
Integrated Cloud Application Provisioning:

Interconnecting Service-Centric and
Script-Centric Management Technologies

Uwe Breitenbücher, Tobias Binz, Oliver Kopp,
Frank Leymann, and Johannes Wettinger

Institute of Architecture of Application Systems, University of Stuttgart, Germany
Universitätsstraße 38, 70569 Stuttgart, Germany

{breitenbuecher,lastname}@iaas.uni-stuttgart.de

Abstract Modern Cloud applications employ a plethora of components
and XaaS offerings that need to be configured during provisioning. Due to
increased heterogeneity, complexity is growing and existing approaches
reach their limits if multiple different provisioning and configuration tech-
nologies are involved. They are not able to integrate them in an auto-
mated, flexible, and customizable way. Especially combining proprietary
management services with script-centric configuration management tech-
nologies is currently a major challenge. To enable automated provisioning
of such applications, we introduce Generic Lifecycle Management Plan-
lets that provide a means to combine custom provisioning logic with com-
mon provisioning tasks. We implemented planlets for provisioning and
customization of components and XaaS offerings based on both SOAP
and RESTful Web services as well as configuration management tech-
nologies such as Chef to show the feasibility of the approach. By using
our approach, multiple technologies can be combined seamlessly.

Keywords: Cloud Application Provisioning, Integration, Management
Scripts, Management Services.

1 Introduction

With growing adoption of Cloud computing, the automated provisioning of com-
posite Cloud applications becomes a major issue as this is key to enable Cloud
properties such as on-demand self-service, pay-as-you-go pricing, and elasticity.
However, due to various kinds of different components and XaaS offerings em-
ployed in modern composite Cloud applications and the dependencies among
them, the complexity and heterogeneity is constantly increasing. This becomes
a challenge if the components and XaaS offerings employ different manage-
ment technologies and need to be combined and customized during provision-
ing. Especially application-specific provisioning and customization tasks such as
wiring custom components and standard XaaS offerings together cannot be im-
plemented in a generic and reusable way. In addition, these tasks are typically

R. Meersman et al. (Eds.): OTM 2013, LNCS 8185, pp. 130–148, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

Integrated Cloud Application Provisioning 131

implemented by various kinds of different heterogeneous provisioning technolo-
gies. Although wiring and configuration of (custom) components are typically
implemented using script-based technologies such as Puppet1, Chef2, CFEngine3,
or Juju4, provisioning and configuration of XaaS Cloud offerings such as Infras-
tructure as a Service or Database as a Service are typically provided through
Web service APIs—mostly HTTP-based Query services, RESTful Web services,
or SOAP Web services. As a result, available provisioning approaches reach their
limits: in case multiple standard components, custom components, and XaaS of-
ferings provided by different vendors and Cloud providers are combined and
different provisioning and configuration technologies are involved, available so-
lutions are unable to integrate them. In this paper, we tackle this issue. We
present an approach to enable the seamless integration of script-centric and
service-centric provisioning and configuration technologies in order to customize
and automate provisioning of composite Cloud applications. Therefore, we ex-
tend our concept of Management Planlets [2] by Generic Lifecycle Management
Planlets (GLMPs) that provide a means to bind abstract lifecycle tasks to
script- or service-based operation implementations. This enables the seamless
integration of different technologies to customize the generation of an overall
provisioning flow that provisions the application fully automated. The extension
enables application developers to benefit from reusable common provisioning
logic implemented by third parties and individual customization possibilities. We
validate the approach by creating several GLMPs that support the integration
of service-based technologies such as RESTful and HTTP Query Web services as
well as script-based technologies such as Chef. To prove the benefits, we evaluate
the concept against existing approaches in terms of functionality and features.
In addition, we implemented a prototype to show its practical applicability.

The remainder of this paper is structured as follows. In Section 2, we motivate
our approach, introduce a motivating scenario, and describe why the related work
is not able to tackle the analyzed issues. Afterwards, we describe Management
Planlets and Provisioning Topologies in Section 3. In Section 4, we present our
approach to integrate script- and service-centric provisioning technologies. We
present a case study in Section 5 and evaluate the approach in Section 6. Finally,
Section 7 concludes and provides an outlook on future work.

2 Motivation, Scenario, and Related Work

In this section, we motivate our approach and describe the type of applica-
tions whose provisioning is the focus of this paper. Afterwards, we describe the
provisioning of a motivating scenario and identify the occurring challenges and
problems. The related work, that does not provide a means to tackle these issues
completely, is discussed in Section 2.3.

1 http://puppetlabs.com/puppet/what-is-puppet
2 http://www.opscode.com/chef
3 http://cfengine.com
4 https://juju.ubuntu.com

http://puppetlabs.com/puppet/what-is-puppet
http://www.opscode.com/chef
http://cfengine.com
https://juju.ubuntu.com

132 U. Breitenbücher et al.

2.1 The Cloud Applications to be Provisioned

This paper considers Cloud applications that are of small and medium size and
complexity such as CRM systems. They are based on multiple XaaS offerings
possibly of different providers and employ common as well as individual software
components. We use a PHP-basedWeb shop application that stores product data

(hosted-on) (

(hosted-on)

(hosted-on) (

(hosted-on)

(hosted-on)

(MySQLConnection)

(hosted-on) (

OnlineShop
(PHP)

ProductDatabase
(MySQLDatabase)

PHPRuntime
(ApachePHPServer)

OperatingSystem
(UbuntuLinux)

VirtualMachine
(VM)

IaaS Provider
(MicrosoftAzure)

DBEnvironment
(AmazonDBInstance)

DBaaSCloud
(AmazonRDS)

Fig. 1. Motivating Scenario

in a relational database as running example throughout this paper. The appli-
cation is based on two Cloud offerings of type infrastructure and database as a
service: the infrastructure is provided by Microsoft’s Windows Azure Cloud offer-
ing5 and the database by Amazon’s Relational Database Service (AmazonRDS6).
Figure 1 shows the application modeled as application topology. A topology is
a graph consisting of nodes, which represent the components, and edges, which
represent the relations between the components. We refer to nodes and relations
as elements in the following. Each element has a certain type that defines its
semantics and properties, which are key-value pairs. Types may inherit from
a super type, e. g., Ubuntu inherits from Linux. We use Vino4TOSCA [1] to
render topologies. Thus, types are denoted as text enclosed by parentheses and
element ids as underlined text. The application itself consists of two connected
stacks. The left stack hosts the business logic implemented in PHP. This is de-
noted by the node of type PHP on the top left. The PHP node is hosted on a
PHP Runtime of type ApachePHPServer which runs on an Ubuntu Linux op-
erating system. This Linux runs in a virtual machine (VM) hosted on Azure.

5 http://www.windowsazure.com/
6 http://aws.amazon.com/rds/

http://www.windowsazure.com/
http://aws.amazon.com/rds/

Integrated Cloud Application Provisioning 133

The product data are stored in a database node of type MySQLDatabase hosted
on AmazonRDS. The connection between these stacks is established by a re-
lation of type MySQLConnection which connects business logic with database
backend. For simplicity, all other relations are modeled as “hosted-on” relations,
which is the super type for “installed-on”, etc. The architecture is a result of
Cloud-related design rationales [5]. Reasons for using multiple Cloud providers
are differences in pricing or quality of service and that a provider may not of-
fer required services or features, e. g., AmazonRDS offers an automated backup
functionality which is not supported by Azure currently.

2.2 Provisioning of the Web Shop Application

In this section, we describe the provisioning of our Web shop in detail. To pro-
vision the Ubuntu operating system and the virtual machine on Azure, the
Windows Azure Service Management REST API7 is invoked. The thereby in-
stantiated VM is accessible via SSH. Hence, Chef can be used to install the
Apache PHP Web server on it. Therefore, a Chef agent is installed on the op-
erating system via SSH before. After the Web server is installed by executing
the corresponding Chef recipes, we install God8, which is a monitoring frame-
work written in Ruby. To ensure high availability, we use God to make sure that
the Web server is up—otherwise, a restart will be triggered automatically. After
that, the PHP application files are transferred from an external storage onto the
operating system and copied into the htdocs folder, which contains all applica-
tions that are hosted on the server. This is done via SSH and Secure Copy (scp),
which is a means to securely transfer data between different hosts. To create the
MySQL database instance on AmazonRDS, a single HTTPS call to Amazon’s
Query API9 is sufficient. However, by default, network access to AmazonRDS
instances is disabled. Thus, we authorize access before by creating a so called
security group that defines the rules to make the database accessible for the PHP
frontend hosted on another provider. This requires two HTTPS calls to Ama-
zon’s Query API. Afterwards, we setup frequently automated backups for the
database to prevent data loss. This is also done by an HTTPS service call to the
same API. After both application stacks are provisioned, initial product data is
imported to the database. To do this, we employ an SQL batch update. In the
last step, the PHP application needs to be connected to the database. Estab-
lishing this connection is application-specific as there is no standard or common
way defining how to set such database endpoint information. Thus, only the
Web shop developer knows how to configure the application to connect to the
database. In our scenario, we employ a shell script that writes the database’s
endpoint information into a configuration file which is read by the PHP applica-
tion. Such shell scripts typically need parameterization: the endpoint is passed
to the script through environment variables which are read by the script.

7 http://msdn.microsoft.com/en-us/library/windowsazure/ee460799.aspx
8 http://godrb.com/
9 http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/

http://msdn.microsoft.com/en-us/library/windowsazure/ee460799.aspx
http://godrb.com/
http://docs.aws.amazon.com/AmazonRDS/latest/UserGuide/

134 U. Breitenbücher et al.

2.3 The Challenge: How to Provision This Application Fully
Automated? Tools and Related Work

The presented application architecture constitutes a set of problems. The fully
automated provisioning is a challenge as various kinds of technologies are in-
volved. Proprietary vendor- and Cloud-specific solutions such as Amazon Cloud
Formation10 are not able to tackle this provisioning issue completely as they
consider a certain Cloud provider environment only and lack the integration
of XaaS offerings from other providers. Proprietary multi-Cloud management
services such as RightScale11 aim to enable the provisioning and management
of business-critical Cloud infrastructures across multiple IaaS providers based
on automation scripts. However, the wiring of custom components and integra-
tion of various XaaS offerings is not possible. Cloud abstraction APIs such as
OpenStack12 provide a means to decouple dependencies to the underlying Cloud
infrastructure and platform services in order to ease multi-Cloud applications.
However, they do not solve the problem of integrating different management
APIs, technologies, and XaaS offerings. The DevOps communities provide tools
such as Puppet, Chef, or CFEngine and frameworks such as Marionette Collec-
tive13 or Spiceweasel14 to enable sophisticated configuration management [3, 6].
In addition, there are tools such as Juju to enable the orchestration of configu-
ration management scripts. However, these script-centric approaches are mostly
limited to installing and configuring software components on existing virtual ma-
chines. The deployment of complex composite Cloud applications that include
the fully automated provisioning of various XaaS offerings with custom depen-
dencies among each other is not trivial using these approaches as low-level scripts
need to be written for integration. Another deficit of most approaches is that the
wiring of different components across different machines, such as connecting the
Web shop PHP frontend to the product database, cannot be modeled separately.
Therefore, custom low level scripts must be manually embedded into the overall
process what requires a lot of technical knowledge. Juju supports this kind of
wiring, but also comes with the deficit that the used configuration management
scripts are made to be executed on the target infrastructure such as a virtual
machine that was provisioned before. To summarize, the main problem of all
these tools is that a complete support for the provisioning, configuration, and
wiring of virtual machines, storage, and other XaaS offerings, provided by differ-
ent providers, is currently out of scope. Thus, they do not provide a means to
integrate needed technologies to enable interoperable, multi-Cloud, and multi-
vendor applications such as our Web shop. Besides implementing custom software
or low level scripts from scratch that orchestrate all these technologies on their
own, a common solution for this problem is implementing provisioning workflows
that integrate required technologies, APIs, and abstraction frameworks as shown

10 http://aws.amazon.com/cloudformation/
11 https://www.rightscale.com
12 https://www.openstack.org/
13 http://docs.puppetlabs.com/mcollective
14 http://wiki.opscode.com/display/chef/Spiceweasel

 http://aws.amazon.com/cloudformation/
https://www.rightscale.com
https://www.openstack.org/
http://docs.puppetlabs.com/mcollective
http://wiki.opscode.com/display/chef/Spiceweasel

Integrated Cloud Application Provisioning 135

by Keller and Badonnel [7]. Provisioning workflows provide significant advan-
tages in contrast to solutions from scratch: They inherit features from workflow
technology such as recoverability, traceability, compensation-based recovery, and
transactional support and they provide an accepted means for orchestration of
heterogeneous software [9]. In addition, they support long-running processes and
enable people involvement through human tasks, which may be needed to man-
age utilized physical hardware. Thus, provisioning workflows enable a flexible,
reliable, and robust way to provision applications—even if multiple providers,
vendors, and technologies are involved. However, implementing such workflows
manually has two crucial drawbacks. (i) The required knowledge and effort is
high. Developers do not only need the knowledge about the workflow language
and its semantics itself but also have to know how to integrate and wrap technolo-
gies to make them accessible for workflows. This is a difficult, time-consuming,
and error-prone task and often requires deep technical knowledge about certain
technologies. Even using common workflow languages such as BPMN or BPEL
needs a lot of detailed knowledge and, in addition, script-centric technologies
have to be integrated which is not supported by BPMN and BPEL natively, for
example. This causes a lot of glue code to wrap APIs and technologies. Especially
script-based technologies provide some difficult challenges as they are typically
tightly coupled to operating systems, need to be copied to target machines in
advance, and employ different parameterization mechanisms, which are not in-
teroperable. Thus, several steps are required before scripts can be executed. The
seamless and transparent integration of different heterogeneous technologies is
the major challenge if workflows are created manually. We developed a BPMN
extension [8] that eases implementing provisioning workflows. However, this ex-
tension also does not solve the aforementioned problems completely as it also
relies on the invocation of management services. Especially the second prob-
lem is not tackled by this extension: (ii) provisioning workflows are typically
tightly coupled to a single application and hard to reuse and maintain [2]. If
components or relations change, this needs to be adapted in the workflow. Thus,
provisioning workflows must be created from scratch or by copying workflow frag-
ments from other applications, which is an error-prone task. In summary, the
manual implementation of provisioning workflows is hard, costly, and inefficient.
Thus, we need a means to generate provisioning workflows for individual appli-
cations fully automated. The literature presents approaches that deal with this
issue: Cafe is a framework that enables automating the provisioning of composite
service-oriented Cloud applications [11]. It generates provisioning workflows by
orchestrating so called “component flows” that implement a uniform interface
to manage the provisioning of individual components. The work of Maghraoui et
al. presents an operation oriented approach that enables transferring the current
state of a data center into a desired state by orchestrating provisioning opera-
tions [10]. This orchestration is based on planning algorithms that investigate
the preconditions and effects of each operation in order to determine the correct
set and order of operations. The work of Eilam et al. also uses desired state
models to provision applications [4]. In contrast to the previous work, it is based

136 U. Breitenbücher et al.

on graph covering techniques to orchestrate so called “automation signatures”
that implement provisioning logic. However, none of these approaches supports
the direct and generic integration of script-centric and service-centric operations
that provide custom provisioning logic implemented by the application devel-
oper itself. This is especially needed for wiring custom components as discussed
in Section 2.2. Using the available approaches, application developers need to
write glue code to embed custom logic, i. e., custom component flows, provi-
sioning operations, and automation signatures need to be implemented. Thus,
the application developer requires technical knowledge about the technologies
that makes the automated provisioning of custom applications complicated and
costly.

3 Management Planlets and Provisioning Topologies

In this section, we explain Management Planlets and Provisioning Topologies,
which are a means to automate the provisioning of applications. We introduced
Management Planlets in a former work [2] and extend them in this paper to
support the direct and explicit integration of script-centric and service-centric
provisioning technologies, which is not supported by the original approach. Man-
agement Planlets provide small reusable workflows that perform low level man-
agement tasks on a certain combination of nodes and relations, e. g., installing
a Web server or instantiating a virtual machine. The purpose of planlets is to
be orchestrated into an overall workflow that provides a higher-level function-
ality. Thus, they serve as generic building blocks for the generation of provi-
sioning plans that provision an application fully automated. Planlets consist of
two parts: (i) An Annotated Topology Fragment that depicts the management
tasks performed by the planlet on the nodes and relations and (ii) a workflow
implementing this functionality. The topology fragment contains (i) a graph of
typed nodes that may be interconnected by typed relations and (ii) so called
Management Annotations that are attached to the nodes or relations. These
annotations describe abstract tasks to be performed on the associated element:
each annotation has well-defined semantics but exposes no details about its ac-
tual implementation. Thus, they hide complexity and describe tasks decoupled
from concrete implementations. All details about the technical implementation
are hidden behind the topology fragment and implemented by the workflow. For
example, the Create-Annotation specifies that the associated element gets instan-
tiated or installed by the respective planlet. The concrete implementation is up
to the planlet. In addition, planlets implement a uniform interface for invoking
them and define input parameters that have to be provided by the caller, e. g.,
required account credentials. Due to these properties, planlets are capable of in-
tegrating different technologies into a common model without exposing technical
details. As planlets implement their functionality as workflows, they inherit the
features from workflow technology as described in Section 2.3.

Provisioning Topologies are used to define the provisioning of applications. A
Provisioning Topology is an application topology that consists of nodes and rela-
tions annotated with Management Annotations. These annotations define which

Integrated Cloud Application Provisioning 137

tasks have to be performed to provision the application. Elements in Provisioning
Topologies may specify properties and operations they provide. Operations pro-
vide information such as file references to scripts or URLs to service endpoints.
This topology serves as input for a plan generator that generates a provisioning
plan by orchestrating multiple planlets.

3.1 Management Annotations

There are two classes of Management Annotations: (i) Structural Annotations
and (ii) Domain-specific Annotations. The first class is fixed and contains two
generic annotations defining that the associated element gets created or destroyed
by the planlet. Thus, they modify the topology in terms of its structure. The
second class contains custom annotations that are needed to describe tasks of
a certain domain. For example, an ExportTables-Annotation for database nodes
defines that tables are exported by the planlet. Thus, this class makes the ap-
proach extensible towards all conceivable kinds of tasks. Furthermore, domain-
specific annotations may define additional information in the form of properties
which are used by the planlet for customization. For instance, the ExportTables-
Annotation defines the tables that have to be exported and the target storage.

3.2 Preconditions and Effects

Planlets may define preconditions to be fulfilled prior to the execution of the
planlet. Preconditions include value range restrictions on properties. Each prop-
erty specified on an element contained in the planlet’s topology fragment must
be initially available in the topology model or set by another planlet before. To
manage these properties, planlets write and read them from an instance model,
which is based on the Provisioning Topology. The effects of planlets are expressed
through Management Annotations and properties: Properties that are annotated
with a Create-Annotation are created by the planlet and may be used by other
planlets. For example, a planlet that deploys an application on a Web server
may have preconditions in the form of server IP-Address and credentials which
are set by another planlet that installed the Web server before. Thus, planlets
use properties to communicate with each other indirectly. The preconditions and
effects of planlets are matched against Provisioning Topologies to find a set of
planlets that are able to provision the whole application.

Figure 2 presents an example. The Provisioning Topology depicted on the left
gets provisioned by the two planlets shown on the right. The planlet on the bot-
tom instantiates an Ubuntu Linux operating system running in a virtual machine
on Amazon EC2. This is depicted by the topology fragment on the left of the plan-
let: the Ubuntu and VM nodes as well as the underlying hosted-on relations have a
Create-Annotation attached and, thus, get instantiated by the planlet. This topol-
ogy fragment is matched by the corresponding nodes and relations contained in
the ProvisioningTopology based on the types and annotations of the elements (de-
picted by the blue arrows). In addition, the state properties of both nodes get set to
“instantiated” and the credentials and IP-address properties of the Ubuntu node

138 U. Breitenbücher et al.

IaaSCloud
(AmazonEC2)

aSClou

(hosted-on)

(hosted-on)

Install Apache on Ubuntu Planlet P

VirtualMachine
(VM)
alMach

WebServer
(ApachePHPServer)

OperatingSystem
(UbuntuLinux)

OSVersion: 13.04

(hosted-on)

(hosted-on) (

Instantiate Ubuntu VM on Amazon Planlet P

(hosted-on) (

(UbuntuLinux)

OSVersion : 13.04 | 12.04
State : Instantiated

IP-Address : *

Credentials : *

(VM)

State : Instantiated

(hosted-on) (

(AmazonEC2)

)

(ApachePHPServer))

State : Instantiated

(UbuntuLinux)

State : Instantiated
IP-Address : *
Credentials : *

Fig. 2. Provisioning Topology (left) and matching Management Planlets (right)

to a meaningful value. This is expressed by the Create-Annotations attached to
the corresponding properties. The planlet also defines a precondition in the form
of the OSVersion property of the Ubuntu node: It is able to provision this stack for
versions 13.04 and 12.04. This precondition is matched by the Provisioning Topol-
ogy. As Amazon EC2 is always running, there is no need to instantiate that node
explicitly. Thus, the planlet is applicable. The planlet on the top is able to install
an ApachePHPServer on Ubuntu. It specifies preconditions on the Ubuntu node
in terms of state, credentials, and IP-address, which are all fulfilled after the
former planlet was executed. In general, preconditions determine the execution
order of planlets.

3.3 Transparent Integration

In this section, we describe howManagement Planlets are used to integrate script-
centric and service-centric provisioning technologies transparently. Technical

Integrated Cloud Application Provisioning 139

details are hidden by planlets as the topology fragment exposes the functionality
only in an abstract fashion. This abstraction allows combining service-centric and
script-centric technologieswithout exposing any details about the implementation
to the plan generator: The implementation details are up to the planlet creator.
As a consequence, the plan generator and the application developer, who specifies
the Provisioning Topology, do not have to care about the technical details. We call
thisTransparent Integration because all technical details are invisible. This kind of
integration is suited for regularly used tasks in which standard or common compo-
nents are involved that are both not specific to a certain application. For example,
the instantiation of an Ubuntu virtual machine on Amazon EC2 is such a task in
which service invocations are involved. Installing an Apache Web server on this
virtual machine afterwards is a typical script task. Therefore the Chef community,
for instance, provides recipes for this installation. All in all, both tasks are suited
to be integrated transparently throughGeneric Planlets because each component
as well as both tasks are common and likely to be reused. This transparent inte-
gration supports the reusability of expert knowledge across different domains and
technologies.We implemented the plain provisioning of both stacks of ourmotivat-
ing scenario as Generic Planlets. That includes provisioning of VM and operating
system, installation of the Web server, deployment of the PHP application, and
the instantiation of DBEnvironment and product database.

3.4 Standards Compliance

Proprietary approaches as discussed in the related work (Section 2.3) are based
on proprietary domain-specific languages (DSLs). DSLs prevent these approaches
to be portable and accepted by a broad audience as the languages require special
knowledge and technical skills. A main strength of Management Planlets is the
applicability to the OASIS TOSCA standard [12], which provides a standardized
format to describe application topologies and their management in a portable
fashion. We proved this by a prototypical implementation [2].

3.5 Customization Drawback

As shown in the previous sections, planlets provide a means to abstract tasks
from concrete operation implementations to automate their combined execution.
Application developers only need to specify the desired tasks in a Provisioning
Topology without having any doubt about the final execution. However, these
Generic Planlets cannot serve all customization requirements the application de-
velopers may have. Custom components such as the Web shop frontend of our
motivating scenario often need special consideration. For example, to establish
the connection to the database, the application needs a configuration in the form
of database credentials and endpoint information. As there is no standardized
or common way for this task, it is not possible to implement a planlet that deals
with this in a generic and reusable way. Thus, application developers need to
implement specific planlets to inject custom behavior for an actually simple task.
These so called Custom Planlets can be combined with the Generic Planlets in

140 U. Breitenbücher et al.

a seamless way. This is, however, not always sufficient as writing planlets causes
unnecessary overhead if only a simple service call or script execution is needed
to serve the needs. In addition, the Custom Planlets are hardly reusable as they
are targeted to a very special custom task. To tackle this issue, we extend the
concept of Management Planlets in the following section. The presented exten-
sion enables configuration of provisioning by integrating service calls or script
executions directly into the generated provisioning plan without corrupting the
overall concept. The new approach enables application developers to customize
provisioning without the need to write planlets by themselves.

4 Integrating Script- and Service-Centric Technologies

Management Planlets currently support the Transparent Integration of script-
centric and service-centric provisioning technologies implicitly. However, if special
tasks are needed, implementing CustomPlanlets is not appropriate as discussed in
Section 3.5.Thus,we need ameans to explicitly integrate customization scripts and
service calls generically. Therefore, we extend the concept ofManagement Planlets
to enable an Explicit Integration of different technologies into the generated pro-
visioning workflow. The combination of Transparent and Explicit Integration en-
ables integrating script-centric and service-centric provisioning technologies in a
seamless fashion. This allows application developers to benefit from Generic Plan-
lets and to customize the provisioning at any point through using the Explicit In-
tegration without the need to write own Custom Planlets.

4.1 Explicit Integration

In this section, we present the main contribution of this paper that provides a
means to integrate script executions and service invocations of various types ex-
plicitly into the overall automatically generated provisioning flow. Therefore, we
introduce Generic Lifecycle Management Planlets (GLMP from now on) that
serve as generic technology integration mechanism to implement lifecycle ac-
tions. GLMPs enable custom implementation of provisioning and configuration
logic specifically for a certain application, component, or relation. They are able
to directly execute a specific script- or service-based operation implementation
that implements one or multiple Management Annotations. Thus, GLMPs en-
able binding custom operation implementations to abstract tasks which are rep-
resented by Management Annotations. This enables application developers to
inject own provisioning and configuration logic without the need to implement
Custom Planlets. Thus, the operational logic gets distributed over the Provision-
ing Topology of an application and Management Planlets.

Figure 3 shows the general concept by an example describing how an HTTPS
service call can be used to configure a node. On the left, it depicts the DBEnvi-
ronment of the motivating scenario. This node needs to be created and configured,
as denoted by a Create-Annotation and a Configure-Annotation. It provides a Se-
tupFrequentBackup operation of type HTTPS (1 in Figure 3) that implements (2)

Integrated Cloud Application Provisioning 141

SetupFrequentBackup

HTTPS

DBInstanceId : ShopDBInstance

DBEnvironment
(AmazonDBInstance)

Action : Param
DBInstanceId : Param
RetentionPeriod : Param
…
AWSAccessKeyId : Param

HTTPS Configuration GLMP P

(*)

State : Instantiated

* HTTPS

HT

Param

HH1

Compatible
tantiated

HTTHHHH
1

t

3

3
2

2

Fig. 3. DBEnvironment node with custom HTTPS operation bound to Configure-
Annotation (left) and compatible HTTPS Configuration GLMP (right)

the Configure-Annotation (3). On the right hand side, the figure shows an HTTPS
ConfigurationGLMPthatmatches theDBEnvironmentnode: TheGLMP is appli-
cable to single nodes of any type (denoted by the star symbol in the type parenthe-
ses). It is able to invoke services via HTTPS (1 in Figure 3) in order to configure
a node (3). This is shown by the operation-annotation-binding (2). The planlet,
however, has a precondition in the form of a state property that must be set to
instantiated. Thus, this GLMP is applicable after the DBEnvironment node was
created by another planlet that sets the state-property accordingly.

A GLMP is responsible to perform one or multiple lifecycle actions on an
element. For this paper, we use a simple lifecycle that is sufficient for most
provisioning scenarios [4]: each node and relation goes through the lifecycle ac-
tions instantiation, configuration, and termination. The instantiation action is
represented by the Create-Annotation. Each planlet that performs this annota-
tion sets the state-property on the corresponding element to “instantiated” after
completion. This state-property serves as precondition for planlets that perform
the Configure-Annotation on that element. Thus, the Configure-Annotation is al-
ways processed after the Create-Annotation. This enables a fine grained injection
of provisioning logic in the desired phase of an element’s lifecycle. Termination
is out of scope for this paper. This lifecycle may be extended to support more
complex needs, e. g., by executing Prepare-Annotations before instantiation.

Operation-Annotation-Binding. An operation may be implemented through
various kinds of technologies. Thus, their integration mechanisms differ signifi-
cantly from each other and need specific additional information. GLMPs offer a
way to define information for each operation type individually: Each operation
type defines its custom binding information as shown in Figure 4. The type of
the operation defines its semantics and the meaning of this information. The
example shows binding information for an HTTPS call. All elements contained

142 U. Breitenbücher et al.

in the binding having the prefix ”http” are technology-specific and ignored by
the plan generator. They are used to provide needed information used by the
GLMP, such as request URI and HTTP method in this example. The Implements
elements specify the annotations that are implemented by the operation. This
information is used by the plan generator to select GLMPs, which is explained in
Section 4.1. Binding-information may not be available at design time, e. g., end-
points of configuration services provided by components themselves are typically
not known until the component is provisioned. The Data Handling Specification
introduced in the next section enables defining lazy bindings.

SetupFrequentBackup

HTTPS

DBInstanceId : ShopDBInstance

DBEnvironment
(AmazonDBInstance)

AWSAccessKeyId : 8dazer!drs
…

DBaaSCloud
(AmazonRDS)

Action : Param
DBInstanceId : Param
RetentionPeriod : Param
…
AWSAccessKeyId : Param

AWA S

AWA

Setu

DBIn

Ac
DBD
R

<Binding>
 <Implements>DBEnvironment.Configure</Implements>
 <http:Method>POST</http:Method>
 <http:HTTPSRequestURI>
 https://rds.amazonaws.com/
 </http:HTTPSRequestURI>
</Binding>

<DataHandling>

 <Assign>
 <Value> „ModifyDBInstance“ </Value>
 <To> in.Param.Action </To>
 </Assign>

 <Assign>
 <From> DBEnvironment.DBInstanceId </From>
 <To> in.Param.DBInstanceId </To>
 </Assign>

 <Assign>
 <Value> 3 </Value>
 <To> in.Param.RetentionPeriod </To>
 </Assign>

 <Assign>
 <From> DBaasCloud.AWSAccessKeyId </From>
 <To> in.AWSAccessKeyId </To>
 </Assign>
</DataHandling>

m
m

<<
<

m

m

</A
<Ass

<
<

</A
<Ass

<<

…

Fig. 4. Data Handling Specification for GLMP that invokes an HTTPS Web service

Data Handling Specification. Operations may have several input and output
parameters. This depends on the implementation technology: Services have typ-
ically one output parameter, scripts may define several environment variables as
output parameters. Thus, data handling is operation type specific and up to the
corresponding GLMP. Many kinds of operations need input parameters that de-
pend on properties in the topology. For example, to setup the frequent backup on
the DBEnvironment node of our motivating scenario, an HTTPS call to the Ama-
zon Query API is required. This call needs query parameters such as DBInstan-
ceId and AWSAccessKeyId, which are properties of nodes: The DBInstanceId is

Integrated Cloud Application Provisioning 143

a property of the DBEnvironment node itself whereas the AWSAccessKeyId is
a property of the underlying DBaaSCloud node. Therefore, we introduce a Data
Handling Specification as shown in Figure 4. This allows assigning properties
and default values to input parameters (path element ”in”) and output param-
eters (path element ”out”) to element properties as shown in Figure 4. This
specification is read by the plan generator and GLMP. The plan generator uses
the information to check the applicability of a GLMP by analyzing assigns: If an
assigned topology property is not available, the implemented annotation is not
executable. GLMPs use this specification to retrieve the needed input parame-
ters by accessing the specified element properties and default values. Converting
data is up to the GLMPs, e. g., a string property to an environment variable
for scripts. All input parameters which are not assigned with a default value or
property are exposed to the input message of the generated provisioning plan.
These parameters have to be set by the caller and are routed by the provisioning
plan to the corresponding GLMP that receives an additional list of parameters
that are not defined in the specification as input. This kind of data handling
is similar to data assign activities in BPEL and Variability Points in Cafe [11].
To enable lazy binding, the Data Handling Specification may be used also to as-
sign properties to operation-specific elements in the binding specification. This
information can be read by the GLMP to complete the binding at runtime.

Technology-Specific Preconditions. The preconditions of a GLMP depend
on the technology to be integrated. Services offered by nodes have other precon-
ditions than scripts that typically run on the underlying operating system. Thus,
the planlet’s topology fragment depends on characteristics of the respective tech-
nology and provides a means to define preconditions in the form of nodes, their
dependencies, and properties. To provide an additional means that enables defin-
ing very specific requirements of operations, we extend management operations
by properties: each property of an operation defined in the topology must be
compatible with a property of the corresponding operation defined in the plan-
let’s topology fragment. The set of properties is prescribed by the operation’s
type. In contrast to the Data Handling Specification, which is processed by the
planlets, these properties are evaluated by the framework to select appropriate
planlets during plan generation. Properties are required, for example, for defin-
ing script-based management operations on relationships. If a script implements
the Create-Annotation of a directed relationship in the Provisioning Topology,
a property is used to define if it has to be executed on the infrastructure of the
source node or on the infrastructure of the target node. Depending on the used
operating systems, different planlets may be needed for different property values.

Extended Workflow Generation. In Breitenbücher et al. [2], we presented
a concept for provisioning plan generation based on planlets. We extend this
algorithm to support GLMPs. In general, GLMPs are used similarly to normal
planlets: they are checked for compatibility in terms of types, preconditions, ef-
fects, and Management Annotations. However, the generation algorithm needs

144 U. Breitenbücher et al.

to be extended: (i) first, the matchmaking of topology and planlet fragments
is extended to support operation-annotation binding specification of GLMPs: If
the plan generator checks compatibility of annotations that are implemented
by an operation, both annotation and implementing operation in GLMP and
Provisioning Topology must have the same types. In addition, the properties
of both operations must be compatible. (ii) The generator has to consider the
Data Handling Specification, which influences applicability of GLMPs: an anno-
tation implemented by an operation must not be processed by a GLMP until all
assigned properties are available. In addition, output parameters that are writ-
ten into properties must be considered, too. (iii) The generator prefers GLMPs
whenever possible to Generic Planlets in order to treat custom implementations
with a higher priority. This enables application developers to customize the pro-
visioning.

5 Case Study

In this section, we present a case study to prove the approach’s feasibility based
on the Web shop. As already mentioned in Section 3.3, the plain provisioning
of both stacks is completely done by Generic Planlets. To perform the custom
tasks, we developed GLMPs that support the following technologies and tasks:

MySQL-based configuration P

(MySQLDatabase)

State : Instantiated
Host : *
Username : *
Password : *
DBName : *

* MySQLScript

))

Chef-based configuration P

(*)

State : Instantiated

* ChefCookbook

(Linux)

State : Instantiated
IP-Address : *
SSHUser : *
SSHPW : *

Linux)

(hosted-on)

Fig. 5. GLMPs executing MySQL scripts (left) and Chef cookbooks (right)

To establish the MySQLConnection from PHP application to database, we
implemented a small shell script that gets the endpoint of the database and
credentials as input via environment variables. To setup the frequent database
backup, we use the Amazon Query API that provides HTTPS services for this
task. The corresponding GLMP is shown in Figure 3, the corresponding binding

Integrated Cloud Application Provisioning 145

and Data Handling Specification in Figure 4. The initial data import into the
product database is done via an SQL script. The corresponding GLMP is shown
in Figure 5 on the top left. The binding specifies the location of the SQL script,
database endpoint and credentials are extracted by the GLMP from the MySQL-
Database node automatically. To ensure that this information is available, the
GLMP defines a target node of type MySQLDatabase that must be running
already. Thus, this example shows how technology specific preconditions can be
used to model the requirements and characteristics of technologies. To install
God to monitor the Apache Web server, we use a Chef cookbook to implement
the corresponding operation which is bound to a Configure-Annotation attached
to the Web server. The GLMP shown in Figure 5 on the right executes this. It
uses a transitive relation, which ignores all elements between source and target,
of type hosted-on and requires an underlying Linux operating system with corre-
sponding SSH credentials and IP-Address. Internally, it installs the Chef agent
on the operating system by using SSH and executes the specified cookbook.

6 Evaluation

In this Section, we evaluate our approach against the most similar publicly ac-
cessible implemented approaches. The features compared in Table 1 are derived
from the challenges discussed in Section 2.3 and explained in the following. Thus,
they represent requirements that must be fulfilled to be able to provision the kind
of Cloud applications used in our motivating scenario (cf. Section 2.1) fully auto-
mated. An x denotes that the approach supports the corresponding functionality
without limitations. An x in parentheses denotes partial support.

Table 1. Feature Evaluation

Feature GLMP CloudForm. Heat Puppet Chef Juju Workflows Cafe

Component Wiring x (x) (x) (x) (x) x x x
XaaS Integration x x x
Multi-Cloud x (x) x x (x) x x
Full Customization x x x
Multi-Script x (x) (x) (x) (x) x (x) x
Multi-Service x (x) (x) (x) (x) (x) x x
Explicit Integration x
Transparent Integration x x x x x
Fully-Automated x x x (x) (x) x
Standards Compliant x (x) (x)
Complete Top. Model x

Component Wiring means establishing relations between nodes, e. g., connect-
ing a PHP application to a database. CloudFormation enables this by embedding
hard-wired scripts into the template that access properties of resources. This is
similar to our data flow definitions but limited to resources that are contained in

146 U. Breitenbücher et al.

the template and, thus, provisioned on Amazon. Heat implements the CloudFor-
mation specification and comes with similar problems. The script-centric tech-
nologies are able to wire components on a very low level based on custom scripts.
However, this approach is limited as discussed in Section 2.3. XaaS Integration
means the capability to provision and configure multiple service offerings of dif-
ferent types. CloudFormation and Heat are coupled to the service types provided
by Amazon and cannot deal with others in a practicable way. The Multi-Cloud
feature enables integrating different Cloud providers. All approaches support this
except CloudFormation that is bound to Amazon. Heat supports this partially
as OpenStack is used as Cloud operating system. All script-centric technologies
are not affected by the underlying Cloud infrastructure and, thus, multi-Cloud
ready. Juju can be used in conjunction with different Cloud providers, but a par-
ticular composite service instance is bound to one provider. Full Customization
means that provisioning may be customized by the application developer in each
detail. The concept of GLMPs enables this in three ways: (i) custom Planlets
may be implemented to customize certain node combinations, (ii) GLMPs are
able to integrate low level logic in a seamless fashion, and (iii) as Management
Planlets are used to generate a Provisioning Workflow that is executed after
the generation, this workflow may be adapted arbitrarily. All other features ex-
cept workflows and Cafe are not able to provide this feature. Multi-Script and
Multi-Service means that various kinds of script and management service calls
respectively can be integrated seamlessly into the provisioning process. GLMPs
support this integration directly as shown in Section 5. With Juju it is possible to
combine different scripting languages. All other technologies, except workflows,
that are made to orchestrate services, and Cafe, that employs workflows, only
indirectly as they need wrapping code (scripts) for integration. Explicit Integra-
tion means that no visible glue code is needed for integrating any technology.
GLMPs support this feature as technical execution details are hidden. Script-
centric approaches do not support this feature as they need to create glue code,
e. g., for invoking SOAP services. Even workflows, and thus Cafe, do not sup-
port this feature as they do not abstract from fine-grained tasks and wrapping
code is needed to invoke scripts. Fully-Automated provisioning is the key feature
for Cloud computing. The script-centric technologies Puppet and Chef do not
support this feature directly. To enable the fully-automated provisioning of multi-
stack applications, there are tools such as Marionette Collective or Spiceweasel.
Workflows need to be created by hand. Standards Compliant (”de jure”) are only
Management Planlets as they support TOSCA as topology model and BPEL as
workflow language. Workflows and Cafe are partially compliant as they may use
the BPEL or BPMN standards but do not support any standard for the mod-
eling of applications. This feature is important to create portable applications.
Complete Topology Model means that nodes as well as relations are explicitly
modeled. Only Management Planlets support this feature that is important to
maintain the application: if relations are modeled implicitly only, it is hard to
recognize them. Of course, most of the missing features of CloudFormation, Heat,

Integrated Cloud Application Provisioning 147

and the script-based approaches can be emulated by using low-level shell scripts.
However, this is not efficient and the result is hard to maintain.

7 Conclusion and Future Work

In this paper, we presented an approach that enables the integration of script-
centric and service-centric provisioning and configuration technologies. The ap-
proach is based on Management Planlets and enables to customize and automate
the provisioning of composite Cloud applications. The validation showed the fea-
sibility of our approach and the detailed evaluation, comparing the supported
features to other approaches in this area, proved its relevance. We plan to extend
our approach in the future to support influencing the execution order of Manage-
ment Annotations in order to provide a fully customizable approach independent
from restricted lifecycle operations. In addition, we focus on management of ap-
plications and apply the presented approach also in this area.

Acknowledgments. This work was partially funded by the BMWi project
CloudCycle (01MD11023).

References

1. Breitenbücher, U., Binz, T., Kopp, O., Leymann, F., Schumm, D.: Vino4TOSCA:
A Visual Notation for Application Topologies Based on TOSCA. In: Meersman, R.,
et al. (eds.) OTM 2012, Part I. LNCS, vol. 7565, pp. 416–424. Springer, Heidelberg
(2012)

2. Breitenbücher, U., et al.: Pattern-based runtime management of composite cloud
applications. In: CLOSER (2013)

3. Delaet, T., Joosen, W., Vanbrabant, B.: A Survey of System Configuration Tools.
In: 24th Large Installations Systems Administration Conference (2010)

4. Eilam, T., et al.: Pattern-based composite application deployment. In: Integrated
Network Management. IEEE (2011)

5. Fehling, C., et al.: Cloud Computing Patterns: Fundamentals to Design, Build, and
Manage Cloud Applications. Springer (2013)

6. Günther, S., Haupt, M., Splieth, M.: Utilizing Internal Domain-Specific Languages
for Deployment and Maintenance of IT Infrastructures. Tech. rep., Very Large
Business Applications Lab Magdeburg (2010)

7. Keller, A., Badonnel, R.: Automating the provisioning of application services with
the BPEL4WS workflow language. In: Sahai, A., Wu, F. (eds.) DSOM 2004. LNCS,
vol. 3278, pp. 15–27. Springer, Heidelberg (2004)

8. Kopp, O., Binz, T., Breitenbücher, U., Leymann, F.: BPMN4TOSCA: A domain-
specific language to model management plans for composite applications. In:
Mendling, J., Weidlich, M. (eds.) BPMN 2012. LNBIP, vol. 125, pp. 38–52. Springer,
Heidelberg (2012)

9. Leymann, F., Roller, D.: Production workflow: concepts and techniques. Prentice
Hall PTR (2000)

148 U. Breitenbücher et al.

10. El Maghraoui, K., Meghranjani, A., Eilam, T., Kalantar, M., Konstantinou, A.V.:
Model driven provisioning: Bridging the gap between declarative object models and
procedural provisioning tools. In: van Steen, M., Henning, M. (eds.) Middleware
2006. LNCS, vol. 4290, pp. 404–423. Springer, Heidelberg (2006)

11. Mietzner, R.: A method and implementation to define and provision variable com-
posite applications, and its usage in cloud computing. Dissertation, Universität
Stuttgart (August 2010)

12. OASIS: Topology and Orchestration Specification for Cloud Applications Version
1.0 (May 2013)

	Integrated Cloud Application Provisioning:
Interconnecting Service-Centric and
Script-Centric Management Technologies

	1 Introduction
	2 Motivation, Scenario, and Related Work
	2.1 The Cloud Applications to be Provisioned
	2.2 Provisioning of the Web Shop Application
	2.3 The Challenge: How to Provision This Application Fully

	3 Management Planlets and Provisioning Topologies
	3.1 Management Annotations
	3.2 Preconditions and Effects
	3.3 Transparent Integration
	3.4 Standards Compliance
	3.5 Customization Drawback

	4 Integrating Script- and Service-Centric Technologies
	4.1 Explicit Integration

	5 Case Study
	6 Evaluation
	7 Conclusion and Future Work
	References

