
Flexible Matchmaking for RESTful Web Services

Fatma Slaimi, Sana Sellami, Omar Boucelma, and Ahlem Ben Hassine

National School of Computer Science (ENSI), University of Manouba, Tunisia
Aix-Marseille Univ, LSIS, UMR CNRS 7296, Marseille, France

{fatma.slaimi,ahlembh}@gmail.com,
{sana.sellami,omar.boucelma}@lsis.org

Abstract. This paper describes a flexible matchmaking approach that
relies on an extensible set of schema/ontology matching techniques and
primitives that may be combined in various ways, accordingly with the
specification of a service request. The approach has been implemented
and tested against a collection of RESTFul web services described in
hRESTS microformat.

Keywords: Semantic Web Services Discovery, RESTful Services.

1 Introduction

With the proliferation of web services (WS), WS discovery has been identified as
one of the key challenges for achieving efficient service oriented computing. As
the number of (publicly) available web services keeps growing, discovering the
right service(s) is still an issue although a significant amount of work has been
done during the last decade.

With the advent of the Semantic Web, new semantic techniques and systems
has been proposed leading a new research topic known as Semantic Web Service
Discovery. A number of solutions has been proposed in the literature, and re-
sulted in different semantic matchmaking techniques and systems 1. Despite com-
monalities shared with the schema matching research area [1], (semantic) web
services discovery techniques have been proposed along a separate and indepen-
dent pathway. Nevertheless, during the past few years, some schema matching
approaches have been proposed to address WS discovery [2].

In this paper, we advocate an ”unbundled” approach (versus a monolithic
one) for semantic web services discovery. The approach relies on an extensible
set of schema/ontology matching techniques and primitives that may be com-
bined in various ways, accordingly with the specification of a service request.
Matching techniques have been primarily developed to (semi)automatically al-
low the discovery of correspondences between (database/XML) schemas, mostly
in the context of Information Integration. Matching approaches depend on the
description of services and can be applied at the element or structure levels; they
may be terminological, structural, or semantic [15].

1 http://www-ags.dfki.uni-sb.de/~klusch/s3/index.html

R. Meersman et al. (Eds.): OTM 2013, LNCS 8185, pp. 542–554, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www-ags.dfki.uni-sb.de/~klusch/s3/index.html

Flexible Matchmaking for RESTful Web Services 543

The contribution of the paper is twofold: (1) a RESTFul matchmaking ap-
proach based on schema matching, and (2) an experimental evaluation performed
in using the well known hRESTS-TC1 service retrieval test collection 2.

The remainder of this paper is organized as follows: In Section 2, we review
the semantic web services concepts that are mandatory for the comprehension
of the rest of the paper; in Section 3 we survey some related work, before we
detail our approach in Section 4. Section 5 describes and discusses our evaluation
environment. Finally we conclude in Section 6.

2 Semantic Web Services

Several languages for semantic annotation of Web services are proposed in the
literature. The most known are OWL-S (Web Ontology Language for Web Ser-
vices), WSMO (Web Service Modeling Ontology), WSML (Web Service Model-
ing Language), and annotation languages like WSDL-S (Web Service Semantics),
SAWSDL (Semantic Annotations for WSDL and XML Schema) and SA-REST .
These languages differ in their complexity and expressive power. Languages such
as OWL-S and WSMO aim to define an ontology for semantic web service de-
scription. However, the annotation languages propose to add annotations as an
extension of WSDL description and connect the annotated elements with seman-
tic information. The main goal of semantic annotation approaches is to enhance
the syntactic description of web services with semantic information. The most
important elements of web services that need to be annotated are functional
properties related to the input, output, conditions and effects. These elements
are processed during service discovery and composition. Instead of traditional
SOAP-based services, which can use different standards to be described both
syntactically that semantically, there are no standard for REST based services.
Rather, in almost all cases, RESTful services are described with full text docu-
mentation which details the functionality of the service and the way to use it.
hRESTS (HTML for RESTful Services) [3] is a micro format that enables the
creation of machine-processable Web API descriptions based on available HTML
documentation. hRESTS is complemented by the MicroWSMO microformat,
which supports the semantic annotation of service properties in a SAWSDL-like
manner. MicroWSMO introduces additional HTML classes, in order to enable
the linking of ontological elements and the provisioning of machinery for trans-
forming data exchanged between two services used in a service composition.

The main components of hRESTS services are:

– service : interface that the client deals with,
– operation : an action that the client can perform,
– resources : the address (URI) to invoke the operation
– method : detect the HTTP method
– input/outputs messages :request and response are the messages sent as input

and output of the operation

2 Available at http://www.semwebcentral.org/

http://www.semwebcentral.org/

544 F. Slaimi et al.

– links : in the output messages, make a run-time hypertext graph of related
resources.

hRESTS service functional model can be presented by the following Fig.1. This
model is very similar to WSDL model 3, hRESTS aims to provide a machine-
readable representation of common Web service description.

Fig. 1. hRESTS Service Model ([3])

hRESTS web service description represent only syntactic information, it
doesn’t include semantics. To semantically annotate this description, the Mi-
croWSMO microformat can be used. It has been proposed in [3]. It define links
to semantic concepts (ontology represented in the Web Ontology Language) to
describe web service components.

3 Related Work

During the last decade, several Semantic Web Service Discovery approaches have
been proposed in the literature. Most of them have been devoted to the match-
making of SAWSDL[4] [5] [6] and OWL-S services [7] [8]. These matchmakers
can be logic-based, non logic-based or hybrid, i.e., a combination of logic and
non logic according to the classification proposed in [9].

Discovering RESTful services approaches has been recently proposed in the
literature [10] [11] [12]. The first work XAM4SWS [10] compares operation, in-
put, output and service similarities. These similarities are combined in the single
one for each pair of operations. Semantic matchmaking considers hRESTS char-
acteristics and determines verb (get, post, put, delete) similarity values. The
second work [11] proposed a graph-theoretic approach for matching RESTful
services. This approach matches RESTful web services functionalities based on
their WADL(Web Application Description Language) elements. It uses linguistic
knowledge and domain-specific heuristics.

3 //www.w3.org/TR/wsdl20/

//www.w3.org/TR/wsdl20/

Flexible Matchmaking for RESTful Web Services 545

4 SR-REST: A Matchmaking Approach for RESTful
Services

We propose SR-REST4 a matchmaking approach for RESTFul web services.
Given a repository of web services and a user’s request our aim is to automatically
perform matching of this query with services as a means to find out a mapping
indicating the services’ elements corresponding to the underlying request. The
result of the matching process is a set of mapping elements of both the schema
of matched elements and the plausibility of their correspondence. The latter
is defined using a similarity value between 0, i.e. strong dissimilarity; and 1, i.e
strong similarity. The overall similarity between two services should be computed
based on the degree of matching of their underlying operations.

The main idea of the approach consists in comparing the services with the
requested service, i.e., operations, inputs and outputs, based on several SWS
matchmaking strategies. Our aim is to take leverage of existing matchers [9] [13]
such as, logic, syntactic, structural and semantic matchers, in providing suitable
combination of these latters, leading to a flexible and efficient matchmaking
algorithms. The approach is tested against RESTFul web services encoded in
hRESTS. The proposed matchmaker, SR-REST, exploits information from all
levels of the hRESTS Web service description in the matching process, i.e.,
service, operation and input/output levels.

4.1 Logic-Based Matchers

Usually, the inputs and the outputs are highly important in the service descrip-
tion due to the fact that they are considered as the only annotated part of the
service enabling the use of the semantic relations between services’ parameters.
Therefore, SR-REST performs a logic matching based on the subsumption rea-
soning. It computes the logic match between inputs (respectively outputs) of
the service offer and the service request using different logic filters proposed by
Paolucci and al. [14]. Given two concepts C (from the service request) and D
(from the service offer), the degrees of logic match (DoM) are defined as bellow:

– exact: if C ≡ D
– plug-in: if C � D
– subsume: if C � C
– fail: if C is disjoint with D

These filters allow us to exploit subsumption relations e.g. generalization, spec-
ification between concepts of an ontology. However, there are other semantic
relations between concepts that could be useful in the matchmaking process
(fig. 2) such as neighborhood relations. For that reason, we propose a new fil-
ter to detect such kind of relation called intersect. Assuming that we have two
sets LG and LN of direct generalization and direct neighbors respectively, where:

4 Service (Entity) Resolution RESTful web services

546 F. Slaimi et al.

Fig. 2. Example of sibling relation between concepts

– LG (C)is the set of all direct generalization C’ of the concept C, i.e. C is a
sub concept of C’.

– LN (C)is the set of all direct neighbors C’ of the concept C, i.e. LG (C) =
LG (C’)

– ∀(A, B) pair of concept, A intersect B, (denoted intersect(A, B)) if and only
if ∃ a concept C where C ∈ LN (A) and C ∈ LN (B).

As a means to rank the previously mentioned filters, SR-REST attributes a
quantitative equivalence (as in [5]) for each DoM relation based on the distance
between concepts in the ontology. So, we mapped the pre-cited discrete DoMs
into a constant numerical scale, varying from zero (no similarity) to one (ex-
act similarity). Formally, we define PL(C,D) as the shortest path between two
concepts C and D in an ontology and E the numerical equivalent for the DoM
filter (exact, plugin, subsume, intersect, fail). Then, the logic similarity Ls(C,D),
between the two concepts C and D is given by the following measure:

Ls(C,D) = E/PL(C,D). (1)

4.2 Syntactic-Based Matchers

SR-REST can perform syntactic matching by computing the similarity between
names, operation and descriptions of the service. For each pair of, service offer
operation and request operation, it measures the similarity between texts based
on functions proposed in simpack[15] such as: the Extended Jaccard , the Loss-
of-Information , the Jensen-Shannon and the Cosine similarity measures.

Name Similarity. Names of services are defined by programmers. Usually,
programmers respect some conventions, the names of variables and methods
generally have meanings. A service name can summarize the functionality of the
service. Using a tokenizer, some available similarity measure methods can be used
to determine the similarity value between an offered service name and a requested
service name, i.e., levensthein edit distance, average string, Dice’s coefficient,
Jaro coefficient, TF-IDF. SR-REST deploys some string based measurements
described in Simpack [15] to compute the similarity value between service names.

Flexible Matchmaking for RESTful Web Services 547

The performance of names based matching depends on the qualities of service
names. Note that, some service names describe perfectly the functionalities of
their services while others cannot.

Text Similarity. Text description consists of a description of the web service
written by developers in natural language using simple phrases and technical
terms in an easily understandable way. Text description uses simple sentences
instead of complicated ones leading to an easy process. Two similar services
may use, in their text descriptions, similar terms, abbreviations, domain spe-
cific terminology, and phrases. Thus, it is possible to discover similar services by
matchmaking their text descriptions. Hence, several web services matchmakers
proposed in the literature [6] [16] consider text descriptions of Web services as a
crucial information for the discovery process. These matchmakers use Tokenizer,
they first convert words into lowercases, then use a porter stemmer for stemming
and finally filter words using special characters, e.g. stop words, separators, etc.
Text description of a hRESTS Web service document is represented by a vec-
tor where each dimension expresses a pair: the term and its frequency in the
document. This matchmaker supports various vectors based on the similarity
measurement functions implemented by Simpack.

4.3 Semantic Structural-Based Matcher

Semantic Structural based matchmakers are graph algorithms that consider the
inputs as labeled graphs. They analyze the position of nodes in the graph. The
importance of the structural similarities can be vindicated by the fact that same
elements may appear in divers contexts and hence need to be differentiated
to ensure a correct matching. In this way, SR-REST is also based on struc-
tural matching to determine the structural similarities between Input/Output
elements. This similarity is based on the context elements and on the hypoth-
esis that two elements are structurally similar if theirs structural neighbors are
similar. The context includes: ancestor, sibling, immediate Child and leaf nodes.

The problem of semantic relatedness in an ontology or taxonomy is well known
in the literature [17]. Generally, existing approaches represent the ontology as
a graph for the semantic structural measure where nodes represent the different
concepts and the edges represent relationships between concepts. However, the
distance between concepts (graph nodes) can be used to compute the degree
of their similarity. One of the most used approach for the semantic relatedness
measure is Resnik [18], Resnik’s measure function calculates the semantic sim-
ilarity between ontology’s concepts. It is based on the information content of a
concept, which uses the instance probability. Using Resnik, different concepts in
the ontology are annotated with values of the probability of their appearance in
the service description.

simRes(A,B) = max
c∈S(A,B)

−logp(c) (2)

where S(A,B) is the set of concepts that subsume both A and B in the ontology.

548 F. Slaimi et al.

4.4 Structural-Based Matcher

A hRESTS Web service document can be given the structure of a labeled tree
with the service at the root. Thereby, the problem of structural matching can
be converted into a tree matching problem. Based on an XML schema, we cre-
ate a subtree for each operation. The root of a subtree is the operation itself
where the other nodes describe the inputs and outputs parameters. We use a
WSDL Analyzer [19] to find the structural similarities between Input/output
elements. This analyzer measures the similarities and the differences between
two Web services. In addition, it exploits different types of data in the WSDL
schema (names, type of information, structure). It proceeds first by identifying
the similarities and differences over a set of operations, then by examining the
structure of the Input/Output parameters. In the tree adopted depiction of a
hRESTS description Web service document, the leaf nodes are the basic data
types given by the XML schema.

– Definition (Service Tree): A labeled tree TS = (N,E,R,F) is an acyclic, con-
nected graph where N = {n1, n2,..., np } a set of nodes and E a set of edge.
The function F : N −→ L assigns a label to each node with basic data types
DT ∈ L (the set of labels) and R is the root of the tree TS.

The measurement of the similarity between two trees of services TS1 and TS2
begins from the root and recursively pass through the tree. For every node c ∈
NTS1 and d ∈ NTS2.

Sim(c, d) =

⎧
⎨

⎩

wn ∗ simn(F (c), F (d))
+ws ∗Max⊕i, jF (c), F (d) �∈ D
simt(F (c), F (d))F (c), F (d) ∈ D

where (c, ni)∈ ETS1 and (d,mj)∈ ETS2,
⊕

i, j is the sum of pairs sim(ni,mj) for
1 ≤ i < card(n) and 1 ≤ j < card(m), every ni and mj occur a once in the sum.
If card(n) = card(m), there are some nodes that cannot be matched. Weights wn

and ws are employed to reflect the effect of the structural or name similarities.
simt is a function to measure the Similarity between types, it is based on the
use of a compatibility table which assigns a degree to each pair of basic data
types. The labels similarity, simn can be measured with different functions: edit
distance, substring containment or similarity in WordNet (measure the semantic
proximity).

4.5 SR-REST Algorithm

SR-REST takes into consideration all web service components (service, oper-
ation, inputs and outputs) during the matchmaking process. The underlying
approach applies multiple matching strategies for each component: syntactic
matching for service level and text description (when available) and operations
names, logic and structural matching for inputs and outputs parameters. For this
reason, we propose four different functions, SimSer (Service similarity), SimOp

Flexible Matchmaking for RESTful Web Services 549

(operations similarity), Simin (inputs similarity), and Simout(outputs similar-
ity). These similarities are combined using weights in an aggregated function
simA defined as follows:

simA(a,b) = simSer(a,b) * wSer + simOp(a,b) * wOp

+ simin(a,b) * win +simout (a,b) * wout

(3)where wSer + wOp + win + wout = 1

program Service Matcher (Output)

{

var

reqServ, offServ: Services

begin

Similarity(reqServ.ser,offServ.ser);

ForEach (OpR[i] In reqServ.operations)

{ ForEach(OpO[j] in offServ.operations)

{ simOp(i,j) = Similarity(OpR [i], OpO [j]);

simIn(i,j) = matchParameters(OpR [i].inputs , OpO [j].inputs);

simOut(i,j) = matchParameters(OpR [i].outputs , OpO [j].outputs);

simA(i,j) = wSer * simSer(i,j) + wOp * simOp(i,j)

+ wIn * simIn(i,j) + wOut * simOut(i,j);

MSim(k)= simA(i,j);

}

}

simg =SUM(MSim)/| reqService.operations|;

return simg

}

}

end.

Fig. 3. SR-REST Algorithm

5 Evaluation

In this section, we present a preliminary evaluation of our approach. The hRESTS-
TC15 test collection has been used to assess SR-REST Matchmaker. This collec-
tion is derived from SAWSDL-TC1 collection [10] and consists of 25 queries (from
different domains: communication, food, economy,medical, travel and education),
895 services and 24 ontology used to semantically annotate the inputs and out-
puts parameters of web services. A relevance set is provided for each query, which
is used to evaluate the precision of the matchmaker. SR-REST is implemented in
Java and Pellet 2.0. We used SME2 the Semantic Matchmaker Evaluation Envi-
ronment 6 to evaluate the performance of SR-REST.

5 http://semwebcentral.org/projects/hRESTS-tc/
6 http://projects.semwebcentral.org/projects/sme2/

http://semwebcentral.org/projects/hRESTS-tc/
http://projects.semwebcentral.org/projects/sme2/

550 F. Slaimi et al.

For our evaluation, we use the Precision and Recall defined as follows:

Precision= |A∩B|
B , Recall= |A∩B|

A

where A is the set of all relevant services for a request and B the set of all
retrieved services for a request.

SME2 evaluates the retrieval performance of matchmakers by measuring the
average-precision (AP) and the macro-averaged precision[20]. Average precision
AP is the average of precisions computed at each point of the relevant documents
in the returned ranked list. However Macro-Average corresponds to the precision
values for answer sets returned by the matchmaker for all queries in the test
collection at standard recall levels. As the evaluation of a single query is not
sufficient to make a significant observation, macro average precision is computed
over many queries giving equal weight to each user query. Ceiling interpolation
is used to estimate precision values at each standardized recall level, since each
query likely has a different number of relevant services.

The Macro-Average precision is defined as follows:

Preci =
1
Q .

∑
q ∈ Q max{Po|Ro ≥ Reci ∧ (Ro, Po) ∈ Oq}

where Oq is the set of observed pairs of recall/precision values for query q
when scanning the ranked services in the answer set for q stepwise for true
positives in the relevance sets of the test collection.

5.1 Matcher Configuration

SR-REST combines different matchers: logic, syntactic and structural. We have
performed different evaluation runs using several settings. Based on the work
proposed in [10], we applied three configurations of level weights : interface, op-
erations and parameters(winterface,woperation,winputs,woutputs). The first config-
uration config 1 (0, 0,0.5, 0.5) considers only inputs and outputs in the matching
process. The second configuration config 2 (0.25, 0.25, 0.25, 0.25) assigns the
same weight to the different parameters. In the third configuration config 3 (0.1,
0.1, 0.4, 0.4), we attribute a weight of 0.1 to the interface and operation and 0.4
to the inputs and outputs.

We assigned numerical equivalents for each DoM matching filter, exact=1,
plugin=0.5, sub=0.5, intersect=0.25 and fail =0.

5.2 Experimentation

Table 1 summarizes the average precision (AP) for all previously described
configurations of SR-REST. We assessed two versions of SR-REST. The first
one without semantic structural match of parameters and the second one using
Resnik for structural similarity measure.

Flexible Matchmaking for RESTful Web Services 551

Table 1. Averaged AP values

config 1 config 2 Config 3

average.AP 0.70 0.73 0.75

config 1+resnik config 2 +resnik Config 3+resnik

average.AP 0.71 0.754 0.77

We compare SR-REST with XAM4SWS [10] which is the only matchmaker to
work on hRESTS services. SR-REST and XAM4SWS apply the same matchers:
logic and syntatic ones. They attribute numerical equivalent for each DoM rela-
tion and aggregate the different measures in a global function. Unlike XAM4SWS,
SR-REST deploys a semantic structural matching of input and outputs param-
eters using Resnik measure and considers the textual description of the service.

Table 2. SR-REST vs XAM4SWS Average Precision

Level weights Num Dom Equivalents AP SR-REST AP XAM4SWS

config 1(0,0,0.5,0.5) (1,0.5,0.5,0) 071 0.718

config 2 (0.25,0.25,0.25,0.25) (1,0.5,0.5,0) 075 0.725

config 3(0.1,0.1,0.4,0.4) (1,0.5,0.5,0) 0.77 0.747

5.3 Discussion

Based on the experimental results, we can make the following remarks:

– We used three different configurations to evaluate the performance of SR-
REST approach. As illustrated in Fig. 4, in taking into account the service
and operation levels in the matchmaking process, we did improve both pre-
cision and recall. This can be explained by the fact that, in some cases, a
service name can reflect the functionality of the service and thus some perti-
nent services can be discovered while taking into account the name and the
textual description of the service.

– Semantic structural matching (Resnik) improves the precision and recall of
SR-REST (Fig. 5). This matcher considers the different relations between
concepts of the ontology. So, indirect subsumption relations between con-
cepts can be identified and consequently some relevant results can be re-
trieved.

– The structure of hRESTS documents may play an important role in the
matchmaking process. In some cases, false positives and false negatives can
be caused by the difference in the cardinality of input and output parameters
sets. Then, we used WSDL-Analyzer to determine structural matching of
hRESTS documents based on a labeled tree matching. In fact a hRESTS
document can be considered as a WSDL file after elimination of its concretes
parts (binding, ports, methods).

552 F. Slaimi et al.

Fig. 4. Recall/Precision Macro Averaged

Fig. 5. Recall/Precision Macro Averaged(config3)

– Matcher tuning is a hard task and is highly dependent on the collection tests.
While the combination of logic, syntactic, structural and semantic matchers
yield to good results, an improvement of these results can be done in using

Flexible Matchmaking for RESTful Web Services 553

other matchers or techniques. Most of the existing matchmakers use machine
learning or approximate matching techniques to this aim. Then, we believe
that we can improve SR-REST in considering more features like synonym
relations and in applying an approximative logic matching of annotated pa-
rameters to compute the approximated concept subsumption relations and
the corresponding approximated signature matching. In addition a learning
machine approach can be used to aggregate results of different matchers.
As in XAM4SWS, we could use an estimator such as OLS (Ordinary Least
Squares) that maps the logic filter to its numerical counterpart.

6 Conclusion

In this paper, we described SR-REST a flexible matchmaking approach that
allows the combination of several (schema) matching/matchmaking techniques
to achieve semantic web service discovery. The approach has been implemented
and successfully tested against a collection of RESTFul web services described
in hRESTS.

Although we used the hRESTS description of web services, SR-REST is
generic enough to be applied for the discovery of other web resources (e.g.,
Cloud APIs) that maybe (more or less) semantically annotated.

Finally, applicability and importance of the approach could be also discussed
with respect to the availability of a significant number of hRESTS web services.
One should notice, that an important number of REST services are being made
available (see programmableweb website7 for instance). Hence, assuming one can
(semi)automatically annotate those REST APIs, the SR-REST approach de-
scribed in this paper could be tested and evaluated against REST services listed
in the programmableweb directory.

References

1. Bellahsene, Z., Bonifati, A., Rahm, E. (eds.): Schema Matching and Mapping.
Springer (2011)

2. Algergawy, A., Nayak, R., Siegmund, N., Köppen, V., Saake, G.: Combining schema
and level-based matching for web service discovery. In: Benatallah, B., Casati, F.,
Kappel, G., Rossi, G. (eds.) ICWE 2010. LNCS, vol. 6189, pp. 114–128. Springer,
Heidelberg (2010)

3. Kopecký, J., Gomadam, K., Vitvar, T.: hRESTS: An HTML microformat for de-
scribing RESTful web services. In: Web Intelligence, pp. 619–625. IEEE (2008)

4. Klusch, M., Kapahnke, P., Zinnikus, I.: Adaptive hybrid semantic selection of
sawsdl services with sawsdl-mx2. Int. J. Semantic Web Inf. Syst. (2010)

5. Schulte, S., Lampe, U., Eckert, J., Steinmetz, R.: Log4sws.kom: Self-adapting se-
mantic web service discovery for sawsdl. In: The 6th World Congress on Services,
SERVICES 2010, Miami, Florida, USA, July 5-10, pp. 511–518. IEEE Computer
Society (2010)

7 www.programmableweb.com

www.programmableweb.com

554 F. Slaimi et al.

6. Wei, D., Wang, T., Wang, J., Bernstein, A.: Sawsdl-imatcher: A customizable and
effective semantic web service matchmaker. Web Semantics: Science, Services and
Agents on the World Wide Web (2011)

7. Klusch, M., Kapahnke, P.: Adaptive signature-based semantic selection of services
with owls-mx3. Multiagent and Grid Systems 8(1), 69–82 (2012)

8. Klusch, M., Kapahnke, P.: iSeM: Approximated reasoning for adaptive hybrid se-
lection of semantic services. In: Aroyo, L., Antoniou, G., Hyvönen, E., ten Teije, A.,
Stuckenschmidt, H., Cabral, L., Tudorache, T. (eds.) ESWC 2010, Part II. LNCS,
vol. 6089, pp. 30–44. Springer, Heidelberg (2010)

9. Klusch, M.: Semantic web service coordination. In: CASCOM: Intelligent Service
Coordination in the Semantic Web, pp. 59–104 (2008)

10. Lampe, U., Schulte, S., Siebenhaar, M., Schuller, D., Steinmetz, R.: Adaptive
matchmaking for restful services based on hrests and microwsmo. In: Proceedings
of the 5th Workshop on Emerging Web Services Technology, WEWST 2010, Ayia
Napa, Cyprus, December 1. ACM International Conference Proceeding Series, pp.
10–17. ACM (2010)

11. Khorasgani, R.R., Stroulia, E., Zäıane, O.R.: Web service matching for restful web
services. In: 13th IEEE International Symposium on Web Systems Evolution, WSE
2011, Williamsburg, VA, USA, September 30, pp. 115–124. IEEE (2011)

12. John, D., Rajasree, M.S.: Restdoc: Describe, discover and compose restful semantic
web services using annotated documentations. International Journal of Web and
Semantic Technology (IJWseT) 4(1) (2013)

13. Shvaiko, P., Euzenat, J.: A survey of schema-based matching approaches. In: Spac-
capietra, S. (ed.) Journal on Data Semantics IV. LNCS, vol. 3730, pp. 146–171.
Springer, Heidelberg (2005)

14. Paolucci, M., Kawamura, T., Payne, T.R., Sycara, K.: Semantic matching of
web services capabilities. In: Horrocks, I., Hendler, J. (eds.) ISWC 2002. LNCS,
vol. 2342, pp. 333–347. Springer, Heidelberg (2002)

15. Bernstein, A., Kaufmann, E., Kiefer, C., Bürki, C.: SimPack: A generic Java library
for similiarity measures in ontologies. Technical report, Department of Informatics,
University of Zurich, Zurich, Switzerland (2005)

16. Becker, J., Müller, O., Woditsch, M.: An ontology-based natural language service
discovery engine - design and experimental evaluation. In: Alexander, P.M., Turpin,
M., van Deventer, J.P. (eds.) ECIS (2010)

17. Patwardhan, S., Banerjee, S., Pedersen, T.: Using measures of semantic related-
ness for word sense disambiguation. In: Gelbukh, A. (ed.) CICLing 2003. LNCS,
vol. 2588, pp. 241–257. Springer, Heidelberg (2003)

18. Resnik, P.: Semantic similarity in a taxonomy: An information-based measure and
its application to problems of ambiguity in natural language. Journal of Artificial
Intelligence Research 11(1), 95–130 (1999)

19. Klusch, M., Kapahnke, P., Zinnikus, I.: Hybrid adaptive web service selection with
SAWSDL-MX and WSDL-analyzer. In: Aroyo, L., et al. (eds.) ESWC 2009. LNCS,
vol. 5554, pp. 550–564. Springer, Heidelberg (2009)

20. Raghavan, V.V., Bollmann, P., Jung, G.S.: Retrieval system evaluation using recall
and precision: Problems and answers. In: Proceedings of the 12th International
Conference on Research and Development in Information Retrieval, SIGIR 1989,
Cambridge, Massachusetts, USA, June 25-28, pp. 59–68 (1989)

	Flexible Matchmaking for RESTful Web Services

	1 Introduction
	2 Semantic Web Services
	3 Related Work
	4 SR-REST: A Matchmaking Approach for RESTful Services
	4.1 Logic-Based Matchers
	4.2 Syntactic-Based Matchers
	4.3 Semantic Structural-Based Matcher
	4.4 Structural-Based Matcher
	4.5 SR-REST Algorithm

	5 Evaluation
	5.1 Matcher Configuration
	5.2 Experimentation
	5.3 Discussion

	6 Conclusion
	References

