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Abstract. Emergency managers require both fast and accurate estimates of 
hurricane inundation to make critical decisions about evacuations, structure 
closures, and other emergency response activities before, during, and after 
events. Probability analyses require multiple simulations which, generally, 
cannot be performed with the physics-based models under the time constraints 
during emergency conditions. To obtain highly accurate results with a fast 
turnaround computation time a “surrogate” modeling approach is employed. 
This surrogate modeling approach uses an extensive database of storms and 
storm responses and applies “smart” pattern recognition tools such as Artificial 
Neural Networks (ANN) as well as interpolation techniques. The goal is to 
provide forecasts of hurricane inundation and waves with the accuracy of high-
resolution, high-fidelity models but with very short execution time (minutes). 
The city of New Orleans as well as surrounding municipalities along the Gulf of 
Mexico coastal area encompasses the region used to demonstrate this approach. 
The results indicate that the developed surge prediction tool could be used to 
forecast both magnitude and duration to peak surge for multiple selected points 
in a few minutes of computational time once the storm parameters are provided.  
In this paper, only results of surge magnitude are presented.  

Keywords: Storm Surge Prediction, surrogate modeling, neural networks, 
multilayer perceptron. 

1 Introduction 

The most severe loss of life and property damage occurred in New Orleans, 
Louisiana, USA which flooded as the levee system catastrophically failed; in many 
cases hours after the storm had moved inland. At least 1,836 people lost their lives in 
Hurricane Katrina and in the subsequent floods, making it the deadliest U.S. hurricane 
since the 1928 Okeechobee Hurricane. The storm is estimated to have been 
responsible for $81.2 billion (2005 U.S. dollars) in damage, making it the costliest 
natural disaster in U.S. history. The city of New Orleans as well as surrounding 
municipalities is located well within hurricane striking distances along the Gulf of 
Mexico and within the north central region of the Gulf that has the highest probability 
of a major hurricane strike.  

The Corps of Engineers of US (USACE) is committed to protection of these areas 
and has created a Hurricane and Storm Damage Risk Reduction System (HSDRRS) 
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consisting of hundreds of miles of levees, integrated with flood walls, locks, flood 
gates, and other water control structures. The exact timing of the storm surge to 
determine the gate operations during extreme weather conditions is critical to ensure 
the safety of populated areas and a minimal amount of flooding.  The forecasting 
capability for surge behavior during the initial (critical) hours of approaching storms 
is particularly important to the decision making to support storm preparations and 
emergency operations. An operational storm surge water level forecast for the greater 
New Orleans area and coastal Louisiana has come to be realized as essential to 
provide critical data that can be used to potentially reduce damages, risk, and save 
lives.      

2 A Surrogate Neural Network Storm Surge Model  

Several storm surge forecasting systems have been studied by using Computational 
Intelligence/statistics methods ([1], [2], [3], [4], [5], [6], [7], and [8]) but this 
approach uses “surrogate modeling approach to simulate multiple selected surge 
points.  Recently, a very successful interagency team effort in the United States has 
been formed to perform operational storm surge numerical modeling (Figure 1) in 
response to hurricane events in the coast of Gulf of Mexico. Application of the ASGS 
(ADCIRC Surge Guidance System) has demonstrated that due to the computational 
needs of numerical models, and real time operational requirements, mandatory 
compromises limit implementation aspects such as the model geometry size and 
region domain. 

The Advanced CIRCulation model (ADCIRC) is a two-dimensional, depth-
integrated, barotropic time-dependent long wave, hydrodynamic circulation model.   
Although the current warning system has been greatly improved through the use of a 
region specific efficient model geometry  (SL15 Light), additional tools have the 
potential to more quickly and more accurately provide wind, wave height and surge 
levels that affect all critical coastal structures and low lying flood prone areas.  The 
potential value of promising alternative tools should be explored. A number of 
significant compromises had to be made relative to the very detailed modeling and 
coupled wave-surge models that have been set up and validated for the region. 

To avoid these significant compromises, a complimentary approach is proposed 
which combines the strength of both physical-driven (coupled surge and wave 
numerical modeling done at highly detailed, fine resolution) and data-driven methods 
(artificial neural networks – ANNs as well as other computational intelligence 
components) methods to form a predictive knowledge base to estimate the water 
levels including magnitude and duration to peak surge for selected locations. This 
approach is called surrogate modeling approach. A surrogate model is an engineering 
method or alternative model used when an outcome of interest cannot be easily 
directly measured nor quickly computed with physics-based models, so a model of the 
outcome is used instead. The technical tools include the well-validated full SL15 
ADCIRC numerical storm surge model application (simulator), unsupervised 
(clustering) and supervised (prediction) ANNs. In this approach new situations (or 
events) can be performed with additional storm surge simulations, done offline, which 
can be added (retrained) to the existing knowledge base. 
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Fig. 1. A numerical storm surge model with computational mesh, levee stream (white), and 
selected key observed locations (gray) 

3 Knowledge Base Development for a Surrogate Neural 
Networks Model and Basic Data Analysis  

Peak surge prediction is the first goal of the ANN model. An initial form of a 
knowledge database is created to form a linkage between the ANNs and ADCIRC 
model peak surge results. The goal of this phase is primarily to estimate model peak 
surges at selected point locations. The main effort is to quantify the relationship 
between input parameters (such as track or maximum wind speed) and peak surge 
outputs for all selected interest points from the physics-based coupled wave-surge 
modeling system (ADCIRC / STWAVE), and convert to a data-driven system.  

3.1 Selection of Forecasting Points 

The ADCIRC model is executed with a high resolution triangular mesh containing 
million of nodes and elements. A small subset of nodes is selected to implement the 
ANN model. It is important that these nodes (points) are selected at key locations 
which can provide emergency decision makers with appropriate information needed 
to make critical time constrained decisions. Peak surge water levels, wind speeds, and 
wave heights are needed to know which flood gates to close/open, when to open/close 
gates and other structures such as which pumps (and times) to operate. Forecast point 
locations are selected near critical flood protection system components as well as at 
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key gages (measured observation stations) to enable model comparison and 
validation. In the New Orleans area a total of 30 point locations have been selected in 
the south eastern Louisiana (Figure 2) some of which are used during operational 
forecasting efforts. It is important to select points that are spatially well distributed 
throughout the area of vulnerability.  

 

Fig. 2. 30 selected locations (gray color) as forecast points from surrogate model 

3.2 Determination of Input/Output Parameters for ANNs Model   

The ANN model is “trained” using selected components (parameters) of the physics-
based system (in this case ADCIRC/STWAVE). The goal is to use the ANN model to 
predict storm response surges. In order to achieve this goal a strategy must be 
employed to select the key parameters from the physics-based system. An 
understanding of the numeric physics based model is important. This enables 
selection of the key “force” elements that most affect the final results.  In this case the 
storms are the key force element. Quantitative characteristics of the key force 
elements must be defined to provide ANN input. An understanding and knowledge of 
how the physics-based system changes in force and their affects on results both 
spatially and temporally will enable selection of relevant ANN parameters.  Key to 
the ANN (or any pattern recognition) method is that all parameters vary either 
spatially and/or temporally over the domain. 

The final parameters selected for this effort are shown in Table 1. Sensitivity 
analyses were performed to determine these most significant parameters and the 
reliability for multiple point ANNs simulations.  The force or input parameters can be 
grouped into geometric and storm related components.  The geometric components 
are the distance between the forecast point and the storm land fall location, and the 
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angle of storm approach relevant to the forecast point location at time of landfall.  The 
storm force components include the central pressure at the time of landfall, the 
average forward velocity, the radius to maximum winds, and the maximum wind 
speed achieved at the forecast point location over the entire storm event. The output 
parameters selected for ANN model are the peak storm surge. Usually, the distance 
from storm landfall location, angle of storm approach, and local maximum wind 
speed are considered as local forcing parameters while remaining forcing parameters 
are regarded as global forcing parameters.  

Table 1. ANNs model input and response output parameters for storm surge model 

Forcing (Input) Parameters Result (Output) Parameters 
  
Geometry  
       Distance from storm landfall location 
       (local) 

 

       Angle of storm approach (very minor 
       impact – local) 

Peak Storm Surge 

Storm Force  
       Central Pressure  (global)  
       Average Forward Speed (global)  
       Radius to Maximum Winds (global)  
       Local Maximum Wind Speed (local)  

 

     It is noted that due to some data error involved in the system 4 simulation runs as 
well as 2 selected points (point 25 and 29) are eliminated. This results in 442 sets of 
storms and associated parameters at 28 saved points as the knowledge base for the 
ANNs model. The typical central pressure and over 442 storm events are shown in 
Figure 3. The corresponding output functions, surge height and duration, are plotted 
as Figure 4. 

840

860

880

900

920

940

960

980

1000

1 51 101 151 201 251 301 351 401

Storm Events

C
en

tr
al

 P
re

ss
u
re

 (
m

in
ib

ar
)

 

Fig. 3. Global storm parameter (central pressure- mb) for 442 ADCIRC physical model runs 
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Fig. 4. Peak storm surge (ft) at gauge 3 for 442 ADCIRC model runs 

3.3 Preliminary Multiple Linear System Identification and ANNs Model 
Design 

Before dealing with a complex nonlinear system to quantify the relationship among 
parameters, a linear system, such as correlation coefficient analysis can be used as a 
preliminary analysis tool to determine the approximate functionality. Therefore, one 
set of correlation coefficients (maximum surge height) with six inputs and one output 
system are computed (Figure 5). Due to very low correlation coefficients associated 
with angle of storm approach for both magnitude and duration of surge; the system is 
reduced to five inputs/one output structure.  Figure 5 shows two parameters (central 
pressure and distance from storm landfall location) that are negative related to 
corresponding surge height. This indicates an inverse physical relationship to surge 
for these two parameters. The local maximum wind speed is a dominate surge 
producing parameter. 

Based on the above analysis, a nonlinear neural network model with feed forward 
architecture can be assumed as Figure 6. This architecture represents a system with 3 
global inputs, N locations, 3 hidden nodes (one hidden layer and if 3 hidden nodes are 
selected), and n corresponding maximum surge magnitude and duration. The 
maximum hidden nodes which depend on the prevention from over-training under a 
set of optimal weights are adjustable. For example, if this system involves 28 
prediction points, the size of the neural network is 59x3x28 with a total number of 
261 weights .It should be noted that the input arrays between surge height and surge 
duration are somewhat different sign although the values are the same. Therefore, the 
system is considered as two individual response structures – one for surge height and 
the other for surge duration. This paper only presents the results for surge height 
prediction. 
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Fig. 5. 28 points correlation coefficients for storm parameters response to peak surge 
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Fig. 6. A neural networks model for N selected points with 3 hidden nodes, N peak surge and N 
duration outputs architecture 

4 Identification and Test for Surrogate Neural Networks Model 

After initial model test based on general over-trained prevention, training algorithms, 
and training strategies using two most offshore points (point 4 and point 5), it found 
this surrogate model could get a satisfactory agreement with the multilayer perceptron 
procedure. The proposed ANNs model is further examined by its accuracy up to all 28 
points. NeuroSolutions [9] is used to perform this analysis. 

4.1 Optimal Point Selection for Surge Prediction 

Due to the fact that strength of response from a set of locations is not equally 
distributed in a given domain, the accuracy of storm surge prediction using the 
surrogate approach will not readily provide the same results across the domain. It is 
important to determine the point(s) with the highest prediction accuracy. Table 2 
summaries 5 different tests which extend the response points to multiple point bases.   
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Table 2. Optimal point selection for surge prediction 

Selection Reason Total Point 
Number 

Selected Points Number of 
Hidden 
Nodes 

Average CC 

Priority 9 2, 3, 10, 11, 
13,17, 19, 23, 26 

5 0.932 

A  Statistical 
Similar Group 

11 1, 4, 10, 11, 13, 
18, 19, 22, 26, 27, 
28 

4 0.913 

Better Individual  
Response 

15 3, 4, 6, 7, 8, 12, 
14, 17, 18, 20, 21, 
22, 23, 24, 28 

3 0.934 

Full Scale 28 Every points 2 0.770 
 

     Based on Table 2, nine priority points are chosen as the most critical. The 
considerations are dependent on key locations which can provide emergency decision 
makers with water levels and time series data needed for critical decisions (time to 
close flood gates, start pump stations, etc.), near critical flood protection system 
components, at key gauge locations for comparison and validation, and spatially 
distributed through area of vulnerability. An unsupervised ANNs (SOFM) is used to 
cluster four different response groups with similar statistical parameters (mean, 
standard deviation, skewness, maximum, and minimum). The first group involves 11 
response points. The average CC is computed from each test case. The results show 
the optimal maximum number of points for creating a surge prediction system is 
between 9 and 15. The lower CC from a similar group could be those points that are 
widely spatial distributed. Figure 8 shows the comparison between ADCIRC model 
simulation and ANNs results for point 23 (9 points priority case).  
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Fig. 7. Training results of station 23 for 9 priority points surge (ft) model (black color 
represents ANNs simulation and white color shows ADCIRC model simulation) 
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4.2 Surrogate Model Simulation for 9 Priority Point’s Case 

This 9 priority points surrogate ANNs model can be used to demonstrate the surge 
response (magnitude and duration) under very short period (less than few minutes) 
once new storm parameters are provided. Figure 9 displays the surge height of 
simulated 50 storm events for 9 priority points. It is note that the maximum local wind 
speeds as a major forcing parameter for these 50 storm events are presented in this 
figure as the impact contribution.  
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Fig. 8. 50 storm surge events prediction for 9 priority point’s model with 442 events as 
knowledge base 

5 Conclusions 

This work demonstrates successfully use of ANNs to quantify the relationship 
between storm forcing as well geometry and response parameters (maximum surge 
magnitude and duration) from a knowledge base of 442 storm surge numerical model 
simulations. The city of New Orleans as well as surrounding municipalities along the 
Gulf of Mexico coastal area is used as the demonstration site. The developed “static” 
mode surrogate surge prediction tool can be used to predict surge response and 
duration to peak surge with multiple selected points within minute’s turnaround time 
once the storm parameters are provided. This effort investigates the most significant 
procedures for developing an ANN model from training strategies, algorithm 
selection, and prevention from overtraining consideration approaches. The results 
indicate that the surge is the most influenced by local maximum wind. The “dynamic” 
operational surrogate ANN model is being developed for further practical application. 
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