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Abstract. This paper assesses the impact of different sampling approaches on 
neural network classification performance in the context of repeat movie going. 
The results showed that synthetic oversampling of the minority class, either on 
its own or combined with under-sampling and removal of noisy examples from 
the majority class offered the best overall performance. The identification of the 
best sampling approach for this data set is not trivial since the alternatives 
would be highly dependent on the metrics used, as the accuracy ranks of the 
approaches did not agree across the different accuracy measures used. In addi-
tion, the findings suggest that including examples generated as part of the over-
sampling procedure in the holdout sample, leads to a significant overestimation 
of the accuracy of the neural network. Further research is necessary to under-
stand the relationship between degree of synthetic over-sampling and the  
efficacy of the holdout sample as a neural network accuracy estimator. 
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1 Introduction  

Building accurate classifiers for imbalanced data sets is challenging due to the high 
probability of misclassification of the underrepresented data class. The class imbal-
ance problem corresponds to a problem domain for which one class is represented by 
a large number of examples, while the other is represented by just a few, the ratio of 
the small to large classes can be as high as 1:100, 1:1000, or 1:10,000 [1], over-
whelming standard classifiers such as decision trees, neural networks and support 
vector machines, which exhibit a strong bias towards the majority class and ignore the 
smaller class [2]. This imbalance causes suboptimal classification performance since 
typical learning algorithms tend to maximize the overall prediction accuracy at the 
expense of the minority class [1], [3].  

Class imbalance occurs naturally in a wide range of domains including medicine, e.g. 
diagnosing rare diseases, gene mutations or DNA sequencing [4], in engineering, when 
identifying oil spills in satellite radar images, document retrieval and classification, 
spam or speech patterns detection [5], [6], or banking and finance, when detecting 
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fraudulent transactions or assessing risk [7]. Imbalanced data sets also occur in areas 
where data for the minority class are rare e.g. space shuttle failure or in cases when cost, 
privacy and the effort required to obtain a representative data set create ‘artificial’ 
imbalances [1], [7].  

The extent to which class imbalance affects classifier learning varies depending on 
the characteristic of the problem, the degree of class imbalance, the training sample 
size and the type of classifier used [2], [4], [8]. A large class imbalance has a signifi-
cant impact on classifier performance only if a classifier is tackling a complex prob-
lem or is presented with a small training sample [2]. The type of classifier also has an 
impact, some classifiers, such as decision trees and support vector machines being 
very sensitive to class imbalance [2].  

Numerous solutions to the class imbalance problem have been proposed both at da-
ta and algorithmic levels. The majority are designed for a two-class or binary problem 
where one class is highly under-represented but associated with a higher identification 
importance. Solutions at data level attempt to re-balance the class distribution by re-
sampling the data space, while at the algorithm level solutions try to adapt existing 
classifier learning algorithm to strengthen learning with regards to the minority class 
[2]. The main advantage of data level techniques is that they are independent of the 
underlying classifier [3].  

A number of data resampling techniques have been suggested to deal with the 
problem of class imbalance by balancing the distribution of the training data [9]. The 
most intuitive approach is either to add examples to the minority class (over-
sampling) or remove examples from the majority class (under-sampling) [2]. The 
selection of cases for under- and over-sampling could be performed at random or in a 
systematic manner, following a predefined rule or objective [8], [10].  

A number of studies have evaluated the impact of sampling on decision tree classi-
fiers with mixed findings and empirical evidence is emerging that the best approach 
could be domain specific [10]. Fewer studies have concentrated on the performance 
of neural network classifiers in conditions of class imbalance, possibly because they 
are believed to be more flexible and less likely to be affected by class imbalance 
problems [2]. In addition, a standard recommendation in neural network training is 
that duplicate observations are removed from a data set, to minimise the probability of 
the neural network over-fitting the data, and loosing its ability to generalise [10], [11], 
thus rendering the random oversampling technique irrelevant. Empirical studies have 
shown that a large class imbalance in the training dataset has a detrimental effect on 
neural network performance, in particular when the training sample size is small and 
random over-sampling has an advantage over under-sampling approaches [12], [13]. 
Furthermore, the impact of class imbalance on performance of neural networks is less 
pronounced compared to other types of classifier, although the classification results 
show significant variance [2].  

This article investigates the impact of various sampling techniques on neural net-
work classifier performance in the context of predicting repeat movie going. The 
problem domain of repeat movie going is naturally imbalanced as only a small pro-
portion of movie goers are likely to see the same movie twice [14]. Identifying repeat 
movie going accurately is of particular interest to practitioners in the field as movie 
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revenues are notoriously difficult to predict [15]. Neural networks have been used 
successfully to build accurate predictor models for movie box office success [16] 
although the optimal classifier type seems to be domain specific [17].  The use of 
neural network to predict repeat viewing has been attempted before, and it was found 
that, surprisingly, neural networks did not offer a significant advantage over paramet-
ric approaches such as logistic regression [18]. However, the study did not take into 
account the imbalanced nature of the data set and the adverse effect it may have on 
classifier performance.  The purpose of this empirical study is to evaluate the impact 
of different sampling techniques on the predictive accuracy of back-propagation neu-
ral network in the context of repeat movie going. 

The paper starts with a brief overview of the different over- and under-sampling 
techniques, followed by an introduction to the data set and research methodology.  
The experimental results are reported and discussed in section 4 and followed by  
conclusions. 

2 Sampling Techniques 

2.1 Under-Sampling Techniques 

Random Under-Sampling (RUS). This technique removes instances from the major-
ity class at random, until a desired class distribution is achieved. As it makes no at-
tempt to remove examples “intelligently”, it can discard potentially useful data that 
could be important for the learning process and make the decision boundary between 
minority and majority class harder to learn [13].  

Condensed Nearest Neighbour Rule (CNN). This technique finds a consistent sub-
set of the original data set which, when used as a reference for the nearest neighbour 
rule can classify correctly all instances in the original dataset [19]. The main problem 
with the CNN rule is that it is likely to include a large proportion of noisy examples 
which are hard to classify and are, therefore, more likely to be included in the training 
set [20]. 

Tomek Links (TL). This technique modifies the condensed nearest neighbour tech-
nique by retaining only borderline examples within the condensed subset and so re-
duces computational load. Let Ei, Ej, belong to different classes, and d (Ei, Ej) is the 
distance between them. A (Ei, Ej) pair is called a Tomek link if there is no example 
E1, such that d (Ei, E1) < d (Ei, Ej) or d (Ej, El) < d (Ei, Ej). Examples qualifying as 
Tomek links are observations that are either borderline or noisy and their removal 
could improve the decision boundary of the problem [21]. Combinations of Tomek 
Link and CNN have been suggested, with the aim of utilising the benefits of each 
approach [5], [8].  

Wilson’s Edited Nearest Neighbour Rule (ENN). Wilson proposed an edited k 
nearest neighbours (k-NN) rule, which consists of two steps. Firstly the k-NN rule is 
used to edit the set of pre-classified samples by deleting all examples whose class 
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differs from the majority class of its k-NNs. Afterward, new examples are classified 
using a 1-NN rule and the reduced reference set derived in step one [22].  

Neighbourhood Cleaning Rule (NCL). In this technique, the ENN rule is used to 
identify and remove majority class noisy examples. For each example (Ei) in the train-
ing set, if Ei belong to the majority class and is misclassified by its three Nearest 
Neighbours (3-NNs), then Ei is removed. If Ei belongs to the minority class and it is 
misclassified by its 3-NNs from the majority class, then the 3 nearest neighbours are 
removed. To avoid excessive reduction of small classes, the rule is modified to re-
move examples misclassified by 2-NN instead of 3-NN [20].   

2.2 Over-Sampling Techniques 

Random Over-Sampling (ROS). This is the continuous replication of the minority 
class at random until a more balanced or desired distribution is reached. As men-
tioned, this approach can increase the likelihood of classifier over-fitting and higher 
computational load for the classifier [10], [11]. 

Synthetic Minority Oversampling Technique (SMOTE). This technique generates 
synthetic examples by operating in feature space rather than data space. The minority 
class is oversampled by introducing synthetic examples along the line segments join-
ing any/all of k minority class nearest neighbours. This technique overcomes the 
over-fitting problem and broadens the decision region of the minority class examples, 
dealing with both relative an absolute imbalance [23].  

Advanced Sampling Techniques. A number of approaches combine over-sampling 
of the minority class, using SMOTE with under-sampling of the majority class by 
using ENN or TL in order to balance the training dataset and optimise classifier per-
formance [23], [24]. 

3 Experimental Design 

3.1 Data Set Background and Description 

The data set used to test the impact of under- and over-sampling consists of the 2002 
iteration of the Cinema And Video Industry Audience Research (CAVIAR) survey 
which identifies the demographic characteristics of cinema-goers and if they had seen 
a film in the cinema more than once [14]. After removing duplicate observations, the 
original data set consisted of 786 observations depicting whether an individual visited 
the cinema to see the same movie twice, their age category, social class, and prefer-
ence for visiting the cinema. 33% of the entries in the data set were repeat viewers, 
showing a moderate imbalance ratio of 2.06 [25]. Further details of the data set can be 
found in [14]. 
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3.2 Neural Networks Overview  

Neural networks were developed to simulate the function of the human brain and in 
particular its ability to handle complex, non-linear pattern recognition tasks efficient-
ly. Neural networks are built from simple processing units or neurons, which enable 
the network to learn sets of input-output mappings and thus solve classification prob-
lems. Each processing unit or neuron consist of three elements: a set of synapses or 
connecting links which take the input signals, an adder for summing the input signals 
and an activation function which limits the level of a neuron’s output. In addition, 
each input is allocated a weight of its own, which is adjusted during training and rep-
resents the relative contribution of that input (positive or negative) to the overall neu-
ron output. The output function of neuron k can be depicted in mathematical terms as:  

 yk = ϕ wkj x jj=0

m( )  (1) 

where yk is the output of neuron k, xj denotes neural network inputs (from 0 to m), wkj 
denotes the synaptic weight for input j on neuron k and φ(○) is the neuron activation 
function. The input for neuron 0 is always +1 and it acts as an overall bias, increasing 
or decreasing the net output of the activation function.  

Multilayer feed-forward neural networks are a subtype of neural network distin-
guished by the presence of hidden layers of neurons and are particularly well suited to 
solving complex problems by enabling the network to extract and model non-linear 
relationships between the input and output layers. Typically, the outputs from each 
layer in the network act as input signals into the subsequent layer, so the final output 
layer presents the response of the network to different input patterns. The optimal 
number of hidden layers is problem specific, and previous research has shown that a 
feed forward network with one hidden layer is most suited for predicting repeat view-
ing [18]. Back propagation, essentially a gradient-descent technique and one of the 
most widely used algorithms will be used to train the network and minimise the error 
between the target and actual classifications. The network will be simulated using 
Matlab (Release 2013a) with a tansig activation function and between 6 and 16 neu-
rons in the hidden layer.  

3.3 Sampled Data Sets 

The under and over-sampling was carried out using the original data set and a subset 
was created for each of the different sampling approaches outlined above. The class 
distribution in each data set is shown in Table 1. Random over-sampling was not 
carried out to avoid neural network over-fitting and an artificially inflated accuracy. 
The data set consists of binary indicator variables and the HVDM rule, which uses 
agreement between the values of the nominal/binary variables to determine similarity 
between observations [11]. 
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Table 1. Sampling Approaches and Resulting Data  Sets 

 Sampling Approach Number of cases 
(non-repeat viewers  : repeat viewers) 

Under-sampling  CNN 298:229 
 ENN 415:79 
 NCL 205:257 
 RUS 257:257 
 TL 269:31 

Over-sampling SMOTE  529:514 
 SMOTE + ENN 400:346 
 SMOTE + TL 268:235 
 SMOTE (300%) 529:1028 
 Original Data 529:257 

3.4 Experimental Set Up 

To evaluate the performance of the neural network models across a range of different 
inputs, including new objects that the network has not seen before, it is common prac-
tice to use a holdout sample.  The data set is split into three subsets: a training sample, 
a testing sample and a holdout sample [17]. The network learns pattern mappings by 
minimising the errors on the training set. The testing set is used as a benchmark to 
prevent over-fitting, while the holdout sample is used as an independent means to test 
the classification accuracy of the network on a sample of data that it has not seen 
before (out of sample accuracy). Choosing the holdout sample randomly could lead to 
a bias in the accuracy estimation due to random sample fluctuations but K-fold cross 
validation provides an alternative for testing the ability of a neural network to gener-
alise [18]. 10-fold cross validation is well established as a reliable estimate of neural 
network performance [16]. The 10 subsets are derived at random for each data set and 
tested using 5 different random seeds. As the number of instances in each data set is 
different, the original data set is used as a baseline for comparison and, at the end of 
each training cycle, the network is also tested with the original data file. The classifi-
cation performance is calculated as the average accuracy across the 10-folds for the 
holdout samples and the benchmark original data file.   

3.5 Performance Measures  

One of the most common metrics for measuring classification accuracy for categori-
cal classifiers such as neural networks is the confusion matrix. Various measures, 
derived from the confusion matrix, including overall classification accuracy, sensitivi-
ty and specificity are widely used to assess classifier performance [17].  

Overall classification accuracy for a particular categorical classifier is defined as 
the percentage of correct predictions by the classifier. A common criticism of the 
overall classification accuracy measure is that it does not take into account class im-
balance between different categories/classes and as a result could lead to misleading 
results since the impact of underrepresented groups would be small [25].  
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Minimum sensitivity is an alternative measure, which overcomes the problem of 
imbalanced representation. It is the lower of the sensitivities from the different classes 
in the problem, in effect the worst performance of the classifier defined as:   

 ( ){ } whereJiiPMS     ,,1 ;min ==  ( ) 
=

=
J

j
ijii nniP

1

 (2) 

The problem with minimum sensitivity is that it could make direct comparison of 
results difficult, as the worst performing class is problem specific.  

An alternative measure of classification accuracy which overcomes some of the 
problems of the overall and minimum sensitivity accuracy is the geometric mean 
(GM) which uses the concept of true positive and true negative classifier accuracy [5], 
[25]. It is defined as: 

 g = a+ × a−  (3) 

where a+ denotes the accuracy in positive examples (or true positive rate and defined 
as the proportion of correctly classified majority class examples), and a– is the accura-
cy in negative examples (or true negative rate and defined as the proportion of  
correctly classified minority class examples). This study will use the minimum sensi-
tivity and the geometric mean as measures of neural network performance.   

4 Results and Discussion  

The ranked average classification results of the neural networks using the minimum 
sensitivity and geometric mean measures on the holdout and benchmark datasets un-
der different under- and over-sampling conditions are shown in Table 2. The perfor-
mance of all sampling approaches were compared using ANOVA means comparison 
test, and the same rank was allocated to approaches without statistically significant 
difference in their mean accuracy performance.  

SMOTE oversampling, either on its own, or combined with Tomek Link (TL) or 
Edited Nearest Neighbour (ENN) techniques, led to higher classification accuracy in 
predicting both repeat and non-repeat viewers compared to the original data and the 
under-sampled data. This finding is in line with other empirical studies that concluded 
that synthetic over-sampling has an advantage over under-sampling approaches [12], 
[13], in particular studies which identified SMOTE + ENN and SMOTE + TL as ro-
bust and reliable over-sampling approaches [8]. Therefore neural network perfor-
mance can benefit by expanding the problem space (with SMOTE) and the removal 
of noisy observations using under-sampling of the majority class with ENN or TL. 

Two under-sampling approaches performed better than the original data: NCL and 
ENN. NCL, the best performing under-sampling approach, provided the best predic-
tion accuracy for the repeat viewer minority class (91% accuracy), but this was at the 
expense of shifting the error to the majority class of non-repeat viewers (26% accura-
cy). ENN offered one of the best accuracies in predicting the majority class in the 
benchmark data file (86% accuracy), although this was at the cost of predicting the 
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minority repeat viewer class (31% accuracy). Both NCL and ENN retained the largest 
proportion of observations in the data sets they predicted the best (repeat viewer and 
non repeat viewers, respectively) in comparison to other under-sampling approaches 
and this suggest that observations that were identified as noisy were in fact essential 
dimensions of the problem space. This data set may have both absolute and relative 
imbalance [26] and this explains the superior performance of over-sampling.  

Table 2. Neural Network Classification Results 

* Denotes minimum sensitivity on the majority class. 
   

 

The classification accuracy derived using the holdout sample was consistently 
higher than the accuracy on the benchmark data set. This is particularly true for the 
predictive accuracy of the minority class. This suggests that even synthetically over-
sampled data should be removed from the holdout sample to ensure that it is repre-
sentative. This recommendation is generally given for random over-sampling which 
introduces identical examples in the data set and can lead to neural network  
over-fitting problems [2], but this finding is somewhat counter-intuitive for synthetic 
oversampling which introduces interleaved copies of the minority class. However, as 
the representation of the sample data is binary (0 or 1), the small data range and dis-
crete data values give a greater likelihood of introducing examples that are identical 
to existing observations. This experiment suggests that, it is advisable to remove  
synthetically interleaved observations from the holdout sample used to test neural 
network in the case of discrete data with small data range.  
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SMOTE + 
ENN 

92.2 84.2 85.7 36.9 89.1 68.8 88.7 55.5 2 3.5 2 2.5 2.5 

SMOTE  
81.3 63.3 64.0 60.0 72.9 62.2 71.9 61.3 5.5 1.5 4.5 1 3.13 

SMOTE + 
TL 

95.0 90.2 90.4 24.7 93.0 68.8 92.5 46.6 1* 7.5 1 5.5 3.75 

NCL 
64.4 26.1 67.8 90.5 66.1 47.2 65.4 47.7 5.5* 3.5 4.5 5.5 4.75 

ENN 
83.6 86.6 67.2 31.4 80.6 68.5 70.6 48.3 5.5 5 4.5 5.5 5.13 

ORIGINAL 
DATA 

58.5 62.3 51.2 56.6 55.8 60.5 51.5 56.0 9* 1.5 8 2.5 5.25 

SMOTE 
(300%) 

90.7 88.0 78.4 29.9 82.6 69.0 83.6 50.5 3 9 4.5 5.5 5.5 

TL 
83.7 93.9 54.7 17.8 80.4 69.0 56.9 37.0 5.5 10 8 10 8.38 

RUS 
55.7 24.8 56.1 88.6 55.8 45.7 54.8 44.4 9* 7.5* 8 8.5 8.5 

CNN 
51.4 26.7 46.0 83.4 48.7 45.2 46.0 43.5 10 7.5* 10 8.5 9.5 

Overall  
Average 

78.6 71.5 66.9 43.2 75.7 62.2 67.0 45.6      
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The best sampling approach was determined using average rank of its perfor-
mance; however, there is no significant agreement between the ranking of the models 
across the two different accuracy measures in the holdout and benchmark data sets 
and averaging could be masking some very poor performances for some classifiers. 
For example, the second best ranked sampling approach SMOTE + TL has a relative-
ly weak overall performance and one could argue that it is not suited this data set. 
Although the optimal way for choosing a classifier is beyond the scope of this work, 
the findings suggest that the best sampling approach, in the context of repeat viewing 
data is dependent on the objectives of the classification (overall or minority class).  

5 Conclusions and Future Work 

This paper assessed the impact of different sampling approaches on neural network 
classification performance in the context of repeat movie going. The results showed 
that synthetic oversampling of the minority class, either on its own or combined with 
under-sampling and removal of noisy examples from the majority class using 
SMOTE + ENN or SMOTE + TL offered the best performance. The identification of 
the optimal approach for this data set is not trivial as the recommendations would be 
highly dependent on the accuracy measure used. The findings also suggest that in-
cluding examples that were generated by the oversampling procedure in the holdout 
sample, leads to a significant overestimation of the accuracy of the neural network. It 
is hypothesised that this is a context specific problem as the data set consisted of indi-
cator variables and so further research would be necessary to understand the relation-
ship between synthetic oversampling and the efficacy of the holdout sample as an 
estimator of neural network.  
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