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Abstract. We propose a new method for local metric learning based
on a conical combination of Mahalanobis metrics and pair-wise similar-
ities between the data. Its formulation allows for controlling the rank
of the metrics’ weight matrices. We also offer a convergent algorithm
for training the associated model. Experimental results on a collection
of classification problems imply that the new method may offer notable
performance advantages over alternative metric learning approaches that
have recently appeared in the literature.
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1 Introduction

Many Machine Learning problems and algorithms entail the computation of
distances with prime examples being the k-nearest neighbor (KNN) decision rule
for classification and the k-Means algorithm for clustering problems. Also, when
computing distances, the use of the Euclidean distance metric, or a weighted
variation of it, the Mahalanobis metric, are most often encountered because of
their simplicity and geometric interpretation. However, employing these metrics
for computing distances may not necessarily perform well for all problems. Early
on, attention was directed to data-driven approaches in order to infer the best
metric for a given problem (e.g. [I] and [2]). This is accomplished by taking
advantage of the data’s distributional characteristics or other side information,
such as similarities between samples. In general, such paradigms are referred to as
metric learning techniques. A typical instance of such approaches is the learning
of the weight matrix that determines the Mahalanobis metric. This particular
task can equivalently be viewed as learning a decorrelating linear transformation
of the data in their native space and computing Euclidean distances in the range
space of the learned linear transform (feature space). When the problem at hand
is a classification problem, a KNN algorithm based on the learned metric is
eventually employed to label samples.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part ITI, LNAI 8190, pp. 224-£39] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



Reduced-Rank Local Distance Metric Learning 225

This paper focuses on metric learning methods for classification tasks, where
the Mahalanobis metric is learned with the assistance of pair-wise sample sim-
ilarity information. In our context, two samples will be deemed similar, if they
feature the same class label. The goal of such approaches is to map similar sam-
ples close together and to map dissimilar samples far apart as measured by the
learned metric. This is done so that an eventual application of a KNN deci-
sion rule exhibits improved performance over an application of KNN using a
Euclidean metric.

Many such algorithms show significant improvements over the case of KNN
that uses Euclidean metrics. For example, [I] poses similarity-based metric learn-
ing as a convex optimization problem, while [3] builds a trainable system to map
similar faces to low dimensional spaces using a convolutional network to address
geometric distortions. Moreover, [2] provides an online algorithm for learning a
Mahalanobis metric based on kernel operators. Another approach, Neighborhood
Components Analysis (NCA) [], maximizes the leave-one-out performance on
the training data based on stochastic nearest neighbors. Furthermore, in Large
Margin Nearest Neighbor (LMNN) [5], the metric is learned so that the k-nearest
neighbors of each sample belong to the same class, while others are separated by
alarge margin. Finally, [6] formulates the problem using information entropy and
proposes the Information Theoretic Metric Learning (ITML) technique. In spe-
cific, ITML minimizes the differential relative entropy between two multivariate
Gaussian distributions with distance metric constraints.

A common thread of the aforementioned methods is the use of a single, global
metric, i.e., a metric that is used for all distance computations. However, learning
a global metric may not be well-suited in some settings that entail multi-modality
or non-linearities in the data. To illustrate this point, Figure [ displays a toy
dataset consisting of 4 samples drawn from two classes. Sub-figure (a) shows
the samples in their native space and sub-figure (b) depicts their images in
the feature space resulting from learning a global metric. Finally, sub-figure (c)
depicts the transformed data, when a local metric is learned, that takes into
account the location and similarity characteristics of the data involved. We’ll
refer to such metrics as local metrics. Unlike the results obtained via the use
of a global metric, one can (somewhat, due to the 3-dimensional nature of the
depiction) observe in sub-figure (¢) that images of similar samples (in this case,
of the same class label) have been mapped closer to each other, when a local
metric is learned. This may potentially result into improving 1-NN classification
performance, when compared to the sample distributions in the other two cases.

Much work has been already performed on local metric learning. For exam-
ple, [7] defines “local” as nearby pairs. In particular, they develop a model that
ailms to co-locate similar pairs and to separate dissimilar pairs. Additionally,
their probabilistic framework is solved using an Expectation-Maximization-like
algorithm. [§] learns local metrics through reducing neighborhood distances in
directions that are orthogonal to the local decision boundaries, while expanding
those parallel to the boundaries. In [9], the authors of LMNN also developed the
LMNN-Multiple Metric (LMNN-MM) technique. When LMNN-MM is applied
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Fig. 1. Toy dataset that illustrates the potential advantages of learning a local metric
instead of a global one. (a) Original data distribution. (b) Data distribution in the
feature space obtained by learning a global metric. (¢) Data distribution in the feature
space obtained by learning a local metric.

in a classification context, the number of metrics utilized equals the number
of classes. [I0] introduced a similar approach, in which a metric is defined for
each cluster. Moreover, in [I1], the authors proposed Generative Local Metric
Learning (GLML), which learns local metrics through NN classification error
minimization. Their model employs a rather strong assumption, namely, they
assume that the data has been drawn from a Gaussian mixture. Furthermore, in
[12], the authors propose Parametric Local Metric Learning (PLML), in which
each local metric is defined in relation to an anchor point of the instance space.
Next, they use a linear combination of the resulting metric-defining weight ma-
trices and employ a projected gradient method to optimize their model.

In this paper, we propose a new local metric learning approach, which we will
be referring to as Reduced-Rank Local Metric Learning (R?LML). As detailed in
Section [2] for our method, the local metric is modeled as a conical combination
of Mahalanobis metrics. Both the Mahalonobis metric weight matrices and the
coefficients of the combination are learned from the data with the aid of pair-wise
similarities in order to map similar samples close to each other and dissimilar
samples far from each other in the feature space. Furthermore, the proposed
problem formulation is able to control the rank of the involved linear mappings
through a sparsity-inducing matrix norm. Additionally, in Section [Blwe supply an
algorithm for training our model. We then show that the set of fixed points of our
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algorithm includes the Karush-Kuhn-Tucker (KKT) points of our minimization
problem. Finally, in Section Bl we demonstrate the capabilities of RZLML with
respect to classification tasks. When compared to other recent global or local
metric learning methods, R?2LML exhibits the best classification accuracy in 7
out of the 9 datasets we considered.

2 Problem Formulation

Let Nps = {1,2,..., M} for any positive integer M. Suppose we have a training
set {x, € RP},eny and corresponding pair-wise sample similarities arranged
in a matrix S € {0,1}"*" as side information with the convention that, if @,
and x,, are similar, then s,,,, = 1, if otherwise, then s,,, = 0. In a classification
scenario, two samples can be naturally deemed similar (or dissimilar), if they
feature the same (or different) class labels.

Now, the Mahalanobis distance between two samples x,, and x,, is defined
as da(Tm,T,) = \/(wm —x,)T A(x,, — x,,), where A € RP*P is a positive
semi-definite matrix (denoted as A = 0), which we will refer to as the weight
matriz of the metric. Obviously, when A = I, the previous metric becomes
the usual Euclidean distance. Being positive semi-definite, the weight matrix
can be expressed as A = LTL, where L € RP*P with P < D. Hence, the
previously defined distance can be expressed as da(@m, €n) = || L(xm — xn)||5-
Evidently, this last observation implies that the Mahalanobis distance based
on A between two points in the native space can be viewed as the Euclidean
distance between the images of these points in a feature space obtained through
the linear transformation L.

In metric learning, we are trying to learn A so to minimize the distances
between pairs of similar points, while maintaining above a certain threshold (if
not maximizing) the distances between dissimilar points in the feature space.
Such a problem could be formulated as follows:

mln ZsmndA xnuwn) (1)

m,n

s.t. Z — Smn)dA(Tm, Tn) > 1

Problem () is a semi-definite programming problem involving a global metric
based on A. There are several methods for learning a single global metric like the
ones used for LMNN, ITML and NCA. However, as we have shown in Figure [T
use of a global metric may not be advantageous under all circumstances.

In this paper, we propose R?LML, a new local metric approach, which we
delineate next. Our formulation assumes that the metric involved is expressed
as a conical combination of K > 1 Mahalanobis metrics. We also define a vector
g* € RY for each local metric k. The n'" element g* of this vector may be
regarded as a measure of how important metric k is, when computing distances
involving the n*” training sample. We constrain the vectors g* to belong to 2 =
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{{gk}keNK 0,11V : g¥ = 0, Yegt = 1}, where >’ denotes component-wise

ordering. The fact that the g¥’s need to sum up to the all-ones vector 1 forces
at least one metric to be relevant, when computing distances from each training
sample. Note that, if K = 1, g = 1, which corresponds to learning a single
global metric.

Based on what we just described, the weight matrix for each pair (m,n)
of training samples is given as >, Akgmgk Observe that the distance between
every pair of points features a different weight matrix. Motivated by Problem (I,
one could consider the following formulation:

min E E Smn

L¥,gke2y,k >0
+ C’ZZ — Smn)&n + )\Zrank (L")
k mmn k

HLkAwmn

Lk Az,

\ ghoh+ (2)

mn?

2
>1-—¢k m,n € Ny, k € Ng
2

where Azppn 2 T — €, and rank(Lk) denotes the rank of matrix L*. The
first term of the objective function attempts to minimize the measured distance
between similar samples, while the second term along with the first set of soft
constraints (due to the presence of slack variables &¥ ) encourage distances
between pairs of dissimilar samples to be larger than 1. Evidently, C' > 0 con-
trols the penalty of violating the previous desiteratum and can be chosen via a
validation procedure. Finally, the last term penalizes large ranks of the linear
transformations L*. Therefore, the regularization parameter A > 0, in essence,
controls the dimensionality of the feature space.

Problem (@) can be somewhat reformulated by first eliminating the slack
variables. Let []; : R — R, be the hinge function defined as [u]; = max{u,0}

= {1 — HLkAwmn 2] ,

214
which can be substituted back into the objective function. Next, we note that
rank(Lk) is a non-convex function w.r.t. L* and is, therefore, hard to optimize.
Following the approaches of [I3] and [14], we replace rank(L"*) with its convex

envelope, i.e., the nuclear norm L*, which is defined as the sum of L¥’s singular
values. These considerations lead to the following problem:

kmgn § § Smn
L¥.g" s, k m,n

+ C(l - Smn) |:1 - HLkAwm”

for all u € R. It is straightforward to show that ¢*

mn

2
L*Az,,, , grgk + (3)

RN

where ||-]|, denotes the nuclear norm; in specific,

H = Zle os(L¥), where

o, is a singular value of L*.
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3 Algorithm

Problem (@] reflects a minimization over two sets of variables. When the g*’s
are considered fixed, the problem is non-convex w.r.t. L*, since the second term
in Eq. @) is the combination of a convex function (hinge function) and a non-

2
) w.r.t. L¥. On the other hand, if the L*’s

are considered fixed, the problem is also non-convex w.r.t g*, since the similarity
matrix S is almost always indefinite as it will be argued in the sequel. This
implies that the objective function may have multiple minima. Therefore, an
iterative procedure seeking to minimize it may have to be started multiple times
with different initial estimates of the unknown parameters in order to find its
global minimum. In what follows, we discuss a two-step, block-coordinate descent
algorithm that is able to perform the minimization in question.

monotonic function, 1 — HLkAa:mn

3.1 Two-Step Algorithm

For the first step, we fix g* and try to solve for each L*. In this case, Problem (34)
becomes an unconstrained minimization problem. We observe that the objective
function is of the form f(w) + r(w), where w is the parameter we are trying to
minimize over, f(w) is the hinge loss function, which is non-differentiable, and
r(w) is a non-smooth, convex regularization term. If f(w) were smooth, one
could employ a proximal gradient method to find a minimum. As this is clearly
not the case with the objective function at hand, in our work we resort to using
a Proximal Subgradient Descent (PSD) method in a similar fashion to what has
been done in [15] and [16]. Moreover, our approach is a special case of [17], based
on which we show that our PSD steps converge (see Section [3.2]).

Correspondingly, for the second step we assume the L*’s to be fixed and
minimize w.r.t. each g* vector. Consider a matrix 5" associated to the kth
metric, whose (m,n) element is defined as:

2
§mn = Smn LkAwmn 2 ’ m,n € I\IN (4)
Then Problem (B]) becomes:
) =k
min ) (g")'5"g" (5)
grkef, A

Let g € REN be the vector that results from concatenating all individual g*
vectors into a single vector and define the matrix

S 0 .. 0
=2

- 0SS .. 0

Sé : . ) eRK’NXKN (6)

o
o -
190]
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Based on the previous definitions, the cost function becomes gTS’g and g’s
constraint set becomes 2, = {g € [0, 1]KN :g>=0, Bg= 1}7 where B 217 @
Iy, ® denotes the Kronecker product and Iy is the N x N identity matrix.
Hence, the minimization problem for the second step can be re-expressed as:
. T =~

[nin g Sg (7)
Problem (7)) is non-convex, since S is almost always indefinite. This stems from
the fact that S is a block diagonal matrix, whose blocks are Euclidean Distance
Matrices (EDMs). It is known that EDMs feature exactly one positive eigenvalue
(unless all of them equal 0). Since each EDM is a hollow matrix, its trace equals
0. This, in turn, implies that its remaining eigenvalues must be negative [I8].
Hence, S will feature negative eigenvalues.

In order to obtain a minimizer of Problem (), we employ a Majorization Mini-
mization (MM) approach [19], which first requires identifying a function of g that
majorizes the objective function at hand. Let p 2 N\naz(S), where Amaz (S)
is the largest eigenvalue of S. As the latter matrix is indefinite, Ayqx(S) > 0.
Then, H £ S + puI is negative semi-definite. Let ¢(g) = g” Sg be the cost func-
tion in Eq. ([@). Since (g — g’ )T H(g — g') < 0 for any g and g’, we have that
q(g) < —g'"Hg' +29'"Hg — 1 ||g\|§ for all g # g’ and equality, only if g = g’.
The right hand side of the aforementioned inequality constitutes ¢’s majorizing
function, which we will denote as ¢(g|g’). The majorizing function is used to
iteratively optimize g based on the current estimate g’. So we have the following
minimization problem, which is convex w.r.t g:

n 29’ Hg — ; 8
min 29" Hg wlglls (8)

This problem is readily solvable, as the next theorem implies.

Theorem 1. Let g, d € REN, B 21T @ Iy € RV*EN gnd ¢ > 0. The unique
minimizer g* of

. c
min _ |gll; +d"g 9)
g 2
st. Bg=1,g>=0
has the form

1

. [(BTa)i - di]+ , 1 €Ngp (10)

gi

where g; is the it" element of g and o € RYN is the Lagrange multiplier vector
associated to the equality constraint.

Proof. The Lagrangian of Problem (@) is expressed as:

C
L(g,a,B) = 29T9+dTg+aT(1 —Bg)-p8"g (11)
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Algorithm 1. Minimization of Problem (B])

Input: Data X € RP*Y number of metrics K

Output: L* g* ke Nk

01. Initialize L*, g* for all k € Ng

02. While not converged Do

03. Step 1: Use a PSD method to solve Problem (@) for each L*
04. Step 2:

05. S+ Eq @) _

06. 14— —Amax(S)

07. H<+« S+ul

08. ‘While not converged Do

09. Apply binary search to obtain each g" using Eq. ({I0)
10. End While

11. End While

where a € RY and 8 € REYN with 3 > 0 are Lagrange multiplier vectors. If we
set the partial derivative of L(g, a, 3) with respect to g to 0, we readily obtain
that

1 .
= ((BTa)i+ 8~ di), i€ Nicw (12)
Let 5 2 (BT a); — d;. Combining Eq. () with the complementary slackness
condition B;g; = 0, one obtains that, if v; <0, then 8; = —v; and g; = 0, while,
when v; > 0, then 8; = 0 and, evidently, ¢g; = i%—. These two observations can
be summarized into g; = i [vil ., which completes the proof.

In order to exploit the result of Theorem [ for obtaining a concrete solution
to Problem (§]), we ought to point out that the (unknown) optimal values of
the Lagrange multipliers a; can be found via binary search, so they satisfy the
equality constraint Bg = 1.

In conclusion, the entire algorithm for solving Problem (B]) can be recapitu-
lated as follows: For step 1, the g* vectors are assumed fixed and a PSD is being
employed to minimize the cost function of Eq. @) w.r.t. each weight matrix L*.
For step 2, all L*’s are held fixed to the values obtained after completion of the
previous step and the solution offered by Theorem [l along with binary searches
for the a;’s are used to compute the optimal g,’s by iteratively solving Prob-
lem (®) via a MM scheme. Note that these two main steps are repeated until
convergence is established; the whole process is depicted in Algorithm [I

3.2 Analysis

In this subsection, we investigate the convergence of our proposed algorithm.
Suppose that a PSD method is employed to minimize the function f(w)+r(w),
where both f and r are non-differentiable. Denote 0 f as the subgradient of f and



232 Y. Huang et al.

define ||0f (w)]| 2 sup ||g|l; the corresponding quantities for r are similarly
geof(w)
defined. Like in [20] and [21], we assume that the subgradients are bounded, i.e.:

10f (w)||* < Af(w) + G, |Jor(w)]* < Ar(w) + G? (13)

where A and G are scalars. Let w* be a minimizer of f(w) + r(w). Then we
have the following lemma for the problem under consideration.

Lemma 2. Suppose that a PSD method is employed to solve min,, f(w)+r(w).
Assume that 1) f and r are lower-bounded; 2) the norms of any subgradients O f
and Or are bounded as in Eq. {I3); 3) |[w*|| < D for some D > 0; 4) r(0) = 0.
Letn, & \/E?TG, where T is the number of iterations of the PSD algorithm. Then,

for a constant ¢ < 4, such that (1 — cA \/Eng) > 0, and initial estimate of the

solution wy = 0, we have:

T
< <
tef{r{mT}f(wt) +r(w) < z:: wy) <
4v/2DG fw*) + r(w*)
< + (14)
cAD cAD
V(1 - G\/ST) 1- GV/8T

The proof of Lemma [ is straightforward as it is based on [I7] and, therefore, is
omitted here. Lemma 2 implies that, as T' grows, the PSD iterates approach w*.

Theorem 3. Algorithm [l yields a convergent, non-increasing sequence of cost
function values relevant to Problem ([3). Furthermore, the set of fized points of the
iterative map embodied by Algorithm [l includes the KKT points of Problem (3).

Proof. We first prove that each of the two steps in our algorithm decreases the
objective function value. This is true for the first step, according to Lemma[2 For
the second step, since a MM algorithm is used, we have the following relationships

q(g”) = q(g”|g") < q(g*lg") < q(d'lg") = a(g’) (15)

This implies that the second step always decreases the objective function value.
Since the objective function is lower bounded, our algorithm converges.

Next, we prove that the set of fixed points of the proposed algorithm includes
the KKT points of Problem (B]). Towards this purpose, suppose the algorithm

has converged to a KKT point {Lk*, gk*} ; then, it suffices to show that this
keNg
point is also a fixed point of the algorithm’s iterative map. For notational brevity,

let fo(Lk,gk), f1(g") and hq(g*) be the cost function, inequality constraint and
equality constraint of Problem (B]) respectively. By definition, the KKT point
will satisfy

0 € g fo(L*, ") + Vg fo(L**, g™) (16)
_ (,Bk)T ng fl(gk*) +(IT vgk hl(gk*) ke NK
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In relation to Problem ([7l), which step 2 tries to solve, the KKT point will satisfy
the following equality (gradient of the problem’s Lagrangian set to 0):

2Sg* - 3—BTa=0 (17)

Problem (&) can be solved based on Eq. (I2)) of Theorem[I} in specific, we obtain
that

L (BTa+ﬁf2Hg*) (18)

9:_2“

Substituting Eq. (I7) and H = § + uI into Eq. (I8), one immediately obtains
that
1

9="y,

(B"a+ B -2Hg") = - 2;(259* —28g" —2pg") =g~ (19)
In other words, step 2 will not update the solution. Now, if we substitute Eq. (I7)
back into Eq. (IB)), we obtain 0 € 8« fo(L"*, g**) for all k, which is the optimal-
ity condition for the subgradient method; the PSD step (step 1 of our algorithm)
will also not update the solution. Thus, a KKT point of Problem (@) is a fixed
point of our algorithm.

Table 1. Details of benchmark data sets. For the Letter and Pendigits datasets, only
4 and 5 classes were considered respectively.

#D  #CLASSES #TRAIN #VALIDATION #TEST

RoBoT 4 4 240 240 4976
LETTER A-D 16 4 200 400 2496
PENDIGITS 1-5 16 5 200 1800 3541
WINEQUALITY 12 2 150 150 6197
TELESCOPE 10 2 300 300 11400
IMGSEG 18 7 210 210 1890
TWONORM 20 2 250 250 6900
RINGNORM 20 2 250 250 6900
IONOSPHERE 34 2 80 50 221

4 Experiments

In this section, we performed experiments on 9 datasets, namely, Robot Naviga-
tion, Letter Recognition, Pendigits, Wine Quality, Gamma Telescope, lonosphere
datasets from the UCI machine learning repositor, and Image Segmentation,
Two Norm, Ring Norm datasets from the Delve Dataset Collectiond. Some char-
acteristics of these datasets are summarized in Table [l We first explored how

!http://archive.ics.uci.edu/ml/datasets.html
2 http://www.cs.toronto.edu/~delve/data/datasets.html


http://archive.ics.uci.edu/ml/datasets.html
http://www.cs.toronto.edu/~delve/data/datasets.html

234 Y. Huang et al.

the performance of R2LMIL varies with respect to the number of local met-
rics. Then, we compared R?LML with other global or local Metric Learning
algorithms, including ITML, LMNN, LMNN-MM, GLML and PLML.

The computation of the distances between some test sample @ and the training
samples @, according to our formulation requires the value of g corresponding
to . One option to assign a value to g would be to utilize transductive learning.
However, as such an approach could prove computationally expensive, we opted
instead to assign g the value of the corresponding vector associated to @’s nearest
(in terms of Euclidean distance) training sample as was done in [12].

4.1 Number of Local Metrics

In this subsection, we show how the performance of R?LML varies with respect
to the number of local metrics K. In [9], the authors set K equal to the number
of classes for each dataset, which might not necessarily be the optimal choice.
In our experiments, we let K vary from 1 to 7. This range covers the maximum
number of classes in the datasets that are considered in our experiments. As we
will show, the optimal K is not always the same as the number of classes.

Besides K, we held the remaining parameters (refer to Eq. @) fixed: the
penalty parameter C' was set to 1 and the nuclear norm regularization parameter
A to 0.1. Moreover, we terminated our algorithm, if it reached 10 epochs or when
the difference of cost function values between two consecutive iterations was less
than 10~%. In each epoch, the PSD inner loop ran for 500 iterations. The PSD
step length was fixed to 10~° for the Robot and Ionosphere datasets, to 1076 for
the Letter A-D, Two norm and Ring Norm datasets, to 10~® for the Pendigits 1-
5, Wine Quality and Image Segmentation datasets and to 1079 for the Gamma
Telescope dataset. The MM loop was terminated, if the number of iterations
reached 3000 or when difference of cost function values between two consecutive
iterations was less than 1072, The relation between number of local metrics and
the classification accuracy for each dataset is reported in Figure

Several observations can be made based on Figure 2l First of all, our method
used as a local metric learning method (when K > 2) performs much better
than when used with a single global metric (when K = 1) for all datasets except
the Ring Norm dataset. For the latter dataset, the classification performance
deteriorates with increasing K. Secondly, one cannot discern a deterministic
relationship between the classification accuracy and the number of local metrics
utilized that is suitable for all datasets. For example, for the Robot dataset,
the classification accuracy is almost monotonically increasing with respect to K.
For the remaining datasets, the optimal K varies in a non-apparent fashion with
respect to their number of classes. For example, in the case of the Ionosphere
dataset (2-class problem), K = 3,6,7 yield the best generalization results. All
these observations suggest that validation over K is needed to select the best
performing model.

! https://github.com/yinjiehuang/R2LML/archive/master.zip
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Fig. 2. R?LML classification accuracy results on the 9 benchmark datasets for varying
number K of local metrics. #C indicates the number of classes of each dataset.

4.2 Comparisons

We compared R?LML with several other metric learning algorithms, including
Euclidean metric KNN, ITML [6], LMNN [5], LMNN-MM [9], GLML [11I] and
PLML [12]. Both ITML and LMNN learn a global metric, while LMNN-MM,
GLML and PLML are local metric learning algorithms. After the metrics are
learned, the KNN classifier is utilized for classification with k (number of nearest
neighbors) set to 5.

For our experiments we used LMNN, LMNN—M, ITMIZ and PLMIF im-
plementations that we found available online. For ITML, a good value of + is
found via cross-validation. Also, for LMNN and LMNN-MM, the number of at-
tracting neighbors during training is set to 1. Additionally, for LMNN, at most
500 iterations were performed and 30% of training data were used as a validation

! mttp://www.cse.wustl.edu/~kilian/code/code.html
2 http://www.cs.utexas.edu/~pjain/itml/
3http://cui.unige.ch/~wangjun/papers/PLML.zip
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Table 2. Percent accuracy results of 7 algorithms on 9 benchmark datasets. For each
dataset, the statistically best and comparable results for a family-wise significance
level of 0.05 are highlighted in boldface. All algorithms are ranked from best to worst;
algorithms share the same rank, if their performance is statistically comparable.

EucLiDEAN ITML LMNN LMNN-MM GLML PLML R2?LML

ROBOT 65.31>"¢  65.86%"¢ 66.10°™¢  66.10°"¢  62.28°"¢ 61.03°"¢ 74.16'°"
LETTER A-D  88.822"7 93.39'°* 93.79'** 93.83'°* 89.30%"? 94.43'*! 95.07'*
PENDIGITS 1-5 88.31%" 93.172"¢ 91.19%"¢  91.27%"¢  88.37*" 95.88'%* 95.43%¢!
WINEQUALITY 86.127"  06.11%7¢ 94.43%"  93.385"  91.79%" 98.55'%t 97.532"¢
TELESCOPE 70.31%7¢  71.422" 72.16%"?  71.45%"¢  70.31%"¢ 77.52%°t 77.97'%

IMGSEG 80.05%"  90.2127¢ 90.74%"1  89.422"1  87.30%"¢ 90.48%"¢ 92,591
TWONORM 96.54%"¢  96.78° 96.322"¢  06.30%"¢  096.522"¢ 97.32'°t 97.23'!
RINGNORM 55.847h  77.35274 59 365" 59.75%"  97.09'% 75.68%7¢ 73.734"

[ONOSPHERE 75.57°"¢  86.43%t 82.35%"¢  82.352"¢  71.95%7¢ 78.73%"¢ 90.50'%

set. The maximum number of iterations for LMNN-MM was set to 50 and a step
size of 10~7 was employed. For GLML, we chose v by maximizing performance
over a validation set. Finally, the PLML hyperparameter values were chosen as
in [12], while oy was chosen via cross-validation. With respect to R*LML, for
each dataset we used K'’s optimal value as established in the previous series of
experiments, while the regularization parameter A was chosen via a validation
procedure over the set {0.01,0.1,1,10,100}. The remaining parameter settings
of our method were the same as the ones used in the previous experiments.

For pair-wise model comparisons, we employed McNemar’s test. Since there
are 7 algorithms to be compared, we used Holm’s step-down procedure as a mul-
tiple hypothesis testing method to control the Family-Wise Error Rate (FWER)
[22] of the resulting pair-wise McNemar’s tests. The experimental results for a
family-wise significance level of 0.05 are reported in Table

It is observed that R2LML achieves the best performance on 7 out of the 9
datasets, while GLML, ITML and PLML outperform our model on the Ring
Norm dataset. GLML’s surprisingly good result for this particular dataset is
probably because GLML assumes a Gaussian mixture underlying the data gen-
eration process and the Ring Norm dataset is a 2-class recognition problem drawn
from a mixture of two multivariate normal distributions. Even though not being
the best model for this dataset, R2LML is still highly competitive compared to
LMNN, LMNN-MM and Euclidean KNN. Next, PLML performs best in 5 out of
9 datasets, even outperforming RZLML on the Wine Quality dataset. However,
PLML gives poor results on some datasets like Robot or Tonosphere. Also, PLML
does not show much improvements over KNN and may even perform worse like
for the Robot dataset. Note, that R2LML is still better for the Image Segmen-
tation, Robot and Ionosphere datasets. Additionally, ITML is ranked first for 3
datasets and even outperforms R2LML on the Ring Norm dataset. Often, ITML
ranks at least 2"¢ and seems to be suitable for low dimensional datasets. How-
ever, R2LML still performs better than ITML for 5 out of the 9 datasets. Finally,
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GLML rarely performs well; according to Table @, GLML only achieves 3"¢ or
4th ranks for 6 out of the 9 datasets.

Another general observation that can be made is the following: employing
metric learning is almost always a good choice, since the classification accuracy
of utilizing a Euclidean metric is almost always the lowest among all the 7 meth-
ods we considered. Interestingly, LMNN-MM, even though being a local metric
learning algorithm, does not show any performance advantages over LMNN (a
global metric method); for some datasets, it even obtained lower classification
accuracy than LMNN. It is possible that fixing the number of local metrics to
the number of classes present in the dataset curtails LMNN-MM’s performance.
According to the obtained results, R?LML yields much better performance for
all datasets compared to LMNN-MM. This consistent performance advantage
may not only be attributed to the fact that K was selected via a validation
procedure, since, for cases where the optimal K equaled the number of classes
(e.g. Letter A-D dataset), R2LML still outperformed LMNN-MM.

5 Conclusions

In this paper, we proposed a new local metric learning model, namely Reduced-
Rank Local Metric Learning (R?LML). It learns K Mahalanobis-based local
metrics that are conically combined, such that similar points are closer to each
other, while the separation between dissimilar ones is encouraged to increase.
Additionally, a nuclear norm regularizer is adopted to obtain low-rank weight
matrices for calculating metrics. In order to solve our proposed formulation, a
two-step algorithm is showcased, which iteratively solves two sub-problems in an
alternating fashion; the first sub-problem is minimized via a Proximal Subgra-
dient Descent (PSD) approach, while the second one via a Majorization Mini-
mization (MM) procedure. Moreover, we have demonstrated that our algorithm
converges and that its fixed points include the Karush-Kuhn-Tucker (KKT)
points of our proposed formulation.

In order to show the merits of R?LML, we performed a series of experiments
involving 9 benchmark classification problems. First, we varied the number of
local metrics K and discussed the influence of K on classification accuracy. We
concluded that there is no obvious relation between K and the classification
accuracy. Furthermore, the obtained optimal K does not necessarily equal the
number of classes of the dataset under consideration. Finally, in a second set of
experiments, we compared R2LML to several other metric learning algorithms
and demonstrated that our proposed method is highly competitive.
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