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Abstract. In this paper we survey several approaches to the robustness
of timed automata, that is, the ability of a system to resist to slight
perturbations or errors. We will concentrate on robustness against tim-
ing errors which can be due to measuring errors, imprecise clocks, and
unexpected runtime behaviors such as execution times that are longer or
shorter than expected.

We consider the perturbation model of guard enlargement and for-
mulate several robust verification problems that have been studied re-
cently, including robustness analysis, robust implementation, and robust
control.

1 Introduction

Timed automata are an extension of finite automata with analog clock variables,
and a convenient formalism for modelling real-time systems [AD94]. The theory
allows the model-checking against a rich set of properties, including temporal
logics and their timed extensions. These algorithms have been implemented in
several tools (e.g. Uppaal, IF2.0) and applied to many case studies.

The idea behind timed automata is to consider clocks with continuous val-
ues. The resulting abstraction is appealing in terms of modelling and allows for
efficient symbolic algorithms. However, this formalism only allows validating de-
signs under the assumptions that the clock variables are perfectly continuous,
their values can be measured instantly and exactly, etc. Because concrete imple-
mentations cannot always be assumed to satisfy these assumptions, there is a
need to study verification methodologies for timed automata where these ideal-
istic assumptions are relaxed. A comparison of the semantics of timed automata
and real-world systems is given in Table 1.

In this paper we survey several approaches to the robustness of timed au-
tomata. What we mean by robustness is the ability of a system to resist to slight
perturbations or errors. We will concentrate on robustness against timing errors
which can be due to measuring errors, imprecise clocks, and unexpected run-
time behaviors such as execution times that are longer or shorter than expected.
In particular, robustness in timed automata consists in relaxing the idealistic
assumptions behind its semantics.
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Table 1. A comparison between the abstract semantics of timed automata and
real-world systems

Timed automata Real-world system

Frequency Infinite Finite

Precision Arbitrary Bounded

Synchronization Perfect Delayed

The benefits of studying robustness for timed systems are twofold. First, ro-
bustness is a desired property of real-time systems since it requires the system
to tolerate errors upto a given bound. Hence, the properties proven “robustly”
will hold in the system even when the environment assumptions change slightly.
This property is crucial for critical systems.

Second, a “robust theory” of timed automata will reconcile abstract models
and real-world systems, in the sense that the behaviors of the design would
more closely correspond to the behaviors of a real system. As a consequence,
the analysis made on the abstract models can be transferred to the real-world
system. Robustness is thus closely related to implementability.

Robustness in timed automata was first considered in [GHJ97] where a topo-
logical semantics was defined with the idea of excluding isolated behaviors, but
the emphasis was rather on obtaining the decidability of some hard verification
problems. Timed automata with clock drifts were considered in [Pur98, Pur00],
where algorithms for safety analysis in presence of clock drifts were given. This
work triggered a series of results on robust model-checking timed automata with
guard enlargement and clock drifts, e.g. [DDMR08]. See Section 2.4 for more on
related work.

In this paper, we formulate several robustness problems in timed automata by
considering the perturbation models of guard enlargement, which models time
measurement errors and jitter. These perturbations can both be considered as
syntactic transformations, or as reactive semantics which we model as games. In
all cases, we consider an unknown parameter which expresses the magnitude of
the perturbations. We formulate several robust verification problems that have
been studied recently, including robustness analysis, robust implementation, and
robust control.

2 Definition

2.1 Timed Automata

Given a finite set of clocks C, we call valuations the elements of RC
≥0. For a subset

R ⊆ C and a valuation ν, ν[R← 0] is the valuation defined by ν[R← 0](x) = ν(x)
for x ∈ C \R and ν[R ← 0](x) = 0 for x ∈ R. Given d ∈ R≥0 and a valuation ν,
the valuation ν + d is defined by (ν + d)(x) = ν(x) + d for all x ∈ C. We extend
these operations to sets of valuations in the obvious way. We write 0 for the
valuation that assigns 0 to every clock.



Robustness in Timed Automata 3

An atomic clock constraint is a formula of the form k � x �′ l where x ∈ C,
k, l ∈ Z∪{−∞,∞} and �,�′ ∈ {<,≤}. A guard is a conjunction of atomic clock
constraints. A valuation ν satisfies a guard g, denoted ν |= g, if all constraints
are satisfied when each x ∈ C is replaced with ν(x). We write ΦC for the set of
guards built on C.

Definition 1. A timed automaton A is a tuple (L, C, �0, E), where L is a finite
set of locations, C is a finite set of clocks, E ⊆ L × ΦC × 2C × L is a set of
edges, and �0 ∈ L is the initial location. An edge e = (�, g, R, �′) is also written

as �
g,R−−→ �′.

A closed timed automaton is a timed automaton whose all guards have closed
atomic clock constraints.

A configuration of a timed automaton is a pair (�, ν) where � ∈ L is the current
location and ν is a clock valuation, assigning a value to each clock. At first sight it
might look natural to assume that clocks take integer values, as timed automata
will be used to model digital systems (using a cycle of the CPU as the unit
of time). This would have several drawbacks: first, our results would only be
valid for this given frequency of the CPU; more importantly, when the model
consists of several components, a discrete semantics forces the components to
have synchronoous transitions; finally, this would not be convenient for modelling
the external environment, which should not be restricted to have finite frequency.
We refer to [BS91, Alu91] for a longer discussion on this question.

In the rest of this paper, following [AD94], we thus assume that clocks take
real values. The set of configurations (or states) of a timed automaton A = (L, C,
�0, E) is then L×R

C
≥0. A run of A is a sequence s1e1s2e2 . . . where si ∈ L×R

C
≥0,

and writing si = (�i, νi), either ei ∈ R>0, in which case si+1 = (�i, νi + ei), or
ei = (�i, g, R, �′) ∈ E, in which case si+1 = (�′, ν[R← 0]). We denote by statei(ρ)
the i-th state of any run ρ, by first(ρ) its first state, and, if ρ is finite, last(ρ)
denotes its last state of ρ.

Example 1. Fig. 1 displays an example of a timed automaton, representing the
behavior of a computer mouse: it uses one clock to measure the delays between
pushes on the buttons, and translates them into single- or double-clicks, depend-
ing on these delays.

2.2 Timed-Automata-Based Model Checking

Theorem 1 ([AD94]). Reachability and Büchi properties can be decided in
polynomial space in timed automata. Both problems are PSPACE-complete.

The proof of this important theorem relies on the construction of the region
abstraction: intuitively, if two clock valuations are close enough, in the sense
that they give to each clock the same integral part and define the same or-
der w.r.t. their fractional parts, then they will give rise to similar behaviours:
the same transitions are available, and the valuations reached by letting time
elapse can still be made close enough. After noticing that we do not need to care
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middle click!

Fig. 1. Clicks and double-clicks of a mouse

about the value of a clock when it is larger than the maximal integer appear-
ing in the automaton, this gives rise to an equivalence relation (called region
equivalence) having finite index. Quotienting the automaton with the region
equivalence provides us with the region automaton, which can be used to ver-
ify ω-regular properties. Though the region automaton has size exponential, the
algorithm for checking ω-regular properties can be made to run on-the-fly, thus
using only polynomial space.

Symbolic approaches based on coarser equivalence relations and adequate data
structures have been developed, which make the verification of timed automata
usable in practice. Several tools implement optimised versions of these algorithms
(e.g. Uppaal [BDL+06], Kronos [BDM+98], ...), and have been successfully ap-
plied on industrial case studies.

Example 2. We illustrate the region equivalence on the two-clock timed automa-
ton depicted on Fig. 2. The maximal constant appearing in this automaton is 2,
so that the set of classes of the region-equivalence is as depicted on Fig. 3. Its re-
gion automaton is depicted on Fig. 4, in which we can observe that the rightmost
location of the automaton is not reachable.

2.3 Discussion on the Semantics: Are We Doing the Right Job?

We opted for the dense-time semantics to overcome the drawbacks of discrete-
time, but is dense-time really better?

Obviously, the continuous-time semantics can be used to mimick the discrete-
time semantics (by forcing transitions to occur only at integer dates), which in
some sense shows that it is not worse. But this semantics is mostly appropriate
for abstract designs and high-level analysis of timed systems, and suffers from
several inaccuracies when used for more concrete analyses. In particular:

– by assuming infinite frequency (i.e., zero-delay transitions), infinite precision,
and immediate communications between components, the continuous-time
semantics is not adequate for implementation. Indeed, in practice, clocks do
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y=1
y:=0

x≤2
x:=0

y≥2
y:=0

x=0
y=2

Fig. 2. A two-clock timed automaton A
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Fig. 3. Region equivalence for A

Fig. 4. The (reachable part of the) region automaton for A

not all run at the exact same speed. Moreover, since computers are digital,
the value of the clock is updated periodically. Hence a clock constraint might
be evaluated to true at a time when it is not true anymore. Both phenom-
ena give rise to emergent behaviors that are not taken into account during
verification.

– because of the infinite frequency and precision, timed automata may exhibit
non-realistic behaviors, especially convergence phenomena. The best-known
example of convergence phenomena are Zeno runs, which are infinite runs (in
terms of their number of transitions) having finite duration. More complex
convergence phenomena can be hidden, which may be difficult to detect:
such unrealistic behaviors can nevertheless be used by a standard verification
process, witnessing in an inappropriate way the truth of some property.

Example 3. One realizes that any infinite behavior in the automaton of Fig. 2 is
such that the value of clock x when entering the green location is non-decreasing
and bounded by 2, hence converging (whereas globally time diverges).
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x=1

x:=0
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Fig. 5. An automaton with a (non-Zeno) convergence phenomenon

Another example (from [CHR02]) where such a phenomenon occurs is depicted
at Fig. 5: because of the constraint on clock z, the time elapsed in the right-
most state is always positive, and it can easily be proven that the value of x
when entering the left-most state is the accumulated delay spent in the right-
most state. Hence infinite runs exist in this automaton, but the delays in the
right-most state will have to be arbitrarily small.

The remarks above raise several important questions on the real impact of
standard verification processes applied to timed systems. First, given a model
that has been proven to satisfy some properties, is it possible to implement it
while preserving these properties? Also, to what extent does the result of the
verification transfer to real-world systems?

This advocates for the development of a theory of robustness for timed sys-
tems. An important issue is to understand what is the real system behind the
mathematical model, and also which implementation of a system we have in
mind, if any. Also, it should be clear under which model of perturbations the
theory applies (perturbations can arise from multiple sources). Finally, we should
provide the user with methodologies to develop correct real-world (or imple-
mented) systems.

The aim of this paper is to present a possible approach to the robustness of
timed systems. It consists in developping refined techniques to check properties
of timed automata in a robust setting: we do not want to model the execution
platform explicitly, nor do we want to involve extra formalisms. Our algorithms
will take timed automata as inputs, and they will verify properties under a
semantics that takes timing imprecisions into account.

2.4 Related Work

An early attempt in defining a robustness notion for timed automata is [GHJ97],
where a topological definition is introduced with the hope that the language
inclusion problem could become decidable under this semantics; but the unde-
cidability was later shown to hold even in the robust setting [HR00].

Robustness analysis algorithms in presence of parameterized guard enlarge-
ment have been studied extensively starting with safety properties in [DDMR08].
These results will be summarized in Section 3.
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Following [Pur00, DDMR08], clock drifts have been studied for general timed
automata (rather than closed timed automata) in [Dim07, SFK09]. These have
also been considered in the context of distributed timed automata in [ABG+08]
where one distinguishes existential languages, that is, those behaviors that can
be achieved under some evolution of the clocks, and universal languages, which
is, the behaviors that are present whatever the drifts are. The emptiness of the
former is decidable, while the latter is shown undecidable.

The semantics under an unknown regular sampling of time was considered
in [CHR02, KP05, AKY10]. Reachability under unknown sampling rate was
shown to be undecidable in [CHR02], while safety is decidable [KP05]. Here, the
goal is to synthesize a sampling parameter under which a reachability or safety
objective holds, or the untimed language is preserved. This problem is related to
the implementability of timed automata with discrete clocks. Such discrete time
approaches are interesting when the model is a low-level designs, that is, timed
automata where one time unit is comparable to the clock period in the target
hardware platform.

The work [AT05] considers encoding in timed automata models several per-
turbations including clock drifts, enlargement, sampling. The resulting approach
allows analyzing systems with fixed perturbation parameters, and often with a
fixed granularity (e.g. for clock drifts), but not applying parameter synthesis.
Many cases from the literature do in fact use such encodings since robustness
algorithms are not yet available in verification tools.

The robustness of timed models against decreases in execution times have been
considered in [ACS10] using simulations, and an application in a multimedia
system was discussed.

3 Robustness Analysis

Standard analysis of the timed-automaton model might not be satisfactory if we
are interested in the implementation of this model. In this section, we describe
a framework in which one implements directly the system which is designed.
Unfortunately, as mentioned earlier, the implemented system might not behave
precisely according to the model, since imprecisions might occur while executing.
The idea is then to understand how one should adapt the analysis process in
order to capture and analyze the real behavior of the implemented system.

Robustness analysis. We write Aδ for the timed automaton obtained from A by
enlarging its guards by a parameter δ: that is, every upper-bounded constraint
x ≤ b or x < b is replaced by x ≤ b+δ, and every lower-bounded constraint x ≥ a
or x > a is replaced by x ≥ a−δ. Obviously every behavior in A is also a behavior
in Aδ. Also quite obviously, there are behaviors in Aδ that are absent in A (since
some delays cannot be exactly matched), but maybe more surprisingly, there are
qualitative behaviors that can be found in any Aδ (however small δ > 0 may be)
but that cannot be found in A. In particular, a simple (untimed safety) property
proven in A can be violated in anyAδ, however small δ > 0 may be. We illustrate
this fact in the example below.
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Example 4. Consider the automaton of Fig. 2. When enlarged by δ, the first
transition of the loop can be anticipated by δ, hence taken when x = 2−δ, while
the second transition of the loop can be delayed until y = 2 + δ. Starting from
a configuration where x = 1 and y = 0, we end up with x = 1 − 2δ and y = 0
after applying these two transitions. This can be repeated, until we come back
to the left-most state of the loop with x being close to zero, which will then give
access to the right-most state of the automaton.

The idea of robustness analysis (or robust model-checking) is to verify the
correctness of the enlarged timed automaton. We define it formally below.

Definition 2 (Robustness analysis). Given a linear-time property ϕ1 and
a timed automaton A, decide whether there is some δ0 > 0 such that for all
δ ∈ [0, δ0], all executions in Aδ satisfy property ϕ. If this is the case, we say that
A robustly satisfies ϕ, and that δ0 witnesses this robust satisfaction.

Why robustness analysis? The idea behind robustness analysis is that the en-
largement by δ of all the guards should capture the imprecisions of the executed
(or implemented) system. The accurateness of the approach then relies on the
assumption that for some δ > 0, Aδ over-approximates the real behavior of
the system (with δ depending on the characteristics of the processor). To sup-
port this assumption, program semantics are given in [DDR05] and in [SBM11].
They take into account various delay parameters of a processor, and are shown
to satisfy this assumption.

This yields the following methodology for the development of correct imple-
mented real-time systems.

1. Design A;
2. Verify the robust satisfaction of ϕ by A, that is verify Aδ, where δ is a

parameter;

3. Implement A: its correctness will be implied by that of Aδ.

Let us comment the robust satisfaction. It is easy to get convinced that if δ0
witnesses the robust satisfaction of ϕ by A, then so does any 0 < δ ≤ δ0. This
“faster-is-better” property is a desirable property when studying implementabil-
ity: if a system is correct when implemented on a processor, then it will remain
correct on a faster processor.

Decidability and complexity results. When δ0 > 0 is fixed, verifying that Aδ0

satisfies ϕ can be done using standard model-checking techniques. However, ro-
bust model-checking is rather interested in a paramaterized analysis, and in the
synthesis of a positive value for δ0. In the theorem below, by timed automata
with progress cycles, we refer to timed automata whose all cycles reset each clock
at least once.

1 That can be any ω-regular or LTL property, or even some timed property.
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Theorem 2 ([DDMR08, BMR06, BMS11, BMR08]). Robust model-
checking of safety, Büchi, LTL properties for closed timed automata is PSPACE-
complete. Robust model-checking of coFlatMTL (a fragment of MTL) for closed
timed automata with progress cycles is EXPSPACE-complete.

One can notice that the theoretical complexity of robust model-checking is
the same as that of standard model-checking, which is quite surprising but very
positive. Unfortunately no efficient symbolic algorithms have been developed so
far, and a big effort is required in this direction, so that the practical impact of
these results is consolidated.

4 Robust Implementation

In this section, we will explore techniques that allow generating implementations
that are robust to perturbations by construction. These techniques also ensure
that some desired properties of the initial model are preserved in the implemen-
tation. Hence, this approach has the advantage of allowing the system designer
to concentrate on the initial model, and use existing tools to prove correctnes,
while leaving the implementation effort to a computer.

More precisely, we describe results that allow one to automatically transform
a given timed automaton into a robust one, while preserving at least its time-
abstract behaviors. Thus, our target implementation formalism is again timed
automata subject to guard enlargement. We will present two ways of achieving
robust implementation, each corresponding to a different point of view on the
models.

4.1 Shrinking

Assume that we are interested in strictly respecting the timing constraints de-
scribed by the guards of given timed automata, that is, we do not tolerate any
enlargement of the guards. To motivate this assumption, consider the following
scenario. We are designing a system that communicates with another component
which only receives signals in a given time interval, say x ∈ [l, u]; any signal sent
outside this interval is lost. While an abstract model of the system assuming
instantaneous communication might simply require the signals to be sent inside
the same interval, that is, x ∈ [l, u], the system would not be correct under tim-
ing imprecisions, say, due to communication delays. A natural idea is to obtain a
correct implementation by shrinking the guard into x ∈ [l+δ, u−δ], where δ > 0
is an appropriate parameter. In fact, assuming that timing imprecisions are mod-
elled by an enlargement ofΔ, we have [l+δ−Δ,u−δ+Δ]⊆ [l, u]. In other terms,
the behaviors induced by the implementation of the shrunk guard is included in
the behaviors of the original abstract model.

While shrinking can offer an easy way to implement timed automata while
preserving behaviors, it can also remove some significant behaviors from the
model, such as liveness. In fact, some timed automata become blocking under
the slightest shrinking of their guards. Such an example is given in Fig. 6.
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�1 �2

y≤1−δ1 ∧ 1+δ2≤x
x:=0

y≤1−δ3, y:=0

Fig. 6. A shrunk timed automaton that is blocking whenever δ2 > 0 or δ3 > 0. To see
this, consider any infinite execution and let d1, d3, . . . denote the delays at location l1,
and d2, d4, . . . those at l2. One can show that 1 ≤ d2i−1 +d2i for all i ≥ 1, which means
that time diverges, but also δ2 + δ3 ≤ d2i+2 − d2i and d2i ≤ 1. The latter means that
the sequence (d2i)i increases at least by δ2 + δ3 at each step and is bounded above
by 1, which is possible only when δ2 = δ3 = 0. Note that even if δ2 = δ3 = 0, non-
blockingness requires consecutive delays to be equal, which is not realistic for digital
systems.

We are interested in obtaining an implementation by shrinking the guards
of a timed automaton such that some desired properties are preserved in the
resulting model. We will consider a possibly different shrinking parameter for
each atomic guard in order to increase the chance of success. Formally, given
a timed automaton A, let I denote the set of its atomic guards. Each atomic
guard will be shrunk by kiδ where δ > 0 is a uniform parameter, and ki’s are
possibly different natural numbers. Notice that any vector of rational numbers
can be written as kδ where k is the vector of ki’s. The resulting shrunk timed
automaton is denoted A−kδ (Note that this is simply enlargement by a negative
amount). The shrinkability problem asks for property preservation under possible
shrinking; its two variants are defined formally as follows.

A timed automaton is said to be non-blocking if from any state some discrete
transition is enabled after some time delay.

Definition 3 (Shrinkability). Given a timed automaton A, decide whether
for some δ0 > 0, and some positive integer vector k,

1. A−kδ is non-blocking,
2. and A−kδ time-abstract-simulates A,
for all δ ∈ [0, δ0].

We also consider variants of the shrinkability problem. Non-blocking-shrinkability
only asks for condition 1 to be satisfied in Definition 3, while simulation-
shrinkability asks only for condition 2. The latter can be refined by only re-
quiring the shrunk timed automaton to time-abstract simulate a given finite
automaton F �t.a. A. In this case, only some part F of the time-abstract
behavior of A is preserved in A−kδ.

Theorem 3 ([SBM11]). For closed non-blocking timed automata, non-blocking-
shrinkability is decidable in polynomial space, and in NP if the maximum degree of
the locations is fixed.

For closed timed automata, under some technical assumptions, simulation-
shrinkability is decidable in pseudopolynomial time in the sizes of A and F .
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Algorithms of Theorem 3 allow computing the parameters k and the maxi-
mum δ > 0. This enables the following design methodology which we sketched
at the beginning of this section.

1. Design and verify timed automaton A;
2. Apply shrinkability, which yields A−kδ;
3. Implement A−kδ which is a safe refinement even under imprecisions:
A−kδ+Δ � A, and moreover it is non-blocking and it preserves all time-
abstract behaviors of A.

Tool support. The simulation-shrinkability algorithm described above was imple-
mented in a software tool called Shrinktech [San13]. The tool is integrated with
the Kronos model-checker: it takes as input (network of) timed automata and
checks for shrinkability with respect to a given finite automaton F . If shrink-
ability succeeds, then the tool outputs the computed parameters δ and k, and
the witnessing simulator sets. Otherwise, a counter-example is output, which
is a finite automaton that cannot be simluated by any shrinking of the timed
automaton. Some benchmarks are given in [San13], and the tool is available at
http://www.lsv.ens-cachan.fr/Software/shrinktech.

4.2 Approximately Bisimilar Implementation

We now assume that the implementation of the timed automaton design can
tolerate small timings errors, but we would like to avoid the accumulation of
these over time as in Example 4. Under this “relaxation”, we will show that we
can achieve more than with the shrinking technique we described in the previous
subsection: under some assumptions, all timed automata can be “approximately”
implemented.

In order to compare the behaviors of two timed automata allowing bounded
errors in timings, we use ε-bisimilarity, an extension of timed bisimilarity. For-
mally, an ε-bisimulation R is a relation between the states of a timed automaton
defined as follows. For any s and t with s R t, whenever s

σ−→ s′, there exists t′

such that t
σ−→ t′, and t R t′, and whenever s

d−→ s′ for some d ≥ 0, then there
exists d′ ∈ [max(0, d− ε), d+ ε] such that s′ R t+ d′. We denote s ∼ε t, if there
is an ε-bisimulation between states s and t. Note that ∼0 is the usual timed
bisimulation, also written ∼.

Now, given timed automata A and A′, we say that A′ is an ε-implementation,
if A ∼ A′ and A′ ∼ε A′

δ for some δ, ε > 0. Here, the former condition means that
the alternative timed automaton A′ is “equivalent” to A in the exact semantics,
while the latter condition requires the robustness of A′: under enlargement, all
behaviors are approximately included in those of A.

We also consider the simpler notion of safe implementation by requiring that
A ∼ A′ and that A′ and A′

δ have the same set of reachable locations for some δ >
0.

Theorem 4. For any timed automaton A, and any ε > 0, one can construct an
ε-implementation, and a safe implementation, both in exponential time.

http://www.lsv.ens-cachan.fr/Software/shrinktech
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Although one can use ε-implementations to obtain safe implementations, the
latter are smaller in size in practice.

Methodology. The above theorem allows one to completely separate design and
implementation of timed automata models. In fact, since the implementation can
be ensured for all models, one can only concentrate on designing the model and
proving properties in the exact semantics; imprecisions do not need to be taken
into account. One can then specify the precision ε depending on the required
accuracy.

1. Design and verify timed automaton A;
2. Automatically generate an implementation.

5 Robust Realisability and Control

In this section, we are interested in checking whether a given desired behavior
is realisable in a timed automaton when the time delays are subject to pertur-
bations. Our goal is to detect behaviors (such as defined by Büchi conditions)
that can be realised even when the delays can only be chosen upto a bounded
error. In fact, although the theory of timed automata allows characterizing the
existence of infinite runs accepting for a Büchi condition, not all such runs are
realisable with finite precision (hence, not in hardware neither); we already saw
in Example 3 a timed automaton where any infinite run contains delay and clock
value sequences that are convergent, that is, requires infinite precision. If the in-
put model is timed games, then this problem is closely related to that of robust
controller synthesis, where the goal is to find winning strategies that resist to
systematic perturbations in the time delays.

We thus present the problem both as a realisability problem for timed au-
tomata, and as robust controller synthesis in timed games. We formalise this
problem as a turn-based game between a controller that chooses delays and
edges and an environment that perturbs the chosen delays. Two variants of this
game semantics were studied in [CHP11, SBMR13] and [BMS12] respectively.
We first present the two variants and related results, and compare them at the
end of this section.

5.1 Conservative Semantics

We start with the conservative game semantics. Intuitively, the semantics is a
turn-based two-player game parameterized by δ > 0, where Player 1, also called
Controller chooses a delay d > δ and an edge whose guard is satisfied after any
delay in d + [−δ, δ]. Then, Player 2, also called Perturbator chooses an actual
delay d′ ∈ d+ [−δ, δ] after which the edge is taken. Hence, the delays suggested
by Controller are perturbed by Perturbator by an amount from [−δ, δ], but the
guard is required to be satisfied whatever the perturbation is.
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We also consider two-player timed games where, in addition to being able to
suggest delays and actions, Perturbator can perturb by an amount in [−δ, δ] the
delays chosen by Controller.

While for δ = 0, a strategy for Controller in this game semantics merely yields
a run, for δ > 0, it describes how Controller reacts to perturbations in the past.
It may, for instance, choose the delays so as to correct the effect of the earlier
perturbations.

We are interested in deciding whether for some δ > 0, there exists a strategy
of Controller whose all outcomes satisfy a given ω-regular condition. This is the
parameterized robust controller synthesis for Büchi objectives. If the parameter
is given as part of the input, then we will call the problem fixed-parameter robust
controller synthesis. While the timed automaton of Fig. 6 is uncontrollable in
this sense (which follows from the fact that it is not shrinkable), Fig. 7 shows
example of a controllable timed automaton.

�1 �2

0<y<1,y:=0

0<x<1,x:=0

Fig. 7. A timed automaton (from [BA11]) that is robustly controllable for the Büchi
objective {�2}. In fact, perturbations at a given transition do not affect the rest of the
run; they are forgotten.

For a fixed parameter δ > 0, we have the following result for parity conditions.

Theorem 5 ([CHP11]). The fixed-parameter robust controller synthesis for
timed games and parity conditions in the conservative game semantics can be
solved in exponential time.

The above algorithm is obtained by reduction to timed games; in fact, when δ is
known, it is possible to encode the game semantics as a timed game, and apply
known algorithms.

For Büchi objectives, the parameterized version of the problem can be solved
in polynomial space:

Theorem 6 ([SBMR13]). Parameterized robust controller synthesis for timed
automata and Büchi conditions in the conservative game semantics is PSPACE-
complete.

The above theorem is established by characterising those cycles that can be
repeated infinitely by Controller against any strategy of Perturbator. The char-
acterisation is expressed in terms of the reachability graph between the vertices
of the visited regions (a.k.a. the orbit graph), and was introduced in [BA11]
in a different context. [BA11] characterizes those cycles of a timed automaton
along which the clock values are not convergent; these are called forgetful cycles.
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The contribution of [SBMR13] consists in showing that any long enough run
along non-forgetful cycles can be made blocking by an appropriate strategy of
Perturbator.

5.2 Excess Semantics

We now present a variant of the previous semantics, similar in definition, but
different in terms of usage. The excess game semantics is a turn-based two-player
game between Controller and Perturbator, and parameterized by δ > 0. The
difference is that at each turn, Controller now only has to suggest a delay d ≥ δ
and an edge whose guard is satisfied only after the delay d. After such a move,
Perturbator can modify the delay by any amount in [−δ, δ], and the perturbed
delay and the edge chosen by Controller are taken whether or not the guard is
satisfied after the perturbation. We refer to Example 5 for an illustration of this
semantics.

The following result shows the decidability of the parameterized robust con-
troller synthesis problem for reachability objectives in timed automata and turn-
based timed games.

Theorem 7 ([BMS12]). Parameterized robust controller synthesis for turn-
based timed games and reachability objectives in the excess game semantics is
EXPTIME-complete.

5.3 Comparison

We defined here two very similar game semantics. We believe both are mean-
ingful and can appear naturally at different levels of abstraction. For instance,
the excess-perturbation game semantics is a natural choice when modelling a
real-time system with fixed task execution times, if we also know that these ex-
ecution times will be subject to perturbation whose magnitude is unknown in
advance, which may depend on the implementation platform to be chosen later.
Incorporating these perturbations in the model, for instance, by replacing equal-
ity constraints by non-punctual intervals, requires a choice of a suitable interval
length which may not be known. Moreover this will increase the state space in
general. Hence the excess-perturbation game semantics allows one to keep the
design abstract and still apply robustness analysis.

On the other hand, in some applications, specifying distinct lower and upper
bounds in timings may be natural. For instance, if one is interested in modelling
an embedded system that should send a signal to another component which
accepts input signals in a time interval [l, u], then it is natural to look for a
controller that strictly respects this interval. Such a model and its semantics
would be closer to the actual program. In this case, the conservative-perturbation
game semantics is the natural choice.

Note also that while any outcome of the conservative game semantics is a run
of the timed automaton (or game) in the usual semantics, this is not the case for
the excess semantics. On the other hand, outcomes of the excess game semantics
are runs of the enlarged automata.
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5.4 Weighted Timed Automata and Games

Weighted timed automata [ALP01, BFH+01] are an extension of timed automata
with one cost variable which grows with a possibly different constant derivative at
each location. Cost-optimal reachability is decidable in this model, but undecid-
able in weighted timed games. Robustness problems can naturally be addressed
for weighted timed automata and games, following similar motivations as timed
automata. Moreover, one could hope that in weighted timed games, a suitable
robust semantics could render the cost-optimal reachability problem decidable.
We show in this section that undecidability still holds in both game semantics.

We consider conservative and excess perturbation game semantics. As Exam-
ple 5 below shows, the optimal cost that can be achieved depends on δ. Because
we assume that δ is a small parameter whose value can be adjusted as required,
we will concentrate on the limit-cost of a strategy in a weighted timed automa-
ton under the game semantics. The limit cost is the cost achieved by a strategy,
when δ goes to 0.

Example 5. Figure 8 displays an example of a weighted timed game. Plain (resp.
dashed) arrows are for Player 1 (resp. Player 2) edges. The slopes are indicated
above each state. A strategy for Player 1 is to suggest a delay of 1 and choose

�1

0

�5

6 0

�2

0
�3

10

�4

7

0

0

x≥1

y:=0

x>1

x≥3

2≤x≤3∧y<1

2≤x≤3∧1≤y

x≥4

x≥4

Fig. 8. Example of a WTG

the edge from �1 to �2. This prevents Player 2 from going down to location �5,
where the cost of accepting is 12. From location �2, Player 1 can go to �4, from
where a target location is reached with cost 7.

Under the excess-perturbation semantics, as in the exact case, Controller can
suggest a delay of 1 and choose the edge from �1 to �2. The location �5 can thus
be avoided. Now, one can see that the move of Perturbator determines the next
location to be visited: if Perturbator adds a positive perturbation (i.e. if the
delay is in [1, 1 + δ]), then only location �3 is reachable. Conversely, a negative
perturbation enables only location �4. To maximize the cost, Perturbator will
force the play to �3, so Controller can only ensure a cost of 10 +Θ(δ).

We now focus on the conservative semantics. The above strategy is no more
valid since in this case, Controller can only suggest delays of at least 1+ δ. Then
Perturbator can force the play to �5. Here, the cost of winning is 12 +Θ(δ).

We define the optimal limit-cost (strong) decision problem for the conservative
or excess semantics as the problem of deciding whether some strategy achieves
a limit cost of at least (resp. more than) a given threshold.
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Theorem 8 ([BMS13])

– The optimal limit-cost decision problem is undecidable for weighted timed
automata under the excess game semantics.

– The optimal limit-cost strong decision problem is PSPACE-complete for
weighted timed automata under the conservative game semantics, and un-
decidable for weighted timed games.

Hence, the decision problems on optimal limit-cost in weighted timed
games remain undecidable. Moreover, the problem even becomes undecidable
for weighted timed automata in the excess game semantics. This is rather sur-
prising since it is often believed that introducing imprecisions render problems
easier to solve [AB01].

6 Conclusion

In this paper we have presented a recent approach to the theory of robustness
for timed systems. The model of perturbation that is considered is that of guard
enlargement, which captures time measurement errors and jitter. Other models
of perturbation could be considered, which would more adequately take into
account other sources of errors in the execution of timed systems.

Under this model of perturbation, we have described several robust verification
problems which have been formulated and partly solved recently. Complexities of
these problems are quite standard in the domain of timed systems, and symbolic
technics need now to be developed for solving the various problems, that would
support usability of the approach.

Robustness in timed systems is an important issue, the effort to develop a full
theory of robustness needs therefore to be continued.
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