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Abstract. The success of portfolio algorithms in competitions in the
area of combinatorial problem solving, as well as in practice, has moti-
vated interest in the development of new approaches to determine the
best solver for the problem at hand. Yet, although there are a number
of ways in which this decision can be made, it always relies on a rich
set of features to identify and distinguish the structure of the problem
instances. In this paper, we show how one of the more successful port-
folio approaches, ISAC, can be augmented by taking into account the
past performance of solvers as part of the feature vector. Testing on a
variety of SAT datasets, we show how our new formulation continuously
outperforms an unmodified/standard version of ISAC.

1 Introduction

It is becoming increasingly recognized in the constraint programming (CP) and
satisfiability (SAT) communities that there is no single best solver for all prob-
lems. Instead solvers tend to excel on a particular set of instances while offering
subpar performance on everything else. This observation has led to the pursuit
of approaches that, given a collection of existing solvers, attempt to select the
most appropriate one for the problem instances at hand. The way in which these
portfolio solvers make the selection, however, varies greatly. One approach can
be to train a regression model to predict the performance of each solver, select-
ing the expected best one [16,15]. Alternatively, a ranking approach can be used
over all solvers [6]. It is also possible to train a forest of trees, where each tree
makes a decision for every pair of solvers, deciding which of the two is likely
to be better, selecting the one voted upon most frequently [17]. Research has
also been conducted on creating a schedule of solvers to call in sequence rather
than committing to a single one [7,12]. An overview of many of these approaches
is presented in [9]. Yet regardless of the implementation, portfolio-based ap-
proaches have been dominating the competitions in satisfiability (SAT) [7,16],
constraint programming (CP) [12], and quantified Boolean formulae (QBF) [14].

One of the most successful portfolio techniques is referred to as Instance-
Specific Algorithm Configuration (ISAC) [8]. Originally the approach was demon-
strated to outperform the then reigning regression-based approach, SATzilla, in
the SAT domain [16], as well as a number of other existing portfolios [11]. The
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approach was later embraced by the 3S solver which won 2 gold medals in the
2011 SAT competition [1]. ISAC’s applicability has also been demonstrated in
other domains such as set covering (SCP) and mixed integer (MIP) problems [8].

The guiding principle behind ISAC is to cluster the training instances based
on a representative feature vector. It is assumed that if the feature vector is
good, then the instances within the same cluster will all have similar underlying
structure and will therefore yield to the same solver. Up to now, however, ISAC
has relied on a pre-specified set of features and an objective-oblivious cluster-
ing. This means that any anomalous behavior of the features could result in
an improper clustering. Similarly, it cannot be assumed the identified clusters
group the instances in an optimal manner. In short, there has been a disconnect
between the clustering objective and the performance objective.

For this reason we propose a new approach, SNNAP, in which we try to
use the past performance of the solvers in the portfolio as part of the feature
vector. This approach redefines the feature vector to automatically encode our
desired objective of having similar instances in the same cluster, and is thus able
to significantly improve the results of the original algorithm. However, unlike
feature landmarking [13,3] where the evaluation of multiple simple algorithms
provide insight into the success of more complex algorithms, SNNAP tackles a
domain where a problem needs to only be evaluated once, but highly efficiently.

In this paper, we will first give an overview of the ISAC methodology and
demonstrate that straightforward feature filtering is not enough to significantly
improve performance. We will then show a number of modifications to the em-
ployed distance metric that improve the quality of the clusterings, and thus
the overall performance. We will conclude by presenting SNAPP, an approach
that combines predictive modeling as a way of generating features to be used
by dynamic clustering. To demonstrate our results, we use a collection of SAT
datasets: one that contains only randomly generated instances, one with only
handcrafted instances, one with industrial instances, and finally a mixture of all
three.

2 ISAC

The fundamental principle behind ISAC is that instances with similar features
are likely to have commonalities in their structure, and that there exists at
least one solver that is best at solving that particular structure. Therefore the
approach works as presented in Algorithm 1. In the training phase, ISAC is
provided with a list of training instances T, their corresponding feature vectors
F, and a collection of solvers A.

First, the computed features are normalized so that every feature ranges in
[-1,1]. This normalization helps keep all the features at the same order of magni-
tude, and thereby avoids the larger values being given more weight than smaller
values. Using these normalized values, the instances are clustered. Although any
clustering approach can be used, in practice g-means [5] is employed in order to
avoid specifying the desired number of clusters. This clustering approach assumes
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Algorithm 1. ISAC

1: function ISAC-Train(T,F,A)
2: (F̄ )← Normalize(F )
3: (k,C, S)← Cluster(T, F̄ )
4: for all i = 1, . . . , k do
5: BSi ← FindBestSolver(T, Si, A)
6: end for
7: return (k, C,BS)
8: end function

1: function ISAC-Run(x,k, C,BS)
2: j ← FindClosestCluster(k, x, C)
3: return BSj(x)
4: end function

that a good cluster is one in which the data follows a Gaussian distribution.
Therefore, starting with all instances in the same cluster, g-means iteratively
applies 2-means clustering, accepting the partition only if the two new clusters
are more Gaussian than their predecessor. Once the instances are clustered, we
add an additional step that merges all clusters smaller than a predefined thresh-
old into their neighboring clusters. The final result of the clustering is a set of
k clusters S, and a set of cluster centers C. For each cluster we then determine
a single solver, which is usually the one that has best average performance on
all instances in its cluster. When the procedure is presented with a previously
unseen instance x, ISAC assigns it to the nearest cluster and runs the solver
designated to that cluster on the instance x.

In practice, this standard version of ISAC has been continuously shown to
perform well, commonly outperforming the choice of a single solver on all in-
stances. In many situations ISAC has even outperformed existing state-of-the-
art regression-based portfolios [11]. However, the current version of ISAC also
accepts the computed clustering on faith, even though it might not be opti-
mal or might not best capture the relationship between problem instances and
solvers. It also does not take into account that some of the features might be
noisy or misleading. Therefore, the following sections will show the advantages
of applying feature filtering. We will then show how the feature vector can be
extended to include the performance of solvers on the training instances. This
has the effect of increasing the chances that instances for which the same solver
performs well are placed into the same cluster. Finally, we extend the approach
to combine predictive modeling and dynamic clustering to find the best cluster
for each new instance.

3 Experimental Setup

The satisfiability (SAT) domain was selected to test our proposed methodologies
due to the large number of diverse instances and solvers that are available. We



438 M. Collautti et al.

compiled four datasets using all instances from the 2006 SAT Competition to
the present day 2012 SAT Challenge [2]. These four datasets contain 2140, 735,
1098 and 4243 instances, respectively, as follows:

RAND: instances have been generated at random;
HAND: instances are hand-crafted or are transformations from other NP-

Complete problems;
INDU: instances come from industrial problems;
ALL: instances are the union of the previous datasets.

We rely on the standard set of 115 features that have been embraced by
the SAT community [16]. Specifically, using the feature code made available by
UBC,1 we compute features with the following settings: -base, -sp, -dia, -cl, -ls,
and -lobjois ; but having observed previously that the features measuring compu-
tation time are unreliable, we discard those 9. These features cover information
such as the number of variables, number of clauses, average number of literals
per clause, proportion of positive to negative literals per clause, etc. Finally, we
also run 29 of the most current SAT solvers, many of which have individually
shown very good performance in past competitions. Specifically, we used:

– clasp-2.1.1 jumpy

– clasp-2.1.1 trendy

– ebminisat

– glueminisat

– lingeling

– lrglshr

– picosat

– restartsat

– circminisat

– clasp1

– cryptominisat 2011

– eagleup

– gnoveltyp2

– march rw

– mphaseSAT

– mphaseSATm

– precosat

– qutersat

– sapperlot

– sat4j-2.3.2

– sattimep

– sparrow

– tnm

– cryptominisat295

– minisatPSM

– sattime2011

– ccasat

– glucose 21

– glucose 21 modified.

Each of the solvers was run on every instance with a 5,000 second timeout.
We then removed instances that could not be solved by any of the solvers within
the allotted time limit. We further removed instances that we deemed too easy,
i.e. those where every solver could solve the instance within 15 seconds. This
resulted in our final datasets comprising of 1949 Random, 363 Crafted, and 805
industrial instances, i.e. 3117 instances in total.

All the experiments presented in this paper were evaluated using 10-fold cross
validation, where we averaged the results over all folds. We then repeat each
experiment 10 times to decrease the bias of our estimates of the performance.
In our experiments we commonly present both the average and the PAR-10
performance; PAR-10 is a weighted average where every timeout is treated as
having taken 10 times the timeout. We also present the percentage of instances
not solved.

1 http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
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We evaluate all our results comparing them to three benchmark values:

– Virtual Best Solver (VBS): This is the lower bound of what is achievable
with a perfect portfolio that, for every instance, always chooses the solver
that results in the best performance.

– Best Single Solver (BSS): This is the desired upper bound, obtained by
solving each instance with the solver whose average running time is the
lowest on the entire dataset.

– Instance-Specific Algorithm Configuration (ISAC): This is the pure ISAC
methodology obtained with the normal set of features and clustering.

Our results will always lie between the VBS and the BSS with the ultimate goal
to improve over ISAC. Results will be divided according to their dataset.

4 Applying Feature Filtering

The current standard version of ISAC assumes that all features are equally im-
portant. But as was shown in [10], this is often not the case, and it is possible to
achieve comparable performance with a fraction of the features, usually also re-
sulting in slightly better overall performance. The original work presented in [10]
only considered a rudimentary feed-forward selection. In this paper we utilize
four common and more powerful filtering techniques: Chi-squared, information
gain, gain ratio, and symmetrical uncertainty. Because all these approaches de-
pend on a classification for each instance, we use the name of the best solver for
that purpose.

Chi-squared. The Chi-squared test is a correlation-based filter and makes use
of “contingency tables”. One advantage of this function is that it does not need
the discretization of continuous features. It is defined as:

χ2 =
∑

ij

(Mij −mij)
2/mij where mij = Mi.M.j/m

Mij is the number of times objects with feature values Y = yj , X = xi appear
in a dataset, yi are classes and xj are features.

Information gain. Information gain is based on information theory and is often
used in decision trees and is based on the calculation of entropy of the data as
a whole and for each class. For this ranking function continuous features must
be discretized in advance.

Gain ratio. This function is a modified version of the information gain and it
takes into account the mutual information for giving equal weight to features
with many values and features with few values. It is considered to be a stable
evaluation.

Symmetrical uncertainty. The symmetrical uncertainty is built on top of the
mutual information and entropy measures. It is particularly noted for its low
bias for multivalued features.
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Table 1. Results on the SAT benchmark, comparing the Virtual Best Solver (VBS),
the Best Single Solver (BSS), the original ISAC approach (ISAC) and ISAC with
different feature filtering techniques: “chi.squared“, ”information.gain”, “symmetri-
cal.uncertainty” and “gain.ratio”.

RAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 1551 (0) 13154 (0) 25.28 (0)
ISAC 826.1 (6.6) 4584 (40.9) 8.1 (0.2)
chi.squared 1081 (42.23) 7318 (492.7) 14 (1)
information.gain 851.5 (32.33) 5161 (390) 8.7 (0.8)
symmetrical.uncertainty 840.2 (13.15) 4908 (189.5) 8.76 (0.4)
gain.ratio 830.3 (21.3) 4780 (210) 9 (0.4)
VBS 358 (0) 358 (0) 0 (0)

HAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 2080 (0) 15987 (0) 30.3 (0)
ISAC 1743 (34.4) 13994 (290.6) 26.5 (0.9)
chi.squared 1544 (37.8) 11771 (435) 23.5 (0.9)
information.gain 1641 (38.9) 12991 (443) 24.3 (0.9)
symmetrical.uncertainty 1686 (27.3) 13041 (336) 25.7 (0.7)
gain.ratio 1588 (43.7) 12092 (545) 22.4 (1)
VBS 400 (0) 400 (0) 0 (0)

INDU Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 871 (0) 4727 (0) 8.4 (0)
ISAC 763.4 (4.7) 3166 (155.6) 5.2 (0.7)
chi.squared 708.1 (25.3) 3252 (218) 5.8 (0.4)
information.gain 712.6 (7.24) 2578 (120) 4.3 (0.3)
symmetrical.uncertainty 716.4 (16.76) 2737 (150) 4.4 (0.3)
gain.ratio 705.4 (19.9) 2697 (284) 4.1 (0.6)
VBS 319 (0) 319 (0) 0 (0)

ALL Runtime - avg (std) Par 10 - avg (std) % not solved

BSS 2015 (0) 4726 (0) 30.9 (0)
ISAC 1015 (10.3) 6447 (92.4) 11.8 (0.2)
chi.squared 1078 (29.7) 7051 (414) 11.79 (0.8)
information.gain 1157 (18.9) 7950 (208) 15 (0.4)
symmetrical.uncertainty 1195 (28.7) 8067 (341) 15.6 (0.7)
gain.ratio 1111 (17.4) 6678 (225) 13.39 (0.5)
VBS 353 (0) 353 (0) 0 (0)

Restricting our filtering approaches to finding the best 15 features, we can
see in Table 1 that the results are highly dependent on the dataset taken into
consideration. For the random dataset there is no major improvement due to
using just a subset of the features. Yet we can achieve almost the same result
as the original ISAC by just using a subset of the features calculated using
the gain.ratio function, a sign that not all the features are needed. We can
further observe the improvements are more pronounced in the hand-crafted and
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industrial datasets. For them, the functions that give the best results are, respec-
tively, chi.squared and gain.ratio, but in the latter the result is almost identical
to the one given by chi.squared.

These results show that not all features are necessary for the clustering, and
that it is possible to improve performance through the careful selection of the
features. However, we also observe that the improvements can sometimes be
minor, and are highly dependent on the filtering approach used and the dataset
it is evaluated on.

5 Extending the Feature Space

While the original version of ISAC employs Euclidean distance for clustering,
there is no reason to believe that this is the best distance function. As an alter-
native one might learn a weighted distance metric, where the weights are tuned
to match the desired similarity between two instances. For example, if two in-
stances have the same best solver, then the distance between these two instances
should be small. Alternatively, when a solver performs very well on one instance,
but poorly on another, it might be desirable for these instances to be separated
by a large distance.

In our initial experiments, we have trained a distance function that attempts
to capture this desired behavior. Yet the resulting performance often times
proved worse than the standard Euclidean distance. There are a number of
reasons for this. First, while we know that some instances should be closer or
farther from each other, the ideal magnitude of the distance cannot be readily
determined. Second, the effectiveness of the distance function depends on near
perfect accuracy since any mistake can distort the distance space. Third, the ex-
act form of the distance function is not known. It is, for example, possible that
even though two instances share the same best solver, they should nevertheless
be allowed to be in opposite corners of the distance space. We do not necessarily
want every instance preferring the same solver to be placed in the same cluster,
but instead want to avoid contradictory preferences within the same cluster.

Due to these complications, we propose an alternate methodology for refining
the feature vector. Specifically, we propose to add the normalized performance
of all solvers as part of the features. In this setting, for each instance, the best
performing solver is assigned a value of -1, while the worst performing is assigned
to 1. Everything in between is scaled accordingly. The clustering is then done on
both the set of the normal features and the new ones. During testing, however,
we do not know the performance of any of the solvers beforehand, so we set all
those features to 0.

We see in Table 2 that the performance of this approach (called NormTimes
ISAC) was really poor: never comparable with the running times of the normal
ISAC. The main reason was that we were taking into consideration too many
solvers during the computation of the new features.

As an alternative, we consider that matching the performance of all solvers
is too constraining. Implicitly ISAC assumes that a good cluster is one where
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Table 2. Results on the SAT benchmark, comparing the Best Single Solver (BSS), the
Virtual Best Solver (VBS), the original ISAC approach (ISAC), the ISAC approach
with extra features coming from the running times: “NormTimes ISAC” has the nor-
malized running times while “BestTwoSolv ISAC” takes into consideration just the
best two solvers per each instance.

RAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 1551 (0) 13154 (0) 25.28 (0)
ISAC 826.1 (6.6) 4584 (40.9) 8.1 (0.2)
NormTimes ISAC 1940 (-) 15710 (-) 30 (-)
BestTwoSolv ISAC 825.6 (5.7) 4561 (87.8) 8.1 (0.2)
VBS 358 (0) 358 (0) 0 (0)

HAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 2080 (0) 15987 (0) 30.3 (0)
ISAC 1743 (34.4) 13994 (290.6) 26.5 (0.9)
NormTimes ISAC 1853 (-) 14842 (-) 28.3 (-)
BestTwoSolv ISAC 1725 (29.2) 13884 (124.4) 26.5 (0.8)
VBS 400 (0) 400 (0) 0 (0)

INDU Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 871 (0) 4727 (0) 8.4 (0)
ISAC 763.4 (4.7) 3166 (155.6) 5.2 (0.7)
NormTimes ISAC 934.3 (-) 5891 (-) 10.8 (-)
BestTwoSolv ISAC 750.5 (2.4) 2917 (157.3) 4.7 (0.4)
VBS 319 (0) 319 (0) 0 (0)

ALL Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 2015 (0) 4727 (0) 30.9 (0)
ISAC 1015 (10.3) 6447 (92.4) 11.8 (0.2)
NormTimes ISAC 1151 (-) 6923 (-) 12.5 (-)
BestTwoSolv ISAC 1019 (11.5) 6484 (172.3) 11.9 (0.3)
VBS 353 (0) 353(0) 0 (0)

the instances all prefer the same solver. For this reason we decided to take into
account only the performance of the best two solvers per each instance. This
was accomplished by extending the normal set of features with a vector of new
features (one per each solver), and assigning a value of 1 to the components
corresponding to the best two solvers and 0 to all the others. In the testing
set, since we again do not know which are the best two solvers before hand, all
the new features are set to the constant value of 0. As can be seen in Table 2,
depending on which of the four datasets was used we got different results (this
approach is called bestTwoSolv ISAC): we observed a small improvement in the
hand-crafted and industrial datasets, while for the other two datasets the results
were almost the same as the pure ISAC methodology.

The drawbacks of directly extending the feature vector with the performance
of solvers are two-fold. First, the performance of the solvers is not available
prior to solving a previously unseen test instance. Secondly, even if the new
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features are helpful in determining a better clustering, there is usually a large
number of original features that might be resisting the desired clustering. Yet
even though these extensions to the feature vector did not provide a compelling
case to be used instead of the vanilla ISAC approach, they nonetheless supported
the assumption that by considering solver performances on the training data it
is possible to improve the quality of the overall clustering. This has inspired the
Solver-based Nearest Neighbor Approach that we describe in the next section.

6 SNNAP

There are two main takeaway messages from extending the feature vector with
solver performances. First, the addition of solver performances can be helpful,
but the inclusion of the original features can be disruptive for finding the desired
cluster. Second, it is not necessary for us to find instances where the relation of
every solver is similar to the current instance. It is enough to just know the best
two or three solvers for an instance. Using these two ideas we propose SNNAP
which is presented as Algorithm 2.

During the training phase the algorithm is provided with a list of training
instances T, their corresponding features vectors F and the running times R of
every solver in our portfolio. We then train a single model PM for every solver
to predict the expected runtime on a given instance. We have claimed previously
that such models are difficult to train properly since any misclassification can
result in the selection of the wrong solver. In fact, this was partly why the original
version of ISAC outperformed these types of regression-based portfolios. Clusters
provide better stability of the resulting prediction of which solver to choose. We
are, however, not interested in using the trained model to predict the single best
solver to be used on the instance. Instead, we just want to know which solvers
are going to behave well on a particular instance.

For training the model, we scale the running times of the solvers on one
instance so that the scaled vector will have a mean of 0 and unitary standard
deviation. We saw that this kind of scaling is crucial in helping the following
phase of prediction. Thus we are not training to predict runtime. We are learning
to predict when a solver will perform much better than usual. Doing so, for every
instance, every solver that behaves better than one standard deviation from the
mean will receive a score less than -1, the solvers which behaves worse than one
standard deviation from the mean a score greater of 1, and the others will lie in
between. Random forests [4] were used as the prediction model.

In the prediction phase the procedure is presented with a previously unseen
instance x, the prediction models PM (one per each solver), the training in-
stances T, their running times R (and the scaled version R̄), the portfolio of
solvers A and the size of the desired neighborhood k. The procedure first uses
the prediction models to infer the performances PR of the solvers on the instance
x, using its originally known features. SNNAP then continues to use these per-
formances to compute a distance between the new instance and every training
instance, selecting the k nearest among them. The distance calculation takes into



444 M. Collautti et al.

Algorithm 2. Solver-based Nearest Neighbor for Algorithm Portfolios

1: function SNNAP-Train(T,F,R)
2: for all instances i in T do
3: R̄i ← Scaled(Ri)
4: end for
5: for all solver j in the portfolio do
6: PMj ← PredictionModel(T, F, R̄)
7: end for
8: return PM
9: end function

1: function SNNAP-Run(x,PM, T, R, R̄, A, k)
2: PR← Predict(PM,x)
3: dist← CalculateDistance(PR,T, R̄)
4: neighbors← FindClosestInstances(dist, k)
5: j ← FindBestSolver(neighbors,R)
6: return Aj(x)
7: end function

account only the scaled running time of the instances of the training set and the
predicted performances PR of the different solvers on the instance x. At the end
the instance x will be solved using the solver that behaves best (measured as
the average running time) on the k neighbors previously chosen.

It is worth highlighting again that we are not trying to predict the running
times of the solvers on the instances but, after scaling, we predict a ranking
amongst the solvers on a particular instance: which will be the best, which the
second best, etc. Moreover, as shown in the next section, we are not interested
in learning a ranking among all the solvers, but just among a small subset of
them, specifically for each instance which will be the best n solvers.

6.1 Choosing the Distance Metric

The k -nearest neighbors approach is usually used in conjunction with the
weighted Euclidean distance; unfortunately the Euclidean distance does not take
into account the performances of the solvers in a way that is helpful to us. What
is needed is a distance metric that takes into account the performances of the
solvers and that would allow the possibility of making some mistakes in the pre-
diction phase without too much prejudice on the performances. Thus the metric
should be trained with the goal that the k -nearest neighbors always prefer to
be solved by the same solver while instances that prefer different solvers are
separated by a large margin.

Given two instances a, b and the running times of the m algorithms in the
portfolio A on both of them Ra1 , . . . Ram and Rb1 , . . . Rbm , we identify which
are the best n solvers on each (Aa1 , . . . Aan) and (Ab1 , . . . Abn) and define their
distance as a Jaccard distance:
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1− |intersection((Aa1 , . . . Aan), (Ab1 , . . . Abn))|
|union((Aa1 , . . . Aan), (Ab1 , . . . Abn))|

Using this definition two instances that will prefer the exact same n solvers
will have a distance of 0, while instances which prefer completely different solvers
will have a distance of 1. Moreover, using this kind of distance metric we are
no longer concerned with making small mistakes in the prediction phase: even
if we switch the ranking between the best n solvers the distance between two
instances will remain the same. In our experiments, we focus on setting n = 3,
as with higher values the performances degrades.

6.2 Numerical Results

In our approach, with the Jaccard distance metric, for each instance we are
interested in knowing which are the n best solvers. In the prediction phase we
used random forests which achieved high levels of accuracy: as stated in Table 3
we correctly made 91, 89, 91 and 91% (respectively RAND, HAND, INDU and
ALL datasets) of the predictions. We compute these percentages in the following
manner. There are 29 predictions made (one per each solver) per each instance,
giving us a total of 5626, 1044, and 2320 predictions per category. We define
accuracy as the percentage of matches between the predicted best n solvers and
the true best n.

Table 3. Statistics of the four datasets used: instances generated at random “RAND”,
hand-crafted instances “HAND”, industrial instances “INDU” and the union of them
“ALL”.

RAND HAND INDU ALL

Number of instances considered 1949 363 805 3117
Number of predictions 5626 1044 2320 9019
Accuracy in the prediction phase 91% 89% 91% 91%

Having tried different parameters we use the performance of just the n = 3
best solvers in the calculation of the distance metric and a neighborhood size of
60. Choosing a larger number of solvers degrades the results. This is most likely
due to scenarios where one instance is solved well by a limited number of solvers,
while all the others time out.

As we can see in Table 4 the best improvement, as compared to the standard
ISAC, is achieved in the hand-crafted dataset. Not only are the performances
improved by 60%, but also the number of unsolved instances is halved; this
also has a great impact on the PAR10 evaluation.2 It is interesting to note that

2 PAR10 score is a penalized average of the runtimes: for each instance that is solved
within 5000 seconds (the timeout threshold), the actual runtime in seconds denotes
the penalty for that instance. For each instance that is not solved within the time
limit, the penalty is set to 50000, which is 10 times the original timeout.
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Table 4. Results on the SAT benchmark, comparing the Best Single Solver (BSS), the
original ISAC approach (ISAC), our SNNAP approach (SNNAP) (also with feature
filtering) and the Virtual Best Solver (VBS)

RAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 1551 (0) 13154 (0) 25.28 (0)
ISAC 826.1 (6.6) 4584 (40.9) 8.1 (0.2)
SNNAP 791.4 (15.7) 4119 (207) 7.3 (0.2)
SNNAP + Filtering 723 (9.27) 3138 (76.9) 5.28 (0.1)
VBS 358 (0) 358 (0) 0 (0)

HAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 2080 (0) 15987 (0) 30.3 (0)
ISAC 1743 (34.4) 13994 (290.6) 26.5 (0.9)
SNNAP 1063 (33.86) 6741 (405.5) 12.4 (0.4)
SNNAP + Filtering 995.5 (18.23) 6036 (449) 10.5 (0.4)
VBS 400 (0) 400 (0) 0 (0)

INDU Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 871 (0) 4727 (0) 8.4 (0)
ISAC 763.4 (4.7) 3166 (155.6) 5.2 (0.7)
SNNAP 577.6 (21.5) 1776 (220.8) 2.6 (0.4)
SNNAP + Filtering 540 (15.52) 1630 (149) 2.4 (0.4)
VBS 319 (0) 319 (0) 0 (0)

ALL Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 2015 (0) 4727 (0) 30.9 (0)
ISAC 1015 (10.3) 6447 (92.4) 11.8 (0.2)
SNNAP 744.2 (14) 3428 (141.2) 5.8 (0.2)
SNNAP + Filtering 692.9 (7.2) 2741 (211.9) 4.5 (0.1)
VBS 353 (0) 353 (0) 0 (0)

the hand-crafted dataset is the one that proves to be most difficult, in terms of
solving time, while being the setting in which we achieved the most improvement.

We also achieved a significant improvement, although lower than that with
the Hand-crafted dataset, on the Industrial and ALL (∼ 25%) datasets. Here
the number of unsolved instances was also halved. In the random dataset we
achieved the lowest improvement but, yet, we were able to overtake significantly
the standard ISAC approach.

We have also applied feature filtering to SNNAP and the results are shown in
Table 4. Feature filtering is again proving beneficial, significantly improving the
results for all our datasets and giving us a clue that not all 115 features are essen-
tial. Results in the table have been reported only for the more successful ranking
function (gain.ratio for the Random dataset, chi.squared for Hand-crafted and
Industrial and the overAll dataset).

These consistent results for SNNAP are encouraging. In particular, it is clear
that the dramatic decrease in the number of unsolved instances is highly



SNNAP: Solver-Based Nearest Neighbor for Algorithm Portfolios 447

Table 5. Matrix for comparing instances solved and not solved using SNNAP and
ISAC for the four datasets: RAND, HAND, INDU and ALL. Values are in percentages

RAND
SNNAP \ISAC Solved Not Solved

Solved 89.4 3.3
Not Solved 2.5 4.8

HAND
SNNAP \ISAC Solved Not Solved

Solved 70.2 17.4
Not Solved 3.3 9.1

INDU
SNNAP \ISAC Solved Not Solved

Solved 93.9 3.5
Not Solved 0.9 1.7

ALL
SNNAP \ISAC Solved Not Solved

Solved 85.8 8.4
Not Solved 2.4 3.4

important, as they are key to lowering the average and the PAR10 scores. This
result can also be observed in Table 5, where we can see the percentage of in-
stances solved/not solved by each approach. In particular the most significant
result is achieved, again, in the HAND dataset where the number of instances
not solved by ISAC, but solved by our approach is 17.4% of the overall instances,
while the number of instances not solved by our approach but solved by ISAC
is only 3.3%. As we can see this difference is also considerable in the other three
datasets. Deliberately, we chose to show this matrix only for the version of ISAC
and SNNAP without feature filtering as it offers an unbiased comparison be-
tween the two approaches, as we have shown that ISAC does not improve after
feature filtering.

Another useful statistic is represented by the number of times that an ap-
proach is able to select the best solver for a given instance. In the random dataset
SNNAP is able to select the best solver for 39% of the instances, as compared
with 35% for ISAC. For the Hand-crafted dataset those values are 25% and 17%,
respectively, for the Industrial 29% and 21%, respectively, and for the ALL 32%
and 26%, respectively. These values suggest that ISAC is already behaving well
on the RAND dataset and, for this reason, the improvement achieved with our
new approach is smaller in that case, while the improvement is more significant
in the other three datasets. These results also show that there is room for further
improvement.

The final thing we analyze are the frequencies with which the solvers are
chosen by the three strategies: the Virtual Best Solver (VBS), ISAC and SNNAP.
Table 6 presents the frequency with which each of the 29 solvers in our portfolio
were selected by each strategy, highlighting the best single solver (BSS) for each
category. In this table we can see that ISAC tends to favor selecting the Best
Single Solver. This is particularly clear in the Hand-crafted dataset: the BSS (15)
is chosen only in 8% of the instances by the VBS, while it is the more frequently
chosen solver by ISAC. Note also that in the ALL dataset the VBS approach
never chooses the BSS, while this solver is one of the top three chosen by ISAC.
On the other hand, the more often a solver is chosen by the VBS, the more often
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Table 6. Frequencies of solver selections for VBS, ISAC and SNNAP. Results are ex-
pressed as percentages and entries with value < 0.5 have been reported as ’-’. In bold
the top three solvers for each approach are identified. Reported are also the Best Single
Solver (BSS) for each dataset. Solvers are: 1: clasp-2.1.1 jumpy, 2: clasp-2.1.1 trendy,
3: ebminisat, 4: glueminisat, 5: lingeling, 6: lrglshr, 7: picosat, 8: restartsat, 9: circmin-
isat, 10: clasp1, 11: cryptominisat 2011, 12: eagleup, 13: gnoveltyp2, 14: march rw,
15: mphaseSAT, 16: mphaseSATm, 17: precosat, 18: qutersat, 19: sapperlot, 20: sat4j-
2.3.2, 21: sattimep, 22: sparrow, 23: tnm, 24: cryptominisat295, 25: minisatPSM, 26:
sattime2011, 27: ccasat, 28: glucose 21, 29: glucose 21 modified.
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it is chosen by SNNAP. This big discrepancy between the VBS and BSS in this
dataset is one of the reason for the poorer performance of ISAC and one of the
reasons for the improvement observed when using SNNAP.

7 Conclusions

Instance-Specific Algorithm Configuration (ISAC) is a successful approach to
tuning a wide range of solvers for SAT, MIP, set covering, and others. This
approach assumes that the features describing an instance are enough to group
instances so that all instances in the cluster prefer the same solver. Yet there
is no fundamental reason why this hypothesis should hold. In this paper we
show that the assumptions that ISAC makes can be strengthened. We show that
not all employed features are useful and that it is possible to achieve similar
performance with only a fraction of the features that are available. We then show
that it is possible to extend the feature vector to include the past performances of
solvers to help guide the clustering process. In the end, however, we introduce an
alternative view of ISAC which uses the existing features to predict the best three
solvers for a particular instance. Using k-nearest neighbors, the approach then
scans the training data to find other instances that preferred the same solvers,
and uses them as a dynamically formed training set to select the best solver
to use. We call this methodology Solver-based Nearest Neighbors for Algorithm
Portfolios (SNNAP).

The benefit of the SNNAP approach over ISAC is that the cluster formulated
by the k-NN comprises of instances that are most similar to the new instance,
something that ISAC assumes but has no way of enforcing. Additionally, the
approach is not as sensitive to incorrect decisions by the predictive model. For
example, it does not matter if the ranking of the top three solvers is incorrect, any
permutation is acceptable. Furthermore, even if one of the solvers is incorrectly
included in the top n, the k-NN generates a large enough training set to find a
reasonable solver that is likely to work well in general.

This synergy between prediction and clustering that enforces the desired qual-
ities of our clusters is the reason that SNNAP consistently and significantly out-
performs the traditional ISAC methodology. Consequently, this paper presents
a solver portfolio for combinatorial problem solving that out-performs the state-
of-the-art in the area.
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