
Towards a Core ORM2 Language
(Research Note)

Enrico Franconi and Alessandro Mosca

Free University of Bozen-Bolzano, KRDB Research Centre, Italy
{franconi,mosca}@inf.unibz.it

Abstract. The introduction of a provably correct encoding of a fragment of
ORM2 (called ORM2zero) into a decidable fragment of OWL2, opened the doors
for the definition of dedicated reasoning technologies supporting the quality of
the schemas design. In this paper we discuss how to extend ORM2zero in a max-
imal way by retaining at the same time the nice computational properties of
ORM2zero.

1 ORM2zero+: The Core Fragment of ORM2

In [1,2] we introduced a fragment of ORM2, called ORM2zero, that captures the most
frequent usage patterns of the conceptual modelling community. The language has a for-
mal semantics specified in FOL, and a provably correct (bidirectional) encoding in the
description logic ALCQI [1]. ALCQI is a decidable fragment of the OWL2 Web on-
tology language (a complete introduction of the syntax and semantics of ALCQI can
be found in [3]), for which optimised very efficient tableaux-based reasoning algo-
rithms and tools have been developed. The encoding of ORM2zero in description logics
provably preserves satisfiability and entailment, and so the reasoning in the description
logic (such as the strong and weak satisfiability of the schema, of the entities and of
the predicates, and the entailment of new or stricter constraints) can be transposed back
to ORM2zero. In [1,2] we extensively comment on the limits and the incorrectness of
alternative similar proposals.

Figure 1 introduces the list of the constraints that are natively present in ORM2zero,
together with their graphical notations. The table also reports about the restrictions we
need to impose on the applicability of these constraints in order to preserve the decid-
ability of the language and the feasibility of the encoding, so that we can rely on avail-
able reasoning tools. In ORM2zero we can express typing constraints, simple mandatory
constraints, internal frequency constraints restricted to single roles, arbitrary subtyping
constraints, and subset and exclusion constraints restricted to pairs of whole predicates.
Note that in ORM2zero the subtyping is not strict (namely, subtyping is interpreted as
a subset-or-equal relation between entities), and that root entities (without supertypes)
are not mutually disjoint.

Despite the apparent weakness of the ORM2zero language, suitable combinations of
the ORM2zero constructs can be used to encode a number of other relevant ORM2 con-
straints, thus extending the expressive power of ORM2zero to what we call ORM2zero+.
The following constraints are in ORM2zero+: unrestricted objectification; reference

Y.T. Demey and H. Panetto (Eds.): OTM 2013 Workshops, LNCS 8186, pp. 448–456, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Towards a Core ORM2 Language (Research Note) 449

Fig. 1. List of primitive ORM2zero constraints by means of examples from [4]

modes; unrestricted internal and external uniqueness and frequency constraints; unre-
stricted and strict subtyping; subset, exclusion, inclusive-or, exclusive-or and equality
constraints restricted to pairs of single roles and to pairs of whole predicates; and the
primitive entity types disjointness assumption. This paper describes the way how these
constraints can be reduced to combinations of the primitive constraints of ORM2zero.
Most notably ORM2zero+ misses with respect to ORM2: value constraints; cardinal-
ity constraints; subset, exclusion, inclusive-or, exclusive-or and equality constraints re-
stricted to pairs of sequences of roles of length different from one and from the arity
of the involved same-arity predicates; ring constraints. If present, value, cardinality,
and ring constraints would invalidate the correctness of the encoding of objectification,
while unrestricted subset, exclusion, inclusive-or, exclusive-or and equality constraints
would lead to undecidability of reasoning (due to the undecidability of unrestricted
functional and inclusion dependencies). To complete the picture, we are exploring the
possibility to add to ORM2zero+ derivation rules and deontic constraints.

All the ORM2zero+ constraints considered (with the exception of objectification) are
logically equivalent to their ORM2zero encodings, namely they constrain the world in
the very same way and they identify the same legal databases (i.e., they have the same
logical models). The encoding of an objectification constraint is weaker whenever in
the schema it is necessary to have both the original n-ary predicate and the entity
representing the objectified predicate together with its n binary predicates represent-
ing the reified roles of the original n-ary predicate. In this case the encoding is only



450 E. Franconi and A. Mosca

preserving satisfiability and entailment, but it does not preserve the models. As far as
schema reasoning is concerned, this is not a limitation, since schema reasoning is based
on satisfiability and entailment.

In what follows, the ORM2zero reductions are introduced by means of examples, the
majority of which have been grasped from [4]. Many reductions are already well known
in the ORM community, and some have been already presented in [4].

We assume that: a countable number of new fresh entity types
TOP,TOP1, . . . ,TOPn are part of the language, where n is the maximum arity
of predicates in the schema; TOP is a supertype of all the entity types in the schema;
TOP1 · · ·TOPi are supertypes of all the objectified predicates of arity i, for each
1 ≤ i ≤ n; each TOP,TOP1, . . . ,TOPn is covered by its subtypes. The schemas
presented in this paper may not have these assumptions explicitly written.

Reference Mode Constraint

The schema (a) on the left making use of a reference mode constraint can be reduced
in ORM2zero as shown in the schema (b) on the right. This is well known from standard
ORM2.

External Frequency Constraint

The case of the external frequency constraint is of particular interest. The external
frequency is a frequency constraint that applies to roles from different predicates and
its meaning relies on the implicit join operation. The main idea behind its encoding
in ORM2zero is to make use of the objectification in order to represent the functional
relationships between the tuples and the identified individuals. In the example above,
Enrollment is connected with mandatory and uniqueness constraint to a new predicate
whose second role is played by identifiers of (Student, Course) pairs. It is obvious
that, if a model exists for the ORM2 schema, then in this model no enrolment can be
repeated, and a student may enrol in the same course at most twice. The very same
situation is forced by the internal frequency spanning over the second role of the new
introduced predicate is of: each identifier of a (Student, Course) tuple can play that
role twice (remember that the internal frequency spanning over single roles is among
the primitive constructs of ORM2zero).



Towards a Core ORM2 Language (Research Note) 451

External Uniqueness Constraint

In the example, the external uniqueness constraint says that each State is univocally
determined by a pair (Country, StateName). In other terms, the relationship between
a pair (Country, StateName) and State is the same holding between a objectified
binary tuple and its identifier: it is a bijection, indeed. Therefore, the external uniqueness
in ORM2zero reduces to building a new fresh predicate that, once objectified, is used
to identify the individuals of State. In figure (b), State is indeed represented as the
objectification of IsIn and Has. Alternatively, one can observe that uniqueness (both
external and internal) is a special case of the frequency constraint “= 1”, and therefore
one could apply the reductions for frequency constraints.

Internal Uniqueness and Frequency Constraint

In ORM2, an internal uniqueness says that individuals of a given type can play a
role only once. Moreover, for an ‘elementary n-ary association’ in ORM2, each inter-
nal uniqueness constraint must span over n-1 roles. In the figure above, the internal
uniqueness forbids to record for ties: two different teams cannot occupy the same place
in the same competition. Again, the reduction to ORM2zero of this constraint is based
on an objectification: a new predicate is introduced and objectified in order to explicitly
identify the pair (Place, Competition), and its objectification is then linked with Team
by means of the new predicate symbol got. The fact that a pair (Place, Competition)
cannot be related twice with an instance of Team is finally represented by an internal
uniqueness spanning over a single role, that is, by a native ORM2zero constraint. Notice
that ORM2zero does not introduce internal uniqueness spanning over entire predicates
because of its set-based semantics. A very similar reduction can be applied for internal
frequency constraints, by replacing in the example the uniqueness constraint with the
frequency constraint.



452 E. Franconi and A. Mosca

Unary Subset, Exclusion, Inclusive-or, Exclusive-or and Equality Constraints

Let’s first recall that in ORM2zero+ unary subset, exclusion, inclusive-or, exclusive-
or and equality constraints are allowed in addition to the subset, exclusion and equality
constraints involving whole predicates allowed in ORM2zero. The idea of this encod-
ing for the general case is based on generating entities as the projections of the roles
involved. In the example above, the entities Pi2-p1 and Pi2-b1 are are the projections
of the two original binary predicates over the first role. The unary boolean constraints
(subset, exclusion, inclusive-or, exclusive-or and equality) over those single roles are
then encoded with the corresponding constraint among the two subentities representing
the projections – in this example a subset between the two roles becomes a subtype
between the two subentities. The inability of ORM2 to reuse the same role for multi-
ple typings obliges us to introduce an additional equal copy of each involved predicate;
equality among predicates is encoded in ORM2zero as a cycle of subset between the
predicates.

Strict Subtyping

In ORM2 there is the assumption that for each entity A being a subtype of an entity B
there at least a legal database state (i.e., satisfying all the constraints in the conceptual
schema) such that the extension of A in that state is different from the extension of B
in that state, namely the extension of A is stricly a subset of the the extension of B. In
other words, it is impossible to have only legal database states in which the extension
of A is equal to the extension of B. In ORM2zero this is achieved by checking that
no cyclic subtyping among any distinct pair of entities is entailed by the schema. This
check is decidable and very efficient in ORM2zero.

Primitive Entity Types Disjointness

According to the ORM2 modelling methodology, in any domain (or ‘Universe of Dis-
course’) there is always a top-level partitioning of its entities into exclusive types. These
entities without supertypes are called ‘primitive entity types’, and ORM2 assumes that
primitive entity types never overlap. We observe that the (default) disjointness be-
tween the primitive entity types can be easily represented in ORM2zero by exploiting
the introduction of the TOP element as the common supertype of all the types in a
ORM2zero schema: only top level entities are explicitly set as subentities of TOP, and
they are also said to be exclusive.



Towards a Core ORM2 Language (Research Note) 453

Objectification

The figure (a) above shows an ORM2 schema representing the objectification of a
fact type as an entity type whose instances can play the resulted in role. The reduction
of the schema inORM2zero is shown on the right side. There is a new entity ”Enrolment”
representing the objectified predicate, connected with two functional binary predicates
objectifying the roles of the original predicate. The objectified predicate is a subtype
of both TOP1 and TOP2, representing the set of the identifiers of all tuples having at
least one or two roles respectively. The objectified roles in the objectified predicate are
subset of the general argumental binary predicates r1 and r2. In this way, a tuple in a
legal database of the schema is always represented by a unique individual (the identifier)
having one functional role for each tuple component.

The ORM2zero reduction above fixes the one of theorem N/CR (nest/coreference)
in [4]: according to our encoding a tuple identifier is global to the schema, rather than
local to the context of a predicate, thus satisfying the formal semantics given to ob-
jectification. The local semantics for tuple identifiers from [4] may lead to wrong con-
clusions. Let’s consider the example schema in Fig. 2. With tuple identifiers local to
an objectified predicate, a legal database exists with non-empty binary predicates “. . .
has Spouse . . .” and “. . . is BloodRelative of . . .” one including the other and with

Fig. 2. The entity “Spouse” is not inconsistent with local semantics for tuple identifiers



454 E. Franconi and A. Mosca

Fig. 3. Encoding of objectified predicates; the subtypes of the general TOPi entities are not
explicitly shown

non-empty disjoint “Spouse” and “BloodRelative” entities. Such a legal database should
not exist, and indeed it does not exist with global tuple identifiers.

The global interpretation comes from the introduction of TOP1, TOP2, . . . – each
one identifying a component of a tuple by means of the objectified roles r1, r2, . . . – and
by the reuse of the common predefined set of objectified roles. Thus, the identifier of a
binary tuple is of type TOP1 and TOP2 (by subtyping), and it is univocally determined
by a given tuple of TOP individuals. Now, the fact that the objectified roles linking
TOP1 and TOP2 are the same used in the objectification of all the predicates in the
schema, does the rest: a tuple (a, b), identified by t in TOP1 and TOP2, is identified in
the very same way by all the objectified predicates in the schema. A general pattern for
the encoding is shown in figure 3.

For those who are familiar with the ‘coreference’ interpretation of the objectification
presented in [4], it should be evident that in theORM2zero reduction the external unique-
ness constraints (forcing the objectified entity to be coreferenced by the pair of linked
types) simply disappeared. Indeed, the external uniqueness can be safely removed in the
ORM2zero representation of the objectification because of the semantics the language.
The crucial bit to understand the redundancy of this uniqueness in ORM2zero relates to
the so-called ‘relation-descriptiveness’ of the involved models, a model-theoretic prop-
erty that have been discussed in, e.g., [5] for formal languages having the ‘tree model
property’ (as, for example, the logic ALCQI). Without entering into the technical de-
tails, a model is said to be relation-descriptive if each tuple in an objectified predicate
is represented by one and only one individual. Formal results then show that if one
is interested in reasoning on schemas represented in languages showing the relation-
descriptive property, at least one of such a model is always available. Since ORM2zero,
and its logical counterpart, enjoy both the relation-descriptive property, external unique-
ness constraints are no longer necessary to enforce a bijection between identifiers and
objectified tuples. Because of this, there is a theorem stating that this encoding for
objectification does preserve satisfiability and entailment, but does not necessarily pre-
serve the structure of the legal databases (the models). As we claimed before, this is not
very relevant for our purposes, which are about reasoning over the schema.



Towards a Core ORM2 Language (Research Note) 455

Whenever there are additional constraints on the roles of an objectified predicate, we
need a strategy for adequately encoding them to the target ORM2zero schema: given an
ORM2zero schema with an objectified predicate, (a) copy all the unary frequency and
mandatory constraints in some role of the objectified predicate to the corresponding
binary predicate representing the objectified role in the target schema, (b) copy the
subset and exclusion constraints in the objectified predicate to the corresponding entity,
possibly continuing by objectifying also other predicates involved in these constraints.

2 Concluding Remarks

The complete picture thus shows that ORM2zero is an extremely powerful concep-
tual modelling language. As we have already said, ORM2zero+ misses with respect to
ORM2: value constraints; cardinality constraints; ring constraints; constraints among
roles corresponding to non unary or non-total inclusion dependencies. There are strong
computational reasons for not including these constraints. We plan to add to ORM2zero

both derivation rules and deontic constraints, in order to support sound, complete, and
efficient reasoning for a significant fragment of ORM2.

In an earlier empirical study of conceptual models created at LogicBlox Inc. [6], the
authors found that a restricted subset of ORM2, called ORM−, includes the vast major-
ity of constraints used in practice and, moreover, allows scalable test data generation.
More recently [7], ORM− has been extended to include features that resolved to be rou-
tinely used by LogicBlox developers. This last version of ORM− includes: (i) simple
mandatory constraints, (ii) frequency constraints (with the restriction that such a con-
straint spans one or more roles from the same fact type and the sets of roles spanned by
different frequency constraints do not overlap), (iii) internal uniqueness constraints, (iv)
subtype constraints, (v) value constraints, (vi) objectification, and (vii) external unique-
ness constraints (with the restriction that one role in each of the involved fact types is
not covered, and the types of the role players of the uncovered roles are ‘type compat-
ible’). Although an NP-hard algorithm for consistency checking is provided in [7], the
algorithm itself is declared to be not complete under the ORM2 semantics (i.e. a full
legal instance of an ORM− schema may exist under the ORM2 semantics, even if the
proposed algorithm has no solutions).

On the other hand, our paper introduced a minimal conceptual modelling language,
called ORM2zero, whose expressive power can be extended so as to cover the majority
of the ORM2 constructs, and for which a complete algorithm for reasoning exists. We
refer to the maximal expressivity covered by ORM2zero as ORM2zero+. ORM2zero+ has
a clearly specified formal semantics and provably correct encoding into OWL2 ontol-
ogy language, and its expressivity is comparable to that of ORM−. Differently from
ORM−, our language has no special support for value constraints, since together with
objectification falsify relation-descriptiveness. Nonetheless, ORM2zero is able to repre-
sent many constraints which are not present in ORM−. As for the frequency occurrences
and the uniqueness, the restrictions imposed in ORM− are similar to those we have in
ORM2zero.

Several extensions of ORM2zero are currently under investigation. Among these,
the integration of deontic modalities, allowing for the representation of obligation and
permission rules, have been already deeply investigated in the context of the SBVR



456 E. Franconi and A. Mosca

language [8], and the results we got there could be easily transferred in ORM2zero.
Nonetheless, the most interesting extension of ORM2zero is about the integration in the
language of the so-called ‘derivation rules’: logical rules that may be used to derive new
facts from other facts. Our main goal here is to identify a language for the specification
of the rules that is decidable and whose computational properties do not negatively
affect the complexity of the current ORM2zero. Similar analyses in the context of con-
ceptual modelling have been recently conducted for the combination of the UML class
diagram and the rule language OCL (see, for example, [9]).

We thank two anonymous reviewers who helped us to fix several mistakes of a previous
version of this papers.

References

1. Franconi, E., Mosca, A., Solomakhin, D.: ORM2: Formalisation and encoding in OWL2. In:
Herrero, P., Panetto, H., Meersman, R., Dillon, T. (eds.) OTM-WS 2012. LNCS, vol. 7567,
pp. 368–378. Springer, Heidelberg (2012)

2. Franconi, E., Mosca, A.: The formalisation of ORM2 and its encoding in OWL2. Technical
Report KRDB12-2, KRDB Research Centre, Free University of Bozen-Bolzano (2012),
http://www.inf.unibz.it/krdb/pub/TR/KRDB12-2.pdf

3. Baader, F., Calvanese, D., McGuinness, D.L., Nardi, D., Patel-Schneider, P.F. (eds.): The
description logic handbook: theory, implementation, and applications. Cambridge University
Press, New York (2003)

4. Halpin, T., Morgan, T.: Information Modeling and Relational Databases: From Conceptual
Analysis to Logical Design, 2nd edn. Morgan Kaufmann (2008)

5. Calvanese, D., Lenzerini, M., Nardi, D.: Unifying class-based representation formalisms. J.
Artif. Intell. Res. (JAIR) 11, 199–240 (1999)

6. Smaragdakis, Y., Csallner, C., Subramanian, R.: Scalable satisfiability checking and test data
generation from modeling diagrams. Automated Software Engineering 16(1), 73–99 (2009)

7. McGill, M.J., Dillon, L.K., Stirewalt, R.E.K.: Scalable analysis of conceptual data models.
In: Proceedings of the 2011 International Symposium on Software Testing and Analysis,
ISSTA 2011, pp. 56–66. ACM, New York (2011)

8. Franconi, E., Mosca, A., Solomakhin, D.: Logic-based reasoning support for SBVR. Funda-
menta Informaticae 124, 1–18 (2013)

9. Queralt, A., Artale, A., Calvanese, D., Teniente, E.: OCL-lite: Finite reasoning on UML/OCL
conceptual schemas. Data Knowl. Eng. 73, 1–22 (2012)

http://www.inf.unibz.it/krdb/pub/TR/KRDB12-2.pdf

	Towards a Core ORM2 Language
(Research Note)
	1 ORM2zero+: The Core Fragment of ORM2
	2 Concluding Remarks
	References




