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Preface

This volume contains the papers presented at the 7th International Workshop
on Reachability Problems (RP 2013) held during September 24–26, 2013, at
Norrlands nation in the heart of central Uppsala. The workshop was organized
by the Department of Information Technology, Uppsala University, Sweden.

RP 2013 was the seventh in the series of workshops following six success-
ful meetings at the University of Bordeaux, France, in 2012, the University of
Genoa, Italy, in 2011, Masaryk University of Brno, Czech Republic, in 2010,
Ecole Polytechnique, France, in 2009, at the University of Liverpool, UK, in
2008, and at Turku University, Finland, in 2007.

The workshop is specifically aimed at gathering together scholars from di-
verse disciplines and backgrounds interested in reachability problems that ap-
pear in algebraic structures, computational models, hybrid systems, logic, and
verification.

Reachability is a fundamental problem that appears in several different con-
texts: finite- and infinite-state concurrent systems, computational models like
cellular automata and Petri nets, decision procedures for classical, modal, and
temporal logic, program analysis, discrete and continuous systems, time crit-
ical systems, hybrid systems, rewriting systems, algebraic structures (groups,
semigroups and rings), deterministic or non-deterministic iterative maps, prob-
abilistic and parametric systems, and open systems modelled as games.

Typically, for a fixed system description given in some form (rewriting rules,
transformations by computable functions, systems of equations, logical formulas,
etc.) a reachability problem consists in checking whether a given set of target
states can be reached starting from a fixed set of initial states. The set of target
states can be represented explicitly or via some implicit representation (e.g., a
system of equations, a set of minimal elements with respect to some ordering
on the states). Sophisticated quantitative and qualitative properties can often
be reduced to basic reachability questions. Decidability and complexity bound-
aries, algorithmic solutions, and efficient heuristics are all important aspects to
be considered in this context. Algorithmic solutions are often based on different
combinations of exploration strategies, symbolic manipulations of sets of states,
decomposition properties, reduction to linear programming problems, and they
often benefit from approximations, abstractions, accelerations, and extrapola-
tion heurisitics. Ad hoc solutions as well as solutions based on general-purpose
constraint solvers and deduction engines are often combined in order to balance
efficiency and flexibility.

The purpose of the conference is to promote exploration of new approaches
for the predictability of computational processes by merging mathematical,
algorithmic, and computational techniques. Topics of interest include (but are
not limited to): reachability for infinite state systems; rewriting systems;
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reachability analysis in counter/timed/cellular/communicating automata; Petri-
nets; computational aspects of semigroups, groups, and rings; reachability in
dynamical and hybrid systems; frontiers between decidable and undecidable
reachability problems; complexity and decidability aspects; predictability in it-
erative maps and new computational paradigms.

All these aspects were discussed in the presentations of the seventh edition
of the RP workshop. The proceedings of the previous editions of the workshop
appeared in the following volumes:

Mika Hirvensalo, Vesa Halava, Igor Potapov, Jarkko Kari (Eds.): Proceedings of
the Satellite Workshops of DLT 2007. TUCS General Publication No 45, June
2007. ISBN: 978-952-12-1921-4.

Vesa Halava and Igor Potapov (Eds.): Proceedings of the Second Workshop on
Reachability Problems in Computational Models (RP 2008). Electronic Notes in
Theoretical Computer Science. Volume 223, Pages 1-264 (26 December 2008).

Olivier Bournez and Igor Potapov (Eds.): Reachability Problems, Third Inter-
national Workshop, RP 2009, Palaiseau, France, September 2325, 2009, Lecture
Notes in Computer Science, 5797, Springer 2009.

Antonin Kucera and Igor Potapov (Eds.): Reachability Problems, 4th Interna-
tional Workshop, RP 2010, Brno, Czech Republic, August 2829, 2010, Lecture
Notes in Computer Science, 6227, Springer 2010.

Giorgio Delzanno, Igor Potapov (Eds.): Reachability Problems, 5th International
Workshop, RP 2011, Genoa, Italy, September 2830, 2011, Lecture Notes in Com-
puter Science, 6945, Springer 2011.

Alain Finkel, Jerome Leroux, Igor Potapov (Eds.): Reachability Problems, 6th
International Workshop, RP 2012, Bordeaux, France, September 17-19, 2012.
Lecture Notes in Computer Science 7550, Springer 2012.

The five keynote speakers at the 2013 conference were:

– Patricia Bouyer, CNRS Cachan, “Robustness in Timed Automata”
– Daniel Kroening, Oxford University, “Automated Verification of Concur-

rent Software”
– Rupak Majumdar, MPI-SWS, “Provenance Verification”
– Shaz Qadeer, Microsoft Research Redmond, “Reachability Modulo

Theories”
– Thomas Schwentick, TU Dortmund University, “The Dynamic Complex-

ity of the Reachability Problem on Graphs”

There were 24 submissions. Each submission was reviewed by at least three
Program Committee members. The full list of the members of the Program
Committee and the list of external reviewers can be found on the next two
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pages. The Program Committee is grateful for the highly appreciated and high-
quality work produced by these external reviewers. Based on these reviews, the
Program Committee decided to accept 14 papers, in addition to the five invited
talks. The workshop also provided the opportunity to researchers to give informal
presentations that are prepared very shortly before the event and inform the
participants about current research and work in progress.

We gratefully acknowledge the organization team for their help and especially
Mohamed Faouzi Atig for effective team management.

It is also a great pleasure to acknowledge the team of the EasyChair system,
and the fine cooperation with the Lecture Notes in Computer Science team
of Springer, which made the production of this volume possible in time for the
conference. Finally, we thank all the authors for their high-quality contributions,
and the participants for making this edition of RP 2013 a success.

September 2013 Parosh Aziz Abdulla
Igor Potapov
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Robustness in Timed Automata�

Patricia Bouyer1, Nicolas Markey1, and Ocan Sankur1,2

1 LSV, CNRS & ENS Cachan, France
2 Université Libre de Bruxelles, Belgium

{bouyer,markey,sankur}@lsv.ens-cachan.fr

Abstract. In this paper we survey several approaches to the robustness
of timed automata, that is, the ability of a system to resist to slight
perturbations or errors. We will concentrate on robustness against tim-
ing errors which can be due to measuring errors, imprecise clocks, and
unexpected runtime behaviors such as execution times that are longer or
shorter than expected.

We consider the perturbation model of guard enlargement and for-
mulate several robust verification problems that have been studied re-
cently, including robustness analysis, robust implementation, and robust
control.

1 Introduction

Timed automata are an extension of finite automata with analog clock variables,
and a convenient formalism for modelling real-time systems [AD94]. The theory
allows the model-checking against a rich set of properties, including temporal
logics and their timed extensions. These algorithms have been implemented in
several tools (e.g. Uppaal, IF2.0) and applied to many case studies.

The idea behind timed automata is to consider clocks with continuous val-
ues. The resulting abstraction is appealing in terms of modelling and allows for
efficient symbolic algorithms. However, this formalism only allows validating de-
signs under the assumptions that the clock variables are perfectly continuous,
their values can be measured instantly and exactly, etc. Because concrete imple-
mentations cannot always be assumed to satisfy these assumptions, there is a
need to study verification methodologies for timed automata where these ideal-
istic assumptions are relaxed. A comparison of the semantics of timed automata
and real-world systems is given in Table 1.

In this paper we survey several approaches to the robustness of timed au-
tomata. What we mean by robustness is the ability of a system to resist to slight
perturbations or errors. We will concentrate on robustness against timing errors
which can be due to measuring errors, imprecise clocks, and unexpected run-
time behaviors such as execution times that are longer or shorter than expected.
In particular, robustness in timed automata consists in relaxing the idealistic
assumptions behind its semantics.

� Partly supported by ANR project ImpRo (ANR-10-BLAN-0317), by ERC Starting
grants EQualIS (FP7-308087) and inVEST (FP7-279499), and by European project
Cassting (FP7-601148).

P.A. Abdulla and I. Potapov (Eds.): RP 2013, LNCS 8169, pp. 1–18, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

{bouyer,markey,sankur}@lsv.ens-cachan.fr


2 P. Bouyer, N. Markey, and O. Sankur

Table 1. A comparison between the abstract semantics of timed automata and
real-world systems

Timed automata Real-world system

Frequency Infinite Finite

Precision Arbitrary Bounded

Synchronization Perfect Delayed

The benefits of studying robustness for timed systems are twofold. First, ro-
bustness is a desired property of real-time systems since it requires the system
to tolerate errors upto a given bound. Hence, the properties proven “robustly”
will hold in the system even when the environment assumptions change slightly.
This property is crucial for critical systems.

Second, a “robust theory” of timed automata will reconcile abstract models
and real-world systems, in the sense that the behaviors of the design would
more closely correspond to the behaviors of a real system. As a consequence,
the analysis made on the abstract models can be transferred to the real-world
system. Robustness is thus closely related to implementability.

Robustness in timed automata was first considered in [GHJ97] where a topo-
logical semantics was defined with the idea of excluding isolated behaviors, but
the emphasis was rather on obtaining the decidability of some hard verification
problems. Timed automata with clock drifts were considered in [Pur98, Pur00],
where algorithms for safety analysis in presence of clock drifts were given. This
work triggered a series of results on robust model-checking timed automata with
guard enlargement and clock drifts, e.g. [DDMR08]. See Section 2.4 for more on
related work.

In this paper, we formulate several robustness problems in timed automata by
considering the perturbation models of guard enlargement, which models time
measurement errors and jitter. These perturbations can both be considered as
syntactic transformations, or as reactive semantics which we model as games. In
all cases, we consider an unknown parameter which expresses the magnitude of
the perturbations. We formulate several robust verification problems that have
been studied recently, including robustness analysis, robust implementation, and
robust control.

2 Definition

2.1 Timed Automata

Given a finite set of clocks C, we call valuations the elements of RC
≥0. For a subset

R ⊆ C and a valuation ν, ν[R← 0] is the valuation defined by ν[R← 0](x) = ν(x)
for x ∈ C \R and ν[R ← 0](x) = 0 for x ∈ R. Given d ∈ R≥0 and a valuation ν,
the valuation ν + d is defined by (ν + d)(x) = ν(x) + d for all x ∈ C. We extend
these operations to sets of valuations in the obvious way. We write 0 for the
valuation that assigns 0 to every clock.
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An atomic clock constraint is a formula of the form k � x �′ l where x ∈ C,
k, l ∈ Z∪{−∞,∞} and �,�′ ∈ {<,≤}. A guard is a conjunction of atomic clock
constraints. A valuation ν satisfies a guard g, denoted ν |= g, if all constraints
are satisfied when each x ∈ C is replaced with ν(x). We write ΦC for the set of
guards built on C.

Definition 1. A timed automaton A is a tuple (L, C, �0, E), where L is a finite
set of locations, C is a finite set of clocks, E ⊆ L × ΦC × 2C × L is a set of
edges, and �0 ∈ L is the initial location. An edge e = (�, g, R, �′) is also written

as �
g,R−−→ �′.

A closed timed automaton is a timed automaton whose all guards have closed
atomic clock constraints.

A configuration of a timed automaton is a pair (�, ν) where � ∈ L is the current
location and ν is a clock valuation, assigning a value to each clock. At first sight it
might look natural to assume that clocks take integer values, as timed automata
will be used to model digital systems (using a cycle of the CPU as the unit
of time). This would have several drawbacks: first, our results would only be
valid for this given frequency of the CPU; more importantly, when the model
consists of several components, a discrete semantics forces the components to
have synchronoous transitions; finally, this would not be convenient for modelling
the external environment, which should not be restricted to have finite frequency.
We refer to [BS91, Alu91] for a longer discussion on this question.

In the rest of this paper, following [AD94], we thus assume that clocks take
real values. The set of configurations (or states) of a timed automaton A = (L, C,
�0, E) is then L×RC

≥0. A run of A is a sequence s1e1s2e2 . . . where si ∈ L×RC
≥0,

and writing si = (�i, νi), either ei ∈ R>0, in which case si+1 = (�i, νi + ei), or
ei = (�i, g, R, �

′) ∈ E, in which case si+1 = (�′, ν[R← 0]). We denote by statei(ρ)
the i-th state of any run ρ, by first(ρ) its first state, and, if ρ is finite, last(ρ)
denotes its last state of ρ.

Example 1. Fig. 1 displays an example of a timed automaton, representing the
behavior of a computer mouse: it uses one clock to measure the delays between
pushes on the buttons, and translates them into single- or double-clicks, depend-
ing on these delays.

2.2 Timed-Automata-Based Model Checking

Theorem 1 ([AD94]). Reachability and Büchi properties can be decided in
polynomial space in timed automata. Both problems are PSPACE-complete.

The proof of this important theorem relies on the construction of the region
abstraction: intuitively, if two clock valuations are close enough, in the sense
that they give to each clock the same integral part and define the same or-
der w.r.t. their fractional parts, then they will give rise to similar behaviours:
the same transitions are available, and the valuations reached by letting time
elapse can still be made close enough. After noticing that we do not need to care
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idleleft
x≤3

right
x≤3

left button?

x := 0

right button?

x := 0

x = 3

left click!

x < 3 left button?

left double click!

x ≤ 1 right button?

middle click!

x = 3

right click!

x < 3 right button?

right double click!

x ≤ 1 left button?

middle click!

Fig. 1. Clicks and double-clicks of a mouse

about the value of a clock when it is larger than the maximal integer appear-
ing in the automaton, this gives rise to an equivalence relation (called region
equivalence) having finite index. Quotienting the automaton with the region
equivalence provides us with the region automaton, which can be used to ver-
ify ω-regular properties. Though the region automaton has size exponential, the
algorithm for checking ω-regular properties can be made to run on-the-fly, thus
using only polynomial space.

Symbolic approaches based on coarser equivalence relations and adequate data
structures have been developed, which make the verification of timed automata
usable in practice. Several tools implement optimised versions of these algorithms
(e.g. Uppaal [BDL+06], Kronos [BDM+98], ...), and have been successfully ap-
plied on industrial case studies.

Example 2. We illustrate the region equivalence on the two-clock timed automa-
ton depicted on Fig. 2. The maximal constant appearing in this automaton is 2,
so that the set of classes of the region-equivalence is as depicted on Fig. 3. Its re-
gion automaton is depicted on Fig. 4, in which we can observe that the rightmost
location of the automaton is not reachable.

2.3 Discussion on the Semantics: Are We Doing the Right Job?

We opted for the dense-time semantics to overcome the drawbacks of discrete-
time, but is dense-time really better?

Obviously, the continuous-time semantics can be used to mimick the discrete-
time semantics (by forcing transitions to occur only at integer dates), which in
some sense shows that it is not worse. But this semantics is mostly appropriate
for abstract designs and high-level analysis of timed systems, and suffers from
several inaccuracies when used for more concrete analyses. In particular:

– by assuming infinite frequency (i.e., zero-delay transitions), infinite precision,
and immediate communications between components, the continuous-time
semantics is not adequate for implementation. Indeed, in practice, clocks do
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x≤2 y≤2 x≤2 x≤1

y=1
y:=0

x≤2
x:=0

y≥2
y:=0

x=0
y=2

Fig. 2. A two-clock timed automaton A

1 2

1

2

0

x

y

Fig. 3. Region equivalence for A

Fig. 4. The (reachable part of the) region automaton for A

not all run at the exact same speed. Moreover, since computers are digital,
the value of the clock is updated periodically. Hence a clock constraint might
be evaluated to true at a time when it is not true anymore. Both phenom-
ena give rise to emergent behaviors that are not taken into account during
verification.

– because of the infinite frequency and precision, timed automata may exhibit
non-realistic behaviors, especially convergence phenomena. The best-known
example of convergence phenomena are Zeno runs, which are infinite runs (in
terms of their number of transitions) having finite duration. More complex
convergence phenomena can be hidden, which may be difficult to detect:
such unrealistic behaviors can nevertheless be used by a standard verification
process, witnessing in an inappropriate way the truth of some property.

Example 3. One realizes that any infinite behavior in the automaton of Fig. 2 is
such that the value of clock x when entering the green location is non-decreasing
and bounded by 2, hence converging (whereas globally time diverges).
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x≤1 x≤1 x≤1
x=1

x:=0

y=1

z:=0

z>0

y:=0

Fig. 5. An automaton with a (non-Zeno) convergence phenomenon

Another example (from [CHR02]) where such a phenomenon occurs is depicted
at Fig. 5: because of the constraint on clock z, the time elapsed in the right-
most state is always positive, and it can easily be proven that the value of x
when entering the left-most state is the accumulated delay spent in the right-
most state. Hence infinite runs exist in this automaton, but the delays in the
right-most state will have to be arbitrarily small.

The remarks above raise several important questions on the real impact of
standard verification processes applied to timed systems. First, given a model
that has been proven to satisfy some properties, is it possible to implement it
while preserving these properties? Also, to what extent does the result of the
verification transfer to real-world systems?

This advocates for the development of a theory of robustness for timed sys-
tems. An important issue is to understand what is the real system behind the
mathematical model, and also which implementation of a system we have in
mind, if any. Also, it should be clear under which model of perturbations the
theory applies (perturbations can arise from multiple sources). Finally, we should
provide the user with methodologies to develop correct real-world (or imple-
mented) systems.

The aim of this paper is to present a possible approach to the robustness of
timed systems. It consists in developping refined techniques to check properties
of timed automata in a robust setting: we do not want to model the execution
platform explicitly, nor do we want to involve extra formalisms. Our algorithms
will take timed automata as inputs, and they will verify properties under a
semantics that takes timing imprecisions into account.

2.4 Related Work

An early attempt in defining a robustness notion for timed automata is [GHJ97],
where a topological definition is introduced with the hope that the language
inclusion problem could become decidable under this semantics; but the unde-
cidability was later shown to hold even in the robust setting [HR00].

Robustness analysis algorithms in presence of parameterized guard enlarge-
ment have been studied extensively starting with safety properties in [DDMR08].
These results will be summarized in Section 3.
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Following [Pur00, DDMR08], clock drifts have been studied for general timed
automata (rather than closed timed automata) in [Dim07, SFK09]. These have
also been considered in the context of distributed timed automata in [ABG+08]
where one distinguishes existential languages, that is, those behaviors that can
be achieved under some evolution of the clocks, and universal languages, which
is, the behaviors that are present whatever the drifts are. The emptiness of the
former is decidable, while the latter is shown undecidable.

The semantics under an unknown regular sampling of time was considered
in [CHR02, KP05, AKY10]. Reachability under unknown sampling rate was
shown to be undecidable in [CHR02], while safety is decidable [KP05]. Here, the
goal is to synthesize a sampling parameter under which a reachability or safety
objective holds, or the untimed language is preserved. This problem is related to
the implementability of timed automata with discrete clocks. Such discrete time
approaches are interesting when the model is a low-level designs, that is, timed
automata where one time unit is comparable to the clock period in the target
hardware platform.

The work [AT05] considers encoding in timed automata models several per-
turbations including clock drifts, enlargement, sampling. The resulting approach
allows analyzing systems with fixed perturbation parameters, and often with a
fixed granularity (e.g. for clock drifts), but not applying parameter synthesis.
Many cases from the literature do in fact use such encodings since robustness
algorithms are not yet available in verification tools.

The robustness of timed models against decreases in execution times have been
considered in [ACS10] using simulations, and an application in a multimedia
system was discussed.

3 Robustness Analysis

Standard analysis of the timed-automaton model might not be satisfactory if we
are interested in the implementation of this model. In this section, we describe
a framework in which one implements directly the system which is designed.
Unfortunately, as mentioned earlier, the implemented system might not behave
precisely according to the model, since imprecisions might occur while executing.
The idea is then to understand how one should adapt the analysis process in
order to capture and analyze the real behavior of the implemented system.

Robustness analysis. We write Aδ for the timed automaton obtained from A by
enlarging its guards by a parameter δ: that is, every upper-bounded constraint
x ≤ b or x < b is replaced by x ≤ b+δ, and every lower-bounded constraint x ≥ a
or x > a is replaced by x ≥ a−δ. Obviously every behavior in A is also a behavior
in Aδ. Also quite obviously, there are behaviors in Aδ that are absent in A (since
some delays cannot be exactly matched), but maybe more surprisingly, there are
qualitative behaviors that can be found in any Aδ (however small δ > 0 may be)
but that cannot be found in A. In particular, a simple (untimed safety) property
proven in A can be violated in anyAδ, however small δ > 0 may be. We illustrate
this fact in the example below.
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Example 4. Consider the automaton of Fig. 2. When enlarged by δ, the first
transition of the loop can be anticipated by δ, hence taken when x = 2−δ, while
the second transition of the loop can be delayed until y = 2 + δ. Starting from
a configuration where x = 1 and y = 0, we end up with x = 1 − 2δ and y = 0
after applying these two transitions. This can be repeated, until we come back
to the left-most state of the loop with x being close to zero, which will then give
access to the right-most state of the automaton.

The idea of robustness analysis (or robust model-checking) is to verify the
correctness of the enlarged timed automaton. We define it formally below.

Definition 2 (Robustness analysis). Given a linear-time property ϕ1 and
a timed automaton A, decide whether there is some δ0 > 0 such that for all
δ ∈ [0, δ0], all executions in Aδ satisfy property ϕ. If this is the case, we say that
A robustly satisfies ϕ, and that δ0 witnesses this robust satisfaction.

Why robustness analysis? The idea behind robustness analysis is that the en-
largement by δ of all the guards should capture the imprecisions of the executed
(or implemented) system. The accurateness of the approach then relies on the
assumption that for some δ > 0, Aδ over-approximates the real behavior of
the system (with δ depending on the characteristics of the processor). To sup-
port this assumption, program semantics are given in [DDR05] and in [SBM11].
They take into account various delay parameters of a processor, and are shown
to satisfy this assumption.

This yields the following methodology for the development of correct imple-
mented real-time systems.

1. Design A;
2. Verify the robust satisfaction of ϕ by A, that is verify Aδ, where δ is a

parameter;

3. Implement A: its correctness will be implied by that of Aδ.

Let us comment the robust satisfaction. It is easy to get convinced that if δ0
witnesses the robust satisfaction of ϕ by A, then so does any 0 < δ ≤ δ0. This
“faster-is-better” property is a desirable property when studying implementabil-
ity: if a system is correct when implemented on a processor, then it will remain
correct on a faster processor.

Decidability and complexity results. When δ0 > 0 is fixed, verifying that Aδ0

satisfies ϕ can be done using standard model-checking techniques. However, ro-
bust model-checking is rather interested in a paramaterized analysis, and in the
synthesis of a positive value for δ0. In the theorem below, by timed automata
with progress cycles, we refer to timed automata whose all cycles reset each clock
at least once.

1 That can be any ω-regular or LTL property, or even some timed property.
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Theorem 2 ([DDMR08, BMR06, BMS11, BMR08]). Robust model-
checking of safety, Büchi, LTL properties for closed timed automata is PSPACE-
complete. Robust model-checking of coFlatMTL (a fragment of MTL) for closed
timed automata with progress cycles is EXPSPACE-complete.

One can notice that the theoretical complexity of robust model-checking is
the same as that of standard model-checking, which is quite surprising but very
positive. Unfortunately no efficient symbolic algorithms have been developed so
far, and a big effort is required in this direction, so that the practical impact of
these results is consolidated.

4 Robust Implementation

In this section, we will explore techniques that allow generating implementations
that are robust to perturbations by construction. These techniques also ensure
that some desired properties of the initial model are preserved in the implemen-
tation. Hence, this approach has the advantage of allowing the system designer
to concentrate on the initial model, and use existing tools to prove correctnes,
while leaving the implementation effort to a computer.

More precisely, we describe results that allow one to automatically transform
a given timed automaton into a robust one, while preserving at least its time-
abstract behaviors. Thus, our target implementation formalism is again timed
automata subject to guard enlargement. We will present two ways of achieving
robust implementation, each corresponding to a different point of view on the
models.

4.1 Shrinking

Assume that we are interested in strictly respecting the timing constraints de-
scribed by the guards of given timed automata, that is, we do not tolerate any
enlargement of the guards. To motivate this assumption, consider the following
scenario. We are designing a system that communicates with another component
which only receives signals in a given time interval, say x ∈ [l, u]; any signal sent
outside this interval is lost. While an abstract model of the system assuming
instantaneous communication might simply require the signals to be sent inside
the same interval, that is, x ∈ [l, u], the system would not be correct under tim-
ing imprecisions, say, due to communication delays. A natural idea is to obtain a
correct implementation by shrinking the guard into x ∈ [l+δ, u−δ], where δ > 0
is an appropriate parameter. In fact, assuming that timing imprecisions are mod-
elled by an enlargement ofΔ, we have [l+δ−Δ,u−δ+Δ]⊆ [l, u]. In other terms,
the behaviors induced by the implementation of the shrunk guard is included in
the behaviors of the original abstract model.

While shrinking can offer an easy way to implement timed automata while
preserving behaviors, it can also remove some significant behaviors from the
model, such as liveness. In fact, some timed automata become blocking under
the slightest shrinking of their guards. Such an example is given in Fig. 6.
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�1 �2

y≤1−δ1 ∧ 1+δ2≤x
x:=0

y≤1−δ3, y:=0

Fig. 6. A shrunk timed automaton that is blocking whenever δ2 > 0 or δ3 > 0. To see
this, consider any infinite execution and let d1, d3, . . . denote the delays at location l1,
and d2, d4, . . . those at l2. One can show that 1 ≤ d2i−1 +d2i for all i ≥ 1, which means
that time diverges, but also δ2 + δ3 ≤ d2i+2 − d2i and d2i ≤ 1. The latter means that
the sequence (d2i)i increases at least by δ2 + δ3 at each step and is bounded above
by 1, which is possible only when δ2 = δ3 = 0. Note that even if δ2 = δ3 = 0, non-
blockingness requires consecutive delays to be equal, which is not realistic for digital
systems.

We are interested in obtaining an implementation by shrinking the guards
of a timed automaton such that some desired properties are preserved in the
resulting model. We will consider a possibly different shrinking parameter for
each atomic guard in order to increase the chance of success. Formally, given
a timed automaton A, let I denote the set of its atomic guards. Each atomic
guard will be shrunk by kiδ where δ > 0 is a uniform parameter, and ki’s are
possibly different natural numbers. Notice that any vector of rational numbers
can be written as kδ where k is the vector of ki’s. The resulting shrunk timed
automaton is denoted A−kδ (Note that this is simply enlargement by a negative
amount). The shrinkability problem asks for property preservation under possible
shrinking; its two variants are defined formally as follows.

A timed automaton is said to be non-blocking if from any state some discrete
transition is enabled after some time delay.

Definition 3 (Shrinkability). Given a timed automaton A, decide whether
for some δ0 > 0, and some positive integer vector k,

1. A−kδ is non-blocking,
2. and A−kδ time-abstract-simulates A,
for all δ ∈ [0, δ0].

We also consider variants of the shrinkability problem. Non-blocking-shrinkability
only asks for condition 1 to be satisfied in Definition 3, while simulation-
shrinkability asks only for condition 2. The latter can be refined by only re-
quiring the shrunk timed automaton to time-abstract simulate a given finite
automaton F �t.a. A. In this case, only some part F of the time-abstract
behavior of A is preserved in A−kδ.

Theorem 3 ([SBM11]). For closed non-blocking timed automata, non-blocking-
shrinkability is decidable in polynomial space, and in NP if the maximum degree of
the locations is fixed.

For closed timed automata, under some technical assumptions, simulation-
shrinkability is decidable in pseudopolynomial time in the sizes of A and F .
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Algorithms of Theorem 3 allow computing the parameters k and the maxi-
mum δ > 0. This enables the following design methodology which we sketched
at the beginning of this section.

1. Design and verify timed automaton A;
2. Apply shrinkability, which yields A−kδ;
3. Implement A−kδ which is a safe refinement even under imprecisions:
A−kδ+Δ � A, and moreover it is non-blocking and it preserves all time-
abstract behaviors of A.

Tool support. The simulation-shrinkability algorithm described above was imple-
mented in a software tool called Shrinktech [San13]. The tool is integrated with
the Kronos model-checker: it takes as input (network of) timed automata and
checks for shrinkability with respect to a given finite automaton F . If shrink-
ability succeeds, then the tool outputs the computed parameters δ and k, and
the witnessing simulator sets. Otherwise, a counter-example is output, which
is a finite automaton that cannot be simluated by any shrinking of the timed
automaton. Some benchmarks are given in [San13], and the tool is available at
http://www.lsv.ens-cachan.fr/Software/shrinktech.

4.2 Approximately Bisimilar Implementation

We now assume that the implementation of the timed automaton design can
tolerate small timings errors, but we would like to avoid the accumulation of
these over time as in Example 4. Under this “relaxation”, we will show that we
can achieve more than with the shrinking technique we described in the previous
subsection: under some assumptions, all timed automata can be “approximately”
implemented.

In order to compare the behaviors of two timed automata allowing bounded
errors in timings, we use ε-bisimilarity, an extension of timed bisimilarity. For-
mally, an ε-bisimulation R is a relation between the states of a timed automaton
defined as follows. For any s and t with s R t, whenever s

σ−→ s′, there exists t′

such that t
σ−→ t′, and t R t′, and whenever s

d−→ s′ for some d ≥ 0, then there
exists d′ ∈ [max(0, d− ε), d+ ε] such that s′ R t+ d′. We denote s ∼ε t, if there
is an ε-bisimulation between states s and t. Note that ∼0 is the usual timed
bisimulation, also written ∼.

Now, given timed automata A and A′, we say that A′ is an ε-implementation,
if A ∼ A′ and A′ ∼ε A′

δ for some δ, ε > 0. Here, the former condition means that
the alternative timed automaton A′ is “equivalent” to A in the exact semantics,
while the latter condition requires the robustness of A′: under enlargement, all
behaviors are approximately included in those of A.

We also consider the simpler notion of safe implementation by requiring that
A ∼ A′ and that A′ and A′

δ have the same set of reachable locations for some δ >
0.

Theorem 4. For any timed automaton A, and any ε > 0, one can construct an
ε-implementation, and a safe implementation, both in exponential time.

http://www.lsv.ens-cachan.fr/Software/shrinktech
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Although one can use ε-implementations to obtain safe implementations, the
latter are smaller in size in practice.

Methodology. The above theorem allows one to completely separate design and
implementation of timed automata models. In fact, since the implementation can
be ensured for all models, one can only concentrate on designing the model and
proving properties in the exact semantics; imprecisions do not need to be taken
into account. One can then specify the precision ε depending on the required
accuracy.

1. Design and verify timed automaton A;
2. Automatically generate an implementation.

5 Robust Realisability and Control

In this section, we are interested in checking whether a given desired behavior
is realisable in a timed automaton when the time delays are subject to pertur-
bations. Our goal is to detect behaviors (such as defined by Büchi conditions)
that can be realised even when the delays can only be chosen upto a bounded
error. In fact, although the theory of timed automata allows characterizing the
existence of infinite runs accepting for a Büchi condition, not all such runs are
realisable with finite precision (hence, not in hardware neither); we already saw
in Example 3 a timed automaton where any infinite run contains delay and clock
value sequences that are convergent, that is, requires infinite precision. If the in-
put model is timed games, then this problem is closely related to that of robust
controller synthesis, where the goal is to find winning strategies that resist to
systematic perturbations in the time delays.

We thus present the problem both as a realisability problem for timed au-
tomata, and as robust controller synthesis in timed games. We formalise this
problem as a turn-based game between a controller that chooses delays and
edges and an environment that perturbs the chosen delays. Two variants of this
game semantics were studied in [CHP11, SBMR13] and [BMS12] respectively.
We first present the two variants and related results, and compare them at the
end of this section.

5.1 Conservative Semantics

We start with the conservative game semantics. Intuitively, the semantics is a
turn-based two-player game parameterized by δ > 0, where Player 1, also called
Controller chooses a delay d > δ and an edge whose guard is satisfied after any
delay in d + [−δ, δ]. Then, Player 2, also called Perturbator chooses an actual
delay d′ ∈ d+ [−δ, δ] after which the edge is taken. Hence, the delays suggested
by Controller are perturbed by Perturbator by an amount from [−δ, δ], but the
guard is required to be satisfied whatever the perturbation is.
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We also consider two-player timed games where, in addition to being able to
suggest delays and actions, Perturbator can perturb by an amount in [−δ, δ] the
delays chosen by Controller.

While for δ = 0, a strategy for Controller in this game semantics merely yields
a run, for δ > 0, it describes how Controller reacts to perturbations in the past.
It may, for instance, choose the delays so as to correct the effect of the earlier
perturbations.

We are interested in deciding whether for some δ > 0, there exists a strategy
of Controller whose all outcomes satisfy a given ω-regular condition. This is the
parameterized robust controller synthesis for Büchi objectives. If the parameter
is given as part of the input, then we will call the problem fixed-parameter robust
controller synthesis. While the timed automaton of Fig. 6 is uncontrollable in
this sense (which follows from the fact that it is not shrinkable), Fig. 7 shows
example of a controllable timed automaton.

�1 �2

0<y<1,y:=0

0<x<1,x:=0

Fig. 7. A timed automaton (from [BA11]) that is robustly controllable for the Büchi
objective {�2}. In fact, perturbations at a given transition do not affect the rest of the
run; they are forgotten.

For a fixed parameter δ > 0, we have the following result for parity conditions.

Theorem 5 ([CHP11]). The fixed-parameter robust controller synthesis for
timed games and parity conditions in the conservative game semantics can be
solved in exponential time.

The above algorithm is obtained by reduction to timed games; in fact, when δ is
known, it is possible to encode the game semantics as a timed game, and apply
known algorithms.

For Büchi objectives, the parameterized version of the problem can be solved
in polynomial space:

Theorem 6 ([SBMR13]). Parameterized robust controller synthesis for timed
automata and Büchi conditions in the conservative game semantics is PSPACE-
complete.

The above theorem is established by characterising those cycles that can be
repeated infinitely by Controller against any strategy of Perturbator. The char-
acterisation is expressed in terms of the reachability graph between the vertices
of the visited regions (a.k.a. the orbit graph), and was introduced in [BA11]
in a different context. [BA11] characterizes those cycles of a timed automaton
along which the clock values are not convergent; these are called forgetful cycles.
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The contribution of [SBMR13] consists in showing that any long enough run
along non-forgetful cycles can be made blocking by an appropriate strategy of
Perturbator.

5.2 Excess Semantics

We now present a variant of the previous semantics, similar in definition, but
different in terms of usage. The excess game semantics is a turn-based two-player
game between Controller and Perturbator, and parameterized by δ > 0. The
difference is that at each turn, Controller now only has to suggest a delay d ≥ δ
and an edge whose guard is satisfied only after the delay d. After such a move,
Perturbator can modify the delay by any amount in [−δ, δ], and the perturbed
delay and the edge chosen by Controller are taken whether or not the guard is
satisfied after the perturbation. We refer to Example 5 for an illustration of this
semantics.

The following result shows the decidability of the parameterized robust con-
troller synthesis problem for reachability objectives in timed automata and turn-
based timed games.

Theorem 7 ([BMS12]). Parameterized robust controller synthesis for turn-
based timed games and reachability objectives in the excess game semantics is
EXPTIME-complete.

5.3 Comparison

We defined here two very similar game semantics. We believe both are mean-
ingful and can appear naturally at different levels of abstraction. For instance,
the excess-perturbation game semantics is a natural choice when modelling a
real-time system with fixed task execution times, if we also know that these ex-
ecution times will be subject to perturbation whose magnitude is unknown in
advance, which may depend on the implementation platform to be chosen later.
Incorporating these perturbations in the model, for instance, by replacing equal-
ity constraints by non-punctual intervals, requires a choice of a suitable interval
length which may not be known. Moreover this will increase the state space in
general. Hence the excess-perturbation game semantics allows one to keep the
design abstract and still apply robustness analysis.

On the other hand, in some applications, specifying distinct lower and upper
bounds in timings may be natural. For instance, if one is interested in modelling
an embedded system that should send a signal to another component which
accepts input signals in a time interval [l, u], then it is natural to look for a
controller that strictly respects this interval. Such a model and its semantics
would be closer to the actual program. In this case, the conservative-perturbation
game semantics is the natural choice.

Note also that while any outcome of the conservative game semantics is a run
of the timed automaton (or game) in the usual semantics, this is not the case for
the excess semantics. On the other hand, outcomes of the excess game semantics
are runs of the enlarged automata.
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5.4 Weighted Timed Automata and Games

Weighted timed automata [ALP01, BFH+01] are an extension of timed automata
with one cost variable which grows with a possibly different constant derivative at
each location. Cost-optimal reachability is decidable in this model, but undecid-
able in weighted timed games. Robustness problems can naturally be addressed
for weighted timed automata and games, following similar motivations as timed
automata. Moreover, one could hope that in weighted timed games, a suitable
robust semantics could render the cost-optimal reachability problem decidable.
We show in this section that undecidability still holds in both game semantics.

We consider conservative and excess perturbation game semantics. As Exam-
ple 5 below shows, the optimal cost that can be achieved depends on δ. Because
we assume that δ is a small parameter whose value can be adjusted as required,
we will concentrate on the limit-cost of a strategy in a weighted timed automa-
ton under the game semantics. The limit cost is the cost achieved by a strategy,
when δ goes to 0.

Example 5. Figure 8 displays an example of a weighted timed game. Plain (resp.
dashed) arrows are for Player 1 (resp. Player 2) edges. The slopes are indicated
above each state. A strategy for Player 1 is to suggest a delay of 1 and choose

�1

0

�5

6 0

�2

0
�3

10

�4

7

0

0

x≥1

y:=0

x>1

x≥3

2≤x≤3∧y<1

2≤x≤3∧1≤y

x≥4

x≥4

Fig. 8. Example of a WTG

the edge from �1 to �2. This prevents Player 2 from going down to location �5,
where the cost of accepting is 12. From location �2, Player 1 can go to �4, from
where a target location is reached with cost 7.

Under the excess-perturbation semantics, as in the exact case, Controller can
suggest a delay of 1 and choose the edge from �1 to �2. The location �5 can thus
be avoided. Now, one can see that the move of Perturbator determines the next
location to be visited: if Perturbator adds a positive perturbation (i.e. if the
delay is in [1, 1 + δ]), then only location �3 is reachable. Conversely, a negative
perturbation enables only location �4. To maximize the cost, Perturbator will
force the play to �3, so Controller can only ensure a cost of 10 +Θ(δ).

We now focus on the conservative semantics. The above strategy is no more
valid since in this case, Controller can only suggest delays of at least 1+ δ. Then
Perturbator can force the play to �5. Here, the cost of winning is 12 +Θ(δ).

We define the optimal limit-cost (strong) decision problem for the conservative
or excess semantics as the problem of deciding whether some strategy achieves
a limit cost of at least (resp. more than) a given threshold.
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Theorem 8 ([BMS13])

– The optimal limit-cost decision problem is undecidable for weighted timed
automata under the excess game semantics.

– The optimal limit-cost strong decision problem is PSPACE-complete for
weighted timed automata under the conservative game semantics, and un-
decidable for weighted timed games.

Hence, the decision problems on optimal limit-cost in weighted timed
games remain undecidable. Moreover, the problem even becomes undecidable
for weighted timed automata in the excess game semantics. This is rather sur-
prising since it is often believed that introducing imprecisions render problems
easier to solve [AB01].

6 Conclusion

In this paper we have presented a recent approach to the theory of robustness
for timed systems. The model of perturbation that is considered is that of guard
enlargement, which captures time measurement errors and jitter. Other models
of perturbation could be considered, which would more adequately take into
account other sources of errors in the execution of timed systems.

Under this model of perturbation, we have described several robust verification
problems which have been formulated and partly solved recently. Complexities of
these problems are quite standard in the domain of timed systems, and symbolic
technics need now to be developed for solving the various problems, that would
support usability of the approach.

Robustness in timed systems is an important issue, the effort to develop a full
theory of robustness needs therefore to be continued.
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J., Mauri, G., Ong, L. (eds.) Proc. 5th IFIP International Conference on
Theoretical Computer Science (TCS 2008). IFIP, vol. 273, pp. 537–553.
Springer, Boston (2009)



Automated Verification of Concurrent Software�

Daniel Kroening
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Abstract. Effective use of concurrency is key to accelerating computations in
a post frequency-scaling era. We review a research programme aimed at auto-
mated formal verification of a broad variety of concurrent systems. We briefly
survey different forms of asynchronous concurrent computations, with a focus on
multi-threaded, multi-core computation. We then highlight semantic and scalabil-
ity challenges that arise when applying automated reasoning technology to this
class of software.

We then discuss two very different techniques to address the challenges in
this domain. The key insight behind the first technique is to exploit the symme-
try that is inherent in many concurrent software programs: the programs exe-
cute a parametric number of identical threads, operating on different input data.
Awareness of this design principle enables the application of symmetry reduction
techniques such as counter abstraction, and encodings as Petri net coverability
problems [2,6,4,3].

The second technique exploits the observation that asynchronous concurrent
systems are frequently only very loosely synchronised. This gives rise to an en-
coding of the system using a set of constraints over partial orders. The constraints
can be passed using a modern SAT/SMT solver, which gives rise to an effective
bounded verification technique for asynchronous concurrent systems [1,5].

The research presented is joint work with Jade Alglave, Gerard Basler, Alas-
tair Donaldson, Jim Grundy, Alexander Horn, Alexander Kaiser, Lihao Liang,
Michele Mazzucchi, Tom Melham, Michael Tautschnig, Celina Val and Thomas
Wahl.
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The provenance of an object is the history of its origin and derivation. Provenance
tracking records the provenance of an object as it evolves. In computer science,
provenance tracking has been studied inmany different settings, such as databases
[7,3,2], scientific workflows [13,5], and programanalysis [4,12,9], often under differ-
ent names (lineage, dependence analysis, taint analysis) and with varying degrees
of (in)formality. Provenance information can be used inmanyways, for example, to
identify which sources of data led to a result, to ensure reproducibility of a scientific
workflow, or to check security properties such as information flow.

We study provenances tracking in the context of distributed message-passing
programs. These programs consist of principals, who communicate with each
other, and associate additional information with messages — the provenance. In
a simple setting, the provenance records the sequence of principals that accessed
the message in the past (with principals potentially appearing multiple times).
We study the provenance verification problem: the problem of statically checking
whether the provenances of all messages belong to a specified regular set of
provenances along all possible executions of the program.

We give a unifying view of provenance tracking for distributed message-
passing programs. Following Souilah, Francalanza, and Sassone [14], we model
distributed systems in the π-calculus and give a provenance-carrying semantics.
This semantics is relative to a domain of provenance annotations. Besides the
regular word-languages mentioned above, we use the domains of provenance sets
and regular tree-languages.

We focus on the algorithmic verification of provenances. Since the provenance-
verification problem is undecidable for the full π-calculus, we consider restricted
classes of programs. Our main result shows that provenance verification is decid-
able for the class ofdepth-boundedπ-calculus processes [11], an expressive class that
subsumes most known decidable subclasses of the π-calculus. Intuitively, depth-
boundedness is a restriction on the communication topologies which limits the
length of acyclic paths. Depth-bounded systems strictly generalize Petri nets, and
are expressive enough to capture common programming models, such as asyn-
chronous programs [6], actor-like programs [15], and some further generalizations.

We show a reduction from provenance verification to coverability of
depth-bounded processes, a problem shown to be decidable [15]. Our proof uses
well-structuredness arguments [1] with symbolic representations of automata.
Interestingly, the general method is strong enough to recover the decidability of
provenance verification for asynchronous message passing programs with finite
data domains [10].
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As an application of our results, we formulate privilege escalation problems
in abstractions of browser extensions and Android programs as instances of
provenance verification. Thus, our formalization gives a uniform static analysis
algorithm for information flow issues in distributed message passing programs.

We also consider more expressive linear-temporal logic specifications for prove-
nance policies. While provenance verification for linear-temporal logic is not de-
cidable for all depth-bounded systems, we show that it is decidable for a recently
studied subclass, the name-bounded processes [8]. Intuitively, name-bounded pro-
cesses model distributed message-passing programs operating under resource
bounds. Formally, there is a bound on the number of channels that holds for all
reachable processes. We show that asynchronous programs can be modeled by
name-bounded processes. Thus, model checking linear-temporal logic provenance
specifications for asynchronous programs is decidable as well.
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Abstract. Program verifiers that attempt to verify programs automat-
ically pose the verification problem as the decision problem: Does there
exist a proof that establishes the absence of errors? In this paper, we
argue that program verification should instead be posed as the follow-
ing decision problem: Does there exist an execution that establishes the
presence of an error? We formalize the latter problem as Reachability
Modulo Theories (RMT) using an imperative programming language pa-
rameterized by a multi-sorted first-order signature. We present complex-
ity results, algorithms, and the Corral solver for the RMT problem.
We present our experience using Corral on problems from a variety of
application domains.

1 Introduction

Practical program verifiers are difficult to design and implement. To be use-
ful, the verification must be automated as much as possible. At the same time,
the verifier must be able to model precisely the complex features and abstrac-
tions used in real-world programming languages. First-order provers based on
satisfiability-modulo-theories (SMT) satisfy these conflicting requirements simul-
taneously by providing both a rich modeling framework for encoding language
semantics and high-degree of automation for deciding satisfiability of expressions.
Consequently, many program verifiers use SMT solvers in their core.

Efficiently decidable satisfiability checking of expressions is necessary but in-
sufficient for building practical program verifiers. The reason is that while ver-
ification of finite executions can be encoded precisely as satisfiability checking,
verification of unbounded executions cannot be similarly encoded. The latter
problem is undecidable for the standard theories, e.g., linear arithmetic, uninter-
preted functions, arrays, etc. used in modeling program behaviors.

Program verifiers that attempt to verify programs automatically pose the
verification problem as the decision problem: Does there exist a proof that estab-
lishes the absence of errors? As mentioned above, this problem is undecidable;
in fact, it is not even recursively enumerable. Intuitively, enumerating program
proofs is so difficult because it requires a complete proof system whose asser-
tions come from a statically known and decidable language. Practical verifiers
use the Floyd-Hoare proof system and the language of expressions in the pro-
gramming langauge as the assertion language. Our experience building verifiers
for sequential programs indicates that while the Floyd-Hoare proof system is of-
ten complete enough, expressions in the programming language are inadequate

P.A. Abdulla and I. Potapov (Eds.): RP 2013, LNCS 8169, pp. 23–44, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



24 A. Lal and S. Qadeer

for capturing proofs of even simple properties. As an example, the theory of
arrays which naturally encodes program expressions for looking up and updat-
ing the heap is inadequate for expressing a Floyd-Hoare proof of correctness
of a heap-manipulating program. Such a proof would typically require a richer
theory capable of expressing both quantified facts as well as data abstractions
such as objects, lists, and trees. We have encountered this difficulty in practice
while deploying the HAVOC verifier [22] to verify simple type-state properties
on device drivers [23].

In this paper, we argue that program verification should instead be posed as
the following decision problem: Does there exist an execution that establishes the
presence of an error? This problem is undecidable but recursively enumerable
for a programming language with decidable expression language. A prototypical
semi-decision procedure for this problem would enumerate program executions
in a fair manner to provide complete search in the limit. There are several advan-
tages of this problem formulation. First, it directly matches the most important
and common uses of automatic program verification—bug-finding and debugging.
When program verification is posed as a proof discovery problem, a counterexam-
ple is a by-product of the failure of proof discovery. A direct search for counterex-
amples could potentially be more efficient at uncovering bugs. Second, it natu-
rally allows the formulation of bounded and decidable versions of the problem. It
is possible that as we develop better techniques for solving the bounded problem,
we will get incrementally better at solving the harder unbounded problem. As
anecdotal evidence from the literature on hardware verification, success in solv-
ing the bounded problem (NP-complete) via Boolean satisfiability solvers has
led to increasing success in solving the harder (PSPACE-complete) unbounded
problem. Finally, we note that stating the problem as a search for counterex-
amples does not preclude the use of proof techniques for pruning search; proofs
simply become an opportunity for optimization rather than a goal by themselves.

We present reachability modulo theories (RMT), a parameterized framework
for modeling program executions and stating verification problems. RMT em-
phasizes reachability of an error state as opposed to unreachability of all error
states. A RMT problem is specified by picking points along two orthogonal axes
defining a programming language—control and data. Control is specified using a
control-flow graph with an appropriately restricted set of features. For example,
in this paper we specifically address sequential and potentially-recursive control
flow but it is just as easy to restrict recursion or generalize to allow concur-
rency by allowing asynchronous and parallel calls. Data is specified by using
a multi-sorted first-order signature, much like in the definition of satisfiability
modulo theories. Given such a signature, we allow each program variable to be
associated with a sort and assignments from well-sorted expression to a variable
of a matching sort. In other words, RMT exposes the full power of first-order
modeling provided by the satisfiability modulo theories framework and strength-
ens it with a control flow graph, allowing us to define bounded and unbounded
operational semantics over rich data domains.
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In addition to presenting the basic definition of RMT in Section 2, this paper
also contains the following contributions:

– To improve our understanding of the RMT problem, we studied its com-
plexity for loop-free and recursion-free programs. We call the problem for
such programs (with acyclic call graphs) the hierarchical RMT problem. In
Section 3, we present complexity results for various expression languages
that are relevant for modeling practical problems. Restricting attention to
quantifier-free expressions, we show that if the expression language is de-
cidable in NP, then hierarchical RMT is decidable in NEXPTIME; if the
only sort is Boolean , then hierarchical RMT is PSPACE-complete; if, in
addition, uninterpreted functions are available, then hierarchical RMT is
NEXPTIME-complete.

– We use the Boogie [9] language as the concrete representation for an RMT
problem. We have developed translators from C and .NET bytecode into
Boogie. In Section 4, we give examples of how the operational semantics
and verification problems for different source languages are encoded into
Boogie. Our work enables both sequential and concurrent Boogie programs,
regardless of the source language from which they are derived, to be verified
without requiring contracts such as preconditions, postconditions, and loop
invariants.

– We have implemented Corral [25], a solver for the RMT problem. Corral

will replace Slam [6] as the solver inside Static Driver Verifier in the next
release of the Microsoft Windows operating system. In Sections 5 and 6, we
describe the core techniques and architecture of Corral and our experi-
ence applying it to solve reachability problems on device drivers. We also
describe other applications, such as analyzing sequentializations of concur-
rent programs, detecting security vulnerabilities in web applications, and
solving debugging queries for .NET bytecode.

Related Work. Software model checkers [7, 21, 29] based on predicate abstrac-
tion [19] are the best known examples of program verification as proof search,
as opposed to our work which is founded in counterexample search. In addition
to this foundational difference, another difference is the programming language
on which the problem is typically stated. Software model checking has tradi-
tionally been defined for the C programming language, whose expression lan-
guage makes implicit reference to the heap and and is consequently not directly
amenable to logical reasoning. On the other hand, we define our programming
language abstractly using a multi-sorted first-order signature; consequently, the
well-understood techniques of weakest preconditions and verification-condition
generation are immediately available to us.

Recently, another attempt to state the proof search problem using first-order
signatures has been made using a formulation based on Horn clauses [12, 13].
The main difference from our work is the focus on proof discovery as opposed to
counterexample discovery; in this regard, their approach is similar to software
model checking. However, similar to our formulation, their approach is indepen-
dent of the syntax and semantics of source-level programming languages. While
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// Identifiers

Id

// Sorts

Sort

// Expressions

Expr

// Variable declarations

VarDecl ::= var Id: Sort

// Commands

Cmd ::= assume Expr | Id := Expr | call Id∗ := Id(Id∗) | havoc Id

// Basic Blocks

Block ::= Id: Cmd goto Id∗ | Id: return

// Procedures

Proc ::= procedure Id (VarDecl∗) returns VarDecl∗ { VarDecl∗ Block+ }

// Program

Program ::= Proc∗

Fig. 1. The grammar of programs

RMT uses control flow and variables whose values can be updated, the Horn
clause formulation uses side-effect free logical expressions. The Horn clause for-
mulation has the advantage that the representation can encode not just program
semantics but various proof systems such as Floyd-Hoare for sequential programs
and Owicki-Gries for concurrent programs. Our formulation has the advantage
that we can reason directly about sequential or concurrent program executions.

2 Reachability Modulo Theories

We define the RMT problem over a simple imperative programming language.
The syntax of the language is shown in Fig. 1. A program (Program) is a list of
procedure declarations. A procedure (Proc) can have any number of input and
output parameters. The procedure body is a list of local variable declarations
followed by a list of basic blocks; the first block is the one where execution of
the procedure starts. The output variables of a procedure (if any) act like any
other local variable, except that their value at a return command is the tuple
of values returned on a call to the procedure. A basic block (Block) is a label
followed by a list of commands. A command (Cmd) is either an assume command,
or an assignment, or a havoc command, or a procedure call. The command
havoc x non-deterministically assigns an arbitrary value (of the right type) to
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x. The rest of the commands have the standard meaning. We disallow loops in
our programs (they can be encoded using tail-recursion). Thus, the control-flow
graph of a procedure is always acyclic. We refer to a recursion-free program as
a hierarchical program.

We leave the syntax of expressions and sorts unspecified in the syntax and
require only the following two properties:

– Expr is generated from a multi-sorted first-order signature containing the
Boolean sort and the equality relation =.

– It is decidable to check satisfiability of Boolean -valued expressions in Expr.

The smallest expression language that satisfies the above properties is quantifier-
free and contains only Boolean sort. For this expression language, the satisfiabil-
ity problem is NP-complete.

P � (l : assume e; goto ls ′) l′ ∈ ls ′ e(M,σ) = true

P,M � (σ, l) · ss →b (σ, l′) · ss

P � (l : x := e; goto ls ′) l′ ∈ ls ′ e(M,σ) = v

P,M � (σ, l) · ss →b (σ[x := v], l′) · ss

P � (l : havoc x; goto ls ′) l′ ∈ ls ′ v ∈ M(Sort(x))

P,M � (σ, l) · ss →b (σ[x := v], l′) · ss

P � (l : call y := p(x); goto ls ′)
a = Ins(p) b = Outs(p) c = Locals(p) ∀i. σ′(ai) = σ(xi)

∀j. σ′(bj) = M(Sort(bj)) ∀k. σ′(ck) = M(Sort(ck)) Count((σ, l) · ss , p) < b

P,M � (σ, l) · ss →b (σ′,Start(p)) · (σ, l) · ss

P � (l : return) P � (l′ : call y := p(x); goto ls ′) l′′ ∈ ls ′ b = Outs(p)

P,M � (σ, l) · (σ′, l′) · ss →b (σ′[y := σ(b)], l′′) · ss

Fig. 2. Operational semantics

Figure 2 presents the operational semantics of our programming language.
The semantics is given using the derivation P,M  ss →b ss

′ that refers to the
following elements:

– P is a program.

– M is a model for the first-order signature of program P .

– Each of ss and ss ′ is a stack of activation records, essentially a list of pairs,
with each pair comprising a label and a valuation to program variables.

– →b is the transition relation for an integer bound b > 0.
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The semantics also use an auxiliary derivation of the form P  l : c;goto ls
or P  l : return. This derivation indicates that the program P contains an
appropriately labeled basic block. We assume that all labels in the program are
distinct.

The first rule in Figure 2 is for the assume statement; it allows execution
to proceed only if the expression e evaluates to true. The next rule is for the
assignment statement. The rule for havoc updates the variable x to an arbitrary
value belonging to the interpretation of Sort(x) in the model M . Next are the
rules for procedure call and return. The activation record of the called procedure
gets arbitrary initial values for the output and local variables. Upon return,
actual output parameters in the caller are updated by looking up the appropriate
variables in the callee. For any stack ss and procedure p, Count(ss , p) returns
the total number of activation records of procedure p on the stack. The call rule
ensures that the number of activation records for any procedure does not go
beyond b. We further define

→ =
⋃
b>0

→b

as the full transition relation of the program.
Let p be a procedure with no input or output parameters. We say that p has

a terminating execution if and only if there is a model M , label l, and variable
evaluations σ, σ′ such that P  (l : return) and P,M  (Start(p), σ) →∗ (l, σ′).
We say that p has a b-terminating execution for some b > 0 if and only if there
is a model M , label l, and variable evaluations σ, σ′ such that P  (l : return)
and P,M  (Start(p), σ) →∗

b (l, σ′). Using these definitions, we can define the
following two decision problems.

Reachability Modulo Theories. Given a program P and a procedure p in the
program with no input or output parameters, return Yes if p has a terminating
execution and return No otherwise. We use RMT(P, p) to denote an instance of
this problem. If P is hierarchical, the problem is referred to as the hierarchical
reachability modulo theories problem.

Bounded Reachability Modulo Theories. Given a program P , a procedure
p in the program with no input or output parameters, and a bound b > 0,
return Yes if p has a b-terminating execution and return No otherwise. We use
RMT(P, p, b) to denote an instance of this problem.

Fig. 3 shows a simple program P for which RMT(P,main) and
RMT(P,main , 100) holds, but RMT(P,main , b) does not hold for b < 100.

3 Complexity of the RMT Problem

The RMT problem is undecidable in general. The presence of recursion along
with say, linear arithemetic in expressions, is enough to encode Turing-powerful
computations. However, the bounded and hierarchical RMT problems are decid-
able. This section first gives an algorithm for deciding bounded RMT and then
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procedure main() {
call bar(0);

}

procedure bar(i: int) {
i f (i < 100) {

i := i + 1;
call bar(i);

}
}

Fig. 3. An example program over Boolean and Integer sorts. Structured command if

is used for convenience and can be easily compiled to labeled blocks.

refines the complexity analysis depending on the choice of the expression lan-
guage. We first consider the special case of call-free single-procedure programs.
Deciding RMT in this case can be reduced to the satisfiability of a single expres-
sion (which is decidable) through a process called Verification Condition (VC)
generation.

3.1 Verification-Condition Generation

Let Expr be the expression language and P be a program consisting of a single
call-free procedure f . The VC generation algorithm converts the body of f to a
Boolean expression VC (f)(i,o, t) such that i is the list of all input parameters to
the procedure, o is the list of all output parameters, and t are some temporary
variables. We call the tuple (i,o) the interface variables of f . The expression
VC (f) satisfies two important properties. First, VC (f) is an expression in Expr.
Second, VC (f) is satisfiable if and only if some execution of f starting in state i
can return with state o. Therefore, RMT(P, f) can be decided by checking the
satisfiability of VC (f).

We now describe a standard VC generation algorithm [10]. The first step is
to passify f by converting all commands to assume statements. Consider the
single procedure shown on the left of Fig. 4. Its passified version is shown on the
right of the figure. Passification can be done in two steps: first, do single-static
assignment (SSA renaming) [28] by introducing fresh variable incarnations so
that each variable has at most one assignment. Next, push the φ functions to
their definitions. For instance, the SSA renaming of Fig. 4 would create the
statement x4 := φ(x2,x3) at label l3 where control-flow merges. This state-
ment can be realized by instead having the statements assume x4 = x2 and
assume x4 = x3 right after the definitions of x2 and x3, respectively. Next,
as is standard, an assignment x := e after SSA renaming can be replaced by
assume x = e, and havoc statements can be dropped (assuming that uninitial-
ized variables are unconstrained). Finally, we add an assume statement at each
return stating that the output parameters are constrained to the appropriate
incarnation. This results in the passified version shown in Fig. 4 (right). Note
that passification requires Expr to be closed under =.

Once the body of procedure f is passified, it can be converted to VC (f)
as follows. Let l be an arbitrary block label in f . We define C(l) to be the
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procedure f(w: int)
returns (x: int, y: int , z: int)

{
start:

havoc x;
y := x + w;
goto l1, l2;

l1:
x := x + 1;
goto l3;

l2:
x := x + 2;
goto l3;

l3:
assume !(x > y);
return;

}

procedure f(w: int)
returns (x: int, y: int, z: int)

{
var x0 , x1, x2, x3, x4: int;
var y0 , y1: int;
var z0: int;

start:
assume y1 = x1 + w;
goto l1, l2;

l1:
assume x2 = x1 + 1;
assume x4 = x2;
goto l3;

l2:
assume x3 = x1 + 2;
assume x4 = x3;
goto l3;

l3:
assume !(x4 > y1);
assume (x = x4 && y = y1 && z = z0);
return;

}

Fig. 4. A program and its passified version

conjunction of the expressions in the assume statements in the block. We also
define Succ(l) to be the set of successor labels of block l if l ends with a goto and
the empty set otherwise. We create a set of fresh Boolean variables {. . . , bl, . . .},
one for each block l in f . We define the equation E(l) of a block l as bl = C(l)
if the block ends with a return and bl = c(l)∧

∨
n∈Succ(l) bn otherwise. Then we

get the following expression for VC (f):

VC (f) = be ∧
∧
l

E(l)

The expression VC (f) refers to input and output variables of f ; the temporary
variables are the incarnation variables created for the SSA renaming. As an
example, for the program in Figure 4, the block equations are as follows:

bstart ≡ y1 = x1 + w ∧ (bl1 ∨ bl2 )
bl1 ≡ x2 = x1 + 1 ∧ x4 = x2 ∧ bl3
bl2 ≡ x3 = x1 + 2 ∧ x4 = x3 ∧ bl3
bl3 ≡ ¬(x4 > y1 ) ∧ x = x4 ∧ y = y1 ∧ z = z0

We capture the correctness of VC generation in the following lemma.

Lemma 1. Let P be a call-free program and p be a procedure in P . Then the
answer to RMT(P, p) is Yes iff VC (p) is satisfiable.

The above VC generation algorithm shows that RMT for call-free programs
is decidable. This result can be extended to the hierarchical RMT problem for
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arbitrary (non-recursive) programs: one can simply inline all procedures to ob-
tain a single call-free procedure (because there is no recursion) and then decide
reachability using VC generation. We call this algorithm the static inlining al-
gorithm. This algorithm is easily extended to to the bounded RMT problem as
well. Given a program P with a procedure p and bound b, it is possible to cre-
ate a recursion-free program P ′ with a procedure p′ such that RMT(P, p, b) is
equivalent to RMT(P ′, p′). Therefore, bounded RMT is decidable as well. The
decision procedure for bounded RMT also implies that RMT is recursively enu-
merable: one can start with b = 1 and increment b until a witness for RMT is
found.

Theorem 1. Let P be a program and p be a procedure in P . Then RMT(P, p, b)
is decidable and RMT(P, p) is recursively enumerable.

It is worth contrasting the RMT(P, p) problem with a different UMT (P, p)
problem which asks the question where there is no terminating execution of
procedure p in program P . Let us consider Expr such that RMT(P, p) is un-
decidable (easy as soon as either arithmetic or uninterpreted sorts are intro-
duced). If UMT (P, p) is recursively enumerable, then we can use Theorem 1 to
conclude that RMT(P, p) is decidable which would be a contradiction. There-
fore, UMT (P, p) is neither decidable nor recursively enumerable. The UMT (P, p)
problem captures the problem definition being solved by software model checkers
whose goal is to discover program proofs automatically. Intuitively, it appears
that searching for a proof is more difficult than searching for a feasible path and
an RMT solver is solving an “easier” problem than the one being solved by a
software model checker.

3.2 Complexity of Hierarchical RMT

In this section, we demonstrate certain complexity results for the hierarchical
RMT problem. As discussed earlier, the hierarchical RMT problem is decidable.
We can refine the complexity analysis further by restricting the sorts in Expr.

Theorem 2. If checking satisfiability of Boolean expressions in Expr is decidable
in NP, then hierarchical RMT is decidable in NEXPTIME.

Proof. Let D be a non-deterministic machine that does satisfiability of expres-
sions in polynomial time. Let P be a non-recursive program. Then the length of
any execution σ of P will be at most exponential in the size of P . Construct a
non-deterministic machine M that guesses an execution σw of P , then rewrites
it as straightline program Pw. (The size of Pw is at most exponential in the size
of P .) Next, M does VC generation on Pw to obtain a single expression ew and
feeds it to D. M says that RMT(P ) holds if and only if D says “satisfiable”. It
is easy to see that M solves RMT(P ) in time at most exponential in the size
of P .
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The upper bound of NEXPTIME can be tightened if we restrict programs
to use only the Boolean sort. When we only allow the Boolean sort, then we end
up with the class of programs commonly known as Boolean programs [8, 18] that
have been extensively studied in the literature.

Theorem 3. If Expr is quantifier-free and contains only Boolean sort, hierachi-
cal RMT is PSPACE-complete.

Proof. It is known that reachability for recursion-free Boolean programs is
PSPACE-complete [1]; this result is enough to show membership in PSPACE.
We only need to show that the problem is PSPACE-hard. We do that by reduc-
tion from the PSPACE-complete problem of checking whether there is a path
from an initial state to a bad state in a transition system over a vector x of n
Boolean variables. Let Init be the predicate representing the set of initial states,
Good the predicate representing the set of good states, and Trans the transition
relation. We construct a program P with procedure p

procedure p() {
var y;
assume Init(y);
call y := p0(y);

}

procedure pi for i ∈ [0, n)

procedure pi(x) returns (y) {
y := x;
call y := pi+1(y);
. . .
call y := pi+1(y);

}

and procedure pn

procedure pn(x) returns (y) {
assert Good(x);
assume Trans(x,y);

}

The desired problem is RMT (P, p). A transition system over n Boolean variables
can have non-repeating paths of length at most 2n; thus, the executions of p
encode all non-repeating paths of the input program. The procedure pn uses the
assert statement; we show in Section 6 that assert statements can be compiled
away with at most a linear cost.

Theorem 4. If Expr is quantifier-free and contains only uninterpreted sorts (in
addition to Boolean sort), hierarchical RMT is NEXPTIME-complete.

Proof. Checking satisfiability of quantifier-free first-order logic is decidable in
NP. Therefore, Theorem 2 gives membership inNEXPTIME. To show hardness,
we demonstrate a polynomial-time reduction from the satisfiability problem for
the EPR fragment of first-order logic. This fragments is given as ∃x. ∀y. ϕ(x,y),
where x = x1, . . . , xm and y = y1, . . . , yn and ϕ refers only to uninterpreted re-
lation symbols. The problem of checking satisfiability of EPR formulas is known
to be NEXPTIME-complete [27]. The decision procedure is straightforward.
Skolemize x and then create a ground formula by taking the conjunction of ϕ
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for all possible instantiations of y using only the skolem constants. The result-
ing ground formula is exponentially larger and equisatisfiable to the original. We
show how to encode this decision procedure using a polynomial-size hiearchical
RMT problem over a single uninterpreted sort S.

Let P be a hierachical program constructed as follows. First, declare m con-
stants named x1, . . . , xm each of sort S. Next, declare procedures p0, p1, . . . , pn
such that procedure pi has i input parameters each of sort S and no output
parameters. Finally, define procedures pi for i ∈ [0, n)

procedure pi(v) {
call pi+1(v, x1);
. . .
call pi+1(v, xm);

}

and procedure pn
procedure pn(v) {

assume ϕ(x,v);
}

The desired RMT problem is RMT(P, p0).

4 Encoding Verification Problems

The Boogie language [9] is a concrete instance of an RMT language. In par-
ticular, the expression language of Boogie consists of the usual SMT theories
(uninterpreted functions, theory of arrays, etc.) whose quantifier-free subset can
be decided in NP using SMT solvers. The presence of such an expressive lan-
guage offers a convenient way to encode many software verification tasks.

In this section, we briefly survey past effort on compiling programs in lan-
guages such as C and C# down to Boogie. Instead of rigorously describing the
compilers, we illustrate using examples how source-level features are modeled in
Boogie using decidable theories. More details can be obtained from the original
papers on HAVOC, for C to Boogie [22] and the ByteCode Translator (BCT),
for C# to Boogie [11].

Fig. 5 shows the encoding of a simple C program in Boogie, focusing on the
treatment given to pointers and the heap in C. The HAVOC tool treats a pointer
as simply an int. Memory allocation happens through a special variable called
alloc that monotonically increases, as captured by the procedure malloc. It is
easy to verify that successive calls to malloc will return distinct pointers.

The heap is modeled using arrays. Conceptually, the entire heap can be en-
coded using a single map Mem of type int → int, and each dereference *x can
be translated to Mem[x]. However, for efficiency reasons, HAVOC splits the Mem
map to multiple maps, one for each type and field, assuming certain type safety
conditions on the program [14]. In Fig. 5, the use of two maps, one for field f and
the other for g statically encodes the non-aliasing constraint that x->f cannot
alias y->g, irrespective of the values of x and y. Such a constraint enables local
reasoning.

HAVOC supports the option of encoding pointers using bitvectors as well.
In that case, arithmetic operations are compiled to bitvector operations that
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struct S {
int f;
int g;

};

void main() {
S *x = malloc( sizeof (S));
S *y = malloc( sizeof (S));
x->f = 1;
y->g = 2;
assert(x->f == 1);

}

var Mem.f_S: [int]int;
var Mem.g_S: [int]int;

var alloc: int;

procedure malloc(size: int)
returns (ptr: int) {

var old_alloc: int;

assume size >= 0;
old_alloc := alloc;
havoc alloc;
assume alloc >
old_alloc + size;

ptr := alloc;
}

procedure main() {
var x: int;

assume alloc > 0;

call x := malloc (8);
call y := malloc (8);

Mem.f_S[x] := 1;
Mem.g_S[y] := 2;

assert Mem.f_S[x] == 1;
}

Fig. 5. A C program (left) and the corresponding compiled Boogie program (right)

still fall under the QFBV theory (quantifier-free bit-vectors) supported by SMT
sovlers.

The SMACK compiler [32] is another tool for compiling C programs to Boogie.
It has the option of using a memory model where pointers are not ints but
rather a type that encapsulates the actual pointer value and meta-data such as
the block of memory the pointer belongs to and the size of that block. Such a
memory model allows asserting of memory safety (i.e., every pointer dereference
is inside allocated memory).

The compilation of a C# program to Boogie, using BCT, also encodes the
heap using a series of maps, one for each field declared in the program. However,
C# being a higher-level language than C, BCT has to model several other fea-
tures of C#. For instance, the sub-typing relation can be encoded using a series
of axioms (written in Boogie syntax):

// a type for C# types

type Type;

// an uninterpreted function

function SubType(Type,Type): bool;

// whenever A inherits from B

axiom SubType(A, B);
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// reflexive, transitive, anti-symmetric

axiom forall t: Type :: SubType(t, t);

axiom forall t1, t2, t3: Type :: SubType(t1, t2) && SubType(t2, t3

) ==> SubType(t1, t3);

axiom forall t1, t2: Type :: t1 != t2 && SubType(t1, t2) ==> !

SubType(t2, t1)

Axioms are structural constraints that are assumed to hold in any valid pro-
gram state. Such an encoding of subtyping, even though it uses quantifiers, falls
under the effectively propositional class of formulas [30] that turns out to be
decidable.

The use of SMT theories allows Boogie to capture many verification tasks,
but there are still certain important aspects of software that are hard to model.
For example, there is no easy way to encode floating-point computation or string
operations in a decidable theory. One can use quantifiers or recursive procedures
to model string operations, but it remains to be seen if this leads to an effective
end-to-end solution for string-manipulating programs.

5 Stratified Inlining

Section 4 shows that even the most common software verification tasks requires
the use of linear arithmetic, uninterpreted functions and maps. For these prob-
lems, the bounded RMT problem is NEXPTIME-hard (Section 3) and one can-
not hope for a better algorithm than static inlining, in the worst case. On one
hand, it is unlikely that a polynomially-sized formula captures a bounded RMT
problem; on the other hand, static inlining is inefficient on practical problems. In
an experiment on safety verification of device drivers [25], we found that static
inlining ran out of memory during VC generation. Even when the VC did fit
in memory, the SMT solver (Z3) was overwhelmed by its size and timed out in
many instances.

This section presents the stratified inlining (SI) algorithm for solving the
bounded RMT problem with respect to a bound b > 0. SI tries to delay the
construction of an exponentially-sized formula as much as possible, in hope of
efficiently solving RMT for most programs. Instead of inlining all procedures up-
front, SI inlines procedures on-demand, in a goal-directed manner. Experiments
validated stratified inlining to be much more efficient than static inlining in
practice [25].

Overview. SI works as follows: at any point in time, SI maintains a partially-
inlined program P , along with the set of call-sites C of P that have not been
inlined so far. Initially, P is main and C is the set of all call-sites in main. Next,
it queries the theorem prover to see if P has a valid execution of main that does
not go through any call-site in C. If so, it returns this execution. If not, then it
queries the theorem prover again, this time allowing executions to go through
C and simulating the effect that open call-sites can modify state arbitrarily.
This query represents an over-approximation of the input program. If no valid
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procedure main() {
var i: int;
i := 0;
i f ( * )

call i := foo(i);
else

call i := bar(i);
assume i >= 5;

}

procedure foo(i: int)
returns (i: int) {

i f ( * ) {
i := i + 1;
call i := foo(i);
call i := bar(i);

}
}

procedure bar(i: int)
returns (i: int) {

i f ( * ) {
i := 2*i;
call i := bar(i);

}
}

Fig. 6. An example program

procedure main() {
var i1,i2,i3,i4: int;
assume i1 = 0;
i f ( * )

call i2 := foo(i1);
assume i4 = i2;

else
call i3 := bar(i1);
assume i4 = i3;

assume i4 >= 5;
}

procedure main() {
var i1,i2,i3,i4: int;
var c1,c2: bool;

assume i1 = 0;
i f ( * )

assume c1;
assume i4 = i2;

else
assume c2;
assume i4 = i3;

assume i4 >= 5;
}

c1 �→ (foo, (i1, i2))
c2 �→ (bar, (i1, i3))

Fig. 7. The passified version of main of Fig. 6; replacing procedure calls with fresh
Boolean constants; and the mapping between such constants and the input-output
variables of the corresponding procedure call

execution of P is found, then the original program is safe, i.e., RMT does not
hold. If there is a valid execution of P , then it must go through some call-sites
in C. These call-sites are inlined, provided they are under the recursion bound,
and the process continues. We now describe this process in more detail.

The VC generation algorithm used by SI is similar to the one described in
Section 3, with slight modifications to handle procedure calls. Given a passified
procedure f, we replace each procedure call with assume c for a fresh Boolean
constant c, and then do the VC generation as usual. An example is shown in
Fig. 7. In this case: (1) constraining c to false blocks executions that go through
the call, underapproximating the behaviors of the call, and (2) constraining c to
true allows executions in which the return values of the call can be arbitrary. For
example, in Fig. 7, if c1 is true then there is no constraint between i1 and i2, i.e.,
the call to foo could return any output. This represents an overapproximation
to the call. When these Boolean constants are introduced, we also record the
mapping between them and the input-output variables of the calls that they
replace, as shown on the right of Fig. 7.

For a procedure f, let VcGen(f) be a tuple (φ(io, t), d) such that φ(io, t)
is the VC of f, io are the interface (input, output) variables of f, t are some
internal variables and d is a map from Boolean variables to information about
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Procedure Init(main)

1: Let (φ(io, t), d) = VcGen(main)
2: CallTree := (main)
3: Assert φ(io, t)
4: for all c �→ (f, io′) in d do
5: Create edge (main, (f, io′, c))

in CallTree
6: end for

Procedure Instantiate(Node n)

1: Let (f, io′, c) = n
2: Let (φ(io, t), d) = VcGen(f)
3: Let t′ be fresh variables
4: Assert c ⇒ φ(io′, t′)
5: Let d′ = d[ t′/t ][ io′/io ]
6: for all c �→ (b,v) in d′ do
7: Create edge (n, (b,v, c))

in CallTree
8: end for

Fig. 8. Procedures for initializing and growing the CallTree

Procedure QueryUnder()

1: Push
2: for all leaves l = ( , , c) do
3: Assert ¬c
4: end for
5: Check
6: if Satisfiable then
7: return “RMTb holds”
8: end if
9: Pop

Procedure QueryOver()

1: Push
2: for all leaves l = ( , , c) do
3: if RB(l) > b then
4: Assert ¬c
5: end if
6: end for
7: Check
8: if Unsatisfiable then
9: return “RMTb does not hold”
10: end if
11: Let τ be the error trace
12: Pop
13: for all leaves l on τ do
14: Instantiate(l)
15: end for

Fig. 9. Querying the theorem prover with under- and over-approximations

the procedure calls that they replaced. For Fig. 7, d(c1) = (foo, (i1, i2))

and d(c2) = (bar, (i1, i3)).
The SI algorithm maintains a partially-inlined program in the form of a tree,

called the CallTree. Nodes of the tree represent a dynamic instance of a proce-
dure and children of a node are the procedures called by that node. Thus, the
CallTree is a partial unrolling of the call graph of the program. Internal nodes of
the tree are all the procedure that have been inlined so far by SI, and leaves rep-
resent non-inlined procedure calls. We also use the term “open call-sites” to refer
to leaves or the non-inlined calls. SI maintains the invariant that at any time,
the VCs of all internal nodes are asserted in the theorem prover stack. All nodes
in the CallTree, except the root node, are a triple (f, io, c) where f is the name
of the procedure, io are the input-output variables of this particular dynamic
instance of f, and c is the unique Boolean variable that substituted the call to
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Fig. 10. The shape of the CallTree after initialization (left) and after instantiating foo

(right)

f from its parent node during VC generation. SI uses the standard SMT solver
API:

– Push: Creates a backtracking point.
– Pop: Undo all asserted formulae until the most recent backtracking point.
– Assert: Add (conjoin) a formula to already asserted formulae.
– Check: Check for satisfiability of asserted formulae.

The procedures Init and Instantiate, shown in Fig. 8, initialize and grow
the CallTree, respectively. Init takes the name of the starting procedure (main)
and creates a tree with root labeled main and one leaf for each procedure
called by main. Fig. 10 shows the initial tree for our running example of Fig. 6.
Instantiate takes a leaf node and inlines the procedure represented by that
node. It does so by generating the VC (line 2), renaming the interface variables
and asserting the VC (line 4). The asserted formula says that if c is true, then
the constraint imposed by f must be satisfied. Next, we then create new leaves
for all callees of f (line 7).

Given a CallTree, SI makes two kinds of queries, shown in Fig. 9.
QueryUnder tries to see if RMTb holds: it first blocks all open call-sites (line
3) and then checks if the currently asserted formula is satisfiable (line 5). If so,
then we have found a valid program execution (because it only goes through
inlined calls) and RMTb holds. QueryOver tries to see if RMTb does not hold.
First, it blocks all open call-sites whose recursion bound exceeds b (line 4). The
sub-routine RB takes a leaf node, say l = (f, , ) and simply counts the number
of instances of f along the path from l to the root. (RB simulates the Count
function of Figure 2.) It is easy to see that this count is the number of times f
must appear on the call-stack when execution reaches l. For example, RB of the
leaf node foo in Fig. 10 is 1. If the check on line 7 is satisfiable, then we use
the model to construct the corresponding program execution. Next, we inline all
open calls on this path using Instantiate (line 13). Note: (1) QueryOver will
never inline a leaf that has crossed the recursion bound b because such open calls
are blocked (line 4), and (2) the blocking of open calls in both QueryUnder

and QueryOver is nested inside Push-Pop operations, hence this blocking does
not persist beyond a single query.
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We can now write down the full SI algorithm. It simply calls the two queries
in alternation, until one of them returns “RMTb holds” or “RMTb does not
hold”.

1: Init(main)
2: while true do
3: QueryUnder();
4: QueryOver();
5: end while

The SI algorithm is guaranteed to terminate because each iteration of the
while loop, if it is not the last iteration, must grow the CallTree. This is because
when QueryUnder is not able to find a path within the inlined part, it must
be that the trace τ on line 11 of QueryOver passes through some open call.
Moreover, the size of CallTree is bounded because of the recursion bound. Hence,
SI will terminate in bounded time. SI makes at most exponential number of
queries on formulas that are atmost exponential in the size of the program.
Asymptotically, SI has the same complexity as static inliining.

Related Work. Stratified Inlining draws inspiration from multiple sources.
Previous work on structural abstraction [4] and inertial refinement [33] has
similarities with SI. However, work on structural abstraction does not use an
underapproximation-based query (by blocking open call sites). Inertial refine-
ment does use both over and under approximations to iteratively build a view of
the program that is then analyzed. A distinguishing factor is our use of recursion
bounding as well as using lazy inlining to construct a single VC for the entire
program view.

It has been illustrated in the SMT community that dealing with eager instan-
tiation of either theory lemmas or quantifiers (e.g. as done in UCLID tool [24])
does not provide the most scalable way to reason about SMT. Instead lazy in-
stantiation tends to scale much better. Similarly, we believe that lazy approaches
like SI have much better chance of being successful than full static inlining.

6 The Corral Solver

The Corral tool is a practical realization of a solver for bounded RMT. It is
designed for the Boogie programming language. It takes a Boogie program (with
assertions) as input, the name of the starting procedure (main) and a recursion
bound. The assertions in the input program are removed using a source-to-source
transformation to obtain a usual bounded RMT problem as follows.

– Introduce a Boolean variable error and initialize it to false at the entry to
main.

– Replace assert e with error := e; if(error) return.
– After each procedure call, insert if(error) return.

– At the exit of main, assume that error is true.
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Fig. 11. Corral’s architecture

After such a transformation, there is an execution that exits main if and only if
the original program had a failing assertion.

As output, Corral can either return a feasible path that ends in an assertion
violation (i.e., RMT holds), or a message saying that no such path exists (i.e.,
RMT does not hold), or a message saying that no such path was found within
the recursion bound (i.e., bounded RMT does not hold, but no conclusion can be
made for unbounded RMT). Corral was the subject of a previous publication
[25]. This paper only briefly covers the ideas and algorithms behind Corral.

The design of Corral is shown in Fig. 11. The main component of Corral

is the stratified inlining (SI) algorithm that was described in Section 5. Instead
of directly giving the input RMT problem to SI, Corral uses two optimizations
to reduce the computational burden on SI.

The first optimization is to compute program invariants. In principle, any
technique for invariant generation may be used. Corral uses the Houdini algo-
rithm [17] to compute invariants in the form of procedure summaries. The user
provides, as additional input to Corral, candidate expressions for procedure
summaries. Houdini uses theorem prover queries, each on the VC of at most
one procedure, to compute the strongest inductive summaries within the given
candidates. The number of single-procedure queries is quadratic in the worst
case but linear in the common case. The invariants, once computed, are injected
back into the program as assume statements. These invariants can help SI prune
search because they (soundly) constrain the over-approximate query used by SI,
which can rule out many abstract counterexamples.

The second optimization is an abstraction-refinement loop. Corral uses a
very simple abstraction in this loop, called variable abstraction. Let G be the set
of global variables of the input program. Note that G is always a finite set. Vari-
able abstraction is parameterized by a set T of tracked variables, where T ⊆ G.
Variable abstraction works by abstracting away all variables in G − T , using a
simple source rewriting. For instance, the assignment x := e, where x ∈ T and
the expression e has some variable in G− T , is re-written to havoc x. The ab-
stracted program is fed to SI. This abstraction can lead to SI returning spurious
counterexamples. These counterexamples are used to refine the abstraction by
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increasing T . The variable-abstraction based refinement loop substantially dif-
fers from one based on predicate abstraction that is used by most software model
checking tools: (1) variable abstraction is easy to compute, unlike predicate ab-
straction that may need an exponential number of SMT queries, and (2) the
refinement loop of variable abstraction is bounded because T is bounded above
by G, unlike predicate abstraction where the number of predicates is unbounded.

The abstraction-refinement loop of Corral is useful when only a few vari-
ables are relevant in solving the RMT problem. Abstracting away variables con-
siderably reduces the size of the program and allows the theorem prover to focus
only on the relevant part of the program’s data. Moreover, VC generation is
quadratic in the number of variables, and a reduction in the number of variables
also significantly decreases the VC size.

6.1 Experience Using Corral

Corral is ideally suited for applications where one is more interested in finding
bugs than in finding proofs, or when finding proofs is simply too difficult. We
now describe our experience with such applications.

The first application is the Static Driver Verifier (SDV), a product supported
by the Driver Quality team of Microsoft Windows. SDV supports any driver
written using one of four diferent driver models: WDM, KMDF, NDIS, STOR-
PORT. It also comes with a list of rules (or properties) that drivers must satisfy.
A driver and rule pair forms a verification instance that is fed to the verification
engine. SDV has traditionally used Slam as the verification engine. After a com-
prehensive evaluation, a dual-engine system of Corral and Yogi [20, 29] will
replace Slam inside SDV in the next release of the Microsoft Windows operating
system. Going into the details of the evaluation is outside the scope of this paper.
We briefly present our experience with Corral in comparison to Slam.

Corral is executed with a modest recursion bound of 3 to 6, depending
on the driver model. In an initial study [25], this bound was sufficient to find
all but 9 defects in a test suite containing around 400 defects in total. The
missed defects were due to loops with a constant upper bound, for example, the
loop for(int i = 0; i < 27; i++) requires a bound of at least 27 before code
after the loop is reachable. We designed custom techniques to deal with such
loops, after which Corral was able to find almost all defects reported by Slam.
Furthermore, Corral has 2.5X reduction in timeouts and 40% improvement in
running time.

While Corral was able to overtake Slam in the number of defects found, it
was also important to compare the number of instances that were proved correct.
This will indicate a measure of confidence that Corral will not miss defects in
yet unseen drivers. Along with each verification instance, we also supplied sum-
mary candidates for Houdini. The candidates are derived heuristically looking
solely at the property (not the driver) being verified. On an initial test suite,
Corral was able to prove correctness in 91% of the cases (regardless of the re-
cursion bound), with summaries inferred by Houdini playing an important role
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in establishing proofs. This means that for most part our heuristically-generated
invariant candidates were sufficient.

We obvserved similar speedups against the Yogi tool as well. We now list
some other lessons learned from these comparisons.

– While Slam and Yogi were designed and trained on drivers for SDV,
Corral was initially designed for finding concurrency bugs. The fact that
Corral performed well inside SDV demonstrates a degree of robustness of
Corral in handling programs from multiple sources.

– Slam avoided using array theory to model the heap, and instead relied on
a logical memory model [5]. This decision was justified because implementa-
tions of array-theory might have been inefficient ten years ago. Yogi inher-
ited a similar memory model as Slam. Corral, on the other hand, makes
heavy use of array theory because the entire heap is modeled using maps.
Thus, as theorem-prover technology changes, it is reasonable to expect the
design of software verifiers to change as well.

– We found Corral to be much more dependent on the performance of Z3
thanYogi. For instance, upgrading Z3 almost always resulted in a significant
speedup of Corral, whereas, we did not observe such speedups in Yogi.
In retrospect, this is not surprising because Yogi was designed to avoid
invoking the theorem prover to the greatest extent possible.

The second class of applications for Corral are what are now called se-
quentializations of concurrent programs. The original sequentialization was a
program transformation that converted a safety property on a multi-threaded
concurrent program to a safety property on a sequential program, given a bound
on the number of context switches between threads [31, 26]. Subsequently, more
sequentializations were proposed: for asynchronous task-buffer programs [16],
for liveness properties of concurrent programs [15, 2], and for programs on weak-
memory models [3]. In each of these cases, Corral was used as the solver for
finding defects in the generated sequential program. These applications have
two common aspects. First, they require bounding the set of program behaviors
(e.g., context switches). Thus, verifying correctness cannot be a goal. Second,
the generated sequential programs are complicated and so are their invariants.
Consequently, software verifiers like Slam do not perform well on such programs.
On the other hand, Corral, which builds off the robustness of SMT solvers, is
able to work well uniformly across such programs.

Corral has been used to automatically detect security vulnerabilities in mod-
els of web applications. In one study, Cashier-as-a-Service web payment systems
were modeled in the C language; Corral was used to find vulnerabilities that
would allow an attacker to shop for free [34]. In another study, authentication
and authorization SDKs were modeled in the C# language; Corral was used
to find improper use of SDK APIs leading to insecure access [35].
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Besides these applications, Corral is also used inside a debugging tool for
.NET, called GetMeHere, where it is able to successfully operate on Boogie
programs compiled from C#. We also evaluated Corral on the Software Ver-
ification Competition (SV-COMP) benchmarks and obtained favorable results
compared to all the other tools participating in the competition. More details
are available in the original Corral paper [25].
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[4] Babić, D., Hu, A.J.: Structural abstraction of software verification conditions.
In: Damm, W., Hermanns, H. (eds.) CAV 2007. LNCS, vol. 4590, pp. 366–378.
Springer, Heidelberg (2007)

[5] Ball, T., Bounimova, E., Levin, V., de Moura, L.: Efficient evaluation of pointer
predicates with Z3 SMT Solver in SLAM2. Technical Report MSR-TR-2010-24,
Microsoft Research (2010)

[6] Ball, T., Levin, V., Rajamani, S.K.: A decade of software model checking with
SLAM. Commun. ACM 54(7), 68–76 (2011)

[7] Ball, T., Majumdar, R., Millstein, T.D., Rajamani, S.K.: Automatic predicate ab-
straction of C programs. In: Programming Language Design and Implementation
(2001)

[8] Ball, T., Rajamani, S.K.: Bebop: A symbolic model checker for boolean programs.
In: SPIN, pp. 113–130 (2000)

[9] Barnett, M., Chang, B.-Y.E., DeLine, R., Jacobs, B., Leino, K.R.M.: Boogie: A
modular reusable verifier for object-oriented programs. In: de Boer, F.S., Bon-
sangue, M.M., Graf, S., de Roever, W.-P. (eds.) FMCO 2005. LNCS, vol. 4111,
pp. 364–387. Springer, Heidelberg (2006)

[10] Barnett, M., Leino, K.R.M.: Weakest-precondition of unstructured programs. In:
Program Analysis for Software Tools and Engineering (2005)

[11] Barnett, M., Qadeer, S.: BCT: A translator from MSIL to Boogie. In: Sev-
enth Workshop on Bytecode Semantics, Verification, Analysis and Transformation
(2012)

[12] Bjørner, N., McMillan, K.L., Rybalchenko, A.: Program verification as satisfiabil-
ity modulo theories. In: SMT (2012)

[13] Bjørner, N., McMillan, K.L., Rybalchenko, A.: On solving universally quanti-
fied horn clauses. In: Logozzo, F., Fähndrich, M. (eds.) Static Analysis. LNCS,
vol. 7935, pp. 105–125. Springer, Heidelberg (2013)

[14] Condit, J., Hackett, B., Lahiri, S., Qadeer, S.: Unifying type checking and property
checking for low-level code. In: Principles of Programming Languages (2009)

[15] Emmi, M., Lal, A.: Finding non-terminating executions in distributed asyn-
chronous programs. In: Miné, A., Schmidt, D. (eds.) SAS 2012. LNCS, vol. 7460,
pp. 439–455. Springer, Heidelberg (2012)



44 A. Lal and S. Qadeer

[16] Emmi, M., Lal, A., Qadeer, S.: Asynchronous programs with prioritized task-
buffers. In: Foundations of Software Engineering (2012)

[17] Flanagan, C., Leino, K.R.M.: Houdini, an annotation assistant for ESC/Java. In:
Oliveira, J.N., Zave, P. (eds.) FME 2001. LNCS, vol. 2021, pp. 500–517. Springer,
Heidelberg (2001)

[18] Godefroid, P., Yannakakis, M.: Analysis of boolean programs. In: Piterman, N.,
Smolka, S.A. (eds.) TACAS 2013. LNCS, vol. 7795, pp. 214–229. Springer, Heidel-
berg (2013)
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The Dynamic Complexity

of the Reachability Problem on Graphs�

Thomas Schwentick

Technische Universität Dortmund

Abstract. Many current data processing scenarios deal with about large
collections of permanently changing data. In this context, it is often im-
possible to compute the answer for a query from scratch. Rather some
auxiliary data needs to be stored that helps answering queries quickly,
but also requires to be maintained incrementally. This incremental main-
tenance scenario can be studied in various ways, e.g., from the perspec-
tive of dynamic algorithms with the goal to reduce (re-) computation
time. Other options are to study the scenario from the perspective of
low-level parallel computational complexity [3] or parallelizable database
queries [1]. As the “lowest” complexity class AC

0 (with a suitable uni-
fomity condition) and the core of the standard database query language
SQL both coincide with first-order predicate logic, one naturally arrives
at the question which queries can be answered/maintained dynamically
with first-order predicate logic (DynFO).

The most intensily studied query in this dynamic setting is the reach-
ability query on graphs, arguably the “simplest recursive” query. It has
been shown that it can be maintained in DynFO on undirected [3] or
acyclic directed graphs [1]. However, whether it can be maintained on
general directed graphs is considered the main open question of the field.

The talk will give an introduction into dynamic complexity, survey
known results on the dynamic complexity of Reachability and report
about more recent work on fragments of DynFO and their inability to
express Reachability [2,4].
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Abstract. In this paper, we investigate the computability and com-
plexity of reachability problems for two-dimensional hierarchical piece-
wise constant derivative (HPCD) systems. The main interest in HPCDs
stems from the fact that their reachability problem is on the border be-
tween decidability and undecidability, since it is equivalent to that of
reachability for one-dimensional piecewise affine maps (PAMs) which is
a long standing open problem. Understanding the most expressive hybrid
system models that retain decidability for reachability has generated a
great deal of interest over the past few years. In this paper, we show a
restriction of HPCDs (called RHPCDs) which leads to the reachability
problem becoming decidable. We then study which additional powers we
must add to the RHPCD model to render it 1D PAM-equivalent. Finally,
we show NP-hardness of reachability for nondeterministic RHPCDs.

1 Introduction

Hybrid automata are an important class of mathematical model allowing one to
capture both discrete and continuous dynamics in the same framework. There
is currently much interest in hybrid systems since they can be used to model
many practical real world systems in which we have a discrete controller acting
in a continuous environment and their analysis has a huge range of potential
applications, such as aircraft traffic management systems, aircraft autopilots,
automotive engine control [6], chemical plants [7] and automated traffic systems
for example.

Hybrid systems are described by a state-space model given by the Cartesian
product of a discrete and continuous set. The system evolves over time accord-
ing to a set of defined rules until some condition or event is satisfied, at which
point a discrete, non-continuous event occurs. Such an event can cause an up-
date to certain variables and change the continuous dynamics of the continuous
variables.

A fundamental question concerning hybrid systems is that of reachability:
does there exist a trajectory starting from some initial state (or set of states)
which evolves to reach a given final state (or set of states) in finite time? Re-
lated questions, such as convergence (does there exist a state (or periodic set
of states) towards which the system converges for any initial state) or control
problems (given an input, can the system be controlled to avoid some ‘bad’ set of
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states?), are also important, see [9]. In this paper we focus on reachability. Un-
fortunately, many reachability problems are undecidable, even for very restricted
hybrid systems [2,5,8,10]. The objective of studying the decidability boundary is
twofold; to obtain the most expressive system for which reachability is decidable
and to study the simplest system for which it is undecidable.

An important and intuitive model of hybrid system is that of a Piecewise
Constant Derivative (PCD) system. In this model, we partition the continuous
state space into a finite number of nonempty regions, each of which is assigned a
constant derivative defining the dynamics of a point within that region (see Sec-
tion 2 for full details). It was proven in [12] that reachability for PCD systems in
two-dimensions (2-PCD) is decidable, but for three-dimensions (a 3-PCD), the
problem becomes undecidable [2]. One of the important properties of a PCD,
which leads to its reachability problem being decidable in dimension 2, is that
trajectories can never ‘cross’ each other since each region has a constant deriva-
tive assigned. It can be proven that the trajectories are either periodic, or else
form an expanding or contracting spiral which can be proven using geometric
arguments on the edge-to-edge successor function of a 2-PCD.

In [4], an intermediate model, called a Hierarchical Piecewise Constant Deriva-
tive (HPCD) system was introduced. Intuitively, this model of linear hybrid
system can be thought of as a two-dimensional hybrid automaton where the
dynamics in each discrete location is given by a 2-PCD (precise details are given
in Section 2). Certain edges in locations of the HPCD are denoted as guards
(which can be comparative) and lead to discrete location changes. When chang-
ing location, an affine reset rule may also be applied to the continuous variables.
If all regions of the underlying PCDs are bounded, then the HPCD is called
bounded. Clearly then, the model of HPCD seems more powerful than that of a
2-PCD. Indeed, the reachability problem for a one-dimensional Piecewise Affine
Map (1-PAM) was shown to be equivalent to that of reachability for a bounded
HPCD with either: i) comparative guards, identity resets and elementary flows
in Proposition 3.20 of [3] or else ii) affine resets, non-comparative guards and
elementary flows in Lemma 3.4 of [3] (See Section 2 for definitions).

Our reference model in this paper is called a Restricted HPCD (an RH-
PCD). An RHPCD is an HPCD with elementary flows, identity resets and
non-comparative guards and is thus a simpler form of HPCD. We prove that
reachability for an RHPCD is decidable. We also prove that a 1-PAM can also
be simulated by an RHPCD with arbitrary constant flows or with linear re-
sets, and is thus equivalent to an RHPCD with affine resets, see Table 1 for an
overview of results.

In [13], the reachability problem for planar linear hybrid automata without
resets is shown to be decidable, however they focus on the setting in which the
flows aremonotonic, meaning there exists some vector ρ such that the derivatives
of all variables in all states have a positive projection along ρ. In dimension 4,
the reachability problem becomes undecidable [13].
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Table 1. RHPCD (starred results are contributions of this paper)

RHPCD
Infinite number Linear Affine Comparative Arbitrary Number of
of PCD regions resets resets guards constant flows locations

Decidable
× × × × × N < ∞ *
× × × � � 1 [12]

1-PAM
× × × × � �log2 n� + 3 *

equivalent
× × × � × 4n [3]
× × � × × 1 [3]
× � × × × �log2 n� + 3 *

Undecidable � × × × × 1 [3]

2 Preliminaries

Intervals of the form (s, t), [s, t), (s, t], [s, t] are called open, half-open or closed
bounded rational intervals (respectively), where s, t ∈ Q. We write 〈I, c〉 to
denote {(x, c)|x ∈ I} ⊆ Q2, where I ⊆ Q is an (open, half-open or closed)
bounded rational interval and c ∈ Q is a constant. We similarly define 〈c, I〉 =
{(c, y)|y ∈ I}. By abuse of notation, for an interval I = (s, t) where s, t ∈ Q and
s ≤ t, a function f(x) : Q → Q and a constant m ∈ Q, we define f(I) +m =
(f(s) +m, f(t) +m). Similar definitions exist for half-open and closed intervals.
We use similar definitions as [3] for the following.

Definition 1. (HA) An n-dimensional Hybrid Automaton (HA) [1] is a tuple
H = (X , Q, f , l0, Inv, δ) consisting of the following components:

(1) A continuous state spaceX ⊆ Rn. Each x ∈ X can bewritten x = (x1, . . . , xn),
and we use variables x1, . . . , xn to denote components of the state vector.

(2) A finite set of discrete locations Q.
(3) A function f : Q→ (X → Rn), which assigns a continuous vector field on X

to each location. In location l ∈ Q, the evolution of the continuous variables
is governed by the differential equation ẋ = fl(x). The differential equation
is called the dynamics of location l.

(4) An initial condition I0 : Q→ 2X assigning initial values to variables in each
location.

(5) An invariant Inv: Q → 2X . For each l ∈ Q, the continuous variables must
satisfy the condition Inv(l) in order to remain in location l, otherwise it
must make a discrete transition.

(6) A set of transitions δ. Every tr ∈ δ is of the form tr = (l, g, γ, l′), where
l, l′ ∈ Q, g ⊂ X is called the guard, defining when the discrete transition
can occur, γ ⊂ X ×X is called the reset relation applied after the transition
from l to l′.

An HA is deterministic if it has exactly one solution for its differential equation
in each location and the guards for the outgoing edges of locations are mutually
exclusive. A trajectory of a hybrid automaton H starting from (l0,x0) where
l0 ∈ Q,x0 ∈ X is a pair of functions πl0,x0 = (λl0,x0(t), ξl0,x0(t)) such that
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(1) λl0,x0(t) : [0,+∞) → Q is a piecewise function constant on every interval
[ti, ti+1).

(2) ξl0,x0(t) : [0,+∞) → Rn is a piecewise differentiable function and in each
piece ξl0,x0 is càdlàg (right continuous with left limits everywhere).

(3) On any interval [ti, ti+1) where λl0,x0 is constant and ξl0,x0 is continuous,

ξl0,x0(t) = ξl0,x0(ti) +

∫ t

ti

fλl0,x0
(ti)(ξl0,x0(τ))dτ

for all τ ∈ [ti, ti+1).
(4) For any ti, there exists a transition (l, g, γ, l′) ∈ δ such that

(i) λl0,x0(ti) = l and λl0,x0(ti+1) = l′;
(ii) ξ−l0,x0

(ti+1) ∈ g(l, l′) where ξ−l0,x0
(t) means the left limit of ξl0,x0 at t;

(iii) (ξ−l0,x0
(ti+1), ξl0,x0(ti+1)) ∈ γ.

Definition 2. (n-PCD) An n-dimensional Piecewise Constant Derivative (n-
PCD) system [2] is a pair H = (P,F) such that:

(1) P = {Ps}1≤s≤k is a finite family in Rn, where Ps ⊆ Rn are non-overlapping
convex polygonal sets.

(2) F = {cs}1≤s≤k is a family of vectors in R.
(3) The dynamics are given by ẋ = cs for x ∈ Ps.

An n-PCD is called bounded if for its regions P = {Ps}1≤s≤k, there exists
r ∈ Q+, such that for all Ps, we have that Ps ⊆ B0(r), where B0(r) is an
origin-centered open ball of radius r and appropriate dimension.

We define the support set of a PCDH as SuppPCD(H) =
⋃

1≤s≤k Ps. Given an
edge e, we represent a point on e by a one-dimensional local coordinate, allowing
us to define an edge-to-edge successor function as an affine function between
edges.

Definition 3. (HPCD) A Hierarchical Piecewise Constant Derivative (HPCD)
system [3] is a hybrid automaton H = (X , Q, f , l0, Inv, δ) such that Q and l0
are defined as in Definition 1, with the dynamics at each l ∈ Q given by a 2-
PCD and each transition tr = (l, g, γ, l′) is such that: (1) Its guard g is a line
segment in R2; and (2) The reset relation γ is an affine function of the form:
x′ = γ(x) = Ax + b. We denote the internal guards of an HPCD location to
be the guards of the underlying PCD regions and the transition guards to be the
guards used in transitions between locations. The Invariant (Inv) for a location
l is defined to be SuppPCD(H) \ Gl, where SuppPCD(H) is the support set of the
underlying PCDs of the HPCD and Gl is the set of transition guards in location
l. If all the PCDs are bounded, then HPCD is said to be bounded.

It was shown in [3] that reachability for an HPCD is equivalent to reachability
for a 1-PAM. An HPCD system has elementary flows if the derivatives of all
variables in each location are in {0,±1}, otherwise it has arbitrary constant flows.
Guards are defined as line segments, described by boolean combinations of linear
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inequalities. If each atomic formula contains only one variable (x or y), then the
guard is called non-comparative. An HPCD has non-comparative guards if all
guards are non-comparative, e.g., 3

2 ≤ x ≤ 7 ∧ y = −1 is non-comparative, but
0 ≤ x ≤ 1∧0 ≤ y ≤ 1

2 ∧x = 2y is a comparative guard. We define an affine reset
of variables z = (x, y) as γ(z) = Az + b where A ∈ Q2×2 and b ∈ Q2, a linear
reset is of the form γ(z) = Az and an identity reset is γ(z) = z. Our reference
model is called an RHPCD, a restricted HPCD. We later show that adding any
one of the additional powers - arbitrary constant flows, comparative guards or
linear resets - allows simulation of a 1-PAM. Note that since reachability for
HPCDs is equivalent to reachability for 1-PAMs and an RHPCD with these
powers is a restricted form of HPCD, then showing reachability for a 1-PAM
can be simulated by such an RHPCD shows their equivalence. Equivalence of
reachability between 1-PAMs and planar pseudo-billiard systems was shown in
[11], whereas more complex 1-dim. functions allow universal computation.

Definition 4. (RHPCD) A Restricted Hierarchical Constant Derivative Sys-
tem (RHPCD) is a bounded HPCD with identity resets, non-comparative guards,
elementary flows and a finite number of PCD regions. See Fig. 3b and Fig. 4 for
an example of an RHPCD with arbitrary constant flows.

Our final model is the class of one-dimensional Piecewise Affine Maps (1-
PAM). The reachability problem for 1-PAM is currently a long-standing open
problem, even for two intervals. Our approach follows a similar style to [3] where
we show various classes where reachability is equivalent to that of a 1-PAM.

Definition 5. (1-PAM) - A one-dimensional Piecewise Affine Map (1-PAM)
is a function f : R→ R (See Fig. 3a for an example) such that:

(1) Domain of f : dom(f)=
⋃
Ii, where Ii are disjoint rational intervals.

(2) ∃ai, bi ∈ Q such that ∀x ∈ Ii, f(x) = aix+ bi.
(3) f is closed, i.e., range(f) ⊆ dom(f).

Simulation: We use the definition of simulation of PCDs described in [2]. If
model A can be simulated by model B, then reachability for A can be reduced
to reachability for B (A has a decidable reachability problem as long as B does).

Reachability Problems: By an instance of a reachability problem we mean a
finite description of a model, an initial and final configuration (or set of con-
figurations). Reachability: starting from the initial configuration(s), does the
trajectory eventually reach the final configuration(s) in finite time after a finite
number of (discrete) transitions? Models of hybrid automata with an infinite
number of transitions in finite time are said to have the Zeno property which
we do not consider here. Problems such as convergence, stability and control are
not considered in this paper, see [9] for more information about these problems.

Open Problem 6 - 1-PAM Reachability - Given a 1-dim. Piecewise Affine
Map f , and points x, y ∈ Q. Does there exist t ∈ N, such that f t(x) = y? 1

1 f t(x) denotes f(f(. . . f(x) . . .))
︸ ︷︷ ︸

t
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3 Reachability for RHPCDs and Extensions

We now explore reachability for our models. We start with a technical lemma.

Lemma 7. The interval 〈I, 0〉 can be mapped to 〈f(I) + m, 0〉 by an RHPCD
system with arbitrary constant flows, where f(x) = ax+ b is an affine function,
I = (s, t) is a 1-dimensional interval and a, b,m, s, t ∈ Q are constants.

Proof. We prove this lemma by 3 steps.
Step 1 - Interval 〈I, 0〉 can be mapped to interval 〈I, c〉, where c ∈ Q+, by a
bounded PCD with non-comparative guards using flow (0, 1). By this, we mean
that for any 0 ≤ α ≤ 1, point (s+ (t− s)α, 0) can be mapped to point (s+ (t−
s)α, c) by this bounded PCD. We also use similar terminology throughout.

Step 2 - Suppose we have an affine function f(x) = ax+b, and the 1-dimensional
rational interval I = (s, t). For any constant t′ where t′ ≥ t > s, define g =
f(t) − f(s) and s′ = t′ + |g|. Assume that c > |g| + |b| > 0. Then we show
the interval 〈I, c〉 can be mapped to 〈I ′ = (t′, s′), 0〉 by a bounded PCD system
with non-comparative guards; thus meaning that for any 0 ≤ α ≤ 1, point
(s+ (t− s)α, c) can be mapped to point (t′ + (s′ − t′)α, 0), see Fig. 1. We need
to consider 2 cases, a > 0 and a < 0.

1. a > 0. See Fig. 1(a)
(i) Use flow (1, a) to map 〈(s, t), c〉 to 〈t, (c, c+ |g|)〉;
(ii) Use flow (1, 0) to map 〈t, (c, c+ |g|)〉 to 〈t′, (c, c+ |g|)〉;
(iii) Use flow (1,−1) to map 〈t′, (c, c+ |g|)〉 to 〈(t′, t′ + |g|), c〉;
(iv) Use flow (0,−1) to map 〈(t′, t′ + |g)|), c〉 to 〈(t′, t′ + |g|), 0〉.

2. a < 0. See Fig. 1(b).
(i) Use flow (1, a) to map 〈(s, t), c〉 to 〈t, (c− |g|, c)〉;
(ii) Use flow (1, 0) to map 〈t, (c− |g|, c)〉 to 〈t′, (c− |g|, c)〉;

As we assume c > |g| + |b| > 0, so c − |g| > |b| > 0, which means the
rectangle {(x, y)|t < x < t′, c − |g| < y < |g|} does not intersect with
the x-axis, hence the following steps make sense.

(iii) Use flow (1,−1) to map 〈t′, (c− |g|, c)〉 to 〈(t′, t′ + |g|), c− |g|〉;
(iv) Use flow (0,−1) to map 〈(t′, t′ + |g|), c− |g|〉 to 〈(t′, t′ + |g|), 0〉.

(t’+|g|, 0)

(s, c) (t, c)

(t’, 0)

(a) a > 0

(t’+|g|, 0)

(s, c) (t, c)

(t’, 0)

(b) a < 0

Fig. 1. Lemma 7 Step 2: map 〈(s, t), c〉 to 〈(t′, s′), 0〉
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Fig. 2. Idea of Theorem 8: map every two adjacent intervals into one interval

Note that though some of these steps contains ‘triangles’, we can define the
flows in a rectangular area containing that triangle, thus comparative guards are
not required. Note the ‘orientation’ of the interval is reversed after the mapping.

Step 3 - Using a similar idea we can show the interval 〈I ′ = (t′, s′), 0〉 can
be mapped to 〈f(I) + m, 0〉, where f(I) = (f(s), f(t)) if a > 0 and f(I) =
(f(t), f(s)) if a < 0, by a bounded PCD system with non-comparative guards.
We can use only the upper or lower half plane of the PCD. Here we only prove
the case when a > 0 and f(t)+m < t′ by using the lower half plane, other cases
can be proven similarly.

(i) Use flow (−1,−1) to map 〈(t′, s′), 0〉 to 〈12 (t′ + f(t) +m), (− 1
2 |t′ − f(t) −

m| − |g|,− 1
2 |t′ − f(t)−m|)〉;

(ii) Use flow (−1, 1) to map 〈12 (t′ + f(t) +m), (− 1
2 |t′ − f(t)−m| − |g|,− 1

2 |t′−
f(t)−m|)〉 to 〈(f(s) +m, f(t) +m), 0〉.

Combining Step 1,2 and 3 we get the result of the lemma. We need a 2-
location RHPCD system with arbitrary constant flows and hence each location
is a bounded PCD system with non-comparative guards. In location 1 we realize
Step 1 and jump to location 2, i.e., the guards are 〈si ≤ x < ti, y = c〉. In
location 2 we realize Step 2 and Step 3 together because Step 2 only uses the
upper plane of a PCD and Step 3 only requires the lower plane of a PCD. �

Theorem 8. A 1-PAM with n intervals can be simulated by an RHPCD with
�log2 n�+3 locations such that one of the variables has arbitrary constant flows.

Proof. Suppose PAM A is defined by f(x) = aix + bi if x ∈ Ii, with 1 ≤ i ≤ n
and Ii are rational intervals. Let the left and right endpoints of Ii be si and ti
respectively. First we show that this PAM can be simulated straightforwardly
by an n + 1-location RHPCD with arbitrary constant flows. We need a single
location p as the global state and n locations qi for each interval Ii, 1 ≤ i ≤ n.

1. In location p, we define the corresponding points of the PAM A on in-
terval 〈(s1, tn), 0〉. We then map each 〈Ii, 0〉 to the interval 〈Ii, c〉, where
c = |max{|ai|}(tn− s1)|+max{|bi|}. (See Lemma 7, Step 1). The transition
guards of p are: 〈si ≤ x < ti, y = c〉, in which we jump to qi.

2. In location qi, map 〈Ii, c〉 to 〈f(Ii), 0〉 (see Lemma 7, Step 2&3). The tran-
sition guard of qi is : 〈s1 ≤ x < tn, y = 0〉, with a jump to location p.
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The above method requires n + 1 locations for a PAM with n intervals. We
now give an improved method using an RHPCD with only �log2 n�+3 locations.

Suppose the PAM A contains n intervals. For every n �= 2d, d ∈ N, there
exists a minimum integer k ∈ N such that log2(n + k) = �log2 n�. The PAM A
can be expanded to A′ such that f(x) = aix+ bi if x ∈ Ii, where i ∈ {1, . . . , n}.
For every i′ ∈ {1, . . . , k}, the length of each new added interval is given by
|Iεi′ | = ε, and the corresponding affine function is f(x) = x. This expansion
does not change the dynamics of the PAM A, thus we assume n = 2d, d ∈ Z.

Again, let the left endpoint and the right endpoint of Ii be si and ti respec-
tively. Define c to be c = |max{|ai|}(tn−s1)|+max{|bi|} and l to be l = |tn−s1|.

Step 1 Define the PAM on interval 〈(s1, tn), 0〉. For every i ∈ {1, 2, ..., n}, map
〈Ii, 0〉 to interval 〈Ii, 2(n− i+ 1)c〉. (See Lemma 7, Step 1). In this step
each interval is mapped to a different height y = 2(n− i+1)c. There is a
2c-length ‘gap’ between every two intervals Ii and Ii+1 and Ii is higher
than Ii+1. In Lemma 7 Step 2 this clearly prevents intersections in the
following step.

Step 2 Map each interval 〈Ii, 2(n − i + 1)c〉 to 〈(f(Ii) + 2(n − i + 1)l, 0〉. (See
Lemma 7, Step 2). Then between every two intervals there is a ‘gap’
whose length is l.

Step 3 For i from 1 to n
2 , let j = 2i − 1, we can find an undefined interval

between 〈f(Ij)+2(n− j+1)l, 0〉 and 〈f(Ij+1)+2(n− j+2)l, 0〉 of length
l. By the proof of Lemma 7 (Step 3), we can map 〈f(Ij)+2(n−j+1)l, 0〉
using the upper plane and 〈f(Ij+1) + 2(n − j + 2)l, 0〉 using the lower
plane to this interval.

Step 4 Repeat Step 2 for log2(n) times until only 1 interval, If , remains.
Step 5 If the orientation of If is ‘reversed’ with respect to the initial interval of

the PAM A, then map If to this initial interval; otherwise, we reverse it
before mapping it to the initial interval.

Step 1, 2 and 5 each require 1 location. Step 3 and Step 4 require log2 n locations,
thus (log2 n) + 3 locations are required. �

The difficulty of simulating a 1-PAM by a 2-PCD is that regions cannot over-
lap in a PCD, i.e., one region has only one deterministic constant flow. Thus
it is impossible to map several different intervals into a single interval under a
2-PCD, leading us to believe that Ω(log2 n) is a lower bound of the number of
locations required to simulate an n-interval 1-PAM by an RHPCD with arbitrary
constant flows.

Example 9. We give an example of a 1-PAM below and show how to simulate
it by a RHPCD with arbitrary constant flows in Figs. 3, 4.

f(x) =

{
2x, if x ∈ [0, 1)
−x+ 2, if x ∈ [1, 2]

Let the initial point be x0. The initial location of the HPCD is A-1, with variables
(x, y) = (x0, 0). PCD A-1 corresponds to Theorem 8, Step 1. PCD A-2 separates
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Fig. 3. The 1-PAM with its equivalent HPCD
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Fig. 4. The 2-PCDs of the HPCD in Fig 3b (transition guards in bold)

each interval onto the x axis (Theorem 8, Step 2). PCD A-3 combines together
these two intervals (Theorem 8, Step 3). Finally, in A-4, as the final interval
[6, 8] has the same orientation as the initial interval [0, 2], we reverse it before
mapping it back to the initial interval (Theorem 8, Step 5).

We now show that an RHPCD with linear resets can simulate a 1-PAM.

Lemma 10. The interval 〈I, 0〉 can be mapped to 〈f(I) +m, 0〉 by an RHPCD
system with linear resets, where f(x) = ax+ b is an affine function, I = (s, t) is
a 1-dimensional interval and a, b,m, s, t ∈ Q are constants.

Proof. The proof is similar to the proof of Lemma 7. We still prove by 3 steps.

Step 1 First map the interval 〈I, 0〉 to the interval 〈I, c〉 by flow (0, 1). Define
the transition guard to be 〈I, c〉, which jumps to location 2 with linear
reset: x′ = |a|x, y′ = y.

Step 2 Using the similar idea in Lemma 7 Step 2, we can map the interval
〈|a|I, c〉 to the interval 〈(t′, t′ + |g|), 0〉 by the flows (1, 1) if (a > 0) or
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Fig. 5. Rectilinear Tessellation of the plane

(1,−1) if a < 0, (1, 0), (1,−1) and (0,−1), where t′ and g are the same
defined as in Lemma 7.

Step 3 Exactly the same as Lemma 7 Step 3. �

Theorem 11. A 1-PAM with n intervals can be simulated by an RHPCD con-
taining �log2 n�+ 3 locations with linear resets.

Proof. Apply Lemma 10 instead of Lemma 7 in the proof of Theorem 8. �

Corollary 12. An RHPCD with linear resets is equivalent to an RHPCD with
affine resets.

Proof. Immediately from the results of [3] and Theorem 11. �

Definition 13. (Rectilinear Tessellation) - Let V ⊆ R2 be a finite set of
2-dimensional points. We define a rectilinear tessellation of the plane as a tes-
sellation by rectangles by identifying with each v ∈ V a splitting of the plane into
four quadrants, parallel to the x and y axes. See Fig. 5(a) and Fig. 5(b).

Lemma 14. Let H be an RHPCD. There exists an RHPCD, HR, which is topo-
logically equivalent to H, such that HR has an injective edge-to-edge successor
function which preserves local coordinates.

Proof. Given the n-location RHPCD H, we define the rectilinear tessellation of
H in the following way. Let Vi ⊆ Q2 be the set of points defining the PCD
regions of location li of H and let V = ∪Vi for 1 ≤ i ≤ n. We assume without
loss of generality that V ⊆ Z2 by forming a (topologically) equivalent HPCD
with all points multiplied by the least common multiple of the denominators of
coordinates of points in V . We form a rectilinear tessellation of the plane by set
of points V . Note that each location of H can thus be defined on the same set of
regions, but allowing a region in different locations to have a different derivative.

We define derivatives of the form {(±1, 0), (0,±1)} as straight flows and
derivatives of the form {(±1,±1), (±1,∓1)} as diagonal flows. Our next step
is to further decompose the rectilinear tessellation of the plane such that any
non-square region containing a diagonal flow in any location is split into a fi-
nite number of square regions, each of which contains the same diagonal flow.
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To perform this step, let R by any (non-square) rectangle such that there exists
a location li where the derivative of R in li is a diagonal flow. Let (rx, ry) ∈ Z2

be the bottom left point of R and (r′x, r′y) ∈ Z2 be its upper right point. Then we
add all points {(i, j)|rx ≤ i ≤ r′x, ry ≤ j ≤ r′y} ⊆ Z2 to set V and recompute the
rectilinear tessellation of H. There are a finite number of bounded regions in H
and thus this procedure eventually halts giving a final set of points V ′ defining
the regions shared by all locations of the new RHPCD HR.

In each location ofHR, only square regions have diagonal flows, thus each edge
is mapped to exactly one other under HR. Clearly then, local coordinates of each
edge are preserved by the edge-to-edge successor function by rectilinearity of the
plane partition and since each region has elementary flows. �

Theorem 15. The reachability problem is decidable for an RHPCD.

Proof. Given H, we can apply the rectilinear tessellation technique of Lemma 14
to form an RHPCD HR satisfying the conditions of the lemma. Let (l0, α) be
the initial state of the system and (lf , β) be the final point of the system, where
α, β ∈ Q2. In the same way as in Lemma 14, these points can be transformed so
that α, β ∈ Z2 are the initial and final points under HR.

Since the edge-to-edge successor function of HR is injective, we can form a
finite graph with vertices labelled (ei, k) where (ei, k) is an edge in location li
of HR. Each vertex is connected to exactly one other, according to the injective
edge-to-edge successor function. Since local coordinates of points on edges are
preserved by this function by Lemma 14, reachability becomes trivial since the
local coordinate of y must be the same as x and we can simply traverse the
graph until we reach the correct edge in some location or else detect a cycle. �

Definition 16. (1-POM) Let f be a 1-PAM. We call f a one-dimensional
piecewise offset map (1-POM) if f(x) = x+ bi for all x ∈ Ii.

Corollary 17. A 1-POM can be simulated by an RHPCD, and an RHPCD an
be simulated by a 1-POM.

The following theorem shows a relationship between the additional computa-
tional powers of affine resets and arbitrary constant flows.

Theorem 18. A k-location RHPCD with arbitrary constant flows can be simu-
lated by a k-location RHPCD with affine resets for any k ≥ 1.

Finally, we introduce nondeterminism to the RHPCD model.

Theorem 19. The reachability problem for a nondeterministic RHPCD system
is NP-hard.

Proof. We use a reduction of the Subset Sum Problem (SSP): given a finite set
of positive integers A and a positive integer N > 0, is there a subset A′ ⊆ A such
that the sum of the elements in A′ is exactlyN? i.e., if A = {k1, k2, . . . , kn} ⊆ Z+,
is there a subset A′ = {kt1 , kt2 , . . . , ktm} ⊆ A such that

∑m
j=1 ktj = N?
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Fig. 6. SSP simulated by a nondeterministic RHPCD with arbitrary constant flows.
The bold line denotes the transition guard.

To simulate an n element instance of SSP, we define an (n+ 2)-location non-
deterministic RHPCD. Divide each location i (1 ≤ i ≤ n) into four squares la-
belled 1 to 4; see Fig. 6. Each square has length L, where L > N+max{|ki|}+ε,
ε ∈ (0, 1). Define the left lower corner point of square 1 to be the original point
(0, 0) and the right upper corner point of square 1 to be the point (L,L) and the
other regions are located as in Fig. 6. For regions 2, 3, 4 we need elementary flows
(−1,−1), (1,−1) and (1, 1), respectively. For each location i (1 ≤ i ≤ n), divide
square 1 into three subregions 1.1, 1.2 and 1.3 by internal guards 〈(0, L− ki), ki〉
and 〈L − ki, (0, L)〉. Then the region 1.1 is defined as a square of length L − ki
and regions 1.2 and 1.3 are two rectangles located inside square 1 as in Fig. 6.
The flows of region 1.1, 1.2 and 1.3 are defined as (−1, 1), (0, 1) and (0, 1), re-
spectively. Because L > N + max{|ki|} + ε, the point (0, N + ε) is possible to
reach from the x-axis in each location i. Define the transition guard of each lo-
cation i to be 〈0 < x < L, y = 0〉, which jumps to any one of the locations from
location i+1 to n+1. At last let location 0 be the starting location from which
we can jump to location 1 to n, and location n+1 be the final location where all
the trajectories move with flow (1, 0). Clearly, the SSP instance has a solution
if the point (0, N + ε) in any location i (1 ≤ i ≤ n) can be reached from (ε, 0)
in location 0. Note that the construction of the corresponding RHPCD can be
done in time polynomial in the SSP instance size. �

4 Conclusion

We showed decidability of reachability for Restricted Hierarchical Piecewise Con-
stant Derivative (RHPCD) systems. The complexity of this problem is interesting
but is currently unresolved. We then showed that adding: comparative guards,
arbitrary constant flows or linear resets to an RHPCD makes the problem equiv-
alent to reachability for 1-PAMs, which is a long standing open problem. We
also showed that adding nondeterminism to RHPCDs leads to NP-hardness of
reachability. In this paper we focused on reachability problems, but stability,
convergence and control problems for low-dimensional linear hybrid systems are
also important topics under active research.
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Abstract. Parametric reasoning is particularly relevant for timed mod-
els, but very often leads to undecidability of reachability problems. We
propose a parametrised version of Interrupt Timed Automata (an ex-
pressive model incomparable to Timed Automata), where polynomials
of parameters can occur in guards and updates. We prove that different
reachability problems, including robust reachability, are decidable for
this model, and we give complexity upper bounds for a fixed or variable
number of clocks and parameters.

1 Introduction

Parametric Verification. Getting a complete knowledge of a system is often
impossible, especially when integrating quantitative constraints. Moreover, even
if these constraints are known, when the execution of the system slightly de-
viates from the expected behaviour, due to implementation choices, previously
established properties may not hold anymore. Additionally, considering a wide
range of values for constants allows for a more flexible and robust design.

Introducing parameters instead of concrete values is an elegant way of address-
ing these three issues. Parametrisation however makes verification more difficult.
Besides, it raises new problems like parameter synthesis, i.e. finding the set (or
a subset) of values for which some property holds.

Parameters for Timed Models. Among quantitative features, parametric
reasoning is particularly relevant for timing requirements, like network delays,
time-outs, response times or clock drifts.

Pioneering work on parametric real time reasoning was presented in [1] for the
now classical model of timed automata [2] with parameter expressions replacing
the constants to be compared with clock values. Since then, many studies have
been devoted to the parametric verification of timed models [3,4,5], mostly estab-
lishing undecidability results for questions like parametric reachability, even for
a small number of clocks or parameters. Relaxing completeness requirement or
guaranteed termination, several methods and tools have been developed for pa-
rameter synthesis in timed automata [6,7,8], as well as in hybrid automata [9,10].
Another research direction consists in defining subclasses of parametric timed
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models for which some problems become decidable [11,12,13]. Unfortunately,
these subclasses are severely restricted. It is then a challenging issue to define
expressive parametric timed models where reachability problems are decidable.

Contributions. The model of interrupt timed automata (ITA) [14,15] was pro-
posed as a subclass of hybrid automata, incomparable with the class of timed
automata, where task interruptions are taken into account. Hence ITA are par-
ticularly suited for the modelling of scheduling with preemption.

We propose to enrich ITA with parameters in the spirit above. A PITA is
a parametric version of ITA where polynomial parameter expressions can be
combined with clock values both as additive and multiplicative coefficients. The
multiplicative setting is much more expressive and useful in practice, for instance
to model clock drifts. We prove that reachability in parametric ITA is decidable
as well as its robust variant, an important property for implementation issues.
To the best of our knowledge, this is the first time such a result has been ob-
tained for a model including a multiplicative parametrisation. Furthermore, we
establish upper bounds for the algorithms complexity: 2EXSPACE and PSPACE
when the number of clocks is fixed, which become respectively 2EXPTIME and
PTIME for additive parametrisation, when the number of clocks and parame-
ters is fixed. Our technique combines the construction of symbolic class automata
from the ITA case and the first order theory of real numbers. Finally, consider-
ing only additive parametrisation, we reduce reachability to the same problem in
basic ITA.

Outline. The parametric ITA model is introduced in Section 2 and decision
procedures are presented in Section 3 with complexity analysis. We conclude
and give some perpectives for this work in Section 4. All proofs are given in the
appendix.

2 Parametric Interrupt Timed Automata

2.1 Notations

The sets of natural, rational and real numbers are denoted respectively by N, Q
and R. Given two sets F,G, we denote by Pol(F,G), the set of polynomials with
variables in F and coefficients in G. We also denote by Lin(F,G) the subset
of polynomials with degree at most one and by Frac(F,G), the set of rational
functions with variables in F and coefficients in G (i.e. quotients of polynomials).

Clock and parameter constraints. Let X be a finite set of clocks and let P be a
finite set of parameters. An expression over clocks is an element

∑
x∈X ax ·x+b of

Lin(X,Pol(P,Q)). In the sequel we also consider two other sets of expressions:
Lin(X,Q) and Lin(X ∪ P,Q). The former is the subset of expressions without
parameters while the latter can be seen as a subset of expressions where ax ∈ Q
for all x ∈ X and b ∈ Lin(P,Q). We denote by C(X,P ) the set of constraints
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obtained by conjunctions of atomic propositions of the form C �� 0, where C is
an expression in Lin(X,Pol(P,Q)) and ��∈ {>,≥,=,≤, <}.

Updates and valuations. An update is a conjunction of assignments of the form
∧x∈Xx := Cx, where Cx ∈ Lin(X,Pol(P,Q)), with possibly Cx = 0 or Cx = x.
The set of updates is written U(X,P ). For an expression C and an update
u, the expression C[u] is obtained by “applying” u to C, i.e., simultaneously
substituting each x by Cx in C, if x := Cx is the update for x in u. For instance,
for clocks X = {x1, x2}, parameters P = {p1, p2, p3}, expression C = p2x2 −
2x1 + 3p1 and the update u defined by x1 := 1 ∧ x2 := p3x1 + p2, applying u
to C yields the expression C[u] = p2p3x1 + p22 + 3p1 − 2. Note that the use of
multiplicative parameters for clocks may result in polynomial coefficients when
updates are applied.

A clock valuation is a mapping v : X �→ Pol(P,R), with 0 the valuation where
all clocks have value 0. For a valuation v and an expressionC ∈ Lin(X,Pol(P,Q)),
v(C) ∈ Pol(P,R) is obtained by evaluating C w.r.t. v. Given an update u and a
valuation v, the valuation v[u] is defined by v[u](x) = v(Cx) for x inX if x := Cx is
the update for x in u. For instance, letX = {x1, x2, x3} be a set of three clocks. For
valuation v = (2p2, 1.5, 3p

2
1) and update u defined by x1 := 1 ∧ x2 := x2 ∧ x3 :=

p1x3 − x1, applying u to v yields the valuation v[u] = (1, 1.5, 3p31 − 2p2).
A parameter valuation is a mapping π : P �→ R. For a parameter valuation

π and an expression C ∈ Lin(X,Pol(P,Q)), π(C) ∈ Lin(X,R) is obtained by
evaluating C w.r.t. π. If C ∈ Pol(P,Q), then π(C) ∈ R. Given a parameter
valuation π, a clock valuation v and an expression C ∈ Lin(X,Pol(P,Q)) we
write π, v |= C �� 0 when π(v(C)) �� 0.

2.2 Parametric Interrupt Timed Automata

Definitions. The behaviour of an ITA can be viewed as the one of an operating
system with interrupt levels. At a given level, exactly one clock is active (rate 1),
while the clocks at lower levels are suspended (rate 0), and the clocks at higher
levels are not yet activated and thus contain value 0. The enabling conditions
of transitions, called guards, are constraints in Lin(X,Q) over clocks of levels
lower than or equal to the current level. Transitions can update the clock values.
If the transition decreases (resp. increases) the level, then each clock which is
relevant after (resp. before) the transition can either be left unchanged or take
a linear expression of clocks of strictly lower level.

Parametric ITA include parameters in guards and updates.

Definition 1. A parametric interrupt timed automaton (PITA) is a tuple A =
〈Σ,P,Q, q0, X, λ,Δ〉, where:
– Σ is a finite alphabet, P is a finite set of parameters,
– Q is a finite set of states, q0 is the initial state,
– X = {x1, . . . , xn} consists of n interrupt clocks,
– the mapping λ : Q → {1, . . . , n} associates with each state its level; we

assume λ(q0) = 1, Xλ(q) = {xi | i ≤ λ(q)} is the set of relevant clocks at
this level and xλ(q) is called the active clock in state q;
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– Δ ⊆ Q×C(X,P )× (Σ∪{ε})×U(X,P )×Q is a finite set of transitions. Let

q
ϕ,a,u−−−→ q′ be a transition in Δ with k = λ(q) and k′ = λ(q′). The guard ϕ

is a constraint in C(Xk, P ) (using only clocks from levels less than or equal
to k). The update u is of the form ∧n

i=1xi := Ci with:
• if k > k′, i.e. the transition decreases the level, then for 1 ≤ i ≤ k′, Ci

is either of the form
∑i−1

j=1 ajxj + b or Ci = xi (unchanged clock value)
and for i > k′, Ci = 0;

• if k ≤ k′ then for 1 ≤ i ≤ k, Ci is of the form
∑i−1

j=1 ajxj + b or Ci = xi,
and for i > k, Ci = 0.

An ITA is a PITA with P = ∅. When all expressions occurring in guards and
updates are in Lin(X ∪P,Q), the PITA is said to be additively parametrised, in
contrast to the general case, which is called multiplicatively parametrised.

We give a transition system describing the semantics of a PITA w.r.t. a pa-
rameter valuation π. A configuration (q, v) consists of a state q of the PITA and
a clock valuation v.

Definition 2. The semantics of a PITA A w.r.t. a parameter valuation π is
defined by the (timed) transition system TA,π = (S, s0,→). The set of configura-
tions is S =

{
(q, v) | q ∈ Q, v ∈ RX

}
, with initial configuration s0 = (q0,0). The

relation → on S consists of two types of steps:

Time steps: Only the active clock in a state can evolve, all other clocks are
suspended. For a state q with active clock xλ(q), a time step of duration d is

defined by (q, v)
d−→ (q, v′) with v′(xλ(q)) = v(xλ(q)) + d and v′(x) = v(x) for

any other clock x. We write v′ = v +q d.

Discrete steps: A discrete step (q, v)
e−→ (q′, v′) can occur for some transition

e = q
ϕ,a,u−−−→ q′ in Δ such that π, v |= ϕ and v′(x) = π(v[u](x)).

A run of A for some parameter valuation π is a finite path in the transition
system TA,π, which can be written as an alternating sequence of (possibly null)
time and discrete steps. A state q ∈ Q is reachable from q0 for π if there is a
path from (q0,0) to (q, v) in TA,π, for some valuation v.

Example 1. A PITA A is depicted in Fig. 1(a), with two interrupt levels. Fix-

ing the parameter valuation π: p1 = 20 and p2 = −5, the run (q1, 0, 0)
17−→

(q1, 17, 0)
a−→ (q2, 17, 0)

3−→ (q1, 17, 3)
b−→ (q2, 17, 10) is obtained as follows. After

staying in q1 for 17 time units, a can be fired and the value of x1 is then frozen
in state q2, while x2 increases. Transition b can be taken if x1 + p2x2 = 2, hence
for x2 = 3, after which x2 is updated to x2 = 18p2 +

17
68p

2
1 = 10. A geometric

view of this run w.r.t. π is given (in bold) in Fig. 1(b).

Problems. We consider here reachability problems for PITA. Let A be a PITA
with initial state q0 and q be a state of A. The Existential (resp. Universal)
Reachability Problem asks whether q is reachable from q0 for some (resp. all)
parameter valuation(s). Scoped variants of these problems are obtained by adding
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q1, 1

q2, 2

x1 < p1
a

(x2 := 0)

x1 + p2x2 = 2
b

x2 := (p2 +
1
68
p21)x1 + p2

(a) A PITA A1 with two interrupt levels

x1

x2

17

3

10

202

x
1 −

p
1
=

0

x1 +
p2x2 =

2

(b) A possible run in A for π

Fig. 1. An example of PITA and a possible execution

as input a set of parameter valuations given by a first order formula over the
reals or a polyhedral constraint. The Robust Reachability Problem asks whether
there exists a parameter valuation π and a real ε > 0 such that for all π′ with
‖π − π′‖∞ < ε, q is reachable from q0 for π′ (where ‖π‖∞ = maxp∈P |π(p)|).
When satisfied, this property ensures that small parameter perturbations do not
modify the reachability result. It is also related to parameter synthesis where a
valuation has to be enlarged to an open region with the same reachability goal.

3 Reachability Analysis

In this section, we give the main construction for the decidability result (Point
1 below), the remaining part of the proof is given in appendix.

Theorem 1. 1. The (scoped) existential, universal and robust reachability
problems for PITA are decidable and belong to 2EXPSPACE. The complex-
ity reduces to PSPACE when the number of clocks is fixed.

2. The (polyhedral scoped) existential reachability problem is decidable for addi-
tively parametrised PITA, and belongs to 2EXPTIME. It belongs to PTIME
when the number of clocks and parameters is fixed.

We briefly present the main ideas underlying the proof. Given a PITA A, the
first step is to build a finite partition of the set RP of parameter valuations. An
element Π of this partition is specified by a satisfiable first-order formula over
(R,+,×), with the parameters as variables. Intuitively, inside Π the qualitative
behaviour of A does not depend on the precise parameter valuation. In a second
step, we build a finite automaton R(Π) for each non empty Π . In R(Π), a
state R, called a class, defines a set [[R ]]π of reachable configurations of TA,π

for a valuation π ∈ Π . The transition relation of R(Π) contains discrete steps

R
e−→ R′ (for a transition e of A) and abstract time steps R −→ Post(R) with the

following properties:

Discrete Step (DS): If there is a transition R
e−→ R′ in R(Π) then for each

π ∈ Π and each (q, v) ∈[[R]]π there exists (q′, v′) ∈ [[R′]]π such that (q, v)
e−→

(q′, v′).
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Conversely, let π ∈ Π and (q, v) ∈[[R]]π . If there exists a transition (q, v)
e−→

(q′, v′) in TA,π then for some R′, there is a transition R
e−→ R′ in R(Π) and

(q′, v′) belongs to [[R′]]π .
Time Step (TS): Let π ∈ Π and (q, v) ∈[[R]]π . There exists d > 0 such that

(q, v +q d) ∈[[Post(R)]]π and for each d′ with 0 ≤ d′ ≤ d, (q, v +q d
′) ∈[[R]]π

∪ [[Post(R)]]π .

Hence, we obtain a finite family of abstract time bisimulations of the transition
systems TA,π, for all parameter valuations, which gives the decidability result.

The key idea for the construction of R(Π) is based on the fact that, at some
level k, the active clock xk evolves in a one dimensional space and must be
compared to a set Ek of expressions, the values of which are based on parameter
values and the (fixed) clock values of levels below. For instance, in the automaton
of Fig. 1(a), if p2 = 0, the guard reduces to a comparison of x1 − 2 with 0. If
p2 �= 0, clock x2 must be compared to −x1−2

p2
(in a sense depending on the sign

of p2 if the constraint was an inequality). After transition b is fired, updates
must also be taken into account which leads to enlarge the set of expressions.
Due to the syntactic restrictions of PITA this procedure terminates. Hence, we
first need to define a set PolPar of polynomials (appearing in the denominators
like p2) and a family {Ek}k≤n of expressions in Lin(Xk,Frac(P,Q)).

3.1 Construction of PolPar and Expressions {Ek}k≤n

We define operations on expressions, relatively to a level k, to help building the
elements in Ek to which the clock xk will be compared.

Definition 3. Let k ≤ n be some level and let C =
∑

i≤n aixi + b be an expres-
sion in Lin(X,Frac(P,Q)), with ak = rk

sk
, for some rk and sk in Pol(P,Q). We

associate with C the following expressions:

– lead(C, k) = rk;
– if lead(C, k) /∈ Q \ {0}, comp(C, k) =

∑
i<k aixi + b;

– if lead(C, k) �= 0 then compnorm(C, k) = −
∑

i<k
ai

ak
xi − b

ak
.

In the previous example, comp corresponds to x1 − 2 while compnorm corre-
sponds to −x1−2

p2
. More examples are given after the construction of PolPar

and {Ek}k≤n. This construction proceeds top down from level n to level 1 after
initialising PolPar to ∅ and Ek to {xk, 0} for all k. When handling level k, we
add new terms to Ei for 1 ≤ i ≤ k.

1. At level k the first step consists in adding new expressions to Ek and new
polynomials to PolPar. More precisely, let C be any expression occurring in
a guard of an edge leaving a state of level k. We add lead(C, k) to PolPar
when it does not belong to Q and we add comp(C, k) and compnorm(C, k) to
Ek when they are defined.

2. The second step consists in iterating the following procedure until no new
term is added to any Ei for 1 ≤ i ≤ k.
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(a) Let q
ϕ,a,u−−−→ q′ with λ(q) ≥ k and λ(q′) ≥ k, and let C ∈ Ek. Then we

add C[u] to Ek (recall that C[u] is the expression obtained by applying
update u to C).

(b) Let q
ϕ,a,u−−−→ q′ with λ(q) < k and λ(q′) ≥ k. Let {C,C′} be a set of two

expressions in Ek. We compute C′′ = C[u]−C′[u], choosing an arbitrary
order between C and C′. This step ends by handling C′′ w.r.t. λ(q) as
done for C w.r.t. k in step 1 above.

Example 2. For the automaton of Fig. 1(a), initially, we have PolPar = ∅,
E1 = {x1, 0} and E2 = {x2, 0}. Starting with level k = 2, we consider in step 1
the expressionC2 = p2x2+x1−2 appearing in the guard of the single edge leaving
q2. We compute lead(C2, 2) = p2, comp(C2, 2) = x1− 2, and compnorm(C2, 2) =
−x1−2

p2
. We obtain PolPar = {p2} and E2 = {x2, 0, x1−2,−x1−2

p2
}. For step 2(a)

and the same edge, we apply its update to the expressions of E2 that contain x2,
add them to E2, and thus obtain E2 = {x2, 0, x1−2,−x1−2

p2
, (p2+

1
68p

2
1)x1+p2}.

In step 2(b), considering the single edge from q1 to q2, we compute the
differences between any two expressions from E2 (after applying update) and
the resulting expressions lead, comp and compnorm, which yields: PolPar =

{p2, p2 + 1, 1− p2 − 1
68p

2
1,−p22 − 1

68p
2
1p2 − 1} and E1 = {x1, 0, 2,− 2(p2+1)

p2
,−2−

p2,
2+p2

1−p2− 1
68 p

2
1

,
2−p2

2

p2
,

2−p2
2

1+p2
2+

1
68 p

2
1p2
}.

We proceed with level 1 and add compnorm(C1, 1) = p1 to E1, hence:

E1 = {x1, 0, 2,− 2(p2+1)
p2

,−2− p2,
2+p2

1−p2− 1
68p

2
1

,
2−p2

2

p2
,

2−p2
2

1+p2
2+

1
68p

2
1p2

, p1},
E2 = {x2, 0, x1 − 2,−x1−2

p2
, (p2 +

1
68p

2
1)x1 + p2} and,

PolPar = {p2, p2 + 1, 1− p2 − 1
68p

2
1,−p22 − 1

68p
2
1p2 − 1}.

Lemma 1 below is used for the class automata construction. Its proof is ob-
tained by a straightforward examination of the above procedure. The other two
lemmata are related to the termination and complexity of this procedure and
used in the computation of the upper bound of the reachability algorithm. This
algorithm manipulates rationals numbers (resp. rational functions) as pairs of
integers (resp. polynomials).

Lemma 1. Let C belong to Ek for some k and c = r
s be a coefficient of C with

s /∈ Q. Then there exists polynomials P1, . . . , P	 ∈ PolPar and some constant
K ∈ Q \ {0} such that s = K.

∏
1≤i≤	 Pi.

Lemma 2. The construction procedure of {Ek}k≤n terminates and the size of

every Ek is bounded by (2E + 2)2
n(n−k+1)+1 where E is the number of atomic

propositions in edges of the PITA.

Lemma 3. Let A be a PITA, and let b0 be the maximal number of bits for inte-
gers and d0 the maximal degree of polynomials, occurring in A. If b is the number
of bits of an integer constant and d is the degree of a polynomial, occurring in
an expression of PolPar or some Ek, then b ≤ (n+2)!2nb0 and d ≤ (n+2)!d0.
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We now explain the partition construction. Starting from the finite set PolPar,
we split the set of parameter valuations in parameter regions specified by the
result of comparisons to 0 of the values of the polynomials in PolPar. For in-
stance, for the set PolPar computed above, the inequalities p2 < 0, p2 + 1 < 0,
1 − p2 − 1

68p
2
1 > 0 and −1 − p22 − 1

68p
2
1p2 > 0 define a set preg of parameter

valuations containing p1 = 20 and p2 = −5. The set of non empty such regions
can be computed by solving an existential formula of the first-order theory of
reals.

Then, given a non empty parameter region preg, we consider the following
subset of Ek for 1 ≤ k ≤ n: Ek,preg = {C ∈ Ek | the denominators of coefficients
of C are non null in preg}. Due to Lemma 1, these subsets are obtained by
examining the specification of preg.

Observe that expressions in E1,preg \ {x1} belong to Frac(P,Q) and that,
depending on the parameter valuation, two different expressions can produce the
same value. We refine preg according to a linear pre-order �1 on E1,preg \ {x1}
which is satisfiable within preg. We denote this refined region by Π = (preg,�1)
and we now build a finite automaton R(Π).

3.2 Construction of the Class Automata

In this paragraph, we fix a non empty parameter region Π = (preg,�1).

Class Definition. A state of R(Π), called a class, is defined as a pair R =
(q, {�k}1≤k≤λ(q)) where q is a state of A and �k is a total preorder over Ek,preg ,
for 1 ≤ k ≤ λ(q). For a parameter valuation π ∈ Π , the class R describes the
following subset of configurations in TA,π:

[[R]]π= {(q, v) | ∀k ≤ λ(q) ∀g, h ∈ Ek,preg , π(v(g)) ≤ π(v(h)) iff g �k h}
The initial state of R(Π) is the class R0, such that (q0,0) ∈[[R0]]π, which can

be straightforwardly determined by extending �1 to E1,preg with x1 �1 0 and
0 �1 x1 and closing �1 by transitivity.

As usual, transitions in R(Π) consist of discrete and time steps:

Discrete Step. Let R = (q, {�i}1≤i≤λ(q)) and R′ = (q′, {�′
i}1≤i≤λ(q′)) be two

classes. There is a transitionR
e−→ R′ for a transition e : q

ϕ,a,u−−−→ q′ if for some π ∈
Π , there is some (q, v) ∈ [[R]]π and (q′, v′) ∈ [[R′]]π such that (q, v)

e−→ (q′, v′). In
this case, for all (q, v) ∈ [[R]]π there is a (q′, v′) ∈ [[R′]]π such that (q, v)

e−→ (q′, v′).
We prove in the sequel that the existence of transition R

e−→ R′ is independent
of π ∈ Π and of (q, v) ∈ [[R]]π . It can be decided as follows.

Firability condition. Write ϕ =
∧

j∈J Cj ��j 0. For a given j, let us write Cj =∑
i≤λ(q) aixi + b. We consider three cases.

• Case aλ(q) = 0. Then Cj = comp(Cj , λ(q)) ∈ Eλ(q),preg and using the positions
of 0 and Cj w.r.t. �λ(q), we can decide whether Cj ��j 0.
• Case aλ(q) ∈ Q \ {0}. Then compnorm(Cj , λ(q)) ∈ Eλ(q),preg, hence using the
sign of aλ(q) and the positions of xλ(q) and compnorm(Cj , λ(q)) w.r.t. �λ(q), we
can decide whether Cj ��j 0.
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• Case aλ(q) /∈ Q. According to the specification of preg, we know the sign of
aλ(q) as it belongs to PolPar. In case aλ(q) = 0, we decide as in the first case.
Otherwise, we decide as in the second case.

Successor R′ definition. Let k ≤ λ(q′) and g′, h′ ∈ Ek,preg.

1. Either k ≤ λ(q), by step 2(a) of the construction, g′[u], h′[u] ∈ Ek,preg . Then
g′ �′

k h
′ iff g′[u] �k h

′[u].
2. Or k > λ(q), let D = g′[u]− h′[u] =

∑
i≤λ(q) aixi + b.

• Case aλ(q) = 0. Then D = comp(D,λ(q)) ∈ Eλ(q),preg , so we can decide
whether D �λ(q) 0 and g′ �′

k h
′ iff D �λ(q) 0.

• Case aλ(q) ∈ Q \ {0}. Then compnorm(D,λ(q)) ∈ Eλ(q),preg. There are
four subcases to consider. For instance if aλ(q) > 0 and xλ(q) �λ(q)

compnorm(D,λ(q)) then g′ �′
k h

′. The other subcases are similar.
• Case aλ(q) /∈ Q. Let us write aλ(q) =

rλ(q)

sλ(q)
. According to the specification

of preg, we know the sign of aλ(q) as rλ(q) belongs to PolPar and sλ(q) is a
product of items in PolPar. In case aλ(q) = 0, we decide g′ �′

k h
′ as in the

first case. Otherwise, we decide in a similar way as in the second case. For
instance if aλ(q) > 0 and xλ(q) �λ(q) compnorm(D,λ(q)) then g′ �′

k h
′.

Time Step. For R = (q, {�k}1≤k≤λ(q)), there is a transition R
succ−−−→ Post(R),

where Post(R) = (q, {�′
k}1≤k≤λ(q)) is the time successor of R, defined as follows.

Intuitively, all preorders below λ(q) are fixed, so �′
i=�i for each i < λ(q). On

level λ(q), the clock value simply progresses along the one dimensional time
line, where the expressions are ordered. More precisely, let ∼ be the equivalence
relation �λ(q) ∩ �−1

λ(q) induced by the preorder. A ∼-equivalence class groups

expressions yielding the same value, and on these classes, the (total) preorder
becomes a (total) order. Let V be the ∼-equivalence class containing xλ(q).

1. Either V =
{
xλ(q)

}
. If V is the greatest∼-equivalence class, then�′

λ(q)=�λ(q)

(and Post(R) = R). Otherwise, let V ′ be the next ∼-equivalence class. Then
�′

λ(q) is obtained by merging V and V ′, and preserving �λ(q) elsewhere.

2. Or V is not a singleton. Then we split V into V \
{
xλ(q)

}
and

{
xλ(q)

}
and

“extend” �λ(q) by V \
{
xλ(q)

}
�′

λ(q)

{
xλ(q)

}
.

Example 3. This construction is illustrated on automaton A1 of Fig. 1(a), for
the region Π = (preg,�1), where preg was defined above by: p2 < 0, p2+1 < 0,
1 − p2 − 1

68p
2
1 > 0 and −1 − p22 − 1

68p
2
1p2 > 0 and �1 is the ordering of the

expressions in E1,preg = E1 specified by the line below.

2+p2
1−p2− 1

68
p21

−2(p2+1)
p2

0 2 −2− p2 2−p22
p2

2−p22
1+p22+

1
68

p21p2

p1

A part of the resulting class automaton R(Π), including the run correspond-
ing to the one in Fig. 1(b), is depicted in Fig. 2, where dashed lines indicate
(abstract) time steps. The initial class is R0 = (q0, Z0) where Z0 is �1 extended
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R0

R1
0

...

R9
0

...

R11
0

q1, Z1, Z2 ∧
x2 = 0

q1, Z1, Z2 ∧
0 < x2 < −x1−2

p2

q1, Z1, Z2 ∧
x2 = −x1−2

p2

q1, Z1, Z2 ∧
x2 = (p2 +

1
68
p21)x1 + p2

q1, Z1, Z2 ∧
(p2 +

1
68
p21)x1 + p2 < x2 < x1 − 2

q1, Z1, Z2 ∧
x2 = x1 − 2

q1, Z1, Z2 ∧
x1 − 2 < x2

a

a

b

a

Fig. 2. A part of R(Π) for A1

with x1 = 0. Time successors of the initial state are obtained by moving x1 to
the right along the line: R1

0 = (q0,�1 ∧ 0 < x1 < 2), R2
0 = (q0,�1 ∧ x1 = 2),

. . . , up to R11
0 = (q0,�1 ∧ p1 < x1).

Transition a can be fired from all these classes except from R10
0 and R11

0 . In
Fig. 2, we represent only the one from R9

0, and we denote by Z1 the ordering �1

extended with
2−p2

2

1+p2
2+

1
68 p

2
1p2

< x1 < p1. Region Π and Z1 determine the ordering

Z2 =�2 on E2,preg \ {x2} = E2 \ {x2}, specified by the line below. This firing
produces R1 = (q1, Z1, Z2∧x2 = 0)). Transition b is fired from the time (second)
successor of R1 for which x2 = −x1−2

p2
.

0 −x1−2
p2

(p2 +
1
68
p21)x1 + p2 x1 − 2

To conclude, observe that the automaton R(Π) defined above has the prop-
erties (DS) and (TS) mentionned previously, and is hence a finite time abstract
bisimulation of TA,π, for all parameter valuations π ∈ Π .

4 Conclusion

While seminal results on parametrised timed models leave little hope for de-
cidability in the general case, we provide here an expressive formalism for the
analysis of parametric reachability problems. Our setting includes a restricted
form of stopwatches and polynomials in the parameters occurring as both addi-
tive and multiplicative coefficients of the clocks in guards and updates. We plan
to investigate which kind of timed temporal logic would be decidable on PITA.
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Abstract. We present a satisfiability-preserving translation of QTL for-
mulae with counting modalities interpreted over finitely variable signals
into formulae of the CLTL-over-clocks logic. The satisfiability of CLTL-
over-clocks can be solved through a suitable encoding into the input
logics of SMT solvers, so our translation constitutes an effective decision
procedure for QTL with counting modalities. It is known that counting
modalities increase the expressiveness of QTL (hence also of the expres-
sively equivalent MITL logic); to the best of our knowledge, our decision
procedure for such modalities is the first actually implemented.

1 Introduction

When developing computer systems that monitor and control time-continuous
physical quantities, such as position, speed, temperature or pressure, the typical
discrete-time models of computer science, e.g., finite state machines, may no
longer be adequate. To address these shortcomings, many notations, and related
tools, supporting continuous-time have been developed [10], most often based
on operational mechanisms, e.g., Timed Automata [3] supported by tools such
as Uppaal [20]. Descriptive notations, such as temporal logics, have been used
mainly as a concise and convenient way to express the required properties of
a system, in the path of traditional verification of finite-state models through
model checking [5]. Temporal logics, however, also allow designers to pursue a
descriptive approach to the specification and modeling of reactive systems (see,
e.g., [16,10]), where the system is defined by means of its general properties,
rather than by a machine behaving in the desired way. In this case, verification
typically consists of satisfiability checking of the conjunction of the model and
of the (negation of) its desired properties.

Quantitative Temporal Logic (QTL [11]) is one of the more interesting con-
tinuous-time temporal logics: its satisfiability is PSPACE-complete; it has a very
simple syntax, with only one metric operator, for expressing statements of the
form “Event θ will happen within one time unit”; nevertheless, it is expressively
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equivalent with other syntactically richer logics, in particular with the Quanti-
tative Monadic Logic of Order (QMLO), and with the Metric Interval Temporal
Logic (MITL). In fact, a translation has been defined that, from a QTL formula,
produces an equivalent QMLO (resp. MITL) formula, and vice-versa.

However, the expressive power of QTL, and of other typical metric temporal
logics on continuous time, is often not enough. Pnueli conjectured (as later proved
in [12]) that logics such as QTL and MITL are unable to express many naturally-
occurring constraints, such as “Events θ1 and θ2 will both happen within one
time unit”. This has led [12] to define an extension of QTL, by introducing a
new modality, called P2, where P2�θ1, θ2� means that θ1 and θ2 will both happen
within one time unit, with θ1 occurring before θ2. This “Pnueli modality” was
also generalized, by introducing, for every natural number n � 0, the modality
Pn�θ1, . . . , θn�, with the meaning that it holds in t if there exists an increasing
sequence of time instants t � t1 � t2 � � � � � tn � t� 1 such that every θi holds
at ti, for all 1 � i � n. For every Pn there is also corresponding modality

	

Pn

with the same meaning, but in the past.
The rationale for introducing these “generalized” modalities is that QTL with

the Pn modality is strictly more powerful than QTL with only the Pn�1 modal-
ity. For instance, a language, say, with only P2 cannot express constraints about
the occurrence of three events in the next time unit. [12] also introduced a sim-
pler “counting” modality, defined asCn�θ� � Pn�θ, . . . , θ�, i.e., with the meaning
that θ holds in at least n time instants in the open unit interval ahead.

	

Cn is

the past version of Cn. According to [13], each Cn modality is strictly more
powerful than the Cn�1 modality and, somewhat surprisingly, the logic QTLc,
defined as QTL extended with every Cn modality, is as expressive as QTLp,
i.e., QTL extended with every Pn modality. Satisfiability of QTLc is PSPACE-
complete when each index n in a modality Cn is encoded in unary, although it
is EXPSPACE-complete if n is encoded in binary [17].

In general, the verification of continuous-time temporal logics is not as well-
supported by tools as for discrete-time models, especially when the logic is en-
dowed with metric operators. Decision procedures for determining satisfiability
mostly rely on timed automata-based techniques [4,14,18] but they appear to be
very difficult to realize in practice. To the best of our knowledge, no implemen-
tation exists for them. [19] also defines a decision procedure for a temporal logic
that is equi-expressive with MITL, one that is essentially akin to building a suit-
able automaton. Finally, the techniques used in [12,17,13] to prove decidability
and complexity of QTLc appear to be remote from any actual implementation.

In this paper we introduce a satisfiability-preserving translation from QTLc
formulae into formulae of CLTL-over-clocks, a decidable logic whose satisfiabil-
ity is PSPACE-complete. This translation is polynomial in the size of the QTLc
formula, hence preserving the complexity, at least when counting modalities are
encoded in unary. The advantage of CLTL-over-clocks is that it allows the def-
inition of a decision procedure based on Satisfiability Modulo Theories (SMT)
techniques that are implemented in a variety of tools. A prototype tool for CLTL-
over-clocks already exists [8], hence an actual implementation of a satisfiability
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checker for QTLc can be obtained through the (almost straightforward) imple-
mentation of the translation described in this paper.

For brevity, this paper only shows the translation for the case ofCn modalities,
the case of the past

	

Cn modalities being very similar. Also, we do not show the

encoding of thePn modalities, which is more involved than for theCn modalities,
though it is known that QTLp and QTLc are expressively equivalent.

Although QTLc is decidable over unrestricted models, we will focus on models
that are finitely variable, i.e. such that in every bounded time interval there can
only be a finite number of changes. This is a very common requirement for
continuous-time models, which only rules out pathological behaviors (e.g., Zeno
[10]) which do not have much practical interest.

The paper is organized as follows: Sect. 2 defines QTLc and CLTL-over-clocks,
and Sect. 3 defines a reduction from the former to the latter; Sect. 4 shows that
the translation is satisfiability-preserving, and discusses its complexity. Sect. 5
concludes.

All proofs and parts of the translation are in the full version of the paper.

2 Languages

We define the syntax and semantics of QTLc, i.e., the general case where counting
modalities are allowed.

Let AP be a finite set of atomic propositions and C � �C1,C2, . . . be the
infinite sets of (names of) counting modalities, respectively. The syntax of (well-
formed) QTLc formulae over AP and C is defined by the grammar:

φ :� p � φ� φ � �φ � φU�0,��φ � φS�0,��φ � Ci�φ� �
	

C i�φ�

where p is in AP , i � 0 stands for any integer constant (note that C1 is the
usual “eventually” operator F�0,1� of QTL).

The semantics of QTLc may be defined with respect to a generic linear order,
but in what follows we will focus on the nonnegative real line, i.e., the linear order
�R�0,��. A structure M for QTLc over alphabet AP is a pair M � �R�0,BM�,
where BM is a valuation mapping every propositional variable p � AP to a set
BM �p� � R�0. Hence, a structure may be considered as providing continuous-
time Boolean signals over the set AP . Satisfaction of a QTLc formula overM at
a point t � R�0 is a relation �� defined inductively as in Table 1. Given a QTLp
formula φ, sub�φ� is the set of its subformulae.

Constraint LTL (CLTL [9,6]) formulae are defined with respect to a finite
set V of variables and a structure D � �D,R� where D is a specific domain
of interpretation for variables and constants and R is a family of relations on
D, with the set AP of atomic proposition being the set R0 of 0-ary relations.
An atomic constraint is a term of the form R�x1, . . . , xn�, where R is an n-ary
relation of R on D and x1, . . . , xn � V . A valuation is a mapping v : V � D. A
constraint is satisfied by v, written v ��D R�x1, . . . , xn�, if �v�x1�, . . . , v�xn�� � R.
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Table 1. Semantics of QTLc (past operators are omitted for brevity)

M, t �� p�t � BM �p�

M, t �� �φ�M, t ��� φ

M, t �� φ� ψ �M, t �� φ and M, t �� ψ

M, t �� φU�0,��ψ �	t
� 
 t : M, t� �� ψ and �t�, 0 � t� � t�,M, t� �� φ

M, t �� Ci�φ� �	t1, . . . ti, t � t1 � . . . ti � t 1, and M, tk �� φ for all k � �1 . . . i�

Table 2. Semantics of CLTL (propositional connectives are omitted for brevity)

�π, σ�, i �� p� p � π�i� for p � AP

�π, σ�, i �� R�α1, . . . , αn� � �σ�i �α1�, xα1�, . . . , σ�i �αn�, xαn�� � R

�π, σ�, i �� X�φ� � �π, σ�, i 1 �� φ

�π, σ�, i �� Y�φ� � �π, σ�, i� 1 �� φ� i 
 0

�π, σ�, i �� φUψ � 	 j � i : �π, σ�, j �� ψ � �π, σ�, n �� φ � i � n � j

�π, σ�, i �� φSψ � 	 0 � j � i : �π, σ�, j �� ψ � �π, σ�, n �� φ � j � n � i

Temporal terms α are defined by the syntax α :� c � x � Xα, where c is a
constant in D and x � V . CLTL formulae are defined as follows:

φ :� R�α1, . . . , αn� � φ� φ � �φ � X�φ� � Y�φ� � φUφ � φSφ

where αi’s are temporal terms, R � R, X, Y, U and S are the usual “next”,
“previous”, “until” and “since” operators of LTL, with the same meaning. Oper-
ator X is similar to X, but it only applies to temporal terms, with the meaning
that Xα is the value of temporal term α in the next time instant. Operators
“globally” G and “release” R are introduced as customary as abbreviations:
φ1Rφ2 � ���φ1U�φ2�, G�φ� � �R�φ.

The depth �α� of a temporal term is the total amount of temporal shift needed
in evaluating α: �x� � 0 when x is a variable, and �Xα� � �α��1. The semantics of
CLTL formulae is defined with respect to a strict linear order representing time
�N,��. Truth values of propositions in AP and values of variables belonging to
V are defined by a pair �π, σ�, where σ : N�V � D and π : N� ℘�AP �, which
define the value of variables and a subset of AP for each element of N. The value
of terms is defined with respect to σ by σ�i, α� � σ�i � �α�, xα�, assuming that
xα is the variable in V occurring in term α. The semantics of a CLTL formula
φ at instant i � 0 over a pair �π, σ� is recursively defined as in Table 2, where
xαi is the variable that appears in temporal term αi, and R � R�R0 (recall that
R0 � AP ). A formula CLTL φ is satisfiable if there exists a pair �π, σ� such that
�π, σ�, 0 �� φ; in this case, we say that �π, σ� is a model of φ.

In this paper, we restrict the set of pairs �π, σ� which can be model for formulae
to the ones where variables in V are evaluated as clocks. A clock “measures” the
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time elapsed since the last time it was “reset” (i.e., the variable was equal to 0).
Each position i � N is associated with a “time delay” δ�i�, where δ�i� � 0 for all
i, which corresponds to the “time elapsed” between the current position i and
the next one i� 1. More precisely, given a clock x,

σ�i� 1, x� �

�
σ�i, x� � δ�i�, time elapsing

0 reset x.

The set R is restricted to ��,� because CLTL formulae need only to measure
the time elapsing among events, as later explained. Under these two restrictions,
the resulting logic is called CLTL-over-clocks and it is decidable (as shown in [8]);
an effective decision procedure can be devised by encoding it into the decidable
theory of Quantifier-free Linear Real Arithmetic, which can be solved by SMT
solvers such as, for example, Z3 [15]. A prototype solver for CLTL-over-clocks
formulae is available as part of the Zot tool [2].

3 Reduction of QTLc to CLTL-Over-Clocks

Reducing QTLc to CLTL-over-clocks requires a way to represent models of QTL
formulae, i.e., continuous-time signals over a finite set of atomic propositions, by
means of CLTL models where time is discrete. In CLTL, variables behaving as
clocks represent time progress, while discrete positions in models represent, for
each subformula occurring in φ, whether a change of truth value (an “event”)
occurs or not for the subformula at that point. Time progress between two
discrete points is measured by clocks; between events, the truth value of formulae
is stable (i.e., there is no change). CLTL models embed, in every (discrete)
position, the information defining both the truth value of all the subformulae
occurring in QTLc formula φ and the time progress between two consecutive
changing points. Therefore, our reduction defines, by means of CLTL-over-clocks
formulae, the semantics of every subformula occurring in φ.

Consider a QTLc formula φ. For each subformula θ of φ we introduce two

predicates, �θ and
�

θ , which represent the value of θ in, respectively, the first
instant and the rest of the interval between two events (hence, �θ represents
the value of θ exactly when the event occurs). We also introduce nθ clocks
z0θ , . . . z

nθ�1
θ , where, if n� is the greatest value such that Cn��θ� appears in φ,

then nθ � max�n, n�� � 1 if θ � Cn�γ�, and nθ � max�1, n�� � 1 otherwise.
Clocks ziθ (with i � �0, . . . nθ � 1) measure the time elapsed since the last nθ

“events” of θ. Let θ � sub�φ�. Define the event “become true” euθ to occur at
time instant t � 0 of a signal M when: �ε � 0 s.t. �t� � �t, t � ε� it is M, t ��
θ and either t � 0 or �ε � 0 s.t. �t� � �t� ε, t� it is M, t �� �θ.
The opposite event “become false” edθ may be defined by replacing θ with �θ in
the above definition. QTLc events euθ and edθ are represented in the CLTL formula

through combinations of the basic predicates �θ and
�

θ that are abbreviated by
�θ and �θ, respectively, whose definitions are shown in Table 3.
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Table 3. CLTL predicates and abbreviations used in the encoding. Note that Y�
�

ξ�

and Y��
�

ξ� are false in the origin, no matter ξ, and elsewhere �Y��
�

ξ � � Y�
�

ξ �;

hence, �ξ holds in 0 iff
�

ξ holds there, �ξ does not hold in 0, and so on.

�ξ � ξ holds in the first instant of the current interval
�

ξ � ξ holds in the current interval (save possibly for its first instant)

�ξ � �Y�
�

ξ��
�

ξ �ξ � Y��
�

ξ �� �ξ ��
�

ξ

�ξ � �Y��
�

ξ� � �
�

ξ �ξ � Y�
�

ξ� � � �ξ �
�

ξ
ξ

� � �ξ ��ξ � �orig �� �ξ�
ξ
� � �ξ ��ξ

ξ�
� �ξ ��ξ � �orig� �ξ�

ξ
� � �ξ ��ξ

orig� �Y���

We do not impose any restrictions on signals other than that they be finitely
variable. In particular, subformulae θ can have singularities, i.e., instants in
which the value of θ is different than in their neighborhood. More precisely, we
say that a formula θ has an “up-singularity” suθ in instant t if the following holds:
t � 0, M, t �� θ and �ε � 0 s.t. �t� � t � �t� ε, t� ε� it is M, t� �� �θ.

Conversely, a “down-singularity” sdθ occurs if the formula above holds with �θ
instead of θ. By definition singularities do not occur in 0. In CLTL formulae, we
represent up- and down-singularities with propositions�θ and�θ, respectively.

Tab. 3 summarizes the CLTL predicates used here. In a nutshell,
ξ

� (resp.
ξ�
) indicates that formula ξ held (resp. did not hold) in an interval before the

current one, and now it switches; the switch can be singular (in which case ξ
immediately takes the same value it held before), or not, in which case ξ stays

false (resp. true) for some time after the switch. Formula
ξ
� (resp.

ξ
�), instead,

holds if ξ becomes true (resp. false) in the current instant, and it holds in an
interval after now. Formula �Y���, that holds only in 0, is denoted by orig.

The translation from QTLc to CLTL-over-clocks has three parts: (i) a set
genconstrθ of general formulae, which are written for any θ � sub�φ�, defining
constraints that guarantee that clock resets occur at suitable points; (ii) the
translation of QTL basic connectives and operators; (iii) the translation of the
counting modalities. Every θ � sub�φ� is translated into a CLTL-over-clocks
formula m�θ� that captures its semantics by describing how θ becomes true and
false depending on the value of its own subformula(e).

General constraints genconstrθ and the translation m�θ� in the case of basic
QTL connectives and operators (i.e., cases (i) and (ii) above) have already been
presented in [7]. The next section shows the translationm�θ� for Cn, with n � 1.
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A QTLc formula φ is initially satisfiable iff in 0 it has an edge such that it holds
in the origin, i.e., initφ � �φ �φ. Then, the corresponding CLTL-over-clocks
formula φCLTL is:

φCLTL � initφ �
�

θ�sub�φ�

�genconstrθ �G�m�θ��� . (1)

3.1 Semantics of the Counting Modalities

Some general properties of Cn are introduced, before defining m�Cn�γ��.

Lemma 1. Let θ � Cn�γ�. If M, t �� θ then there is ε � R�0 such that, for all
t� � !t, t � ε" it is M, t� �� θ; moreover, when t � 0, there exists ε � R�0 such
that ε � t and for all t� � !t� ε, t" it is M, t� �� θ.

Because of Lemma 1, an up-singularity �θ can never occur for a formula of the
form Cn�γ�. In addition, if θ holds at the beginning of an interval (i.e., �θ holds),
then it must hold also in the rest of the interval and, if t � 0, it must also hold
in the interval before. Then, the following constraint holds in every instant:

�θ#
�

θ ��Y�
�

θ�  orig� (2)

For the sake of readability, some shorthands are useful. Let zjθ,γ � 0 stand for

�zjθ � 0 �
�

i�	0,...,nγ�1
 z
i
γ � 0�, where nγ is the number of clocks introduced

for γ. We also write zp̂γ $ d (where $� ��,�,�,�,�) to state that there are

exactly p clocks of γ satisfying $ d. Formula (9) of App. A defines zp̂γ $ d.
Fig. 1 recursively defines upn,pj,�d�Bγ�, whose actual meaning is that it holds in

every instant such that: 1) in the next time instant t such that clock zjθ has value
d, also the Boolean combination Bγ of propositional letters associated with γ

(�γ ,
γ�
, etc.) holds; 2) γ has a n � 1 true singularities (i.e., instants where �γ

holds) before t; 3) in instant t there are only p clocks associated with γ whose
value is � d (i.e., γ has changed value p times between the instants in which zjθ
was 0 and d). Fig. 1(a) depicts a situation in which up

3,3
j,�d��γ� holds.

Formula upnorig,�d�Bγ� (with $� ��,�) is similar to up
n,p
j,�d�Bγ�, except that

the reference clock used for formula θ is fixed to z0θ (hence j is no more a
parameter), and when Bγ holds it is z0γ $ d; in addition, the number of change
points of γ before Bγ holds is certainly n, so parameter p is unnecessary. For
brevity, the definition of upnorig,�d�Bγ� is shown in App. A, Formulae (7)-(8).

Fig. 1 also introduces shortands similar to up
n,p
j,�d�Bγ�, but which refer to

the interval before Bγ holds. Formula
	





nspikesn�γ� holds if the last n times

when γ changed value before the current instant are of the form �γ . Formula
	
upn,p�d �Bγ�, then holds if Bγ holds, the last n times when γ changed value were
up-singularities, and the number of clocks associated with γ that are less than
d is p, hence, if p � n � 1, all n “spikes” occurred within the last d time units.
Fig. 1(b) shows an example of 	
up2,3�d��γ� holding.
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γ

zjθ = d

γγ

0 < zjθ < d

up
3,3
j,=d(    γ)

(a) up
3,3
j,�d��γ�

γγγ

d

←−up2,3=d (    γ)

(b) ��up2,3�d��γ�

Fig. 1. A first batch of abbreviations:
up

1,p
j,�d�Bγ� � X�zjθ,γ 
 0 U�Bγ � zjθ � d� zp̂γ � d��

up
n,p
j,�d�Bγ� � X�zjθ,γ 
 0 U��γ � 0 � zjθ � d� up

n�1,p
j,�d �Bγ���

������
nspikes1�γ� � Y�

γ

��S��γ � ��γ ��
�

γ �orig���
������
nspikesn�γ� � Y�

γ

��S��γ �
������
nspikesn�1�γ���

��up0,p�d�Bγ� � Bγ � zp̂γ � d, ��upn,p
�d �Bγ� � Bγ �

������
nspikesn�γ� � zp̂γ � d

Using the abbreviations of Fig. 1, we capture through CLTL-over-clocks for-
mulae the conditions that make θ � Cn�γ� have a raising edge (i.e., that corre-
sponds to �θ). Formula (3) describes that, when θ becomes true with a raising
edge �θ in an instant t � 0, then it does so in a left-open manner (i.e., θ does
not hold in t), a clock zjθ is reset, and (i) either γ has n�1 up-singularities before

zjθ hits 1 and γ becomes true again also with an up-singularity when zjθ � 1, or

(ii) γ has a raising edge when zjθ � 1 (hence it is true infinitely many times in
a right neighborhood of that instant), and it also has up to n � 1 (possibly 0)
up-singularities before zjθ � 1. If instead θ becomes true in t � 0 in a left-closed
manner (i.e., θ holds in t; the left-open case is similar to the one above), before
clock z0θ � 1 either γ has a raising edge (so it is true infinitely many times before
z0θ � 1) preceded by up to n � 1 (possibly 0) up-singularities, or there are n
up-singularities followed, before z0θ � 1, by an instant in which γ becomes true.

�θ 

�
��������������

orig �

�
�������

�θ �

�
��γ � up

n
orig,�1��γ� �

�
k��1,...,n�

up
k
orig,�1��γ�

�
� �

� �θ �

�
�upnorig,�1��γ� �

�
k��1,...,n�

up
k
orig,�1��γ�

�
�

�
ÆÆÆÆÆÆ�
�

�orig �

nθ�1�
j�0

�
�� �θ �z

j
θ � 0�

�
��upn,n

j,�1��γ�� /�γ� �
�

k��1,...,n�

up
k,k
j,�1��γ�

�
�
�
�

�
ÆÆÆÆÆÆÆÆÆÆÆÆÆ�

(3)

Formula (4) states that if t is an instant in which either (i) in the preceding
interval of length 1 γ has n � 1 up-singularities and γ also becomes true in t
with an up-singularity (i.e., 	
upn�1,n

�1 ��γ� holds), or (ii) γ has a raising edge and
in the preceding interval of length 1 γ has at most n � 1 up-singularities (i.e.,
	
upk�1,k
�1 ��γ� holds for some k � n � 1), then in t one of the clocks associated

with θ must be 1 (in fact, Cn�γ� started to hold exactly 1 time unit before t,
see also Fig. 1(b)), and all others are greater than 1.
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zjγ = d

γγ

0 < zjγ < d

upSub2j,<d(γ)

(a) upSub2j,	d�γ�

zjγ = d

γ

0 < zjγ < d

upSub3j,=d(    γ)
γγ

(b) upSub3j,�d��γ�

Fig. 2. A second batch of abbreviations:

upSub0j,
d�γ� � �X�
γ

�
�
U�

γ�
�0 � zjγ � d��

upSubnj,
d�γ� � X�
γ

�
�
U��γ � 0 � zjγ � d� upSubn�1

j,
d�γ���

upSub1j,�d�Bγ� � X�
γ

�
�
U�Bγ � zjγ � d��

upSubnj,�d�Bγ� � X�
γ

�
�
U��γ � 0 � zjγ � d� upSubn�1

j,d �Bγ���

�
���upn�1,n

�1 ��γ� �
�

k��1,...,n

��upk�1,k
�1 ��γ�

�
�� �

i��0,...,nθ�1

ziθ � 1 (4)

To describe the conditions under which θ becomes false, either with a falling
edge (i.e., �θ holds), or with a singularity (i.e.,�θ holds) we introduce a pair of
further shorthands, shown in Fig. 2. Formula upSub0j,�d�γ� (where %� ��,�)

holds if, from the current instant (excluded) until the instant when clock zjγ
hits value d (included), γ never becomes true. Then, upSubnj,�d�γ� holds if, in

the interval that starts in the current instant and ends when clock zjγ � d
(both endpoints excluded if %��), γ has exactly n up-singularities. Fig. 2(a)
exemplifies when upSub2j,�d�γ� holds. Note that if there are at least n� 1 clocks

associated with γ, if upSubnj,�d�γ� holds, then zjγ is not reset before it becomes
d. Similarly, upSubnj,�d�Bγ� holds if, in the interval that starts in the current

instant and ends when zjγ � d (endpoints excluded), γ has n�1 up-singularities,

and Bγ holds when zjγ � d. Fig. 2(b) depicts a case where upSub3j,�d�γ� holds.
When θ � Cn�γ� becomes false with either a falling edge (�γ) or in a singular

manner (�γ), γ becomes false, and a clock ziγ is reset. Let us first consider the
former case (Formula (5)). There are two cases: γ becomes false with a falling
edge �γ , or it has an up-singularity �γ . In the former case, γ can have up to
n � 1 up-singularities before ziγ � 1 (it can have less than n � 1, since γ holds
infinitely many times before it has a falling edge). In the latter case, γ must have
exactly n� 1 up-singularities before ziγ � 1, or θ does not have a falling edge.

�θ �

�
������
�γ �

�
i��0,...,nγ�1

�
�ziγ � 0�

�
k��0,...,n�1

upSub
k
i,�1�γ�

�
� �

�γ �
�

i��0,...,nγ�1

�
ziγ � 0� upSub

n�1
i,	1�γ�

	

�
ÆÆÆÆÆ� (5)
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Finally, as captured by Formula (6), for θ to have a down-singularity�θ, not
only γ must become false with �θ, but it must also become true again exactly
when the clock ziγ , which is reset with �θ, takes value 1.

�θ �

�
������
�orig ��γ �

nγ�1�
i�0



ziγ � 0� upSub

n
i,�1�

�
γ� �

n�1�
k�1

upSub
k
i,�1��γ�

�
�

�γ �

nγ�1�
i�0

�
ziγ � 0� upSub

n
i,�1�

�
γ�
	

�
ÆÆÆÆÆ� (6)

Finally, for θ � Cn�γ�, m�θ� is (2)� (3)� (4)� (5)� (6).

4 Correctness and Complexity of the Reduction

To complete the results, we need to show that a QTLc formula φ is satisfiable iff
there exists a pair �π, σ� that satisfies φCLTL defined by Formula (1). The proof
is an extension of the one presented in [7], so in this paper we summarize its
salient points and we outline the QTLc-specific parts.

First of all, we define a correspondence between QTLc signals and CLTL-
over-clocks interpretations. Let us consider a finitely variable signal M that is
an interpretation for a QTLc formula θ; we call rθ�M� the set of CLTL-over-
clocks interpretations �π, σ� built according to the rules presented below.

Since M is finitely variable, the set of “events” in M for formula θ is denu-
merable. Also, it can be shown that, in any closed interval of length 1, a formula
of the form Cn�φ� cannot have more than n� 1 events.

Let T � �tkk�N & R� be a denumerable set of time instants such that
tk � tj ' k � j, for all t� � R� there is tk � T such that tk � t�, and if t is an
instant when at least one event for θ occurs in M , then t � T . In the following
we say that a clock v is reset at position k when σ�v, k� � 0.

If an event among euθ , e
d
θ, s

u
θ or sdθ occurs at tk � T , the event marker captured

by the corresponding formula �θ,�θ,�θ,�θ holds in π�k�, i.e., if M, tk �� euθ ,

then�θ holds in π�k� (hence
�

θ( π�k�1�,
�

θ� π�k�), etc. In addition, ifM, tk �� euθ
and M, tk �� θ (resp. M, tk ��� θ), then �θ� π�k� (resp. �θ( π�k�); similarly for
the falling edge. By the definition of events of Sect. 3, θ has an event in t � 0, so
t0 � 0. If no events for θ occur in tk � T , then none of ��θ,�θ,�θ,�θ holds

in π�k� (so
�

θ� π�k � 1� iff �θ,
�

θ� π�k�). For each tk � T where an event for θ
occurs, a ziθ is reset at k. z0θ is reset in 0; after 0, clocks are reset in a circular

manner, modulo nθ (i.e., ziθ is reset after z
�i�1� mod nθ

θ , but before z
�i�1� mod nθ

θ ,
and so on). For each ziθ it is σ�ziθ, k� 1� � σ�ziθ, k� � tk�1 � tk unless ziθ is reset.

For a given signal M there is more than one possible compatible sequence
T � �tkk�N, each one corresponding to a different CLTL interpretation. In
addition, one can show that if two signals M1 � M2 differ for θ in at least one
instant t � R�, then rθ�M1�)rθ�M2� � *. Let us now consider a set of formulae
F ; we indicate by rF �M� the set of CLTL interpretations built as before, but
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by considering all the events related to the formulae in F . In particular, we will
be interested, given a formula φ, in rsub�φ��M�. Not all CLTL interpretations

�π, σ� represent QTLc signals, so there are pairs �π, σ� such that r�1
θ ��π, σ�� is

undefined. However, we have the following result (from [7], mutatis mutandis).

Lemma 2. Let θ be a QTLc formula and M be a signal. For all interpretations
�π, σ� s.t. �π, σ� � rθ�M� it is �π, σ�, 0 �� genconstrθ. Dually, let �π, σ� be a
CLTL-over-clocks interpretation where time diverges (i.e., where

�
i�N δ�i� � +);

if �π, σ�, 0 �� genconstrθ, there is exactly one signal M s.t. �π, σ� � rθ�M�.

From Lemma 2 we can prove the following result.

Lemma 3. LetM be a signal, and φ a QTLc formula. For any �π, σ� � rsub�φ��M�
it is �π, σ�, 0 ��

�
θ�sub�φ� genconstrθ and for all k � N, θ � sub�φ� it is �π, σ�, k ��

m�θ�. Conversely, if �π, σ�, 0 ��
�

θ�sub�φ� genconstrθ � G�m�θ�� and

M � r�1
sub�φ���π, σ��, then�φ � π�k� iffM, tk �� euφ (similarly for the other events).

Finally, the following theorem derives from Lemma 3, by observing that signal
M is model for φ iff M, 0 �� φ, which means that in 0 either φ has a left-closed
raising edge or it has a left-open falling edge.

Theorem 1. A QTLc formula φ is satisfiable if, and only if, the CLTL-over-
clocks formula φCLTL (defined by Formula (1)) is satisfiable.

Consider a QTLc formula φ. The translation of Sect. 3 introduces, for each

θ � sub�φ�, 2 atomic propositions �θ,
�

θ and nθ variables z0θ , z
nθ�1
θ (where nθ is

bounded by the maximum n� such that Cn� appears in φ). All CLTL-over-clocks
formulae m�θ� have fixed size, except m�Cn�γ��, whose size is O�n3� (it can
be made quadratic with optimizations that are not shown here for simplicity).
Hence, the size of Formula (1) is polynomial in the size of φ, if one considers
a unary encoding of the indexes of the counting modalities. [8] shows that sat-
isfiability for a CLTL-over-clocks formula φCLTL is PSPACE in the number of
subformulae of φCLTL and the maximum constant occurring in it (i.e., 1 in the
case of QTLc). Then our translation preserves the PSPACE complexity (consid-
ering a unary encoding of the indexes) of the satisfiability of QTLc [17].

5 Conclusions and Preliminary Results

This paper presents a satisfiability-preserving translation from QTLc to the
logic CLTL-over-clocks. The advantage of this approach is that the resulting
translation can be encoded into the input language of SMT solvers, thus pro-
viding an effective decision procedure for QTLc (the first one available in the
literature, to the best of our knowledge). An open-source prototype [1] han-
dling QTL formulae and implementing the encoding of [7] and the one pre-
sented in this work has been used to carry out some preliminary experiments
on verifying the satisfiability of representative, albeit not large, formulae. Al-
though the tool has not been optimized, it was able to solve some interesting
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examples in a matter of minutes. For example, it was able to show in 24 sec-
onds1 that specification S � G�F�q� � �q � C2�q��� is satisfiable, in 50 seconds
that property G

�
q � F�0,0.5��q�

�
does not hold for S, and in 57 minutes that

G
�
F
�
q �F�0,0.5��q�

��
does instead hold.

References

1. qtlsolver, http://qtlsolver.googlecode.com
2. Zot: a bounded satisfiability checker, http://zot.googlecode.com
3. Alur, R., Dill, D.L.: A theory of timed automata. Theoretical Computer Sci-

ence 126(2), 183–235 (1994)
4. Alur, R., Feder, T., Henzinger, T.A.: The benefits of relaxing punctuality. Journal

of the ACM 43(1), 116–146 (1996)
5. Baier, C., Katoen, J.-P.: Principles of Model Checking. MIT Press (2008)
6. Bersani, M.M., Frigeri, A., Rossi, M., San Pietro, P.: Completeness of the bounded

satisfiability problem for constraint LTL. In: Delzanno, G., Potapov, I. (eds.) RP
2011. LNCS, vol. 6945, pp. 58–71. Springer, Heidelberg (2011)

7. Bersani, M.M., Rossi, M., San Pietro, P.: On the satisfiability of metric temporal
logics over the reals. In: Proceedings of AVOCS (2013)

8. Bersani, M.M., Rossi, M., San Pietro, P.: A tool for deciding the satisfiability of
continuous-time metric temporal logic. In: Proceedings of TIME (2013)

9. Demri, S., D’Souza, D.: An automata-theoretic approach to constraint LTL. Inf.
Comput. 205(3), 380–415 (2007)

10. Furia, C.A., Mandrioli, D., Morzenti, A., Rossi, M.: Modeling Time in Computing.
EATCS Monographs in Theoretical Computer Science. Springer (2012)

11. Hirshfeld, Y., Rabinovich, A.: Timer formulas and decidable metric temporal logic.
Information and Computation 198(2), 148–178 (2005)

12. Hirshfeld, Y., Rabinovich, A.: Expressiveness of metric modalities for continuous
time. Logical Methods in Computer Science 3(1:3), 1–11 (2007)

13. Hirshfeld, Y., Rabinovich, A.: Continuous time temporal logic with counting. In-
formation and Computation 214, 1–9 (2012)

14. Maler, O., Nickovic, D., Pnueli, A.: From MITL to timed automata. In: Asarin,
E., Bouyer, P. (eds.) FORMATS 2006. LNCS, vol. 4202, pp. 274–289. Springer,
Heidelberg (2006)

15. Microsoft Research. Z3: An efficient SMT solver
16. Morzenti, A., San Pietro, P.: Object-oriented logical specification of time-critical

systems. ACM TOSEM 3(1), 56–98 (1994)
17. Rabinovich, A.: Complexity of metric temporal logics with counting and the Pnueli

modalities. Theoretical Computer Science 411, 2331–2342 (2010)
18. Raskin, J.-F., Schobbens, P.-Y.: State clock logic: a decidable real-time logic. In:

Maler, O. (ed.) HART 1997. LNCS, vol. 1201, pp. 33–47. Springer, Heidelberg
(1997)

19. Raskin, J.-F., Schobbens, P.-Y., Henzinger, T.A.: Axioms for real-time logics. The-
oretical Computer Science 274(1-2), 151–182 (2002)

20. The UPPAAL model checker, http://www.uppaal.org

1 All tests have been carried out on a desktop computer with a 2.8GHz AMD
PhenomTMII processor and 8MB RAM; the solver was Microsoft Z3 3.2. The
experiments were carried out using a bound k � 25.

http://qtlsolver.googlecode.com
http://zot.googlecode.com
http://www.uppaal.org


82 M.M. Bersani, M. Rossi, and P. San Pietro

A Completing the Translation of Counting Modalities

Shorthands up1orig,�d�Bγ� and upnorig,�d�Bγ�, where $� ��,�.

up1orig,�d�Bγ� � X
�
z0θ,γ � 0 U

�
Bγ � 0 � z0θ $ d

��
(7)

upnorig,�d�Bγ� � X
�
z0θ,γ � 0 U

�
�γ � 0 � z0θ � d� upn�1

orig,�d�Bγ�
��

(8)

Shorthand for zp̂γ $ d (where $� ��,�,�,�,�, nγ is the number of clocks
associated with γ, p � nγ , and �nγ is the addition modulo nγ):

zp̂γ $ d �
	

i�	0,...,nγ�1




� �

j�	i�nγ 1,...,i�nγ p


�ziγ $ d� �
�

j�	i�nγ �p�1�,...,i


�zjγ , d�

�

(9)
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Abstract. Dealing with complex systems often needs the building of
huge reachability graphs, thus revealing all the challenges associated with
big data access and management. It also requires high performance data
processing tools that would allow scientists to extract the knowledge from
the unprecedented amount of data coming from these analyzed systems.
In this paper we present MaRDiGraS, a generic framework aimed at
simplifying the construction of very large state transition systems on
large clusters and cloud computing platforms. Through a simple pro-
gramming interface, it can be easily customized to different formalisms,
for example Petri Nets, by either adapting legacy tools or implement-
ing brand new distributed reachability graph builders. The outcome of
several tests performed on benchmark specifications are presented.

Keywords: ReachabilityGraph,Big Data, FormalMethods, Distributed
Computing, Cloud Computing, MapReduce.

1 Introduction

Formal verification of dynamic, concurrent and real-time systems has been the
focus of several decades of software engineering research. One of the most chal-
lenging task in this context is the development of tools able to cope with the
complexity of the models needed in the analysis of real word examples. “Big
Data” is a recent buzzword used to represent the collection of tools, methods,
and techniques that can be employed in the manipulation of very large datasets:
the analysis of big models certainly falls in this area, although formal verification
has not yet been considered by big data scientists. Indeed the challenges to be
tackled in formal verification include those associated with big data access and
management. In fact formal verification requires several different skills: On the
one hand, one needs an adequate background on formal methods in order to
understand specific formalisms and proper abstraction techniques for modeling
and interpreting the analysis results; On the other hand, one should strive to
deploy this techniques into software tools able to analyze large amount of data
very reliably and efficiently similarly to “big data” projects. Recent approaches
have shown the convenience of employing distributed memory and computation
to manage large amount of reachable states, but unfortunately exploiting this
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requires further skills in developing complex applications with knotty commu-
nication and synchronization issues. In particular, adapting an application for
exploiting the scalability provided by cloud computing facilities as the Amazon
Cloud Computing platform [2] might be a daunting task without the proper
knowledge of the subtleties of data-intensive and distributed analyses.

In this paper, we try to reduce the gap between these different areas of exper-
tise by providing the MaRDiGraS

1 generic library. Our framework is built on
top of Hadoop MapReduce [14,23] and can be easily specialized to deal with
the construction of very big state spaces of different kinds of formalisms (e.g.,
different kind of Petri Nets), thus it is suitable for simplifying the task of dealing
with a large amount of reachable states by exploiting large clusters of machines.
The MapReduce programming model, which has become the de facto stan-
dard for large scale data-intensive applications, has provided researchers with a
powerful tool for tackling big-data problems in the areas of machine learning,
text processing, bioinformatics, and large-scale graph processing [22]. The build-
ing of the huge graphs emerging from the analysis of discrete-event systems is a
problem that could benefit from a MapReduce based approach, but this has cur-
rently to be done by ad-hoc solutions [3], since the topic is still poorly explored
as far as we know. We firmly believe that the delivery of MaRDiGraS frame-
work would be helpful for both communities: First, we supply a flexible tool for
constructing high-performance distributed applications without the need for the
developers (supposed to be more familiar with formalisms than with MapRe-
duce or distributed systems) to care about all non-functional aspects; Second,
we aim at introducing the state explosion problem [24], as an instance of a big-
data problem. Exposing this issue to scientists with different backgrounds could
stimulate the development new interesting and more efficient solutions.

The rest of the paper is organized as follows. Section 2 gives a brief background
and we try to extract the intrinsic characteristics associated to state spaces
coming from different formalisms; Section 3 describes our generic approach and
gives some technical details about the MapReduce model; Section 4 describes
some use cases; Section 5 describes some experimental results; Section 6 gives
an overview on related works; finally Section 7 reports our conclusion.

2 Background

The behaviour of a discrete-event dynamic system is formally given in terms of
a labeled state transition system (S,Λ,→), where S is the set of system’s states,
Λ is a set of labels, and→ ⊆ S×Λ×S: (s, λ, s′) ∈→ if and only if s′ is reachable
from s through the occurrence of λ (s′ is said to be a successor of s and it is

written as s
λ→ s′).

A way to face state explosion (or the fact that in general S may be infinite,
or even uncountable, like in some time PN extensions) consists of building a
(hopefully finite) abstraction of the original (concrete) state transition system.

1 MapReduce-based DIstributed building of GRAphS.



MaRDiGraS: Simplified Building of Reachability Graphs 85

Different techniques are employed for that, depending on the formalisms. A non
exhaustive survey regarding high-level PNs may be found in [18]. In general,
(A,L,⇒) is an abstraction of (S,Λ,→) if each a ∈ A represents a set of concrete
states, A is a coverage of S, i.e.,

⋃
a∈A a ⊇ S, and, letting f be a morphism

Λ→ L, relation ⇒ ⊆ A× L×A satisfies condition EE (exists-exists)[6,3]:

EE-(1) if a
l⇒ a′, then ∃s ∈ a, s′ ∈ a′, λ ∈ f−1(l) : s

λ→ s′

EE-(2) if s
λ→ s′, then ∀a ∈ A s.t. s ∈ a, ∃a′ ∈ A s.t. s′ ∈ a′ : a f(λ)⇒ a′

The first part of condition EE avoids two abstract states from being con-
nected if no corresponding concrete states are. The second part ensures that
each concrete path corresponds to some abstract path.

Depending on the particular abstraction technique, and the properties one is
interested to check [3], it is possible/necessary to further refine condition EE,
either locally or globally, as informally shown in Fig. 1. For example, condition
EA (exists-for all) imposes that any abstract edge between states a, a′ must
correspond to a set of concrete ones, between some s ∈ a and each s′ ∈ a′. Any
(abstract) state-transition system can thus be described by annotating edges
with additional information, indicating which kind of connectivity among EE,
EA, AE (for all-exists), and AA (for all-for all) is locally met. According to this
convention, a concrete state space can be represented using only edges labeled
AA. Edges, as well as nodes, usually carry other annotations that are specific to
the particular formalism one is using.

s s'
a a'

EE s
a EA a'

AA
a a'

s'
a AE a'

Fig. 1. Edges types of an abstract state space

Independently of the formalism used in the modelling phase (PNs, in their
several extensions, process-algebras, etc.), we can reformulate most of the algo-
rithms for building (abstract) state-transition systems in terms of an elementary
iterative schema, whose essential points are outlined below:

(a) For each unexplored state a, we calculate the set of successors succ(a), iden-
tifying which connectivity conditions are met. Then we mark a as explored.

(b) For each a′ ∈ succ(a), we try to identify equivalence/inclusion relationships
between a′ and any state a′′. If a′ has been shown equivalent to/included in
a′′, it is discarded and all existing edges towards a′ are redirected to a′′ (in
the inclusion case the edges of kind *A are relabelled as *E).

Typically, such schema cycles until there are no unexplored states, using states
coming from the previous iteration as input to the next one. The operations
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which depend on the adopted formalisms are the calculation of the successors of
a state, the evaluation of relationships between states (often the more computa-
tionally expensive operation), and the identification of connectivity conditions.
The basic idea of the framework is gathering them into a very simple program-
ming interface, clearly separated from the core of the distributed algorithm,
based on a generic MapReduce. The complexity of evaluating equivalence/
inclusion relationships between abstract states can be alleviated by identify-
ing any syntactical feature which defines a necessary condition for states’ over-
lapping, e.g., the merely numerical distribution of tokens in a Coloured Petri
net marking. Examples of algorithms that could be rephrased according to the
schema above are presented in [4] for TB nets, in [5] for time Petri nets, and
in [9] for Well-Formed Coloured Petri nets. The construction of the reachability
graph for low-level Petri nets trivially falls in this category.

<1, a> <2, b> <3, c> <4, d> <5, e>

mapper mapper mapper

<F, f> <F, g> <H, h> <F, i> <H, l> <F, j>

partitioner partitioner partitioner

Aggregate intermediate value by key

reducer reducer

<F, list(f, g, i, j)> <H, list(h, l)>

<H, h><H, g> <F, i>

Fig. 2. The MapReduce model: The keys are in bold

3 Programming Model

The MaRDiGraS framework is built on top of Hadoop MapReduce. In the
following sections we briefly recall the MapReduce model and we present the key
points of the framework.

3.1 MapReduce

MapReduce relies on the observation that many information processing activi-
ties have the same basic design: a same operation is applied over a large number
of records (e.g., database records, vertices of a graph) to generate partial results,
which are then aggregated to compute the final output. In the MapReduce model
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users create their own application through a “map” function (specifying per-
record computations) and a “reduce” function (specifying the aggregation of
map computations): both operate in parallel on key-value pairs which represent
the input of the problem. The mapper is applied to every input key-value pair
to generate an arbitrary number of intermediate key-value pairs. The reducer is
then applied to all values associated with the same intermediate key to generate
an arbitrary number of final key-value pairs as output. This two-step processing
structure is presented in Figure 2.

The execution framework transparently handles all non-functional aspects of
execution on big clusters. It is responsible, among other things, for scheduling
(moving code to data), handling faults, and the large distributed sorting and
shuffling needed between the map and reduce phases since intermediate key-
value pairs must be grouped by key. The “partitioner” is responsible for dividing
up the intermediate key space and assigning intermediate key-value pairs to
reducers. The default partitioner computes a hash function on the value of the
key modulo the number of reducers. In order to rewrite a state-space (possibly
abstract) builder tool according to the MapReduce model, one has to assign to
mappers the task (a) described in Section 2, and to the reducers the task (b).

3.2 MaRDiGraS

MaRDiGraS follows the Hybrid Iterative MapReduce model sketched in Fig-
ure 3. Computation starts by considering the initial state of the system under
analysis and goes on with a sequential state-space building phase until the set N
of states not yet explored becomes large enough: in other words there is a con-
figurable threshold (in terms of number of states) below which a (all-in-RAM)
sequential approach is considered more efficient than the distributed one. Once
we go above the threshold, an iterative MapReduce algorithm runs over a clus-
ter of machines. We carried out several experiments to determine a good setting
of the threshold. Experimental evidences suggest that this parameter is strictly
related to the number of new nodes created at each iteration: this makes us
confident in a possible run-time setting of the threshold.

The map step (computation of new states) and the reduce step (identifica-
tion of equivalence/inclusion relationships), iterate until |N | remains above the
threshold. Between them, the default partitioner splits the intermediate key set,
ensuring that all possibly related states belong to the same partition. This is
done by using as intermediate keys a function g such that if two states s1, s2 are
related then g(s1) = g(s2). This way the partitioner delivers all possibly related
states to the same reducer. Whenever |N | goes back below the threshold the
output of all reducers is merged in order to proceed with the sequential algo-
rithm. This operation might cause a memory overflow in some cases, due to the
huge size of the state-space computed until that point (potentially many GB or
TB). This is why the user can choose not to switch to the sequential algorithm
anymore, after the first exceeding of the threshold. Once the set of unexplored
states becomes empty, the entire-state space is supplied as output either in a
single file, or distributed over different files.
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The code base of MaRDiGraS is made up by two main packages which
split logically the framework into two different parts: the data package and the
core package. The data package contains all entities concerning the data of our
framework: the state-space and the model. These entities must be extended in
order to be customized to a specific formalism: for example, in the case of time
PN extensions, one may want to attach specific meta-data to nodes and edges
holding timing properties. The core package contains all the algorithms of the
framework. They implement, together with the user defined building blocks, the
Hybrid Iterative MapReduce model.

runMapReduce( )

while ( | N | > 0) {

if ( | N | > threshold )

else

runLocalBuilder( )

sequential builder

} // end while

iteration output

Iterations

Map( )

Reduce( )

Fig. 3. Hybrid Iterative MapReduce model

The data package contains the Model, the State and the Edge entities.
The Model is an interface which should be implemented by the class rep-

resenting the model under analysis. It contains two methods which must be
implemented in order to correctly interpret the user input model and to build
the root state of the reachability graph.

The State is an abstract class which should be extended to instatiate the
state concept in a particular formalism. The user can also add properties to this
entity, other than the standard ones supplied by the framework: an identifier
and a list of incoming edges. The framework largely uses and manipulates these
objects during the computation through a few user-implemented methods. The
createSuccessorsmethod must return a list of new State objects representing
the states directly reachable from the subject of the call. MaRDiGraS calls this
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method during the “map” phase in order to compute all new reachable states
from the unexplored ones. The identifyRelationship method must evaluate
the actual relationship between (abstract) states sharing some specific features.
The possible returned values are: NONE, EQUALS, INCLUDED, INCLUDES. It is
invoked during the “reduce” phase. Depending on the returned value, the frame-
work discards from the state space those states evaluated included or equal to
other ones, modifying all incoming edges of the remaining state, as explained in
Section 2. The getFeaturesmethod must provide some state features so that the
equality of these features must be a necessary condition for equivalence/inclusion
relationships between states.MaRDiGraS uses this method to compute the key
of each intermediate key-value pair. This way the default partitioner assigns all
possibly related states to the same reducer. Whenever the equality of computed
state features is also a sufficient condition for state equivalence, one should more
conveniently use an optimized version of the reducer called SimpleReducer.

The Edge is an abstract class which should be extended to represent the
edge concept. The extending class should implement all the properties that the
user want to attach to edges, MaRDiGraS invokes the addLabel user defined
method to initialize an edge between two states. During this stage, we can change
the default edge type (EE type), and we can attach additional information to the
edge, in order to supply the label concept.

The main components of the core package work together with the user sup-
plied building blocks to implement the Hybrid Iterative MapReduce schema de-
scribed above. The reduce phase can be performed in two different ways: the
standard reducer works by evaluating the user-supplied identifyRelationship

method for each pair of states potentially related. This is a very expensive
task and it must be done whenever the actual relationship between two states
is unknown, because we supplied a necessary condition, but not sufficient for
evaluating the relationship between states. But, if the implementation of the
getFeaturesmethod gives also a sufficient condition for evaluating state equiv-
alence, the framework already knows that all states sharing a key are equal.
In that case SimpleReducer should be used, which performs the reduce phase
much more efficiently: it simply returns one among the input states, redirecting
all incoming edges of the others into that state.

It is worth noting that no particular knowledge on MapReduce and the
Hadoop framework is required in order to use MaRDiGraS. The user only
cares about the functional aspects of the application, leaving to the framework
the management of all other aspects of execution on big clusters. A tool based on
MaRDiGraS will produce a set of binary files containing the representation of
the state transition system computed from the user’s model (given as input using
any reasonable format chosen by the user). The output could be used in turn to
extract the knowledge from the analyzed systems: for example to model-check
it or to verify particular structural properties on the graph.

The MaRDiGraS framework can be found at http://goo.gl/do9aw to-
gether with the API description, installation instructions and a working
application.

http://goo.gl/do9aw
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4 Use Cases

Time Basic PNs. Time-Basic (TB) nets [17] belong to the category of PNs in
which time dependencies are expressed as numerical intervals associated to each
transition, denoting the possible firing instants since enabling. Tokens atomically
produced by a firing are thereby associated to time-stamps in a given domain
(e.g., R+). Transition interval bounds are functions of time-stamps in transition
presets and each transitions may be assigned either a weak or a strong seman-
tics. In order to exploit MaRDiGraS to compute the associated abstract state
transition system (called TRG) [4], we have extended State, Edge, and Model

classes. In particular, TRG states are defined as pairs 〈M,C〉, where M is an as-
sociation between places and a multi-set of symbols denoting time-stamps, C is
a predicate formed by linear inequalities involving such symbols. Labels on edges
include the firing transition and the minimum-maximum firing times. Once cre-
ated all data structure, the application logic has been supplied to the framework
by implementing the abstract methods described above. The createSuccessors
individuates all transition instances enabled in the current TRG state, and for
each of those computes a new reachable state; identifyRelationship figures
out the actual relationship between given states, according to the following suf-
ficient condition for a ⊆ a′: M = M ′ and C ∧ ¬C′ ≡ false. Depending on
the actual computed relationship, the framework modifies the incoming edges’
type (either EE, AA, AE or EA). The getFeatures method just returns the
topological part (M) of a TRG state.

P/T Nets. In order to prove the effectiveness of using MaRDiGraSto improve
legacy tools, we adapted an existing P/T nets tool: PIPE [15], an open source
Java tool (∼82400 lines of code). It supports the design and analysis of P/T nets
with priorities, and their stochastic extension (GSPN). In particular a module
is in charge of computing the reachability graph (without any particular smart
technique such as decision diagrams, use of structural information, partial order
techniques, etc.). For this reason, in such a situation, the memory consump-
tion and the execution time become heavy even during the analysis of relatively
small models. In order to exploit the MaRDiGraS framework to overcome
these troubles, we first simply identified all those parts of PIPE representing
our needed building blocks described in section 3.2. Then we encapsulated these
blocks with proper adapter classes. To adapt the sequential algorithm of PIPE
into a distributed one, we just needed 290 lines of code: a very small num-
ber also if compared with the dimension of the effectively used PIPE modules
(∼6500 lines of code). In this particular implementation, States correspond to
reachable markings, Edges are of the type AA and they carry on information
about firing transitions. The createSuccessors method simply identifies all
reachable states from a given one, by making all enabled transitions fire. The
getFeatures method just returns a compact representation of the actual mark-
ing of the State, and because the equality of the marking is a necessary and
sufficient condition for equality between states, the application can exploits the
SimpleReducer version.
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Well-formed Nets. Well-formed Nets (WN) [9] are a power-retaining version of
Colored Petri nets characterized by a structured syntax that permits the con-
struction of a quotient graph, called Symbolic Reachability Graph (SRG). The
SRG relies on the notion of Symbolic Marking (SM). SMs provide a syntactical
equivalence relation on the set of concrete markings. They are formally expressed
using dynamic subclasses instead of colors, representing parametric partitions of
static subclasses in which WN color classes are in turn partitioned. The SRG
is directly built from a given SM, through a symbolic firing rule. By using the
canonical representation of a SM, the equivalence between SMs boils down to
the syntactical identity. In order to exploit the MapReduce based framework for
the SRG construction we first need a SymbolicMarking extension of State, in
which createSuccessors (according to the symbolic firing rule) simply returns
the list of successor SMs of the current SM, in a non-canonical form. Each SRG
edge is by construction of kind AA. The getFeaturesmethod should return the
canonical representation of the current SM. In such a case the reduce phase is
similar to the P/T nets case, thus we can exploit the SimpleReducer to fold the
incoming lists of equivalent SMs. A possible adaptation of modules of Great-

SPN package [11] (written in C), that natively supports the analysis of WN
models, is currently under investigation.

Table 1. Experiments report

model # machines machine-type # states # reducers threshold time (m)

gas-burner 4 m2.2xlarge 14563 16 200 95

gas-burner 8 m2.2xlarge 14563 32 200 39

shared-memory 2 m2.2xlarge 1.831× 106 2 1000 325

shared-memory 4 m2.2xlarge 1.831× 106 4 1000 163

shared-memory 8 m2.2xlarge 1.831× 106 4 1000 100

shared-memory 16 m2.2xlarge 1.831× 106 4 1000 74

simple-lbs 20 m2.2xlarge 4.060× 108 40 1000 530

5 Experiments

The experiments described in this section are executed using the Amazon Elastic
MapReduce [2] on the AmazonWeb Service cloud infrastructure and are partially
supported by “AWS in Education Grant award” [1].

Gas Burner. The Gas Burner [4] is a benchmark real-time system model spec-
ified with a TB PN. Our experiments show that MaRDiGraS can be conve-
niently used to increase performances with respect to a sequential builder. The
MaRDiGraS based tool, executed on the input model, generates a graph with
14563 nodes (23635 states are generated during computation) and it takes only
39 minutes, over 8 m2.2xlarge machines. Despite the generated graph is quite
small, the execution time is 80% faster than the sequential approach running on
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the same environment (2 hours and 55 minutes). It is worth noting that with this
formalism we choose to implement a getFeature function that returns a neces-
sary but not sufficient condition for the inclusion relationships between states,
thus since we cannot exploit the SimpleReducer, the reduce phase becomes very
expensive. For this reason, we gain substantial benefits by increasing the number
of reducers, as shown in table 1.

Shared Memory. This model is taken from the GreatSPN benchmarks [10,19].
This P/T net models a system composed of 10 processors competing for the
access to a shared memory using a unique shared bus. The PIPE tool fails
after more than 20 hours of computation on a m2.2xlarge due to an out of
memory error (Garbage Collector overhead limit exceeded). In such a situation
the benefits deriving from using the adapted tool, as shown in table 1, are clear.
As we can see, the construction is scalable even for this relatively small state
space.

Simple Load Balancing. This P/T net represents a simple load balancing system
composed of 10 clients, 2 servers, and between these, a load balancer process.
In order to analyze this model, we implemented the building blocks of MaRDi-

GraS from scratch, to overcome some inefficiencies introduced by PIPE.
As shown in table 1, the reachability graph generated is very large: 4.060 ×

108 states and 3.051 × 109 arcs for a total size of 104 GB of data. Thus this
computation goes clearly beyond the capacity of a single machine. Fig. 4 shows
the state space dimension over different MaRDiGraS iterations. As we can
see, it explodes very quickly, but the computation slows at the end because the
number of new states foreach iteration becomes very small. This condition could
be tackled for example by considering different optimizations coming from the
big data community: In particular we are evaluating the possibility of splitting
old and new states into different files, and applying the schimmy pattern [22].
This would allow to highly decrease the time required by the last iterations.

6 Related Work

Several works, in the literature, describe tools and techniques for generating the
state space associated to discrete-event systems in a parallel/distributed fashion.
Among others, we may cite [8,12,13,20,7]. However, most of these works are re-
lated to a specific formalism, and they do not consider new emerging distributed
solutions. Moreover, we considered another important aspect: we wanted to com-
pletely remove the costs of deploying our framework into an end-to-end solution,
for this reason we developed our software on top of the consolidated Hadoop

MapReduce framework. Works presented in [21,16] describe large-scale graph
processing application reformulated in terms of MapReduce programming model,
but unfortunately, this large class of graph algorithms doesn’t fit well with the
state explosion problem in large-scale graph building, which remains rather un-
explored. As a common point, both iterate a number of times, using graph states
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Fig. 4. Reachability graph computation of the simple-lbs model

from the previous iteration as input to the next one, until some stopping criterion
is met. Thus both use an Iterative MapReduce approach [16,3]. But there are
also significant differences: first of all, we have to deal with large graph building,
not with large graph processing. Second, the input of each iteration is different:
in graph processing, it is the internal status of all nodes of the graph; in graph
building, it is a portion of the final graph. As a direct consequence, in the latter
case, the input dimension greatly varies at each iteration making a standard
iterative MapReduce approach ineffective. The input, in graph building, is also
partitioned into two different classes of states: “explored states” and “unexplored
states” and Mappers must act differently depending on the membership class.
Moreover, some key points of graph building algorithms depend on the specific
adopted formalisms, thus they must become user defined parameters.

7 Conclusion and Future Work

In this paper we presented MaRDiGraS: a generic framework which can easily
adapted for tackling the state explosion problem within the computation of the
reachability graph associated to different formalisms. This framework exploits
techniques typically used by the big data community and so far poorly explored
for this kind of issues. Thanks to its very simple programming interface, it pro-
vides a powerful tool for constructing high-performance distributed applications
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without the need to deal with the complex communication and synchroniza-
tion issues required for exploiting a computation distributed on large clusters.
Our experiments report that MaRDiGraS can be used effectively to compute
state spaces sized with different orders of magnitude. We believe that this work
could be a first step towards a synergy between two very different, but related
communities: the “formal methods” community and the “big data” community.
Exposing this issue to scientists with different backgrounds could stimulate the
development of new interesting and more efficient solutions. Concerning future
works, we are now working to develop it as the basic component of a generic
library for distributed model checking. In particular we are currently developing
a software tool which exploits the MaRDiGraS computed graphs by applying
iterative map-reduce algorithms based on fixpoint characterizations of the basic
temporal operators of CTL (Computational Tree Logic) and LTL (Linear Tem-
poral Logic). Moreover, several questions remains open and require further inves-
tigation: for example, could a dynamic programming approach help in choosing
partitions and/or thresholds? How the proposed computational model can be
optimized when the number of new states gets very small? Are there classes of
formalisms for which this approach cannot be used? And how can we adapt it
to these classes?
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Abstract. We introduce and solve a new component-based synthesis
problem that combines the synthesis from libraries of recursive
components introduced by Lustig and Vardi with the modular synthe-
sis introduced by Alur et al. for recursive game graphs. We model the
components of our libraries as game modules of a recursive game graph
with unmapped boxes, and consider as correctness specification a target
set of vertices. To solve this problem, we give an exponential-time fixed-
point algorithm that computes annotations for the vertices of the library
components by exploring them backwards. We also show a matching
lower-bound via a direct reduction from linear-space alternating Tur-
ing machines, thus proving EXPTIME-completeness. Finally, we give a
second algorithm that solves this problem by annotating in a table the
result of many local reachability game queries on each game component.
This algorithm is exponential only in the number of the exits of the
game components, and thus shows that the problem is fixed-parameter
tractable.

1 Introduction

Synthesis is the construction of a system that satisfies a given correctness specifi-
cation. This problem has been studied in different settings, and in particular the
controller synthesis problem has a natural formulation as a two-player game (see
[13,14]). Given a description of the system, where some of the choices depend
upon the input and some represent uncontrollable nondeterminism (which may
depend on the interaction with the external environment), the controller syn-
thesis problem asks to determine a controller that supplies inputs to the system
such that this satisfies a given correctness specification. Synthesizing a controller
corresponds to computing winning strategies in a two-player game.

For pushdown systems modeled as recursive game graphs, where the system is
composed of modules that can call each other in a potentially recursive manner
(the game counterpart of recursive state machines [1]), it naturally arises the
notion of modular strategy [3]. Asking for a modular strategy in a recursive
game graph equals to require that the synthesized controller is formed of a set
of finite state controllers (thus adhering to the modular design of controllers),
one for each of the system modules. In executing such a controller, whenever a
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module is called, the finite state controller for that module re-starts, i.e., it is
oblivious of the previous history in the computation.

Component-based design plays a key role in configurable and scalable de-
velopment of efficient hardware as well as software systems. For example, it is
current practice to design specialized hardware using some base components that
are more complex than universal gates at bit-level, and programming by using
library features and frameworks.

In the modular synthesis for recursive game graphs, the call-return structure is
given and cannot be modified. Therefore, the synthesis process concerns only the
internal structure of each module and the modules cannot be freely composed.
The work presented in this paper goes in the direction of providing new results
for the automatic synthesis from components. In particular, we formulate and
solve a new modular component-based synthesis problem for recursive game
modules that, besides requesting the modularity of the solutions, allows also to
re-configuring the call-return structure and using multiple instances of a same
game module, each instance being controlled in a possibly different manner.

The game modules for our component-based synthesis are taken from a finite
set (library) of game components. Game components differ from game modules
in that the boxes are not mapped to any module (as an empty position in a code
where we could insert a function call). Namely, a game component is a two-player
finite game graphs with two kinds of vertices: standard nodes and boxes. Each
box has call and return points, and each component has distinguished entry and
exit nodes. The edges are from a node or a return to a node or a call within the
same component. Moreover, the nodes and the returns are split among the two
players (pl0 and pl1).

The correctness specification is given as a set of target exits T of a game com-
ponent Cmain . The modular synthesis problem asks to construct (1) a recursive
game graph G by using as game modules copies of the library components and
(2) a modular strategy f for pl0 in G such that: all the maximal plays σ, starting
from the entry of Cmain and that conform to f , visit a vertex in T . We solve
this problem and address its computational complexity.

Our first contribution is a fixed-point algorithmA1 that decides in exponential
time the above modular synthesis problem. This algorithm iteratively computes
a set Φ of tuples of the form (u,E, {μb}b∈B) where u is a vertex of a game
component C, E is a set of C exits, B is the set of C boxes and for each box
b ∈ B, μb is either a set of exits of another component Cb or undefined. Each
such tuple summarizes for vertex u a reachable local target E (via a modular
strategy of pl0) and a set of assumptions {μb}b∈B that are used to get across the
boxes in order to reach the local target. We start from the tuples of the target
exits T and then propagate the search backwards in the game components.
Internally to each component, the search proceeds as in the standard attractor
set construction [12] and it is propagated through calls to other components
from the returns to the exits and then back from the entries to the calls. In this,
tuples that have incompatible assumptions or refer to a different local target are
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treated as belonging to different searches and thus are not used together in the
update rules.

Our second contribution is to show a matching lower bound by a reduction
from linear-space alternating Turing machines. In the reduction, we use only
four game components and O(n) exits, where n is the number of cells used in
the configurations of the Turing machine.

Finally, we delve deeper in the computational complexity of this problem, and
give a second decision algorithm A2 for it. The main idea here is to solve many
reachability game queries “locally” to each game component and maintain a table
with the obtained results to avoid recomputing. Each table entry corresponds
to a game component and a set of its exits (used as targets in the query), and
for the successful queries, contains a link to each table entry that has been used
to reach the target (we look up into the table to propagate the search across
the boxes). We observe that A2 takes time exponential only in the number of
exits, while A1 takes time exponential also in the number of boxes. This is due
mainly to the fact that A1 may compute and store exponentially many different
ways of assigning the boxes to modules, in contrast, A2 computes and stores
just one of them. Therefore, since alternating reachability in finite game graphs
is already PTIME-hard, by algorithm A2 we get that the considered problem is
PTIME-complete when the number of exits is fixed.

Related Work. The synthesis problem addressed in this paper combines the syn-
thesis from libraries of recursive components [11] with the synthesis of modular
strategies for recursive game graphs [3]. In fact, if the game components of the
considered library do not contain pl1 vertices, the problem reduces to a synthesis
problem from recursive component libraries. If we instead constrain the solution
to use at most one copy for each game component, we can encode our synthesis
problem as a synthesis of modular strategies for recursive game graphs.

We recall that in [11] the components are modeled with transducers with call-
return structures, and the correctness specification is given as a temporal logic
formula over nested words. The same synthesis problem with LTL specifications
and components modeled as standard finite-state transducers is addressed in [10].
In [4], this problem is formulated for synthesizing hierarchical systems bottom-
up with respect to a different μ-calculus specification for each component in the
hierarchy. All these synthesis problem turn out to be 2EXPTIME-complete. The
synthesis from libraries of components with simple specifications has been also
implemented in tools (see [8] and references therein).

Modular synthesis of recursive game graphs with several classes of ω-regular
specifications is solved in [2] and is shown to be EXPTIME-complete already
with finite automata specifications. The computational complexity of this prob-
lem turns out to be NP-complete for reachability specifications [3]. In [6], the
modular synthesis of recursive game graphs is shown to be 2EXPTIME-complete
with respect to visibly pushdown specifications. A solution to CaRet games that
computes winning strategies that are modular for the recursive game graph ex-
tended with set of subformulas of the specification formula is given in [5]. The
notion of modular strategy is also of independent interest and has recently found
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application in the automatic transformation of programs for ensuring security
policies in privilege-aware operating systems [7].

2 A Modular Synthesis Problem

In this section, we define our modular synthesis problem. For this, we introduce
first some preliminary notions and recall known ones.

For n ∈ N, with [n] we denote the set of naturals i s.t. 1 ≤ i ≤ n.

Library of (game) Components. For h, k ∈ N, a (h, k)-component is a finite graph
with two kinds of vertices, the standard nodes and the boxes, and with h entry
nodes and k exit nodes. Each box has h call points and k return points, and the
edges take from a node/return to a node/call in the component.

Formally, for a box b, we denote with (i, b) the i-th call of b for i ∈ [h],
and with (b, i) the i-th return of b for i ∈ [k]. A (h, k)-component is a tuple
(N,B,En ,Ex , δ) where N is a finite set of nodes, B is a finite set of boxes, En ⊆
N is the set of entries, Ex ⊆ N is the set of exits, and δ : N ∪Retns → 2N∪Calls

where Retns = {(b, i) | b ∈ B, i ∈ [k]} and Calls = {(i, b) | b ∈ B, i ∈ [h]}. The
calls, returns and nodes of a component form its set of vertices. In the following,
when we do not need to specify h and k, we simply write component.

A game component is a component whose nodes and returns are split into two
sets P 0 and P 1, where P 0 is the set of player 0 (pl0) positions and P

1 is the set
of player 1 (pl1) positions. We denote it as a tuple (N,B,En ,Ex , δ, P 0, P 1).

For h, k > 0, a library of (game) components is a finite set Lib = {Ci}i∈[n]

where each Ci is a (game) (h, k)-component.
To ease the presentation we make the following standard assumptions:

– there is only one entry node for every (game) component and thus just one
call for each box, i.e., we refer to (game) (1, k)-components;

– in each (game) component there are no transitions taking to its entry and
no transitions leaving from its exits, i.e., the entries are sources and the exits
are sinks in the graph representation of the component;

– there is no transition from a return to a call, i.e., two boxes are not directly
connected by a single transition.

Instances from a Library. Intuitively, an instance of a (game) component C is a
copy A of C where each box is mapped to an instance of a (game) component
(possibly A itself). Depending on whether we consider a library of components
or of game components, the instances define a recursive state machine [1] or a
recursive game graph [3].

Fix a library Lib = {C1, . . . , Cn} of game components.
A recursive game graph from Lib is G = (M,min, {Sm}m∈M ) where M is a

finite set of module names, min ∈ M is the name of the initial module and
for each m ∈ M , Sm is a game module. A game module Sm is defined as
(Nm, Bm, Ym, {em},Exm, δm, P

0
m, P

1
m) where:
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– Ym : Bm → (M \ {min}) is a labeling function that maps every box to a
game module;

– (Nm, Bm, {em},Exm, δm, P
0
m, P

1
m) is equal to a component C of Lib up to a

renaming of nodes and boxes such that calls and returns of a box b are 1-to-1
mapped to the entries and the exits of MYm(b), that is, denoting ExYm(b) =
{x1, . . . , xk}: the call of b is renamed to (eYm(b), b) and each return (b, i) is
renamed to (b, xi).

The calls, returns and vertices of Sm are denoted respectively Callsm, Retnsm
and Vm. We also assume the following notation: V =

⋃
m Vm (set of all vertices);

B =
⋃

mBm (set of all boxes); Calls =
⋃

m Callsm (set of all calls); Retns =⋃
m Retnsm (set of all returns); and P i =

⋃
m P i

m for i = 0, 1 (set of all positions
of pl i).

The definition of a recursive state machine from Lib can be obtained from
that of recursive game graph by ignoring the splitting among pl0 and pl1 nodes.

A (global) state of G is composed of a call stack and a vertex. Formally,
the states are of the form (γ, u) ∈ B∗ × V where γ = b1 . . . bh, b1 ∈ Bmin ,
bi+1 ∈ BY (bi) for i ∈ [h − 1] and u ∈ VY (bh). In the following, for a state
s = (γ, u), we denote with V (s) its vertex, that is V (s) = u.

A play of G is a (possibly finite) sequence of states s0s1s2 . . . such that s0 =
(ε, emin) and for i ∈ N, denoting si = (αi, ui), one of the following holds:
− Internal move: ui ∈ (Nm ∪Retnsm) \Exm, ui+1 ∈ δm(ui) and αi = αi+1;
− Call to a module: ui ∈ Callsm, ui = (b, em′), ui+1 = em′ and αi+1 = αi.b;
− Return from a call: ui ∈ Exm, αi = αi+1.b, and ui+1 = (b, ui).

Modular Strategies. A strategy of a player pl is a function f that associates a
legal move to every play ending in a node controlled by pl . A modular strategy
[3] for G consists of a set of local strategies, that are used together as a global
strategy for a player. A local strategy for a game module S can only refer to the
local memory of S, i.e. the sequence of S vertices that are visited in the play in
the current invocation of S.

Formally, fix j ∈ {0, 1}. A modular strategy f of pl j is a set of functions

{fm}m∈M , one for each game module, where for every m, fm : V ∗
m.P

j
m → Vm

such that fm(σ.u) ∈ δm(u) for every σ ∈ V ∗
m, u ∈ P j

m.
Fix a play σ = s0s1...sn where si = (γi, ui) for any i. Denote with σi =

s0s1...si, i.e., the prefix of σ up to index i. With ctr(σi) we denote m ∈M such
that ui ∈ Vm, that is the name of the game module where the control is after σi.
The local history at σi, denoted λ(σi), is the maximal sequence of Sm vertices uj ,
j ≤ i, starting with the most recent occurrence of entry em where m = ctr(σi).

A play σ conforms to a modular strategy f = {fm}m∈M of pl j if for every

i <| σ |, denoting ctr(σi) = m, ui ∈ P j
m implies that ui+1 = fm(λ(σi)).

Modular Synthesis from Libraries of Game Components. A modular game over a
library is (Lib, Cmain , T ) where Lib is a library of game components, Cmain ∈ Lib
and T is a set of exits of Cmain .
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Modular Game
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d4:A1

Fig. 1. An example of modular synthesis

Given an instance (Lib, Cmain , T ) of a modular game over a library, the mod-
ular synthesis problem is the problem of determining whether: for some recursive
game graph G from Lib whose initial module is an instance of Cmain , there exists
a modular strategy f for pl0 in G such that all the maximal plays that conform
to f reach an exit of the initial module of G that corresponds to an exit in T .

Such a strategy f for pl0 is called a winning modular strategy.

Example. We illustrate the definitions with an example. In the first column of
Fig. 1, we give (Lib, C0, {x1}), an instance of a modular game over a library of
game components. Each game component has two exits, and Lib is composed of
two game components C0 and C1. In the figure, we denote the nodes of pl0 with
circles and the nodes of pl1 with squares. Rounded squares are used to denote
the boxes. The target is marked with a double circle. C0 has one entry e0, two
exits x1 and x2, and two boxes b1 and b2. C1 has one entry e1, two exits x3 and
x4, and one box b3.

In the second column of the figure, we show one of the possible recursive game
graphs that can be obtained from Lib and whose initial module C0

0 is an instance
of C0. Note that we have marked as target the vertex of C0

0 that corresponds to
(i.e., is a copy of) x1. The other modules C1

1 and C2
1 are instances of C1. Note

that each box now is mapped to a game module, for example b01 is mapped to
C2

1 . Also, the box b13 of C1
1 is mapped to C2

1 and the box b23 of C2
1 is mapped to

C1
1 thus forming a cycle in the chain of recursive calls.
Consider a modular strategy for pl0, where the local strategy of C0

0 selects
the call from u2, the local strategy of C1

1 selects the call from its entry and
the local strategy for C2

1 selects the upper exit from its entry. This strategy is
winning and modular. In the third column of the figure, we show a recursive
state machine, obtained from the considered recursive game graph by resolving
the moves of pl0 according to this modular strategy. To simplify the figure, we
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have deleted all the unreachable transitions. Clearly, each run of this machine
reaches the target. Also, note that in the considered game it is not possible to
win if we do not instantiate at least two instances of C1.

3 Solving Our Modular Synthesis Problem

In this section, we describe an exponential-time fixed-point algorithm to solve
the modular synthesis problem.

We fix a library of game components Lib = {Cmain , C1, . . . , Cn} and a target
set T of Cmain exits.

Intuitively, our algorithm iteratively computes a set Φ of tuples of the form
(u,E, {μb}b∈B) where u is a vertex of a game component C, E is a set of C exits,
B is the set of C boxes and for each box b ∈ B, μb is either a set of exits of a
game component or undefined (we use ⊥ to denote this). The intended meaning
of such tuples is that: there is a local strategy f of pl0 in C such that starting
from u, each maximal play conforming to f reaches an exit within E, under the
assumption that: for each box b ∈ B, if μb is defined, then from the call of b the
play continues from one of the returns of b corresponding to a x ∈ μb (if μb is
undefined means that no play conforming to f visits b starting from u). Thus,
each tuple (u,E, {μb}b∈B) summarizes for vertex u a reachable local target E
and a set of assumptions {μb}b∈B that are used to get across the boxes.

For computing Φ, we use the concept of compatibility of the assumptions.
Namely, we say that two assumptions μ and μ′ are compatible if either μ = μ′,
or μ′ = ⊥, or μ = ⊥ (i.e., there is at most one assumption that has been
done). Moreover, we say that the assumptions μ1, . . . , μm are passed to μ if
μ =

⋃
i∈[m] μi (we assume that ⊥ ∪X = X ∪⊥ = X holds for each set X).

The set Φ is initialized with all the tuples of the form (u, T , {⊥}b∈Bmain ) where
u ∈ T and Bmain is the set of boxes of Cmain . Then, Φ is updated by exploring
the components backwards according to the game semantics, and in particular:
within the components, tuples are propagated backwards as in an attractor set
construction, by preserving the local target and passing to a node the assump-
tions of its successors (provided that multiple assumptions on the same box
are are passed they are pairwise compatible); the exploration of a component
is started from the exits with no assumptions on the boxes, whenever the cor-
responding returns of a box b have been discovered with no assumptions on b;
the visit of a component is resumed at the call of a box b, whenever (1) there is
an entry of a component that has been discovered with local target X and (2)
there is a set of b returns corresponding to the exits X with no assumptions on
b (thus, that can be responsible for discovering the exits in X as in the previous
case) and with compatible assumptions on the remaining boxes; if this is the
case, then the call is discovered with the assumption X on box b and passing the
local target and the assumptions on the other boxes as for the above returns.

Below, we denote with bx the return of a box b corresponding to an exit x
(recall that all game components of a library have the same number of exits, and
so do the boxes). The update rules are formally stated as follows:
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Update 1: For a pl0 vertex v, we add (v, E, {μb}b∈B) provided that there is
a transition from v to u and (u,E, {μb}b∈B) ∈ Φ (the local target and the
assumptions of a v successor are passed on to a pl0 vertex v).

Update 2. For a pl1 vertex v, denote u1, . . . , um all the vertices s.t. there is a
transition from v to ui, i ∈ [m], then we add (v, E, {μb}b∈B) to Φ provided
that for each i, j ∈ [m] and b ∈ B: (1) there is a (ui, Ei, {μi

b}b∈B) ∈ Φ, (2)

Ei = Ej , (3) μ
i
b and μj

b are compatible, and (4) μb =
⋃

i∈[m] μ
i
b (all the v

successors must be discovered under the same target and with compatible
assumptions; target and assumptions are passed on to a pl1 vertex v).

Update 3. For an exit u, we add a tuple (u,E, {⊥}b∈B′) to Φ provided that
u ∈ E and for a box b′ it holds that there are tuples (b′x, Ex, {μx

b }b∈B) ∈ Φ,
one for each x ∈ E, such that for all x, y ∈ E and b ∈ B, (1) μx

b′ = ⊥, (2)
Ex = Ey, and (3) μx

b and μy
b are compatible (the discovery of the exits follows

the discovery of the corresponding returns under compatible assumptions
and the same local target).

Update 4. For a call u of a box b′, we add a tuple (u,Eu, {μu
b }b∈B) to Φ

provided that (i) there is an entry e s.t. (e, Ee, {μe
b}b∈B′) ∈ Φ, (ii) for each

return b′x, x ∈ Ee, there is a tuple (bx, E, {μx
b }b∈B) ∈ Φ s.t. all these tuples

satisfy (1), (2) and (3) of Update 3, and moreover, (iii) Eu = E, μu
b =⋃

x∈Ee
μx
b for b �= b′, and μu

b′ = Ee (the discovery of a call u of box b′ follows
the discovery of an entry e from exits Ee that in turn have been discovered
by matching returns b′x, x ∈ E; thus on u we propagate the local target
and the assumptions on the boxes b �= b′ of the returns b′x and make an
assumption Ee on box b′).

We compute Φ as the fixed-point of the recursive definition given by the above
rules and outputs “YES” iff (e, T , {μb}b∈Bmain ) ∈ Φ for the entry e of Cmain .

Observe that, the total number of tuples of the form (u,E, {μb}b∈B) is bounded
by |Lib| 2O(kβ) where k is the number of exits of each game component in Lib and
β is the maximum over the number of boxes of each game component. Therefore,
the algorithm always terminates and takes at most time exponential in k and β,
and linear in the size of Lib.

Soundness of the algorithm is a consequence of the fact that each visit of a
game component is done according to the standard attractor set construction,
and repeated explorations of each component are kept separate by allowing to
progress backwards in the graph only with the same local target and compatible
assumptions on the boxes. By not allowing to change the box assumptions (when
defined), we ensure that we cannot cheat by using different assumptions in re-
peated visits of a box within the same exploration. The computed strategy is
clearly modular since we compute it locally to each graph component. Note that
we can end up computing more than a local strategy for each graph component,
but this does not break the modularity of the solution since this happens when in
the computed solution we use different instances of the component. Also, observe
that for each game component we construct at most a local strategy for each
possible subset of its exits, thus we bound the search of a solution to modular
strategies of this kind.
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To prove completeness, we first observe that using standard arguments one
can show that:

Lemma 1. If there is a modular winning strategy for an instance of the modular
synthesis problem over a library Lib, then there is a winning modular strategy
f for a recursive game graph G from Lib such that: for each two instances S
and S′ of a same game component in Lib, the sets of exits visited along any play
conforming to f in S and S′ differ.

Observe that by the above lemma, we can restrict the search for a solution
within the modular strategies of the instances of a Lib that have at most 2k copies
of each game component, where k is the number of exits for the components.
Therefore, combining this with the results from [3] we get a simple argument to
show membership to NEXPTIME of the considered problem.

The next step in the completeness argument is to show that if there is a
winning modular strategy f as for Lemma 1, then our algorithm outputs YES.
Denoting with G the recursive game graph from Lib for which f is winning,
this can be shown by proving by induction on the structure of G that: if on a
game module S of G that is an instance of C ∈ Lib, f forces to visit a set of
exits corresponding to the exits X of C, then the algorithm adds to Φ the tuples
(x,X, {⊥}b∈B) for each x ∈ X and eventually discovers the entry of C with local
target X . We omit the proof of this here.

Therefore, we get that the algorithm is a solution of the modular synthesis
problem from game component libraries, and the following theorem holds.

Theorem 1. The modular synthesis problem from libraries of game components
with k exits and at most β boxes can be solved in time linear in the size of Lib
and exponential in k and β.

4 Computational Complexity Analysis

Lower-bound. We reduce the membership problem for linear-space alternating
Turing machines to the modular synthesis problem for libraries of game compo-
nents, thus showing EXPTIME-hardness for this problem.

Consider a linear-space alternating Turing machine A and an input word
w = a1 . . . an. Without loss of generality, we assume that the transition function
δ of A is the union of two functions δ1 and δ2 where δi : Q×Σ → {L,R}×Q for
i ∈ [2], and Q is the set of control locations, Σ is the tape alphabet, and L/R
cause to move the tape head to left/right. A configuration of A is represented as
b1 . . . (q, bi) . . . bn where bj is the symbol at cell j of the input tape for j ∈ [n],
q is the control state and the tape head is on cell i. The control states are
partitioned into states where the ∃-player can move, and states where the ∀-
player can move. A computation ofM is a strategy of the ∃-player, and an input
word w is accepted iff there exists a computation ρ that reaches a configuration
with a final state on all the plays conforming to ρ.

Denotingh = n |Σ| (|Q|+1), fix two setsX = {x1, . . . , xh} andY = {y1, . . . , yh}
such that each xi and yi correspond exactly to a symbol and a position in a config-
uration ofA (i.e., for each symbol inΣ∪Q×Σ we have exactly n variables fromX
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Fig. 2. Graphical representation of the game components Cmain , C∀ and Cfin

andn from Y , one for each position on the tape).We can encode each configuration
σ1 . . . σn ofA by setting to true a variable xj (resp. yj) iff it corresponds to a σi for
i ∈ [n] (that is, to a configuration symbol and its position in the configuration). It
is well-known that for each δi, we can construct a Boolean circuit (using only the
logical gates AND and OR) with inputs x̄ = x1 . . . xh and outputs ȳ = y1, . . . , yh,
such that if x̄ is an encoding of a configuration, then ȳ is the next configuration
after the application of the only possible transition of δi.

From each such circuit we can construct a game graph by replacing each AND
gate with a node of pl1 and each OR gate with a node of pl0. We denote with
D1 and D2 the game graphs corresponding to the above circuits for δ1 and δ2,
respectively. The encoding of the bits is done by reachability, that is, true at an
input xi corresponds to connecting it to a vertex that can lead to the target,
and false otherwise. Since the circuits compute a next configuration, from each
output wire yi that evaluates to true we will be able to get to the target by a
strategy that resolves the choices on the pl0 nodes (and thus the OR gates), and
this will not be possible for those yi that evaluates to false.

We construct a library Lib containing exactly the game components Cmain ,
C∀, C∃, and Cfin (see Fig. 2). Each component has exactly h exits, each one
corresponding to a variable xi for i ∈ [h]. In Cmain , we arbitrarily select an
exit as the only vertex in the target T , and link to it all the returns of the box
that encode the initial configuration (we can assume that A has only one initial
state). In C∀, all the exits are wired as inputs to both D1 and D2 except for
those that correspond to states of the ∃-player. We add a pl0 node that has no
out-going edges and is wired as input to D1 and D2 for the remaining inputs.
The outputs of D1 and D2 are wired respectively to the boxes b∀1 and b∀2 , and
the calls of these boxes are connected to the entry, that is a pl1 node. C∃ is
as C∀ except that the entry is a pl0 node and the exits that are not connected
correspond to ∀-player states. The component Cfin has just the entry and the
exits. The entry is a pl0 node and is connected to all the exits that correspond
to a final state.

It is simple to verify that if, starting from an instance of Cmain , we map
the boxes such that to reproduce an accepting computation of A, then we get
a recursive game graph that admits a modular winning strategy of pl0. Vice-
versa, suppose that there is a modular winning strategy of pl0 in the synthesis
problem (Lib, Cmain , T ). First, observe that since the returns from which we
reach the target encode a legal initial configuration, each game module to which
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we map the box b will have the corresponding exits with the same property.
Moreover, in order to reach backwards the entries of all the used instances of
Cmain , C∀, and C∃, at some point we need to use a copy of Cfin . Now, if the
initial state is a ∀-player state and we map b to an instance of C∃, since the exit
encoding the head position and the state will not be wired to D1 and D2, in all
the modules below in the hierarchy of calls, none of such exits will be connected
to the target. Thus, also the entry of each copy of Cfin in this hierarchy would
not be connected to the target, and so all the entries up to the entry of the
copy of Cmain , thus contradicting the hypothesis. A contradiction can be shown
also in the dual case. Thus, at any point we must have mapped each box to an
instance of either C∃ or C∀ depending on whether the next move is of the ∃-player
or the ∀-player. Since, the graphs D1 and D2 ensure the correct propagations
of the reachability according to the computed configurations, we can correctly
reconstruct a computation ρ of A from the modular strategy. Moreover, since a
winning modular strategy ensures that each maximal sequence of module calls
ends with a call to an instance of Cfin , then each play of ρ ends in a final
configuration and thus ρ is accepting, that concludes the proof.

Lemma 2. There is a polynomial-time reduction from the membership problem
for linear-space alternating Turing machines to the modular synthesis problem
for libraries of game components. Moreover, the resulting library has four game
components each one with at most two boxes and a number of exits which is
linear in the size of the input word.

Complexity and fixed-parameter tractability. The algorithm from the previous
section, say A1, shows membership to EXPTIME for the modular synthesis prob-
lem. Therefore, by Lemma 2, we get:

Theorem 2. The modular reachability problem is EXPTIME-complete.

Note that A1 takes time exponential in both the number of boxes β and the
number of exits k. We sketch a different algorithm that shows that this problem
is indeed in PTIME when the number of exits for each game component is fixed.

The main idea is to solve many reachability game queries on standard finite
game graphs, where each query asks to determine for a game component C and
a subset of its exits E: if there exists a modular strategy f of pl0 such that all
the maximal plays, which conform to f and start from the entry of C, reach one
of the exits from E. To avoid recomputing, the results of such queries are stored
in a table T , and the algorithm halts when no more queries can be answered
positively.

To solve the query for a component C and a set of its exits E, we extend the
standard attractor set construction. Namely, we accumulate the winning set for
pl0 as usual for nodes and returns. To add the call of a box b, we look in the
table for a positively answered query whose target set correspond to returns of b
that are already in the winning set. If the entry of C is added to the winning set,
then we update the T entry for E and C to YES, and store the links to the table
entries that have been used to add the calls (observe that we just need to store
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exactly a link for each box that is traversed to win in the game query in order
to synthesize the recursive game graph and the winning modular strategy).

With similar arguments as those used in Section 3, we can show that pl0 has
a winning modular strategy in the input modular synthesis problem if and only
if the T entry for the target set T is set to YES. Since the size of the table is
exponential in k and linear in β, and that solving the “local” reachability games
is linear in the size of the game component and in the size of the table, we get
that the whole algorithm takes time exponential in k and linear in β (and the
size of the library). Since already alternating reachability is PTIME-hard, we get:

Theorem 3. The modular reachability problem for a fixed number of exits is
PTIME-complete.

We observe thatA1 computes all the solutions of the kind as from Lemma 1, by
trying all the possible ways of assigning each box with all the game components.
This causes the exponential in the number of boxes, but also gives a quite simple
and direct way to show completeness. Moreover, the fixed-point updates of A1

can be implemented quite efficiently and only the sets of exits from which we
can reach the target (in a series of calls) are used in the computation.

Algorithm A2 arbitrarily computes, for each game component and each set
of exits, only one assignment of each box with a game module. Moreover, it
computes (several times) all the game queries, even those with exits that cannot
reach the global target T .

Both algorithms can be used to synthesize the winning modular strategy as a
recursive state machine. Also, we can modify them to compute optimal winning
modular strategies with respect to some criteria, such as minimizing the number
of modules, the depth of the call stack or the number of used exits.

5 Conclusion

In this paper, we have introduced a formulation of the synthesis problem that
generalizes both the modular synthesis of recursive game graphs and the syn-
thesis from component libraries. We have solved this problem for reachability
specifications, and in particular, we have shown that it is EXPTIME-complete
and is fixed-parameter tractable when the number of exits is fixed.

Besides the optimization problems mentioned at the end of previous section,
we see several other future directions that could be investigated.

In our formulation, the number of instances of each component that are al-
lowed in a solution is unbounded. It is realistic to consider some limitations, in
particular, we plan to investigate variations of the considered synthesis prob-
lem where in each solution there is at most one game module that instantiates
each component, or where for all the game modules that instantiate a same
component we require the same local function.

We have considered only reachability specifications. It is natural to investigate
more complex specifications such as regular or pushdown specifications expressed
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as temporal logic formulas or automata models. Moreover, to synthesize more
succinct solutions, it could be interesting to investigate the effect of a hierarchical
labeling such as in [9].
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Abstract. We study parameterized verification problems for networks
of interacting register automata. We consider safety properties expressed
in terms of reachability, from arbitrarily large initial configurations, of a
configuration exposing some given control states and patterns.

1 Introduction

We introduce a formal model of data-sensitive distributed protocols, called Broad-
cast Networks of Register Automata (BNRA), aimed at modelling both the local
knowledge of distributed nodes aswell as their interaction via broadcast communi-
cation. A network is modelled via a finite graph where each node runs an instance
of a common protocol. A protocol is specified via a register automaton, an automa-
ton equipped with a finite set of registers [20]. Each register assumes values taken
from the set of natural numbers. Node interaction is specified via broadcast com-
munication, well-suited to model scenarios in which individual nodes have par-
tial information about the network topology. Messages are allowed to carry data,
that can be assigned to or tested against the local registers of receivers. Dynamic
updates of the current configuration are modelled via non-deterministic recon-
figurations of the underlying connectivity graph. A node may disconnect from its
neighbours and connect to other ones at any time of the execution. This behaviour
models in a natural way unexpected power-off and dynamic movement of devices.
The resulting model can be used to reason about core parts of client-server pro-
tocols as well as of routing protocols, e.g. route maintainance as in Link Reversal
Routing.

In the paper we focus our attention on the decidability and complexity of
parameterized verificatiom, i.e., the problem of finding a sufficient number of
nodes and an initial topology that may lead to a configuration exposing a bad
pattern (e.g. a loop in the information contained in the routing tables). The con-
sidered class of verification problems is parametric in four dimensions, namely,
the number of nodes, the topology of the initial configuration to be discovered,
and the amount of data contained in local registers and exchanged messages.

Related Works. Our formal model of topology-sensitive broadcast communica-
tion with data naturally extends those obtained in [11,12,10]. Formal models
of broadcast networks date back to CBS [22], extended in several ways (time,
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asynchrony, etc) in successive works. Automated verification methods have been
tested on protocols for Ad Hoc Networks with a fixed number of processes in
[16,25,15]. Verification of broadcast protocols in fully connected networks in
which nodes and messages range over a finite set of states has been considered,
e.g., in [13,18,5]. Via an adequate counting abstraction, the problem can be re-
formulated in terms of Petri nets with transfer arcs [14,7]. The non-elementary
complexity of coverability in this class of nets is proved in [24]. Symbolic back-
ward exploration procedures for network protocols specified in graph rewriting
have been presented in [19] (termination guaranteed for ring topologies) and
[23] (approximations without termination guarantees). Decidability issues for
broadcast communication in fully connected networks have been studied in [14].
Verification of unreliable communicating FIFO systems has been studied in [3].
Coverability problems for broadcast communication in fully connected networks
with data is investigated in [2,21,8].

2 Broadcast Networks of Register Automata

2.1 Syntax and Semantics

We model a distributed network using a graph in which the behaviour of each
node is described via an automaton with operations over a finite set of registers.
A node can transmit part of its current data to adjacent nodes using broadcast
messages. A message carries both a type and a finite tuple of data. Receivers can
test/store/ignore the data contained inside a message. We assume that broad-
casts and receptions are executed without delays (i.e. we simultaneously update
the state of sender and receiver nodes).

Actions. Let us first describe the set of actions. We use r ≥ 0 to denote the
number of registers in each node. We use f ≥ 0 to denote the number of data
fields available in each message and we consider a finite alphabet Σ of message
types. We often use [i..j] to denote the set {k ∈ N | i ≤ k ≤ j}. We also assume
that if r = 0 then f = 0 (no registers, no information to transmit). The set of
broadcast actions parameterized by r, f and Σ is defined follows:

Sendr,f
Σ = {b(m, p1, . . . , pf ) | m ∈ Σ and pi ∈ [1..r] for i ∈ [1..f ]}

The action b(a, p1, . . . , pf ) corresponds to a broadcast message of type a whose
i-th field contains the value of the register pi of the sending node. For instance,
for r = 2 and f = 4, b(req, 1, 1, 2, 1) corresponds to a message of type req in
which the current value of the register 1 of the sender is copied in the first two
fields and in the last field, and the current value of register 2 of the sender is
copied into the third field.

A receiver node can then either compare the value of a message field against
the current value of a register, store the value of a message field in a register, or
simply ignore a message field. Reception actions parameterized by r, f and Σ
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are defined as follows:

Recr,fΣ =

{
r(m,α1, . . . , αf )

∣∣∣∣m ∈ Σ, αi ∈ Actr for i ∈ [1..f ]
and if αi = αk = ↓j then i = k

}

where the set of field actions Actr is: {?k, ?k, ↓k, ∗ | k ∈ [1..r]}. When used in a
given position of a reception action, ?k [resp. ?k] tests whether the content of the
k-th register is equal [resp. different] to the corresponding value of the message,
↓k is used to store the corresponding value of the message into the k-th register,
and ∗ is used to denote that the corresponding value is ignored.

As an example, for r = 2 and f = 4, r(req, ?2, ?1, ∗, ↓1) specifies the reception
of a message of type req in which the first field is tested for inequality against
the current value of the second register, the second field is tested for equality
against the first register, the third field is ignored, and the fourth field is assigned
to the first register. We now provide the definition of a protocol that models the
behaviour of an individual node.

Definition 1. A (r, f)-protocol over Σ is a tuple P = 〈Q,R, q0〉 where: Q is
a finite set of control states, q0 ∈ Q is an initial control state, and R ⊆ Q ×
(Sendr,f

Σ ∪ Recr,fΣ )×Q is a set of broadcasting and reception rules.

In the rest of the paper we call a (r, f)-protocol over Σ simply a (r, f)-protocol
when the alphabet is clear from the context.

A configuration is a graph in which nodes represent the current state of the
corresponding protocol instance running on it (control state and current value of
registers) and edges denote communication links. In this paper we assume that
the value of registers are naturals. Therefore, a valuation of registers is defined
as a map from register positions to naturals. More formally, a configuration γ
of a (r, f)-protocol P = 〈Q,R, q0〉 is an undirected graph 〈V,E, L〉 such that
V is a finite set of nodes, E ⊆ V × V \ {(v, v) | v ∈ V } is a set of edges, and
L : V → Q× Nr is a labelling function (current valuation of registers).

Before we give the semantics of our model, we introduce some auxiliary no-
tations. Let γ = 〈V,E, L〉 be a configuration. For a node v ∈ V , we denote
by LQ(v) and LM (v) the first and second projection of L(v). For u, v ∈ V , we
write u ∼γ v – or simply u ∼ v when γ is clear from the context – the fact
that (u, v) ∈ E, i.e. the two nodes are neighbours. Finally, the configuration γ
is said to be initial if LQ(v) = q0 for all v ∈ V and, for all u, v ∈ V and all
i, j ∈ [1..r], if u �= v or i �= j then LM (v)[i] �= LM (v)[j]. In an initial configu-
ration, all the registers of the nodes contain different values. We write Γ [resp.

Γ0] for the set of all [resp. initial] configurations, and Γ fc [resp. Γ fc
0 ] for the set

of configurations [resp. initial configurations] 〈V,E, L〉 that are fully connected,
i.e. such that E = V × V \ {(v, v) | v ∈ V }. Note that for a given (r, f)-protocol

the sets Γ , Γ0, Γ
fc , and Γ fc

0 are infinite since we do not impose any restriction
on the number of processes present in the graph.

Furthermore, from two nodes u and v of a configuration γ = 〈V,E, L〉 and a
broadcast action of the form b(m, p1, . . . , pf), letR(v, u,b(m, p1, . . . , pf)) ⊆ Q×
Nr be the set of the possible labels that can take u on reception of the correspond-
ing message sent by v, i.e. we have (q′r,M) ∈ R(v, u,b(m, p1, . . . , pf )) if and only
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if there exists a receive action of the form 〈LQ(u), r(m,α1, . . . , αf ), q
′
r〉 ∈ R ver-

ifying the two following conditions:

(1) For all i ∈ [1..f ], if there exists j ∈ [1..r] s.t. αi = ?j [resp. αi = ?j], then
LM (u)[j] = LM (v)[pi] [resp. LM (u)[j] �= LM (v)[pi]];

(2) For all j ∈ [1..r], if there exists i ∈ [1..f ] such that αi = ↓j then M [j] =
LM (v)[pi] otherwise M [j] = LM (u)[j].

Given a (r, f)-protocol P = 〈Q,R, q0〉, we define a Broadcast Network of
Register Automata (BNRA) as the transition system BNRA(P) = 〈Γ,⇒, Γ0〉
where Γ [resp. Γ0] is the set of all [resp. initial] configurations and ⇒⊆ Γ ×Γ is
the transition relation. Specifically, for γ = 〈V,E, L〉 and γ′ = 〈V ′, E′, L′〉 ∈ Γ ,
we have γ ⇒ γ′ if and only if V = V ′ and one of the following conditions holds:

(Broadcast) E = E′ and there exist v ∈ V and 〈q,b(m, p1, . . . , pf ), q′〉 ∈ R
such that LQ(v) = q, L′

Q(v) = q′ and for all u ∈ V \ {v}:
– if u ∼ v then L′(u) ∈ R(v, u,b(m, p1, . . . , pf)), or, R(v, u,

b(m, p1, . . . , pf )) = ∅ and L(u) = L′(u);
– if u � v, then L(u) = L′(u).

(Reconfiguration) L = L′ (no constraint on new edges E′).

Reconfiguration steps model dynamic changes of the connection topology, e.g.,
loss of links and messages or node movement. An internal transition τ can be
defined using a broadcast of a special message such that there are no reception
rules associated to it. A register j ∈ [1..r] is said to be read-only if and only
if there is no 〈q, r(m,α1, . . . , αf ), q

′〉 ∈ R and i ∈ [1..f ] such that αi = ↓j.
Read-only registers can be used as identifiers of the associated nodes.

Given BNRA(P) = 〈Γ,⇒, Γ0〉, we use ⇒b to denote the restriction of ⇒ to
broadcast steps only, and ⇒∗ [resp. ⇒∗

b ] to denote the reflexive and transitive
closure of ⇒ [resp. ⇒b]. Now we define the set of reachable configurations as:
Reach(P) = {γ′ ∈ Γ | ∃γ ∈ Γ0 s.t. γ ⇒∗ γ′}, Reachb(P) = {γ′ ∈ Γ | ∃γ ∈
Γ0 s.t. γ ⇒∗

b γ
′}, and Reach fc(P) = Reachb(P) ∩ Γ fc.

2.2 Coverability Problem

Our goal is to decide whether there exists an initial configuration (of any size
and topology) from which it is possible to reach a configuration exposing (cov-
ered by w.r.t. graph inclusion) a bad pattern. We express bad patterns using
reachability queries defined as follows. Let P = 〈Q,R, q0〉 be a (r, f)-protocol
and Z a denumerable set of variables. A reachability query ϕ for P is a formula
generated by the following grammar:

ϕ ::= q(z) | Mi(z) = Mj(z
′) | Mi(z) �=Mj(z

′) | ϕ ∧ ϕ

where z, z′ ∈ Z, q ∈ Q and i, j ∈ [1..r]. We now define the satisfiability relation
for such queries. Given a configuration γ = 〈V,E, L〉 ∈ Γ , a valuation is a
function f : Z �→ V . The satisfaction relation |= is parameterized by a valuation
and is defined inductively as follows:
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– γ |=f q(z) if and only if LQ(f(z)) = q,
– γ |=f Mi(z) = Mj(z

′) if and only if LM (f(z))[i] = LM (f(z′))[j],
– γ |=f Mi(z) �= Mj(z

′) if and only if LM (f(z))[i] �= LM (f(z′))[j],
– γ |=f ϕ ∧ ϕ′ if and only if γ |=f ϕ and γ |=f ϕ

′.

We say that a configuration γ satisfies a reachability query ϕ, denoted by γ |= ϕ
if and only if there exists a valuation f such that γ |=f ϕ. Furthermore we assume
that our queries do not contain contradictions w.r.t. = and �=. We now define
the parameterized verification problem, i.e., finding an initial configuration that
leads to a configuration containing a sub-configuration that matches the query.

Definition 2. The problem Cov (r, f) is defined as follows: given a (r, f)-protocol
P and a reachability query ϕ, does there exist γ ∈ Reach(P) such that γ |= ϕ?

The problem Cov b(r, f) [resp. Cov fc(r, f)] is obtained by replacing the reach-
ability set with Reachb(P) [resp. Reach fc(P)]. Finally, Cov (∗, f) denotes the
disjunction of the problems Cov (r, f) varying on r ≥ 0 (i.e. for any (finite)
number of registers).

3 An Example: Route Discovery Protocol

Consider the problem of building a route from nodes of type sender to nodes of
type dest. We assume that nodes have two registers, called id and next, used to
store a pointer to the next node in the route to dest. The protocol that collects
such information is defined in Figure 1. Initially nodes have type sender, idle,
and dest. Request messages like rreq are used to query adjacent nodes in search

sender swait ready

b(rreq, id)
r(rrep, ↓next)

τ

τ

dest raux

r(rreq, ∗)

b(rrep, id)

idle iaux iwait ireply null
r(rreq, ∗) b(rreq, id)

τ

r(rrep, ↓next) b(rrep, id)

τ

Fig. 1. Route discovery example

for a valid neighbour. Back edges are used to restart the protocol in case of loss
of intermediate messages or no reply at all.

In this example an undesired state is, e.g., any configuration in which two
adjacent nodes n and n′ point to each other. Bad patterns like this one can
be specified using a query like ready(z1) ∧ ready(z2) ∧Mid(z1) = Mnext(z2) ∧
Mnext(z1) = Mid(z2).

4 Reconfiguration in Arbitrary Graphs

4.1 Undecidability of Cov(2, 2)

Our first result is the undecidability of coverability for nodes with two registers
(one read-only) and messages with two data fields. The proof is based on a
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reduction from reachability in two counter machines. The reduction builds upon
an election protocol that can be applied to select a linked list (of arbitrary
length) of nodes in the network. The existence of such a list-builder protocol
is at the core of the proof. The simulation of a two counter machine becomes
easy once a list has been constructed. We assume that protocols have at least
one read-only register id ∈ [1..r]. We formalize next the notion of list and list-
builder that we use in the undecidability proofs presented across the paper. We
first say that a node v points to a node v′ via x if the register x of v contains
the same value as register id of v′. For qa, qb, qc ∈ Q, a list (linked via x) is a set
of nodes {v1, · · · , vk} such that v1 has label qa, vk has label qc, vi has label qb
for i ∈ [2..k − 1], and vj is the unique node in V that points to vj+1 via x and
has label in {qa, qb} for j ∈ [0..k−1]. In other words qa and qc are sentinels for a
list made of qb elements. A backward list is defined as before but with reversed
pointers, i.e., vj+1 points to vj .

Definition 3. A protocol P = 〈Q,R, q0〉 with {qa, qb, qc} ⊆ Q is a list-builder
for qa, qb, and qc on x ∈ [1..r] if, for any γ such that γ ∈ Reach(P), if a node v
in γ has label qa, then v is the first node of a list linked via x.

A backward list-builder is defined in a similar way for backward lists.

Lemma 1. For r ≥ 2 and f ≥ 1, Cov (r, f) is undecidable if there exists a list-
builder (r, f)-protocol on x ∈ [1..r] that can generate lists of any finite length.

The proof exploits the list (of arbitrary length) generated by a list-builder proto-
col to build a simulation of a two counter machine. Indeed, notice that if node v
is the only one pointing to node v′ then the pair of actions b(m,x) and r(m, ?id)
can be used to send a message from v to v′ (v′ is the only node that can receive
m from v). Furthermore, the pair of actions b(m, id) and r(m, ?x) can be used
to send a message from v′ to v (v is the only node that can receive m from v′).
This property can be exploited to simulate counters by using intermediate nodes
as single units (the value of the counter is the sum of unit nodes in the list). One
of the sentinels is used as program location, and the links in the list are used to
send messages (in two directions) to adjacent nodes to increment or decrement
(update of labels) the counters. Test for zero is encoded by a double traversal
of the list in order to check that each intermediate node represents zero units.
The details of the protocol that extends a list-builder are given in [9]. A similar
result can be stated for backward list-builders.

The previous lemma tells us that to prove undecidability of coverability we
just have to exhibit a list-builder protocol. In the case of Cov (2, 2), we apply
Lemma 1, by showing that protocol Plb of Figure 2 is a backward list-builder
for qh, qz, and qt on x ∈ [1..r]. The rationale is as follows. Lists {v1, · · · , vk} are
built one node at a time, starting from the tail vk, in state qt. The links point
from each node to the previous one, up to the head v1, in state qh. Any node in
the initial state q0 (e.g., v1) may decide to become a tail by starting to build its
own list. Every such construction activity, however, is guaranteed not to interfere
in any way with the others, thanks to point to point communication between
nodes simulated on top of network reconfigurations and broadcast by exploiting
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the two payload fields. This is achieved via a three-way handshake where the
first and second fields respectively identify the sender and the recipient. When
the sub-protocol is done, v1 moves to state qt, v2 moves to the intermediate state
qi, and one points to the other. Node v2 decides whether to stop building the
list by becoming the head qh, or to continue by executing another handshake to
elect node v3. The process continues until some vk finally ends the construction
by moving to state qh. The following theorem then holds (the proof can be found
in [9]).

qt

q0 qi qh

qz

b(s, id, id)
r(a, ↓x, ?id) b(sa, id, x)

r(s, ↓x, ∗) b(a, id, x) r(sa, ?x, ?id) τ

b(s, id, id)
r(a, ↓x, ?id)b(sa, id, x)

Fig. 2. Plb: backward list-builder for qh, qz, qt, and Γ0 on x

Theorem 1. Cov (2, 2) is undecidable even when restricting one register to be
read-only.

4.2 Decidability of Cov(∗, 1)
In this section, we will prove that Cov (∗, 1), i.e. the restriction of our coverability
problem to processes with only one field in the message, is Pspace-complete.

We obtain PSpace-hardness through a reduction from the reachability prob-
lem for 1-safe Petri nets, which is PSpace-complete [6]. The detail of this con-
struction is provided in [9].

Proposition 1. Cov (∗, 1) is PSpace-hard.

We now provide a PSpace algorithm for solving Cov (∗, 1). The algorithm is
based on a saturation procedure that computes a symbolic representation of
reachable configurations. The representation is built using graphs that keep track
of control states that may appear during a protocol execution and of relations
between values in their registers. The set of symbolic configurations we consider
is finite and each symbolic configuration can be encoded in polynomial space.

Assume a (r, 1)-protocol P = 〈Q,R, q0〉 over Σ. A symbolic configuration θ for
P is a labelled graph 〈W, δ, λ〉 whereW is a set of nodes, δ ⊆W×[1..r]×[1..r]×W
is the set of labelled edges and λ : W �→ Q × {0, 1}r is a labelling function (as
for configurations, we will denote λQ [resp. λM ] the projection of λ to its first
[resp. second] component) such that the following rules are respected:

– For w,w′ ∈ W , w �= w′ implies λQ(w) �= λQ(w
′), i.e. there cannot be two

nodes with the same control state;
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– If (w, a, b, w′) ∈ δ then λM (w)[a] = 1 or λM (w′)[b] = 1 (or both);
– For w ∈W and j ∈ [1..r], if λM (w)[j] = 1 then (w, j, j, w) ∈ δ.

The labels {0, 1}r are redundant (they can be derived from edges) but simplify
some of the constructions needed in the algorithm. We denote by Θ the set of
symbolic configurations for P . Let θ = 〈W, δ, λ〉 be a symbolic configuration for
P . Then, 〈V,E, L〉 ∈ �θ� iff the following conditions are satisfied:

1. For each v ∈ V , there is a node w ∈ W such that LQ(v) = λQ(w), i.e. v and
w have the same control state;

2. For each v �= v′ ∈ V , if there exist registers j, j′ ∈ [1..r] s.t. LM (v)[j] =
LM (v′)[j′], i.e., two distinct nodes with the same value in a pair of registers,
then there exists an edge (w, j, j′, w′) ∈ δ with λQ(w) = LQ(v) and λQ(w

′) =
LQ(v

′), i.e. we store possible relations on data in registers using edges in θ;
3. For each v ∈ V , if there exist j �= j′ ∈ [1..r] s.t. λM (v)[j] = λM (v)[j′], i.e.

a node with the same value in two distinct registers, then there exists a self
loop (w, j, j′, w) ∈ δ.

We remark that we do not include any information on the communication links of
γ, indeed reconfiguration steps can change the topology in an arbitrary way. We
define the initial symbolic configuration θ0 = 〈{w0}, ∅, λ0〉 with λ0(w0) = (q0,0).
Clearly, we have �θ0� = Γ0, i.e. the set of concrete configurations represented by
θ0 is the set of initial configurations of the protocol P . In order to perform a
symbolic reachability on symbolic configurations, we use a operator POSTP that,
by working on a graph θ simulates the effect of the application of a broadcast
rule on its instances �θ�. The formal definition of the POSTP operation is given
in [9]. We illustrate the key points underlying its definition with the help of an
example. Consider the symbolic configurations θ1 and θ2 in Figure 3, where we
represent edges (w, a, b, w′) ∈ δ with arrows from w to w′ labelled by a, b. Please
note that, even though we use directed edges for the graphical representation,
the relation between nodes in W symmetrical as (w, a, b, w′) ∈ δ is equiva-
lent to (w′, b, a, w). θ1 denotes configurations with any number of nodes with
label q0 or q1. Nodes in state q0 must have registers containing distinct data (la-
bel 0, 0). Nodes in state q1 may have the same value in their second register (label
0, 1 is equivalent to edge 〈q1, 2, 2, q1〉), that in turn may be equal to the value

θ1

q0, 0, 0 q1, 0, 1
1, 2

2, 2

θ2

q0, 1, 0

1, 1

q1, 0, 1
1, 2

2, 2

q2, 0, 1

2, 2
1, 2

q3, 0, 1

2, 2
2, 2

2, 2

2, 2

2, 2

Fig. 3. Example of computations of symbolic post
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of the first register in a node labelled q0 (edge 〈q0, 1, 2, q1〉). θ1 can be obtained
from the initial symbolic configuration by applying rules like 〈q0,b(α, 1), q0〉 and
〈q0, r(α, ↓2), q1〉. Indeed, in q0 we can send the value of the first register to other
nodes in q0 that can then move to q1 and store the data in the second register
(i.e. we create a potential data relation between the first and second register).

We now give examples of rules that can generate the symbolic configuration
θ2 starting from θ1. The pair 〈q0,b(β, 1), q0〉 and 〈q0, r(β, ↓1), q0〉 generates a
new data relation between nodes in state q0 modelled by changing from 0 to
1 the value of λM (q0)[1]. We remark that a label 1 only says that registers in
distinct nodes may be (but not necessarily) equal.

Consider now the reception rule 〈q1, r(β, ?2), q2〉 for the same message β. The
data relation between nodes in state q0 and q1 in θ1 tells us that the rule is
fireable. To model its effect we need to create a new node with label q2 with
data relations between registers expressed by the edges between labels q0, q1 and
q2 in the figure. Due to possible reconfigurations, not all nodes in q1 necessarily
react, i.e. θ2 contains the denotations of θ1.

A rule like 〈q1, r(β, ?2), q3〉 can also be fireable from instances of θ1. Indeed,
the message β can be sent by a node in state q0 that does not satisfy the data
relation specified by the edge (1, 2) in θ1, i.e., the sending node is not the one
having the same value in its first register as the node q1 reacting to the message,
hence the guard ?2 could also be satisfied. This leads to a new node with state
q3 which inherits from q1 the constraints on the first register, but whose second
register can have the same value as the second register of nodes in any state.

We now define how to evaluate a reachability query over a symbolic config-
uration . Let θ = 〈W, δ, λ〉 be a symbolic configuration and ϕ be a reachability
query. We denote by Vars(ϕ) the subset of variables used in the query ϕ and we
assume that ϕ =

∧
k∈[1..m] ϕk where for each k ∈ [1..m], ϕk is of the form q(z) or

Mi(z) = Mj(z
′) or Mi(z) �= Mj(z

′). We will then say that θ |= ϕ if there exists
a function g : Vars(ϕ) �→ W such that for all k ∈ [1..m] we have the following
properties: if ϕk = q(z), then λQ(g(z)) = q; if ϕk = (Mi(z) = Mj(z

′)) with
z �= z′ or i �= j, then (g(z), i, j, g(z′)) ∈ δ. We have then the following lemma.

Lemma 2. Given a symbolic configuration θ and a reachability query ϕ, we have
θ |= ϕ if and only there exists γ ∈ �θ� such that γ |= ϕ.

Before giving the properties of the POSTP operator, we introduce some nota-
tions. First we introduce an order on symbolic configurations. Given two sym-
bolic configurations θ = 〈W, δ, λ〉 and θ′ = 〈W ′, δ′, λ′〉, we say that θ � θ′ if and
only if there exists an injective function h : W �→W ′ such that for all w,w′ ∈ W :

– λQ(w) = λ′Q(h(w));
– for all j ∈ [1..r], if λM (w)[j] = 1 then λ′M (h(w))[j] = 1;
– if (w, a, b, w′) ∈ δ then (h(w), a, b, h(w′)) ∈ δ′.

In other words, we have θ � θ′ if there are more nodes in θ′ than in θ and all
the labels of θ appears in θ′ as well, and for what concerns the symbolic register
valuation, the one of θ′ should ”cover” the one of θ. One can easily prove the
following result.
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Lemma 3. (1) If θ � θ′ then �θ� ⊆ �θ′�. (2) If there exists an infinite increasing
sequence θ0 � θ1 � θ2 . . . then there exists i ∈ N s.t. for all j ≥ i, θj = θi.

Furthermore, given a set of configurations S ⊆ Γ of the (r, 1)-protocol P =
〈Q,R, q0〉 (with BNRA(P) = 〈Γ,⇒, Γ0〉), we define postP(S) = {γ′ ∈ Γ | ∃γ ∈
Γ s.t. γ ⇒ γ′} and post∗P is the reflexive and transitive closure of postP (and
POST∗P the reflexive and transitive closure of POSTP). Note that since symbolic
configuration generate a single node for each label, repeated application of POSTP
are ensured to terminate. We can now give the properties of the POSTP operator.

Lemma 4. Let θ be a symbolic configuration of the protocol P. Then we have
θ � POSTP(θ) and for all reachability query ϕ, there exists γ ∈ post∗P(�θ�) such
that γ |= ϕ iff POST∗P(θ) |= ϕ.

We have consequently an algorithm to solve whether there exists γ ∈ Reach(P) =
postP(Γ0). In fact it is enough to compute POST∗P(θ0) and to check whether
POST∗P(θ) |= ϕ. This computation is feasible thanks to Lemma 3 and thanks to
the first point of the previous lemma. Note that each each symbolic configuration
of the (r, 1)-protocol P is a graph with at most |Q| nodes and at most |Q|2 ∗ |r|2
edges and hence we need only polynomial space in the size of the protocol P
to compute POST∗P(θ0). Finally we can check in non-deterministic linear time
whether POST∗P(θ0) |= ϕ (it is enough to guess the function g from Vars(ϕ) to the
nodes of POST∗P(θ0)). Using Lemma 2, this gives us a polynomial space procedure
to check whether there exists γ ∈ ReachP such that γ |= ϕ. Furthermore, thanks
to the lower bound given by Proposition 1, we can deduce the exact complexity
of coverability for protocols using a single field in their messages.

Theorem 2. Cov (∗, 1) is PSpace-complete.

5 Fully Connected Topologies and No Reconfiguration

5.1 Undecidability of Covfc(2, 1)

We now move to coverability in fully connected topologies. In contrast with the
results obtained without identifiers in [11] it turns out that, without reconfigu-
ration, coverability is undecidable already in the case of nodes with two registers
and one payload field. Following the same line as in Lemma 1, to prove the result
it is enough to define a (forward) list-builder protocol. We refer to Lemma 1∗

as the variation of Lemma 1 obtained considering the relation⇒b (see [9]). The
protocol builds lists backwards from the tail qt. At each step, a node v among
the ones which are not part of the list broadcasts its identifier to the others
(which store the value, thus pointing to v), and moves to qz (or qt, if it is the
first step) electing itself as the next node in the list. The construction ends when
such a node will instead move to qh and force everyone else to stop. By applying
Lemma 1∗, the following theorem then holds (a complete proof is in [9]).

Theorem 3. Cov fc(2, 1) is undecidable even when one register is read-only.
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5.2 Decidability of Covfc(1, 1)

We now consider the problem Cov fc(1, 1), where configurations are fully con-
nected and do not change dynamically, processes have a single register, and each
message has a single data field. To show decidability, we employ the theory of
well-structured transition systems [1,17] to define an algorithm for backward
reachability based on a symbolic representation of infinite set of configurations,
namely multisets of multisets of states in Q. In the following we use [a1, . . . , ak]
to denote a multiset containing (possibly repeated) occurrences a1, . . . , ak of el-
ements from some fixed domain. For a multiset m, we use m(q) to denote the
number of occurrences of q in m.

Let P = 〈Q,R, q0〉 be a (1, 1)-protocol. The set Ξ of symbolic configurations
contains, for every k ∈ N, all multisets of the form ξ = [m1, . . . ,mk], where
mi for i ∈ [1..k] is in turn a multiset over Q. Given ξ = [m1, . . . ,mk] ∈ Ξ,
〈V,E, L〉 ∈ �ξ� iff there is a function f : V → [1..k] such that (1) for every
v, v′ ∈ V , if LM (v) = LM (v′) then f(v) = f(v′) and (2) for all i ∈ [1..k] and
q ∈ Q, mi(q) is equal to the number of nodes v ∈ V s.t. f(v) = i and LQ(v) = q
Intuitively, each mi is associated to one of the k distinct values of the register
(the actual values do not matter), and mi(q) counts how many nodes in state q
have the corresponding value. We now define an ordering over Ξ.

Definition 4. Given ξ = [m1, . . . ,mk] ∈ Ξ and ξ′ = [m′
1, . . . ,m

′
p] ∈ Ξ, ξ ≺ ξ′

iff k ≤ p and there exists an injection h : [1..k]→ [1..p] such that for all i ∈ [1..k]
and all q ∈ Q, mi(q) ≤ mh(i)(q), i.e. mi is included in mh(i).

The following properties then hold.

Proposition 2. The ordering (ξ,≺) over symbolic configurations is a well-quasi
ordering (wqo), i.e. for any infinite sequence ξ1ξ2 . . . there exist i < j s.t. ξi ≺ ξj.

Proposition 3. Let preP(S) = {γ | γ ⇒b γ′, γ′ ∈ S}. There exists an al-
gorithm PREP taking in input I ⊆ Ξ and returning a set I ′ ⊆ Ξ s.t. �I ′� =
preP(�I�).

The formal definition of the predecessor operator is given in [9], together with
an example. Following [4], the algorithm for PREP can be used to effectively
compute a finite representation of the set of predecessors pre∗P(�Bad�) for a set
of symbolic configurations Bad. The computation iteratively applies PRE until a
fixpoint is reached. The termination test is defined using ≺. The wqo ≺ ensures
termination of the computation [1]. The following theorem then holds.

Theorem 4. Cov fc(1, 1) is decidable.

An alternative proof can be given by resorting to an encoding into coverability
in data nets [21]. We present such an encoding in [9].

We consider now the complexity. We observe that, without registers and fields
our model boils down to the AHNs of [11]. For fully connected topologies, AHN
can simulate reset nets as shown in [12]. Following from the complexity of
coverability in reset nets [24], we have the the following theoretical lower bound.

Corollary 1. Cov fc(0, 0) and Cov fc(1, 1) are non elementary.
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Transitions/Topology r f Status Complexity

B+R,G
0 0 DEC PTIME
k ≥ 1 1 DEC PSPACE
2 2 UNDEC –

B,FC
0 0 DEC NON EL
1 1 DEC NON EL
2 1 UNDEC –

B,G 0 0 UNDEC –

Fig. 4. Decidability and complexity boundaries: B=broadcast transitions,
R=reconfiguration, FC=fully connected topologies, and G=arbitrary graphs.

6 Conclusions

We have investigated decidability and complexity for coverability in a data-
sensitive model of broadcast communication (Figure 4). From a technical point
of view, our results can be viewed as a fine grained refinement of those obtained
for the case without data. For instance, undecidability follows from constructions
similar to those adopted in [11]. They are based on special use of data for building
synchronization patterns that can be applied even in fully connected networks.
Concerning possible applications, the symbolic algorithm for messages with a
single data field can be applied to abstract models of routing protocols like the
protocol of Section 3. Finally, as future extensions it would be interesting to
study ordered data fields and time-sensitive communication.
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and Other Stochastic Games�
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Abstract. We consider two-player zero-sum finite (but infinite-horizon)
stochastic games with limiting average payoffs. We define a family of sta-
tionary strategies for Player I parameterized by ε > 0 to be monomial,
if for each state k and each action j of Player I in state k except pos-
sibly one action, we have that the probability of playing j in k is given
by an expression of the form cεd for some non-negative real number c
and some non-negative integer d. We show that for all games, there is a
monomial family of stationary strategies that are ε-optimal among sta-
tionary strategies. A corollary is that all concurrent reachability games
have a monomial family of ε-optimal strategies. This generalizes a classi-
cal result of de Alfaro, Henzinger and Kupferman who showed that this
is the case for concurrent reachability games where all states have value
0 or 1.

1 Introduction

We consider two-player zero-sum finite (but infinite-horizon) stochastic games G
with state set {1, 2, . . . , N} and set of actions {1, 2, . . . ,m} available to each of
the two players in each state. The reward to Player I when Player I plays i and
Player II plays j in state k is denoted akij . Transition probabilites are denoted pklij .

We assume stopping probabilitites are 0, i.e., for all k, i, j we have
∑

l p
kl
ij = 1.

We are interested in games with limiting average (undiscounted) payoffs [8,12],

i.e, payoff lim infT→∞(
∑t−1

i=0 rt)/T to Player I, where rt is the reward collected
by Player I at stage t. A stationary strategy x for a player in a stochastic game
is a fixed (time independent) assignment of probabilities to his actions, for each
of the states of the game. We let xkj denote the probability of playing action j
in state k according to stationary strategy x. We denote the set of stationary
strategies for Player I (II) by SI (SII). For a state k, the lower value in stationary
strategies of k, denoted vk, is defined as supx∈SI

infy∈SII uk(x, y), where uk(x, y)
is the expected limiting average payoff when stationary strategy x of Player I
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is played against stationary strategy y of Player II and play starts in state k.
Given ε > 0, a stationary strategy x∗ for Player I is called ε-optimal among
stationary strategies if for all states k, we have infy∈SII uk(x

∗, y) ≥ vk−ε. Notice
that when Player I has fixed his stationary strategy, Player II is just playing a
Markov decision process, so he has an optimal positional reponse.

The main purpose of the present paper is to prove that all stochastic games
have a family of ε-optimal strategies among stationary strategies of a particular
regular kind. We introduce the following definition.

Definition 1. A family of stationary strategies (xε)0<ε≤ε0 for Player I in a
stochastic game is called monomial if for all states k, and all actions j available
to Player I in state k except possibly one action, we have that xkε,j is given by a

monomial in ε, i.e., an expression of the form ckj ε
dk
j , where dkj is a non-negative

integer and ckj is a non-negative real number.

The exception made in the definition for some single action in each state is
natural and necessary: The sum of probabilities assigned to the actions in each
state must be 1, so without this exception, it is easy to see that a monomial
family would have dkj = 0 for all j, k, i.e., it would be a single strategy rather
than a family. Also note that when we specify a monomial family of strategies,
we do not have to specify the probability assigned to the “special” action in
each state, as it is simply the result of subtracting the sum of the probabilities
assigned to the remaining actions from one. We can now state our main theorem:

Theorem 1. For any game G, there is an ε0 > 0 and a monomial family of
stationary strategies (xε)0<ε≤ε0 for Player I, so that for each ε ∈ (0, ε0], we have
that xε is ε-optimal among stationary strategies.

Discussion of the Main Theorem. A monomial family of strategies can be
naturally interpreted as a parameterized strategy where probabilities have well-
defined “orders of magnitude”, given by the degrees dkj . Our main theorem in-
formally states that such “clean” strategies are sufficient for playing stochastic
games well, at least if one is restricted to the use of stationary strategies. Our
main motivation for the theorem is computational: A monomial family of strate-
gies is a finite object, and our theorem makes it possible to ask the question of
whether a family of ε-optimal strategies parameterized by ε can be efficiently
computed for a given game, as the result makes this question well-defined. The
existence proof of the present paper is essentially non-constructive and provides
no efficient algorithm (although it is possible to derive an inefficient algorithm
using standard techniques), so we do not answer the question in this paper. It
should also be noted that it is easy to give examples of games with rational
rewards and transition probabilties where the coefficients ckj cannot be ratio-
nal numbers, so one has to worry about how to represent those. Fortunately, a
straightforward application of the Tarski transfer principle yields that algebraic
coefficients suffice, and such a number has a finite representation in the form of a
univariate polynomial with rational coefficients and an isolating interval within
which the number is the only root of the polynomial.
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Our main theorem is particularly natural for classes of stochastic games that
are guaranteed to have a value in stationary strategies, that is, games for which the
lower value supx∈SI

infy∈SII uk(x, y) and the upper value infy∈SII supx∈SI
uk(x, y)

coincide. A natural subclass of stochastic games with this property is Everett’s
recursive games [6]. In a recursive game, all non-zero rewards occur at absorb-
ing states: states k with only one action “1” available to each player and pkk1,1 =
1 (”terminal states”). Everett presents several examples of families of ε-optimal
strategies for natural recursive games and upon inspection, we note that they are
monomial. An interesting subclass of recursive games widely studied in the com-
puter science literature [5,3,11,9] is the class of concurrent reachability games. In
a concurrent reachability game, Player I is trying to reach a distinguished “goal”
state and Player II is trying to prevent him from reaching this state. To view such
a game as a recursive game, we simply interpret the goal state as an absorbing
state g with reward rg1,1 = 1. Then, the (lower) value vk of a state k is natu-
rally interpreted as the optimal probability of reaching the goal state from k. De
Alfaro, Henzinger and Kupferman [5] presented a polynomial time algorithm for
deciding which states in a concurrent reachability game have value 1. Inspect-
ing their proof of correctness, we see that it yields an explicit construction of a
monomial family of ε-optimal strategies for Player I if the concurrent reachability
games satisfy the (very restrictive) property that each state has value either 0 or 1.
Note that even this case requires non-trivial strategies for near optimal play [11].
Also, their polynomial time algorithm can easily be adapted to output this strat-
egy. It is interesting to note that in the computed strategy, all coefficients ckj are
either 0 or 1.

Discussion of the Proof. Our proof relies heavily on semi-algebraic geom-
etry. In this respect, the proof technique is much in line with classical works
on stochastic games, in particular the work of Bewley and Kohlberg [1], and
semi-algebraic geometry has seen several uses in stochastic games, see for ex-
ample [13,4,15,10]. Our proof can be outlined as follows. First, we show that it
is possible in first order logic over the reals to uniquely define a particular dis-
tinguished ε-optimal strategy among stationary strategies, with ε being a free
variable in this definition. Then, standard theorems of semi-algebraic geometry
imply that there is a family of ε-optimal strategies the probabilities of which can
be described as Pusieux series in the parameter ε > 0. We then “round” these
series to their most significant terms and finally massage them into monomials.
To argue that ε-optimality is not lost in the process, we appeal to theorems
upper bounding the sensitivity of the limiting average values of Markov chains
to perturbations of their transition probabilities. These sensitivity theorems are
due to Solan [14], building on work on Freidlin and Wentzell [7]. As our main
theorem is very simply stated, one might speculate that it has an elementary
proof, avoiding the use of semi-algebraic geometry. However, we are not aware of
any such proof, even for the case of concurrent reachability games. It should be
noted that the proof by De Alfaro, Henzinger and Kupferman is combinatorial in
nature, and does not rely on semi-algebraic geometry, so at least for the simpler
case considered by them, elementary arguments do exist.
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Organization of Paper. In section 2 we will introduce the definitions, lemmas
and previous results necessary for the proof. In section 3 we prove a version of
the main theorem with monomials replacing Puiseux series. In section 4 we prove
the actual main theorem.

2 Preliminaries

For n ∈ N, let [n] denote {1, . . . , n}. A Puiseux series p over some indeterminate

T and field F is an expression of the form p =
∑∞

i=K aiT
i
M whereK ∈ Z,M ∈ N,

and for all i, ai ∈ F, with the expression satisfying that if p �= 0 then there
∃i ∈ Z : ai �= 0 ∧ gcd(i,M) = 1. Similarly, a function p : R → R is a Puiseux
function on an interval I, if there exists K ∈ Z,M ∈ N, ai ∈ R such that
p(ε) =

∑∞
i=K aiε

i
M for all ε ∈ I. In the context of this paper we will only look

at Puiseux functions, and we will often call the function p(ε) a Puiseux series.

The order of a Puiseux series p =
∑∞

i=K aiT
i
M is the smallest integer i such that

ai �= 0, and we will write ord(p) = i. If p = 0 then the order is defined to be ∞.
The proofs of the following elementary lemmas on Puiseux series are easy and
we omit them.

Lemma 1. if q(ε) =
∑∞

i=K ciε
i
M is a Puiseux series that is convergent and

bounded on some (0, ε0), then ci = 0 for all i < 0. In other words, the order of
q is greater than or equal to 0.

Lemma 2. For any Puiseux series q(ε) =
∑∞

i=K ciε
i
M with ord(q) = K ≥ 0

there exists an ε0 such that sign(q(ε)) = sign(cK) for all ε ∈ (0, ε0).

A semi-algebraic set is a subset of real Euclidean space defined by a finite
set of polynomial equalities and inequalities. The well-known Tarsi-Seidenberg
theorem states that any set that can be defined in the language of first order
arithmetic is semi-algebraic. We will use this theorem throughout this paper to
establish that sets are semi-algebraic. A semi-algebraic function is a real-valued
function whose graph is a semi-algebraic set. We shall use the following lemma,
establishing a close relationship between semi-algebraic functions and Puiseux
functions.

Lemma 3. [13, lemma 6.2] Let a > 0, if f : (0, a) → R is a semi-algebraic
function, then there exists an 0 < ε′ < a such that f is a Puiseux function on
(0, ε′).

For stochastic games, we use the notation introduced in the introduction.
We shall use the following theorem, due to Solan, as an important lemma. The
theorem applies to 1-player stochastic games (a.k.a., Markov decision processes).
In a 1-player stochastic game, Player 2 has only a single action in each state.
We therefore write pkli rather than pklij for the transition probabilities.

Theorem 2. [14, theorem 6] Let G and G̃ be 1-player stochastic games with
identical state set {1, 2, . . . , N}, transition probabilities pkli , p̃kli and identical
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rewards. Let c be an upper bound on the absolute value of all rewards. Let v, ṽ
be the lower value in stationary strategies in each of the games. Let δ ∈ (0, 1

2N )

satisfy maxi,k,l(
pkl
i

p̃kl
i

,
p̃kl
i

pkl
i

)− 1 ≤ δ, where x
0 :=∞, 00 := 1. Then, |v − ṽ| ≤ 4cNδ.

3 Puiseux Family of Strategies

Lemma 4. For any game G there exists an ε0 and a family of stationary strate-
gies (xε)0<ε≤ε0 that are ε-optimal among stationary strategies, where for all
states k and all actions j, xkε,j is given by a Puiseux series in ε, that is, there is

an expression qkj (ε) =
∑∞

i=Kk
j
cki,jε

i

Mk
j such that xkε,j = qkj (ε) for ε ∈ (0, ε0].

Proof. We want to create a first-order formula Φk
j (x, ε) for every state k and

every action j, which is true if and only if x is the probability that Player I
should play action j in state k in a specific strategy that is ε-optimal among
stationary strategies. Then, since we have described the function by a first-order
formula, it is semi-algebraic, and by Lemma 3 we get that there exists a Puiseux
series that is equal to the function, thus completing the proof. We are going to
use several smaller first-order formulas to describe the formulas Φk

j (x, ε).
To ease notation, during the proof k, l will only be refering to states in the

game, so they will be numbers k, l ∈ [N ]. i, j will be refering to actions in a given
state, so they will be numbers i, j ∈ [m]. We will also use the following vectors

x := (xki )
k∈[N ]
i∈[m] , y := (yki )

k∈[N ]
i∈[m] , v := (vk)k∈[N ] , ν := (νk)k∈[N ]

x and y will represent the strategies of Player I and Player II respectively, while
v and ν will be used to represent different values of stationary strategies of the
game starting in each position.

The first two formulas Δα(x), Δβ(y) describe that x is a stationary strategy
and y is a stationary strategy respectively.

Δα(x) :=
∧

k∈[N ],i∈[m]

[
xki ≥ 0

]
∧

∧
k∈[m]

⎡
⎣∑
i∈[m]

xki = 1

⎤
⎦

Δβ(y) :=
∧

k∈[N ],i∈[m]

[
yki ≥ 0

]
∧

∧
k∈[N ]

⎡
⎣∑
i∈[m]

yki = 1

⎤
⎦

Next we want to create a first-order formula Ψ(v) which expresses that vk is the
lower value in stationary strategies when the game starts in state k, that is, the
quantity:

sup
x∈SI

inf
y∈SII

Ex,y lim inf
T→∞

T−1∑
t=0

rt
T
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We can rewrite this quantity by using the following equations proved in [2,
Theorem 5.2]

inf
y∈SII

Ex,y lim inf
T→∞

T−1∑
t=0

rt
T

= inf
y∈SII

lim inf
λ→0

Ex,y
λ

1 + λ

∞∑
t=0

1

(1 + λ)t
rt , ∀x ∈ SI

So the suprema over the two sets are the same, and we can express the value by
creating a formula which express that

vk = sup
x∈SI

inf
y∈SII

lim inf
λ→0

Ex,y
λ

1 + λ

∞∑
t=0

1

(1 + λ)t
rt ∀k ∈ [N ]

A common way of rewriting these value equations is by expanding the expecta-
tions for one state and substituting vl into the equations

vk = sup
x∈SI

inf
y∈SII

lim inf
λ→0

Ex,y
λ

1 + λ

∞∑
t=0

1

(1 + λ)t
rt ∀k ∈ [N ]

⇔ vk = sup
x∈SI

inf
y∈SII

lim inf
λ→0

λ

1 + λ

∑
i,j∈[m]

xki y
k
j

⎛
⎝akij + ∑

l∈[N ]

pklij
1

λ
vl

⎞
⎠ ∀k ∈ [N ]

First notice that for any semi-algebraic sets A and B, and any function f : A→
B where there is a formula Π(a, b) that is true if and only is f(a) = b, we can
express the supremum supa∈A f(a) in the following way

Πsup(s) := [∀a ∈ A∃b ∈ B : Π(a, b) ∧ s ≥ b]

∧ [∀ε > 0∃a ∈ A∃b ∈ B : Π(a, b) ∧ s < b+ ε]

And similar formulas can be created for the infimum and the limit, and since
lim infλ→0 f(λ) is limλ′→0 inf0<λ<λ′ f(λ), we only need to create a formula for
the inner part:

λ

1 + λ

∑
i,j∈[m]

xki y
k
j

⎛
⎝akij + ∑

l∈[N ]

pklij
1

λ
vl

⎞
⎠

We then create the formula

Π(x,y,ν, λ) :=
∧

k∈[N ]

⎡
⎣νk =

λ

1 + λ

∑
i,j∈[m]

xki y
k
j

⎛
⎝akij + ∑

l∈[N ]

pklij
1

λ
νl

⎞
⎠
⎤
⎦

Since SI = {x ∈ RNm|Δα(x)}, we have that SI , SII are semi-algebraic. Then
from the previous argument we can create a formula Πsup(v) for the lower value
in stationary strategies. Also, by not removing the last supremum, we can create
a formula Ξ(x,v) that is true if the value of Player I playing strategy x is v.

It is now straightforward to create a formula Υ (x, ε) that is true if and only
if x is a stationary strategy that is ε-optimal among stationary strategies.



128 S.K.S. Frederiksen and P.B. Miltersen

Υ (x, ε) := ∃v ∈ RN∃ν ∈ RN :Λα(x) ∧ (0 < ε < 1)

∧Πsup(v) ∧ Ξ(x,ν)
∧

k∈[N ]

[
νk ≥ vk − ε

]

Now to create Φk
j (x, ε), we need to select a unique strategy from the set of

stationary strategies that are ε-optimal among stationary strategies. Let ϕ :
[N ]× [m]→ [Nm] be some bijection, which we will use to get an ordering on the
pairs consisting of an action i and a state k. Using this we can write a strategy
as (xι)ι∈[Nm]. We define formulas Pι(x1, . . . , xι, ε) for ι ∈ [Nm] which are true
if there exists a strategy that is ε-optimal among stationary strategies and the
first ι entries are (x1, . . . , xι).

Pι(x1, . . . , xι, ε) := ∃xι+1, . . . , xNm ∈ R : Υ (x1, . . . , xι, xι+1, . . . , xNm, ε)

Notice that for each ι ∈ [Nm], if we assume that we have chosen x1, . . . , xι−1

such that Pι−1(x1, . . . , xι−1, ε) is true, then the set {x ∈ R|Pι(x1, . . . , xι−1, x, ε)}
is non-empty. From the Tarski-Seidenberg theorem the set is semi-algebraic, so
it is defined by a finite set of polynomial equalities and inequalities. This implies
that the set must consist of a finite set of intervals1, so we can choose a unique
strategy by the middle of the interval which lower endpoint is closest to 0. Using
this observation, we can now create a new series of formulas Ψι(x1, . . . , xι−1, x, ε)
for ι ∈ [Nm] which given that Pι−1(x1, . . . , xι−1, ε) is true, x is the middlepoint
of the interval with the lower endpoint closest to 0 among the intervals in the
set {x ∈ R|Pι(x1, . . . , xι−1, x, ε)}.

Ψι(x1, . . . ,xι−1, x, ε) := ∃xι+1, . . . , xNm, a, b ∈ R : a ≤ b ∧ x =
a+ b

2
:

Υ (x1, . . . , xι−1, x, xι+1, . . . , xNm, ε)

∧ [Pι(x1, . . . , xι−1, a, ε) ∨ (a < b ∧ ∀y ∈ (a, b) : Pι(x1, . . . , xι−1, y, ε))]

∧ [∀y < a : ¬Pι(x1, . . . , xι−1, y, ε)]

∧ [∃ε > 0∀y ∈ (b, b+ ε) : ¬Pι(x1, . . . , xι−1, y, ε)]

Now to select our unique strategy we will do the following: For each ε, pick x1
to be the middlepoint of the interval with the lower endpoint closest to 0 among
the intervals in the set {x ∈ R|Pι(x, ε)}, next we pick x2 to be the middlepoint
of the interval with the lower endpoint closest to 0 among the intervals in the
set {x ∈ R|Pι(x1, x, ε)}, and so on. We can then recursively define new formulas
Ωι(x1, . . . , xι, ε) for ι ∈ [Nm] that are true if and only if the unique choice of
the first ι indices described by the above procedure is exactly x1, . . . , xι.

Ω1(x, ε) := Ψ1(x, ε) , Ωι(x1, . . . , xι, ε) := Ωι−1(x1, . . . , xι−1, ε)∧Ψι(x1, . . . , xι, ε)

Using this we can now immediately create the formulas Φι(x, ε) for ι ∈ [Nm] in
the following way:

Φι(x, ε) := ∃x1, . . . , xNm ∈ R : ΩNm(x1, . . . , xNm, ε) ∧ x = xι

1 In this terminology we allow for the interval [a, a] and identify it with the point {a}.
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Now we have obtained that each formula Φι(x, ε) implicitly defines a semi-
algebraic function xι(ε) and due to Lemma 3 we have that there exists Puiseux
series qι(ε) and numbers ει such that xι(ε) = qι(ε) for ε ∈ (0, ει). Now take
ε0 = minι∈[Nm] ει and we have the lemma.

4 Proof of Main Theorem

The proof will be carried out in two steps. First we will use the family of strategies
obtained from Lemma 4 to create a family of strategies only consisting of the
first term of the Puiseux series of the original family. Then by using Theorem
2, we prove their value can not be much worse. Then finally we transform this
family into a monomial family of strategies that are ε−optimal among stationary
strategies.

Proof (of Theorem 1). From Lemma 4 we know that there exists an ε1 and a
family of stationary strategies (xε)0<ε≤ε1 that are ε-optimal among stationary

strategies such that xkε,j = qkj (ε) =
∑∞

i=Kk
j
cki,jε

i

Mk
j for ε ∈ (0, ε1] and for all

states k and actions j. Assume without loss of generality that Kk
j = ord(qkj ),

and observe that Kk
j can be∞ if the Puiseux series is identically 0. Also observe

that since each xkε,j is a probability, it is positive and bounded, so by Lemma 1

we know that all Kk
j ≥ 0.

Now for each k, look at the set of Puiseux series {qkj (ε)}j∈[m] and let jk be

an index so qkjk(ε) is one of the Puiseux series in the set which has minimal

order. Observe that qkjk(ε) has order 0. To see this, assume for contradiction that

ord(qkj ) > 0 for all actions j, then all of them behave as power series around

0, thus qkj (ε) → 0 for ε → 0 so the sum
∑

j∈[N ] q
k
j (ε) → 0 for ε → 0, which

contradicts that
∑

j∈[N ] q
k
j (ε) = 1 for all ε ∈ (0, ε1].

Now look at any k again. We want to approximate the family of strategies
defined by qkj (ε) by a new family of strategies defined by finite Puiseux series

ρkj (ε) for ε ∈ (0, ε2], where ε2 will be defined later. We define ρkj (ε) as a conditional
function on the following sets

S1 = {(k, j) ∈ [N ]× [m] | ord(qkj ) =∞}
S2 = {(k, j) ∈ [N ]× [m] | j �= jk ∧ ord(qkj ) �=∞}
S3 = {(k, j) ∈ [N ]× [m] | j = jk}

Then ρkj (ε) is defined as follows

ρkj (ε) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0 if (k, j) ∈ S1

ck
Kk

j ,j
ε

Kk
j

Mk
j if (k, j) ∈ S2

1−
∑

j∈S2
ck
Kk

j ,j
ε

Kk
j

Mk
j if (k, j) ∈ S3
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So (ρkj (ε))
k∈[N ]
j∈[m] is the derived family of strategies from qkj (ε), defined by ρkj (ε) ≡ 0

when qkj (ε) ≡ 0, and otherwise equal to the first term in qkj (ε) except for one

action, qkjk(ε) which is 1 minus the sum of the other probabilities, to ensure ρkj (ε)

is a probability distribution. Since qkjk(ε) is a probability, then it is positive, so
from Lemma 2 we have that for (k, j) ∈ S2 the constant is positive. But then
we can choose ε2 to be small enough so that for all (k, j) ∈ S2, ρ

k
j (ε) ≤ 1. So for

each k ∈ [N ], (ρkj (ε))j∈[m] becomes a probability distribution.
We will use Theorem 2 to prove that the value of the game where Player I

fixes his strategy to (ρkj (ε))
k∈[N ]
j∈[m] , is not much different than the value of the

game where Player I fixes his strategy to (qkj (ε))
k∈[N ]
j∈[m] . To do this, we must show

that for all states k and all actions j, ρkj (ε) is multiplicatively close to qkj (ε) in
the sense of Theorem 2. We look at the three cases where a pair (k, j) is either
in S1,S2 and S3.

For the case (k, j) ∈ S1, q
k
jk
(ε) = 0 = ρkj (ε), so they are trivially close.

Now we look at an arbritrary (k, j) ∈ S2. To simplify notation we omit the

k, j in the notation, and hence ρkj (ε) becomes ρ(ε) = cKε
K
M and qkj (ε) becomes

q(ε) =
∑∞

i=K cKε
i
M . We want to show that there exists an εkj for this (k, j) ∈ S2

such that for all ε ∈ (0, εkj ) we have

q(ε)

(
1− ε

1
M
1 + |cK+1|

cK

)
≤ ρ(ε) ≤ q(ε)

(
1 + ε

1
M
1 + |cK+1|

cK

)

To see this holds, we look at the difference between the two numbers

q(ε)

(
1 + ε

1
M
1 + |cK+1|

cK

)
− ρ(ε) =

∞∑
i=K+1

ciε
i
M + ε

1
M
1 + |cK+1|

cK

∞∑
i=K

ciε
i
M

= ε
K+1
M (cK+1 + cK

1 + |cK+1|
cK

) + . . .

So the first term is positive, and Lemma 2 gives us that the series is positive

on some area (0, ε′). Similarly we can show that q(ε)
(
1− ε

1
M

1+|cK+1|
cK

)
− ρ(ε) is

negative on some area (0, ε′′), so by letting εkj = min(ε′, ε′′) we get the desired
inequalities. Since this works for an arbritary state k and action j where (k, j) ∈
S2, we can create similar inequalities that work for all the states and actions in
S2 by defining

C := max
(k,j)∈S2

1 + |ck
Kk

j +1,j
|

ck
Kk

j ,j

, Q := min
(k,j)∈S2

1

Mk
j

, ε3 := min
(k,j)∈S2

εkj

This immediately implies that for all (k, j) ∈ S2 we get the following multiplica-
tive relation between qkj (ε) and ρkj (ε)

qkj (ε)
(
1− εQC

)
≤ ρkj (ε) ≤ qkj (ε)

(
1 + εQC

)
∀ε ∈ (0, ε3)
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Now we look at (k, j) ∈ S3. From the observations on S2 we have that for all
(l, i) ∈ S2, that ρ

l
i(ε) ≥ qli(ε)

(
1− εQC

)
for ε ∈ (0, ε3). Furthermore since we

know that
∑

i∈[m] q
k
i (ε) = 1, it holds that qkj (ε) = 1−

∑
i∈S2

qki (ε). We use these
observations to compute the following

ρkj (ε) = 1−
∑
i∈S2

ρki (ε) ≤ 1− (1 − εQC)
∑
i∈S2

qki (ε)

= εQC + (1 − εQC)− (1− εQC)
∑
i∈S2

qki (ε)

= εQC + (1 − εQC)(1 −
∑
i∈S2

qki (ε)) = εQC + (1− εQC)qkj (ε)

= qkj (ε)

(
εQC

qkj (ε)
+ 1− εQC

)
≤ qkj (ε)

(
2εQC

ck0,j
+ 1− εQC

)

The last inequality is conditioned on ε being small enough. To see how small
ε must be, consider the Puiseux series qkj (ε). First recall that for (i, l) ∈ S3,

qli(ε) has order 0, so the initial term is just a constant ck0,j, and from Lemma

2 we know that the constant is positive. Now look at the the tail
∑∞

i=1 c
k
i,jε

i

Mk
j

without the first term. The tail is just a fractional power series, so it tends to
0 for ε → 0. This means that for any constant κ, then there exists an ε′ such

that for all ε < ε′ the tail is smaller than κ. By using the constant
ck0,j
2 , we get

that ρkj (ε) must be larger than
ck0,j
2 when ε ∈ (0, ε′), giving us the inequality for

ε ∈ (0, ε′). If we then chose ε′′ = min(ε′, ε3), then all the inequalities of the above
computation hold. In the same way, we get that there exists an ε′′′ such that

ρkj (ε) ≥ qkj (ε)

(
−2εQC
ck0,j

+ 1 + εQC

)
∀ε ∈ (0, ε′′′)

Now let εkj = min(ε′′, ε′′′), and let ε4 = min(j,k)∈S3
εkj . We now get that both

inequalities hold for all (k, j) ∈ S3

qkj (ε)

(
−2εQC
ck0,j

+ 1 + εQC

)
≤ ρkj (ε) ≤ qkj (ε)

(
2εQC

ck0,j
+ 1− εQC

)

Next by defining c = min(j,k)∈S3
ck0,j, and inverting the signs of εQC in the above

inequalities, the bound also covers (k, j) ∈ S2 as well. But then we have that for
all ε ∈ (0, ε4) and all (k, j) ∈ S1 ∪ S2 ∪ S3 that

qkj (ε)

(
−2εQC

c
+ 1− εQC

)
≤ ρkj (ε) ≤ qkj (ε)

(
2εQC

c
+ 1 + εQC

)

Notice that 2εQC
c +1+εQC = 1+εQ 2C+cC

c . To ease the notation of the upcoming
calculations we define

lw(ε) := 1− εQ
2C + cC

c
, up(ε) := 1 + εQ

2C + cC

c
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Now we are ready to use Theorem 2 to bound the difference in the value of the
two Markov Decision processes that appear when we fix the strategy of Player I

to be (qkj (ε))
k∈[N ]
j∈[m] and (ρkj (ε))

k∈[N ]
j∈[m] .

Since the strategy (qkj (ε))
k∈[N ]
j∈[m] is ε−optimal among stationary strategies, then

when Player I fixes its strategy to (qkj (ε))
k∈[N ]
j∈[m] , Player II can not gain more than

ε more than vk + ε. Similarly we can look at the game where Player I fixes his

strategy to (ρkj (ε))
k∈[N ]
j∈[m] . If we can prove that Player II can not gain more than

vk+γ in this game, then we get that the strategy is γ−optimal among stationary
strategies.

Let (pklj (ε))
k,l∈[N ]
j∈[m] be the transition probabilities of the Markov Decision pro-

cess where we fix the strategy of Player I to be (qkj (ε))
k∈[N ]
j∈[m] . Similarly, let

(p̃klj (ε))
k,l∈[N ]
j∈[m] be the transition probabilities when we fix Player I’s strategy

to be (ρkj (ε))
k∈[N ]
j∈[m] . Then, we get:

p̃klj (ε)

pklj (ε)
=

∑
j∈{1,...,m} ρ

k
i (ε)p

kl
ij∑

j∈{1,...,m} q
k
i (ε)p

kl
ij

⇒ lw(ε) ≤
p̃klj (ε)

pklj (ε)
≤ up(ε)

So we have an upper bound on the fraction
p̃kl
j (ε)

pkl
j (ε)

. To upper bound the fraction

pkl
j (ε)

p̃kl
j (ε)

, observe that when ε is smaller than some ε′, then lw(ε), up(ε) > 0 and we

get the following upper bound

lw(ε) ≤
p̃klj (ε)

pklj (ε)
⇒

pklj (ε)

p̃klj (ε)
≤ 1

lw(ε)

Also, since lw(ε) · up(ε) ≤ 1, then 1
lw(ε) ≥ up(ε), so the fraction

p̃kl
j (ε)

pkl
j (ε)

is also

upper bounded by 1
lw(ε) .

We now use Theorem 2 with δ := 1
lw(ε) − 1, and a as a an upper bound on

the absolute value of the rewards. Now look at any state k, and let γ, γ̃ > 0
be the numbers such that vk + γ and vk + γ̃ are the values for Player II of

the games where Player I has fixed his strategy to (qkj (ε))
k∈[N ]
j∈[m] and (ρkj (ε))

k∈[N ]
j∈[m]

respectively. Then from Theorem 2 we get

vk + γ − (vk + γ̃) = γ − γ̃ ≥ −4Nδa

⇒γ̃ ≤ 4N

(
1

1− εQ 2C+cC
c

− 1

)
a+ γ ≤ 4N

εQ 2C+cC
c

1− εQ 2C+cC
c

a+ ε

Since the denominator 1 − εQ 2C+cC
c tends to 1 for ε → 0, then for ε smaller

than some ε′′′′, the denominator is always larger than 1
2 . So by letting ε0 :=

min(ε′′′′, ε4) we get that γ̃ ≤ 8Na(2C+cC)
c εQ+ε. This implies that (ρkj (ε))

k∈[N ]
j∈[m] is a(

8Na(2C+cC)
c εQ + ε

)
-optimal strategy among stationary strategies. Now consider
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the strategy defined by ϕk
j := ρkj

((
c

8Na(2C+cC)ε
) 1

Q

)
, which is then (εQ + ε)-

optimal among stationary strategies. The strategy
(
ϕk
j (

ε
2 )
)k∈[N ]

j∈[m]
is then an ε-

optimal strategy, since
(
ε
2

)Q
+ ε

2 ≤ ε.

Finally notice that the strategy
(
ϕk
j (

ε
2 )
)k∈[N ]

j∈[m]
is not a monomial family of

strategies, since it could have fractional exponents. To fix this, we define

M := lcmj∈{1,...,m},k∈{1,...,N}Mk
j ,

and let xkε,j := ρkj

(((
ε
2

)Q)M
)
. Then (xε)0<ε≤ε0 is a monomial family of strate-

gies, which is also ε−optimal amough stationary strategies, because
(
ε
2

)QM ≤ ε
2 ,

hence adding the exponent QM only improves the approximation of the value.
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Stability Controllers

for Sampled Switched Systems

Laurent Fribourg and Romain Soulat

LSV, ENS de Cachan & CNRS, France

Abstract. We consider in this paper switched systems, a class of hybrid
systems recently used with success in various domains such as automotive
industry and power electonics. We propose a state-dependent control
strategy which makes the trajectories of the analyzed system converge
to finite cyclic sequences of points. Our method relies on a technique
of decomposition of the state space into local regions where the control
is uniform. We have implemented the procedure using zonotopes, and
applied it successfully to several examples of the literature.

1 Introduction

Switched systems are now widely used in industrial applications in domains such
as power electronics or automative industry. A switched system can be viewed
as a family of continuous-time subsystems with a rule that orchestrates the
switching between them. A suitable switching rule allows to steer the system
to interesting operating regions which are not accessible using a single subsys-
tem. However, it becomes impossible to stabilize the system around a unique
equilibrium point, as in classical systems. The stabilization problem is relaxed
as a problem of “practical stabilization”, as follows: given a region R of the
state space, find a switching rule that makes the system converge to a region,
located inside R, as small as possible. In practice, the controlled trajectories of
switched systems often converge to limit cycles (see, e.g., [His01]). We present
here a forward-oriented method that performs a decomposition of the region R,
and induces a state-dependent control which, under certain conditions, makes
the system converge to a cyclic trajectory.

Related Work

To the best of of our knowledge, applying a process of state space decompo-
sition in order to stabilize system dynamics is original, at least in the context
of switched systems. The method presents some similarities with the method
of box invariance of [ATS09] which exhibits rectangular invariant subregions of
affine hybrid systems containing an equilibrium point, and with the method of
bisection used in [JKDW01] for the purpose of “set inversion”.

The classical methods that are used for proving the existence and stability of
limit cycles are based on various techniques such as Lyapunov functions (see, e.g.,

P.A. Abdulla and I. Potapov (Eds.): RP 2013, LNCS 8169, pp. 135–145, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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[BRC05, RRL00]), Poincaré map (see, e.g., [Gon03, His01]), sensibility functions
[FRL06], or describing functions [San93]. We give here a couple of conditions,
called (A1)-(A2), from which the existence of stable limit cycles follows in an
elementary way.

Outline of This Paper

We first present the decomposition method in Section 2. We then show that
the decomposition induces a state-dependent control in Section 3. We explain
that, under certain conditions, the controlled trajectories converge to limit cycles
(Section 4). Experimental results are described in Section 5. We conclude in
Section 6.

2 State Space Decomposition

A switched system Σ is defined by a finite family of differential equations of the
form {ẋ = fu(x)}u∈U where U is a finite set ofmodes (see, e.g., [GPT10, Tab09]).
In the following, we consider that the dynamics of the subsystems are affine (i.e.,
fu(x) is of the form Aux+bu with Au ∈ Rn×n and bu a vector of Rn). The control
problem for a switched system Σ is to find a piecewise constant law u : R≥0 → U
in order to achieve some pertained goals. The switching instants are the times
at which u changes its value. A sampled switched system is a switched system
for which the switching instants occur at integer multiples of τ (called sampling
parameter). We will use x(t, x, u) to denote the point reached by Σ at time t
under mode u from the initial condition x. This gives a transition relation →τ

u

defined for x and x′ in Rn by: x →τ
u x

′ iff x(τ, x, u) = x′. Given a set X ⊆ Rn,
we define:

Postu(X) = {x′ | x→τ
u x

′ for some x ∈ X}.

It can be seen that Postu(X) is the result of an affine transformation of the form
CuX + du with Cu ∈ Rn×n and du a vector of Rn.

We say that a subset X of Rn is controlled invariant if:

∀x ∈ X ∃u ∈ U ∃x′ ∈ X : x→τ
u x

′.

A pattern π is defined as a finite sequence of modes. A k-pattern is a pattern of
length at most k. Given a pattern π of the form (u1 · · ·un) and a subset X of
Rn, we define:
Postπ(X) = {x′ | x→τ

u1
x1 ∧ x1 →τ

u2
x2 ∧ · · · ∧ xm−1 →τ

um
x′

for some x ∈ X and x1, . . . , xm−1 ∈ Rn}.
Given a pattern π of the form (u1 · · ·um), and a set X ⊆ Rn, the unfolding of
X via π, denoted by Unf π(X), is the set

⋃m
i=0Xi with:

– X0 = X ,
– Xi+1 = Postui+1(Xi), for all 0 ≤ i ≤ m− 1.
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Definition 1. Given a set R ⊆ Rn, a k-invariant decomposition of R is a set
Δ of the form {Vi, πi}i∈I , where I is a finite set of indices, Vis are subsets of R,
πis are k-patterns, such that:

–
⋃

i∈I Vi = R, and
– for all i ∈ I: Postπi(Vi) ⊆ R.

Given a set R ⊆ Rn and a k-invariant decomposition Δ = {(Vi, πi)}i∈I of R, the
Δ-unfolding of a subset X of R is defined by

⋃
i∈I Unfπi(Vi ∩X). The operator

PostΔ is defined, for all subset X of R by:

PostΔ(X) =
⋃
i∈I

Postπi(X ∩ Vi).

We have:

Proposition 1. Suppose that a set R has a k-invariant decomposition Δ. Then
we have: PostΔ(R) ⊆ R.

We now give a simple algorithm, called Decomposition algorithm, which, given
a set R, outputs, when it succeeds, a k-invariant decomposition Δ of the form
{Vi, πi}i∈I for R. The input set R is given under the form of a box of Rn, that
is a cartesian product of n closed intervals. The subsets Vis of R are boxes that
are obtained by bisection. Two adjacent boxes thus share a common border.

The Decomposition procedure first calls sub-procedure Find Pattern in order
to get a k-pattern π such that Postπ(R) ⊆ R. If it succeeds, then it is done.
Otherwise, it divides R into 2n sub-boxes V1, . . . , V2n of equal size. If for each
Vi, Find Pattern gets a k-pattern πi such that Postπi(Vi) ⊆ R, it is done. If,
for some Vj , no such pattern exists, the procedure is recursively applied to Vj .
It ends with success when a k-invariant decomposition of R is found, or failure
when the maximal degree d of decomposition is reached. The algorithmic form
of the procedure is given in Algorithms 1 and 2. (For the sake of simplicity, we
consider the case of dimension n = 2, but the extension to n > 2 is straightfor-
ward.) The main procedure Decomposition(W ,R,D,K) is called with R as input
value for W , d for input value for D, and k as input value for K; it returns either
〈{(Vi, πi)}i, T rue〉 with

⋃
i Vi = W and

⋃
i Postπi(Vi) ⊆ R, or 〈 , False〉. Proce-

dure Find Pattern(W ,R,K) looks for a K-pattern π for which Postπ(W ) ⊆ R:
it selects all the K-patterns by non-decreasing length order until either it finds
such a pattern π (output: 〈π, T rue〉), or none exists (output: 〈 , False〉). The
correctness of the procedure is stated as follows.

Theorem 1. If Decomposition(R,R,d,k) returns 〈Δ,True〉, then Δ is a k-
invariant decomposition of R.

Example 1. (Boost DC-DC Converter). This example is taken from [BPM05]
(see also, e.g., [BRC05, GPT10, SEK03]). This is a boost DC-DC converter with
one switching cell (see Figure 1). There are two operation modes depending on
the position of the switching cell. An example of pattern of length 4 is illustrated
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Algorithm 1. Decomposition(W ,R,D,K)

Input: A box W , a box R, a degree D of decomposition, a length K of pattern
Output: 〈{(Vi, πi)}i, T rue〉 with ⋃

i Vi = W and
⋃

i Postπi(Vi) ⊆ R, or
〈 , False〉

(π, b) := Find Pattern(W,R,K)
if b = True then

return 〈{(W,π)}, T rue〉
else

if D = 0 then
return 〈 , False〉

else
Divide equally W into (W1,W2,W3,W4) /* (case n = 2) */

(Δ1, b1) := Decomposition(W1,R,D − 1,K)
(Δ2, b2) := Decomposition(W2,R,D − 1,K)
(Δ3, b3) := Decomposition(W3,R,D − 1,K)
(Δ4, b4) := Decomposition(W4,R,D − 1,K)
return (Δ1 ∪Δ2 ∪Δ3 ∪Δ4, b1 ∧ b2 ∧ b3 ∧ b4)

Algorithm 2. Find Pattern(W ,R,K)

Input: A box W , a box R, a length K of pattern
Output: 〈π, T rue〉 with Postπ(W ) ⊆ R, or 〈 , False〉 when no pattern maps W

into R
for i = 1 . . .K do

Π := set of patterns of length i
while Π is non empty do

Select π in Π
Π := Π \ {π}
if Postπ(W ) ⊆ R then

return 〈π, T rue〉

return 〈 , False〉

in Figure 2: it corresponds to the application of mode 2 on [0, τ) and mode 1
on [τ, 4τ). The state of the system is x(t) = [il(t) vc(t)]

T where il is the current
intensity in inductor, and vc(t) the voltage of capacitor. The aim of the control is
to maintain the system inside a given zone R while the output voltage stabilizes
around a desired value. The dynamics associated with mode u is of the form
ẋ(t) = Aux(t) + bu (u = 1, 2) with

A1 =

(− rl
xl

0

0 − 1
xc

1
r0+rc

)
b1 =

(vs
xl

0

)

A2 =

(− 1
xl
(rl +

r0.rc
r0+rc

) − 1
xl

r0
r0+rc

1
xc

r0
r0+rc

− 1
xc

1
r0+rc

)
b2 =

( vs
xl

0

)
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Fig. 1. Scheme of the boost DC-DC
converter

Fig. 2. Cell switching for pattern
(2.1.1.1)

We will use the numerical values of [BPM05], expressed in the per unit system:
xc = 70, xl = 3, rc = 0.005, rl = 0.05, r0 = 1, vs = 1. The sampling period
is τ = 0.5. For R = [1.55, 2.15]× [1.0, 1.4], the Decomposition algorithm yields
a decomposition Δ = {(Vi, πi)}i=1,...,4, which is depicted in the left part of
Figure 3: the sub-region V1 = [1.55, 1.85]× [1.0, 1.2] is associated pattern π1 =
(1·1·2·2·2), V2 = [1.85, 2.15]×[1.0, 1.2] with π2 = (2), V3 = [1.85, 2.15]×[1.2, 1.4]
with π3 = (2 · 1 · 2), and V4 = [1.55, 1.85] × [1.2, 1.4] with π4 = (1). For all
1 ≤ i ≤ 4, we have: PostΔ(Vi) = Postπi(Vi) ⊆ R. This is visualized in the right
part of Figure 3.

Fig. 3. Decomposition Δ of R = [1.55, 2.15]× [1.0, 1.4] for the boost DC-DC converter
example (left), and visualization of PostΔ(Vi) ⊆ R, i = 1, . . . , 4 (right)

3 Δ-trajectories

A k-invariant decomposition Δ of R induces a state-dependent control that
makes any trajectory starting fom R go back to R within at most k steps:
given a starting state x0 in R, we know that x0 ∈ Vi for some i ∈ I (since
R =

⋃
i∈I Vi); one thus applies πi to x0, which gives a new state x1 that belongs
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to R (since Postπ(Vi) ⊆ R); the process is repeated on x1, and so on iteratively.
Given a point x ∈ R, we will denote by succΔ(x) the point of R obtained by
applying πi to x when x is in Vi.

1

Definition 2. Suppose that Δ is a k-invariant decomposition of a given set R. A
discrete trajectory induced by Δ, or more simply, a Δ-trajectory, is a sequence
of points {xi}i≥0 of R, with xi+1 = succΔ(xi) for all i ≥ 0. 2 A Δ-cycle is a
Δ-trajectory of R of the form {x0, x1, . . . , xm−1} with x0 = succΔ(xm−1).

Example 2. Consider the boost example 1. Figure 4 depicts aΔ-trajectory start-
ing from the left upper corner of R = [1.55, 2.15]× [1.0, 1.4], together with its
Δ-unfolding.

Fig. 4. Δ-trajectory for the boost example (left), and its Δ-unfolding (right)

In Figure 4, we can see that the Δ-trajectory and its Δ-unfolding seem to
converge to cycles. We now formally state that, under certain assumptions, this
is actually the case.

4 Limit Cycles

We suppose that we are given a region R ⊆ Rn and a k-invariant decomposi-
tion Δ = {(Vi, πi)}i∈I of R (produced, e.g., by the Decomposition algorithm of
Section 2).

Proposition 2. Consider a k-invariant decomposition Δ = {(Vi, πi)}i∈I of R.
Let Rj

Δ be defined by R0
Δ = R, and Rj

Δ = PostΔ(R
j−1
Δ ) for j > 0. The sequence

{Rj
Δ}j≥0 is a decreasing nested sequence and the set R∗

Δ =
⋂

j≥0R
j
Δ is well-

defined. Furthermore, R∗
Δ is an attractor set of R, i.e.:

1 A nondeterministic choice has to be done when a point x belongs to more than one
subset Vi. When x belongs to a single subset Vi, then succΔ(x) = PostΔ(x).

2 We will sometimes denote such a trajectory under the form: x0 →πi1
x1 →πi2

· · ·
with i1, i2, · · · ∈ I .
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– PostΔ(R∗
Δ) = R∗

Δ (invariance property)

– ∀x ∈ R, d(succjΔ(x), R∗
Δ)→ 0 as j tends to ∞ (attraction property).3

Furthermore we have:

Proposition 3. For all i ≥ 0, the set Ri
Δ is a finite union of polyhedra.

We now make the following assumption:

(A1): There existsN > 0 such thatRN
Δ is a finite union of polyhedra P1, . . . , Pq

(with q ∈ N) such that:

∀j ∈ {1, . . . , q} ∃!i ∈ I : Pj ∩ Vi �= ∅.

Assumption (A1) states that every polyhedral component of RN
Δ shares common

points with a single subset V of R. In particular no polyhedron can cross a
common intersection (“border”) of two distinct subsets V and V ′ of R. This
implies that operator PostΔ applied to any polyhedron of RN

Δ is deterministic:
∀j ∈ {1, . . . , q} ∃!i ∈ I PostΔ(Pj) = Postπi(Pj). Furthermore, we have:

∀j ∈ {1, . . . , q} ∃!j′ ∈ {1, . . . , q} : PostΔ(Pj) ⊆ Pj′ .

Therefore, RN
Δ can be seen as a directed graph of vertices P1, . . . , Pq, with an

edge from Pj to Pj′ iff PostΔ(Pj) ⊆ Pj′ . The vertices of this graph have a single
outgoing edge. The sets Ri

Δ for i ≥ N are generated by further application of
PostΔ. The polyhedral components of Ri

Δ which have no incoming edge will
disppear at iteration i + 1. After a finite number of iterations, the graph of the
polyhedral components of Ri

Δ corresponds to the strongly connected components
of RN

Δ . Furthermore, these strongly connected components correspond to disjoint
cycles, since the vertices of the graphs have only one outgoing edge. This is
formally stated as follows.

Theorem 2. Under assumptions (A1), we have:

1. R∗
Δ is a finite union of disjoint cycles of polyhedra.

2. The Δ-unfolding of each cycle of R∗
Δ is a controlled invariant set.

Let C1, . . . , Cr denote the cycles of polyhedra of R∗
Δ. Each cycle Ci (1 ≤ i ≤ r) is

made of a finite set of polyhedra. Each polyhedron P of a cycle C is associated
with a pattern π such that Postπ(P ) = P . Let us now consider the additional
assumption

(A2): For each pattern π associated with a polyhedron P of a cycle C, π is
locally contractive in R, i.e.:

∀x, y ∈ R ‖Postπ(x) − Postπ(y)‖ < ‖x− y‖

for some norm ‖ · ‖ of Rn.

3 d(y,Z) denotes the smallest distance between a point y and any point of Z, and
succjΔ(x) the point obtained from x after j applications of succΔ.
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Then we have:

Theorem 3. Under assumptions (A1) and (A2), we have:

1. R∗
Δ is a finite union of disjoint cycles of points of R.

2. The Δ-unfolding of each cycle of R∗
Δ is a controlled invariant set.

3. Each Δ-trajectory {x0, x1, . . . } converges to a cycle of the form
{y0, y1, . . . , ym−1} in the following sense:

∃M ∈ N ∀� = 0, . . . ,m− 1 lim
i→∞

xM+i·m+	 = y	.

for all � = 0, . . . ,m− 1.

The proof of a variant of Theorem 3 is given in [FS13].

We now illustrate the convergence of Rk
Δ to a cyclic set of points as k tends

to infinity, on the boost example.

Example 3. (Boost DC-DC Converter). One can check that the modes of the
boost converter are locally contractive in R = [1.55, 1.85]×[1.0, 1.2], hence (A2) is
satisfied. Likewise, (A1) is satisfied: for N = 100, all the polyhedral components
of RN

Δ belong to a single box (viz., V1) of the decomposition Δ. This is shown
in Figure 5, which depicts the iterated images Rk

Δ for k = 0, 20, 40, 60, 80, 100.
The limit set R∗

Δ is here composed of a unique limit cycle that is made of a
single point y0 ∈ V1. We have: y0 →π1 y1 = y0, with π1 = (1 · 1 · 2 · 2 · 2). The
Δ-unfolding of this limit cycle is thus made of 5 points (corresponding to the
composing modes of π1) and is depicted in Figure 6.

5 Implementation

The implementation of the method is made of two basic procedures: a procedure
Decomposition (described in Section 2), which outputs Δ, and a procedure,
called Iteration which constructs Ri

Δ for i ≥ 0. The Decomposition procedure
makes use of zonotopes [K9̈8], and has been written in Octave [oct], except for
the multilevel examples which have been implemented using PLECS [ple]. The
procedure Iteration does not use the data structure zonotopes because it involves
the intersection operator which does not preserve the structure of zonotopes. It
has been written in Ocaml [oca], using the PPL library [ppl] of polyhedra. The
Iteration procedure receives Δ from module Decomposition and outputs the
successive iterations of PostΔ. The sequence of post sets can also be visualized
as an animation (see Figure 5).
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Fig. 5. Visualization of Rk
Δ for k = 0, 20, 40, 60, 80, 100 for the boost example

Fig. 6. Δ-unfolding of the limit cycle {y0} for the boost example

The examples have run on a machine equipped with an Intel Core2 CPU
X6800 at 2.93GHz and with 2GB of Ram memory. Some figures of the experi-
ments are listed in the following table.

Example Running time # patterns |U | k d n (A1) (A2) cycle
Boost [BPM05] 150 seconds 12113 2 5 1 2 yes yes yes
Two-tank [His01] 4 seconds 1423 4 3 1 2 yes yes yes
Heating [Gir12] 1 second 134 2 2 4 2 yes yes yes

Helicopter [DLHT11] ≈ 2 hours ≈ 1.5 million 9 6 4 2 yes no yes
5-level [FFL+12] 3 minutes - 16 8 1 3 yes no yes
7-level [FFL+12] 35 minutes - 64 32 1 5 yes no yes
9-level [FFL+12] ≈ 5 hours - 256 128 1 7 yes no yes
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The first column indicates the name of the example together with its reference.
The second column indicates the running time to obtain a decomposition, and
the third one the numbers of patterns generated to obtain this decomposition4.
The subsequent columns labeled by |U |, k, d and n indicate the number of
modes, the input parameter of maximal pattern length, the input parameter of
decomposition depth and the space dimension respectively. Finally, the column
‘(A1)’ (resp. ‘(A2)’) indicates if (A1) (resp. (A2)) is satisfied, and the column
‘cycle’ if the controlled trajectories converge to a limit cycle.

6 Final Remarks

We have presented an original technique to synthesize stability controllers for
switched systems. We have implemented the procedure, and applied it success-
fully to several examples of the literature. The method can also be used for
synthesizing safety controllers in order to guarantee safety properties of the
controlled system (see [FS13]). A sufficient condition for the existence of a k-
invariant decomposition of a given box R is also given in [FS13].
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Abstract. This paper considers questions relating formal languages to
word problems of groups with a particular emphasis on the decidability
of some problems that arise. We investigate the decidability of certain
natural conditions that characterize word problems for various classes
of languages and we then turn our attention to the question of a lan-
guage actually being a word problem. We show that this is decidable
for the classes of regular and deterministic context-free languages but
undecidable for the one-counter languages.

1 Introduction

The word problem of a finitely generated groupG (i.e. the set of words represent-
ing the identity element of G) is a fundamental notion in group theory and there
have been some intriguing connections between this and formal language theory.
In particular, various classifications have been obtained as to which groups have
their word problems lying in certain classes of languages (see Section 4). We
focus on subfamilies of the context-free languages and, given a result of Herbst
(Theorem 7) which says that, under certain closure assumptions, there are es-
sentially only three cases, we concentrate on those particular families, namely
the regular languages, the one-counter languages and the context-free languages.

There is also a simple necessary and sufficient criterion (see Theorem 9) for
a language to be the word problem of a group. This involves the conjunction of
two conditions (universal prefix closure and deletion closure - see Section 2 for
definitions of these concepts) and we consider the question of the decidability
of these two conditions in Sections 5 and 6 respectively. It is intriguing that we
have a connection between word problems of groups and natural formal language
conditions such as deletion closure as studied in [15].

Having established the decidability of these conditions for the classes of lan-
guages we are considering we turn our attention to the question of deciding their
conjunction, i.e. that of deciding whether a given language is the word problem
of a group. Whilst this is easily seen to be decidable for the regular languages we
build on the work in [17] to show that this is undecidable for one-counter lan-
guages (and hence for context-free languages as well); see Theorem 28. However,
we know that any context-free language that is the word problem of a group is
deterministic context-free and we show that the problem of deciding whether a
deterministic context-free language is the word problem of a group is actually
decidable (see Theorem 31).
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2 Background from Formal Language Theory

Throughout this paper we will be discussing regular and context-free languages
accepted by finite automata and pushdown automata respectively. We will also
be discussing one-counter languages which are those languages accepted by a
one-counter automaton, i.e. a pushdown automaton where we have only a single
stack symbol (apart from a symbol marking the bottom of the stack); these au-
tomata are nondeterministic and accept by final state. We will use some standard
definitions and properties of classes of languages (such as their closure properties
under certain operations and decidability results); see [2,11,14] for example.

In particular, it is well known (see [11] for example) that one cannot decide
whether or not a context-free language L ⊆ Σ∗ is equal to Σ∗ (the so called
universe problem). In fact, this problem remains undecidable if one restricts
oneself to the certain subsets of the context-free languages such as the one-
counter languages [13]. We will need a slight strengthening of this fact where we
restrict to the case where the alphabet has size 2:

Theorem 1. The following decision problem is undecidable:
Input: a one-counter automaton M with input alphabet Ω of size 2.

Output: “yes” if L(M) = Ω∗; “no” otherwise.

Proof. We use a standard technique to show that, if we had an algorithm A
solving this decision problem, then we would have an algorithm solving the
universe problem for alphabets of arbitrary size. So suppose that we have such
an algorithm A. Let Σ = {x1, x2, . . . , xn} be an arbitrary alphabet and let
Ω = {a, b}. Let M = (Q,Σ, Γ, τ, s, A) be a one-counter automaton and let
L = L(M). We want to determine whether or not L(M) = Σ∗.

Define ϕ : Σ∗ → Ω∗ by x1 �→ ab, x2 �→ a2b, . . . , xn �→ anb, and let K = Σ∗ϕ.
Since K is regular, R = Ω∗ − K is regular. Since ϕ is injective we have that
L = Σ∗ if and only if Lϕ = Σ∗ϕ = K which is equivalent to saying that
Lϕ ∪ R = K ∪ R = Ω∗. Since Lϕ ∪ R is a one-counter language we may use
algorithm A to decide this problem, and so we could determine whether or not
L(M) = Σ∗, a contradiction. &'
Remark 2. In Theorem 1 all we have used about the family F of one-counter
languages are the facts that the universe problem is undecidable for F and
that F is closed under homomorphism and union with regular languages; so
Theorem 1 applies to any such family of languages. &'

In this paper we will also need the idea of the prefix closure of a language
L ⊆ Σ∗ which is defined to be:

prefix(L) = {α ∈ Σ∗ : αβ ∈ L for some β ∈ Σ∗}.

In the case where prefix(L) = Σ∗, we say that L has the universal prefix closure
property.

We also say that a language L ⊆ Σ∗ is deletion closed if it satisfies the
following condition:

α, u, β ∈ Σ∗, αuβ ∈ L, u ∈ L =⇒ αβ ∈ L.
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3 Background from Group Theory

If G is a group and Σ is a finite set of symbols such that there is a surjective
(monoid) homomorphism ϕ : Σ∗ → G, then we say that Σ is a generating set for
G. Note that Σ is a monoid generating set for G as opposed to a group generating
set ; in the latter case, we have a set of symbols X and then let Σ = X ∪X−1

where X−1 is a set of symbols in a (1-1) correspondence with X (and where we
insist that x−1ϕ = (xϕ)−1). In either case the word problem of the group G is
the set of all words in Σ∗ that represent the identity element of G.

A presentation for a group G is an expression of the form 〈A : R〉 where A is a
generating set for G and R is a set of relations of the form α = β. If A is a monoid
generating set for G and R ⊆ A∗×A∗, we have a monoid presentation for G and,
if A is a group generating set for G, Σ = A∪A−1 as above, and R ⊆ Σ∗×Σ∗ we
have a group presentation for G. In each case the set R must be a set of defining
relations for G: if ≈ is the congruence generated by R (together with all pairs of
the form (x−1x, ε) or (xx−1, ε) with x ∈ X in the case of a group generating set,
where ε denotes the empty word), then G is isomorphic to Σ∗/ ≈, i.e. α ≈ β if
and only if αϕ = βϕ. The free group on a set X has the (group) presentation
〈X : ∅〉.

If P is any property of groups, then we say that a group is virtually P if it
has a subgroup of finite index with property P . We will need the following fact:

Theorem 3. Given a finite group presentation ℘ = 〈X : R〉 and the promise
that the group G presented by ℘ is virtually free, triviality of G is decidable.

Proof. We start two processes running. The first enumerates the consequences
of R, terminating if all the pairs (x, ε) with x ∈ X have been output; this
terminates if G is trivial. The second enumerates all the subgroups of finite
index (one can do this for any finitely presented group; see [16] for example) and
terminates if it finds a proper subgroup (any non-trivial virtually free group must
possess such a subgroup). Eventually one of these two processes must terminate.

&'

4 Characterizing Word Problems

When examining groups based on their word problem as a formal language it
is quite common to classify groups based on what class of languages their word
problem lies in. However, there is no guarantee that the word problem will lie in
the same class F of languages for different generating sets. The following result
(see [8]) shows that, under certain mild assumptions on F , this is not a problem:

Theorem 4. If a class of languages F is closed under inverse homomorphism
and the word problem of a group G lies in F with respect to some finite generating
set then the word problem of G will lie in F for all finite generating sets.

Anisimov [1] classified the groups with a regular word problem:
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Theorem 5. A finitely generated group has a regular word problem if and only
if it is a finite group.

Further work was done by Muller and Schupp [18] which, along with a result of
Dunwoody [4], characterised the groups with a context-free word problem:

Theorem 6. A finitely generated group G has a context-free word problem if
and only if it is a virtually free group.

One might ask what other families of languages F contained in the context-free
languages give rise to interesting classes of groups. Herbst [7] showed that, if F
satisfies certain natural closure conditions, then there are not many possibilities:

Theorem 7. If F is a subset of the context-free languages closed under homo-
morphism, inverse homomorphism and intersection with regular languages then
the class of finitely generated groups whose word problem lies in F is the class of
groups with a regular word problem, the class of groups with a one-counter word
problem or the class of groups with a context-free word problem.

In the light of Theorems 5 and 6 it is natural to ask which groups have a one-
counter word problem. Herbst characterised these groups in [7] (see also [10]):

Theorem 8. A finitely generated group G has a one-counter word problem if
and only if it is a virtually cyclic group.

Given Theorem 7 it is natural to ask if one can decide if a language lying in one
of these three families of languages is a word problem of a group and we answer
this question in Section 7.

The following characterisation of word problems of groups was given in [19]:

Theorem 9. A language L over an alphabet Σ is the word problem of a group
with generating set Σ if and only if L satisfies the following two conditions:

W1 for all α ∈ Σ∗ there exists β ∈ Σ∗ such that αβ ∈ L;
W2 αuβ ∈ L, u ∈ L⇒ αβ ∈ L.

Condition W1 says that the prefix closure prefix(L) of L is Σ∗, i.e. that L has the
universal prefix closure property, whereas condition W2 says that the language
L is deletion closed. It is natural to ask, for the families of languages in Theo-
rem 7, whether one can decide whether a language in that family satisfies these
conditions and we will answer these questions in Sections 5 and 6 respectively.

5 Universal Prefix Closure and Decidability

In this section we investigate the decidability of the question prefix(L) = Σ∗. It
is clear this is decidable if L is specified by means of a finite automaton:

Proposition 10. The following problem is decidable:
Input: a finite automaton N = (Q,Σ, τ, s, A).

Output: “yes” if prefix(L(N)) = Σ∗; “no” otherwise.
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For example, given a finite state automaton N we construct the minimal de-
terministic automaton M accepting L(N). As M has no unreachable states,
prefix(L(N)) = Σ∗ if and only if M has no fail states, which is clearly decidable.

Remark 11. We are only interested in decidability questions in this paper and
not with computational complexity. In our one non-trivial result about decid-
ability (see Theorem 31) we do not have an easily computable time complexity
(see Remark 32). For more information about the complexity of problems related
to that described in Proposition 10 see [20] for example. &'

When we consider the corresponding problem for one-counter languages we
need the idea of a counter machine. There are several ways of describing these
machines and we give one possibility here.

A counter machine M (as distinct from a one-counter automaton) is a two-
tape machine. The first tape is the input tape; it is read only and the head can
only move to the right. The second tape is a stack: whenever we move left, M
erases the symbol it moved away from. There is only one stack symbol, a say.
Intuitively M can only store a natural number (so that we can think of M as
having an input tape and a counter). As we will see, the stack is never empty.

More formally, a counter machine is a sextuple M = (Q,Σ, a, δ, q0, qf ) where
Q is a finite set of states containing two distinguished states, q0, the start state,
and qf , the final state. The input alphabet Σ is a finite set of symbols such that
a /∈ Σ. A configuration of M is a word of the form qan where q ∈ Q and n > 0
(where the current state is q and the current stack contents are an).

We take C to be {1, 2, 3, 5, 7, 12 ,
1
3 ,

1
5 ,

1
7}; there is no particular significance in

our choice of 2, 3, 5 and 7, in that any four pair-wise coprime natural numbers
would suffice. The transition relation δ is a function from (Q−{qf})×Σ×C to
(Q−{q0})×(Q−{q0}); the fact that δ is a function means thatM is deterministic.
M starts with just a on its stack (i.e. with the counter set to 1) and must set
its counter to 1 again before entering qf .

A move (p, b, x, q, r) ∈ δ is interpreted as follows. If M is in state p reading an
input b and if the result of multiplying the current value n of the counter (i.e.
we have an on the stack) by the value x is an integer, then we set the counter
to xn and move to state q; if xn is not an integer then the counter remains set
at n and M moves to state r. We write pan  qaxn or pan  ran as appropriate.

Given a Turing Machine, one can effectively construct a counter machine
accepting the same language (see [11] for example). We now turn to the compu-
tations of a counter machine:

Definition 12. Let M be a counter machine. A valid computation of M is a
word C0C1 . . . Cn ∈ Q ∪ {a}∗ such that the Ci are configurations of M and

C0 = q0a  C1  . . .  Cn−1  Cn = qfa.

An invalid computation is a word in (Q∪{a})∗ which is not a valid computation.

In any valid computation of M , any configuration qan will have n = 2b3c5d7e

for some b, c, d, e � 1. Multiplying by 2, 3, 5 or 7 increases b, c, d or e by 1
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and multiplying by 1
2 ,

1
3 ,

1
5 or 1

7 (if possible) decreases b, c, d or e by 1; so we
effectively have four counters each of which can be increased or decreased. The
fact that we can only multiply by x if nx is an integer is effectively saying that
we can test each counter individually for zero (for example, if n = 2b3c5d7e and
we want to multiply by 1

2 , then we must have that b > 0).
Our aim is to show that the problem of deciding whether a language has the

universal prefix property is undecidable for one-counter languages. In order to
do this we need to relate the set of invalid computations of M to a one-counter
language (i.e. a language accepted by a one-counter automaton as defined above).
There have been other similar approaches to such problems (see [22] for example).

Proposition 13. If M = (Q,Σ, a, δ, q0, qf ) is a counter machine then the fol-
lowing language is a one-counter language:

K = {qanpaj : the following conditions hold:
if (q, b, k, p, r) is a quintuple of δ and kn is an integer then kn �= j;
if (q, b, k, p, r) is a quintuple of δ and kn is not an integer then j �= n}

Proof. Since δ is a finite set of quintuples (q, b, k, p, r) and the one-counter lan-
guages are closed under union, it is sufficient to show that the language

{qanpaj : (kn ∈ Z⇒ kn �= j) ∧ (kn �∈ Z⇒ n �= j)}

is a one-counter language for any fixed quintuple (q, b, k, p, r). Now the condition

(kn ∈ Z⇒ kn �= j) ∧ (kn �∈ Z⇒ n �= j)

is equivalent to
(kn ∈ Z ∧ kn �= j) ∨ (kn �∈ Z ∧ n �= j),

and (using again the fact that the one-counter languages are closed under union)
we only need to show that the languages

{qanpaj : kn ∈ Z ∧ kn �= j}, {qanpaj : kn �∈ Z ∧ n �= j}

are both one-counter languages.
If k ∈ N then the condition kn ∈ N is automatically satisfied; if k �∈ N, then

the condition kn ∈ N is equivalent to n mod 1
k being zero which we may check

in the states of the machine. As far as kn �= j or n �= j is concerned this can be
easily verified for any fixed k using the stack and the result follows. &'
We now use Proposition 13 to prove the following result:

Theorem 14. The following problem is undecidable:
Input: a one-counter automaton N = (Q,Σ, Γ, δ, s, A).

Output: “yes” if prefix(L(N)) = Σ∗; “no” otherwise.

Proof. Let M = (Q,Σ, a, δ, q0, qf ) be a counter machine and Γ = Q ∪ {a}. The
unique halting configuration of M is qfa and the following language over Γ

K = {qanpaj : the following conditions hold:
if (q, b, k, p, r) is a quintuple of δ and kn is an integer then kn �= j;
if (q, b, k, p, r) is a quintuple of δ and kn is not an integer then j �= n}

is a one-counter language by Proposition 13. We consider the following languages:
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(i) L1 = Γ ∗ − q0aΓ
∗. This is the set of all words in Γ ∗ which don’t start with

the unique initial configuration of M .
(ii) L2 = Γ ∗− Γ ∗qfaΓ ∗. This is the set of all words not containing the unique

halting configuration of M .
(iii) L3 = L2QQΓ

∗ ∪ aΓ ∗. This is the set of all words which are badly formed
(as a sequence of configurations of M) before the halting configuration of
M appears (if it appears).

(iv) L4 = L2KΓ ∗. This is the set of words which contain two successive config-
urations where the second does not follow from the first before the halting
configuration of M appears (if it appears).

L1, L2 and L3 are regular and L4 is a one-counter language since the one-counter
languages are closed under concatenation. If L = L1∪L2∪L3∪L4 we see that L
is a one-counter language as the one-counter languages are closed under union.
L is the set of all invalid computations α of M such that no prefix of α is

a valid computation; so L is prefix-closed. We have L = Γ ∗ precisely when M
does not accept any input and so deciding if L = Γ ∗ is equivalent to deciding if
L(M) = ∅; as counter machines are Turing complete this is undecidable.

If one could decide, given a one-counter automaton N = (Q,Σ,Ω, δ, s, A), if
prefix(L(N)) = Σ∗, then one could decide if L = Γ ∗. However, L is prefix-closed;
so its prefix closure is equal to Γ ∗ precisely when L itself is equal to Γ ∗. We have
just pointed out that determining whether or not L = Γ ∗ is undecidable. &'

Remark 15. Given Theorem 14 it is immediate that the problem of deciding
whether prefix(L(N)) = Σ∗ is undecidable for pushdown automata. Given our
interest in word problems of groups, we have focussed on one-counter and context-
free languages in this paper, but the argument used in Theorem 14 would easily
apply to other classes of languages as well &'

6 Deletion Closed Languages and Decidability

We now investigate the decidability of the question as to whether a language L
is deletion closed. As with Proposition 10, we note that this is easily seen to be
decidable if L is specified by means of a finite automaton:

Proposition 16. The following problem is decidable:
Input: a finite automaton N = (Q,Σ, τ.s, A).

Output: “yes” if L(N) is deletion closed; “no” otherwise.

Proof. Given N we construct the minimal automaton P accepting L = L(N)
and then calculate the syntactic monoid M of L as the transition monoid of P .

Let ϕ be the natural map from Σ∗ to M , so that L = Sϕ−1 for some S ⊆ M .
For each element x ∈M we can test whether or not xϕ−1 ∈ L (this is independent
of the choice of xϕ−1), and so we may determine S. Since the condition that L is
deletion closed, i.e. that αuβ ∈ L, u ∈ L⇒ αβ ∈ L, is equivalent to

αuβ ∈ S, u ∈ S ⇒ αβ ∈ S,
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and since the latter is clearly decidable (as S is a subset of a finite monoid M),
we can decide whether or not L is deletion closed. &'

It is clear that the technique used in the proof of Proposition 16 will apply to
many other properties of regular languages.

We will use the following result from [9], known as Higman’s Lemma, in what
follows:

Theorem 17. The set of finite words over a finite alphabet, as partially ordered
by the subsequence relation, is well-quasi-ordered. This, in particular, implies
that there does not exist an infinite sequence where the elements of the sequence
are all pairwise incomparable or, equivalently, any set containing only pairwise
incomparable finite words is finite.

We will write α ≺ β if α can be obtained by deleting some symbols in β, i.e. if
α is a proper subsequence of β; if α is a (not necessarily proper) subsequence
of β, we will write α � β. The following may be of some independent interest:

Proposition 18. A language L ⊆ Σ∗ which is deletion closed and contains Σ
is regular.

Proof. Given that L is deletion closed and contains Σ, deleting any symbols
from a word in L always results in another word in L; so, if α ∈ L and β ≺ α,
then β ∈ L. If L = Σ∗ then the result is clearly true; so we will assume that
L �= Σ∗ in what follows.

First, consider words β /∈ L such that α ≺ β ⇒ α ∈ L (such words are
guaranteed to exist since ∅ �= L �= Σ∗). Given two such words γ and β we must
have that γ ⊀ β and that β ⊀ γ; so, by Theorem 17, the set U of all such words
must be finite.

Consider the language V = {α ∈ Σ∗ : ∃ β ∈ U such that β � α}. This
language is regular (as all we are doing is checking that a subsequence lies in a
finite set).

If α ∈ V then there exists β ∈ U such that β � α and so α �∈ L (as β �∈ L).
Conversely, if α �∈ L, then choose β minimal such that β � α and β �∈ L. If

γ ≺ β, then γ ∈ L by the minimality of β; so β ∈ U and hence α ∈ V .
Given this we see that Σ∗ − L = V is regular and hence L is regular. &'

Remark 19. The hypothesis that L contains Σ in Proposition 18 is necessary; for
example, the language {anbn : n � 0} is deletion closed but not regular. Indeed,
since the word problem of any finitely generated group is deletion closed and
there are finitely generated groups with unsolvable word problem, there exist
deletion closed languages that are not even recursively enumerable. &'

Recall that a language L ⊆ Σ∗ is said to be bounded if there exist non-empty
words w1, w2, . . . , wk in Σ∗ such that L ⊆ w∗

1w
∗
2 . . . w

∗
k. It is known that the

problem of deciding, given a context-free grammar G, if L(G) is bounded is
decidable (see Theorem 5.5.2 in [6] for example). Given this, we can now prove:
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Theorem 20. The following problem is undecidable:
Input: a one-counter automaton M .

Output: “yes” if L = L(M) is deletion closed; “no” otherwise.

Proof. We show that, if we could solve this decision problem, then we could solve
the universe problem for alphabets of size 2, contradicting Theorem 1.

Let us assume that we have an algorithm determining whether or not L(M)
is deletion closed for a one-counter automaton M = (Q,Σ, Γ, τ, s, A) where
Σ = {a, b}. First we note that, if the language L = L(M) is not deletion closed,
then it cannot be Σ∗. Our next observation is that, if L does not contain Σ
(which we can test as membership is decidable for one-counter languages), then
it also cannot be Σ∗; so in these cases we simply output “no” and terminate.

Now assume that L is deletion closed and contains Σ. Each non-empty word
α in L is uniquely expressible in the form an(1)bm(1) . . . an(	)bm(	) for some � � 1
where n(1) � 0, n(i) > 0 for i > 1, m(i) > 0 for i < � and m(�) � 0; let us call
this the standard decomposition for α and, given such a decomposition, let ‖α‖
denote �. One of the following two possibilities must occur:

(i) there is a bound on ‖α‖ for α ∈ L, i.e. there exists k > 0 such that every
word of L has a standard decomposition an(1)bm(1) . . . an(	)bm(	) with � � k;

(ii) there is no such bound on ‖α‖ and so, for any k, we have a word of the form
an(1)bm(1) . . . an(	)bm(	) in L with � � k. Given this, for every k > 0 there
exists β ∈ L such that (ab)k is a subsequence of β.

If possibility (i) occurs then L is bounded and L �= Σ∗. If possibility (ii) occurs
then, as every word in Σ∗ is a subsequence of (ab)k for some k and L is deletion
closed, we must have that L = Σ∗ in this case (and so L is not bounded).

So we test if L is bounded. If L is bounded then it is not Σ∗ and we output
“no” and, if L is not bounded, then L = Σ∗ and we output ‘yes’. This gives us
our contradiction. &'

Remark 21. Given Theorem 20, it is immediate that the problem of deciding
whether or not L(M) is deletion closed is undecidable for pushdown automata.
Given our interest in word problems of groups, we have focussed on one-counter
and context-free languages in this paper, but the argument used in Theorem 20
would apply to other classes of languages as well.

If one were only interested in context-free languages then there are other ap-
proaches simpler than the one we have presented here. For example the property
of a language being deletion closed distinguishes Σ∗ from Σ∗−{w} for any word
w and one can build undecidability proofs from this based on the invalid com-
putations of a Turing machine (see [11] for example). &'

7 Word Problems and Decidability

We now turn our attention to word problems, i.e. those languages satisfying
both the conditions W1 and W2 in Theorem 9. Given Theorem 9, together with
Propositions 10 and 16, we immediately have the following result:
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Proposition 22. The following decision problem is decidable:
Input: a finite automaton N .

Output: “yes” if L(N) is the word problem of a group; “no” otherwise.

When we come to the one-counter languages, however, this problem becomes
undecidable. This was shown for context-free languages in [17] and the argument
used there extends to one-counter languages as well. This result does not follow
immediately from Theorems 14 and 20; it is possible to have two undecidable
problems whose conjunction is decidable. In order to prove the undecidability of
this problem we need the concept of a Hotz group from [12]:

Definition 23. The Hotz group H(G) of a grammar G = (V,Σ, P, S) is the
group with presentation 〈V ∪Σ : {α = β : (α→ β) ∈ P}〉.

Hotz showed that the groupH(G) for a reduced context-free grammarG depends
only on L(G). We also need the idea of a collapsing group:

Definition 24. The collapsing group C(L) of a language L ⊆ Σ∗ is the group
with presentation 〈Σ : {α = β : α, β ∈ L}〉.

The following connection between these two concepts will play a central role in
what follows:

Definition 25. A language L ⊆ Σ∗ is called a language with Hotz isomorphism
if there exists a reduced grammar G = (V,Σ, P, S) with L = L(G) such that the
collapsing group of L is isomorphic to H(G).

It is known [5] that all context-free languages are languages with Hotz
isomorphism. In fact it is shown in [3] that:

Theorem 26. A language L ⊆ Σ∗ is a language with Hotz isomorphism if and
only if the collapsing group C(L) is finitely presentable.

Remark 27. The collapsing group C(L) of a language L ⊆ Σ∗, where the empty
word ε lies in L, will have every word in L representing the identity element of
C(L) but it may have other words representing the identity element as well.

Let ℘ denote the presentation 〈Σ : {α = 1 : α ∈ L}〉. If L is the word problem
of some groupK, then ℘ is a presentation for K and so K is isomorphic to C(L).
If L is not the word problem of a group then the word problem of the group
with presentation ℘ must contain L as a proper subset.

In particular, if L is a context-free language which is the word problem of a
group K, then C(L) is isomorphic to K and we may obtain a finite presentation
for K using the facts that K is isomorphic to H(G) (where G is a context-free
grammar generating L) and that the definition of H(G) in Definition 23 is via
a finite presentation. &'

We are now in a position to prove our undecidability result:

Theorem 28. The following decision problem is undecidable:
Input: a one-counter automaton N = (Q,Σ, Γ, τ, s, A).

Output: “yes” if L(N) is the word problem of a group; “no” otherwise.
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Proof. Suppose we had an algorithm A which could decide, given a one-counter
automatonN , whether or not L = L(N) were the word problem of some groupG.
We will show that one could then decide whether or not L = Σ∗ which is a
contradiction by Theorem 1.

Since Σ∗ is the word problem of the group {1}, if A outputs “no”, then we
have that L �= Σ∗. On the other hand, since L is context-free, if A outputs
“yes”, then we know that the corresponding group G has a context-free word
problem, and so G is virtually free by Theorem 6. We can now obtain a finite
presentation ℘ for G as in Remark 27 and then use the presentation ℘ to test G
for triviality as in Theorem 3. Since G is trivial if and only if L = Σ∗ we now
have an algorithm for determining whether or not L = Σ∗, a contradiction. &'

Remark 29. Since every one-counter language is context-free, in that a one-
counter automaton is a special case of a pushdown automaton, it immediately
follows from Theorem 28 that there is no algorithm to decide whether or not
L(M) is the word problem of a group for a pushdown automaton M (as proved
in [17]). The proof given in Theorem 28 will, in fact, work for any family F of
context-free languages where the universe problem is undecidable (provided that
F is specified in such a way that a finite presentation for the Hotz group of any
language L in F can be effectively determined). &'

8 Deterministic Context-Free Languages

We saw in Theorem 6 that a group has a context-free word problem if and only
if it is virtually free. It is not hard to show that the word problem of a virtually
free group is deterministic context-free. So we have the following immediate
consequence of Theorem 6:

Theorem 30. If a group G has a context-free word problem, then it has a de-
terministic context-free word problem.

However, despite the fact that it is undecidable whether or not a context-free
language is the word problem of a group, this problem becomes decidable if the
language is deterministic context-free and is given by a deterministic pushdown
automaton:

Theorem 31. The following decision problem is decidable:
Input: a deterministic pushdown automaton M = (Q,Σ, Γ, τ, s, A).

Output: “yes” if L(M) is the word problem of a group; “no” otherwise.

Proof. If ε �∈ L = L(M) then L is not the word problem of a group; so we check
first that ε ∈ L (outputting “no” if that is not the case); we will assume that
ε ∈ L in what follows.

We convert our deterministic pushdown automaton to a reduced context-free
grammar Γ such that L(Γ ) = L and then use the Hotz group construction in
Remark 27 to write down a finite presentation ℘ of the group G = H(Γ ).
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As in Remark 27, if L is the word problem of a group, then it must be the
word problem of G. IfW is the word problem of G with respect to the generating
set Σ, then the question is whether L = W (in which case L is the word problem
of a group) or L ⊂W (in which case L is not the word problem of a group).

If L is the word problem of G then, as L is context-free, G must be virtually
free. With this is mind, we start a process which we will refer to as Process 1.

Process 1 enumerates the finite-index subgroups of G and enumerates all
presentations of the finite-index subgroups, checking each such presentation it
generates to see if it is a natural presentation of a free group (i.e. a presentation
with no relations). This is a semi-decision process; if G is virtually free, then
we will eventually find such a presentation and so know that G is virtually free,
but, if G is not virtually free, then this process will not terminate.

At the same time we start Process 2. Process 2 takes the finite presentation ℘
and enumerates the words in Σ∗ representing the identity element, checking each
one it generates for membership of L. If Process 2 ever finds a word which is
trivial in the group G but not a member of L then we terminate all the running
processes and output “no”. (If L were the word problem of a group then it has to
be the word problem of G, in which case no word trivial in G could lie outside L.)
Process 2 is also a semi-decision process; we continue enumerating words whilst
we do not have an output of “no”.

Eventually one of these two processes must terminate. If it is Process 1 then
we know that the group G is virtually free and we start Process 3. Process 3
uses the presentation ℘ of G and its finite-index free subgroup to construct a
deterministic pushdown automaton N which accepts the word problem of G; we
can then test N for equivalence with M by the theorem of Sénizergues in [21].
We halt all the processes and output the result of the equivalence test as our final
output. Note that, if we reach Process 3, then Process 3 will always terminate.

Eventually either Process 2 terminates (and we output “no”) or else Process 1
(and therefore Process 3) terminates. Thus we have an algorithm which outputs
“yes” if L(M) is the word problem of a group and outputs “no” if it is not, as
required. &'

Remark 32. As the reader will see, the use of the theorem of Sénizergues con-
cerning the decidability of the equivalence problem for deterministic pushdown
automata is a critical component of the proof of Theorem 31. We are also using
procedures such as the enumeration of finite-index subgroups of a group search-
ing for one that is a free group. As it is (in general) undecidable as to whether or
not a finitely presented group is virtually free, this procedure will not necessarily
terminate, and our proof relies on the fact that we can run this in parallel with
another semi-decision procedure and that, given our situation, one of these two
procedures must terminate. Given that the two procedures we have used will not
have computable time complexity in general, we are not claiming any degree of
efficiency for this decision procedure, merely that the problem is decidable. &'
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Abstract. This paper deals with verification of reachability properties on Time
Petri Nets (TPN). TPNs allow the specification of real-time systems involving
timing constraints explicitly. The main challenge of the analysis of such systems
is to construct a finite abstraction of the corresponding (infinite) state graph pre-
serving timed properties. Thus, we propose a new finite graph, called Timed Ag-
gregate Graph (TAG), abstracting the behaviour of bounded TPNs with strong
time semantics. The main feature the TAG compared to existing approaches is
the encoding of the time information within the nodes of this graph. This allows
to compute the minimum and maximum elapsed time in every path of the graph.
The TAG preserves runs and reachable states of the corresponding TPN which
allows for the verification of both event- and state-based properties.

Keywords: Time Petri Nets, Reachability properties, Model Checking.

1 Introduction

Time Petri nets are one of the most used formal models for the specification and the
verification of systems where the explicit consideration of time is primordial. The main
extensions of Petri nets with time are time Petri nets [14] and timed Petri nets [18].
In the first, a transition can fire within a time interval whereas, in the second, time
durations can be assigned to the transitions; tokens are meant to spend that time as
reserved in the input places of the corresponding transitions. Several variants of timed
Petri nets exist: time is either associated with places (p-timed Petri nets), with transitions
(t-timed Petri nets) or with arcs (a-timed Petri nets) [19]. The same holds for time Petri
nets [7]. In [17], the authors prove that p-timed Petri nets and t-timed Petri nets have the
same expressive power and are less expressive than time Petri nets. Several semantics
have been proposed for each variant of these models. Here we focus on t-time Petri
nets, which we simply call TPNs. There are two ways of letting the time elapse in a
TPN [17]. The first way, known as the Strong Time Semantics (STS), is defined in such
a manner that time elapsing cannot disable a transition. Hence, when the upper bound
of a firing interval is reached, the transition must be fired. In contrast to that, the Weak
Time Semantics (WTS) does not make any restriction on the elapsing of time.
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For real-time systems, dense time model (where time is considered in the domain
R≥0) is the unique possible option, raising the problem of handling an infinite number
of states. In fact, the set of reachable states of the TPN is generally infinite due to the
infinite number of time successors a given state could have. Two main approaches are
used to treat this state space: region graphs [1] and the state class approach [3]. The
other methods [2,20,4,8,5,13,6,9] are either refinements or improvements or derived
from these basic approaches. The objective of these representations is to yield a state-
space partition that groups concrete states into sets of states with similar behaviour with
respect to the properties to be verified. These sets of states must cover the entire state
space and must be finite in order to ensure the termination of the verification process.
In this work, we propose a new contribution for the abstraction and the verification of
timed systems and especially those modelled by bounded TPNs.

This paper is organised as follows: In Section 2, some preliminaries about TPNs and
the corresponding semantics are recalled. In Section 3, we define the Timed Aggregate
Graph (TAG) associated with a TPN. In Section 4, we propose algorithms for the ver-
ification of some usual time properties based on TAGs. In Section 5, we discuss the
experimental results obtained with our implementation compared to two well-known
tools with respect to the size of the obtained abstraction size. Finally, a conclusion and
some perspectives are given in Section 6.

2 Preliminaries and Basic Notations

A t-time Petri net (TPN for short) is a P/T Petri net [16] where a time interval [tmin; tmax]
is associated with each transition t.

Definition 1. A TPN is a tupleN = 〈P, T,Pre,Post , I〉 where:

– 〈P, T,Pre,Post〉 is a P/T Petri net where:
• P is a finite set of places;
• T is a finite set of transitions with P ∩ T = ∅ ;
• Pre : T −→ NP is the backward incidence mapping;
• Post : T −→ NP is the forward incidence mapping;

– I : T −→ N × (N ∪ {+∞}) is the time interval function such that: I(t) =
(tmin, tmax), with tmin ≤ tmax, where tmin (resp. tmax) is the earliest (resp. latest)
firing time of transition t.

A marking of a TPN is a function m : P −→ N where m(p), for a place p, denotes
the number of tokens in p. A marked TPN is a pair N = 〈N1,m0〉 where N1 is a
TPN and m0 is a corresponding initial marking. A transition t is enabled by a marking
m iff m ≥ Pre(t) and Enable(m) = {t ∈ T : m ≥ Pre(t)} denotes the set of
enabled transitions in m. If a transition ti is enabled by a marking m, then ↑(m, ti)
denotes the set of newly enabled transitions [2]. Formally, ↑(m, ti) = {t ∈ T | (m −
Pre(ti) + Post(ti)) ≥ Pre(t) ∧ (m − Pre(ti)) < Pre(t)}. If a transition t is in
↑(m, ti), we say that t is newly enabled by the successor of m by firing ti. Dually,
↓(m, ti) = {t ∈ T | (m− Pre(ti) + Post(ti)) ≥ Pre(t) ∧ (m− Pre(ti)) ≥ Pre(t)}
is the set of oldly enabled transitions. The possibly infinite set of reachable markings of
N is denoted Reach(N ). If the set Reach(N ) is finite we say thatN is bounded.
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The semantics of TPNs can be given in terms of Timed Transition Systems (TTS)
[12] which are usual transition systems with two types of labels: discrete labels for
events (transitions) and positive real labels for time elapsing (delay). States of the TTS
are pairs s = (m,V ) wherem is a marking and V : T −→ R≥0∪{⊥} a time valuation.
If a transition t is enabled in m then V (t) is the elapsed time since t became enabled,
otherwise V (t) = ⊥. Given a state s = (m,V ) and a transition t, t is said to be firable
in s iff t ∈ Enable(m) ∧ V (t) �= ⊥ ∧ tmin ≤ V (t) ≤ tmax.

Definition 2 (Semantics of a TPN). Let N = 〈P, T,Pre,Post , I,m0〉 be a marked
TPN. The semantics ofN is a TTS SN = 〈Q, s0,→〉 where:

1. Q is a (possibly infinite) set of states
2. s0 = (m0, V0) is the initial state such that:

∀t ∈ T, V0(t) =
{
0 if t ∈ Enable(m0)
⊥ otherwise

3. → ⊆ Q× (T ∪R≥0)×Q is the discrete and continuous transition relations:

(a) the discrete transition relation:
∀t ∈ T : (m,V )

t−→ (m′, V ′) iff:⎧⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎩

t ∈ Enable(m) ∧m′ = m− Pre(t) + Post(t)
tmin ≤ V (t) ≤ tmax

∀t′ ∈ T : V ′(t′) =

⎧⎨
⎩

0 if t′ ∈ ↑(m, t)
V (t′) if t′ ∈ ↓(m, t)
⊥ otherwise

(b) the continuous transition relation: ∀d ∈ R≥0, (m,V )
d−→ (m′, V ′) iff:⎧⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎩

∀t ∈ Enable(m), V (t) + d ≤ tmax

m′ = m
∀t ∈ T :

V ′(t) =
{
V (t) + d if t ∈ Enable(m);
V (t) otherwise.

First, the delay transitions respect the STS semantics: an enabled transition must
fire within its firing interval unless disabled by the firing of others. Second, a state
change occurs either by the firing of transitions or by time elapsing: The firing of a
transition may change the current marking while the time elapsing may make some
new transitions firable.

Given a TPN N and the corresponding TTS SN , a path π = s0
α1−→s1

α2−→ . . . ,
where αi ∈ (T ∪R≥0), is a run of SN iff (si, αi, si+1) ∈→ for each i = 0, 1, . . . . The
length of a run π can be infinite and is denoted by | π |. Without loss of generality, we
assume that for each non empty run π = s0

α1−→s1
α2−→ . . . of a STS corresponding to a

TPN, αi and αi+1 are not both in R≥0. Then, π can be written, involving the reachable

markings ofN , as π = m0
(d1,t1)−→ . . . s.t. di is the time elapsed at marking mi−1 before

firing ti. In order to associate a run π of SN with a run ofN , denoted P(π), we define
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the following projection function, where � denotes the concatenation operator between
paths and πi, for i = 0, 1 . . . , denotes the suffix of π starting at state si.

P(π) =

⎧⎪⎪⎪⎨
⎪⎪⎪⎩
s0.m if | π |= 0

s0.m
(0,α1)−→ � P(π1) if α1 ∈ T

s0.m
(α1,α2)−→ � P(π2) if α1 ∈ R≥0∧ | π |≥ 2

s0.m
α1−→ � P(π1) if α1 ∈ R≥0∧ | π |= 1

In the following, we define, for a given finite run π of a TPNN , the time elapsed before
reaching (resp. firing) a marking (resp. a transition) belonging to this run.

Definition 3. Let N be a TPN and let π = m0
(d1,t1)−→ . . .

(dn,tn)−→ mn (resp.

π = m0
(d1,t1)−→ . . .

(dn,tn)−→ mn
dn+1−→) be a run ofN . The access (resp. firing) time of mark-

ing m (resp. transition t) in π, denoted ATπ(m) (resp. FTπ(t)), is defined as follows:

– ATπ(m0) = 0

– ∀1 ≤ i ≤ n, ATπ(mi) = FTπ(ti) =
∑i

k=1 dk.

3 Timed Aggregate Graph

In this section, we propose to abstract the reachability state space of a TPN using a new
graph called Timed Aggregate Graph (TAG) where nodes are called aggregates and are
grouping sets of states of a TTS. The key idea behind TAGs is that time information is
encoded inside aggregates. It includes the time the system is able to stay in the aggregate
as well as a dynamic interval associated with each enabled transition. The first feature
allows to encapsulate the delay transitions of the corresponding TTS (the arcs of a TAG
are labeled with transitions of the corresponding TPN only), while the second allows
to dynamically update the earliest and latest firing times of enabled transitions. It also
allows to maintain the relative differences between the firing times of transitions.

Before we formally define the TAG and illustrate how the attributes of an aggregate
are computed, let us first formally define aggregates.

Definition 4 (Timed Aggregate). A timed aggregate associated with a TPN N =
〈P, T, Pre, Post, I〉 is a 4-tuple a = (m,E, h,H), where:

– m is a marking
– E = {〈t, αt, βt〉 | t ∈ Enable(m), αt ∈ (Z ∪ {−∞})∧ βt ∈ N ∪ {+∞}} is a set

of enabled transitions each asssociated with two time values.
– h = min〈t,αt,βt〉∈E(max(0, αt)): the minimum time the system can stay in a
– H = min〈t,αt,βt〉∈E(βt): the maximum time the system can stay in a

Each aggregate is characterised by three attributes that are computed dynamically: first,
a marking m. Second, a set E of enabled transitions, each associated with two time
values. For a given enabled transition t, αt represents the minimum time the system
should wait before firing t and βt represents the maximum time the system can delay
the firing of t. Note that,αt can be negative which means that t can be fired immediately.
Otherwise, αt represents the earliest firing time of t. Starting from this aggregate, the
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firing of t can occur between max(0, αt) and βt. In the rest of this paper, αt will be
abusively called the dynamic earliest firing time of t and βt its dynamic latest firing
time. Finally, the h and H attributes represent the minimum and the maximum time,
respectively, the system can spend at the current aggregate.

Figure 1 illustrates an example of an aggregate. The associated marking is the mark-
ing of the left hand TPN. In this figure, we assume that this aggregate is the initial one.
The h (resp. H) attribute corresponds to the minimum earliest firing time (resp. lat-
est firing time) of the enabled transitions. Enabled transitions are associated with their
static time intervals.

p1

p2

p3

t1[2; 4]t2 [0; 2]

t3 [1; 3]

(a) Time Petri Net

m = (1, 0, 1)

h = 1
H = 3
E = {〈t1, 2, 4〉, 〈t3, 1, 3〉}

(b) Aggregate a

Fig. 1. Example of aggregate

The TAG is a labeled transition system where nodes are timed aggregates. It has an
initial aggregate, a set of actions (the set of transitions of N ) and a transition relation.
The initial aggregate is easily computed by considering static information of the TPN.

Definition 5 (Timed Aggregate Graph). A TAG associated with a TPN N = 〈P, T,
Pre,Post , I,m0〉 is a tuple G = 〈A, T, a0, δ〉 where:

1. A is a set of timed aggregates;
2. a0 = 〈m0, h0, H0, E0〉 is the initial timed aggregate s.t.:

(a) m0 is the initial marking ofN .
(b) h0 = mint∈Enable(m0 )(tmin)
(c) H0 = mint∈Enable(m0 )(tmax)
(d) E0 = {〈t, tmin, tmax〉 | t ∈ Enable(m0 )}

3. δ ⊆ A× T ×A is the transition relation such that:
for an aggregate a = 〈m,h,H,E〉, a transition t s.t. 〈t, αt, βt〉 ∈ E and an aggre-
gate a′ = 〈m′, h′, H ′, E′〉, (a, t, a′) ∈ δ iff the following holds:
(a) m′ = m− Pre(t) + Post(t)
(b) αt ≤ H
(c) ∀〈t′, αt′ , βt′〉 ∈ E,

tmin > t′max ⇒ (tmin − αt)− (t′min − αt′) ≥ (tmin − t′max)
(d) E′ = E′

1 ∪ E′
2, where:

• E′
1 =

⋃
t′∈↑(a,t){〈t′, t′min, t

′
max〉}

• E′
2 =

⋃
t′∈↓(a,t){〈t′, αt′ −H, βt′ −max(0, αt)〉}

(e) h′ = min〈t′,αt′ ,βt′〉∈E′(max(0, αt′))
(f) H ′ = min〈t′,αt′ ,βt′〉∈E′(βt′)
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Given an aggregate a = 〈m,h,H,E〉 and a transition t ∈ T , t is said to be enabled
by a, denoted by a t−→, iff: (1) ∃(αt, βt) ∈ (Z∪{−∞})×(N∪{+∞}) s.t. (t, αt, βt) ∈
E and αt ≤ H , and, (2) there is no other transition t′, enabled by a.m, that should be
fired before t. In fact, the first condition is not sufficient when tmin is greater than
t′max for some other transition t′. The firing of t from a leads to a new aggregate a′ =
〈m′, h′, H ′, E′〉 whose attributes are computed as follows:

– The elements of E′ are processed by taking the transitions that are enabled by m′

and computing their earliest and latest firing times depending on their membership
to ↑ (a, t) and ↓ (a, t). For each transition t′ ∈ Enable(a′.m), if t′ is newly
enabled, then its dynamic earliest and latest firing times are statically defined by
t′min and t′max respectively. Otherwise, let 〈t′, αt′ , βt′〉 ∈ a.E and 〈t′, α′

t′ , β
′
t′〉 ∈

a′.E, then the maximum time elapsed by the system at a.m (i.e., a.H) is subtracted
from αt′ and the minium time is substracted from βt′ . Indeed, more the system can
stay in a.m less it can stay in a′.m (and vice versa). Thus, the earliest firing time of t
starting from a′ ismax(0, αt′−a.H) while its latest firing time is βt′−max(0, αt).

– The computation of a′.h (resp. a′.H) is ensured by taking the minimum of the
dynamic earliest (resp. latest) firing time of enabled transitions.

According to Definition 5, the dynamic earliest firing time of a transition can de-
crease infinitely which could lead to an infinite state space TAG. Thus, an equivalence
relation allowing to identify equivalent aggregates has been introduced in [11]. This
equivalence relation is used in the construction of a TAG so that each newly built ag-
gregate is not explored as long as an already built equivalent aggregate has been. More-
over, in [11], we have established that the TAG, built under this equivalence relation is
finite when the corresponding TPN is bounded. We also demonstrated that the TAG is
an exact representation of the reachability state space of a TPN. For each path in the
TAG (resp. in the TPN) it is possible to find a path in the TPN (resp. TAG) involving the
same sequence of transitions and where the time elapsed within a given state is between
the minimum and the maximum stay time of the corresponding aggregate.

Figure 2 illustrates the TAG corresponding to the TPN of Figure 1.
For the verification of time properties, an abstraction-based approach should allow

the computation of the minimum and maximum elapsed time over any path.

Definition 6. Let N be a TPN and let G = 〈A, T, a0, δ〉 be the corresponding TAG.
Let π = a0

t1−→a1−→ . . . tn−→an be a path in G.

– For each aggregate ai (for i = 0 . . . n), MinATπ(ai) (resp. MaxATπ(ai)) de-
notes the minimum (resp. maximum) elapsed time between a0 and ai. In particular,
MinAT (a0) = 0 and MaxAT (a0) = a0.H .

– For each transition ti (for i = 1 . . . n), MinFTπ(ti) (resp. MaxFTπ(ti)) denotes
the minimum (resp. maximum) elapsed time before firing ti.

Proposition 1. Let N be a TPN and let G = 〈A, T, a0, δ〉 be the corresponding TAG.
Let π = a0

t1−→a1−→ . . . tn−→an be a path in G. We denote by αit (resp. βit ) the dy-
namic earliest (resp. latest) firing time of a transition t at aggregate ai, for i = 1 . . . n.
Then, ∀i = 1 . . . n, the following holds:
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a0

m0 (1, 3)
{〈t1, 2, 4〉, 〈t3, 1, 3〉}

a1

m1 (0, 1)
{〈t2, 0, 2〉, 〈t3,−3, 1〉}

a2

m0 (0, 1)
{〈t1, 2, 4〉, 〈t3,−4, 1〉}

a3

m0 (1, 3)
{〈t1, 1, 4〉, 〈t3, 1, 3〉}

a4

m0 (0, 3)
{〈t1,−1, 3〉, 〈t3, 1, 3〉}

a5

m0 (0, 2)
{〈t1,−4, 2〉, 〈t3, 1, 3〉}

a6

m0 (0, 1)
{〈t1,−6, 1〉, 〈t3, 1, 3〉}

a7

m0 (0, 0)
{〈t1,−7, 0〉, 〈t3, 1, 3〉}

a8

m1 (0, 2)
{〈t2, 0, 2〉, 〈t3,−2, 3〉}

a9

m1 (0, 2)
{〈t2, 0, 2〉, 〈t3,−2, 2〉}

a10

m0 (0, 2)
{〈t1, 2, 4〉, 〈t3,−4, 2〉}

a11

m1 (0, 0)
{〈t2, 0, 2〉, 〈t3,−6, 0〉}

a12

m0 (0, 0)
{〈t1, 2, 4〉, 〈t3,−6, 0〉}

a13

m0 (0, 3)
{〈t1,−1, 4〉, 〈t3, 1, 3〉}

a14

m1 (0, 2)
{〈t2, 0, 2〉, 〈t3, 1, 3〉}

a15

m0 (0, 3)
{〈t1, 2, 4〉, 〈t3, 0, 3〉}

a16

m1 (0, 1)
{〈t2,−2, 1〉, 〈t3, 1, 3〉}

a17

m1 (0, 0)
{〈t2,−3, 0〉, 〈t3, 1, 3〉}

a1

t1

t3

t2

t3

t3

t3

t1

t3
t1

t3

t1

t3

t1

t1

t3

t2
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t1

t3

t2

t3

t3

t3

t1

t2

t3

t3

t1

t2

t3

t2

Fig. 2. The TAG of Fig. 1

– Minimum and maximum access time
• MinATπ(ai) = MinATπ(ai−1) + max(0, βi−1ti

− (timax − timin))
• MaxATπ(ai) = MaxAT (ai−1)+
min(mint∈↑(ai−1,ti)(tmin),mint∈↓(ai−1,ti)(βi−1t

− ai−1.H))
– Minimum and maximum firing time

• MinFTπ(ti) = MinATπ(ai)
• MaxFTπ(ti) =MaxATπ(ai−1)

4 Checking Time Reachability Properties

Our ultimate goal is to be able, by browsing the TAG associated with a TPN, to check
timed reachability properties. For instance, we might be interested in checking whether
some state-based property ϕ is satisfyied within a time interval [d,D), with d ∈ R≥0

andD ∈ (R≥0∪∞), starting from the initial marking. The following usual reachability
properties belong to this category.

1. ∃♦[d;D]ϕ : There exists a path starting from the initial state, consuming between d
and D time units and leading to a state that satisfies ϕ.
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MinAT ≤ D
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Region3

MinAT > D

Fig. 3. Reachability analysis on the TAG

2. ∀�[d;D]ϕ : For all paths starting from the initial state, all the states, that are reached
after d and before D time units, satisfy ϕ.

3. ∀♦[d;D]ϕ : For all paths starting from the initial state, there exists a state in the path,
reached after d and before D time units that satisfies ϕ.

4. ∃�[d;D]ϕ : There exists a path from the initial state where all the states, that are
reached after d and before D time units, satisfy ϕ.

Because of lack of space, we do not give the detailed algorithms for checking the above
formulae, but give the main intuition.

In order to check any of the above properties, we propose on-th-fly approach where
the TAG is represented as a tree which is partitioned into three regions (see. Figure 3).
The first region (Region1) contains the aggregates that are reachable strictly before
d time units. The second region (Region2) contains the aggregates that are reachable
between d and D time units and the last region contains the aggregates that are reach-
able strictly after D time units. In case D = ∞ Region3 is empty. By doing so, the
verification algorithms behave as follows: only aggregates belonging to Region2 are
analysed with respect to ϕ. Region1 must be explored in order to compute the maximal
and minimum access time of the traversed aggregates, but Region3 is never explored.
In fact, as soon as an aggregate is proved to belong to Region3 the exploration of the
current path is stopped.

For instance checking the fromula number 1 is reduced to the search of an aggregate
a in Region2 that satisfies ϕ. As soon as such an aggregate is reached the checking
algorithm stops the exploration and returns true. When, all the aggregates of Region2

are explored (none satisfies ϕ) the checking algorithm return false. Dually, the formula
number 2 is proved to be unsatisfied as soon as an aggregate in Region2 that do not
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satisfy ϕ is reached. When all the aggregates of Region2 are explored (each satisfies
ϕ) the checking algorithm return true.

Checking formulae number 3 and 4 is slightly more complicated. In fact, checking
formula number 3 is reduced to check if, along any path inRegion2, there exists at least
one aggregate satisfying ϕ. As soon as a path in Region2 is completely explored with-
out encountering an aggregate satisfying ϕ, the exploration is stopped and the check-
ing algorithm returns false. Otherwise, it returns true. Finally, checking formula 4 is
reduced to check that there exists a path in Region2 such that all the aggregates be-
longing to this path satisfy ϕ. This formula is proved to be true as soon as such a path
is found. Otherwise, when all the paths of Region2 are explored (none satisfies the
desired property), the checking algorithm returns false.

A similar approach can be trivially imagined for event-based approaches.

5 Experimental Results

The efficiency of the verification of timed reachability properties is closely linked with
the size of the explored structure to achieve this verification. Thus, it was important to
first check that the TAG is a suitable/reduced abstraction before performing verification
on it. Our approach for building TAG-TPN was implemented in a prototype tool (written
in C++), and used for experiments in order to validate the size of the graphs generated
by the approach (note that the prototype was not optimised for time efficiency yet, there-
fore no timing figures are given in this section). All results reported in this section have
been obtained on 2.8 gigahertz Intel with four gigabytes of RAM. The implemented
prototype allowed us to have first comparison with existing approaches with respect to
the size of obtained graphs. We used the TINA tool to build the SCGs, ROMEO tool for
the ZBGs and our tool for the TAGs. We tested our approach on several TPN models
and we report here the obtained results. The considered models are representative of
the characteristics that may have a TPN, such as: concurrency, synchronisation, disjoint
firing intervals and infinite firing bounds. The two first models (Figure 4(a) and Fig-
ure 4(b)) are two parametric models where the number of processes can be increased.
In Figure 4(a), the number of self loops (pn → tn → pn is increased while in Fig-
ure 4(b) the number of processes, whose behavior is either local, by transition ti, or
global by synchronization with all the other processes, by transition t0, is increased.

In addition to these two illustrative examples, we used two well known other para-
metric TPN models. The first one [10] represents a composition of producer/consumer
models. The second (adapted from [15]) is the Fischer’s protocol for mutual exclusion.

Table1 reports the results obtained with the SCG, the ZBG and the TAG-TPN ap-
proaches, in terms of graph size number of nodes/number of edges). The obtained
results for the producers/consumers models show that the TAG yields better abstrac-
tion (linear order) than the SCG and the ZBG approaches. Each time a new module of
producer/consumer is introduced, the size of graphs increases for all three approaches.
However, the SAG achieves a better performance than the two other approaches. For the
TPN of Figure 4(a), the obtained results show that the size of the TAG exponentially
increases when the the parallelism occur in the structure of TPN. This is also the case
also for the ZBG and the SCG methods, and we can see that our method behaves better
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Table 1. Experimentation results

SCG (with Tina) ZBG (with Romeo) TAG-TPN
Parameters (nodes / arcs) (nodes / arcs) (nodes / arcs)

Nb. prod/cons TPN model of producer/consumer
1 34 / 56 34 / 56 34 / 56
2 748 / 2460 593 / 1 922 407 / 1 255
3 4 604 / 21891 3 240 / 15 200 1 618 / 6 892
4 14 086 / 83 375 9 504 / 56 038 3 972 / 20 500
5 31 657 / 217 423 20 877 / 145 037 8 175 / 48 351
6 61 162 / 471 254 39 306 / 311 304 15 157 / 99 539
7 107 236 / 907 708 67 224 / 594 795 26 113 / 186 363
8 175 075 / 1 604 319 107 156 / 1 044 066 42 503 / 324 600
9 270 632 / 2 655 794 161 874 / 1 718 104 66 103 / 534 055
10 400 648 / 4 175 413 234 398 / 2 687 147 99 036 / 839 011

Nb. self-loops TPN example with concurrency (Figure 4(a))
1 39 / 72 40 / 74 39 / 72
2 471 / 1 296 472 / 1 299 354 / 963
3 6 735 / 25 056 6 736 / 25 060 2 745 / 9 888
4 119 343 / 563 040 119 344 / 563 045 19 488 / 87 375
5 2 546 679 / 14 564 016 ? / ? 130 911 / 701 748

Nb. processes TPN example with synchronization (Figure 4(b))
1 1 / 2 2 / 4 1 / 2
2 13 / 35 14 / 38 13 / 35
3 157 / 553 158 / 557 118 / 409
4 2 245 / 10 043 2 246 / 10 048 915 / 3 909
5 3 9781 / 21 7681 39 782 / 217 687 6 496 / 33 071
6 848 893 / 5 495 603 848 894 / 5 495 610 43 637 / 258 051
7 ? / ? ? / ? 282 514 / 1.90282e+06

Nb. processes Fischer protocol
1 4 / 4 4 / 4 4 / 4
2 18 / 29 19 / 32 20 / 32
3 65 / 146 66 / 153 80 / 171
4 220 / 623 221 / 652 308 / 808
5 727 / 2 536 728 / 2 615 1 162 / 3 645
6 2 378 / 9 154 2 379 / 10 098 4 274 / 15 828
7 7 737 / 24 744 7 738 / 37 961 15 304 / 66 031
8 25 080 / 102 242 25 081 / 139 768 53 480 / 265 040

when we increment the self-loop structures in the model. The ZBG’s and the SCG’s
execution have aborted due to a lack of memory when the number of self-loops was
equal to 5. The number of edges of the obtained graphs follows the same proportion.
In the synchronisation pattern exmaple, our approache behaves well as well. Indeed,
with, 1, 2 and 3 processes, the sizes of the obtained graphs are almost similar with the
three approaches. But, from 4 synchronised processes, the size of the SCGs and the
ZBGs increase exponentially, leading to a state explosion with 7 processes, whereas the
TAGs have been computed successfully with 7 processes (and even more). The Fischer
protocol model is the only model where our approach leads to relatively bad results
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p1

p2 p3

p4 p5

t1[1; 5]

t2[1; 5]

t3 [1; 5]

t4 [1; 5] t5[1; 5]

(a) concurrency

p1 p2

t0 [1; 5]

t1[1; 5] t2[1; 5]

(b) synchronisation

Fig. 4. TPN models used in the experiments

(although the difference with the two other approaches is linear). Our first explanation
is that, in case of disjoint firing intervals, the abstraction can be weak in some cases. In
fact, when a transition t is enabled by an aggregate t and there exists a trasnition t′, not
enabled by a, s.t. tmin > t′max, a is considered non equivalent (while it could be) to
all aggregates where the earliest firing time of t is not the same. However, it could be
that t and t′ are never enabled simultanously. We think that taking into account some
structural properties of the model could allow to refine our abstraction.

The experimental results show (in most cases) an important gain in performances in
terms of graph size (nodes/arcs) compared to the SCG and the ZBG approaches for the
tested examples. This promises performant verification approaches based on the TAG .

6 Conclusion

We proposed adapted algorithms for reachability analysis of time properties based on
a new finite abstraction of the TPN state space. Unlike, the existing approaches, our
abstraction can be directly useful to check both state and event-based logic properties.
Our ultimate goal is to use the TAG traversal algorithm for the verification of timed
reachability properties expressed in the TCTL logic. Several issues have to be explored
in the future: We first have to implement and experiment our verification algorithms.
Second, we believe that the size of the TAG can be further reduced while preserving
time properties without necessarily preserving all the paths of the underlying TPN. We
also plan to design and implement model checking algorithms for full TCTL logic.
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Branching-Time Model Checking

Gap-Order Constraint Systems
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Abstract. We consider the model checking problem for Gap-order Con-
straint Systems (GCS) w.r.t. the branching-time temporal logic CTL,
and in particular its fragments EG and EF. GCS are nondeterministic
infinitely branching processes described by evolutions of integer-valued
variables, subject to Presburger constraints of the form x−y ≥ k, where
x and y are variables or constants and k ∈ N is a non-negative constant.
We show that EG model checking is undecidable for GCS, while EF is
decidable. In particular, this implies the decidability of strong and weak
bisimulation equivalence between GCS and finite-state systems.

1 Introduction

Counter machines [Min67] extend a finite control-structure with unbounded
memory in the form of counters that can hold arbitrarily large integers (or natu-
ral numbers), and thus resemble basic programming languages. However, almost
all behavioral properties, e.g., reachability and termination, are undecidable for
counter machines with two or more counters [Min67]. For the purpose of formal
software verification, various formalisms have been defined that approximate
counter machines and still retain the decidability of some properties. E.g., Petri
nets model weaker counters that cannot be tested for zero, and have a decidable
reachability problem [May84].

Gap-order constraint systems [Boz12, BP12] are another model that approx-
imates the behavior of counter machines. They are nondeterministic infinitely
branching processes described by evolutions of integer-valued variables, subject
to Presburger constraints of the form x− y ≥ k, where x and y are variables or
constants and k ∈ N is a non-negative constant. Unlike in Petri nets, the coun-
ters can be tested for zero, but computation steps still have a certain type of
monotonicity that yields a decidable reachability problem. In fact, control-state
reachability is decidable even for the more general class of constrained multiset
rewriting systems [AD06].

Previous Work. Beyond reachability, several model checking problems have been
studied for GCS and related formalisms. The paper [Cer94] studies Integral Re-
lational Automata (IRA), a model that is subsumed by GCS. It is shown that
CTL model checking of IRA is undecidable in general, but the existential and
universal fragments of CTL∗ remain decidable for IRA. Termination and safety
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properties for GCS were studied in [Boz12, BP12]. In particular, LTL model
checking is PSPACE complete for GCS. Moreover, model checking GCS is decid-
able for the logic ECTL∗, but undecidable for ACTL∗, which are the existential
and universal fragments of CTL∗ respectively. These fragments do not allow ar-
bitrary nesting of path quantifiers and negation and are therefore orthogonal to
EF and EG, which allow nesting of negation and operators EF/EG but forbid
the respective other operator.

Our contribution. We study the decidability of model checking problems for GCS
with fragments of computation-tree logic (CTL), namely EF and EG. While
general CTL model checking of GCS is undecidable (even for the weaker model
of IRA [Cer94]), we show that it is decidable for the logic EF. On the other hand,
model checking is undecidable for the logic EG. An immediate consequence of
our decidability result for EF is that strong and weak bisimulation equivalence
are decidable between GCS and finite-state systems.

2 Gap-Order Constraint Systems

Let Z and N denote the sets of integers and non-negative integers. A labeled
transition system (LTS) is described by a triple T = (V,Act , −→) where V is
a (possibly infinite) set of states, Act is a finite set of action labels and −→ ⊆
V ×Act × V is the labeled transition relation. We use the infix notation s

a−→s′

for a transition (s, a, s′) ∈ −→, in which case we say T makes an a-step from s
to s′. For a set S ⊆ V of states and a ∈ Act we define the set of a-predecessors
by Prea(S) = {s′|s′

a−→s ∈ S} and let Pre∗(S) = {s′|s′−→∗s ∈ S}. A state in
a LTS is often referred to as a process.

We fix a finite set Var of variables ranging over the integers and a finite set
Const ⊆ Z of constants. Let Val denote the set of variable evaluations ν : Var →
Z. To simplify the notation, we will sometimes extend the domain of evaluations
to constants, where they behave as the identity, i.e., ν(c) = c for all c ∈ Z.

Definition 1 (Gap-Constraints). A gap clause over (Var ,Const) is an in-
equation of the form

(x− y ≥ k) (1)

where x, y ∈ Var ∪ Const and k ∈ Z. A clause is called positive if k ∈ N. A
(positive) gap constraint is a finite conjunction of (positive) gap clauses. A gap
formula is an arbitrary boolean combination of gap clauses.

An evaluation ν : Var → Z satisfies the clause C : (x − y) ≥ k (write ν |= C)
if it respects the prescribed inequality. That is,

ν |= (x− y) ≥ k ⇐⇒ ν(x) − ν′(y) ≥ k. (2)

We define the satisfiability of arbitrary gap formulae inductively in the usual
fashion and write Sat(ϕ) = {ν ∈ Val | ν |= ϕ} for the set of evaluations that
satisfy the formula ϕ. In particular, an evaluation satisfies a gap constraint iff
it satisfies all its clauses. A set S ⊆ Val of evaluations is called gap-definable if
there is a gap formula ϕ with S = Sat(ϕ).
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We will consider processes whose states are described by evaluations and
whose dynamics is described by stepwise changes in these variable evaluations,
according to positive gap-order constraints.

Let Var ′ = {x′|x ∈ Var} be the set of primed copies of the variables. These
new variables are used to express constraints on how values can change when
moving from one evaluation to another: x′ is interpreted as the next value of
variable x. A transitional gap-order clause (-constraint, -formula) is a gap-order
clause (-constraint, -formula) with variables in Var ∪ Var ′.

For evaluations ν : Var → Z and ν′ : Var → Z we define the combined
evaluation ν ⊕ ν′ : Var ∪Var ′ → Z of variables in Var ∪ Var ′ by

ν ⊕ ν′(x) =

{
ν(x), if x ∈ Var

ν′(x), if x ∈ Var ′.
(3)

Transitional gap-clauses can be used as conditions on how evaluations may evolve
in one step. For instance, ν may change to ν′ only if ν ⊕ ν′ |= ϕ for some gap-
clause ϕ.

Definition 2. A Gap-Order Constraint System (GCS) is given by a finite set
of transitional gap-clauses together with a labeling function. Formally, a GCS
is a tuple G = (Var ,Const ,Act , Δ, λ) where Var ,Const ,Act are finite sets of
variables, constants and action symbols, Δ is a finite set of positive transitional
gap-order constraints over (Var ,Const) and λ : Δ→ Act is a labeling function.
Its operational semantics is given by an infinite LTS with states Val where

ν
a−→ν′ ⇐⇒ ν ⊕ ν′ |= C (4)

for some constraint C ∈ Δ with λ(C) = a. For a set M ⊆ Val of evaluations we
write PreC(M) for the set {ν | ∃ν′ ∈M. ν ⊕ ν′ |= C} of C-predecessors.

Observe that a constraint (x − 0 ≥ 0) ∧ (0 − x ≥ 0) is satisfied only by
evaluations assigning value 0 to variable x. Similarly, one can test if an evaluation
equates two variables. Also, it is easy to simulate a finite control in a GCS using
additional variables.1 What makes this model computationally non-universal is
the fact that we demand positive constraints: while one can easily demand an
increase or decrease of variable x by at least some offset k ∈ N, one cannot
demand a difference of at most k (nor exactly k).

Example 1. Consider the GCS with variables {x, y} and single constant {0} with
two constraints Δ = {CX, CY } for which λ(CX) = a and λ(CY ) = b.

CX =((x − x′ ≥ 1) ∧ (y′ − y ≥ 0) ∧ (y − y′ ≥ 0) ∧ (x′ − 0 ≥ 0)) (5)

CY =((y − y′ ≥ 1) ∧ (x′ − x ≥ 0) ∧ (y′ − 0 ≥ 0)). (6)

1 In fact, [BP12, Boz12] consider an equivalent notion of GCS that explicitly includes
a finite control.
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This implements a sort of lossy countdown where every step strictly decreases
the tuple (y, x) lexicographically: CX induces a-steps that decrease x while pre-
serving the value of y and CY induces b-steps that increase x arbitrarily but
have to decrease y at the same time. The last clauses in both constraints ensure
that x and y never change from a non-negative to a negative value.

In the sequel, we allow ourselves to abbreviate constraints for the sake of read-
ability. For instance, the constraint CX in the previous example could equiva-
lently be written as (x > x′ ≥ 0) ∧ (y = y′).

3 Branching-Time Logics for GCS

We consider (sublogics of) the branching-time logic CTL over processes defined
by gap-order constraint systems, where atomic propositions are gap-clauses. The
denotation of an atomic proposition C = (x− y ≥ k) is �C� = Sat(C), the set of
evaluations satisfying this constraint. Well-formed CTL formulae are inductively
defined by the following grammar, where C ranges over the atomic propositions
and a ∈ Act over the action symbols.

ψ ::= C | true | ¬ψ | ψ ∧ ψ | 〈a〉ψ | EFψ | EGψ | E(ψUψ) (7)

For the semantics, let Pathsω(ν0) be the set of infinite derivations

π = ν0
a0−→ν1

a1−→ν2 . . . (8)

of G starting with evaluation ν0 ∈ Val and π(i) = νi the ith evaluation νi on
π. Similarly, we write Paths∗(ν0) for the set of finite paths from ν0 and let
Paths(ν0) = Pathsω(ν0) ∪ Paths∗(ν0). The denotation of composite formulae is
defined in the standard way.

�C� = Sat(C) (9)

�true� = Val (10)

�¬ψ� = Val \ �ψ� (11)

�ψ1 ∧ ψ2� = �ψ1� ∩ �ψ2� (12)

�〈a〉ψ� = Prea(�ψ�) (13)

�EFψ� = {ν | ∃π ∈ Paths∗(ν). ∃i ∈ N. π(i) ∈ �ψ�} (14)

�EGψ� = {ν | ∃π ∈ Pathsω(ν). ∀i ∈ N. π(i) ∈ �ψ�} (15)

�E(ψ1Uψ2)� = {ν | ∃π ∈ Paths(ν). ∃i ∈ N. (16)

π(i) ∈ �ψ2� ∧ ∀j < i.π(j) ∈ �ψ1�}

We use the usual syntactic abbreviations false = ¬true, ψ1∨φ2 = ¬(¬ψ1∧¬φ2).
The sublogics EF and EG are defined by restricting the grammar (7) defining

well-formed formulae: EG disallows subformulae of the form E(ψ1Uψ2) and
EFψ and in EF, no subformulae of the form E(ψ1Uψ2) or EGψ are allowed.
The Model Checking Problem is the following decision problem.
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Input: A GCS G = (Var , Const,Act , Δ, λ), an evaluation ν : Var → Z
and a formula ψ.

Question: ν |= ψ?

Cerans [Cer94] showed that general CTL model checking is undecidable for
gap-order systems. This result holds even for restricted CTL without next op-
erators 〈a〉. In the following section we show a similar undecidability result for
the fragment EG. On the other hand, model checking GCS with the fragment
EF turns out to be decidable; cf. Section 5.

4 Undecidability of EG Model Checking

Theorem 1. The model checking problem for EG formulae over GCS is
undecidable.

Proof. By reduction from the halting problem of deterministic 2-counter Minsky
Machines (2CM). 2-counter machines consist of a deterministic finite control,
including a designated halting state halt , and two integer counters that can
be incremented and decremented by one and tested for zero. Checking if such a
machine reaches the halting state from an initial configuration with control-state
init and counter values x1 = x2 = 0 is undecidable [Min67].

Given a 2CM M , we will construct a GCS together with an initial evaluation
ν0 and a EG formula ψ such that ν0 |= ψ iff M does not halt.

First of all, observe that we can simulate a finite control of n states using one
additional variable state that will only ever be assigned values from 1 to n. To
do this, let [p] ≤ n be the index of state p in an arbitrary enumeration of the
state set. Now, a transition p−→q from state p to q introduces the constraint
(state = [p] ∧ state′ = [q]). We will abbreviate such constraints by (p−→q) in
the sequel and simply write p to mean the clause (state = [p]).

We use two variables x1, x2 to act as integer counters. Zero-tests can then
directly be implement as constraints (x1 = 0) or (x2 = 0). It remains to show
how to simulate increments and decrements by exactly 1. Our GCS will use
two auxiliary variables y, z and a new state err . We show how to implement
increments by one; decrements can be done analogously.

Consider the x1-increment p
x1=x1+1−→ q that takes the 2CM from state p to

q and increments the counter x1. The GCS will simulate this in two steps, as
depicted in Figure 1 below. The first step can arbitrarily increment x1 and will
remember (in variable y) the old value of x1. The second step does not change
any values and just moves to the new control-state. However, incrementing by
more than one in the first step enables an extra move to the error state err
afterwards. This error-move is enabled if one can assign a value to variable z
that is strictly in between the old and new value of x1, which is true iff the
increment in step 1 was not faithful. The incrementing transition of the 2CM is
thus translated to the following three constraints.
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p toq q

err

x′
1 > x1 = y

y < z < x1

x′
1 = x1

Fig. 1. Forcing faithful simulation of x1-increment. All steps contain the additional
constraint x′

2 = x2, which is not shown, to preserve the value of the other counter x2.

(p−→toq) ∧ (x′1 > x1 = y) ∧ (x′2 = x2) (17)

(toq −→q) ∧ (x′1 = x1) ∧ (x2 = x2) (18)

(toq −→err) ∧ (y < z < x1). (19)

If we translate all operations of the 2CM into the GCS formalism as indicated
above, we end up with an overapproximation of the 2CM that allows runs that
faithfully simulate runs in the 2CM but also runs which ‘cheat’ and possibly
increment or decrement by more than one and still don’t go to state err in the
following step.

We enforce a faithful simulation of the 2CM by using the formula that is to be
checked, demanding that the error-detecting move is never enabled. The GCS
will only use a unary alphabet Act = {a} to label constraints. In particular,
observe that the formula 〈a〉err holds in every configuration which can move to
state err in one step. Now, the EG formula

φ = EG(¬halt ∧ ¬ 〈a〉err ) (20)

asserts that there is an infinite path which never visits state halt and along which
no step to state err is ever enabled. This means ϕ is satisfied by evaluation
ν0 = {state = [init], x1 = x2 = y = z = 0} iff there is a faithful simulation of
the 2CM from initial state init with both counters set to 0 that never visits the
halting state. Since the 2CM is deterministic, there is only one way to faithfully
simulate it and hence ν0 |= ψ iff the 2CM does not halt. &'

5 Decidability of EF Model Checking

Let us fix sets Var and Const of variables and constants, respectively. We will
use an alternative characterization of gap-constraints called monotonicity graphs
(MG) which are finite graphs with nodes Var ∪Const .2

Monotonicity graphs can be used to represent sets of evaluations. We show
that so represented sets are effectively closed under all logical connectors allowed
in EF, and one can thus evaluate a formula bottom up.

2 These were called Graphose Inequality Systems in [Cer94].
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Definition 3 (Monotonicity Graphs). A monotonicity graph (MG) over
(Var ,Const) is a finite, directed graph M = (V,E) with nodes V = Var ∪Const
and edges labeled by elements of Z ∪ {−∞,∞}.

An evaluation ν : Var → Z satisfies M if for every edge (x
k−→y) it holds that

ν(x)− ν(y) ≥ k. We write ν |= M in this case and let Sat(M) denote the set of
evaluations satisfying M .

Let M(x, y) ∈ {−∞,∞}∪ Z denote the least upper bound of the sums of the
labels on any path from node x to node y. The closure |M | is the unique complete

monotonicity graph with edges x
M(x,y)−→ y for all x, y ∈ Var ∪ Const.

The degree of M is the smallest K ∈ N such that k = −∞ or k ≥ −K for all
edge labels k in M . It is the negation of the smallest finite negative label or 0 if
no such label exists.

The following lemma states some basic properties of monotonicity graphs that
can easily be verified.

Lemma 1.

1. Sat(M) = ∅ for any monotonicity graph M that contains an edge labeled by
∞ or some cycle with positive weight sum.

2. |M | is polynomial-time computable from M and Sat(M) = Sat(|M |).
3. If we fix setsVar ,Const of variables and constants then for any gap-constraint C

there is a uniqueMGMC containing an edge x
k−→y iff there is a clause x−y ≥ k

in C, for which Sat(MC) = Sat(C).

The last point of this lemma states that monotonicity graphs and gap-constraints
are equivalent formalisms. We thus talk about transitional monotonicity graphs
over (Var ,Const) as those with nodes Var ∪Var ′∪Const and call a MG positive
if it has degree 0. We further define the following operations on MG.

Definition 4. Let M,N be monotonicity graphs over Var ,Const and V ⊆ Var.

– The restriction M |V of M to V is the maximal subgraph of M with nodes
V ∪ Const.

– The projection Proj (M,V ) = |M |V is the restriction of M ’s closure to V .

– The intersection M ⊗N is the MG that contains and edge x
k−→y if k is the

maximal label of any edge from x to y in M or N .
– The composition G◦M of a transitional MG G and M is obtained by consis-

tently renaming variables in M to their primed copies, intersecting the result
with G and projecting to Var ∪Const. G◦M := Proj (M[Var �→Var ′]⊗G,Var).

These operations are surely computable in polynomial time. The next lemma
states important properties of these operations; see also [Cer94, BP12].

Lemma 2.

1. Sat(Proj (M,V )) = {ν|V : ν ∈ Sat(M)}.
2. Sat(M ⊗N) = Sat(M) ∩ Sat(N)
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3. Sat(G ◦M) = {ν | ∃ν′ ∈ Sat(M). ν ⊕ ν′ ∈ Sat(G)} = PreG(M).
4. If M has degree n and G is a transitional MG of degree 0, then G ◦M has

degree ≤ n.

We will use monotonicity graphs to finitely represent sets of evaluations. To that
end, let us call a set S ⊆ Val MG-definable if there is a finite set {M0,M1, . . . ,Mk}
ofMG such that

S =
⋃

0≤i≤k

Sat(Mi). (21)

Call S MGn-definable if there is such a set of MG with degree ≤ n.

Example 2. The monotonicity graph on the left below corresponds to the con-
traint CX in Example 1. On the right we see its closure (where edges labeled by
−∞ are omitted). Both have degree 0.

x x′

y y′

0

1

0

0

0

x x′

y y′

0

1

1

0

0

0

Let us compute the CX-predecessors of the set S = {ν | ν(x) > ν(y) = 0} which
is characterized by the single MG on the right below.

0

x

y
0

0

2

2 0

x x′

y y′

1

0

0

1

0
0

0

x

y

0

0

1

If we rename variables x and y to x′ and y′ and intersect the result with MCX
we get the MG in the middle. We project into V ar ∪ Const by computing the
closure and restricting the result accordingly. This leaves us with the MG on
the left, which characterizes the set PreCX(S) = {ν | ν(x) ≥ 2 ∧ ν(y) = 0} as
expected.

We have seen how to construct a representation of the C-predecessors PreC(S)
and thus Prea(S) for MG-definable set S, gap-constraints C and actions a ∈ Act .
The next lemma is a consequence of Lemma 1, point 3 and asserts that we can
do the same for complements.

Lemma 3. The class of MG-definable sets is effectively closed under comple-
ments.
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Proof. By Lemma 1 we can interpret a set M = {M0,M1, . . . ,Mk} as gap-
formula in DNF. One can then use De Morgan’s laws to propagate negations to
atomic propositions, which are gap-clauses x − y ≥ k for which the negation is
expressible as gap-clause y− x ≥ −(k+ 1). It remains to bring the formula into
DNF again, which can be interpreted as set of MG. &'

Observe that complementation potentially constructs MG with increased degree.
This next degree is bounded by the largest finite edge-label in the current graph
plus one, but nevertheless, an increase of degree cannot be avoided. The classes
of MGn-definable sets are therefore not closed under complement.

Example 3. The set S = {ν | ν(x) > ν(y) = 0} from the previous example
corresponds to the gap-formula ϕS = (x − 0 ≥ 1) ∧ (0− y ≥ 0) ∧ (y − 0 ≥ 0).

Its complement is characterized by the set Sc = {(0 −2−→x), (y
−1−→0), (0

−1−→y)},
which contains a MG of degree 2.

It remains to show that we can compute Pre∗(S) for MG-definable sets S.
We recall [Cer94] the following partial ordering on monotonicity graphs and its
properties.

Definition 5. Let M,N be MG over (Var ,Const). We say M covers N (write
N �M) if for all x, y ∈ Var ∪ Const it holds that N(x, y) ≤M(x, y).

Lemma 4.

1. If N �M then Sat(N) ⊇ Sat(M).
2. � is a WQO on MGn for every fixed n ∈ N.

Note that point 1 states that a �-bigger MG is more restrictive and hence has a
smaller denotation. Also note that � is not a well ordering on the set of all MG,
because edges may be labeled with arbitrary integers (and hence ever smaller
negative ones).

Lemma 5. Let S be aMGn-definable set of evaluations. Then Pre∗(S) isMGn-
definable and a representation of Pre∗(S) can be computed from a representation
of S.

Proof. It suffices to show the claim for a set characterized by a single mono-
tonicity graph M because Pre∗(S ∪ S′) = Pre∗(S) ∪ Pre∗(S′). Assume that M
has degree n.

We proceed by exhaustively building a tree of MG, starting in M . For every
node N we compute children G ◦ N for all of the finitely many transitional
MG G in the system. Point 4) of the Lemma 2 guarantees that all intermediate
representations have degree ≤ n. By Lemma 4, point 2, any branch eventually
ends in a node that covers a previous one and Lemma 4, point 1 allows us to
stop exploring such a branch. We conclude that Pre∗(M) can be characterized
by the finite union of all intermediate MG. &'

Finally, we are ready to prove our main result.
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Theorem 2. EF Model checking is decidable for Gap-order constraint systems.
Moreover, the set �ψ� of evaluations satisfying an EF-formula ψ is effectively
gap-definable.

Proof. We can evaluate a formula bottom up, representing the sets satisfying
subformulae by finite sets of MG. Atomic propositions are either true or gap-
clauses and can thus be written directly as MG. For composite formulae we use
the properties that gap-definable sets are effectively closed under intersection
(Lemma 2) and negation (Lemma 3), and that we can compute representations
of Prea(S) and Pre∗(S) for MG-definable sets S by Lemmas 2 and 5.

The key observation is that although negation (i.e., complementing) may in-
crease the degree of the intermediate MG, this happens only finitely often in the
bottom up evaluation of an EF formula. Computing representations for modal-
ities 〈a〉 and EF does not increase the degree. &'

6 Applications

We consider labeled transition systems induced by GCS. In a weak semantics, one
abstracts from non-observable actions modeled by a dedicated action τ ∈ Act .
The weak step relation =⇒ is defined by

τ
=⇒ =

τ−→∗ , and for a �= τ,
a

=⇒ =
τ−→∗ · a−→ · τ−→∗ .

Bisimulation andweakbisimulation are semantic equivalences in vanGlabbeeks
linear time – branching time spectrum [Gla01], which are used to compare the
behavior of processes. Their standard co-inductive definition is as follows.

Definition 6. A binary relation R ⊆ V 2 on the states of a labeled transition
system is a bisimulation if sRt implies that

1. for all s
a−→s′ there is a t′ such that t

a−→t′ and s′Rt′, and
2. for all t

a−→t′ there is a s′ such that s
a−→s′ and s′Rt′.

Similarly, R is a weak bisimulation if in both conditions above −→ is replaced by
=⇒. (Weak) bisimulations are closed under union, so there exist unique maximal
bisimulation ∼ and weak bisimulation ≈ relations, which are equivalences on V .

Let the maximal (weak) bisimulation between two LTS with state sets S and T
be the maximal (weak) bisimulation in their union projected into (S×T )∪(T×S).
The Equivalence Checking Problem is the following decision problem.

Input: Given LTS T1 = (V1,Act , −→) and T2 = (V2,Act , −→),
states s ∈ V1 and t ∈ V2 and an equivalence R.

Question: sRt?

In particular, we are interested in checking strong and weak bisimulation be-
tween processes of GCS and finite systems. Note that the decidability of weak
bisimulation implies the decidability of the corresponding strong bisimulation as
∼ and ≈ coincide for LTS without τ labels.
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We recall (see e.g. [KJ06, JKM98]) that finite systems admit characteristic
formulae up to weak bisimulation in EF.

Theorem 3. Let T1 = (V1,Act , −→) be an LTS with finite state set V1 and T2 =
(V2,Act , −→) be an arbitrary LTS. For every state s ∈ V1 one can construct an
EF-formula ψs such that t ≈ s ⇐⇒ t |= ψs for all states t ∈ V2.

The following is a direct consequence of Theorems 3 and 2.

Theorem 4. For every GCS G = (V ar, Const,Act , Δ, λ) and every LTS T =
(V,Act , −→) with finite state set V, the maximal bisimulation ≈ between TG and
T is effectively gap-definable.

Proof. By Theorems 3 we can compute, for every state s of T, a characteristic
formula ψs that characterizes the set of evaluations {ν | ν ≈ s} = �ψs�. By
Theorem 2 these sets are MG- and thus gap-definable. Since the class of gap-
definable sets is effectively closed under finite unions and ≈ =

⋃
s∈V �ψs�, the

result follows. &'
Considering that gap-formulae are particular formulae of Presburger Arith-

metic, we know that gap-definable sets have a decidable membership problem.
Theorem 4 thus implies the decidability of equivalence checking between GCS
processes and finite systems w.r.t. strong and weak bisimulation.

7 Conclusion

We have shown that model checking gap-order systems with the logic EG is
undecidable while the problem remains decidable for the logic EF. An imme-
diate consequence of the latter result is the decidability of strong and weak
bisimulation checking between GCS and finite systems.

The decidability of EF model checking is shown by using finite sets of mono-
tonicity graphs or equivalently, gap-formulae to represent intermediate results in
a bottom-up evaluation. This works because the class of arbitrary gap-definable
sets is effectively closed under union and complements and one can compute
finite representations of Pre(S) and Pre∗(S) for gap-definable sets S.

Our decidability result relies on a well-quasi-ordering argument to ensure
termination of the fixpoint computation for Pre∗(S), and therefore does not
yield any meaningful upper complexity bound.

Interesting open questions include determining the exact complexity of model
checking GCS with respect to EF. We also plan to investigate the decidability
and complexity of checking behavioral equivalences like strong and weak bisimu-
lation between two GCS processes as well as checking (weak) simulation preorder
and trace inclusion.
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Abstract. This publication addresses two bottlenecks in the construc-
tion of minimal coverability sets of Petri nets: the detection of situations
where the marking of a place can be converted to ω, and the manipulation
of the set A of maximal ω-markings that have been found so far. For the
former, a technique is presented that consumes very little time in addition
to what maintaining A consumes. It is based on Tarjan’s algorithm for
detecting maximal strongly connected components of a directed graph.
For the latter, a data structure is introduced that resembles BDDs and
Covering Sharing Trees, but has additional heuristics designed for the
present use. Results from initial experiments are shown. They demon-
strate significant savings in running time and varying savings in memory
consumption compared to an earlier state-of-the-art technique.

Keywords: coverability set, Tarjan’s algorithm, antichain data struc-
ture.

1 Introduction and Notation

The background of this work would be very difficult to introduce without first
making certain notions precise. Therefore, this section is an interleaving of defi-
nitions and the discussion of the background.

A very well-known form of Petri nets is place/transition net (P, T,W, M̂).
It consists of a set P of places, set T of transitions (such that P ∩ T = ∅),
function W : (P × T ) ∪ (T × P ) �→ N of weights and the initial marking M̂ .
In this publication P and T are finite. A marking M is a vector of |P | natural
numbers. A transition t is enabled at M , denoted with M [t〉, if and only if
M(p) ≥ W (p, t) for every p ∈ P . Then t may occur yielding the marking M ′

such that M ′(p) = M(p) −W (p, t) +W (t, p) for every p ∈ P . This is denoted
with M [t〉M ′. It is also said that t is fired at M yielding M ′. The notation
is extended to sequences of transitions in the natural way. A marking M ′ is
reachable from M if and only if there is σ ∈ T ∗ such that M [σ〉M ′.

The set of reachable markings (that is, markings that are reachable from the
initial marking) of a finite place/transition net is not necessarily finite. However,
there always is a finite coverability set of certain kind of extended markings that
can be used for some of the same purposes as the set of reachable markings
is often used [6]. We call them ω-markings. An ω-marking is a vector of |P |

P.A. Abdulla and I. Potapov (Eds.): RP 2013, LNCS 8169, pp. 183–195, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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elements of the set N ∪ {ω}, where ω intuitively denotes “unbounded”. The
enabledness and occurrence rules of transitions are extended to ω-markings with
the conventions that for every i ∈ N, ω ≥ i and ω + i = ω − i = ω.

We say that M ′ covers M if and only if M(p) ≤ M ′(p) for every p ∈ P .
We say that M is a limit of a set M of ω-markings if and only if M contains
M0 ≤ M1 ≤ . . . such that for every p ∈ P , either M(p) = ω and Mi(p) grows
without limit as i grows, or there is i such that M(p) =Mi(p) = Mi+1(p) = . . ..

A coverability set is any set M that satisfies the following conditions:

1. Every reachable marking M is covered by some M ′ ∈M.
2. Every M ∈M is a limit of reachable markings.

A coverability set is not necessarily finite. Indeed, the set of reachable markings
is a coverability set. Fortunately, there is a unique minimal coverability set that
is always finite [4]. It has no other coverability set as a subset, and no ω-marking
in it is covered by another ω-marking in it. It consists of the maximal elements
of the set of the limits of the set of reachable markings.

The construction of coverability sets resembles the construction of the set
of reachable markings but has additional features. A central idea is that if
M0 [σ〉M [t〉M ′ > M0, then the sequence σt can occur repeatedly without limit,
making the markings of those p grow without limit that have M ′(p) > M0(p),
while the remaining p have M ′(p) =M0(p). The limit of the resulting markings
is M ′′, where M ′′(p) = ω if M ′(p) > M0(p) and M ′′(p) = M0(p) otherwise.

Roughly speaking, instead of storing M ′ and remembering that M [t〉M ′,
most if not all algorithms store M ′′ and remember that M −t ω→M ′′, where
M −t ω→M ′′ denotes that M ′′ was obtained by firing t at M and then possi-
bly adding ω-symbols to the result. However, this is not precisely true for four
reasons.

First, the algorithms need not remember that M −t ω→M ′′. It suffices to re-
member that there is t such that M −t ω→M ′′. Second, instead of M0 [σ〉M the

algorithms use M0−σ ω→M , because they only have access to the latter.
Third, after firing t atM , an algorithm may use more than oneM0 and σ that

have M0−σ ω→M to add ω-symbols. The pumping operation assigns ω to those
M ′(p) that have M0(p) < M ′(p) < ω. It may be triggered when the algorithm
detects that the pumping condition holds with M0. It holds with M0 when there
is σ ∈ T ∗ such that M ′ > M0−σ ω→M , where M ′ has been obtained by firing
t at M and then doing zero or more pumping operations. The algorithms in [9]
and this publication never fail to do the pumping operation when the pumping
condition holds, but this is not necessarily true of all algorithms.

Fourth, after firing M [t〉M ′ and doing zero or more pumping operations, an
algorithm may reject the resulting M ′, if it is covered by some already stored ω-
markingM ′′. The intuition is that whateverM ′ could contribute to the minimal
coverability set, is also contributed by M ′′. So M ′ need not be investigated.

Whether M −t ω→M ′ holds depends on not just M , t, and M ′, but also on
what the algorithm has done before trying t atM . So the precise meaning of the
notation M −t ω→M ′ depends on the particular algorithm. The meaning used in
this publication will be made precise in Section 2.
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Some ideas for speeding up the construction of minimal coverability sets have
been suggested [4,5,7]. However, [9] gave both theoretical, heuristic, and ex-
perimental evidence that a straightforward approach is very competitive, when
ω-markings are constructed in depth-first or so-called most tokens first order
and pumping conditions are always detected when possible. Nevertheless, as
was pointed out in [9], performance measurements must be taken with more
than one grain of salt. The running time of an algorithm may depend dramat-
ically on the order in which the transitions are listed in the input, and sorting
the transitions according to a natural heuristic does not eliminate this effect.

The algorithm in [9] maintains the set A of maximal ω-markings that have
been constructed so far, and most others maintain something similar (but not
necessarily precisely the same). (“A” stands for “antichain”.) At a low level, the
most time-consuming operations in [9] — and probably also in most, if not all,
other minimal coverability set construction algorithms — are the manipulation
of A and the detection of pumping conditions. In this publication we present a
significant improvement to both.

The overall structure of our new algorithm is presented in Section 2. The
detection of the pumping condition involves finding out that M0−σ ω→M . Sec-
tion 3 describes how Tarjan’s algorithm for detecting maximal strongly con-
nected components of a directed graph [8,1] can be harnessed to convert this
otherwise expensive test to only consume constant time. A data structure that
improves the efficiency of maintaining A is introduced in Section 4. It uses ideas
from BDDs [2] and covering sharing trees [3], and has heuristics designed for
coverability sets. An additional optimisation is discussed in Section 5. Section 6
presents some performance measurements without and with using the new ideas.

2 Overall Algorithm

Figure 1 shows the new minimal coverability set construction algorithm of this
publication in its basic form. Variants of it will be discussed in Section 6.

Lines 1, 3–6, 13–16, 18, 20–24, and 27 implement most of the coverability set
construction algorithm of [9]. Let us discuss them in this section. The remaining
lines may be ignored until they are discussed in later sections.

The set A contains the maximal ω-markings that have been found so far.
Upon termination it contains the result of the algorithm. Its implementation
will be discussed in Section 4. In addition to what is explicit in Fig. 1, the call
on line 22 may remove elements from A in favour of a new element M ′ that
strictly covers them. We will discuss this in detail later.

The set F is a hash table. ω-Markings are added to it at the same time as to
A, but they are never removed from it. So always A ⊆ F . The attributes of an
ω-marking such as M.tr (discussed soon) are stored in F and not in A. That is,
F contains records, each of which contains an ω-marking and some additional
information. The reason is that, as we will see later, some information on an ω-
marking may remain necessary even after it has been removed from A. Like in [9],
F is also used to implement an optimisation that will be discussed together with
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1 F := {M̂}; A := {M̂}; W.push(M̂); M̂.tr := first transition

2 S.push(M̂); M̂ .ready := false; nf := 1; M̂.index := 1; M̂ .lowlink := 1
3 while W �= ∅ do
4 M := W.top; t := M.tr; if t �= nil then M.tr := next transition endif
5 if t = nil then
6 W.pop
7 activate transitions as discussed in Section 5
8 if M.lowlink = M.index then
9 while S.top �= W.top do S.top.ready := true; S.pop endwhile

10 else if W �= ∅ then
11 W.top.lowlink := min{W.top.lowlink,M.lowlink}
12 endif
13 go to line 3
14 endif
15 if ¬M [t〉 then go to line 3 endif
16 M ′ := the ω-marking such that M [t〉M ′

17 if M ′ ≤ M then passivate t; go to line 3 endif
18 if M ′ ∈ F then
19 if ¬M ′.ready then M.lowlink := min{M.lowlink,M ′.lowlink} endif
20 go to line 3
21 endif
22 Cover-check(M ′, A) // only keep maximal — may update A and M ′

23 if M ′ is covered then go to line 3 endif
24 F := F ∪ {M ′}; A := A ∪ {M ′}; W.push(M ′); M ′.tr := first transition
25 S.push(M ′); M ′.ready := false
26 nf := nf + 1; M ′.index := nf ; M

′.lowlink := nf

27 endwhile

Fig. 1. A coverability set algorithm that uses Tarjan’s algorithm and some heuristics

lines 18 and 20. Hash tables are very efficient, so F does not cause significant
extra cost.

For efficiency, instead of the common recursive implementation, depth-first
search is implemented with the aid of a stack which is called W (for work-set).
The elements of W are pointers to records in F . Each ω-marking M has an
attribute tr that points to the next transition that should be tried at M .

The algorithm starts on lines 1 and 2 by putting the initial marking to all
data structures. Roughly speaking, lines 3 to 27 try each transition t at each en-
countered ω-marking M in depth-first order. (This is not strictly true, because
heuristics that are discussed later may prematurely terminate the processing of
M and may cause the skipping of some transitions atM .) IfM has untried tran-
sitions, line 4 picks the next, otherwise lines 6–13 that implement backtracking
are executed. Lines 7–12 will be discussed later.

If the picked transition t is disabled at the current ω-marking M , then it is
rejected on line 15. Otherwise t is fired at M on line 16. Lines 17 and 19 will
be discussed later. If M ′ has already been encountered, it is rejected on lines 18
and 20. This quick rejection ofM ′ is useful, because reaching the same ω-marking
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again is expected to be very common, because M [t1t2〉M12 and M [t2t1〉M21

imply thatM12 = M21. Without lines 18 and 20,M ′ would be rejected on line 23,
but after consuming more time. Line 18 is also needed because of line 19.

The call Cover-check(M ′, A) first checks whether M ′ is covered by any ω-
marking in A. If yes, then M ′ is rejected on line 23.

In the opposite case, Cover-check checks whether the pumping condition holds
with any M0 ∈ A. (In [9], the pumping condition was detected for M0 ∈ F .
Theorem 4 will tell why it suffices to use A instead.) If yes, it changes M ′(p)
to ω for the appropriate places p. Cover-check also removes from A those ω-
markings that the updated M ′ covers strictly. When M is removed, M.tr is set
to nil, so that even if the algorithm backtracks to M in the future, no more
transitions will be fired at it. The addition of ω-symbols makes M ′ grow in the
“≤” ordering and may thus make the pumping condition hold with some other
M0. Cover-check continues until there is no M0 ∈ A with which the pumping
condition holds but the pumping operation has not yet been done. The details
of Cover-check will be discussed in later sections.

If M ′ was not covered, its updated version is added to the data structures on
lines 24–26. This implements the entering to M ′ in the depth-first search.

It is the time to make the notation M −t ω→M ′ precise. It denotes that t was
fired at M on line 16 resulting in some M ′′ such that M ′′ �≤ M , and either
M ′′ ∈ F held on line 18 (in which case M ′ = M ′′), or M ′′ was transformed to
M ′ on line 22 and then added to F on line 24.

Thus M −t ω→M ′ is either always false or becomes true during the execution
of the algorithm. Even if M ∈ F and M [t〉, it may be that there never is any

M ′ such that M −t ω→M ′. This is the case if M is removed from A and M.tr is
set to nil before t is tried at M , or if the result of trying t at M is rejected on
line 17 or 23. With the following Petri net, the latter happens although M ∈ A
when the algorithm has terminated:

t2

.
The correctness of this approach has been proven in detail in [9]. Intuitively,

every ω-marking that is put into F is a limit of reachable markings, because for
each p,M −t ω→M ′ either mimicsM [t〉M ′, copies ω fromM(p) toM ′(p), or sets
M ′(p) to ω as justified by some pumping condition. Pumping operations make
progress towards termination. The algorithm does not terminate prematurely,
because each time when something is rejected or passivated, something else is
kept or remains active that makes at least the same contribution to the final A.

The following details are essential for this publication.

Lemma 1. For every ω-markings M and M ′, p ∈ P , t ∈ T , and σ ∈ T ∗,

1. If M −σ ω→M ′ and M(p) = ω, then M ′(p) = ω.

2. Assume that M −t ω→M ′ and M(p) < ω = M ′(p). After constructing the

edge M −t ω→M ′, the algorithm does not backtrack from M ′ before it has
investigated all M ′′ that have σ ∈ T ∗ such that M ′−σ ω→M ′′.

3. For every M0 ∈ F , there is M ′
0 ∈ A such that M0 ≤M ′

0.
4. Every M constructed by the algorithm is a limit of M1,M2, . . . such that

there are σ1, σ2, . . . such that M̂ [σi〉Mi for i ≥ 1.
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In depth-first search, an ω-marking M is white if it has not been found (that
is, M /∈ F ); grey if it has been found but not backtracked from (that is, M ∈
W ); and black if it has been backtracked from. If M is black and M −t ω→M ′,
then M ′ is grey or black. The grey ω-markings M g

i (where M g
0 = M̂) and the

M g
i−1−ti

ω→M g
i via which they were first found constitute a path from the initial

to the current ω-marking.
Lemma 1(1) follows trivially from the transition firing rule. It implies that if

M has been found and has ω in some place where the current ω-marking Mc

does not have ω, then there is no path from M to Mc. As a consequence,M and
all its descendants are black. They remain black from then on, because a black
ω-marking no longer changes colour. This implies Lemma 1(2).

Inspired by the above, we say that M is ripe if and only if M ∈ F and either
the algorithm has terminated, or after finding M there has been an instant of
time such that for some place p, Mc(p) < ω =M(p), where Mc was the current
ω-marking at that time. All descendants of all ripe ω-markings are black.

The following lemma says that the “future” of each ripe ω-marking has been
fully covered. This result does not immediately follow from the fact that the
descendants of each ripe ω-marking are black, because any such descendant may
have been rejected in favour of another ω-marking that strictly covers it (cf.

t2

). For the same reason, the lemma does not promise that its

M ′
n is obtained via the sequence M ′

0−t1 · · · tn
ω→M ′

n.

Lemma 2. If M ′
0 is ripe and M ′

0 ≥ M0 [t1 · · · tn〉Mn, then there is M ′
n such

that M ′
n is ripe and M ′

n ≥Mn. A similar claim holds for M0−t1 · · · tn
ω→Mn.

Proof. To prove the first claim, consider the moment when M ′
0 became ripe.

We use induction on 1 ≤ i ≤ n. By Lemma 1(3), there was M ′′
i−1 ∈ A such

that M ′
i−1 ≤ M ′′

i−1. The algorithm had tried ti at M
′′
i−1. If the result was kept,

it qualifies as M ′
i , otherwise it was rejected because it was covered by an ω-

marking that qualifies as M ′
i . By Lemma 1(1), M ′

i has ω-symbols in at least the
same places as M ′

i−1. So M
′
i is ripe and M ′

i ≥Mi.
The above proof referred to a certain moment in time to ensure thatM ′′

i−1 ∈ A.
LaterM ′′

i−1 ∈ A may cease to hold, but what was proven remains valid. We point
out for the sequel that ifM ′

i−1(p) < ω thenM ′
i(p)−M ′

i−1(p) ≥Mi(p)−Mi−1(p),
because the firing of ti has the same effect to the ω-marking of p in both cases,
and the possible additional operations may not reduce M ′

i(p).

With Mi−1−ti ω→Mi, there may be p1, . . . , pk such that Mi−1(pj) < ω =
Mi(pj). Given M ′

i−1, we apply induction on 1 ≤ j ≤ k to obtain an M ′
i that

has the required properties. Let Mi,j be the ω-marking just after the algorithm
made Mi(pj) = ω. So Mi−1 [ti〉Mi,0 and Mi,k = Mi. The first claim yields M ′

i,0.

Let σj be the sequence that justified converting Mi,j−1 to Mi,j . There are Ṁi,j

and M̈i,j such that Mi,j−1 [σj〉 Ṁi,j [σj〉 M̈i,j . The first claim can be applied to

this sequence, yielding Ṁ ′
i,j and M̈ ′

i,j . If Ṁ
′
i,j(p) < ω, then M̈ ′

i,j(p)− Ṁ ′
i,j(p) ≥

M̈i,j(p) − Ṁi,j(p) ≥ 0. Therefore, Ṁ ′
i,j ≤ M̈ ′

i,j . Because of the use of A in the

proof of the first claim, Ṁ ′
i,j �< M̈ ′

i,j . So M̈ ′
i,j = Ṁ ′

i,j , implying M̈ ′
i,j(p) = ω if
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M̈i,j(p) > Ṁi,j(p), that is, if Mi,j(p) = ω > Mi,j−1(p). With the remaining p,

M̈ ′
i,j(p) ≥ M ′

i,j−1(p) ≥ Mi,j−1(p) = Mi,j(p). These yield Mi,j ≤ M̈ ′
i,j . So M̈

′
i,j

qualifies as the M ′
i,j . Choosing M

′
i =M ′

i,k completes the proof of step i. &'

3 Constant-Time Reachability Testing

A maximal strongly connected component or strong component of a directed
graph (V,E) is a maximal set of vertices V ′ ⊆ V such that for any two vertices
u and v in V ′, there is a path from u to v. The strong components constitute
a partition of V . Tarjan’s algorithm [8,1] detects strong components in time
O(|V | + |E|). It is based on depth-first search of the graph. It is slower than
depth-first search only by a small constant factor.

In our case, V consists of all ω-markings that are encountered during the
construction of the minimal coverability set, that is, those that are (eventually)
stored in F . The edges are defined by (M,M ′) ∈ E if and only if there is t ∈ T
such thatM −t ω→M ′. This notion, and thus also V and E, depends on the order
in which transitions are picked on lines 1, 4, and 24 in Fig. 1. Fortunately, this
does not confuse Tarjan’s algorithm, because an edge is introduced either when
the algorithm is ready to investigate it or not at all.

In Fig. 1, Tarjan’s algorithm is represented via lines 2, 8–12, 19, and 25–26.
In addition to W , it uses another stack, which we call S. Also its elements are
pointers to records in F .

Tarjan’s algorithm also uses two attributes on each ω-marking called index
and lowlink. The index is a running number that the ω-marking gets when it
is encountered for the first time. It never changes afterwards. The lowlink is
the smallest index of any ω-marking that is known to belong to the same strong
component as the current ω-marking.When backtracking and when encountering
an ω-marking that has already been visited and is in the same strong component
with the current ω-marking, the lowlink value is backward-propagated and the
smallest value is kept. The lowlink value is not backward-propagated from ω-
markings that belong to already completed strong components.

Each ω-marking is pushed to S when it is found and popped from S when
its strong component is ready, and it never returns to S. Presence in S is tested
quickly via an attribute ready that is updated when S is manipulated.

The following is the central invariant property of Tarjan’s algorithm:

Lemma 3. Let M0 ∈ F . There is a path from M0 to the M of Fig. 1 if and
only if M0 ∈ S. If M0 /∈ S, then every ω-marking to which there is a path from
M0 is neither in S nor in W .

Cover-check(M ′, A) has to find each M0 such that M0 ∈ A and M0 < M ′,
because they have to be removed fromA. When it has found such anM0, it checks
whether M0.ready = false, that is, whether M0 ∈ S. This is a constant-time test
that reveals whether there is a path from M0 to M ′. In this way Cover-check
detects each valid pumping condition where M0 ∈ A with a constant amount of
additional effort per removed element of A.
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If ω-symbols are added to M ′, then the checking is started again from the
beginning, because the updated M ′ may cover strictly elements of A that the
original M ′ did not cover strictly. Also they have to be removed and checked
against the pumping condition. When Cover-check terminates, there are no un-
used instances of the pumping condition whereM0 ∈ A, and A no longer contains
ω-markings that are strictly covered by M ′.

This method only detects the cases where M0 ∈ A, while [9] uses M0 ∈ F .
Fortunately, the following theorem tells that it does not make a difference.

Theorem 4. The algorithm in Fig. 1 constructs the same ω-markings as it
would if F were used instead of A in the pumping conditions.

Proof. In this case the pumping condition is M ′ > M0−σ ω→M [t〉M#, where
σ ∈ T ∗ andM ′ has been made fromM# by replacing the contents of zero or more
places by ω. By Lemma 3, from each ω-marking in S and from no ω-marking
in F \ S there is a path to M . The pumping condition triggers the updating
of M ′ to M ′′ such that for every p ∈ P , either M0(p) = M ′(p) = M ′′(p) or
M0(p) < M ′(p) ≤M ′′(p) = ω.

We prove the claim by induction. We show that in every pumping operation,
A causes (at least) the same updates as F , the induction assumption being that
also in the previous times A caused the same updates as F . At least the same
updates implies precisely the same updates, because A ⊆ F .

Let the pumping condition hold such that M0 ∈ F . If M0 ∈ A, then the
induction step holds trivially. From now on M0 /∈ A.

Lemma 1(3) yields M ′
0 ∈ A such that M0 < M ′

0. It was found after M0,

because otherwiseM0 would have been rejected on line 23. BecauseM0−σ ω→M
now, M0 is now in S. So M0 was in S when M ′

0 was found. At that moment
there was a path from M0 to what was then M , that is, there is ρ such that
M0−ρ ω→M ′

0. So the pumping condition held with M0 ∈ F . By the induction
assumption, ω-symbols were added to M ′

0. Therefore, for every p ∈ P , either
M ′

0(p) = M0(p) or M
′
0(p) = ω.

Return to the moment when ω-symbols are added to M ′. If M ′
0 ∈ S, there is

a path from M ′
0 to M . If M ′

0(p) = ω, then also M ′(p) = ω by Lemma 1(1). We
already saw that if M ′

0(p) �= ω, then M ′
0(p) = M0(p). So the pumping condition

holds with M ′
0 and causes precisely the same result as M0 causes.

The case remains where M ′
0 /∈ S. If there is M ′′ such that M ′

0−σ
ω→M ′′, then

M ′′ �= M . Furthermore, M ′′ ≥M , because M0 < M ′
0, and M0−ρ ω→M ′

0 implies
that ω-symbols are added to (or are already in) at least the same places along

M ′
0−σ

ω→M ′′ as along M0−σ ω→M . So M ′′ > M . But that is a contradiction
with the fact that M is the current ω-marking.

So there are σi, ti, σ
′
i, and M

′
i such that σitiσ

′
i = σ, M ′

0−σi
ω→M ′

i , but ti was
not tried at M ′

i or the result of trying it was rejected. We discuss the case that
ti was not tried. The other case is similar.

Failure to try ti implies that there was M ′′
i such that M ′

i < M ′′
i . If Mi is the

ω-marking such that M0−σi ω→Mi, then Mi ≤M ′
i . Thus M

′′
i was found after ti

was fired at Mi but before M
′
i was backtracked from. BecauseMi is in S now, it
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was in S whenM ′′
i was found. So there was a path fromMi toM

′′
i , triggering the

pumping condition. There is at least one p such that Mi(p) ≤ M ′
i(p) < M ′′

i (p).
Therefore, M ′′

i has more ω-symbols than M ′
i . So M

′′
i is ripe. Lemma 2 says that

M is covered by some ripe M ′′
n , which is a contradiction with the fact that M is

the current ω-marking. &'

4 A Data Structure for Maximal ω-Markings

This section presents a data structure for maintaining A. It has been inspired
by Binary Decision Diagrams [2] and Covering Sharing Trees [3]. However, ω-
markings are only added one at a time. So we are not presenting a symbolic
approach. The purpose of using a BDD-like data structure is to facilitate fast
detection of situations where an ω-marking covers another. The details of the
data structure have been designed accordingly. We will soon see that they make
certain heuristics fast.

We call the M ′ on line 22 of Fig. 1 the new ω-marking, while those stored in
A are old. Cover-check first uses the data structure to detect if M ′ is covered by
any old ω-marking. If yes, then nothing more needs to be done. In the opposite
case, Cover-check then searches for old ω-markings that are covered by M ′. By
the first search, they are strictly covered. This search cannot be terminated when
one is found, because Cover-check has to remove all strictly covered ω-markings
from A and use them in the pumping test. Therefore, finding the first one quickly
is less important than finding quickly the first old ω-marking that coversM ′. As
a consequence, the data structure has been primarily optimised to detect if any
old ω-marking covers the new one, and secondarily for detecting covering in the
opposite order.

Let M(p) = M(p) if M(p) < ω and M(p) = 0 otherwise. Let M(p) = 1 if
M(p) = ω and M(p) = 0 otherwise. In this section we assume without loss of
generality that P = {1, 2, . . . , |P |}.

The data structure consists of |P |+1 layers. The topmost layer is an array of
pointers that is indexed with the total number of ω-symbols in an ω-marking,

that is,
∑|P |

p=1M(p). This number can only be in the range from 0 to |P |, so a
small array suffices. An array is more efficient than the linked lists used at lower
layers. The pointer at index w leads to a representation of the set of ω-markings
in A that have w ω-symbols each.

Layer |P | consists of |P | + 1 linked lists, one for each total number of ω-
symbols. Each node v in the linked list number w contains a value v.m, a pointer
to the next node in the list, and a pointer to a representation of those ω-markings

in A that have
∑|P |

p=1M(p) = w and
∑|P |

p=1M(p) = v.m. The list is ordered in
decreasing order of the m values, so that the ω-markings that have the best
chance of covering M ′ come first.

Let 1 ≤ � < |P |. Each node v on layer � contains two values v.w and v.m, a
link to the next node on the same layer, and a link to a node on layer �− 1. Of
course, this last link is nil if � = 1. The node represents those ω-markings in A
that have

∑	
p=1M(p) = v.w,

∑	
p=1M(p) = v.m, and the places greater than
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� have the unique ω-markings determined by the path that leads to v, as will
be discussed below. If more than one path leads to v, then v represents more
than one subset of A. They are identical with respect to the contents of the
places from 1 to �, but differ on at least one place above �. The lists on these
layers are ordered primarily in increasing order of the w values and secondarily
in increasing order of the m values.

Like in BDDs, nodes with identical values and next-layer pointers are fused.
To be more precise, when a node is being created, it is first checked whether a
node with the desired contents already exists, and if yes, it is used instead. A
specific hash table makes it fast to find existing nodes based on their contents.

Because every ω-marking that is in A is also in F , it has an explicit rep-
resentation there. As a consequence, unlike with typical applications of BDDs,
the storing of dramatically big numbers of ω-markings is not possible. As was
mentioned above, the goal is not to do symbolic construction of ω-markings.
Even so, the fusing of identical nodes pays off. Otherwise, for each ω-marking,
A would use a whole node on layer 1 and additional partially shared nodes on
other layers, while F represents the ω-marking as a dense vector of bytes. So A
would use much more memory for representing each ω-marking than F uses.

Consider the checking whether M ′ ≤ M , where M ′ is the new and M is
any old ω-marking. After entering a node v at level � − 1, M(�) is computed
as u.w − v.w and u.m − v.m, where u is the node at level � from which level
� − 1 was entered. If M ′(�) > M(�), then the traversal backtracks to u. This is
because, thanks to the ordering of the lists, both v and the subsequent nodes in
the current list at level �− 1 correspond to too small a marking in M(�).

On the other hand, M may be rejected also if
∑	−1

p=1M
′
(p) >

∑	−1
p=1M(p).

To quickly detect this condition, an array wsum is pre-computed such that

wsum[�] =
∑	

p=1M
′
(p):

wsum[1] := M
′
(1)

for p := 2 to |P | do wsum[p] := wsum[p− 1] +M
′
(p) endfor

This pre-computation introduces negligible overhead. The condition becomes
wsum[� − 1] > v.w, which is a constant time test. If this condition is detected,
layer �− 2 is not entered from the current node, but the scanning of the list on
layer �− 1 is continued.

The current node v (but not the current list) is rejected also if wsum[�− 1] =

v.w and msum[�− 1] > v.m, where msum[�] =
∑	

p=1M
′(p). There also is a third

pre-computed array mmax with mmax[�] being the maximum of M(1), M(2),
. . . , M(�). It is used to reject v when

wsum[�− 1] < v.w and (v.w−wsum[�− 1]) ·mmax[�− 1]+ v.m < msum[�− 1] .

The idea is that considering the places from 1 to �−1, each extra ω-symbol inM
covers at most mmax[�− 1] ordinary tokens in M ′. There is thus a fast heuristic
for each of the cases wsum[�−1] < v.w, wsum[�−1] = v.w, and wsum[�−1] > v.w.

These heuristics are the reason for storing
∑	

p=1M(p) and
∑	

p=1M(p) into the
node instead of M(�).
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Consider the situation where none of the above heuristics rejects v. Then layer
�− 2 is entered from v. If it turns out that M ′ is covered, then the search need
not be continued. In the opposite case, it is marked into v that layer � − 2 was
tried in vain. If v is encountered again during the processing of the sameM ′, this
mark is detected and v is not processed further. To avoid the need of frequently
resetting these marks, the mark is a running number that is incremented each
time when the processing of a newM ′ is started. The marks are reset only when
this running number is about to overflow the range of available numbers. This
trick is from [9].

Similar heuristics are used for checking whether the new ω-marking strictly
covers any ω-marking in A. The biggest difference is that now the search cannot
be stopped when such a situation is found, as has been explained above. The
condition “strictly” need not be checked, because if M ′ ∈ A, then M ′ is rejected
by the first search or already on line 20. The third heuristic mentioned above
is not used, because information corresponding to mmax[�] cannot be obtained
cheaply for ω-markings in A. It would not necessarily be unique, and it would
require an extra field in the record for the nodes.

5 Transition Removal Optimisation

By Lemma 1(1), if M −t ω→M ′ and there is p such that M(p) < M ′(p) = ω,
then the ω-marking of p will remain ω until the algorithm backtracks to M .
If the firing of a transition does not increase the ω-marking of any place, that
is, if M −t ω→M ′ and M ′ ≤ M , then t is useless. Lines 22 and 23 would reject
M ′, had it not already been done on line 17. A transition that is not originally
useless in this sense becomes useless, if ω-symbols are added to each p such that
W (p, t) < W (t, p).

Lines 7 and 17 implement an additional optimisation based on these facts. The
“first transition” and “next transition” operations in Fig. 1 pick the transitions
from a doubly linked list which we call the active list. When t that is in the
active list has become useless, that is detected on Line 17. Then t is linked out
from the active list and inserted to a singly linked list that starts at passive[c],
where c is the number of locations in W where ω-symbols have been added, and
passive is an array of size |P |+1. There also is a similarly indexed array toW such
that toW[c] points to the most recent location in W where ω-symbols have been
added. The forward and backward links of t still point to the earlier successor
and predecessor of t in the active list. This operation takes constant time.

From then on, t is skipped at no additional cost until the algorithm backtracks
toM . This moment is recognized from the current top ofW getting below toW[c].
Then all transitions from passive[c] are removed from there and linked back to
their original places in the active list, and c is decremented. Because each passive
list is manipulated only at the front, it releases the transitions in opposite order
to in which they were inserted to it. This implies that the original ordering of
the active list is restored when transitions are linked back to it, and the “next
transition” operation is not confused. Also the linking back is constant time per
transition.
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Table 1. Initial measurements with some versions of the new algorithm

mesh2x2 mesh3x2 AP13a smallT5x2 largeT2x15x2

|A| |F | 256 316 6400 7677 1245 1281 31752 31752 32768 32768
|S| 316 7677 65 50 32768

≈ [9] 4 5 23 696 739 718 60 66 467 3151 3182 1736 7121 7142 3328
no node fusion 2 2 70 46 48 1389 49 56 4393 67 72 4058 231 237 20736
basic new 3 4 24 52 68 732 57 62 850 80 89 1738 248 273 4224
no tr. rem. 4 4 24 64 76 732 56 60 850 81 91 1738 261 270 4224
partial F 3 4 22 55 61 672 54 71 401 152 162 4 250 258 3968

If the check on line 17 were removed, the algorithm would still reject M ′, but
in the worst case that might happen much later in Cover-check. This heuristic
is very cheap and may save time by rejecting M ′ early. Unfortunately, in our
initial experiments (Section 6) it did not perform well.

6 Experiments and Conclusions

In this section we present some of the first experiments that we have made
with an implementation of our new algorithm. To make comparison of running
times reasonable, we compare the new implementation to a slightly improved
version of the implementation in [9] (better hash function, etc.). Both have been
written in the same programming language (C++) and were executed on the
same computer.

The Petri net mesh2x2 is the heaviest example from [5,7]. It has been included
to point out that the examples from [5,7] are not challenging enough for testing
the new implementation. Mesh3x2 is a bigger version of it. AP13a has been mod-
ified from users.cecs.anu.edu.au/∼thiebaux/benchmarks/petri/ by Henri Hansen,
to present a somewhat bigger challenge. SmallT5x2 was designed for this pub-
lication, to have a small S and offer many possibilities for fusing nodes in the
representation of A. LargeT2x15x2 had precisely the opposite design goal.

The results are in Table 1. The second row shows the final sizes of the sets
A and F , assuming that ω-markings are never removed from F . The third row
shows the maximal sizes of S. The sizes of W are not shown, because always
|W | ≤ |S|.

The next five rows show results for various implementations. “≈ [9]” was ex-
plained above. “Basic new” is the algorithm described in this publication. “No
node fusion” is otherwise the same as “Basic new”, but nodes in the data struc-
ture for A that have the same values and next-layer pointers are not fused. “No
tr. rem.” is otherwise the same as “Basic new”, but the optimization discussed
in Section 5 is not in use. “Partial F” is otherwise the same as “Basic new”,
but when an ω-marking is removed from S it is also removed from F . If such an
ω-marking is constructed anew, it is covered by some ω-marking in A, and thus
will be rejected on line 23 at the latest.

For each implementation and Petri net, the first two numbers report the short-
est and longest running times for five identical measurements in milliseconds.
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The third number is the amount of memory consumed, measured in kilobytes
(1024 bytes), assuming that memory is reserved for A, S, and the base table
of F only as needed. For W , the same amount of memory was reserved as for
S. These numbers are theoretical in the sense that the implementation did not
use dynamically growing arrays in reality. We plan to fix this defect in future
measurements.

To protect against programming errors, we checked for each Petri net that
every version returned the same A.

All new versions are significantly faster than the one in [9] excluding AP13A
where all versions are roughly equally fast, and mesh2x2 that is too small for a
meaningful comparison. Although precise comparison is not possible, the results
on mesh2x2 make it obvious that the new implementation outperforms the one
in [7]. The memory consumptions of the four new versions relate to each other as
one would expect. Compared to [9] whose A was a doubly linked list of the same
records that F used, the new versions consume much more memory except when
the fusion of nodes and the removal of ω-markings from F have a big effect.
While [9] uses two additional pointers per ω-marking to represent A, the new
versions have the complicated structure described in Section 4. Furthermore, S
was absent from [9].

Acknowledgements. We thank the anonymous reviewers for their effort.
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Abstract. Counter reachability games are played by two players on a
graph with labelled edges. Each move consists in picking an edge from
the current location and adding its label to a counter vector. The objec-
tive is to reach a given counter value in a given location. We distinguish
three semantics for counter reachability games, according to what hap-
pens when a counter value would become negative: the edge is either
disabled, or enabled but the counter value becomes zero, or enabled.
We consider the problem of deciding the winner in counter reachability
games and show that, in most cases, it has the same complexity under
all semantics. Surprisingly, under one semantics, the complexity in di-
mension one depends on whether the objective value is zero or any other
integer.

1 Introduction

Counter reachability games are played by two players, a Reacher and an Oppo-
nent, on a counter system. Such a system is represented by a labelled directed
graph (Q,E), where Q is a finite set of locations and E ⊆ Q×Zd×Q is a set of
edges. The integer d is the dimension of the system. We associate to a counter
system a vector of d counters, which is updated when an edge (q, v, q′) is taken
by adding v to it. The locations are partitioned into a set Q1 of Reacher loca-
tions and a set Q2 of Opponent locations. A configuration in a counter system
is a pair (location, counter vector).

A play is an infinite sequence (q0, v0)(q1, v1) · · · ∈ (Q × Zd)ω, starting at
a given initial location q0 with the initial counter vector v0. At any stage i,
the owner of the location qi chooses an edge (qi, v, qi+1), then the next configu-
ration is (qi+1, vi + v). The objective is given by a subset C of Q× Zd: Reacher
wins every play that reaches a configuration in C. Here, we deal with cases where
it is equivalent to consider only subsets C that are singletons.

In many works on counter systems, there are only nonnegative counter values,
e.g., in vector addition systems with states (VASS, in short) [1], an edge is
disabled whenever it would make a counter become negative. In energy games
[2,3], the objective is to bound counter values, especially with 0 as lower bound.
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In order to capture common behaviours around zero, we consider three se-
mantics for counter systems:

– Z semantics : A counter can have any value in Z.
– VASS semantics : An edge is disabled if taking it would make any counter

value become negative.
– non-blocking VASS semantics : Every time an edge is taken, negative values

are replaced by 0.

The decision problem associated to a counter reachability game is to determine
whether Reacher has a winning strategy. We study decidability and complexity
of this problem under the three semantics. Most of our results assume that
the set of edges is restricted to a subset of Q × {−1, 0, 1}d × Q; we call this
the short-range property and we say that counter systems are short-ranged.
Any counter system can be transformed into a short-ranged counter system
at the cost of an exponential blowup, by splitting the edges with labels not in
{−1, 0, 1}d. However, we need to be careful when we deal with reachability issues,
because a run in the short-ranged counter system visits configurations that the
corresponding run of the first counter system does not visit.

We prove in Section 3 that the decision problem is undecidable for reacha-
bility games on counter systems of dimension two under the Z semantics, by
an adaptation of the undecidability proof for reachability games on VASS of
dimension two in [4].

We prove in Section 4 that the decision problem is PSPACE-complete for
reachability games on short-ranged counter systems of dimension one under the
Z semantics when the objective is (qf , 0), and under the non-blocking VASS se-
mantics when the objective is (qf , 1). The proof is based on mutual reductions
from the decision problem for reachability games on short-ranged counter sys-
tems of dimension one under the VASS semantics when the objective is (qf , 0),
which has been proved PSPACE-complete in [4]. The case of a reachability games
on short-ranged counter systems of dimension one under the non-blocking VASS
semantics when the objective is (qf , 0) is considered separately. Surprisingly, the
decision problem is then in P.

Without the short-range property, we have an immediate EXPSPACE upper
bound for counter reachability games in dimension one. There are at least two
particular cases of counter reachability games for which the decision problem is
EXPTIME-hard in dimension one: countdown games [5] and robot games [6].
To the best of our knowledge, it is not known whether counter reachability games
in dimension one are in EXPTIME.

2 Definitions

When we write “positive” or “negative”, we always mean “strictly positive” or
“strictly negative”. We write −N for the set of nonpositive integers.

A counter system is a directed graph (Q,E), where Q is a finite set of locations
and E ⊆ Q× Zd ×Q is a finite set of edges, with d ∈ N \ {0}. The vector in Zd
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is called the label of an edge. A configuration in a counter system is a pair
(q, x), where q ∈ Q and x ∈ Zd. A run of a counter system (Q,E) is an infinite
sequence r = (q0, x0)(q1, x1) . . . starting from an arbitrary initial configuration
(q0, x0) ∈ Q×Zd and such that (qi, xi+1−xi, qi+1) ∈ E for every i ∈ N. A counter
system has the short-range property if the integers in the labels of the edges are
always in {−1, 0, 1}.

A counter reachability game is played by two players, a Reacher and an Oppo-
nent, on a counter system (Q,E). We partition the set of locations into Q1

⊎
Q2;

Reacher owns Q1, and Opponent owns Q2. In our figures, we use © to represent
Reacher locations, � to represent Opponent locations and . when the owner of
the location does not matter.

A play is represented by an infinite path of configurations that players form by
moving a token on (Q,E) and updating a counter as follows. At the beginning,
the token is at a location q0 and the counter is initialized with x0, hence the
initial configuration is (q0, x0). If the token is at p ∈ Q1, then Reacher chooses
an edge (p, v, q), otherwise Opponent chooses. The token is moved to q, the
counter is updated to x+ v, and the configuration (q, x+ v) is appended to the
play. There is a special configuration, called the objective of the game, such that
Reacher wins every play that visits the objective.

A play prefix starting from the configuration (q0, x0) is a finite sequence
(q0, x0)(q1, x1) . . . (qk, xk) of configurations in the underlying counter system.
A strategy for a player is a function that takes as argument a play prefix and
returns an edge that is available from the end of the play prefix. Given an con-
figuration (q0, x0), two strategies s1 and s2 for the players, the outcome of these
strategies from the configuration is the play starting at (q0, x0) and obtained
when each player always chooses edges according to his strategy. A strategy s
is winning for a player, from a given configuration, if he wins the outcome of
s with any strategy of the other player from the configuration. A configuration
(q0, x0) in the game is winning if Reacher has a winning strategy from (q0, x0).
The decision problem associated to a counter reachability game is to determine
whether Reacher has a winning strategy from a configuration in input.

A Vector Addition System with States (VASS, in short) is a counter system
where the vectors in the configurations are always nonnegative. In order to main-
tain this property, an edge in a VASS is disabled if a counter would then become
negative. A non-blocking VASS is a counter system where every negative counter
value is replaced by 0.

We introduce a notation for the decision problems that we deal with, and
we write Reach-semantics1d(xf ) with the following parameters: a subscript d
for the dimension, an argument xf for the counter value in the objective and
a superscript 1 to point out, if present, when the system is short-ranged. The
counter value in the objective is also optional. We omit the location in the
objective, because only the counter value is relevant here. For example, let us
look at two notations that appear in the next two sections.

– The problem of deciding the winner on a counter system of dimension two
with an arbitrary objective is denoted by Reach-CS2.
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– The problem of deciding the winner on a short-ranged non-blocking VASS of
dimension one with 1 as objective value is denoted by Reach-NBVASS11(1).

3 Counter Reachability Games in Dimension Two or
More

3.1 Reduction from VASS to General Counter Systems

We present a construction that we use in this section to prove undecidability
of counter reachability games in dimension two, and in the next section to give
lower complexity bounds.

In order to show the reduction from VASS to general counter systems, we
simulate in the winning condition the deactivation of edges in VASS, which
makes the difference to the Z semantics. We here denote by 0d the d-dimensional
vector (0, . . . , 0).

Proposition 1. Reach-VASSd(0d) reduces to Reach-CSd(0d) in polynomial time
for any dimension d.

Proof. Let (Q,E) be a VASS of dimension d, let (q0, x0) and (qf , xf ) be con-
figurations of (Q,E). We consider the reachability game on (Q,E) where the
objective is (qf , xf ).

The following hypothesis makes most proofs of this work simpler, without loss
of generality. We assume that qf is a Reacher location. Else, we could simply
create a Reacher location q′f that has only one outgoing edge to qf with label
(0) and choose as objective (q′f , xf ).

We want to build a general counter system on which Reacher has a winning
strategy from a particular configuration if, and only if, he has a winning strategy
from (q0, x0) in the VASS. The key property is that each player must be able
to win whenever his adversary makes a counter value become negative. We can
then simulate the VASS semantics.

In order to have this property, let (Q′, E′) be a counter system with locations
Q′ = Q ∪ {teste | e = (p, v, q) ∈ E, v �∈ Nd} ∪ {check, check1, . . . , checkd}, where
Reacher owns Q1, the check locations and exactly the locations teste for which
the source of e belongs to Opponent in (Q,E). The set of edges E′ is obtained
from E, first by splitting every edge e = (p, v, q) such that v �∈ Nd into two edges
(p, v, teste) and (teste, 0, q), and second by adding moves from every location
teste to the new locations of Q′, as depicted in Figures 1 and 2.

More precisely, E′ is the union of the following sets of edges, where (x)i,d is
the vector with x as ith component and 0 everywhere else:

– {(p, v, q) ∈ E | v ∈ Nd};
– {(p, v, teste), (teste, (0), q) | e = (p, v, q) ∈ E, v �∈ Nd};
– {(teste, (0), check) | e = (p, v, q) ∈ E, p ∈ Q1};
– {(teste, (0), checki) | e = (p, v, q) ∈ E, p ∈ Q2, 1 ≤ i ≤ d};
– {(check, (−1)i,d, check) | 1 ≤ i ≤ d};
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p teste check ⊥

q

(−1,−2) (0, 0)

(0, 0)

(0,−1)

(−1, 0)

(0, 0)

(0, 0)

Fig. 1. Gadget to replace an edge e = (p, (−1,−2), q) from a Reacher location in the
reduction from Reach-VASS2((0, 0)) to Reach-CS2((0, 0))

p

teste

check1

check2

⊥

q

(−1,−2) (1, 0)

(0, 1)(0, 0)

(1, 0)

(0,−1)(0, 1)

(0, 0)

(0, 1)

(1, 0) (−1, 0)

(0, 0)

(0, 0)

Fig. 2. Gadget to replace an edge e = (p, (−1,−2), q) from an Opponent location in
the reduction from Reach-VASS2((0, 0)) to Reach-CS2((0, 0))

– {(checki, (−1)j,d, checki) | 1 ≤ j ≤ d, j �= i};
– {(checki, (1)j,d, checki) | 1 ≤ j ≤ d};
– {(qf ,−xf ,⊥)} ∪ {(p, 0,⊥) | p ∈ {⊥, check, check1, . . . , checkd}}.

The objective of the counter reachability game is (⊥, (0, . . . , 0)). Hence, in
the location check, Reacher has a winning strategy if, and only if, every counter
is nonnegative, and in the location checki, Reacher has a winning strategy if,
and only if, the ith counter, which has been incremented when the play reached
checki, is nonpositive. Consequently, as soon as a player makes a counter become
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negative, his adversary has a winning strategy by going to a check location. If all
counters remain positive, then Reacher has a winning move once the play visits
the objective of the game on (Q,E), and only in this case.

The reduction is polynomial: we have |Q′| ≤ d + 2 + |Q| + |E| and |E′| ≤
(d+2)|E|+2d(d+1)+2. Moreover, the short-range property is preserved when
it holds for the reduced VASS, provided that the objective in the VASS is a
vector that contains only values in {−1, 0, 1}. &'

3.2 Undecidability of Counter Reachability Games on VASS

The following proposition rephrases Proposition 4 from [4].

Theorem 2 ([4]). Let (Q,E) be a short-ranged VASS of dimension two. Con-
sider a reachability game on (Q,E) with QZ×(({0}×N)∪(N×{0})) as objective,
where QZ ⊆ Q. The problem of deciding the winner of this game is undecidable.

To apply Proposition 1, there must be only one configuration in the objective.

Proposition 3. Let (Q,E) be a VASS of dimension two. Consider a reachability
game on (Q,E) with QZ × (({0}×N)∪ (N×{0})) as objective, where QZ ⊆ Q.
We can build a VASS (Q′, E′) such that Reacher wins the reachability game on
(Q,E) if, and only if, he wins the reachability game on (Q′, E′) with objective
(⊥, (0, 0)), where ⊥ ∈ Q′ \Q.

Proof. We suppose that QZ contains Reacher locations only. This is without loss
of generality as in the proof of Proposition 1. Let Q′ = Q ∪ {∅1, ∅2,⊥}, and let

E′ = E ∪ {(q, (0, 0), ∅1), (q, (0, 0), ∅2) | q ∈ QZ}
∪ {(∅1, (−1, 0), ∅1), (∅2, (0,−1), ∅2)}
∪ {(∅1, (0, 0),⊥), (∅2, (0, 0),⊥), (⊥, (0, 0),⊥)}.

Note that the short-range property is preserved. If Reacher has a winning strat-
egy in the game on (Q,E), then he can follow the same strategy on (Q′, E′)
and reach a configuration where the location is in QZ and one of the two coun-
ters is zero. At this point, he can go to the location where he resets the second
counter and, after that, go to ⊥ and win. Conversely, if Reacher has a win-
ning strategy in the game on (Q′, E′), then he can enforce that the play visits
QZ × (({0} × N) ∪ (N× {0})), as this is the only possibility to reach a location
∅i with the (3− i)th counter at zero and, after that, to reach the objective. &'

Theorem 4. Reach-CS12 is undecidable.

Proof. We make two successive reductions from the decision problem of Theo-
rem 2 using Propositions 3 and 1. &'
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4 Counter Reachability Games in Dimension One

In [4], counter reachability games are played on short-ranged VASS, where the
winning condition in the one-dimensional case is to reach QZ × {0} for a given
subset QZ of Q. It can be seen as the objective (⊥, 0), once we add a gadget
that permits Reacher to go from any location in QZ to ⊥ without any further
modification of the counter value. The decision problem is PSPACE-complete in
general and it is in P when QZ = Q.

In this section, we establish mutual reductions between the decision prob-
lem for counter reachability games under the three semantics in dimension one.
The complexity classes follow from the reductions.

4.1 Relative Integers Semantics

We recall that Proposition 1 implies that there is a polynomial-time reduction
from Reach-VASS11(0) to Reach-CS11(0), hence Reach-CS11(0) is PSPACE-hard.

The main idea of the construction in this section is to simulate, with nonneg-
ative integers only, a counter value in Z. For this purpose, we use two copies of
the set of locations and explain how to move from one copy to another.

Theorem 5. Reach-CS11(0) is PSPACE-complete.

Proof. We reduce Reach-CS11(0) to Reach-VASS11(0) in polynomial time. Con-
sider a reachability game on a short-ranged counter system (Q,E), where the
objective is (qf , 0), with qf ∈ Q1. Note that when the objective counter value is
not 0, we can always shift initial and objective value in a general counter system.

Let Q+ = {q+ | q ∈ Q} and Q− = {q− | q ∈ Q} be two copies of Q, and
let QE be the set {qe | ∃p, q ∈ E, v ∈ {±1}, e = (p, v, q) ∈ E}. We build the
short-ranged VASS (Q′, E′), where Q′ = Q+ ∪Q− ∪QE ∪ {no,⊥} is partitioned
into Q′

1 = {q+, q− | q ∈ Q1} ∪ {qe ∈ QE | e ∈ Q2 × {0,±1} × Q} ∪ {no,⊥}
and Q′

2. The set of edges E′ contains two copies of E, i.e., edges (p+, v, q+) and
(p−,−v, q−) for each edge (p, v, q) ∈ E. The other edges of E′ are used to move
between Q+ and Q− via the new locations of QE , as depicted in Figures 3 and 4.

More precisely, E′ is the union of the following sets of edges:

– {(p+, v, q+), (p−,−v, q−) | (p, v, q) ∈ E};
– {(p−, 0, qe), (qe, 0,⊥), (qe, 1, q+) | e = (p, 1, q) ∈ E, p ∈ Q′

1};
– {(p+, 0, qe), (qe, 0,⊥), (qe, 1, q−) | e = (p,−1, q) ∈ E, p ∈ Q′

1};
– {(p−, 0, qe), (qe,−1, no), (qe, 1, q+) | e = (p, 1, q) ∈ E, p ∈ Q′

2};
– {(p+, 0, qe), (qe,−1, no), (qe, 1, q−) | e = (p,−1, q) ∈ E, p ∈ Q′

2};
– {(no,−1, no), (no, 0,⊥), (qf,+, 0,⊥), (qf,−, 0,⊥), (⊥, 0,⊥)}.

The VASS (Q′, E′) is designed such that a play in it corresponds to a play in
the counter system (Q,E). Hence, a configuration (q, x) ∈ Q × −N in (Q,E) is
associated to the configuration (q−,−x) ∈ Q− × N in (Q′, E′). That is why the
labels of the edges between locations in Q− are the opposite of the labels of the
edges in Q.
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The objective of the game on (Q′, E′) is (⊥, 0). In fact, Reacher loses whenever
a play reaches ⊥ with another counter value. Furthermore, if a player makes a
move to a location qe in QE and the counter value is not 0, then his adversary,
who owns qe, has a winning move. &'

p−

p+

q−

qe q+

⊥ 1

−1

0

0
1

0

Fig. 3. Gadget to replace an edge e = (p,−1, q) from a Reacher location in the reduc-
tion from Reach-CS1

1(0) to Reach-VASS1
1(0)

p+

p−

q+

qe q−

no⊥ 1

−1

0

−1
1

−1
0

0

Fig. 4. Gadget to replace an edge e = (p, 1, q) from an Opponent location in the
reduction from Reach-CS1

1(0) to Reach-VASS1
1(0)

A consequence of Theorem 5 is that Reach-CS1 is in EXPSPACE: It suffices
to split every edge with another label than −1, 0 or 1. However, we do not know
yet whether EXPSPACE is an optimal upper bound, but we have the following
lower bound.

Theorem 6 ([5,6]). Reach-CS1 is EXPTIME-hard.

This lower bound is inherited from countdown games [5] and robot games [6],
which we can express as counter reachability games.

4.2 Non-blocking VASS Semantics

When we simulate a game on a non-blocking VASS, we need, like for VASS, to
handle the behaviour around the value 0. The idea is the following: For every
edge labelled by −1 in a short-ranged non-blocking VASS, there are two choices
for Opponent in the VASS: decrement the counter or leave it unchanged, de-
pending on whether it is positive or zero. The winning condition is designed
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so that Reacher has a checking move that makes him win whenever Opponent
chooses the wrong move, e.g., he leaves the counter unchanged whereas he should
decrement it. Moreover, Opponent wins if Reacher abuses his checking move.

Theorem 7. Reach-NBVASS11(1) is PSPACE-complete.

Proof (PSPACE-hardness). We reduce Reach-NBVASS11(1) to Reach-VASS11(0)
in polynomial time. Consider a reachability game on a short-ranged non-blocking
VASS (Q,E), where the objective is (qf , 1), with the assumption that qf ∈ Q1.
Let QE be the set {qe, q>0

e , q=0
e | e ∈ E ∩ (Q × {−1} × Q)}. We build the

short-ranged VASS (Q′, E′), where Q′ = Q ∪ QE ∪ {no,⊥} is partitioned into
Q′

1 = Q1 ∪ {q>0
e , q=0

e | e ∈ E} ∪ {no,⊥} and Q′
2. The set of edges is

E′ ={(p, v, q) | (p, v, q) ∈ E, v ∈ {0, 1}}
∪ {(p, 0, qe), (qe, 0, q>0

e ), (qe, 0, q
=0
e ), (q=0

e , 0, q), (q>0
e ,−1, q),

(q>0
e , 0,⊥), (q=0

e ,−1,⊥) | e = (p,−1, q) ∈ E}
∪ {(no,−1, no), (no, 0,⊥), (qf ,−1,⊥), (⊥, 0,⊥)}.

Intuitively, every time a play visits an edge with a decrement in (Q′, E′),
Opponent has to guess whether the counter value is zero or positive, and move
accordingly to an intermediate location, where Reacher can move to the actual
target of the edge in (Q,E) or to a checking module where the game ends.

The objective of the game on (Q′, E′) is (⊥, 0). As we can see in Figure 5,
Reacher has a winning strategy in every location q=0

e when the counter value is
positive, and in every location q>0

e when the counter value is zero. &'

In the construction for the reverse reduction, when a player chooses any edge
with a negative label and the counter value is less than the value that should
be subtracted, then the adversary of this player has a winning move. Whereas
this is no problem in a non-blocking VASS, such an edge would be forbidden in
a VASS.

p qe

q=0
e

q>0
e

q no ⊥0

0

0

0

−1

−1

0

−1

0

0

Fig. 5. Gadget to replace an edge e = (p,−1, q) in the reduction from Reach-
NBVASS1

1(1) to Reach-VASS1
1(0)
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Proof (PSPACE-membership). We show a polynomial-time reduction, that pre-
serves the short-range property, from Reach-VASS1(0) to Reach-NBVASS1(1).
Consider a reachability game on a VASS (Q,E), where the objective is (qf , 0),
with qf ∈ Q1. Let QE be the set {qe | e ∈ E ∩ (Q × (Z \ N) × Q)}. We
build the non-blocking VASS (Q′, E′), where Q′ = Q ∪ QE ∪ {noR, noO,⊥},
Q′

1 = Q1 ∪ {qe ∈ QE | e ∈ Q2 × Z × Q} ∪ {noR, noO,⊥}, Q′
2 = Q′ \ Q′

1, and
E′ is obtained from E by splitting every edge (p, v, q) such that v ∈ −N into
two edges (p, 0, qe) and (qe, v, q) and by adding an edge from every location qe
to the “no”-location that corresponds to the owner of p, as well as additional
edges between noO, noR and ⊥, as depicted in the Figures 6 and 7.

More precisely, E′ is the union of the sets of edges:

– {(p, v, q) | (p, v, q) ∈ E, x ∈ N};
– {(p, 0, qe), (qe, v, q) | e = (p, v, q) ∈ E, x < 0};
– {(qe, x+ 1, noR) | e = (p, v, q) ∈ E, v < 0, p ∈ Q1};
– {(qe, x+ 1, noO) | e = (p, v, q) ∈ E, v < 0, p ∈ Q2};
– extra edges {(noR,−1, noR), (noR, 0,⊥), (noO, 1,⊥), (qf , 1,⊥), (⊥, 0,⊥)}.

The non-blocking VASS (Q′, E′) is designed such that a play in it corresponds
to a play in the VASS (Q,E). Let us consider a location qe ∈ QE , for an edge
(p, v, q) in E. Note that v < 0 and that the owner of qe is not the owner of p.
In the play on the VASS, the edge (p, v, q) can only be taken if the counter value
is at least −v. If a player goes to qe, i.e., simulates the choice of the edge (p, v, q),

p qe noR ⊥

q

0 −4

−5 −1

0

0

Fig. 6. Gadget to replace an edge e = (p,−5, q) from a Reacher location in the reduc-
tion from Reach-VASS1

1(0) to Reach-NBVASS1
1(1)

p qe noO ⊥

q

0 −4

−5

1

0

Fig. 7. Gadget to replace an edge e = (p,−5, q) from an Opponent location in the
reduction from Reach-VASS1

1(0) to Reach-NBVASS1
1(1)
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his adversary should win whenever the counter value is less than −v, by going
to a “no”-location, as we can see in the Figures 6 and 7. &'

4.3 The Case of Zero-Reachability on Non-blocking VASS

For non-blocking VASS, we prove that the set of winning configurations is down-
ward closed when the reachability objective is (qf , 0) for a given qf . Hence, to
decide whether Reacher has a winning strategy, we compute for all locations the
maximal initial value for which the pair (location, value) is winning and we look
at the initial configuration.

Lemma 8. Let (Q,E) be a non-blocking VASS. Consider a reachability game
on (Q,E), where the objective is (qf , 0), where qf ∈ Q. If the initial configuration
(q0, x) is winning, then every configuration (q0, x

′) for x′ < x is winning.

Proof. Let (q0, x) be a winning configuration, and let s be a winning strategy
for Reacher from (q0, x). Consider any strategy s′ for Opponent. The outcome
of the strategies s and s′ from (q0, x) is a play π that Reacher wins, i.e., the
play π eventually visits (qf , 0). Now, let us look at the outcome of the strategies
s and s′ from (q0, x

′) for x′ < x. It is a play π′ that visits the same locations
as π, and no edge is disabled because of the semantics of a non-blocking VASS.
Moreover, the counter value in π′ is after each move less than or equal to the
counter value in the corresponding move of π. In particular, π′ eventually visits
qf with counter value 0, hence Reacher wins. &'

Algorithm 1 determines the winner of a reachability game on a non-blocking
VASS when the objective counter value is 0. Its time complexity is exponential
in the initial counter value. Accordingly, we call it only with 0 as initial counter
value in the proof of Theorem 9.

Theorem 9. Reach-NBVASS11(0) is in P.

Proof. According to Lemma 8, we just need to compute for every location q ∈ Q
the maximal value xm such that (q, xm) is winning. We even do more: First,
we compute the set QZ of locations from which Reacher has a winning strategy
with initial counter value 0. For this purpose, we use the previous algorithm, and
here the time complexity is polynomial. Second, we build the VASS (Q′, E′),
where Q′ = QZ ∪ {⊥} and E′ is the union of E ∩ (QZ × Z × QZ) and of
{(q, 1,⊥) | (q, v, q′) ∈ E, q ∈ QZ , q

′ �∈ QZ} ∪ {(⊥, 0,⊥)}. In (Q′, E′), the value 0
can only be reached in a location that belongs to QZ . Consider the reachability
game on (Q′, E′), where the objective is Q × 0, like defined in [4]; deciding the
winner in this game is in P. Moreover, Reacher has a winning strategy if, and
only if, he has a strategy in Q to reach (q, 0) for any q ∈ QZ , hence to reach
(qf , 0). Indeed, if a play visits a location outside of QZ , then Opponent has a
winning strategy. We conclude that deciding the winner of the reachability game
is in P too. &'
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Algorithm 1. Solves Reach-NBVASS1(0)

Data: A non-blocking VASS (Q,E), a location qf , and a configuration (q0, x0)
Result: Does Reacher have a winning strategy to reach (qf , 0) from (q0, x0)?
begin

Create a table Mq with q ∈ Q as indices initialized to −∞;
Mqf ← 0;

repeat
foreach e = (q, v, q′)) ∈ E do

Mq ← max(Mq,M
′
q − v)

until a fixpoint is reached or Mq0 ≥ x0;
if Mq0 ≥ x0 then return true;
else return false;

Note that we need the short-range property for our non-blocking VASS, else
the algorithm could still require exponential time. For example, consider that
there is an edge from q0 to qf with label 2n and a self-loop on qf with label −1.
The algorithm would need 2n+1 iterations to conclude that (q0, 0) is a winning
configuration, whereas the size of the non-blocking VASS is linear in n because
of the binary encoding.

5 Conclusion

In this paper, we studied three simple semantics for games on counter systems,
and compared the complexity of reachability problems. In dimension two, every
problem that we considered is undecidable. In dimension one, the decision prob-
lems associated to the counter value 0 are in P for the case of the non-blocking
VASS semantics and PSPACE-complete for the two other semantics, when the
counter system is short-ranged. Without this property, which guarantees that
the set of all visited counter values is an interval, the complexity is not settled
yet, to the best of our knowledge, and lies between EXPTIME and EXPSPACE.

Acknowledgement. The author would like to thank Dietmar Berwanger and
Laurent Doyen for proposing the topic and for helping to organize the paper,
and Marie van den Bogaard for patient reading and checking of the proofs.
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Abstract. We investigate gcf-Petri nets, a generalization of communica-
tion-free Petri nets allowing arbitrary edge multiplicities, and character-
ized by the sole restriction that each transition has at most one incoming
edge. We use canonical firing sequences with nice properties for gcf-PNs
to show that the RecLFS, (zero-)reachability, covering, and boundedness
problems of gcf-PNs are in PSPACE. By showing, how PSPACE-Turing
machines can be simulated by gss-PNs, a subclass of gcf-PNs where ad-
ditionally all transitions have at most one outgoing edge, we ultimately
prove the PSPACE-completess of these problems for gss/gcf-PNs. Last,
we show PSPACE-hardness as well as a doubly exponential space bound
for the containment and equivalence problems of gss/gcf-PNs.

1 Introduction

In [12], Mayr proposed a non-primitive recursive algorithm for the general Petri
net reachability problem, thus proving its decidability. For many restricted Petri
net classes, a better complexity of the reachability problem can be shown. How-
ever, the nets of most Petri net classes for which the complexity of the reacha-
bility problem could be refined are subject to the restriction that all edges from
places to transitions have multiplicity one. Well known examples of such nets
with NP-complete reachability problems are communication-free Petri nets (cf-
PNs/BPP-PNs), [3, 18], conflict-free Petri nets [7] and normal as well as sinkless
Petri nets [8] (for the latter two, the promise problem variation of the reacha-
bility problem was considered). Remarkable examples for Petri net classes with
general edge multiplicities and matching lower and upper bounds for the reach-
ability problem are single-path Petri nets [6] (PSPACE-complete) and reversible
Petri nets [13] (EXPSPACE-complete). For a more comprehensive overview, the
reader is referred to [4].

Our ultimate goal is to gain insight into how general edge multiplicities in-
fluence the complexity of the reachability problem and several other classical
problems. In this paper, we investigate a generalization of communication-free
Petri nets. A cf-PN is a Petri net such that each transition has exactly one input
place, connected by an edge with multiplicity one. Cf-PNs are closely related to

P.A. Abdulla and I. Potapov (Eds.): RP 2013, LNCS 8169, pp. 209–221, 2013.
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Basic Parallel Processes defined in [1, 2] as well as to context-free (commuta-
tive) grammars [4, 10]. We call our generalization generalized communication-
free Petri nets (gcf-PNs). The nets of this class are characterized by a single
topological constraint, namely, that each transition has at most one input place,
connected by an edge with arbitrary multiplicity.

For cf-PNs, tight bounds for the reachability problem are known. Esparza
[3] showed NP-completeness while Yen [18] gave an alternative proof for NP-
membership, based on canonical firing sequences. Both proofs (implicitly) rely
on the fact that the RecLFS problem (recognize legal firing sequence, see [17])
is decidable in polynomial time due to a very easily checkable criterion. (The
problem RecLFS asks if a given Parikh vector is enabled at some given marking.)
For gcf-PNs, no such criterion exists (under the assumption P �= PSPACE) since
the problem is PSPACE-complete as shown in Section 3.

In Section 3, we show PSPACE-hardness for the RecLFS, the reachability,
the covering, and the boundedness problems of generalized S-Systems (gss-PNs)
which are a subclass of gcf-PNs where each transition has at most one incoming
and at most one outgoing edge, each with arbitrary edge multiplicity. This is
interesting because almost all the problems considered in this paper have very
low complexity for S-Systems (e.g., they are always bounded, the reachability
problem is decidable in polynomial time [5], etc.). Furthermore, the covering, and
the boundedness problems of cf-PNs are known to be NP-complete, and linear
time (on RAMs), respectively [15]. Then, we derive canonical permutations of
firing sequences of gcf-PNs, and use them to show PSPACE-completeness for
the RecLFS, the reachability, and the covering problems of gcf-PNs.

In Section 4, we show the existence of canonical firing sequences that have
stronger properties than the firing sequences obtained by canonical permuta-
tions. These canonical firing sequences resemble those given in [18] for cf-PNs.
We use them to show PSPACE-completeness for the boundedness problem of
gcf-PNs, and that the equivalence and containment problems of gcf-PNs are
PSPACE-hard as well as decidable in doubly exponential space.

Due to space limitations, we provide detailed proofs for the lemmata and
theorems in the technical report [14]. In this paper, we give proof sketches and
the essential proof ideas. An exception is Lemma 6 where we derive the most
central result, the existence of canonical permutations, for which a full proof is
provided here.

2 Preliminaries

Z, N0, and N denote the set of all integers, all nonnegative integers, and all
positive integers, respectively, while [a, b] = {a, a + 1, . . . , b} � Z, and [k] =
[1, k] � N. For two vectors u, v ∈ Zk, we write u ≥ v if ui ≥ vi for all i ∈ [k], and
u > v if u ≥ v and ui > vi for some i ∈ [k]. When k is understood, a denotes,
for a number a ∈ Z, the k-dimensional vector with ai = a for all i ∈ [k].

A Petri net N is a 3-tuple (P, T, F ) where P is a finite set of n places, T is
a finite set of m transitions with P ∩ T = ∅, and F : P × T ∪ T × P → N0
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is a flow function. Throughout this paper, n and m will always refer to the
number of places resp. transitions of the Petri net under consideration, and
W = max{F (p, t), F (t, p) | p ∈ P, t ∈ T } to the largest value of its flow function.
Usually, we assume an arbitrary but fixed order on P and T , respectively. With
respect to this order on P , we can consider an n-dimensional vector v as a func-
tion of P , and, abusing the notation, write v(p) for the entry of v corresponding
to place p. Analogously, we write v(t) in context of an m-dimensional vector and
a transition t.

A marking μ (of N) is a vector of Nn
0 . A pair (N,μ(0)) such that μ(0) is a

marking of N is called a marked Petri net, and μ(0) is called its initial marking.
We will omit the term “marked” if the presence of a certain initial marking is
clear from the context.

For a transition t ∈ T , •t (t•, resp.) is the preset (postset, resp.) of t and
denotes the set of all places p such that F (p, t) > 0 (F (t, p) > 0, resp.). Analo-
gously, the sets •p and p• of transitions are defined for the places p ∈ P . A Petri
net (P, T, F ) is a generalized communication-free Petri net (gcf-PN) if |•t| ≤ 1 for
all t ∈ T . A gcf-PN is a generalized S-System Petri net (gss-PN) if additionally
|t•| ≤ 1 for all t ∈ T .

A Petri net naturally corresponds to a directed bipartite graph with edges
from P to T and vice versa such that there is an edge from p ∈ P to t ∈ T (from
t to p, resp.) labelled with w if 0 < F (p, t) = w (if 0 < F (t, p) = w, resp.). The
label of an edge is called its multiplicity. If a Petri net is visualized, places are
usually drawn as circles and transitions as bars. If the Petri net is marked by
μ, then, for each place p, the circle corresponding to p contains μ(p) so called
tokens.

For a Petri net N = (P, T, F ) and a marking μ of N , a transition t ∈ T can
be applied at μ producing a vector μ′ ∈ Zn with μ′(p) = μ(p)−F (p, t) +F (t, p)
for all p ∈ P . The transition t is enabled at μ or in (N,μ) if μ(p) ≥ F (p, t) for
all p ∈ P . We say that t is fired at marking μ if t is enabled and applied at μ. If
t is fired at μ, then the resulting vector μ′ is a marking, and we write μ t−→ μ′.
Intuitively, if a transition is fired, it first removes F (p, t) tokens from p and then
adds F (t, p) tokens to p.

An element σ of T ∗ is called a transition sequence, and |σ| denotes its length.
For the empty transition sequence σ = (), we define μ

σ−→ μ. For a nonempty
transition sequence σ = t1 · · · tk, ti ∈ T , we write μ(0) σ−→ μ(k) if there are
markings μ(1), . . . , μ(k−1) such that μ(0) t1−→ μ(1) t2−→ μ(2) . . .

tk−→ μ(k). We write
σ(i,j) for the subsequence σi · σi+1 · · ·σj , and σ(i) for the prefix of length i of σ,
i.e., σ(i) = σ(1,i).

A Parikh vector Φ, also known as firing count vector, is simply an element of
Nm

0 . The Parikh map Ψ : T ∗ → Nm
0 maps each transition sequence σ to its Parikh

image Ψ(σ) where Ψ(σ)(t) = k for a transition t if t appears exactly k times in σ.
Note that each Parikh vector Φ is the Parikh image of some transition sequence.
Furthermore, we write t ∈ Φ if Φ(t) > 0, and t ∈ σ if t ∈ Ψ(σ). For a transition
sequence σ ∈ T ∗, we define •σ =

⋃
t∈σ

•t. Ψfirst(σ) is the Parikh vector such
that, for all transitions t, Ψfirst(σ)(t) = 1 if •t̄ �= •t for all transitions t̄ in front
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of the first occurrence of t in σ, and Ψfirst(σ)(t) = 0 otherwise. For σ, τ ∈ T ∗,
σ –� τ ∈ T ∗ is obtained by deleting the first min{Ψ(σ)(t), Ψ(τ)(t)} occurences of
each transition t from σ.

If there is a marking μ′ with μ
σ−→ μ′, then we say that σ (the Parikh vector

Ψ(σ), resp.) is enabled at μ and leads from μ to μ′. For a marked Petri net
(N,μ(0)), we call a transition sequence that is enabled at μ(0) a firing sequence.
A marking μ is called reachable if μ(0) σ−→ μ for some σ. The reachability set
R(N,μ(0)) of (N,μ(0)) consists of all reachable markings. We say that a marking
μ can be covered if there is a reachable marking μ′ ≥ μ.

The displacement Δ : Nm
0 → Zn maps Parikh vectors Φ ∈ Nm

0 onto the change
of tokens at the places p1, . . . , pn when applying transition sequences with Parikh
image Φ. That is, we have Δ(Φ)(p) =

∑
t∈T Φ(t) · (F (t, p)−F (p, t)) for all places

p. Accordingly, we define the displacement Δ(σ) of a transition sequence σ by
Δ(σ) := Δ(Ψ(σ)).

A Parikh vector or a transition sequence having nonnegative displacement
at all places is called a nonnegative loop since, if it is fired at some mark-
ing, the loop can immediately be fired again at the resulting marking. A non-
negative loop having positive displacement at some place p is a positive loop
(for p). A nonnegative loop with displacement 0 at all places is a zero-loop.
For a marking μ, a transition sequence σ, and a subset S ⊆ P of places,
we define max(μ, S) := maxp∈S μ(p), and max(μ) := max(μ, P ), as well as
max(μ, σ, S) := maxi∈[0,|σ|]max(μ+Δ(σ(i)), S), and max(μ, σ) := max(μ, σ, P ).

The wipe-extension P− = (P, T−, F−) of a Petri net P = (P, T, F ) is obtained
from P by introducing, for each place pi ∈ P , a transition t−i with F−(pi, t−i ) = 1.

Some marked Petri nets have reachability sets that are semilinear. A set
S ⊆ Nn

0 is semilinear, if there are a k ∈ N0 and linear sets L1, . . . , Lk ⊆ Nn
0

such that S =
⋃

i∈[k] Li. A set L ⊆ Nn
0 is linear, if there are � ∈ N0 and vec-

tors b, p1, . . . , p	 ∈ Nn
0 such that L = {b +

∑
i∈[	] aipi | ai ∈ N0, i ∈ [�]}. The

vector b is the constant vector of L, while the vectors pi are the periods of L.
A semilinear representation of a semilinear set S is a set consisting of k pairs
(bi, {pi,1, . . . , pi,	i}), i ∈ [k], for some k ∈ N0, such that S =

⋃
i∈[k] Li where

Li = {bi +
∑

j∈[	i]
ai,jpi,j | ai,j ∈ N0, j ∈ [�i]}. If two Petri nets allow the con-

struction of semilinear representations of the respective reachability sets within
a certain space bound, then many problems are decidable that are undecidable
for Petri nets in general, and space bounds can be given as well. We will use this
well known approach for the containment and the equivalence problems.

Throughout this paper we use a succinct encoding scheme. Every number is
encoded in binary representation. A Petri net is encoded as an enumeration of
places p1, . . . , pn and transitions t1 . . . , tm followed by an enumeration of the
edges with their respective edge weight. A vector of Nk

0 is encoded as a k-tuple.
If we regard a tuple as an input (e.g. a marked Petri net), then it is encoded
as a tuple of the encodings of the particular components. size(P) denotes the
encoding size of a marked Petri net P . Analogously, size(P , μ) is the encoding
size of P together with an additional marking μ.
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In this paper, we study the following problems for gcf-PNs.

• RecLFS: Given a gcf-PN P and a Parikh vector Φ, is Φ enabled in P?
• Reachability: Given a gcf-PN P and a marking μ, is μ reachable in P?
• Zero-Reachability: Given a gcf-PN P , is the empty marking reachable in P?
• Covering: Given a gcf-PN P and a marking μ, is μ coverable in P?
• Boundedness: Given a gcf-PN P , is there, for each k ∈ N, a reachable marking
μ with max(μ) ≥ k?

• Containment: Given two gcf-PNs P and P ′, is R(P) ⊆ R(P ′)?
• Equivalence: Given two gcf-PNs P and P ′, is R(P) = R(P ′)?

We remark that the input size of a problem instance consists of the encodings of
all entities that are declared as being “given” in the respective problem statement.

3 Canonical Permutations, and the RecLFS,
(Zero-)Reachability, and Covering Problems

In this section, we first show PSPACE-completeness of the RecLFS problem.
Then, we describe a procedure that, given a gcf-PN P = (P, T, F, μ(0)), and a
firing sequence σ with μ(0) σ−→ μ, produces a permutation σ′ of σ enabled at μ(0)

such that every marking reached while firing σ′ has encoding size polynomial in
size(P , μ). We use these sequences to decide the reachability, and the covering
problems in polynomial space, proving their PSPACE-completeness.

Lemma 1. The RecLFS, the zero-reachability, the reachability, the covering,
and the boundedness problems of gss-PNs are PSPACE-hard.

Proof (Please note that, as indicated in the introduction, most of the proofs give
the ideas. Fully detailed proofs are available in [14]). The proof is based on a
generic reduction from each language L ∈ PSPACE to each of the problems
of interest mentioned in the lemma. We use the existence of a PSPACE-Turing
machineM with certain properties deciding an arbitrary language L ∈ PSPACE.
Our logspace reduction maps the given word x to a gss-PN P and to a Parikh
vector or a marking, corresponding to M and x. P simulates M in such a way
that the Parikh Vector is enabled or the marking can be reached if and only if
M accepts x. &'

Theorem 1. The RecLFS problem of general Petri nets is PSPACE-complete,
even if restricted to gss-PNs.

Proof. The PSPACE-hardness of the RecLFS problem is shown in Lemma 1.
Now observe that we can guess the order in which the transitions of the given
Parikh vector Φ can be fired. Each marking obtained when firing this sequence
has encoding size polynomial in the size of the Petri net and Φ. &'

Next, we propose four essential lemmata for the construction of canonical per-
mutations of firing sequences in gcf-PNs.
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Lemma 2. Let σ be a firing sequence of a gcf-PN (N,μ(0)). If a transition
t ∈ Ψfirst(σ(i+1,|σ|)) is enabled at μ(0) +Δ(σ(i)), then σ(i) · t · (σ(i+1,|σ|) –� t) is a
firing sequence.

Proof. We can shift a transition which first consumes tokens of a place p to the
front of the sequence, given that the initial marking has enough tokens for the
transition. Iteratively applying this argument yields the lemma. &'

Lemma 3. Let (P, T, F ) be a gcf-PN, σ a transition sequence, and μ, μ′ mark-
ings with μ + Δ(σ) = μ′ and μ(p), μ′(p) ≥ W for all p ∈ •σ. Then, there is a
permutation of σ enabled at μ (and leading to μ′).

Proof. The proof uses induction over the length of σ. Using Lemma 2, we gener-
ate a permutation σ̃ · σ̄ of σ such that σ̃ is enabled at the marking with W tokens
at all places of S and Δ(σ̃)(p) ∈ [−W,−1] for all p ∈ •σ̄. Applying the induction

hypothesis to σ̄ and σ̃ yields permutations σ̄′ and σ̃′ with μ
σ̄′·σ̃′
−−−→ μ′. &'

Lemma 4. Let P = (P, T, F ) be a gcf-PN with largest edge multiplicity W , and
S ⊆ P a subset of places. Further, let σ = σ1 · · ·σk, σi ∈ T , be a transition
sequence of P with μ(0) σ1−→ μ(1) . . . μ(k−1) σk−→ μ(k) such that

(a) •σ ⊆ S,
(b) μ(i−1)(•σi) = max(μ(i−1), S) for all i ∈ [k] (i.e., each transition removes

tokens from a place of S with the maximum number of tokens), and
(c) max(μ(k), S) > max(μ(0), S) + 2|S|W .

Then, for some i ∈ [1, k − 1], the suffix σ(i,k) is a positive loop.

Proof. By (c), there is an interval [x, y] � [max(μ(0), S),max(μ(k), S)] of size 2W
such that μ(k)(p) /∈ [x, y] for all places p ∈ S. Let i ∈ [0, k − 1] be the smallest
index such that max(μ(j), S) ≥ x+W for all j ∈ [i, k].

For all p ∈ S with μ(i)(p) ∈ [x, y] we have μ(k)(p) > b. By (a), (b) and the
choice of i, the numbers of tokens of these places will never be below x at all
μ(j) with j ∈ [i, k]. Additionally, the numbers of tokens at all other places are
monotonically increasing from μ(i) to μ(k). Hence, σ(i+1,k) is a positive loop. &'

Lemma 5. Let N = (P, T, F ) be a Petri net with n places and m transitions,
and let W be the largest edge multiplicity of N . Then, there is a finite set H(N) =
{Φ(1), . . . , Φ(k)} � Nm

0 of nonnegative loops of N such that each loop of H(N)
consists of at most (1 + (n + m)W )n+m transitions, and such that, for each
nonnegative loop Φ of N , there are a1, . . . , ak ∈ N0 with Φ = a1Φ

(1)+. . .+akΦ
(k).

Proof. We can formulate the set of all nonnegative loops as the set of solutions
of an appropriately formulated system of linear diophantine inequalities. Using
Theorem 1 of [16], we obtain the result. &'

Using these lemmata, we can show that firing sequences have canonical per-
mutations with nice properties.



Generalized Communication-Free Petri Nets 215

Lemma 6. There is a constant c such that, for each gcf-PN P = (P, T, F, μ(0))
and each firing sequence σ leading from μ(0) to μ, there is a permutation ϕ of
σ leading from μ(0) to μ, and satisfying max(μ(0), ϕ) ≤ (2nmW + max(μ(0)) +
max(μ))c(n+m).

Proof. Let P = (P, T, F, μ(0)) be a gcf-PN, and σ a firing sequence leading
to some marking μσ. We define two special levels �big := max{W,max(μ(0)),
max(μσ) + 1} and �fire := �big +W . Additionally, for i ∈ [0, n], we define the
levels �i := �fire +W + i · (max{(1+ (n+m)W )n+m, 2n}+1)W . A place p is big
at a marking μ if μ(p) ≥ �big, and firing if μ(p) ≥ �fire.

Consider the following invariants for two transition sequences σ̃ and σ̄:

(i) σ̃ · σ̄ is a permutation of σ with μ(0) σ̃−→ μσ̃ σ̄−→ μσ,
(ii) max(μ(0), σ̃) ≤ �n, and
(iii) if there are b ≥ 1 big places at μσ̃, then max(μσ̃) ≤ �b−1.

For σ̃ = () and σ̄ = σ, these invariants are obviously satisfied. Assume |σ̃| < |σ|,
and that σ̃ and σ̄ satisfy the invariants. We show how to extend σ̃ at the end
to a longer transition sequence σ̃new and obtain a corresponding sequence σ̄new

such that σ̃new and σ̄new again satisfy the invariants.
First, consider the case that there are no firing places at μσ̃. Then, we set

σ̃new := σ̃ · σ̄(1), and σ̄new := σ̄(2,|σ̄|). σ̃new and σ̄new obviously satisfy property
(i). For (ii) and (iii) notice that, for each big place p of μσ̃ +Δ(σ̄(1)), we have
(μσ̃ +Δ(σ̄(1)))(p) ≤ μσ̃(p) +W < �fire +W = �0.

Next, consider the case that there are firing places at μσ̃. Let S be the set of
big places at μσ̃ and b = |S| ≥ 1 their number. The number of tokens of a big
place p∗ ∈ S as a function of time is illustrated in (a) of Figure 1. We initialize
an empty transition sequence α ← (), as well as σ̄′ ← σ̄. As long as there is
a firing place p ∈ S at μσ̃ + Δ(α), we select the transition t ∈ Ψfirst(σ̄

′) with
p = •t, and set α ← α · t, as well as σ̄′ ← σ̄′ –� t. Notice that t must exist since
σ̄′ must reduce the number of tokens at p in order to reach μσ(p). By Lemma 2,

σ̃ · α · σ̄′ is a firing sequence with μ(0) σ̃−→ μσ̃ α−→ μα σ̄′
−→ μσ , and α is nonempty

since μσ̃ has a firing place, see (b) of Figure 1.
Now, consider the nonnegative loop Φ with the largest component sum such

that Φ ≤ Ψ(α). Using Lemma 5, we decompose Φ into short nonnegative loops
Φ(1), . . . , Φ(k), each with component sum at most (1 + (n + m)W )n+m. Since
μσ̃(p) ≥ W for all p ∈ S and •t ∈ S for all t ∈ Φ(j), j ∈ [k], we can use
Lemma 3 to find transition sequences τ (1), . . . , τ (k) with Ψ(τ (j)) = Φ(j), j ∈ [k],
such that τ := τ (1) · · · τ (k) is enabled at μσ̃. Let μσ̃ τ−→ μτ . For each p ∈ S, we
observe Δ(Φ)(p) < W . To see this, assume Δ(Φ)(p) ≥W . By the maximality of
Φ, Ψ(α) − Φ doesn’t contain a transition t with p = •t. Therefore, Δ(α)(p) =
Δ(Φ)(p)+Δ(Ψ(α)−Φ)(p) ≥W . But then, μσ̃(p)+Δ(α)(p) ≥ �big+W = �fire, a
contradiction to the fact that no place of S is firing. Since all τ (j) are nonnegative
loops, we obtain Δ(τ (1) · · · τ (j))(p) ≤W for all p ∈ S and j ∈ [k]. Furthermore,
|τ (j)| < (1 + (n + m)W )n+m implies Δ(τ

(j)
(i) )(p) ≤ (1 + (n + m)W )n+mW for

all i ∈ [|τ (j)|] and p ∈ P . We obtain max(μσ̃ + Δ(τ (1) · · · τ (j−1)), τ (j), S) ≤
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τ (1) τ (2) · · · τ (k−1) τ (k) ᾱ σ̄′

(c)
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�0
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�b

μσ̃ μτ
μβ μσ

τ (1) τ (2) · · · τ (k−1) τ (k) β ᾱ′ · σ̄′

(d)

Fig. 1. (a)–(d) illustrate the development of the number of tokens at a place p∗ which
is big at μσ̃ during certain steps of the permutation procedure described in Lemma 6.
The number of tokens is bounded from above by the respective curve. The number of
big places at μσ̃ is b. Dashed lines symbolize that the number of tokens can become
arbitrarily big.

�b−1 + W + (1 + (n + m)W )n+mW ≤ �b for all j ∈ [k], and thus our first
important intermediate result of the proof: max(μσ̃, τ, S) ≤ �b.
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In other words, the token numbers of places of S at all markings obtained
while firing τ at μσ̃ are at most �b.

We now consider Ψ(α) − Φ. Observing μτ (p) ≥ μσ̃(p) ≥ W and μσ(p) ≥ W
for all p ∈ S, and •ᾱ ⊆ S for some transition sequence ᾱ with Ψ(ᾱ) = Ψ(α)−Φ,
we use Lemma 3 to find a transition sequence ᾱ with Ψ(ᾱ) = Ψ(α) − Φ that is
enabled at μτ , see (c) of Figure 1.

We initialize another empty transition sequence β ← (), as well as ᾱ′ ← ᾱ.
As long as there is a firing place of S at μτ +Δ(β), we select a place p ∈ S with
max(μτ +Δ(β), S) = (μτ+Δ(β))(p) and the transition t ∈ Ψfirst(ᾱ

′) with p = •t,
and set β ← β · t, as well as ᾱ′ ← ᾱ′ –� t. It is important to note the difference of
this selection procedure compared to the one before. Here, we select a place of
S with the largest number of tokens. Also note that β is nonempty since μσ̃ has
a firing place in S and μτ ≥ μσ̃. Let μβ := μτ +Δ(β). By Lemma 2, we observe

μτ β−→ μβ , and ᾱ′ is enabled at μβ. In total, we have μσ̃ τ−→ μτ β−→ μβ ᾱ′·σ̄′
−−−→ μσ.

We observe max(μτ , S) = max(μσ̃ + Δ(τ), S) ≤ max(μσ̃, S) +W ≤ �b−1 +
W . Now, for the sake of contradiction, assume that max(μτ , β, S) > �b. Then,
max(μτ +Δ(β(i)), S) > �b ≥ �b−1+W +2nW ≥ max(μτ , S)+2nW for some i ∈
[|β|]. But then, Lemma 4 implies that β contains a positive loop, a contradiction
to the maximality of Φ. Therefore, max(μτ , β, S) ≤ �b. We merge τ and β and
obtain the nonempty transition sequence γ := τ · β.

Our observations can now be summarized as our second important interme-
diate result, also see (d) of Figure 1:

μσ̃ γ−→ μβ ᾱ′·σ̄′
−−−→ μσ, |γ| > 0, max(μσ̃, γ, S) ≤ �b, andmax(μβ , S) < �fire.

As the last step, consider the smallest j ∈ [|γ|] such that the number of big
places at μσ̃ +Δ(γ(j)) is at least b + 1. If such a j does not exist, set j := |γ|.
Now define σ̃new := σ̃ · γ(j), as well as σ̄new := γ(j+1,|γ|) · ᾱ′ · σ̄′. Observe that
σ̃new is longer than σ̃, and, together with σ̄new, satisfies the invariants (i)–(iii).
In particular, if there is still a big place at the end of the step, then every place
that is big at some time during the step is also big at the end of it.

By iteratively applying this procedure, we obtain a permutation ϕ of σ such
that μ(0) ϕ−→ μσ and max(μ(0), ϕ) ≤ �n, i.e., all markings obtained while firing ϕ
contain at most �n tokens at each place. Note that if one of the values n,m,W
is 0, then only the initial marking μ(0) is reachable. Therefore, we can choose an
appropriate constant c such that �n ≤ (2nmW +max(μ(0))+max(μ))c(n+m) for
all possible inputs as defined at the beginning. &'

We can use Lemma 6 to show that the reachability and the covering problems
of gcf-PNs are PSPACE-complete.

Theorem 2. The zero-reachability, the reachability, and the covering problems
of gcf-PNs are PSPACE-complete, even if restricted to gss-PNs.

Proof. The PSPACE-hardness of the RecLFS problem is shown in Lemma 1. By
Lemma 6, we can guess a firing sequence to a reachable marking such that all in-
termediately observed markings have size polynomial in the input. Furthermore,
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we can use the wipe-extension of the Petri net to reduce the covering problem
to the reachability problem. &'

4 Canonical Firing Sequences, and the Boundedness,
Containment, and Equivalence Problems

The canonical permutation obtained in Section 3 is, by itself, not strong enough
to show the membership of the boundedness problem in PSPACE or to yield al-
gorithms deciding the containment and equivalent problems. Therefore, our first
objective in this section is to distill a strong form of canonical firing sequences
from canonical permutations.

Lemma 7. There is a constant c > 0 such that, for each reachable marking μ
of a gcf-PN P = (N,μ(0)), there are transition sequences ξ, ξ̄, α(1), . . . , α(k),
τ (1), . . . , τ (k) for some k ≤ n ·max(μ) having the following properties.

(a) ξ = α(1) · τ (1) · α(2) · τ (2) · · ·α(k) · τ (k) is a firing sequence leading from μ(0)

to μ.
(b) ξ̄ = α(1) · α(2) · · ·α(k) is fireable with |ξ̄| ≤ (2nmW +max(μ(0)))cn(n+m).
(c) Each τ (i), i ∈ [k], is a positive loop with |τ (i)| ≤ (2nmW+max(μ(0)))cn(n+m)

enabled at some marking μ∗ with max(μ∗) ≤ (2nmW+max(μ(0)))c(n+m) and
μ∗ ≤ μ(0) +Δ(α(1) · α(2) · · ·α(i)).

Proof. Consider the wipe-extension P− = (P, T−, F−, μ(0)) of P . Each firing
sequence σ of P can be extended by transitions T− \T yielding a firing sequence
σ′ of P− leading to the empty marking. By Lemma 6 there is a permutation
of ϕ of σ′ which intermediately only touches markings whose token numbers
are at most exponential in the size of only P−.We partition ϕ into subsequences
ϕ(1), . . . , ϕ(	) which witness all markings which can potentially enable a zero-loop
contained in ϕ. From these subsequences, we iteratively cut out all zero-loops
which don’t contain a zero-loop themselves, and store them for later use. Now,
we discard all zero-loops which don’t contain transitions of T− \ T since they
are also zero-loops in P , and therefore not needed. Let L denote the set of zero-
loops that are kept. We remove all transitions of T− \ T from the sequences
ϕ(i), i ∈ [�], and all τ ∈ L. The positive loops τ ∈ L constitute, appropriately
numbered, the loops τ (j) while an appropriate partition of ϕ(1) · · ·ϕ(	) yields the
sequences α(1) . . . α(k). The bound on the length of these sequences follows from
the iterative removal of all zero-loops, and from the fact that each loop that was
cut out, didn’t contain a zero-loop itself. &'

We call the sequence ξ̄ the backbone of the canonical sequence under considera-
tion. Using canonical firing sequences as constructed in Lemma 7, we can show
the following lemma.

Lemma 8. There is a constant c such that, for each gcf-PN P = (P, T, F, μ(0)),
P is unbounded if and only if there is a reachable marking μ with max(μ) ≥
max(μ(0)) + δ + 1 if and only if there is a reachable marking μ with max(μ) ∈
[max(μ(0))+δ+1,max(μ(0))+2δ+1] where δ = (2nmW+max(μ(0)))cn(n+m) ·W .
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Proof. The proof can be found in [14]. &'

We can now prove the following theorem.

Theorem 3. The boundedness problem of gcf-PNs is PSPACE-complete, even
if restricted to gss-PNs.

Proof. Since the PSPACE-hardness was shown in Lemma 1, it remains to be
shown that it is in PSPACE. By Lemma 8, we have to check if a reachable
marking μ as defined in the lemma exists. Hence, in order to check if P is
unbounded, we guess μ in polynomial time, and check in polynomial space if μ
is reachable by using Theorem 2. &'

In the following, we show a doubly exponential space upper bound for the
containment and the equivalence problems.

Lemma 9. Given a gcf-PN P = (P, T, F, μ(0)), we can construct a semilinear
representation of R(P) in doubly exponential time in size(P).

Proof. Let P and P ′ be the gcf-PNs of interest. We consider all possible back-
bones of canonical firing sequences of P . Each of these backbones ξ̄ constitutes its
own linear set, where the constant vector is the marking reached by the backbone,
and the set of periods is the set of the displacements of all short positive loops
enabled at some marking obtained while firing the backbone. Here, we use (c) of
Lemma 7 to find all short loops enabled at a small marking μ∗, i.e., we compute
all relevant periods before we start enumerating all relevant backbones. Lemma 7
ensures that the constructed semilinear representation represents R(P). &'

Theorem 4. The containment and the equivalence problems of gcf-PNs are
PSPACE-hard and decidable in doubly exponential space, even if restricted to
gss-PNs.

Proof. The idea for the lower bound is to extend the given gss-PN P to a net
P ′ in which all markings are reachable if and only if P is unbounded. Using this
net, we can answer the boundedness problem by asking if R(P∗) ⊆ R(P ′) (or
R(P∗) = R(P ′)) where P∗ is a gss-PN in which all markings are reachable. The
upper bound for our problems is implied by Lemma 9, and bounds of [9] or [11]
for semilinear representations. &'

Our construction is similar to that given in [15] for cf-PNs which uses results
of [18], and yields a semilinear representation of the reachability set of cf-PNs
having single exponential encoding size, implying single exponential space algo-
rithms for the containment and equivalence problems. The difference in the en-
coding sizes of these semilinear representation between cf-PNs and gcf-PNs does
not result from the slight differences in the canonical firing sequences themselves
(in fact, our canonical sequence can also be used to generate the semilinear rep-
resentations for cf-PNs in single exponential time), rather, it results from the
following.
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p1 p2 p3t1 t2

t32 2

Fig. 2. The firing sequences t1t1t2t2 and t1t2t1t2 have the same Parikh image but only
the first sequence intermediately enables the positive loop t3

For cf-PNs, we used that each nonnegative loop that is intermediately enabled
by some backbone can be partitioned into suitable nonnegative loops which are
intermediately enabled by every other backbone with the same Parikh image.
Therefore, it is sufficient to only consider one of these backbones. This results
in a single exponential number of relevant backbones, and therefore in a single
exponential number of linear sets, each of single exponential size. However, the
same strategy fails in the case of gcf-PNs since the order of the transitions is
much more relevant for gcf-PNs than for cf-PNs: firing transitions in a certain
order can intermediately enable loops that cannot be partitioned further and
that are not intermediately enabled by firing the same transitions in some other
order. This is illustrated in Figure 2. Hence, to improve the doubly exponential
space bound for the equivalence problem, some other or a refined approach will
have to be found.
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