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Abstract. We introduce and solve a new component-based synthesis
problem that combines the synthesis from libraries of recursive
components introduced by Lustig and Vardi with the modular synthe-
sis introduced by Alur et al. for recursive game graphs. We model the
components of our libraries as game modules of a recursive game graph
with unmapped boxes, and consider as correctness specification a target
set of vertices. To solve this problem, we give an exponential-time fixed-
point algorithm that computes annotations for the vertices of the library
components by exploring them backwards. We also show a matching
lower-bound via a direct reduction from linear-space alternating Tur-
ing machines, thus proving EXPTIME-completeness. Finally, we give a
second algorithm that solves this problem by annotating in a table the
result of many local reachability game queries on each game component.
This algorithm is exponential only in the number of the exits of the
game components, and thus shows that the problem is fixed-parameter
tractable.

1 Introduction

Synthesis is the construction of a system that satisfies a given correctness specifi-
cation. This problem has been studied in different settings, and in particular the
controller synthesis problem has a natural formulation as a two-player game (see
[13,14]). Given a description of the system, where some of the choices depend
upon the input and some represent uncontrollable nondeterminism (which may
depend on the interaction with the external environment), the controller syn-
thesis problem asks to determine a controller that supplies inputs to the system
such that this satisfies a given correctness specification. Synthesizing a controller
corresponds to computing winning strategies in a two-player game.

For pushdown systems modeled as recursive game graphs, where the system is
composed of modules that can call each other in a potentially recursive manner
(the game counterpart of recursive state machines [1]), it naturally arises the
notion of modular strategy [3]. Asking for a modular strategy in a recursive
game graph equals to require that the synthesized controller is formed of a set
of finite state controllers (thus adhering to the modular design of controllers),
one for each of the system modules. In executing such a controller, whenever a
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module is called, the finite state controller for that module re-starts, i.e., it is
oblivious of the previous history in the computation.

Component-based design plays a key role in configurable and scalable de-
velopment of efficient hardware as well as software systems. For example, it is
current practice to design specialized hardware using some base components that
are more complex than universal gates at bit-level, and programming by using
library features and frameworks.

In the modular synthesis for recursive game graphs, the call-return structure is
given and cannot be modified. Therefore, the synthesis process concerns only the
internal structure of each module and the modules cannot be freely composed.
The work presented in this paper goes in the direction of providing new results
for the automatic synthesis from components. In particular, we formulate and
solve a new modular component-based synthesis problem for recursive game
modules that, besides requesting the modularity of the solutions, allows also to
re-configuring the call-return structure and using multiple instances of a same
game module, each instance being controlled in a possibly different manner.

The game modules for our component-based synthesis are taken from a finite
set (library) of game components. Game components differ from game modules
in that the boxes are not mapped to any module (as an empty position in a code
where we could insert a function call). Namely, a game component is a two-player
finite game graphs with two kinds of vertices: standard nodes and boxes. Each
box has call and return points, and each component has distinguished entry and
exit nodes. The edges are from a node or a return to a node or a call within the
same component. Moreover, the nodes and the returns are split among the two
players (pl0 and pl1).

The correctness specification is given as a set of target exits T of a game com-
ponent Cmain . The modular synthesis problem asks to construct (1) a recursive
game graph G by using as game modules copies of the library components and
(2) a modular strategy f for pl0 in G such that: all the maximal plays σ, starting
from the entry of Cmain and that conform to f , visit a vertex in T . We solve
this problem and address its computational complexity.

Our first contribution is a fixed-point algorithmA1 that decides in exponential
time the above modular synthesis problem. This algorithm iteratively computes
a set Φ of tuples of the form (u,E, {μb}b∈B) where u is a vertex of a game
component C, E is a set of C exits, B is the set of C boxes and for each box
b ∈ B, μb is either a set of exits of another component Cb or undefined. Each
such tuple summarizes for vertex u a reachable local target E (via a modular
strategy of pl0) and a set of assumptions {μb}b∈B that are used to get across the
boxes in order to reach the local target. We start from the tuples of the target
exits T and then propagate the search backwards in the game components.
Internally to each component, the search proceeds as in the standard attractor
set construction [12] and it is propagated through calls to other components
from the returns to the exits and then back from the entries to the calls. In this,
tuples that have incompatible assumptions or refer to a different local target are
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treated as belonging to different searches and thus are not used together in the
update rules.

Our second contribution is to show a matching lower bound by a reduction
from linear-space alternating Turing machines. In the reduction, we use only
four game components and O(n) exits, where n is the number of cells used in
the configurations of the Turing machine.

Finally, we delve deeper in the computational complexity of this problem, and
give a second decision algorithm A2 for it. The main idea here is to solve many
reachability game queries “locally” to each game component and maintain a table
with the obtained results to avoid recomputing. Each table entry corresponds
to a game component and a set of its exits (used as targets in the query), and
for the successful queries, contains a link to each table entry that has been used
to reach the target (we look up into the table to propagate the search across
the boxes). We observe that A2 takes time exponential only in the number of
exits, while A1 takes time exponential also in the number of boxes. This is due
mainly to the fact that A1 may compute and store exponentially many different
ways of assigning the boxes to modules, in contrast, A2 computes and stores
just one of them. Therefore, since alternating reachability in finite game graphs
is already PTIME-hard, by algorithm A2 we get that the considered problem is
PTIME-complete when the number of exits is fixed.

Related Work. The synthesis problem addressed in this paper combines the syn-
thesis from libraries of recursive components [11] with the synthesis of modular
strategies for recursive game graphs [3]. In fact, if the game components of the
considered library do not contain pl1 vertices, the problem reduces to a synthesis
problem from recursive component libraries. If we instead constrain the solution
to use at most one copy for each game component, we can encode our synthesis
problem as a synthesis of modular strategies for recursive game graphs.

We recall that in [11] the components are modeled with transducers with call-
return structures, and the correctness specification is given as a temporal logic
formula over nested words. The same synthesis problem with LTL specifications
and components modeled as standard finite-state transducers is addressed in [10].
In [4], this problem is formulated for synthesizing hierarchical systems bottom-
up with respect to a different μ-calculus specification for each component in the
hierarchy. All these synthesis problem turn out to be 2EXPTIME-complete. The
synthesis from libraries of components with simple specifications has been also
implemented in tools (see [8] and references therein).

Modular synthesis of recursive game graphs with several classes of ω-regular
specifications is solved in [2] and is shown to be EXPTIME-complete already
with finite automata specifications. The computational complexity of this prob-
lem turns out to be NP-complete for reachability specifications [3]. In [6], the
modular synthesis of recursive game graphs is shown to be 2EXPTIME-complete
with respect to visibly pushdown specifications. A solution to CaRet games that
computes winning strategies that are modular for the recursive game graph ex-
tended with set of subformulas of the specification formula is given in [5]. The
notion of modular strategy is also of independent interest and has recently found
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application in the automatic transformation of programs for ensuring security
policies in privilege-aware operating systems [7].

2 A Modular Synthesis Problem

In this section, we define our modular synthesis problem. For this, we introduce
first some preliminary notions and recall known ones.

For n ∈ N, with [n] we denote the set of naturals i s.t. 1 ≤ i ≤ n.

Library of (game) Components. For h, k ∈ N, a (h, k)-component is a finite graph
with two kinds of vertices, the standard nodes and the boxes, and with h entry
nodes and k exit nodes. Each box has h call points and k return points, and the
edges take from a node/return to a node/call in the component.

Formally, for a box b, we denote with (i, b) the i-th call of b for i ∈ [h],
and with (b, i) the i-th return of b for i ∈ [k]. A (h, k)-component is a tuple
(N,B,En ,Ex , δ) where N is a finite set of nodes, B is a finite set of boxes, En ⊆
N is the set of entries, Ex ⊆ N is the set of exits, and δ : N ∪Retns → 2N∪Calls

where Retns = {(b, i) | b ∈ B, i ∈ [k]} and Calls = {(i, b) | b ∈ B, i ∈ [h]}. The
calls, returns and nodes of a component form its set of vertices. In the following,
when we do not need to specify h and k, we simply write component.

A game component is a component whose nodes and returns are split into two
sets P 0 and P 1, where P 0 is the set of player 0 (pl0) positions and P 1 is the set
of player 1 (pl1) positions. We denote it as a tuple (N,B,En ,Ex , δ, P 0, P 1).

For h, k > 0, a library of (game) components is a finite set Lib = {Ci}i∈[n]

where each Ci is a (game) (h, k)-component.
To ease the presentation we make the following standard assumptions:

– there is only one entry node for every (game) component and thus just one
call for each box, i.e., we refer to (game) (1, k)-components;

– in each (game) component there are no transitions taking to its entry and
no transitions leaving from its exits, i.e., the entries are sources and the exits
are sinks in the graph representation of the component;

– there is no transition from a return to a call, i.e., two boxes are not directly
connected by a single transition.

Instances from a Library. Intuitively, an instance of a (game) component C is a
copy A of C where each box is mapped to an instance of a (game) component
(possibly A itself). Depending on whether we consider a library of components
or of game components, the instances define a recursive state machine [1] or a
recursive game graph [3].

Fix a library Lib = {C1, . . . , Cn} of game components.
A recursive game graph from Lib is G = (M,min, {Sm}m∈M ) where M is a

finite set of module names, min ∈ M is the name of the initial module and
for each m ∈ M , Sm is a game module. A game module Sm is defined as
(Nm, Bm, Ym, {em},Exm, δm, P 0

m, P 1
m) where:
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– Ym : Bm → (M \ {min}) is a labeling function that maps every box to a
game module;

– (Nm, Bm, {em},Exm, δm, P 0
m, P 1

m) is equal to a component C of Lib up to a
renaming of nodes and boxes such that calls and returns of a box b are 1-to-1
mapped to the entries and the exits of MYm(b), that is, denoting ExYm(b) =
{x1, . . . , xk}: the call of b is renamed to (eYm(b), b) and each return (b, i) is
renamed to (b, xi).

The calls, returns and vertices of Sm are denoted respectively Callsm, Retnsm
and Vm. We also assume the following notation: V =

⋃
m Vm (set of all vertices);

B =
⋃

m Bm (set of all boxes); Calls =
⋃

m Callsm (set of all calls); Retns =⋃
m Retnsm (set of all returns); and P i =

⋃
m P i

m for i = 0, 1 (set of all positions
of pl i).

The definition of a recursive state machine from Lib can be obtained from
that of recursive game graph by ignoring the splitting among pl0 and pl1 nodes.

A (global) state of G is composed of a call stack and a vertex. Formally,
the states are of the form (γ, u) ∈ B∗ × V where γ = b1 . . . bh, b1 ∈ Bmin ,
bi+1 ∈ BY (bi) for i ∈ [h − 1] and u ∈ VY (bh). In the following, for a state
s = (γ, u), we denote with V (s) its vertex, that is V (s) = u.

A play of G is a (possibly finite) sequence of states s0s1s2 . . . such that s0 =
(ε, emin) and for i ∈ N, denoting si = (αi, ui), one of the following holds:
− Internal move: ui ∈ (Nm ∪Retnsm) \Exm, ui+1 ∈ δm(ui) and αi = αi+1;
− Call to a module: ui ∈ Callsm, ui = (b, em′), ui+1 = em′ and αi+1 = αi.b;
− Return from a call: ui ∈ Exm, αi = αi+1.b, and ui+1 = (b, ui).

Modular Strategies. A strategy of a player pl is a function f that associates a
legal move to every play ending in a node controlled by pl . A modular strategy
[3] for G consists of a set of local strategies, that are used together as a global
strategy for a player. A local strategy for a game module S can only refer to the
local memory of S, i.e. the sequence of S vertices that are visited in the play in
the current invocation of S.

Formally, fix j ∈ {0, 1}. A modular strategy f of pl j is a set of functions

{fm}m∈M , one for each game module, where for every m, fm : V ∗
m.P j

m → Vm

such that fm(σ.u) ∈ δm(u) for every σ ∈ V ∗
m, u ∈ P j

m.
Fix a play σ = s0s1...sn where si = (γi, ui) for any i. Denote with σi =

s0s1...si, i.e., the prefix of σ up to index i. With ctr(σi) we denote m ∈ M such
that ui ∈ Vm, that is the name of the game module where the control is after σi.
The local history at σi, denoted λ(σi), is the maximal sequence of Sm vertices uj ,
j ≤ i, starting with the most recent occurrence of entry em where m = ctr(σi).

A play σ conforms to a modular strategy f = {fm}m∈M of pl j if for every

i <| σ |, denoting ctr(σi) = m, ui ∈ P j
m implies that ui+1 = fm(λ(σi)).

Modular Synthesis from Libraries of Game Components. A modular game over a
library is (Lib, Cmain , T ) where Lib is a library of game components, Cmain ∈ Lib
and T is a set of exits of Cmain .
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Modular Game
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Fig. 1. An example of modular synthesis

Given an instance (Lib, Cmain , T ) of a modular game over a library, the mod-
ular synthesis problem is the problem of determining whether: for some recursive
game graph G from Lib whose initial module is an instance of Cmain , there exists
a modular strategy f for pl0 in G such that all the maximal plays that conform
to f reach an exit of the initial module of G that corresponds to an exit in T .

Such a strategy f for pl0 is called a winning modular strategy.

Example. We illustrate the definitions with an example. In the first column of
Fig. 1, we give (Lib, C0, {x1}), an instance of a modular game over a library of
game components. Each game component has two exits, and Lib is composed of
two game components C0 and C1. In the figure, we denote the nodes of pl0 with
circles and the nodes of pl1 with squares. Rounded squares are used to denote
the boxes. The target is marked with a double circle. C0 has one entry e0, two
exits x1 and x2, and two boxes b1 and b2. C1 has one entry e1, two exits x3 and
x4, and one box b3.

In the second column of the figure, we show one of the possible recursive game
graphs that can be obtained from Lib and whose initial module C0

0 is an instance
of C0. Note that we have marked as target the vertex of C0

0 that corresponds to
(i.e., is a copy of) x1. The other modules C1

1 and C2
1 are instances of C1. Note

that each box now is mapped to a game module, for example b01 is mapped to
C2

1 . Also, the box b13 of C1
1 is mapped to C2

1 and the box b23 of C2
1 is mapped to

C1
1 thus forming a cycle in the chain of recursive calls.
Consider a modular strategy for pl0, where the local strategy of C0

0 selects
the call from u2, the local strategy of C1

1 selects the call from its entry and
the local strategy for C2

1 selects the upper exit from its entry. This strategy is
winning and modular. In the third column of the figure, we show a recursive
state machine, obtained from the considered recursive game graph by resolving
the moves of pl0 according to this modular strategy. To simplify the figure, we
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have deleted all the unreachable transitions. Clearly, each run of this machine
reaches the target. Also, note that in the considered game it is not possible to
win if we do not instantiate at least two instances of C1.

3 Solving Our Modular Synthesis Problem

In this section, we describe an exponential-time fixed-point algorithm to solve
the modular synthesis problem.

We fix a library of game components Lib = {Cmain , C1, . . . , Cn} and a target
set T of Cmain exits.

Intuitively, our algorithm iteratively computes a set Φ of tuples of the form
(u,E, {μb}b∈B) where u is a vertex of a game component C, E is a set of C exits,
B is the set of C boxes and for each box b ∈ B, μb is either a set of exits of a
game component or undefined (we use ⊥ to denote this). The intended meaning
of such tuples is that: there is a local strategy f of pl0 in C such that starting
from u, each maximal play conforming to f reaches an exit within E, under the
assumption that: for each box b ∈ B, if μb is defined, then from the call of b the
play continues from one of the returns of b corresponding to a x ∈ μb (if μb is
undefined means that no play conforming to f visits b starting from u). Thus,
each tuple (u,E, {μb}b∈B) summarizes for vertex u a reachable local target E
and a set of assumptions {μb}b∈B that are used to get across the boxes.

For computing Φ, we use the concept of compatibility of the assumptions.
Namely, we say that two assumptions μ and μ′ are compatible if either μ = μ′,
or μ′ = ⊥, or μ = ⊥ (i.e., there is at most one assumption that has been
done). Moreover, we say that the assumptions μ1, . . . , μm are passed to μ if
μ =

⋃
i∈[m] μi (we assume that ⊥ ∪X = X ∪⊥ = X holds for each set X).

The set Φ is initialized with all the tuples of the form (u, T , {⊥}b∈Bmain ) where
u ∈ T and Bmain is the set of boxes of Cmain . Then, Φ is updated by exploring
the components backwards according to the game semantics, and in particular:
within the components, tuples are propagated backwards as in an attractor set
construction, by preserving the local target and passing to a node the assump-
tions of its successors (provided that multiple assumptions on the same box
are are passed they are pairwise compatible); the exploration of a component
is started from the exits with no assumptions on the boxes, whenever the cor-
responding returns of a box b have been discovered with no assumptions on b;
the visit of a component is resumed at the call of a box b, whenever (1) there is
an entry of a component that has been discovered with local target X and (2)
there is a set of b returns corresponding to the exits X with no assumptions on
b (thus, that can be responsible for discovering the exits in X as in the previous
case) and with compatible assumptions on the remaining boxes; if this is the
case, then the call is discovered with the assumption X on box b and passing the
local target and the assumptions on the other boxes as for the above returns.

Below, we denote with bx the return of a box b corresponding to an exit x
(recall that all game components of a library have the same number of exits, and
so do the boxes). The update rules are formally stated as follows:
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Update 1: For a pl0 vertex v, we add (v, E, {μb}b∈B) provided that there is
a transition from v to u and (u,E, {μb}b∈B) ∈ Φ (the local target and the
assumptions of a v successor are passed on to a pl0 vertex v).

Update 2. For a pl1 vertex v, denote u1, . . . , um all the vertices s.t. there is a
transition from v to ui, i ∈ [m], then we add (v, E, {μb}b∈B) to Φ provided
that for each i, j ∈ [m] and b ∈ B: (1) there is a (ui, Ei, {μi

b}b∈B) ∈ Φ, (2)

Ei = Ej , (3) μi
b and μj

b are compatible, and (4) μb =
⋃

i∈[m] μ
i
b (all the v

successors must be discovered under the same target and with compatible
assumptions; target and assumptions are passed on to a pl1 vertex v).

Update 3. For an exit u, we add a tuple (u,E, {⊥}b∈B′) to Φ provided that
u ∈ E and for a box b′ it holds that there are tuples (b′x, Ex, {μx

b }b∈B) ∈ Φ,
one for each x ∈ E, such that for all x, y ∈ E and b ∈ B, (1) μx

b′ = ⊥, (2)
Ex = Ey, and (3) μx

b and μy
b are compatible (the discovery of the exits follows

the discovery of the corresponding returns under compatible assumptions
and the same local target).

Update 4. For a call u of a box b′, we add a tuple (u,Eu, {μu
b }b∈B) to Φ

provided that (i) there is an entry e s.t. (e, Ee, {μe
b}b∈B′) ∈ Φ, (ii) for each

return b′x, x ∈ Ee, there is a tuple (bx, E, {μx
b }b∈B) ∈ Φ s.t. all these tuples

satisfy (1), (2) and (3) of Update 3, and moreover, (iii) Eu = E, μu
b =⋃

x∈Ee
μx
b for b �= b′, and μu

b′ = Ee (the discovery of a call u of box b′ follows
the discovery of an entry e from exits Ee that in turn have been discovered
by matching returns b′x, x ∈ E; thus on u we propagate the local target
and the assumptions on the boxes b �= b′ of the returns b′x and make an
assumption Ee on box b′).

We compute Φ as the fixed-point of the recursive definition given by the above
rules and outputs “YES” iff (e, T , {μb}b∈Bmain ) ∈ Φ for the entry e of Cmain .

Observe that, the total number of tuples of the form (u,E, {μb}b∈B) is bounded
by |Lib| 2O(kβ) where k is the number of exits of each game component in Lib and
β is the maximum over the number of boxes of each game component. Therefore,
the algorithm always terminates and takes at most time exponential in k and β,
and linear in the size of Lib.

Soundness of the algorithm is a consequence of the fact that each visit of a
game component is done according to the standard attractor set construction,
and repeated explorations of each component are kept separate by allowing to
progress backwards in the graph only with the same local target and compatible
assumptions on the boxes. By not allowing to change the box assumptions (when
defined), we ensure that we cannot cheat by using different assumptions in re-
peated visits of a box within the same exploration. The computed strategy is
clearly modular since we compute it locally to each graph component. Note that
we can end up computing more than a local strategy for each graph component,
but this does not break the modularity of the solution since this happens when in
the computed solution we use different instances of the component. Also, observe
that for each game component we construct at most a local strategy for each
possible subset of its exits, thus we bound the search of a solution to modular
strategies of this kind.
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To prove completeness, we first observe that using standard arguments one
can show that:

Lemma 1. If there is a modular winning strategy for an instance of the modular
synthesis problem over a library Lib, then there is a winning modular strategy
f for a recursive game graph G from Lib such that: for each two instances S
and S′ of a same game component in Lib, the sets of exits visited along any play
conforming to f in S and S′ differ.

Observe that by the above lemma, we can restrict the search for a solution
within the modular strategies of the instances of a Lib that have at most 2k copies
of each game component, where k is the number of exits for the components.
Therefore, combining this with the results from [3] we get a simple argument to
show membership to NEXPTIME of the considered problem.

The next step in the completeness argument is to show that if there is a
winning modular strategy f as for Lemma 1, then our algorithm outputs YES.
Denoting with G the recursive game graph from Lib for which f is winning,
this can be shown by proving by induction on the structure of G that: if on a
game module S of G that is an instance of C ∈ Lib, f forces to visit a set of
exits corresponding to the exits X of C, then the algorithm adds to Φ the tuples
(x,X, {⊥}b∈B) for each x ∈ X and eventually discovers the entry of C with local
target X . We omit the proof of this here.

Therefore, we get that the algorithm is a solution of the modular synthesis
problem from game component libraries, and the following theorem holds.

Theorem 1. The modular synthesis problem from libraries of game components
with k exits and at most β boxes can be solved in time linear in the size of Lib
and exponential in k and β.

4 Computational Complexity Analysis

Lower-bound. We reduce the membership problem for linear-space alternating
Turing machines to the modular synthesis problem for libraries of game compo-
nents, thus showing EXPTIME-hardness for this problem.

Consider a linear-space alternating Turing machine A and an input word
w = a1 . . . an. Without loss of generality, we assume that the transition function
δ of A is the union of two functions δ1 and δ2 where δi : Q×Σ → {L,R}×Q for
i ∈ [2], and Q is the set of control locations, Σ is the tape alphabet, and L/R
cause to move the tape head to left/right. A configuration of A is represented as
b1 . . . (q, bi) . . . bn where bj is the symbol at cell j of the input tape for j ∈ [n],
q is the control state and the tape head is on cell i. The control states are
partitioned into states where the ∃-player can move, and states where the ∀-
player can move. A computation of M is a strategy of the ∃-player, and an input
word w is accepted iff there exists a computation ρ that reaches a configuration
with a final state on all the plays conforming to ρ.

Denotingh = n |Σ| (|Q|+1), fix two setsX = {x1, . . . , xh} andY = {y1, . . . , yh}
such that each xi and yi correspond exactly to a symbol and a position in a config-
uration ofA (i.e., for each symbol inΣ∪Q×Σ we have exactly n variables fromX
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b∀2

b∀1
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D2

Fig. 2. Graphical representation of the game components Cmain , C∀ and Cfin

andn from Y , one for each position on the tape).We can encode each configuration
σ1 . . . σn ofA by setting to true a variable xj (resp. yj) iff it corresponds to a σi for
i ∈ [n] (that is, to a configuration symbol and its position in the configuration). It
is well-known that for each δi, we can construct a Boolean circuit (using only the
logical gates AND and OR) with inputs x̄ = x1 . . . xh and outputs ȳ = y1, . . . , yh,
such that if x̄ is an encoding of a configuration, then ȳ is the next configuration
after the application of the only possible transition of δi.

From each such circuit we can construct a game graph by replacing each AND
gate with a node of pl1 and each OR gate with a node of pl0. We denote with
D1 and D2 the game graphs corresponding to the above circuits for δ1 and δ2,
respectively. The encoding of the bits is done by reachability, that is, true at an
input xi corresponds to connecting it to a vertex that can lead to the target,
and false otherwise. Since the circuits compute a next configuration, from each
output wire yi that evaluates to true we will be able to get to the target by a
strategy that resolves the choices on the pl0 nodes (and thus the OR gates), and
this will not be possible for those yi that evaluates to false.

We construct a library Lib containing exactly the game components Cmain ,
C∀, C∃, and Cfin (see Fig. 2). Each component has exactly h exits, each one
corresponding to a variable xi for i ∈ [h]. In Cmain , we arbitrarily select an
exit as the only vertex in the target T , and link to it all the returns of the box
that encode the initial configuration (we can assume that A has only one initial
state). In C∀, all the exits are wired as inputs to both D1 and D2 except for
those that correspond to states of the ∃-player. We add a pl0 node that has no
out-going edges and is wired as input to D1 and D2 for the remaining inputs.
The outputs of D1 and D2 are wired respectively to the boxes b∀1 and b∀2 , and
the calls of these boxes are connected to the entry, that is a pl1 node. C∃ is
as C∀ except that the entry is a pl0 node and the exits that are not connected
correspond to ∀-player states. The component Cfin has just the entry and the
exits. The entry is a pl0 node and is connected to all the exits that correspond
to a final state.

It is simple to verify that if, starting from an instance of Cmain , we map
the boxes such that to reproduce an accepting computation of A, then we get
a recursive game graph that admits a modular winning strategy of pl0. Vice-
versa, suppose that there is a modular winning strategy of pl0 in the synthesis
problem (Lib, Cmain , T ). First, observe that since the returns from which we
reach the target encode a legal initial configuration, each game module to which
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we map the box b will have the corresponding exits with the same property.
Moreover, in order to reach backwards the entries of all the used instances of
Cmain , C∀, and C∃, at some point we need to use a copy of Cfin . Now, if the
initial state is a ∀-player state and we map b to an instance of C∃, since the exit
encoding the head position and the state will not be wired to D1 and D2, in all
the modules below in the hierarchy of calls, none of such exits will be connected
to the target. Thus, also the entry of each copy of Cfin in this hierarchy would
not be connected to the target, and so all the entries up to the entry of the
copy of Cmain , thus contradicting the hypothesis. A contradiction can be shown
also in the dual case. Thus, at any point we must have mapped each box to an
instance of either C∃ or C∀ depending on whether the next move is of the ∃-player
or the ∀-player. Since, the graphs D1 and D2 ensure the correct propagations
of the reachability according to the computed configurations, we can correctly
reconstruct a computation ρ of A from the modular strategy. Moreover, since a
winning modular strategy ensures that each maximal sequence of module calls
ends with a call to an instance of Cfin , then each play of ρ ends in a final
configuration and thus ρ is accepting, that concludes the proof.

Lemma 2. There is a polynomial-time reduction from the membership problem
for linear-space alternating Turing machines to the modular synthesis problem
for libraries of game components. Moreover, the resulting library has four game
components each one with at most two boxes and a number of exits which is
linear in the size of the input word.

Complexity and fixed-parameter tractability. The algorithm from the previous
section, say A1, shows membership to EXPTIME for the modular synthesis prob-
lem. Therefore, by Lemma 2, we get:

Theorem 2. The modular reachability problem is EXPTIME-complete.

Note that A1 takes time exponential in both the number of boxes β and the
number of exits k. We sketch a different algorithm that shows that this problem
is indeed in PTIME when the number of exits for each game component is fixed.

The main idea is to solve many reachability game queries on standard finite
game graphs, where each query asks to determine for a game component C and
a subset of its exits E: if there exists a modular strategy f of pl0 such that all
the maximal plays, which conform to f and start from the entry of C, reach one
of the exits from E. To avoid recomputing, the results of such queries are stored
in a table T , and the algorithm halts when no more queries can be answered
positively.

To solve the query for a component C and a set of its exits E, we extend the
standard attractor set construction. Namely, we accumulate the winning set for
pl0 as usual for nodes and returns. To add the call of a box b, we look in the
table for a positively answered query whose target set correspond to returns of b
that are already in the winning set. If the entry of C is added to the winning set,
then we update the T entry for E and C to YES, and store the links to the table
entries that have been used to add the calls (observe that we just need to store
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exactly a link for each box that is traversed to win in the game query in order
to synthesize the recursive game graph and the winning modular strategy).

With similar arguments as those used in Section 3, we can show that pl0 has
a winning modular strategy in the input modular synthesis problem if and only
if the T entry for the target set T is set to YES. Since the size of the table is
exponential in k and linear in β, and that solving the “local” reachability games
is linear in the size of the game component and in the size of the table, we get
that the whole algorithm takes time exponential in k and linear in β (and the
size of the library). Since already alternating reachability is PTIME-hard, we get:

Theorem 3. The modular reachability problem for a fixed number of exits is
PTIME-complete.

We observe thatA1 computes all the solutions of the kind as from Lemma 1, by
trying all the possible ways of assigning each box with all the game components.
This causes the exponential in the number of boxes, but also gives a quite simple
and direct way to show completeness. Moreover, the fixed-point updates of A1

can be implemented quite efficiently and only the sets of exits from which we
can reach the target (in a series of calls) are used in the computation.

Algorithm A2 arbitrarily computes, for each game component and each set
of exits, only one assignment of each box with a game module. Moreover, it
computes (several times) all the game queries, even those with exits that cannot
reach the global target T .

Both algorithms can be used to synthesize the winning modular strategy as a
recursive state machine. Also, we can modify them to compute optimal winning
modular strategies with respect to some criteria, such as minimizing the number
of modules, the depth of the call stack or the number of used exits.

5 Conclusion

In this paper, we have introduced a formulation of the synthesis problem that
generalizes both the modular synthesis of recursive game graphs and the syn-
thesis from component libraries. We have solved this problem for reachability
specifications, and in particular, we have shown that it is EXPTIME-complete
and is fixed-parameter tractable when the number of exits is fixed.

Besides the optimization problems mentioned at the end of previous section,
we see several other future directions that could be investigated.

In our formulation, the number of instances of each component that are al-
lowed in a solution is unbounded. It is realistic to consider some limitations, in
particular, we plan to investigate variations of the considered synthesis prob-
lem where in each solution there is at most one game module that instantiates
each component, or where for all the game modules that instantiate a same
component we require the same local function.

We have considered only reachability specifications. It is natural to investigate
more complex specifications such as regular or pushdown specifications expressed
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as temporal logic formulas or automata models. Moreover, to synthesize more
succinct solutions, it could be interesting to investigate the effect of a hierarchical
labeling such as in [9].
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