
An Application of Late Acceptance

Hill-Climbing to the Traveling Purchaser
Problem

Andreas Goerler, Frederik Schulte, and Stefan Voß

Institute of Information Systems (IWI), University of Hamburg, Von-Melle-Park 5,
20146 Hamburg, Germany

a.goerler@gmx.de,

{frederik.schulte,stefan.voss}@uni-hamburg.de

Abstract. Late Acceptance Hill Climbing (LAHC) is a recent meta-
heuristic in the realm of local search based procedures. The basic idea is
to delay the comparison between neighborhood solutions and to compare
new candidate solutions to a solution having been current several steps
ago. The LAHC was first presented at the PATAT 2008 conference and
successfully tested for exam timetabling, the traveling salesman problem
(TSP) and the magic square problem and the results seemed extraordi-
nary. The purpose of this paper is to analyze the behavior of the method
and to provide some extended understanding about its success and limi-
tations. To do so, we investigate the method for a generalized version of
the TSP, the traveling purchaser problem.

Keywords: Metaheuristic, Late Acceptance Hill-Climbing, Traveling
Purchaser Problem.

1 Introduction

The Traveling Purchaser Problem (TPP) is a well-known generalization of the
Traveling Salesman Problem (TSP) [13,15,17,21] with wide applicability [10,18]
and it occurs in many real-world applications related to routing, warehousing
and scheduling. Starting from home a purchaser can travel to a set of markets
providing different products at different prices. The aim is to fulfill a shopping list
of products while minimizing the sum of traveling and purchasing costs.We apply
a recent metaheuristic to the TPP, namely the Late-Acceptance Hill-Climbing
(LAHC) heuristic. LAHC may be regarded as a simplification or modification
of simulated annealing or threshold accepting. It was originally introduced by
Burke and Bykov [5] and it won the 1st prize in the International Optimization
Competition. LAHC is a one-point iterative search procedure with the general
idea of delaying the comparison between neighborhood solutions. The intention
behind this late acceptance strategy is to avoid the problem of getting stuck
in a local optimum that many greedy search procedures have. The method was
successfully tested for some problems and the purpose of this paper is to examine
if an application of the LAHC to the TPP is also successfully possible.

D. Pacino, S. Voß, and R.M. Jensen (Eds.): ICCL 2013, LNCS 8197, pp. 173–183, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



174 A. Goerler, F. Schulte, and S. Voß

The investigation of the properties of late acceptance strategies (LAS) is
still in an early stage. Consequently, only few contributions in literature deal
with LAS for heuristics and metaheuristics. Abuhamdah [1] proposed LAHC
and a randomized version for solving course timetabling problems. In that case
the randomized version performed better than the originally presented LAHC
of [5]. Özcan et al. [14] presented a set of hyper-heuristics utilising different
heuristic selection methods combined with LAS for examination timetabling.
Verstichel and Berghe [20] applied LAS to a lock scheduling problem. Their
experiments showed that the application of the late acceptance criterion within
their local search heuristic led to an improvement of the solution quality in every
instance.

The remainder of this paper is organized as follows. In Section 2 we describe
the TPP in more detail. In Section 3 we explain LAHC and show how to possibly
apply it while using different neighborhoods. Finally, examples of computational
experiments are reported.

2 The Traveling Purchaser Problem

Consider a set V = {1, 2, . . . ,m} of m markets, a set K = {1, 2, . . . , n} of n
products and a domicile (or home-market) s ∈ V . Let cij (with i, j ∈ V ) denote
the cost of travel from market i to market j. In the symmetric TPP it is assumed
that cij = cji ∀ i, j. Every product k (k ∈ K) is available in a subset of markets
Vk ⊆ Vs (with Vs := V − {s}) and if a product k is available at market i, pik
presents the cost of k at i. Otherwise, pik is set to a prohibitively large numberM .
It is implicitly assumed that if a product k is available at market i, its available
quantity qki is sufficient to satisfy the demand dk [15]. This model formulation
represents a symmetric uncapacitated version of the TPP. The overall idea of
the TPP is to generate a tour through a subset of the m markets starting and
ending at s, such that all n products are purchased while minimizing the sum of
travel and purchasing costs.

Fig. 1. Example of the TPP (cf. [21])



Application of Late Acceptance Hill Climbing to the TPP 175

Figure 1 visualizes the TPP. In this example we have a cycle through a subset
of the three markets, starting at the domicile and visiting markets 1 and 3.
Product 1 is purchased at market 1 and products 2 and 3 at market 3, shown
in boldface.

We assume that each product is available in at least one market and that the
purchaser may pass through a market any number of times without purchasing.
Or, he may purchase as many products as there are available at each market. A
capacitated version of the TPP assumes that the available quantities qki might be
insufficient to satisfy the demand, i.e. it is assumed for each k ∈ K that qki and
dk satisfy 0 < qki ≤ dk (∀i ∈ Vk) and

∑
j∈Vi

qkj ≥ dk [16]. Other modifications
of the TPP with additional capacity constraints, like a limit on the maximum
number of markets to be visited and a limit on the number of items bought per
market are also important [9].

The TPP is known to be NP-hard, since it reduces to the NP-hard TSP if each
product is only available at one market and each market carries only one product.
This complexity indicates that only problems of moderate size can be solved by
an exact method, a suggestion that is strengthened by the scarce number of
literature dealing with exact methods for the TPP. Exact algorithms proposed
in the literature include a branch-and-bound algorithm calculating a lower bound
by solving a relaxation similar to a simple plant location problem [18]. Branch-
and-cut procedures can be found in [12,17] being able to solve instances up to
200 markets and 200 products. An approach based on constraint programming
and Lagrangean relaxation is presented in [6] improving some of the earlier
approaches. Despite these contributions, the literature on the TPP is mostly
directed towards the development of heuristics and metaheuristics; see, e.g.,
[8,13,19,2]. This includes extensions of methods known from the TSP like the
famous nearest neighbor method (NN) [3] as well as classical add and drop
procedures [21]. First metaheuristics for the TPP were proposed in [21] showing
that simulated annealing was outperformed by different dynamic tabu search
strategies. Other approaches also include tabu search [4], a local search algorithm
with two neighborhoods [16] and a transgenetic algorithm inspired by horizontal
gene transfer and endosymbiosis [7].

3 Late Acceptance Strategy

LAHC is based on a simple hill-climbing algorithm. The procedure starts from a
single initial solution and iteratively modifies it to produce candidate solutions.
The simple hill-climbing algorithm is a greedy procedure that is regarded to
be very fast but with poor results as it tends to get stuck in a local optimum
very quickly. To overcome this problem, the basic idea of LAHC is to delay the
comparison of solutions by “memorizing” previous current solutions in a list of a
particular length, called fitness array Fa of length Lfa (Fa = {f0, f1, . . . , fLfa−1

}
with fa denoting the cost function value of solution a. Contrary to pure hill-
climbing (note that LAHC with Lfa = 1 degenerates into pure hill-climbing)
LAHC compares a candidate not to its direct previous current solution but to



176 A. Goerler, F. Schulte, and S. Voß

the last element of the fitness array. Therefore, the LAHC accepts a decline of
the objective function value by a candidate in comparison to the direct previous
solution if the candidate has the same or a better objective function value than
the solution at the end of the list. If accepted, the candidate solution is put on
the list and the last element is removed from the list. To eliminate the shifting
of the whole list the authors propose the use of a “virtual” shifting of the fitness
array. Therefore, they compute the virtual beginning v at the Ith iteration by
v = I mod Lfa, i.e., v is equal to the division of the current number of itera-
tions I to the length of the list Lfa. Now the candidate solution is compared
with the cost function fv and if accepted the value of the candidate solution is
assigned to fv.

3.1 Initial Solutions

As described above the LAHC starts from a single initial solution. In case of
the TPP this solution is represented by the cost function value of an initial
tour through the considered graph. An initial tour for the TPP is determined
by applying the NN to all markets without considering any purchases. The NN
method is described as follows: Starting at the depot s the purchaser goes to
the market with the lowest travel costs from the depot. From there he visits
the nearest market that was not visited before. The procedure is repeated until
there are no unvisited markets left and the purchaser returns to the depot.
The obtained TSP tour can be transformed into a TPP tour by buying each
product at the market where it is available at the lowest possible price. An
alternative approach is described by Burke and Bykov [5]. They build an initial
feasible path for a TSP instance and randomly exchange markets to ensure
different initial solutions. Starting with such an inital tour we apply a simple
drop procedure [21]. In each step it drops a market giving the largest reduction
to the objective function value. If no more reduction is possible or infeasibility
occurs, the procedure is terminated and the obtained solution serves as the initial
solution (f(σ)) for the LAHC algorithm.

3.2 Neighborhood Definitions

Several neighborhoods may be applied. The first approach is the IMP1-procedure
from [21]. Starting with a feasible solution in each iteration exactly one market
is excluded from the tour (called drop step) whose removal gives the best im-
provement or least deterioration of the cost function value f (note that strategic
oscillation into infeasibility is permitted). Afterwards a number of consecutive
insertions (add steps) are performed as long as an improvement in the cost func-
tion value is achieved. IMP1 is terminated after a complete iteration, i.e., when
a market that has been previously removed was added again. This set of moves
defines a neighborhood of candidate solutions.

The l-ConsecutiveExchange procedure from [17] represents a generalization
of IMP1. Given a feasible solution σ, a starting value l is chosen ([17] ob-
tained best results for 2 ≤ l ≤ 25). Afterwards the procedure has two steps,



Application of Late Acceptance Hill Climbing to the TPP 177

namely l-ConsecutiveDrop and a step for restoring feasibility if needed. For l-
ConsecutiveDrop l markets are selected according to an estimation of the trade-
off between the travel cost reduction occuring by dropping the l markets and
the increase in purchasing costs due to the fact that the products that were pur-
chased in the dropped l markets have to be bought elsewhere. These trade-off
evaluations are performed for each possible path consisting of l+1 consecutive
edges belonging to the initial tour. The different paths are ranked according to
the travel cost reduction minus the purchase costs increase and the path with the
highest rank is dropped. After dropping the l markets NN is applied to reduce
the travel costs of the new (possibly infeasible) tour σ.

If feasibility has to be restored, new markets are added. To guarantee the
generation of a diverse neighborhood only markets are permitted to be added
that have not been in the initial feasible tour. The restore feasibility step proceeds
with computing subsets of permitted markets (Vp ⊆ V ). For the capacitated
TPP the non-satisfied amount of each product k in the infeasible tour has to
be calculated and only subsets of markets are permitted that are selling the
required quantity of product k needed to restore feasibility. For each market
i ∈ Vp the travel cost increase (ρ(i, σ)), describing the increase in travel costs if
market i is added to σ, and the decrease in purchasing costs (μ(i, σ)) for adding
i is computed as product k may be available at a cheaper price at market i.
Markets in the selected subset Vp are added one after another according to their
trade-off between travel cost increase and purchase cost decrease. Finally, we
apply LAHC to possibly re-optimize the obtained tour.

3.3 LAHC Algorithms

The general approach of the LAHC algorithms starts with the calculation of an
initial solution. Afterwards the length of the fitness array Lfa and an initial l are
specified. An inner loop performs an iterative procedure to remove l-consecutive
markets from the initial tour σ. If the removal of the l markets leads to an
infeasible tour the following add procedure grants that the feasibility is restored.
This procedure randomly adds markets from a list of earlier dropped markets at
random position within the tour of the candidate solution. To discourage staying
at local optima the procedure does not allow the add of markets dropped in the
current iteration. Markets are added until the solution of the candidate tour is
feasible and its penalty can no longer be reduced. Finally, the method LAHCTSP
tries to improve the order of markets in the candidate tour. After building the
neighborhoods LAHC is called. If the cost function value of the candidate f(σ′)
is better or equal to the value of the solution fv with v being the solution at the
beginning of the virtual list the candidate is accepted and replaces fv; otherwise
it is rejected. DeltaPenalty follows the idea of an incremental evaluation to reduce
CPU time, where only changes in the cost function values are calculated and
compared to changes in cost function value of neighborhood solutions rather
than calculating the complete objective function value in every iteration. After
accepting or rejecting a candidate solution the iteration number I is set to I+1.



178 A. Goerler, F. Schulte, and S. Voß

Input: A TPP instance
σ := InitialTSP (V)
σ := InitialDrop (σ)
Calculate initial cost function f(σ)
Specify Lfa

For all k ∈ {0...Lfa−1} fk := f(σ)
Specify l
First iteration I = 0
σ′ := σ
repeat

while l ≥ 1 do
σ′′ := σ′

σ′ := l - ConsecutiveDrop (σ, l)
if f(σ′′) ≥ f(σ′) or σ′′ not feasible then

l := l − 1
else

σ′ := σ′′

end if
end while
repeat

σ′′ := σ′

σ′′ : AddRandomMarket (σ′′)
until σ′′ ≥ σ′ AND σ′′ is feasible
σ′ := LAHCTSP (σ′′)
f(σ′) = f(σ) + DeltaPenalty (σ)
v := I mod Lfa

if f(σ′) ≤ f(σ) or f(σ′) ≤ fv then
σ := σ′

fv := f(σ)
I := I + 1

until stopping condition
return σ

Fig. 2. Pseudocode of the LAHC Algorithm

We developed two different types of LAHC algorithms to solve the TPP. The
first algorithm (LAHC, see Figure 2) strictly applies the list approach of LAHC
for the evaluation of candidate solution and the LAHCTSP method. The can-
didate solution is created by a sequence of a drop step, an add step and a TSP
heuristic and accepted if the LAHC constraints are fulfilled. The second algo-
rithm (sLAHC) simplifies this idea and accepts changes after an evaluation in
the drop step, add step and the TSP heuristic.

4 Computational Results

The algorithms described in Section 3.3 are implemented in Java and run on
a Intel Core 2.50GHz with 8 GB RAM. We tested the performance of the two



Application of Late Acceptance Hill Climbing to the TPP 179

algorithms on the instances of Class 1 (http://webpages.ull.es/users/jriera/
TPP.htm) defined by Singh and van Oudheusden [18]. This class contains 33-
market symmetric instances and the product prices are generated according to a
uniform distribution in an interval of [1,500]. The routing costs are taken of the
33-vertex TSP described in Karg and Thompson [11] and the first vertex corre-
sponds to the depot. All markets sell all products and the quantity of products
varies between 50 and 500. The algorithms runs were aborted after a number of
15000 iterations for every instance.

25 instances with 50 to 250 products have been solved to optimality (note
that the optimal values for these instances are also provided at the webpage
mentioned above). Table 1 compares the results of the sLAHC and the LAHC
algorithm to these optimal values. Optimal values for the instances with 300 to
500 products have not yet been presented. In Table 2 we provide the objective
function values for 25 instances out of this range with a number of products from
300 up to 500. The results show, that both algorithms achieve optimal results
or small optimality gaps for almost all tested instances and outperform known
results from literature (see Table 3). Especially for small instances the sLAHC
algorithm seems to perform better than the LAHC algorithm. The LAHC tends
to get stuck in a local optimum quickly for those instances. The sLAHC, in
contrast, has a lower risk to stay early at a local optimum but seems to be
weaker for larger instances. For small instances the LAHC fitness array seems
to guide the LAHC algorithm to local optima while the sLAHC can come closer
to the global optimum without the guidance of a LAHC fitness array. For large
instances this disadvantage seems to turn into an advantage and the LAHC seems
benefit from the LAHC mechanism. The sLAHC achieves optimal solutions for
all five instances with 50 products and performs more homogenously over all
instances without any spikes. Note that the results in Table 1 were created with
a single batch run. For small instances the LAHC results highly depend on the
initial feasible solution, which were generated randomly. Thus exceptionally large
optimality gaps might occur. The average gaps are usually much lower like, e.g.,
for instance 3 another run led to a 0% instead of a 14% optimality gap.

The column headings in the tables are described as follows:

sLAHC : simplified Late Acceptance Hill Climbing;
LAHC5000 : Late Acceptance Hill Climbing with Lfa = 5000;
LAHC10000 : Late Acceptance Hill Climbing with Lfa = 10000;
V : number of markets;
K : number of products;
V ∗ : number of markets involved in the best solution;
V ∗
LA : number of markets involved the best solution of the LAHC;

%gap : quality of the LAHC over an optimal solution;

Furthermore, we compare different list lengths of the LAHC fitness array. No
variation of the list length is presented for the sLAHC algorithm as it could
be seen throughout the experiments that a variation of the list length has no



180 A. Goerler, F. Schulte, and S. Voß

Table 1. Numerical results Class 1 (50 - 250 products)

sLAHC LAHC5000 LAHC10000

V K V ∗ %gap V ∗
LA %gap V ∗

LA %gap V ∗
LA

33 50 9 0 9 1,021 9 1,986 8
33 50 8 0 8 1,019 8 3,226 9
33 50 8 0 8 14,108 8 14,174 8
33 50 8 0 8 12,726 7 1,593 8
33 50 9 0 9 8,660 8 9,695 9

33 100 11 0,237 11 1,039 10 0,289 9
33 100 10 0,703 10 4,104 11 8,940 10
33 100 11 0,971 10 3,434 10 3,800 10
33 100 11 0,94 11 5,886 10 2,736 10
33 100 9 1,232 11 1,613 10 3,429 10

33 150 12 0,95 11 3,316 12 2,506 12
33 150 14 1,928 12 2,079 13 3,000 12
33 150 13 0,771 11 2,785 12 0,268 12
33 150 13 1,659 12 4,632 13 2,575 12
33 150 14 1,864 13 3,845 12 3,706 12

33 200 12 2,795 13 3,783 13 1,863 13
33 200 14 2,227 12 4,410 14 4,093 12
33 200 14 0,778 15 3,689 14 4,943 14
33 200 15 2,792 11 4,352 14 3,603 14
33 200 14 1,177 12 7,648 13 3,199 13

33 250 15 1,915 14 3,238 15 1,954 15
33 250 15 0,958 16 2,300 15 3,874 16
33 250 15 4,846 15 5,872 16 4,669 16
33 250 16 2,963 15 3,171 15 2,818 17
33 250 15 2,647 15 0,641 15 2,462 16

significant impact due to the fact that the late acceptance strategy is only used
for calculating the TSP in the sLAHC as described in Section 3.3. It can be
seen that the calculation with a list length Lfa = 10000 compares favorably to
the case with a list length of Lfa = 5000. The LAHC achieves better objective
function values for most instances with a longer list length.

In Table 3 we compare our results to results from literature, i.e., with the
(truncated) branch-and-cut approach of Laporte et al. [12]. As they built an
average over five random instances of Class 1 we also calculated the average
results for our algorithms to allow a comparison. Table 3 shows that the sLAHC
algorithm performs significantly better on average than the average results of
[12]. The LAHC implementation performs also better than the approach of [12]
for the instances with more than 50 products.

Figure 3 shows an iterations-to-target chart for the LAHC and the sLAHC.
It can be seen that the LAHC has a higher average starting value than the
sLAHC. For the sLAHC a rapid drop in the average objective function value
can be observed in the first hundred iterations and afterwards the sLAHC curve



Application of Late Acceptance Hill Climbing to the TPP 181

Table 2. Numerical results Class 1 for unknown instances (300-500 products)

sLAHC LAHC5000 LAHC10000

V K f(σ) V ∗
LA f(σ) V ∗

LA f(σ) V ∗
LA

33 300 14576 17 14637 15 14346 16
33 300 14712 16 14733 14 14710 14
33 300 14463 16 14695 16 14354 15
33 300 14347 16 14189 19 14410 15
33 300 14530 15 14471 17 14329 16

33 350 15901 17 15990 19 16006 18
33 350 15047 13 14665 17 15035 16
33 350 16383 15 16464 16 16108 17
33 350 16252 17 16400 16 16023 17
33 350 16118 16 16398 17 16249 18

33 400 17790 18 17805 17 17905 19
33 400 16906 18 16836 17 16832 16
33 400 17335 18 17547 19 17480 18
33 400 17313 19 17824 18 17703 19
33 400 17825 17 18029 17 17832 19

33 450 18140 18 18360 18 18309 19
33 450 18164 18 18312 20 18097 18
33 450 18555 17 18677 19 18737 18
33 450 17819 17 17952 20 17875 18
33 450 19021 18 19081 18 18795 18

33 500 19897 19 19821 21 19827 19
33 500 19888 18 19604 19 20028 19
33 500 19774 20 19967 19 19885 19
33 500 19863 18 19925 19 19883 19
33 500 19497 20 19818 19 19643 20

Table 3. Comparison of results

sLAHC LAHC5000 LAHC10000 Laporte et
al. [12]

V K %gap V ∗
LA %gap V ∗

LA %gap V ∗
LA %gap

33 50 0,000 8,4 7,507 8 6,135 8,4 6,312
33 100 0,816 10,4 3,215 10,2 3,839 9,8 4,150
33 150 1,434 11,8 3,331 12,4 2,411 12 4,760
33 200 1,954 12,6 4,776 13,6 3,540 13,2 8,567
33 250 2,666 15 3,044 15,2 3,155 16 5,478

is flatter than the LAHC. For both algorithms it is apparent, that the most
improvement in the average objective function value occurs in the first thousand
iterations. After 10000 iterations almost no more significant improvement takes
place. The figure also illustrates that the sLAHC has a lower average objective
function value than the LAHC.



182 A. Goerler, F. Schulte, and S. Voß

1 3000.8 6000.6 9000.4 12000.2

9238.44

10738.4

12238.4

13738.4

Iterations

A
v
er

ag
e 

o
b
je

ct
iv

e 
fu

n
ct

io
n

LAHC
sLAHC

Fig. 3. Iterations-to-target evaluation (LAHC/sLAHC). LAHC and sLAHC have been
applied to 25 instances each with 15000 iterations in all cases.

5 Conclusion

We have applied Late Acceptance Hill Climbing to the Traveling Purchaser Prob-
lem. We combined several ideas from literature for building initial solutions and
for defining neighborhoods. We tested our approach on academic benchmarks
and the results indicate that the LAHC procedure is suitable for solving the
TPP. Furthermore, we also presented a simplified application of LAHC which
led to promising results, especially for instances with a smaller number of prod-
ucts. The relatively weak performance of LAHC for small instances seems to in-
dicate a small drawback of LAHC in comparison to other metaheuristics. While
LAHC requires less effort for parameter setting, it does not allow a fine tuning
of acceptance probabilities like, e.g., simulated annealing allows. On the other
hand, LAHC might work well with an auto-adaptive parameter tuning that ad-
justs the neighborhood construction methods and the LAHC fitness array length.
This could be a promising future research approach.



Application of Late Acceptance Hill Climbing to the TPP 183

References

1. Abuhamdah, A.: Experimental result of late acceptance randomized descent algo-
rithm for solving course timetabling problems. International Journal of Computer
Science and Network Security 10(1), 192–200 (2010)

2. Angelelli, E., Mansini, R., Vindigni, M.: Look-ahead heuristics for the dynamic trav-
eling purchaser problem. Computers & Operations Research 38, 1867–1876 (2011)

3. Bellmore, M., Nemhauser, G.L.: The traveling salesman problem: A survey. Oper-
ations Research 16, 538–558 (1968)

4. Boctor, F., Laporte, G., Renaud, J.: Heuristics for the traveling purchaser problem.
Computers & Operations Research 30, 491–504 (2003)

5. Burke, E.K., Bykov, Y.: A late acceptance strategy in hill-climbing for exam
timetabling problems. In: Proceedings of the 7th Int. Conf. on the Practice and
Theory of Automated Timetabling, PATAT 2008 (2008)

6. Cambazard, H., Penz, B.: A constraint programming approach for the traveling
purchaser problem. In: Milano, M. (ed.) CP 2012. LNCS, vol. 7514, pp. 735–749.
Springer, Heidelberg (2012)

7. Goldbarg, M.C., Bagi, L.B., Goldbarg, E.F.G.: Transgenetic algorithm for the trav-
eling purchaser problem. European Journal of Operational Research 199, 36–45
(2009)

8. Golden, B., Levy, L., Dahl, R.: Two generalizations of the traveling salesman prob-
lem. Omega 9, 439–441 (1981)

9. Gouveia, L., Paias, A., Voß, S.: Models for a traveling purchaser problem with
additional side-constraints. Computers & Operations Research 38, 550–558 (2011)

10. Infante, D., Paletta, G., Vocaturo, F.: A ship-truck intermodal transportation prob-
lem. Maritime Economics & Logistics 11, 247–259 (2009)

11. Karg, R.L., Thompson, G.L.: A heuristic approach to solving travelling salesman
problems. Management Science 10, 225–248 (1964)

12. Laporte, G., Riera-Ledesma, J., Salazar-González, J.: A branch-and-cut algorithm
for the undirected traveling purchaser problem. Operations Research 51, 940–951
(2003)

13. Ong, H.L.: Approximate algorithms for the travelling purchaser problem. Opera-
tions Research Letters 1, 201–205 (1982)

14. Özcan, E., Bykov, Y., Birben, M., Burke, E.K.: Examination timetabling using
late acceptance hyper-heuristics. In: IEEE Congress on Evolutionary Computation,
CEC 2009, pp. 997–1004 (2009)

15. Ramesh, T.: Traveling purchaser problem. Opsearch 18, 78–91 (1981)
16. Riera-Ledesma, J., Salazar-González, J.: A heuristic approach for the travelling

purchaser problem. European Journal of Operational Research 162, 142–152 (2005)
17. Riera-Ledesma, J., Salazar-González, J.: Solving the asymmetric traveling pur-

chaser problem. Annals of Operations Research 144, 83–97 (2006)
18. Singh, K.N., van Oudheusden, D.L.: A branch and bound algorithm for the trav-

eling purchaser problem. European Journal of Operational Research 97, 571–579
(1997)

19. Teeninga, A., Volgenant, A.: Improved heuristics for the traveling purchaser prob-
lem. Computers & Operations Research 31, 139–150 (2004)

20. Verstichel, J., Berghe, G.: A late acceptance algorithm for the lock scheduling
problem. In: Voß, S., Pahl, J., Schwarze, S. (eds.) Logistik Management, pp. 457–
478. Physica, Heidelberg (2009)

21. Voß, S.: Dynamic tabu search strategies for the traveling purchaser problem. Annals
of Operations Research 63, 253–275 (1996)


	An Application of Late Acceptance Hill-Climbing to the Traveling Purchaser
Problem
	1 Introduction
	2 The Traveling Purchaser Problem
	3 Late Acceptance Strategy
	3.1 Initial Solutions
	3.2 Neighborhood Definitions
	3.3 LAHC Algorithms

	4 Computational Results
	5 Conclusion
	References




