
Querying Brussels Spatiotemporal

Linked Open Data

Kevin Chentout and Alejandro Vaisman

Université Libre de Bruxelles
{kchentou,avaisman}@ulb.ac.be

Abstract. The “Open Semantic Cloud for Brussels” (OSCB) project
aims at building a platform for linked open data for the Brussels region in
Belgium, such that participants can easily publish their data, which can
in turn be queried by end users using a web browser to access a SPARQL
endpoint. If data are spatial and we want to show them on a map, we
need to support this endpoint with an engine that can manage spatial
data. For this we chose Strabon, an open source geospatial database
management system that stores linked geospatial data expressed in the
stRDF format (spatiotemporal RDF) and queries them using stSPARQL
(spatiotemporal SPARQL), an extension to SPARQL 1.1. In this paper
we show how the SPARQL endpoint is built and the kinds of queries it
supports, also providing a wide variety of examples.

1 Introduction

“Open Data” aims at making public sector data easily available and encour-
aging researchers and application developers to analyze and build applications
around that data in order to stimulate innovation, business and public inter-
ests. “Linked Data”1 is a global initiative to interlink resources on the Web
using Uniform Resource Identifiers (URI) for accessing the resources, and the
Resource Description Framework (RDF) [2] for representing knowledge and an-
notating those resources. The conjunction of both concepts originated the notion
of “Linked Open Data” (LOD). The goal of the “Open Semantic Cloud for Brus-
sels” (OSCB) project2 is to pave the way for building a platform for LOD for
the region of Brussels. The objective is that participants benefit from the OSCB,
linked data-based architecture to publish their data. To facilitate this, data will
be published in RDF format. The final users should be able to query data in an
ubiquitous, intuitive and simple way. In this paper we show how these data can
be queried by OSCB users.

Background. RDF is a data model for expressing assertions over resources
identified by a URI. Assertions are expressed as subject-predicate-object triples,
where subject is always a resource, and predicate and object could be a resource

1 http://www.linkeddata.org
2 http://www.oscb.be

Y.T. Demey and H. Panetto (Eds.): OTM 2013 Workshops, LNCS 8186, pp. 378–387, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.linkeddata.org
http://www.oscb.be

Querying Brussels Spatiotemporal Linked Open Data 379

or a string. Blank nodes are used to represent anonymous resources or resources
without a URI, typically with a structural function, e.g., to group a set of state-
ments. Data values in RDF are called literals and can only be objects. Many
formats for RDF serialization exist. In this paper we use Turtle3, and assume
that the reader is familiar with this notation.

SPARQL is the W3C standard query language for RDF [4]. The query eval-
uation mechanism of SPARQL is based on subgraph matching: RDF triples
are interpreted as nodes and edges of directed graphs, and the query graph is
matched to the data graph, instantiating the variables in the query graph defini-
tion. The selection criteria is expressed as a graph pattern in the WHERE clause,
consisting basically in a set of triple patterns connected by the ‘.’ operator.

Contributions and Paper Organization. In OSCB, data providers deliver
their data in relational tables or XML documents. To be accessed and linked,
these data are mapped to RDF triples using the R2RML4 standard. These data
are used to populate a SPARQL endpoint, which can be accessed using a browser.
Since OSCB data are essentially spatiotemporal, we do not only need to extend
the R2RML mapping (which we explain in [1]), we also need to empower the
endpoint with a spatial-enabled engine. For this, we have chosen Strabon [3],
an open-source semantic geospatial database management system (DBMS) that
stores linked geospatial data expressed in the stRDF format (spatiotemporal
RDF) and queries these data using stSPARQL (spatiotemporal SPARQL). In
this paper we describe the data, and how it can be queried using stSPARQL. In
Section 2 we introduce Strabon. Then, in Section 3 we describe how we process
the data that populates the endpoint. In Section 4 we present a comprehensive
set of example queries. We conclude in Section 5.

2 Strabon, stRDF and stSPARQL

The availability of geospatial data in the linked data cloud has motivated re-
search on geospatial extensions of SPARQL. These works have formed the basis
for GeoSPARQL, a proposal for an Open Geospatial Consortium (OGC)5 stan-
dard, currently at the “candidate standard stage”. Strabon [3] is an open-source
semantic geospatial database management system that extends the RDF store
Sesame, allowing it to manage both thematic and spatial RDF data stored in
the PostGIS6 spatial DBMS. In this way, Strabon provides features similar to
those offered by geospatial DBMS that make it one of the richest RDF stores
with geospatial support available today. These features made us chose Strabon
as the spatial RDF data engine for the OSCB project, and the backend for our
spatial data-enabled endpoint. In this way, Strabon allows us to support spatial
queries and display their result on a map.

3 http://www.w3.org/TeamSubmission/turtle/
4 http://www.w3.org/TR/r2rml/
5 http://opengeospatial.org
6 http:postgis.org

http://www.w3.org/TeamSubmission/turtle/
http://www.w3.org/TR/r2rml/
http://opengeospatial.org
http:postgis.org

380 K. Chentout and A. Vaisman

Strabon works over stRDF, a spatiotemporal extension of RDF. In stRDF,
the data types strdf:WKT and strdf:GML represent geometries serialized using
the OGC standards WKT and GML. WKT is a widely accepted OGC standard
and can be used for representing geometries, coordinate reference systems and
transformations between coordinate reference systems. Since our contribution is
built on Strabon, we next explain the latter’s main features in order to make the
paper self-contained.

The stSPARQL language extends SPARQL 1.1 with functions that take as
arguments spatial terms and can be used in the SELECT, FILTER, and HAV-
ING clause of a SPARQL query. A spatial term is either a spatial literal (i.e., a
typed literal with data type strdf:geometry or its subtypes), a query variable
that can be bound to a spatial literal, the result of a set operation on spatial
literals (e.g., union), or the result of a geometric operation on spatial terms
(e.g., buffer). Also, stSPARQL can express spatial selections, i.e., queries with
a FILTER function with arguments a variable and a constant, and spatial joins,
i.e., queries with a FILTER function like strdf:contains(?geoA, ?geoB).

The stSPARQL extension functions can also be used in the SELECT clause
of a SPARQL query. As a result, new spatial literals can be generated on the
fly during query time based on pre-existing spatial literals. For example, to
obtain the buffer of a spatial literal that is bound to the variable ?geo, we would
use the expression SELECT (strdf:buffer(?geo,0.01) AS ?geobuffer). We
show examples of how we exploit these features in Section 4.

In stSPARQL aggregate functions over geospatial data are supported, like:
(1) strdf:geometry strdf:union(set of strdf:geometry a), returns a ge-
ometry that is the union of the set of input geometries. (2) strdf:geometry

strdf:intersection (set of strdf:geometry a), returns the intersection of
the set of input geometries. (3) strdf:geometry strdf:extent(set of strdf:

geometry a), returns the minimum bounding box of the set of input geometries.

3 Building the SPARQL Endpoint

In previous work [1] we showed how we can map spatial data to the stRDF for-
mat extending the R2RML7. standard. The Strabon-powered stSPARQL end-
point which we analyze in this paper contains three datasets from Belgian or-
ganizations: Agenda.be, Bozar, and STIB. These datasets are complemented by
external data sources, which provide the context for analysis. These data was
obtained from other data publishers. We next present these datasets.

Organizational Data. The Agenda.be data reports cultural events in Brus-
sels and the institutions where they take place. It is delivered in two XML
documents: events.xml, containing events and institutions.xml. The size of the
XML files is approximately 6MB. Applying the spatial R2RML mapping we
obtain triples like the following one, containing the spatial coordinates of the

7 http://www.w3.org/TR/r2rml/

http://www.w3.org/TR/r2rml/

Querying Brussels Spatiotemporal Linked Open Data 381

institution where the event takes place. Note that we use the WGS84 standard
coordinate system for the geographic data reference.

...

<http ://www.agenda.be/db/Address_of_Institution/3>

...

<http ://www.w3.org /2003/01/ geo/wgs84_pos #geometry >

"POINT(4.357527 50.854287) ;http ://www.opengis.

net/def/crs/EPSG /0/4326"^^< http :// strdf.di.

uoa.gr/ontology #WKT > .

The BOZAR database contains approximately 130MB of data. Addresses
are stored in a table denoted location lng. This table contains information about
name, address, zip and city. Its schema has the form (id, lng, field, content). The
address information is represented as values of the attribute field. We prepro-
cessed this table to obtain a new one with schema (fullAddress,id). As an example,
applying the mapping over the following tuple in this table: < ABC Factory
175 rue Bara 1070 Bruxelles Belgique >, results in the triple (corresponding
to a location with id=110):

<http :// bozar.be/db/Locations /110>

a <http :// starpc18 .vub.ac.be :8080/ gospl/ontology

/2# Location > ;

<http ://www.w3.org /2003/01/ geo/wgs84_pos #geometry >

"POINT(4.292185 50.82917) ;http ://www.opengis.

net/def/crs/EPSG /0/4326"^^< http :// strdf.di.

uoa.gr/ontology #WKT > .

The STIB, Société des Transports Intercommunaux de Bruxelles is the main
company of public transport in Brussels. Spatiotemporal data from STIB are
stored in an SQL database in four tables: Block, Stop, Trip and Tripstop. A Block
can be seen as the time elapsed between the moment in which a vehicle leaves
the warehouse and returns to it. The Stop table corresponds to a stop (bus, tram
or metro) with its description, in French and Dutch, and its location, in x and
y coordinates as well as in GPS coordinates (longitude / latitude). A Trip is a
part of a block and it is defined as the path between the starting point and the
ending point for a route. Finally, the Tripstop describes the stop and the time
during a trip when the vehicle reaches the stop. The spatial mapping here is
straightforward because we already have the longitude and latitude of a stop.
For example, the instance of in Table 1 produces the following triple representing
the location of stop 8042.

<http ://www.stib.be/location /8042>

a <http :// starpc18 .vub.ac.be :8080/ gospl/ontology /60#

Location > ;

<http :// starpc18.vub.ac.be :8080/ gospl/ontology /60#

Location_of_Stop >

<http ://www.stib.be/stop /8042> ;

...

<http :// www.w3.org /2003/01/ geo/wgs84_pos #geometry >

382 K. Chentout and A. Vaisman

Table 1. Sample of Stop table

stp identifier stp description ud stp desc flam stp longitude stp latitude

8042 ARTS-LOI KUNST-WET 4.36963 50.8453

8032 PARC PARK 4.36293 50.8458

"POINT (4.36963 50.8453);http :// www.opengis.net/def/

crs/EPSG /0/4326"^^< http :// strdf.di.uoa.gr/

ontology #WKT > .

...

External Datasets. To provide context to the analysis we added places of
interest in Brussels, e.g., cafes, restaurants, banks, schools, etc. To obtain these
data we queried three datasets from the linked open data web: DBPedia, Geon-
ames and LinkedGeoData. DBPedia is a dataset containing structured infor-
mation extracted from Wikipedia. This dataset is available on the Web and can
be queried via a SPARQL endpoint8. For data extraction, we built a tool in
Java, which queries the DBPedia service and returns RDF triples in a file. For
example, a portion of a triple representing the Royal Palace looks like:

<http :// dbpedia.org/resource /Royal_Palace_of_Brussels >

<http ://www.w3.org /2000/01/ rdf -schema#label >

"Royal Palace of Brussels@en " ;

<http ://www.w3.org /2003/01/ geo/wgs84_pos #geometry >

"POINT(4.36222 50.8417) ;http ://www.opengis.net/

def/crs/EPSG /0/4326"^^ < http :// strdf.di.uoa.

gr/ontology #WKT > ;

...

<http :// xmlns.com/foaf /0.1/ isPrimaryTopicOf >

"http ://en.wikipedia .org/wiki/

Royal_Palace_of_Brussels" .

We got 50 different places in Brussels for which we know the location. The
second source we used was Geonames9, a geographical database containing
information from over 8 million place. A geonames Java library allows us to
access the geonames web services. This added 114 different places for Brussels.
Finally, we search data in LinkedGeoData, a spatial database derived from
OpenStreetMaps, a project aimed at building a free world map database. These
data can be accessed and queried via a SPARQL endpoint10. Similar to what we
did for the DBPedia dataset, we queried a service and build RDF triples from
the results. In total, we collected 2355 places from the external sources, which
we aded to our basic dataset.

8 http://dbpedia.org/sparql
9 http://geonames.org

10 http://live.linkedgeodata.org/sparql

http://dbpedia.org/sparql
http://geonames.org
http://live.linkedgeodata.org/sparql

Querying Brussels Spatiotemporal Linked Open Data 383

4 Querying the SPARQL Endpoint

We next give examples of queries that the endpoint supports11, classifying them
according their type. We remark that this classification is just aimed at orga-
nizing the presentation and does not pretend to be a query taxonomy. In the
queries that follow, we omit the prefixes for the sake of space.

Queries over a Single Dataset. These queries are posed over just one dataset.
That means that there is a unique “FROM” clause in the SPARQL query, which
is mandatory.
The following query asks for STIB route data. The result is given in Figure 1a.
Query 1. “Give me all STIB stops corresponding to route 25”

SELECT DISTINCT ?stop_loc ?geo ?description

FROM <http :// stib.be>

WHERE {

?name stib:Route_with_Name "25" .

?route_name stib:Route_with_Route_Name ?name.

?trip stib:Trip_with_Route ?route_name .

?trip stib:Trip_with_Trip_Stop ?trip_stop .

?trip_stop stib:Trip_Stop_with_Stop ?stop_loc .

?stop_loc stib:Stop_with_Description ?description .

?node stib:Location_of_Stop ?stop_loc .

?node geo:geometry ?geo.

}

In this query, in variable ?stop loc we return a link to the triple correspond-
ing to the stop location. In variable ?geo we return the geometry (the point co-
ordinates, which allows us to display the result in a map), and in ?description

the name of the stop. The rest of the query is self-descriptive.

Queries Including Aggregate Functions. These queries include a GROUP BY

clause. The following query computes the twenty stops closest to the Brussels
central square, displaying the result in a map (Figure 1b).
Query 2. “Twenty stops closest to the Grand Place”

SELECT distinct ?stop (GROUP_CONCAT (distinct ?line) AS ?

someLine) (SAMPLE(? description) AS ?someDescription) ?geo

(strdf:distance (?geo , "POINT (4.3525 50.8467);http ://www

.opengis.net/def/crs/EPSG /0/4326" , <http ://www.opengis.

net/def/uom/OGC /1.0/metre >)as ?dist)

FROM <http :// stib.be>

WHERE {

?stop_loc a stib:Location .

?stop_loc geo:geometry ?geo.

filter(strdf:distance (?geo , "POINT (4.3525 50.8467) ;http ://

www.opengis.net/def/crs/EPSG /0/4326" , <http ://www.

opengis.net/def/uom/OGC /1.0/ metre >) < 1000)

11 The complete list of example queries can be found at the endpoint in the address
http://eao4.ulb.ac.be:8080/strabonendpoint/

http://eao4.ulb.ac.be:8080/strabonendpoint/

384 K. Chentout and A. Vaisman

(a) (b)

Fig. 1. (a) Stops of Tram 25; (b) Twenty stops closest to Brussels central square

?stop_loc stib:Location_of_Stop ?stop .

?stop stib:Stop_with_Description ? description .

?trip_stop stib:Trip_Stop_with_Stop ?stop .

?trip_stop stib:Trip_Stop_of_Trip ?trip .

?trip stib:Trip_with_Route ?route_name .

?route_name stib:Route_with_Route_Name ?name.

?name stib:Route_with_Name ?line .

}

GROUP BY ?stop ?geo ?dist

ORDER BY ?dist

LIMIT 20

Note that in the SELECT clause we compute the distance between a stop
(variable ?geo) and the position of the Grand Place, which we assume the user
(or an application querying the endpoint) knows. It is returned in variable ?dist.

Statistical Queries. This class includes queries returning statistical data ob-
tained from the datasets. These queries are normally also aggregate queries.
Query 3. “Number of stops per route”

SELECT (str(?res) as ?line) (count(*) as ?total)

FROM <http :// stib.be>

WHERE {

?name stib:Route_with_Name ?line .

?route stib:Route_with_Route_Name ?name.

?route stib:Route_with_Stop ?stop .

BIND(xsd:integer(? line) as ?res)

}

GROUP BY ?res

ORDER BY ?res

Querying Brussels Spatiotemporal Linked Open Data 385

(a) (b)

Fig. 2. (a) Number of stops per route; (b) Places of interest within 200m of a stop of
tram 94

The result is displayed in Figure 2a, and it is in textual format. Note that the
BIND function allows to display the result ordered by route number.

Queries Involving Several Datasets. This class includes queries over many
different datasets, that means, there is more than one FROM clause in the query.
The query below retrieves data from Agenda.be and Bozar, as we can see in the
two FROM clauses. This is also an aggregate query. Note that we do not distinguish
from which dataset the information is retrieved, since the data from Bozar and
Agenda.be are organizational, and were mapped using the common vocabulary
given by the GOSPL ontology (prefix gospl).
Query 4. “Places which host at least 10 events”

SELECT ?nameInstit ?geo1 ?street ?zip ?city (GROUP_CONCAT (?

title; separator = ’ - / - ’) as ?events)

FROM <http :// bozar.be>

FROM <http :// agenda.be>

WHERE {

?event gospl: Event_taking_place_at_Institution ?instit .

?instit gospl: Institution_with_Address ?addr .

?addr geo:geometry ?geo1 .

?event gospl:Event_has_Title ?title .

FILTER(langMatches (lang (? title), "FR"))

?instit gospl:Institution_with_Name ?nameInstit .

FILTER(langMatches (lang (? nameInstit), "FR"))

?addr gospl:Address_with_Street ?street .

FILTER(langMatches (lang (? street), "FR"))

?addr gospl:Address_with_Postal_Code ?zip .

?addr gospl:Address_with_City ?city.

FILTER(langMatches (lang (?city), "FR"))

386 K. Chentout and A. Vaisman

}

GROUP BY ?nameInstit ?geo1 ?street ?zip ?city

Having (count(*) > 9)

Queries Drawing Buffers and Lines on a Map. This class includes queries
whose output includes drawing a line between two points on a map, or a buffer
around a geometric figure. The result of the next query is depicted in Figure 2b.
Query 5. “Places of interest in a radius of 200m from a stop of line 94”

SELECT (strdf:buffer(?geo1 , 200, <http ://www.opengis.net/def/

uom/OGC /1.0/metre >) as ?buf) ?geo ?label

WHERE {

?name stib:Route_with_Name "94" .

?route stib:Route_with_Route_Name ?name.

?route stib:Route_with_Stop ?stop .

?stop stib:Stop_with_Description ? description .

?stop stib:Stop_with_Location ?loc .

?loc geo:geometry ?geo1.

?node a ?type .

?node geo:geometry ?geo .

filter(strdf:distance (?geo , ?geo1 , <http ://www.opengis.net/

def/uom/OGC/1.0/ metre >) < 200)

?node rdfs:label ?label .

}

Queries Including Spatial and Temporal Conditions. Note that this query
also uses a buffer, which is returned in the SELECT clause.
Query 6. “Places hosting events on May 23rd, 2013 in a radius of 200m of a
stop of line 3”

SELECT ?geo ?node ?title (GROUP_CONCAT (? description ;

separator =", ") AS ? someDescription) ?start ?end (strdf:

buffer(?geo , 200, <http :// www.opengis.net/def/uom/OGC

/1.0/ metre >) as ?buf)

FROM <http :// agenda.be>

FROM <http :// bozar.be>

FROM <http :// stib.be>

WHERE {

?node gospl: DateTimeSpecification_valid_from_Date ?start .

?node gospl: DateTimeSpecification_valid_until_Date ?end .

FILTER(?start <= "2013 -05 -23"^^ xsd:date && "2013 -05 -23"^^

xsd:date <= ?end)

?node gospl:Event_has_Title ?title .

FILTER(langMatches (lang (? title), "FR"))

?node gospl:Event_with_Description ?description .

FILTER(langMatches (lang (? description), "FR"))

Querying Brussels Spatiotemporal Linked Open Data 387

?node gospl: Event_taking_place_at_Institution ?inst .

?inst gospl:Institution_with_Address ?addr .

?addr geo:geometry ?geo .

?name stib:Route_with_Name ?line .

FILTER (? line = "3")

?route stib:Route_with_Route_Name ?name.

?route stib:Route_with_Stop ?stop .

?stop stib:Stop_with_Location ?loc .

?loc geo:geometry ?geo1.

FILTER (strdf:distance (?geo , ?geo1 , <http ://www.opengis.net

/def/uom/OGC/1.0/ metre >) < 200)

}

GROUP BY ?geo ?node ?title ?start ?end ?buf

5 Conclusion

In this paper we have described how a spatial data-enabled SPARQL endpoint
has been built in the framework of the OSCB project. The endpoint is powered
by the Strabon open-source semantic geospatial DBMS. Data are stored in the
stRDF format, and are queried using an spatiotemporal extension to SPARQL,
called stSPARQL. We have focused on illustrating the interesting kinds of queries
that our solution supports, to give an idea of how external applications could
make use of our platform.

Acknowledgement. Alejandro Vaisman has been partially funded by the
“Open Semantic Cloud for Brussels (OSCB)” project, funded by Innoviris.

References

1. Chentout, K., Vaisman, A.: Mapping Spatial Data using R2RML (submitted, 2013)
2. Klyne, G., Carroll, J.J., McBride, B.: Resource Description Framework (RDF): Con-

cepts and Abstract Syntax (2004), http://www.w3.org/TR/rdf-concepts/
3. Kyzirakos, K., Karpathiotakis, M., Koubarakis, M.: Strabon: A Semantic Geospatial

DBMS. In: Cudré-Mauroux, P., Heflin, J., Sirin, E., Tudorache, T., Euzenat, J.,
Hauswirth, M., Parreira, J.X., Hendler, J., Schreiber, G., Bernstein, A., Blomqvist,
E. (eds.) ISWC 2012, Part I. LNCS, vol. 7649, pp. 295–311. Springer, Heidelberg
(2012)

4. Prud’hommeaux, E., Seaborne, A.: SPARQL Query Language for RDF (2008),
http://www.w3.org/TR/rdf-sparql-query/

http://www.w3.org/TR/rdf-concepts/
http://www.w3.org/TR/rdf-sparql-query/

	Querying Brussels SpatiotemporalLinked Open Data
	1 Introduction
	2 Strabon, stRDF and stSPARQL
	3 Building the SPARQL Endpoint
	4 Querying the SPARQL Endpoint
	5 Conclusion
	References

