
Adaptive Case Management as a Process of

Construction of and Movement in a State Space

Ilia Bider1,2, Amin Jalali1, and Jens Ohlsson1

1 DSV, Stockholm University, Stockholm, Forum 100, SE-16440 Kista, Sweden
2 2IbisSoft AB, Stockholm, Box 19567, SE-10432 Stockholm, Sweden

ilia@{dsv.su,ibissoft}.se, {aj,jeoh}@dsv.su.se

Abstract. Despite having a number of years of experience, adaptive
case management (ACM) still does not have a theory that would differ-
entiate it from other paradigms of business process management and sup-
port. The known attempts to formalize Case Management do not seem
to help much in creating an approach that could be useful in practice.
This paper suggests an approach to building such a theory based on gen-
eralization of what is used in practice on one hand and the state-oriented
view on business processes on the other. In practice, ACM systems use a
number of ready-made templates that are picked up and filled as neces-
sary for the case. State-oriented view considers a process instance/case
as a point moving in a specially constructed state space. This paper
suggests considering a case template as a definition of a sub-space and
piking different template on the fly as constructing the state space along
with moving in it when filling the template. The result is similar to what
in control-flow based theories are considered as a state space with vari-
able numbers of dimensions. Beside suggestions to building a theory, the
paper demonstrates the usage of the theory on an example.

Keywords: Adaptive Case Management, State Space, Business
Process.

1 Motivation

Adaptive case management (ACM) as a practical discipline has emerged for some
years ago [9]. However, it still lacks a theory or a model that could explain what
an ACM system is that could be used for analysis, comparison and development
of such systems. Moreover, in our view, there is no commonly accepted theory of
case management (CM) or case handling systems, even non-adaptive ones. The
goal of this idea paper is to suggest an approach to building a theory/model of
ACM systems.

As both CM and ACM systems are aimed at supporting workers (so called
knowledge workers in case of ACM systems) in driving their working/business
processes, naturally, both CM and ACM systems falls in the category of Business
Process Support (BPS) systems, and thus belong to the wider domain of Business
Process Management (BPM). In contemporary BPM, the predominant view on
business processes is the activity or task oriented one. More exactly, a business
process instance or case is considered as a set of activities aimed at reaching

Y.T. Demey and H. Panetto (Eds.): OTM 2013 Workshops, LNCS 8186, pp. 155–165, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



156 I. Bider, A. Jalali, and J. Ohlsson

some goal. Business process type or model is considered as a set of rules that
determine which activities to be executed when running a process instance that
belong to the particular type. This view is considered the as a cornerstone when
developing BPS systems.

Traditionally, BPS systems are built based on a workflow model of busi-
ness processes they aim to support. A workflow model is a kind of a graph
that connects activities between themselves and thus determines what activities
should/could be executed after finishing a particular one. From the point of view
of the activity-oriented paradigm, the natural way of developing a theory/model
of CM systems is to continue using activities as a primary concept of the the-
ory/model, but drop the idea of being able to represent the connections between
them with the help of a graph. The initiative of picking up the next activity to
execute is left in the hands of humans, while the system assists the execution of
an activity after it has been picked up. An attempt of formalizing this approach
has been suggested in [1]. To the best of our knowledge, there were no compre-
hensive attempts to build a theory for CM and/or ACM systems since van der
Aalst et al, [1] work has been published.

The assumption of the concept of activity/task being primary and even manda-
tory in a theory/model of ACM systems contradicts our experience of busi-
ness analysis and design of case handling/management systems. Our experience
started with analysis of case handling in Swedish municipalities that included
general case handling in the Municipality of Motala [3], and case handling in the
social welfare office of municipality of Jönköping, e.g. handling applications for
child adoption, and later handling cases of suspected child abuse. Case handling
that we observed in municipalities were rather template/form driven, than ac-
tivity driven. There were templates, often of the type of structured forms, for
an application, investigation, and decision making.

Templates/forms driven case handling cannot easily be translated into the
activities driven one, as the same template/form can be used for several differ-
ent activities, e.g., for both application and decision making. Activities can be
represented in such case handling in different ways. For example, an activity of
decision making can be represented in the form by three fields: (a) decision, (b)
name of decision maker and (c) date when the decision has been taken. Another
example, a set of activities can be represented as a checklist on the form that
requires putting a cross beside each activity on the list before the form can be
considered as properly filled.

In addition, there are often no strict rules on when starting to work with a
certain template. For example, the main result of an adoption case is a report
that follows a certain template. The report is based on a series of meetings with
the applicant(s), but there is no regulation when to start writing the report,
directly after the first meeting or, after the whole series has been completed. The
choice is left to individual case managers. The standardization of case handling
in municipalities is also done not by specifying activities, but by producing a
package of templates/forms mandatory to be used during handling cases. This
type of standardization was, for example, used by Swedish National Board of



Adaptive Case Management as a Process of Construction 157

Health and Welfare for handling cases of suspected child abuse. This process was
used as a pilot process when we created our tool for building case-oriented BPS
systems iPB [4].

Summarizing our experience, a theory/model of CM systems, including ACM
systems does not need to be based on the notion of activity/task as a primary
concept. In a simplified form, it does not need to have it at all. It would be
enough if the theory can explain the concept of templates/forms, and filling them
during the lifespan of each case. The latter can be done using the state-oriented
view on business processes [8]. In the state oriented view, a process instance
is considered to be a trajectory in a specially constructed state-space, while a
process type/model is considered as a set of restrictions on the trajectories of
instances that belong to the given type. From this point of view, templates/forms
are used to represent the structure of the chosen state space to the end users of a
CM system, while filling them represents movement of the instance in the state
space. Restrictions on the movement can be defined, for example, by demanding
finishing filling one form before starting with another one [4].

The state-oriented view suggested in [4,8] serves well as a basis for the theory
of CM, but it does not naturally fit the reality of ACM. The works cited above
assume that the state-space is the same for all cases which corresponds well to
CM with few pre-defined templates/forms. An ACM system may include many
different templates/forms from which the workers pick some for a particular case
dependent on the needs. This makes it artificial to consider each instance/case of
a given process type having the same state-space. The state-oriented view needs
to be extended to consider a possibility of state-space being constructed while
a case is in progress. The goal of this paper is to outline the idea of using an
evolving state space for creating a theory/model that can be used for analysis,
comparison and development of ACM systems.

The discussion of the idea is done through analysis of an example a process
for preparing and giving a course in a university borrowed from [6]. The rest
of the paper is structured in the following way. In Section 2, we give a short
overview of the state oriented view on business processes from [8]. In Section 3,
we describe an example of an ACM type of business processes. In Section 4,
based on this example, we discuss how the example can be interpreted from the
viewpoint of the evolving state space. Section 5 contains concluding remarks and
plans for the future work.

2 State Oriented View of Business Processes

We suggest using the state-oriented view on business processes as a foundation
for building a theory of ACM. As this is not a standard view, in this section,
we give a brief overview of its underlying concepts and principles as suggested
in [8]. The origin of the state-oriented view on business processes lies outside the
business process domain. The idea comes from the Mathematical System Theory
and especially the theory of hybrid dynamical systems [10]. Another source used
for developing this theory was an objects-connectors model of human-computer



158 I. Bider, A. Jalali, and J. Ohlsson

interaction developed in [5]. In essence, the state-oriented view on business pro-
cesses is an application of the ideas worked out for modeling and controlling
physical processes to the domain of business processes. The main concept of the
state-oriented view is a state of the process instance that can be defined as a po-
sition in some state space. A state space is considered multidimensional, where
each dimension represents some important parameter (and its possible values)
of the business process. Each point in the state space represents a possible result
of the execution of a process instance. If we add the time axis to the state space,
then a trajectory (curve) in the space-time will represent a possible execution of
a process instance in time. A process type is defined as a subset of allowed tra-
jectories in space-time. As an example, consider an order process from Fig. 1. Its
state space can be presented as a set of numeric dimensions from Fig. 2 defined
in the following way:

– In the first place there are a number of pairs of product-related dimensions
<ordered, delivered>, one pair for each product being sold. The first dimen-
sion represents the number of ordered items of a particular product. The
second one represents the number of already delivered items of this product.
The number of such pairs of dimensions can be considered as equal to the
size of the companys product assortment.

– In addition, there are two numeric dimensions concerning payment: invoiced
(amount of money invoiced) and paid (amount of money already received
from the customer).

– Each process instance of the given type has a goal that can be defined as
a set of conditions that have to be fulfilled before a process instance can
be considered as finished (i.e. end of the process instance trajectory in the
space state). A state that satisfies these conditions is called a final state of
the process. The set of final states for the process in Fig. 2 can be defined
as follows: (a) for each ordered item Ordered = Delivered; (b) To pay =
Total + Freight + Tax; (c) Invoiced = To pay; (d) Paid = Invoiced. These
conditions define a surface in the state space of this process type.

Fig. 1. Example of a process state as a mockup screen



Adaptive Case Management as a Process of Construction 159

Fig. 2. State space dimensions as axes

The process instance is driven forward through activities executed either auto-
matically or with human assistance. Activities can be planned first and executed
later. A planned activity records such information as type of action (goods ship-
ment, compiling a program, sending a letter), planned date and time, deadline,
name of a person responsible for an action, etc. All activities planned and exe-
cuted in the frame of the process should be aimed at diminishing the distance
between the current position in the state space and the nearest final state. The
meaning of the term distance depends on the business process in question. Here,
we use the term informally. For example, activities to plan for the process in
Fig. 1 can be defined in the following manner:

– If for some item Ordered > Delivered, shipment should be performed, or
– If To pay > Invoiced, an invoice should be sent, etc.

All activities currently planned for a process instance make up the process plan.
The plan together with the current position in the state space constitutes a
so-called generalized state of the process, the plan being an active part of it
(engine). The plan plays the same role as the derivatives in the formalisms
used for modeling and controlling physical processes in Mathematical systems
theory. The plan shows the direction (type of action) and speed of movement
(deadlines), just as first derivatives do in a continuous state space. Using the
concept of process plan, the control over the process instance can be defined
in the following manner. First, an activity from the plan is executed and the
position of the process instance in the state space is changed. Then, depending
on the new position, the plan is corrected, i.e., new actions are added to the plan
and some existing ones are modified or removed from it. Correction of the plan
can be done manually by the process participants, automatically by a system
that supports the process, or in a mixed fashion 1. The iterations continue until
the instance reaches its goal.

1 The mixed fashion of planning can be used for regulating the level of flexibil-
ity/rigidity allowed for a process type. Automatic rules gives rigidity, freedom for
manual planning gives flexibility. A method of regulating the level of flexibility of
planning based on deontic logic is discussed in [7].



160 I. Bider, A. Jalali, and J. Ohlsson

3 An Example a Course Process at a University

An example that we will explore when discussing our idea is concerned preparing
and giving a course occasion at a university, as presented in [6] 2. Such an
occasion can be the first one of a newly developed course, or the next occasion
of an already existing course. So far, only a prototype of a system that supports
this process has been built. Nevertheless, we decided to consider this process in
our paper and not the one for which a real system is already in operation due
to the following reasons:

– The domain is familiar to both academics, who gives courses (though they
may not agree with how it is done in our department), and to practitioners
who were students at some time in the past. This gives an opportunity to
describe the process in a concise manner in the paper of a limited size. Using
a process for which a real system is in operation would require becoming
familiar with the business of social offices in Swedish municipalities.

– The process has all elements we need for presenting our approach to building
a theory of CM/ACM systems.

The templates/forms to be used in instances/cases of the course preparation
process are presented in Fig. 3, an example of a template, Lecture/Lesson, is
shown in Fig. 4. As follows from Fig. 3, the templates are grouped in two cat-
egories templates for preparing a course and templates for gathering feedback
from the course. The first group consists of templates: Course general description,
Course book, Course compendium, Article compendium, Lecture/Lesson, Semi-
nar, Lab and Exam. The second group consists of the rest of the templates. While
preparing a course occasion, the teacher(s) decides on which teaching/learning
activities, and which material will be used in the course occasion, picks up a
form for each activity or material and fills it in. Naturally, some forms can be
employed only once, e.g., Course general description, or Exam, others can be
employed several times, or none at all. Though the templates are presented in
Fig. 3 in a certain order, this order does not enforce the usage of templates. For
example, on one occasion all preparation can be finished before the actual course
starts. In another occasion, only the first introductory lecture is prepared before
the start, all other teaching/learning activities are prepared and completed while
the course is running based on the feedback both from the teachers and the stu-
dents. The teachers can freely choose the templates for preparation and change
information in them at any moment before the actual teaching/learning activity
takes place, including deleting some of them. However this is not true for the
templates aimed at gathering feedback. These templates should be synchronized
with the ones already chosen for teaching/learning activities. For example, if two
lectures have been chosen for the course, four feedback forms should be automat-
ically selected for the course occasion: two of the type Lecture/Lesson teacher

2 Bider et al. [6] is an experience report that describes the project of building a model
of a course preparation process. It does not discuss any theoretical aspects presented
in this paper.



Adaptive Case Management as a Process of Construction 161

Fig. 3. Templates for course process

Fig. 4. Template/form for Lecture/Lesson box in Fig. 3

feedback and two of the type Lecture/Lesson student feedback, see Fig. 3. An
example for a Lecture/Lesson teacher feedback form is presented in Fig. 5; the
figure represents a form synchronized with the one shown in Fig. 4. As we see
from Fig. 5, part of the fields in this form (the upper part of the form) are
inherited from the form with which the current form is synchronized.

Summarizing the example presented, a template/form driven ACM system to
support a course process needs to provide the following basic functionality:

– Repository of templates/forms that can be chosen for attaching to an in-
stance/case

– Navigation through the forms already attached to the instance/case

– Manipulating the templates/forms already attached to the instance/case fill
with new data, update the content, delete, marked as finished/closed

– Automatically adding synchronized forms when they are needed

– Providing restrictions on possibility to attach a given template/form to a
case based on what other templates/forms have already been attached and
their status (e.g. finished).



162 I. Bider, A. Jalali, and J. Ohlsson

Fig. 5. Template/form for Lecture/Lesson feedback box in Fig. 3 synchronized with
the form in Fig. 4

An example of how the above functionality can be presented to the end user is
shown in Fig. 6 [4]. Fig. 6 represents an upper level view of an instance/case. Blue
and green rectangles indicate templates/forms already attached to the case. Blue
color is used to show that all templates/forms behind the rectangle are already
filled with information considered to be required and/or sufficient. The numbers
below the name of the template shows how many templates/forms of this type
have already been attached to the case (number 1 is not showen) White color
represents the forms that the end user is free to attach to the case, grey color
represents the forms that cannot be attached to the case due to some restrictions.

A diagram in Fig. 6 is used for navigation between the forms. By clicking on a
rectangle the user goes to a place where he can manipulate the templates/forms
of the type the rectangle represents, e.g., create a new form, add information,

Fig. 6. A course case in iPB



Adaptive Case Management as a Process of Construction 163

Fig. 7. A subspace that corresponds the form in Fig. 4

change information already entered, delete a form or read what has been entered
by others.

4 Interpreting the Example from the State-Oriented
Perspective

From the state-oriented view, the idea of case handling discussed in Section 3
can be interpreted in the following way:

– Attaching a new template/form to or deleting the existing template from
a case can be considered as an operation of constructing a state-space for
a given case. A template here represents a standard subspace that can be
added to or subtracted from the case state space. For example, the template
in Fig. 4 defines a subspace with the three groups of dimensions expressing
different perspectives of case handling, data perspective, time perspective
and resource perspective as represented in Fig. 7 3.

– Filling a template/form corresponds to movement in the subspace defined by
this template. For example assigning teachers to a lecture represents move-
ment along r-dimensions in Fig. 7. Creating the lecture content corresponds
to movement along d-dimensions in Fig. 7. Deciding on time represents move-
ment along the t-dimensions in Fig. 7. The order in which the movement
occurs can be different. In one case, a teacher is assigned first and he/she
then creates the content, in another case, the content is borrowed from the
previous course occasion, and then a new teacher is assigned to mediate it
to the students.

– Restrictions on adding forms to a particular case represent (1) constraints on
overall structure of the constructed state space, and (2) the order in which
the movement is allowed to occur. The first type of restrictions corresponds
to the synchronized forms; they cannot be added without first adding the

3 Actually there are more perspectives that the three ones represented in Fig. 7, for
example, space dimension (Location).



164 I. Bider, A. Jalali, and J. Ohlsson

basic ones. An example of the second type of restrictions can be to not allow
adding lectures before choosing the course book, which will determine the
content of the lectures.

5 Concluding Remarks

In this paper, by use of an example, we showed that it is possible to build a CM
and ACM system without explicitly introducing the notion of activity/task. This
exercise was not aimed at excluding this notion from the world of CM and ACM
altogether, as this notion can be useful in making CM and ACM systems more
helpful when supporting people in running their process instances/cases. Our
main position is not to reject the notion of activity, but show that this notion is
secondary to other notions. We also suggested a theoretical underpinning of the
template/form driven CM and ACM systems in the form of the state-oriented
view suggested in [8]. For ACM system, this view has been extended to include
possibility of the state-space being constructed while a process/instance develops
in time. This construction is completed by adding new sub-spaces based on the
needs arising in the particular process instance/case.

Based on our suggestions it is possible to analyze the functionality of a CM
or ACM system to see whether it allows all operations listed in Section 3 and
interpreted in Section 4. An immediate result of applying this analysis to our
own tool iPB (Bider et al. 2010) showed that while this tool is quite suitable for
building CM systems, it becomes cumbersome when applied to ACM systems.
One of the main reasons to it is the decision to have all possible templates/forms
presented in the case navigation panel of Fig. 6, independently of whether these
forms can be used in the given instance/case or not. A better decision would be
to have the not used forms outside the panel until they are selected by a user.

Our future plans in regards to this work lie in two directions. One of these
directions is full formalization of the ideas presented in the paper; the other one
is creating a practical methodology for analysis of CM and ACM systems. One
way of approaching the second task could be via defining patterns from which a
practically useful state space can be created, and rules for combining them. This
would be analogous to the workflow patterns suggested for the standard BPM
systems. An approach for defining patterns for the state-oriented view from [2]
could be used for this end.

References

1. van der Aalst, W.M.P., Weske, M., Grünbauer, D.: Case handling: a new paradigm
for business process support. Data & Knowledge Engineering 53(2), 129–162 (2005)

2. Andersson, B., Bider, I., Johannesson, P., Perjons, E.: Towards a formal definition
of goal-oriented business process patterns. Business Process Management Jour-
nal 11(6), 650–662 (2005)

3. Andersson, T., Andersson-Ceder, A., Bider, I.: State flow as a way of analyzing
business processes–case studies. Logistics Information Management 15(1), 34–45
(2002)



Adaptive Case Management as a Process of Construction 165

4. Bider, I., Johannesson, P., Perjons, E.: In search of the holy grail: Integrating social
software with bpm experience report. In: Bider, I., Halpin, T., Krogstie, J., Nurcan,
S., Proper, E., Schmidt, R., Ukor, R. (eds.) BPMDS 2010 and EMMSAD 2010.
LNBIP, vol. 50, pp. 1–13. Springer, Heidelberg (2010)

5. Bider, I., Khomyakov, M., Pushchinsky, E.: Logic of change: Semantics of object
systems with active relations. Automated Software Engineering 7(1), 9–37 (2000)

6. Bider, I., Perjons, E., Dar, Z.R.: Using data-centric business process modeling for
discovering requirements for business process support systems: Experience report.
In: Nurcan, S., Proper, H.A., Soffer, P., Krogstie, J., Schmidt, R., Halpin, T., Bider,
I. (eds.) BPMDS 2013 and EMMSAD 2013. LNBIP, vol. 147, pp. 63–77. Springer,
Heidelberg (2013)

7. Bider, I., Striy, A.: Controlling business process instance flexibility via rules of plan-
ning. International Journal of Business Process Integration and Management 3(1),
15–25 (2008)

8. Khomyakov, M., Bider, I.: Achieving workflow flexibility through taming the chaos.
In: OOIS 2000, pp. 85–92. Springer (2001)

9. Swenson, K.: Mastering the unpredictable: How adaptive case management will
revolutionize the way that knowledge workers get things done, meghan (2010)

10. van der Schaft, A.J., Schumacher, J.M.: An introduction to hybrid dynamical sys-
tems, vol. 251. Springer, London (2000)


	Adaptive Case Management as a Process ofConstruction of and Movement in a State Space
	1 Motivation
	2 State Oriented View of Business Processes
	3 An Example a Course Process at a University
	4 Interpreting the Example from the State-Oriented Perspective
	5 Concluding Remarks
	References




