non-negative real number c
and some non-negative integer d. We show that for all games, there is a
monomial family of stationary strategies that are ε-optimal among sta-
tionary strategies. A corollary is that all concurrent reachability games
have a monomial family of ε-optimal strategies. This generalizes a classi-
cal result of de Alfaro, Henzinger and Kupferman who showed that this
is the case for concurrent reachability games where all states have value
0 or 1.

1 Introduction

We consider two-player zero-sum finite (but infinite-horizon) stochastic games G
with state set {1, 2, . . . , N} and set of actions {1, 2, . . . ,m} available to each of
the two players in each state. The reward to Player I when Player I plays i and
Player II plays j in state k is denoted akij . Transition probabilites are denoted pklij .

We assume stopping probabilitites are 0, i.e., for all k, i, j we have
∑

l p
kl
ij = 1.

We are interested in games with limiting average (undiscounted) payoffs [8,12],

i.e, payoff lim infT→∞(
∑t−1

i=0 rt)/T to Player I, where rt is the reward collected
by Player I at stage t. A stationary strategy x for a player in a stochastic game
is a fixed (time independent) assignment of probabilities to his actions, for each
of the states of the game. We let xk

j denote the probability of playing action j
in state k according to stationary strategy x. We denote the set of stationary
strategies for Player I (II) by SI (SII). For a state k, the lower value in stationary
strategies of k, denoted vk, is defined as supx∈SI

infy∈SII uk(x, y), where uk(x, y)
is the expected limiting average payoff when stationary strategy x of Player I
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is played against stationary strategy y of Player II and play starts in state k.
Given ε > 0, a stationary strategy x∗ for Player I is called ε-optimal among
stationary strategies if for all states k, we have infy∈SII uk(x

∗, y) ≥ vk−ε. Notice
that when Player I has fixed his stationary strategy, Player II is just playing a
Markov decision process, so he has an optimal positional reponse.

The main purpose of the present paper is to prove that all stochastic games
have a family of ε-optimal strategies among stationary strategies of a particular
regular kind. We introduce the following definition.

Definition 1. A family of stationary strategies (xε)0<ε≤ε0 for Player I in a
stochastic game is called monomial if for all states k, and all actions j available
to Player I in state k except possibly one action, we have that xk

ε,j is given by a

monomial in ε, i.e., an expression of the form ckj ε
dk
j , where dkj is a non-negative

integer and ckj is a non-negative real number.

The exception made in the definition for some single action in each state is
natural and necessary: The sum of probabilities assigned to the actions in each
state must be 1, so without this exception, it is easy to see that a monomial
family would have dkj = 0 for all j, k, i.e., it would be a single strategy rather
than a family. Also note that when we specify a monomial family of strategies,
we do not have to specify the probability assigned to the “special” action in
each state, as it is simply the result of subtracting the sum of the probabilities
assigned to the remaining actions from one. We can now state our main theorem:

Theorem 1. For any game G, there is an ε0 > 0 and a monomial family of
stationary strategies (xε)0<ε≤ε0 for Player I, so that for each ε ∈ (0, ε0], we have
that xε is ε-optimal among stationary strategies.

Discussion of the Main Theorem. A monomial family of strategies can be
naturally interpreted as a parameterized strategy where probabilities have well-
defined “orders of magnitude”, given by the degrees dkj . Our main theorem in-
formally states that such “clean” strategies are sufficient for playing stochastic
games well, at least if one is restricted to the use of stationary strategies. Our
main motivation for the theorem is computational: A monomial family of strate-
gies is a finite object, and our theorem makes it possible to ask the question of
whether a family of ε-optimal strategies parameterized by ε can be efficiently
computed for a given game, as the result makes this question well-defined. The
existence proof of the present paper is essentially non-constructive and provides
no efficient algorithm (although it is possible to derive an inefficient algorithm
using standard techniques), so we do not answer the question in this paper. It
should also be noted that it is easy to give examples of games with rational
rewards and transition probabilties where the coefficients ckj cannot be ratio-
nal numbers, so one has to worry about how to represent those. Fortunately, a
straightforward application of the Tarski transfer principle yields that algebraic
coefficients suffice, and such a number has a finite representation in the form of a
univariate polynomial with rational coefficients and an isolating interval within
which the number is the only root of the polynomial.
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Our main theorem is particularly natural for classes of stochastic games that
are guaranteed to have a value in stationary strategies, that is, games for which the
lower value supx∈SI

infy∈SII uk(x, y) and the upper value infy∈SII supx∈SI
uk(x, y)

coincide. A natural subclass of stochastic games with this property is Everett’s
recursive games [6]. In a recursive game, all non-zero rewards occur at absorb-
ing states: states k with only one action “1” available to each player and pkk1,1 =
1 (”terminal states”). Everett presents several examples of families of ε-optimal
strategies for natural recursive games and upon inspection, we note that they are
monomial. An interesting subclass of recursive games widely studied in the com-
puter science literature [5,3,11,9] is the class of concurrent reachability games. In
a concurrent reachability game, Player I is trying to reach a distinguished “goal”
state and Player II is trying to prevent him from reaching this state. To view such
a game as a recursive game, we simply interpret the goal state as an absorbing
state g with reward rg1,1 = 1. Then, the (lower) value vk of a state k is natu-
rally interpreted as the optimal probability of reaching the goal state from k. De
Alfaro, Henzinger and Kupferman [5] presented a polynomial time algorithm for
deciding which states in a concurrent reachability game have value 1. Inspect-
ing their proof of correctness, we see that it yields an explicit construction of a
monomial family of ε-optimal strategies for Player I if the concurrent reachability
games satisfy the (very restrictive) property that each state has value either 0 or 1.
Note that even this case requires non-trivial strategies for near optimal play [11].
Also, their polynomial time algorithm can easily be adapted to output this strat-
egy. It is interesting to note that in the computed strategy, all coefficients ckj are
either 0 or 1.

Discussion of the Proof. Our proof relies heavily on semi-algebraic geom-
etry. In this respect, the proof technique is much in line with classical works
on stochastic games, in particular the work of Bewley and Kohlberg [1], and
semi-algebraic geometry has seen several uses in stochastic games, see for ex-
ample [13,4,15,10]. Our proof can be outlined as follows. First, we show that it
is possible in first order logic over the reals to uniquely define a particular dis-
tinguished ε-optimal strategy among stationary strategies, with ε being a free
variable in this definition. Then, standard theorems of semi-algebraic geometry
imply that there is a family of ε-optimal strategies the probabilities of which can
be described as Pusieux series in the parameter ε > 0. We then “round” these
series to their most significant terms and finally massage them into monomials.
To argue that ε-optimality is not lost in the process, we appeal to theorems
upper bounding the sensitivity of the limiting average values of Markov chains
to perturbations of their transition probabilities. These sensitivity theorems are
due to Solan [14], building on work on Freidlin and Wentzell [7]. As our main
theorem is very simply stated, one might speculate that it has an elementary
proof, avoiding the use of semi-algebraic geometry. However, we are not aware of
any such proof, even for the case of concurrent reachability games. It should be
noted that the proof by De Alfaro, Henzinger and Kupferman is combinatorial in
nature, and does not rely on semi-algebraic geometry, so at least for the simpler
case considered by them, elementary arguments do exist.
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Organization of Paper. In section 2 we will introduce the definitions, lemmas
and previous results necessary for the proof. In section 3 we prove a version of
the main theorem with monomials replacing Puiseux series. In section 4 we prove
the actual main theorem.

2 Preliminaries

For n ∈ N, let [n] denote {1, . . . , n}. A Puiseux series p over some indeterminate

T and field F is an expression of the form p =
∑∞

i=K aiT
i
M where K ∈ Z,M ∈ N,

and for all i, ai ∈ F, with the expression satisfying that if p �= 0 then there
∃i ∈ Z : ai �= 0 ∧ gcd(i,M) = 1. Similarly, a function p : R → R is a Puiseux
function on an interval I, if there exists K ∈ Z,M ∈ N, ai ∈ R such that
p(ε) =

∑∞
i=K aiε

i
M for all ε ∈ I. In the context of this paper we will only look

at Puiseux functions, and we will often call the function p(ε) a Puiseux series.

The order of a Puiseux series p =
∑∞

i=K aiT
i
M is the smallest integer i such that

ai �= 0, and we will write ord(p) = i. If p = 0 then the order is defined to be ∞.
The proofs of the following elementary lemmas on Puiseux series are easy and
we omit them.

Lemma 1. if q(ε) =
∑∞

i=K ciε
i
M is a Puiseux series that is convergent and

bounded on some (0, ε0), then ci = 0 for all i < 0. In other words, the order of
q is greater than or equal to 0.

Lemma 2. For any Puiseux series q(ε) =
∑∞

i=K ciε
i
M with ord(q) = K ≥ 0

there exists an ε0 such that sign(q(ε)) = sign(cK) for all ε ∈ (0, ε0).

A semi-algebraic set is a subset of real Euclidean space defined by a finite
set of polynomial equalities and inequalities. The well-known Tarsi-Seidenberg
theorem states that any set that can be defined in the language of first order
arithmetic is semi-algebraic. We will use this theorem throughout this paper to
establish that sets are semi-algebraic. A semi-algebraic function is a real-valued
function whose graph is a semi-algebraic set. We shall use the following lemma,
establishing a close relationship between semi-algebraic functions and Puiseux
functions.

Lemma 3. [13, lemma 6.2] Let a > 0, if f : (0, a) → R is a semi-algebraic
function, then there exists an 0 < ε′ < a such that f is a Puiseux function on
(0, ε′).

For stochastic games, we use the notation introduced in the introduction.
We shall use the following theorem, due to Solan, as an important lemma. The
theorem applies to 1-player stochastic games (a.k.a., Markov decision processes).
In a 1-player stochastic game, Player 2 has only a single action in each state.
We therefore write pkli rather than pklij for the transition probabilities.

Theorem 2. [14, theorem 6] Let G and G̃ be 1-player stochastic games with
identical state set {1, 2, . . . , N}, transition probabilities pkli , p̃kli and identical
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rewards. Let c be an upper bound on the absolute value of all rewards. Let v, ṽ
be the lower value in stationary strategies in each of the games. Let δ ∈ (0, 1

2N )

satisfy maxi,k,l(
pkl
i

p̃kl
i

,
p̃kl
i

pkl
i

)− 1 ≤ δ, where x
0 := ∞, 0

0 := 1. Then, |v − ṽ| ≤ 4cNδ.

3 Puiseux Family of Strategies

Lemma 4. For any game G there exists an ε0 and a family of stationary strate-
gies (xε)0<ε≤ε0 that are ε-optimal among stationary strategies, where for all
states k and all actions j, xk

ε,j is given by a Puiseux series in ε, that is, there is

an expression qkj (ε) =
∑∞

i=Kk
j
cki,jε

i

Mk
j such that xk

ε,j = qkj (ε) for ε ∈ (0, ε0].

Proof. We want to create a first-order formula Φk
j (x, ε) for every state k and

every action j, which is true if and only if x is the probability that Player I
should play action j in state k in a specific strategy that is ε-optimal among
stationary strategies. Then, since we have described the function by a first-order
formula, it is semi-algebraic, and by Lemma 3 we get that there exists a Puiseux
series that is equal to the function, thus completing the proof. We are going to
use several smaller first-order formulas to describe the formulas Φk

j (x, ε).
To ease notation, during the proof k, l will only be refering to states in the

game, so they will be numbers k, l ∈ [N ]. i, j will be refering to actions in a given
state, so they will be numbers i, j ∈ [m]. We will also use the following vectors

x := (xk
i )

k∈[N ]
i∈[m] , y := (yki )

k∈[N ]
i∈[m] , v := (vk)k∈[N ] , ν := (νk)k∈[N ]

x and y will represent the strategies of Player I and Player II respectively, while
v and ν will be used to represent different values of stationary strategies of the
game starting in each position.

The first two formulas Δα(x), Δβ(y) describe that x is a stationary strategy
and y is a stationary strategy respectively.

Δα(x) :=
∧

k∈[N ],i∈[m]

[
xk
i ≥ 0

] ∧
∧

k∈[m]

⎡

⎣
∑

i∈[m]

xk
i = 1

⎤

⎦

Δβ(y) :=
∧

k∈[N ],i∈[m]

[
yki ≥ 0

] ∧
∧

k∈[N ]

⎡

⎣
∑

i∈[m]

yki = 1

⎤

⎦

Next we want to create a first-order formula Ψ(v) which expresses that vk is the
lower value in stationary strategies when the game starts in state k, that is, the
quantity:

sup
x∈SI

inf
y∈SII

Ex,y lim inf
T→∞

T−1∑

t=0

rt
T
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We can rewrite this quantity by using the following equations proved in [2,
Theorem 5.2]

inf
y∈SII

Ex,y lim inf
T→∞

T−1∑

t=0

rt
T

= inf
y∈SII

lim inf
λ→0

Ex,y
λ

1 + λ

∞∑

t=0

1

(1 + λ)t
rt , ∀x ∈ SI

So the suprema over the two sets are the same, and we can express the value by
creating a formula which express that

vk = sup
x∈SI

inf
y∈SII

lim inf
λ→0

Ex,y
λ

1 + λ

∞∑

t=0

1

(1 + λ)t
rt ∀k ∈ [N ]

A common way of rewriting these value equations is by expanding the expecta-
tions for one state and substituting vl into the equations

vk = sup
x∈SI

inf
y∈SII

lim inf
λ→0

Ex,y
λ

1 + λ

∞∑

t=0

1

(1 + λ)t
rt ∀k ∈ [N ]

⇔ vk = sup
x∈SI

inf
y∈SII

lim inf
λ→0

λ

1 + λ

∑

i,j∈[m]

xk
i y

k
j

⎛

⎝akij +
∑

l∈[N ]

pklij
1

λ
vl

⎞

⎠ ∀k ∈ [N ]

First notice that for any semi-algebraic sets A and B, and any function f : A →
B where there is a formula Π(a, b) that is true if and only is f(a) = b, we can
express the supremum supa∈A f(a) in the following way

Πsup(s) := [∀a ∈ A∃b ∈ B : Π(a, b) ∧ s ≥ b]

∧ [∀ε > 0∃a ∈ A∃b ∈ B : Π(a, b) ∧ s < b+ ε]

And similar formulas can be created for the infimum and the limit, and since
lim infλ→0 f(λ) is limλ′→0 inf0<λ<λ′ f(λ), we only need to create a formula for
the inner part:

λ

1 + λ

∑

i,j∈[m]

xk
i y

k
j

⎛

⎝akij +
∑

l∈[N ]

pklij
1

λ
vl

⎞

⎠

We then create the formula

Π(x,y,ν, λ) :=
∧

k∈[N ]

⎡

⎣νk =
λ

1 + λ

∑

i,j∈[m]

xk
i y

k
j

⎛

⎝akij +
∑

l∈[N ]

pklij
1

λ
νl

⎞

⎠

⎤

⎦

Since SI = {x ∈ R
Nm|Δα(x)}, we have that SI , SII are semi-algebraic. Then

from the previous argument we can create a formula Πsup(v) for the lower value
in stationary strategies. Also, by not removing the last supremum, we can create
a formula Ξ(x,v) that is true if the value of Player I playing strategy x is v.

It is now straightforward to create a formula Υ (x, ε) that is true if and only
if x is a stationary strategy that is ε-optimal among stationary strategies.
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Υ (x, ε) := ∃v ∈ R
N∃ν ∈ R

N :Λα(x) ∧ (0 < ε < 1)

∧Πsup(v) ∧ Ξ(x,ν)
∧

k∈[N ]

[
νk ≥ vk − ε

]

Now to create Φk
j (x, ε), we need to select a unique strategy from the set of

stationary strategies that are ε-optimal among stationary strategies. Let ϕ :
[N ]× [m] → [Nm] be some bijection, which we will use to get an ordering on the
pairs consisting of an action i and a state k. Using this we can write a strategy
as (xι)ι∈[Nm]. We define formulas Pι(x1, . . . , xι, ε) for ι ∈ [Nm] which are true
if there exists a strategy that is ε-optimal among stationary strategies and the
first ι entries are (x1, . . . , xι).

Pι(x1, . . . , xι, ε) := ∃xι+1, . . . , xNm ∈ R : Υ (x1, . . . , xι, xι+1, . . . , xNm, ε)

Notice that for each ι ∈ [Nm], if we assume that we have chosen x1, . . . , xι−1

such that Pι−1(x1, . . . , xι−1, ε) is true, then the set {x ∈ R|Pι(x1, . . . , xι−1, x, ε)}
is non-empty. From the Tarski-Seidenberg theorem the set is semi-algebraic, so
it is defined by a finite set of polynomial equalities and inequalities. This implies
that the set must consist of a finite set of intervals1, so we can choose a unique
strategy by the middle of the interval which lower endpoint is closest to 0. Using
this observation, we can now create a new series of formulas Ψι(x1, . . . , xι−1, x, ε)
for ι ∈ [Nm] which given that Pι−1(x1, . . . , xι−1, ε) is true, x is the middlepoint
of the interval with the lower endpoint closest to 0 among the intervals in the
set {x ∈ R|Pι(x1, . . . , xι−1, x, ε)}.

Ψι(x1, . . . ,xι−1, x, ε) := ∃xι+1, . . . , xNm, a, b ∈ R : a ≤ b ∧ x =
a+ b

2
:

Υ (x1, . . . , xι−1, x, xι+1, . . . , xNm, ε)

∧ [Pι(x1, . . . , xι−1, a, ε) ∨ (a < b ∧ ∀y ∈ (a, b) : Pι(x1, . . . , xι−1, y, ε))]

∧ [∀y < a : ¬Pι(x1, . . . , xι−1, y, ε)]

∧ [∃ε > 0∀y ∈ (b, b+ ε) : ¬Pι(x1, . . . , xι−1, y, ε)]

Now to select our unique strategy we will do the following: For each ε, pick x1

to be the middlepoint of the interval with the lower endpoint closest to 0 among
the intervals in the set {x ∈ R|Pι(x, ε)}, next we pick x2 to be the middlepoint
of the interval with the lower endpoint closest to 0 among the intervals in the
set {x ∈ R|Pι(x1, x, ε)}, and so on. We can then recursively define new formulas
Ωι(x1, . . . , xι, ε) for ι ∈ [Nm] that are true if and only if the unique choice of
the first ι indices described by the above procedure is exactly x1, . . . , xι.

Ω1(x, ε) := Ψ1(x, ε) , Ωι(x1, . . . , xι, ε) := Ωι−1(x1, . . . , xι−1, ε)∧Ψι(x1, . . . , xι, ε)

Using this we can now immediately create the formulas Φι(x, ε) for ι ∈ [Nm] in
the following way:

Φι(x, ε) := ∃x1, . . . , xNm ∈ R : ΩNm(x1, . . . , xNm, ε) ∧ x = xι

1 In this terminology we allow for the interval [a, a] and identify it with the point {a}.
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Now we have obtained that each formula Φι(x, ε) implicitly defines a semi-
algebraic function xι(ε) and due to Lemma 3 we have that there exists Puiseux
series qι(ε) and numbers ει such that xι(ε) = qι(ε) for ε ∈ (0, ει). Now take
ε0 = minι∈[Nm] ει and we have the lemma.

4 Proof of Main Theorem

The proof will be carried out in two steps. First we will use the family of strategies
obtained from Lemma 4 to create a family of strategies only consisting of the
first term of the Puiseux series of the original family. Then by using Theorem
2, we prove their value can not be much worse. Then finally we transform this
family into a monomial family of strategies that are ε−optimal among stationary
strategies.

Proof (of Theorem 1). From Lemma 4 we know that there exists an ε1 and a
family of stationary strategies (xε)0<ε≤ε1 that are ε-optimal among stationary

strategies such that xk
ε,j = qkj (ε) =

∑∞
i=Kk

j
cki,jε

i

Mk
j for ε ∈ (0, ε1] and for all

states k and actions j. Assume without loss of generality that Kk
j = ord(qkj ),

and observe that Kk
j can be ∞ if the Puiseux series is identically 0. Also observe

that since each xk
ε,j is a probability, it is positive and bounded, so by Lemma 1

we know that all Kk
j ≥ 0.

Now for each k, look at the set of Puiseux series {qkj (ε)}j∈[m] and let jk be

an index so qkjk(ε) is one of the Puiseux series in the set which has minimal

order. Observe that qkjk(ε) has order 0. To see this, assume for contradiction that

ord(qkj ) > 0 for all actions j, then all of them behave as power series around

0, thus qkj (ε) → 0 for ε → 0 so the sum
∑

j∈[N ] q
k
j (ε) → 0 for ε → 0, which

contradicts that
∑

j∈[N ] q
k
j (ε) = 1 for all ε ∈ (0, ε1].

Now look at any k again. We want to approximate the family of strategies
defined by qkj (ε) by a new family of strategies defined by finite Puiseux series

ρkj (ε) for ε ∈ (0, ε2], where ε2 will be defined later. We define ρkj (ε) as a conditional
function on the following sets

S1 = {(k, j) ∈ [N ]× [m] | ord(qkj ) = ∞}
S2 = {(k, j) ∈ [N ]× [m] | j �= jk ∧ ord(qkj ) �= ∞}
S3 = {(k, j) ∈ [N ]× [m] | j = jk}

Then ρkj (ε) is defined as follows

ρkj (ε) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

0 if (k, j) ∈ S1

ck
Kk

j ,j
ε

Kk
j

Mk
j if (k, j) ∈ S2

1−∑j∈S2
ck
Kk

j ,j
ε

Kk
j

Mk
j if (k, j) ∈ S3
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So (ρkj (ε))
k∈[N ]
j∈[m] is the derived family of strategies from qkj (ε), defined by ρkj (ε) ≡ 0

when qkj (ε) ≡ 0, and otherwise equal to the first term in qkj (ε) except for one

action, qkjk(ε) which is 1 minus the sum of the other probabilities, to ensure ρkj (ε)

is a probability distribution. Since qkjk(ε) is a probability, then it is positive, so
from Lemma 2 we have that for (k, j) ∈ S2 the constant is positive. But then
we can choose ε2 to be small enough so that for all (k, j) ∈ S2, ρ

k
j (ε) ≤ 1. So for

each k ∈ [N ], (ρkj (ε))j∈[m] becomes a probability distribution.
We will use Theorem 2 to prove that the value of the game where Player I

fixes his strategy to (ρkj (ε))
k∈[N ]
j∈[m] , is not much different than the value of the

game where Player I fixes his strategy to (qkj (ε))
k∈[N ]
j∈[m] . To do this, we must show

that for all states k and all actions j, ρkj (ε) is multiplicatively close to qkj (ε) in
the sense of Theorem 2. We look at the three cases where a pair (k, j) is either
in S1,S2 and S3.

For the case (k, j) ∈ S1, q
k
jk
(ε) = 0 = ρkj (ε), so they are trivially close.

Now we look at an arbritrary (k, j) ∈ S2. To simplify notation we omit the

k, j in the notation, and hence ρkj (ε) becomes ρ(ε) = cKε
K
M and qkj (ε) becomes

q(ε) =
∑∞

i=K cKε
i
M . We want to show that there exists an εkj for this (k, j) ∈ S2

such that for all ε ∈ (0, εkj ) we have

q(ε)

(

1− ε
1
M
1 + |cK+1|

cK

)

≤ ρ(ε) ≤ q(ε)

(

1 + ε
1
M
1 + |cK+1|

cK

)

To see this holds, we look at the difference between the two numbers

q(ε)

(

1 + ε
1
M
1 + |cK+1|

cK

)

− ρ(ε) =

∞∑

i=K+1

ciε
i
M + ε

1
M
1 + |cK+1|

cK

∞∑

i=K

ciε
i
M

= ε
K+1
M (cK+1 + cK

1 + |cK+1|
cK

) + . . .

So the first term is positive, and Lemma 2 gives us that the series is positive

on some area (0, ε′). Similarly we can show that q(ε)
(
1− ε

1
M

1+|cK+1|
cK

)
− ρ(ε) is

negative on some area (0, ε′′), so by letting εkj = min(ε′, ε′′) we get the desired
inequalities. Since this works for an arbritary state k and action j where (k, j) ∈
S2, we can create similar inequalities that work for all the states and actions in
S2 by defining

C := max
(k,j)∈S2

1 + |ck
Kk

j +1,j
|

ck
Kk

j ,j

, Q := min
(k,j)∈S2

1

Mk
j

, ε3 := min
(k,j)∈S2

εkj

This immediately implies that for all (k, j) ∈ S2 we get the following multiplica-
tive relation between qkj (ε) and ρkj (ε)

qkj (ε)
(
1− εQC

) ≤ ρkj (ε) ≤ qkj (ε)
(
1 + εQC

) ∀ε ∈ (0, ε3)
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Now we look at (k, j) ∈ S3. From the observations on S2 we have that for all
(l, i) ∈ S2, that ρli(ε) ≥ qli(ε)

(
1− εQC

)
for ε ∈ (0, ε3). Furthermore since we

know that
∑

i∈[m] q
k
i (ε) = 1, it holds that qkj (ε) = 1−∑i∈S2

qki (ε). We use these
observations to compute the following

ρkj (ε) = 1−
∑

i∈S2

ρki (ε) ≤ 1− (1 − εQC)
∑

i∈S2

qki (ε)

= εQC + (1 − εQC)− (1− εQC)
∑

i∈S2

qki (ε)

= εQC + (1 − εQC)(1 −
∑

i∈S2

qki (ε)) = εQC + (1− εQC)qkj (ε)

= qkj (ε)

(
εQC

qkj (ε)
+ 1− εQC

)

≤ qkj (ε)

(
2εQC

ck0,j
+ 1− εQC

)

The last inequality is conditioned on ε being small enough. To see how small
ε must be, consider the Puiseux series qkj (ε). First recall that for (i, l) ∈ S3,

qli(ε) has order 0, so the initial term is just a constant ck0,j, and from Lemma

2 we know that the constant is positive. Now look at the the tail
∑∞

i=1 c
k
i,jε

i

Mk
j

without the first term. The tail is just a fractional power series, so it tends to
0 for ε → 0. This means that for any constant κ, then there exists an ε′ such

that for all ε < ε′ the tail is smaller than κ. By using the constant
ck0,j
2 , we get

that ρkj (ε) must be larger than
ck0,j
2 when ε ∈ (0, ε′), giving us the inequality for

ε ∈ (0, ε′). If we then chose ε′′ = min(ε′, ε3), then all the inequalities of the above
computation hold. In the same way, we get that there exists an ε′′′ such that

ρkj (ε) ≥ qkj (ε)

(
−2εQC

ck0,j
+ 1 + εQC

)

∀ε ∈ (0, ε′′′)

Now let εkj = min(ε′′, ε′′′), and let ε4 = min(j,k)∈S3
εkj . We now get that both

inequalities hold for all (k, j) ∈ S3

qkj (ε)

(
−2εQC

ck0,j
+ 1 + εQC

)

≤ ρkj (ε) ≤ qkj (ε)

(
2εQC

ck0,j
+ 1− εQC

)

Next by defining c = min(j,k)∈S3
ck0,j, and inverting the signs of εQC in the above

inequalities, the bound also covers (k, j) ∈ S2 as well. But then we have that for
all ε ∈ (0, ε4) and all (k, j) ∈ S1 ∪ S2 ∪ S3 that

qkj (ε)

(−2εQC

c
+ 1− εQC

)

≤ ρkj (ε) ≤ qkj (ε)

(
2εQC

c
+ 1 + εQC

)

Notice that 2εQC
c +1+εQC = 1+εQ 2C+cC

c . To ease the notation of the upcoming
calculations we define

lw(ε) := 1− εQ
2C + cC

c
, up(ε) := 1 + εQ

2C + cC

c
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Now we are ready to use Theorem 2 to bound the difference in the value of the
two Markov Decision processes that appear when we fix the strategy of Player I

to be (qkj (ε))
k∈[N ]
j∈[m] and (ρkj (ε))

k∈[N ]
j∈[m] .

Since the strategy (qkj (ε))
k∈[N ]
j∈[m] is ε−optimal among stationary strategies, then

when Player I fixes its strategy to (qkj (ε))
k∈[N ]
j∈[m] , Player II can not gain more than

ε more than vk + ε. Similarly we can look at the game where Player I fixes his

strategy to (ρkj (ε))
k∈[N ]
j∈[m] . If we can prove that Player II can not gain more than

vk+γ in this game, then we get that the strategy is γ−optimal among stationary
strategies.

Let (pklj (ε))
k,l∈[N ]
j∈[m] be the transition probabilities of the Markov Decision pro-

cess where we fix the strategy of Player I to be (qkj (ε))
k∈[N ]
j∈[m] . Similarly, let

(p̃klj (ε))
k,l∈[N ]
j∈[m] be the transition probabilities when we fix Player I’s strategy

to be (ρkj (ε))
k∈[N ]
j∈[m] . Then, we get:

p̃klj (ε)

pklj (ε)
=

∑
j∈{1,...,m} ρ

k
i (ε)p

kl
ij

∑
j∈{1,...,m} q

k
i (ε)p

kl
ij

⇒ lw(ε) ≤ p̃klj (ε)

pklj (ε)
≤ up(ε)

So we have an upper bound on the fraction
p̃kl
j (ε)

pkl
j (ε)

. To upper bound the fraction

pkl
j (ε)

p̃kl
j (ε)

, observe that when ε is smaller than some ε′, then lw(ε), up(ε) > 0 and we

get the following upper bound

lw(ε) ≤ p̃klj (ε)

pklj (ε)
⇒ pklj (ε)

p̃klj (ε)
≤ 1

lw(ε)

Also, since lw(ε) · up(ε) ≤ 1, then 1
lw(ε) ≥ up(ε), so the fraction

p̃kl
j (ε)

pkl
j (ε)

is also

upper bounded by 1
lw(ε) .

We now use Theorem 2 with δ := 1
lw(ε) − 1, and a as a an upper bound on

the absolute value of the rewards. Now look at any state k, and let γ, γ̃ > 0
be the numbers such that vk + γ and vk + γ̃ are the values for Player II of

the games where Player I has fixed his strategy to (qkj (ε))
k∈[N ]
j∈[m] and (ρkj (ε))

k∈[N ]
j∈[m]

respectively. Then from Theorem 2 we get

vk + γ − (vk + γ̃) = γ − γ̃ ≥ −4Nδa

⇒γ̃ ≤ 4N

(
1

1− εQ 2C+cC
c

− 1

)

a+ γ ≤ 4N
εQ 2C+cC

c

1− εQ 2C+cC
c

a+ ε

Since the denominator 1 − εQ 2C+cC
c tends to 1 for ε → 0, then for ε smaller

than some ε′′′′, the denominator is always larger than 1
2 . So by letting ε0 :=

min(ε′′′′, ε4) we get that γ̃ ≤ 8Na(2C+cC)
c εQ+ε. This implies that (ρkj (ε))

k∈[N ]
j∈[m] is a(

8Na(2C+cC)
c εQ + ε

)
-optimal strategy among stationary strategies. Now consider
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the strategy defined by ϕk
j := ρkj

((
c

8Na(2C+cC)ε
) 1

Q

)

, which is then (εQ + ε)-

optimal among stationary strategies. The strategy
(
ϕk
j (

ε
2 )
)k∈[N ]

j∈[m]
is then an ε-

optimal strategy, since
(
ε
2

)Q
+ ε

2 ≤ ε.

Finally notice that the strategy
(
ϕk
j (

ε
2 )
)k∈[N ]

j∈[m]
is not a monomial family of

strategies, since it could have fractional exponents. To fix this, we define

M := lcmj∈{1,...,m},k∈{1,...,N}Mk
j ,

and let xk
ε,j := ρkj

(((
ε
2

)Q
)M
)

. Then (xε)0<ε≤ε0 is a monomial family of strate-

gies, which is also ε−optimal amough stationary strategies, because
(
ε
2

)QM ≤ ε
2 ,

hence adding the exponent QM only improves the approximation of the value.
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