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Preface

These are the proceedings of the 2013 edition of the European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases, or ECML PKDD for short. This conference series has grown out of
the former ECML and PKDD conferences, which were Europe’s premier confer-
ences on, respectively, Machine Learning and Knowledge Discovery in Databases.
Organized jointly for the first time in 2001, these conferences have become in-
creasingly integrated, and became one in 2008. Today, ECML PKDD is a world–
leading conference in these areas, well–known in particular for having a highly
diverse program that aims at exploiting the synergies between these two differ-
ent, yet related, scientific fields.

ECML PKDD 2013 was held in Prague, Czech Republic, during September
23–27. Continuing the series’ tradition, the conference combined an extensive
technical program with a variety of workshops and tutorials, a demo track for
system demonstrations, an industrial track, a nectar track focusing on particu-
larly interesting results from neighboring areas, a discovery challenge, two poster
sessions, and a rich social program.

The main technical program included five plenary talks by invited speak-
ers (Rayid Ghani, Thorsten Joachims, Ulrike von Luxburg, Christopher Re and
John Shawe-Taylor) and a record–breaking 138 technical talks, for which further
discussion opportunities were provided during two poster sessions. The indus-
trial track had four invited speakers: Andreas Antrup (Zalando), Ralf Herbrich
(Amazon Berlin), Jean-Paul Schmetz (Hubert BurdaMedia), and Hugo Zaragoza
(Websays). The demo track featured 11 software demonstrations, and the nectar
track 5 talks. The discovery challenge, this year, focused on the task of rec-
ommending given names for children to soon–to–be–parents. Twelve workshops
were held: Scalable Decision Making; Music and Machine Learning; Reinforce-
ment Learning with Generalized Feedback; Languages for Data Mining and Ma-
chine Learning; Data Mining on Linked Data; Mining Ubiquitous and Social
Environments; Tensor Methods in Machine Learning; Solving Complex Machine
Learning Problems with Ensemble Methods; Sports Analytics; New Frontiers
in Mining Complex Pattern; Data Analytics for Renewable Energy Integration;
and Real–World Challenges for Data Stream Mining. Eight tutorials completed
the program: Multi–Agent Reinforcement Learning; Second Order Learning;
Algorithmic Techniques for Modeling and Mining Large Graphs; Web Scale
Information Extraction; Mining and Learning with Network–Structured Data;
Performance Evaluation of Machine Learning Algorithms; Discovering Roles and
Anomalies in Graphs: Theory and Applications; and Statistically Sound Pattern
Discovery.

The conference offered awards for distinguished papers, for the paper from
ECML / PKDD 2003 with the highest impact after a decade, and for the best
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demonstration. In addition, there was the novel Open Science Award. This award
was installed in order to promote reusability of software, data, and experimental
setups, with the aim of improving reproducibility of research and facilitating
research that builds on other authors’ work.

For the first time, the conference used a mixed submission model: work could
be submitted as a journal article to Machine Learning or Data Mining and
Knowledge Discovery, or it could be submitted for publication in the conference
proceedings. A total of 182 original manuscripts were submitted to the journal
track, and 447 to the proceedings track. Of the journal submissions, 14 have
been published in the journal, as part of a special issue on ECML PKDD 2013,
and 14 have been redirected to the proceedings track. Among the latter, 13
were accepted for publication in the proceedings. Finally, of the 447 submissions
to the proceedings track, 111 have been accepted. Overall, this gives a record
number of 629 submissions, of which 138 have been scheduled for presentation
at the conference, making the overall acceptance rate 21.9%.

The mixed submission model was introduced in an attempt to improve the
efficiency and reliability of the reviewing process. Reacting to criticism on the
conference–based publication model that is so typical for computer science,
several conferences have started experimenting with multiple reviewing rounds,
continuous submission, and publishing contributions in a journal instead of the
conference proceedings. The ECML PKDD model has been designed to maxi-
mally exploit the already existing infrastructure for journal reviewing. For an
overview of the motivation and expected benefits of this new model, we refer to
A Revised Publication Model for ECML PKDD, available at arXiv:1207.6324.

These proceedings of the 2013 European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases contain full
papers of work presented at the main technical track, abstracts of the jour-
nal articles and invited talks presented there, and short papers describing the
demonstrations and nectar papers. We thank the chairs of the demo track (An-
dreas Hotho and Joaquin Vanschoren), the nectar track (Rosa Meo and Michèle
Sebag), and the industrial track (Ulf Brefeld), as well as the proceedings chairs
Yamuna Krishnamurthy and Nico Piatkowski, for their help with putting these
proceedings together. Most importantly, of course, we thank the authors for their
contributions, and the area chairs and reviewers for their substantial efforts to
guarantee and sometimes even improve the quality of these proceedings. We wish
the reader an enjoyable experience exploring the many exciting research results
presented here.

July 2013 Hendrik Blockeel
Kristian Kersting
Siegfried Nijssen

Filip Železný

http://arxiv.org/abs/1207.6324
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Filip Železný Czech Technical University in Prague,
Czech Republic

Local Chair
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Liva Ralaivola
Karthik Raman
Jan Ramon
Huzefa Rangwala
Umaa Rebbapragada
Jean-Michel Renders
Steffen Rendle
Achim Rettinger
Fabrizio Riguzzi
Celine Robardet
Marko Robnik Sikonja
Pedro Rodrigues
Juan Rodriguez
Irene Rodriguez-Lujan
Ulrich Rückert
Stefan Rüping
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Using Machine Learning Powers for Good

Rayid Ghani

The past few years have seen increasing demand for machine learning and data
mining—both for tools as well as experts. This has been mostly motivated by a
variety of factors including better and cheaper data collection, realization that
using data is a good thing, and the ability for a lot of organizations to take
action based on data analysis. Despite this flood of demand, most applications
we hear about in machine learning involve search, advertising, and financial
areas. This talk will talk about examples on how the same approaches can be
used to help governments and non-prpofits make social impact. I’ll talk about
a summer fellowship program we ran at University of Chicago on social good
and show examples from projects in areas such as education, healthcare, energy,
transportation and public safety done in conjunction with governments and non-
profits.

Biography

Rayid Ghani was the Chief Scientist at the Obama for America 2012 campaign
focusing on analytics, technology, and data. His work focused on improving dif-
ferent functions of the campaign including fundraising, volunteer, and voter mo-
bilization using analytics, social media, and machine learning; his innovative use
of machine learning and data mining in Obama’s reelection campaign received
broad attention in the media such as the New York Times, CNN, and others.
Before joining the campaign, Rayid was a Senior Research Scientist and Direc-
tor of Analytics research at Accenture Labs where he led a technology research
team focused on applied R&D in analytics, machine learning, and data min-
ing for large-scale & emerging business problems in various industries including
healthcare, retail & CPG, manufacturing, intelligence, and financial services.
In addition, Rayid serves as an adviser to several start-ups in Analytics, is an
active organizer of and participant in academic and industry analytics confer-
ences, and publishes regularly in machine learning and data mining conferences
and journals.



Learning with Humans in the Loop

Thorsten Joachims

Machine Learning is increasingly becoming a technology that directly interacts
with human users. Search engines, recommender systems, and electronic com-
merce already heavily rely on adapting the user experience through machine
learning, and other applications are likely to follow in the near future (e.g., au-
tonomous robotics, smart homes, gaming). In this talk, I argue that learning
with humans in the loop requires learning algorithms that explicitly account for
human behavior, their motivations, and their judgment of performance. Towards
this goal, the talk explores how integrating microeconomic models of human be-
havior into the learning process leads to new learning models that no longer
reduce the user to a “labeling subroutine”. This motivates an interesting area
for theoretical, algorithmic, and applied machine learning research with connec-
tions to rational choice theory, econometrics, and behavioral economics.

Biography

Thorsten Joachims is a Professor of Computer Science at Cornell University. His
research interests center on a synthesis of theory and system building in ma-
chine learning, with applications in language technology, information retrieval,
and recommendation. His past research focused on support vector machines,
text classification, structured output prediction, convex optimization, learning
to rank, learning with preferences, and learning from implicit feedback. In 2001,
he finished his dissertation advised by Prof. Katharina Morik at the University
of Dortmund. From there he also received his Diplom in Computer Science in
1997. Between 2000 and 2001 he worked as a PostDoc at the GMD Institute for
Autonomous Intelligent Systems. From 1994 to 1996 he was a visiting scholar
with Prof. Tom Mitchell at Carnegie Mellon University.



Unsupervised Learning with Graphs:

A Theoretical Perspective

Ulrike von Luxburg

Applying a graph–based learning algorithm usually requires a large amount of
data preprocessing. As always, such preprocessing can be harmful or helpful. In
my talk I am going to discuss statistical and theoretical properties of various
preprocessing steps. We consider questions such as: Given data that does not
have the form of a graph yet, what do we loose when transforming it to a graph?
Given a graph, what might be a meaningful distance function? We will also see
that graph–based techniques can lead to surprising solutions to preprocessing
problems that a priori don’t involve graphs at all.

Biography

Ulrike von Luxburg is a professor for computer science/machine learning at
the University of Hamburg. Her research focus is the theoretical analysis of
machine learning algorithms, in particular for unsupervised learning and graph
algorithms. She is (co)–winner of several best student paper awards (NIPS 2004
and 2008, COLT 2003, 2005 and 2006, ALT 2007). She did her PhD in the Max
Planck Institute for Biological Cybernetics in 2004, then moved to Fraunhofer
IPSI in Darmstadt, before returning to the Max Planck Institute in 2007 as
a research group leader for learning theory. Since 2012 she is a professor for
computer science at the University of Hamburg.



Making Systems That Use Statistical Reasoning

Easier to Build and Maintain over Time

Christopher Re

The question driving my work is, how should one deploy statistical data–analysis
tools to enhance data–driven systems? Even partial answers to this question may
have a large impact on science, government, and industry—each of whom are
increasingly turning to statistical techniques to get value from their data.

To understand this question, my group has built or contributed to a diverse
set of data–processing systems: a system, called GeoDeepDive, that reads and
helps answer questions about the geology literature; a muon filter that is used
in the IceCube neutrino telescope to process over 250 million events each day in
the hunt for the origins of the universe; and enterprise applications with Oracle
and Pivotal. This talk will give an overview of the lessons that we learned in
these systems, will argue that data systems research may play a larger role in
the next generation of these systems, and will speculate on the future challenges
that such systems may face.

Biography

Christopher Re is an assistant professor in the department of Computer Sciences
at the University of Wisconsin-Madison. The goal of his work is to enable users
and developers to build applications that more deeply understand and exploit
data. Chris received his PhD from the University of Washington, Seattle under
the supervision of Dan Suciu. For his PhD work in the area of probabilistic data
management, Chris received the SIGMOD 2010 Jim Gray Dissertation Award.
Chris’s papers have received four best papers or best–of–conference citations
(best paper in PODS 2012 and best–of–conference in PODS 2010, twice, and
one in ICDE 2009). Chris received an NSF CAREER Award in 2011.



Deep–er Kernels

John Shawe-Taylor

Kernels can be viewed as shallow in that learning is only applied in a single (out-
put) layer. Recent successes with deep learning highlight the need to consider
learning richer function classes. The talk will review and discuss methods that
have been developed to enable richer kernel classes to be learned. While some
of these methods rely on greedy procedures many are supported by statistical
learning analyses and/or convergence bounds. The talk will highlight the trade–
offs involved and the potential for further research on this topic.

Biography

John Shawe-Taylor obtained a PhD in Mathematics at Royal Holloway, Uni-
versity of London in 1986 and joined the Department of Computer Science in
the same year. He was promoted to Professor of Computing Science in 1996.
He moved to the University of Southampton in 2003 to lead the ISIS research
group. He was Director of the Centre for Computational Statistics and Ma-
chine Learning at University College, London between July 2006 and September
2010. He has coordinated a number of European wide projects investigating the
theory and practice of Machine Learning, including the PASCAL projects. He
has published over 300 research papers with more than 25000 citations. He has
co-authored with Nello Cristianini two books on kernel approaches to machine
learning: “An Introduction to Support Vector Machines” and “Kernel Methods
for Pattern Analysis”.
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ML and Business: A Love–Hate Relationship

Andreas Antrup

Based on real world examples. the talk explores common gaps in the mutual
understanding of the business and the analytical side; particular focus shall be
on misconceptions of the needs and expectations of business people and the re-
sulting problems. It also touches on some approaches to bridge these gaps and
build trust. At the end we shall discuss possibly under–researched areas that
may open the doors to a yet wider usage of ML principles and thus unlock more
of its value and beauty.

Bayesian Learning in Online Service:

Statistics Meets Systems

Ralf Herbrich

Over the past few years, we have entered the world of big and structured data—
a trend largely driven by the exponential growth of Internet–based online ser-
vices such as Search, eCommerce and Social Networking as well as the ubiquity
of smart devices with sensors in everyday life. This poses new challenges for
statistical inference and decision–making as some of the basic assumptions are
shifting:

– The ability to optimize both the likelihood and loss functions
– The ability to store the parameters of (data) models
– The level of granularity and ’building blocks’ in the data modeling phase
– The interplay of computation, storage, communication and inference and

decision–making techniques

In this talk, I will discuss the implications of big and structured data for Statistics
and the convergence of statistical model and distributed systems. I will present
one of the most versatile modeling techniques that combines systems and sta-
tistical properties—factor graphs—and review a series of approximate inference
techniques such as distributed message passing. The talk will be concluded with
an overview of real–world problems at Amazon.



Machine Learning in a Large

diversified Internet Group

Jean-Paul Schmetz

I will present a wide survey of the use of machine learning techniques across a
large number of subsidiaries (40+) of an Internet group (Burda Digital) with
special attention to issues regarding (1) personnel training in state of the art
techniques, (2) management buy–in of complex non interpretable results and
(3) practical and measurable bottom line results/solutions.

Some of the Problems and
Applications of Opinion Analysis

Hugo Zaragoza

Websays strives to provide the best possible analysis of online conversation to
marketing and social media analysts. One of the obsessions of Websays is to
provide “near–man–made” data quality at marginal costs. I will discuss how we
approach this problem using innovative machine learning and UI approaches.
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The full articles have been published in Machine Learning or Data Mining and
Knowledge Discovery.

Fast sequence segmentation using log–linear models
Nikolaj Tatti
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-012-0301-y

Sequence segmentation is a well–studied problem, where given a sequence of
elements, an integer K, and some measure of homogeneity, the task is to split
the sequence into K contiguous segments that are maximally homogeneous. A
classic approach to find the optimal solution is by using a dynamic program.
Unfortunately, the execution time of this program is quadratic with respect to
the length of the input sequence. This makes the algorithm slow for a sequence
of non–trivial length. In this paper we study segmentations whose measure of
goodness is based on log–linear models, a rich family that contains many of the
standard distributions. We present a theoretical result allowing us to prune many
suboptimal segmentations. Using this result, we modify the standard dynamic
program for 1D log–linear models, and by doing so reduce the computational
time. We demonstrate empirically, that this approach can significantly reduce
the computational burden of finding the optimal segmentation.

ROC curves in cost space
Cesar Ferri, Jose Hernandez-Orallo and Peter Flach
Machine Learning
DOI 10.1007/s10994-013-5328-9

ROC curves and cost curves are two popular ways of visualising classifier per-
formance, finding appropriate thresholds according to the operating condition,
and deriving useful aggregated measures such as the area under the ROC curve
(AUC) or the area under the optimal cost curve. In this paper we present new
findings and connections between ROC space and cost space. In particular, we
show that ROC curves can be transferred to cost space by means of a very nat-
ural threshold choice method, which sets the decision threshold such that the
proportion of positive predictions equals the operating condition. We call these
new curves rate–driven curves, and we demonstrate that the expected loss as
measured by the area under these curves is linearly related to AUC. We show
that the rate–driven curves are the genuine equivalent of ROC curves in cost
space, establishing a point–point rather than a point–line correspondence. Fur-
thermore, a decomposition of the rate–driven curves is introduced which sepa-
rates the loss due to the threshold choice method from the ranking loss (Kendall

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-012-0301-y
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5328-9
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τ distance). We also derive the corresponding curve to the ROC convex hull in
cost space: this curve is different from the lower envelope of the cost lines, as the
latter assumes only optimal thresholds are chosen.

A framework for semi–supervised and unsupervised optimal
extraction of clusters from hierarchies
Ricardo J.G.B. Campello, Davoud Moulavi, Arthur Zimek and Jörg Sander
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-013-0311-4

We introduce a framework for the optimal extraction of flat clusterings from local
cuts through cluster hierarchies. The extraction of a flat clustering from a cluster
tree is formulated as an optimization problem and a linear complexity algorithm
is presented that provides the globally optimal solution to this problem in semi–
supervised as well as in unsupervised scenarios. A collection of experiments is
presented involving clustering hierarchies of different natures, a variety of real
data sets, and comparisons with specialized methods from the literature.

Pairwise meta–rules for better meta–learning–based algorithm
ranking
Quan Sun and Bernhard Pfahringer
Machine Learning
DOI 10.1007/s10994-013-5387-y

In this paper, we present a novel meta–feature generation method in the con-
text of meta–learning, which is based on rules that compare the performance
of individual base learners in a one–against–one manner. In addition to these
new meta–features, we also introduce a new meta–learner called Approximate
Ranking Tree Forests (ART Forests) that performs very competitively when
compared with several state–of–the–art meta–learners. Our experimental re-
sults are based on a large collection of datasets and show that the proposed
new techniques can improve the overall performance of meta–learning for al-
gorithm ranking significantly. A key point in our approach is that each per-
formance figure of any base learner for any specific dataset is generated by
optimising the parameters of the base learner separately for each dataset.

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-013-0311-4
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5387-y
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Block coordinate descent algorithms for large–scale sparse multiclass
classification
Mathieu Blondel, Kazuhiro Seki and Kuniaki Uehara
Machine Learning
DOI 10.1007/s10994-013-5367-2

Over the past decade, �1 regularization has emerged as a powerful way to learn
classifiers with implicit feature selection. More recently, mixed–norm (e.g., �1/�2)
regularization has been utilized as a way to select entire groups of features. In
this paper, we propose a novel direct multiclass formulation specifically designed
for large–scale and high–dimensional problems such as document classification.
Based on a multiclass extension of the squared hinge loss, our formulation em-
ploys �1/�2 regularization so as to force weights corresponding to the same fea-
tures to be zero across all classes, resulting in compact and fast–to–evaluate
multiclass models. For optimization, we employ two globally–convergent vari-
ants of block coordinate descent, one with line search (Tseng and Yun in Math.
Program. 117:387423, 2009) and the other without (Richtrik and Tak in Math.
Program. 138, 2012a, Tech. Rep. arXiv:1212.0873, 2012b). We present the two
variants in a unified manner and develop the core components needed to ef-
ficiently solve our formulation. The end result is a couple of block coordinate
descent algorithms specifically tailored to our multiclass formulation. Experi-
mentally, we show that block coordinate descent performs favorably compared
to other solvers such as FOBOS, FISTA and SpaRSA. Furthermore, we show
that our formulation obtains very compact multiclass models and outperforms
�1/�2–regularized multiclass logistic regression in terms of training speed, while
achieving comparable test accuracy.

A comparative evaluation of stochastic–based inference methods for
Gaussian process models
Maurizio Filippone, Mingjun Zhong and Mark Girolami
Machine Learning
DOI 10.1007/s10994-013-5388-x

Gaussian process (GP) models are extensively used in data analysis given their
flexible modeling capabilities and interpretability. The fully Bayesian treatment
of GP models is analytically intractable, and therefore it is necessary to re-
sort to either deterministic or stochastic approximations. This paper focuses on
stochastic–based inference techniques. After discussing the challenges associated
with the fully Bayesian treatment of GP models, a number of inference strategies
based on Markov chain Monte Carlo methods are presented and rigorously as-
sessed. In particular, strategies based on efficient parameterizations and efficient
proposal mechanisms are extensively compared on simulated and real data on
the basis of convergence speed, sampling efficiency, and computational cost.

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5367-2
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5388-x
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Probabilistic topic models for sequence data
Nicola Barbieri, Antonio Bevacqua, Marco Carnuccio, Giuseppe Manco and
Ettore Ritacco
Machine Learning
DOI 10.1007/s10994-013-5391-2

Probabilistic topic models are widely used in different contexts to uncover the
hidden structure in large text corpora. One of the main (and perhaps strong) as-
sumptions of these models is that the generative process follows a bag–of–words
assumption, i.e. each token is independent from the previous one. We extend the
popular Latent Dirichlet Allocation model by exploiting three different condi-
tional Markovian assumptions: (i) the token generation depends on the current
topic and on the previous token; (ii) the topic associated with each observation
depends on topic associated with the previous one; (iii) the token generation de-
pends on the current and previous topic. For each of these modeling assumptions
we present a Gibbs Sampling procedure for parameter estimation. Experimental
evaluation over real–word data shows the performance advantages, in terms of
recall and precision, of the sequence–modeling approaches.

The flip–the–state transition operator for restricted Boltzmann
machines
Kai Brügge, Asja Fischer and Christian Igel
Machine Learning
DOI 10.1007/s10994-013-5390-3

Most learning and sampling algorithms for restricted Boltzmann machines
(RBMs) rely on Markov chain Monte Carlo (MCMC) methods using Gibbs
sampling. The most prominent examples are Contrastive Divergence learning
(CD) and its variants as well as Parallel Tempering (PT). The performance of
these methods strongly depends on the mixing properties of the Gibbs chain.
We propose a Metropolis–type MCMC algorithm relying on a transition opera-
tor maximizing the probability of state changes. It is shown that the operator
induces an irreducible, aperiodic, and hence properly converging Markov chain,
also for the typically used periodic update schemes. The transition operator can
replace Gibbs sampling in RBM learning algorithms without producing compu-
tational overhead. It is shown empirically that this leads to faster mixing and in
turn to more accurate learning.

Differential privacy based on importance weighting
Zhanglong Ji and Charles Elkan
Machine Learning
DOI 10.1007/s10994-013-5396-x

This paper analyzes a novel method for publishing data while still protecting pri-
vacy. The method is based on computing weights that make an existing dataset,

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5391-2
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5390-3
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5396-x
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for which there are no confidentiality issues, analogous to the dataset that must
be kept private. The existing dataset may be genuine but public already, or it
may be synthetic. The weights are importance sampling weights, but to protect
privacy, they are regularized and have noise added. The weights allow statistical
queries to be answered approximately while provably guaranteeing differential
privacy. We derive an expression for the asymptotic variance of the approximate
answers. Experiments show that the new mechanism performs well even when
the privacy budget is small, and when the public and private datasets are drawn
from different populations.

Activity preserving graph simplification
Francesco Bonchi, Gianmarco De Francisci Morales, Aristides Gionis and
Antti Ukkonen
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-013-0328-8

We study the problem of simplifying a given directed graph by keeping a small
subset of its arcs. Our goal is to maintain the connectivity required to explain
a set of observed traces of information propagation across the graph. Unlike
previous work, we do not make any assumption about an underlying model
of information propagation. Instead, we approach the task as a combinatorial
problem.
We prove that the resulting optimization problem is NP–hard. We show that a
standard greedy algorithm performs very well in practice, even though it does not
have theoretical guarantees. Additionally, if the activity traces have a tree struc-
ture, we show that the objective function is supermodular, and experimentally
verify that the approach for size–constrained submodular minimization recently
proposed by Nagano et al (2011) produces very good results. Moreover, when
applied to the task of reconstructing an unobserved graph, our methods perform
comparably to a state–of–the–art algorithm devised specifically for this task.

ABACUS: frequent pattern mining based community discovery in
multidimensional networks
Michele Berlingerio, Fabio Pinelli and Francesco Calabrese
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-013-0331-0

Community Discovery in complex networks is the problem of detecting, for each
node of the network, its membership to one of more groups of nodes, the com-
munities, that are densely connected, or highly interactive, or, more in general,
similar, according to a similarity function. So far, the problem has been widely
studied in monodimensional networks, i.e. networks where only one connection
between two entities may exist. However, real networks are often multidimen-
sional, i.e., multiple connections between any two nodes may exist, either re-
flecting different kinds of relationships, or representing different values of the

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-013-0328-8
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-013-0331-0
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same type of tie. In this context, the problem of Community Discovery has to
be redefined, taking into account multidimensional structure of the graph. We
define a new concept of community that groups together nodes sharing member-
ships to the same monodimensional communities in the different single dimen-
sions. As we show, such communities are meaningful and able to group nodes
even if they might not be connected in any of the monodimensional networks.
We devise ABACUS (frequent pAttern mining–BAsed Community discoverer
in mUltidimensional networkS), an algorithm that is able to extract multidi-
mensional communities based on the extraction of frequent closed itemsets from
monodimensional community memberships. Experiments on two different real
multidimensional networks confirm the meaningfulness of the introduced con-
cepts, and open the way for a new class of algorithms for community discovery
that do not rely on the dense connections among nodes.

Growing a list
Benjamin Letham, Cynthia Rudin and Katherine A. Heller
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-013-0329-7

It is easy to find expert knowledge on the Internet on almost any topic, but
obtaining a complete overview of a given topic is not always easy: Information
can be scattered across many sources and must be aggregated to be useful. We
introduce a method for intelligently growing a list of relevant items, starting from
a small seed of examples. Our algorithm takes advantage of the wisdom of the
crowd, in the sense that there are many experts who post lists of things on the
Internet. We use a collection of simple machine learning components to find these
experts and aggregate their lists to produce a single complete and meaningful list.
We use experiments with gold standards and open–ended experiments without
gold standards to show that our method significantly outperforms the state of
the art. Our method uses the ranking algorithm Bayesian Sets even when its
underlying independence assumption is violated, and we provide a theoretical
generalization bound to motivate its use.

What distinguish one from its peers in social networks?
Yi-Chen Lo, Jhao-Yin Li, Mi-Yen Yeh, Shou-De Lin and Jian Pei
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-013-0330-1

Being able to discover the uniqueness of an individual is a meaningful task in
social network analysis. This paper proposes two novel problems in social net-
work analysis: how to identify the uniqueness of a given query vertex, and how
to identify a group of vertices that can mutually identify each other. We further
propose intuitive yet effective methods to identify the uniqueness identification
sets and the mutual identification groups of different properties. We further con-

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-013-0329-7
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-013-0330-1
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duct an extensive experiment on both real and synthetic datasets to demonstrate
the effectiveness of our model.

Spatio–temporal random fields: compressible representation and
distributed estimation
Nico Piatkowski, Sangkyun Lee and Katharina Morik
Machine Learning
DOI 10.1007/s10994-013-5399-7

Modern sensing technology allows us enhanced monitoring of dynamic activities
in business, traffic, and home, just to name a few. The increasing amount of sen-
sor measurements, however, brings us the challenge for efficient data analysis.
This is especially true when sensing targets can interoperate—in such cases we
need learning models that can capture the relations of sensors, possibly with-
out collecting or exchanging all data. Generative graphical models namely the
Markov random fields (MRF) fit this purpose, which can represent complex spa-
tial and temporal relations among sensors, producing interpretable answers in
terms of probability. The only drawback will be the cost for inference, storing
and optimizing a very large number of parameters—not uncommon when we
apply them for real–world applications.
In this paper, we investigate how we can make discrete probabilistic graphical
models practical for predicting sensor states in a spatio–temporal setting. A set
of new ideas allows keeping the advantages of such models while achieving scal-
ability. We first introduce a novel alternative to represent model parameters,
which enables us to compress the parameter storage by removing uninformative
parameters in a systematic way. For finding the best parameters via maximum
likelihood estimation, we provide a separable optimization algorithm that can
be performed independently in parallel in each graph node. We illustrate that
the prediction quality of our suggested method is comparable to those of the
standard MRF and a spatio–temporal k–nearest neighbor method, while using
much less computational resources.

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5399-7
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Hermoupolis: A Trajectory Generator for Simulating Generalized
Mobility Patterns . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 659

Nikos Pelekis, Christos Ntrigkogias, Panagiotis Tampakis,
Stylianos Sideridis, and Yannis Theodoridis

AllAboard: A System for Exploring Urban Mobility and Optimizing
Public Transport Using Cellphone Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 663

Michele Berlingerio, Francesco Calabrese, Giusy Di Lorenzo,
Rahul Nair, Fabio Pinelli, and Marco Luca Sbodio

ScienScan – An Efficient Visualization and Browsing Tool for Academic
Search . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 667

Daniil Mirylenka and Andrea Passerini

InVis: A Tool for Interactive Visual Data Analysis . . . . . . . . . . . . . . . . . . . 672
Daniel Paurat and Thomas Gärtner
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Abstract. We introduce a novel, robust data-driven regularization
strategy called Adaptive Regularized Boosting (AR-Boost), motivated
by a desire to reduce overfitting. We replace AdaBoost’s hard margin
with a regularized soft margin that trades-off between a larger margin, at
the expense of misclassification errors. Minimizing this regularized expo-
nential loss results in a boosting algorithm that relaxes the weak learning
assumption further: it can use classifiers with error greater than 1

2
. This

enables a natural extension to multiclass boosting, and further reduces
overfitting in both the binary and multiclass cases. We derive bounds
for training and generalization errors, and relate them to AdaBoost. Fi-
nally, we show empirical results on benchmark data that establish the
robustness of our approach and improved performance overall.

1 Introduction

Boosting is a popular method for improving the accuracy of a classifier. In partic-
ular, AdaBoost [1] is considered the most popular form of boosting and it has been
shown to improve the performance of base learners both theoretically and empiri-
cally. The key idea behind AdaBoost is that it constructs a strong classifier using a
set of weak classifiers [2,3]. While AdaBoost is quite powerful, there are two major
limitations: (1) if the base classifier has amisclassification error of greater than 0.5,
generalization decreases, and (2) it suffers from overfitting with noisy data [4,5].

The first limitation can become severe in multiclass classification, where the
error rate of random guessing is C−1

C , where C is the number of classes [6]. Ad-
aBoost requires weak classifiers to achieve an error rate less than 0.5, which can
be problematic in multiclass classification. The second limitation of overfitting
occurs mainly because weak classifiers are unable to capture “correct” patterns
inside noisy data. Noise can be introduced into data by two factors – (1) misla-
beled data, or (2) limitation of the hypothesis space of the base classifier [7]. Dur-
ing training, AdaBoost concentrates on learning difficult data patterns accurately,

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 1–16, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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and potentially distorts the optimal decision boundary. AdaBoost maximizes the
“hard margin”, namely the smallest margin of those noisy data patterns and con-
sequently the margin of other data points may decrease significantly. Different reg-
ularization strategies such as early stopping, shrinking the contribution of the
individual weak classifiers, and soft margins, have been proposed [2,4,5,7,8,9,10]
to combat this issue.

AdaBoost’s use of a hard margin increases the penalty exponentially for larger
negative margins; this further increases error due to outliers. We propose an
approach that combines early convergence with a soft margin by introducing a
regularization term inside the exponential loss function. In every boosting round,
the regularization term vanishes only if the weak classifier chosen at the current
stage classifies the observations correctly. We derive a modified version of the
AdaBoost algorithm by minimizing this regularized loss function and this leads
to Adaptive Regularized Boosting (AR-Boost).

We show that choosing optimal values of a data-driven regularized penalty
translates to the selection of optimal weights of the misclassified samples at each
boosting iteration. These optimal weights force the weak classifiers to correctly
label misclassifications in the previous stage. Consequently, AR-Boost converges
faster than AdaBoost, and is also more robust to outliers. Finally, the proposed
regularization allows boosting to employ weak classifiers even if their error rate
is greater than 0.5. This is especially suited to the multiclass setting, where the
permissible error is C−1

C > 1
2 . This serves as another significant motivation for

the development of this approach.
Many properties that motivate this approach are controlled by the user through

tuning a single regularization parameter ρ > 1, and this parameter determines
how much differently AR-Boost behaves, compared to AdaBoost. The parameter
ρ softens themargin,making our approachmore robust to outliers. This is because
it does not force classification of outliers according to their (possibly) incorrect la-
bels, and thus does not distort the optimal decision boundary. Instead, it allows
a larger margin at the expense of some misclassification error. To better under-
stand this, consider the example presented in Figure 1. When the data is noisy,
AdaBoost will still aim to classify the noisy example into one of the classes; our
approach instead avoids this, leading to a more robust decision boundary. This
added robustness allows for better generalization (shown in the bottom row of
Figure 1). In addition to an empirical demonstration of this approach’s success,
we also derive theoretical bounds on the training and generalization error.

The rest of the paper is organized as follows. After reviewing existing work on
boosting in Section 2, we describe binary AR-Boost in Section 3, and provide jus-
tification for our choice of regularization. In Section 4, we investigate the theo-
retical properties of our approach by deriving training and generalization error
bounds. We describe the multiclass extension of AR-Boost in Section 5. In Section
6, we investigate the empirical properties of binary and multiclass AR-Boost, and
compare their performance to some well-known regularized boosting approaches,
and conclude in Section 7.
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Fig. 1. Decision boundary made by the decision stumps (linear thresholds) used as
weak classifiers in AR-Boost (left column) and AdaBoost (right column) on training
(top row) and test (bottom row) dataset.

2 Background and Related Work

For training data (xi, yi), i = 1, . . . , n, we assume that xi ∈ Rp, yi ∈ {−1, 1} for
binary classification, and yi ∈ {1, . . . , C}, for C-class classification. AdaBoost

learns a strong classifier f(x) = sign
(∑T

t=1 αtht(x)
)
, by combining weak clas-

sifiers in an iterative manner [2]. Here, αt is the weight associated with the weak
classifier ht(·). The value of αt is derived by minimizing an exponential loss
function: L(y, f(x)) = exp (−yf(x)).

AdaBoost is prone to overfitting and several strategies were developed to ad-
dress this issue. Mease andWyner [4] experimentally demonstrated that boosting
often suffers from overfitting run for a large number of rounds. Model selec-
tion using Akaike or Bayesian information criteria (AIC/BIC) [11,12] achieved
moderate success in addressing overfitting. Hastie et al., [2] proposed ε-Boost
where they regularize by shrinking the contribution of each weak classifier:

f(x) = sign
(∑T

t=1 ναtht(x)
)
. More shrinkage (smaller ν) increases training

error over AdaBoost for the same number of rounds, but reduces test error.
Jin et al., [7] proposed Weight-Boost, which uses input-dependent regulariza-

tion that combines the weak classifier with an instance-dependent weight factor:

f(x) = sign
(∑T

t=1 exp (−|βft−1(x)|)αtht(x)
)
. This trades-off between the weak

classifier at the current iteration and the meta-classifier from previous iterations.
The factor exp (−|βft−1(x)|) only considers labels provided by ht(x) when the
previous meta-classifier ft−1 is not confident on its decision. Xi et al., [13] min-
imized an L1-regularized exponential loss L(y, f(x)) = exp (−yf(x) + β‖α‖1),
β > 0, which provides sparse solutions and early stopping. Rätsch et al., [5,9]
proposed a weight-decay method, in which they softened the margin by intro-

ducing a slack variable ξ =
( ∑T

t=1 αtht(x)
)2

in the exponential loss function
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Fig. 2. Common loss functions for binary classification compared with the proposed
loss L(y, f(x) = exp (−yf(x)− λ|y − ht(x)|), where ht is the most recent weak learner.

L(y, f(x)) = exp (−yf(x)− Cξ), C ≥ 0. They found that the asymptotic margin
distribution for AdaBoost with noisy data is very similar to that of SVMs [14];
analogous to SVMs, “easy” examples do not contribute to the model and only
“difficult” patterns with small margins are useful.

3 AR-Boost for Binary Classification

For any condition π, let δ�π � = 1, if π holds, and 0 otherwise. Ad-
aBoost minimizes an exponential loss function, L(y, f(x)) = exp (−yf(x)). The
misclassification loss, L(y, f(x)) = δ� yf(x) < 0 � penalizes only the misclas-
sified examples (with yf(x) < 0) with an exact penalty of 1. Other loss
functions (see Figure 2) attempt to overestimate the discontinuous misclassi-
fication loss with continuous/differentiable alternatives. Of these, the squared
loss, L(y, f(x)) = (y − f(x))2 does not decrease monotonically with increasing
margin yf(x). Instead, for yf(x) > 0 it increases quadratically, with increasing
influence from observations that are correctly classified with increasing certainty.
This significantly reduces the relative influence misclassified examples.

While exponential loss is monotonically decreasing, it penalizes larger misclas-
sified margins exponentially, is exponentially large for these outliers and leads
to worse misclassification rates [2]. This motivates the novel loss function,

L(y, f(x)) = exp (−yf(x)− λ|y − ht(x)|), (1)

where λ > 0 and ht(·) is the weak classifier chosen at the current step, t1.
The additional term in the loss function |y − ht(x)| acts as a regularizer, in

1 As the loss function incorporates the weak classifier from the last round ht, it should
be written Lt(y, f(x)); we drop the subscript t from L to simplify notation, as the
dependence of the loss on t is apparent from the context.
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Algorithm 1. AR-Boost for Binary Classification

input: λ = 1
2
log ρ {select ρ > 1 such that λ > 0}

w1
i = 1

n
, i = 1, . . . , n {initialize example weight distribution uniformly}

for t = 1 do
ht = WeakLearner

(
(xi, yi, w

t
i)

n
i=1

)
{train weak classifier ht using weights wt

i}

εt =
n∑

i=1

wt
iδ� yi �= ht(xi) � {sum of weights of examples misclassified by ht}

if εt ≥ ρ
ρ+1

then
T = t− 1; break.

else

αt =
1

2
log

ρ (1− εt)

εt
{update αt with adaptive regularization parameter ρ}

wt+1
i =

wt
i exp (2αt δ� yi �= ht(xi) �)

Zt
{update weights with normalization Zt}

end if
end for
output: f(x) = sign

(∑T
t=1 αtht(x)

)
{final classifier}

conjunction with the margin term yf(x). This term does not resemble typical
norm-based regularizations that control the structure of the hypothesis space,
such as �1 or �2-norms. It behaves like a regularization term because, it controls
the hypothesis space by relaxing the weak learning assumption in order to admit
hypotheses that have error greater than 1

2 into the boosting process.
At iteration t, the proposed loss function is the same as AdaBoost’s loss

function if the misclassification error is zero. However, the penalty associated
with this loss is less than that of AdaBoost’s loss if an example is misclassified
(Figure 2). AdaBoost maximizes the hard margin, γ = yf(x) without allowing
any misclassification error, etr =

1
n

∑n
i=1 δ� yif(xi) < 0 �. Inspired by SVMs [14],

our function maximizes a soft margin, γ = yf(x) + λ |y − ht(x)|. Instead of
enforcing outliers to be classified correctly, this modification allows for a larger
margin at the expense of some misclassification errors, e′tr =

1
n

∑n
i=1 δ� yif(xi)+

λ|yi − ht(xi)| < 0 �, and tries to avoid overfitting.
We derive a modified AdaBoost algorithm that we call Adaptive Regularized

Boosting (AR-Boost); the general procedure of AR-Boost for binary classification
is shown in Algorithm 1. The derivation of the updates is shown in Appendix A.

AR-Boost finds the hypothesis weight, αt =
1
2 log ρ

(1−εt)
εt

, with λ = 1
2 log ρ > 0.

When ρ = 1, AR-Boost is the same as AdaBoost. As mentioned earlier, the
WeakLearner is capable of learning with classifiers with an error rate εt > 0.5.
The extent to which this error is tolerated is further discussed in the next section.
For all learners, we have αt = λ + 1

2 log
(1−εt)

εt
. This is equivalent to computing

αAR-Boost
t = λ+ αAdaBoost

t .
One additional advantage of this regularized loss function is that the penalty

for negative margins can be adjusted after observing the classifier performance.
Accordingly, we determine the value of λ or ρ through cross validation, by
choosing the parameter for which the average misclassification error, e′tr =
1
n

∑n
i=1 δ�−yif(xi) − λ|yi − ht(xi)| < 0 � is smallest. For instance, in Figure 3
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Fig. 3. PIMA Indian Diabetes data set (left) 5-fold cross validation with smallest
cross-validation error for ρ = 4; (right) training and test errors over a number of
boosting iterations for ρ=4

(left), we show AR-Boost’s 5-fold cross-validation error for the PIMA Indian Di-
abetes data set [7]. The best value is ρ = 4, and the corresponding training and
test error curves are shown in Figure 3 (right) for this choice of ρ. This behavior
is similar to AdaBoost, in that even when the training error has been minimized,
the test error continues to decrease.

We derive the multiclass version of AR-Boost in Section 5, which takes ad-
vantage of AR-Boost’s ability to handle weaker classifiers. Before proceeding, we
further analyze AR-Boost’s ability to relax the weak-learner assumption.

3.1 Relaxing the Weak Learning Assumption of AdaBoost

At the t-th iteration, αt = 1
2 log

ρ(1−εt)
εt

, ρ > 1. The hypothesis weight αt > 0

only when ρ(1−εt)
εt

> 1. From this, it is immediately apparent that

εt <
ρ

1 + ρ
, (2)

and when ρ = 1, we have that εt < 0.5; this is the standard weak learning
assumption that is used in AdaBoost. As we start increasing the value of ρ > 1,
we can see that ρ

ρ+1 → 1 and AR-Boost is able to accommodate classifiers with

εt ∈ [0.5, ρ
ρ+1 ). Thus, AR-Boost is able to learn with weaker hypotheses than

afforded by the standard weak learning assumption; how weak these learners can
be is controlled by the choice of ρ. This can be seen in Figure 4, which shows the
AR-Boost objective values, and their minima plotted for various weak-learner
errors ε. AR-Boost can handle weaker classifiers than AdaBoost, and assigns
them increasingly lower weights α→ 0, the weaker they are.

3.2 How Does Relaxing the Weak Learning Assumption Help?

Similar to Zhu et al., [6] who illustrate that AdaBoost fails in the multiclass
setting, we show how this can also happen in binary classification. We conduct
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Fig. 4. Objective values of AR-Boost (f(α) = (1−ε)e−α+εeα−2λ) plotted as a function
of α for different values of ε. The minimum of each objective is also shown by dot. The
curves in dashed green represent classifiers that satisfy the weak learner assumption:
0 ≤ ε < 0.5, while the curves in orange represent classifiers that exceed it: 0.5 ≤ ε <
ρ

ρ+1
. These curves were plotted for ρ = 6.

an experiment with simple two-class data, where each example x ∈ R10, and
xij ∼ N (0, 1). The two classes are defined as,

c =

{
1, if 0 ≤

∑
x2j < χ2

10,1/2,

−1 otherwise,

where χ2
10,1/2 is the (1/2)100% quantile of the χ2

10 distribution. The training and
test set sizes were 2000 and 10, 000, with class sizes being approximately equal.
We use decision stumps (single node decision tree) as weak learners.

Figure 5 (top row) demonstrates how AdaBoost sometimes fails in binary
classification. Training and test errors remain unchanged over boosting rounds
(Figure 5 top left). The error εt and the AdaBoost weights αt for each round t
are shown in Figure 5 top center, and right. The value of εt starts below

1
2 , and

after a few iterations, it overshoots 1
2 (αt < 0), then is quickly pushed back down

to 1
2 (Figure 5 top center). Now, once εt is equal to

1
2 , the weights of subsequent

examples are no longer updated (αt = 0). Thus, no new classifiers are added to
f(x), and the overall error rate remains unchanged.

Unlike AdaBoost, AR-Boost relaxes the weak learning assumption further: it
can use classifiers with error greater than 1

2 as shown in bottom row of Figure
5. Here, both training and test error decrease with boosting iterations, which is
what we would expect to see from a successful boosting algorithm. AR-Boost
can successfully incorporate weak classifiers with error as large as εt < ρ/(ρ+1)
for binary classification as shown in Algorithm 1. Similar behavior holds for
the C-class case, which can incorporate classifiers with error up to ε < ρ(C −
1)/(ρ(C − 1) + 1) as we show below, in Algorithm 2. This limiting value of εt is
not artificial, it follows naturally by minimizing the proposed novel regularized
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Fig. 5. Comparing AdaBoost and AR-Boost on a simple two-class simulated example,
with decision stumps (single node decision trees) used as weak learners. The top row
(AdaBoost) and bottom row (AR-Boost) show (left) training and test errors; (cen-
ter) weak classifier error at round t, εt; and (right) example weight at round t, αt

respectively for AdaBoost and AR-Boost. For AR-Boost, ρ = 5.

exponential loss function. It provides softer margins and smaller penalties for
larger negative margins than AdaBoost (Figure 2).

4 Analysis of AR-Boost

We now analyze the behavior of AR-Boost via upper bounds on the training and
generalization error and compare these bounds with AdaBoost.

4.1 Training Error

We can formally analyze the behavior of the algorithm by deriving an upper
bound on the training error. To do so, we first state the following.

Lemma 1. At the t-th iteration, define the goodness γt of the current weak
learner ht(x) as how much better it does than the worst allowable error: εt =
ρ

ρ+1 − γt. The normalization Zt of the weights wt+1
i (in Algorithm 1) can be

bounded by

Zt ≤ exp

(
− (ρ+ 1)2

2ρ
γ2t +

ρ2 − 1

2ρ
γt

)
. (3)

This Lemma is proved in Appendix C. Now, we can state the theorem formally.



AR-Boost: Reducing Overfitting in Boosting 9

Theorem 1. If the goodness of weak learners at every iteration is bounded by
γt ≥ γ, the training error of AR-Boost, etr, after T rounds is bounded by

etr ≤
T∏

t=1

exp

(
− (ρ+ 1)2

2ρ
γ2 +

ρ2 − 1

2ρ
γ

)
. (4)

If γ ≥ ρ−1
ρ+1 , the training error exponentially decreases.

Proof. After T iterations, the example weights wT+1
i can be computed using

step 9 of Algorithm 1. By recursively unraveling this step, and recalling that
w1

i = 1
n , we have

wT+1
i =

e−yif(xi)

n
∏T

t=1 Zt

. (5)

The training error is etr =
1
n

∑n
i=1 δ� yi �= f(xi) �. For all misclassified examples,

we can bound the training error by

etr ≤
1

n

n∑
i=1

e−yif(xi) =

T∏
t=1

Zt,

where we use (5) and the fact that
∑n

i=1 w
t+1
i = 1. The bound follows from

Lemma 1 and the fact that γt ≥ γ. �
First, note that when ρ = 1, the training error bound is exactly the same

as that of AdaBoost. Next, to understand the behavior of this upper bound,
consider Figure 6. The bound of AdaBoost is shown as the dotted line, while the
remaining curves are the AR-Boost training error for various values of ρ > 1. It is
evident that it is possible to exponentially shrink the training error for increasing
T , as long as the goodness of the weak learners is at least γ = ρ−1

ρ+1 , which means

that the error at each iteration, εt ≤ 1
ρ+1 .

4.2 Generalization Error

Given a distribution D over X×{±1} and a training sample S drawn i.i.d. from
D, Schapire et al., [15] showed that the upper bound on the generalization error
of AdaBoost is, with probability 1− δ, ∀θ > 0,

PrD � yf(x) ≤ 0 � ≤ PrS � yf(x) ≤ θ � + O

⎛⎝ 1√
n

(
d log2(nd )

θ2
+ log

1

δ

) 1
2

⎞⎠ ,

(6)
where d is the Vapnik-Chervonenkis (VC) dimension of the space of base clas-
sifiers. This bound depends on the training error eθtr = PrS � yf(x) ≤ θ � and is
independent of the number of boosting rounds T .

Schapire et al., explained AdaBoost’s ability to avoid overfitting using the
margin,m = yf(x), the magnitude of which represents the measure of confidence
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Fig. 6. The upper bound on the training error for various choices of ρ, as the goodness
of the weak learners improves. AdaBoost (ρ = 1) is the dashed line. The behavior of
AR-Boost for various values of ρ > 1 is similar to AdaBoost if γ > ρ−1

ρ+1
, that is, the

training error decreases exponentially as T → ∞.

on the predictions of the base classifiers. The bound above shows that a large
margin on the training set results in a superior bound on the generalization error.
Since boosting minimizes the exponential loss L(y, f(x)) = e−yf(x), the margin
is maximized. The result below shows that AR-Boost also behaves similarly to
maximize the margin, m = yf(x) + λ|y − ht(x)|, where λ > 0.

Theorem 2. At every iteration t = 1, . . . , T , let the base learner produce clas-
sifiers with training errors εt. Then, for any θ > 0, we have

eθtr = PrS � yf(x) ≤ θ � ≤
(√

ρ1+θ +
1√
ρ1−θ

)T T∏
t=1

√
ε1−θ
t (1− εt)1+θ. (7)

Proof. If yf(x) ≤ θ, then y
∑T

t=1 αtht(x) ≤ θ
∑T

t=1 αt and

exp(−y
∑T

t=1 αtht(x) + θ
∑T

t=1 αt) ≥ 1. Using this, we have that

PrS � yf(x) ≤ θ � ≤ ES

�
exp

(
−y
∑T

t=1 αtht(x) + θ
∑T

t=1 αt

)�

=
1

n
exp

(
θ

T∑
t=1

αt

)
n∑

i=1

exp (−yif(xi)).

Using the value of αt, and equations (5) and (10) gives us the result. �
As before, we immediately note that when ρ = 1, this bound is exactly iden-

tical to the bound derived by Schapire et al. [15]. To further analyze this bound,
assume that we are able to produce classifiers with εt ≤ ρ

ρ+1 − γ, with some
goodness γ > 0. We know from Theorem 1 that the upper bound of training
reduces exponentially with T . Then, we can simplify the upper bound in (7) to

PrS � yf(x) ≤ θ � ≤
(
1

ρ
− (ρ+ 1)

ρ
γ

) (1−θ)T
2

(1 + (ρ+ 1)γ)
(1+θ)T

2
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Algorithm 2. AR-Boost for multiclass Classification

input: λ = C−1
2

log ρ {select ρ > 1 such that λ > 0}
w1

i = 1
n
, i = 1, . . . , n {initialize example weight distribution uniformly}

for t = 1 do
Ht = WeakLearner

(
(xi,yi, w

t
i)

n
i=1

)
{train weak classifier Ht using weights wt

i}

εt =

n∑
i=1

wt
iδ� ci �= Ht(xi) � {sum of weights of examples misclassified by Ht}

if εt ≥ ρ(C−1)
ρ(C−1)+1

then
T = t− 1; break.

else

αt = log
ρ(1− εt)

εt
+ log (C − 1) {update αt with adaptive parameter ρ}

wt+1
i =

wt
i exp (αt δ� ci �= Ht(xi) �)

Zt
{update weights with normalization Zt}

end if
end for
output: f(x) = arg max

k

(∑T
t=1 αtδ�Ht(x) = k �

)
{final classifier}

Hence, ∀θ < 1
2
ρ−1
ρ+1 , and ∀γ > ρ−1

ρ+1 , we have that PrS � yf(x) ≤ θ � → 0 as T →
∞. This suggests that limT→∞ mini yif(xi) ≥ γ, showing that better weak
hypotheses, with greater γ, provide larger margins.

5 AR-Boost for Multiclass Classification

In the C-class classification case, each data point can belong to one of C classes
i.e., the label of the i-th data point ci ∈ 1, . . . , C. For this setting, we can recode
the output as a C-dimensional vector yi [6,16] whose entries are such that yki = 1,
if ci = k; else yki = − 1

C−1 , if ci �= k. The set of C possible output vectors for
a C-class problem is denoted by Υ . Given the training data, we wish to find a
C-dimensional vector function f(x) =

(
f1(x), ...., fC(x)

)′
such that

f(x) =
arg min

f

∑n
i=1 L(yi, f(xi))

subject to
∑C

k=1 f
k(x) = 0.

We consider f(x) =
∑T

t=1 αtht(x), where αt ∈ R are coefficients, and ht(x)
are basis functions. These functions ht(x) : X → Υ are required to satisfy the

symmetric constraint:
∑C

k=1 h
k
t (x) = 0. Finally, every ht(x) is associated with

a multiclass classifier Ht(x) as, hkt (x) = 1, if Ht(x) = k; else hkt (x) = − 1
C−1 ,

if Ht(x) �= k, such that solving for ht is equivalent to finding the multiclass
classifier Ht : X → {1, . . . , C}; in turn, Ht(x) can generate ht(x) resulting in a
one-to-one correspondence.

The proposed multiclass loss function for AR-Boost is L(y, f(x)) =
exp (− 1

Cy′f(x) − λ
C ‖y− ht(x)‖1), which extends the binary loss function to

the multiclass case discussed in Section 3. This loss is the natural generalization
of the exponential loss for binary classification proposed by Zhu et al., [6] as
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Table 1. Description of binary and multiclass data sets used in the experiments

Dataset #examples #Train #Test #features #classes

ionosphere 351 238 113 341 2
german 1000 675 325 20 2

diabetes 768 531 237 8 2
wpbc 198 141 57 30 2
wdbc 569 423 146 30 2

spambase 4601 3215 1386 58 2

vowel 990 528 462 13 11
pen digits 10992 7494 3498 16 10

letter 20000 16000 4000 16 26
thyroid 215 160 55 5 3
satimage 6435 4435 2000 36 7

segmentation 2310 210 2100 19 7

Stage-wise Additive Modeling that uses a multiclass Exponential loss function
(SAMME). The general procedure of multiclass AR-Boost is shown in Algorithm
2 and the details of the derivation are shown in Appendix B. AR-Boost finds
the feature weight, αt = log ρ 1−εt

εt
+ log (C − 1), with ρ > 1. When ρ = 1, the

AR-Boost algorithm becomes the SAMME algorithm.

6 Experimental Results

We compare AR-Boost with AdaBoost and four other regularized boosting al-
gorithms: ε-boost [2], L1-regularized boost [13], AdaBoostreg [5] and Weight-
Boost [7]. We chose 12 data sets (6 binary and 6 multiclass problems) (see Table
1) from the UCI machine learning repository [17] that have been previously used
in literature [6,7]. For all the algorithms, the maximum training iterations is set
to 100. We also use classification and regression trees (CART) [2] as the base-
line algorithm. We compared multiclass AR-Boost discussed in Section 5 to two
commonly used algorithms: AdaBoost.MH [18] and SAMME [6]. The parameter
ρ was tuned through cross validation.

Figure 7 (left) shows the results of binary classification across 6 binary classifi-
cation tasks. The baseline decision tree has the worst performance and AdaBoost
improves upon trees. Using regularization, however, gives different levels of im-
provement over AdaBoost. Our AR-Boost approach yields further improvements
compared to the other regularized boosting methods on all data sets except
spambase. On spambase, AR-Boost produces test error of 4.91%, while Weight
Decay and WeightBoost give errors of 4.5% and 4.2% respectively. These results
demonstrate that performance is significantly improved for smaller data sets (for
example, the improvement is nearly 35% for wpbc). This shows that AR-Boost
is able to reduce overfitting, significantly at times, and achieves better gener-
alization compared to state-of-the-art regularized boosting methods on binary
classification problems.
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Fig. 7. Misclassification errors of binary AR-Boost (left) and multiclass AR-Boost
(right) compared with other AdaBoost algorithms on UCI data sets (see Table 1).

Similar results are observed in the multiclass setting (Figure 7, right). Boost-
ing approaches are generally an order of magnitude better than the baseline;
AR-Boost is comparable (in 3 tasks) or better (in 3 tasks) than SAMME, the
best of the other methods. The most interesting result is found on the vowel

dataset; both AR-Boost and SAMME achieve around 40% test error, which is
almost 15% better than AdaBoost.MH. This demonstrates that our approach
can seamlessly extend to the multiclass case as well. Again, similar to the binary
case, AR-Boost improves robustness to overfitting, especially for smaller data
sets (for example, nearly 33% improvement for the thyroid data set).

Finally, we investigate an important property of AR-Boost: robustness to
outliers, which is a prime motivation of this approach. In this experiment, we
introduced different levels of label noise (10%, 20%, 30%) in the binary classifica-
tion tasks, and compared AR-Boost to the baseline and AdaBoost. We randomly
flip the label to the opposite class for random training examples for the bench-
mark data. Increasing levels of noise: 10%, 20% and 30% were introduced, with
those probabilities of flipping a label. AR-Boost exhibits superior performance
(Figure 8) at all noise levels. The key result that needs to be emphasized is that
at higher noise levels, the difference becomes more pronounced. This suggests
that AR-Boost is reasonably robust to increasing noise levels, while performance
decreases for other approaches, sometimes drastically. Thus, AR-Boost can learn
successfully in various noisy settings, and also with small data sets.

Fig. 8. Misclassification errors of CART, AdaBoost and AR-Boost on UCI datasets
with 10%, 20% ad 30% label noise.
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These results taken together demonstrate that AR-Boost addresses two limi-
tations in AdaBoost, and other regularized boosting approaches to date, which
are also two motivating objectives: robustness to noise, and ability to effectively
handle multiclass classification.

7 Conclusion

We proposed Adaptive Regularized Boosting (AR-Boost) that appends a reg-
ularization term to AdaBoost’s exponential loss. This is a data-driven regu-
larization method, which softens the hard margin of AdaBoost by assigning a
smaller penalty to misclassified observations at each boosting round. Instead of
forcing outliers to be labelled correctly, AR-Boost allows a larger margin; while
this comes at the cost of some misclassification errors, it improves robustness
to noise. Compared to other regularized AdaBoost algorithms, AR-Boost uses
weaker classifiers, and thus can be used in the multiclass setting. The upper
bound of training and generalization error of AR-Boost illustrate that the er-
ror rate decreases exponentially with boosting rounds. Extensive experimental
results show that AR-Boost outperforms state-of-the-art regularized AdaBoost
algorithms for both binary and multiclass classification. It remains an interesting
future direction to understand the use of such an approach in other problems
such as semi-supervised learning and active learning.
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5. Rätsch, G., Onoda, T.: Müller, K.R.: An improvement of AdaBoost to avoid over-
fitting. In: Proc. ICONIP, pp. 506–509 (1998)

6. Zhu, J., Zhou, H., Rosset, S., Hastie, T.: Multi-class AdaBoost. Statistics and Its
Inference 2, 349–360 (2009)



AR-Boost: Reducing Overfitting in Boosting 15

7. Jin, R., Liu, Y., Si, L., Carbonell, J., Hauptmann, A.G.: A new boosting algorithm
using input-dependent regularizer. In: Proc. ICML, pp. 615–622 (2003)

8. Friedman, J., Hastie, T., Tibshirani, R.: Additive logistic regression: a statistical
view of boosting. The Annals of Statistics 28, 2000 (1998)
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mation criteria. In: Köppen, M., Kasabov, N., Coghill, G. (eds.) ICONIP 2008,
Part II. LNCS, vol. 5507, pp. 903–910. Springer, Heidelberg (2009)

13. Xi, Y.T., Xiang, Z.J., Ramadge, P.J., Schapire, R.E.: Speed and sparsity of regu-
larized boosting. In: Proc. AISTATS, pp. 615–622 (2009)

14. Vapnik, V.: The Nature of Statistical Learning Theory. Springer (2000)
15. Schapire, R.E., Freund, Y., Bartlett, P., Lee, W.S.: Boosting the margin: A new

explanation for the effectiveness of voting methods (1998)
16. Lee, Y., Lin, Y., Wahba, G.: Multicategory support vector machines, theory, and

application to the classification of microarray data and satellite radiance data.
Journal of the American Statistical Association 99, 67–81 (2004)

17. Bache, K., Lichman, M.: UCI Machine Learning Repository (2013),
http://archive.ics.uci.edu/ml

18. Schapire, R.E., Singer, Y.: Improved boosting algorithms using confidence-rated
predictions. In: Machine Learning, vol. 37, pp. 297–336 (1999)

Appendix

A Derivation of Binary AR-Boost

At the t-th iteration, the loss function is L(y, f(x)) =
exp (−yf(x)− λ|y − ht(x)|). Let ft(x) = ft−1(x) + αtht(x) be the strong
classifier composed of first t classifiers. We have that αt = arg minα∑n

i=1 exp (−yift−1(xi)− αyiht(xi)− λ|yi − ht(xi)|). Using the fact that
wt

i = exp (−yift−1(xi)), we have

αt =arg min
α

n∑
i=1

wt
i exp (−αyiht(xi)− λ|yi − ht(xi)|)

= arg min
α

∑
i:yi=ht(xi)

wt
ie

−α +
∑

i:yi �=ht(xi)

wt
ie

α−2λ.

Letting εt =
∑n

i=1 w
t
iδ� yi �= ht(xi) �, and observing that wt

i are normalized
(
∑n

i=1 w
t
i = 1), we have αt = arg minα e−α(1− εt) + eα−2λεt. This gives us

αt =
1

2
log

ρ(1− εt)

εt
, (8)

where we use λ = 1
2 log ρ. Now, observing from above that wt+1

i =
exp (−yift(xi)) = wt

i exp (−yiαtht(xi)) and using the fact that −yiht(xi) =
2δ� yi �= ht(xi) �− 1, we have

wt+1
i = wt

i exp (2αtδ� yi �= ht(xi) �). (9)

http://archive.ics.uci.edu/ml
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The term e−αt is dropped as it appears in wt+1
i ∀i and cancels during normal-

ization. Then wt+1
i is expressed in terms of wt

i , y, αt and ht. Subsequently, the
summation breaks into two parts: y = ht and y �= ht and finally it uses (8), to
get the final expression for Zt:

Zt =
n∑

i=1

wt+1
i =

(
1
√
ρ
+
√
ρ

) √
εt (1 − εt). (10)

B Derivation of Multiclass AR-Boost

At the t-th iteration, the loss function is L(y, f(x)) =
exp (− 1

Cy′f(x) − λ
C ‖y − ht(x)‖1). Let ft(x) = ft−1(x) + αtht(x) be

the strong classifier composed of first t classifiers. We need αt =
arg minα

∑n
i=1 exp

(
− 1

Cy′
i(ft−1(xi) + αtht(xi)) +

λ
C ‖yi − ht(xi)‖1

)
. Anal-

ogous to the two class case, we have wt
i = exp

(
− 1

Cy′
ift−1(xi)

)
. Recall, that

solving for ht(x) is encoded as finding the multiclass classifier Ht(x) that yields
ht(x). Thus, we have

αt =arg min
α

n∑
i=1

wt
i exp (−

α

C
y′
iht(xi)−

λ

C
‖yi − ht(xi)‖1)

= arg min
α

∑
i:ci=Ht(xi)

wt
ie

− α
C−1 +

∑
i:ci �=Ht(xi)

wt
ie

α
(C−1)2

− 2λ
C−1 .

As before, we set εt =
∑n

i=1 w
t
iδ� ci �= Ht(xi) � and we get α̂t =

(C−1)2

C αt

αt = log
ρ(1 − εt)

εt
+ log (C − 1), (11)

where λ = C−1
2 log ρ. This allows us to write

wt+1
i =

{
wt

ie
−C−1

C αt , if ci = Ht(xi),

wt
ie

1
C αt , if ci �= Ht(xi).

(12)

After normalization, this weight above is equivalent to the weight used in Al-
gorithm 2. Finally, it is simple to show that the output after T iterations,
fT (x) = arg maxk(f

1
T (x), . . . , f

k
T (x), . . . , f

C
T (x))′ and is equivalent to fT (x) =

arg maxk
∑T

t=1 αtδ�Ht(x) = k �.

C Proof for Lemma 1

At the t-th iteration, setting εt =
ρ

ρ+1 − γt in (10) and simplifying gives us

Zt =
ρ+ 1
√
ρ

√(
ρ

ρ+ 1
− γt

) (
1

ρ+ 1
+ γt

)
=

√
1− (ρ+ 1)2

ρ
γ2t +

ρ2 − 1

ρ
γt

Now, using 1 + x ≤ ex gives (3). �
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Abstract. We describe a new, simplified, and general analysis of a
fusion of Nesterov’s accelerated gradient with parallel coordinate de-
scent. The resulting algorithm, which we call BOOM, for boosting with
momentum, enjoys the merits of both techniques. Namely, BOOM re-
tains the momentum and convergence properties of the accelerated gra-
dient method while taking into account the curvature of the objective
function. We describe a distributed implementation of BOOM which is
suitable for massive high dimensional datasets. We show experimentally
that BOOM is especially effective in large scale learning problems with
rare yet informative features.

Keywords: accelerated gradient, coordinate descent, boosting.

1 Introduction

Large scale supervised machine learning problems are concerned with building
accurate prediction mechanisms from massive amounts of high dimensional data.
For instance, Bekkerman et al. [15] gave as an example the problem of train-
ing a Web search ranker on billions of documents using user-clicks as labels.
This vast amount of data also comes with a plethora of user behavior and click
patterns. In order to make accurate predictions, different characteristics of the
users and the search query are extracted. As a result, each example is typically
modeled as a very high-dimensional vector of binary features. Yet, within any
particular example only a few features are non-zero. Thus, many features appear
relatively rarely in the data. Nonetheless, many of the infrequent features are
both highly informative and correlated with each other. Second order methods
take into account the local curvature of the parameter space and can potentially
cope with the skewed distribution of features. However, even memory-efficient
second order methods such as L-BFGS [12] cannot be effective when the pa-
rameter space consists of 109 dimensions or more. The informativeness of rare
features attracted practitioners who crafted domain-specific feature weightings,
such as TF-IDF [13], and learning theorists who devised stochastic gradient and
proximal methods that adapt the learning rate per feature [4,6]. Alas, our exper-
iments with state-of-the-art stochastic gradient methods, such as AdaGrad [4],
underscored the inability of stochastic methods to build very accurate predictors
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which take into account the highly correlated, informative, yet rare features. The
focus of this paper is the design and analysis of a batch method that is highly
parallelizable, enjoys the fast convergence rate of modern proximal methods, and
incorporates a simple and efficient mechanism that copes with what we refer to
as the elliptical geometry of the feature space.

Our algorithm builds and fuses two seemingly different approaches. Due to
the scale of the learning problems, we have to confine ourselves to first order
methods whose memory requirements are linear in the dimension. One of the
most effective approaches among first order optimization techniques is Nesterov’s
family of accelerated gradient methods. Yuri Nesterov presented the core idea
of accelerating gradient-based approaches by introducing a momentum term al-
ready in 1983 [8]. The seemingly simple modification to gradient descent obtains
optimal performance for the complexity class of first-order algorithms when ap-
plied to the problem of minimization of smooth convex functions [7]. Nesterov
and colleagues presented several modifications in order to cope with non-smooth
functions, in particular composite (sum of smooth and non-smooth) functions.
The paper of the late Paul Tseng provides an excellent, albeit technically com-
plex, unified analysis of gradient acceleration techniques [16]. This paper is also
the most related to the work presented here as we elaborate in the sequel.

Both Nesterov himself as well as the work of Beck and Teboulle [1], who built
on Nesterov’s earlier work, studied accelerated gradient methods for compos-
ite objectives. Of the two approaches, the latter is considered more efficient to
implement as it requires storing parameters from only the last two iterations
and a single projection step. Beck and Teboulle termed their approach FISTA
for Fast Iterative Shrinkage Thresholding Algorithm. We start our construction
with a derivation of an alternative analysis for FISTA and accelerated gradient
methods in general. Our analysis provides further theoretical insights and dis-
tills to a broad framework within which accelerated methods can be applied.
Despite their provably fast convergence rates, in practice accelerated gradient
methods often exhibit slow convergence when there are strong correlations be-
tween features, amounting to elliptical geometry of the feature space. Putting the
projection step aside, first order methods operate in a subspace which conforms
with the span of the examples and as such highly correlated rare features can
be overlooked. This deficiency is the rationale for incorporating an additional
component into our analysis and algorithmic framework.

Coordinate descent methods [17] have proven to be very effective in machine
learning problems, and particularly in optimization problems of elliptical geome-
tries, as they can operate on each dimension separately. However, the time com-
plexity of coordinate descent methods scale linearly with the dimension of the
parameters and thus renders them inapplicable for high-dimensional problems.
Several extensions that perform mitigated coordinate descent steps in parallel
for multiple coordinates have been suggested. Our work builds specifically on
the parallel boosting algorithm from [2]. However, parallel boosting algorithms
on their own are too slow. See for instance [14] for a primal-dual analysis of the
rate of convergence of boosting algorithms in the context of loss minimization.
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Our approach combines the speed of accelerated gradient methods with the ge-
ometric sensitivity of parallel coordinate descent, and enjoys the merits of both
approaches.We call the resulting approach BOOM, for boosting withmomentum.
As our experiments indicate, BOOM clearly outperforms both parallel boosting
and FISTA over a range of medium- to large-scale learning problems. The afore-
mentioned paper by Tseng also marries the two seemingly different approaches.
It is based on extending the so called 1-memory version of accelerated gradient
to inner-product norms, and indeed by employing a matrix-based norm Tseng’s
algorithm can model the elliptical geometry of the parameter space. However,
our analysis and derivation are quite different than Tseng’s. We take a more
modular and intuitive approach, starting from the simplest form of proximal
methods, and which may potentially be used with non-quadratic families of
proximal functions.

The rest of the paper is organized as follows. We describe the problem setting
in Sec. 2 and review in Sec. 3 proximal methods and parallel coordinate descent
for composite objective functions. For concreteness and simplicity of our deriva-
tions, we focus on a setting where the non-smooth component of the objective
is the 1-norm of the vector of parameters. In Sec. 4 we provide an alternative
view and derivation of accelerated gradient methods. Our derivation enables a
unified view of Nesterov’s original acceleration and the FISTA algorithm as spe-
cial cases of an abstraction of the accelerated gradient method. This abstraction
serves as a stepping stone in the derivation of BOOM in Sec. 5. We provide
experiments that underscore the merits of BOOM in Sec. 6. We briefly discuss
a loosely-coupled distributed implementation of BOOM which enables its usage
on very large scale problems. We comments on potential extensions in Sec. 7.

2 Problem Setting

We start by first establishing the notation used throughout the paper. Scalars
are denoted by lower case letters and vectors by boldface letters, e.g. w. We
assume that all the parameters and instances are vectors of fixed dimension
n. The inner product of two vectors is denoted as 〈w,v〉 =

∑n
j=1 wjvj . We

assume we are provided a labeled dataset {(xi, yi)}mi=1 where the examples have
feature vectors in Rn. The unit vector whose j’th coordinate is 1 and the rest
of the coordinates are 0 is denoted ej . For concreteness, we focus on binary
classification and linear regression thus the labels are either in {−1,+1} or real-
valued accordingly. A special case which is nonetheless important and highly
applicable is when each feature vector is sparse, that is only a fraction of its
coordinates are non-zero. We capture the sparsity via the parameter κ defined
as the maximum over the 0-norm of the examples, κ = maxi |{j : xi,j �= 0}|. The
convex optimization problem we are interested in is to associate an importance
weight with each feature, thus find a vector w ∈ Rn which minimizes:

L(w) =
∑m

i=1 �(〈w,xi〉 , yi) + λ1‖w‖1 = F(w) + λ1‖w‖1 ,
where F denotes the smooth part of L. As mentioned above, the non-smooth
part of L is fixed to be the 1-norm of w. Here � : R × R → R+ is a prediction
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loss function. In the concrete derivations presented in later sections we focus on
two popular loss functions: the squared error �(ŷ, y) = 1

2 (ŷ − y)2 for real-valued
labels, and the logistic loss �(ŷ, y) = 1 + e−yŷ for binary labels, where ŷ is the
prediction and y is the true label. Throughout the paper w∗ denotes the point
minimizing L.

3 Proximal Methods

We begin by reviewing gradient descent for smooth objective functions and then
show how to incorporate non-smooth 1-norm regularization. We review how the
same minimization task can be carried out using parallel coordinate descent.

Gradient Descent. Let us first assume that λ1 = 0, hence L = F . We denote
by L the maximum curvature of F in any direction, so that ∇2F � LI. This
property of F coincides with having a Lipschitz-continuous gradient of a Lips-
chitz constant L. We can locally approximate F around any point v using the
following quadratic upper bound: F(w+δ) ≤ F(w)+〈∇F(v), δ〉+ 1

2 δ
†(LI)δ︸ ︷︷ ︸
L‖δ‖2

.

In each iteration, the new weight wt+1 is chosen to minimize the above bound
anchored at the previous iterate wt, which amounts to,

wt+1 = wt − (1/L)∇F(wt) . (1)

For this update, recalling L = F , simple algebra yields the following drop in the
loss,

L(wt)− L(wt+1) ≥ ‖∇L(wt)‖22/(2L) . (2)

The guarantee of (2), yields that it takes O
(
L‖w0 −w∗‖2/ε

)
iterations to obtain

an approximation that is ε-close in the objective value.

Incorporating 1-norm regularization. When λ1 > 0, the local approximation
has to explicitly account for the �1 regularization, we have the following local
approximation:

L(w + δ) ≤ F(w) + 〈δ,∇F(w)〉 + (L/2)‖δ‖2 + λ1‖w+ δ‖1 .

We can decompose the above Taylor expansion in a coordinate-wise fashion

L(w + δ) ≤ L(w) +
∑n

j=1 f
L
j (δj) , (3)

where
fL
j (δ)

�
= gjδ + (1/2)Lδ2 + λ1 |wj + δ| − λ1 |wj | , (4)

where gj denotes ∇F(w)j . Multiple authors (see e.g. [5]) showed that the value
δ∗j minimizing fj satisfies wj + δ∗j = Pgj

L (wj), where

Pg
L (w)

�
= sign (w − g/L) [|w − g/L| − λ1/L]+ . (5)

In fact, with this choice of δ∗j we can show the following guarantee using standard
arguments from calculus.
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Lemma 1. Let fL
j be defined by (4) and δ∗j chosen as above, then

fL
j (0)− fL

j (δ
∗
j ) ≥ (L/2)δ∗j

2 .

Gradient descent with �1 regularization iteratively chooses wt+1 to minimize the
local approximation around wt, which amounts to

∀j : wt+1,j = Pgj
L (wt,j) , (6)

and using (3) and Lemma 1 we obtain the following guarantee:

L(wt)− L(wt+1) ≥ (L/2)‖wt −wt+1‖2 . (7)

This guarantee yields the same convergence rate of O
(
L‖w0 −w∗‖2/ε

)
as before.

Coordinate Descent. In coordinate descent algorithms, we take into account the
possibility that the curvature could be substantially different for each coordinate.
Let Lj denotes the maximum curvature of F along coordinate j, then as we show
in the sequel that parallel coordinate descent achieves a convergence rate of
O(
∑n

j=1 κLj(w0,j − w∗
j )

2/ε), where κ is the aforementioned sparsity parameter.
Note that when the dataset is perfectly spherical and all the coordinate wise
curvatures are equal to L0, convergence rate simplifies to O

(
κL0‖w0 −w∗‖2/ε

)
,

and we approximately recover the rate of gradient descent. In general though,
the coordinate-specific rate can yield a significant improvement over the gradient
descent bounds, especially for highly elliptical datasets.

Let us describe a toy setting that illustrates the advantage of coordinate
descent over gradient descent when the feature space is elliptical. Assume that
we have a linear regression problem where all of the labels are 1. The data matrix
is of size 2(n−1)×n. The first n−1 examples are all the same and equal to the unit
vector e1, that is, the first feature is 1 and the rest of the features are zero. The
next n−1 examples are the unit vectors e2, . . . , en. The matrix ∇2F is diagonal
where the first diagonal element is n−1 and the rest of the diagonal elements
are all 1. The optimal vector w∗ is (1, . . . , 1) and thus its squared 2-norm is n.
The largest eigen value of ∇2F is clearly n−1 and thus L = n−1. Therefore,
gradient descent converges at a rate of O(n2/ε). The rest of the eigen values of
∇2F are 1, namely, Lj = 1 for j ≥ 2. Since exactly one feature is “turned on”
in each example κ = 1. We therefore get that coordinate descent converges at a
rate of O(n/ε) which is substantially faster in terms of the dimensionality of the
problem. We would like to note in passing that sequential coordinate descent
converges to the optimal solution in exactly n steps.

To derive the parallel coordinate descent update, we proceed as before via a
Taylor approximation, but this time have a separate approximation per coordi-
nate: F(w+θej) ≤ F(w)+θ∇F(w)j+(Lj/2)θ

2 . In order to simultaneously step
in each coordinate, we employ the sparsity parameter κ and Jensen’s inequality
(see e.g. [3]) to show

F (w + θ/κ) ≤ F(w) + (1/κ)
∑n

j=1

(
θj∇Fj(w) + (Lj/2)θ

2
j

)
= F(w) +

∑n
j=1

(
gjθj/κ+ (1/2)Ljκ (θj/κ)

2
)
.
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By replacing θj/κ by δj , we get

F(w + δ) ≤ F(w) +
∑n

j=1

(
gjδj + (κLj/2)δ

2
j

)
. (8)

Introducing the �1 regularization terms on both sides, we have

L(w + δ) ≤ L(w) +
∑n

j=1 f
κLj
j (δj) , (9)

where f
κLj
j is as in (4). From our earlier discussions, we know the optimal choice

δ∗ minimizing the previous expression satisfies δ∗j = Pgj
κLj

(wj). Accordingly, the
parallel coordinate descent update is

wt+1,j = Pgj
κLj

(wt,j) , (10)

and using (9) and Lemma 1, we have

L(wt)− L(wt+1) ≥
∑n

j=1(κLj/2) (wt,j − wt+1,j)
2 . (11)

As before, with this guarantee on the progress of each iteration we can show
that the convergence rate is O(

∑n
j=1 κLj(w0,j − w∗

j )
2/ε).

4 Accelerated Gradient Methods

In this section we give a new alternative derivation of the accelerated gradi-
ent method (AGM) that underscores and distills the core constituents of the
method. Our view serves as a stepping stone towards the extension that incor-
porates parallel boosting in the next section. Accelerated methods take a more
general approach to optimization than gradient descent. Instead of updating the
parameters using solely the most recent gradient, AGM creates a sequence of
auxiliary functions φt : R

n → Rn that are increasingly accurate approximations
to the original loss function. Further, the approximating functions uniformly
converge to the original loss function as follows,

φt+1(w)− L(w) ≤ (1− αt) (φt(w) − L(w)) , (12)

where each αt ∈ (0, 1) and the entire sequence determines the rate of conver-
gence. At the same time, AGM produces weight vectors wt such that the true
loss is lower bounded by the minimum of the auxiliary function as follows,

L(wt) ≤ minw φt(w) . (13)

The above requirement yields directly the following lemma.

Lemma 2. Assume that (12) and (13) hold in each iteration, then after t iter-
ations, L(wt)− L(w∗) is be upper bounded by,(∏

k<t (1− αk)
)
(φ0(w

∗)− φ0(w0) + L(w0)− L(w∗)) .
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The inequality (12) is achieved by choosing a linear function L̂t that lower bounds
the original loss function, L̂t(w) ≤ L(w), and then squashing φt towards the
linear function by a factor αt,

φt+1 = (1− αt)φt + αtL̂t. (14)

Nesterov chose the initial auxiliary function to be a quadratic function centered
at v0 = w0 (an arbitrary point vector), with curvature γ0 = L/2, and intercept
φ∗
0 = L(w0), φ0(w) = γ0‖w − v0‖2 + φ∗

0 = L
2‖w −w0‖2 + L(w0). Then, using

an inductive argument, each φt is also a quadratic function with a center vt,
curvature γt = γ0

∏
t′<t(1− αt′), and intercept φ∗

t

φt(w) = γt‖w − vt‖2 + φ∗
t . (15)

Moreover, if the linear function L̂t has slope ηt, algebraic manipulations yield:

vt+1 = vt − (αt/2γt+1)ηt (16)

φ∗
t+1 = φt+1(vt)− (φt+1(vt)− φt+1(vt+1))

= (1− αt)φ
∗
t + αtL̂t(vt)− γt+1‖vt+1 − vt‖2

= (1− αt)φ
∗
t + αtL̂t(vt)− (α2

t /4γt+1)‖ηt‖2 . (17)

The last two equalities follow from (14), (15), and (16). To complete the al-
gorithm and proof, we need to choose L̂t, αt and wt+1 so as to satisfy (13).
Namely, L(wt+1) ≤ φ∗

t+1. All acceleration algorithms satisfy these properties
by tackling the expression in (17) in two steps. First, an intermediate point
yt+1 = (1− αt)wt + αtvt is chosen. Note by linearity of L̂t we have,

L̂t(yt+1) = (1 − αt)L̂t(wt) + αtL̂t(vt) ≤ (1− αt)L(wt) + αtL̂t(vt) .

Then, a certain proximal step is taken from yt+1 in order to reach wt+1, making
sufficient progress in the process that satisfies,

L̂t(yt+1)− L(wt+1) ≥ (α2
t /4γt+1)‖ηt‖2 . (18)

Combining the above two inequalities and inductively assuming that L(wt) ≤ φ∗
t ,

it can be shown that L(wt+1) is at most φ∗
t+1 as given by (17).

The acceleration method in its abstract and general form is described in Algo-
rithm 1. Further, based on the above derivation, this abstract algorithm ensures
that (12) and (13) hold on each iteration. Consequently Lemma 2 holds as well
as the following theorem.

Theorem 1. The optimality gap L(wt)−L(w∗) when wt is constructed accord-
ing to Algorithm 1 is at most,(∏

k<t(1− αk)
)
L‖w0 −w∗‖2 . (19)

Proof. It suffices to show that the bound of Lemma 2 can be distilled to the
bound of (19). Using the definition of φ0 we have

φ0(w
∗)− φ0(w0) = (L/2)‖w∗ −w0‖2 . (20)
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Further, since the maximum curvature is L, the function has a Lipschitz-
continuous gradient with Lipschitz constant L, namely, for any two vectors x,x′

the following inequality holds L(u) − L(u′) ≤ (L/2)‖x− x′‖2 and in particular
for u = w0 and u′ = w∗. Summing the term from inequality (20) with the
Lipschitz-continuity bound completes the proof.

We next present two concrete instantiations of Algorithm 1. Each variant chooses
a lower bounding function L̂t, a proximal step for reaching wt+1 from yt+1, and
finally αt so that (18) holds.

Nesterov’s Acceleration [9]. In this setting there is no 1-norm regularization,
λ1 = 0, so that L = F . Here L̂t is the tangent plane to the surface of L at yt+1,
ηt = ∇L(yt+1) and L̂t(w) = L(yt+1)+〈ηt,w− yt+1〉, which by definition lower
bounds L. Further, let wt+1 be obtained from yt+1 using the proximal step in
(1),

wt+1 = yt+1 − (1/L)∇L(yt+1) . (21)

Then, we have the same guarantee as in (2),

L(yt+1)− L(wt+1) ≥ 1/(2L)‖∇L(yt+1)‖2 .

By definition of η, (18) holds if we choose αt to satisfy

1/(2L) = α2
t /(4γt+1), (22)

which by expanding γk and using γ0 = L/2, simplifies to

α2
t /(1− αt) =

∏
k<t(1− αk) . (23)

From the above recurrence, the following inverse quadratic upper bound holds.

Lemma 3. Assume that (23) holds, then
∏

s<t(1− αs) ≤ 2
(t+1)2

Lemma 3 with Thm. 1 yields a rate of convergence of O(L‖w −w∗‖2/
√
ε).

FISTA [1]. In FISTA, wt+1 is set from yt+1 using (6), namely, wt+1,j =

Pgj
L (yt+1,j). With this choice of wt+1, L̂t is constructed as follows,

ηt = L (yt+1 −wt+1) , L̂t(w) = L(wt+1) + (1/2L)‖η‖2 + 〈η,w− yt+1〉 . (24)

The fact that L̂t lower bounds L is not obvious as was shown in [1]. We provide a
more general proof later in Lemma 4. Note that the definition (24) implies that,
L̂t(yt+1)− L(wt+1) = (1/2L)‖η‖2. Thus (18) holds when αt is set as in (22) so
as to satisfy the recurrence (23). Once again invoking Lemma 3 and Theorem 1,
we obtain the same convergence rate of O(L‖w0 − w∗‖2)/

√
ε). The resulting

algorithm may appear different than the original FISTA algorithm, but can be
shown to be equivalent.
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Algorithm 1. Accelerated Gradient

1: inputs: loss L : Rn → R,
curvature L ∈ R+.

2: initialize: w0 = v0 ∈ Rn,
γ0 ← L/2.

3: for t = 0, 1, . . . , do
4: Pick αt ∈ (0, 1)
5: Set γt+1 = γ0

∏
k≤t(1− αk).

6: yt+1 ← (1− αt)wt + αtvt.
7: Choose linear function

L̂t ≤ L with slope ηt

8: Choose wt+1 using yt+1

so that (18) holds
9: vt+1 ← vt − (αt/2γt+1)ηt

10: end for

Algorithm 2. Boosting with Momentum

1: inputs: loss L,
sparsity κ and L1, . . . , Ln.

2: initialize: w0 = v0 ∈ Rn,
∀j : γ0,j ← κLj/2.

3: for t = 0, 1, . . . , do
4: Pick αt ∈ (0, 1)
5: Set γt+1,j = γ0,j

∏
k≤t(1− αk).

6: yt+1 ← (1− αt)wt + αtvt.
7: Choose linear function

L̂t ≤ L with slope ηt

8: Choose wt+1 using yt+1

so that (28) holds
9: ∀j : vt+1,j ← vt,j − (αt/2γt+1,j)ηt,j .
10: end for

5 BOOM: A Fusion

In this section we use the derivation of the previous section in a more general
setting in which we combine the momentum-based gradient descent with parallel
coordinate decent. As mentioned above we term the approach BOOM as it fuses
the parallel boosting algorithm from [2] with momentum accelerated gradient
methods [9,10,11].

The structure of this section will closely mirror that of Section 4, the only
difference being the details for handling per-coordinate curvature. We start by
modifying the auxiliary functions to account for the different curvatures Lj of F
in each direction, starting with the initial function,

φ0(w) =
∑n

j=1 γ0,j(wj − v0,j)
2 + φ∗

0.

The γ0,j are initialized to κLj/2 for each coordinate j, and φ∗
0 is set to L(w0):

φ0(w) =
∑n

j=1(Lj/2)(wj − v0,j)
2 + L(w0).

So instead of a spherical quadratic, the new auxiliary function is elliptical, with
curvatures matching those of the smooth part F of the loss function. As before,
we will choose a linear function L̂t ≤ L in each round and squash φt towards it
to obtain the new auxiliary function. Therefore (14) continues to hold, and we
can again inductively prove that φt continues to retain an elliptical quadratic
form:

φt(w) =

n∑
j=1

γt,jLj(wj − vt,j)
2 + φ∗

t , (25)

where γt,j = γ0,j
∏

k<j(1− αk). In fact, if L̂t has slope ηt, then we can show as
before:
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vt+1,j = vt,j − (αt/2γt+1,j)ηt,j (26)

φ∗
t+1 = φt+1(vt)− (φt+1(vt)− φt+1(vt+1))

= (1− αt)φ
∗
t + αtL̂t(vt)−

∑t
j=1 γt+1,j (vt+1,j − vt,j)

2

= (1− αt)φ
∗
t + αtL̂t(vt)−

∑n
j=1(α

2
t /4γt+1,j)η

2
t,j . (27)

By picking yt+1 = (1 − αt)wt + αtvt as before and arguing similarly we can
inductively show the same invariant L(wt) ≤ φ∗

t , except wt+1 has to satisfy the
following guarantee instead of (18):

L̂t(yt+1)− L(wt+1) ≥
∑n

j=1(α
2
t /4γt+1,j)η

2
t,j . (28)

The algorithm in this abstract form is given in Algorithm 2. We have now es-
tablished that (12) and (13) hold in each iteration, and hence using Lemma 2
and arguing as before, we have the following theorem.

Theorem 2. If Algorithm 2 outputs wt in iteration t, then the suboptimality
L(wt)−L(w∗) can be upper bounded by

(∏
k<t(1− αk)

)∑n
j=1 κL0,j(wt,j−w∗

j )
2.

In order to make Algorithm 2 concrete, we must choose {αt}, L̂t, and wt+1 to
satisfy the required constraints. Our selection will be analogous to the choices
made by FISTA, but incorporating different curvatures. We first selectwt+1 from
yt+1 in a way similar to (10), ∀j : wt+1,j = Pgj

κLj
(yt+1,j), where gj = ∇F(yt+1)j .

Based on this choice, we select L̂t as follows:

ηt,j = κLj (yt+1,j − wt+1,j) (29)

L̂t(w) = L(wt+1) +
∑n

j=1(η
2
j /2κLj) + 〈ηt,w − yt+1〉 . (30)

By extending Lemma 2.3 in [1] we can show L̂t ≤ L.
Lemma 4. If L̂t is defined as in (30), then ∀w : L̂t(w) ≤ L(w).

The proof relies on optimality properties of the choice wt+1 and involves some
subgradient calculus. We defer it to the supplementary materials. In addition to
the lower bounding property L̂t ≤ L, from the definition (30), we also have

L̂t(yt+1)− L(wt+1) =
∑n

j=1(1/2κLj)η
2
j .

Then the constraint (28) will follow if we set αt to satisfy:

α2
t /(4γt,j) = 1/(2κLj). (31)

Expanding out γt,j and using γ0,j = Lj/2 we obtain
α2

t

1−αt
=

2γ0,j

κLj

∏
k<t(1−αk) =∏

k<t(1− αk), which is identical to (23).
We have now defined a particular instantiation of Algorithm 2, which satis-

fies the required conditions by the above discussion. We dub this instantiation
BOOM, and give the full procedure in Algorithm 3 for completeness. Applying
Theorem 2 and once again invoking Lemma 3, we have the following theorem,
which yields a O(

∑n
j=1 κLj(w0,j − w∗

j )
2/
√
ε) convergence rate.
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Theorem 3. The wt output by Algorithm 3 satisfies the bound

L(wt)− L(w∗) ≤ (2/(t+ 1)2)
∑n

j=1 κLj(w0,j − w∗
j )

2.

As examples, consider linear and logistic loss. When L uses the linear loss, the
curvature parameters are given by Lj =

∑
i x

2
i,j where xi ∈ Rn is the feature

vector for the ith example in the training set. With logistic loss, the curvature
can be bounded by Lj = (1/4)

∑
i x

2
i,j [5].

6 Experiments

Algorithm 3. BOOM

1: inputs: loss L, regularizer λ1,
2: parameters: κ and L1, . . . , Ln

3: initialize: w0 = v0 = 0, γ0,j ← κLj/2
4: for t = 0, 1, . . . , do
5: Pick αt satisfying (23)
6: Set γt+1,j ← γ0,j α

2
t/(1− αt).

7: yt+1 ← (1− αt)wt + αtvt.
8: g ← ∇L(yt+1)
9: wt+1,j ← Pgj

κLj
(yt+1,j)

10: vt+1,j ← vt,j −
αtκLj

2γt+1,j
(yt+1,j − wt+1,j)

11: end for

We tested the performance of four
algorithms: (1) parallel boosting,
discussed in Section 3, (2) FISTA,
discussed in Section 4, (3) BOOM,
shown in Algorithm 3, and (4) se-
quential boosting. Note that for the
first three algorithms, within each
iteration, each coordinate in the fea-
ture space {1, . . . , n} could be as-
signed a separate processing thread
that could carry out all the com-
putations for that coordinate: e.g.,
the gradient, the step-size, and the
change in weight for that coordinate.

Therefore by assigning enough threads, or for the case of massively high dimen-
sional data, implementing these algorithms on a distributed architecture and
allocating enough machines, the computation time could remain virtually con-
stant even as the number of dimensions grows. However, in sequential boosting
a single iteration consists of choosing n coordinates uniformly at random with
replacement, then making optimal steps along these coordinates, one by one in
order. Therefore, in terms of computational time, one iteration of the sequential
algorithm is actually on the order of n iterations of the parallel algorithms. The
goal in including sequential boosting was to get a sense for how well the parallel
algorithms can compete with a sequential algorithm, which in some sense has
the best performance in terms of number of iterations. In all the experiments,
when present, the curve corresponding to parallel boosting is shown in solid red
lines, Fista in dashed blue, BOOM in solid lightgreen, and sequential boosting
in dashed black.

We next describe the datasets. The synthetic datasets were designed to test
how algorithms perform binary classification tasks with varying levels of sparsity,
ellipticity, and feature correlations. We generated 9 synthetic datasets for binary
classification, and 9 for linear regression. Each dataset has 1000 examples (split
into train and test in a 2:1 ratio) and 100 binary features. Each feature is sparse
or dense, occurring in 5% or 50%, resp. of the examples. The fraction of sparse
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features is 0, 0.5, or 1.0. Note that with a 0.5 fraction of sparse features, the
ellipticity is higher than when the fraction is 0 or 1. For each of these settings,
either 0, 50, or 100 percent of the features are grouped into equal blocks of
identical features. The labels were generated by a random linear combination of
the features, and contain 10% white label noise for binary classification, or 10%
multiplicative Gaussian noise for the linear regression datasets. We ran each of
the four algorithms for 100 iterations on each dataset.
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Fig. 1. (Synthetic data) The top and bottom rows
represent logistic and linear regression experiments,
resp. The columns correspond to partitions of the
datasets based on fraction of sparse features. The
x-axis is iterations and the y-axis is the progress
after each iteration, averaged over the datasets in
the partition.

For each algorithm, in each
iteration we measure progress
as the drop in loss since the
first iteration, divided by the
best loss possible, expressed
as a percentage. For the train-
ing set we considered regular-
ized loss, and for the test set
unregularized loss. We par-
tition the datasets based on
whether the fraction of sparse
features, is 0, 0.5 or 1. For
each partition, we plot the
progress on the training loss
of each algorithm, averaged
across all the datasets in the
partition.

The results are tabulated
in Figure 1 separately for lo-
gistic and linear regression.

BOOM outperforms parallel boosting and FISTA uniformly across all datasets
(as mentioned above, the sequential boosting is shown only as a benchmark).
Against FISTA, the difference is negligible for the spherical datasets (where the
fraction of sparse features is 0 or 1), but more pronounced for elliptical datsets
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Fig. 2. (Medium-size real data) The top and bottom rows correspond to training and
test data, resp. The x-axis measures iterations, and the y-axis measures loss with and
without regularization for the training and test sets, resp.
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(where the fraction of sparse features is 0.5). The plots on the test loss have the
same qualitative properties, so we omit them.

10 20 50 100 200

0
.3

0
0
.3

4

Dataset One

10 20 50 100 200

0
.1

4
5

0
.1

5
5

0
.1

7
0

Dataset Two

Fig. 3. (Large scale data) The x-axis is itera-
tions and the y-axis is r-squared of the loss. The
solid curves correspond to r-squared over train-
ing sets, and the dashed curve over the test-sets.

We next ran each algorithm for
100 iterations on four binary clas-
sification datasets: ijcnn1, splice,
w8a and mushrooms. The cri-
teria for choosing the datasets
were that the number of exam-
ples exceeded the number of fea-
tures, and the size of the datasets
were reasonable. The continuous
features were converted to bi-
nary features by discretizing them
into ten quantiles. We made ran-

dom 2:1 train/test splits in each dataset. The datasets can be found at
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html.
The log-log plot of train and test losses against the number of iterations are
shown respectively in the left and right columns of Figure 2. BOOM signifi-
cantly outperforms both FISTA and parallel boosting on both train and test
loss on each dataset, suggesting that most real datasets are elliptical enough for
the coordinate-wise approach of BOOM to make a noticeable improvement over
FISTA.

Finally, we report large-scale experiments over two anonymized proprietary
datasets. Both are linear regression datasets, and we report R-squared errors
for the training set in solid lines, and test set in dashed. Dataset One contains
7.964B and 80.435M examples in the train and test sets, and 24.343M features,
whereas Dataset Two contains 5.243B and 197.321M examples in the train and
test sets, and 712.525M features. These datasets have very long tails, and the
sparsity of the features varies drastically. In both datasets 90% of the features
occur in less than 7000 examples, whereas the top hundred or so features occur
in more than a hundred million examples each. Because of this enormous ellip-
ticity, FISTA barely makes any progress, performing miserably even compared
to parallel boosting, and we omit its plot. Sequential boosting is infeasibly slow
to implement, and therefore we only show plots for BOOM and parallel boosting
on these datasets. The results are shown in Figure 3, where we see that BOOM
significantly outperforms parallel boosting on both datasets.

7 Conclusions

We presented in this paper an alternative abstraction of the accelerated gradi-
ent method. We believe that our more general view may enable new methods
that can be accelerated via a momentum step. Currently the abstract acceler-
ated gradient method (Algorithm 1) requires an update scheme which provides
a guarantee on the drop in loss. Just as the choices of step size and slope were
be abstracted, we suspect that this gradient-based condition can be relaxed, re-
sulting in a potentially non-quadratic family of proximal functions. Thus, while

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/binary.html
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the present paper focuses on accelerating parallel coordinate descent, in prin-
ciple the techniques could be applied to other update schemes with a provable
guarantee on the drop in loss.
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Appendix

In this appendix we provide technical proofs for theorems and lemmas whose
proof were omitted from the body of the manuscript.

Proof of Lemma 1 Let ∂fL
j denotes a subgradient of fL

j . By convexity of fL
j and

optimality of δ∗j , ∂f
L
j is increasing, in the range (0, δ∗j ). Further, by optimality

of δ∗j , there f
L
j has a zero subgradient at the point δ∗j . The form of (4) implies

that ∂fL
j increases at the rate of at least Lj . Therefore, we get that

fL
j (0)− fL

j (δ
∗
j ) =

∫ 0

δ∗j
∂fL(z)dz ≥

∫ δ∗j
0 Lzdz = L

2δ
∗
j
2 . ��

Proof of Lemma 2 The proof amounts to application of (13) and (12) as follows,

∀w∗ : L(wt)− L(w∗) ≤ φt(w
∗)− L(w∗) [using (13)]

≤
(∏

k<t (1− αk)
)
(φ0(w

∗)− L(w∗)) [recursively applying (12)]

=
(∏

k<t (1− αk)
)
(φ0(w

∗)− φ0(w0) + φ0(w0)− L(w∗))

=
(∏

k<t (1− αk)
)
(φ0(w

∗)− φ0(w0) + L(w0)− L(w∗)) . ��

Proof of Lemma 3 We have α2
t =

∏
s≤t(1 − αs). Notice that this implies an

implicit relation α2
t+1 = (1− αt+1)α

2
t . To finish the proof, we show that αt−1 ≤

2/t. We have

1

αt+1
− 1

αt
=
αt − αt+1

αt αt+1
=

α2
t − α2

t+1

αt αt+1(αt + αt+1)
=

α2
t − α2

t (1− αt+1)

αt αt+1(αt + αt+1)
,

where the last equality follows from the implicit relation. Now, using the fact that

αt > αt+1 we get that
1

αt+1
− 1

αt
≥ α2

t αt+1

αt αt+1 2αt
= 1

2 . We also have α2
0/(1−α0) = 1,

and thus α0 = (
√
5 − 1)/2 < 1. Therefore, we get 1/αt−1 ≥ (t − 1)/2 + 1/α0 ≥

(t + 1)/2. This in turn implies that α2
t−1/2 ≤ 2/(t + 1)2, and the proof is

completed. ��

Proof of Lemma 4 The proof is very similar to the proof of Lemma 2.3 in [1].
The proof essentially works by first getting a first order expansion of the loss L
around the point wt+1, and then shifting the point of expansion to yt+1.

In order to get the expansion around wt+1, we will separately get expansions
for the smooth part F and the 1-norm parts of the loss. For the smooth part,
we first take the first order expansion around yt+1:

F(w) ≥ F(yt+1) + 〈∇F(yt+1),w − yt+1〉 . (32)

We will combine this with the expansion in (8) around the point yt+1 to get an
upper bound for the point wt+1. We have:

F(yt+1 + δ) ≤ F(yt+1) +
∑n

j=1

(
gjδj + (κLj/2)δ

2
j

)
,



32 I. Mukherjee et al.

where gj = ∇F(yt+1)j . Substituting wt+1 for yt+1 + δ we get

F(wt+1) ≤F(yt+1) + 〈∇F(yt+1),wt+1 − yt+1〉+
∑n

j=1(κLj/2)(wt+1,j − yt+1,j)
2.

Subtracting the previous equation from (32) and rearranging

F(w) ≥F(wt+1) + 〈∇F(yt+1),w −wt+1〉 −
∑n

j=1(κLj/2)(wt+1,j − yt+1,j)
2.

Next we get an expansion for the non-smooth 1-norm part of the loss. If ν
is a subgradient for the λ1‖·‖1 function at the point wt+1, then we have the
following expansion: λ1‖w‖1 ≥ λ1‖wt+1‖1 + 〈ν,w −wt+1〉 . Combining with
the expansion of the smooth part we get

L(w) ≥L(wt+1) + 〈∇F(yt+1) + ν,w−wt+1〉−
∑n

j=1(κLj/2)(wt+1,j − yt+1,j)
2.

We will carefully choose the subgradient vector ν so that the jth coordinate of
ν +∇F(yt+1), i.e., νj + gj satisfies

νj + gj = κLj(wt+1,j − yt+1,j), (33)

matching the definition of ηt,j in (29). We will show how to satisfy (33) later,
but first we show how this is sufficient to complete the proof. Using this we can
write the above expansion as

L(w) ≥L(wt+1) + 〈ηt,w−wt+1〉 −
∑n

j=1(κLj/2)(wt+1,j − yt+1,j)
2.

By shifting the base in the inner product term to yt+1 we can write it as

〈ηt,w −wt+1〉 = 〈ηt,w − yt+1〉+ 〈ηt,yt+1 −wt+1〉
= 〈ηt,w − yt+1〉+

∑n
j=1 κLj(wt+1,j − yt+1,j)

2.

Substituting this in the above, we get

L(w) ≥L(wt+1) + 〈ηt,w − yt+1〉+
∑n

j=1(κLj/2)(wt+1,j − yt+1,j)
2.

Notice that the right side of the above expression is L̂t(w).
To complete the proof we need to show how to select ν so as to satisfy (33).

We will do so based on the optimality properties of wt+1. Recall that by choice

wt+1,j = Pgj
κLj

(yt+1,j) = yt+1,j+δ
∗
j , where δ

∗
j minimizes the function f

κLj
j defined

as in (4): f
κLj
j (δ) = gjδ +

1
2κLjδ

2 + λ1 |yt+1,j + δ| − λ1 |yt+1,j|, By optimality

conditions for the convex function f
κLj

j , we have gj + κLjδ
∗
j + νj = 0, for some

νj that is a subgradient of the λ1 |yt+1,j + ·| function at the point δ∗j , or in
other words, a subgradient of the function λ1 |·| at the point wt+1,j . Therefore
there exists a subgradient ν of the λ1‖·‖1 function at the point satisfying (33),
completing the proof.
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Abstract. Ensemble Methods represent an important research area
within machine learning. Here, we argue that the use of such methods
can be generalized and applied in many more situations than they have
been previously. Instead of using them only to combine the output of
an algorithm, we can apply them to the decisions made inside the learn-
ing algorithm, itself. We call this approach Inner Ensembles. The main
contribution of this work is to demonstrate how broadly this idea can
applied. Specifically, we show that the idea can be applied to different
classes of learner such as Bayesian networks and K-means clustering.

Keywords: Inner Ensembles, Bayesian Network, K-means, Comprehen-
sibility.

1 Introduction

The idea of the wisdom of crowds is that decisions made by groups of people
are often more accurate, and more robust, than those made by individuals. An
important sub-field in machine learning, ensemble methods, has exploited this
idea very effectively, particularly in producing substantial performance gains.
However, we argue that there is considerable room to extend it further. We
believe our work is just the beginning of a much wider use of ensemble methods.
Here, instead of combining the output of models, we apply ensemble methods
to the decisions used to generate the models. We call this idea Inner Ensembles
as the wisdom of crowds is applied inside the learning algorithm. Although this
idea has been applied to decision trees [1,2], it is in fact much more general
and has broader benefits than previously thought. Here we argue that like more
traditional ensemble methods, Inner Ensembles define a broad framework that
has the potential to impact all kinds of algorithms other than just decision trees.
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Using this framework, we can realize many of the advantages of traditional
ensemble methods while restoring the more intuitive models produced by the
base algorithms. Many of us have worked extensively with such models and we
have a clear sense of what has been learned. This is particularly important when
the task is knowledge discovery rather than prediction. On a more practical level,
Inner Ensembles produce models with a number of clear advantages: compre-
hensibility, stability, simplicity, fast classification and small memory footprint.
Certainly, many of these are problematical for traditional ensemble methods [3].
However, we recognize that these advantages must often be traded off against
absolute performance. The work reported here shows that much of the improved
performance can be maintained. Continued refinement of the approach should
lead to further improvement.

Comprehensibility, how understandable a model is to users, is essential in
many real-world problems: medicine, fraud detection in insurance companies,
loan concession in financial environments [2]. Comprehensibility acts as a vali-
dation tool in some domains such as medical diagnosis; users are confident in a
system only when they understand how it arrives at decisions [4]. A comprehen-
sible model helps in identifying important hidden feature relationships. It may
suggest better representations, improving an algorithm’s generalization power
[5]. Finally, comprehensibility may help to refine ”approximately-correct”’ do-
main theories [6]. Comprehensibility is an important feature of inner-ensembles,
but not the only one. Stability is the property of being robust to small changes
in the underlying data [7]. Robust models are important because they evoke
more confidence that the underlying concept has been truly captured and their
accuracy is less susceptible to noise. Simplicity is an important property in its
own right, typically motivated by Occam’s razor [8]. The closely related concept
of over-fitting avoidance has been an important issue within machine learning
for some years. It is not without controversy though and the exact reasons for
the desirability are open to question [9]. Simplicity in terms of the actual fea-
tures used also leads to another two desirable properties: fast classification and
small memory footprint. In many on-line applications, the speed of determin-
ing membership, either in classification or clustering, is an important practical
consideration [10].

There has been quite a bit of work addressing the shortcomings of the standard
ensemble method, particularly the lack of comprehensibility. There are generally
two directions that have been followed. The first uses an ensemble as part of the
predictive model gaining the comprehensibility through the simplified high-level
structure [11,12]. The second uses a standard ensemble as a guide to growing a
new and simpler model that is comprehensible [13,14,15]. However, our approach,
Inner Ensembles, is quite different, using the ensemble to chose the parts of the
model. To illustrate the point, standard ensemble learning is analogous to a
management meeting in a company where decisions are made by voting; Inner
Ensembles learning is analogous to one manager being selected by voting to make
the decision on behalf of the rest of the group. To the best of our knowledge there
are two pieces of work that can be considered as Inner Ensembles [1,2]. However,
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these two were focused solely on decision trees and then just on choosing the right
feature to split. What we are doing is generalizing this idea to work for many
different kinds of algorithms. Certainly, our framework offers additional benefits.
To support this claim we introduce general guidelines for using Inner Ensembles
which we have applied to two categories of learning: supervised and unsupervised.
For the former we use Bayesian networks, for the latter K-means clustering. We
use ensemble methods similar to bagging. In the future work section, we discuss
the other potential ways of extending this idea especially using boosting instead
of bagging and using Inner Ensembles for other kinds of algorithms. In the rest
of the paper, we begin by explaining how to apply the framework for Inner
Ensembles to existing algorithms. Next, we present experiments that show the
efficacy of our framework. Finally, we will draw conclusions and suggest how
future work will explore new applications for Inner Ensembles.

Fig. 1. An example of a liver disorder diagnosis network [16]

2 Inner Ensembles in Practice

In this section, we describe general guidelines for applying Inner Ensembles to
any algorithms. Then using these guidelines, we describe in detail how our frame-
work is applied to two quite different algorithms: Bayesian networks and K-
means clustering. By choosing both a supervised and unsupervised algorithm,
we aim to demonstrate the broad applicability of our framework. As the struc-
ture of each algorithm is different, it is difficult to define a precise method for
applying Inner Ensembles in every case. However, with the knowledge of how
each algorithm works, we can follow some general guidelines. We need to identify
decision points, where choices are made based on a measure. Then, we need to
locate the input and output of that decision maker. By manipulating the input,
say by sampling the data, we produce different outputs. We combine these out-
puts and apply the result to the decision being made at that point inside the
algorithm. This procedure is shown in algorithm 1.
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Algorithm 1. General guidelines for using Inner Ensembles

1: Locating a decision maker inside the algorithm.
2: Finding a measure based on which that decision maker works.
3: Indicating the input and output of the measure.
4: Applying the ensemble on the measure:
5: Changing the input of the measure in different ways. {It can be sampling

of data or feature based modifications or other methods.}
6: Generating an output based on each input.
7: Combining the outputs
8: Applying the output of the ensemble for decision making.

2.1 Learning Bayesian Network Structure

Bayesian networks have been used for many applications: medicine, expert sys-
tems [17] and path finder systems [18]. One of the major advantages is their com-
prehensibility [19]. This advantage would clearly be lost when multiple networks
form an ensemble. Let us illustrate this point using the real world application of
liver disorder diagnosis [16]. The network, shown in figure 1, consists of the risk
factors and symptoms for several related disorders and it is important that it
be understandable for a clinician. For example, the network shows that Alcohol
Abuse and Obesity are risk factors for Hepatic Steatosis, a fatty liver. Hepatic
Steatosis, itself, may produce Pain and is linked to Cirhosis. When using an en-
semble of Bayesian networks, we would have many such networks with different
numbers of arcs which may represent quite different relationships; it would be
difficult for clinician to understand such a model. By using Inner Ensembles, we
gain many of the benefits of the traditional ensemble method while keeping the
comprehensibility of the base algorithm.

Bayesian networks specify a set of conditional independence assumptions; this
is captured in the structure of the network. To completely specify the network, we
also need conditional probability tables [20]. Therefore, for Bayesian networks,
there are two distinct learning problems, we focus on the former. Specifically, we
apply our framework to build the structure of the network during the learning
phase of the algorithm. Bayesian network algorithms search for the best network
structure among all possible ones. The popular K2 algorithm, shown in Algo-
rithm 2, uses a scoring function to determine the better of two networks and a
given ordering of nodes to determine the sequence in which they are processed
[21]. For all the nodes in the ordered list (line 2), the algorithm begins with
no parents for each node (line 3), πi is the set of parents of the ith node. At
each step (line 4), one parent is added to the node, and the score, g(i, πi ∪ {z}),
of the network structure is calculated (line 5), Prec(xi) in algorithm 2 denote
the nodes that precede node xi in the ordered list. The parent that increases
the score the most is added to the node’s list of parents πi. Adding parents to
the node stops if the addition does not increase the score of the structure (lines
7-11). On completion, the algorithm produces a final structure.

We follow the general guidelines presented in algorithm 1 to apply Inner En-
sembles to the Bayesian network algorithm. First we locate a decision maker.
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Algorithm 2. K2 algorithm

1: Input: A set of n nodes, An ordering of the nodes, u maximum number of parents
for each node, A database D containing N instances.

2: for i=1 to n do
3: πi = φ, Pold = g(i, πi), OKTOProceed = true.
4: while OKTOProceed and |πi| < u do
5: z is the node in Pred(xi) - πi that maximizes g(i, πi ∪ {z})
6: Pnew = g(i, πi ∪ {z})
7: if Pnew > Pold then
8: Pold = Pnew, πi = πi ∪ {z}
9: else
10: OKTOProceed = false
11: end if
12: end while
13: write ( Node: xi , Parents of this node: , πi)
14: end for

Algorithm 3. LOO global score ”g” for K2 algorithm.

1: Acc = 0.
2: D = D1, ...DN . {Instances}
3: for i = 1 to N do
4: Estimate conditional probability for network using existing structure and D-Di.

5: Acc = Acc+ PredictAccuracy(Di)
6: end for
7: score is: Acc

N
.

According to algorithm 2, it decides if a node can be added as a parent. The
next step is to find a score function for this decision maker, g(i, πi ∪{z}). There
are two types: local and global [22]. We use the global score function g (line 3
algorithm 2) calculated as shown in algorithm 3. Here, using leave-one-out cross
validation (LOO), the algorithm extracts one instance for validation, the rest
of the data forming the training set (line 4). At each iteration, the network is
built using the training set and tested on the single instance. The final score of
the network is the average of the scores across all splits of the data (lines 5,7).
The nest step according to algorithm 1 is to indicating the input and the output
of the scoring function (LOO global score). The input is the training data and
the output is the score. Then, line 5 of algorithm 1, we change the input of the
measure by generating E sampling of the data for which E is the ensemble size.
For each of those E samplings, the output of the LOO global score is calculated
(line 6 algorithm 1) and finally the E outputs are combined by averaging (line 7).
Using this procedure, the global score is redefined as shown in algorithm 4, we
call this the gEnsemble score. Sampling of the data in algorithm 4 can be any kind
of sampling. It can be with or without replacement. It can also be a different
size with respect to the original dataset. Depending on the type of the sampling,
we have different ensemble methods. For example, in the case of sampling with
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Algorithm 4. Ensemble LOO global score ”gEnsemble” for K2 algorithm.

1: E {Ensemble Size}
2: D = D1, ...DN . {Instances}
3: FinalScore = 0.
4: for k = 1 to E do
5: DS = Sample(D,Size) {DS = DS1, ...DSSize}
6: FinalScore = FinalScore+ LOOScore(DS).
7: end for
8: score is: FinalScore

E

replacement and sample size of 100%, we have bagging. Once the best structure
has been selected, the algorithm proceeds in the conventional fashion calculating
the conditional probability tables necessary for the complete Bayesian network.

2.2 K-means Clustering

For unsupervised learning, we apply Inner Ensembles to K-means clustering,
a very popular clustering method. One advantage of such a method is that it
characterizes each cluster in terms of a single point, called a prototype. The pro-
totype is a representative of all samples inside that cluster and thus the meaning
of that cluster. The idea that a prototype is an important way of representing a
particular concept is central to certain theories in Cognitive Science [23]. For our
purposes, what is important about prototypes is that they help in the human
understanding of the structure of a particular problem or domain. In medical
diagnosis, a prototype might be a vector of numerical results from tests or mea-
surements. A clinician assessing an individual’s risk for a heart problems will
combine measurements of blood pressure, cholesterol and weight. A prototype,
identified in a clustering over many subjects, representing a high risk patient
would be clearly separated from one of low risk. Prototypes offer other advan-
tages such as use in compression and for efficient finding of the nearest neighbor
[24]. Using a traditional ensemble of K-means clustering, we loose the proto-
types which are the cluster centers for K-means. Using Inner Ensembles we keep
the cluster prototype, and thus comprehesibility, while gaining the performance
advantage of the ensemble method.

Algorithm 5 details the steps in K-means clustering [25]. It starts by initializ-
ing the cluster centers (line 1). Then, over several iterations, it assigns instances
to the closest cluster center and updates the centers (lines 4-7). Finally, the al-
gorithm stops when there are no more changes in the cluster centers (line 9).
Following the lines of general guidelines, algorithm 1, we need to find a deci-
sion maker inside K-means algorithm that assigns each instance to the closest
cluster center (line 1). Next we find a score function, the Euclidean distance in
this case (line 2). Next we find the input and output of the score function (line
3). The input of the Euclidean distance is the cluster centers and the data; the
output is the distance of the data to each cluster center. Thus we can change
the input of the measure that is the data by generating E different sampling



Inner Ensembles 39

Algorithm 5. K-means clustering algorithm.

1: Initialize K cluster centers μ1, μ2, ..., μK

2: Data: X = {X1, X2, ..., XN}
3: repeat
4: for All data instances Xi do
5: m = argminK{d(Xi, μK)} {Closest cluster center to each instance}
6: Assign instance Xi to cluster center μm

7: end for
8: Update cluster centers.
9: until (No assignment change or max iterations)
10: Return The clusters.

Algorithm 6. Inner K-means clustering algorithm

1: Initialize K cluster centers μ1, μ2, ..., μK

2: Data: X = {X1, X2, ..., XN}
3: repeat
4: for All data instances Xi do
5: m = {m1, ..., mN}.
6: for j= 1 to Ensemble size do
7: S = Sample(FeatureSpace)
8: I = argminE{d(XSj , μE)} {Closest cluster center to each instance}
9: mI = mI + 1
10: end for
11: L = argmaxe(me) {Voting}
12: Assign instance Xi to cluster center μL

13: end for
14: Update cluster centers.
15: until (No assignment change or max iterations)
16: Return The clusters.

of the data (line 5). Although we initially used sampling of the instances, our
experimental results were poor because it has little impact on the location of the
centers. Thus we lose diversity that is very important for ensemble methods. To
improve diversity, we use random subsets of features for each ensemble member.
The algorithm repeatedly selects a random subset of features. Next the outputs
of each generated input are calculated (line 6). In this case based on the feature
subset, the closest cluster center is found using Euclidean distance. Therefore
for each data instance, we have a set of candidate cluster centers according to
different feature subsets. In the combining step (line 7), the cluster center with
the most number of votes is selected for that particular data instance. This is
shown in algorithm 6.

3 Experimental Results

In this section, we run several experiments for our new versions of the K2
Bayesian network and K-means clustering algorithms. We believe that Inner



40 H. Abbasian et al.

Ensembles attain many of the benefits of traditional ensemble through similar
means, i.e.. reducing the variance in the bias-variance trade-off [26]. So, we ex-
pect that whenever the ensemble methods work, Inner Ensembles will. Thus,
the experiments test two different hypotheses: that our new versions are supe-
rior in performance to the base algorithms and that whenever the traditional
ensemble method improves the performance, Inner Ensembles improves it too.
For Bayesian networks, we compare the results with bagging because the Inner
Ensembles sampling method we used is similar to bagging. For Inner K-means,
we compare the results with several cluster ensemble methods in terms of dif-
ferent cluster validation measures. For both experiments, we use UCI repository
datasets [27]. As the statistical test, we used Friedmans test and for post-hoc we
use Nemenys test both with α = 0.05 in all of the experiments. We report the
results of a sensivity analysis study in the course of which different parameters
of the algorithm are considered. These parameters include:

– Ensemble Size: 10 different ensemble sizes 10-100.
– Sample Size:10 different sampling sizes 10%-100%
– Resampling Mode: With or without replacement.

3.1 Inner Ensemble K2

In addition to the experiments noted above, for Bayesian networks we run an-
other to confirm that in terms of classification time as well as in terms of com-
prehensibility our method is superior to bagging. We use 14 datasets from the
UCI repository with different number of classes, features and instances. In all
of the tables, BN is the original network, IEBN the Inner Ensemble Bayesian
Network and BGBN the bagging of Bayesian networks.

For each of the parameters, we used 10 fold cross validation 10 times. For
each run, the average error of the network is calculated. Table 1 shows the
comparison of the accuracy for different ranges of parameters. In this table IEBN
No Rep means sampling without replacement. Also S-Size and En-Size list the
range of parameters for the sample size and the ensemble size for which IEBN
performs better than BN. For better understanding, we include the percentage
of parameters that results in better performance and we list the average and
the best results for those parameters. For simplicity of presentation, we only
report the results obtained for sampling without replacement because in this
sampling regimen, IEBN works better than BN on 62% of the parameters while
for sampling with replacement it only works on 46% of the parameters.

We begin by comparing the average performances of IEBN and BGBN with
original BN. The null hypothesis for Friedman’s test is BN , IEBN and BGBN
perform similarly. The Friedman statistic is 26.14 for IEBN and BGBN while
the critical value for Friedman’s test is 6.00 for the 3 models. Thus we can reject
the null hypothesis, there is at least one classifier with significant difference in
performance. We use Nemenyi’s test to rank the classifiers according to their per-
formance. The critical value for Nemenyi’s test is equal to 2.34 for the 3 models
and the q-values for BN-IEBN and IEBN-BGBN are 2.83 and 2.27 respectively
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Table 1. The Accuracy of the Various Algorithms

IEBN No Rep IEBN No Rep BGBN

Dataset BN S-Size En Size Perc Avrg Best Avrg Best

Breast-w 97.1 [10-90] [10-100] 70% 97.2 97.31 97.18 97.18
Credit-a 85 [10-90] [10-100] 99% 85.62 86.06 86.24 86.48
Ecoli 80.77 [10-90] [10-100] 50% 81.03 81.7 85.35 85.92
Glass 70.84 [10-90] [10-50] 4% 71.1 71.31 74.21 75.14
Heart-c 80.76 [10-90] [10-100] 96% 81.63 82.74 82.56 82.94
Heart-S 82.19 [10-90] [10-100] 32% 82.48 82.96 82.71 83.19
Hepatitis 82.39 [10-60] [40-100] 10% 82.75 83.55 82.88 83.03
Iris 92.87 [10-90] [10-100] 81% 93.24 93.8 94.58 94.93
Labor 88.25 [10-90] [10-100] 99% 90.64 92.81 93.04 94.04
Liver 56.93 [10-90] [10-100] 90% 57.41 58.41 63.75 64.58
Lymph 81.96 [10-90] [10-100] 97% 83.19 85.14 84.66 85.41
Pima 74.66 [10-90] [10-100] 97% 75.35 76.05 75.77 75.98
Tic-tac 92.44 [50-90] [10-100] 18% 92.58 92.73 96.87 97.18
Vote 96.05 [30-90] [10-100] 26% 96.12 96.25 96.15 96.21

Average 83 62% 83.59 84.34 85.42 85.87

which shows that the performance of BN on all the datasets is significantly dif-
ferent from that of IEBN. On the other hand the performance of IEBN and
BGBN is not significantly different. We also use Friedman’s test to compare the
BN with the best results of IEBN and the best results of BGBN. Here the Fried-
man statistic is 22.29 and the critical value for Friedman’s test is 6.00 for the 3
models. Thus we can reject the null hypothesis. By performing Nemenyi’s test,
the q-value for BN-IEBN and IEBN-BGBN are 3.4 and 1.13 which confirm that
IEBN is significantly different from BN but not from BGBN. Generally we can
see that with sampling without replacement, on 62% of the entire parameters
IEBN works significantly better than BN on all of the datasets.

Generally, as expected, IEBN improves the performance over the original net-
work whenever Bagging does but the improvement is smaller. Therefore we are
not expecting improvements on Breast-w and Vote dataset because bagging does
not. For individual datasets on which bagging improves the performance , except
for Tic-tac-toe, the performance improves over that of the base algorithm. How-
ever the gain for Ecoli and Glass datasets are small. Future work on the way of
creating ensembles inside the Bayesian network, will determine how closely our
method can approach bagging in terms of performance. At present, our method
is just applied to learning the structure of the network. One possible avenue for
future work is to apply Inner Ensembles for the second part of Bayesian network
learning, estimating conditional probabilities.To compare the classification times
of Inner Ensembles and bagging, we ran the experiment on all of the datasets for
different ensemble sizes, and averaged over all of the datasets. Figure 2 shows
the average time for different ensemble size for BGBN versus IEBN. As we can
see from this figure, the classification time is a lot faster for Inner Ensembles
than bagging. An increase in the ensemble size in the case of Inner Ensembles
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Fig. 2. Classification time (mS) for BGBN vs IEBN

has little effect on classification time because the number of models remains the
same.

So in this section, we have shown how our method achieves some of the perfor-
mance improvement of bagging while maintaining the comprehensibility, classifi-
cation performance and fast classification time of the original Bayesian network.

3.2 Inner Ensemble K-means

To test our new version of K-means, we compare results on 15 UCI datasets, each
with the necessary numerical attributes used by such a clustering system. Among
possible different performance measures for clustering, we use Normalized Mu-
tual Information that determines the shared information between the clusterings
[28] and Purity that measures the coherence of a cluster [29]. Equation 1 shows
NMI for which I(X,Y ) is the mutual information between two random variables
X,Y ; H(X) is the entropy of X ; X is the result of the clustering; Y contains
the true labels. Equation 2 shows the cluster Purity. In this equation, n is the
total number of instances, m the number of clusters and Pj is the fraction of
the cluster to which the largest class of objects is assigned. For both measures,
the larger the value the better the results.

NMI(X,Y ) =
I(X,Y )√
H(X)H(Y )

(1)

Purity =

m∑
j=1

nj

n
Pj (2)

For these experiments, we compare the performance of inner K-means with
two different types of cluster ensemble method. The first is a graph-based ap-
proach (G-Based) that includes three different methods CSPA, MCLA and
HGPA [28]. The second is based on pair-wise similarity. The methods of this
latter group first build a similarity matrix, called a co-association matrix and
then uses it for different forms of hierarchical clustering. This group is also called
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Hierarchical Agglomerative Clustering Consensus (HAC) [30]. There are three
different methods for HAC based on the hierarchical clustering: single, average
and complete linkage.

For simplicity, we do not report the results of all 6 ensemble methods. Instead,
for the graph based methods, we report the best performance of CSPA, MCLA
and HGPA. For the HAC methods, we report the best performance among the
different linkage types. For each of the parameters (ensemble size, sample size),
we run Inner Ensemble, cluster ensemble and original K-means 30 times with 30
different initial cluster centers and the average performance is calculated. For a
fair comparison, we run original K-means with the same cluster centers as used
for Inner Ensembles. As the Inner Ensembles uses different subsets of features,
we generate the members for cluster ensemble the similar way. If the number of
instances are larger than 500, we sample the data without replacement until 500
is reached.

In table 2, we report the results of a sensitivity analysis using a range of
parameters.We only report the results obtained with sampling with replacement,
using this resampling strategy, Inner Ensemble K-means (IEK-m) works better
than K-means on 55% of the parameters while for sampling without replacement
it just works on 53% of the parameters. From this table, we can see that IEK-m
generally outperforms K-means, the graph-based and HAC methods in terms of
the NMI measure. For the Heart-s, Pima and Sonar datasets, the NMI is close
to zero, the clusters that where extracted from these datasets are nothing like
the true classes. For Sonar and Vehicles and Yeast the cluster ensemble methods
do not improve the performance and, as we expected, IEK-m does not improve
it either. IEK-m improves the performance on the rest of the datasets except
for Ecoli for which one of the ensemble methods decreases the performance. In
comparison, HAC improves the performance on just 8 out of 15 datasets, does
not improve it on 7 .G-based methods improve the performance on 9 out of 15,
do not improve it on 3 and decrease it on 3 datasets.

To compare the performances all datasets, first we compare the average per-
formance of K-means, IEK-m, G-Based and HAC. The Friedman statistics for
the average case for K-means, IEK-m, G-Based and HAC is 9.66, larger than
the critical value 7.5 for 4 models. The q-value for K-means and IEK-m for NMI
is 2.75, larger than the critical value which is 2.57 for 4 models. This shows
that IEK-m is significantly different from K-means on all datasets in the average
case. Also for the NMI measure, the q-values for HAC and G-Based are 0.14
and 1.06 respectively which are both less than 2.57 showing that that for the
average case, IEK-m is not significantly different from G-Based and HAC. To
compare the best results, the Friedman statistics for the best case is 16.5 which
is larger than the critical value 7.5 for 4 models. The q-value for K-means and
IEK-m for NMI is 3.88 which is larger than the critical value which is 2.57 for 4
models. This shows that for the best case IEK-m is significantly different from
the K-means on the entire data. Also for the NMI measure in the best case, the
q-values for HAC and G-Based are 1.06 and 2.12 which both are less than 2.57
. In the best case , IEK-m is not significantly different from G-Based and HAC.
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Table 2. Comparison of K-means, Inner Ensemble K-means and Ensemble K-means
(G-Based, HAC) in terms of NMI

IEK-m Rep IEK-m Rep G-Based HAC

Dataset K-means S-Size En Size Perc Avrg Best Avrg Best Avrg Best

Ecoli 0.59 [-] [-] 0% 0.59 0.59 0.57 0.57 0.61 0.62
Glass 0.38 [40-90] [10-100] 49% 0.4 0.42 0.34 0.34 0.38 0.38
Heart-s 0.02 [20-90] [10-100] 88% 0.11 0.31 0.04 0.05 0.02 0.02
Iris 0.71 [50-90] [10-100] 48% 0.75 0.8 0.77 0.82 0.77 0.79
Letter 0.44 [30-90] [10-100] 63% 0.45 0.46 0.47 0.47 0.47 0.48
Optdig 0.72 [20-90] [10-100] 86% 0.74 0.75 0.75 0.76 0.75 0.77
Pendig 0.67 [40-90] [10-100] 54% 0.68 0.7 0.68 0.69 0.69 0.7
Pima 0.02 [30-90] [10-100] 68% 0.05 0.09 0.11 0.11 0.02 0.02
Segment 0.54 [20-90] [10-100] 67% 0.59 0.63 0.56 0.58 0.61 0.62
Sonar 0.01 [10-90] [10-100] 66% 0.01 0.02 0.01 0.01 0.02 0.02
Vehicle 0.19 [20-90] [10-100] 80% 0.19 0.2 0.19 0.19 0.19 0.2
Vowel 0.2 [20-80] [10-100] 34% 0.24 0.29 0.21 0.21 0.21 0.21
Wavef 0.36 [20-90] [10-100] 53% 0.37 0.38 0.36 0.37 0.36 0.37
Wine 0.43 [20-90] [10-100] 69% 0.55 0.72 0.45 0.51 0.43 0.43
Yeast 0.28 [90-90] [70-70] 1% 0.28 0.28 0.27 0.27 0.28 0.28

Average 0.37 55% 0.4 0.44 0.39 0.4 0.39 0.39

Table 3. Comparison of K-means, Inner Ensemble K-means and Ensemble K-means
(G-Based, HAC) in terms of purity

IEK-m Rep IEK-m Rep G-Based HAC

Dataset K-means S-Size En Size Perc Avrg Best Avrg Best Avrg Best

Ecoli 0.81 [90-90] [30-90] 6% 0.81 0.82 0.8 0.8 0.81 0.82
Glass 0.57 [30-90] [10-100] 49% 0.58 0.6 0.6 0.62 0.57 0.57
Heart-s 0.59 [20-90] [10-100] 88% 0.68 0.81 0.62 0.63 0.59 0.59
Iris 0.83 [50-90] [10-100] 56% 0.86 0.9 0.91 0.94 0.9 0.92
Letter 0.32 [20-90] [10-100] 76% 0.34 0.35 0.34 0.35 0.34 0.35
Optdig 0.74 [10-90] [10-100] 96% 0.77 0.79 0.81 0.82 0.78 0.8
Pendig 0.69 [40-90] [10-100] 62% 0.71 0.73 0.72 0.73 0.7 0.71
Pima 0.66 [30-80] [10-100] 48% 0.67 0.7 0.68 0.69 0.66 0.66
Segment 0.57 [20-90] [10-100] 79% 0.61 0.64 0.62 0.66 0.64 0.65
Sonar 0.55 [10-90] [10-100] 66% 0.56 0.58 0.55 0.56 0.55 0.56
Vehicle 0.45 [20-90] [10-100] 84% 0.46 0.47 0.47 0.47 0.47 0.47
Vowel 0.23 [20-80] [10-100] 46% 0.26 0.31 0.24 0.24 0.23 0.23
Wavef 0.56 [10-90] [10-100] 40% 0.56 0.59 0.55 0.55 0.56 0.56
Wine 0.7 [20-90] [10-100] 71% 0.81 0.92 0.75 0.78 0.7 0.7
Yeast 0.52 [50-90] [50-80] 8% 0.52 0.52 0.52 0.52 0.54 0.54

Average 0.59 58% 0.61 0.65 0.61 0.62 0.6 0.61
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Table 3 shows the results of the clustering in terms of the purity measure. We
report the results obtained for sampling with replacement because this sampling
regimen, IEK-m works better than BN on 58% of the parameters while for
sampling without replacement it only works on 53% of the parameters. IEK-m
generally outperforms both K-means and ensemble methods. For the average
case IEK-m improves the performance on most i.e. 12 out of 15 datasets and for
the best case 14 out of 15 datasets. Also in the average case , the HAC methods
improve the performance on 7 out of 15 datasets and on the best case 10 out of
15, but not on the rest. The average case for the G-based methods improves the
performance on 11 out of 15, decrease the performance of Waveform and Ecoli
and with no improvement on the rest and for the best case,G-Based improves
the performance on 12 out of 15 dataset and it is otherwise to the average case.

The Friedman statistics for the average case is 11.5 which is larger than the
critical value 7.5 for 4 models. On average, the q-value for K-means and IEK-
m for Purity is 2.89 which is larger than the critical value which is 2.57 for
4 models. This shows that IEK-m performs significantly better than K-means
on all datasets. For the Purity measure, in the average case, the q-values for
HAC and G-Based are 0.84 and 0.07 respectively which are both larger than
2.57. Thus IEK-m is not significantly different from G-Based and HAC. The
Friedman statistics for the best case is 17.00 larger than the critical value 7.5
for 4 models. In the best case, the q-value for K-means and IEK-m for Purity
is 3.81 which is larger than the critical value of 2.57. Thus IEK-m performs
significantly better than K-means on all datasets. Also for the best case, the
q-values for HAC and G-Based are 1.55 and 0.56 both larger than 2.57. Thus
IEK-m is not significantly different from G-Based and HAC.

To sum up, our experiments show that our framework is broadly applicable
on different types of algorithms. More specifically, we apply our framework on
two groups of supervised and un-supervised learning. Our experiments generally
show that: (1) As we expected, wherever ensemble methods work, our frame-
work improves the performance on both the supervised and the un-supervised
cases. (2) Our framework improves the performance on a large portion of the
parameters. (3) For both supervised and un-supervised learning, our framework
improves the performance significantly over the original method. But it does not
improve the performance over ensemble methods for supervised learning. How-
ever, for un-supervised learning, our results shows that Inner Ensembles works
comparably or are superior to the regular ensembles.

4 Limitations and Future Work

One limitation of the work is that the reported results are based on the parame-
ters for which Inner Ensembles improve the performance. A better way of doing
the experiments is to find the best parameters prior to evaluating performance.To
address this issue, we have run some initial experiments using cross-validation
to find the best parameters before running the algorithm on the test data. So
far we have only done this for K-means where we obtained very similar results
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to those presented earlier. To validate the stability, we run IEK-m on different
noisy data. We add random noise to the most 50% significant features of the
datasets from 20%, 40%, 60% and the primary results shows that the IEK-m is
more stable than original K-means and generally comparable to cluster ensem-
bles on 20% and 40% noise. On 60% some of the cluster ensemble methods are
more stable than IEK-m but still IEK-m is more stable than original K-means.

So far, we do the experiments to confirm the performance of the Inner En-
sembles. But as we mentioned in the introduction there are other advantages of
using Inner Ensembles such as stability, classification time and small memory
usage. We need further experiments to confirm the stability of the IEBN and a
discussion about the memory usage of the Inner Ensembles and speed of IEK-
m which we thing can be faster in online clustering. For future work, we want
to explore other classification and clustering algorithms. Nor are we restricted
solely to those situations, we can apply this idea to a variety of other algorithms,
such as the type of search used in learning or the pruning method for decision
trees or other groups of methods such as feature selection. One important fac-
tor that affects the performance of the ensemble method is diversity. For future
work the effect of diversity on the performance of Inner Ensembles needs to be
investigated too. The idea can be extended in other ways. First we can improve
the specific methods discussed in this paper by using different kind of samplings,
such as weighted ones. So far we just used voting, akin to bagging. However, we
intend to investigate different kinds of ensemble methods, such as boosting.

5 Conclusion

The main objective of this paper was to extend the possible ways that the
machine learning community makes use of ensemble methods. Our particular
approach is called Inner Ensembles. By using this new approach on supervised
and unsupervised learning algorithms, we showed that this idea is broadly ap-
plicable. For supervised learning, we applied our method to the learning of the
structure of Bayesian networks, a popular classification algorithm; for unsuper-
vised learning we used it for K-means clustering, a popular clustering method.
In the case of Bayesian network, Inner Ensembles work generally better than
original Bayesian network but worse than bagging. On the other hand, for K-
means, inner K-means performs better than original K-means and comparable
to two families of clustering ensemble. We introduced this idea as a framework
that has the potential of of being applicable in many different ways other than
those we have discussed in this paper.
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Abstract. Generative score spaces provide a principled method to ex-
ploit generative information, e.g., data distribution and hidden variables,
in discriminative classifiers. The underlying methodology is to derive
measures or score functions from generative models. The derived score
functions, spanning the so-called score space, provide features of a fixed
dimension for discriminative classification. In this paper, we propose a
simple yet effective score space which is essentially the sufficient statistics
of the adopted generative models and does not involve the parameters of
generative models. We further propose a discriminative learning method
for the score space that seeks to utilize label information by constraining
the classification margin over the score space. The form of score function
allows the formulation of simple learning rules, which are essentially the
same learning rules for a generative model with an extra posterior im-
posed over its hidden variables. Experimental evaluation of this approach
over two generative models shows that performance of the score space
approach coupled with the proposed discriminative learning method is
competitive with state-of-the-art classification methods.

Keywords: generative score space, sufficient statistics, discriminative
learning, classification.

1 Introduction

Probabilistic generative models and discriminative models are two complemen-
tary [1] and important paradigms in machine learning. Generative models are
designed to model data distribution, particularly good at dealing with missing
data and structured data, e.g., tree structure data or sequences with variable
length. They seek to explain data in terms of hierarchical models with hidden
variables. These hidden variables encode higher order information related to
observed data that could be informative in the identification of data samples.
Further, generative models can be used to construct classifier by means of the
maximum a posteriori (MAP) decision rule, resulting in naive Bayes or MAP
classifier. However, generative models in general are inferior to discriminative
classifiers [2,3] which are designed to directly capture the decision boundaries
among different classes. Discriminative classifiers can adapt to complex data
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using furnished or learned kernel similarity. The feature spaces underlying the
kernels are generally implicit.

To integrate the capabilities of generative and discriminative models,
several schemes [4,5,6,7] have been proposed. Among them, generative score
spaces [8,9,10,11,12] provide necessary explicit feature mappings required in
many practical applications [13,8] and is the focus of this paper. These ex-
plicit feature mappings or score functions are derived from the generative models
of the data distribution. Their values, i.e., features, are then delivered to dis-
criminative classifiers to perform classification. While score spaces have shown
promising performance in a variety of challenging applications [14,8,15], discrim-
inative learning approaches [16,6,17,18,19] which can exploit label information
in general perform better and still furnish state-of-the-art performance.

In this paper, we propose a score space method with an effective score space
and a discriminative learning approach. The score space is spanned by the suffi-
cient statistics of an adopted generative model, and is called sufficient statistics
score space (SS). Its score function is a function over random variables, which
is distinct from earlier methods [8,10,11] in which the scores are functions over
random variables and model parameters. We propose a discriminative learning
approach to learn the score space by subjecting the classifier over score space
to margin constraints. The simple form of the score function results in simple
learning rules, which are the same as those for the generative models but with a
discriminative posterior imposed over the hidden variables. This posterior in fact
introduces a mechanism to generate a more suitable score space for classification.

Further, we will establish the following properties of the score space: (1) the
classification error of a zero-loss linear classifier over the score space is at least
as low as that of a MAP classifier; (2) the MAP estimation of the linear classifier
weights implied in our discriminative learning approach results in an expression
of classifier weights that are equal to the weights of the linear SVMs classifiers
over the discriminative score space; (3) the discriminative learning approach
favors generative models with less hidden variables.

2 Related Works

2.1 Generative Score Spaces

Generative score space [11,12,20,14,8,10] is a class of methods developed to ex-
ploit information provided by generative models for discriminative classification.
Score functions or feature mappings are functions defined over the observed data,
and the hidden variables and parameters of the generative models. The spaces
spanned by the score functions are called score spaces or feature spaces.

The score functions generally are measures over generative models. Fisher
score (FS) [11] derives score functions by measuring how model parameters affect
the log likelihood. Let x ∈ RD be the observed variable and P (x | θ) be its
marginal distribution parameterized by a vector θ, the i-th component of FS is
the differential with respect to the parameter θi,

Φi(x, θ) = ∇θi logP (x | θ)
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Table 1. Summary of related discriminative learning approaches

Methods Feature Mapping Dis. Learn. Criterion

FKL [19] “partially” explicit 1-NN
LM-HMM [6] - large-margin
disHMM [16] - min. hinge-loss
Med-LDA [17] topic variable max-margin
disLDA [18] - conditional max. likelihood

Free energy score space (FESS) [8] is based on the measures on how well a
data point fits random variables. The resulting score functions are the summa-
tion terms of the log likelihood function. Posterior divergence (PD) [10] derives
a set of comprehensive measures that are connected to both FS and FESS. An-
other variant class of these methods derives the score function based on class-
conditional models, with a model trained for each class, seeking to utilize the
label information. The score functions in [20] are log likelihood functions. TOP
kernel (TK) [12] extends FS to operate on the MAP discriminant function in-
stead of the log likelihood function. FS was operated on class-conditional models
in [14]. These score spaces, working with classifiers, combine and integrate the
capabilities from generative and discriminative models, with competitive results
in a variety of challenging tasks [14,8,15] such as image recognition. However,
these methods learn score spaces and the classifier separately, and might not
fully exploit and utilize the label information.

2.2 Discriminative Learning

Several discriminative learning approaches [16,6,17,18,19] have been proposed to
exploit the capabilities of generative models and discriminative models simulta-
neously. Gales et al. [21] comprehensively reviewed the discriminative learning
approaches for speech recognition. Table 1 provides a summary of these ap-
proaches. Although several discriminative learning criteria are involved, margin
based criteria [6,17] exhibit highly competitive performance.

Fisher kernel learning (FKL) [19] is most related to our approach. It proposed
a discriminative learning method for Fisher kernel by minimizing the error rate
of 1-nearest neighbor (1-NN) classifiers. We observed that, when the learned
kernel or score space working with SVMs or its variants, the potential of this
method can be further exploited. A potential improvement for this method is to
replace the error measure of the 1-NN classifier with the error measure or some
criteria of a classifier that will be used to perform classification.

3 Sufficient Statistics Score Space

We here describe how to formulate the sufficient statistics score space, starting
from the variational lower bound of generative models. The idea is to decompose
the log likelihood into parameter-based parts and variable-based parts.
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3.1 Variational Inference of Exponential Family

We consider a general case where P (x; θ) is a hierarchical generative model.
Let P (x,h; θ) be its joint distribution with a set of hidden variables h and the
parameter vector θ. In this case, it is usually difficult to obtain the close form
of P (x; θ) since the integration is usually intractable. A practical method is to
resort to the lower bound of logP (x; θ). We here use the lower bound given by
variational inference [22], for sample xt,

logP (xt; θ)≥KL(Q(ht)‖P (xt,ht; θ)) = F t(Q, θ), (1)

where ht indicates that it depends on xt [8]; Q(ht) is the approximate distri-
bution of the real posterior P (ht |xt, θ); F t(Q, θ) is the negative free energy
function or the lower bound of logP (xt; θ). It is worth noting that, the approx-
imation of the real posterior P (ht |xt, θ) using Q(ht) and of the the real log
likelihood logP (xt; θ) using the lower bound F t(Q, θ) is often satisfied. In fact,
the approximation error can be zero since Q(ht) exactly equals to P (ht |xt, θ)
and F t(Q, θ) exactly equals to logP (xt; θ) when using exact inference. Learning
generative models based on the variational lower bound can be expressed as,

max
Q,θ

∑
t
F t(Q, θ) = max

Q,θ

∑
t
−KL(Q(ht)‖P (xt,ht; θ)) (2)

An assumption here, as also made in most probabilistic generative models [23],
is that the joint distribution P (x,h; θ) of a generative model belongs to the
exponential family, written as [23],

P (x,h; θ) = exp{α(θ)TT (x,h) +A(θ)} (3)

where α(θ) is a vector-valued function; T (x,h) is the vector of sufficient statistics
over x and h; A(θ) is a scalar function. Since P (x,h) = P (x |h)P (h), P (h) also
belongs to exponential family, P (h; θh) = exp{α(θh)TT (h) + A(θh)}. As was
done in [24], we assume that, for a sample xt, the approximate posterior Q(ht)
shares the same form as P (h; θh), but with different parameters,

Q(ht) = exp{α(θth)TT (ht) +A(θth)} (4)

where θth is a vector of parameters and depends on the sample xt. Substituting
Eqs. (3) and (4) into Eq. (1), it can be verified that,

F t(Q, θ)=EQ(ht)[α(θ)
T T (xt,ht) +A(θ)− α(θth)

TT (ht)−A(θth)]

=EQ(ht)[α(θ)
T T (xt,ht)− 1Tdiag(α(θth))T (h

t)−A(θth) +A(θ)]

=α(θ)TEQ(ht)[T (x
t,ht)]−1Tdiag(α(θth))EQ(ht)[T (h

t)]−A(θth)+A(θ)]
=ηTEQ(ht)[φ(x

t,ht)] = ηTΦ(xt) (5)

where η = (α(θ)T ,−1T ,−1, A(θ))T only depends on parameter θ; φt(xt,ht) is a
function over xt, ht and θth, depending on xt,

φ(xt,ht) = (T (xt,ht)T , (diag(α(θth))T (h
t))T , A(θth), 1)

T (6)
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Note that ht and θth depend on the specific sample xt. Therefore they reflect
some attributes or encode some information related to xt. Φ(xt) is the score
function or feature mapping, taking the following form,

Φ(xt) = EQ(ht)[φ(x
t,ht)] (7)

The function Φ(xt) is termed as sufficient statistics score function since its main
components are sufficient statistics T (x,h) and T (h). F t(Q, θ) is decomposed
into the linear combination of η which depends on all training samples and the
score function Φ(xt) which depends on the sample xt.

The above formulation is based on the variational inference in Eq. (1) and the
approximate posterior in Eq. (4). The approximation works well when the real
log likelihood are intractable [8,10], and equals to the real log likelihood exactly
when using exact inference. The derived score function in Eq. (7) is compatible
with other inference methods as we can estimate the posterior (Eq. (4)) using
the outputs of those methods, e.g., using the samples drawn by Gibbs sampling.

3.2 Error Rate Comparison with MAP Classification

As score spaces typically work with linear classifiers, [12] proposed a method to
analyze the classification error of a linear classifier y = sign(wTΦ(x) + b) where
w ∈ Rd is the weight and b ∈ R is the bias. We assume that w and b are learned
by an optimal learning algorithm on a sufficiently large training set. Letting
Ψ(a) be the zero-one loss function that outputs 1 if a > 0 and 0 otherwise, the
classification error can be expressed as,

R(Φ) = min
w,b

Ex,yΨ [−y(wTΦ(x) + b)],

where Ex,y denotes the expectation over the true distribution. Note that R(Φ)
is exactly the test error if the test set and the training set share the same
distribution. We assume this condition holds, as was done in [12,8,10].

Previous works [12,8,10] have shown that, in the case that the model is trained
using samples from the positive class and the log likelihood logP (x | y = +1) is
available, the error rate R(Φ) of a linear classifier operating on the score space
is at least as low as the error rate R(λ) of the MAP classifier,

R(λ) = Ex,yΨ [−y(P (y = +1 |x)− 1

2
)] = Ex,yΨ [−y(logP (y = +1 |x)− log

1

2
)]

= Ex,yΨ [−y(logP (x | y = +1)− log
1

2
)] = Ex,yΨ [−y(ηTΦ(x) − log

1

2
)]

≥ min
w,b

Ex,yΨ [−y(wTΦ(x) + b)] = R(Φ)

In the case that the exact log likelihood might be intractable, as shown in
Eq. (5), we resort to the lower bound F+1(x) and F−1(x) for a pair of mod-
els θ+1 and θ−1 that are respectively trained using the positive samples and
negative samples, and accordingly resort to the free energy test [8]. That is,



54 X. Li et al.

ŷ = sign(F+1(x) − F−1(x)). Applying the formulation in Eq. (5), then we have
F+1(x) = ηT+1Φ+1(x) and F−1(x) = ηT−1Φ−1(x). We accordingly define the score
function over a pair of models as Φ(x) = (Φ+1(x)

T , Φ−1(x)
T )T . The above in-

equality R(Φ) ≤ R(λ) still holds,

R(λ) = Ex,yΨ [−y(F+1(x)−F−1(x))]

= Ex,yΨ [−y(ηT+1Φ+1(x)− ηT−1Φ−1(x))]

≥ min
x,y

Ex,yΨ [−y(wTΦ(x) + b)] = R(Φ)

The above justifications also hold for [11,12,8,10] because F(x, θ) can be ex-
pressed as a linear combination of any of the score functions.

4 Learning Discriminative Score Space

To exploit label information, we propose a discriminative learning method that
learns score space as well as generative models under the classification margin
constraints of a linear classifier in the score space.

4.1 The Learning Problem

First we will use a probabilistic classifier because of its compatibility with prob-
abilistic generative models. Let x be the input data and y ∈ {−1,+1} be the
output label; S = {(xt, yt)}t be the training set whose samples are indexed by
t. Let x be the augmented sample (xT , 1)T ; w be the weight including the bias;
γt be the desired margin for the sample xt. The classifier subject to margin
constraint is given by [4],

min
Q(w)Q(γt)

KL(Q(w)Q(γt)‖P (w)P (γt)) (8)

s.t. EQ(w)[y
twTxt] ≥ EQ(γt)[γ

t], ∀ t, (9)

where P (w) and Q(w) are the prior and posterior for the weight respectively;
P (γt) and Q(γt) are the prior and posterior for the margin respectively. The
margin γt is specified for xt. This formulation allows for a tunable and flexible
margin, which functions in a way similar to the soft margin in SVMs.

Now we have shown the objective functions of generative models (Eq. (1))
and the classifier (Eqs (8) and (9)). Learning discriminative score space subject
to margin constrains means we need to maximize Eq. (1) and minimize Eq. (8)
simultaneously, subject to Eq. (9). The learning problem can be expressed as,

min
Q,θ

∑
t
KL(Q(ht)‖P (xt,ht; θ)︸ ︷︷ ︸

KLθ (generative)

+ξKL(Q(w)Q(γt)‖P (w)P (γt))︸ ︷︷ ︸
KLw+KLγ (discriminative)

(10)

s.t. EQ
[
ytwTφ(xt,ht)− γt

]
≥0, ∀ t (11)

where Q = {Q(ht), Q(γt), Q(w)}. The first term in Eq. (10) is the objective
function for the generative model as in Eq. (2), where P (x,h; θ) is the joint
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distribution and Q(ht) is the approximate posterior. The second term of Eq. (10)
and the constraint Eq. (11) form the objective function of the classifier, where
P (γt) and P (w) are priors on the margins and the weights respectively. ξ > 0 is
a weight that tunes the balance between the generative model and the classifier.

4.2 Inference and Parameter Estimation

The quantities to be estimated in the objective function Eq. (10) and Eq. (11)
include Q(ht), Q(γt), Q(w) and θ. To estimate these quantities, we first specify
the priors P (w) and P (γt). Similar to that in [4], we set the priors,

P (w) = N (0, I), (12)

P (γt) = ce−c(a−γt) for γt ≤ a. (13)

where a, c are two parameters to be specified. The learning problem in Eq. (10)
and Eq. (11) takes the exact form of posterior regularization [25], and in principle
can be solved using EM-like procedures [25,26]. In optimization [26], to estimate
Q(ht), Q(γt), Q(w) and θ, we alternatively solve sub-problems with respect to
some of these quantities while keeping the others fixed in each pass. The solution
of θ will benefit from the form of Φ(x) because Φ(x) and the constraints Eq. (11)
are not related to θ.

Posterior Q(ht) of Hidden Variables. By fixing quantities Q(γt) and θ, the
solution of Q(ht,w) takes the following form [25,4],

Q(ht,w) ∝ P (xt,ht; θ)P (w) · exp
{∑

t
λt
[
ytwTφt − EQ(γt)[γ

t]
]}

, (14)

where φt = φ(xt,ht), and λt is the Lagrange multiplier for the t-th inequality of
Eq. (11). Note that w follows a normal prior in Eq. (12), making the integration
Q(ht)=

∫
Q(ht,w)dw tractable,

Q(ht) ∝ P (xt,ht; θ)︸ ︷︷ ︸
∝ P (ht |xt,θ)

exp

{∑
t
λtEQ(γt)[γ

t]− 1

2

∑
t,t′
λtλt

′
ytyt

′
(φt)

T
φt′
}

︸ ︷︷ ︸
∝ discriminative posterior

(15)

This formula shows that the posterior of hidden variables is proportional to the
product of (1) the joint distributions of the naive generative model and (2) an ex-
ponential term that is derived from the classifier and favors large margin. When
h is a set of discrete variables, the posterior and EQ(ht)[φ

t] are straightforward to
compute; when h is a set of continuous variables, without an analytical solution
in most cases, we resort to estimate the expectation EQ(ht)[φ

t] by,

EQ(ht)[φ(x
t,ht)] ≈ 1

n

n∑
i=1

φ(xt,ht
i), (16)

where ht
i is the i-th sample of all the n samples drawn from the posterior Q(ht).

Gibbs-rejection sampling [27] can be very effective in drawing samples from
Eq. (15). A sample ht

i drawn from P (xt,ht; θ) will be accepted or rejected based
on the exponential term.
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Posterior Q(γt) of Margins. By fixing the quantities Q(ht) and θ, the pos-
terior Q(γt,w) can be solved, in the same way as in the solution of Q(ht,w).
We compute the posterior Q(γt) =

∫
Q(γt,w)dw as,

Q(γt) ∝
∫
P (γt) exp

{
λtEQ(ht)

[
ytwTφt − γt

]}
dw

∝ exp
{
−
(
c− λt

)
(a− γt)

}
, (17)

For the exponential distribution P (γt) = ce−cγt

with γt ≥ 0 (Eq. (13)), the
mean of γt is EP (γt)[γ

t] = c−1. The expected margin can be similarly derived,

EQ(γt)[γ
t] = a−

(
c− λt

)−1
. (18)

which adapts to samples, for example, by taking negative values for incorrect
classification, which essentially implements a soft-margin.

Lagrange Multipliers λ = {λ1, λ2, ..., λN}. Every Lagrange multiplier here
corresponds to an inequality constraint. Fixing Q(ht), Q(γt) and θ leads to,

Q(w) =
1

Z(λ)
P (w) exp

{∑
t
λtEQ(ht,γt)

[
ytwTφt − γt

]}
,

where Z(λ) =
∫
Q(w)dw is the partition function. Then λ≥ 0 is obtained by

maximizing the objective function Jλ =− logZ(λ). Using the same integration
in Eq. (15), we have,

Jλ =
∑
t

λtEQ(γt)[γ
t]− 1

2

∑
t,t′

λtλt
′
ytyt

′
EQ(ht)[φ

t]TEQ(ht′)[φ
t′ ]. (19)

This is a standard quadratic programming problem, which can be efficiently
solved. It differs from the dual form of SVMs because of the extra weight EQ[γ

t].

Parameters θ of Generative Models. In the objective function Eq. (10)
and the constraint Eq. (11), only the term KLθ depend on the parameter θ. So
minimizing the objective function with respect to θ equals to minimizing KLθ

with respect to θ, not subjecting to any inequality constraint. The resulting
update rules for θ are the same as those for the original generative models.

The learning procedure of the proposed method is summarized in Algorithm 1.
The output is the parameter θ of a generative model. Given the generative model
trained by Algorithm 1, we are now equipped to compute score functions for test
samples. The procedure constructing discriminative score space is summarized
in Algorithm 2.

4.3 Classifier Learning Rules

Given the discriminatively learned generative models and score spaces, there are
two ways to obtain classifiers over the score spaces: (1) train classifiers on the
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Algorithm 1. Discriminative learning of generative models

1: input: training data set S = {(xt, yt)}Nt=1

2: initialize parameters θ̂,u, λ
3: repeat
4: for t = 1 to N do
5: sample {ht

i}i from Q(ht) (Eq. (15))
6: estimate EQ(ht)[φ(x

t,ht)] (Eq. (16))
7: compute EQ(γt)[γ

t] (Eq. (18))
8: end for
9: update λ (Eq. (19))
10: update θ̂ with {ht

i}ti using the rules of the original generative models
11: until convergence
12: output: θ̂

Algorithm 2. Construct discriminative sufficient statistics score spaces

1: input: generative model θ̂ and input data set {(xt, yt)}Nt
t=1

2: for t = 1 to Nt do
3: sample {ht

i}i from Q(ht) (Eq. (15))
4: estimate Φ(xt) = EQ(ht)[φ(x

t,ht)] (Eq. (16))
5: end for
6: output: {Φ(xt)}Nt

t=1

score spaces using any standard method; (2) estimate SVMs like classifiers using
the quantities produced by Algorithm 1. We will now present the details of (2).

The learning problem in Eq. (10) and Eq. (11) already includes a linear clas-
sifier with the following decision rule,

ŷ = sign(EQ(w)[w
TΦ(x)])

To estimate a classifier based on the quantities produced by Algorithm 1, we just
need to estimate the weight w. First, we specify the posterior of the classifier w
to be a Gaussian distribution with unit covariance matrix [28],

Qs(w) = N(u, I). (20)

where u is the mean to be estimated from training data. Considering the above
specification for Qs(w) and the specification for P (w) (Eq. (12)), it can be ver-
ified that KLw=KL(Q(w)‖P (w)) = 1

2u
Tu. This means that minimizing KLw

in Eq. (10) encourages u to have a short length. Under the above specifications,
the solution of w takes the following form.

Proposition 1. Let Φ(x) = EQ(h)[φ(x,h)] be the score function derived from
(Algorithm 2) the discriminatively trained generative models (Algorithm 1). With
the specification in Eq. (20), the maximum a posteriori (MAP) estimation of w
in Eq. (10) takes the same form as the solution of the linear SVMs equipped with
the score function Φ(x).
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Proof. The solution of Q(w) can be expressed as,

Q(w) =
1

Z
P (w) exp

{∑
t
λtEQ(ht,γt)

[
ytwTφt − γt

]}
=

1

Z
P (w) exp(αTw − β), (21)

where Z =
∫
P (w) exp(αTw + β)dw is the partition function to ensure Q(w)

being a probabilistic distribution; α =
∑

t λ
tytEQ(ht)[φ

t] and β = EQ(γt)[γ
t].

Considering the specification Qs(w) in Eq. (20), the MAP estimation ŵ ofw sat-
isfies ŵ = EQ(w)[w] = u and can be determined by minimizing the I-projection
between the specified posterior Eq. (20) and the derived posterior Eq. (21),

min
u

KL
[
Qs(w)‖ 1

Z
P (w) exp(αTw+ β)

]
= min

u
EQs(w)

[
logQs(w)− log

1

Z
P (w) exp(αTw + β)

]
= min

u
EQs(w)

[
wTu− 1

2
uTu− (αTw+ β)

]
+ logZ

= min
u

[1
2
uTu− αTu− β

]
+ logZ.

where Z does not depend on u. Letting ∂KL
∂u = 0, we has an analytical solution,

ŵ = u = α =
∑
t

λtytEQ(ht)[φ(x
t,ht)]. (22)

This is equivalent to the solution of linear SVMs [2].

5 Experiments

We experimented with two generative models in the proposed framework in
the context of classification. As shown in Section 4.2 and Algorithm 1, we only
need to specify the feature mapping Φ for each adopted generative model. In
each experiment, we compare (1) the proposed sufficient statistics (SS) score
space which learns the score spaces (including generative models) and the dis-
criminative classifiers separately, under no discriminative constraint; (2) the dis-
criminative learning of SS subject to margin constraints (MSS), as proposed in
Section 4; (3) Fisher score (FS) method [11]; (4) free energy score space (FESS)
method [8] and other state-of-the-art methods. Here, we omit the comparison
with other hybrid methods [5,10] due to the space limitation. For each problem,
we repeatedly test 20 rounds. In each round, training and test sets are formed
by random sampling from the dataset.

The MSS approach is proposed in the setting of binary classification. It is
straightforward to extend it to multi-class classification problems, by splitting
each multi-class problem into several binary problems and combine the MSS
features separately learned from each of the binary classification problems. The
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Table 2. Summary of classification accuracy (%) on sequence datasets. Discrete HMMs
are used to model the distribution of sequences. SS is the baseline version of the pro-
posed method without using discriminative learning.

Class C LM-HMM FKL [19] FS [11] FESS [8] SS MSS

Character 20 94.26 95.71 95.20 93.99 93.55 95.62
Hill Valley 2 58.71 54.00 63.60 55.41 53.39 65.68
Jap. Vowel 9 92.26 96.16 88.93 90.63 91.26 93.40
Hand Move. 15 78.10 75.22 79.11 79.89 78.00 82.22
Promoter Gene 2 67.92 69.81 63.38 65.77 65.35 74.23
Junction Gene 3 58.64 57.05 58.71 58.78 58.86 65.37
Protein Kinase 3 72.18 74.15 73.24 72.65 73.53 78.53
SCOP Protein 7 64.75 60.96 64.17 64.12 64.24 64.64
Chicken Shape 5 77.64 79.83 79.63 80.26 79.58 83.36

parameters (ξ = 1 (Eq. (10)), a = 1 and c = 6 (Eq. (13)), the number of topics
M of LDA (Section 5.2), the number of hidden states K of HMMs (Section 5.1))
used in the following experiments are chosen through an offline cross valida-
tion method, i.e., the parameters are chosen using cross validation on a dataset
and then applied to all datasets. The reasons of using offline rather that online
method are that (1) online cross validation for 5 parameters are computationally
very expensive; (2) offline method produces satisfied performance.

For score spaces FS, FESS and SS, we use the same scheme as [8], i.e., train
a generative model for each class and combine the features obtained from these
models. This scheme is empirically validated to be more effective than the score
space derived from one generative model of all samples. For all score space meth-
ods (FS, FESS, SS, MSS), we use linear SVMs (libsvm toolbox [29]) as the
classifier. For localized multiple kernel learning (LMKL) [3], Fisher kernel learn-
ing (FKL) [19] and FESS, we use the authors’ implementations, which can be
downloaded from their websites. FS-HMMs, FS-LDA, LM-HMMs [6] and the
proposed methods are implemented by ourselves.

5.1 Sequence Recognition: Hidden Markov Models

In the first experiment, we learn the score space for sequence recognition with
hidden Markov models (HMMs) [30] as the generative model. Let x be the
sequence with length Lx. We here consider the discrete case where xl is a vector
of binary indicators of states at position l along the sequence, i.e., xlk = 1 if the
k-th of the K possible observed states is selected at position l. ql is the binary
indicator for hidden states, where qli = 1 if the i-th of the M possible hidden
states is selected at position l. The joint distribution is given by,

P (x,q; θ) =

M∏
i=1

π
q0i
i ·

Lx−1∏
l=0

M,M∏
i,j=1

a
qliq

l+1
j

ij ·
Lx∏
l=0

M,K∏
i,k=1

b
qlix

l
k

ik



60 X. Li et al.

where θ = {πi, aij , bik}ijk. Let π̂ = {π̂i}i, â = {âij}ij and b̂ = {b̂ik}ik respec-
tively be the initial, state transition and emission probabilities of the approxi-
mate posterior. The score function is Φ(x) = EQ(q)[φ(x,q)], where,

φ(x,q) = vec

({
q0i ,

Lx−1∑
l=0

qliq
l+1
j ,

Lx∑
l=0

qlix
l
k,

q0i log π̂i,

Lx−1∑
l=0

qliq
l+1
j log âij ,

Tx∑
l=0

qlix
l
k log b̂ik

}
i,k

)
.

Given the hidden states of the input sequence inferred with the Baum-Welch
algorithm [31], it is easy to estimate the posterior probabilities, i.e. initial, tran-
sition, and emission probabilities conditioned on x. Using the sampling distribu-
tion in Eq. (15), we are able to draw examples of hidden states and re-estimate
their posterior. The quantity EQ(z)[·] can be computed effectively since z is a
discrete variable.

We compare the performance of SS andMSS against that of FS, FESS, FKL [19]
and large margin HMM (LM-HMM) [6]. The number of hidden states M is set to
be M = 3 for MSS and M = 10 for FS, FESS and SS based on cross-validation
performance as shown inFig. (1). For FKLandLM-HMM,we choseM from2, 5, 10
using offline cross validation.We randomly select 50% samples for training and the
rest for testing. The learned score space is evaluated on 9 sequence datasets where
SCOP protein is obtained fromASTRAL database with similar sequences reduced
by aE-value threshold of 10−25; the chicken piece shape dataset is collected by [32];
the rest are obtained fromUCI database. For FS, FESS, SS andMSS, the datasets
with continuous values are quantized to state sequences for the discreteHMMs, i.e.,
8 states for chickenpiece shape and 20-40 states for other datasets. For FKL,we use
continuous HMMs for continuous data and discrete HMMs which is implemented
by configuring the graph of MRF for state sequence data.

The results are reported in Table 2. Our SS’s performance is competitive
against FS and FESS, even though it does not utilize the parameters of genera-
tive models as was done in FS and FESS. Our MSS outperforms other methods
in 8 of the 13 experiments. The improvement of MSS over SS is brought about
by the discriminative learning paradigm. The comparison between MSS against
LM-HMM or FKL is particularly worth noting because both LM-HMM and FKL
are methods that learn generative models and discriminative models jointly. We
should also note that the data representation used in FKL is slightly different
with that used in MSS. That is, FKL uses continuous data on the first 4 datasets
while MSS quantities them into discrete data, and thus its performance might
suffer from this quantization. Further, MSS is effective for a small number of
hidden states and thus is more efficient to train, even with limited samples. We
will discuss these issues more in Section 5.3.

5.2 Image Recognition: Latent Dirichlet Allocation

We also evaluate the framework when Latent Dirichlet Allocation (LDA) [34] is
used as its generative model in the context of image scene recognition. In this
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Table 3. Classification accuracy (%) on OT, Scene-15 and UIUC-sports datasets

Dataset C PHOW [33] Med-LDA[17] FS [11] FESS [8] SS MSS

OT 8 87.21 89.50 86.42 88.89 88.25 90.36
Scene-15 15 79.83 81.05 78.68 81.92 79.25 83.64
UIUC-sports 8 80.04 82.79 79.91 82.18 80.34 84.67

task, visual words are used to represent images as is typically done in computer
vision. The LDA version in [35] is used to model the distribution of visual words,
with each topic associated with a particular distribution. We sample topic vari-
ables using collapsed Gibbs sampling [35], and reject examples according to the
rule stipulated in Eq. (15). Differing from [35], we update model parameters α
and β in each iteration. In order to make it compatible with [35], we only use
word and topic to construct feature mapping Φ(wd

· ),

φ = vec
({
zkdn, w

d
nz

k
dn, 1

}
n,k

)
,

where w and z denote word and topic respectively. d, n and k index image, word
and topic respectively. For FS [11] and FESS [8], we extract features from the
trained LDA model and use them with linear SVM.

The OT scene dataset, Scene-15 dataset and UIUC-sports dataset are used
for evaluation. They contains 8, 15 and 8 categories respectively. For each image,
dense SIFT descriptors [36] are extracted from 20×20 grid patches over 4 scales.
The descriptors are clustered (using K-mean on randomly selected descriptors)
into 200 visual words in a code book. An image is represented by a histogram
of the frequency of the observed visual words. The number of topics is set to
K = 10 for MSS and K = 50 for FS, FESS and SS throughout the experiment.
For OT, Scene-15 and UIUC-sports datasets, 5%, 100, 70 images per category
are randomly selected as training set and the rest as test set in each test.

The evaluation results are reported in Table 3. PHOW [33] is a state-of-the-art
feature descriptor for scene recognition, and Med-LDA [17] is a discriminative
learning approach for LDA that has been shown to be superior to disLDA [18].
MSS outperforms all compared methods on all three datasets. The performance
of SS is slightly inferior to FESS but slightly better than FS, which indicates
that even though SS does not fully exploit the model parameters, it still captures
rich generative information. We also evaluate the feature mapping as a function
of the number of samples and topics, as shown in Fig. 2, and show that MSS
works well with few topics (hidden variables).

5.3 Computational Efficiency

The proposed discriminative learning method is an iterative process, involving
the inference step and the parameter estimation step, where the parameter esti-
mation is slower because it needs to solve a quadratic programming and update
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the generative model. Learning can be greatly sped up in the following way.
Instead of cycling through the steps T times, we can pre-train the generative
models (e.g. with T iterations) and then launch Algorithm 1 for a few iterations,
about 10 iterations empirically.

The performance of a score space, to some extent, depends on the number of
hidden variables (e.g., the number of topics in LDA and the number of hidden
states in HMMs) in the generative model used [10,19]. We investigate this de-
pendency by evaluating the method’s performance as a function of the number
of hidden variables. We evaluate the score space using two classification schemes:
(1) multi-class classification; (2) splitting the multi-class problem into a group of
binary classification problems and averaging their results. We find that the two
methods of evaluation share very similar trend, and report only experimental
results based on (2) in Fig. 1 (HMMs), and Fig. 2 (LDA). Overall, we found the
proposed method works well with generative models with a few hidden variables,
fewer than other methods required, which also makes our method more efficient.
In addition, as shown in Fig. 1 and Fig. 2, MSS’s performance over other meth-
ods is robust against the percentage of total samples used as training samples.
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Fig. 1. Accuracy (%) w.r.t. the number of hidden states (HMMs) and the percentage
of training samples on Chicken data
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Fig. 2. Accuracy (%) w.r.t. the number of topics (LDA) and the percentage of training
samples on OT (City vs rest)
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Empirically, The MSS-HMM and MSS-LDA can be faster than MAP-HMM and
MAP-LDA in part because the number of topics or hidden variables are smaller.

6 Conclusions

In this paper, we derive a new score space (SS) by decomposing the lower bound
of the log likelihood into a linear combination of two parts. The first part is
related to model parameters while the second part is related data samples. The
second part, based mainly on sufficient statistics, provides the score functions to
span the score space. This decomposition allows us to develop a computation-
ally tractable method to learn score space discriminatively, subject to margin
constraints of a classifier over the score space. We provide an EM-like algorithm
for inference and learning, where the posterior introduced by discriminative fac-
tors (margin constraints) feed-back discriminative information to tune the score
space. This method works well with a small number of hidden variables, which
makes inference and learning fast and efficient. We show that this approach is
competitive against other state-of-the-art methods in a variety of datasets.
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Abstract. We reconsider the stochastic (sub)gradient approach to the
unconstrained primal L1-SVM optimization. We observe that if the learn-
ing rate is inversely proportional to the number of steps, i.e., the number
of times any training pattern is presented to the algorithm, the update
rule may be transformed into the one of the classical perceptron with
margin in which the margin threshold increases linearly with the number
of steps. Moreover, if we cycle repeatedly through the possibly randomly
permuted training set the dual variables defined naturally via the expan-
sion of the weight vector as a linear combination of the patterns on which
margin errors were made are shown to obey at the end of each complete
cycle automatically the box constraints arising in dual optimization. This
renders the dual Lagrangian a running lower bound on the primal objec-
tive tending to it at the optimum and makes available an upper bound
on the relative accuracy achieved which provides a meaningful stopping
criterion. In addition, we propose a mechanism of presenting the same
pattern repeatedly to the algorithm which maintains the above proper-
ties. Finally, we give experimental evidence that algorithms constructed
along these lines exhibit a considerably improved performance.

1 Introduction

Support Vector Machines (SVMs) [1,20,5] have been extensively used as linear
classifiers either in the space where the patterns originally reside or in high di-
mensional feature spaces induced by kernels. They appear to be very successful
at addressing the classification problem expressed as the minimization of an
objective function involving the empirical risk while at the same time keeping
low the complexity of the classifier. As measures of the empirical risk various
quantities have been proposed with the 1- and 2-norm loss functions being the
most widely accepted ones giving rise to the optimization problems known as L1-
and L2-SVMs [4]. SVMs typically treat the problem as a constrained quadratic
optimization in the dual space. At the early stages of SVM development their ef-
ficient implementation was hindered by the quadratic dependence of their mem-
ory requirements on the number of training examples a fact which rendered
prohibitive the processing of large datasets. The idea of applying optimization
only to a subset of the training set in order to overcome this difficulty resulted in
the development of decomposition methods [16,9]. Although such methods led
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to improved convergence rates, in practice their superlinear dependence on the
number of examples, which can be even cubic, can still lead to excessive run-
times when dealing with massive datasets. Recently, the so-called linear SVMs
[10,7,8,13] taking advantage of linear kernels in order to allow parts of them to
be written in primal notation succeeded in outperforming decomposition SVMs.

The above considerations motivated research in alternative algorithms natu-
rally formulated in primal space long before the advent of linear SVMs mostly
in connection with the large margin classification of linearly separable datasets
a problem directly related to the L2-SVM. Indeed, in the case that the 2-norm
loss takes the place of the empirical risk an equivalent formulation exists which
renders the dataset linearly separable in a high dimensional feature space. Such
alternative algorithms ([14,15] and references therein) are mostly based on the
perceptron [17], the simplest online learning algorithm for binary linear classi-
fication, with their key characteristic being that they work in the primal space
in an online manner, i.e., processing one example at a time. Cycling repeatedly
through the patterns they update their internal state stored in the weight vector
each time an appropriate condition is satisfied. This way, due to their ability
to process one example at a time, such algorithms succeed in sparing time and
memory resources and consequently become able to handle large datasets.

Since the L1-SVM problem is not known to admit an equivalent maximum
margin interpretation via a mapping to an appropriate space fully primal large
margin perceptron-like algorithms appear unable to deal with such a task.1 Nev-
ertheless, a somewhat different approach giving rise to online algorithms was de-
veloped which focuses on the minimization of the regularized 1-norm soft margin
loss through stochastic gradient descent (SGD). Notable representatives of this
approach are the pioneer NORMA [12] (see also [21]) and Pegasos [18,19] (see
also [2,3]). SGD gives rise to a kind of perceptron-like update having as an im-
portant ingredient the “shrinking” of the current weight vector. Shrinking always
takes place when a pattern is presented to the algorithm with it being the only
modification suffered by the weight vector if no loss is incurred. Thus, due to
lack of a meaningful stopping criterion the algorithm without user intervention
keeps running forever. In that sense the algorithms in question are fundamen-
tally different from the mistake-driven large margin perceptron-like classifiers
which terminate after a finite number of updates. There is no proof even for
their asymptotic convergence when they use as output the final hypothesis but
they do exist probabilistic convergence results or results in terms of the average
hypothesis.

In the present work we reconsider the straightforward version of SGD for the
primal unconstrained L1-SVM problem assuming a learning rate inversely pro-
portional to the number of steps. Therefore, such an algorithm can be regarded

1 The Margin Perceptron with Unlearning (MPU) [13] addresses the L1-SVM problem
by keeping track of the number of updates caused by each pattern in parallel with
the weight vector which is updated according to a perceptron-like rule. In that sense
MPU uses dual variables and should rather be considered a linear SVM which,
however, possesses a finite time bound for achieving a predefined relative accuracy.
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either as NORMA with a specific dependence of the learning rate on the number
of steps or as Pegasos with no projection step in the update and with a single
example contributing to the (sub)gradient (k = 1). We observe here that this al-
gorithm may be transformed into a classical perceptron with margin [6] in which
the margin threshold increases linearly with the number of steps. The obvious
gain from this observation is that the shrinking of the weight vector at each
step amounts to nothing but an increase of the step counter by one unit instead
of the costly multiplication of all the components of the generally non-sparse
weight vector with a scalar. Another benefit arising from the above simplified
description is that we are able to demonstrate easily that if we cycle through the
data in complete epochs the dual variables defined naturally via the expansion of
the weight vector as a linear combination of the patterns on which margin errors
were made satisfy automatically the box constraints of the dual optimization.
An important consequence of this unexpected result is that the relevant dual La-
grangian which is expressed in terms of the total number of margin errors, the
number of complete epochs and the length of the current weight vector provides
during the run a lower bound on the primal objective function and gives us a
measure of the progress made in the optimization process. Indeed, by virtue of
the strong duality theorem the dual Lagrangian and the primal objective coin-
cide at optimality. Therefore, assuming convergence to the optimum an upper
bound on the relative accuracy involving the dual Lagrangian may be defined
which offers a useful and practically achievable stopping criterion. Moreover, we
may now provide evidence in favor of the asymptotic convergence to the opti-
mum by testing experimentally the vanishing of the duality gap. Finally, aiming
at performing more updates at the expense of only one costly inner product
calculation we propose a mechanism of presenting the same pattern repeatedly
to the algorithm consistently with the above interesting properties.

The paper is organized as follows. Section 2 describes the algorithm and its
properties. In Section 3 we give implementational details and deliver our exper-
imental results. Finally, Section 4 contains our conclusions.

2 The Algorithm and Its Properties

Assume we are given a training set {(xk, lk)}mk=1, with vectors xk ∈ IRd and
labels lk ∈ {+1,−1}. This set may be either the original dataset or the result
of a mapping into a feature space of higher dimensionality [20,5]. By placing
xk in the same position at a distance ρ in an additional dimension, i.e., by ex-
tending xk to [xk, ρ], we construct an embedding of our data into the so-called
augmented space [6]. The advantage of this embedding is that the linear hypoth-
esis in the augmented space becomes homogeneous. Following the augmentation,
a reflection with respect to the origin of the negatively labeled patterns is per-
formed allowing for a uniform treatment of both categories of patterns. We define
R ≡ max

k
‖yk‖ with yk ≡ [lkxk, lkρ] the k-th augmented and reflected pattern.
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Let us consider the regularized empirical risk

λ

2
‖w‖2 + 1

m

m∑
k=1

max{0, 1−w · yk}

involving the 1-norm soft margin loss max{0, 1−w · yk} for the pattern yk and
the regularization parameter λ > 0 controlling the complexity of the classifier
w. For a given dataset of size m minimization of the regularized empirical risk
with respect to w is equivalent to the minimization of the objective function

J (w, C) ≡ 1

2
‖w‖2 + C

m∑
k=1

max{0, 1−w · yk} ,

where the “penalty” parameter C > 0 is related to λ as

C =
1

λm
.

This is the L1-SVM problem expressed as an unconstrained optimization.
The algorithms we are concerned with are classical SGD algorithms. The term

stochastic refers to the fact that they perform gradient descent with respect to
the objective function in which the empirical risk (1/m)

∑m
k=1 max{0, 1−w ·yk}

is approximated by the instantaneous risk max{0, 1−w ·yk} on a single example.
The general form of the update rule is then

wt+1 = wt − ηt∇wt

[
1

2
‖wt‖2 +

1

λ
max{0, 1−wt · yk}

]
,

where ηt is the learning rate and ∇wt
stands for a subgradient with respect to

wt since the 1-norm soft margin loss is only piecewise differentiable (t ≥ 0). We
choose a learning rate ηt = 1/(t+1) which satisfies the conditions

∑∞
t=0 η

2
t <∞

and
∑∞

t=0 ηt = ∞ usually imposed in the convergence analysis of stochastic
approximations. Then, noticing that wt− 1

t+1wt =
t

t+1wt, we obtain the update

wt+1 =
t

t+ 1
wt +

1

λ(t + 1)
yk (1)

whenever

wt · yk ≤ 1 (2)

and

wt+1 =
t

t+ 1
wt (3)

otherwise. In deriving the above update rule we made the choice wt−λ−1yk for
the subgradient at the point wt ·yk = 1 where the 1-norm soft margin loss is not
differentiable. We assume that w0 = 0. We see that if wt · yk > 1 the update
consists of a pure shrinking of the current weight vector by the factor t/(t+ 1).
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The update rule may be simplified considerably if we perform the change of
variable

wt =
at

λt
(4)

for t > 0 and w0 = a0 = 0 for t = 0. In terms of the new weight vector at the
update rule becomes

at+1 = at + yk (5)

whenever
at · yk ≤ λt (6)

and
at+1 = at (7)

otherwise.2 This is the update of the classical perceptron algorithm with margin
in which, however, the margin threshold in condition (6) increases linearly with
the number of presentations of patterns to the algorithm independent of whether
they lead to a change in the weight vector at. Thus, t counts the number of times
any pattern is presented to the algorithm which corresponds to the number of
updates (including the pure shrinkings (3)) of the weight vector wt. Instead, the
weight vector at is updated only if (6) is satisfied meaning that a margin error
is made on yk.

In the original formulation of Pegasos [18] the update is completed with a
projection step in order to enforce the bound ‖wt‖ ≤ 1/

√
λ which holds for the

optimal solution. We show now that this is dynamically achieved to any desired
accuracy after the elapse of sufficient time. In practice, however, it is in almost
all cases achieved after one pass over the data.

Proposition 1. For t > 0 the norm of the weight vector wt is bounded from
above as follows

‖wt‖ ≤
1√
λ

√
1 +

(
R2

λ
− 1

)
1

t
. (8)

Proof. From the update rule (5) taking into account condition (6) under which
the update takes place we get

‖at+1‖2 − ‖at‖2 = ‖yk‖
2 + 2at · yk ≤ R2 + 2λt .

Obviously, this is trivially satisfied if (6) is violated and (7) holds. A repeated
application of the above inequality with a0 = 0 gives

‖at‖2 ≤ R2t+ 2λ

t−1∑
k=0

k = R2t+ λt(t − 1) = (R2 − λ)t+ λt2

from where using (4) and taking the square root we obtain (8). ��

2 For t = 0 (6) becomes a0 · yk ≤ 0 instead of a0 · yk ≤ 1 which is obtained from (2)
with w0 = a0. Since both are satisfied with a0 = 0 (6) may be used for all t.
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The Stochastic Gradient Descent Algorithm
with random selection of examples

Input: A dataset S = (y1, . . . , yk, . . . , ym)
with augmentation and reflection assumed
Fix: C, tmax

Define: λ = 1/(Cm)
Initialize: t = 0, a0 = 0
while t < tmax do

Choose yk from S randomly
if at · yk ≤ λt then

at+1 = at + yk

else
at+1 = at

t← t + 1

wt = at/(λt)

Combining (8) with the initial
choice w0 = 0 we see that for all
t the weaker bound ‖wt‖ ≤ R/λ
previously derived in [19] holds.

SGD gives naturally rise to
online algorithms. Therefore, we
may choose the examples to be
presented to the algorithm at ran-
dom. However, the L1-SVM op-
timization task is a batch learn-
ing problem which may be bet-
ter tackled by online algorithms
via the classical conversion of such
algorithms to the batch setting.
This is done by cycling repeat-
edly through the possibly ran-

domly permuted training dataset and using the last hypothesis for prediction.
This traditional procedure of presenting the training data to the algorithm in
complete epochs has in our case, as we will see shortly, the additional advantage
that there exists a lower bound on the optimal value of the objective function
to be minimized which is expressed in terms of quantities available during the
run. The existence of such a lower bound provides an estimate of the relative
accuracy achieved by the algorithm.

Proposition 2. Let us assume that at some stage the whole training set has
been presented to the algorithm exactly T times. Then, it holds that

Jopt(C) ≡ min
w
J (w, C) ≥ LT ≡ C

M

T
− 1

2

∥∥wT
∥∥2 , (9)

where M is the total number of margin errors made up to that stage and wT ≡
w(mT ) the weight vector at t = mT with m being the size of the training set.

Proof. Let Itk denote the number of margin errors made on the pattern yk up
to time t such that at =

∑
k I

t
kyk. Obviously, it holds that

0 ≤ I
(mT )
k ≤ T (10)

since yk up to time t = mT has been presented to the algorithm exactly T
times. Then, taking into account (4) we see that at time t the dual variable αt

k

associated with yk is αt
k = Itk/(λt) and consequently the dual variable α

(mT )
k

after T complete epochs is given by

α
(mT )
k =

I
(mT )
k

λmT
= C

I
(mT )
k

T
. (11)

With use of (10) we readily conclude that the dual variables after T complete
epochs automatically satisfy the box constraints

0 ≤ α
(mT )
k ≤ C . (12)
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From the weak duality theorem it follows that

J (w, C) ≥ L(α) =
∑
k

αk −
1

2

∑
i,j

αiαjyi · yj ,

where L(α) is the dual Lagrangian3 and the variables αk obey the box con-

straints 0 ≤ αk ≤ C. Thus, setting αk = α
(mT )
k in the above inequality, noticing

that
∑

k α
(mT )
k = (C/T )

∑
k I

(mT )
k = CM/T and substituting

∑
k α

(mT )
k yk with

wT we obtain J (w, C) ≥ LT which is equivalent to (9). ��

In the course of proving Proposition 2 we saw that although the algorithm is
fully primal the dual variables αt

k defined through the expansion wt =
∑

k α
t
kyk

of the weight vector wt as a linear combination of the patterns on which margin
errors were made obey after T complete epochs automatically the box constraints
(12) encountered in dual optimization.4 This surprising result allows us to con-
struct the dual Lagrangian LT which provides a lower bound on the optimal
value Jopt of the objective J and assuming LT > 0 to obtain an upper bound
J /LT − 1 on the relative accuracy J /Jopt − 1 achieved as the algorithm keeps
running. Thus, we have for the first time a primal SGD algorithm which may
use the relative accuracy as stopping criterion.5 It is also worth noticing that
LT involves only the total number M of margin errors and does not require that
we keep the values of the individual dual variables during the run.

Although the automatic satisfaction of the box constraints by the dual vari-
ables is very important it is by no means sufficient to ensure vanishing of the
duality gap and consequently convergence to the optimal solution. To demon-
strate convergence to the optimum relying on dual optimization theory we must
make sure that the Karush-Kuhn-Tucker (KKT) conditions [20,5] are satisfied.
Their approximate satisfaction demands that the only patterns which have a
substantial loss be the ones which have dual variables equal or at least ex-
tremely close to C (bound support vectors) and moreover that the patterns which
have zero loss and margin considerably larger than 1/

∥∥wT
∥∥ should have van-

ishingly small dual variables. Patterns with margin very close to 1/
∥∥wT

∥∥ may

3 Maximization of L(α) subject to the constraints 0 ≤ αk ≤ C is the dual of the
primal L1-SVM problem expressed as a constrained minimization.

4 We expect that the dual variables will also satisfy the box constraints in the limit
t → ∞ if the patterns presented to the algorithm are selected randomly with equal
probability since asymptotically they will all be selected an equal number of times.

5 It is, of course, computationally expensive to evaluate at the end of each epoch the
exact primal objective. Thus, an approximate calculation of the loss using the value
that the weight vector had the last time each pattern was presented to the algorithm
is preferable. This way we exploit the already computed inner product at ·yk which
is needed in order to decide whether condition (6) is satisfied. If this approximate
calculation gives a value of the relative accuracy which is not larger than f times
the one set as stopping criterion we proceed to a proper calculation of the primal
objective. The comparison coefficient f is given empirically a value close to 1.
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The Stochastic Gradient Descent Algorithm
with relative accuracy ε

Input: A dataset S = (y1, . . . , yk, . . . , ym)
with augmentation and reflection assumed
Fix: C, ε, f, Tmax

Define: qk = ‖yk‖2 , λ = 1/(Cm), ε′ = fε
Initialize: t = 0, T = 0, M = 0, r0 = 0, a0 = 0
while T < Tmax do

Permute(S)
L = 0
for k = 1 to m do

ptk = at · yk

θt = λt
if ptk ≤ θt then

at+1 = at + yk

rt+1 = rt + 2ptk + qk

M ←M + 1
if t > 0 then

L← L + 1− ptk/θt

else
L← L + 1

else
at+1 = at

rt+1 = rt

t← t + 1
T ← T + 1
θ = λt
w2 = rt/(2θ2)
J = w2 + CL
L = CM/T − w2
if J − L ≤ ε′L then

L = 0
for k = 1 to m do

pk = at · yk

if pk < θ then
L← L + θ − pk

L← L/θ
J = w2 + CL
if J − L ≤ εL then

break

wt = at/(λt)

have dual variables with values
between 0 and C and play the role
of the non-bound support vec-
tors. From (11) we see that the
dual variable associated with the
k-th pattern is equal to CTk/T

where Tk ≡ I
(mT )
k is the num-

ber of epochs for which the k-th
pattern was found to be a mar-
gin error. It is apparent that if
there exists a number of epochs
no matter how large it may be af-
ter which a pattern is consistently
found to be a margin error then
in the limit T → ∞ we will have
(Tk/T )→ 1 and the dual variable
associated with it will asymptoti-
cally approach C. In contrast, if a
pattern after a specific number of
epochs is never found to be a mar-
gin error then (Tk/T ) → 0 and
its dual variable will tend asymp-
totically to zero reflecting the ac-
cumulated effect of the shrinking
that the weight vector suffers each
time a pattern is presented to
the algorithm. Therefore, the al-
gorithm has the necessary ingredi-
ents for asymptotic satisfaction of
the KKT conditions for the van-
ishing of the duality gap. The po-
tential danger remains, however,
that they may exist patterns with
margin not very close to 1/

∥∥wT
∥∥

which do not belong to any of the
above categories and occasionally

either become margin errors although most of the time are not or become clas-
sified with sufficiently large margin despite of the fact that they are most of the
time margin errors. The hope is that with time the changes in the weight vector
wt will become smaller and smaller and such events will become more and more
rare leading eventually to convergence to the optimal solution.

The above discussion cannot be regarded as a formal proof of the asymptotic
convergence of the algorithm. We believe, however, that it does provide a con-
vincing argument that assuming convergence (not necessarily to the optimum)
the duality gap will eventually tend to zero and the lower bound LT on the primal
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objective J given in Proposition 2 will approach the optimal primal objective
Jopt, thereby proving that convergence to the optimum has been achieved. If,
instead, we make the stronger assumption of convergence to the optimum then,
of course, the vanishing of the duality gap follows from the strong duality the-
orem. In any case the stopping criterion exploiting the upper bound J /LT − 1
on the relative accuracy J /Jopt − 1 is a meaningful one.

Our discussion so far assumes that in an epoch each pattern is presented only
once to the algorithm. We may, however, consider the option of presenting the
same pattern yk repeatedly � times to the algorithm6 aiming at performing more
updates at the expense of only one calculation of the costly inner product at ·yk.
Proposition 2 and the analysis following it will still be valid on the condition that
all patterns in each epoch are presented exactly the same number � of times to
the algorithm. Then, such an epoch should be regarded as equivalent to � usual
epochs with single presentations of patterns to the algorithm and will have as a
result the increase of t by an amount equal to m�.

It is, of course, important to be able to decide in terms of just the initial value
of at ·yk how many, let us say �+, out of these � consecutive presentations of the
pattern yk to the algorithm will lead to a margin error, i.e., to an update of at,
with each of the remaining �− = �− �+ presentations necessarily corresponding
to just an increase of t by 1 which amounts to a pure shrinking of wt.

Proposition 3. Let the pattern yk be presented at time t repeatedly � times to
the algorithm. Also let

P = at · yk − λt .

Then, the number �+ of times that yk will be found to be a margin error is given
by the following formula

if P > (�− 1)λ �+ = 0 ,

if P ≤ (�− 1)λ �+ = min

{
�,

[
(�− 1)λ− P

max{‖yk‖
2
, λ}

]
+ 1

}
. (13)

Here [x] denotes the integer part of x ≥ 0.

Proof. For the sake of brevity we call a plus-step a presentation of the pattern yk

to the algorithm which leads to a margin error and a minus-step a presentation
which does not. If at time t a plus-step takes place at+1 · yk − λ(t + 1) =

(at ·yk−λt)+(‖yk‖
2−λ) while if a minus-step takes place at+1 ·yk−λ(t+1) =

(at · yk − λt) − λ. Thus, a plus-step adds to P the quantity ‖yk‖
2 − λ while a

minus-step the quantity −λ. Clearly, after � consecutive presentations of yk to
the algorithm it holds that at+� ·yk −λ(t+ �) = P + �+(‖yk‖

2−λ)− (�− �+)λ.

6 Multiple updates were introduced in [13,14]. A discussion in a context related to the
present work is given in [11]. However, a proper SGD treatment in the presence of
a regularization term for the 1-norm soft margin loss was not provided. Instead, a
“forward-backward splitting” approach was adopted in which a multiple update in
the absence of the regularizer is followed by  pure regularizer-induced wt shrinkings.
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If P > (� − 1)λ it follows that P − (� − 1)λ > 0 which means that after
� − 1 consecutive minus-steps condition (6) is still violated and an additional
minus-step must take place. Thus, �− = � and �+ = 0.

For P ≤ (�− 1)λ we first treat the subcase max{‖yk‖
2 , λ} = λ. If ‖yk‖

2 ≤ λ
and P ≤ 0 condition (6) is initially satisfied and will still be satisfied after any

number of plus-steps since the quantity ‖yk‖
2 − λ that is added to P with a

plus-step is non-positive. Thus, �+ = �. This is in accordance with (13) since
((� − 1)λ − P )/λ ≥ � − 1 or [((� − 1)λ − P )/λ] + 1 ≥ � leading to �+ = �. It

remains for ‖yk‖
2 ≤ λ to consider P in the interval 0 < P ≤ (� − 1)λ which

can be further subdivided as (�1 − 1)λ < P ≤ �1λ with the integer �1 satisfying
1 ≤ �1 ≤ � − 1. For P belonging to such a subinterval condition (6) is initially
violated and will still be violated after �1 − 1 minus-steps while after one more
minus-step will be satisfied. It will still be satisfied after any number of additional
plus-steps because the quantity ‖yk‖

2 − λ that is added to P with a plus-step
is non-positive. Thus, �− = �1 and �+ = � − �1. This is in accordance with (13)
since (�−�1−1)λ ≤ (�−1)λ−P < (�−�1)λ leads to [((�−1)λ−P )/λ]+1 = �−�1.

The subcase ‖yk‖
2 > λ of the case P ≤ (� − 1)λ is far more complicated.

If ‖yk‖
2
> λ with P ≤ −(� − 1)(‖yk‖

2 − λ) condition (6) is initially satisfied

and will still be satisfied after �− 1 plus-steps since P + (�− 1)(‖yk‖
2 − λ) ≤ 0.

Thus, �+ = �. This is consistent with (13) because (�− 1)λ− P ≥ (�− 1) ‖yk‖
2

or [((� − 1)λ− P )/ ‖yk‖
2] + 1 ≥ � leading to �+ = �. It remains to be examined

the case ‖yk‖
2
> λ with P in the interval −(�− 1)(‖yk‖

2 − λ) < P ≤ (�− 1)λ.
The above interval can be expressed as a union of subintervals (� − �1 − 1)λ −
�1(‖yk‖

2−λ) < P ≤ (�− �1)λ− (�1−1)(‖yk‖
2−λ) with the integer �1 satisfying

1 ≤ �1 ≤ � − 1. Let P belong to such a subinterval. Let us also assume that
the pattern yk has been presented κ ≤ � consecutive times to the algorithm
as a result of which κ+ plus-steps and κ− minus-steps have taken place and
the quantity κ+(‖yk‖

2 − λ) − κ−λ has been added to P . Then Pκ+,κ− ≡ P +

κ+(‖yk‖
2−λ)−κ−λ satisfies (�−�1−1−κ−)λ−(�1−κ+)(‖yk‖

2−λ) < Pκ+,κ− ≤
(�− �1−κ−)λ− (�1−1−κ+)(‖yk‖

2−λ). As κ increases either κ+ will first reach
the value �1 with κ− < �− �1 or κ− will first reach the value �− �1 with κ+ < �1.
In the former case 0 ≤ (�− �1 − 1− κ−)λ < Pκ+,κ− . This means that condition
(6) is violated and will continue being violated until the number of minus-steps
becomes equal to �− �1− 1 in which case one more minus-step must take place.
Thus, all steps taking place after κ+ has reached the value �1 are minus-steps.
In the latter case Pκ+,κ− ≤ −(�1 − 1 − κ+)(‖yk‖

2 − λ) ≤ 0. This means that
condition (6) is satisfied and will continue being satisfied until the number of
plus-steps becomes equal to �1 − 1 in which case one more plus-step must take
place. Thus, all steps taking place after κ− has reached the value � − �1 are
plus-steps. In both cases �+ = �1. This is again in accordance with (13) because

(�1− 1) ‖yk‖
2 ≤ (�− 1)λ−P < �1 ‖yk‖

2
or [((�− 1)λ−P )/ ‖yk‖

2
] + 1 = �1. ��

With �+ given in Proposition 3 the update of multiplicity � of the weight
vector at is written formally as

at+� = at + �+yk . (14)
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3 Implementation and Experiments

We implement three types of SGD algorithms7 along the lines of the previous
section. The first is the plain algorithm with random selection of examples,
denoted SGD-r, which terminates when the maximum number tmax of steps is
reached. Its pseudocode is given in Section 2. The dual variables in this case
do not satisfy the box constraints as a result of which relative accuracy cannot
be used as stopping criterion. The SGD algorithm with relative accuracy ε,
the pseudocode of which is also given in Section 2, is denoted SGD-s where
s designates that in an epoch each pattern is presented a single time to the
algorithm. It terminates when the relative deviation of the primal objective J
from the dual Lagrangian LT just falls below ε provided the maximum number
Tmax of full epochs is not exhausted. A variation of this algorithm, denoted SGD-
m, replaces in the T -th epoch the usual update with the multiple update (14)
of multiplicity � = 5 only if 0 < T mod 9 < 5. For both SGD-s and SGD-m the
comparison coefficient takes the value f = 1.2 unless otherwise explicitly stated.

Algorithms performing SGD on the primal objective are expected to perform
better if linear kernels are employed. Therefore the feature space in our exper-
iments will be chosen to be the original instance space. As a consequence, our
algorithms should most naturally be compared with linear SVMs. Among them
we choose SVMperf 8 [10], the first cutting-plane algorithm for training linear
SVMs, the Optimized Cutting Plane Algorithm for SVMs9 (OCAS) [7], the Dual
Coordinate Descent10 (DCD) algorithm [8] and the Margin Perceptron with Un-
learning11 (MPU) [13]. We also include in our study Pegasos12 (k = 1). The
SGD algorithms of [2,3] implemented in single precision are not considered.

The datasets we used for training are the binary Adult and Web datasets
as compiled by Platt,13 the training set of the KDD04 Physics dataset14 (with
70 attributes after removing the 8 columns containing missing features), the
Real-sim, News20 and Webspam (unigram treatment) datasets,15 the multiclass
Covertype UCI dataset16 and the full Reuters RCV1 dataset.17 Their number of
instances and attributes are listed in Table 1. In the case of the Covertype dataset
we study the binary classification problem of the first class versus rest while for
the RCV1 we consider both the binary text classification tasks of the C11 and
CCAT classes versus rest. The Physics and Covertype datasets were rescaled by

7 Sources available at http://users.auth.gr/costapan
8 Source (version 2.50) available at http://svmlight.joachims.org
9 Source (version 0.96) available at http://cmp.felk.cvut.cz/~xfrancv/ocas/html

10 Source available at http://www.csie.ntu.edu.tw/~cjlin/liblinear. We used the
slightly faster older liblinear version 1.7 instead of the latest 1.93.

11 Source available at http://users.auth.gr/costapan
12 Source available at http://ttic.uchicago.edu/~shai/code
13 http://research.microsoft.com/en-us/projects/svm/
14 http://osmot.cs.cornell.edu/kddcup/datasets.html
15 http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
16 http://archive.ics.uci.edu/ml/datasets.html
17 http://www.jmlr.org/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm

http://users.auth.gr/costapan
http://svmlight.joachims.org
http://cmp.felk.cvut.cz/~xfrancv/ocas/html
http://www.csie.ntu.edu.tw/~cjlin/liblinear
http://users.auth.gr/costapan
http://ttic.uchicago.edu/~shai/code
http://research.microsoft.com/en-us/projects/svm/
http://osmot.cs.cornell.edu/kddcup/datasets.html
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets
http://archive.ics.uci.edu/ml/datasets.html
http://www.jmlr.org/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm
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Table 1. The number T of complete epochs required in order for the SGD-s algorithm
to achieve (J − LT )/LT ≤ 10−5 for C = 0.1

data #instances #attributes
SGD-s ε = 10−5 C = 0.1

set T J LT

Adult 32561 123 208174 1149.904 1149.893

Web 49749 300 16849 755.1139 755.1064

Physics 50000 70 13668 4995.139 4995.089

Realsim 72309 20958 4209 1437.315 1437.301

News20 19996 1355191 2178 902.5611 902.5521

Webspam 350000 254 27680 8284.781 8284.698

Covertype 581012 54 712648 36427.52 36427.16

C11 804414 47236 5670 5174.432 5174.381

CCAT 804414 47236 7987 12114.29 12114.17

multiplying all the features with 0.001. The experiments were conducted on a
2.5 GHz Intel Core 2 Duo processor with 3 GB RAM running Windows Vista.
The C++ codes were compiled using the g++ compiler under Cygwin.

First we perform an experiment aiming at demonstrating that our SGD algo-
rithms are able to obtain extremely accurate solutions. More specifically, with
the algorithm SGD-s employing single updating we attempt to diminish the gap
between the primal objective J and the dual Lagrangian LT setting as a goal a
relative deviation (J − LT )/LT ≤ 10−5 for C = 0.1. In the present and in all
subsequent experiments we do not include a bias term in any of the algorithms
(i.e., in our case we assign to the augmentation parameter the value ρ = 0). In
order to keep the number T of complete epochs as low as possible we increase
the comparison coefficient f until the number of epochs required gets stabilized.
This procedure does not entail, of course, the shortest training time but this is
not our concern in this experiment. In Table 1 we give the values of both J
and LT and the number T of epochs needed to achieve these values. If multiple
updates are used a larger number of epochs is, in general, required due to the
slower increase of LT . Thus, SGD-s achieves, in general, relative accuracy closer
to ε than SGD-m does. This is confirmed by subsequent experiments.

In our comparative experimental investigations we aim at achieving relative
accuracy (J − Jopt)/Jopt ≤ 0.01 for various values of the penalty parameter
C assuming knowledge of the value of Jopt. For Pegasos and SGD-r we use as
stopping criterion the exhaustion of the maximum number of steps (iterations)
tmax which, however, is given values which are multiples of the dataset size m.
The ratio tmax/m may be considered analogous to the number T of epochs of
the algorithm SGD-s since equal values of these two quantities indicate identical
numbers ofwt updates. The input parameter for SGD-s and SGD-m is the (upper
bound on) the relative accuracy ε. For MPU we use the parameter ε = δ = δstop,
where δ is the before-run relative accuracy and δstop the stopping threshold for

the after-run relative accuracy. For SVMperf and DCD we use as input their
parameter ε while for OCAS the primal objective value q = 1.01Jopt (not given
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Table 2. Training times of SGD algorithms to achieve (J − Jopt)/Jopt ≤ 0.01 for
C = 1

C = 1

data Pegasos SGD-r SGD-s SGD-m

set tmax/m s tmax/m s ε T s ε T s

Adult 181 4.4 116 0.55 0.105 111 0.56 0.33 50 0.27

Web 53 1.0 46 0.34 0.054 26 0.20 0.1 14 0.11

Physics 2 0.20 6 0.09 2.1 1 0.03 0.14 3 0.06

Realsim 66 3.4 70 2.0 0.046 20 0.58 0.061 16 0.47

News20 89 10.2 88 7.5 0.023 39 3.1 0.029 25 2.1

Webspam 8 3.4 9 2.1 0.068 14 3.0 0.21 5 1.2

Covertype - - 62 10.9 0.264 65 8.7 1.12 18 2.5

C11 41 31.4 39 21.1 0.05 16 7.9 0.136 8 4.2

CCAT 37 32.7 36 19.8 0.055 16 8.1 0.163 7 4.1

Table 3. Training times of linear SVMs to achieve (J − Jopt)/Jopt ≤ 0.01 for C = 1

C = 1

data SVMperf OCAS DCD MPU

set ε s s ε s ε s

Adult 0.7 1.5 0.08 2.8 0.16 0.02 0.09

Web 0.2 0.33 0.30 6 0.06 0.01 0.05

Physics 1.0 0.30 0.02 23 0.06 0.06 0.06

Realsim 0.08 0.80 0.62 0.7 0.22 0.06 0.23

News20 0.14 12.8 6.0 0.4 0.64 0.03 1.5

Webspam 0.5 7.3 4.2 2.5 1.4 0.1 0.98

Covertype 4.2 45.8 3.4 6.5 9.1 0.1 6.2

C11 0.09 12.8 9.0 1.4 3.5 0.09 2.5

CCAT 0.25 19.3 12.9 1.6 3.6 0.1 3.2

in the tables) with the relative tolerance taking the default value r = 0.01.
Any difference in training time between Pegasos and SGD-r for equal values
of tmax/m should be attributed to the difference in the implementations. Any
difference between tmax/m for SGD-r and T for SGD-s is to be attributed to the
different procedure of choosing the patterns that are presented to the algorithm.
Finally, the difference in the number T of epochs between SGD-s and SGD-m
reflects the effect of multiple updates. It should be noted that in the runtime of
SGD-s and SGD-m several calculations of the primal and the dual objective are
included which are required for checking the satisfaction of the stopping criterion.
If SGD-s and SGD-m were using the exhaustion of the maximum number Tmax

of epochs as stopping criterion their runtimes would certainly be shorter.
Tables 2 and 3 contain the results of the experiments involving the SGD

algorithms and linear SVMs for C = 1. We observe that, in general, there is a
progressive decrease in training time as we move from Pegasos to SGD-m through
SGD-r and SGD-s due to the additive effect of several factors. These factors are
the more efficient implementation of our algorithms exploiting the change of
variable given by (4), the presentation of the patterns to SGD-s and SGD-m in



78 C. Panagiotakopoulos and P. Tsampouka

Table 4. Training times of SGD algorithms to achieve (J − Jopt)/Jopt ≤ 0.01 for
C = 10

C = 10

data Pegasos SGD-r SGD-s SGD-m

set tmax/m s tmax/m s ε T s ε T s

Adult - - 1146 5.3 0.098 1172 5.8 0.35 455 2.4

Web 338 6.5 330 2.4 0.049 220 1.7 0.105 99 0.76

Physics 12 1.1 51 0.78 0.203 17 0.27 0.223 19 0.33

Realsim 746 30.5 738 21.1 0.0162 487 12.9 0.027 261 7.0

News20 796 76.1 797 63.0 0.0104 719 53.0 0.012 279 20.6

Webspam - - 64 14.5 0.125 62 12.3 0.4 26 5.7

Covertype - - 472 82.8 0.343 462 60.2 0.77 269 36.3

C11 446 332.1 441 238.7 0.0415 178 82.0 0.085 116 53.9

CCAT - - 387 212.2 0.0471 170 79.2 0.112 98 46.7

Table 5. Training times of linear SVMs to achieve (J −Jopt)/Jopt ≤ 0.01 for C = 10.

C = 10

data SVMperf OCAS DCD MPU

set ε s s ε s ε s

Adult 0.6 38.0 0.33 2.6 1.2 0.04 0.62

Web 0.23 1.4 0.55 8 0.20 0.02 0.08

Physics 1.3 2.9 0.09 23 0.30 0.05 0.20

Realsim 0.031 4.4 2.6 0.25 0.45 0.02 0.41

News20 0.019 147.0 40.7 0.2 1.5 0.02 2.1

Webspam 0.36 37.1 6.8 2.2 5.3 0.2 2.5

Covertype 2.1 52.0 17.3 6.1 90.8 0.08 38.5

C11 0.079 39.6 25.0 0.65 9.2 0.02 5.7

CCAT 0.14 72.0 35.2 0.85 11.7 0.02 7.9

complete epochs (see also [3,19]) and the use by SGD-m of multiple updating.
The overall improvement made by SGD-m over Pegasos is quite substantial.
DCD and MPU are certainly statistically faster but their differences from SGD-
m are not very large especially for the largest datasets. Moreover, SGD-s and
SGD-m are considerably faster than SVMperf and statistically faster than OCAS.
Pegasos failed to process the Covertype dataset due to numerical problems.

Tables 4 and 5 contain the results of the experiments involving the SGD
algorithms and linear SVMs for C = 10. Although the general characteristics
resemble the ones of the previous case the differences are magnified due to the
intensity of the optimization task. Certainly, the training time of linear SVMs
scales much better as C increases. Moreover, MPU clearly outperforms DCD and
OCAS for most datasets. SGD-m is still statistically faster than SVMperf but
slower than OCAS. Finally, Pegasos runs more often into numerical problems.

In contrast, as C decreases the differences among the algorithms are alleviated.
This is apparent from the results for C = 0.05 reported in Tables 6 and 7. SGD-
r, SGD-s and SGD-m all appear statistically faster than the linear SVMs. Also
Pegasos outperforms SVMperf for the majority of datasets with preference for
the largest ones. Seemingly, lowering C favors the SGD algorithms.
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Table 6. Training times of SGD algorithms to achieve (J − Jopt)/Jopt ≤ 0.01 for
C = 0.05

C = 0.05

data Pegasos SGD-r SGD-s SGD-m

set tmax/m s tmax/m s ε T s ε T s

Adult 7 0.17 12 0.06 0.07 10 0.05 0.15 6 0.03

Web 4 0.11 4 0.03 0.06 2 0.02 0.06 2 0.02

Physics 1 0.09 1 0.02 0.11 1 0.02 0.06 1 0.02

Realsim 3 0.27 3 0.09 0.09 1 0.06 0.14 1 0.06

News20 4 0.72 3 0.33 0.08 1 0.20 0.12 1 0.20

Webspam 1 0.50 2 0.47 0.4 1 0.44 0.18 1 0.44

Covertype 5 4.1 4 0.72 0.25 4 0.64 0.27 5 0.80

C11 2 1.6 3 1.6 0.03 2 1.5 0.1 1 1.0

CCAT 2 2.1 2 1.1 0.12 1 1.0 0.12 1 1.0

Table 7. Training times of linear SVMs to achieve (J −Jopt)/Jopt ≤ 0.01 for C = 0.05

C = 0.05

data SVMperf OCAS DCD MPU

set ε s s ε s ε s

Adult 1.1 0.14 0.05 3 0.03 0.01 0.03

Web 0.3 0.09 0.09 4 0.03 0.01 0.03

Physics 1.1 0.08 0.02 12 0.03 0.02 0.02

Realsim 0.7 0.23 0.20 0.7 0.16 0.2 0.16

News20 0.9 1.3 0.73 3 0.23 0.2 0.56

Webspam 1.1 2.8 2.3 1 1.1 0.2 0.72

Covertype 2.9 53.7 1.6 6 1.2 0.3 1.4

C11 0.11 4.7 2.9 4 1.4 0.1 1.4

CCAT 0.25 7.2 5.7 1 2.7 0.1 1.6

4 Conclusions

We reexamined the classical SGD approach to the primal unconstrained L1-SVM
optimization task and made some contributions concerning both theoretical and
practical issues. Assuming a learning rate inversely proportional to the num-
ber of steps a simple change of variable allowed us to simplify the algorithmic
description and demonstrate that in a scheme presenting the patterns to the
algorithm in complete epochs the naturally defined dual variables satisfy au-
tomatically the box constraints of the dual optimization. This opened the way
to obtaining an estimate of the progress made in the optimization process and
enabled the adoption of a meaningful stopping criterion, something the SGD al-
gorithms were lacking. Moreover, it made possible a qualitative discussion of how
the KKT conditions will be asymptotically satisfied provided the weight vector
wt gets stabilized. Besides, we showed that in the limit t→∞ even without a
projection step in the update it holds that ‖wt‖ ≤ 1/

√
λ, a bound known to be
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obeyed by the optimal solution. On the more practical side by exploiting our sim-
plified algorithmic description and employing a mechanism of multiple updating
we succeeded in substantially improving the performance of SGD algorithms.
For optimization tasks of low or medium intensity the algorithms constructed
are comparable to or even faster than the state-of-the-art linear SVMs.
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Abstract. Parallel coordinate descent algorithms emerge with the grow-
ing demand of large-scale optimization. In general, previous algorithms
are usually limited by their divergence under high degree of parallelism
(DOP), or need data pre-process to avoid divergence. To better exploit
parallelism, we propose a coordinate descent based parallel algorithm
without needing of data pre-process, termed as Bundle Coordinate De-
scent Newton (BCDN), and apply it to large-scale �1-regularized logistic
regression. BCDN first randomly partitions the feature set into Q non-
overlapping subsets/bundles in a Gauss-Seidel manner, where each bun-
dle contains P features. For each bundle, it finds the descent directions
for the P features in parallel, and performs P -dimensional Armijo line
search to obtain the stepsize. By theoretical analysis on global conver-
gence, we show that BCDN is guaranteed to converge with a high DOP.
Experimental evaluations over five public datasets show that BCDN can
better exploit parallelism and outperforms state-of-the-art algorithms in
speed, without losing testing accuracy.

Keywords: parallel optimization, coordinate descent newton, large-scale
optimization, �1-regularized logistic regression.

1 Introduction

High dimensional �1-regularized models arise in a wide range of applications,
such as sparse logistic regression [12] and compressed sensing [10]. Various opti-
mization methods such as coordinate minimization [4], stochastic gradient [15]
and trust region [11] have been developed to solve �1-regularized models, among
which coordinate descent newton (CDN) is proven to be promising [17].

The growing demand of scalable optimization along with the stagnant CPU
speed impels people to design computers with more cores and heterogeneous
computing frameworks, such as generous purpose GPU (GPGPU). To fully uti-
lize these kinds of devices, parallel algorithms pop up like mushrooms in various
areas, such as parallel annealed particle filter for motion tracking by Bian et al [1]
and parallel stochastic gradient descent by Niu et al [13]. While works in [7,19]
perform parallelization over samples, there are often much more features than
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samples in �1-regularized problems. Bradley et al [2] proposed Shotgun CDN for
�1-regularized logistic regression by directly parallelizing the updates of features.
However, Shotgun CDN is easily affected by interference among parallel updates,
which limits its DOP. To get more parallelism, Scherrer et al [14] proposed to
conduct feature clustering, which would introduce extra computing overhead.

To better exploit parallelism, we propose a new globally convergent algo-
rithm, Bundle Coordinate Descent Newton (BCDN), without needing of data
pre-process. In each outer iteration, BCDN randomly partitions the feature in-
dex set N into Q subsets/bundles with size of P in a Gauss-Seidel manner.
In each inner iteration it first parallelly finds the descent directions for P fea-
tures in a bundle and second, it conducts P -dimensional Armijo line search to
find the stepsize. A set of experiments demonstrate its remarkable properties: a
highly parallelized approach with strong convergence guarantee. Experimental
results with different bundle size P (DOP) indicate that it could run with high
DOP (large bundle size P ). Also, its high parallelism ensures good scalability on
different parallel computing frameworks (e.g. multi-core, cluster, heterogeneous
computing).

The contributions of this paper are mainly threefold: (1) proposing a highly
parallelized coordinate descent based algorithm, BCDN; (2) giving strong con-
vergence guarantee by theoretical analysis; (3) applying BCDN to large-scale
�1-regularized logistic regression.

For readability, we here briefly summarize the mathematical notations as fol-
lows. s and n denote the number of training samples and the number of features
respectively.N = {1, 2, · · · , n} denotes the feature index set. (xi, yi), i = 1, · · · , s
denote the sample-label pairs, where xi ∈ Rn, yi ∈ {−1,+1}. X ∈ Rs×n denotes
the design matrix, whose ith row is xi. w ∈ Rn is the unknown vector of model
weights; ej denotes the indicator vector with only the jth element equaling 1
and others 0. ‖ · ‖ and ‖ · ‖1 denote the 2-norm and 1-norm, respectively.

The remainder of this paper is organized as follows. We first briefly review two
related algorithms for �1-regularized logistic regression in Section 2, then describe
BCDN and its high ideal speedup in Section 3. We give the theoretical analysis
for convergence guarantee of BCDN in Section 4 and present implementation and
datasets details in Section 5. Experimental results will be reported in Section 6.

2 Algorithms for �1-Regularized Logistic Regression

Consider the following unconstrained �1-regularized optimization problem:

min
w∈Rn

Fc(w) ≡ c
s∑

i=1

ϕ(w;xi, yi) + ‖w‖1, (1)

where ϕ(w;xi, yi) is a non-negative and convex loss function; c > 0 is the reg-
ularization parameter. For logistic regression, the overall training losses can be
expressed as follows:

L(w) ≡ c

s∑
i=1

ϕ(w;xi, yi) = c

s∑
i=1

log(1 + e−yiw
Txi). (2)
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A number of solvers are available for this problem. In this section, we focus on
two effective solvers: CDN [17] and its parallel variant, Shotgun CDN [2].

2.1 Coordinate Descent Newton (CDN)

Yuan et al [17] have demonstrated that CDN is a very efficient solver for large-
scale �1-regularized logistic regression. It is a special case of coordinate gradient
descent (CGD) proposed in [16]. The overall procedure of CDN is summarized
in Algorithm 1.

Given the current model w, for the selected feature j ∈ N , w is updated
along the descent direction dj = d(w; j)ej , where,

d(w; j) ≡ argmin
d
{∇jL(w)d+

1

2
∇2

jjL(w)d2 + |wj + d|}. (3)

Armijo rule is adopted based on [3] to determine the stepsize for the line search
procedure. Let α = α(w,d) be the determined stepsize, where,

α(w,d) ≡ max
t=0,1,2,···

{βt | Fc(w + βtd)− Fc(w) ≤ βtσΔ}, (4)

where 0 < β < 1, 0 < σ < 1, βt denotes β to the power of t, Δ ≡ ∇L(w)Td +
‖w+d‖1−‖w‖1. This rule requires only function evaluations. According to [16],
larger stepsize will be accepted if we choose σ near 0.

Algorithm 1. Coordinate Descent Newton (CDN) [17]

1: Set w1 = 0 ∈ Rn.
2: for k = 1, 2, 3, · · · do
3: for all j ∈ N do
4: Obtain dk,j = d(wk,j ; j)ej by solving Eq. (3).
5: Find the stepsize αk,j = α(wk,j ,dk,j) by solving Eq. (4). //1-dimensional

line search
6: wk,j+1 ← wk,j + αk,jdk,j .
7: end for
8: end for

2.2 Shotgun CDN (SCDN)

Shotgun CDN (SCDN) [2] simply updates P̄ features in parallel, where each
feature update corresponds to one inner iterations in CDN, so its DOP1 is P̄ .
However, its parallel updates might increase the risk of divergence, which comes
from the correlation among features. Bradley et al [2] provided a problem-specific

1 DOP is a metric indicating how many operations can be or being simultaneously
executed by a computer.
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measure for SCDN’s potential of parallelization: the spectral radius ρ of XTX .
With this measure, an upper bound is given to P̄ , i.e., P̄ ≤ n/ρ+ 1 to achieve
speedups linear in P̄ . However, ρ can be very large for most large-scale datasets,
e.g. ρ = 20, 228, 800 for dataset gisette with n = 5000, which limits the parallel
ability of SCDN. Therefore, algorithms with high parallelism are desired to deal
with large-scale problems. The details of SCDN can be found in Algorithm 2.

Algorithm 2. Shotgun CDN (SCDN) [2]

1: Choose the number of parallel updates P̄ ≥ 1.
2: Set w = 0 ∈ Rn.
3: while not converged do
4: In parallel on P̄ processors
5: Choose j ∈ N uniformly at radom.
6: Obtain dj = d(w; j)ej by solving Eq. (3).
7: Find the stepsize αj = α(w,dj) by solving Eq. (4). //1-dimensional line

search
8: w ← w + αjdj .
9: end while

3 Bundle Coordinate Descent Newton (BCDN)

SCDN places no guarantee on its convergence when the number of features to
be updated in parallel is greater than a threshold, i.e., P̄ > n/ρ + 1. This
is because the 1-dimensional line search (step 7 in Algorithm 2) inside each
parallel loop of SCDN cannot ensure the descent of Fc(w) for all the P̄ parallel
feature updates. Motivated by this observation and some experimental results,
we propose to perform high dimensional line search to ensure the descent of
Fc(w). The proposed method is termed as Bundle Coordinate Descent Newton
(BCDN) whose overall procedure is summarized in Algorithm 3.

In each outer iteration, BCDN first randomly2 partitions the feature index
set N into Q subsets/bundles B1,B2, · · · ,BQ in a Gauss-Seidel manner,

Q⋃
q=1

Bq = N and Bp
⋂
p�=q

Bq = ∅, ∀ 1 < p, q < Q. (5)

For simplicity, in practice, all bundles are set to have the same size P , then
the number of bundles Q = � n

P �. Note that in the following theoretical analysis,
the bundles can have different sizes.

Then in each inner iteration, BCDN first finds 1-dimensional descent direc-
tions (step 7) for features in Bq in parallel, then performs P -dimensional line
search (step 10) to get the stepsize along the descent direction.

2 The randomness is conducted by a random permutation of the feature index.
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Algorithm 3. Bundle CDN (BCDN)

1: Choose the bundle size P ∈ [1, n].
2: Set w1 = 0 ∈ Rn.
3: for k = 1, 2, 3, · · · do
4: Randomly partition N to B1,B2, · · · ,BQ satisfying Eq. (5).
5: for all Bq ⊆ N do
6: for all j ∈ Bq in parallel do
7: Obtain dk,j = d(wk,Bq

; j)ej by solving Eq. (3).
8: dk,Bq ← dk,Bq

+ dk,j .
9: end for
10: Find the stepsize αk,Bq

= α(wk,Bq

,dk,Bq

) by solving Eq. (4).//P -dimensional
line search

11: wk,Bq+1 ← wk,Bq

+ αk,Bq

dk,Bq

.
12: end for
13: end for

Obviously, CDN is a special case of BCDN with the setting Q = n. That is,
Bq = {q}, q = 1, 2, · · · , n.

3.1 High Ideal Speedup3 of BCDN

In the following part, we will demonstrate that the ideal speedup of BCDN is
the bundle size P , compared to CDN.

First, in the computing procedure for descent direction (step 7 in Algo-
rithm 3), the computing of 1-dimensional descent directions for each feature is
independent of each other. Therefore, the DOP is P and the ideal speedup also is
P . Then, we argue that, in BCDN, the P -dimensional line search (step 10 in each
outer iteration in Algorithm 3) also has the ideal speedup of P , in comparison
with CDN. In each outer iteration, BCDN runs Q = � n

P � times of P -dimensional
line search (step 10 in Algorithm 3), while CDN runs n times of 1-dimensional
line search (step 5 in Algorithm 1). However, the P -dimensional line search in
BCDN costs about the same computing time as the 1-dimensional line search in
CDN, which will be shown as follows.

First, each P -dimensional line search in BCDN will terminate roughly within
the same finite number of steps, with respect to CDN. This will be proven in
Theorem 1 and verified by experiments in Section 6.1. Second, the time costs
of one step of line search in BCDN and CDN are equivalent. In our BCDN

implementation, we maintain both dTxi and ew
Txi , i = 1, · · · , s and follow the

3 Here we introduce a notation “ideal speedup” to measure the speedup ratio for a
parallel algorithm on an ideal computation platform. The ideal platform is assumed
to have unlimited computing resources, and have no parallel schedule overhead.
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Algorithm 4. Armijo Line Search Details

1: Given β, σ,∇L(w),w,d and ew
T xi , i = 1, · · · , s.

2: Δ ← ∇L(w)Td+ ‖w + d‖1 − ‖w‖1.
3: *Compute dTxi, i = 1, · · · , s.
4: for t = 0, 1, 2, · · · do
5: if Eq. (6) is satisfied then
6: w ← w + βtd.

7: ew
T xi ← ew

T xieβ
tdT xi , i = 1, · · · , s.

8: break
9: else
10: Δ ← βΔ.
11: dTxi ← βdTxi, i = 1, · · · , s.
12: end if
13: end for

implementation technique of Fan et al (see Appendix G of [5]). That is, the
sufficient decrease condition in Eq. 4 is computed using the following form:

f(w+ βtd)− f(w)

= ‖w+βtd‖1− ‖w‖1+ c(

s∑
i=1

log(
e(w+βtd)Txi + 1

e(w+βtd)Txi + eβtdTxi
) + βt

∑
i:yi=−1

dTxi)

≤ σβt(∇L(w)Td+ ‖w+ d‖1 − ‖w‖1)

(6)

It is worth noting that BCDN and CDN share some steps in Algorithm 4: (1)
compute Δ using the pre-computed value ∇L(w) (step 2 in Algorithm 4); (2) in
each line search step, they both check if Eq. (6) is satisfied. The only difference
is the rule of computing dTxi (step 3 in Algorithm 4): dTxi = djxij in CDN

because only the jth feature is updated, while dTxi =
∑P

j=1 djxij in BCDN.

However, dTxi in BCDN could be computed in parallel with P threads and a
reduction-sum operation, so the time cost is equivalent for CDN and BCDN.

Summarizing the above analysis, the ideal speedup of BCDN is the bundle size
P . It is worth noting that P can be very large in practice. In our experiments,
P can be at least 1250 for the dataset real-sim. See Table 2 for details.

4 Global Convergence of BCDN

Our BCDN conducts P -dimensional line search for all features of a bundle Bq

to ensure its global convergence, under high DOP. In this section, we will the-
oretically analyze the convergence of BCDN on two aspects: the convergence of
P -dimensional line search and the global convergence.

Lemma 1. BCDN (Algorithm 3) is a special case of CGD [16] with the specifi-
cation H ≡ diag(∇2L(w)).
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Proof. Note that, the selection of bundle set in Eq. (5) is consistent with that
used in CGD (Eq. (12) in [16]). Then, for descent direction computing for a
bundle in Algorithm 3, we have,

dk,Bq

=
∑
j∈Bq

d(w; j)ej

=
∑
j∈Bq

argmin
d
{∇jL(w)T d+

1

2
∇2

jjL(w)d2 + |wj + d|}ej (7)

= argmin
d
{∇L(w)Td+

1

2
dTHd+ ‖w+ d‖1 | dt = 0, ∀t �∈ Bq} (8)

≡ dH(w;Bq) (9)

where Eq. (7) is derived by considering the definition of d(w; j) in Eq. (3); Eq. (8)
is obtained by applying the setting of H ≡ diag(∇2L(w)); Eq. (9) follows the
definition of the descent direction by Tseng et al (Eq. (6) in [16]). Therefore the
definition of direction computing is in a CGD manner.

Moreover, since BCDN conducts line Armijo search for dk,Bq

, it is clear that
BCDN is a special case of CGD by setting H = diag(∇2L(w)). �

By means of Lemma 1, we can use conclusions of Lemma 5 and Theorem 1(e)
in [16] to prove the following theorems.

Theorem 1 (Convergence ofP -dimensional line search).For �1-regularized
logistic regression, theP -dimensional line search inAlgorithm3 will convergewithin
finite steps. That is, the descent condition in Eq. (4) Fc(w+ αd)− Fc(w) ≤ σαΔ
is satisfied for any σ ∈ (0, 1) within finite steps.

Proof. According to Lemma 5 of [16], to have finite steps of line search, it needs
two requirements. The first requirement is,

∇2
jjL(w) > 0, ∀ j ∈ Bq (10)

and the second requirement is that there exists E > 0 such that,

‖∇L(w1)−∇L(w2)‖ ≤ E‖w1 −w2‖ (11)

First, we prove that the first requirement in Eq. (10) can be satisfied. Note
that, we can easily obtain the closed form solution of Eq. (3):

d(w; j) =

⎧⎪⎪⎨⎪⎪⎩
−∇jL(w)+1

∇2
jjL(w)

if ∇jL(w) + 1 ≤ ∇2
jjL(w)wj ,

−∇jL(w)−1

∇2
jjL(w)

if ∇jL(w)− 1 ≥ ∇2
jjL(w)wj ,

−wj otherwise

(12)

where for logistic regression we have,

∇jL(w) = c

s∑
i=1

(τ(yiw
Txi)− 1)yixij

∇2
jjL(w) = c

s∑
i=1

τ(yiw
Txi)(1 − τ(yiw

Txi))x
2
ij

(13)
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where τ(s) ≡ 1
1+e−s is the derivative of the logistic loss function. Eq. (13) shows

that ∇2
jjL(w) > 0 except for xij = 0, ∀ i = 1, · · · , s. In this exception, ∇jL(w)

and ∇2
jjL(w) always remain zero. There are two situations: wj = 0 and wj �= 0.

• wj �= 0: according to Eq. (12), we have d(w; j) = −wj . Note that d(w; j) =
−wj also satisfies the sufficient decrease condition in Eq. (4), so wj becomes
zero in the first iteration. Then, in the following iterations, wj will always
satisfy the shrinking condition4 in BCDN and will always be removed from
the working set and remains zero.

• wj = 0: wj will always satisfy the shrinking condition and will be removed
from the working set from the first iteration to the end.

Under the above analysis, in the exception of ∇2
jjL(w) = 0, wj will becomes

zero and have no effect on the optimization procedure at least from the second
iteration to the end. Therefore Eq. (10) always holds for the working set.

Second, we prove the second requirement in Eq. (11). We follow the analysis
in Appendix D of [17]. For logistic regression, we have,

‖∇L(w1)−∇L(w2)‖ ≤ ‖∇2L(w̄)‖‖w1 −w2‖

where w̄ = tw1+(1− t)w2, 0 ≤ t ≤ 1. Note that, Hessian of the logistic loss can
be expressed as,

∇2L(w) = cXTDX (14)

where D = diag(D11, D22, · · · , Dss) with Dii = τ(yiw
Txi)(1−τ(yiwTxi)). Con-

sidering Eq. (14) and the fact that Dii < 1, we have,

‖∇2L(w̄)‖ < c‖XT‖‖X‖

Therefore, E = c‖XT‖‖X‖ will fulfill the second requirement of Eq. (11). �

The experimental results in Section 6.1 support the analysis in Theorem 1.

Theorem 2 (Global Convergence of BCDN). Let {wk}, {αk} be the se-
quences generated by Algorithm 3. If supk α

k < ∞, then every cluster point of
{wk} is a stationary point of Fc(w).

Proof. In Algorithm 4, αk ≤ 1, k = 1, 2, · · · , which satisfies supk α
k < ∞. To

ensure the global convergence, Tseng et al made the following assumption,

0 < ∇2
jjL(w

k) ≤ λ̄, ∀j = 1, · · · , n, k = 1, 2, · · · (15)

Considering Eq. (14), we have ∇2
jjL(w

k) < c‖XT‖‖X‖. Setting λ̄ = c‖XT‖‖X‖
and following the same analysis in Theorem 1, we have ∇2

jjL(w
k) > 0 for all

features in the working set. Therefore Eq. (15) is fulfilled. According to Theorem
1(e) in [16], any cluster point of {wk} is a stationary point of Fc(w). �

4 BCDN uses the same shrinking strategy as that in CDN (Eq. (32) in [17] ).
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Theorem 2 guarantees that our proposed BCDN will converge globally for any
bundle size P ∈ [1, n].

5 Datasets and Implementation

In this section, various aspects of the performances of CDN, SCDN and BCDN
will be investigated by extensive experiments on five public datasets. For fair
comparison, in these experiments, we use these methods to solve logistic regres-
sion with a bias term b,

min
w∈Rn,b

Fc(w, b) ≡ c

s∑
i=1

log(1 + e−yi(w
Txi+b)) + ‖w‖1. (16)

5.1 Datasets

The five datasets used in our experiments are summarized in Table 15. news20,
rcv1, a9a and real-sim are document datasets, whose instances are normalized
to unit vectors. gisette is a handwriting digit problem from NIPS 2003 feature
selection challenge, whose features are linearly scaled to the [-1,1] interval. The
bundle size P for BCDN in Algorithm 3 is set according to Table 2. Note that P ∗

is only BCDN’s conservative setting, under which BCDN can quickly converge
with the most strict stopping criteria ε = 10−8 (defined in Eq. (17)). Moreover,
P can be larger for a common setting such as ε = 10−4 (see Section 6.4).

Table 1. Summary of data sets. #test is the number of test samples. The best regu-
larization parameter c is set according to Yuan et al [17]. Spa. means optimal model

sparsity (n−‖w∗‖0
n

), Acc. is the test accuracy for optimal model.

Dataset s #test n best c Spa./% Acc./%

a9a 26,049 6,512 123 2 17.89 84.97

real-sim 57,848 14,461 20,958 4 83.36 97.16

news20 15,997 3,999 1,355,191 64 99.80 95.62

gisette 6,000 1,000 5,000 0.25 90.7 98.10

rcv1 541,920 135,479 47,236 4 76.77 97.83

Table 2. Conservative bundle size P ∗ for each dataset

Dataset a9a real-sim news20 gisette rcv1

Bundle size P ∗ 25 1,250 150 15 200

5 All these datasets can be downloaded at
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
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5.2 Implementation

All the three algorithms, CDN, SCDN and BCDN, are implemented in C/C++
language. Since the shrinking procedure cannot be performed inside the par-
allel loop in SCDN and BCDN, to enable fair comparison, we use equivalent
implementation where the shrinking is conducted outside the parallel loop in
CDN. Further, we set σ = 0.01 and β = 0.5 for the line search procedure in the
three algorithms. OpenMP is used as the parallel programming model. Work in
parallel is distributed among a team of threads using OpenMP parallel for

construct and the static scheduling of threads is used because it proves to be
very efficient in our experiments.

The stopping condition similar to the outer stopping condition in [18] is used
in our implementation.

‖∇SFc(w
k)‖1 ≤ εend ≡ ε · min(#pos,#neg)

s
· ‖∇SFc(w

1)‖1, (17)

where ε is user-defined stopping tolerance; #pos and #neg respectively denote
the numbers of positive and negative labels in the training set; ∇SFc(w

k) is the
minimum-norm sub-gradient,

∇S
j Fc(w) ≡

⎧⎨⎩
∇jL(w) + 1 if wj > 0,
∇jL(w)− 1 if wj < 0,
sgn(∇jL(w))max(|∇jL(w)| − 1, 0) otherwise

We run CDN with an extremely small stopping criteria ε = 10−8 to get the
optimal value F ∗

c , which is used to compute the relative difference to the optimal
function value (relative error),

(Fc(w, b)− F ∗
c )/F

∗
c (18)

Some private implementation details are listed as follows:

• CDN: we use the source code included in LIBLINEAR6. Shrinking procedure
is modified to be consistent with the parallel algorithms BCDN and SCDN.

• SCDN: though Bradley et al [2] released the source code for SCDN, for fair
comparison, we reimplement it in C language based on CDN implementation.

• BCDN: we implement BCDN carefully, including the data type and the
atomic operation. For atomic operation, we use a compare-and-swap imple-
mentation using inline assembly.

6 Experimental Results

In this section we provide several groups of experimental results, including line
search step number, scalability and timing results about relative error, testing
accuracy and number of nonzeros (NNZ) in the model. To estimate the testing

6 Version 1.7, http://www.csie.ntu.edu.tw/~cjlin/liblinear/oldfiles/

http://www.csie.ntu.edu.tw/~cjlin/liblinear/oldfiles/
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accuracy, for each dataset, 25% samples are used for testing and the rest samples
are used for training.

All experiments are conducted on a 64-bit machine with Intel(R) Core(TM)
i7 CPU (8 cores) and 12GB main memory. We set P̄ = 8 for SCDN in Algorithm
2 and use 8 threads to run the parallel updates with DOP of P̄=8.

For BCDN, the descent direction computing (step 7 in Algorithm 3) can have
the DOP of bundle size P , which is several hundreds even to thousand according
to Table 2, while our 8-core machine is unable to fully exhibit its parallelism
potential. To justify time performances of three algorithms impartially, we need
to estimate time cost for BCDN by running with at least P cores. Assuming we
have a machine with P cores, to distribute step 7 in Algorithm 3 to P cores, the
extra data transfer (if needed) is little: the training data (X,y) only needs to
be transferred once before all iterations, so its time cost can be omitted. Arrays

with the size of s × sizeof(double) bytes containing values of ew
Txi ,dTxi, i =

1, · · · , s need to be transferred each time, which costs very little extra transfer
time. Taking into count the scheduling time, we estimate the fully parallelized
computing time of descent direction computing tp by multiply the ideal parallel
time cost with a reasonable factor 2,

tp = (2 · tserial)/P,

where tserial is the serial time cost of step 7 in Algorithm 3.

6.1 Empirical Performance of Line Search

Table 3 reports the average number of line search steps per outer iteration.
These statistics support the analysis in Theorem 1: for all datasets, line search
of BCDN terminates in finite steps, which is far less than that of CDN and
SCDN. It is also in line with the analysis in Section 3.1: BCDN conducts about
1/P times of line search compared to CDN, while the time cost of each line
search is about the same for both. In Table 3, BCDN’s number of line search
steps is a little larger than 1/P times of that of CDN. This is because the
parallel direction computing procedure in BCDN slows its convergence rate,
which increases the number of line search steps. SCDN conducts more line search
steps than BCDN and CDN, which indicates that its parallel strategy cannot
well deal with interference among features and tends to diverge, thus needing
more line search steps to fulfill the descent condition in Eq. (4).

Table 3. Average number of line search steps per outer iteration with ε = 10−4

Datasets a9a real-sim news20 gisette rcv1

CDN 96.2 3,455.3 3,022.3 472.2 10,272.4

SCDN 149.8 3,560.4 2,704.0 679.4 10,504.5

BCDN 6.0 5.7 62.4 97.6 57.3
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6.2 Empirical Performance of Global Convergence

We verify the global convergence of all compared algorithms by setting the most
strict stopping criteria ε = 10−8. Fig. 1 of the relative error (see Eq. (18)) shows
that in all the cases, BCDN could converge to the final value at the fastest speed.
Meanwhile, though SCDN behaves faster compared to CDN in the beginning,
it cannot converge in a limited time (Fig. 1(b),(c)) or cannot converge faster
than CDN (Fig. 1(a)). Table 4 with the runtime and iteration number reaches
the same conclusion. The iteration number of SCDN is more than that of CDN,
while the iteration number of BCDN is less than SCDN except for real-sim. This
again indicates that SCDN tends to diverge with P̄ = 8 while BCDN can quickly
converge under strict stopping criteria with extremely high DOP (large bundle
size P , even to thousand).
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Fig. 1. Relative error under most strict stopping condition of ε = 10−8

Table 4. Runtime (sec) and iteration number. The number marked a ”∗” means less
than that of CDN

Methods
real-sim news20 rcv1

time #iter time #iter time #iter

CDN 210.2 1,311 6,426.4 50,713 11,583.9 2,970

SCDN 399.9 ∗1, 158 > 54, 672.9 > 82, 520 > 13, 900.6 > 3, 029

BCDN ∗13.2 1,838 ∗489.5 73,986 ∗2, 298.4 ∗2, 774

6.3 Time Performance under Common Setting

Fig. 2 plots relative error (see Eq. 18), testing accuracy and model NNZ, with
a common setting of ε = 10−4. We use the conservative setting P ∗ in Table 2
for BCDN. For all datasets, BCDN is much faster than CDN and SCDN, which
highlights its higher DOP and strong convergence guarantee. Note that for gisette
SCDN is even slower than CDN, which comes from its tend to diverge at a DOP
of 8 (P̄ = 8).
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Fig. 2. Time performance under common setting on 3 datasets. Top, middle and bot-
tom plot traces of relative error, testing accuracy and model NNZ over training time,
respectively. The dotted horizontal line is the value obtained by running CDN with
ε = 10−8.

6.4 Scalability of BCDN

This section evaluates the scalability of BCDN (runtime and number of outer
iterations w.r.t varying bundle size P ) with the common setting ε = 10−4. From
Fig. 3 one can see that the runtime (blue lines) becomes shorter as the increase
of bundle size P , which is in line with the analysis of BCDN in Section 3.1:
BCDN has an ideal speedup of P . At the same time, the increase of P brings
about more outer iterations (see the green lines in Fig. 3), which is because
more parallelism causes slower convergence rate. However, it will not introduce
extra runtime because of the more parallelism with larger P . With the feature
number of 20,958 (Table 1), real-sim could acquire an amazing high DOP of 1,300
or higher in Fig. 3 (b), which comes from the strong convergence guarantee of
BCDN.
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Fig. 3. Scalability of BCDN. Runtime (blue lines) and outer iteration number (green
lines) w.r.t varying bundle size P .

7 Conclusions

This paper introduces the Bundle CDN, a highly parallelized approach with
DOP of the bundle size P , for training high dimensional �1-regularized logis-
tic regression models. It has a strong convergence guarantee under theoretical
analysis, which is consistent with empirical experiments. A set of experimen-
tal comparisons on 5 public large-scale datasets demonstrate that the proposed
BCDN is superior among state-of-the-art �1 solvers for speed, which comes from
its high DOP to better exploit parallelism among features.

High DOP of BCDN makes it possible to develop highly parallelized algorithm
on clusters with many more cores or heterogeneous computing frameworks [6]
such as GPU and FPGA. BCDN can also be used to solve other �1-regularized
problems with a higher speed, such as Lasso, compressed sensing, Support Vector
Machine and other related discriminative models [9,8].
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and Hong Wei for helpful discussions.
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Abstract. We show that classification rules used in ordinal regression
are equivalent to a certain class of linear multi-class classifiers. This ob-
servation not only allows to design new learning algorithms for ordi-
nal regression using existing methods for multi-class classification but
it also allows to derive new models for ordinal regression. For example,
one can convert learning of ordinal classifier with (almost) arbitrary loss
function to a convex unconstrained risk minimization problem for which
many efficient solvers exist. The established equivalence also allows to in-
crease discriminative power of the ordinal classifier without need to use
kernels by introducing a piece-wise ordinal classifier. We demonstrate
advantages of the proposed models on standard benchmarks as well as
in solving a real-life problem. In particular, we show that the proposed
piece-wise ordinal classifier applied to visual age estimation outperforms
other standard prediction models.

Keywords: Ordinal regression, linear multi-class classification.

1 Introduction

The classification problem consists of predicting a hidden class label y ∈ Y
based on observations x ∈ X using a classifier h : X → Y. In the statistical
classification, the pairs of (x, y) are assumed to be a realization of some ran-
dom variables distributed according to P (x, y). This paper analyses a class of
classification problems fitting under the ordinal regression setting which imposes
additional assumptions on the distribution P (x, y). In particular, the labels in
Y are assumed to be ordered, w.l.o.g. we use Y = {1, . . . , Y } equipped with
a natural order, and they are modeled as a result of a course measurement of
some continuous random variable χ(x). More precisely, let as define a set of Y
intervals

U(1) = (−∞, θ1] , U(2) = (θ1, θ2], . . . , U(Y ) = (θY−1,∞) ,

determined by a sequence of non-decreasing thresholds θ1, θ2, . . . , θY −1. The
standard model of [1] assumes that we observe label y ∈ Y if a realization of
the random variable χ(x) is in the interval U(y). Thus the classes correspond to
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contiguous ordered intervals on some continuous scale. Based on this assumption
various ordinal regression models have been proposed and they are routinely ap-
plied in fields like social sciences, epidemiology, information retrieval or, recently
in computer vision.

A typical problem is how to learn the classifier given a set of training exam-
ples {(x1, y1), . . . , (xm, ym)} ∈ (X × Y)m drawn from i.i.d. random variables
distributed according to some unknown distribution P (x, y) which satisfies the
“ordering” assumption mentioned above. In this paper, we consider the formu-
lation which defines the target classifier to be the one with minimal expected
risk (also called Bayes classifier)

R(h) = Ep(x,y)

(
Δ(y, h(x)

)
where Δ : Y × Y → R+ is a given application specific loss function penalizing
responses of the classifier.

In statistics, the learning problem is typically solved by constructing a plug-
in Bayes classifier which replaces the true distribution P (x, y) by its Maximum-
Likelihood estimate. This approach requires to guess the shape of the underlying
distribution P (x, y) which can be difficult in practice. A different approach based
on the risk minimization paradigm has been put forward in the machine learning
literature. The idea is to learn the classifier directly from the examples without
the need to estimate the generating distribution [2]. This approach selects the
best classifier from a prescribed class of classifiers by minimizing a surrogate of
the expected risk R(h). The typical class of classifiers considered in the context
of ordinal regression is the linear thresholded rule

h(x;w, θ) = 1 +
Y−1∑
k=1

[[〈x,w〉 > θk]] , (1)

where x ∈ X = Rn is a vector of real-valued features, w ∈ Rn is a parameter
vector and θ = (θ1, . . . , θY −1) ∈ RY −1 a vector of thresholds. In the sequel
we refer to (1) as the ordinal (ORD) classifier. We call the vector θ admissible
iff its components are non-decreasing i.e. θ ∈ Θ = {θ′ ∈ RY−1 | θ′k ≤ θ′k+1,
k = 1, . . . , Y − 1}. The form of the ORD classifier reflects the assumption that
the classes correspond to intervals on R. It is seen that ORD classifier predicts
y iff the value 〈x,w〉 is in the interval U(y).

A Perceptron-like algorithm called PRank learning the ORD classifier in an
on-line fashion has been proposed in [3]. They formulate learning as minimiza-
tion of the empirical risk with the Mean Absolute Error (MAE) loss function
Δ(y, y′) = |y− y′| (also called ranking loss) and provide mistake bounds for the
case of separable examples. The authors of [4] proposed to learn the ORD clas-
sifier by a modified Support Vector Machine algorithm originally designed for
two-class classification. The paper [5] improves the algorithms of [4] by enforc-
ing the learned thresholds to be admissible. A generic framework which allows
to convert learning of the ORD classifier to the problem of learning a two-class
linear SVM classifier (with modified example weights) have been proposed in [6].
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They show that appropriately weighted SVM hinge-loss is an upper bound of
so called V-shaped loss (e.g. MAE and the 0/1-loss are V-shaped) evaluated on
the ORD classifier. The paper [7] analyses a relation between the ordinal re-
gression and the multi-class classifiers, however, by their definition the ordinal
classifier as any Bayesian classifier with the V-shaped loss function, i.e. they do
not considered ordering of the labels at all.

The previous works in their core convert learning of the ORD classifier into
learning a set of two-class classifiers. The resulting two-class classifiers are trained
by a modified SVM algorithm [4][5][6] or Perceptron [3]. In this paper we show
that such conversions are not necessary. We prove that the ORD classifier is
equivalent to a linear multi-class classifier whose class parameter vectors are
collinear and their magnitude is linearly increasing with the label. We call the
new representation the Multi-class ORDinal (MORD) classifier. Our equivalence
proof is constructive so that we can convert any ORD classifier to the MORD
classifier and vice-versa. We show that the new representation can be beneficial
for learning. In particular, the well understood methods for learning multi-class
linear classifiers can be readily applied. We experimentally show that a generic
multi-class SVM algorithm used to learn MORD delivers the same (or slightly
better) results when compared to the specialized learning algorithms derived
for the ORD classifier. The proposed approach works for (almost) arbitrary loss
function unlike the existing methods which require V-shaped losses. In addition,
we show that the new representation allows to increase discriminative power of
the ordinal classifier without need to use kernels by introducing a piece-wise or-
dinal classifier. We demonstrate advantages of the proposed models on standard
benchmarks as well as in solving a real-life problem. We show that the proposed
piece-wise ordinal classifier applied to visual age estimation outperforms other
prediction models and is also comparable to commercial solutions.

The paper is organized as follows. The equivalence between the ORD classifier
and the linear multi-class classifiers is described in Section 2. In Section 3, we
define a new model for ordinal regression. In Section 4, we compare several
classification models for ordinal regression in an unified view. In Section 5, we
described a generic algorithm for learning the proposed models. Experiments are
presented in Section 6 and Section 7 concludes the paper.

2 Ordinal Regression as Linear Multi-class Classification

Let us consider one-dimensional observations x ∈ X = R in which case the ORD
classifier h(x) = 1 +

∑Y −1
k=1 [[x > θk]] splits the real axis into Y intervals defined

by thresholds θ1 ≤ θ2 ≤ · · · ≤ θY −1. One may think of representing the ORD
classifier in the form

h′(x) = argmax
y∈Y

f(x, y) , (2)

where f : R × Y → R is a discriminant function. If we manage to construct the
discriminant functions such that f(x, y) ≥ f(x, y′), y′ ∈ Y \{y} iff h(x) = y then
both representations will be equivalent i.e. h′(x) = h(x), x ∈ R. Let us consider
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a linear discriminant function with the slope equal to y, i.e. f(x, y) = x · y + by,
in which case (2) becomes a linear multi-class classifier. It is not difficult to see
that such linear classifier also splits the real axis into intervals. Fig 1 shows an
example of the ORD classifier and its equivalent linear classifier h′(x).

θ1 θ2

3x+ b3

2x+ b2

x+ b1

Fig. 1. The figure illustrates relation between the ORD classifier h(x) = 1+
∑Y −1

k=1 [[x >
θk]] and its alternative representation h′(x) = argmaxy∈Y(x·y+by) for the (Y = 3)-class
problem. Note, that x and y-axes have different scale in order to save space.

The same idea can be applied for n-dimensional observations x ∈ X = Rn.
The multi-class linear classifier which can represent the ORD classifier (1) reads

h′(x;w, b) = argmax
y∈Y

(
〈x,w〉 · y + by

)
, (3)

where w ∈ Rn is parameter vector and b = (b1, . . . , bY ) ∈ RY is a vector of
intercepts. We denote (3) as the Multi-class ORDinal (MORD) classifier. Inside
the paper we assume that the “argmax” operator returns the minimal label in
the case of more than one maximizer.

A natural question is whether both representations are equivalent in the sense
that any ORD classifier can be represented by some MORD classifier and vice-
versa. The following theorem gives a positive answer to the question.

Theorem 1. The ORD classifier (1) and the MORD classifier (3) are equivalent
in the following sense. For any w ∈ Rn and admissible θ ∈ Θ there exists b ∈ RY

such that h(x,w, θ) = h′(x,w, b), ∀x ∈ Rn. For any w ∈ Rn and b ∈ Rn there
exists admissible θ ∈ Θ such that h(x,w, θ) = h′(x,w, b), ∀x ∈ Rn.

A proof is given in Appendix A.
Our proof is constructive in the sense that we can provide a conversion from

the ORD classifier to the MORD classifier and vice-versa. In exotic cases, which
however may appear in practice, some classes can collapse to a single point and
effectively disappear. To cover all such situations, we first define the concept of
non-degenerated classifier and then we give formulas for the conversions.
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Definition 1 (Degenerated and non-degenerated classifier).We call class
y ∈ Y non-degenerated for classifier h′(x) iff Xy = interior({x ∈ X : h′(x) =
y}) �= ∅. Classifier h′(x) is non-degenerated iff all classes are non-degenerated. In
opposite case the classifier is called degenerated.

Given a MORD classifier, the class ŷ ∈ Y is non-degenerated iff the linear
inequalities

zŷ + bŷ > z(ŷ − k) + bŷ−k, 1 ≤ k < ŷ ,
zŷ + bŷ ≥ z(ŷ + t) + bŷ+k, 1 < t ≤ Y − ŷ ,

(4)

are solvable w.r.t. z ∈ R. It is seen that we can check it in O(Y ) time. We refer
to the proof for more details.

Conversion formulas. Given parameters of the ORD classifier w ∈ Rn, θ ∈ Θ,
the equivalent MORD classifier has parameters w and b given by

b1 = 0 and by = −
y−1∑
i=1

θi, y = 2, . . . , Y. (5)

The conversion from the MORD classifier to the ORD classifier is done dif-
ferently for the non-generated and the degenerated classifier. Given parameters
of a non-degenerated MORD classifier w ∈ Rn and b ∈ RY , we can compute
thresholds θ ∈ Θ of the equivalent ORD classifier by

θy = by − by+1, y = 1, . . . , Y − 1 . (6)

Given parameters of a degenerated MORD classifier w ∈ Rn and b ∈ RY , we
compute thresholds θ ∈ Θ of the equivalent ORD classifier by

θyi = · · · = θyi+1−1 =
byi−byi+1

(yi+1−yi)
, i = 1, . . . , p, (7)

where yi ∈ Y, i = 1, . . . , p is an increasing subsequence of non-degenerated
classes.

Finally, let us note that the MORD classifier is represented by n + Y pa-
rameters insted of n + Y − 1 parameters of the ORD classifier. However, the
parameters of the MORD classifier are unconstrained which makes the MORD
representation attractive for learning because no additional constraints on the
intercepts θ ∈ Θ are not needed.

3 Piece-Wise Ordinal Regression Classifier

The discriminative power of the ORD classifier can be limiting in some cases.
Mapping the observations into higher dimensional space via usage of kernel func-
tions is one way to make the linear ORD classifier more discriminative. Though
the “kernalization” of the ORD classifier is straightforward it is not suitable in
all cases. For example, the kernels are prohibitive in applications which require
processing of large amounts of training examples and/or if a real-time response
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of the classifier is the must. Instead, we proposed to stay in the original feature
space where we construct a combined classifier from a set of simpler component
classifiers. In our case, the component classifiers will be the MORD classifiers,
each responsible for a subset of labels.

Let Z > 1 be a number of cut labels (ŷ1, ŷ2, . . . , ŷZ) ∈ YZ such that ŷ1 = 1,
ŷZ = Y and ŷz ≤ ŷz+1, z ∈ Z = {1, . . . , Z − 1}. The cut labels define a
partitioning of Y into Z subsets Yz = {y ∈ Y | ŷz ≤ y ≤ ŷz+1}, z ∈ Z. We
will model dependence between the observation x and a subset of labels Yz by
a component classifier

hz(x) = argmax
y∈Yz

fz(x, y) (8)

where fz : R
n × Yz → R is a discriminant function. We define a combined clas-

sifier whose discriminant function is composed of discriminant functions of the
component classifiers as follows

h′′(x) = argmax
z∈Z

max
y∈Yz

fz(x, y) . (9)

We set the discriminant functions to be

fz(x, y) =
〈
x,wz(1− α(y, z)) +wz+1α(y, z)

〉
+ by (10)

where

α(y, z) =
y − ŷz

ŷz+1 − ŷz

and W = [w1, . . . ,wZ ] ∈ Rn×Z , b ∈ RY are parameters. With these definitions
it can be shown that: i) the component classifiers (8) are the ORD classifiers and
ii) the combined classifier (9) is well defined because all its neighboring discrim-
inant functions are consistent at the cut labels, i.e. fz(x, ŷz+1) = fz+1(x, ŷz+1),
z ∈ Z, holds. The claim i) is seen after substituting (10) into (8) which after
some algebra yields

hz(x) = argmax
y∈Yz

(
〈x,wz+1 −wz〉α(y, z) + by

)
and since α(y, z) is linearly increasing with y, Theorem 1 guarantees that hz(x)
is the MORD classifier equivalent to the ORD classifier. The claim ii) follows
from the fact that α(ŷz+1, z) = 1 and α(ŷz+1, z+1) = 0, and thus fz(x, ŷz+1) =
〈x,wz+1〉+ bŷz+1 = fz+1(x, ŷz+1).

We can explicitly write the component classifier, which we call the Piece-Wise
Multi-class ORDinal (PW-MORD) classifier, as follows

h′′(x,W , b) = argmax
z∈Z

argmax
y∈YZ

(
〈x,wz(1−α(y, z)) +wz+1α(y, z)〉+ by

)
. (11)

Figure 2 visualizes the ORD (=MORD) and the PW-MORD classifier on a
toy data. It is seen that the distribution of the data cannot be well described by
the ORD classifier while the PW-MORD composed of 3 ORD classifiers provides
much better model in this case.
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Fig. 2. The figure shows the partitioning of 2-dimensional feature space realized by the
ORD classifier and the PW-MORD classifier with Z = 3 components. The cut labels
for the PW-MORD classifier where set to {1, 4, 7, 10}.

4 Unified View of Classifiers for Ordinal Regression

Let us consider the linear multi-class classifier

h(x,W , b) = argmax
y∈Y

(
〈x,

Z∑
z=1

β(y, z)wz〉+ by

)
(12)

where W = [w1, . . . ,wZ ] ∈ Rn×Z , b = [b1; . . . ; bY ] ∈ RY are parameters and
β : Y × {1, . . . , Z} → R are fixed numbers. We are going to describe several
instances of the classifier (12) which can be useful models for ordinal regression.

1. Rounded linear-regression rule

h(x,w, b) = max(1,min(Y, round(〈w,x〉+ b))) (13)

is the most simplest model for the ordinal regression obtained by clipping a
rounded response of the standard linear regression rule to the interval [1, Y ]. It
is easy to show that (13) is an instance of (12) recovered after setting Z = 1,
β(1, y) = 2y, y ∈ Y, and fixing the components of the intercept vector b to
by = 2by − y2. Using the conversion formula (6) we can show that the rounded
linear-regression rule is equivalent to the ORD classifier with equal width of the
decision intervals, namely, with θk+1 − θk = 2, k = 1, . . . , Y − 2.

2. Multi-class linear classifier

h(x,W , b) = argmax
y∈Y

(
〈wy,x〉+ by

)
(14)
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is recovered after setting Z = Y and β(y, z) = [[y = z]], y ∈ Y, z ∈ {1, . . . , Z}. It
is the most generic (and also most discriminative) form of (12) which completely
ignores ordering of the labels.

3. The proposed MORD classifier (3) is recovered after setting Z = 1, W = w1,
and β(y, 1) = y, y ∈ Y. We showed that the MORD classifier is equivalent to
the standard ORD classifier (1) most frequently used in the ordinal regression.

4. The proposed PW-MORD classifier (11) is recovered after setting β(y, z)
according to

β(y, z) = 1− α(y, z) for z = 1, . . . , Z − 1 , y ∈ Yz ,
β(y, z) = α(y, z − 1) for z = 2, . . . , Z , y ∈ Yz ,
β(y, z) = 0 otherwise.

(15)

The PW-MORD is composed from Z − 1 MORD classifiers each modeling a
subset of labels (see Section 3). The PW-MORD is most flexible as it allows to
smoothly control its the complexity by a single parameter Z. It is easy to see
that for Z = 2 the PW-MORD is equivalent to the MORD (=ORD) classifier
while for Z = Y it becomes the Multi-class linear classifier.

5 Generic Learning Algorithm for Ordinal Regression

In this section we consider problem of learning parameters of the generic lin-
ear multi-class classifier (12) from given example set {(x1, y1), . . . , (xm, ym)} ∈
(Rn × Y)m. We propose to use a generic and well understood framework orig-
inally developed for the structured output learning [8]. Following [8], we define
an approximate empirical risk

R(W , b) =
1

m

m∑
i=1

max
y∈Y

[
Δ(y, yi)+

〈
xi,

∑
z∈Z

β(y, z)wz

〉
(y− yi)+ by − byi

]
, (16)

where Δ : Y × Y → R is any loss function satisfying

Δ(y, y) = 0 , ∀y ∈ Y and Δ(y, y′) > 0 , ∀(y, y′) ∈ Y2 such that y �= y′ .
(17)

This risk approximation uses the idea of the margin-rescaling loss functions [8]
applied on the classifier (12). It is easy to prove that R(w, b) is a convex upper
bound on the true empirical risk

Remp(W , b) =
1

m

m∑
i=1

Δ(yi, h(xi,W , b)) .

We can formulate learning of the classifier (12) as the following convex uncon-
strained minimization problem

(W ∗, b∗) = argmin
W∈Rn,b∈RY

[
λ

2

(
‖W ‖2 + ‖b‖2

)
+R(W , b)

]
. (18)
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where ‖·‖ denotes the Frobenius norm and λ > 0 is a prescribed (regularization)
constant used to control over-fitting. The setting with λ = 0, referred to as the
empirical risk minimization learning, means that we simply try to find the clas-
sifier with minimal upper bound R(W , b) on the empirical risk Remp(W , b), in
other words the one which performs best on training examples measured in terms
of the prescribed loss Δ(y, y′). The setting λ > 0, referred to as the regularized
risk minimization learning, is equivalent to minimizing the risk R(W , b) w.r.t.
parameters constrained to be inside a ball with radius inversely proportional to
λ. The latter setting can be also interpreted as trying to maximize a generalized
margin between the training examples and the classifier.

A big effort has been put by the ML community into development of effi-
cient solvers for the problem (18). For example, a generic bundle method for
risk minimization [9] or its accelerated variant [10] can be readily applied to
solve (18).

Let us compare our framework with the existing algorithms for learning the
ORD classifier. The existing algorithms consider a limited set of loss functions
Δ(y, y′). The most generic approach of [6] derives an upper bound for so called
V-shaped losses: a loss is called V-shaped if it satisfies (17) and in addition

Δ(y, y′) ≥ Δ(y, y′ + 1) if y′ ≤ y and Δ(y, y′) ≤ Δ(y, y′ + 1) if y′ ≥ y .
(19)

The V-shaped loss (19) subsumes the most frequently used losses, i.e. the MAE
loss Δ(y, y′) = |y − y′| and the 0/1-loss Δ(y, y′) = [[y �= y]], yet it is not as
generic as the loss (17) applicable in our framework. Next limitation of the
existing algorithms is that they have to care about feasibility of the thresholds
θ ∈ Θ because they work directly on the parameters of the ORD classifier. This
requires to either introduce additional constraints on the thresholds θ ∈ Θ or to
impose additional constraints on the loss function, namely, that the loss must be
convex [6]. For instance, the 0/1-loss is not convex hence the learning algorithms
require extra inequality constraints (like the SVOR-EXP algorithm of [5]) which
may complicate the optimization. Note that in our approach the problem (18)
remains unconstrained irrespectively to the selected loss.

The generality of our framework, however, does not automatically imply that
the risk approximation (16) is better (tighter) than those used in existing meth-
ods. We experimentally show that in the case of the MAE loss, i.e. the most
frequently used one, the proposed approximation (16) provides slightly but con-
sistently better approximation than the existing ones.

6 Experiments

In this section we empirically compare the proposed methods with existing algo-
rithms. In Section 6.1 we present experiments on standard benchmarks. Experi-
ments on real-life problem of visual age estimation are described in Section 6.2.

In our experiments we compare the following methods:

1. MORD. Proposed classifier (3) trained by (18) using the MAE loss.
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2. PW-MORD. Proposed classifier (11) trained by (18) using the MAE loss.
3. LinReg. Rounded linear regressor (13) trained by (18) using the MAE loss.
4. LinClass. Standard multi-class linear classifier (14) trained by (18) using the

MAE loss. It is an instance of the Structured Output Classifier [8]. Note that
LinClass is up to the loss very similar to the standard multi-class SVM.

5. SVOR-EXP. Support Vector Ordinal Regression with explicit constraints [5].
6. SVOR-IMC. Support Vector Ordinal Regression with implicit constraints [5].

The SVOR-IMC and SVOR-EXP are instances of a generic framework of [6]
developed for learning the ORD classifier (1). It was shown that the algorithms
minimize a convex upper bound on the MAE-loss (SVOR-IMC) and the 0/1-
loss (SVOR-EXP), respectively. Other methods for learning the ORD classifier
have been proposed like SVM-based algorithms of [4] or the Support Vector
Regression [2]. However, they are consistently outperformed by the SVOR-EXP
and SVOR-IMC hence we compare only against the latter two.

We consider the MAE Δ(y, y′) = |y − y′| as the desired metric because it is
by far the most frequently used loss in the ordinal regression context as well as
it is suitable for the real-life problem we consider.

All tested algorithms are instances of the regularized risk minimization frame-
work (18). Note that SVOR-IMC and SVOR-EXP were originally formulated as
quadratic programs but can be easily converted to (18). In the case of SVOR-IMC
the problem (18) uses additional constraints θ ∈ Θ. The learning problem (18)
is specified up to the regularization constant λ tuned on validation data from a
fixed set of values Λ. In particular, we set Λ = {1, 0.1, 0.01, 0.001, 0}. We used
two optimization algorithms to solve (18). For λ > 0 we used the Bundle Meth-
ods for Risk Minimization (BMRM) [9]. For λ = 0 we used the Analytic Center
Cutting Plane Method (ACCPM) proposed in [11]. To avoid implementation
bias, we wrote all algorithms by ourselves using mainly Matlab and C only to
program a QP solver called inside the BMRM algorithm. In both cases we set
the solvers to find the ε-optimal solution of the learning objective, in particular,
we stopped the solver if the objective was below factor of 1.01 of the optimal
value (we use the Lagrange dual to get the optimality certificate).

6.1 Standard Benchmarks

We performed experiments with seven data sets1 used in [5][6]. We followed
exactly the same evaluation protocol. The data were produced by discretising
metric regression problems into Y = 10 bins. Data are randomly partitioned
to train/test part. The partitioning was repeated 20 times. The features are
normalized to have zero mean and unit variance coordinate wise. The reported
results are averages and standard deviations computed over the 20 partitions.
The feature dimension and train/test ratios are listed in Table 1.

We performed two experiments. The goal of the first experiment is to assess
the ability of the proposed training algorithm (18) to minimize the empirical

1 The link http://www.dcc.fc.up.pt/~ltorgo/Regression/census.tar.gz to the
eight dataset “Census” was broken hence we could not include it.

http://www.dcc.fc.up.pt/~ltorgo/Regression/census.tar.gz
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Table 1. Comparison of the MORD, SVOR-IMC and SVOR-EXC in terms of the
ability to minimize the empirical risk measured in terms of the MAE and 0/1-loss. The
columns 2 and 3 show data dimension and training/testing split ratio, respectively.

n train/test TrnRisk MORD SVOR-IMC SVOR-EXC

Pyrimidines 27 50/24 MAE 0.433 (0.093) 0.482 (0.104) 0.491 (0.125)
0/1 0.343 (0.064) 0.391 (0.069) 0.329 (0.078)

MachineCPU 6 150/59 MAE 0.914 (0.052) 0.920 (0.046) 0.972 (0.068)
0/1 0.602 (0.035) 0.611 (0.027) 0.594 (0.029)

Boston 13 300/206 MAE 0.812 (0.043) 0.823 (0.047) 0.869 (0.050)
0/1 0.558 (0.026) 0.573 (0.027) 0.551 (0.028)

Abalone 8 1000/3177 MAE 1.412 (0.038) 1.422 (0.041) 1.632 (0.063)
0/1 0.734 (0.015) 0.748 (0.017) 0.715 (0.016)

Bank 32 3000/5192 MAE 1.421 (0.021) 1.429 (0.021) 1.913 (0.051)
0/1 0.700 (0.006) 0.716 (0.007) 0.690 (0.005)

Computer 21 4000/4192 MAE 0.632 (0.010) 0.632 (0.010) 0.653 (0.012)
0/1 0.477 (0.006) 0.480 (0.006) 0.477 (0.008)

California 8 5000/15640 MAE 1.178 (0.013) 1.182 (0.014) 1.233 (0.014)
0/1 0.692 (0.008) 0.697 (0.007) 0.681 (0.008)

risk if compared to the existing algorithms SVOR-IMC and SVOR-EXC. Note
that all the tested methods learn exactly the same ORD classifier by minimizing
a convex approximation of the empirical risk whose direct optimization is not
tractable. SVOR-IMC and SVOR-EXC use a specific risk approximation tailored
for the ORD classifier. Our method makes it possible to train the ORD classifier
using the standard margin-rescaling. In this experiment we set λ = 0, i.e. we
minimized just the risk approximation which we want to assess. Table 1 summa-
rizes the results. It is seen that our method slightly but consistently (up to one
near draw for “Computer” data) outperforms the SVOR-IMC approximation in
terms of the MAE loss for which both methods were intended. The results of
SVOR-EXC optimizing the 0/1-loss are included just for completeness.

The goal of the second experiment is to assess the ability to minimize the test
risk (generalization error).We compare the proposedmethodsPW-MORDagainst
the standard models. We considered the PW-MORD with Z = 2, 3, 4 and the
cut labels set symmetrically, i.e. {1, 10}, {1, 5, 10} and {1, 4, 7, 10}. Note that PW-
MORD with Z=2 corresponds to the MORD classifier hence not included in test-
ing. The optimal complexity of the PW-MORD classifier, i.e. the number Z, as
well as the regularization constant λ ∈ {1, 0.1, 0.01, 0.001, 0} for all methods were
selected based on 5-fold cross-validation estimate of the MAE (on training split).
Table 2 summarizes the results. In most cases the PW-MORD classifier outper-
formed the competitors in terms of the target MAE metric. We attribute this fact
to its flexible complexity and the ability of the proposed training algorithm to well
approximate the loss function (see previous experiment). The PW-MORD was
outperformed only by the LinReg on the “Pyrimids” data and by the LinCls on
the “California” data. This is result is not surprising because the “Pyrimids” data
have very few training examples hence the simplest regression model best avoids
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over-fitting. On the other hand, the “California” data are low dimensional with
high number of training examples and thus LinCls, the most flexible model, can
best describe the data without overfitting, i.e. the ordering prior imposed by the
other models is not needed here. A surprising result is that the winner in terms of
the MAE loss is in most cases the best method for the 0/1-loss, i.e. it is better than
the SVOR-EXC algorithm directly optimizing the 0/1-loss. Currently we do not
have a good explanation of this observation.

Table 2. Comparison of various classification models in terms of the test risk measured
in terms of the MAE and the 0/1-loss. The column (Z) shows the best complexity of
the PW-MORD classifier selected in the cross-validation stage.

TstRisk LinCls LinReg PW-MORD (Z) SVOR-IMC SVOR-EXC

Pyrimidines MAE 1.59 (0.25) 1.37 (0.27) 1.50 (0.38) 4 1.52 (0.29) 1.63 (0.28)
0/1 0.76 (0.10) 0.76 (0.10) 0.74 (0.09) 0.79 (0.07) 0.80 (0.08)

MachineCPU MAE 1.00 (0.15) 1.03 (0.10) 0.95 (0.12) 2 0.95 (0.11) 1.01 (0.13)
0/1 0.65 (0.06) 0.70 (0.06) 0.62 (0.06) 0.63 (0.06) 0.65 (0.05)

Boston MAE 0.94 (0.07) 0.95 (0.06) 0.86 (0.05) 3 0.91 (0.06) 0.97 (0.08)
0/1 0.62 (0.03) 0.64 (0.03) 0.58 (0.03) 0.61 (0.03) 0.62 (0.04)

Abalone MAE 1.42 (0.02) 1.51 (0.01) 1.41 (0.02) 4 1.47 (0.01) 1.68 (0.04)
0/1 0.73 (0.01) 0.79 (0.01) 0.73 (0.01) 0.76 (0.01) 0.73 (0.01)

Bank MAE 1.45 (0.01) 1.51 (0.01) 1.45 (0.01) 4 1.45 (0.01) 1.94 (0.05)
0/1 0.70 (0.01) 0.77 (0.01) 0.70 (0.01) 0.72 (0.01) 0.69 (0.00)

Computer MAE 0.62 (0.01) 0.72 (0.01) 0.61 (0.01) 4 0.63 (0.01) 0.65 (0.01)
0/1 0.47 (0.00) 0.56 (0.01) 0.47 (0.01) 0.48 (0.01) 0.48 (0.00)

California MAE 1.12 (0.00) 1.21 (0.01) 1.14 (0.00) 4 1.18 (0.01) 1.23 (0.01)
0/1 0.67 (0.00) 0.71 (0.00) 0.68 (0.00) 0.70 (0.00) 0.68 (0.00)

6.2 Visual Age Prediction

We consider problem of predicting an apparent age of a person from an image
of his/her face. We experimented on a dataset containing 37,668 face images ob-
tained by putting together standard face-recognition benchmarks (Feret, PAL,
LFW, BioID, FaceTracer, xm2vts) and completing the rest by images down-
loaded from the Internet. Images were manually annotated by age which was in
range from 0 to 100 years. The database has equal ratio of male and females.
Each face was registered by a landmark detector [12], normalized to a canonical
image 30 × 20 by affine transform and described by pyramid-of-LBP descrip-
tor [13]. Each face is represented by n = 159, 488-dimensional sparse binary
vector. We randomly split the data into training/validation/test part in ration
60/20/20. The validation part is used to tune the regularization constant. The
reported results are averages and standard deviations of test errors computed
over 3 splits.

We compared the linear multi-class SVM classifier (LinCls), the standard or-
dinal regression model implemented via the MORD representation and the PW-
MORD classifier. In the case of LinCls we had to discretize the age into 10 equal
bins because modeling all 101 classes would not be feasible (only representation of
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the classifier would require 120MB). We used PW-MORD with Z=11 and set the
cut labels to equally cover the range of 101 years. Thus the PW-MORD classifier
models each decade by a single linear ordinal regression classifier. We also com-
pared against a commercial face recognition system developed by FACE.COM2.
Results are summarized in Table 3 reporting the target MAE loss as well as
the error levels. The proposed PW-MORD significantly outperformed all com-
peting ordinal regression models by significant margin. The MORD classifier
(=standard ORD model) is apparently not sufficiently discriminative. On the
other hand, training full multi-class classier for all 101 classes is not feasible.
The PW-MORD model also compares favorably with the FACE.COM system.
Namely, in terms of MAE metric the FACE.COM is slightly better, however,
the PW-MORD provides substantially better results for lower error levels what
is typically preferred in practice.

Table 3. Comparison of various classifiers on the visual age estimation problem. The
upper table shows the test MAE, i.e. average prediction error in years. The bottom
table shows error levels for the tested classifiers, e.g. the first row tells the percentage
of examples with MAE not greater than 5 years.

TstRisk LinCls PW-MORD MORD FaceCom

MAE 11.19 (0.16) 7.92 (0.06) 14.53 (0.13) 7.89 (NA)

Occurrence in [%]
Error level LinCls PW-MORD MORD FaceCom

5 44.8 52.9 28.3 47.4
10 65.2 74.5 47.8 73.7
20 84.6 91.1 74.4 93.3
30 91.7 97.2 88.9 98.2
40 94.8 99.2 95.6 99.5
50 96.4 99.8 98.4 99.9
60 97.8 99.9 99.6 100.0
70 98.9 100.0 99.9 100.0

7 Conclusions

We have shown equivalence between the classification rule used in ordinal regres-
sion and a class of linear multi-class classifiers. The established equivalence has
the following benefits. First, it allows to better understand various classification
models. Second, it provides a path to develop new learning algorithms for ordi-
nal regression borrowing from well understand multi-class classification. Third,
it allows to design new models for ordinal regression with higher discriminative
power. Experiments on standard benchmarks as well as a real-life problem of
visual age estimation demonstrate usefulness of the proposed method.
2 FACE.COM (www.face.com) provided a free access server with face recognition tech-
nology. We passed our data though the server between July 15 and August 15, 2012.
Recently, the company has been acquired by Facebook and the server closed.

www.face.com
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Appendix: Proof of Theorem 1

Let us prove the first part of theorem stating that for anyw ∈ Rn and admissible
θ ∈ Θ there exists b ∈ RY such that h(x,w, θ) = h′(x,w, b), ∀x ∈ Rn. In
particular we show that b ∈ RY given by the formula (5) satisfies theorem.
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First, suppose the ORD classifier h(x;w, θ) outputs y ∈ Y for some x ∈ X ,
i.e. θy ≥ 〈w,x〉 > θy−1 holds1. The MORD classifier h′(x,w, b) outputs the
same y iff the system of inequalities

〈w,x〉y + by > 〈w,x〉(y − k) + by−k, 1 ≤ k < y,
〈w,x〉y + by ≥ 〈w,x〉(y + t) + by+t, 1 ≤ t ≤ Y − y

(20)

holds. The system (20) can be rewitten as2

〈w,x〉k >
y−1∑

i=y−k

θi, 1 ≤ k < y,

〈w,x〉t ≤
y+t−1∑
i=y

θi, 1 ≤ t ≤ Y − y.

(21)

The validity of (21) follows from

〈w,x〉k > θy−1k ≥
y−1∑

i=y−k

θi, 1 ≤ k < y,

〈w,x〉t ≤ θyt ≤
y+t−1∑
i=y

θi, 1 ≤ t ≤ Y − y ,

(22)

where the first inequality (on both lines) is induced by θy ≥ 〈w,x〉 > θy−1 and
the second inequality (also on both lines) is due to θ1 ≤ θ2 ≤ · · · ≤ θY−1.

Second, suppose the MORD classifier h′(x,w, b) outputs y ∈ Y for some
x ∈ X , which means that

〈w,x〉y + by > 〈w,x〉(y − 1) + by−1,
〈w,x〉y + by ≥ 〈w,x〉(y + 1) + by+1,

(23)

which is equivalent to

by − by+1 ≥ 〈w,x〉 > by−1 − by . (24)

Finally, after combining (24) with (5) we obtain θy ≥ 〈w,x〉 > θy−1, which
implies that the ORD classifier h(x,w, θ) outputs the same y.

Let us make an observation before proving the second part of the theorem. Let
y1, . . . , yp, denote an increasing subsequence of the non-degenerated classes of the
MORD classifier h′(x,w, b). For arbitrary xyi ∈ Xyi = {x ∈ Rn | h′(x,w, b) =
yi}, i = 1, . . . , p, it holds that

〈w,xyi〉yi + byi > 〈w,xyi−1〉yi−1 + byi−1 ,
〈w,xyi〉yi + byi ≥ 〈w,xyi+1〉yi−1 + byi+1 ,

(25)

It follows that

byi−byi+1

yi+1−yi
≥ 〈w,xyi〉 >

byi−1
−byi

yi−yi−1
, i = 1, . . . , p− 1.

1 The inequalities are different in the case of y ∈ {1, Y }, however, the analysis remains
similar thus it is omited here.

2 We use convention that a sum is zero if its upper index is less than the lower one.
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Thus, for anyMORD classifier h′(x,w, b) with non-degenerated classes y1, . . . , yp,
it holds that

byp−1
−byp

yp−yp−1
> · · · > byi−1

−byi
yi−yi−1

> · · · > by1−by2
y2−y1

. (26)

We are now ready to proof the second part of the theorem stating that for any
w ∈ Rn, b ∈ RY and the admissible vector θ ∈ Θ computed by the formula (7)
the equality h(x,w, θ) = h′(x,w, b) holds ∀x ∈ Rn. It is enough to show that for
arbitrary x ∈ X the ORD classifier h(x,w, θ) outups yi iff the MORD classifier
h′(x,w, b) outputs the same output yi.

First, suppose the MORD classifier h′(x;w, b) outputs yi ∈ Y for some x ∈ X .
We want to show that the ORD classifier h(x;w, θ) outputs the same label yi.
We shall analyse only the cases 1 < i < p, however, the prove for i ∈ {1, p} is
similar and hence omitted. The equality h′(x,w, b) = yi implies that

〈w,x〉yi + byi > 〈w,x〉yi−1 + byi−1 ,
〈w,x〉yi + byi ≥ 〈w,x〉yi+1 + byi+1 ,

(27)

which is equivalent to
byi−byi+1

yi+1−yi
≥〈w,x〉 > byi−1

−byi
yi−yi−1

and after combining with (7)

we see that the ORD classifier h(x,w, θ) outputs the same yi.
Second, suppose the ORD classifier h(x,w, θ) outputs yi for some arbitrary

x ∈ X , i.e.
byi−byi+1

yi+1−yi
≥ 〈w,x〉 > byi−1

−byi
yi−yi−1

holds. To show that MORD classifier

h′(x;w, θ) outputs the same yi it is enough to prove that the system

〈w,x〉yi + byi > 〈w,x〉yj + byj , ∀yj < yi, (28)

〈w,x〉yi + byi ≥ 〈w,x〉yj + byj , ∀yj > yi (29)

holds. Indeed, from inequality 〈w,x〉 > byi−1
−byi

yi−yi−1
after some algebra and apply-

ing (26) (after third line) we have

〈w,x〉(yi − yj) > (yi − yj)
byi−1

−byi
yi−yi−1

= (−yj + yj+1 − yj+1 + · · ·+ yi−1 − yi−1 + yi)
byi−1

−byi
yi−yi−1

= (yj+1 − yj)
byi−1

−byi
yi−yi−1

+ · · ·+ (yi − yi−1)
byi−1

−byi
yi−yi−1

> (yj+1 − yj)
byj−byj+1

yj+1−yj
+ · · ·+ (yi − yi−1)

byi−1
−byi

yi−yi−1

= byj − byj+1 + byj+1 − · · · − byi−1 + byi−1 − byi = byj − byi ,

from which the inequalities (28) follow for ∀yj < yi. The proof of the inequali-
ties (29) is analogical. �
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Abstract. Classical learning theory is based on a tight linkage be-
tween hypothesis space (a class of function on a domain X), data space
(function-value examples (x, f(x))), and the space of queries for the
learned model (predicting function values for new examples x). However,
in many learning scenarios the 3-way association between hypotheses,
data, and queries can really be much looser. Model classes can be over-
parameterized, i.e., different hypotheses may be equivalent with respect
to the data observations. Queries may relate to model properties that do
not directly correspond to the observations in the data. In this paper we
make some initial steps to extend and adapt basic concepts of computa-
tional learnability and statistical identifiability to provide a foundation
for investigating learnability in such broader contexts. We exemplify the
use of the framework in three different applications: the identification
of temporal logic properties of probabilistic automata learned from se-
quence data, the identification of causal dependencies in probabilistic
graphical models, and the transfer of probabilistic relational models to
new domains.

1 Introduction

This paper is originally motivated by ongoing research in learning probabilistic
automata models for applications in model-based design in verification [16,10].
In model-based design, various forms of finite probabilistic automata models are
used to model hard- or software systems. Relevant properties of the system are
expressed using a formal, logical representation language, such as probabilistic
linear time logic (PLTL), or probabilistic computation tree logic (PCTL) [2].
Efficient algorithms exist to check whether such a property is satisfied by a
given automaton model, i.e., whether the design or actual system represented
by the model satisfies a certain specification. Traditionally, the formal models
used in this process are constructed manually. This, however, can be a very
time-consuming and error-prone process. We are therefore interested in the pos-
sibility of automatically learning finite automata models from data consisting of
observations of visible system behaviors. Adapting standard automata learning
algorithms [3,4] we obtain learning methods for our application that come with
certain convergence guarantees for the large-sample limit. However, these con-
vergence guarantees do not directly imply what is of ultimate interest, namely,
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that in the large-sample limit the learned model will agree with the actual ob-
served system on properties representable in the formal representation language
we use in model-checking. Concretely, building on the given convergence guaran-
tees, one can show that the learned model will in the limit agree with the actual
system on PLTL properties [10]. However, the same does not appear to be true
for PCTL properties.

Abstracting from this specific learning problem, we are faced with the more
general question: what classes of properties that we will want to query our learned
model for, can, in principle, be learned from the observations that are represented
by our data? This question is closely connected to learnability in the sense of
computational learning theory, as well as to identifiability in the sense of statis-
tics. However, it seems that neither these two existing theoretical frameworks
are quite sufficient to analyze the scenario we are here considering.

Computational learning theory uses at its conceptual foundation a very close
linkage between hypothesis space, data space, and what one may call query space:
the hypothesis space is taken to consist of a set F of functions, data consists of
a set of observed pairs (x, f(x)) of arguments and function values, and a learned
function f ∈ F will be queried for its function values f(x). This setup does not
incorporate the possibility of an over-parameterized hypothesis space, i.e., the
existence of two distinct hypotheses h, h′ that define the same function, and that
therefore would lead to equivalent data observations. Under the assumption that
a learned hypothesis will be queried for its function values, this possibility may
also be safely neglected, since it would make no difference whether hypothesis
h or h′ is learned. This radically changes, however, when also the close linkage
between data space and query space is lost, and the learned hypothesis will be
queried for properties that may not exactly match the type of observations found
in the data. This is precisely the situation we find ourselves in when learning
probabilistic automata for model-checking purposes: two distinct automata can
induce the same data-distribution of observable behaviors, but differ with respect
to some properties in our formal query languages. On the other hand, some
relaxation of the three-way linkage between data, hypotheses and queries does
not necessarily preclude learnability: in our positive results about learning PLTL
properties we have data consisting of finite strings, hypotheses consisting of finite
automata, and queries consisting of logical formulas.

The issue of over-parameterized model spaces containing distinct hypothe-
ses that generate indistinguishable data is exactly the subject of the statistical
notion of identifiability. However, statistical identifiability theory does not re-
late hypothesis and data space to classes of queries over the learned model. It
is implicitly assumed that the purpose of learning, which here comes down to
parameter estimation, is to identify the true parameter. In contrast, we may be
satisfied with learning a hypothesis that is distinct from the “true” one, as long
as it is equivalent with regard to a certain class of query properties.

The problemof learnability of certain query properties in an over-parameterized
model class is a quite common one, and certainly not limited to, or first encountered
in, our problem of identifying logical properties of a finite automaton. Another
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motivating example of the same problem which we shall consider in this paper is
causal discovery from observational data: a directed graphical model (Bayesian
network) is sometimes regarded as a causal model, where directed connections be-
tween random variables represent causal dependencies. However, it is well known
that a Bayesian network learned from statistical data only allows a limited inter-
pretation as a causal model, since networks with different directed edge structures
can induce the same data distribution, and hence be indistinguishable based on
observational data. The possibilities and inherent limitations of using Bayesian
network learning for causal discovery are now well understood [9]. However, the
sometimes controversial debate into this issue has not been fully phrased within
a formal theory of learnability or identifiability, which, one could imagine, some-
times might have helped to elucidate matters more clearly [15,6].

With an increasing ambition of learning models in more and more expressive
model classes, for example probabilistic programming languages [12,7,5], one
also encounters more and more complex relationships between the wide range
of model properties that could be queried, and the empirical content of the
original data. Broadening existing theories of learnability to enable a systematic
and principled analysis of these relationships and dependencies, thus, could be
useful in a variety of contexts.

In this paper we are going to propose a formal framework combining elements
of computational learnability and statistical identifiability that enables a system-
atic study of what model properties can, or can not, be identified in a certain
model class, given a particular type of training data. To this end we first intro-
duce a very general setup of learning as maximization of a score function (Sec-
tion 2). We then propose a definition of identifiability that makes no assumptions
on structural correspondences between data-, model-, and query space. Based on
these definitions, we obtain a first theorem about non-identifiability. We demon-
strate the applicability of our framework by deriving non-identifiability results
for PCTL properties of probabilistic automata, directed edge relationships in
Bayesian networks, and probabilistic queries on varying domains in statistical
relational models. Finally, in Section 4 we adapt the initial very general frame-
work for the special case of statistical learning, and discuss its relationship with
PAC learnability [18].

2 Learning as Score Maximization

We characterize learning as the maximization of a score function σ that defines
for each M in a model (or hypothesis) space M, and each dataset D in a datas-
pace D a score σ(M,D). This, on the one hand, is the most natural description
of a wide range of learning methods that in fact operate by using heuristic or
stochastic search to maximize a given score function. On the other hand, it also
accommodates in a trivial way any other algorithmic learning procedure not
based on an explicit score function by representing an algorithm l that on input
D outputs a hypothesis l(D) ∈ M via a score function σl with σl(M,D) = 1 iff
M = l(D), and σ(M,D) = 0 otherwise.
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Fig. 1. Two Bayesian Networks and their Essential Graph

One restriction we impose on the scoring function σ is that for all D ∈ D the
supremum of σ(·, D) is attained for some M ∈M. We write

M(σ,D) := {M ∈M | σ(M,D) = max
M̃∈M

σ(M̃,D)}

for the set of all M maximizing σ(·, D). Thus, M(σ,D) is the set of models
learned from D using σ. M(σ,D) may contain more than one element, but is
assumed to be nonempty.

In the following we give two examples of learning algorithms not usually seen
from the perspective of score-based learning. We here develop a more meaningful
characterization of these learning methods in terms of score maximization than
simply by the trivial σl representation mentioned above.

Example 1. Bayesian Networks are probabilistic models for the joint distribution
of a set of random variables [13]. They consist of a directed acyclic graph over
the random variables, and, for each variable, the specification of the conditional
probability distribution of that variable given its parents in the graph. Figure 1
(a),(b) shows two different Bayesian Networks for random variables A,B,C,D.
The graph structure of a Bayesian network encodes conditional independence
relations among the variables.

Probabilistic automata represent probability distributions over infinite se-
quences of symbols from a given alphabet Σ. Figure 2 shows three different
probabilistic automata defining probability distributions on {a, b}∞. In the fig-
ure, states marked with * are the initial states of the automaton. Solid edges
denote state transitions taken with probability 1, and dashed edges transitions
with probability 1/2. All automata in Figure 2 define the same probability dis-
tribution PM , which is the uniform distribution on aa{a, b}∞.
Ma andMb are deterministic automata: for every state in the automaton, and

every s ∈ Σ there exists at most one possible successor state labeled with s. Mc,
on the other hand, is non-deterministic, since the initial state has two different
a-successors.
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A classic algorithm for learning Bayesian networks is the PC-algorithm [17],
and a standard algorithm for learning deterministic probabilistic automata is
the Alergia algorithm and its variants [3,4,8,10].

Even though quite different with respect to the learning tasks they solve,
and the algorithmic details, the PC algorithm and Alergia share some common
features which can be expressed in a common structure of a high-level score
function representation of these approaches. Both PC and Alergia identify the
graphical structure of the model based on statistical tests performed on the
data. In the PC algorithm, these are conditional independence tests for subsets
of the random variables. In Alergia, one performs tests for the identity of the
conditional distributions on (infinite) suffixes s ∈ Σ∞ given different (finite)
prefixes from Σ∗.

In Alergia, the outcome of the statistical tests determines the structure of the
model uniquely. In the PC-algorithm, the tests determine the structure only up
to membership in a class of network structures encoding the same conditional
independence constraints. This equivalence class can be represented by an essen-
tial graph, which is a mixed graph with directed and undirected edges. Figure 1
(c) shows the essential graph representing the equivalence class consisting of the
networks (a) and (b). In order to obtain a final directed graph, one may employ
any method to select a representative directed graph from the equivalence class.

Once the model structure is fixed, maximum likelihood parameters are fitted.
The overall learning process can thus be described as maximizing a score function
of the form

σ(M,D) = R(M) · Tests(M,D) · Lhood(M,D) (1)

where Tests(M,D) is a 0/1-valued function that evaluates to 1 iff the structure
of M is consistent with the outcome of all relevant statistical tests performed on
D, and Lhood(M,D) = PM (D) is the likelihood function (also depending on the
parameters ofM). R(M) is a factor only needed for capturing the PC algorithm.
It is a another 0/1-valued function that evaluates to 1 iff the structure of M is
the representative directed graph for its underlying essential graph. For Alergia,
we may just assume that R(M) is constant equal to 1.

a a a

a a

a a

a

b

a bb

* * *

Ma Mb Mc

Fig. 2. Probabilistic Automata
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A second example looks at a more standard form of score-based learning.

Example 2. (Penalized likelihood score (PLS)) Standard model scores like Akaike
Information Criterion (AIC), Bayesian Information Criterion (BIC), or Mini-
mum Description Length (MDL) are used for a wide range of probabilistic model
classes. They are penalized likelihood scores of the form

σPLS(M,D) := c · log(Lhood(M,D))− g(|D |)h(|M |), (2)

where c is a constant, g(|D |) is a function of the size of the data D, and h(|M |)
is a function of the size ofM , where g and h are non-negative, and h is monotone
in |M |. For Bayesian networks, as well as for many other probabilistic types of
models, the size |M | typically is defined as the number of free parameters in M .

Assuming that the two network structures (a) and (b) in Figure 1 are equipped
with their maximum likelihood parameters, they will both define the same dis-
tribution PM , and, thus, obtain the same log-likelihood score log(PM (D)).

3 Identifiability

We are interested in learnability in the limit of large datasets. Apart from
datasets consisting of independent samples, we also want to consider datasets
that may consist, e.g., of a single long sequential observation of a temporal pro-
cess, or a (large) graph. We therefore only assume that the space of all datasets
is structured as follows.

Definition 1. A stratified dataspace is a set

D = ∪nD(n)

which is equipped with a partial order relation ≺, so that D ≺ D′ implies that
D ∈ D(j), D′ ∈ D(k) with j < k. Furthermore, it is required that for every n and
D ∈ D(n) there exists D′ ∈ D(n+1) with D ≺ D′.

The intention is that D ≺ D′ means that D′ is an extension of the dataset D.

Example 3. (a) Suppose the data consists of independent samples s = s1, . . . , sn
from a sample space S. Then D(n) = Sn, and s ≺ s′ iff s′ extends s, i.e., s ∈ Sn,
s′ ∈ Sn′

with n′ > n, and s′i = si for i = 1, . . . , n.
(b) In learning from a single sequence of symbols from an alphabet Σ, we

have D(n) = Σn, and D ≺ D′ iff D is a prefix of D′.
(c) When learning from graphs (or, more generally, colored graphs, or rela-

tional data), we can have that D(n) is the set Gn of all graphs with n nodes, and
G ≺ G′ iff G is embedded as a sub-graph in G′.

Learning in the limit of large datasets now is analyzed in terms of increasing
sequences D1 ≺ D2 ≺ · · · . We write ↑Dn for such a sequence.

As in (1) and (2), most score functions will be composed from a number of
simpler scores or measurements:
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Definition 2. A score feature is any function

F : M×D → F

with F ⊆ R. When F = {0, 1} then F is called a Boolean feature. A score
feature F : M→ F that only depends on M also is called a model feature, and
a feature F : D → F that is only a function of D is called a data feature. A
query space is a set Φ of Boolean model features.

The score function σ(·, ·) itself is a score feature. For probabilistic models, a
key score feature is the likelihood Lhood : (M,D) �→ PM (D).

For a query space Φ we writeM ≡Φ M ′ if φ(M) = φ(M ′) for all φ ∈ Φ. [M ]≡Φ

denotes the equivalence class of M in M with regard to the equivalence relation
≡Φ. We are now ready to introduce our central definition.

Definition 3. Let M be a model space, D a stratified dataspace, and Φ a query
space for M. Let σ be a score function on M× D. We say that Φ is (D, σ)-
identifiable in M, if for all M ∈M there exists ↑Dn so that for all φ ∈ Φ there
exists nφ ∈ N, so that for all n ≥ nφ:

M(σ,Dn) ⊆ [M ]≡φ
(3)

Definition 3, thus, demands that for every possible M there exists some ideal
data sequence ↑Dn which enables us to obtain from the learned models in the
large sample limit the same answers for all queries φ that we would obtain from
the “true” model M .

Definition 3 only refers to Boolean queries. In many cases, however, we will
also be interested in querying other kinds of model features. For probabilistic
models M , for instance, a typical query can be the probability PM (E) assigned
by the model to some event E, or the most probable configuration of a set
of unobserved random variables. Identifiability of queries of this kind can be
approximated by identifiability of suitable Boolean query spaces. For probability
queries PM (E), for instance, one should only require that the answers obtained
from the learned models converge to the true value in the large sample limit.
Such a convergence is exactly captured by Definition 3 as identifiability of the
Boolean features PM (E) ∈ I, for all open intervals I.

Definition 3 only provides a basis for analyzing identifiability questions. Nei-
ther positive nor negative identifiability results purely in the sense of this defi-
nition are very interesting per se. A positive identifiability result in the sense of
Definition 3 is not particularly useful in itself, since it would only say that based
on some ideal data sequence ↑Dn we would be able to identify Φ. To be prac-
tically relevant, we would need the sharper result that this will be true for all
data sequences that in some sense are sufficiently informative, or representative
of the true model, and that are the datasets we are likely to have for learning in
practice. We will extend Definition 3 in this direction in Section 4.

The main focus of this paper, however, is to establish negative identifiability
results, i.e., impossibility results for learning. A negative result just in the sense
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of Definition 3 would not be very strong either, since it would only tell us that
learning with a particular score function σ does not enable us to identify Φ. For
non-identifiability results, however, we are interested in whether it is impossible
to identify Φ using any member in a certain class of score functions, which rep-
resents all in some sense applicable learning algorithms. In fact, one may wonder
why Definition 3 refers to a score function at all. Based on our original motiva-
tion described in Section 1, one may rather want to describe identifiability as an
inherent relationship between the model, query, and data spaces, so that identi-
fiability just means that the data contains a sufficient amount of query-relevant
information about the model – which should be independent of any learning
procedures. However, as the following example illustrates, it would likely be fu-
tile to try to address the identifiability problem without explicit consideration of
admissible score functions, since otherwise one can always obtain trivial identifi-
ability results via artificial score functions that do not capture realistic learning
methods, but rather describe querying a perfect oracle:

Example 4. Assume that the cardinality of D is at least as big as the cardinality
of M, so that there is a one-to-one function f :M→D. Then we can define

σ(M,D) :=

{
1 if D = f(M)
0 otherwise

(4)

For every M ∈ M thenM(σ, f(M)) = {M}, and (3) is satisfied by the constant
sequence Dn = f(M).

In the following, thus, we will derive non-identifiability results in the sense of
Definition 3 for all σ in certain classes of score functions. We specify classes of
score functions that correspond to realistic classes of learning algorithms in terms
of the score features that they are based on. We write σ(F0(M,D), . . . , Fk(M,D))
for a score function σ that depends on M,D only through the features Fi(M,D)
(which may also include pure model or data features).

Definition 4. A score function σ(F0(M,D), . . . , Fk(M,D)) is monotone in the
score feature F0, if for all fi ∈ Fi (i = 1, . . . , k), and r, s ∈ F0: r ≤ s ⇒
σ(r, f1, . . . , fk) ≤ σ(s, f1, . . . , fk).

Example 5. The PC/Alergia-learning score function (1) is monotone in all its
features R(M),Tests(M,D), and Lhood(M,D). The PLS score function (2) is
monotone in Lhood(M,D), as well as −h(|D |) and −h(|M |).

Both (1) and (2) are monotone in a specific model feature (R(M), respectively
−h(|M |)) that represents a preference or bias function onM. Such a feature can
express a bias towards small or canonical models, or, in a Bayesian framework,
a prior probability of M .

In the following we pay particular attention to such bias features expressing
prior knowledge or preferences, and we write σ(B,F ) for a score function that
is monotone in a designated numerical bias model feature B, and that further
depends in an arbitrary manner on other score features F = F1, . . . , Fk.
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For any subsets M ⊆ M, D ⊆ D and feature vector (F0, . . . , Fk) we write
(F0, . . . , Fk)(M ,D) for the set {(F0(M,D), . . . , Fk(M,D)) | M ∈ M , D ∈ D}.
In the following we will be concerned with sets M that are equivalence classes
[]Φ for some set Φ of query properties.

Definition 5. Let M ⊆ M, D ⊆ D. We say that B and F are orthogonal on
M ×D, denoted B⊥F (M ,D), if (B,F )(M ,D) = B(M )× F (M ,D).

In other words, B⊥F (M ,D) means that on the set M ×D a given value of
F () does not constrain the possible values of B(), and vice-versa.

Proposition 1. Let σ(B,F ) be a score function that is monotone in B. Let Φ be
a query space. If there exist distinct, nonempty equivalence classes [M ]Φ, [M

′]Φ,
such that for all sufficiently large n, and all D ∈ D(n):

(i) F ([M ]Φ, D) = F ([M ′]Φ, D)
(ii) B⊥F ([M ]Φ, D) and B⊥F ([M ′]Φ, D),

then Φ is not (D, σ)-identifiable.

Proof. Without loss of generality assume that

supB([M ]Φ) ≥ supB([M ′]Φ). (5)

Then, for all sufficiently large n, all D ∈ D(n), and all M̃ ′ ∈ [M ′]Φ there exists
M̃ ∈ [M ]Φ with σ(M̃ ,D) ≥ σ(M̃ ′, D), and (3) does not hold for [M ′]Φ.

Example 6. (Non-identifiability of BN structure) Let M be the set of Bayesian
networks over the variables A,B,C,D, and D(n) = Sn, where S is the sam-
ple space of joint observations of the variables. Let Φ = {φX→Y | X,Y ∈
A,B,C,D}, where φX→Y (M) is true iff the edge X → Y is included in M .
Φ here is finite. The score functions (1) and (2) are based on the score features
Test(), Lhood(), the data feature g(), as well as the bias features R() (for PC)
and −h() (for PLS). We use Proposition 1 to show that Φ is not identifiable from
data consisting of joint observations of A,B,C,D by any score function that is
based on the score features Test and Lhood, together with any data features
F (D), and bias features such as R() or −h().

We consider the Φ-equivalence classes of M and M ′ given by Figure 1 (a) and
(b). We first verify that (i) and (ii) hold for [M ]Φ, [M

′]Φ, and F = (Test,Lhood).
We need not consider any pure data features F (D) here: since D is fixed in (i)
and (ii), any addition of pure data features F (D) to F has no impact on the
validity of (i) and (ii).

[M ]Φ and [M ′]Φ contain exactly the Bayesian networks with the same struc-
ture as M and M ′, respectively. Since both structures represent the same condi-
tional independencies, we have for all D that Test([M ]Φ, D) = Test([M ′]Φ, D) =
{0} (the outcome of the independence tests on D are not compatible with the
structures of M and M ′), or Test([M ]Φ, D) = Test([M ′]Φ, D) = {1} (otherwise).
Also, since exactly the same class of distributions can be represented by models
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in [M ]Φ and in [M ′]Φ, one has Lhood([M ]Φ, D) = Lhood([M ′]Φ, D). This together
shows (i) (note that in general it is not enough to show these identities separately
for the value sets of each feature F ∈ F ; here it is sufficient because for the Test
feature the value sets turned out to be just singletons).

Both the bias features R() and −h() have a unique value on the equivalence
classes [M ]Φ and [M ′]Φ. This makes condition (ii) trivially satisfied for these and
similar bias features.

Example 7. (Non-identifiability of PCTL) LetMnd be the class of non-determi-
nistic probabilistic finite automata, and let D(n) = (Σ∗)n. Thus, even though the
automata define a distribution over Σ∞, we assume that data D = (s1, . . . , sn)
consists of finite strings si ∈ Σ∗ only, where the si are obtained by sampling
traces of the automaton up to some random length li =|si |. As mentioned in Sec-
tion 1 we are interested in queries from the formal languages PLTL and PCTL.
Full syntax and semantics definitions for these languages can be found in [2].
In the following we will only somewhat informally introduce specific properties
they can represent. For this we will be needing formulas built using only the
temporal operator “next (time point)”, written ©. With PLTL one can specify
probability bounds on the distribution over sequences defined by the automaton.
For example, a PLTL-expressible property would be that the probability that the
sequence starts with aaa is > 0.49, formally expressed by P>0.49(a∧©a∧©©a).
This property is satisfied by all three automata in Figure 2.

PCTL syntactically allows formulas in which probability quantifiers P>... and
temporal operators are nested. Semantically they represent model properties
that refer to internal states of the automaton. One such property that we can
formulate reads in formal PCTL syntax

φ1 ≡ P>0.4 © P>0.9 © a. (6)

The meaning of this is that (from the initial state) there is a probability > 0.4
of reaching a state from which the probability then is > 0.9 of reaching by the
next transition a state labeled with a. For the automata of Figure 2, φ1 is false
for Ma and Mb, and true for Mc. All automata of Figure 2 satisfy the following
two formulas:

φ2 ≡ P=1(a ∧©a) (7)

φ3 ≡ P=0.5 ©©a (8)

Given that an automaton M satisfies φ2 and φ3, one has that PM (aaaΣ∞) =
PM (aabΣ∞) = 1/2, and the distribution PM then is fully specified by the two
conditional distributions PM (· | aaa) and PM (· | aab). For the automata of
Figure 2, both these conditionals are the uniform distribution on Σ∞. One can
show that also any other pair of conditional distributions that can be defined
by a finite probabilistic automaton can be implemented both by automata for
which φ1 is true, and by automata for which φ1 is false. For the first case, one
can follow the basic structure of Mc, where one branches from the initial state
in the first step, followed by a deterministic transition in the second. For the
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second case, one builds on the structure of Ma, and constructs a model in which
from every state reachable by the first transition there is a probability of 0.5
each for reaching an a, respectively b, state by the second transition.

Letting Φ = {φ1, φ2, φ3}, the above considerations mean that the models in
the two equivalence classes [Ma]Φ and [Mc]Φ can represent exactly the same dis-
tributions. This implies that for any vector of score features F that only contain
features such as Tests and Lhood, which depend on M only through the distri-
bution PM , one has F ([Ma]Φ, D) = F ([Mc]Φ, D) for all D. Thus Proposition 1
(i) is satisfied for F of this form, which includes Alergia-style learning (cf. (1)).

We here do not consider condition (ii) for a bias feature B. Alergia-style
algorithms do not use a bias feature, and so there are no immediate canonical
candidates. However, Alergia-style algorithms also learn deterministic automata
only, whereas here we considered non-deterministic ones. Within the class Mnd

a measure of the complexity of the model may be a reasonable bias to include
in a learning process.

Proposition 1 may appear rather specific, and possibly narrow, due to the as-
sumption that we are dealing with score functions that can be written as σ(B,F ).
Furthermore, the structural conditions (i) and (ii) appear quite strong, and es-
pecially (ii) will probably not always hold, even in the case of non-identifiability.
Thus, (i) and (ii) are simple sufficient, but certainly not necessary conditions
for non-identifiability. On the other hand, Examples 6 and 7 show that Propo-
sition 1 already does cover a certain range of different identifiability problems.
The following example further indicates that the structural form of σ that we
here assumed is in some sense natural and most general: already allowing a slight
generalization in the form of σ, where one can have two different bias features
B1, B2, again leads to trivial identifiability results similar to Example 4:

Example 8. Assume that both M and D are countably infinite. Let f :M→ N

and g : D → 2N, where 2N stands for the set of even natural numbers, such that
both f and g are one-to-one and onto. Define the two model features B1(M) :=
f(M), B2(M) := −f(M), and consider g(D) as a data feature. We can then
define the score function

σ(M,D) :=

{
B1(M) if B1(M) ≤ B2(M) + g(D)
B2(M) + g(D) otherwise

(9)

It is straightforward to verify that σ is monotone in both B1 and B2. Also,
Proposition 1 (i) and (ii) are trivially satisfied for F = g and B = Bi (i = 1, 2).
For any given D, σ(M,D) is maximized when B1(M) = B2(M) + g(D), i.e.,
f(M) = −f(M) + g(D), or f(M) = g(D)/2. By the assumptions on f and g
there is a unique M that satisfies this condition. Thus, similarly as in Example 4
we can choose for a given M the constant sequence Dn = D, for the D with
g(D) = 2f(M).

We end this section by considering an example in relational learning. Prob-
abilistic relational (or probabilistic logical) models define probability distribu-
tions over relational structures, i.e., over the interpretations I over finite domains
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C = {c1, . . . , cm} of the relation symbols in a signature Σ. Most types of prob-
abilistic relational models only define the conditional distributions P (I | C) of
interpretations for given domains. Only in some expressive representation lan-
guages such as BLOG [12] one can also specify distributions P (C) over domains.
For relational learning one can distinguish several types of stratified dataspaces:

D1: D(n) consists of n independent samples I1, . . . , In of interpretations over a
fixed domain C.

D2: D(n) consists of n independent samples (I1, D1), . . . , (In, Dn) of interpre-
tations over different domains Ci. Example: molecular data, where each Ii
represents a molecule described by attributes and bond-relations over a do-
main Di of atoms.

D3: (cf. Example 3 (c)) D(n) consists of one observation of an interpretation
I over the domain Cn = {c1, . . . , cn}, and I ≺ I ′ iff I is an interpretation
over Cn, I

′ an interpretation over Cn′ , n < n′, and I is the substructure
induced by I ′ on Cn. Example: learning from a single database, such as the
IMDB movie database, or DBLP bibliographic database. Increasing data
here means that the database grows by adding more objects (movies, bibli-
ographic entries. . . ).

Probabilistic relational models learned from data for domains Ci may be used
to perform inference for new domains C not represented in the data. This can be
seen as the weakest form of model transfer, which in a much more ambitious form
(also including a transformation of the relational signatures) becomes transfer
learning in the sense of [11]. We now derive within our framework an impossibility
result for relational model transfer. Again, the interest of the analysis does not so
much lie in the concrete impossibility result we obtain, but in the demonstration
that our general framework allows us to express in a rigorous manner what
appears to be intuitively rather obvious.

Example 9. For concreteness’ sake, letM be the class of Markov Logic Networks
(MLNs) [14] for a signature of just a single attribute (unary relation) symbol
a(X). We assume that we learn from data of type D3, i.e., a dataset of size n
consists of the domain Cn, and for each ci the information whether a(ci) is true
or false. We consider the query φ = P (a(c1) | C = {c1}) > 0.5, i.e. we ask
whether P (a(c1)) > 0.5, for the single object c1 in a domain of size one.

We now apply Proposition 1 to show that Φ = {φ} is not (D3, σ)-identifiable
by likelihood-based learning, i.e., for any σ that only uses the likelihood feature
Lhood(M, (I, Cn)) = PM (I | Cn). Thus, we have to show (i) for F = Lhood.
Since Φ consists of a single Boolean query, there are only two equivalence classes
[]Φ. Let n ≥ 2, and D = (I, Cn) a dataset of size n. Assume that in I a(ci) is
true for i = 1, . . . , k, and false for i = k + 1, . . . , n. Consider the two formulas

p(X1) ∧ . . . ∧ p(Xk) ∧ ¬p(Xk+1) ∧ . . . ∧ ¬p(Xn) ∧
∧
i�=j

Xi �= Xj (10)

p(X) (11)
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Consider an MLN M consisting of formula (10) with a weight w. As w →∞, the
MLN defines over the interpretations on Cn a distribution that is concentrated on
the structures where a() is true for exactly k objects, and false for n−k objects.
Since there are

(
n
k

)
such structures, one obtains for these models likelihood values

PM (I | Cn) converging to 1/
(
n
k

)
. Since all possible MLNs for the given signature

must assign equal probabilities to isomorphic structures, no higher likelihoods
are obtainable by any other model. On the other hand, if w → −∞, then PM (I |
Cn) → 0. For all settings of w one has PM (a(c1) | C = {c1}) = 0.5, i.e., the
query φ evaluates to false.

Now consider an MLN M ′ consisting of (10) with a weight w, and (11) with
a weight u = 1. As w ranges in ] − ∞,∞[ one again has that the likelihood
PM ′(I | Cn) ranges in ]0, 1/

(
n
k

)
[. Now, however, for all such M ′ PM ′ (a(c1) | C =

{c1}) > 0.5. Thus, one has that M and M ′ define two different Φ-equivalence
classes, and F ([M ]Φ, D) = F ([M ]Φ, D) =]0, 1/

(
n
k

)
[.

For pure likelihood-based learning, i.e., in the absence of a bias feature B(M),
we thus obtain that φ is not identifiable. What happens if we were to add a bias
feature that expresses a preference for syntactically simpler MLNs, as measured,
for example, in terms of the number and length of formulas? MLNs containing
formulas such as (10) would then obtain a low bias value B(M). Simple MLNs
with high B(M) values, on the other hand, would most likely be unable to
express the distribution that leads to the maximal likelihood value of 1/

(
n
k

)
for

the data. Thus, condition (ii) would not be satisfied, and Proposition 1 does not
establish non-identifiability for these scenarios.

Our examples show that Proposition 1 can be used to establish non-identifi-
ability in some relevant cases, but it is far from being applicable in all cases.
However, it appears that Proposition 1 is about as far as one can go without
imposing some further restrictions on admissible score functions σ, or on the
available data sequences ↑Dn.

4 Consistent Identifiability and PAC Learning

We now take a closer look at how Definition 3 can be strengthened by replacing
the mere existence condition for a data sequence ↑Dn with a condition only for
the data-sequences that we are likely to see in practice. For this we now only
consider spaces of probabilistic models that induce a distribution on the sample
data.

Definition 6. A model class M is probabilistic with associated stratified data
space D, if each M ∈M defines

– a probability distribution P
(1)
M on D(1), and

– for each n > 1 a conditional distribution P
(n|n−1)
M on D(n) given D(n−1), so

that for D ∈ D(n−1)

P
(n|n−1)
M ({D′ | D ≺ D′} | D) = 1.
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The distributions P
(1)
M , P

(n|n−1)
M jointly define probability distributions P

(n)
M on

D(n) for all n.

We note that for continuous spaces D the above definition implicitly assumes
some measurability conditions that we have not spelled out.

For probabilistic models we can now introduce consistent identifiability, which
is an adaptation of the statistical concept of consistency for our type of learning
scenario.

Definition 7. Let M be a probabilistic model space with associated data space
D, σ a score function. Φ is consistently σ-identifiable, if for all M ∈ M, all
ε > 0, and for all φ ∈ Φ there exists n0 ≥ 1, such that for all n ≥ n0:

P
(n)
M {Dn | M(σ,Dn) ⊆ [M ]≡φ

} ≥ 1− ε (12)

We can now formulate a positive identifiability result reported in [10]: for
Md the set of deterministic probabilistic finite automata, and Φ the class of
PLTL queries: Φ is consistently σ-identifiable, where σ is an Alergia-style score
function based on the model features Tests and Lhood. Comparing this result
with Example 7 we find that PCTL is not identifiable in Mnd (under certain
assumptions on the data and model features available for learning), whereas
PLTL is identifiable in Md. This leaves as two open and important questions
whether PCTL is identifiable in Md, or PLTL in Mnd.

We close this section with some remarks on the relationship between condition
(12) and PAC -learnability. For this assume that each M ∈M defines a Boolean
function fM defined on a countable domain X , that D(n) consists of sets of size
n of pairs (x, fM (x)) (x ∈ X), and that Φ = X . In addition, let M also define a
probability distribution PM over X , which then induces a distribution on D(n)

for each n. Finally, assume that here M(σ,D) is a singleton, which we denote
M(D). From consistent identifiability in the sense of Definition 7 we then obtain
that for all ε, δ > 0 there exists n0, so that for all n > n0

P
(n)
M {Dn | PM{x | fM(D)(x) �= fM (x)} ≤ δ} ≥ 1− ε (13)

To obtain (13) from (12) we first observe that there exists a finite subset X ′ ⊆ X
with PM (X ′) > 1 − δ. Assume |X ′| = N , and set ε to ε/N in (12). Then, for
sufficiently large n0, (12) holds simultaneously for all φ = x ∈ X ′, i.e., for all
n ≥ n0

P
(n)
M {Dn |M(D) ∈ [M ]X′} ≥ 1− ε

Since M(D) ∈ [M ]X′ implies PM{x | fM(D)(x) �= fM (x)} ≤ δ, we obtain (13).
Property (13) is structurally similar to PAC-learnability [18,1]. One superficial

difference between (13) and PAC-learnability is that the latter does not assume
that there is an association between the (true) model (or hypothesis) and the
distribution over X . Thus, where our definition says “for all M . . . ”, PAC is
expressed in terms of “. . . for all h (hypotheses) and all μ (distributions on X)
. . . ”. This, however, is no real difference, since if our model space contains models
for all possible combinations of functions fM and distributions PM , then the
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quantification over all M is the same as a quantification over all functions and
all distributions. A second difference is much more significant: PAC is a uniform
condition where the ε, δ-bounds are independent of h and μ, i.e., it is defined
by the quantifier string ∀ε, δ∃n0∀h, μ∀n > n0 . . ., whereas our condition (13)
is ∀M, ε, δ∃n0∀n > n0 . . .. Requiring in our Definition 7 a threshold n0 that is
uniform for M and φ would be too strong for most intended applications, since
models M and queries φ may differ widely with respect to their complexity, and
so it will be unrealistic to ask for uniform bounds on the necessary sample size
for their identification.

5 Conclusion

We have developed a formal framework for analyzing learnability, or identifiabil-
ity questions in learning scenarios where there may only be a loose association
between model, data, and query space. The main contribution of this paper is
to provide the conceptual tools for a rigorous and uniform analysis of a wide
spectrum of such identifiability problems.

A key element of the proposed approach is to conceptualize learning as max-
imization of a score function with a dependence on a single distinguished model
bias feature. Based on such score functions, we can formulate a first general suffi-
cient condition for non-identifiability. This result is still somewhat limited in two
ways: first, while easy to prove, the result is not necessarily easy to apply, since
verifying conditions (i) and (ii) may require some non-trivial analysis in different
applications. Second, Proposition 1 is a rather strong sufficient condition that
may not actually be satisfied in many cases of non-identifiability. However, as
Examples 4 and 8 indicate, it may prove difficult to obtain stronger results at
the same high level of generality, and without restrictions to specific types of
model spaces or learning approaches. A particularly relevant more specialized
setting is that of consistent identifiability for probabilistic models. Future work
will be focussed on obtaining more powerful analysis tools than Proposition 1
for this setting.
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Abstract. In multiclass semi-supervised learning (SSL), it is sometimes the case
that the number of classes present in the data is not known, and hence no la-
beled examples are provided for some classes. In this paper we present variants
of well-known semi-supervised multiclass learning methods that are robust when
the data contains an unknown number of classes. In particular, we present an “ex-
ploratory” extension of expectation-maximization (EM) that explores different
numbers of classes while learning. “Exploratory” SSL greatly improves perfor-
mance on three datasets in terms of F1 on the classes with seed examples—i.e.,
the classes which are expected to be in the data. Our Exploratory EM algorithm
also outperforms a SSL method based non-parametric Bayesian clustering.

1 Introduction

In multiclass semi-supervised learning (SSL), it is sometimes the case that the number
of classes present in the data is not known. For example, consider the task of classify-
ing noun phrases into a large hierarchical set of categories such as “person”, “organi-
zation”, “sports team”, etc., as is done in broad-domain information extraction systems
(e.g., [5]). A sufficiently large corpus will certainly contain some unanticipated natural
clusters—e.g., kinds of musical scales, or types of dental procedures. Hence, it is un-
realistic to assume some examples have been provided for each class: a more plausible
assumption is that an unknown number of classes exist in the data, and that labeled
examples have been provided for some subset of these classes.

This raises the natural question: how robust are existing SSL methods to unantici-
pated classes? As we will show experimentally below, SSL methods can perform quite
poorly in this setting: the instances of the unanticipated classes might be forced into
one or more of the expected classes, leading to a cascade of errors in class parameters,
and then to class assignments to other unlabeled examples. To address this problem, we
present an “exploratory” extension of expectation-maximization (EM) which explores
different numbers of classes while learning.

More precisely, in a traditional SSL task, the learner assumes a fixed set of classes
C1, C2, . . . Ck, and the task is to construct a k-class classifier using labeled datapoints
X l and unlabeled datapoints Xu, where X l contains a (usually small) set of “seed”
examples of each class. In exploratory SSL, we assume the same inputs, but allow the
classifier to predict labels from the set C1, . . . , Cm, where m ≥ k: in other words,
every example x may be predicted to be in either a known class Ci ∈ C1 . . . Ck, or an
unknown class Ci ∈ Ck+1 . . . Cm.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 128–143, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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We will show that exploratory SSL can greatly improve performance on noun-phrase
classification tasks and document classification tasks, for several well-known SSL meth-
ods. E.g. Figure 1 (b) top row shows, the confusion matrices for a traditional SSL
method on a 20-class problem at the end of iteration 1 and 15, when the algorithm
is presented with seeds for 6 of the classes. Here, red indicates overlap between classes,
and dark blue indicates no overlap. So we see that many of the seed classes are getting
confused with the unknown classes at the end of 15 iterations of SSL showing semantic
drift. With the same inputs, our novel “exploratory” EM algorithm performs quite well
(Figure 1 (b) bottom row); i.e. it introduces additional clusters and at the end of 15 iter-
ations improves F1 on classes for which seed examples were provided.

Contributions. We focus on the novel problem of dealing with learning when only
fraction of classes are known upfront, and there are unknown classes hidden in the data.
We propose a variant of the EM algorithm where new classes can be introduced in each
EM iteration. We discuss the connections of this algorithm to the structural EM algo-
rithm. Next we propose two heuristic criteria for predicting when to create new class
during an EM iteration, and show that these two criteria work well on three publicly
available datasets. Further we evaluate third criterion, that introduces classes uniformly
at random and show that our proposed heuristics are more effective than this base-
line. Experimentally, Exploratory EM outperforms a semi-supervised variant of non-
parametric Bayesian clustering (Gibbs sampling with Chinese Restaurant Process)—a
technique which also “explores” different numbers of classes while learning. We also
compare our method against a semi-supervised EM method with m extra classes (trying
different values of m).

In this paper, Exploratory EM is instantiated to produce exploratory versions of
three well-known SSL methods: semi-supervised Naive Bayes, seeded K-Means, and a
seeded version of EM using a von Mises-Fisher distribution [1]. Our experiments fo-
cus on improving accuracy on the classes that do have seed examples—i.e., the classes
which are expected to be in the data.

Outline. In Section 2, we first introduce an exploratory version of EM, and then dis-
cuss several instantiations of it, based on different models for the classifiers (mixtures
of multinomials, K-Means, and mixtures of von Mises-Fisher distributions) and differ-
ent approaches to introducing new classes. We then compare against an alternative ex-
ploratory SSL approach, namely Gibbs sampling with Chinese restaurant process [14].
Section 3 presents experimental results, followed by related work and conclusions.

2 Exploratory SSL Methods

2.1 A Generic Exploratory Learner

Many common approaches to SSL are based on EM. In a typical EM setting, the M-
step finds the best parameters θ to fit the data, X l∪Xu, and the E-step probabilistically
labels the unknown points with a distribution over the known classes C1, C2, . . . Ck . In
some variants of EM, including the ones we consider here, a “hard” assignment is made
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to classes instead, an approach named classification EM [6]. Our exploratory version of
EM differs in that it can introduce new classes Ck+1 . . . Cm during the E-step.

Algorithm 1. EM algorithm for exploratory learning with model selection

1: function Exploratory EM (Xl, Y l, Xu, {C1 . . . Ck}): {Ck+1 . . . Cm}, θm, Y u

2: Input: Xl labeled data points; Y l labels for datapoints Xl; Xu unlabeled datapoints (same
feature space as Xl); {C1 . . . Ck} set of known classes to which x’s belong.

3: Output: {Ck+1 . . . Cm} newly-discovered classes; {θ1, . . . , θm} parameters for all m
classes; Y u labels for unlabeled data points Xu

{Initialize model parameters using labeled data}
4: θ10 , . . . , θ

k
0 = argmaxθL(X

l, Y l|θk)
5: i is # new classes ; i = 0; CanAddClasses = true
6: while data likelihood not converged AND #classes not converged do

{E step: (Iteration t) Make predictions for the unlabeled data-points}
7: iold = i; Compute baseline log-likelihood BaselineLL = logP (X|θ1t , . . . , θk+iold

t )
8: for x ∈ Xu do
9: Predict P (Cj |x, θ1t , . . . , θk+i

t ) for all labels 1 ≤ j ≤ k + i
10: if nearlyUniform(P (C1|x), . . . , P (Ck+i|x)) AND CanAddClasses then
11: Increment i; Let Ck+i be the new class.
12: Label x with Ck+i in Y u, and compute parameters θk+i

t for the new class.
13: else
14: Assign x to (argmaxCjP (Cj |x)) in Y u where 1 ≤ j ≤ k + i
15: end if
16: end for
17: inew = i; Compute ExploreEM loglikelihood ExploreLL = logP (X|θ1t , . . . , θk+inew

t )
{M step : Recompute model parameters using current assignments for Xu}

18: if Penalized data likelihood is better for exploratory model than baseline model then
{Adopt the new model with k + inew classes}

19: θk+inew
t+1 = argmaxθL(X

l, Y l, Xu, Y u
t |θk+inew )

20: else
{Keep the old model with k + iold classes}

21: θk+iold
t+1 = argmaxθL(X

l, Y l, Xu, Y u
t |θk+iold)

22: CanAddClasses = false
23: end if
24: end while
25: end function

Algorithm 1 presents a generic Exploratory EM algorithm (without specifying the
model being used). There are two main differences between the algorithm and standard
classification-EM approaches to SSL. First, in the E step, each of the unlabeled dat-
apoint x is either assigned to one of the existing classes, or to a newly-created class.
We will discuss the “nearUniform” routine below, but the intuition we use is that a
new class should be introduced to hold x when the probability of x belonging to ex-
isting classes is close to uniform. This suggests that x is not a good fit to any existing
classes, and that adding x to any existing class will lower the total data likelihood sub-
stantially. Second, in the M-step of iteration t, we choose either the model proposed by
Exploratory EM method that might have more number of classes than previous iteration
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t− 1 or the baseline version with same number of classes as iteration t− 1. This choice
is based on whether exploratory model satisfies a model selection criterion in terms of
increased data likelihood and model complexity. If the algorithm decides that baseline
model is better than exploratory model in iteration t, then from iteration t+ 1 onwards
the algorithm won’t introduce any new classes.

2.2 Discussion

Friedman [13] proposed the Structural EM algorithm that combines the standard EM
algorithm, which optimizes parameters, with structure search for model selection. This
algorithm learns networks based on penalized likelihood scores, in the presence of miss-
ing data. In each iteration it evaluates multiple models based on the expected scores of
models with missing data, and selects the model with best expected score. This algo-
rithm converges at local maxima for penalized log likelihood (the score includes penalty
for increased model complexity).

Similar to Structural EM, in each iteration of Algorithm 1, we evaluate two models,
one with and one without adding extra classes. These two models are scored using
a model selection criterion like AIC or BIC, and the model with best penalized data
likelihood score is selected in each iteration. Further when the model selection criterion
fails, the algorithm reverts to standard semi-supervised EM algorithm. Say this model
switch happens at iteration tswitch, then from iteration 1 to tswitch, Algorithm 1 acts
like the structural EM algorithm [13]. From iteration tswitch + 1 till the data likelihood
converges, the algorithm acts as semi-supervised EM algorithm.

Next let us discuss the applicability of this algorithm for clustering as well as clas-
sification tasks. Notice that Algorithm 1 reverts to an unsupervised clustering method
if Xl is empty, and reverts to a supervised generative learner if Xu is empty. Likewise,
if no new classes are generated, then it behaves as a multiclass SSL method; for in-
stance, if the classes are well-separated and Xl contains enough labels for every class
to approximate these classes, then it is unlikely that the criterion of nearly-uniform class
probabilities will be met, and the algorithm reverts to SSL. Henceforth we will use the
terms “class” and “cluster” interchangeably.

2.3 Model Selection

For model penalties we tried multiple well known criteria like BIC, AIC and AICc.
Burnham and Anderson [4] have experimented with AIC criteria and proposed AICc
for datasets where, the number of datapoints is less than 40 times number of features.
The formulae for scoring a model using each of the three criteria that we tried are:

BIC(g) = −2 ∗ L(g) + v ∗ ln(n) (1)

AIC(g) = −2 ∗ L(g) + 2 ∗ v (2)

AICc(g) = AIC(g) + 2 ∗ v ∗ (v + 1)/(n− v − 1) (3)

where g is the model being evaluated, L(g) is the log-likelihood of the data given g, v
is the number of free parameters of the model and n is the number of data-points.
While comparing two models, a lower value is preferred. The extended Akaike infor-
mation criterion (AICc) suited best for our experiments since our datasets have large
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number of features and small number of data points. With AICc criterion, the objective
function that Algorithm 1 optimizes is:

max
m,{θ1...θm},m≥k

{Log Data Likelihood−Model penalty}

i.e., max
m,{θ1...θm},m≥k

{logP (X |θ1, . . . , θm)} − {v + (v ∗ (v + 1)/(n− v − 1))} (4)

Here, k is the number of seed classes given as input to the algorithm and m is the
number of classes in the resultant model (m ≥ k).

2.4 Exploratory Versions of Well-Known SSL Methods

In this section we will consider various SSL techniques, and propose exploratory ex-
tensions of these algorithms.

Semi-Supervised Naive Bayes. Nigam et al. [21] proposed an EM-based semi-
supervised version of multinomial Naive Bayes. In this model P (Cj |x) ∝ P (x|Cj) ∗
P (Cj), for each unlabeled point x. The probability P (x|Cj) is estimated by treating
each feature in x as an independent draw from a class-specific multinomial. In docu-
ment classification, the features are word occurrences, and the number of outcomes of
the multinomial is the vocabulary size. This method can be naturally used as an instance
of Exploratory EM, using the multinomial model to compute P (Cj |x) in Line 1. The
M step is also trivial, requiring only estimates of P (w|Cj) for each word/feature w.

Seeded K-Means. It has often been observed that K-Means and EM are algorithmically
similar. Basu and Mooney [2] proposed a seeded version of K-Means, which is very
analogous to Nigam et al’s semi-supervised Naive Bayes, as another technique for semi-
supervised learning. Seeded K-Means takes as input a number of clusters, and seed
examples for each cluster. The seeds are used to define an initial set of cluster centroids,
and then the algorithm iterates between an “E step” (assigning unlabeled points to the
closest centroid) and an “M step” (recomputing the centroids).

In the seeded K-Means instance of Exploratory EM, we again define P (Cj |x) ∝
P (x|Cj) ∗ P (Cj), but define P (x|Cj) = x · Cj , i.e., the inner product of a vector
representing x and a vector representing the centroid of cluster j. Specifically, x and Cj

both are represented as L1 normalized TFIDF feature vectors. The centroid of a new
cluster is initialized with smoothed counts from x. In the “M step”, we recompute the
centroids of clusters in the usual way.

Seeded Von-Mises Fisher. The connection between K-Means and EM is explicated by
Banerjee et al. [1], who described an EM algorithm that is directly inspired by K-Means
and TFIDF-based representations. In particular, they describe generative cluster models
based on the von Mises-Fisher (vMF) distribution, which describes data distributed on
the unit hypersphere. Here we consider the “hard-EM” algorithm proposed by Banerjee
et al, and use it in the seeded (semi-supervised) setting proposed by Basu et al. [2]. This
natural extension of Banerjee et al[1]’s work can be extended to our exploratory setting.

As in seeded K-Means, the parameters of vMF distribution are initialized using the
seed examples for each known cluster. In each iteration, we compute the probability
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Algorithm 2. JS criterion for new class creation
1: function JSCriterion([P (C1|x) . . . P (Ck|x)]):
2: Input: [P (C1|x) . . . P (Ck|x)] probability distribution of existing classes for a data point x
3: Output: decision : true iff new class needs to be created
4: u = [1/k . . . 1/k] {i.e., the uniform distribution with current number of classes = k}
5: decision = false
6: if Jensen-Shannon-Divergence(u, P (Cj |x)) < 1

k
then

7: decision = true
8: end if
9: end function

Algorithm 3. MinMax criterion for new class creation
1: function MinMaxCriterion([P (C1|x) . . . P (Ck|x)]):
2: Input: [P (C1|x) . . . P (Ck|x)] probability distribution of existing classes for a data point x
3: Output: decision : true iff new class needs to be created
4: k is the current number of classes
5: maxProb = max(P (Cj |x)); minProb = min(P (Cj |x))
6: if maxProb

minProb
< 2 then

7: decision = true
8: end if
9: end function

of Cj given data point x, using vMF distribution, and then assign x to the cluster for
which this probability is maximized. The parameters of the vMF distribution for each
cluster are then recomputed in the M step. For this method, we use a TFIDF-based L2

normalized vectors, which lie on the unit hypersphere.
Seeded vMF and seeded K-Means are closely related—in particular, seeded vMF

can be viewed as a more probabilistically principled version of seeded K-Means. Both
methods allow use of TFIDF-based representations, which are often preferable to uni-
gram representations for text: for instance, it is well-known that unigram representations
often produce very inaccurate probability estimates.

2.5 Strategies for Inducing New Clusters/Classes

In this section we will formally describe some possible strategies for introducing
new classes in the E step of the algorithm. They are presented in detail in Algorithms 2
and 3, and each of these is a possible implementation of the “nearUniform” subroutine
of Algorithm 1. As noted above, the intuition is that new classes should be introduced
to hold x when the probabilities of x belonging to existing classes are close to uniform.
In the JS criterion, we require that Jensen-Shanon divergence1 between the posterior
class distribution for x to the uniform distribution be less than 1

k . The MinMax criterion
is a somewhat simpler approximation to this intuition: a new cluster is introduced if the
maximum probability is no more than twice the minimum probability.

1 The Jensen-Shannon divergence between p and q is the average Kullback-Leiber divergence
of p and q to a, the average of p and q, i.e., 1

2
(KL(p||a+KL(q||a)).
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Algorithm 4. Exploratory Gibbs Sampling with Chinese Restaurant Process

1: function GibbsCRP (Xl, Y l, Xu, {C1 . . . Ck}) : Ck+1 . . . Cm, Y u

2: Input: Xl labeled data points; Y l labels of Xl; Xu unlabeled data points;
{C1 . . . Ck} set of known classes x’s belong to; Pnew probability of creating a new class.

3: Output: Ck+1 . . . Cm newly-discovered classes; Y u labels for Xu

4: for x in Xu do
5: Save a random class from {C1 . . . Ck} for x in Y u

6: end for
7: Set m = k
8: for t : 1 to numEpochs do
9: for xi in Xu do

10: Let yi’s be xi’s label in epoch t− 1
11: predict P (Cj |xi, Y

l ∪ Y u − {yi}) for all labels 1 ≤ j ≤ m
12: y′

i,m
′ = CRPPick(Pnew, P (C1|xi), . . . , P (Cm+1|xi))

13: Save y′
i as xi’s label in epoch t

14: m = m′

15: end for
16: end for
17: end function

2.6 Baseline Methods

Next, we will take a look at various baseline methods that we implemented to measure
the effectiveness of our proposed approach.

Random New Class Creation Criterion: To measure the effectiveness of criteria pro-
posed in Algorithms 2 and 3, we experimented with a random baseline criterion, that
returns “true” uniformly at random with probability equal to that of MinMax or JS cri-
terion returning true for the same dataset. This is referred to as Random criterion below.

Semi-supervised EM with m Extra Classes: One might argue that the goal of the
Exploratory EM algorithm can also be achieved by adding a random number of empty
classes to the semi-supervised EM algorithm. We compare our method against the best
possible value of this baseline, i.e. by choosing the number of classes that maximizes
F1 on the seed classes. Note that in practice, the test labels are not available, so this
is the upper bound on performance of this baseline. We compare our method with this
upper bound in Section 3. Our method is different from this baseline in two ways. First,
it does not need the number of extra clusters as input. Second, it seeds the extra clusters
with those datapoints that are unlikely to belong to existing classes, as compared to
initializing them randomly.

A Seeded Gibbs Sampler with CRP: The Exploratory EM method is broadly similar
to non-parametric Bayesian methods, such as the Chinese Restaurant process (CRP)
[14]. CRP is often used in non-parametric models (e.g., topic models) that are based
on Gibbs sampling, and indeed, since it is straightforward to replace EM with Gibbs-
sampling, one can use this approach to estimate the parameters of any of the models
considered here (i.e., multinomial Naive Bayes, K-Means, and the von Mises-Fisher
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Algorithm 5. Modified CRP criterion for new class creation
1: function ModCRPPick (Pnew , P (C1|x), . . . , P (Ck+i|x)) : y, i′

2: Input: Pnew probability of creating new class;
P (C1|x), . . . , P (Ck+i|x) probability of existing classes given x

3: Output: y class for x; i′ new number of classes
4: u = [1/k + i . . . 1/k + i] {uniform distribution with k + i classes}
5: d = Jensen-Shannon-Divergence(u, P (Cj |x))
6: q = Pnew

((k+i)∗d)
7: if a coin with bias q is heads then

{create a new class and assign to that}
8: y = k + i+ 1 and i′ = i+ 1
9: else

{assign to an existing class}
10: i′ = i and y = sample from distribution [P (C1|x) . . . P (Ck|x)]
11: end if
12: end function

distribution). Algorithm 4 presents a seeded version of a Gibbs sampler based on this
idea. In brief, Algorithm 4, starts with a classifier trained on the labeled data. Collapsed
Gibbs sampling is then performed over the latent labels of unlabeled data, incorporat-
ing the CRP into the Gibbs sampling to introduce new classes. (In fact, we use block
sampling for these variables, to make the method more similar to the EM variants.)

Note that this algorithm is naturally “exploratory”, in our sense, as it can produce a
number of classes larger than the number of classes for which seed labels exist. How-
ever, unlike our exploratory EM variants, the introduction of new classes is not driven
by examples that are “hard to classify”—i.e., have nearly-uniform posterior probabil-
ity of membership in existing classes. In CRP method, the probability of creating a new
class depends on the data point, but it does not explicitly favor cases where the posterior
over existing classes is nearly uniform.

To address this issue, we also implemented a variant of the seeded Gibbs sampler
with CRP, in which the examples with nearly-uniform distributions are more likely to
be assigned to new classes. This variant is shown in Algorithm 5, which replaces the
routine CRPPick in the Gibbs sampler—in brief, we simply scale down the probability
of creating a new class by the Jensen-Shannon divergence of the posterior class dis-
tribution for x to the uniform distribution. Hence the probability of creating new class
explicitly depends on how well the given data point fits in one of the existing classes.
An experimental comparison of our proposed method with Gibbs sampling and CRP
based baselines is shown in Section 3.2.

3 Experimental Results

We now seek to experimentally answer the questions raised in the introduction. How
robust are existing SSL methods, if they are given incorrect information about the num-
ber of classes present in the data, and seeds for only some of these classes? Do the
exploratory versions of the SSL methods perform better? How does Exploratory EM
compare with the existing “exploratory” method of Gibbs sampling with CRP?
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Table 1. Comparison of Exploratory EM w.r.t. SemisupEM for different datasets and class cre-
ation criteria. For each exploratory method we report the macro avg. F1 over seed classes followed
by avg number of clusters generated. e.g. For 20-Newsgroups dataset, Exploratory EM with K-
Means and MinMax results in 57.4 F1 and generates 22 clusters on avg. � (and �) indicates that
improvements are statistically significant w.r.t SemisupEM with 0.05 (and 0.1) significance level.

Dataset Algorithm SemisupEM Exploratory EM Best m extra classes
(#seed / #total classes) MinMax JS Random SemisupEM
Delicious Sports KM 60.9 89.5 (30) � 90.6 (46) � 84.8 (55) � 69.4 (10) �
(5/26) NB 46.3 45.4 (06) 88.4 (51) � 67.8 (38) � 65.8 (10) �

VMF 64.3 72.8 (06) � 63.0 (06) 66.7 (06) 78.2 (09) �
20-Newsgroups KM 44.9 57.4 (22) � 39.4 (99) � 53.0 (22) � 49.8 (11) �
(6/20) NB 34.0 34.6 (07) 34.0 (06) 34.0 (06) 35.0 (07)

VMF 18.2 09.5 (09) � 19.8 (06) 18.2 (06) 20.3 (10) �
Reuters KM 8.9 12.0 (16) � 27.4 (100) � 13.7 (19) � 16.3 (14) �
(10/65) NB 6.4 10.4 (10) 18.5 (77) � 10.6 (10) 16.1 (15)

VMF 10.5 20.7 (11) � 30.4 (62) � 10.5 (10) 20.6 (16) �

We used three publicly available datasets for our experiments. The first is the widely-
used 20-Newsgroups dataset [23]. We used the “bydate” dataset, which contains total of
18,774 text documents, with vocabulary size of 61,188. There are 20 non-overlapping
classes and the entire dataset is labeled. The second dataset is the Delicious Sports
dataset, published by [9]. This is an entity classification dataset, which contains items
extracted from 57K HTML tables in the sports domain (from pages that had been tagged
by the social bookmarking system del.icio.us). The features of an entity are ids for the
HTML table columns in which it appears. This dataset contains 282 labeled entities
described by 721 features and 26 non-overlapping classes (e.g., “NFL teams”, “Cricket
teams”). The third dataset is the Reuters-21578 dataset published by Cai et al. [10]. This
corpus originally contained 21,578 documents from 135 overlapping categories. Cai et
al. discarded documents with multiple category labels, resulting in 8,293 documents
(vocabulary size=18,933) in 65 non-overlapping categories.

3.1 Exploratory EM vs. SemisupEM with Few Seed Classes

Table 1 shows the performance of seeded K-Means, seeded Naive Bayes, and seeded
vMF using 5 different algorithms. For each dataset only a few of the classes present
in the data (5 for Delicious Sports, and 6 for 20-Newsgroups and 10 for Reuters),
are given as seed classes to all the algorithms. Five percent datapoints were given as
training data for each “seeded” class. The first method, shown in the column labeled
SemisupEM, uses these methods as conventional SSL learners. The second method
is Exploratory EM with the simple MinMax new-class introduction criterion, and the
third is Exploratory EM with the JS criterion. Forth method is Exploratory EM with the
Random criterion. The last one is upper bound on SemisupEM with m extra classes.

ExploreEM performs hard clustering of the dataset i.e. each datapoint belongs to
only one cluster. For all methods, for each cluster we assign a label that maximizes
accuracy (i.e. majority label for the cluster). Thus using complete set of labels we can
generate a single label per datapoint. Reported Avg. F1 value is computed by macro
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Fig. 1. (a) Confusion matrices, varying number of seed classes, for the Delicious Sports dataset.
(b) Confusion matrices, varying the number of EM iterations for the 20-Newsgroups dataset.
Each is using Explore-KMeans with the MinMax criterion.

averaging F1 values of seed classes only. Note that, for a given dataset, number of seed
classes and training percentage per seed class there are many ways to generate a train-
test partition. We report results using 10 random train-test partitions of each dataset.
The same partitions are used to run all the algorithms being compared and to compute
the statistical significance of results.

We first consider the value of exploratory learning. With the JS criterion, the ex-
ploratory extension gives comparable or improved performance on 8 out of 9 cases. In
5 out of 8 cases the gains are statistically significant. With the simpler MinMax crite-
rion, the exploratory extension results in performance improvements in 6 out of 8 cases,
and significantly reduces performance only in one case. The number of classes finally
introduced by the MinMax criterion is generally smaller than those introduced by JS
criterion.

For both SSL and exploratory systems, the seeded K-Means method gives good
results on all 3 datasets. In our MATLAB implementation, the running time of Ex-
ploratory EM is longer, but not unreasonably so: on average for 20-Newsgroups dataset
Semisup-KMeans took 95 sec. while Explore-KMeans took 195 sec. and for Reuters
dataset, Semisup-KMeans took 7 sec. while Explore-KMeans took 28 sec.

We can also see that Random criterion shows significant improvements over the base-
line SemisupEM method in 4 out of 9 cases. While Exploratory EM method with Min-
Max and JS criterion shows significant improvements in 5 out of 9 cases. In terms of
magnitude of improvements, JS is superior to Random criterion.

Next we compare Exploratory EM with baseline named “SemisupEM with m extra
classes”. The last column of Table 1 shows the best performance of this baseline by
varying m = {0, 1, 2, 5, 10, 20, 40}, and choosing that value of m for which seed class
F1 is maximum. Since the “bestm extra classes” baseline is making use of the test labels
to pick right number of classes, it cannot be used in practice; however Exploratory EM
methods produce comparable or better performance with this strong baseline.
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Fig. 2. 20-Newsgroups dataset : Comparison of MinMax vs. JS criterion for ExploreEM

To better understand the qualitative behavior of our methods, we conducted some fur-
ther experiments with Semisup-KMeans with the MinMax criterion (which appears to
be a reasonable baseline method.) We constructed confusion matrices for the classifica-
tion task, to check how different methods perform on each dataset.2 Figure 1 (a) shows
the confusion matrices for SemisupEM (top row) and Exploratory EM (bottom row)
with five and fifteen seeded classes. We can see that SemisupEM with only five seed
classes clearly confuses the unexpected classes with the seed classes, while Exploratory
EM gives better quality results. Having seeds for more classes helps both SemisupEM
and Exploratory EM, but SemisupEM still tends to confuse the unexpected classes with
the seed classes. Figure 1 (b) shows similar results on the 20-Newsgroups dataset, but
shows the confusion matrix after 1 iteration and after 15 iterations of EM. It shows that
SemisupEM after 15 iterations has made limited progress in improving its classifier
when compared to Exploratory EM.

Finally, we compare the two class creation criteria, and show a somewhat larger
range of seeded classes, ranging from 5 to 15 (out of 20 actual classes). In Figure 2
each of the confusion-matrices is annotated with the strategy, the number of seed classes
and the number of classes produced. (E.g., plot “MinMax-C5(23)” describes Explore-
KMeans with MinMax criterion and 5 seed classes which produces 23 clusters.) We
can see that MinMax criterion usually produces a more reasonable number of clusters,
closer to the ideal value of 20; however, performance of the JS method in terms of seed
class accuracy is comparable to the MinMax method.

These trends are also shown quantitatively in Figure 3, which shows the result of
varying the number of seeded classes (with five seeds per class) for Explore-KMeans
and Semisup-KMeans; the top shows the effect on F1, and the bottom shows the ef-
fect on the number of classes produced (for Explore-KMeans only). Figure 4 shows
a similar effect on the Delicious Sports dataset: here we systematically vary the num-
ber of seeded classes (using 5 seeds per seeded class, on the top), and also vary the
number of seeds per class (using 10 seeded classes, on the bottom.) The left-hand side
compares the F1 for Semisup-KMeans and Explore-KMeans, and the right-hand side
shows the number of classes produced by Explore-KMeans. For all parameter settings,
Explore-KMeans is better than or comparable to Semisup-KMeans in terms of F1 on
seed classes.

2 For purposes of visualization, introduced classes were aligned optimally with the true classes.
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Fig. 4. Delicious Sports dataset: Top, vary-
ing the number of seed classes (with five
seeds per class). Bottom, varying the num-
ber of seeds per class (with 10 seed classes).
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Fig. 5. Delicious Sports dataset: Varying the concentration parameter, with five seed classes

3.2 Comparison with the Chinese Restaurant Process

As discussed in Section 2.6, a seeded version of the Chinese Restaurant Process with
Gibbs sampling (CRPGibbs) is an alternative exploratory learning algorithm. In this
section we compare the performance of CRPGibbs with Explore-KMeans and Semisup-
KMeans. We consider two versions of CRP-Gibbs, one using the standard CRP and one
using our proposed modified CRP criterion for new class creation that is sensitive to
the near-uniformity of instance’s posterior class distribution. CRP-Gibbs uses the same
instance representation as our K-Means variants i.e. L1 normalized TFIDF features.

It is well-known that CRP is sensitive to the concentration parameter Pnew . Figures
5 and 6 show the performance of all the exploratory methods, as well as Semisup-
KMeans, as the concentration parameter is varied from 10−8 to 10−2. (For Explore-
KMeans and Semisup-KMeans methods, this parameter is irrelevant). We show F1, the
number of classes produced, and run-time (which is closely related to the number of
classes produced.) The results show that a well-tuned seeded CRP-Gibbs can obtain
good F1-performance, but at the cost of introducing many unnecessary clusters. The
modified Explore-CRP-Gibbs performs consistently better, but not better than Explore-
KMeans, and Semisup-KMeans performs the worst.
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Fig. 6. 20-Newsgroups dataset: Varying concentration parameter, with six seed classes

4 Related Work

In this paper we describe and evaluate a novel multiclass SSL method that is more robust
when there are unanticipated classes in the data—or equivalently, when the algorithm
is given seeds from only some of the classes present in the data. To the best of our
knowledge this specific problem has not been explored in detail before, even though
in real-world settings, there can be unanticipated (and hence unseeded) classes in any
sufficiently large-scale multiclass SSL task.

More generally, however, it has been noted before that SSL may suffer due to the
presence of unexpected structure in the data. For instance, Nigam et al’s early work on
SSL based EM with multinomial Naive Bayes [21] noted that adding too much unla-
beled data sometimes hurt performance on SSL tasks, and discusses several reasons this
might occur, including the possibility that there might not be a one-to-one correspon-
dence between the natural mixture components (clusters) and the classes. To address
this problem, they considered modeling the positive class with one component, and the
negative class with a mixture of components. They propose to choose the number of
such components by cross-validation; however, this approach is relatively expensive,
and inappropriate when there are only a small number of labeled examples (which is
a typical case in SSL). More recently, McIntosh [18] described heuristics for intro-
ducing new “negative categories” in lexicon bootstrapping, based on a domain-specific
heuristic for detecting semantic drift with distributional similarity metrics. Our setting is
broadly similar to these works, except that we consider this task in a general multiclass-
learning setting, and do not assume seeds from an explicitly-labeled “negative” class,
which is a mixture; instead, we assume seeds from known classes only. Thus we assume
that data fits a mixture model with a one-to-one correspondence with the classes, but
only after the learner introduces new classes hidden in the data. We also explore this
issue in much more depth experimentally, by systematically considering the impact of
having too few seed classes, and propose and evaluate a solution to the problem. There
has also been substantial work in the past to automatically decide the right “number
of clusters” in unsupervised learning [11,22,15,7,19,27]. Many of these techniques are
built around K-Means and involve running it multiple times for different values of K.
Exploratory learning differs in that we focus on a SSL setting, and evaluate specifi-
cally the performance difference on the seeded classes, rather than overall performance
differences.
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There is also a substantial body of work on constrained clustering; for instance,
Wagstaff et al [26] describe a constrained clustering variant of K-Means “must-link”
and “cannot-link” constraints between pairs. This technique changes the cluster assign-
ment phase of K-Means algorithm by assigning each example to the closest cluster such
that none of the constraints are violated. SSL in general can be viewed as a special case
of constrained clustering, as seed labels can be viewed as constraints on the clusters;
hence exploratory learning can be viewed as a subtype of constrained clustering, as well
as a generalization of SSL. However, our approach is different in the sense that there
are more efficient methods for dealing with seeds than arbitrary constraints.

In this paper we focused on EM-like SSL methods. Another widely-used approach
to SSL is label propagation. In the modified adsorption algorithm [25], one such graph-
based label propagation method, each datapoint can be marked with one or more known
labels, or a special dummy label meaning “none of the above”. Exploratory learning is
an extension that applies to a different class of SSL methods, and has some advantages
over label propagation: for instance, it can be used for inductive tasks, not only trans-
ductive tasks. Exploratory EM also provides more information by introducing multiple
“dummy labels” which describe multiple new classes in the data.

A third approach to SSL involves unsupervised dimensionality reduction followed by
supervised learning (e.g., [8]). Although we have not explored their combination, these
techniques are potentially complementary with exploratory learning, as one could also
apply EM-like methods, in a lower-dimensional space (as is typically done in spectral
clustering). If this approach were followed then an exploratory learning method like
Exploratory EM could be used to introduce new classes, and potentially gain better
performance, in a semi-supervised setting.

One of our benchmark tasks, entity classification, is inspired by the NELL (Never
Ending Language Learning) system [5]. NELL performs broad-scale multiclass SSL.
One subproject within NELL [20] uses a clustering technique for discovering new re-
lations between existing noun categories—relations not defined by the existing hand-
defined ontology. Exploratory learning addresses the same problem, but integrates the
introduction of new classes into the SSL process. Another line of research considers
the problem of “open information extraction”, in which no classes or seeds are used at
all [28,12,9]. Exploratory learning, in contrast, can exploit existing information about
classes of interest and seed labels to improve performance.

Another related area of research is novelty detection. Topic detection and tracking
task aims to detect novel documents at time t by comparing them to all documents till
time t − 1 and detects novel topics. Kasiviswanathan et al. [16] assumes the number
of novel topics is given as input to the algorithm. Masud et al. [17] develop techniques
on streaming data to predict whether next data chunk is novel or not. Our focus is on
improving performance of semi-supervised learning when the number of new classes is
unknown. Bouveyron [3] worked on the EM approach to model unknown classes, but
the entire EM algorithm is run for multiple numbers of classes. Our algorithm jointly
learns labels as well as new classes. Schölkopf et al. [24] defines a problem of learning
a function over the data space that isolates outliers from class instances. Our approach
is different in the sense we do not focus on detecting outliers for each class.
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5 Conclusion

In this paper, we investigate and improve the robustness of SSL methods in a setting
in which seeds are available for only a subset of the classes—the subset of most inter-
est to the end user. We performed systematic experiments on fully-labeled multiclass
problems, in which the number of classes is known. We showed that if a user provides
seeds for only some, but not all, classes, then SSL performance is degraded for sev-
eral popular EM-like SSL methods (semi-supervised multinomial Naive Bayes, seeded
K-Means, and a seeded version of mixtures of von Mises-Fisher distributions). We
then described a novel extension of the EM framework called Exploratory EM, which
makes these methods much more robust to unseeded classes. Exploratory EM intro-
duces new classes on-the-fly during learning based on the intuition that hard-to-classify
examples—specifically, examples with a nearly-uniform posterior class distribution—
should be assigned to new classes. The exploratory versions of these SSL methods often
obtained dramatically better performance—e.g., on Delicious Sports dataset up to 90%
improvements in F1, on 20-Newsgroups dataset up to 27% improvements in F1, and
on Reuters dataset up to 200% improvements in F1. In comparative experiments, one
exploratory SSL method, Explore-KMeans, emerged as a strong baseline approach.

Because Exploratory EM is broadly similar to non-parametric Bayesian approaches,
we also compared Explore-KMeans to a seeded version of an unsupervised mixture
learner that explores differing numbers of mixture components with the Chinese Restau-
rant process (CRP). Explore-KMeans is faster than this approach, and more accurate as
well, unless the parameters of the CRP are very carefully tuned. Explore-KMeans also
generates a model that is more compact, having close to the true number of clusters.
The seeded CRP process can be improved, moreover, by adapting some of the intu-
itions of Explore-KMeans, in particular by introducing new clusters most frequently
for hard-to-classify examples (those with nearly-uniform posteriors).

The exploratory learning techniques we described here are limited to problems where
each data point belongs to only one class. An interesting direction for future research
can be to develop such techniques for multi-label classification, and hierarchical clas-
sification. Another direction can be create more scalable parallel versions of Explore-
KMeans for much larger datasets, e.g., large-scale entity-clustering task.
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Abstract. Ordinal regression problem arises in situations where exam-
ples are rated in an ordinal scale. In practice, labeled ordinal data are
difficult to obtain while unlabeled ordinal data are available in abun-
dance. Designing a probabilistic semi-supervised classifier to perform
ordinal regression is challenging. In this work, we propose a novel ap-
proach for semi-supervised ordinal regression using Gaussian Processes
(GP). It uses the expectation-propagation approximation idea, widely
used for GP ordinal regression problem. The proposed approach makes
use of unlabeled data in addition to the labeled data to learn a model
by matching ordinal label distributions approximately between labeled
and unlabeled data. The resulting mixed integer programming problem,
involving model parameters (real-valued) and ordinal labels (integers) as
variables, is solved efficiently using a sequence of alternating optimization
steps. Experimental results on synthetic, bench-mark and real-world data
sets demonstrate that the proposed GP based approach makes effective
use of the unlabeled data to give better generalization performance (on
the absolute error metric, in particular) than the supervised approach.
Thus, it is a useful approach for probabilistic semi-supervised ordinal
regression problem.

Keywords: Gaussian processes, ordinal regression, semi-supervised
learning, annealing.

1 Introduction

We consider the problem of predicting variables of ordinal scale, a setting re-
ferred to as ordinal regression. These problems arise in many different domains
like Social Sciences, Bioinformatics and Information Retrieval. For example, a
user can label a retrieved document using one of the following categories: highly
relevant, relevant, average, irrelevant and highly irrelevant. There exists an or-
der among the labels, which makes the ordinal regression problems different
from classification problems. Further, the labels are discrete and not continuous,
unlike in the regression problems.

Although the problem of ordinal regression is well studied in Statistics [1,2,3],
there has been a surge of interest, in recent years, in solving this problem in a
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learning framework. The ordinal regression problem can be solved by treating it
as a regression problem after transforming the ordinal scales into numeric val-
ues [4], or by converting it into nested binary classification problems that encode
the ordering of the original ranks [5]. This solution strategy can be referred to as
a reduction framework. Alternatively, the problem can be solved directly using
machine learning algorithms like support vector machines (SVM) [6] or Gaussian
Processes (GP) [7].

In many practical applications, labeled data are scarce to obtain. For exam-
ple, in the domain of Bioinformatics, time consuming experiments and domain
knowledge (biological experts) are required to label the data. Thus, obtaining
the label information is expensive and time consuming. However, unlabeled data
are easily available and are present in abundance. Semi-supervised learning [8]
uses the unlabeled data along with the labeled data to learn better predictive
models. Many approaches have been developed for the semi-supervised learn-
ing of regression and classification tasks. These approaches are based on various
assumptions on the unlabeled data like clustering, smoothness or manifold [8].
They can be broadly classified as generative approaches, graph based approaches
and approaches implementing low-density separation [8]. There exists a rich lit-
erature on semi-supervised regression and classification. See [8] and the refer-
ences therein for more details. However, there is not much work reported in the
literature to solve semi-supervised ordinal regression problem.

Semi-supervised ordinal regression problems arise quite naturally in several
contexts. For instance, in recommendation systems, every user may rate only a
few items. Often, the labeled ordinal data are insufficient to learn a good ordi-
nal regression model. Most of the literature on ordinal regression [6,7,9,10,11,12]
focused on the supervised learning setting. Recently, transductive ordinal re-
gression (TOR) [13] approach was proposed to perform ordinal regression in a
semi-supervised setting. The approach uses the reduction framework to solve the
ordinal regression problem and learns the labels of the unlabeled examples and
the decision function iteratively. The approach can be used for a general class of
loss functions and was shown to give better performance than the approach which
used only labeled examples. Semi-supervised manifold ordinal regression [14] is a
new approach for semi-supervised ordinal regression for image ranking. This ap-
proach uses the assumption that is most appropriate for image analysis: the high
dimensional observations lie on or close to a low-dimensional manifold. However,
none of these approaches offer a solution to the semi-supervised ordinal regres-
sion problem in the Bayesian setting.

In the Bayesian setting, Bayesian committee machine [15] is one of the early
attempts to solve a transductive regression problem using Gaussian processes.
Though computationally expensive, it performs well on low noise data sets. Null
category noise model [16] provides a semi-supervised approach to Gaussian pro-
cess classification. A disadvantage of this approach is that the Gaussian ap-
proximation to the noise model can have negative variance. Semi-supervised
Gaussian process classifiers [17] use a graph based approach to learn semi-
supervised GP classifiers. It is based on using geometric properties of unlabeled
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data within globally defined kernel functions. It is extended to regression prob-
lems in [18]. They also propose a feedback mechanism in which the model is re-
trained by considering some unlabeled data and its predictions as labeled data.
The Archipelago model [19] presents a generative approach for semi-supervised
GP classification. It uses a GP to specify priors over label distribution and uses
it along with a base distribution to model data distribution. More closely related
to our work is the “Distribution Matching” approach for transductive regression
and classification [20]. This approach is designed for a large margin setting. In a
GP setting, similar ideas are used in [21] and [22] for transductive GP regression
and multi-category classification, respectively. However, none of these transduc-
tive or semi-supervised GP based approaches are extended to semi-supervised
ordinal regression problem.

Contributions: We propose a novel approach for semi-supervised ordinal re-
gression using Gaussian Processes. GPs are non-parametric Bayesian models and
provide a probabilistic kernel based approach for learning. Our method, here-
after abbreviated as SSGPOR, learns decision boundaries which pass through a
low density region. The proposed approach is based on the assumption that the
output distributions corresponding to labeled and unlabeled data are similar, a
well founded assumption explored in the transductive classification and regres-
sion settings [20]. The proposed approach models the similarity by minimizing
the Kullback-Leibler (KL) divergence between the predictive distribution over
the unlabeled data outputs and an approximate distribution . The approximate
distribution has properties similar to the labeled data output distribution. Ob-
taining the approximate distribution satisfying these properties is challenging.
Our approach involves solving two sub-problems iteratively: (1) We learn the
model by minimizing an upper bound on the negative logarithm of the evidence
and the KL divergence, (2) we estimate the approximate distribution efficiently
using the label switching method [23] that solves an underlying integer pro-
gramming problem. To avoid bad local minima that typically arise with the
unlabeled data in the semi-supervised setting, we use an annealing technique
where the contribution of the unlabeled loss term is gradually increased [24].

Our method can be seen as an extension of the supervised Gaussian process
ordinal regression approach using expectation propagation (EPGPOR) [7], to the
semi-supervised setting. The EPGPOR approach is among the state-of-the-art
approaches for ordinal regression. We compare the performance of the proposed
SSGPOR approach with the EPGPOR approach. The experiments on synthetic,
benchmark and real-world data sets show that, the performance of the EPGPOR
approach could be significantly improved using our method when unlabeled data
are available. It is also observed that the SSGPOR approach performs better
than the TOR approach [13] in the transductive setting. Large improvements
are observed on the absolute error metric than zero-one error metric. Note that
unlike classification problems where zero-one error is important, absolute error
metric is more meaningful in ordinal regression problems.

The rest of the paper is organized as follows. In Sect. 2, we introduce the
Gaussian process and discuss the Gaussian process ordinal regression approach
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using expectation propagation (EPGPOR). Section 3 discusses the proposed
approach, semi-supervised Gaussian process ordinal regression (SSGPOR), in
detail. Comparisons of the SSGPOR, EPGPOR and TOR approaches on syn-
thetic, benchmark and real-world data sets are presented in Sect. 4. Finally,
some conclusions are drawn in Sect. 5.

We use the following notations for the discussion ahead. Given a sample of
nl labeled independent examples Dl = (Xl,yl) = {(xi, yi)}nl

i=1 and nu unlabeled
independent examples Du = (Xu) = {(xi)}nu

i=1. Let D = Dl ∪ Du denote the set
of all training examples of size n (n = nl + nu). Let D∗ be the set consisting of
n∗ test data points X∗. We assume xi ∈ X ⊆ Rd and yi ∈ Y = {c1, c2, . . . , cr},
where c1 < c2 < . . . < cr. We consider an ordinal regression problem with r or-
dered categories and without loss of generality, we denote them by r consecutive
integers {1, 2, . . . , r}. Our goal is to learn a decision function h : X → Y from
both labeled and unlabeled data, such that it generalizes well on test data.

2 Background

A Gaussian process (GP) is a collection of random variables with the property
that the joint distribution of any finite subset of the variables is a Gaussian [25].
It generalizes the Gaussian distribution to infinitely many random variables.
The GP is used to define a prior distribution over latent functions underlying a
model. It is completely specified by a mean function and a covariance function.
The covariance function is defined over latent function values of a pair of input
examples and is typically evaluated using the Mercer kernel function over the
pair of input examples. The covariance function expresses some general proper-
ties of functions such as their smoothness, and length-scale. A commonly used
covariance function is the squared exponential (SE) or the Gaussian kernel

cov
(
ti, tj

)
= k(xi,xj) = exp(−κ

2
‖xi − xj‖2). (1)

Here ti = t(xi) and tj = t(xj) are latent function values associated with the
inputs xi and xj respectively. κ > 0 is the hyper-parameter associated with
the covariance function and ‖ · ‖ is the L2 norm. The latent function sampled
from a GP is denoted by t and in particular we denote the latent functions
associated with labeled data as tl, unlabeled data as tu and test data as t∗.
Let Kll = k(Xl, Xl), Kl∗ = k(Xl, X∗) and K∗∗ = k(X∗, X∗). Here k(Xl, X∗) is
an nl × n∗ matrix of covariances evaluated at all pairs of labeled training and
test input data. The matrices k(Xl, Xl), K(X∗, Xl) and K(X∗, X∗) are defined
similarly.

Gaussian Process Ordinal Regression: The Gaussian process ordinal re-
gression (GPOR) [7] approach uses a non Gaussian likelihood function for mod-
eling the ordinal labels. It uses a zero mean Gaussian process prior on the latent
function values t(x). Under noisy observations, for an input x, the likelihood
function for an ordinal output y is defined as

p(y|t(x)) = Φ
(by − t(x)

σ

)
− Φ

(by−1 − t(x)

σ

)
, (2)
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where σ is the standard deviation of the Gaussian noise and Φ is the Gaussian
cumulative distribution function i.e. Φ(z) =

∫ z

−∞N (δ; 0, 1)dδ. The thresholds
b0, b1, . . . , br ∈ R (b0 ≤ b1 ≤ . . . ≤ br where b0 = −∞ and br = ∞) are
fixed so that the likelihood function represents a valid probability distribution
over the ordinal outputs. The thresholds b1 ≤ b2 ≤ . . . ≤ br−1 divide a real
line into r contiguous intervals. A real latent function value is mapped to a
discrete ordinal output based on the interval in which it lies. The likelihood (2)
is not a Gaussian and therefore the posterior, p(tl|Dl), could not be obtained
in closed form. The GPOR approach works by approximating the posterior as
a Gaussian distribution using either Laplace approximation (MAPGPOR) or
using expectation propagation (EPGPOR).

Learning: The Expectation propagation (EP) [26] approach approximates
the posterior p(tl|Dl) ∝

∏nl

i=1 p(yi|ti)p(tl) as a product of Gaussian distri-
butions r(tl;h, A) =

∏nl

i=1 p̂(ti)p(tl), where p̂(ti) = si exp(− 1
2pi(ti − mi)

2),

A = (K−1
ll + Π)−1, and h = AΠm. Here, Π is a nl × nl diagonal matrix

with elements in the diagonal given by {pi}nl

i=1 and m is a nl dimensional col-
umn vector with elements given by {mi}nl

i=1. The parameters {si,mi, pi}nl
i=1 are

called the site parameters of the EP approximation. The site parameters are ob-
tained iteratively where in each iteration i, {si,mi, pi} are obtained by minimiz-
ing the Kullback-Leibler (KL) divergence [8], KL(r−i(ti)p(yi|ti) || r−i(ti)p̂(ti)).
Here r−i(ti) is the marginal cavity distribution over ti obtained after leaving out
the ith likelihood term p̂(yi|ti) from the approximated posterior r(tl) and then
marginalizing over the remaining variables.

The EPGPOR approach performs model selection by minimizing an upper
bound (F(θ)) on the negative logarithm of evidence (p(Dl|θ)) ,

argmin
θ

F(θ) = argmin
θ

−
nl∑
i=1

∫
r(ti;hi, Aii) log(φ(

byi − ti
σ

)− φ(
byi−1 − ti

σ
))dti

+
1

2
log|I +KllΠ |+

1

2
tr(I +KllΠ)−1

+
1

2
m�(Kll +Π−1)−1Kll(Kll +Π−1)−1m (3)

where θ is the model parameter vector which includes the kernel parameter κ
in the covariance function, the threshold parameters (b1, b2, . . . , br−1) and the
noise parameter σ in the likelihood function. Here, tr(B) denotes the trace of
the matrix B. The optimization can be done using any standard gradient based
techniques like conjugate gradient. During optimization, for every new model
parameter values, the site parameters and the approximated posterior r(tl) are
re-estimated using the EP approach.

Prediction: The learnt model parameters and the EP approximated posterior
are used to make predictions on test data. The predictive distribution of the
latent function t∗ for a test data x∗ is p(t∗|x∗,Dl) ∼ N(t∗;μ∗, σ

2
∗), where μ∗ =

K�
l∗(Kll + Π−1)−1m and σ2

∗ = K∗∗ − K�
l∗(Kll + Π−1)−1Kl∗. The predictive

distribution for test output is p(y∗|x∗,Dl) = φ
( by∗−μ∗√

σ2+σ2∗

)
− φ

( by∗−1−μ∗√
σ2+σ2∗

)
.
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The EPGPOR approach is a supervised approach. It does not perform well
when the size of the labeled data are small. In most of the practical scenarios,
labeled data are limited while unlabeled data are available in abundance. We
propose a semi-supervised approach which extends the EPGPOR approach to
a semi-supervised setting. The proposed approach make use of the unlabeled
data along with the labeled data to learn a better decision function than the
EPGPOR approach.

3 Semi-supervised Gaussian Process Ordinal Regression

The proposed approach, semi-supervised Gaussian process ordinal regression
(SSGPOR), is based on the idea of “Distribution Matching” [20,21,22] and is
derived by extending the transductive GP regression (TGPR) [21] approach to
the ordinal regression setting. The basic assumption is that the predictive distri-
bution on unlabeled data should have properties similar to the output distribu-
tion on labeled data. In particular, it requires the average number of examples
for an ordinal category in unlabeled data should match approximately with the
average number of examples for that category in labeled data. The assumption
is justified by the independent and identically distributed (i.i.d.) nature of the
data and is true for many real-world data sets [21]. The model parameters are
estimated subject to these assumptions. It results in distributions which are con-
sistent across labeled and unlabeled data. We now briefly describe the TGPR
approach and then explain the proposed approach in detail.

The TGPR approach [21] models the regression problem where the output
is real valued and the likelihood is a Gaussian. It considers a transductive set-
ting where the training data set is Dl ∪ Du and the designed GP model is used
to predict the labels of the examples in Du. The TGPR approach requires the
predictive Gaussian distribution over unlabeled data to be close to a family of
Gaussian distributions Q̂. The family Q̂ is such that the first and second mo-
ments of its members on unlabeled data are close to the corresponding moments
obtained using labeled data. The model parameters (θ̂) are obtained by minimiz-

ing the negative logarithm of evidence (p(Dl|θ̂)), subject to the constraint that

the predictive distribution over unlabeled data p(yu|Dl,Du, θ̂), belongs to the
approximating family Q̂. The constraint could be enforced by minimizing the
Kullback-Leibler (KL) divergence between p(yu|Dl,Du, θ̂) and some q̂ ∈ Q̂ [21].

The model parameters (θ̂) and q̂ ∈ Q̂ are estimated by solving the joint opti-
mization problem ;

argmin
q̂∈Q̂,θ̂

− log p(Dl|θ̂) + λ KL(q̂(yu)||p(yu|Dl,Du, θ̂)). (4)

Here, λ is a regularization parameter and for two distributions q and p, KL(q||p)
=
∫
q(y) log q(y)

p(y)dy. The parameters are obtained using an alternating optimiza-

tion approach [21].
It is not easy to extend the TGPR approach to the ordinal regression setting.

This is due to the nature of the labels and the likelihood. In ordinal regression,
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the labels are discrete and ordered. Further, the likelihood is non-Gaussian. Since
labels are discrete and ordered, we have to consider a discrete approximating
distribution. Because of the non-Gaussian nature of the likelihood, we have to
use approximation techniques like expectation propagation to obtain a Gaussian
approximated posterior [7]. The discrete nature of the labels results in an integer
programming problem which needs to be solved efficiently. We now give the
details of the proposed approach.

Proposed Approach: The SSGPOR approach considers the setting where
the training data set is Dl ∪ Du and the designed GP model is tested on D∗. It
uses the likelihood (2) and the expectation propagation approach [7], to obtain
a Gaussian approximation of the posterior distribution. The resulting predictive
distribution on an ordinal output yu of an unlabeled example xu ∈ Du is given
as

p(yu|xu,Dl) = φ

(
byu − μu√
σ2 + σ2

u

)
− φ

(
byu−1 − μu√
σ2 + σ2

u

)
, yu = 1, . . . , r (5)

where μu = K�
lu(Kll +Π−1)−1m and σ2

u = Kuu −K�
lu(Kll +Π−1)−1Klu.

The SSGPOR approach requires the predictive distribution (5) over
the unlabeled data to have some properties similar to the output distribution
over the labeled data. We achieve this by considering an approximate distri-
bution over the unlabeled data output with properties similar to the labeled
data output distribution, and constrain the predictive distribution to be close
to the approximate distribution. Since outputs are discrete in the ordinal re-
gression setting, the approximate distribution takes the form of a multinomial
distribution. In particular, we consider a multinomial distribution with r cate-
gories such that probability of success, pj , for each category is defined by the
average number of examples of that category in labeled data, i.e. pj = γj ,
where γj = 1

nl

∑nl

i=1 I(yi = j) (I(·) is an Indicator function). We define a
label matrix q of size nu × r, where each row qi is an i.i.d. random vector
following the multinomial distribution for a single trial and provides a label
for the ith unlabeled example. The ith unlabeled example is assigned a label
j, if qij = 1. We have qij ∈ {0, 1} and

∑r
j=1 qij = 1 ∀ i = 1, . . . , nu. Also,

q satisfies the label constraints 1
nu

∑nu

i=1 qij = γj ∀ j = 1, . . . , r, which en-
sures that the distribution over the unlabeled data are similar to the labeled
data distribution. The label constraints are important in a semi-supervised set-
ting as they avoid trivial solutions like assigning all unlabeled data to a sin-
gle category [8]. Let Q be the set of all q satisfying all these constraints, i.e.
Q = {q : q ∈ {0, 1}nu×r,

∑r
j=1 qij = 1 ∀ i, 1

nu

∑nu

i=1 qij = γj ∀ j}. The SSG-
POR approach requires the predictive distribution over all the unlabeled data
p(yu|Dl,Du) to be close enough to some q ∈ Q. This can be achieved by mini-
mizing the KL-divergence between q and p(yu|Dl,Du). Since obtaining the joint
distribution p(yu|Dl,Du) is difficult, we instead minimize the sum of the KL
divergence between qu and p(yu|xu,Dl) over all unlabeled examples.

Objective Function: The SSGPOR approach estimates the model parameters
θ = (b1, b2, . . . , br−1, κ, σ) and q ∈ Q, by minimizing the upper bound on the
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negative logarithm of evidence (3) and the sum of the KL-divergences over all
unlabeled data. It results in the following joint optimization problem;

argmin
q∈Q,θ

F(θ) + λ

nu∑
i=1

KL(qi||p(yi|xi,Dl, θ)). (6)

Here, the variable λ serves as a regularization parameter determining the impor-
tance that should be given to the unlabeled data term. The model parameters
θ and q are obtained by an alternating optimization approach. It is an iterative
approach, where in each iteration, we first solve the model parameters keeping
q fixed. Then, we estimate q ∈ Q keeping the model parameters fixed.

Alternating Optimization
(i) Estimating θ For a fixed q, the model parameters (θ) are obtained as

argmin
θ

1

nl
F(θ) − λ

1

nu

nu∑
i=1

KL(qi||p(yi|xi,Dl, θ))

= argmin
b1,...,br,σ2,κ

− 1

nl

nl∑
i=1

∫
r(ti;hi, Aii) log(φ(

byi − ti
σ

)− φ(
byi−1 − ti

σ
))dti

−λ 1

nu

nu∑
i=1

r∑
j=1

qij log(φ(
bj − μi√
σ2 + σ2

i

)− φ(
bj−1 − μi√
σ2 + σ2

i

)) +
1

2
log|I +KllΠ |

+
1

2
tr((I +KllΠ)−1) +

1

2
m�(Kll +Π−1)−1Kll(Kll +Π−1)−1m

s.t. b1 ≤ . . . ≤ br (7)

This problem can be converted to an unconstrained optimization problem and
can be solved using any standard optimization technique like conjugate gradient.
During optimization, the site parameters and the approximated posterior r(tl)
are re-estimated using the EP approach.

(ii) Estimating q For fixed model parameters, q is estimated by minimiz-
ing the sum of the KL-divergences over all the unlabeled data subject to the
constraint that q ∈ Q. It results in the following optimization problem.

argmin
q∈{0,1}nu×r

−
nu∑
i=1

r∑
j=1

qij log(φ(
bj − μi√
(σ2 + σ2

i )
)− φ(

bj−1 − μi√
(σ2 + σ2

i )
))

s.t.
1

nu

nu∑
i=1

qij = γj ∀j = 1, . . . , r ,

r∑
j=1

qij = 1 ∀i = 1, . . . , nu (8)

Estimation of q is a binary integer programming problem and is done efficiently
using the label switching algorithm [23].

We now discuss the proposed SSGPOR algorithm to solve (6) in detail.

Algorithm: The SSGPOR algorithm (Algorithm 1) consists of two parts: (i)
initialization part (steps 2 and 3) and (ii) iterative part (steps 4–9).
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The initialization of model parameters θ (step 2) is done by solving the super-
vised learning problemusing the EPGPORapproach on labeled data,Dl. It is then
used to initialize the label matrix q (step 3) so that constraints are satisfied. This
is done as follows. The initialized model parameters are used to find the prediction
probability (5) for every category of unlabeled data. For every category, the unla-
beled data examples are ranked based on the descending order of their prediction
probability for that category. Starting from category 1 to r, the top ranked unla-
beled data examples are assigned to the respective categories such that the num-
ber of examples assigned to each category does not exceed the expected number
(nu×γj). Care should be taken to remove examples from the sorted list correspond-
ing to other categories, once they have been assigned to a particular category.

The iterative part of the algorithm corresponds to solving the problem (6) for
different values of the regularization parameter λ. To avoid drastic switching of
the labels in q, λ is varied from a small value to a final value 1 in annealing steps.
That is, little importance is given to the unlabeled examples in the beginning
(λ = 10−3) and the importance of the unlabeled examples is increased gradually
as λ is increased. This helps the algorithm to avoid poor local minima and achieve
better performance. Step 4 of Algorithm 1 corresponds to this outer loop.

The inner loop (steps 5–8) does alternating minimization of θ and q in (6), for
a given λ. In particular, optimization of θ (or q) for a fixed q (or θ) corresponds
to solving (7) (or (8)). This alternating minimization procedure is repeated until
no label switching happens. Algorithm 1 can be made more efficient by ensuring
that steps 6 and 7 use the most recent θ and q as the starting points. For
step 6, we employed the standard conjugate gradient method to solve (7), by
converting it to an unconstrained optimization problem. For step 7, the label
switching algorithm [23] was used.

The label switching algorithm assumes that the constraints are satisfied ini-
tially. It then proceeds by switching the labels of a pair of examples from two
consecutive categories if the objective function decreases after such switching.
The algorithm greedily performs as many such switches as possible for every con-
secutive categories. The pairwise switching of labels ensures that the constraints
are satisfied throughout the label switching algorithm. The algorithm converges
after a few iterations and the overall cost is proportional to O(nur).

Algorithm 1. SSGPOR Algorithm

1: procedure SSGPOR(Dl, Du)
2: Initialize θ by solving (3).
3: Initialize the label matrix q.
4: for λ = {10−3, 3× 10−3, 10−2, 3× 10−2, 10−1, 3× 10−1, 1} do
5: repeat
6: Estimate θ by solving the optimization problem (7) for fixed q.
7: Estimate q by solving the optimization problem (8) for fixed θ.
8: until q is unchanged during step 7
9: end for
10: return θ
11: end procedure
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4 Experimental Results

We perform experiments on synthetic, benchmark and real-world data sets to
compare the performance of the proposed SSGPOR approach (in the semi-
supervised setting) with the EPGPOR approach. The EPGPOR approach is a
supervised approach and does not use unlabeled data. We also compare the SS-
GPOR approach with the transductive ordinal regression (TOR) [13] approach.
For brevity, we refer to these approaches as EPGPOR, SSGPOR and TOR. TOR
used a transductive setting and therefore, for fair comparison, we also used SS-
GPOR in the transductive setting. The SSGPOR and EPGPOR approaches use
the Gaussian kernel (1) in all the experiments. First, we conduct experiments on
a synthetic data set to visualize the decision boundaries obtained using EPG-
POR and SSGPOR. The generalization performance of the models is studied
on several benchmark data sets. Finally, the effectiveness of SSGPOR is demon-
strated on a real-world sentiment data set.

The generalization performance is compared using two metrics, zero-one error
and absolute error [7]. Let the actual test outputs be {y1, . . . , yn∗} and the
predicted test outputs be {ŷ1, . . . , ŷn∗}. Then the zero-one error and absolute
error are defined as follows.

zero-one error gives the fraction of incorrect predictions on test data i.e.
1
n∗

∑n∗
i=1 I(ŷi �= yi), where I(·) is an indicator function.

absolute error gives the average deviation of predicted outputs from the actual
outputs i.e. 1

n∗

∑n∗
i=1 |ŷi − yi|, where | · | denotes the absolute function.

Ordinal regression problems require the predicted category to be close enough
to the actual category. The absolute error captures this and hence, it is more
meaningful than the zero-one error for ordinal regression problems. One prefers
approaches with low zero-one and absolute errors.

Synthetic Data: We conduct experiments on a two dimensional synthetic data
set to visualize the decision boundaries obtained using EPGPOR and SSGPOR.
The data set consists of three ordinal categories with 10 labeled examples and
100 unlabeled examples in each category. The labeled and unlabeled data for
each category were generated from a Gaussian distribution with different mean
and covariance. We consider two synthetic data sets. In the first, the labeled data
distribution is similar to the unlabeled data distribution while in the second, they
are different. The decision boundaries obtained using SSGPOR and EPGPOR
for the two data sets are depicted in Fig. 1a and Fig. 1b. The decision boundary
is the predictive mean value indexed by the thresholds. Table 1 provides the
zero-one and absolute errors on the unlabeled data using EPGOR and SSGPOR
for both the synthetic data sets. The zero-one and absolute errors are the same
in this experiment because error occurred only between the neighboring classes.

In Fig. 1a, where labeled and unlabeled data distributions are similar, both
SSGPOR and EPGPOR are able to learn decision boundaries passing through
a low density region. In Fig. 1b, where the labeled data distribution differs from
the unlabeled data distribution, SSGPOR learns a better decision boundary
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(a) Labeled data distribution similar to unla-
beled data distribution

(b) Labeled data distribution not similar to
unlabeled data distribution

Fig. 1. The decision boundaries obtained with SSGPOR and EPGPOR on a 2-
dimensional synthetic data set with 3 ordinal categories

Table 1. Zero-one and absolute errors on the synthetic dataset using EPGPOR and
SSGPOR. The numbers in bold face style indicate the best results.

distributions similar distributions different

Method zero-one absolute zero-one absolute

EPGPOR 0.0456 0.0456 0.1489 0.1489

SSGPOR 0.0267 0.0267 0.0733 0.0733

than EPGPOR. The unlabeled data help SSGPOR to shift its decision boundary
towards a region of low data density. From Table 1, we observe that in either
cases, SSGPOR gives lower errors than EPGPOR. It is important to note that
the increase in the error is significantly higher (∼ 10%) for EPGPOR compared
to SSGPOR (∼ 5%). This corroborates well with the observation that effective
decision boundary is learnt by SSGPOR using unlabeled data.

Benchmark Data: We conduct experiments on benchmark data sets to study
the generalization performance of the proposed SSGPOR approach. The exper-
iments are conducted on six benchmark data sets [7] with varying sizes. The
properties of these benchmark data sets are summarized in Table 2. These are
regression data sets. The continuous target values are discretized into ordinal
values using equal frequency binning. For each data set, we discretize the target
values in the original data set into 5 ordinal categories. Each data set is ran-
domly partitioned into training and test data sets as mentioned in Table 2. We
generate 10 such training and test data set instances by repeated independent
partitioning. For each data set, zero-one and absolute errors are obtained on all
the 10 instances of training and test data sets. The mean of the zero-one and
absolute errors, along with their standard deviation, are used to compare the
performance of the approaches.

Semi-supervised Setting: Figures 2 and 3 provide a comparison of SSGPOR
and EPGPOR on the benchmark data sets using mean zero-one error and mean
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Table 2. Benchmark data sets and their properties

Data sets Boston StocksAbaloneBankCaliforniaCensus

Attributes 13 9 8 32 8 16

Training Instances 300 600 1000 2000 3000 4000

Test Instances 206 350 3177 6192 17,640 18,784

(a) Boston housing (b) Stocks domain (c) Abalone

(d) Bank (e) California (f) Census

Fig. 2. Comparison of SSGPOR and EPGPOR using mean zero-one error on varying
the fraction of labeled examples. Error bars denote the standard deviation.

absolute error, respectively. Here, a fraction of the training data acts as labeled
data and the rest as unlabeled data. For each benchmark data set, we plot
the performance of the approaches as we vary the fraction of labeled data. We
also plot the performance that can be obtained using EPGOR when the entire
training set is used as the labeled data, and is denoted as EPGPORfull.

We observe from Fig. 2 and Fig. 3 that SSGPOR performs better than EPG-
POR for both zero-one and absolute errors. The improvement in performance
is higher when the fraction of labeled data are small. As we increase the frac-
tion of labeled data, the improvement in performance decreases, and both the
approaches start giving similar results. Eventually, the performance of both the
approaches converges to the case of using full training data as the labeled data
set. We observe that the improvement in performance is greater for the absolute
error than for the zero-one error. That is, the labels predicted by SSGPOR are
more closer to the true labels, as one would desire in an ordinal regression prob-
lem. SSGPOR gives better results on large data sets like California and Census,
than on small data sets. This is due to the availability of more unlabeled data
in large data sets. SSGPOR is thus able to make effective use of unlabeled data
to improve the generalization performance on benchmark data sets.
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(a) Boston housing (b) Stocks domain (c) Abalone

(d) Bank (e) California (f) Census

Fig. 3. Comparison of SSGPOR and EPGPOR using mean absolute error on varying
the fraction of labeled examples. Error bars denote the standard deviation.

Table 3. T-test statistic computed with respect zero-one and absolute errors for dif-
ferent datasets for the smallest fraction of labeled examples. We use the bold face style
to indicate the cases for which the t-test statistic is greater than the critical value.

Error Boston Stocks Abalone Bank California Census

Zero-one 1.83312.9394 1.0179 2.2251 4.4971 2.4149

Absolute2.31414.0553 3.4269 3.2525 4.8434 2.9454

Statistical Significance Test: We use the paired t-test [27] to check if the pro-
posed SSGPOR performs significantly better than EPGPOR. For each data set,
we compute the t-test statistic with respect to zero-one and absolute errors for the
smallest fraction of labeled data. The errors are obtained on 10 instances of train-
ing and test data sets. The null hypothesis is that both SSGPOR and EPGPOR
have similar performance. Under the null hypothesis, the t-test statistic follows
the Student’s t-distribution with 9 degrees of freedom1. For the confidence level of
95% and degrees of freedom 9, critical value for the one-sided t-test is 1.833. We
reject the null hypothesis if the computed t-test statistic is greater than the critical
value. Table 3 reports the t-test statistic computed for each dataset. FromTable 3,
we observe that the computed t-statistic with respect to zero-one error is greater
than the critical value for all datasets except for the Abalone data set.With respect
to absolute error, it is greater than the critical value for all the data sets. Therefore,
the performance of SSGPOR is significantly better than that of EPGPOR and is
a better approach than EPGPOR to perform semi-supervised ordinal regression.

1 Under null hypothesis t-statistic follows the Student’s t-distribution with s−1 degrees
of freedom, where s is the sample size.
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Table 4. Comparison of SSGPOR and EPGPOR in the transductive setting for dif-
ferent labeled data sizes. The numbers in bold face style indicate the best results.

50 labeled examples 100 labeled examples

zero-one error absolute error zero-one error absolute error

Data EPGPORSSGPOREPGPORSSGPOREPGPORSSGPOREPGPORSSGPOR

Boston 0.3860 0.3816 0.4656 0.4498 0.3590 0.3538 0.4192 0.4039

Stocks 0.2732 0.2503 0.2894 0.2669 0.2079 0.1977 0.2165 0.2059

Abalone 0.5764 0.5643 0.8834 0.7947 0.5453 0.5407 0.7781 0.7378

Bank 0.6626 0.6571 1.1657 1.0287 0.6130 0.6091 0.9358 0.8756

California 0.5253 0.5141 0.6998 0.6649 0.4976 0.4934 0.6331 0.6201

Census 0.5837 0.5823 0.9028 0.8566 0.5553 0.5540 0.8215 0.7822

Table 5. Comparison of EPGPOR, SSGPOR and TOR when labeled data size is 100.
The numbers in bold face style indicate the best results.

zero-one error absolute error

Data EPGPORSSGPOR TOR EPGPORSSGPOR TOR

Abalone 0.5453 0.5407 0.5420 0.7781 0.7378 0.7700

Bank 0.6130 0.6091 0.6220 0.9358 0.8756 0.9200

California 0.4976 0.4934 0.5200 0.6331 0.6201 0.6750

Census 0.5553 0.5540 0.5700 0.8215 0.7822 0.7900

Transductive Setting: We conduct experiments to study the performance
of the proposed approach in a transductive setting. Here, we assume the unla-
beled test examples are available at the time of training. The experiments are
conducted on all the data sets. The mean zero-one and absolute errors (over
20 independent partitions of training and test data), when labeled data sizes
are 50 and 100, are given in Table 4. Transductive setting experiments show a
similar behavior as that of the semi-supervised setting. Comparison with EPG-
POR shows that the improvement in performance is higher when the fraction of
labeled data are small and the improvement decreases with more labeled data.
Again, we observe that the improvements are larger for the absolute error than
for the zero-one error.

Comparison with TOR [13]: The transductive setting experiments provide
us an opportunity to compare EPGPOR and SSGPOR with TOR. We note
that TOR uses a Perceptron kernel [13]. Table 5 compares the mean zero-one
and absolute errors obtained for EPGPOR and SSGPOR with the reported
TOR results [13] on Abalone, Bank, California and Census data sets, when the
labeled data size is fixed to 100. We observe that the performance of EPGPOR
is comparable with that of TOR whereas, SSGPOR performs better than TOR.
Also, we get the predictive probability information using SSGPOR unlike TOR.

Sentiment Data: We conduct experiments on real-world sentiment data
sets2. The data sets consist of reviews and ratings of users on products at

2 http://www.cs.jhu.edu/~mdredze/datasets/sentiment/

http://www.cs.jhu.edu/~mdredze/datasets/sentiment/
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Table 6. Mean zero one and absolute errors on the sentiment data when labeled data
size is 100. The numbers in bold face style indicate the best results.

zero-one error absolute error

Data EPGPOR SSGPOR EPGPOR SSGPOR

Book 0.7385 0.6546 1.3022 0.9424

Kitchen 0.7266 0.6547 1.2370 0.9642

Dvd 0.7276 0.6476 1.1558 0.9288

Electronics 0.7327 0.6613 1.3714 0.9696

Amazon.com [13]. The task is to predict the rating of a user review on a scale of
1 to 5. We consider four categories of products, Book, Kitchen, Dvd and Elec-
tronics. The data sets are preprocessed and the best 1000 words are selected
based on the tf-idf value to form the feature vector. The data sets consist of
around 5000 samples. We conduct the transductive setting experiments on the
data sets with the labeled data size as 100. Table 6 reports the mean zero one
and mean absolute errors obtained using SSGPOR and EPGPOR for the data
sets. We observe that SSGPOR significantly boosts the performance with the
additional unlabeled data, on the sentiment data sets.

5 Conclusion

In this work, we proposed an approach to perform ordinal regression using
Gaussian processes in a semi-supervised setting. A semi-supervised approach to
ordinal regression is important as it is expensive to obtain labeled data, whereas
unlabeled data are easily available. The proposed approach, semi-supervised
Gaussian process ordinal regression (SSGPOR), was based on the assumption
that the distribution on unlabeled data is similar to that on labeled data. The
approach used an alternating optimization method to learn the model param-
eters and the label matrix. The label matrix was learnt efficiently using the
label switching algorithm. Experimental results on synthetic, benchmark and
real-world data sets showed that the SSGPOR approach performed better than
the supervised EPGPOR approach and the TOR approach. Thus, it is a useful
approach for semi-supervised ordinal regression.
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Abstract. A variety of graph-based semi-supervised learning (SSL) al-
gorithms and graph construction methods have been proposed in the last
few years. Despite their apparent empirical success, the field of SSL lacks
a detailed study that empirically evaluates the influence of graph cons-
truction on SSL. In this paper we provide such an experimental study.
We combine a variety of graph construction methods as well as a vari-
ety of graph-based SSL algorithms and empirically compare them on a
number of benchmark data sets widely used in the SSL literature. The
empirical evaluation proposed in this paper is subdivided into four parts:
(1) best case analysis; (2) classifiers’ stability evaluation; (3) influence of
graph construction; and (4) influence of regularization parameters. The
purpose of our experiments is to evaluate the trade-off between classifi-
cation performance and stability of the SSL algorithms on a variety of
graph construction methods and parameter values. The obtained results
show that the mutual k-nearest neighbors (mutKNN) graph may be the
best choice for adjacency graph construction while the RBF kernel may
be the best choice for weighted matrix generation. In addition, mutKNN
tends to generate smoother error surfaces than other adjacency graph
construction methods. However, mutKNN is unstable for a relatively
small value of k. Our results indicate that the classification performance
of the graph-based SSL algorithms are heavily influenced by the parame-
ters setting and we found no evident explorable pattern to relay to future
practitioners. We discuss the consequences of such instability in research
and practice.

Keywords: Semi-supervised learning, graph-based methods, experi-
mental study, classification.

1 Introduction

Semi-supervised learning (SSL) has gained increased attention in the last few
years [3,15]. Among all SSL algorithms, graph-based methods are widely used
because the weighted graph may approximate the low dimensional manifold in
which the data should lie. The research community has proposed a variety of
graph-based SSL algorithms [1,8,14,16] as well as a variety of graph construction
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methods [5,8,13]. Despite its increasing popularity, the SSL literature lacks a
comprehensive and unbiased empirical study that shows the influence that graph
construction methods have in both classification performance and stability of the
graph-based SSL algorithms.

1.1 Contributions

In this paper, we provide a detailed empirical comparison of the state-of-the-
art, graph-based SSL algorithms combined with a variety of graph construction
methods. The empirical analysis proposed in this paper is subdivided into four
parts as follows:

Best case analysis. We evaluate the best error rates of each combination of
SSL algorithm and graph construction method for a number of sparsification
parameter values. Although this is the most common approach to evaluate
SSL algorithms in the literature [3], this empirical setting alone may not
provide all the necessary information to choose the best classifiers for real
applications. For instance, stable classifiers may be preferable over classifiers
which are able to provide excellent performance for a very narrow range of
parameter values and mediocre performance for the remaining values;

Classifiers’ stability evaluation. We evaluate the stability of the SSL algo-
rithms combined with the graph construction methods as we vary the value
of the sparsification parameter. As we mentioned before, this analysis is im-
portant because a classifier may achieve the best overall classification perfor-
mance for a very narrow range of the parameter values. Then, this analysis
is an invaluable tool to identify which classifiers provide a good trade-off
between classification performance and stability;

Influence of graph construction. We also evaluate the graph construction
methods combined with the SSL algorithms over a wide range of sparsifica-
tion parameter values. We want to verify: (1) how the graph construction
methods affect the classification performance of each SSL algorithm and (2)
the stability of the graph construction methods as we vary the sparsifica-
tion parameter values. For the classifiers that have at least one regulari-
zation parameter, we fixed the regularization parameter(s) with the value
that achieved the best average error rate and then varied the sparsification
parameter value;

Influence of regularization parameters. We evaluate the error surfaces ge-
nerated by the SSL algorithms that have regularization parameters. We first
chose the sparsification parameter that achieved the best average error rate
and then we varied the regularization parameters of the SSL algorithms.

The obtained results show that the mutual k-nearest neighbors (mutKNN)
graph may be the best choice for adjacency graph construction while the RBF
kernel may be the best choice for weighted matrix generation. In addition,
mutKNN tends to generate smoother error surfaces than other adjacency graph
construction methods. However, mutKNN is unstable for a relatively small value
of k.
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Our results indicate that the classification performance of the graph-based
SSL algorithms are heavily influenced by internal parameters (such as regulariza-
tion parameters) and external parameters (such as the number of neighbors in a
k-nearest neighbor graph). Such variability showed no evident explorable pattern
to relay to future practitioners. In addition, the SSL assumption that only a
very restricted set of labeled examples exists may make parameter estimation
techniques commonly used in classification unfeasible.

We believe that our results have two major consequences:

For practitioners. Given a data set, it is difficult to recommend an SSL algo-
rithm, a graph sparsification parameter value or a regularization parameter
value that is expected to provide good classification performance. As the
number of labeled examples is usually very restricted in SSL applications,
the practitioner has no tools to make an informed choice of these parameter
values. As we will show, an incorrect choice of the parameter values may
seriously affect the classification results;

For researchers. Changes in the parameter values also cause changes in the
relative ranking among the classifiers. It means that for a specific data set
several methods may figure as the best classifier for a certain range of pa-
rameter values. This is a serious issue since the empirical evidence that one
method outperforms the competitors might be confirmed only for a restricted
set of the parameter values. In addition, this performance variability may
hinder the reproduction of the experimental results for papers that do not
clearly report every parameter value used in the empirical evaluation.

1.2 Outline

The remainder of this paper is organized as follows. Section 2 describes the no-
tation used throughout the paper and revises the graph construction methods.
Section 3 revises the state-of-the-art, graph-based SSL algorithms. Section 4
empirically evaluates the graph construction methods combined with the graph-
based SSL algorithms. Finally, Section 5 concludes the paper and suggests di-
rections for future research.

2 Graph Construction

In this section we revise widely used methods to generate sparse weighted graphs,
which are frequently considered the heart of graph-based SSL [15]. Section 2.1
describes the notation used throughout the paper. Section 2.2 revises approaches
used to generate a sparse undirected1 graph (or adjacency matrix) from the trai-
ning sample. Section 2.3 revises approaches used to generate a weighted matrix
from the sparse graph.

1 This paper focus on undirected graphs, which are commonly used in SSL [15].



Influence of Graph Construction on Semi-supervised Learning 163

2.1 Notation and Preliminaries

Consider a training sample X := {x i}ni=1 ⊂ Rd in which the first l examples are
labeled, i.e., x i has label yi ∈ Nc where Np := {i ∈ N∗|1 ≤ i ≤ p} with p ∈ N∗

and c being the number of classes. Let u := n − l be the amount of unlabeled
examples and Y ∈ Bn×c be a label matrix in which Yij = 1 if and only if x i

has label yi = j. Consider an undirected graph G := (X , E) in which each x i is
a node of G. Let Ni ⊂ X be the set of neighbors of x i and x ik the k-th nearest
neighbor of x i. In order to generate a sparse weighted matrix W ∈ Rn×n from
G one uses a similarity function K : Rd × Rd �→ R to compute the weights Wij .

The graph Laplacians are important tools for machine learning. The combi-
natorial Laplacian is defined by Δ := D−W where D := diag(W1n) such that
1n is an n-dimensional 1-entry vector. The normalized Laplacian is defined by
L := In −D−1/2WD−1/2 where In is the n-by-n identity matrix.

All matrices can be subdivided into labeled and unlabeled submatrices. Let
F ∈ Rn×c be the output of a given graph-based SSL algorithm. The F and Y
matrices are subdivided into two submatrices while all others are subdivided
into four submatrices. For instance:

W :=

[
WLL WLU
WUL WUU

]
Y :=

[
YL
YU

]
where WLL ∈ Rl×l and YL ∈ Bl×c are the submatrices of W and Y, respecti-
vely, on labeled examples, and so on. By definition, YU is an u× c null matrix.
This paper focus on the multi-class problem; hence, YL1c = 1l.

2.2 Adjacency Graph Construction

The adjacency graph construction process generates a graph G (or adjacency
matrix A) from X using a distance function Ψ : Rd × Rd �→ R. Let Ψ ∈ Rn×n

be a distance matrix in which Ψ ij := Ψ(x i, x j) and A ∈ Bn×n be an adjacency
matrix2 in which Aij = 1 if and only if xj ∈ Ni. We now describe the two most
used adjacency graph construction methods for graph-based learning.

ε-neighborhood (εN). There exists an undirected edge between x i and x j in
an εN graph if and only if Ψ(x i, x j) ≤ ε where ε ∈ R∗

+ is a free parameter. In
general, εN graphs are not widely used in practical situations because they
can generate graphs with many disconnected components for an improper
value of ε. Due to this fact, we did not use the εN graph in our experiments.

k-nearest neighbors (kNN). There exists an edge from x i to x j if and only
if x j is one of the k closest examples of x i. Because the adjacency matrix of
a kNN graph may not be symmetric, three strategies are commonly used to
symmetrize it: mutual kNN (mutKNN), which generates Â = min

(
A,A�);

symmetric kNN (symKNN), which generates Â = max
(
A,A�); and sym-

metry-favored kNN (symFKNN) [8], which generates Â = A +A� (a non-
binary adjacency matrix).

2 Non-binary adjacency matrices may also be applied.
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2.3 Weighted Matrix Generation

Given an adjacency matrix A, we generate a sparse weighted matrix W using a
similarity function K : Rd ×Rd �→ R. We describe three widely used approaches
to generate W. Two of them, RBF kernel and similarity function of Hein &
Maier [5], define the W matrix using the relation Wij = AijK(x i, x j). The
third approach, based on local reconstruction minimization [13], generates a
sparse weighted matrix W, not necessarily symmetric, without an explicit K.

RBF kernel. The RBF (or Gaussian) kernel computes the similarity between
x i and x j by K(x i, x j) := exp

(
−Ψ2(x i, x j)/

(
2σ2

))
in which σ ∈ R∗

+ is the
kernel bandwidth parameter.

Similarity function of Hein & Maier [5] (HM). Given a function ψ(·, ·) in
which ψ(x i, k) := Ψ(x i, x ik) with k ∈ N∗, the HM similarity function is de-

fined by K(x i, x j) := exp
(
−Ψ2(x i, x j)/ (max {ψ(x i, k), ψ(x j , k)})2

)
. This

is an RBF kernel with an adaptive kernel size.
Local Linear Embedding (LLE). The LLE approach [13] generates the W

matrix by solving the following optimization problem:

min
W∈Rn×n

n∑
i=1

∥∥∥∥∥∥x i −
∑

xj∈Ni

Wijx j

∥∥∥∥∥∥
2

2

s.t. W1n = 1n, W ≥ 0 (1)

The symbol ‖·‖2 represents the l2-norm.

3 Label Diffusion

Given a weighted matrix W, a graph-based SSL algorithm uses W and the label
matrix Y to generate the output matrix F by label diffusion in the weighted
graph. We now revise the state-of-the-art graph-based SSL algorithms used in
our empirical comparison. We should note that these algorithms have an intrinsic
condition to classify all unlabeled examples in X , which frequently is not explicit
in the literature. Assumption 1 describes this condition.

Assumption 1. Each unlabeled example is on a connected subgraph in which
there exists at least one labeled example.

Gaussian Random Fields (GRF). The GRF algorithm [16] solves the opti-
mization problem F = argminF∈Rn×c tr

(
F�ΔF

)
s.t. FL = YL, which gives

the closed-form solution FU = −Δ−1
UUΔULYL.

Local and Global Consistency (LGC). The LGC algorithm [14] solves the
optimization problem F = argminF∈Rn×c tr

(
F�LF+ μ(F−Y)�(F−Y)

)
,

which gives the closed-form solution F = (In + L/μ)
−1

Y.
Laplacian Regularized Least Squares (LapRLS). The LapRLS algorithm

[1] minimizes the following regularization framework:

min
f∈HK

1

l

l∑
i=1

V(x i, yi, f) + γA‖f‖HK + γIf
�Δf (2)
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where V(x i, yi, f) = (yi − f(x i))
2, HK is the Reproducing Kernel Hilbert

Space (RKHS ) for the kernel K, f := [f(x 1), · · · , f(xn)]
� ∈ Rn, ‖·‖HK

is the norm in HK, and γA and γI are the regularization parameters. Let
y := [y1, · · · , yl, 0, · · · , 0] ∈ Rn be the label vector in which yi ∈ {−1,+1}
and K ∈ Rn×n a gram matrix such that Kij := K(x i, x j). Due to the
Representer Theorem in [1], the solution of (2) can be written as an ex-
pansion of kernel functions over both labeled and unlabeled examples, i.e.,
f(x ) =

∑n
i=1K(x , x i)αi with α ∈ Rn. Solving (2) using this expansion, we

get α = (JK+ γAlIn + γI lΔK)−1 y where J := diag
(
[1, · · · , 1, 0, · · · , 0]�

)
whose first l diagonal entries are 1 and the rest 0.

Laplacian Support Vector Machine (LapSVM). The LapSVM algorithm
[1] minimizes the problem in (2) with V(x i, yi, f) = max(0, 1 − yif(x i)).
Solving (2) using the expansion f(x ) =

∑n
i=1K(x , x i)αi, we get the solution

α = 1
2 (γAIn + γIΔK)−1 J

�
Yβ∗ where J := [ Il Ol×u ] such that Ol×u is

an l × u null matrix, Y := diag
(
[y1, · · · , yl]�

)
, and β∗ ∈ Rl is given by

β∗ = argmin
β∈Rl

1�
l β −

1

2
β�Qβ s.t. y�β = 0, 0 ≤ β ≤ 1

l

such that Q = 1
2Y JK (γAIn + γIΔK)

−1
J
�
Y.

Robust Multi-class Graph Transduction (RMGT). The RMGT
algorithm [8] solves the convex optimization problem F =
argminF∈Rn×c tr

(
F�ΔF

)
s.t. FL = YL, F1c = 1n, F�1n = nω

where ω ∈ Rc is the class prior probabilities. The solution of this
optimization problem is given by:

FU = −Δ−1
UUΔULYL +

Δ−1
UU1u

1�
uΔ

−1
UU1u

(
nω� − 1�

l YL + 1�
uΔ

−1
UUΔULYL

)
4 Experimental Evaluation

In this section we provide a detailed empirical comparison of the graph-based SSL
algorithms described in Section 3 combined with the graph construction methods
described in Section 2 on a number of benchmark data sets. The objective of
these experiments is to evaluate the influence that graph construction methods
have in the classifiers’ performance. We performed experiments in a transductive
setting using different sets of labeled and unlabeled examples in each execution.

For a fair comparison and ease of reproducibility, we used the source code of
the authors of the algorithms when possible. As some authors implemented their
methods in Matlab, we used the matlabcontrol3 library to link the Matlab code
and Java. Due to reasons concerning reproducibility, all source codes and data
sets used in our experiments are freely available4.

3 https://code.google.com/p/matlabcontrol/downloads/list
4 http://www.icmc.usp.br/~gbatista/ECML2013

https://code.google.com/p/matlabcontrol/downloads/list
http://www.icmc.usp.br/~gbatista/ECML2013
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4.1 Data Sets

We used in our experiments the USPS, COIL2, DIGIT-1, G-241C, G-241N, and
TEXT data sets. These data sets are freely available5 and very popular in the SSL
literature [3]. USPS and DIGIT-1 are data sets for digit recognition, TEXT is a
data set for text classification, G-241N and G-241C are data sets for classification
of Gaussian distributions, and COIL2 is a data set for image classification. We
used the data splits of 10 labeled examples suggested in [3].

We run principal component analysis (PCA) to reduce the dimensionality of
the data sets. In high-dimensional data, the distance to the nearest neighbor
approaches the distance of the farthest neighbor [2]. It degenerates the quality
of the graph and possibly decreases the classification performance of the SSL
algorithms. After some preliminary experimental evaluation, we decided to re-
duce the dimensionality of the data to 50 features using the Matlab Toolbox for
Dimensionality Reduction6 library. We did not run PCA only on the TEXT data
set to maintain the sparseness property of these data.

4.2 Empirical Setup

In this section, we describe the experimental design decisions that we have taken
in our experiments in order to facilitate the reproduction of our results.

Distance functions. Due to its high popularity in the text classification lite-
rature, we used the cosine distance in the experiments using the TEXT data
set. The cosine distance is defined as Ψ(x i, x j) = 1−〈x i, x j〉d/(‖x i‖2‖x j‖2)
where 〈·, ·〉d is the inner product of vectors in Rd. For all other data sets we
used the l2 norm as a distance function.

Graph Laplacians. Since the normalized Laplacian L may lead to better em-
pirical results in comparison with the combinatorial LaplacianΔ [7], we used
L instead of Δ in the formulation of the graph-based SSL algorithms. We
obtained poor results using L in the RMGT algorithm during preliminary
experiments; therefore, we report the results of RMGT using Δ. In prelimi-
nary experiments, we observed some errors using RMGT in the COIL2 data
set. These errors occurred because at least one of the eigenvalues of the graph
Laplacian was equal to (or approximately) zero. In an attempt to avoid nu-
merical instabilities while solving linear systems using the graph Laplacians,
we generated the combinatorial Laplacian as Δ = γD−W and the norma-
lized Laplacian as L = γIn −D−1/2WD−1/2 where a small γ > 1 is used to
increase the eigenvalues of the graph Laplacians. In our experiments, we set
γ = 1.01.

Mutual kNN. The procedure Â = min
(
A,A�) may generate a graph with

isolated vertices. It may degenerate the output of the SSL algorithms because
the label diffusion process could not be effective. In an attempt to avoid this

5 http://olivier.chapelle.cc/ssl-book/benchmarks.html .
6 http://homepage.tudelft.nl/19j49/

Matlab Toolbox for Dimensionality Reduction.html.

http://olivier.chapelle.cc/ssl-book/benchmarks.html
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html
http://homepage.tudelft.nl/19j49/Matlab_Toolbox_for_Dimensionality_Reduction.html


Influence of Graph Construction on Semi-supervised Learning 167

problem, we created an undirected edge between each isolated vertex and its
nearest neighbor. Other strategies may also be applied as well [12].

LLE. We used the Local Anchor Embedding (LAE) method [9]7 to solve the
optimization problem in (1). LLE is an example of LAE if we generate a
bipartite graph whose “anchor” points are exactly the training examples.
Since LLE may not generate a symmetric weighted matrix, we symmetrize
the output matrix of LLE, WLLE, as W = 1

2

(
WLLE +W�

LLE

)
.

SymFKNN + LLE. Because the adjacency matrix of the symFKNN graph is

non-binary, we compute Ŵ = WLLE$A where $ is the Hadamard product.

Then, we generate W = 1
2

(
Ŵ + Ŵ�

)
.

LapSVM. We run LapSVM using the source code in [11]8. We trained LapSVM
using Newton’s method, which gave better results than the preconditioned
conjugate gradient method during preliminary experiments.

LapRLS. We used the multi-class version of LapRLS; hence, we compute α as
α = (JK+ γAlIn + γI lΔK)−1 Y and get the output matrix F = Kα.

Classification. In order to classify the unlabeled examples, we used the class
mass normalization (CMN) procedure [16]. This is an useful procedure when
we are dealing with data sets with imbalanced labels. We obtained poor re-
sults using CMN in RMGT; therefore, we report the results for RMGT using
the argmax operator. We report the results for GRF, LGC, and LapRLS u-
sing CMN while the results for LapSVM are reported using the sign function.
For GRF, we computed CMN using FU instead of F, as suggested in [16].

4.3 Parameter Setting

We now describe the parameter setting used in our experimental evaluation.

SymKNN, mutKNN, and symFKNN. The sparsification parameter k was
chosen at the range {4, 6, 8, · · · , 40}.

RBF kernel. Because it is not straightforward to find an adequate value for
the kernel bandwidth σ when labeled examples are scarce, we estimate its
value by σ =

∑n
i=1 Ψ(x i, x ik)/(3n), as suggested in [6].

Gram matrix. We generated the gram matrix K using the RBF kernel. We
used the same distance function Ψ(·, ·), the sparsification parameter k, and
the kernel bandwidth σ used during graph construction to compute K.

LGC. The regularization parameter μ in the LGC framework was chosen at
range {0.01, 0.05, 0.1, 0.5, 1, 2, 5, 10, 50, 100}.

LapRLS and LapSVM. The regularization parameters γA and γI were cho-
sen at range

{
10−6, 10−4, 10−2, 10−1, 1, 10, 100

}
, as suggested in [11]. All

other parameters were set to their default values.
RMGT. For the RMGT algorithm, we assumed a uniform class distribution,

i.e., we set ω = 1c/c instead of using the class prior probabilities, as sug-
gested in [8]. We achieved better results in preliminary experiments using

7 http://www.ee.columbia.edu/ln/dvmm/downloads/WeiGraphConstructCode/

dlform.htm.
8 http://www.dii.unisi.it/~melacci/lapsvmp/index.html.

http://www.ee.columbia.edu/ln/dvmm/downloads/WeiGraphConstructCode/dlform.htm
http://www.ee.columbia.edu/ln/dvmm/downloads/WeiGraphConstructCode/dlform.htm
http://www.dii.unisi.it/~melacci/lapsvmp/index.html
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the uniform class distribution in most data sets; therefore, we report the
results for RMGT using this setting for all data sets, excluding USPS. For
the USPS data set, we used the class prior probabilities, which achieved the
best results.

4.4 Analysis of the Results

In this section we analyze the obtained results. Our empirical analysis is sub-
divided into four parts: (1) best cases analysis; (2) graph-based SSL algorithm
comparison; (3) influence of graph construction on SSL; and (4) influence of
regularization parameters on the classifiers’ performance.

Best case analysis. Table 1 shows the obtained results for the best case a-
nalysis. Each numerical result in this table is the lowest average error rate
obtained by a combination of an SSL algorithm, a graph construction method
and a data set for all parameter values (sparsification and regularization, if
applicable), as described in Section 4.3. The four worst results obtained by
an SSL algorithm in each data set have a grey background while the best
one is in bold. The best overall result for each data set is boxed.
We can see in Table 1 that the symKNN-LLE and symFKNN-LLE graphs
may not be adequate for GRF, LGC, and LapRLS because they achieved
unsatisfactory results in all data sets. We also see that mutKNN outper-
formed the symKNN and symFKNN graphs in most situations, independent
of the weighted matrix generation method or the SSL algorithm used. There-
fore, for the data sets considered in this study, mutKNN presented the best
performance among all adjacency graph construction methods.
We ran the Friedman’s test9 with Nemenyi’s post test using a confidence level
of 0.05 to statistically compare the performance of the graph construction
methods. Table 2 shows the average rankings. The best rankings are marked
in bold face and the results that were outperformed by the best ranked
method are marked with grey background. We can see that symFKNN-RBF
and mutKNN-RBF obtained the best rankings for most SSL algorithms.
However, the statistical test found significant differences for only 7 cases.
After analyzing the classifiers, we see that RMGT achieved the best overall
classification performance in 4 out of 6 data sets. Although RMGT achieved
satisfactory results on most data sets, it did not perform well on the USPS
data set.

Classifiers’ stability evaluation. As we mentioned earlier, the best case a-
nalysis does not allow us to investigate the stability of the classifiers. In this
analysis, we investigate the stability of the SSL algorithms as we vary the
graph sparsification parameter value. Due to space restrictions and because
the mutKNN-RBF graph achieved the best overall classification performance
in the best case analysis, we show here only the results obtained with the
mutKNN-RBF graph. The interested reader will find the results for other
graph construction methods on the paper’s website.

9 See [4] and references therein for a review on statistical tests for machine learning.
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Table 1. Average error rates and standard deviations of the SSL algorithms for each
graph construction method and data set

Data sets USPS COIL2 DIGIT-1 G-241N G-241C TEXT

GRF-symKNN-RBF 11.07 (3.33) 35.13 (6.92) 10.19 (4.27) 46.12 (7.61) 46.28 (6.98) 39.15 (5.69)

GRF-mutKNN-RBF 9.75 (4.50) 35.07 (3.82) 9.35 (4.51) 46.94 (4.81) 46.72 (4.85) 37.51 (6.85)

GRF-symFKNN-RBF 10.75 (3.77) 35.22 (6.92) 10.01 (3.93) 46.12 (7.65) 46.34 (6.83) 38.50 (5.87)
GRF-symKNN-HM 15.53 (2.76) 38.55 (6.06) 10.73 (4.27) 46.86 (5.28) 46.19 (7.25) 42.32 (8.54)
GRF-mutKNN-HM 11.01 (3.59) 35.30 (3.87) 10.02 (6.36) 46.66 (6.18) 46.58 (5.06) 41.18 (9.87)
GRF-symFKNN-HM 15.17 (3.09) 37.77 (6.25) 10.24 (4.36) 46.77 (5.38) 46.27 (7.05) 42.20 (8.62)
GRF-symKNN-LLE 16.03 (2.47) 36.04 (5.60) 10.94 (4.69) 47.54 (3.77) 47.33 (4.77) 43.56 (6.96)
GRF-mutKNN-LLE 11.64 (3.39) 35.20 (3.79) 10.30 (5.89) 47.14 (2.87) 46.98 (3.64) 42.34 (6.48)
GRF-symFKNN-LLE 15.55 (2.74) 36.10 (5.88) 10.31 (4.68) 47.25 (4.14) 47.46 (4.36) 43.54 (6.95)

LGC-symKNN-RBF 11.22 (3.07) 34.96 (6.69) 10.68 (4.91) 38.06 (6.91) 40.24 (5.13) 35.42 (5.58)
LGC-mutKNN-RBF 9.93 (4.34) 35.07 (3.82) 10.54 (5.21) 39.82 (5.36) 41.85 (4.32) 34.78 (6.55)

LGC-symFKNN-RBF 10.97 (3.00) 34.81 (6.22) 10.47 (4.66) 37.95 (6.66) 40.10 (5.46) 35.51 (5.64)

LGC-symKNN-HM 14.49 (5.25) 37.20 (7.32) 11.53 (5.00) 38.36 (6.83) 40.27 (4.48) 37.51 (4.48)
LGC-mutKNN-HM 10.79 (3.75) 35.19 (4.90) 10.96 (5.34) 39.51 (5.80) 41.94 (4.20) 36.01 (5.63)
LGC-symFKNN-HM 14.63 (3.33) 36.36 (8.25) 11.07 (4.76) 38.13 (7.11) 40.17 (4.75) 37.49 (4.35)
LGC-symKNN-LLE 15.05 (4.33) 35.95 (6.09) 11.49 (5.41) 41.22 (4.12) 43.33 (3.03) 39.18 (4.02)
LGC-mutKNN-LLE 11.04 (3.82) 35.18 (3.77) 10.96 (6.34) 42.12 (3.90) 42.94 (3.09) 35.89 (9.20)
LGC-symFKNN-LLE 14.51 (2.81) 35.98 (6.07) 10.97 (5.01) 41.24 (4.37) 43.06 (3.34) 39.03 (3.82)

LapRLS-symKNN-RBF 10.99 (3.05) 34.92 (5.98) 10.22 (4.25) 38.09 (6.76) 40.35 (6.23) 35.12 (5.68)

LapRLS-mutKNN-RBF 9.75 (4.53) 33.56 (7.32) 9.33 (4.48) 38.36 (5.96) 40.66 (5.45) 34.58 (6.14)

LapRLS-symFKNN-RBF 10.57 (2.90) 35.50 (5.84) 10.02 (3.92) 38.08 (6.64) 40.36 (6.02) 35.34 (5.73)
LapRLS-symKNN-HM 14.56 (3.89) 37.58 (5.91) 10.76 (4.24) 38.18 (6.70) 40.24 (6.07) 37.12 (4.52)
LapRLS-mutKNN-HM 10.57 (4.66) 32.80 (7.67) 9.92 (5.50) 38.29 (6.00) 40.67 (5.50) 35.90 (5.61)
LapRLS-symFKNN-HM 14.38 (4.14) 36.93 (4.95) 10.28 (4.32) 38.06 (6.52) 40.11 (6.06) 37.32 (4.38)
LapRLS-symKNN-LLE 14.73 (3.24) 36.85 (5.25) 10.93 (4.66) 38.68 (5.60) 40.61 (5.51) 38.49 (4.00)
LapRLS-mutKNN-LLE 11.28 (4.09) 31.78 (7.81) 10.19 (5.92) 38.66 (5.72) 40.59 (5.61) 37.28 (5.26)
LapRLS-symFKNN-LLE 14.55 (3.37) 36.17 (4.81) 10.31 (4.63) 38.69 (5.56) 40.61 (5.52) 38.62 (4.13)

LapSVM-symKNN-RBF 11.42 (4.03) 34.96 (6.81) 9.42 (3.97) 39.16 (6.07) 40.91 (6.08) 39.88 (6.02)
LapSVM-mutKNN-RBF 9.91 (2.51) 34.37 (6.47) 8.67 (3.89) 38.90 (6.50) 40.90 (6.08) 37.49 (7.07)
LapSVM-symFKNN-RBF 11.04 (3.43) 34.04 (6.92) 9.47 (4.19) 39.16 (6.07) 40.91 (6.08) 39.45 (6.30)
LapSVM-symKNN-HM 14.63 (5.47) 36.40 (4.07) 10.13 (3.65) 39.15 (6.04) 40.91 (6.08) 43.06 (4.99)
LapSVM-mutKNN-HM 10.04 (2.83) 33.08 (6.35) 9.58 (4.73) 39.00 (6.43) 40.90 (6.08) 42.10 (6.03)
LapSVM-symFKNN-HM 14.35 (4.29) 36.57 (3.57) 9.93 (3.95) 39.14 (6.05) 40.91 (6.08) 42.71 (5.15)
LapSVM-symKNN-LLE 14.82 (3.38) 35.39 (4.80) 10.31 (4.11) 39.12 (6.43) 40.90 (6.07) 42.77 (6.20)
LapSVM-mutKNN-LLE 10.61 (2.49) 31.54 (6.24) 10.22 (5.52) 38.95 (6.46) 40.82 (6.66) 41.80 (7.65)
LapSVM-symFKNN-LLE 14.41 (3.23) 35.21 (4.58) 9.83 (3.99) 39.00 (6.40) 40.84 (6.40) 42.62 (4.92)

RMGT-symKNN-RBF 16.62 (2.90) 31.05 (4.81) 8.63 (3.35) 44.99 (6.97) 38.44 (6.22) 30.43 (6.26)

RMGT-mutKNN-RBF 13.08 (3.41) 28.95 (3.88) 8.13 (3.14) 46.11 (4.50) 42.76 (6.11) 27.77 (5.95)

RMGT-symFKNN-RBF 16.02 (2.85) 32.94 (4.20) 8.55 (3.36) 45.25 (6.07) 38.31 (6.02) 29.65 (6.46)

RMGT-symKNN-HM 19.08 (1.22) 31.20 (6.14) 8.07 (2.69) 44.31 (9.03) 38.48 (6.91) 34.86 (6.04)

RMGT-mutKNN-HM 16.99 (2.45) 28.00 (4.67) 7.50 (2.43) 44.73 (5.48) 40.53 (4.37) 31.12 (6.35)

RMGT-symFKNN-HM 18.88 (2.26) 30.56 (5.52) 7.92 (2.58) 44.68 (7.89) 38.48 (6.67) 34.61 (6.25)
RMGT-symKNN-LLE 19.04 (1.19) 30.63 (3.94) 7.91 (2.49) 42.83 (6.00) 42.25 (3.32) 36.61 (4.79)
RMGT-mutKNN-LLE 17.85 (1.95) 29.49 (4.16) 7.53 (2.11) 43.75 (6.40) 42.12 (4.08) 33.89 (5.32)
RMGT-symFKNN-LLE 18.97 (1.18) 30.41 (3.71) 7.73 (2.43) 42.75 (7.33) 41.77 (3.33) 36.25 (4.78)

Table 2. Average rankings of the graph construction methods for each SSL algorithm

GRF LGC LapRLS LapSVM RMGT mean
symKNN-RBF 2.9167 2.8333 3.5 5.1667 5.1667 3.9167
mutKNN-RBF 2.6667 3 3.1667 2 4.8333 3.1333
symFKNN-RBF 2.5833 1.6667 3.25 4.6667 5 3.4333
symKNN-HM 6 6.5 6 7.75 6.25 6.5
mutKNN-HM 3.8333 4.5833 4.25 3.4167 3.5 3.9167
symFKNN-HM 5 5.6667 4.8333 6.9167 5.0833 5.5
symKNN-LLE 8.3333 8 7.9167 7 6.1667 7.4833
mutKNN-LLE 5.8333 5.4167 4.6667 3.1667 4.1667 4.65
symFKNN-LLE 7.8333 7.3333 7.4167 4.9167 4.8333 6.4667
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(c) DIGIT-1
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(d) G-241N
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(e) G-241C
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(f) TEXT

Fig. 1. Average error rates of the SSL algorithms using the mutKNN-RBF graph

Fig. 1 shows the results for this empirical analysis using the mutKNN-
RBF graph as we vary the sparsification parameter value. Notice that the
legend for all graphics in Fig. 1 can be found in Fig. 1(b). The RMGT algo-
rithm achieved good classification performance and stability on the COIL2,
TEXT, and DIGIT-1 data sets when k ≥ 14. However, RMGT was gener-
ally the worst classifier for the USPS data set and the second worst for the
G-241N and G-241C data sets. Moreover, RMGT appears to be unstable for
relatively small values of k. For instance, the instability of RMGT is evi-
denced in the COIL2 data set for k ≤ 6 while all other classifiers achieved
satisfactory results with this setting.

LapRLS and LapSVM achieved exceptional stability on the G-241C and
G-241N data sets. Due to this high stability, we suppose that LapRLS and
LapSVM may be the best SSL algorithms for classification of Gaussian dis-
tributions. We also note in Fig. 1 that the assumption that sparse graphs
give better results than dense graphs may not necessarily be true. For ins-
tance, the results for the GRF, LGC, and RMGT algorithms on the G-241C
and G-241N data sets using dense graphs are better than those for sparse
graphs. In addition, the results for all SSL algorithms on the TEXT data set
for relatively small values of k are not satisfactory while the results for the
LGC, LapRLS, and RMGT algorithms with dense graphs are.

Influence of graph construction. We now evaluate how different graphs can
influence the classification performance of the SSL algorithms. Once again,
we perform this analysis as we vary the sparsification parameter value in
order to analyze the stability of the graph construction methods combined
with the SSL algorithms. Due to lack of space, we only present the plots
for the USPS data set in Fig. 2. Once again, we invite the interested reader
to check the paper’s website. It is clear from Fig. 2 that the results show
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a lot of variability. For a given classifier, we can observe that several graph
construction methods figure among the best and the worst method as we
vary the value of k. The variability problem is more intense for small values
of k, specially k ≤ 14. This seems to be a permissive problem since small
values of k performed better for this specific data set, but too small values
might greatly degrade the classifiers’ performance.
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(c) LapRLS
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(d) LapSVM
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Fig. 2. Average error rates of the graph construction methods on the USPS data set

The USPS data set is an excellent example of the high influence of the
graph construction methods and the sparsification parameter values over the
SSL algorithms. As we vary the k parameter, the classifiers’ performance
vary significantly; some of them in a range of almost 10%. Such performance
variation is certainly a concern for the practitioner, who would have diffi-
culties in finding a parameter setting that guarantees a good classification
performance. Moreover, such high variability causes several changes in the
relative rankings of the classifiers. In some cases, the same classifier might
figure among the best and the worst methods as we vary the k parameter in
the narrow range of [4, 14]. These changes of relative order may cause some
serious concerns for the research community. Without an extensive analysis
of the influence of parameter values, some studies may experimentally show
that a proposed algorithm outperforms the state-of-the-art algorithms, be-
ing that this conclusion only holds for certain parameter values. We are not
claiming here that such an incident has ever happened, and we have not ob-
served any such evidence, however; it is certainly undesirable for the research
community to be affected of such a situation.

We suggest that every research paper that proposes a new SSL algorithm
or graph construction method to fully analyze the influence of its parame-
ters. The experimental setup used in this paper is a proposal of how newly
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proposed methods should be evaluated. It is important to evaluate the algo-
rithms’ performance for a wide range of external parameters, such as k, and
graph construction methods. Some algorithms also have internal parame-
ters, such as regularization parameters, that also need to be evaluated, as
we show next.
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Fig. 3. Error surfaces for the LapRLS algorithm on the USPS data set

Influence of regularization parameters. We evaluate the influence of regu-
larization parameters on the classification performance of the graph-based
SSL algorithms. We evaluate the error surfaces generated by the SSL al-
gorithms for each graph construction method and data set. Due to lack of
space, we only show the most relevant results for LapRLS and LapSVM. We
fixed the value of k that achieved the best error rate for each combination of
SSL algorithm and graph construction method. In the sequence, we varied
the values of γA and γI , as described in Section 4.3.

Fig. 3 shows the results for LapRLS on the USPS data set for different
graph construction methods. We see that mutKNN generated smoother error
surfaces than symKNN and symFKNN graphs, independent of the weighted
matrix generation method used.
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Many of the obtained results for this analysis are qualitatively equivalent
fixing an SSL algorithm and a data set. However, we found some specific
results that have an explicit pattern for parameters choice and others which
may not have any evident pattern. We discuss them in the following.
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(c) symFKNN-RBF

Fig. 4. Error surfaces for LapRLS on the TEXT data set using the RBF kernel

Fig. 4 shows the obtained results for LapRLS on the TEXT data set using
the RBF kernel combined with the adjacency graph construction methods.
We see that the “optimal region” occurs only when γA = γI .
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Fig. 5. Error surfaces for LapSVM on the TEXT data set using the mutKNN graph

Fig. 5 shows the obtained results for LapSVM on the TEXT data set
using the mutKNN graph combined with the weighted matrix generation
methods. We can not see any evident pattern that could help parameter
choice. This may be an obstacle to apply LapSVM on real applications on
text classification. For instance, the “optimal region” for the mutKNN-LLE
graph occurs when γA = γI , which is not a good setting for the other graphs.

5 Conclusions and Further Research

In this paper, we provided a detailed empirical comparison of five state-of-
the-art, graph-based SSL algorithms combined with three adjacency graph
construction methods and three weighted matrix generation methods. Our ex-
perimental evaluation indicated that the SSL algorithms are strongly affected by
the graph sparsification parameter value and the choice of the adjacency graph



174 C.A.R. de Sousa, S.O. Rezende, and G.E.A.P.A. Batista

construction and weighted matrix generation methods. The algorithms that have
regularization parameters were also very dependent on a good setting of these
parameters.

Consequently, we proposed an experimental setup that should be used in
empirical comparisons in future work in SSL. Our idea is that a newly proposed
algorithm should not be compared to other state-of-the-art algorithms using only
the best case analysis. We believe that a detailed evaluation of all parameters is
necessary. Due to the nature of SSL, in which there exists only a limited number
of labeled examples, tuning all parameters might be unfeasible. Therefore, there
is a need for algorithms that are slightly dependable on parameter tuning, i.e.,
that have a stable performance over the parameter space.

Our experimental results showed a superiority of mutKNN over the symKNN
and symFKNN graphs. However, our results also showed that mutKNN is unsta-
ble for a relatively small value of k. In addition, we showed that mutKNN tends
to generate smoother error surfaces than symKNN and symFKNN graphs. Our
experiments also indicated a superiority of the RBF kernel in comparison to the
HM and LLE methods.

As we analyzed our experimental results, we noticed other interesting patterns
that we could not verify given the lack of experimental evidence. We propose
an investigation concerning the validity of these observations as future research.
Our empirical observations are as follows:

– Although RMGT achieved satisfactory results on most data sets, it did not
perform well on the USPS data set. As USPS is an imbalanced dataset, a
possible explanation is that RMGT is not effective on data sets with imba-
lanced labels;

– Maier et al. [10] have pointed out that the mutKNN graph should be chosen
if one is only interested in identifying the “most significant” cluster. Based
on this statement, we suppose that mutKNN is the best graph when we are
dealing with data sets with imbalanced labels because it may identify the
“most significant” class (the minority class in this case). This hypothesis is
supported by the fact that, in Table 1, mutKNN achieved better classifica-
tion performance than symKNN and symFKNN for all combinations of SSL
algorithm and weighted matrix generation method on the USPS data set;

– Table 1 shows that RMGT achieved the best overall classification perfor-
mance in 4 out of 6 data sets. This surprising classification performance
may be due to the addition of the normalization constraints F1c = 1n and
F�1n = nω in the optimization framework. It would be interesting to inves-
tigate if other SSL algorithms’ classification performances could be improved
if these constraints were included in their optimization framework;

– In Fig. 4, we observed that the “optimal region” occurs only when γA = γI .
Since this behavior occurred for all graphs (the other results are not shown
here due to lack of space), we ask if this setting should be chosen for text
classification tasks when using LapRLS.



Influence of Graph Construction on Semi-supervised Learning 175

Acknowledgments. This research was supported by the Brazilian agencies
CAPES and FAPESP. Thanks to Diego F. Silva, Vińıcius M. A. de Souza, Rafael
Giusti, Ricardo M. Marcacini, and Rafael G. Rossi for their help in the experi-
ments.

References

1. Belkin, M., Niyogi, P., Sindhwani, V.: Manifold regularization: A geometric frame-
work for learning from labeled and unlabeled examples. JMLR 7, 2399–2434 (2006)

2. Beyer, K., Goldstein, J., Ramakrishnan, R., Shaft, U.: When is “nearest neighbor”
meaningful? In: Beeri, C., Bruneman, P. (eds.) ICDT 1999. LNCS, vol. 1540, pp.
217–235. Springer, Heidelberg (1998)

3. Chapelle, O., Schölkopf, B., Zien, A.: Semi-supervised learning. The MIT Press
(2006)
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Abstract. Semi-supervised learning has been widely studied in the literature.
However, most previous works assume that the output structure is simple enough
to allow the direct use of tractable inference/learning algorithms (e.g., binary la-
bel or linear chain). Therefore, these methods cannot be applied to problems with
complex structure. In this paper, we propose an approximate semi-supervised
learning method that uses piecewise training for estimating the model weights
and a dual decomposition approach for solving the inference problem of finding
the labels of unlabeled data subject to domain specific constraints. This allows us
to extend semi-supervised learning to general structured prediction problems. As
an example, we apply this approach to the problem of multi-label classification (a
fully connected pairwise Markov random field). Experimental results on bench-
mark data show that, in spite of using approximations, the approach is effective
and yields good improvements in generalization performance over the plain su-
pervised method. In addition, we demonstrate that our inference engine can be
applied to other semi-supervised learning frameworks, and extends them to solve
problems with complex structure.

1 Introduction

Over the past decade, a variety of semi-supervised learning methods have been sug-
gested in the literature; these methods use unlabeled data to yield a good lift in gen-
eralization performance when labeled data is sparse. One particular model, initially
proposed by Joachims [12] for binary support vector machines, has given impressive
results on problems involving large feature spaces, such as those encountered in text
classification and natural language processing. This model has been nicely extended to
multi-class classification, ordinal regression and structured output problems [31,5,2].
The key ideas behind these methods are: (a) using the labels of the unlabeled data (YU )
as extra variables and the associated loss function in training; (b) optimizing the model
weight vector (θ) and YU via alternating optimization steps; (c) using constraints on
YU that come from domain knowledge to effectively guide the training towards good
solutions; and (d) employing annealing to avoid getting caught in local minima.

The probabilistic structured output model in [5] is useful only when the output struc-
ture is simple, e.g., linear chains, that allows inference and learning computations to be
done in a tractable fashion. In this paper we go beyond and focus on problems with more
complex output structure. For such problems, making approximations in inference and

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 176–191, 2013.
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learning is inevitable. In many practical situations, the complex output structure is such
that: (a) the output has several components with sparse inter-component intersections;
and (b) learning computations involving each component viewed as a separate piece is
tractable (known as piecewise training [32]). Thus, if we replace the likelihood terms
in the semi-supervised training objective function with composite likelihood [20] terms
involving the components, then the θ determination step becomes tractable; we do not
obtain the component marginals from the underlying intractable joint distribution. The
components-based structure also lets us to use dual decomposition based inference tech-
niques [16,14] which have matured over recent years. The use of these approximations
in the semi-supervised learning method is neat since alternating optimization allows the
two approximations to be used independently in an iterative loop without crossing each
other.

We illustrate our approach by applying it to the problem of multi-label classification
and developing all the details for it. Detailed empirical analysis on several benchmark
datasets shows the effectiveness of the approach. Despite the approximations, the semi-
supervised method gives good lift in performance over the plain supervised method.
Also, when tested on small datasets where exact inference and learning are feasible, the
generalization performance of our method is competitive with that obtained by the semi-
supervised learning method using exact inference and exact learning. Furthermore, our
inference engine could be used with other semi-supervised learning methods; experi-
mental comparison with such methods show that the proposed method performs signif-
icantly better.

The rest of the paper is organized as follows. We review the related work in Section
2. In Section 3 we provide a background on semi-supervised learning, label assignment
problem, and composite likelihood. Section 4 gives the details behind the determination
of YU subject to domain constraints. Section 5 develops the details of the proposed
method for the multi-label classification problem. Experimental results are given in
Section 6. Section 7 concludes the paper.

2 Related Work

Some related works have a resemblance to the method proposed in this paper. Compos-
ite likelihood methods [20], Piecewise training [32], message-passing algorithm [10],
and large-margin methods with approximate inference [30,6,18] have been proposed
for approximate learning. However, they have been used only in the supervised learn-
ing. Dual decomposition methods have been combined with training in the supervised
learning of large margin models [26,15], but the ideas do not transfer to semi-supervised
learning and probabilistic models.

Approximate inference algorithms for general structure (e.g., [9,14,16,28,25]) have
been widely studied in the literature. However, most of them do not consider solv-
ing the inference problem with constraints from prior knowledge. On the other hand,
many studies have been conducted to solve specific inference problems with constraints
(e.g., [17,3]). Recently, Martins et al. [24] proposed a decomposition method to solve
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general label assignment problems with first-order logic constraints. However, it is not
clear how to inject the corpus-level constraints into their framework. In this paper, we
extend a dual decomposition method [16] to solve general constrained inference prob-
lem involved in our semi-supervised learning framework.

Several semi-supervised learning algorithms [2,23,36,40,1,34,7] have been proposed
in the literature. However, with a few exceptions, they all focus on the cases that exact
inference and learning are tractable. In such cases, there is no need to use an approx-
imate algorithm. Note that for some problems with a special structure, efficient exact
algorithms have been developed (e.g., Viterbi algorithm for linear chain structure). They
might be faster than a general approximate inference/learning tool. We refer the readers
to an example in [3, Section 6.1], where they showed that by using a dynamic pro-
gramming algorithm to leverage the problem structure, a Lagrangian relaxation method
is more efficient than a general approximate inference solver. In addition, some works
have been conducted to study semi-supervised learning approach for multi-label classi-
fication problems [4,8,22,38]. However, they do not use constraints from domain knowl-
edge and the settings are different from ours.

In the following, we briefly discuss the connection of our method to other semi-
supervised learning frameworks. Our work is closely related to [5] and [29]. These
probability models have been shown to generate the state-of-the-art results on problems
with a tractable structure, but they are not directly applicable to problems with com-
plex structured outputs. When exact inference and learning are tractable, our model is
reduced to a probability model similar to them. Without corpus level constraints, our
model is also related to CoDL [2]. However, CoDL only demonstrate the results using
exact inference algorithm and Perceptron style learning steps, while our probabilis-
tic method is more general. The posterior regularization [7] and Generalized Excep-
tion [23] are probabilistic methods that has several key differences from our method:
(a) they enforce domain constraints only in an expectation sense; and (b) it is unclear if
they applied to problems with complex structured outputs. Transductive SVM proposed
in [40] considers extending structured SVM to a semi-supervised setting. The method
is complicated and the study is only conducted on problems with simple structures
(linear chain and multi-class). Moreover, in their experiments they do not incorporate
prior knowledge via constraints, which are crucial to get good performance in semi-
supervised learning. Yu [36] also considers an extension of a large-margin method and
regularizes the model with the labels assigned to the unlabeled data. Their framework
is different from us, and it is unclear how to train their model on problems with com-
plex structure. Lee et al. [19] proposed a semi-supervised discriminative random field
algorithm with approximate inference. However, their method doesn’t incorporate con-
straints. We will show the value of using constraints in Section 6.2.

Our primary focus is on semi-supervised structured prediction problems whose out-
put structure is too complex to allow exact inference and learning. Therefore, comparing
different semi-supervised learning framework on the problems with tractable structure
is not the focus of this paper. Nevertheless, we show that our inference engine can be
plugged in other semi-supervised learning frameworks such as transductive SVM [40]
and CoDL [2] in Section 6.5.
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3 Semi-supervised Learning

3.1 Learning Problem

Consider a structured output problem in which a data instance consists of an input
vector x ∈ X and a label vector y ∈ Y . For example, in sequence labeling, x is a
sequence of tokens {x1, . . . , xl} and y is a sequence of scalar labels {y1, . . . , yl}. We
are interested in discriminative models to determine y for given x. This is done by
using a feature vector f(x,y) and a parameter vector θ which define a scoring function
s(x,y, θ) = θ · f(x,y). Then inference is done as y∗ = argmaxy s(x,y, θ). We
assume that the scoring function s(x,y, θ) can be written as:

s(x,y, θ) =
∑

c
φc(yπc), (1)

where c is some break-up of s(·) into sub-scores, πc ⊂ {1, . . . , N} is an index set
associated with c, and yπc = {yj : j ∈ πc} is the label assignment on c. For this
paper c can be taken as a break up into sub-problems such that each sub-problem,
argmaxyπc

φc(yπc) is easy to solve, and the dependency among the variables yπc is
considered only within the component c. For example, when single variables are con-
sidered, we are ignoring the label dependency and using a simple model for marginal
probabilities instead of computing them using the entire graph. More examples can be
found in, for example, [39]. Note that we have suppressed the dependency of the poten-
tials on x and θ in (1) for ease of notation.

For probabilistic models, we can define conditional probability using the scoring
function: p(y|x, θ) ∝ exp(s(x,y, θ)). If (X,Y) is a set of data instances {(x,y)},
then p(Y|X, θ) can be re-written as the product of p(y|x, θ) assuming samples are
drawn i.i.d from a fixed distribution. For ease of notation we will simply refer to these
quantities as pθ(Y) and pθ(y).

Let (XL,YL) = {(xL,yL)} denote the set of all labeled instances. Consider
the supervised learning problem of determining θ by maximizing the regularized log-
likelihood:

max
θ

S(θ) = R(θ) + L(YL;XL, θ),

whereR(θ)=−‖θ‖2/2σ2 is a regularizer andL(YL;XL, θ)=
1
nL

∑
xL
LxL(yL;xL, θ)

is the log likelihood term and nL is the number of labeled instances. LxL is the instance
level log likelihood; in the probabilistic model

LxL(yL;xL, θ) = log
exp(s(xL,yL, θ))∑
y∈Y exp(s(xL,y, θ))

.

In semi-supervised learning, θ is learned from both labeled data (XL,YL) and un-
labeled data XU , and we consider the following optimization problem instead:

max
θ,YU

S(θ) + L(YU ;XU , θ) s.t. μ(XU ,YU ) ≥ c, (2)

where YU is the labels assigned to the unlabeled data during the learning. The vector
valued domain constraints μ(XU ,YU ) ≥ c (discussed below) are included to guide the
semi-supervised learning algorithm towards good solutions.
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We can perform alternating optimization over θ and YU to solve (2). While the
optimization of θ can be done using a standard gradient based optimization routine
such as LBFGS, optimization of YU can be done by solving a label assignment problem
with constraints. If the structure is complex, both, optimizing θ and optimizing YU will
be difficult. In the following, we will discuss how to use approximate inference and
learning algorithms to learn θ and YU .

3.2 Label Assignment Problem (Inference)

To simplify notations let us use Y, X, y and x to represent YU , XU , yU and xU . The
label assignment problem subject to inequality constraints is given by:

max
Y

L(Y;X, θ) s.t. μ(X,Y) ≥ c. (3)

We can use (1) to rewrite (3) as:

max
Y

1

nu

∑
i

∑
c
φi,c(yi,πc) s.t. μ(X,Y) ≥ c, (4)

where the index i refers to ith unlabeled example, c refers to a clique and nu denotes
the number of unlabeled examples. We assume that the constraint function μ can be
written as: μ(X,Y) = 1

nu

∑
i μi(xi,yi). We will also assume that, for each example,

say the i-th, μi decomposes clique-wise, in the same way as (1). Thus, μi(x,y) can be
written as:

∑
c γicμic(x,yc) where some γcs can be zero. These assumptions hold in

most practical structured output scenarios; see [2,7,5] for many examples of constraints
arising in different problems. Later we will describe constraints arising in multi-label
classification. A constraint could be instance level (e.g., a particular label has to occur
only once in an example) or corpus level (e.g., the number of occurrences of a particular
label in all the examples is some number). Both these types of constraints fall in the gen-
eral constraint function format described above. Note that an instance level constraint
is a special case of a corpus level constraint and is obtained by setting μi(xi,yi) = 0
for all i except one of them.

If all the constraints are instance level, the solution to (4) can be obtained by solving
the inference problem on each example independently. Otherwise, joint inference is
required. We will discuss the joint inference approach later. The inference problem can
be solved exactly and efficiently only for restricted structured output types (e.g., linear
chain, tree with low-width). For general structured output problems, Master-Slave type
methods have been proposed to solve the inference problem.

3.3 Composite Likelihood Maximization (Learning)

In general structured prediction problems with graphs having cycles, learning algo-
rithms for probabilistic models are intractable due to the need to handle the parti-
tion function. To alleviate the computational intractability of parameter estimation in
supervised learning, composite marginal or conditional likelihood maximization [20]
and piecewise training methods [32] have been proposed. Such models are useful not
only to reduce computational complexity but also to provide robustness to model mis-
specification via using the simpler interactions. We make use of the piecewise train-
ing approach to learn the model parameter vector θ in our semi-supervised learning
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setting. In this approach, the likelihood is approximated by the composition of likeli-
hoods of the components. That is, pθ(y) = exp{L(y; θ,x)} ≈

∏
c p(yπc ; θc), where

p(yπc ; θc) =
exp(φc(yπc ;θc))

Zc
and Zc =

∑
yπc

exp(φc(yπc ; θc)). We assume that each
component c is tractable (e.g., yπc is a small subset of variables or c is a tree). Note that
we are not marginalizing any underlying intractable joint distribution p(y; θ).

Thus we replace the log-likelihood term L(Y;X, θ) with LC(Y;X, θ) =
∑

c Lc
C ,

Lc
C =

∑
i φc(yi,c) −

∑
i log(Zi,c). Note that the first term (which is critical for infer-

ence) remains the same as in the full likelihood maximization of general structured pre-
diction models. It is in the second term (involving the partition function) where we make
a tractable simplification. It is possible to learn the model parameters of components in-
dependently in situations where there is no overlap of parameters between components.
In general, we allow overlaps (i.e., share parameters across the components) keeping
tractability in mind so that the parameters of components are optimized together. How-
ever, unlike [32] where the components considered are factors of the graphical model,
we allow general user specified components involving more than one factor, as long as
inference on them is tractable. (In section 5, we illustrate this approach on the multi-
label classification problem, using trees as components sharing model parameters in a
fully connected graph.)

With this approach, the semi-supervised learning problem (2) can be written as:

max
θ,YU

R(θ) + LC(YL;XL, θ) + CmLC(YU ;XU , θ) s.t. μ(XU ,YU ) ≥ c. (5)

where Cm is a regularization parameter introduced to provide annealing capability,
which we discuss next.

3.4 Annealing Steps for Solving (5)

The objective function in (5) (and in (2)) is a non-concave function. In practice, we can
apply annealing steps using the parameter Cm to avoid being trapped in a bad local
minimum. The optimization procedure has a double loop. In the outer loop, we gradu-
ally increase Cm from a small positive value (e.g., tripling the value in every iteration
starting from 10−4) to one. This allows the unlabeled data to gradually influence the
modeling process in achieving a better optimum. In the inner loop, we alternatively up-
date the label assignment YU and the model θ, where θ is updated using the LBFGS
routine [21]. For efficiency sake we set the maximal number of LBFGS iterations to
be 25 and stop the inner loop after five rounds; we found this sufficient to get good
solutions.

4 Solving Label Assignment Problems with Constraints

We begin by discussing a master-slave approach [16] for the inference problem without
constraints. Then, we describe a joint approximate inference algorithm for the label
assignment problem with corpus level constraints.
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4.1 Master-Slave Approach

Let y = {y1, . . . , yN} be a vector of random variables associated with an example;
yj ∈ Yj where Yj is a discrete set. Consider the inference problem for one example
without any constraints.

y∗ = argmax
y

∑
c
φc(yπc). (6)

Note that to avoid notational complexity, we use the same notations as in (1) and assume
that the score is re-written as a composition of scores on sub-problems such that each
sub-problem c is tractable. Let π−1

j = {c : j ∈ πc}. For each a ∈ Yj , introduce
a binary integer variable zj,a indicating whether yj assumes the value a. Let zj =
(zj,1, . . . , zj,|Yj|), a binary vector. Let Zj be the set of vector values taken by zj and
z be a single vector that collects all zj . So, there exists an invertible mapping between
z and y. Denote it by y = bip(z) and z = bip−1(y). Let zπc = {zj : j ∈ πc}. We
slightly abuse notations and write φc(zπc) = φc(bip(zπc)). Let Zπc =

∏
j∈πc

Zj . With
these notations, we can rewrite (6) as

max
z

∑
c
φc(zπc) s.t. zj ∈ Zj, j = 1, . . . , N. (7)

In the master-slave approach, new variable vectors {zcπc
} are introduced for each

sub-problem and constraints connecting them are introduced via a variable vector z̄
controlled by the master that coordinates an iterative optimization process. Using these
variables we can rewrite (7) as

max
z̄,{zcπc

}

∑
c
φc(z

c
πc
) s.t. zcπc

∈ Zπc and zcπc
= z̄πc ∀c.

Then, the Lagrangian min-max dual problem can be written as [16]

min
ν

∑
c
max
zcπc

(
φc(z

c
πc
) +

∑
j∈πc

〈νc,j , (zcπc
)j〉
)

s.t.
∑

c∈π−1
j

νc,j = 0 ∀j.

This problem can be solved using methods such as the projected sub-gradient
method [16] or the accelerated dual method [14]. Since we are discussing the case
without constraints, the inference problem for each example is independent and so we
simply have to repeat the above described method to all examples.

4.2 Joint Inference with Constraints

For corpus level constraints joint inference over all examples is needed. Notations be-
come a bit clumsy: when dealing with all examples we need to use yi,πc , z̄i,πc etc.,
instead of yπc , z̄πc etc. We also use zi,πc as a shorthand for zci,πc

. Let Ci be the
set of components associated with example i. The m-th constraint can be written as:∑

i

∑
c∈Ci

γm,i,cμm,i,c(yi,πc) ≥ cm. Then the joint optimization problem is given by:

max
{z̄i},{zi,πc}

∑
i

∑
c∈Ci

φi,c(zi,πc)

s.t. zi,πc ∈ Zπc and zi,πc = z̄i,πc ∀i, c∑
i

∑
c∈Ci

γm,i,cμm,i,c(zi,πc ) ≥ cm, ∀m.
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Let us define the following functions: φ̃i,c(zi,πc) = φi,c(zi,πc) + g(zi,πc), g(zi,πc) =∑
m ηm(γm,i,cμm,i,c(zi,πc) − cm), h(ν(i)c ; zi,πc) =

∑
j∈πi,c

〈ν(i)c,j , (zi,πc)j〉. Then, the
corresponding Lagrangian min-max problem is given by:

min
{{ν(i)},{ηm}}

max
{zi,πc}

∑
i

∑
c∈Ci

(
φ̃i,c(zi,πc) + h(ν(i)c ; zi,πc)

)
s.t. zi,πc ∈ Zπc

∑
c∈π−1

i,j

ν
(i)
c,j = 0 ∀i, j, ηm ≥ 0, ∀m.

We use the projected sub-gradient method to solve this problem since the inner maxi-
mization is not differentiable. Note that for fixed {ηm}, the dual variables {ν(i)} can be
solved independently for each i; this is possible due to the decomposable nature of the
constraint functions across the examples. The examples get coupled only via the domain
constraint dual variables. Therefore, we use an alternate optimization strategy of opti-
mizing {ηm} and {ν(i)}. Essentially, we run a projected sub-gradient based algorithm
over several iterations in an inner loop, and run a similar algorithm in an outer loop.

Optimizing {ν(i)} with Fixed {ηm}. Assume that {ηm} is fixed and consider the sub-
problem involving the i-th example given below:

min
{{ν(i)}

max
{zi,πc}

∑
c∈Ci

U(ν(i)c , zi,πc ; {ηm}) s.t. zi,πc ∈ Zπc ,
∑

c∈π−1
i,j

ν
(i)
c,j = 0 ∀j

whereU(ν(i)c , zi,πc ; {ηm}) = φ̃i,c(zi,πc)+h(ν
(i)
c ; zi,πc). We solve the inner maximiza-

tion problem (i.e., ẑi,πc = argmaxzi,πc
U(ν(i)c , zi,πc ; {ηm}) for fixed ν

(i)
c . Then, the

sub-gradient of U(·) with respect to ν(i)c,j is (ẑi,πc)j . (Note that h(ν(i)c ; zi,πc) is linear in

ν
(i)
c .) Using the prediction, we make the update: ν(i)c,j(t)← ν

(i)
c,j(t−1)−γtΔν(i)c,j where t

denotes the t-th step and γt is the learning rate. Assuming that we start with ν(i) satisfying
the equality constraint, the constraint will be satisfied if

∑
c∈C̄j

Δν
(i)
c,j = 0 where C̄j =

{c : c ∈ π−1
i,j }. This can be ensured by setting Δν(i)c,j = (ẑi,πc)j − 1

|C̄j |
∑

c∈C̄j
(ẑi,πc)j

(i.e., removing the mean from each component’s optimal assignment). This update for ν
is indeed the Euclidean projection on the feasible set. By assumption, each component
c is tractable; therefore, the optimal assignment ẑi,πc can be easily found. For example,
in simple cases involving only a single node or a pair nodes in the graph, the optimal
assignment can be found by enumeration. For more complex component such as trees,
the max-product algorithm [27] can be used to find the optimal assignment.

Optimizing {ηm} with Fixed {ν(i)}. Consider the sub-problem of optimizing {ηm}
given by:

min
{ηm}

max
{zi,πc}

∑
i

∑
c∈Ci

U({ηm}, zi,πc ; ν
(i)
c ) s.t. zi,πc ∈ Zπc ηm ≥ 0 ∀m.

We solve this problem using the projected sub-gradient method; the parameters η(t)m

are updated as: η(t)m ← [η
(t−1)
m − γ̃tΔηm]+ where + indicates projection on the non-

negative orthant, and Δηm =
∑

i,c∈Ci
(γm,i,cμm,i,c(ẑi,πc)− cm). For fixed η

(t)
m , the

optimal assignments ẑi,πc , ∀c, i can be found as earlier. Once the optimal assignments
are obtained, we follow [16, Section IV.B] to obtain the final primal solution.
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5 Multi-label Classification Example

The method proposed in Sections 3-4 is applicable to any general structured prediction
problem. To demonstrate the usefulness of this method, we show how our method can
be applied to the multi-label classification problem and conduct related experiments.
Here we use one formulation, given in [6]. We consider a pair-wise fully connected
graph (to take care of all label correlations). Then, the scoring function s(x,y; θ) can
be written as:

s(x,y; θ) =
∑

p
sp(zp; θp(zp)) +

∑
p,q �=p

spq((zpq); θpq(zpq)) (8)

where the indices p and q run over the nodes (classes), sp(·), spq(·) denote the node and
edge scores computed using the class and label dependent model parameters θp(zp)
and θpq(zpq); y = {−1, 1}K is a K-dimensional vector, where K is the number of
classes. With binary label assignment for each class, zp ∈ Zp is a 2-dimensional vector,
and Zp = {(1, 0), (0, 1)}. zpq ∈ Zpq is a 4-dimensional binary vector with only one
unit element. There exists a mapping between y and z as described in Section 4.1:
zp = bip−1(yp) and zpq = bip−1(yp, yq). For linear models, the scores are computed
as: sp(zp; θp(zp)) = θp(zp) · x and spq(zpq ; θpq(zpq)) = θpq(zpq) · x, where x is the
feature vector. This setting has been used to study approximate learning or inference
in the supervised learning setting [6,26,39]. However, we are not aware of any existing
work studying this formulation in the semi-supervised setting.

Composite Likelihood. Given the score having the form given in (8), composite like-
lihood can be defined in many different ways (e.g., [39]). In this paper, we define a
composite likelihood function composed of K spanning tree models where each tree
has one class at its root and the remaining classes as leaf nodes. Then, we can write the
score for each tree as:

sk(x,y; θ̄k) =
1

K

∑
p
θp(zp) · x+

1

2

∑
q �=k

θpq(zpq) · x

and the likelihood function as pθ(Y) =
∏

k pk(Y; θ̄k) where θ̄k = {θp, θp,q : q �=
k, p = 1, . . . ,K}, pk(Y; θ̄k)=

exp(sk(x,y;θ̄k))∑
y exp(sk(x,y;θ̄k))

. Note that s(x,y; θ)=
∑

ksk(x,y; θ)

(scaling factors ensure the equality), and potentials are shared across the models. There-
fore, all the models are learned jointly. 1 Since each sub-problem is a tree, the partition
function and its gradient can be easily computed2; also, inference can be efficiently
done. 3 See Komodakis et al, [16] for a discussion on the choice of sub-problems used
in the decomposition.

Constraints. Following the discussions in Section 3.2, we consider two types of corpus-
level constraints: label distribution constraint (LDC) and label correlation constraint

1 For other complex structured outputs, if the potentials are not shared then components could
be learned independently.

2 Evaluating the partition function of each sub-problem can be done in O(Kln), where K, l, n
are the numbers of classes, features, instances, respectively. Therefore, compute the composite
likelihood requires O(K2ln).

3 Our inference algorithm is an iterative process. If the number of iterations is fixed, labeling l
instances cost O(K2ln).
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Table 1. Data statistics (l: total number of samples, ltri: number of train samples, ltst: number of
test samples, n: number of features, and K: number of classes). The train set is further split into
two parts: labeled train and unlabeled train (see text for details).

Data set l ltri ltst n K

scene 2,407 1,684 723 294 6
yeast 2,417 1,691 726 103 14
emotions 593 415 178 72 6
rcv 6,000 4,200 1,800 47,236 30
tmc2007 28,596 20,018 8,578 30,438 22

(LCC). LDC constrains the number of times a given label occurs throughout the en-
tire data set and LCC constrains the number of times one label co-occurs with an-
other throughout the data set. In the context of multi-label classification, LDC can be
written in the following forms

∑
y∈Y δ(bip−1(yp), z

′
p) = n(z′p), ∀p = 1, ...K, z′p ∈

Zp, where δ is the Kronecker delta function. LCC is
∑

y∈Y δ(bip−1(yp, yq), z
′
pq) =

n(z′pq), ∀p, q �= p, z′pq ∈ Zpq. n(z
′
p) and n(z′pq) are given and estimated by counting

the occurrence/co-occurrence of labels in the data. There are many other possible con-
straints that can be used in multi-label problems. For example, we can restrict the num-
ber of assigned labels for each sample. Local correlations [11] can be also incorporated
in our model via instance level constraints. In the experiments we use LDC and LCC
only. We will show the value of these constraints in Section 6.2.

6 Experiments

In this section, we do experiments on multi-label classification to understand the fol-
lowing: (a) how well the proposed semi-supervised learning framework improves over
the supervised classifier; (b) the role of different constraints on the performance; (c)
the impact of the inference and learning approximations on the performance; and (d)
differences between transductive and semi-supervised solutions.

Datasets and Setting. We considered five multi-label datasets from various applica-
tions4. Table 2 lists the data statistics. For rcv, we only used the first set of data. Because
several labels in rcv have only a few positive examples, we removed such labels and only
considered the 30 most frequent labels. For each data set, we constructed 10 random train
and test splits of 70% and 30%. Then, we performed experiments on different degrees of
labeling (d) by further splitting the train set into two parts: labeled train data (d%) and
unlabeled train data ((100− d)%). In the training phase, only the labels of labeled train
data are used. Because there are only few labels in the training set when the degree of
labeling is low, we fixed the regularization parameter to a default value (σ2 = 1) instead
of tuning it. We checked in our experiments that the conclusions are still valid when σ
is tuned using a validation set. We evaluate performance in terms of the Micro-F1 score
[35] and conduct Wilcoxon sign-rank test with the significance level of 5%. All results in
the tables are reported in terms of the mean and standard deviation over the 10 splits. Un-
less stated otherwise all results correspond to the case where both, label distribution and

4 Data is available at http://mulan.sourceforge.net.

http://mulan.sourceforge.net
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(a) rcv (b) emotions

Fig. 1. Performance on test set (red) and unlabeled train set (blue) along iterations for d = 1%

label correlation constraints are used. Test set inference is done collectively by treating
it as a sample and applying collective inference with the constraints.

6.1 Performance of the Proposed Method

We begin by showing the performance (as a function of optimization iterations) of the
proposed semi-supervised learning algorithm with approximate inference and learning.
As we mentioned in Section 3.4, we increase the weight of unlabeled data Cm from
10−4 to 1 by a factor of 3 and for each Cm we conduct five inner iterations. Therefore,
there are 45 total iterations for each trial. Figure 1 shows Micro-F1 scores evaluated on
unlabeled data and test data along iterations when d = 1%. We omit the correspond-
ing plots for scene, yeast, and tmc2007 because they are somewhat similar to that
on rcv. In most cases, the model achieves better performance as the number of itera-
tions grows. This result is consistent with the observations made in the semi-supervised
learning literature, e.g., [2,5]. However, a key difference is that, our results are demon-
strated on problems with complex structured outputs. The test set curve of emotions
dips a bit at the end in Figure 1(b). This because, in the annealing step, we increase Cm

along iterations. As the amount of unlabeled data in emotions is small, large Cm may
overemphasize the unlabeled data, resulting in slightly inferior performance. When de-
gree of labeling is 2% or higher, the performance on emotions does not drop in the
end. In general, when the amount of unlabeled data is small, over-emphasizing it via
large Cm leads to over-fitting.

Next, we show that our semi-supervised classifier (Semi-Sup) is better than the su-
pervised classifier (Sup) that is trained only on the labeled data. We compare the results
with various degrees of labeling d ∈ {1, 2, 4, 8}. For a fair comparison, when evaluating
Sup on test set, the constraints are used. Table 2 shows the results. Overall, the semi-
supervised learning algorithm outperforms the baseline classifier. The improvement is
statistically significant. As d increases, the Micro-F1 score of the methods increases
while the standard deviation decreases, as expected.

In section 3.4, we mentioned the use of annealing to deal with the non-concavity
of the objective function in (5). Experiments show the importance of annealing. For
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Table 2. Comparison of semi-supervised (Semi-Sup) and supervised (Sup) learning algorithms.
Boldface indicates significant improvement of Semi-Sup over Sup.

Dataset
Degree of labeling (d)

1% 2% 4% 8%
Semi-Sup Sup Semi-Sup Sup Semi-Sup Sup Semi-Sup Sup

scene 55.2±3.7 51.5±2.7 59.3±2.1 56.9±2.4 63.8±1.4 61.8±2.5 66.9±1.4 66.0±1.6
yeast 42.9±2.1 42.5±1.8 43.4±1.0 43.2±1.2 45.2±1.2 44.5±1.0 45.2±0.9 44.8±0.9
emotions 51.3±5.9 49.9±4.5 55.5±4.3 53.8±3.9 58.8±3.8 58.3±4.3 62.2±2.5 60.5±2.7
rcv 30.5±2.1 27.8±2.0 33.6±1.8 32.2±1.8 36.4±0.9 34.2±1.4 36.3±1.3 34.0±1.4
tmc2007 42.0±1.2 41.3±1.2 43.0±1.1 42.4±1.2 44.1±0.6 41.4±1.7 43.8±0.7 41.4±1.6

Table 3. Columns 1-4 compare various situations with constraints: without incorporating any con-
straint (No), using label distribution constraints (LDC), using label correlation constraints (LCC)
and using both constraints (Both). Columns 4-7 investigate approximate/exact learning/inference.
We use abbreviations to represent the combinations (e.g., ALEI stands for (A)pproximate
(L)earning with (E)xact (I)nference). Results are in Micro-F1 (%). The best result (mean) of
each column is boldfaced.

Data d
ALAI ALAI ALEI ELAI ELEI

No LDC LCC Both Both

scene
1 51.6±2.4 54.6±3.5 53.5±3.6 55.2±3.7 56.8±5.9 53.7±5.4 56.6±5.5
2 58.0±1.5 59.1±2.1 59.1±1.9 59.3±2.1 62.6±2.0 60.1±2.6 61.8±2.4
4 61.2±3.2 63.5±1.6 63.2±1.8 63.8±1.4 65.2±1.8 64.2±1.6 64.7±1.9

yeast
1 42.3±2.7 42.8±2.1 42.8±2.3 42.9±2.1 42.1±2.0 42.9±1.7 42.2±1.8
2 42.8±1.5 43.2±1.1 43.0±0.8 43.4±1.0 42.5±1.4 43.1±1.3 43.0±1.5
4 45.0±1.8 45.2±1.2 45.2±1.4 45.1±1.2 44.5±1.3 44.5±1.6 44.0±1.4

emotions
1 48.3±6.2 51.0±5.9 51.1±5.7 51.2±5.9 54.0±5.0 51.7±6.9 52.9±5.6
2 53.2±4.5 55.2±3.9 54.7±4.4 55.5±4.3 55.2±4.8 54.0±3.7 54.6±5.7
4 58.0±3.9 59.0±4.0 59.0±3.9 58.8±3.8 58.4±3.1 57.0±3.2 58.1±3.1

example, without using annealing, the mean performance of Semi-Sup on scene (d =
1) drops from 55.2% to 54.2%. In addition, incorporating constraints during testing
improves the performance of the classifier. For example, without using constraints, the
mean Micro-F1 scores of Semi-Sup and Sup on scene (d = 1) dropped to 54.9% and
49.6% from 55.2% and 51.5% respectively (see Table 2).

6.2 Using Different Sets of Constraints

The first four columns in Table 3 show the results for different uses of constraints.
Without using constraints, the performance of Semi-Sup is suboptimal. With label
distribution constraint (LDC) the performance is significantly better. In most cases, us-
ing label correlation constraints (LCC) obtains similar results as using LDC. However,
when both constraints are used (Both), the performance gain is enhanced even further.
These results show the importance of using constraints to improve the model.
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6.3 Exact versus Approximation

Next, we investigate the performance difference between using an exact algorithm and
an approximate algorithm during training and inference. We show the results on three
small data sets, scene, yeast and emotions. The number of labels in these data sets
is less than 15. For such cases, exact learning and inference algorithms are tractable.
For exact inference, we explicitly enumerated all possible assignments of labels and
chose the one with the highest objective function value in (6) as the solution. For ex-
act learning, instead of computing composite likelihood, we compute the full likelihood.
Computation of the partition function is the main bottleneck associated with exact learn-
ing. However, when the size of labels is small, the partition function can be computed
exactly using scores for all enumerated label assignments. Columns 4-7 of in Table 3
show the results. In some cases, the approximate algorithm even achieves better per-
formance than the exact one (e.g., ALAI achieves the best result on yeast). However,
except on yeast (d = 1%, 4%), the difference between ELEI and the best result are not
statistically significant. In general, the performance of approximate inference/learning
is competitive with that of exact inference/learning. Regarding the running time, ALAI
takes 4,167 seconds to train a model using yeast data set, while ELEI takes 9,175 sec-
onds. Therefore, the approximation is faster than the exact method, especially when the
number of labels is large. This shows the effectiveness of our semi-supervised learning
framework with approximate inference and training.

6.4 Transductive Setting Experiments

If the test data is known in advance, it can be used in the semi-supervised learning pro-
cess as additional unlabeled data. This has the potential to yield better performance on
the test data. We refer this as the transductive setting, as opposed to the original induc-
tive setting. Comparing the results of the transductive setting with those in Table 2 for
the inductive setting, we found that the transductive setting is statistically significantly
better on emotions data but achieves similar performance as the inductive setting on
the other two data sets. For example, when degree of labeling is 1%, the mean perfor-
mances of the transductive setting are 55.1%, 42.9% and 51.7% on scene, yeast, and
emotions, respectively; compare this with 55.2%, 42.9% and 51.3% for the inductive
setting. The key reason for this is that the original unlabeled train set of emotions is
small, and therefore, including test data in training helps it do better.

Moreover, the transductive setting improves the supervised learning setting. For ex-
ample, using the full train set as labeled data and the test set as the unlabled data to
train the model improves the plain supervised learning setting from 74.3% to 74.8% in
Micro-F1 on scene data set.

6.5 Incorporate the Inference Engine Proposed in Sec. 4 with Existing Methods

As we mentioned in Section 2, the proposed method is related to several methods in
semi-supervised learning literature. However, most existing papers focus on problems
with tractable structure outputs (e.g., linear chains), for which there is no need to use
an approximate algorithm. Therefore, we are not aware of any existing method that we
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Table 4. Comparison of semi-supervised (Semi-Sup) and supervised (Sup) learning algorithms
of TSVM+ and CoDL+. Boldface indicates significant improvement of Semi-Sup over Sup or
vice versa. We reproduce the results of our model from Table 2 for ease of reference.

Dataset
Degree of labeling (d)

1% 2% 4% 8%
Semi-Sup Sup Semi-Sup Sup Semi-Sup Sup Semi-Sup Sup

TSVM+
scene 45.7±4.0 42.1±2.6 50.7±2.4 45.5±3.2 60.4±1.5 55.9±1.9 64.9±1.2 63.0±1.2
yeast 40.1±2.1 41.1±2.2 40.3±1.3 41.8±1.6 41.2±1.5 43.3±1.2 40.4±1.7 43.2±1.6
emotions 46.8±6.4 50.0±5.7 51.9±4.3 51.5±4.2 54.2±3.5 55.3±5.1 56.7±2.9 57.6±1.8

CoDL+
scene 50.2±9.1 33.8±6.8 56.0±3.5 37.8±3.8 60.8±1.9 45.4±4.7 65.3±1.8 55.4±3.8
yeast 40.9±3.3 39.6±3.0 39.8±2.4 41.5±1.5 40.9±1.7 43.2±1.9 40.5±1.3 44.3±1.9
emotions 52.6±4.3 43.0±8.2 55.9±6.5 44.8±6.3 58.6±3.8 52.5±4.7 62.0±4.0 55.8±4.2

The proposed method
scene 55.2±3.7 51.5±2.7 59.3±2.1 56.9±2.4 63.8±1.4 61.8±2.5 66.9±1.4 66.0±1.6
yeast 43.9±2.1 42.5±1.8 43.4±1.0 43.2±1.2 45.2±1.2 44.5±1.0 45.2±0.9 44.8±0.9
emotions 51.3±5.9 49.9±4.5 55.5±4.3 53.8±3.9 58.8±3.8 58.3±4.3 62.2±2.5 60.5±2.7

can directly compare with. However, our inference method introduced in Section 4 can
be applied to other semi-supervised models. In the following, we show two examples,
where we combine our inference engine with CoDL [2] and transductive structured
SVM [40,6]. We refer the combined methods as CoDL+ and TSVM+, respectively.

TSVM+. TSVM [40] extends a binary transductive SVM model [12] to deal with struc-
tured outputs. However, it cannot deal with complex structured outputs, because it relies
on an exact inference solver. In addition, the model does not use constraints from do-
main knowledge to guide learning. To extend TSVM, we modify the learning algorithm
with an approximate structured SVM approach [6]. The augmented inference problems
involved during the learning are solved approximately using our inference algorithm.
Then, we add prior constraints over y in [40, Eq. OP3] to incorporate with corpus-level
constraints. The resulted optimization problem is solved by a CCCP procedure [37]. We
implemented TSVM+ based upon the Matlab version of structured SVM [33,13].

CoDL+. CoDL [2] proposed a general framework to incorporate declarative constraints
for structured learning. However, they did not show results on problems with complex
structured output. We implement CoDL using an Averaged Structured Perceptron al-
gorithm and our inference engine. Specifically, Steps 4-7 in [2, Algorithm 2] and Step
4 in [2, Algorithm 3] are replaced by our inference algorithm. We use an L+I setting
with ρk = ∞. CoDL uses a smoothing parameter to combine the models learned from
labeled and unlabeled data instead of using annealing steps. For a better comparison,
we implement the same annealing steps introduced in 3.4 for TSVM+ and CODL+.

Comparison and Discussion. Table 4 shows the performance in micro-F1. Results
show that TSVM+ significantly improves the plain supervised setting on scene, but
achieves a sub-optimal solution on yeast. We suspect that the performance dip is due
to over-fitting (a similar situation is shown in Figure 1(b)). In fact, TSVM+ achieves
better generative performance at early iterations on yeast. For example, it achieves



190 K.-W. Chang, S. Sundararajan, and S. Sathiya Keerthi

42.4% F1 at iteration 17 when Cm = 0.005 and the performance goes down afterwards.
Regarding CODL+, it significantly improves its supervised counterpart on both scene
and emotions. However, it also suffers from over-fitting on yeast data set.

The results in this section are mainly to demonstrate that our inference method can
be incorporated with other semi-supervised models. We noted that extending existing
semi-supervised learner for complex structured output problems is nontrivial. There-
fore, a careful study might further improve the performance of CoDL+ or TSVM+.
Nevertheless, results in Tables 4 show that our method achieves better or competitive
performance with CODL+ and TSVM+ in all cases.

7 Conclusion and Discussion

In summary, we presented an effective semi-supervised learning framework for struc-
tured prediction problems with complex output structure. The proposed framework is
general and can be easily applied to problems other than multi-label classification. Eval-
uating the framework on more complex problems is an important direction. A detailed
and thoughtful comparison with other state-of-the-art semi-supervised multi-label clas-
sification methods is an interesting topic for future study.
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Abstract. While recent supervised dictionary learning methods have
attained promising results on the classification tasks, their performance
depends on the availability of the large labeled datasets. However, in
many real world applications, accessing to sufficient labeled data may
be expensive and/or time consuming, but its relatively easy to acquire a
large amount of unlabeled data. In this paper, we propose a probabilistic
framework for discriminative dictionary learning which uses both the
labeled and unlabeled data. Experimental results demonstrate that the
performance of the proposed method is significantly better than the state
of the art dictionary based classification methods.

Keywords: Dictionary learning, MAP estimation, Gibbs Random Field,
Local Linear Embedding, Local Fisher Discriminant Analysis.

1 Introduction

In the recent decade, Sparse Representation (SR), and Dictionary Learning (DL)
have gained much interest in the computer vision and pattern recognition areas
[5]. This attention is due to the fact that many natural signals (like natural im-
ages) are sparse in their nature and can be approximated or even fully recovered
by their sparse codes. A common SR formulation consists of a sparsity term and
a reconstructive term as shown in the following expression

[Â, D̂] = argmin
A,D

N∑
i=1

‖xi −Dαi‖22 + γ‖αi‖1, (1)

where xi is the i-th input signal, D is the dictionary, A = [α1, ..., αN ] represents
the sparse codes and γ is a regularization term. This problem is not fully convex,
but by fixing A or D, and minimizing the other one, the problem can be treated
as a convex problem. Methods such as K-SVD [1] can be used to find a proper
dictionary and a sparse code simultaneously.

Recently, Supervised Dictionary Learning (SDL) methods [6],[23], [2], [3] have
used DL for classification tasks by adding discriminative terms to the objective

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 192–207, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



PSSDL: Probabilistic Semi-supervised Dictionary Learning 193

function of Eq. 1. [6] added a Fisher Discriminant Analysis (FDA) term to its
objective function to make the sparse codes more discriminative. The method
proposed in [23] incorporated a logistic loss function into the problem definition
and learned a classifier and a dictionary simultaneously. Zhang et al. [2] modified
the original K-SVD method by using the classification error as a part of objective
function, allowing it to apply as a sparse coding classifier. Wright et al. [3] used
the training signals as dictionary atoms (basis). Using this dictionary, new signals
can be represented as a sparse linear combination of the training signals. The
discrimination will be performed based on the representation error caused by
considering only coefficients corresponding to atoms related to each class and
ignoring all other atoms.

Despite their merits, SDL methods have two main drawbacks. Firstly, the
regularization parameters are usually set using cross-validation technique, which
biases their cost functions toward data points that are poorly represented. Hence,
they are easily affected by noisy, outlier, and mislabeled training data. Secondly,
the performance of the SDL methods is highly dependent on the number of
the training samples. Unfortunately, in many pattern classification problems,
accessibility to a large set of the labeled data may not be possible due to the
fact that labeling data is expensive and time consuming. On the other hand,
unlabeled data points are easily available in abundance which have motivated
machine learning researchers to develop semi-supervised learning methods which
utilize a large amount of unlabeled data, along with the limited number of labeled
data, to build better models for classification tasks.

One of the most well-known methods for semi-supervised classification (SSL)
is Semi-Supervised Support Vector Machine (S3VM) [4], which regards the class
label of unlabeled samples as extra unknowns and optimizes the classifier pa-
rameters and unknown labels simultaneously. Another popular algorithm for
semi-supervised learning is Co-training [8], which assumes that features (data
points) have multiple views. Based on this assumption, this algorithm utilizes
the confident samples in one view to update the other view. However, in many
applications such as image classification, each image has only one feature vector
and hence it is difficult to apply Co-Training.

Recently, Shrivastava et al. [9] have proposed a semi-supervised dictionary
learning (SSDL) algorithm for classification tasks. This algorithm uses an iter-
ative process which goes as follows. In the first iteration, the dictionaries (one
dictionary for each class) are learned using only the labeled data. Then, the
class labels of the unlabeled data points are roughly inferred based on how well
they are reconstructed by the dictionaries of the different classes. In the next
iterations, the confident unlabeled data points are used to further refine the
dictionaries.

In order to improve the discrimination power of the dictionaries, this method
imposes some constraints on the DL task, in which the data samples belonging
to some particular classes with high confidence, should be well represented by
the corresponding dictionaries and poorly represented by other dictionaries. The
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Fisher Discriminant Analysis (FDA) is also used to enhance the discrimination
of the sparse codes for the labeled data.

Although the results of this method is better than the state of the art dis-
criminative DL methods, it has several shortcomings. Firstly, due to the learning
one dictionary for each class, it cannot scale to problems with large number of
classes. Secondly, using FDA only for labeled data may result in overfitting due
to the fact that the number of the labeled data is much smaller than that of the
unlabeled data. Third, it does not consider the underlying geometrical structure
of both the labeled and unlabeled data.

To overcome these shortcomings, in this paper, we propose a novel algorithm
to learn discriminative dictionaries for semi-supervised classification tasks. More
specifically, a single dictionary is learned jointly with a classifier in a MAP
setting, by which sharing features among different classes is allowed and it leads
to less computational cost and less risk of overfitting. We also introduce a new
discriminative term in our probabilistic framework by combining the methods of
Local Fisher Discriminant Analysis (LFDA) [7] and Locally linear Embedding
(LLE) [11] which preserves the global structure of all samples in addition to
enhancing the discrimination power of the dictionary. The contributions of this
paper are summarized as follows:

– Our method combines the LFDA, and LLE algorithms to increase the dis-
crimination power of the dictionary as well as preserving the geometrical
structure of both labeled and unlabeled data points, by which overfitting to
the labeled data is prevented.

– Our method furthermore integrates a multinomial Logistic regression clas-
sifier into the proposed probabilistic dictionary learning framework, which
improves the discrimination in the sparse codes of signals, and the discrimi-
nation in the classifier construction.

– The free parameters are estimated using the MAP estimation technique
which allows to avoid parameter tuning based on the cross-validation.

– The MAP parameters are efficiently estimated via the well-known feature-
sign search algorithm [12].

– Our approach is validated on various well-known digit recognition, face recog-
nition, and spoken letter classification benchmarks.

The remainder of this paper is organized as follows: The proposed probabilistic
model (MAP setup) for dictionary learning is introduced in Section 2. The op-
timization procedure for estimating MAP parameters is discussed in Section 3.
Experimental results are presented in Section 4. We conclude and discuss future
work in Section 5.

2 Proposed Method

In this section, we present our probabilistic framework for dictionary learning
which takes into account both the labeled and unlabeled data. Here, the in-
tuition is to improve the discriminativeness in the dictionary and to prevent
overfitting the (small-size) labeled data points by adding a classifier error term
and a geometrical preserving term into the proposed MAP setting respectively.
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2.1 Problem Formulation

Let XL = {(xi, yi), i = 1, ..., Nl} be the set of labeled data, and XU = {xj , j =
Nl + 1, ..., N} be the set of unlabeled data available for learning the dictionary,
where Nl and N are the number of labeled and total samples, respectively. Here,
xj ∈ RM denotes the j-th sample, yi ∈ {1, 2, ..., C} is the corresponding class
label of the i-th data point, C is the number of classes, and Nu = N − Nl is
the number of the unlabeled data points. Let D = [d1, ..., dK ] ∈ RM×K be the
dictionary with K atoms and A = [AL, AU ]K×N be the matrix of the sparse
codes, where AL = [α1, ..., αl]K×Nl

and AU = [αNl+1, ..., αN ]K×Nu show the
matrices of the sparse codes of the labeled and unlabeled data respectively.

Here, we assume that each data point xi(i = 1, ..., N) can be represented
as a sparse linear combination of K dictionary atoms with additive zero-mean
Gaussian noise εi (εi ∼ N (0, σ2

i I)). Using this assumption, sparse codes can be
considered as latent variables of the representation model. Consequently, the
likelihood of observing a specific sample x, given the dictionary (D) and its
sparse code (α) is modeled as a Gaussian:

P (x | D,α, σ2) ∼ N (Dα, σ2I). (2)

To model the classification process, we use the multinomial logistic regression
classifier which is defined as

P (y = i | α,w1, ..., wC) =
exp(wT

i α)∑C
j=1 exp(w

t
jα)

, i = 1, ..., C, (3)

where α and y are the sparse code of an ordinary sample x and its label respec-
tively, and W = [w1, ..., wC ] shows the parameter of the classifier.

In order to further enhance the discriminative power of the dictionary, some
of the previous DL methods [6], [9] have utilized the FDA algorithm, by which
the trace of the within-class scatter matrix of AL is minimized and the trace of
the between-class scatter matrix of AL is maximized.

However, in situations where the number of labeled data is small, the FDA
may overfit the labeled samples. Moreover, in cases where a large set of unlabeled
samples is available, FDA cannot make use of unlabeled data. Another drawback
of the FDA algorithm is that its performance may be degraded if the samples
in a class form several separate clusters [10]. To circumvent these shortcomings,
we propose a new discrimination term based on a smooth combination of LFDA
algorithm and LLE algorithm, by which the topological structure of all the data
is preserved in addition to enhancing the discrimination power of the dictionary.
Precisely speaking, using LFDA algorithm, within-class scatter can be computed
locally, and so the within-class multimodality can be resolved. Using LLE, re-
liance on the global structure of all samples and information brought by labeled
samples is controlled.
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In LFDA method, the local between-class scatter matrix SlB and the local
within-class scatter matrix SlW are defined as [7]

S(LB) =
1

2

N∑
i,j=1

W
(lb)
i,j (αi − αj)(αi − αj)

T , (4)

S(LW ) =
1

2

N∑
i,j=1

W
(lw)
i,j (αi − αj)(αi − αj)

T , (5)

where W
(lb)
i,j and W

(lw)
i,j are the N ×N matrices which are defined as

W
(lb)
i,j =

⎧⎨⎩Pi,j(1/Nl − 1/Nlyi) if yi = yj
1/Nl if yi �= yj
0 otherwise,

(6)

W
(lw)
i,j =

{
Pi,j/Nlyi if yi = yj

0 otherwise,
(7)

where Nlyi denotes the number of the labeled samples in the class yi. In the
above equations, Pi,j shows the affinity value between xi and xj which is defined
as [7]

Pi,j = exp
(
− ‖xi − xj‖2

γiγj

)
, (8)

where the parameter γi represents the local scaling around xi as

γi = ‖xi − xki ‖, (9)

and xki is the k-th nearest neighbor of xi (a heuristic choice of k = 5 was shown
to be useful through experiments).

Using LLE, we try to preserve the intrinsic topological structure of the data
based on the notion of affinity preserving. In other words, by employing LLE,
the geometric structure of the data is retained by maintaining locally linear
relationships between sparse codes of close data points.

Given the set of the both labeled and unlabeled data points, LLE assumes that
each data point in the original space can be recovered using a linearly weighted
average of its neighbors. Based on this assumption, an optimal weight matrix
S∗ = [s∗ij ] is reconstructed by solving the following problem:

S∗ = argmin
S

N∑
i=1

‖xi −
∑

xj∈Nk(xi)

sijxj‖2, s.t. ∀i,
∑

xj∈Nk(xi)

sij = 1, (10)

where Nk(xi) demonstrates the set of k nearest neighbor of xi. The above opti-
mization problem can be solved as a constrained least-squares problem [18].

In order to utilize the information of the unlabeled data points more efficiently,
we consider certain assumptions about the general geometric properties of the
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Fig. 1. Left: part of a one dimensional manifold, showing the deficiency of the Euclidian
distance (purple edges are shortcut edges), right: Geodesic curve between two points on
a manifold (solid line shows the geodesic curve and the dashed line shows the Euclidean
curve)

data. More precisely, in many applications, high dimensional data points are
actually samples from a low-dimensional subspace of the actual feature space.
In these cases, we can make use of the Manifold assumption which is among the
most practical assumptions in semi-supervised learning tasks [19].

In the original LLE and LFDA algorithms, Euclidean distance is considered as
a measure of evaluating distance between data points. However, by considering
the manifold assumption, Euclidean distance measure may be misleading, since
two samples having a small Euclidean distance may be located far apart on the
underlying manifold of the data points (Fig. 1).

To circumvent this problem, we make use of geodesic distance as a distance
measure between data points which enables us to determine the neighborhood
of a data point more precisely. The geodesic distance between two sample xi
and xj is defined as the length of shortest curve between xi and xj lying on the
manifold of the data points (Fig. 1).

Since the underlying manifold of the samples is unknown (we only have data
which are finite samples of the manifold), we cannot find the exact geodesic dis-
tance between each two data points. Hence, in this paper, we use the idea of [20]
to approximate the geodesic distance between both labeled and unlabeled data
points. In [20], first, a k nearest neighborhood graph of all data is constructed
based on the Euclidean distance. Then, an iterative process is done to remove
the shortcut edges (shortcut edges connect those points of the graph which are
close to each other according to the Euclidean distance, but have large geodesic
distance on the manifold [20]). After refining the constructed graph based on
the idea of [20], we use an efficient shortest path algorithm to find the k near-
est neighbor of each data point. After computing the optimal weight matrix S∗

based on the geodesic distance, we try to minimize the following objective func-
tion in order to preserve the global structure of data in the sparse representation
space.

N∑
i=1

‖αi −
∑

xj∈NG
k (xi)

s∗ijαj‖2 = tr
(
AEAT

)
, (11)
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where NG
k (xi) demonstrates the set of k nearest neighbors of xi based on the

geodesic distance, and E = (I − S∗)T (I − S∗).
Now, we define SRLW and SRLB as the regularized local within-class scatter
matrix and the regularized local between-class scatter matrix respectively:

SRLW = (1 − ϑ)ALLWAT + ϑAEAT (12)

SRLB = (1− ϑ)ALLBAT + ϑIK×K (13)

where ϑ ∈ [0, 1] is a trade-off parameter, and LLW and LLB are the graph
Laplacian matrix of the local within-scatter (SLW ) and the local between-class
scatter (SLB) matrices which are defined as

LLW = DLW −W (lw), LLB = DLB −W (lb), (14)

where DLW and DLB are diagonal N ×N matrices with

DLW
i,i =

N∑
j=1

W
(lw)
i,j , DLB

i,i =

N∑
j=1

W
(lb)
i,j . (15)

Another constraint that the sparse codes should satisfy is the sparsity constraint.
In order to enforce sparsity on A, we put a well-known Laplacian prior distribu-
tion on each sparse code which is shown as

αi ∼ Lap(αi | b) =
1

2b
exp

(
− ‖αi‖1

b

)
, (16)

where b is the scale parameter of the laplacian distribution. In order to encode
the sparsity constraint, the discriminative constraint by LFDA, and the global
constraint by LLE into our probabilistic model, we use Gibbs Random Field
(GRF). A set of random variables {αi}Ni=1 is said to be a GRF, if and only if
their joint distribution follows a Gibbs distribution. Hence, the joint distribution
must take the form

P (α1, ..., αN ) =
1

Z
exp

(
− 1

T
U(α1, ..., αN )

)
, (17)

where Z is the normalizing constant called the Partition Function, T is a constant
called the temperature (in this paper its assumed to be 1), and U(α1, ..., αN ) is
the energy function which in this paper is defined as

U(α1, ..., αN ) = N log 2b+
1

b

N∑
i=1

‖αi‖1 + tr
(
SRLW (A)

)
− tr

(
SRLB(A)

)
. (18)

For simplicity, we also put a Gaussian prior distribution on the dictionary and
the classifier parameters. Hence we have

P (D | σ2
d) ∝

K∏
i=1

N (di; 0, σ
2
dIM ), P (W | σ2

w) ∝
C∏

j=1

N (wj ; 0, σ
2
wIK). (19)
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To model the prior of the parameter Ξ = {σi(i = 1, ..., N), b, σd, σw}, we choose
the objective non-parametric Jeffreys prior, which has been demonstrated to
perform well for regression and classification tasks [21]. So, we have

P (Ξ) ∝
N∏
i=1

1

σ2
i

× 1

b
× 1

σ2
d

× 1

σ2
w

. (20)

The prior over σi encourages a low variance representation which means the
training data should properly fit the proposed representation model. The prior
over b encourages a sparser solution for the sparse codes which is the main aim of
the sparse representation based methods, and the prior over σd and σw decreases
the risk of overfitting the dictionary and the classifier respectively.

After defining the prior and the likelihood distributions, the posterior distribu-
tion of the latent variables (W,D,A,Ξ) given the observations (XL, XU , {yi}Ni=1)
can be computed as

P (W,D,A,Ξ | XL, XU , {yi}Nl
i=1) ∝

N∏
i=1

1

σ2
i

× 1

b
× 1

σ2
d

× 1

σ2
w

× e

(
−U(α1,...,αN)

)
×

N∏
i=1

N (xi;Dαi, σ
2
i )

Nl∏
j=1

exp(wT
yj
αj)∑C

c=1 exp(w
T
c αj)

K∏
i=1

N (di; 0, σ
2
dIM )

C∏
j=1

N (wj ; 0, σ
2
wIK).

(21)

In order to determine the most probable point estimate for the latent variables,
we compute the MAP estimation of the above posterior distribution which is
easy to show that it is equal to the following minimization problem.

[Ŵ , D̂, Â, Ξ̂] = argmin
W,D,A,Ξ

N∑
i=1

‖xi −Dαi‖22
2σ2

i

+

N∑
i=1

log σM+2
i −

Nl∑
j=1

wT
yj
αj

+

Nl∑
j=1

log

( C∑
c=1

exp(wT
c αj)

)
+

1

2σ2
w

C∑
j=1

‖wj‖22 + C log σK+2
w

+
1

2σ2
d

K∑
j=1

‖dj‖22 +K log σM+2
d + (N + 1) log b+

1

b

N∑
i=1

‖αi‖1

+ tr
(
SRLW (α1, ..., αN )

)
− tr

(
SRLB(α1, ..., αN )

)
. (22)

3 Optimization Procedure

In this section, we describe the optimization procedure for the proposed objec-
tive function (Eq. 22). Solving (22) is a challenging task because of two reasons.
Firstly, the objective function is not convex respect to W,D,A and Ξ simultane-
ously. Secondly, the log-sum-exp term (log(

∑C
c=1 exp(w

T
c αj))) in the objective

function prevents us using efficient methods such as feature search sign algorithm
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[12] to compute the sparse codes efficiently. To address the first problem, we can
easily observe that the objective function is convex with respect to each of the
parameters when the others are fixed. Hence, we resort to a coordinate descent
method (alternating optimization), in which unknown parameters are updated
through an iterative process which updates each parameter by fixing the other
parameters in each step. To circumvent the second problem, we utilize a suitable
upper bound to the log-sum-exp function proposed by [22] which states that for
any β ∈ R and ξk ∈ [0,∞), k = 1, ...,K

log(
K∑

k=1

egk) ≤ β+
K∑

k=1

(
gk − β − ξk

2
+λ(ξk)

(
(gk−β)2−ξ2k

)
+log(1+eξk)

)
, (23)

where

λ(ξ) =
1

2ξ

( 1

1 + e−ξ
− 1

2

)
, (24)

where β and {ξk}Kk=1 are the variational parameters which can be optimized to
get the tightest possible bound. So, by replacing the log-sum-exp term of the
objective function with the upper bound of Eq. 23, we have

[Ŵ , D̂, Â, Ξ̂, Θ̂] = argmin
W,D,A,Ξ,Θ

N∑
i=1

‖xi −Dαi‖22
2σ2

i

+

N∑
i=1

log σM+2
i −

Nl∑
j=1

wT
yj
αj

+

Nl∑
j=1

βj +
1

2

Nl∑
j=1

C∑
c=1

(wT
c αj − βj − ξjc) +

Nl∑
j=1

C∑
c=1

λ(ξjc)
(
(wT

c αj − βj)
2 − ξ2jc

)
+

Nl∑
j=1

C∑
c=1

(log(1 + eξjc)) +
1

2σ2
w

C∑
j=1

‖wj‖22 + C log σK+2
w +

1

2σ2
d

K∑
j=1

‖dj‖22

+K log σM+2
d + (N + 1) log b+

1

b

N∑
i=1

‖αi‖1 + tr
(
ATAΓ

)
, (25)

where Θ = {βj, ξjc}j=Nl,c=C
j=1, c=1 is the set of variational parameters, and Γ is a

N ×N matrix which is defined as

Γ = (1− ϑ)LLW + ϑE − (1− ϑ)LLB. (26)

Its obvious from Eq. 25 that it is convex in one parameter when the other
parameters are fixed. Using the upper bound of Eq. 23, we are able to solve the
above optimization problem by an efficient feature-sign search algorithm [12]
which goes as follows.

Computing Sparse Codes A with Fixed W,D,Ξ and Θ: We optimize
each sparse code αi(i = 1, ..., N) by fixing sparse codes αj(j �= i) of other signals.
Hence, for each sparse code αi, if xi ∈ XL, we must solve

α̂i = argmin
αi

FL(αi), (27)
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and if xi ∈ XU , we must solve

α̂i = argmin
αi

FU (αi), (28)

where

FL(αi) =
1

2σ2
i

‖xi −Dαi‖22 − wT
yi
αi +

1

2

C∑
c=1

wT
c αi +

C∑
c=1

λ(ξic)(w
T
c αi − βi)

2

+ 2αT
i (AΓi)− αT

i αiΓi,i +
1

b
‖αi‖1, (29)

FU (αi) =
1

2σ2
i

‖xi −Dαi‖22 + 2αT
i (AΓi)− αT

i αiΓi,i +
1

b
‖αi‖1, (30)

where Γi is the i-th column of Γ and Γi,i is the (i, i) element of Γ .
The functions in Eqs. 29 and 30 are exactly the objective functions that the

feature-sign search algorithm can minimize. This algorithm iteratively searches
for the coefficient sign vector θi of xi, hence (27) and (28) reduce to a standard,
unconstrained quadratic optimization problem (QP). Precisely speaking, after
finding the optimal coefficient sign of the sparse code αi, ‖αi‖1 can be replaced
by θiαi, by which αi can be computed analytically by setting the derivative
of FL(αi) and FU (αi) respect to αi equal to zero. The gradient of FL(αi) and
FU (αi) can be calculated as

∂FL(αi)

∂αi
=

1

σ2
i

DT (Dαi − xi)− wyi +
1

2

C∑
c=1

wc − 2βi

C∑
c=1

λ(ξic)wc

+ 2
( C∑
c=1

λ(ξic)wcw
T
c

)
αi + 2AΓi +

θi
b
, (31)

∂FU (αi)

∂αi
=

1

σ2
i

DT (Dαi − xi) + 2AΓi +
θi
b
. (32)

Finally, the analytic solution of αi can be obtained when we have ∂FL(αi)
∂αi

= 0,

if xi ∈ XL and ∂Fu(αi)
∂αi

= 0, if xi ∈ XU :

α̂i =

(
1

σ2
i

DTD + 2
( C∑
c=1

λ(ξic)wcw
T
c

)
+ 2Γi,iI

)−1(
1

σ2
i

DTxi + wyi −
1

2

C∑
c=1

wc

+ 2βi

C∑
c=1

λ(ξic)wc − 2
∑
j �=i

Γj,iαj −
θi
b

)
, if xi ∈ XL, (33)

α̂i =

(
1

σ2
i

DTD+2Γi,iI

)−1(
1

σ2
i

DTxi−2
∑
j �=i

Γj,iαj−
θi
b

)
, if xi ∈ XU . (34)
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In practice, the Hessian matrices of FL (Eq. 35), and FU (Eq. 36) may not be
positive semidifinite. So, a very small η (ηI) is added to the Hessian matrices to
make them positive semidifinite, hence FL and FU are convex.

HFL =
1

σ2
i

DTD + 2
( C∑
c=1

λ(ξic)wcw
T
c

)
+ 2Γi,iI, (35)

HFU =
1

σ2
i

DTD + 2Γi,iI. (36)

Updating Dictionary D with Fixed A,W,Ξ and Θ: Given A,W,Ξ and
Θ, the optimization problem for D can be formulated as

D̂ = argmin
D

N∑
i=1

‖xi −Dαi‖22
2σ2

i

+
1

2σ2
d

‖D‖2F . (37)

The above problem is an unconstrained quadratic programming, for which D
can be computed analytically as

D̂ = XΣAT (AΣAT +
1

σ2
d

I)−1, (38)

where Σ is a diagonal N ×N matrix with

Σi,i =
1

σ2
i

, i = 1, 2, ..., N. (39)

Updating the Classifier parameter W with Fixed A,D,Ξ and Θ: With-
out loss of generality, we assume that the first N c

L labeled samples belong to the
c-th class. So, given A,Ξ,D and Θ, the optimization problem for wc can be
formulated as

ŵc = argmin
wc

1

2
(

NL∑
j=1

αT
j

)
wc −

( Nc
L∑

j=1

αT
j

)
wc +

NL∑
j=1

λ(ξjc)(α
T
j wc − βj)

2 +
1

2σ2
w

wT
c wc.

(40)
By setting the derivative of the objective function of the above equation respect
to wc equal to zero, we can compute wc analytically as

ŵc =

(
2

NL∑
j=1

λ(ξjc)αjα
T
j +

1

σ2
w

I

)−1( Nc
L∑

j=1

αj +

NL∑
j=1

(
2λ(ξjc)βj −

1

2

)
αj

)
. (41)

Updating the Free Parameter Ξ with Fixed A,W,D and Θ: Given
A,W,D and Θ, each parameter can be computed analytically as:

σ̂i
2 = (

1

M + 2
)‖xi −Dαi‖22, i = 1, 2, ..., N, (42)
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σ̂d
2 = (

1

K(M + 2)
)‖D‖2F , (43)

σ̂w
2 = (

1

C(K + 2)
)‖W‖2F , (44)

b̂ = (
1

N + 1
)

N∑
i=1

‖αi‖1. (45)

Updating the Variational Parameter Θ with Fixed A,W,D and Ξ:
Given A,W,D and Ξ, we first compute the updates for {βj}NL

j=1 by fixing other

variational parameters ({ξjc}NL,C
j=1,c=1) which leads to the following solution.

β̂j =

(
2
( C∑
c=1

λ(ξjc)w
T
c

)
αj +

C

2
− 1

)/
2
( C∑
c=1

λ(ξjc)
)
, j = 1, ..., NL. (46)

Secondly, we fix {βj}NL

j=1, and update {ξjc}NL,C
j=1,c=1 by solving the following prob-

lem.

ξ̂jc = argmin
ξjc

λ(ξjc)
(
(wT

c αj − βj)
2 − ξ2jc

)
− 1

2
ξjc + log(1 + eξjc). (47)

By setting the derivative of the objective function of the above equation respect
to ξjc equal to zero, we have

λ′(ξjc)
(
(wT

c αj − βj)
2 − ξ2jc

)
− 2λ(ξjc)ξjc −

1

2
+

1

1 + e−ξjc
= 0. (48)

Using the definition of λ(ξjc), the above equation can be simplified as

λ′(ξjc)
(
(wT

c αj − βj)
2 − ξ2jc

)
= 0. (49)

Since ξjc ∈ [0,∞], λ′(ξjc) �= 0, hence we can compute ξjc analytically as

ξ̂jc =| wT
c αj − βj |, j = 1, ..., NL, c = 1, ..., C, (50)

3.1 Class Label Prediction

After learning A,D,W and Ξ, classifying a new signal x with an unknown label
y is performed by solving the following optimization problem.

ŷ = argmax
y∈{1,...,C}

P (y | x,D,W,Ξ). (51)

Using the Bayes’ rule formula, the above problem can be expressed as

ŷ = argmax
y∈{1,...,C}

∫∫
P (y | α,W )P (x | D,α, σ2)P (α | b)P (σ) dα dσ. (52)
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Table 1. Classification accuracy of different methods

dataset SVM S3VM FDDL SDL-G SDL-D S2D2 PM

MNIST 79.3 ± 1.9 83.3 ± 1.1 81.8 ± 1.8 82.1 ± 1.4 79.9 ± 2.1 86.1 ± 1.0 87.4 ± 1.2

USPS 80.7 ± 1.6 82.5 ± 0.9 81.1 ± 1.7 81.9 ± 1.3 80.1 ± 1.9 85.6 ± 0.9 86.9 ± 1.0

AR 70.4 ± 2.1 77.1 ± 1.7 74.2 ± 2.1 75.3 ± 1.5 74.1 ± 2.3 85.9 ± 1.4 86.7 ± 1.5

E-Yale B 72.1 ± 1.9 75.1 ± 1.7 65.9 ± 2.3 69.4 ± 1.8 67.9 ± 2.1 79.3 ± 1.8 80.8 ± 1.8

ISOLET 85.8 ± 1.7 87.3 ± 1.6 82.6 ± 1.9 83.4 ± 1.7 82.5 ± 1.9 89.9 ± 1.8 91.4 ± 1.1

where α is the sparse representation of x, and σ2 is the representation noise
variance of x (Eq. 2). By assuming that the posterior distribution over α and σ
(P (α, σ | x,D,Ξ)) can be approximated as a unit point measure at the MAP
value (αt, σt) of that distribution, the above problem can be replaced with the
following minimization problem.

ŷ = argmin
y∈{1,2,...,C}

[
min
αt,σt

‖x−Dαt‖22
2σ2

t

+ (M + 2) log σt +
1

b
‖αt‖1 − wT

y αt

+ log

( C∑
c=1

exp(wT
c αt)

)]
. (53)

Again, using the upper bound of Eq. 23, we can efficiently solve the above prob-
lem (details omitted due to space limitations).

4 Experimental Results

To illustrate the efficacy of our method, we present experimental results on appli-
cations such as Face Recognition (FR), Handwritten Digit Recognition (HDR),
and Letter Recognition (LR). For comparison purposes, we compare our method
with some state of the art SDL methods such as FDDL [6], SDL-G [23], SDL-
D [23], and two well-known classification methods SVM and S3VM [4]. We
also compare our method with S2D2 [9] which is a recently introduced semi-
supervised DL algorithm. In all of our experiments, the parameter ϑ is set equal
to 0.5 (the results of all experiments are almost unchanged for 0.1 ≤ ϑ ≤ 0.9). In
order to determine an appropriate number of dictionary atoms (K), and nearest
neighbors of data samples (k) for computing the LLE matrix (E), Five-fold cross
validation is performed to find the best pair (K, k). The tested values for K are
{64, 128, 256, 512} and for k, {3, 5, 7, 9, 11}.

Digit Recognition: We apply the proposed method on two HDR datasets
MNIST [24], and USPS [25]. The MNIST dataset consists of 70,000 28 × 28 im-
ages, 60,000 for training, 10,000 for testing, each of them containing one hand-
written digit. USPS is composed of 7291 training images and 2007 test images
of size 16 × 16. For these datasets, 25 samples per class are randomly chosen
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Fig. 2. Left: accuracy of the proposed method using the geodesic and the Euclidian
distance for MNIST and USPS datasets, right: the learned D (K=64) for USPS dataset

from the training data as the labeled samples and the rest of the training data
is used as the unlabeled data (we use the whole image as the feature vector
in the digit datasets). The average recognition accuracies over 10 runs together
with the standard deviation is shown in Table 1, from which we can see that the
proposed method outperforms significantly the SDL methods. The improvement
in performance compared to SDL methods is because of two reasons. Firstly,
the number of labeled data is small, hence the SDL methods may overfit to the
labeled data. Secondly, these methods cannot utilize unlabeled data for learning
dictionary. Moreover, S3VM and S2D2 does not consider the topological struc-
ture of all data, hence both of them are less accurate than our method. We also
provide a visualization of the learned D for USPS dataset for K = 64 (Fig. 2).

In order to demonstrate the superiority of the geodesic distance over the
Euclidian distance, we compute the recognition performance of the proposed
method on MNIST, and USPS dataset, using both the geodesic and the Euclidian
distances to find the k nearest neighbors of data points. The results are presented
in Fig. 2, for various number of k. The figure shows two major points. Firstly,
it is obvious that using the geodesic distance leads to better performance than
the Euclidian distance, because the Euclidian distance ignores the fact that the
data points lie on a low dimensional manifold. Secondly, when the number of
nearest neighbors grows, the recognition accuracy decreases for the Euclidian
distance and increases for the geodesic distance. This is due to the fact that
using Euclidian distance, by increasing k, samples from different classes are more
likely to be selected as the neighbors of data points. Hence, the matrix E which
captures the locality information of data points may be misleading. On the
other hand, the geodesic distance considers the underlying manifold of samples,
by which the neighbors of data points can be found more accurately, and hence
the matrix E encodes the locality of data points more precisely.

Face Recognition: We then perform the face recognition task on the widely
used E-Yale B [26], and AR [27], face databases. The E-Yale B database con-
sists of 2,414 frontal-face images from 38 individuals (about 64 images per
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individual), and the AR database consists of over 4,000 frontal images from
126 individuals generated in two sessions, each of them consists of 14 images per
individual (seven image for training, and seven image for testing). The E-Yale
B and AR images are normalized to 54 × 48 and 60 × 40 respectively. We then
perform a Principal Component Analysis (PCA) on the images to obtain 300
dimensional feature vectors. For AR dataset, we randomly choose two samples
of the training session to form the labeled data and use the remaining five of
that session as the unlabeled data. For E-Yale B dataset, for each class, we ran-
domly select ten images as labeled data, twenty images as unlabeled data, and
the remaining ones for testing. The average recognition accuracies over 5 runs
together with the standard deviation are presented in the forth, and fifth rows
of Table 1. Again, due to the small number of the labeled data, SDL methods
have lower accuracy than SSDL methods. Moreover, because of considering the
geometrical structure of data, our method has better performance than S3VM
and S2D2 methods.

Letter Recognition: Finally, we apply our method on the ISOLET database
[28], from UCI Machine Learning Repository which consists of 6238 examples
and 26 classes corresponding to letters of the alphabet. We reduced the input
dimensionality (originally at 617) by projecting the data onto its leading 100
principal components. For each class, We randomly select 10 samples as labeled
data, 100 samples as unlabeled data, and the remaining ones for testing. The
average recognition accuracies over 5 runs together with the standard deviation
are presented in the last row of Table 1, from which we can see that the proposed
method performs significantly better than the other algorithms.

5 Conclusion

In this paper, we proposed a probabilistic method which uses the information of
unlabeled data as well as labeled data for learning discriminative dictionaries.
The proposed method improves the discrimination of the dictionary and the
sparse codes by incorporating a classifier error term and a discrimination term
based on LFDA into the model. The topological structure of all data is also
preserved based on LLE method which prevents overfitting the small labeled
data. Moreover, instead of Euclidian distance, we utilized the geodesic distance
which allows us to find the neighbors of data points more accurately. Experiments
using various benchmark datasets demonstrate the superiority of the proposed
method over the state-of-the-art SDL and SSDL methods.
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Abstract. The problem of embedding arises in many machine learning
applications with the assumption that there may exist a small number
of variabilities which can guarantee the “semantics” of the original high-
dimensional data. Most of the existing embedding algorithms perform to
maintain the locality-preserving property. In this study, inspired by the
remarkable success of representation learning and deep learning, we pro-
pose a framework of embedding with autoencoder regularization (EAER
for short), which incorporates embedding and autoencoding techniques
naturally. In this framework, the original data are embedded into the
lower dimension, represented by the output of the hidden layer of the
autoencoder, thus the resulting data can not only maintain the locality-
preserving property but also easily revert to their original forms. This
is guaranteed by the joint minimization of the embedding loss and the
autoencoder reconstruction error. It is worth mentioning that instead
of operating in a batch mode as most of the previous embedding algo-
rithms conduct, the proposed framework actually generates an induc-
tive embedding model and thus supports incremental embedding effi-
ciently. To show the effectiveness of EAER, we adapt this joint learning
framework to three canonical embedding algorithms, and apply them to
both synthetic and real-world data sets. The experimental results show
that the adaption of EAER outperforms its original counterpart. Be-
sides, compared with the existing incremental embedding algorithms, the
results demonstrate that EAER performs incremental embedding with
more competitive efficiency and effectiveness.

Keywords: Embedding, Autoencoder, Representation Learning, Unsu-
pervised Dimensionality Reduction.

1 Introduction

In many real-world applications, one is often confronted with overwhelmingly
complex features in the raw data and needs to obtain more useful data
representations. The manifold hypothesis, that real-world data presented in high-
dimensional spaces usually concentrate near a lower-dimensional non-linear man-
ifold, brings a rich geometric perspective to the problem of learning meaningful

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 208–223, 2013.
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representations [15]. Illustrated by this assumption, various embedding meth-
ods have been developed [19,24,1]. However, most of them only focus on the
locality-preserving property of embedding, namely the relative distance between
the points in the high dimension is preserved in the low dimension space.

Recently, deep learning and representation learning attract many research
interests with its remarkable success in many applications [9,2,3,23]. In these
works, autoencoder is usually adopted as a basic building block to initialize
the deep neural network [3,23]. It is trained to encode the inputs into some
representations so that the resulting representations can revert to their original
forms. It has been shown that autoencoding is a powerful way to learn the hidden
representation of the data.

Input space 

Embedding 
space 

Autoencoder regularization 

Embedding 
constraints 

Output space 

Fig. 1. Illustration of embedding with autoencoder regularization: view from autoen-
coders

Motivated by the remarkable success of deep learning with autoencoders,
we solve the embedding problem collaboratively with autoencoding techniques.
Specifically, we propose a framework of embedding with autoencoder regular-
ization (EAER for short) with its two views from autoencoder and embedding
respectively. First, from the view of autoencoder in Figure 1, EAER actually
trains an autoencoder with the embedding constraints. Specifically, it contains
the input layer, hidden layer and output layer from bottom to top. In this frame-
work, besides minimizing the reconstruction error in the original autoencoder,
the embedding loss at the hidden layer is also minimized simultaneously. Second,
from the view of embedding in Figure 2, each data point with D dimensions is
embedded into a d-dimensional space. Simultaneously, it is required that the data
points in the hidden space can be recovered to their original form. In other words,
the autoencoder is used here as a complementary regularizer to the embedding
process. Hopefully, by this joint minimization we can derive the embedding with
more semantic representations.

It should be noted that the training of the proposed framework actually gener-
ates an inductive embedding model, the function between the input and hidden
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…

Fig. 2. Illustration of embedding with autoencoder regularization: view from embed-
ding

layers of the autoencoder. It can directly map an instance into the low-dimensional
space without accessing the original training data set. Thus, it supports incremen-
tal embedding more efficiently compared with most of the existing embedding al-
gorithms which perform in a batch mode.

To show the effectiveness of EAER we adapt this joint learning framework to
three well known embedding algorithms, namely Laplacian eigenmaps [1], multi-
dimensional scaling [5] and margin-based embedding [7], and apply them to both
the synthetic and real-world data sets. The experimental results show that the
adaption of EAER outperforms its original counterpart. Also, we demonstrate
that compared with the existing incremental embedding algorithms, EAER per-
forms incremental embedding more efficiently with the competitive effectiveness.

In this paper, we describe the EAER framework, along with the details of
implementation and performance on a simple synthetic example and real-world
data sets. The organization of this paper is as follows: In Section 2, we review
the preliminary knowledge of embedding algorithms and autoencoder. In Sec-
tion 3, we describe EAER framework of learning a low dimensional mapping
with autoencoder regularization. In Section 4, we illustrate the algorithm’s per-
formance by adapting this joint learning framework to three canonical embedding
algorithms. In Section 5, we compare EAER framework to other unsupervised
embedding algorithms and discuss several related works. Finally, in Section 6 we
conclude this study and mention several directions for future work.

2 Preliminaries

In this section, the summary of general embedding algorithms will be given,
followed by a brief review of autoencoders.
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2.1 Embedding Algorithms

Many well known embedding algorithms can be described as a rather general
form [26]: given the data set x(1), ..., x(m) find an embedding f(x(i)) of each point
x(i) by solving the following optimization problem∑

1≤i<j≤m

L(f(W, b;x(i)), f(W, b;x(j)), ϕij) (1)

where f(W, b;x) ∈ Rd is the embedding result for a given input x ∈ RD. L(·) is
the loss function between pairs of inputs. ϕij is the weight between x

(i) and x(j).
We define ϕij = 0 if i = j. For certain loss function L(·) such as Equation (2),
constraints may need to remove arbitrary factors in the embedding.

To compute the parameter set ϕ, one can construct an adjacency graph by
putting an edge between between x(i) and x(j) if they are “similar”. The similar-
ity of any two data points can be evaluated with k-nearest neighbors (kNN) or
ε-neighborhoods. Nodes x(i) and x(j) are connected by an edge if x(i) is among k
nearest neighbors of x(j). If one chooses ε-neighborhoods metric, nodes are con-
nected by an edge if ‖x(i) − x(j)‖2 < ε where the norm is usually the Euclidean
norm. The edges are weighted with Euclidean distance ϕij = ‖x(i) − x(j)‖2 or

Gaussian kernel ϕij = e−
‖x(i)−x(j)‖2

τ (τ ∈ R) if x(i) and x(j) are connected. An-
other simple way for weighting the edges is to set ϕij = 1 if nodes are connected,
otherwise ϕij = 0.

We consider the following embedding algorithms which fit into this framework.

Laplacian Eigenmaps. Laplacian eigenmaps (LE) [1] is a coherent framework
for embedding by emphasizing the preservation of the locality. One constructs
the adjacency graph of input samples and encodes them into d-dimensional Eu-
clidean space. The embedding is given by the d×m matrix F = [f1, f2, ..., fm],
fi is short for f(W, b;x(i)). L = D − ϕ is the Laplacian matrix where D is a
diagonal weight matrix Dii =

∑
j ϕji. Then, we need to minimize∑

i<j

L(fi, fj, ϕij) =
∑
i<j

‖fi − fj‖2ϕij = Tr(FLFT ) (2)

subject to: FDFT = I and FD1 = 0.

Multidimensional Scaling. Multidimensional scaling (MDS) [5] is a canonical
form of linear embedding that attempts to find an embedding from the input
data into a low-dimensional space such that distances between data points are
preserved. Usually, MDS is formulated as an optimization problem∑

i<j

L(fi, fj , ϕij) =
∑
i<j

(‖fi − fj‖ − ϕij)
2 (3)

Kernel PCA can be interpreted as a form of metric MDS when the kernel function
is isotropic [27].
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Isomap [24] is one of several widely used low-dimensional embedding methods
which works by defining the geodesic distance to be the sum of edge weights
along the shortest path between two nodes and then performs low-dimensional
embedding with classical MDS based on the pairwise distance between data
points.

Margin-Based Embedding. The margin-based loss function proposed for
learning a globally coherent nonlinear function that maps the data evenly to
the output manifold and relies solely on neighborhood relationships [7]. The
following optimization is used:

L(fi, fj , ϕij) =

{
‖fi − fj‖2 if ϕij = 1
max (0, l− ‖fi − fj‖2) if ϕij = 0

(4)

which ensures that the data in the embedding space have a distance of at least
l from each other when they are similar in the input space. In our experiments l
is set to 1. The weight of edges ϕij = 1 if x(i) and x(j) are connected, otherwise
ϕij = 0.

2.2 Autoencoders

An autoencoder neural network is an unsupervised learning algorithm that ap-
plies back-propagation [20], setting the target values to be equal to the inputs. In
terms of embedding, the network learns to encode the inputs into a small num-
ber of dimensions and then decode it back into the original space. Specifically,
given an unlabeled data set x(i), i = 1, ...,m, we want to learn representations

f(W (1), b(1);x(i)) = σ(W (1)x(i) + b(1)) (5)

such that the output hypotheses

h(W, b;x(i)) = σ(W (2)f(W (1), b(1);x(i)) + b(2)) (6)

is approximately x(i). Thus we use L2 norm to minimize the reconstruction error
J(W, b;x)

J(W, b;x) =
1

2

m∑
i=1

‖h(W, b;x(i))− x(i)‖2 (7)

We consider sparse autoencoder with sparsity parameter ρ and penalize it
with the Kullback-Leibler (KL) divergence [10]. We then define the overall cost
function to be

J(W, b;x) + β

d∑
j=1

KL(ρ‖ρ̂j) +
λ

2
‖W‖2 (8)

where ρ̂j = 1
m

∑m
i=1 fj(W

(1), b(1);x(i)) is the average activation of hidden unit
j; m is the number of inputs and d is the number of hidden units; The last term
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is a weight decay term that tends to decrease the magnitude of the weights,
and helps prevent over-fitting. β and λ control the weight of the corresponding
penalty terms;

KL(ρ‖ρ̂j) = ρ log
ρ

ρ̂j
+ (1 − ρ) log

1− ρ

1− ρ̂j
(9)

is the KL divergence between Bernoulli random variables with mean ρ and ρ̂j
respectively.

3 Learning a Low Dimensional Mapping with
Autoencoder Regularization

We consider the problem of finding a function that maps high-dimensional input
data to lower-dimensional representations given the neighborhood relationships
between the data in the input space.

3.1 Embedding with Autoencoder Regularization

We would like to use the ideas developed in autoencoding for embedding. The
general approach we propose for EAER is to add an autoencoder regularizer
to the embedding optimization function. As shown in Figure 1 and 2, we aim
to simultaneously minimize the autoencoder reconstruction error at the output
layer and the embedding loss in the hidden layer. The general form of this joint
loss function is as follows:

Jem(W, b, ϕ;x) =
∑

1≤i<j≤m

L(f(W (1), b(1);x(i)), f(W (1), b(1);x(j)), ϕij)

+γJ(W, b;x) + β
d∑

j=1

KL(ρ‖ρ̂j) +
λ

2
‖W‖2 (10)

where L(·) is the embedding loss function between pairs of the data (its detailed
form can be any of the functions (2), (3) and (4) for different embedding al-
gorithms). Here, f(W (1), b(1);x(i)) actually maps x(i) to the lower dimension;
J(W, b;x) is the autoencoder reconstruction error defined by Equation (7); the
last two terms are sparsity penalty term and weight decay term discussed in Sec-
tion 2.2; γ, β and λ control the balance between these penalty terms. The idea
that injecting an autoencoder regularization may help to guide the embedding
towards better data representations, and we use a synthetic swiss roll example
to illustrate this conjecture.

3.2 A Case Study on Synthetic Data

The swiss roll, considered in [1,24,19], is a flat two-dimensional sub-manifold of
R3 which is shown in Figure 3(a), and the data set of 2000 points chosen at ran-
dom from the swiss roll is shown in Figure 3(b). We build the adjacency graph
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Fig. 3. A synthetic swiss roll example. (a) the synthetic swiss roll manifold, (b) 2000
points chosen at random from the swiss roll, (c) embedding result of LE, (d) embedding
result of EAER-LE.

with 8 nearest neighbors, and set the weight ϕij = 1 if node i is among the 8
nearest neighbors of node j, otherwise ϕij = 0. For EAER-LE (the EAER frame-
work applied to the LE algorithm), we have the following parameter settings in
Equation (10): γ = 0.65, λ = 0.003, and β = 0. We compute the two-dimensional
representations by LE and EAER-LE, and their results are respectively shown
in Figure 3(c) and Figure 3(d).

The curve in Figure 3(c) is only a half ellipse, while the curve in Figure 3(d)
maintains the roll in the two-dimension space. Thus, it is obvious that the result
of EAER-LE is more “semantic” since it preserves the curve of the original
manifold together with the locality properties. As shown in Section 4, we can also
obtain such meaningful results when EAER is applied to the other embedding
algorithms.

3.3 Model Learning

Our goal is to minimize Jem(W, b, ϕ;x) as a function of W , b and ϕ. One can
construct a weighted graph by the method of k-nearest neighbors (kNN) or
ε-neighborhoods to compute ϕ and then train this regularized neural network
parameterized by W and b. The key step of model learning is computing the
partial derivatives ∂

∂W (l) Jem(W, b, ϕ;x) and ∂
∂b(l)

Jem(W, b, ϕ;x) with respect to
the input x. We will use an efficient way to compute the partial derivatives in
light of the intuition behind the back-propagation algorithm [20]. In order to
measure how much the nodes of the same layer is “responsible” for the errors of
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the output hypotheses, we introduce an “error term” vector δ, and define δ(1)

and δ(2) for the hidden layer and output layer respectively. To incorporate the
KL-divergence term into the derivative calculation, δ(1) and δ(2) are computed
as follows [16]:

δ(1) =

((
W (2)

)T
δ(2) + β

ρ̂− ρ0
ρ̂(1− ρ0)

)
· σ′(z(1)) (11)

δ(2) =
∂

∂z(2)
1

2
‖h(W, b;x)− x‖2 = − (h(W, b;x)− x) · σ′(z(2)) (12)

where ρ̂ = 1
m

∑m
i=1 f(W

(1), b(1);x(i)) is the average activation of embedding
layer; ρ0 ∈ Rd is a vector with all entries ρ; “·” denotes the element-wise product
operator; z(1) = W (1)x + b(1) and z(2) = W (2)f(W (1), b(1);x) + b(2). In detail,
the procedure can be described in Algorithm 1.

Algorithm 1. Partial Derivatives Computation

Input: The input sample x
Output: Partial derivatives of the function defined by Equa-
tion (10): ∂

∂W (l) Jem(W, b, ϕ;x) and ∂

∂b(l)
Jem(W,b, ϕ; x).

1. Randomly initialized W (l) and b(l), (l = 1, 2).
2. Perform a feedforward pass, computing the activations for the embedding layer

and output layer.
3. For the output layer, compute δ(2) by Equation (12).
4. Compute δ(1) by Equation (11).
5. Compute the partial derivatives:

∂

∂W (2) Jem(W,b, ϕ; x) = γδ(2)
(
f(W (1), b(1);x)

)T

+ λW (2);

∂

∂b(2)
Jem(W,b, ϕ; x) = γδ(2);

∂

∂W (1) Jem(W,b, ϕ; x) = ∂

∂W (1)

∑
ij L(·) + γδ(1)xT + λW (1);

∂

∂b(1)
Jem(W,b, ϕ; x) = ∂

∂b(1)

∑
ij L(·) + γδ(1) where

L(·) = L
(
f(W (1), b(1);x(i)), f(W (1), b(1);x(j)), ϕij

)
.

In Step 5 of Algorithm 1, we compute ∂
∂W (1)

∑
ij L(·) according to its concrete

form of different embedding algorithms, such as LE, MDS and margin-based
embedding. For certain embedding loss function, the gradient can be incorpo-
rated into the “error term” δ(1) in order to speed up the algorithm. Pseudocode
of the full approach is given in Algorithm 2, where α is the learning rate. To
train this model, we can now repeatedly take steps of gradient descent to re-
duce our cost function Jem(W, b, ϕ;x). Note that EAER is a general framework,
which can be adapted for different embedding algorithms. In the experiments we
adapt the framework to LE, MDS and the margin-based embedding algorithm
for comparison.
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Algorithm 2. Algorithm for EAER Framework

Input: The input data set {x(i)}mi=1.
Output: Results of embedding layer f(W (1), b(1);x).

1. Construct the adjacency graph of {x(i)}mi=1 and compute ϕij .
2. while not stopping criterion do
3. Set ΔW (l) = 0, Δb(l) = 0 for all l = 1, 2.
4. Use Algorithm 1 to compute ∂

∂W (l) Jem(W,b, ϕ; x(i)) and ∂

∂b(l)
Jem(W, b, ϕ;x(i))

for all x(i).
5. Compute ΔW (l) =

∑m
i=1

∂

∂W (l) Jem(W,b, ϕ; x(i));

6. Compute Δb(l) =
∑m

i=1
∂

∂b(l)
Jem(W,b, ϕ;x(i)).

7. Update: W (l) = W (l) − α
(

1
m
ΔW (l)

)
, b(l) = b(l) − α

(
1
m
Δb(l)

)
.

8. end while
9. Compute the embedding results f(W (1), b(1);x).

3.4 Incremental Embedding with EAER

Most of the embedding algorithms operate in a “batch” mode. That is, all data
need to be available during training. If the new data come, the naive method is to
re-run the training on the union of the original and new data, which prohibitively
involves with expensive computing. To address this point, some incremental ver-
sion of embedding algorithms, such as incremental Isomap [12] and incremental
locally linear embedding (LLE) [22], were proposed. Their basic idea is to iden-
tify the k-nearest neighbors in the original training data for the new point and
use these neighbors to represent the new one in the embedding space. It is clear
that the original training data must be accessed in these methods of incremental
embedding.

As to the EAER framework it is naturally an inductive embedding model.
After all the model parameters are learned, any instance x can be embedded
to f(W (1), b(1);x) in the lower dimension directly without accessing the original
training data. It should be noted that, when we use the Sigmoid function as the
activation function, the input data need to be normalized to the range [0, 1].
Therefore, it is convenient to apply incremental embedding to those data sets
with known data intervals, say MNIST [13], with each element ranging from 0
to 255.

Assume that we have m points for training and n for testing. EAER only
takes linear time O(n) to compute the low-dimensional embedding for the new
n points. However, the incremental versions of the existing embedding algorithms
need to compute its k-nearest neighbors among the training set. Thus, the over-
all time complexity of these algorithms is O(mn) (assuming the linear scanning
method for k-nearest neighbors is adopted here). Therefore, EAER dramati-
cally reduces the running time for incremental embedding. The experiments in
Section 4 also show the effectiveness of EAER for incremental embedding.
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4 Experimental Evaluation

To verify the embedding performance of EAER framework, we conduct the ex-
periments on various kinds of benchmark data sets. We begin with a simple
synthetic example to intuitively show the embedding performance of EAER in
Section 3. In this section, we build softmax classifiers [6] based on the embedded
features of the real-world data sets and check the performance on classification
accuracy. Then, we compare EAER with the incremental version of the baseline
methods.

4.1 Benchmark Data Sets and Baseline Methods

The benchmark data sets are summarized in Table 1. One is MNIST [13] and the
other six are taken from the UCI repository [4]. All these data sets are provided
with the class labels.

Table 1. Data sets description

# Data Sets #Instances #Attributes #Classes

1 Iris 150 4 3
2 Wine 178 13 3
3 Glass 214 9 6
4 Diabetes 768 8 2
5 Segment 2310 19 7
6 Satimage 6435 36 6
7 MNIST 70000 784 10

In our experiments, we adapt the proposed EAER framework to the following
embedding algorithms.

• LE: Laplacian Eigenmaps with the loss function defined by Equation (2) [1];
• MDS: Classical multidimensional scaling [5] with the loss function in Equa-
tion (3), where the norm adopted is the Euclidean distance;

• Margin-based: Embedding with the margin-based loss function defined by
Equation (4) [7].

The embedding algorithms adapted to EAER are denoted as EAER-LE,
EAER-MDS and EAER-Margin respectively.

4.2 Experimental Results on Real-World Data Sets

The experiments are conducted on 7 real-world data sets listed in Table 1. For
each data set we first apply any embedding algorithm to it and then build the
classification model on the resultant features. The classification accuracy on the
training data is used as the evaluation measure for embedding.
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The model parameters are set as follows. In the joint loss function of Equa-
tion (10), we set ρ = 0.1, β = 0.2, λ = 0.003, and W , b are randomly initialized.
We set the weight ϕij = 1 if node i is among the nearest neighbors of node j,
otherwise ϕij = 0. Then, for the rest three parameters, namely the number d of
hidden units, the number k of the nearest neighbors in the adjacency graph and
the weight γ of the autoencoder regularizer, their ranges are given as follows. γ
is sampled from 0.1 to 1 with the interval of 0.1, k varies from 2 to 10 with the
interval of 1, and d is set as 2 ≤ d ≤ D+1

2 for the UCI data sets and 2 ≤ d ≤ 20
for the MNIST data set, where D is the dimension of the original data sets. The
data values are all normalized on each feature.

Table 2. Results on the data sets described in Table 1. We report the best accuracy
for each method over the parameter ranges. For MNIST, we randomly select 1000 and
5000 samples and evaluate the performances on them respectively. The last column
“Original” is the classification results on the original data sets.

Methods LE EAER-LE MDS EAER-
MDS

Margin-
based

EAER-
Margin

Original

Iris 0.8933 0.9467 0.9400 0.9733 0.9667 0.9800 0.9467
Wine 0.9663 0.9719 0.9831 0.9944 0.9775 0.9888 0.9944
Glass 0.5654 0.5374 0.5935 0.6916 0.6355 0.6963 0.6075

Diabetes 0.6680 0.6576 0.7083 0.7552 0.7578 0.7669 0.7813
Segment 0.7758 0.8823 0.6390 0.7643 0.9028 0.9443 0.9130
Satimage 0.8362 0.8410 0.7984 0.8413 0.8522 0.8738 0.8578

MNIST1k 0.8140 0.9520 0.8320 0.9020 0.9510 0.9840 1.0000

MNIST5k 0.8370 0.9340 0.8520 0.9260 0.9370 0.9900 1.0000

Average 0.7945 0.8404 0.7933 0.8560 0.8726 0.9030 0.8876

For each embedding algorithm we train the softmax classifier on the resul-
tant features and the original data sets, and record its classification accuracy on
these training data. Among the parameter ranges, the results with best training
accuracy are reported in Table 2. It shows that the EAER adaption is usually
better than its original counterpart except that on the two data sets of Glass and
Diabetes, EAER-LE is slightly worse than LE. On the whole, EAER increases
the average accuracy over all the data sets by 4.59%, 6.27%, 3.04% compared
with the corresponding three baseline methods respectively. It is worth mention-
ing that the average accuracy of EAER-Margin is better than the classification
performance with original data sets, which again verifies EAER can learn better
semantic representations.

Figure 4 shows the average accuracy of EAER-LE, EAER-MDS and EAER-
Margin (denoted as “EAER” in the figure) and baseline methods (denoted as
“Embedding” in the figure) when the embedding layer dimensionality d varies.
The parameter setting is identical to previous experiment. Figure 4 demonstrates
that when the embedding layer dimensionality d increases, the embedding ac-
curacy increases. Yet we also observed that embedding methods adapted to
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Fig. 4. The average accuracy of EAER-LE, EAER-MDS and EAER-Margin (denoted
as “EAER” in the figure) and baseline methods (denoted as “Embedding” in the figure)
when the embedding layer dimensionality d varies. The experiment was conducted on
six UCI data sets.
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Fig. 5. The average accuracy of embedding methods adapted to EAER (EAER-LE,
EAER-MDS and EAER-Margin) on each data set when γ changes. γ is sampled from
0.1 to 1 with the interval of 0.1, the experiment was conducted on six UCI data sets.

EAER framework led to comparatively higher accuracy even when d is small.
So to speak, embedding methods adapted to EAER framework is able to pre-
serve more data information. Figure 5 shows the average accuracy of embedding
methods adapted to EAER when γ changes. As can be seen from the figure,
when γ is small, the accuracy increases as γ goes up. When γ reaches a certain



220 W. Yu et al.

value (usually 0.6 to 0.8, the value varies according to different data sets), the
result becomes comparatively stable. However, larger γ does not indicate better
result. When its value exceeds a certain value (say 3 or 5), the accuracy begins
to fall off (not shown in this figure).

4.3 Incremental Embedding Results

The EAER framework is an inductive embedding model. After all the model
parameters are learned, any instance x can be embedded to a lower-dimensional
space via f(W (1), b(1);x). Thus, EAER can naturally handle incremental embed-
ding. Since LE, MDS and Margin-based methods all perform in a batch mode,
we adapt them to handle new data as follows, similar to the method in [22].
For a new instance we first identify its k-nearest neighbors in the original data
and then construct the output by combining the embedded features of these
neighbors.

To evaluate the performance of incremental embedding, each data set is ran-
domly divided into two parts for training and testing respectively. On the train-
ing data we first apply the embedding algorithm and then train a classifier based
on the resultant features. Next, for each instance in the testing data we apply
the incremental embedding on it and then use the classifier to test on its embed-
ded features. Thus, the classification accuracy on the testing data can be used
as the evaluation measure for incremental embedding. We randomly sample the
training and testing data for 10 times and average the testing accuracy values
for each method. All the results are shown in Figure 6. We can find that EAER
achieves highest accuracy among 16 of the whole 18 cases, and 1 tie-break.

5 Related Work

Two canonical forms of linear embedding are eigenvector methods of principle
component analysis (PCA) [11] and multidimensional scaling (MDS) [5]. Re-
cently there have been lots of nonlinear approaches to compute a low-dimensional
embedding, including Isomap [24], LLE [19], Laplacian eigenmaps [1], margin-
based embedding algorithms [7] and their variants [17,8]. The proposed EAER
framework is different from these methods in the following aspects. First, with
the autoencoder regularization it can be used as a general approach to comple-
ment any existing embedding method. Second, it embeds the new data using the
resultant inductive model without accessing the original training data.

Autoencoders are usually used as basic building blocks to train the deep neu-
ral network [3] and currently variants of autoencoder have been investigated,
such as contractive autoencoders [18] and denoising autoencoders [25]. These
are often called regularized autoencoders, where some regularization terms are
proposed to improve the data reconstruction performance. However, in the pro-
posed framework, an autoencoder as a whole is used as a regularizer to improve
the embedding algorithms.

There are also some other works related to EAER. First, in [26], the
embedding-based regularizer is plugged into the layers of deep architectures as
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Fig. 6. The accuracy of LE, MDS, Margin-based embedding and the corresponding
methods adapted to EAER

an auxiliary task for semi-supervised embedding. The focus of this work is on
semi-supervised learning, while ours is for unsupervised embedding with the au-
toencoder regularizer. Second, in [14] the stacked restricted Boltzmann machines
(RBMs) are pre-trained and then fine-tuned with the supervised embedding con-
straints. It is clear that this approach is a disjoint way of autoencoding and
embedding while our method trains them jointly. In [21], a multilayer neural
network is pre-trained and fine-tuned to learning a nonlinear embedding by pre-
serving class neighborhood structure. However, EAER is a general framework
which compatible with different types of embedding algorithms.

Often we need to generalize the embedding results for the new data. LLE [19]
was extended to its incremental version [22] by identifying the k-nearest neigh-
bors of the new input and construct its output with its neighbors. Also, the
incremental version of Isomap was proposed [12]. EAER naturally generates an
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inductive embedding model, whereas the methods mentioned embed new data
in a transductive way.

6 Conclusion

In this paper we proposed an embedding with autoencoder regularization (EAER)
framework for unsupervised nonlinear dimensionality reduction. By minimizing
the embedding loss and the autoencoder reconstruction error simultaneously,
EAER can learn more semantic representations of the inputs. We adapt the
framework to the embedding algorithms of Laplacian eigenmaps, multidimen-
tional scaling and margin-based method, and the results demonstrate that the
embedding methods adapted to EAER outperform the original counterparts
when applying the embedding codes to the classification tasks. The EAER frame-
work proposed in the paper is naturally an inductive model, thus can embed the
new data more efficiently. We plan to further investigate the performance of
EAER by extending it to deep architectures or combining the advanced autoen-
coders, such as contractive autoencoders and denoising autoencoders.
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Abstract. We propose a new method for local metric learning based
on a conical combination of Mahalanobis metrics and pair-wise similar-
ities between the data. Its formulation allows for controlling the rank
of the metrics’ weight matrices. We also offer a convergent algorithm
for training the associated model. Experimental results on a collection
of classification problems imply that the new method may offer notable
performance advantages over alternative metric learning approaches that
have recently appeared in the literature.

Keywords: Metric Learning, Local Metric, Proximal Subgradient De-
scent, Majorization Minimization.

1 Introduction

Many Machine Learning problems and algorithms entail the computation of
distances with prime examples being the k-nearest neighbor (KNN) decision rule
for classification and the k-Means algorithm for clustering problems. Also, when
computing distances, the use of the Euclidean distance metric, or a weighted
variation of it, the Mahalanobis metric, are most often encountered because of
their simplicity and geometric interpretation. However, employing these metrics
for computing distances may not necessarily perform well for all problems. Early
on, attention was directed to data-driven approaches in order to infer the best
metric for a given problem (e.g. [1] and [2]). This is accomplished by taking
advantage of the data’s distributional characteristics or other side information,
such as similarities between samples. In general, such paradigms are referred to as
metric learning techniques. A typical instance of such approaches is the learning
of the weight matrix that determines the Mahalanobis metric. This particular
task can equivalently be viewed as learning a decorrelating linear transformation
of the data in their native space and computing Euclidean distances in the range
space of the learned linear transform (feature space). When the problem at hand
is a classification problem, a KNN algorithm based on the learned metric is
eventually employed to label samples.
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This paper focuses on metric learning methods for classification tasks, where
the Mahalanobis metric is learned with the assistance of pair-wise sample sim-
ilarity information. In our context, two samples will be deemed similar, if they
feature the same class label. The goal of such approaches is to map similar sam-
ples close together and to map dissimilar samples far apart as measured by the
learned metric. This is done so that an eventual application of a KNN deci-
sion rule exhibits improved performance over an application of KNN using a
Euclidean metric.

Many such algorithms show significant improvements over the case of KNN
that uses Euclidean metrics. For example, [1] poses similarity-based metric learn-
ing as a convex optimization problem, while [3] builds a trainable system to map
similar faces to low dimensional spaces using a convolutional network to address
geometric distortions. Moreover, [2] provides an online algorithm for learning a
Mahalanobis metric based on kernel operators. Another approach, Neighborhood
Components Analysis (NCA) [4], maximizes the leave-one-out performance on
the training data based on stochastic nearest neighbors. Furthermore, in Large
Margin Nearest Neighbor (LMNN) [5], the metric is learned so that the k-nearest
neighbors of each sample belong to the same class, while others are separated by
a large margin. Finally, [6] formulates the problem using information entropy and
proposes the Information Theoretic Metric Learning (ITML) technique. In spe-
cific, ITML minimizes the differential relative entropy between two multivariate
Gaussian distributions with distance metric constraints.

A common thread of the aforementioned methods is the use of a single, global
metric, i.e., a metric that is used for all distance computations. However, learning
a global metric may not be well-suited in some settings that entail multi-modality
or non-linearities in the data. To illustrate this point, Figure 1 displays a toy
dataset consisting of 4 samples drawn from two classes. Sub-figure (a) shows
the samples in their native space and sub-figure (b) depicts their images in
the feature space resulting from learning a global metric. Finally, sub-figure (c)
depicts the transformed data, when a local metric is learned, that takes into
account the location and similarity characteristics of the data involved. We’ll
refer to such metrics as local metrics. Unlike the results obtained via the use
of a global metric, one can (somewhat, due to the 3-dimensional nature of the
depiction) observe in sub-figure (c) that images of similar samples (in this case,
of the same class label) have been mapped closer to each other, when a local
metric is learned. This may potentially result into improving 1-NN classification
performance, when compared to the sample distributions in the other two cases.

Much work has been already performed on local metric learning. For exam-
ple, [7] defines “local” as nearby pairs. In particular, they develop a model that
aims to co-locate similar pairs and to separate dissimilar pairs. Additionally,
their probabilistic framework is solved using an Expectation-Maximization-like
algorithm. [8] learns local metrics through reducing neighborhood distances in
directions that are orthogonal to the local decision boundaries, while expanding
those parallel to the boundaries. In [9], the authors of LMNN also developed the
LMNN-Multiple Metric (LMNN-MM) technique. When LMNN-MM is applied
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Fig. 1. Toy dataset that illustrates the potential advantages of learning a local metric
instead of a global one. (a) Original data distribution. (b) Data distribution in the
feature space obtained by learning a global metric. (c) Data distribution in the feature
space obtained by learning a local metric.

in a classification context, the number of metrics utilized equals the number
of classes. [10] introduced a similar approach, in which a metric is defined for
each cluster. Moreover, in [11], the authors proposed Generative Local Metric
Learning (GLML), which learns local metrics through NN classification error
minimization. Their model employs a rather strong assumption, namely, they
assume that the data has been drawn from a Gaussian mixture. Furthermore, in
[12], the authors propose Parametric Local Metric Learning (PLML), in which
each local metric is defined in relation to an anchor point of the instance space.
Next, they use a linear combination of the resulting metric-defining weight ma-
trices and employ a projected gradient method to optimize their model.

In this paper, we propose a new local metric learning approach, which we will
be referring to as Reduced-Rank Local Metric Learning (R2LML). As detailed in
Section 2, for our method, the local metric is modeled as a conical combination
of Mahalanobis metrics. Both the Mahalonobis metric weight matrices and the
coefficients of the combination are learned from the data with the aid of pair-wise
similarities in order to map similar samples close to each other and dissimilar
samples far from each other in the feature space. Furthermore, the proposed
problem formulation is able to control the rank of the involved linear mappings
through a sparsity-inducing matrix norm. Additionally, in Section 3 we supply an
algorithm for training our model. We then show that the set of fixed points of our
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algorithm includes the Karush-Kuhn-Tucker (KKT) points of our minimization
problem. Finally, in Section 4 we demonstrate the capabilities of R2LML with
respect to classification tasks. When compared to other recent global or local
metric learning methods, R2LML exhibits the best classification accuracy in 7
out of the 9 datasets we considered.

2 Problem Formulation

Let NM � {1, 2, . . . ,M} for any positive integer M . Suppose we have a training
set {xn ∈ RD}n∈NN and corresponding pair-wise sample similarities arranged

in a matrix S ∈ {0, 1}N×N as side information with the convention that, if xm

and xn are similar, then smn = 1; if otherwise, then smn = 0. In a classification
scenario, two samples can be naturally deemed similar (or dissimilar), if they
feature the same (or different) class labels.

Now, the Mahalanobis distance between two samples xn and xm is defined
as dA(xm,xn) �

√
(xm − xn)TA(xm − xn), where A ∈ RD×D is a positive

semi-definite matrix (denoted as A & 0), which we will refer to as the weight
matrix of the metric. Obviously, when A = I, the previous metric becomes
the usual Euclidean distance. Being positive semi-definite, the weight matrix
can be expressed as A = LTL, where L ∈ RP×D with P ≤ D. Hence, the
previously defined distance can be expressed as dA(xm,xn) = ‖L(xm − xn)‖2.
Evidently, this last observation implies that the Mahalanobis distance based
on A between two points in the native space can be viewed as the Euclidean
distance between the images of these points in a feature space obtained through
the linear transformation L.

In metric learning, we are trying to learn A so to minimize the distances
between pairs of similar points, while maintaining above a certain threshold (if
not maximizing) the distances between dissimilar points in the feature space.
Such a problem could be formulated as follows:

min
A�0

∑
m,n

smndA(xm,xn) (1)

s.t.
∑
m,n

(1− smn)dA(xm,xn) ≥ 1

Problem (1) is a semi-definite programming problem involving a global metric
based onA. There are several methods for learning a single global metric like the
ones used for LMNN, ITML and NCA. However, as we have shown in Figure 1,
use of a global metric may not be advantageous under all circumstances.

In this paper, we propose R2LML, a new local metric approach, which we
delineate next. Our formulation assumes that the metric involved is expressed
as a conical combination of K ≥ 1 Mahalanobis metrics. We also define a vector
gk ∈ RN for each local metric k. The nth element gkn of this vector may be
regarded as a measure of how important metric k is, when computing distances
involving the nth training sample. We constrain the vectors gk to belong to Ωg �
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{gk}k∈NK

∈ [0, 1]
N

: gk & 0,
∑

k g
k = 1

}
, where ’&’ denotes component-wise

ordering. The fact that the gk’s need to sum up to the all-ones vector 1 forces
at least one metric to be relevant, when computing distances from each training
sample. Note that, if K = 1, g1 = 1, which corresponds to learning a single
global metric.

Based on what we just described, the weight matrix for each pair (m,n)
of training samples is given as

∑
k A

kgkmg
k
n. Observe that the distance between

every pair of points features a different weight matrix. Motivated by Problem (1),
one could consider the following formulation:

min
Lk,gk∈Ωg,ξkm,n≥0

∑
k

∑
m,n

smn

∥∥∥LkΔxmn

∥∥∥2
2
gkng

k
m+ (2)

+ C
∑
k

∑
m,n

(1− smn)ξ
k
mn + λ

∑
k

rank(Lk)

s.t.
∥∥∥LkΔxmn

∥∥∥2
2
≥ 1− ξkmn, m, n ∈ NN , k ∈ NK

where Δxmn � xm − xn and rank(Lk) denotes the rank of matrix Lk. The
first term of the objective function attempts to minimize the measured distance
between similar samples, while the second term along with the first set of soft
constraints (due to the presence of slack variables ξkmn) encourage distances
between pairs of dissimilar samples to be larger than 1. Evidently, C > 0 con-
trols the penalty of violating the previous desiteratum and can be chosen via a
validation procedure. Finally, the last term penalizes large ranks of the linear
transformations Lk. Therefore, the regularization parameter λ ≥ 0, in essence,
controls the dimensionality of the feature space.

Problem (2) can be somewhat reformulated by first eliminating the slack
variables. Let [·]+ : R → R+ be the hinge function defined as [u]+ � max{u, 0}

for all u ∈ R. It is straightforward to show that ξkmn =

[
1−

∥∥∥LkΔxmn

∥∥∥2
2

]
+

,

which can be substituted back into the objective function. Next, we note that
rank(Lk) is a non-convex function w.r.t. Lk and is, therefore, hard to optimize.
Following the approaches of [13] and [14], we replace rank(Lk) with its convex
envelope, i.e., the nuclear norm Lk, which is defined as the sum of Lk’s singular
values. These considerations lead to the following problem:

min
Lk,gk∈Ωg

∑
k

∑
m,n

smn

∥∥∥LkΔxmn

∥∥∥2
2
gkng

k
m+ (3)

+ C(1 − smn)

[
1−

∥∥∥LkΔxmn

∥∥∥2
2

]
+

+ λ
∑
k

∥∥∥Lk
∥∥∥
∗

where ‖·‖∗ denotes the nuclear norm; in specific,
∥∥∥Lk

∥∥∥
∗
�
∑P

s=1 σs(L
k), where

σs is a singular value of Lk.
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3 Algorithm

Problem (3) reflects a minimization over two sets of variables. When the gk’s
are considered fixed, the problem is non-convex w.r.t. Lk, since the second term
in Eq. (3) is the combination of a convex function (hinge function) and a non-

monotonic function, 1−
∥∥∥LkΔxmn

∥∥∥2
2
, w.r.t. Lk. On the other hand, if the Lk’s

are considered fixed, the problem is also non-convex w.r.t gk, since the similarity
matrix S is almost always indefinite as it will be argued in the sequel. This
implies that the objective function may have multiple minima. Therefore, an
iterative procedure seeking to minimize it may have to be started multiple times
with different initial estimates of the unknown parameters in order to find its
global minimum. In what follows, we discuss a two-step, block-coordinate descent
algorithm that is able to perform the minimization in question.

3.1 Two-Step Algorithm

For the first step, we fix gk and try to solve for each Lk. In this case, Problem (3)
becomes an unconstrained minimization problem. We observe that the objective
function is of the form f(w) + r(w), where w is the parameter we are trying to
minimize over, f(w) is the hinge loss function, which is non-differentiable, and
r(w) is a non-smooth, convex regularization term. If f(w) were smooth, one
could employ a proximal gradient method to find a minimum. As this is clearly
not the case with the objective function at hand, in our work we resort to using
a Proximal Subgradient Descent (PSD) method in a similar fashion to what has
been done in [15] and [16]. Moreover, our approach is a special case of [17], based
on which we show that our PSD steps converge (see Section 3.2).

Correspondingly, for the second step we assume the Lk’s to be fixed and

minimize w.r.t. each gk vector. Consider a matrix S̄
k
associated to the kth

metric, whose (m,n) element is defined as:

s̄kmn � smn

∥∥∥LkΔxmn

∥∥∥2
2
, m, n ∈ NN (4)

Then Problem (3) becomes:

min
gk∈Ωg

∑
k

(gk)T S̄
k
gk (5)

Let g ∈ RKN be the vector that results from concatenating all individual gk

vectors into a single vector and define the matrix

S̃ �

⎡⎢⎢⎢⎢⎣
S̄

1
0 ... 0

0 S̄
2
... 0

...
...

. . .
...

0 ... 0 S̄
K

⎤⎥⎥⎥⎥⎦ ∈ RKN×KN (6)
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Based on the previous definitions, the cost function becomes gT S̃g and g’s

constraint set becomes Ωg =
{
g ∈ [0, 1]KN : g & 0, Bg = 1

}
, where B � 1T ⊗

IN , ⊗ denotes the Kronecker product and IN is the N × N identity matrix.
Hence, the minimization problem for the second step can be re-expressed as:

min
g∈Ωg

gT S̃g (7)

Problem (7) is non-convex, since S̃ is almost always indefinite. This stems from
the fact that S̃ is a block diagonal matrix, whose blocks are Euclidean Distance
Matrices (EDMs). It is known that EDMs feature exactly one positive eigenvalue
(unless all of them equal 0). Since each EDM is a hollow matrix, its trace equals
0. This, in turn, implies that its remaining eigenvalues must be negative [18].
Hence, S̃ will feature negative eigenvalues.

In order to obtain a minimizer of Problem (7), we employ a Majorization Mini-
mization (MM) approach [19], which first requires identifying a function of g that
majorizes the objective function at hand. Let μ � −λmax(S̃), where λmax(S̃)
is the largest eigenvalue of S̃. As the latter matrix is indefinite, λmax(S̃) > 0.
Then, H � S̃ +μI is negative semi-definite. Let q(g) � gT S̃g be the cost func-
tion in Eq. (7). Since (g − g′)TH(g − g′) ≤ 0 for any g and g′, we have that

q(g) < −g′THg′ + 2g′THg − μ ‖g‖22 for all g �= g′ and equality, only if g = g′.
The right hand side of the aforementioned inequality constitutes q’s majorizing
function, which we will denote as q(g|g′). The majorizing function is used to
iteratively optimize g based on the current estimate g′. So we have the following
minimization problem, which is convex w.r.t g:

min
g∈Ωg

2g′THg − μ ‖g‖22 (8)

This problem is readily solvable, as the next theorem implies.

Theorem 1. Let g,d ∈ RKN , B � 1T ⊗ IN ∈ RN×KN and c > 0. The unique
minimizer g∗ of

min
g

c

2
‖g‖22 + dTg (9)

s.t. Bg = 1, g & 0

has the form

g∗i =
1

c

[
(BTα)i − di

]
+
, i ∈ NKN (10)

where gi is the ith element of g and α ∈ RN is the Lagrange multiplier vector
associated to the equality constraint.

Proof. The Lagrangian of Problem (9) is expressed as:

L(g,α,β) =
c

2
gTg + dTg +αT (1−Bg)− βT g (11)
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Algorithm 1. Minimization of Problem (3)

Input: Data X ∈ RD×N , number of metrics K
Output: Lk, gk k ∈ NK

01. Initialize Lk, gk for all k ∈ NK

02. While not converged Do
03. Step 1: Use a PSD method to solve Problem (3) for each Lk

04. Step 2:
05. S̃ ← Eq. (6)
06. μ ← −λmax(S̃)
07. H ← S̃ + μI
08. While not converged Do
09. Apply binary search to obtain each gk using Eq. (10)
10. End While
11. End While

where α ∈ RN and β ∈ RKN with β & 0 are Lagrange multiplier vectors. If we
set the partial derivative of L(g,α,β) with respect to g to 0, we readily obtain
that

gi =
1

c

(
(BTα)i + βi − di

)
, i ∈ NKN (12)

Let γi � (BTα)i − di. Combining Eq. (12) with the complementary slackness
condition βigi = 0, one obtains that, if γi ≤ 0, then βi = −γi and gi = 0, while,
when γi > 0, then βi = 0 and, evidently, gi =

1
cγi. These two observations can

be summarized into gi =
1
c [γi]+, which completes the proof.

In order to exploit the result of Theorem 1 for obtaining a concrete solution
to Problem (8), we ought to point out that the (unknown) optimal values of
the Lagrange multipliers αi can be found via binary search, so they satisfy the
equality constraint Bg = 1.

In conclusion, the entire algorithm for solving Problem (3) can be recapitu-
lated as follows: For step 1, the gk vectors are assumed fixed and a PSD is being
employed to minimize the cost function of Eq. (3) w.r.t. each weight matrix Lk.
For step 2, all Lk’s are held fixed to the values obtained after completion of the
previous step and the solution offered by Theorem 1 along with binary searches
for the αi’s are used to compute the optimal gk’s by iteratively solving Prob-
lem (8) via a MM scheme. Note that these two main steps are repeated until
convergence is established; the whole process is depicted in Algorithm 1.

3.2 Analysis

In this subsection, we investigate the convergence of our proposed algorithm.
Suppose that a PSD method is employed to minimize the function f(w)+ r(w),
where both f and r are non-differentiable. Denote ∂f as the subgradient of f and
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define ‖∂f(w)‖ Δ
= sup

g∈∂f(w)

‖g‖; the corresponding quantities for r are similarly

defined. Like in [20] and [21], we assume that the subgradients are bounded, i.e.:

‖∂f(w)‖2 ≤ Af(w) +G2, ‖∂r(w)‖2 ≤ Ar(w) +G2 (13)

where A and G are scalars. Let w∗ be a minimizer of f(w) + r(w). Then we
have the following lemma for the problem under consideration.

Lemma 2. Suppose that a PSD method is employed to solve minw f(w)+r(w).
Assume that 1) f and r are lower-bounded; 2) the norms of any subgradients ∂f
and ∂r are bounded as in Eq. (13); 3) ‖w∗‖ ≤ D for some D > 0; 4) r(0) = 0.
Let ηt � D√

8TG
, where T is the number of iterations of the PSD algorithm. Then,

for a constant c ≤ 4, such that (1 − cA D√
8TD

) > 0, and initial estimate of the

solution w1 = 0, we have:

min
t∈{1...T}

f(wt) + r(wt) ≤
1

T

T∑
t=1

f(wt) + r(wt) ≤

≤ 4
√
2DG√

T (1− cAD
G
√
8T

)
+
f(w∗) + r(w∗)

1− cAD
G
√
8T

(14)

The proof of Lemma 2 is straightforward as it is based on [17] and, therefore, is
omitted here. Lemma 2 implies that, as T grows, the PSD iterates approach w∗.

Theorem 3. Algorithm 1 yields a convergent, non-increasing sequence of cost
function values relevant to Problem (3). Furthermore, the set of fixed points of the
iterative map embodied by Algorithm 1 includes the KKT points of Problem (3).

Proof. We first prove that each of the two steps in our algorithm decreases the
objective function value. This is true for the first step, according to Lemma 2. For
the second step, since a MM algorithm is used, we have the following relationships

q(g∗) = q(g∗|g∗) ≤ q(g∗|g′) ≤ q(g′|g′) = q(g′) (15)

This implies that the second step always decreases the objective function value.
Since the objective function is lower bounded, our algorithm converges.

Next, we prove that the set of fixed points of the proposed algorithm includes
the KKT points of Problem (3). Towards this purpose, suppose the algorithm

has converged to a KKT point
{
Lk∗, gk∗

}
k∈NK

; then, it suffices to show that this

point is also a fixed point of the algorithm’s iterative map. For notational brevity,
let f0(L

k, gk), f1(g
k) and h1(g

k) be the cost function, inequality constraint and
equality constraint of Problem (3) respectively. By definition, the KKT point
will satisfy

0 ∈ ∂Lkf0(L
k∗, gk∗) +(gkf0(L

k∗, gk∗) (16)

− (βk)T (gk f1(g
k∗) +αT (gk h1(g

k∗) k ∈ NK
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In relation to Problem (7), which step 2 tries to solve, the KKT point will satisfy
the following equality (gradient of the problem’s Lagrangian set to 0):

2S̃g∗ − β −BTα = 0 (17)

Problem (8) can be solved based on Eq. (12) of Theorem 1; in specific, we obtain
that

g = − 1

2μ
(BTα+ β − 2Hg∗) (18)

Substituting Eq. (17) and H = S̃ + μI into Eq. (18), one immediately obtains
that

g = − 1

2μ
(BTα+ β − 2Hg∗) = − 1

2μ
(2S̃g∗ − 2S̃g∗ − 2μg∗) = g∗ (19)

In other words, step 2 will not update the solution. Now, if we substitute Eq. (17)
back into Eq. (16), we obtain 0 ∈ ∂Lkf0(L

k∗, gk∗) for all k, which is the optimal-
ity condition for the subgradient method; the PSD step (step 1 of our algorithm)
will also not update the solution. Thus, a KKT point of Problem (3) is a fixed
point of our algorithm.

Table 1. Details of benchmark data sets. For the Letter and Pendigits datasets, only
4 and 5 classes were considered respectively.

#D #classes #train #validation #test

Robot 4 4 240 240 4976

Letter A-D 16 4 200 400 2496

Pendigits 1-5 16 5 200 1800 3541

Winequality 12 2 150 150 6197

Telescope 10 2 300 300 11400

ImgSeg 18 7 210 210 1890

Twonorm 20 2 250 250 6900

Ringnorm 20 2 250 250 6900

Ionosphere 34 2 80 50 221

4 Experiments

In this section, we performed experiments on 9 datasets, namely, Robot Naviga-
tion, Letter Recognition, Pendigits, Wine Quality, Gamma Telescope, Ionosphere
datasets from the UCI machine learning repository1, and Image Segmentation,
Two Norm, Ring Norm datasets from the Delve Dataset Collection2 . Some char-
acteristics of these datasets are summarized in Table 1. We first explored how

1 http://archive.ics.uci.edu/ml/datasets.html
2 http://www.cs.toronto.edu/~delve/data/datasets.html

http://archive.ics.uci.edu/ml/datasets.html
http://www.cs.toronto.edu/~delve/data/datasets.html
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the performance of R2LML1 varies with respect to the number of local met-
rics. Then, we compared R2LML with other global or local Metric Learning
algorithms, including ITML, LMNN, LMNN-MM, GLML and PLML.

The computation of the distances between some test sample x and the training
samples xn according to our formulation requires the value of g corresponding
to x. One option to assign a value to g would be to utilize transductive learning.
However, as such an approach could prove computationally expensive, we opted
instead to assign g the value of the corresponding vector associated to x’s nearest
(in terms of Euclidean distance) training sample as was done in [12].

4.1 Number of Local Metrics

In this subsection, we show how the performance of R2LML varies with respect
to the number of local metrics K. In [9], the authors set K equal to the number
of classes for each dataset, which might not necessarily be the optimal choice.
In our experiments, we let K vary from 1 to 7. This range covers the maximum
number of classes in the datasets that are considered in our experiments. As we
will show, the optimal K is not always the same as the number of classes.

Besides K, we held the remaining parameters (refer to Eq. (2)) fixed: the
penalty parameter C was set to 1 and the nuclear norm regularization parameter
λ to 0.1. Moreover, we terminated our algorithm, if it reached 10 epochs or when
the difference of cost function values between two consecutive iterations was less
than 10−4. In each epoch, the PSD inner loop ran for 500 iterations. The PSD
step length was fixed to 10−5 for the Robot and Ionosphere datasets, to 10−6 for
the Letter A-D, Two norm and Ring Norm datasets, to 10−8 for the Pendigits 1-
5, Wine Quality and Image Segmentation datasets and to 10−9 for the Gamma
Telescope dataset. The MM loop was terminated, if the number of iterations
reached 3000 or when difference of cost function values between two consecutive
iterations was less than 10−3. The relation between number of local metrics and
the classification accuracy for each dataset is reported in Figure 2.

Several observations can be made based on Figure 2. First of all, our method
used as a local metric learning method (when K ≥ 2) performs much better
than when used with a single global metric (when K = 1) for all datasets except
the Ring Norm dataset. For the latter dataset, the classification performance
deteriorates with increasing K. Secondly, one cannot discern a deterministic
relationship between the classification accuracy and the number of local metrics
utilized that is suitable for all datasets. For example, for the Robot dataset,
the classification accuracy is almost monotonically increasing with respect to K.
For the remaining datasets, the optimal K varies in a non-apparent fashion with
respect to their number of classes. For example, in the case of the Ionosphere
dataset (2-class problem), K = 3, 6, 7 yield the best generalization results. All
these observations suggest that validation over K is needed to select the best
performing model.

1 https://github.com/yinjiehuang/R2LML/archive/master.zip

https://github.com/yinjiehuang/R2LML/archive/master.zip
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(b) Letter A−D  #C=4 (c) Pendigtis 1−5  #C=5

(d) Winequality #C=2 (e) Telescope  #C=2 (f) Image Seg  #C=7

(g) Twonorm  #C=2

(a) Robot,  #C=4

(h) Ringnorm  #C=2 (i) Ionosphere  #C=2

Fig. 2. R2LML classification accuracy results on the 9 benchmark datasets for varying
number K of local metrics. #C indicates the number of classes of each dataset.

4.2 Comparisons

We compared R2LML with several other metric learning algorithms, including
Euclidean metric KNN, ITML [6], LMNN [5], LMNN-MM [9], GLML [11] and
PLML [12]. Both ITML and LMNN learn a global metric, while LMNN-MM,
GLML and PLML are local metric learning algorithms. After the metrics are
learned, the KNN classifier is utilized for classification with k (number of nearest
neighbors) set to 5.

For our experiments we used LMNN, LMNN-MM1, ITML2 and PLML3 im-
plementations that we found available online. For ITML, a good value of γ is
found via cross-validation. Also, for LMNN and LMNN-MM, the number of at-
tracting neighbors during training is set to 1. Additionally, for LMNN, at most
500 iterations were performed and 30% of training data were used as a validation

1 http://www.cse.wustl.edu/~kilian/code/code.html
2 http://www.cs.utexas.edu/~pjain/itml/
3 http://cui.unige.ch/~wangjun/papers/PLML.zip

http://www.cse.wustl.edu/~kilian/code/code.html
http://www.cs.utexas.edu/~pjain/itml/
http://cui.unige.ch/~wangjun/papers/PLML.zip
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Table 2. Percent accuracy results of 7 algorithms on 9 benchmark datasets. For each
dataset, the statistically best and comparable results for a family-wise significance
level of 0.05 are highlighted in boldface. All algorithms are ranked from best to worst;
algorithms share the same rank, if their performance is statistically comparable.

Euclidean ITML LMNN LMNN-MM GLML PLML R
2
LML

Robot 65.312nd 65.862nd 66.102nd 66.102nd 62.283rd 61.033rd �����
1st

Letter A-D 88.822nd
�����

1st
�����

1st
�����

1st 89.302nd
�����

1st
�	�
�

1st

Pendigits 1-5 88.314th 93.172nd 91.193rd 91.273rd 88.374th �	���
1st

�	���
1st

Winequality 86.127th 96.113rd 94.434th 93.385th 91.796th ���		
1st 97.532nd

Telescope 70.313rd 71.422nd 72.162nd 71.452nd 70.313rd ���	�
1st

�����
1st

ImgSeg 80.054th 90.212nd 90.742nd 89.422nd 87.303rd 90.482nd
���	�

1st

Twonorm 96.542nd
�����

1st 96.322nd 96.302nd 96.522nd
�����

1st
�����

1st

Ringnorm 55.847th 77.352nd 59.366th 59.755th ���
�
1st 75.683rd 73.734th

Ionosphere 75.573rd �����
1st 82.352nd 82.352nd 71.953rd 78.733rd �
�	


1st

set. The maximum number of iterations for LMNN-MM was set to 50 and a step
size of 10−7 was employed. For GLML, we chose γ by maximizing performance
over a validation set. Finally, the PLML hyperparameter values were chosen as
in [12], while α1 was chosen via cross-validation. With respect to R2LML, for
each dataset we used K’s optimal value as established in the previous series of
experiments, while the regularization parameter λ was chosen via a validation
procedure over the set {0.01, 0.1, 1, 10, 100}. The remaining parameter settings
of our method were the same as the ones used in the previous experiments.

For pair-wise model comparisons, we employed McNemar’s test. Since there
are 7 algorithms to be compared, we used Holm’s step-down procedure as a mul-
tiple hypothesis testing method to control the Family-Wise Error Rate (FWER)
[22] of the resulting pair-wise McNemar’s tests. The experimental results for a
family-wise significance level of 0.05 are reported in Table 2.

It is observed that R2LML achieves the best performance on 7 out of the 9
datasets, while GLML, ITML and PLML outperform our model on the Ring
Norm dataset. GLML’s surprisingly good result for this particular dataset is
probably because GLML assumes a Gaussian mixture underlying the data gen-
eration process and the Ring Norm dataset is a 2-class recognition problem drawn
from a mixture of two multivariate normal distributions. Even though not being
the best model for this dataset, R2LML is still highly competitive compared to
LMNN, LMNN-MM and Euclidean KNN. Next, PLML performs best in 5 out of
9 datasets, even outperforming R2LML on the Wine Quality dataset. However,
PLML gives poor results on some datasets like Robot or Ionosphere. Also, PLML
does not show much improvements over KNN and may even perform worse like
for the Robot dataset. Note, that R2LML is still better for the Image Segmen-
tation, Robot and Ionosphere datasets. Additionally, ITML is ranked first for 3
datasets and even outperforms R2LML on the Ring Norm dataset. Often, ITML
ranks at least 2nd and seems to be suitable for low dimensional datasets. How-
ever, R2LML still performs better than ITML for 5 out of the 9 datasets. Finally,
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GLML rarely performs well; according to Table 2, GLML only achieves 3rd or
4th ranks for 6 out of the 9 datasets.

Another general observation that can be made is the following: employing
metric learning is almost always a good choice, since the classification accuracy
of utilizing a Euclidean metric is almost always the lowest among all the 7 meth-
ods we considered. Interestingly, LMNN-MM, even though being a local metric
learning algorithm, does not show any performance advantages over LMNN (a
global metric method); for some datasets, it even obtained lower classification
accuracy than LMNN. It is possible that fixing the number of local metrics to
the number of classes present in the dataset curtails LMNN-MM’s performance.
According to the obtained results, R2LML yields much better performance for
all datasets compared to LMNN-MM. This consistent performance advantage
may not only be attributed to the fact that K was selected via a validation
procedure, since, for cases where the optimal K equaled the number of classes
(e.g. Letter A-D dataset), R2LML still outperformed LMNN-MM.

5 Conclusions

In this paper, we proposed a new local metric learning model, namely Reduced-
Rank Local Metric Learning (R2LML). It learns K Mahalanobis-based local
metrics that are conically combined, such that similar points are closer to each
other, while the separation between dissimilar ones is encouraged to increase.
Additionally, a nuclear norm regularizer is adopted to obtain low-rank weight
matrices for calculating metrics. In order to solve our proposed formulation, a
two-step algorithm is showcased, which iteratively solves two sub-problems in an
alternating fashion; the first sub-problem is minimized via a Proximal Subgra-
dient Descent (PSD) approach, while the second one via a Majorization Mini-
mization (MM) procedure. Moreover, we have demonstrated that our algorithm
converges and that its fixed points include the Karush-Kuhn-Tucker (KKT)
points of our proposed formulation.

In order to show the merits of R2LML, we performed a series of experiments
involving 9 benchmark classification problems. First, we varied the number of
local metrics K and discussed the influence of K on classification accuracy. We
concluded that there is no obvious relation between K and the classification
accuracy. Furthermore, the obtained optimal K does not necessarily equal the
number of classes of the dataset under consideration. Finally, in a second set of
experiments, we compared R2LML to several other metric learning algorithms
and demonstrated that our proposed method is highly competitive.
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Abstract. Intrinsic manifold structure of a data collection is valuable informa-
tion for classification task. By considering the manifold structure in the data
set for classification and with the sparse coding framework, we propose an al-
gorithm to: (1) find exemplars from each class to represent the class-specific
manifold structure, in which way the object-space dimensionality is reduced; (2)
simultaneously learn a latent feature space to make the mapped data more dis-
criminative according to the class-specific manifold measurement. We call the
proposed algorithm Exemplar-represented Manifold in Latent Space for Classi-
fication (EMLSC). We also present the nonlinear extension of EMLSC based on
kernel tricks to deal with highly nonlinear situations. Experiments on synthetic
and real-world datasets demonstrate the merit of the proposed method.

Keywords: Sparse Coding, Dimensionality Reduction, Manifold, Exemplar Se-
lection, Classification.

1 Introduction

Among various areas of machine learning, information retrieval and signal processing,
one needs to deal with high-dimensional data collections ahead of specific tasks, such
as classification focused on in this paper. This has motivated a lot of work in dimen-
sionality reduction, whose goal is to find compact representations of the data that can
save memory and computational time, and also enhance the performance of algorithms
that deal with the data.

Since datasets often consist of high-dimensional data, most dimensionality reduc-
tion methods aim at reducing the feature-space dimension for all the data, e.g. PCA [1],
LLE [2] and Isomap [3], etc. Among these methods, geometrically motivated approaches
are shown to be effective in discrovering the geometrical structure in the data. Meanwhile,
manifold-based methods, such as LLE and Isomap and their variants, have attracted con-
siderable attention in data analysis [4,5,6], and have achieved very encouraging per-
formances in clustering, classification and data visualization. However, these methods
separate the manifold-motivated dimensionality reduction and classifier learning apart,
in which way, further improved classification performance is prevented.

� Corresponding author. This work is supported by Natural Science Foundations (No.61071218)
of China and 973 Program (No.2010CB327904).

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 240–255, 2013.
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On the other hand, since datasets usually contain a large number of data, dimension-
ality reduction in the object space is a desirable solution [7]. This can be achieved either
by learning an adaptive dictionary [8,9] or finding exemplars [7]. Learning a compact
dictionary to represent data (see [10] and therein) and the problem of learning a su-
pervised dictionary for classification have been well studied in literature [9,11]. But
such learned dictionaries intrinsically ignore the data manifold structures. Because, the
dictionary atoms almost never coincide with the original data [12,11]. Specifically, for
example, the negative sign of some atoms are hard to interpret, and the unit Euclidean
length of the atoms means they just act as bases for reconstruction of data points but
not for representing them. This intrinsic problem in dictionary learning has also been
recognized in [7]. Therefore, the learned dictionary atoms cannot be considered as good
representatives for the collection of data points when meeting various tasks such as clas-
sification. In contrast, one can find a small subset of the data to appropriately represent
the whole data collection owing to the self-expressiveness property, which has been
studied for subspace clustering using sparse representation [13,7] and low-rank repre-
sentation [14]. The selected exemplars can naturally represent the manifold structure
of the dataset, and thus reduce the dimensionality in the object space. Actually, finding
exemplars is of particular significance in large-scale dataset summarization and visu-
alization, and improves memory requirement and computational time of classification
on such large-scale datasets. Nevertheless, merely selecting exemplars in the original
space is insufficient to cover all the data points for classification task, since these data
points distribute along complex manifolds and the exemplars may be neighbors to the
data points from different classes. For this reason, it is desirable to learn a latent space
in which the selecting exemplars can better serve the classification purpose.

By considering the two ways of dimensionality reduction and their limitations in
classification presented above, we propose an algorithm to implement dimensionality
reduction along the two directions by considering the manifold structure of each class.
The proposed algorithm simultaneously does the following:

– find exemplars from each class to represent the class-specific manifold structure, in
which way the object-space dimensionality is reduced;

– learn a latent space in the feature space to make the mapped data more discrimina-
tive according to the class-specific manifold measurement.

– carry out classification under a simple sparse coding framework.

We call this algorithm Exemplar-represented Manifolds in Latent Space for Classifi-
cation (EMLSC). In the classification stage, EMLSC adopts a simple sparse coding
framework for classification in a way like Sparse Representation-based Classification
(SRC) [15]. But different from employing all training data in SRC, EMLSC only uses
the selected exemplars as the bases. As the sparse coding is done in the lower-
dimensional latent space and the number bases is far smaller than the whole training set,
it is anticipated that the classification is performed faster than the original SRC method,
in which the whole training set is used for classification. Furthermore, we present a non-
linear extension of EMLSC via kernel tricks (K-EMLSC) to deal with highly nonlin-
ear situations. Through experimental validation, we can see that (K-)EMLSC not only
reduces the dimension of the data and the scale of the dataset, but also improves clas-
sification performance.
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2 Notations and Related Work

Let X ∈ Rp×N denote a training data set which consists of N data points from C
classes, and Xc ∈ Rp×Nc denote the subset of data from the cth class, where N =∑C

c=1Nc. I is an identity matrix with appropriate size.
Under SRC framework [15], Ngugen et al. propose a unified method called La-

tent Sparse Embedding Residual Classifier (LASERC) to learn dictionary and a latent
space [16]. In detail, for each class, LASERC jointly learn an adaptive dictionary Dc

and a latent space defined by a projection Wc through:

min
Wc,Dc,Ac

‖WT
c Xc −DcAc‖2F + λ‖Xc −WcW

T
c Xc‖2F ,

s.t. WT
c Wc = I, ‖Ac‖1 ≤ T,

(1)

where Ac is the coefficient matrix and ‖Ac‖1 is the sum of �1 norms of all columns in
Ac. LASERC uses the projection to reduce the dimensionality of the data, and adopts
a reconstruction error based classifier for the final classification. However, even though
the method can be extended to nonlinear version via kernel tricks, it fails to consider
the discrimination power among the separately learned class-specific dictionaries Dc’s,
such that it is not guaranteed to produce improved classification performance.

Elhamifar et al. propose to find exemplars in the dataset to reduce the dimensionality
in the object space [17], so that computational cost and memory requirements are signif-
icantly reduced. They use nearest neighbor to do classification, and achieve comparable
results with exemplars to that with all the training data. In [7], the authors also propose
Sparse Modeling Representative Selection (SMRS) to find exemplars for classification
with different classifiers. SMRS first selects exemplars by solving the following objec-
tive function over row-sparse coefficient matrix A:

min
A

‖X−XA‖2F , s.t. ‖A‖1,q ≤ τ,1TA = 1T , (2)

where ‖A‖1,q =
∑N

i=1 ‖ai‖q denotes the sum of �q norms1 of the rows of coefficient
matrix A = [a1; . . . ; aN ] ∈ RN×N ; τ > 1 is an appropriately chosen parameter to
make the optimization program in Eq. 2 convex; and the affine constraint 1TA = 1T

means invariance of the selected exemplars w.r.t global translation of the data. As the
�1,q-norm vanishes rows of A, the exemplars can be found according to nonzero rows
in A. SMRS learns different classifiers over the selected exemplars, and experimental
results demonstrate that well-chosen exemplars can not only reduce the scale of the
training set, but also produce very good classification performances with far fewer data
points. Despite the effectiveness of SMRS, it separately finds the exemplars in the orig-
inal space and learns the classifier. Therefore, the learned classifiers are not optimal for
classification based on the selected exemplars. Moreover, SMRS simply selects exem-
plars from all the classes, hence using the exemplars as a subset of the training data
in the original space can significantly change the inner and intra class distances of the
training data, such that good classification performance is not guaranteed as discussed
in [7].

1 In this paper, we merely set q = 2, i.e. using an �1,2-norm regularizer in the objective functions
presented latter.
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3 Exemplar-Represented Manifold in Latent Space
for Classification (EMLSC)

As reviewed previously, finding exemplars in the original space directly from all classes
is not optimal for classification, and separately learning class-specific dictionaries also
limits the discrimination power of the dictionaries. Since we understand the importance
of selecting exemplars opposed to learning adaptive dictionaries in representing the
class-specific manifold structure, it is worth simultaneously finding exemplars in each
class and learning a latent space with consideration of the discrimination power.

3.1 Derivation of EMLSC Objective Function

In SMRS, solving Eq. 2 means finding exemplars from all classes in the original space,
and it cannot serve classification purpose well. Therefore, it is desirable to finding ex-
emplars in a simultaneously learned latent space, in which the exemplars can effectively
represent the data points according to their class-specific manifold structure. Suppose
a linear projection W ∈ Rp×m defines this m-dimensional latent space, then we have
the new data in the latent space as WTX. By replacing the original data set X in Eq. 2
with WTX ∈ Rm×N , and constraining WTW = I, we have:

min
A,W

‖WTX−WTXA‖2F ,

s.t. WTW = I, ‖A‖1,q ≤ τ,1TA = 1T .
(3)

The constraint of WTW = I not only leads to a computationally efficient scheme
for optimization as we see in the next subsection, but also allows the extension of our
proposed method to the nonlinear version as demonstrated in Section 4.

Moreover, it is essential to guarantee that the exemplars from a specific class can
well represent all the data of this class. Specifically, for the cth class Xc, we should
also minimize the following constraint:

‖WTXc −WTXcA
(c)
c ‖2F , (4)

where A(c)
c is the cth part of coefficient matrix Ac = [A

(1)
c ; . . . ;A

(i)
c ; . . . ;A

(C)
c ] corre-

sponding to Xc, i.e. Xc ≈ XAc =
∑C

i=1 XiA
(i)
c . For brevity, we introduce a selection

operator Qc = [qc
1, . . . ,q

c
j , . . . ,q

c
Kc

] ∈ RN×Nc , in which the jth column of Qc is of
the following form:

qc
j = [0, . . . , 0︸ ︷︷ ︸∑c−1

i=1 Ni

,

j−1︷ ︸︸ ︷
0, . . . , 0, 1, 0, . . . , 0︸ ︷︷ ︸

Nc

, 0, . . . , 0︸ ︷︷ ︸∑C
i=c+1 Ni

]T . (5)

Therefore, we have QT
c Qc = I, Xc = XQc, and A

(c)
j = QT

c Aj ∈ RNj means the cth

part of coefficient matrix Aj corresponding to Xc. Now, we can rewrite Eq. 4 as:

‖WTXc −WTXQcQ
T
c Ac‖2F . (6)
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Let Q̃c = [Q1, . . . ,Qc−1,Qc+1, . . . ,QC ], then we have XQ̃c = [X1, . . . ,Xc−1,

Xc+1, . . . ,XC ], and Q̃T
c Ac = [A

(1)
c ; . . . ;A

(c−1)
c ;A

(c+1)
c ; . . . ;A

(C)
c ]. To guarantee

that exemplars from other classes do not contribute to representing the data from class
c, we should also minimize the following:

‖WTXQ̃cQ̃
T
c Ac‖2F . (7)

This term measures how much the unrelated exemplars (from undesirable classes) con-
tribute to the representation of the data points from a specific class. Thus, minimizing
this term means drawing apart the exemplars belonging to different classes [11], in
which way the data points from different classes are better separated.

Considering the above three terms, i.e. Eq. 3, Eq. 6 and Eq. 7, we have our objective
function as below:

min
Ac,W

C∑
c=1

{
‖WTXc −WTXAc‖2F + α‖WTXc −WTXQcQ

T
c Ac‖2F

+ β‖WTXQ̃cQ̃
T
c Ac‖2F

}
s.t. WTW = I, ‖Ac‖1,q ≤ s,1TAc = 1T , for ∀c.

(8)

In the objective function, α and β are two parameters to balance relative importance
of the three terms, and s denotes the sparse level of the coefficient Ac. There are other
possible ways to add discrimination power to the latent space and exemplars, such as
the methods based on Linear Discriminative Analysis [18] and Maximum Margin Cri-
terion [19]. But it is worth noting the way of improving discrimination in Eq. 8 has
an intrinsic relation to the classifier adopted in this paper. As described in Section 5,
since our classifier is based on sparse coding technique, this discrimination-enhancing
method in Eq. 8 can benefit the classifier a lot.

3.2 Numerical Solution

Even though the optimization problem in Eq. 8 is a non-convex problem with two matrix
variables W and A = [A1, . . . ,AC ], we still can derive effective solutions through
iterative minimization, as demonstrated by experiments in Section 6. In this subsection,
we present the detailed optimization of each variable matrix.

Update Projection W. By omitting the terms which are independent to W, we have
the following:

W∗ =argmin
W

‖WT (X−XA)‖2F + α‖WT (X−XÂ)‖2F + β‖WT (XÃ)‖2F ,

s.t. WTW = I,
(9)

where Â = [Q1Q
T
1 A1, . . . ,QcQ

T
c Ac, . . . ,QCQ

T
CAC ], Ã = [Q̃1Q̃

T
1 A1, . . . ,

Q̃cQ̃
T
c Ac, . . . , Q̃CQ̃

T
CAC ], and A = [A1, . . . ,Ac, . . . ,AC ]. Through simple deriva-

tion, we have the following concise function:

W∗ =argmin
W

tr(WTΩW), s.t. WTW = I, (10)
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where Ω = (X −XA)(X −XA)T + α(X −XÂ)(X −XÂ)T + β(XÃ)(XÃ)T .
Therefore, to derive the optimal W∗ with fixed A, we can simply solve this eigenvalue
decomposition problem, and choose the eigenvectors w.r.t the m smallest eigenvalues
as the columns of W∗.

Update the Coefficient Matrix Ac. Specifically, by fixing the projection W, we focus
on updating Ac for demonstration as below:

A∗
c = argmin

Ac

‖WTXc −WTXAc‖2F + α‖WTXc −WTXQcQ
T
c Ac‖2F

+ β‖WTXQ̃cQ̃
T
c Ac‖2F

= argmin
Ac

‖X̄c − X̄Ac‖2F

s.t. ‖Ac‖1,q ≤ s,1TAc = 1T ,

(11)

where X̄c =

⎛⎝ WTXc√
αWTXc

0

⎞⎠ and X̄ =

⎛⎝ WTX√
αWTXQcQ

T
c√

βWTXQ̃cQ̃
T
c

⎞⎠. In this paper, by

using Lagrange multipliers on ‖Ac‖1,q, we turn to an Alternating Direction Method of
Multipliers optimization framework [20] to solve the above problem.

In sum, the overall optimization procedure iterates the two steps, updating W in
Eq. 10 and updating A in Eq. 11. It stops when meeting a predefined condition, i.e.
reaching a maximum number of iterations or the difference between two consecutive
the projection W is small enough. Finally, we choose the data as selected exemplars
according to nonzero rows of the coefficient matrix A.

4 Kernel EMLSC

Even if the proposed EMLSC exploit the data manifolds in the learned latent space
based on the selected exemplars, it may fail to discover the intrinsic geometry when the
data manifold is highly nonlinear. In this section, we discuss how to perform EMLSC
in Reproducing Kernel Hilbert Space (RKHS), which gives rise to kernel version of
EMLSC, denoted as K-EMLSC.

4.1 An Equivalent Objective Function

Before deriving the K-EMLSC, we provide an equivalent objective function to the orig-
inal one in Eq. 8. We first present the following proposition.

Proposition 1. With fixed A, there exists an optional solution W∗ to Eq. 8 that has the
following form:

W∗ = XP (12)

for some P ∈ RN×m.
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The proof of this proposition is given in Appendix A. As a corollary of Proposition 1,
it is sufficient to seek an optimal solution for the optimization in Eq. 8 through P and
coefficient matrix A. By substituting Eq. 12 into Eq. 8, we have:

min
A,P

‖PTK(I−A)‖2F + α‖PTK(I− Â)‖2F + β‖PTKÃ‖2F ,

s.t. PTKP = I, ‖Ac‖1,q ≤ s,1TAc = 1T , for ∀c,
(13)

where K = XTX, A = [A1, . . . ,Ac, . . . ,AC ], Â = [Q1Q
T
1 A1, . . . ,QcQ

T
c Ac, . . . ,

QCQ
T
CAC ], and Ã = [Q̃1Q̃

T
1 A1, . . . , Q̃cQ̃

T
c Ac, . . . , Q̃CQ̃

T
CAC ].

To derive the optimal P, we have the following proposition.

Proposition 2. The optimal solution of Eq. 13 when A is fixed is:

P∗ = US− 1
2G∗, (14)

where U and S come from the SVD of K = USUT , and G ∈ RN×m is the optimal
solution of the following minimum eigenvalue problem:

G∗ = argmin
G

trGT H̃G, s.t. GTG = I, (15)

where H̃ = S
1
2UTHUS

1
2 in which H = (I −A)(I −A)T + α(I − Â)(I − Â)T +

βÃÃT .

The proof of this proposition is provided in Appendix B. From the equivalence illus-
trated by Proposition 2, we can derive the optimal W = XP after having the optimal
P. It is worth noting the following remark.

Remark 1. With fixed coefficient matrix A, we can derive the optimal projection W
either through solving Eq. 10 or Eq. 12 (Eq. 14 and Eq. 15 are used). The difference
between these two ways can be beneficial in different situations. Particularly, when the
number of training data N ) p, which stands for the dimensionality of the data, we
can choose the first way to derive the optimal W, as the complexity of the eigenvalue
problem is O(p3). When p ) N , we can use the second strategy to calculate the
optimal W with the O(N3) complexity of the eigenvalue problem .

4.2 Derivation of Kernel EMLSC

Since we have xi ∈ Rp where xi is the ith training sample, we consider the problem in
a feature space H induced by some nonlinear mappings:

φ : Rp → H. (16)

For a proper chosen φ, an inner produce 〈·, ·〉 can be defined on H which makes for a
reproducing kernel Hilbert space (RKHS). More specifically,

〈φ(x), φ(y)〉 = K(x,y) (17)
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holds where K(·, ·) is a positive semi-definite kernel function. Several popular kernel
functions are Gaussian kernel K(x,y) = exp(−‖x − y‖22/σ2), polynomial kernel
K(x,y) = (1 + xTy)α, and Sigmoid kernel K(x,y) = tanh(xTy + α).

Let Φ denote the data matrix in RKHS:

Φ = [φ(xi), . . . , φ(xN )]. (18)

Now, the problem Eq. 13 in RKHS can be written as below:

min
A,P

‖PTΦTΦ(I−A)‖2F + α‖PTΦTΦ(I− Â)‖2F + β‖PTΦTΦÃ‖2F ,

s.t. PTΦTΦP = I, ‖Ac‖1,q ≤ s,1TAc = 1T , for ∀c.
(19)

Denote the kernel matrix by K = ΦTΦ, in which Kij = K(xi,xj) = 〈φ(xi), φ(xj)〉.
Then, we have:

min
A,P

‖PTK(I−A)‖2F + α‖PTK(I− Â)‖2F + β‖PTKÃ‖2F ,

s.t. PTKP = I, ‖Ac‖1,q ≤ s,1TAc = 1T , for ∀c.
(20)

The resulting kernelized objective function in Eq. 20 can be solved in the same way
as in the linear case. Note that in the nonlinear case, the dimension m of the output
space can be higher than the dimension p of the input space, and is only upper bounded
by the number of training samples. For a sample datum x either from the training set or
a testing one, we have the corresponding mapped point z in RKHS as z = PTK(X,x).

5 Classification Scheme

After learning the projection and selecting the exemplars, we have the linear or non-
linear mapped exemplars as Z = [Z1, . . . ,ZC ] ∈ Rm×M , in which Zc ∈ Rm×Mc

is the mapped exemplars selected from the cth class (
∑C

c=1Mc = M ). Specifically,
in the linear version, we have Zc = WTXc, while in nonlinear situation, we have
Zc = PTK(X,Xc). When comes a query datum x, we have the mapped point z ∈ Rm.
To classify the query, we follow the classification framework of SRC [15]. In detail, we
first solve the following sparse coding problem:

α∗ = argmin
α

‖z− Zα‖2F + γ‖α‖1. (21)

Then, we calculate the reconstruction error of each class by: ec = ‖z−Zcα
∗
c‖2F , where

αc is the part in coefficient α∗ corresponding to Zc. Finally, we classify the query to
class c∗ such that c∗ = argminc ec.

6 Experimental Results

In this section, we evaluate the performance of EMLSC with its kernel version de-
noted by K-EMLSC on both synthetic and two real-world datasets. We compare our
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(a) (b)

Fig. 1. Two synthetic datasets and each one has two classes: (a) circle-like distributed data and
(b) parabola-like distributed data

proposed (K-)EMLSC with several state-of-the-art methods that are based on Sparse
Representation-based Classification (SRC) framework for classification on the learned
dictionaries or the selected exemplars. The standard SRC method (SRC) acts as a base-
line method, which uses all the training data without learning dictionaries or finding
exemplars. As our EMLSC can also learn a project along the feature-space dimension,
for comparing the effect of the dimensionality on the feature-space dimension, we first
apply random projection, PCA and LPP [6] to reduce the feature-space dimensionality,
and then use SRC for classification. We call these schemes rSRC, pSRC and lSRC re-
spectively. Moreover, we compare two closely related methods for comparison, they are
Sparse Modeling Representative Selection (SMRS) [7] and Latent Sparse Embedding
Residual Classifier (LASERC) [16]. SMRS merely selects exemplars in the original
space, and LASERC simultaneously learns the projection and adaptive dictionaries for
each class. Both SMRS and LASERC use SRC framework for classification. For all
experiments, we simply set α = β = 1 for EMLSC and K-EMLSC. As for K-EMLSC,
we choose Gaussian kernel with σ = 1.7.

6.1 Experiments with Synthetic Data

We first evaluate K-EMLSC for its ability of discriminating class-specific manifolds in
the learned latent space. We synthesize two datasets of two-dimensional data points,
and each set includes two classes of data. These two datasets consist of circle-like and
parabola-like distributed data as illustrated by Fig. 1. We can easily see there are highly
nonlinear manifold structures in the data. Our K-EMLSC jointly learns a latent space
and selects exemplars, therefore, we can draw the mapped data points of the two classes
in the learned latent space. Among the compared methods, only LASERC can jointly
learn a latent space, but learns dictionary for each class individually. Therefore, we
focus on the comparison of K-EMLSC and LASERC, and choose Gaussian kernel with
σ = 1.7 for both of the methods.

Fig. 2 displays the mapped data of the synthetic datasets in the latent space by
LASERC and K-EMLSC. (a) to (d) are the mapped data from the circle-like and
parabola-like datasets by LASERC and K-EMLSC, respectively; as well, we also plot
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(a) (b)

(c)
(d)

Fig. 2. Synthetic example: circle-like distributed data in the original 2D space and the latent space
with the learned dictionary atoms or selected exemplars are presented in (a) and (b), respectively;
circle-like distributed data in the original 2D space and the latent space with the learned atoms or
selected exemplars are illustrated by (c) and (d), respectively

the learned dictionary atoms of LASERC and the selected exemplars of our K-EMLSC.
Since LASERC learns the class-specific dictionaries and projection matrices of each
class individually, we plot the data points of the two classes in one figure, as illustrated
in (a) and (c). Then, we can see the data are mixed up, as well as the dictionary atoms.
This means the dictionary atoms cannot represent the data points well. This observation
coincides with what we analyze previously — dictionary atoms act bases to reconstruct
data points, and thus the atoms cannot be directly used to represent the data. On the
contrary, our K-EMLSC separates the two classes and preserves the class-specific man-
ifolds clearly as expected as demonstrated in (b) and (d), because K-EMLSC considers
the discrimination power and representation power of the selected exemplars in the
mapped space. Moreover, the selected exemplars can fully represent the data of each
class, specifically, the exemplars in the learned latent space can reflect the class-specific
data manifolds clearly.

6.2 Experiments with Real Data

Now, we examine the classification performances of the proposed method on two real-
world datasets, USPS digit database [21] and Extended-YaleB face database [22]. We
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Table 1. USPS digit recognition accuracy (%) with different reduced feature-space dimension

10 20 40 60 80

rSRC 89.3 ± 0.6 90.1 ± 0.7 92.5 ± 0.4 93.8 ± 0.4 95.6 ± 0.5

pSRC 93.2 ± 0.4 95.9 ± 0.5 97.3 ± 0.6 98.1 ± 0.3 98.6 ± 0.4

LASERC 85.6 ± 1.6 86.3 ± 1.3 86.9 ± 1.2 87.2 ± 1.1 87.9 ± 0.9

lSRC 93.6 ± 0.6

SRC 98.9 ± 0.7

SMRS 91.7 ± 0.6

EMLSC 95.8 ± 0.7 96.2 ± 0.6 97.1 ± 0.7 97.8 ± 0.5 98.2 ± 0.4
K-EMLSC 96.1 ± 0.3 96.5 ± 0.4 97.3 ± 0.8 97.9 ± 0.4 98.4 ± 0.5

Table 2. Extended-YaleB face recognition accuracy (%) with different reduced feature-space
dimension

30 60 100 150 200

rSRC 82.7 ± 1.3 91.6 ± 1.4 94.6 ± 1.1 95.8 ± 1.2 96.4 ± 0.9

pSRC 86.4 ± 0.7 91.8 ± 0.7 93.4 ± 0.9 93.8 ± 0.8 94.6 ± 0.6

LASERC 83.3 ± 1.8 87.5 ± 1.5 89.8 ± 1.4 91.4 ± 1.6 92.1 ± 1.3

lSRC 87.4 ± 0.6

SRC 98.2 ± 0.8

SMRS 93.1 ± 0.7

EMLSC 93.6 ± 0.8 95.5 ± 0.6 96.3 ± 0.5 97.9 ± 0.5 98.5 ± 0.3
K-EMLSC 94.2 ± 0.3 95.9 ± 0.4 96.7 ± 0.4 98.2 ± 0.6 98.7 ± 0.5

show that class-specific manifolds commonly exist in real-world data sets, and our (K-
)EMLSC can achieve very promising classification results by simultaneously learning
the latent space and selecting the exemplars with consideration of the class-specific
manifolds.

In USPS/Extended-YaleB dataset, we randomly select 1000 (USPS) / 51 (YaleB)
samples of each class for training, and restrict our (K-)EMLSC to select 20 (USPS) / 7
(YaleB) exemplars in each class. As well, SMRS also selects the same number of ex-
emplars as (K-)EMLSC, and LASERC learns the same number of dictionary atoms for
each class. The recognition accuracy of each method is averaged over 10 runs. As for di-
mensionality reduction along the feature-space dimension, rSRC, pSRC, LASERC and
our (K-)EMLSC reduce the data to the same dimension; while lSRC reduces the data to
C − 1 dimension, where C is the number of classes; SRC and SMRS directly perform
on the original data without dimensionality reduction process. In this evaluation, only
K-EMLSC uses a Gaussian kernel.

Table 1 and Table 2 report the averaged classification accuracies with standard devia-
tions for USPS and Extended-YaleB respectively, and the results are obtained from each
method after running 10 times. Fig.3 and Fig. 4 illustrate the two-dimensional mapped
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(a) (b)
(c)

(d)
(d)

Fig. 3. Four digits from USPS are projected into the 2D latent space shown in (a). (b), (c) and (d)
are three digits zoomed in with the selected exemplars highlighted in red box (best seen in color).

(a) (b) (c)

(d) (f) (g)

Fig. 4. (a) Six individuals from Extended YaleB database are projected in the latent space. (b),
(c) and (d) present facial images of three persons, and the images in red box are the selected
exemplars (best seen in color).
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images and exemplars of the two databases, respectively. From these results, we make
the following remarks:

1. rSRC, pSRC and lSRC reduce the dimension in the feature space and then apply
SRC for classification in separate stages. As seen in the tables, these methods do
not generate favorable results compared to (K-)EMLSC. In contrast, (K-)EMLSC
jointly learns the latent space for reducing the feature-space dimension and selects
the exemplars to represent class-specific manifolds. Therefore, with lower feature-
space dimension and less training samples (exemplars) for classification, it can
still produce very promising results. When kernel tricks are adopted, K-EMLSC
achieves better results than EMLSC.

2. Even if LASERC jointly learns projection and dictionaries, the learned dictionary
atoms cannot represent the data points but act as bases for reconstructing the data
as argued previously. Moreover, LASERC learns the dictionary and projection for
each class individually, therefore, classification performance cannot be guaranteed.
On the contrary, (K-)EMLSC jointly considers the discrimination power and the
representation power of the exemplars in the class-specific manifold viewpoint.
Fig.3 and Fig. 4 clearly illustrate the merit of EMLSC on this respect.

3. Both SMRS and (K-)EMLSC select exemplars, but (K-)EMLSC obtains higher ac-
curacy, even with much lower feature-space dimension. This is because (K-)EMLSC
considers the discrimination power of the mapped exemplars in the latent space, and
these exemplars can better represent the class-specific manifolds in a discriminative
way.

4. SRC, which performs in the original space over all training data, produces decent
results in the two databases. But (K-)EMLSC, with much fewer and much lower di-
mensional exemplars as bases, achieves comparable performances to SRC on USPS
database, and even outperforms it in Extended-YaleB database. This observation
further demonstrates the merit of (K-)EMLSC.

5. From Fig.3 and Fig. 4, we can see the selected exemplars by EMLSC mainly reside
on the contour of the manifolds. This is a good result, because it is reasonable
to anticipate data which locate within the manifold can be well approximated by
linearly combining the exemplars. This phenomenon validates the effectiveness of
using exemplars to represent the data manifold structure.

7 Conclusion

In this paper, we propose an algorithm to simultaneously learn a latent space and find
exemplars from the mapped dataset for classification. The selected exemplars can natu-
rally represent the data manifolds, and our method analyze the manifold structure in
a discriminative way. Therefore, the exemplar-based class-specific manifolds of the
classes are driven to be discriminative in the mapped latent space. We further extend
this method to nonlinear version with kernel tricks, therefore, the kernelized method
can deal with highly nonlinear cases. Through experiments, we demonstrate the merit
of our proposed method. In face of big-data era, as a future work, it is worth extending
our method to online learning framework to deal with large-scale situations.
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Appendix A: Proof of Proposition 1

Denote the optimal solution of W by W∗. we show that W∗ must have the form
W∗ = XP, for some P ∈ RN×m.

In advance, we rewrite the objective function into a compact form:

min
A,W

‖WTX−WTXA‖2F + α‖WTX−WTXÂ‖2F

+ β‖WTXÃ‖2F + λ‖A‖1,2
s.t. WTW = I.

(22)

where A = [A1, . . . ,Ac, . . . ,AC ], Â = [Q1Q
T
1 A1, . . . ,QcQ

T
c Ac, . . . ,QCQ

T
CAC ],

and Ã = [Q̃1Q̃
T
1 A1, . . . , Q̃cQ̃

T
c Ac, . . . , Q̃CQ̃

T
CAC ].

Using the orthogonal decomposition of W∗, we have:

W∗ =W‖ +W⊥, where W‖ = XP, and W⊥X = 0 (23)

for some appropriate P ∈ RN×m. Columns of W‖ and W⊥ are in and orthogonal to
the column subspace ofX, respectively. Substituting Eq. 23 back into objective function
Eq. 8, we can rewrite the first term in the following:

‖WTX−WTXA‖2F =‖(W‖ +W⊥)
T (X−XA)‖2F = ‖WT

‖ (X−XA)‖2F
=tr

{
WT

‖ X(I−A)(I−A)TXTW‖
}
,

(24)

the second term as:

‖WTX−WTXÂ‖2F =‖(W‖ +W⊥)
T (X−XÂ)‖2F = ‖WT

‖ (X−XÂ)‖2F
=tr

{
WT

‖ X(I− Â)(I− Â)TXTW‖
}
,

(25)

and the third term as below:

‖WTXÃ‖2F =‖(W‖ +W⊥)
TXÃ‖2F = ‖WT

‖ XÃ‖2F
=tr

{
WT

‖ XÃÃTXTW‖
}
.

(26)

Let XTX = K, by putting Eq. 23, Eq. 24 , Eq. 25 and Eq. 26 together, and omitting
the unrelated term to W, we have:

min
W

tr
{
WT

‖ X(I−A)(I−A)TXTW‖
}

+ αtr
{
WT

‖ X(I− Â)(I− Â)TXTW‖
}
+ βtr

{
WT

‖ XÃÃTXTW‖
}
,

s.t. WTW = I.

(27)

Let the singular value decomposition (SVD) of K = USUT = US
1
2S

1
2UT , and

H = (I−A)(I −A)T + α(I− Â)(I − Â)T + βÃÃT , we have:

tr
{
WT

‖ XHXTW‖
}
=tr

{
PTUS

1
2S

1
2 UTHUS

1
2S

1
2UTP

}
,

=tr
{
GT H̃G

}
,

(28)
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where H̃ = S
1
2UTHUS

1
2 and G = S

1
2UTP. Therefore, we have:

tr
{
GT H̃G

}
≥

m∑
i=1

σi, (29)

where σi is the ith smallest eigenvalue of H̃. In order for the objective function to
achieve its minimum, columns of G have to be the same with eigenvectors correspond-
ing to the smallest eigenvalues of H̃. Therefore we have GTG = I. Equivalently, we
have the constraint:

WTW = I =(W‖ +W⊥)T (W‖ +W⊥)

=WT
‖ W‖ +WT

⊥W⊥

=PTKP+WT
⊥W⊥

=GTG+WT
⊥W⊥,

(30)

which means W⊥ = 0. In short, the optimal solution of W has the form:

W∗ = W‖ = XP. (31)

This completes the proof.

Appendix B: Proof of Proposition 2

When fixing A, by omitting unrelated terms, we derive from objective function Eq. 13
as below:

‖PTK(I−A)‖2F + α‖PTK(I− Â)‖2F + β‖PTKÃ‖2F
=tr

{
PTK

(
(I−A)(I−A)T + α(I− Â)(I− Â)T + βÃÃT

)
KP

}
=tr

{
PTKHKP

}
,

s.t. PTKP = I,

(32)

where H = (I − A)(I − A)T + α(I − Â)(I − Â)T + βÃÃT . Let SVD of K =

USUT = US
1
2S

1
2UT , then we have:

tr
{
PTKHKP

}
=tr

{
PTUS

1
2 S

1
2UTHUS

1
2S

1
2 UTP

}
=tr

{
(S

1
2 UTP)TS

1
2 UTHUS

1
2 (S

1
2 UTP)

}
=tr

{
GT H̃G

}
s.t. (S

1
2UTP)T (S

1
2UTP) = I,

(33)

where G = S
1
2UTP and H̃ = S

1
2UTHUS

1
2 . And the constraint can also be simpli-

fied as GTG = I.
Now, we can see the equivalence of optimization in Eq. 13 and Eq. 33. And the

optimal solution P∗ can be recovered as in Eq. 14, i.e. P∗ = US− 1
2G∗.

Note that since K is a positive semidefinite matrix, the diagonal matrix S has non-
negative entries. S− 1

2 is obtained by setting non-zero entries along the diagonal of S to
the inverse of their square root and keeping zero elements the same.

This completes the proof.
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Abstract. Spectral methods for manifold learning and clustering typi-
cally construct a graph weighted with affinities from a dataset and com-
pute eigenvectors of a graph Laplacian. With large datasets, the eigen-
decomposition is too expensive, and is usually approximated by solving
for a smaller graph defined on a subset of the points (landmarks) and
then applying the Nyström formula to estimate the eigenvectors over
all points. This has the problem that the affinities between landmarks
do not benefit from the remaining points and may poorly represent the
data if using few landmarks. We introduce a modified spectral problem
that uses all data points by constraining the latent projection of each
point to be a local linear function of the landmarks’ latent projections.
This constructs a new affinity matrix between landmarks that preserves
manifold structure even with few landmarks, allows one to reduce the
eigenproblem size, and defines a fast, nonlinear out-of-sample mapping.

Keywords: manifold learning, spectral methods, optimization.

1 Introduction

Manifold learning algorithms have long been used for exploratory analysis of a
high-dimensional dataset, to reveal structure such as clustering, or as a prepro-
cessing step to extract some low-dimensional features that are useful for classifi-
cation or other tasks. Here we focus on the well-known class of spectral manifold
learning algorithms [1]. The input to these algorithms is a symmetric positive
(semi)definite matrix AN×N (affinity matrix, graph Laplacian, etc.) that con-
tains information about the similarity between pairs of data points Y ∈ RD×N ,
and a symmetric positive definite matrix BN×N that usually sets the scale of
the solution. Given these two matrices, we seek a solution X ∈ Rd×N to the
following generalized spectral problem:

min
X

tr
(
XAXT

)
s.t. XBXT = I. (1)

Within this framework it is possible to represent manifold learning methods such
as Laplacian Eigenmaps (LE) [2], Kernel PCA [3], MDS [4], ISOMAP [5] and
LLE [6], as well as spectral clustering [7].
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The solution of the spectral problem (1) is given by X = UT
d B

− 1
2 , where

Ud = (u1, . . . ,ud) are the d trailing eigenvectors of the matrix C = B− 1
2AB− 1

2 .
In large problems (large N), the computational cost means the matrices A, B
and C have to be sparse, and these eigenvectors are found with numerical linear
algebra techniques such as restarted Arnoldi iterations [8]. The resulting cost
is still large when N and d are large. The primary goal of this paper is to find
fast, approximate solutions to the spectral problem (1) (and thus to LE, spectral
clustering, etc.). We propose a method we call Locally Linear Landmarks (LLL),
based on the idea of selecting a subset of L * N landmarks ỸL×N from the
data, approximating the data manifold by a globally nonlinear but locally linear
manifold around these landmarks, and then constraining the solutionX to follow
this locally linear structure. The locally linear mapping is given by a projection
matrix Z ∈ RL×N that satisfies

Y ≈ ỸZ (2)

in the high-dimensional space, and by enforcing it in the low-dimensional space,
we can re-express the problem (1) as a new spectral problem on a smaller number
of variables L. This reduces the cost of the eigendecomposition dramatically
and, as we will show, constructs affinity matrices that preserve much manifold
information because the problem still involves the entire dataset. Note that LLL
is not a new manifold learning method, but a fast, approximate way to solve an
existing method of the form (1).

The LLL algorithm can be used for purposes beyond fast solutions of spectral
problems. First, it is particularly useful for model selection. The similarity matri-
cesA andB are usually constructed using some meta-parameters, such as a band-
width σ of Gaussian affinities and a sparsity level KW (number of neighbors). In
practice, a user has to tune these parameters to the dataset by hand by solving
the spectral problem for each parameter value. This is extremely costly with large
datasets. As we will show, we can run LLL with very few landmarks so that the
shape of the model selection curve (especially its minimum) is preserved well. This
way we can identify the optimal meta-parameters much faster and then solve the
spectral problem (possibly using more landmarks). Second, LLL solves the out-
of-sample problem for the spectral problem (1) (which projects only the training
points) by providing a natural, explicit mapping to project new points, which does
not exist in the original spectral problem. Finally, we observe that the gain of LLL
is much bigger when the number of eigenvectors d is large, which makes it very at-
tractive as a preprocessing step for classification to other machine learning tasks.

Related Work. The most widespread method to find an approximate, fast
solution of the spectral problem is the Nyström method [9,10,11,12]. It approx-
imates the eigendecomposition of a large positive semidefinite matrix using the
eigendecomposition of a much smaller matrix of landmarks. It can be seen as an
out-of-sample extension where we first solve for the landmarks separately from
the non-landmark points, and then use it to project the non-landmark points.
Since, during the projection of the landmarks, the Nyström method does not use
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the data from the non-landmark points, which is available from the beginning,
it can result in large approximation errors if the number of landmarks is low.

It is possible to redefine the affinities between landmarks so that they use
information from all points, for example by using a commute distance (the ex-
pected time it takes a random walk to travel from the first to the second node
and back). Besides the fact that this solves a different spectral problem, comput-
ing these distances is costly, it provides no out-of-sample mapping, and commute
distances have been shown to be problematic with large datasets in high dimen-
sions [13]. As we will show, in LLL the affinities between landmarks use naturally
the information in non-landmarks without us having to define new affinities.

Other landmark-based methods can be seen as forms of a Nyström approach.
De Silva and Tenenbaum [14] suggested to run the metric MDS algorithm on
a subset of the data, while the rest of the points can be located through a
distance-based triangulation process. The same idea can be applied to a graph
of geodesic distances (instead of Euclidean ones) which leads to the Landmark
Isomap algorithm [15]. This algorithm is able to give better results due to its
ability to deal with nonlinear manifolds. These approaches have been shown
[10,16] to be a Nyström approximation combined with classical MDS or Isomap.

The idea of representing points by linear coding as in eq. (2) has been used in
many different domains of machine learning, such as image classification [17,18],
manifold learning [19,20,21], supervised [22] and semi-superwised [23] learning. In
addition to linearity, many of above algorithms try to find local, sparse represen-
tations of the data, so that points are reconstructed using only nearby landmarks.
An early work is the LLE method for manifold learning [19], which computes the
matrix Z that best reconstructs each data point from a set of nearby points. Vari-
ations exist, such as using multiple local weight vectors in constructing Z in the
MLLE algorithm [24]. However, these works use local linear mappings to define a
new spectral problem, while LLL uses them to approximate an existing spectral
problem. The AnchorGraph algorithm [23] uses local coding in the graph Lapla-
cian regularization term of a semi-supervised learning problem. The problem it
solves is different from (1), and does not generalize beyond the Laplacian regular-
izer, compared to the more general approach that we propose here. Chen and Cai
[25] propose a landmarks-based approximation for spectral clustering. However,
the affinities they construct entirely ignore the original affinity matrix and thus
cannot be seen as approximating the target problem. Landmark SDE [20] pro-
poses to reconstruct kernel matrix using much smaller matrix of inner products
between the landmarks only. This problem is also different to ours.

Two approaches exist to construct out-of-sample mappings for spectral prob-
lems such as Laplacian eigenmaps: Bengio el al. [26] apply the Nyström formula
using the affinity kernel that defined the problem. Carreira-Perpiñán and Lu
[27] augment the spectral problem with the test point and solve it subject to
not changing the points already embedded, which results in a kernel regression
mapping. In LLL, the out-of-sample mapping is a natural subproduct of assum-
ing each low-dimensional point to be a local linear mapping of the landmark
projections associated with it.
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Fig. 1. Affinity matrices for landmarks in a spiral dataset. From left to right : 100 points
along the spiral (in red) with 20 landmarks selected uniformly (in blue); the affinity
matrix W used by LE constructed using all the points; the affinity matrix W built
using just landmarks; the learned affinity matrix C of LLL using the whole dataset.

2 Solving Spectral Problems with Locally Linear
Landmarks

The fundamental assumption in LLL is that the local dependence of points on
landmarks that occurs in high-dimensional space, eq. (2), is preserved in the
low-dimensional space:

X ≈ X̃Z. (3)

Substituting this into the spectral problem (1) gives the following reduced spectral
problem (on dL parameters):

min
X̃

tr (X̃ÃX̃T ) s.t. X̃B̃X̃T = I, (4)

where the matrices
Ã = ZAZT , B̃ = ZBZT . (5)

are of L × L. The solution for the reduced problem is given by X̃ = ŨT
d B̃

− 1
2 ,

where Ũd are d trailing eigenvectors of the matrix C̃ = B̃− 1
2 ÃB̃− 1

2 . After the
solution for the landmarks is found, the values ofX can be recovered by applying
the formula (3) once again.

We can see the reduced problem (4) as a spectral problem for just the land-
mark points using a similarity matrix Ã that incorporates information from the
whole dataset. For example, in Laplacian Eigenmaps (see Section 4) the matrix
A is given by the graph Laplacian of a matrix W of affinities (typically Gaus-
sian). Using LLL we can dramatically improve the quality of W over that of
constructing W using only the landmarks, by including additional information
from the whole dataset. Fig. 1 shows the affinity matrix constructed in the usual
way for a spiral dataset in the full case (using all 100 points) and using 20 land-
mark points versus the affinity matrix learned using LLL. The latter one (right
plot) is almost perfectly banded with uniform entries. This means the connectiv-
ity pattern proceeds along the spiral, respecting its geometry, rather than across
it. However, when affinities are constructed directly on landmarks that are quite
distant from each other, undesirable interactions across the spiral occur.
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Out-of-sample Extension. Given a new point y0 ∈ RD that is not a part of
the original dataset, we find its projection on the low-dimensional space by
computing a new projection vector z0 for that point using KZ landmarks around
y0. The embedding of y0 is found from a linear combination of the landmark
projections x0 = X̃z0. The cost of the out-of-sample is O(DK2

Z + Ld), which is
linear for all the parameters except for KZ , which is usually low.

Construction of the Projection Matrix Z. Let us define the landmarks as a set
Ỹ = (ỹ1, . . . , ỹL) ∈ RD×L of L points in the same space as the high-dimensional
input Y. Now each datapoint yn can be expressed as a linear combination
of nearby landmark points: yn =

∑L
k=1 ỹkznk where zn is a local projection

vector for the point yn. There are multiple ways to make this projection lo-
cal. One can consider choosing KZ landmarks closest to yn or ε-balls centered
around yn. Moreover, the choice of landmarks can be different for every n. In
our experiments, we keep only the KZ landmarks that are closest to yn and
use the same value of KZ for all the points. Therefore, the projection matrix
Z = (z1, . . . , zN ) ∈ RL×N has only KZ nonzero elements for every column.
This matrix intuitively corresponds to the proximity of the points in the dataset
to the nearby landmarks and it should be invariant to rotation, rescaling and
translation. The invariance to rotation and rescaling is given by the linearity of
the reconstructing matrix ỸZ with respect to Ỹ, whereas translation invariance
must be enforced by constraining columns of Z to sum to one. This leads to the
following optimization problem:

min
Z
‖Y − ỸZ‖2 s.t. 1TZ = 1T . (6)

Following the approach proposed in the LLE algorithm [19] we introduce a point-
wise Gram matrix G ∈ RL×L with elements

gij = (yn − ỹi)
T (yn − ỹj) (7)

for every n = 1, . . . , N . Now, the solution to problem (6) is found by solving a

linear system
∑L

k=1 gjkznk = 1 and rescaling the weights so they sum to one.

Computational Complexity. This algorithm reduces the number of computations
for the eigendecomposition in the solution to the problem (1). However, we also
need to perform extra computations to evaluate Z, compute auxiliary matri-
ces (5) and perform the final multiplication (3) to recover the full embedding.

The computation of Z consists of computing the pointwise Gram matrix G
and solving the linear system. G is sparse and has only KZ nonzero elements in
each row, so it takes O(NDK2

Z) to compute it. The linear system also should be
solved just for KZ unknowns, so it takes O(NK3

Z). Among the two, the compu-
tation of G matrix dominates because KZ < D, as we will show below. Note this
step is independent of the number of landmarks L. The cost of computing Ã and
B̃ is O(KZN

2) with dense matrices and O(KZNc) with sparse matrices, where
c is some constant that depends on the sparsity of the matrices A and B and on
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the particular location of the nonzero elements in Z. Computing C̃ and perform-
ing the eigendecomposition both take O(L3), and recovering the final embedding
takesO(NLd). Overall, the complexity of LLL isO

(
KZN

2+N(Ld+DK2
Z)+L

3)
)

with dense inputs and O
(
N(KZc+Ld+DK2

Z)+L3)
)
with sparse inputs, which

is asymptotically much faster than the cost of the eigendecomposition if L* N .
The computational cost of the out-of-sample mapping is O(DK2

Z) to find a
projection vector z0 and O(Ld) for a reprojection in the low-dimensional space,
hence O(DK2

Z + Ld) overall.

3 Choice of Parameters

Number of Landmarks L. One should use as many landmarks as one can afford
computationally, because the more landmarks the better the approximation. As
L increases, the results look more and more similar to the solution of the original
spectral problem, which is recovered when L = N .

Number of Landmarks KZ around Each Point. Each point should be a local
linear reconstruction of nearby landmarks. Thus it is important that there are
enough landmarks around each point so that its nearest landmarks are chosen
along the manifold. These landmarks will have nonzero weights in the recon-
struction, thus achieving locally and linearity. Non-local weights may not work
unless the manifold is globally linear.

Using weights that are nonzero only for the nearestKZ landmarks implies that
the low-dimensional space is partitioned into regions where X is piecewise linear
as a function of the corresponding subset of landmarks. If the KZ landmarks are
in general position, they span a linear manifold of dimension KZ − 1. Therefore,
we need no more than D+ 1 landmarks, since KZ = D+ 1 of them reconstruct
any point in D dimensions perfectly. On the other hand, using KZ > D + 1
makes the weights non-unique and we need to add a regularization term to (7)
to penalize the weight norm by adding a small positive amount to the diagonal
of the linear system. However, the manifold learning assumption implies that
the intrinsic dimensionality of the manifold is lower than D. For example, if the
manifold is linear with dimension d̂ then the number of landmarks needed to
reconstruct any point is KZ = d̂+ 1 by the same argument as above. However,
if the manifold is nonlinear with local dimension d̂, then KZ = d̂+ 1 landmarks
reconstruct the point approximately (near its projection on the tangent plane).

Thus, overall the number of landmarks around each point should be between d̂+1
(which may have a certain reconstruction error, particularly if the landmarks are
not in general position) and D+1 (which achieves perfect reconstruction). If the
reconstruction is imperfect, we introduce an additional error on the embedding,
by implicitly replacing each original data point with its projection on landmarks.
Thus, KZ is a user parameter with values in [d̂ + 1, D + 1]: the larger KZ the
smaller the error and the larger the computational cost. In practice, KZ can
be estimated so a desired reconstruction error ‖Y − ỸZ‖ is achieved, but it

should not be much bigger than d̂+1. Note d̂ in this context is an intrinsic local



262 M. Vladymyrov and M.Á. Carreira-Perpiñán

dimensionality of the manifold and not the dimensionality of the low-dimensional
output d, which may or many not match d̂.

The Location of Landmarks. Kumar et al. [28] provide a formal analysis of dif-
ferent types of sampling and show that, at least for the Nyström approximation,
uniform sampling works best. Our experiments confirm this as well. However, we
should not spend much computation on selecting landmarks, so as to introduce
as little computational overhead as possible. Based on this, we investigated three
general methods on how to compute the location of the landmarks.

First, we can always choose the landmarks at random from a set of existing
points. This method requires almost no computational resources. However, the
result can vary dramatically, especially when only a small number of landmarks
is available. We can apply an additional heuristic to make the landmark location
as close to uniform as possible: we select K +M landmarks at random, find M
pairs of closest landmarks and then discard one landmark from each pair. This
heuristic is also useful because the distances are already given to us from the
adjacency matrix. Even when the adjacency matrix is sparse, it is usually the
largest distances that are missing. Thus, we can always identify closest landmarks
to each other.

Second, we can select the landmarks by running a clustering algorithm with
L clusters and choose each landmark in the middle of the clusters. For instance,
one can run k-means and set the landmarks to the points that are closest to the
centroids of the clusters. One problem with this approach is that the clustering
is usually quite expensive. Another is that, for data with a nonconvex manifold
structure, the landmarks can end up in between branches of the manifold (al-
though this could be avoided with a k-modes algorithm that places landmarks
in high-density regions of the data [29]). In our experiments we avoid dealing
with landmarks that are not part of the dataset.

Finally, the landmarks can be also selected using other heuristics so they
span the manifold as uniformly as possible. It has been proposed [14] to use
a MinMax algorithm which chooses landmarks one by one by maximizing the
mutual distance between the new landmark and the existing set of landmarks.
However, this requires having the mutual distances between all the points, which
in case of a large number of points N is unavailable.

4 Locally Linear Landmarks for Laplacian Eigenmaps

A particular case of the spectral method for which we can apply LLL is the
Laplacian Eigenmaps (LE) algorithm [2]. The general embedding formulation
is recovered using A as a graph Laplacian matrix L = D − W defined on a
symmetric affinity matrix W with degree matrix D = diag (

∑N
m=1 wnm) and

B = D. The objective function is thus

min
X

tr
(
XLXT

)
s.t. XDXT = I,XD1 = 0. (8)
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Note that adding the second constraint does not alter the general formulation
of the spectral solution, but just removes the first eigenvector, which is constant
and equal to D− 1

21 with eigenvalue 1.
The matrices in the reduced spectral problem (4) are then:

Ã = ZLZT , B̃ = ZDZT . (9)

Similarly to the case of the original LE, the second constraint is satisfied by
discarding the first eigenvector. We can see this by noticing that Ã1 = 0 and
looking at the eigendecomposition of C̃:

B̃− 1
2 ÃB̃− 1

2 ũ1 = B̃− 1
2 Ãx̃T = λ1ũ1.

Therefore, the solution corresponding to the eigenvalue λ1 = 0 is trivial.
The affinity matrix W for LE is usually computed using a Gaussian kernel

with a bandwidth parameter σ (or a separate bandwidth per point [30])). The
affinities are also sparsified by retaining only the KW biggest values for every
row. The performance of LE depends crucially on the choice of those parameters
and they have to be tuned quite carefully in order to achieve good results. Unfor-
tunately, in most cases there is no procedure to check the quality of the affinity
matrix without running LE itself. However, instead of solving multiple, expen-
sive LE problems, we can tune those parameters by running LLL. This gives a
much cheaper runtime, especially considering that the matrix Z is independent
of the choice of σ and KW and, thus, is computed only once.

5 Experimental Evaluation

We compared LLL for LE to three natural baselines. (1) “Exact LE” runs LE on
the full dataset and gives the optimal embedding by definition, but the runtime
is large. (2) “LE (Z)” runs LE only on a set of landmark points and then projects
non-landmark points using the projection matrix Z, which gives a locally linear
(but globally nonlinear) out-of-sample mapping. (3) “LE (Nys.)” runs LE only
on a set of landmark points and uses the Nyström out-of-sample formula. The
latter two Landmark LE baselines give faster performance, but the embedding
quality can be worse because non-landmark points are completely ignored in
solving the spectral problem. For all our experiments we used Matlab’s eigs

function to compute the partial eigendecomposition of a sparse matrix.

Role of the Number of Landmarks. We used 60 000 MNIST digits with sparsity
KW = 200 and bandwidth σ = 200 to build the affinity matrix and reduced the
dimensionality to d = 50. For LLL, we set KZ = 50 and increased the number
of landmarks logarithmically from 50 to 60 000. We chose landmarks at random
and repeated the experiment 5 times for different random initialization to see
the sensibility of the results to the random choice of the landmarks. To quantify
the error with respect to Exact LE we first used Procrustes alignment [4, ch. 5]
to align the embeddings of the methods and then computed the relative error
between the aligned embeddings.
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Fig. 2. Performance of LLL (green), Landmark LE with Z as an out-of-sample (blue)
and Landmark LE with Nyström as an out-of-sample (cyan). Left : runtime as the
number of landmarks changes. The green and blue dashed lines correspond to the
runtime that gives 10% error with respect to Exact LE for LLL and Landmark LE
using Z, respectively. Right : error with respect to Exact LE. The black line corresponds
to 10% error. Note the log scale in most of the axes.

Fig. 2 shows the error as well as the overall runtime for different algorithms as
the number of landmarks increases. Our first indicator of performance is to see
which algorithm can attain an error of 10% faster. LLL needed 451 landmarks
and 5.5 seconds (shown by a dashed green line in the left plot). This is 14 times
faster compared to Exact LE, which takes 80 seconds. Landmark LE with Z
as out-of-sample mapping attains the same error with 23 636 landmarks and
the runtime of 69 seconds (1.15 speedup, blue dashed line in the right plot).
Landmark LE with Nyström is not able to attain an error smaller than 50%
with any number of landmarks. Note the deviation from the mean for 5 runs of
randomly chosen landmarks is rather small, suggesting the algorithm is robust
to different locations of landmarks. Fig. 3 shows the embedding of Exact LE and
the embedding of LLL with 451 randomly selected landmarks. The embedding
of LLL is very similar to the one of Exact LE, but the runtime is 15 times faster
(5.5 seconds compared to 80 seconds). Using more landmarks only decreases the
error further and for 3 000 landmarks, where the runtime of LLL matches the
runtime of Exact LE, the mean error among 5 runs drops to 3%. Landmark
LE with Z as an out-of-sample attained the same error only by using 23 636
landmarks and a runtime of 69 seconds (1.15 speedup, blue dashed line in the
right plot). Landmark LE with Nyström is not able to attain an error smaller
than 50% for any number of landmarks. Note the deviation from the mean for
5 runs of randomly chosen landmarks is rather small, suggesting the algorithm
is relatively robust to different locations of landmarks.

Model Selection. We evaluated the use of LLL to select the parameters of the
affinity matrix. We used 4 000 points from the Swissroll dataset and ran the
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Exact LE LLL

LE (Z) LE (Nyström)

Fig. 3. Embedding 60 000 MNIST digits using the first two dimensions. Left to right :
Exact LE (t = 80 s), LLL (t = 5.5 s, 451 landmarks), Landmark LE with Z as out-of-
sample mapping (t = 5.5 s, 1 144 landmarks), and LE with Nyström as out-of-sample
mapping (t = 5.5 s, 88 landmarks).

methods varying different parameters of the algorithm. We ran LLL and Land-
mark LE 5 times using different random initializations to show the general be-
havior of the algorithm. Experimentally we discovered that the best results are
obtained with a bandwidth σ = 1.6, a number of landmarks L no less than 300
and a sparsity level KW around 150. We then fixed two out of these three pa-
rameters and changed the third one to see how the error curve changes. Fig. 4
shows the results. First, for different σ values the error curve of Exact LE is
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Fig. 4. Quality of the embedding with respect to the ground truth for different values of
the bandwidth σ, number of landmarks L, and sparsity level KW . The dataset contains
4 000 points from a Swissroll. From left to right: vary σ for fixed L = 300, KW = 150;
vary L for fixed σ = 1.6, KW = 150; vary KW for fixed L = 300, σ = 1.6. Top row :
runtime for different values of the parameters. Bottom row : error.

much more similar to the one from LLL, but LLL is able to achieve it about
18× faster (top plot). Compared to that, Landmark LE definitely needs more
landmarks in order to show a similar behavior. Second, the number of landmarks
needed to achieve the same error as Exact LE is much lower for LLL than for
Landmark LE. Using 300 landmarks the error of LLL is about 3% and it is also
18 times faster than Exact LE. Landmark LE is never able to achieve a 10%
error for any set of landmarks up to 1 000. Third, changing the sparsity level pa-
rameter KW , the error curve is again very similar between Exact LE and LLL,
but very different between Exact LE and Landmark LE. The speedup of LLL
compared to Exact LE varies between 2 for small values of KW to 40 for large
KW . Note that, although LLL is not able to reproduce an error curve identical
to that of Exact LE, it does match the minima of these curves (for σ and KW ),
and of course the minima correspond to the parameter values we are interested
in. That is, LLL can be used as a fast way to find good parameter values for
Exact LE. This suggests a practical procedure to set the parameters of Exact
LE: we run LLL to obtain the values of σ and KW that give the (approximately)
minimum error and then run Exact LE using those values.

Classification. Here our goal was to find a good set of parameters to achieve a low
1-nearest neighbor classification error for the full 70 000 MNIST digits dataset.
We first split the dataset into three independent sets: 50 000 digits as a training
set, 10 000 digits as a test set and 10 000 digits for out-of-sample mapping. We
then projected training and test sets (overall 60 000 points) to 500 dimensions
using LLL with 1 000 landmarks selected using k-means with KZ = 50. We did
this a number of times for different values of KW from 1 to 200 and σ from 4.6 to
1000. Note the Z matrix is independent from the affinities and depends only on
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Fig. 5. 1-nearest neighbor classification error of MNIST digits after applying LLL, for
different values of σ and KW . See the main text for details. Gray areas corresponds
to Matlab’s eigs routine not converging. Top two plots: runtime for Exact LE and
LLL. The color corresponds to the runtime in seconds. Bottom three plots: error of
Exact LE, LLL and out-of-sample set, respectively. The color corresponds to percent
classification error. The out-of-sample runtime is constant and equal to 30 seconds
for all values of KW and σ. Top right plot : 1-nearest neighbor classification error for
different dimensions for the test subset with σ = 10 and KW = 1.

the choice of landmark points, so we can save 30 seconds’ runtime for each point
by precomputing that matrix and using it for all variations of the parameters.
Given the location of the embedding points X̃, we also computed the out-of-
sample projection matrix Zoos to find the embedding of the out-of-sample set
as well. We computed the 1-nearest neighbor classification for different number
of dimensions separately and reported the smallest error, for both the test and
the out-of-sample sets. Fig. 5 shows the results. The smallest error is achieved
for very small values of KW . There is also little discrepancy between the error
for test and out-of-sample sets, which indicate our out-of-sample mapping is
accurate. The top right corner shows the variation of the error as we change the
dimensionality. The results are shown for σ = 10 and KW = 1, but the curve is
very similar for other sets of parameters as well. Note the runtime of LLL is less
than two minutes for the embedding of as many as 60 000 MNIST points.

We also tried to repeat the same experiment for Exact LE to compare the
results with LLL, but we found many complications. First of all, it turns out
that for small values of KW the graph Laplacian is not connected and Matlab’s
eigs routine does not converge (at least not all 500 requested eigenvalues). For
larger values of KW eigs converges, but takes many iterations, which increase
the runtime dramatically to almost 4 000 seconds. Note it is exactly for those
values that both Exact LE and LLL give the smallest error (in fact the smallest
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Fig. 6. Example of the elastic deformation of MNIST digits in the infinite MNIST
dataset. Top: original. Bottom: one of the 16 deformations we applied to each digit.

Full embedding Only landmarks

L
L
L

L
E

(Z
)

Fig. 7. Embedding of 1 020 000 points from the infinite MNIST dataset using 10 000
landmarks. Top: LLL, bottom: LE (Z). Left : full dataset X, right : landmarks X̃ only.
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error for LLL is achieved forKW = 1, for which Exact LE did not even converge).
IncreasingKW improves the connectivity of the graph Laplacian, but the runtime
of eigs did not decrease much below 1 000 seconds, which means LLL is 15–40×
faster depending on the particular set of parameters. Finally, the general pattern
of variation and values of the error is almost the same for Exact LE, LLL and
the out-of-sample set. The error gradually increases from the lower left corner
to the upper right in all three cases.

Large-Scale Experiment. We used the infinite MNIST dataset [31], where we
generated 1 020 000 handwritten digits using elastic deformations of the original
MNIST dataset (see examples of the deformations in Fig. 6). We reduce the
dimensionality to two with 10 000 randomly selected landmarks and KZ = 5
nearest landmarks. LLL took 4.2 minutes to compute the projection matrix Z
and 14 minutes to compute the embedding. We also run LE (Z) on the same
10 000 landmarks. Fig. 7 shows the resulting embeddings. In the embedding of
LLL, zeros, sixes and ones are separated from the rest of the digits, and nines,
fours and sevens form their own group (all those digits contain in them a straight
vertical line). The embedding for For LE (Z) shows far ess structure. Only ones
and a group containing sevens and nines can be separated. The rest of the points
are trapped in the center of the figure.

6 Conclusion

Spectral methods for manifold learning and clustering often give good solu-
tions to problems involving nonlinear manifolds or complex clusters, and are in
widespread use. However, scaling them up to large datasets (large N) and non-
trivial numbers of eigenvectors (d) requires approximations. The Locally Linear
Landmarks (LLL) method proposes a reduced formulation of the original spec-
tral problem that optimizes only over a small set of landmarks, while retaining
structure of the whole data. The algorithm is well defined theoretically and has
better performance than the Nyström method, allowing users to scale up appli-
cations to larger dataset sizes. LLL also defines a natural out-of-sample extension
that is cheaper and better than the Nyström method. This paper has focused
on the case of Laplacian eigenmaps, where LLL was able to achieve 10×–20×
speedups with small approximation error.

The basic framework of LLL, where we replace the low-dimensional projec-
tions by a fixed linear function of only a few of the projections, is applicable to
any spectral method. However, the best choice of the linear function is an in-
teresting topic of future research. In particular for spectral clustering, the input
data need not have manifold structure, but the cluster label of a point may be
well approximated by a function of some of its neighboring landmarks.
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Abstract. Many tasks in exploratory data mining aim to discover the
top-k results with respect to a certain interestingness measure. Unfor-
tunately, in practice top-k solution sets are hardly satisfactory, if only
because redundancy in such results is a severe problem. To address this,
a recent trend is to find diverse sets of high-quality patterns. However,
a ‘perfect’ diverse top-k cannot possibly exist, since there is an inherent
trade-off between quality and diversity.

We argue that the best way to deal with the quality-diversity trade-
off is to explicitly consider the Pareto front, or skyline, of non-dominated
solutions, i.e. those solutions for which neither quality nor diversity can
be improved without degrading the other quantity. In particular, we focus
on k-pattern set mining in the context of Subgroup Discovery [6]. For
this setting, we present two algorithms for the discovery of skylines; an
exact algorithm and a levelwise heuristic.

We evaluate the performance of the two proposed skyline algorithms,
and the accuracy of the levelwise method. Furthermore, we show that the
skylines can be used for the objective evaluation of subgroup set heuris-
tics. Finally, we show characteristics of the obtained skylines, which re-
veal that different quality-diversity trade-offs result in clearly different
subgroup sets. Hence, the discovery of skylines is an important step to-
wards a better understanding of ‘diverse top-k’s’.

1 Introduction

“Find me the k highest scoring solutions to this problem.” This phrase describes
the goal of many common tasks in the fields of both exploratory data mining
and information retrieval. Consider for example document retrieval, where the
task is to return the top-k documents that are most relevant for a given query.
Also in pattern mining, it is quite common to ask for the top-k patterns with
respect to a given interestingness or quality measure. As a result, many efficient
algorithms for finding top-k’s have been proposed in the literature.

Unfortunately, in practice top-k solution sets are hardly satisfactory to the
user, which is due to two reasons. First, it is hard to formalise interestingness
and therefore it is unlikely that a used quality measure completely matches
perceived interestingness. Second, the top-k results are often very redundant,
which can have different causes. Focusing on pattern mining, the main cause
lies in the use of expressive pattern languages in which many different patterns

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 272–287, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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describe the same structure in the data. Consequently, there are many patterns
with almost the same interestingness or quality. When ranking the complete
set of patterns according to interestingness and taking the top-k, this results in
a clearly redundant result set: the top-k contains many variations of the same
theme, while many potentially interesting patterns fall outside the top-k and are
thus completely ignored.

Acknowledging this problem, a trend in recent years has been to move away
from mining individual patterns, and towards mining pattern sets [1]. The main
idea of pattern set mining is that one should mine a diverse set of high-quality
patterns, where quality and diversity depend on the specific task. In other words,
pattern set mining aims at finding a diverse top-k rather than the top-k. Note
that result diversification is also very common in e.g. document retrieval.

An important observation is that a single, ‘perfect’ diverse top-k cannot pos-
sibly exist: whenever we replace elements from the top-k with other elements
to improve diversity, it is no longer the top-k with regard to quality. This is
inherent to the problem, and can be compared to the risk-return trade-off that
forms the core of modern portfolio theory [11]. Consequently, many instances of
pattern set mining have a trade-off between quality and diversity, even if this
is often obfuscated by parameters that need tuning. However, this also implies
that there exists a Pareto front, or skyline, of non-dominated pattern sets. In
other words, there must be a set of pattern sets such that no other pattern sets
exist that have both higher quality and diversity.

Cover Redundancy

Q
ua

lit
y

Fig. 1. The effect of varying the diversity
parameter of cover-based subgroup selec-
tion [10] on quality and cover redundancy
(‘inverse diversity’) (Car)

Subgroup Discovery. Although most
contributions can be generalised to
other instances of pattern set mining,
in the remainder of this paper we fo-
cus on Subgroup Discovery (SD) [6].
SD is an instance of pattern mining
that is concerned with finding regions
in the data that stand out with re-
spect to a particular target variable.
As an example, consider a dataset
from the medical domain with pa-
tient information, in which we treat
hemoglobin concentration as the tar-
get. By performing subgroup discov-
ery, we could identify patterns such
as sex = male→ high, implying that
men tend to have a higher hemoglobin
concentration than the overall population. Compared to other pattern mining
tasks, a notable advantage is that it is pattern type agnostic and can thus deal
with almost any type of data.

We recently proposed several heuristic methods for selecting diverse top-k
subgroup sets from large sets of candidate subgroups [10]. Diversity and quality
can be balanced by the user by setting several parameters. To demonstrate this
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effect and the resulting trade-off between quality and diversity, we conducted a
series of selection experiments in which we varied the ‘trade-off’ parameter. The
qualities and diversities of the resulting subgroup sets are plotted in Figure 1.
A higher quality implies that individual subgroups have a higher quality on
average, and a lower cover redundancy implies that the subgroups cover more
diverse parts of the data. The figure clearly shows the trade-off: higher quality
comes at the cost of less diversity and vice versa.

Approach and Contributions. We argue that the best way to deal with
the quality-diversity trade-off is by explicitly considering the Pareto front of
optimal solutions, i.e. those solutions for which neither quality nor diversity can
be improved without degrading the other quantity. For this we have the following
three arguments. First, maximising only quality or diversity clearly does not
give satisfactory results, but neither is it possible to determine in advance what
trade-off is desirable for a user. Second, existing heuristic methods yield a single
subgroup set, but one cannot possibly know if and where it resides on the Pareto
front. Neither theoretical nor empirical arguments have addressed whether the
discovered subgroup sets are on or even near the Pareto front. Third and last,
the trade-off is usually implicit and hidden by parameters that are hard to tune.
This tuning is dataset-dependent and small parameter changes can have a big
impact on the resulting trade-off. Hence, only by explicitly considering subgroup
set skylines, we can learn more about its characteristics and properties, and find
out what subgroup sets are preferred by users.

The approach and contributions of this paper can be summarised as follows:

1. We introduce the concept of the quality-diversity skyline for k-pattern sets,
and argue that it is important to investigate its shape. Such analysis helps in
making more principled choices with regard to the quality-diversity trade-off,
e.g. interactively or by generalising frequent behaviour, but may also result
in insights that lead to novel heuristics for pattern set mining.

2. For developing our theory and methodology, we focus on instances of the
k-pattern set mining problem for which quality of the pattern set is the sum
of the individual qualities, and diversity is quantified using joint entropy.

3. For this setting, we present two algorithms that compute the skyline given
a set of candidate patterns.
(a) The first is a branch-and-bound algorithm that computes the exact

Pareto front. Properties of joint entropy are used to prune the search
space, which results in considerable speedups and makes skyline compu-
tation feasible for modestly sized candidate sets.

(b) The second is a heuristic that takes a levelwise approach; the Pareto front
of size i is approximated by augmenting the Pareto front of subgroup sets
of size i − 1. Although this method is a heuristic, it approximates the
results of the exact method very well and is much faster.

4. We perform experiments to investigate how the methods perform in the con-
text of subgroup sets. We study runtimes of the two skyline algorithms, and
investigate how accurate the approximations of the heuristic method are. In
addition, we show that the skylines can be used for the objective evaluation of
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subgroup set heuristics. Finally, we show characteristics of the obtained sky-
lines, which reveals that subgroup sets with very different quality-diversity
trade-offs exist. Hence, explicitly computing and considering skylines is an
important step towards a better understanding of ‘diverse top-k’s’.

After discussing related work in Section 2, we introduce notation and prelim-
inaries in Section 3. Section 4 introduces Pareto optimal subgroup sets, after
which Sections 5 and 6 introduce the skyline discovery algorithms. Section 7
presents the experiments and we round up with conclusions in Section 8.

2 Related Work

Subgroup Discovery has been around since the late 90s [6], and is closely related
to Contrast Set Mining and Emerging Pattern Mining. Subgroup Discovery is
probably the most generic of these, as the general task makes very few assump-
tions about the data.

Diverse subgroup set discovery, introduced in [10], resembles supervised pat-
tern set selection methods [12,2,1], but quantifying quality separately from diver-
sity makes it substantially different. This decoupling has clear advantages, as the
two can be independently varied and it becomes more apparent how each of the
two perform. Supervised pattern set mining methods often aim to achieve good
classification, which does not match the exploratory goal of Subgroup Discovery.

Entropy was used to quantify diversity of k-sized pattern sets by Knobbe and
Ho [8], but our overall approach and aims are rather different. Knobbe and Ho’s
maximally informative k-itemsets maximize entropy and are therefore maximally
diverse, but no other interestingness or quality measure is taken into account.
Skylines consisting of individual patterns were previously studied in [13].

Our problem can also be regarded as an instance of a bicriteria or multiob-
jective combinatorial optimisation (MOCO) problem. Quite some approaches to
MOCO problems have been proposed, both exact [4] and heuristic [5]. The main
property that distinguishes our problem is that given a point in decision space, it
is very hard to determine whether a feasible solution in criteria space exists, let
alone to compute this solution. This is due to the large size and complex struc-
ture of the criteria space, i.e. the set of all possible pattern sets. Consequently,
searching through criteria space is required to find a skyline, and this cannot be
accomplished with standard MOCO approaches.

3 Preliminaries

We assume that the tuples to be analysed are described by k (≥ 1) description
attributes A and a target attribute Y . All attributes Ai (and Y ) have a domain
of possible values Dom(Ai) (resp. Dom(Y )). A dataset D is a bag of tuples t
over the complete set of attributes {A1, . . . , Ak, Y }. The central concept is the
subgroup, which consists of a description and a corresponding cover. A subgroup
cover is a bag of tuples G ⊆ D and |G| denotes its size, also called subgroup size
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or coverage. A subgroup description is a formula s, consisting of a conjunction of
conditions on the description attributes, and its corresponding subgroup cover
is the set of tuples that satisfy the formula, i.e. Gs = {t ∈ D | t � s}.

A subgroup quality measure is a function ϕ : 2Y �→ R that assigns a numeric
value to any subgroup based on its target values πY (G). The traditional Sub-
group Discovery (SD) task is to find the top-k ranking subgroups according to ϕ.
Depending on the data and task, either exhaustive search or beam search can be
used. Several parameters influence the search, e.g. a minimum coverage threshold
requires subgroup covers to consist of at least mincov tuples, and the maximum
depth parameter maxdepth imposes a maximum on the pattern length.
k-subgroup sets A k-subgroup set S is a set consisting of exactly k subgroups.

Subgroup set quality, denoted by q(S), is simply the sum of the individual qual-
ities of the k subgroups, i.e. q(S) =

∑
G∈S ϕ(G). Any suitable quality measure

can be used for ϕ(G); in this paper we use Weighted Relative Accuracy [6],
probably the best-known quality measure for subgroups.

To quantify diversity among the subgroup covers of a subgroup set, we use
joint entropy. Joint entropy, denoted byH , is obtained by computing the entropy
over the binary features defined by the subgroups in the set.

Definition 1 (Joint Entropy). Given a k-subgroup set S = {G1, . . . , Gk},
and let B = (b1, . . . , bk) ∈ {0, 1}k be a tuple of binary values. Let p(sG1 =
b1, . . . , sGk

= bk) denote the fraction of tuples t ∈ D such that sG1(t) = b1∧ . . .∧
sGk

(t) = bk. The joint entropy of S is defined as:

H(S) = −
∑

B∈{0,1}k

p(sG1 = b1, . . . , sGk
= bk) log2 p(sG1 = b1, . . . , sGk

= bk).

H is measured in bits, and each subgroup contributes at most 1 bit of infor-
mation, so that H(S) ≤ |S|. A higher entropy indicates higher diversity. Note
that we decided not to use Cover redundancy [10], because joint entropy is more
widely known and used, and can be used to prune the search space.

4 Skylines of Pareto Optimal k-Subgroup Sets

In this section we formally state the problem that we address in this paper, i.e.
that of finding skylines of Pareto optimal k-subgroup sets. Before discussing the
problem in more detail, we define the notion of dominance.

Definition 2. Given points x and y from some set Ω, and a set of functions
F = {f1, . . . , fn}, fi : Ω → R for all fi ∈ F , we say that point x dominates
point y in terms of F , denoted x +F y, if and only if fi(x) ≥ fi(y) for all fi ∈ F
and there exists at least one function fi ∈ F for which fi(x) > fi(y).

The Pareto front, or skyline, of a set of points are those points that are not
being dominated by any other point. Finding the Pareto front is in general
not hard. For a given set of n points it can be computed in time O(n2) by
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a brute-force method, and in time O(n log n) by using an improved algorithm
[9]. However, in our case n is very large, because the set of points we want to
compute the Pareto front of is in fact the power set of the set C of candidate
subgroups, denoted 2C . That is, we are addressing the following problem:

Problem 1 (k-subset skyline). Given a discrete set C, an integer k, a set of func-
tions F = {f1, . . . , fn}, with fi : 2

C → R for all fi ∈ F , find the set

Pk = {S ∈ 2C : |S| = k and � ∃S′ ∈ 2C st. S′ +F S}.

Note that we only consider subsets of C of a fixed size k. The brute-force
approach to Problem 1 simply materialises all k-sized subsets of C, and then
runs a standard Pareto front algorithm on this. Clearly this is not going to work
unless C is very small.

In our k-subgroup set application the set F contains two functions, one
for subgroup set quality, and another for diversity. For the rest of the pa-
per we let F = {q, d}, where q is a quality measure of the set S, defined as
q(S) =

∑
G∈S ϕ(G), while d is joint entropy as given in Definition 1. Although

in principle d could be any diversity measure, the exact method presented in the
next section exploits properties of joint entropy for pruning the search space.

Problem 2 (k-subgroup set skyline). Given a set of subgroups C, an integer k,
the set of functions F = {q, d}, with q(S) =

∑
G∈S ϕ(G) and d(S) = H(S), find

the k-subset skyline (as defined by Problem 1).

5 Exact Algorithm

In this section we present an exact algorithm for solving Problem 2 that com-
bines an efficient subset enumeration scheme with results from [7] to prune a
substantial part of the search space.

As a first step in designing the exact algorithm, suppose that we have a list
L with all k-sized subsets of C sorted in non-increasing order of q(S). Clearly
the first element of L must belong to the skyline as it has the highest quality
of all subsets. Assign its diversity to dmax. A simple algorithm to construct the
skyline is to scan over L until we find a subset with diversity larger than dmax.
This subset is added to the skyline, we set dmax equal to the diversity of this
subset, and continue scanning L. When the algorithm reaches the end of L we
have found the exact skyline.1

Our exact algorithm works in the same way, but it does this without mate-
rialising the complete list L. Instead, we enumerate the subsets in decreasing
order of quality in an online fashion with polynomial delay, meaning that the
computation required to obtain the next subset in the sequence is polynomial in

1 To be precise, this is only true in the absence of ties in q(S). If some subsets all have
the same quality, and ties were broken at random when sorting the subsets, this
algorithm may include some subsets in the skyline that are dominated. However,
removing these is a simple post-processing step.
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Algorithm 1. Outline of an algorithm that enumerates all S ⊂ C with |S| = k
in non-increasing order of q(S)

1. Q ← empty priority queue, insert X = {1, 2, . . . k} into Q with priority q(C(X)).
2. While Q is not empty:

(a) Pop the highest priority index set X from Q, and output C(X).
(b) Insert every X ′ ∈ N(X) into Q with q(C(S′)) as the priority unless X ′ has

already been inserted into Q.

|C| and k. In Subsections 5.1 and 5.2 we describe how to make the enumeration
efficient and how to prune the search space, we now continue with the main idea.

Without loss of generality, assume that the candidate subgroups G ∈ C are
sorted in non-increasing order of ϕ(G), and let C(i) denote the subgroup at
position i. That is, we have ϕ(C(i)) ≥ ϕ(C(j)) for every i < j. Let X ⊂
{1, . . . , |C|}, |X | = k, denote a set of indices to C that induce the k-subgroup
set C(X). To simplify notation, we sometimes write f(X) in place of f(C(X))
for f ∈ {q, d}.

Definition 3. The i-neighbour of X, denoted ni(X), is a copy of X with the
index at position i incremented by one. More formally:

ni(X) =

⎧⎪⎨⎪⎩
{X1, . . . , Xi + 1, . . .Xk} if i < k and Xi + 1 < Xi+1,

{X1, . . . , Xk + 1} if i = k and Xk + 1 ≤ |C|,
∅ otherwise.

The neighbourhood of X, denoted N(X), is the set {ni(X) | i = 1, . . . , k}.
Finally, the set X is a parent of the set X ′ whenever X ′ ∈ N(X).

For example, if X = {1, 3, 5}, its neighbourhood contains the sets {2, 3, 5},
{1, 4, 5}, and {1, 3, 6}, while for X = {1, 2, 3} we have N(X) = {{1, 2, 4}}2.
Observe that the neighbourhood N(X) of a set X only contains sets having at
most the same quality as X , i.e. we have q(X) ≥ q(X ′) for every X ′ ∈ N(X).

Using this, we can generate the list L on the fly by following the procedure
shown in Algorithm 1. The algorithm starts from {1, . . . , k} and maintains a
priority queue of subsets with q(S) as the priority value.

Proposition 1. Algorithm 1 is both complete and correct in the sense that it
enumerates all k-sized subsets in non-increasing order of q(S).

Proof. Correctness: We show that a subset output by the algorithm can not
have a larger quality than any subset that was output before. By the mechanics
of the algorithm, every index set X ′ in priority queue Q must belong to the
neighbourhood N(X) of some C(X) that was already output. And by definition,
allX ′ ∈ N(X) have quality at most q(X). Hence Q can only contain subsets with
qualities that are upper bounded by qualities of the already generated subsets.
This implies that the subsets are output in non-increasing order of q(S).

2 The empty sets in N(X) are not considered.
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Completeness: The algorithm outputs every k-sized subset of C. Clearly every
subset that enters Q is eventually output. Algorithm 1 fails to output a subset
S if and only if none of its parents is output, because whenever a parent of S is
output, S is put intoQ. Consider one possible chain of parents from any index set
X until we reach the set {1, . . . , k}. Because Q is initialised with {1, . . . , k}, this
chain must exist, meaning that every subset in the chain has at least one parent
in Q. This implies that X has at least one parent in Q, and thus S = C(X) is
found. ��

Notice that the amount of computation needed between two subsets is O(k|C|).
Size of the priority queue Q is trivially upper bounded by 2|C|, which means that
insertions and extractions to Q are linear in the size of C using e.g. a binomial
heap to implement Q. The size of N(X) is upper bounded by k, meaning we
need at most k insertions and one extraction.

5.1 Efficient Subset Enumeration

A problem with the enumeration scheme given in Algorithm 1 is that it generates
the entire neighbourhood N(X) for every X , and these neighbourhoods are
partly overlapping. Consider for example the set {1, 3, 5}, which is both the 2-
neighbour of {1, 2, 5}, and the 3-neighbour of the set {1, 3, 4}. Algorithm 1 would
thus generate the set {1, 3, 5} twice. To avoid this, it must keep track of every
set that was inserted into Q at some point. This is clearly undesirable, as the
amount of space needed is O(2|C|). We thus need an algorithm that generates
every subset of size k once and only once without additional bookkeeping.

Enumerating subsets once and only once is of course a known problem. How-
ever, our situation has the additional challenge that we want to generate the
subsets in decreasing order of q(S) with polynomial delay (preferably O(k|C|)).
An approach that combines the priority queue with a simple subset enumeration
scheme, e.g. depth-first traversal, does not satisfy this property. Instead, we use
a modification to Algorithm 1 that maintains its computational properties, but
avoids duplicates. The idea is to insert only a subset of N(X) to Q on every
iteration. This subset can be chosen so that Proposition 1 still holds. To this
end, we arrange the search space of all k-sized subsets in a directed graph T .

Definition 4. Given the set C and the integer k, the directed graph T has the
node (X, j) for every X ⊂ {1, . . . , |C|}, |X | = k. Here j ∈ {1, . . . , k} is the po-
sition associated with index set X in the given node. Node (X, j) has neighbours

{(ni(X), i) | i = 1, . . . , j}. (1)

That is, the neighbours of (X, j) in T are those i-neighbours of X where the
modifications take place in the first j positions of X .

Proposition 2. The graph T is a tree rooted at ({1, . . . , k}, k).

Proof. First, observe that ({1, . . . , k}, k) can have no incoming edges, because by
Definitions 3 and 4 such an edge should come from a node with a value smaller
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Fig. 2. Example of the subset graph T for 3-sized subsets of the set {1, 2, . . . , 6}. The
position of a node (see Definition 4) is indicated by a light grey background.

than k at position k. Clearly such a node cannot exist, because k is the smallest
value that a node may have at position k. Second, every node (X, i) except the
root has one, and only one incoming edge. Suppose this edge comes from the
node (X ′, j), with j ≥ i. By Definition 3, the i-neighbour of a set X ′ (if it exists)
is identical to X ′ except at position i which is incremented by one. This means
that the set X of the node (X, i) must have Xi = X ′

i +1 and Xh = X ′
h for every

h �= i. Clearly there is only one X ′ ⊂ {1, . . . , |C|} that satisfies this, and since
by definition of T no two nodes of T may contain the same subset, there can be
only one node with an outgoing edge to (X, i). ��

An example of such a tree for all 3-sized subsets of {1, . . . , 6} is shown in Figure 2.
Any algorithm that traverses T will generate every k-sized subset once and only
once. We can thus enumerate the subsets in a way that avoids duplicates by
making Algorithm 1 traverse the tree T . This is accomplished simply by keeping
nodes of T in the priority queue Q, and only inserting those nodes to Q that are
neighbours of (X, j) in T (which can be determined without materialising T ).

5.2 Entropy-Based Pruning of the Search Space

Algorithm 1 scans over a sorted list L of all possible subsets, but in practice L is
too long already with small C and k. Next we discuss how to use a property of
joint entropy and the tree T to prune parts of list L. Recall that at every stage
of the algorithm we know that dmax is the largest diversity observed so far. If we
can show that no subset below a given node of T can have diversity larger than
dmax, we can skip the entire subtree. From Figure 2 we can make the following
observations:

Observation 1: For any (X, j) of T , the suffix starting at position (j + 1),
denoted RX

j+1, is the same in every node of the subtree rooted at (X, j). For
example, all nodes below node ({1, 3, 6}, 2) contain the element 6 at position 3.

Observation 2: For any (X, j) of T with j < k, in every node that appears in
the subtree rooted at (X, j), the elements at positions 1, . . . j all have a value
less than Xj+1. For example, all nodes below ({1, 3, 5}, 2) only contain elements
that are less than 5 at positions 1 and 2.



Discovering Skylines of Subgroup Sets 281

Algorithm 2. exact(C, k)

X ← {1, 2, . . . , k}, Q ← empty priority queue, dmax ← d(X), Pk ← ∅
push (X, k) into Q with priority q(X)
while Q is not empty do

(X, j) ← highest priority item from Q
if d(X) ≥ dmax then

Pk ← Pk ∪ {C(X)}
dmax ← d

for every (X ′, i) ∈ {(ni(X), i) | i = 1, . . . , j} do
if d̃(X ′) ≥ dmax then

insert (X ′, i) into Q with priority q(X ′)
return Pk

These observations are general properties of the tree T , and can be shown to
follow from Definitions 3 and 4. Together with the following proposition we can
use these to prune entire subtrees of T .

Proposition 3. (Prop. 4 of [7]): Let S ⊂ C denote a subgroup set, and let
H as in Def. 1. Suppose that {B1, . . . , Bm} is a partition of S. Then H(S) ≤∑m

i=1H(Bi).

For any (X, j) in T , let X̂ denote any index set that appears in the subtree
rooted at (X, j). Given (X, j), we must find an upper bound for d(X̂) = H(X̂).
From Obs. 1 we know that the suffix RX

j+1 is the same in X and X̂. We have

thus H(RX
j+1) = H(RX̂

j+1) for every X̂ . Obs. 2 tells us that only certain elements

may occur in the first j positions of X̂. We can compute the singleton entropies
d(G) = H(G) for every subgroup G ∈ C. For j < k, let Z(X, j) denote the set
of j highest entropy subgroups in the first Xj+1 − 1 positions of C. Now, by
construction and Prop. 3, the sum

∑
G∈Z(X,j)H(G) must be an upper bound

for the entropy of the first j positions of any X̂. This means that for all X̂ we
have

d(X̂) ≤ d(RX
j+1) +

∑
G∈Z(X,j)

d(G) = d̃(X),

which gives the desired upper bound. If d̃(X) < dmax, the entire subtree rooted
at (X, j) can be pruned.

The algorithm exact, shown in Algorithm 2, implements all details discussed
in this section. It combines the improved subset enumeration scheme with the
pruning results. While this is a substantial improvement over the basic scheme
of Alg. 1, the size of the priority queue can still be exponential in |C|, as it is
proportional to the size of a cut of the subset tree T .

6 A Greedy Levelwise Algorithm

The exact algorithm we described above has two drawbacks: 1) it is optimised for
the joint entropy diversity function of Definition 1, and 2) it requires exponential



282 M. van Leeuwen and A. Ukkonen

Algorithm 3. levelwise(C, k)

P2 ←skyline(C × C), i ← 3
while i ≤ k do

Pi ← ∅
for S ∈ Pi−1 do

Pi ←skyline(Pi ∪ {S ∪ c | c ∈ {C \ S}})
i ← i+ 1

return Pk

space. Of these point 1) makes the method ill-suited for some applications, while
point 2) rules out large candidate sets C and subgroup set sizes k. Because of
this we also introduce a greedy heuristic for finding the skyline.

In general the main computational bottleneck is caused by the large number
of points that must be considered when computing the skyline. However, the
resulting skyline itself is very likely going to be orders of magnitude smaller than(|C|

k

)
. Our algorithm will exploit this property. Moreover, consider the Pareto

fronts for sets of size i − 1 and i, denoted Pi−1 and Pi, respectively. It seems
unlikely that a subset of size i − 1 that is very far from Pi−1 in terms of the
functions F would have a superset that belongs to Pi. On the other hand, subsets
in Pi−1 might be more likely to have a superset that belongs to Pi.

We propose an algorithm that constructs an approximate skyline Pk one level
at a time starting from P2. Given the set Pi−1, we define Pi as the skyline of the
points that are obtained by combining every point in Pi−1 with every unused
candidate in C. More formally, we can define Pi recursively as follows:

Pi =

{
skyline ({(S, c) | S ∈ Pi−1, c ∈ {C \ S}}) if i > 2,

skyline ({(c1, c2) ∈ {C × C} | c1 �= c2}) if i = 2,
(2)

Here skyline is any algorithm that computes skylines in two dimensions.
We put these ideas together in the levelwise algorithm shown in Algo-

rithm 3. It first computes P2 exactly by considering all subgroup pairs in C×C.
In subsequent steps the algorithm applies Equation 2 until it reaches Pk. In
practice we obtain better performance by not materialising the entire Cartesian
product of Pi−1 and C in one step, but by incrementally “growing” the set Pi.

7 Experiments

In this section we empirically evaluate the proposed approach and methods.

Datasets: Table 1 presents the datasets that we use, which were all taken from
the UCI Machine Learning repository3. For each dataset we give the number of
tuples, the number of discrete resp. numeric attributes, and the domain size y
of the target attribute. Target attributes with more than two classes are treated
as binary by considering the majority class as target.

3 http://archive.ics.uci.edu/ml/

http://archive.ics.uci.edu/ml/
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Table 1. Dataset properties

dataset |D| |Adisc| |Anum| y
Adult 48842 8 6 2
Car 1728 6 0 4
Cmc 1473 7 2 3
Credit-A 690 9 6 2
Credit-G 1000 13 7 2
Mushroom 8124 22 0 2
Pima 768 0 8 2
Tictactoe 958 9 0 2

Candidate Sets: Candidate sets C of
subgroups are generated using exhaustive
search. As conditions for the discrete at-
tributes, Ai = c and Ai �= c for all con-
stants c ∈ Dom(Ai) are considered. For
numeric attributes, conditions Ai > c and
Ai < c are considered, where the ‘split’
values are determined by local binning of
occurring values into 6 equal-sized bins.

Search parameters are chosen to result
in short (and thus simple) subgroup de-
scriptions, substantial subgroup sizes, and
reasonably sized candidate sets. We set maxdepth = 2 and mincov = 5%× |D|
(except for Adult and Mushroom: 10%× |D|). For those experiments for which
a p-value is given, a permutation test [3] that aims to eliminate false discoveries
is used to prune the candidate set. For the remaining experiments, all subgroups
found are used as candidates.

Evaluation: We need measures to compare two skylines, P and P ′. Intuitively,
P is better than P ′ if there are more points in P that dominate points in P ′

than vice versa. We denote the fraction of points in P ′ that are dominated by
at least one point in P by #{P + P ′}. For these points, we also measure by
how much a skyline dominates another skyline. This is expressed by the quantity
Δf (P + P ′), defined as the median of the set {(f(S)−f(S′))/f(S′) | S ∈ P, S′ ∈
P ′, S + S′}, i.e. the median of the relative differences between dominated sets
and the sets that dominate it.

7.1 Exact and Levelwise Skyline Discovery

Table 2 presents the results obtained on all datasets with the exact and level-

wise algorithms. The candidate sets for the first six datasets were pruned using
the aforementioned permutation test. Due to long runtimes the exact method
was only used with k = 5, the levelwise method was also used with k = 10. The
last two datasets are too large to be used with the exact method, but for the
levelwise approach no pruning of the candidate set was needed.

Runtimes greatly vary depending on the dataset and desired subgroup set
size. This can be explained by the large variation in the number of ‘points’ in
the search space that need to be explored: for Car with levelwise and k = 5
only 4380 subgroup sets are considered, but for Credit-A with exact and k = 5
a staggering amount of 2.7× 108 points is considered. Although a large number,
this is still only a small fraction of the total search space: 10−2. The exact method
explored the same fraction for all datasets, implying that its pruning is effective:
99% of the search space is pruned. Despite this, runtimes are still quite long.

The greedy, levelwise approach explores much smaller parts of the search
space: fractions between 10−23 and 10−4 are reported. The natural question is
whether the resulting skylines approximate the exact solutions well. Looking at
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Table 2. Results with exact and levelwise algorithms. For each experiment, we
give dataset, used p-value for the permutation test (if any), candidate set size |C|,
algorithm, and subgroup set size k. Then follow runtime, the number of points in the
search space considered, the fraction of the complete search space considered, the size
of the resulting skyline, and corresponding quality and diversity ranges [min, max].

dataset p |C| method k time #points fraction |S| q(S) d(S)

Car 10−3 71 level 5 < 1s 4380 10−4 55 [0.23, 0.41] [3.49, 4.90]
exact 5 92s 179219 10−2 128 [0.21, 0.41] [3.49, 5.00]
level 10 2s 25211 10−8 99 [0.56, 0.74] [5.56, 8.43]

Cmc 10−3 98 level 5 < 1s 10908 10−4 58 [0.18, 0.26] [1.57, 4.61]
exact 5 680s 1545129 10−2 71 [0.17, 0.26] [1.57, 4.61]
level 10 5s 57105 10−9 147 [0.35, 0.50] [3.39, 7.05]

Credit-A 10−7 232 level 5 10s 126516 10−5 305 [0.42, 0.89] [1.41, 4.56]
exact 5 20.5h 274696613 10−2 460 [0.41, 0.89] [1.41, 4.56]
level 10 139s 616899 10−12 613 [0.89, 1.75] [2.13, 6.87]

Credit-G 10−7 114 level 5 1s 20493 10−4 133 [0.22, 0.37] [1.61, 4.74]
exact 5 3347s 10149837 10−2 137 [0.22, 0.37] [1.61, 4.74]
level 10 34s 145703 10−9 435 [0.46, 0.73] [1.88, 7.77]

Pima 10−7 166 level 5 1s 28509 10−5 66 [0.31, 0.49] [2.62, 4.77]
exact 5 1h 12221188 10−2 107 [0.29, 0.49] [2.62, 4.84]
level 10 10s 127252 10−11 248 [0.60, 0.96] [2.85, 7.75]

Tictactoe 10−2 90 level 5 2s 22303 10−4 78 [0.20, 0.37] [3.36, 4.94]
exact 5 390s 1107493 10−2 281 [0.19, 0.37] [3.36, 4.94]
level 10 4s 53181 10−9 75 [0.41, 0.67] [5.68, 7.89]

Adult 5116 level 5 55h 15870624 10−10 252 [0.10, 0.48] [1.48, 4.99]
level 10 85h 37774186 10−23 2040 [0.28, 0.96] [1.83, 9.45]

Mushroom 1617 level 5 785s 2439272 10−8 601 [0.27, 1.09] [1.85, 4.97]
level 10 2940s 9230365 10−19 1310 [0.50, 2.12] [2.36, 9.06]

the skyline sizes, we observe that skylines generally consist of modest numbers of
subgroup sets (in particular given the total number of subgroup sets). levelwise

tends to find slightly smaller skylines, which is perhaps unsurprising as it explores
a relatively small part of the search space. However, are the subgroup sets that
it does find on the ‘true’ skyline?

Table 3. Comparison of the exact (E) and levelwise
(L) skylines with k = 5

dataset #{E + L} Δq(E + L) Δd(E + L)
Car 22.73% 6.48% 1.49%
Cmc 51.72% 0.92% 0.69%
Credit-A 64.59% 1.04% 0.46%
Credit-G 5.31% 0.10% 0.19%
Pima 39.39% 0.78% 0.33%
Tictactoe 0% − −

The minimum-maximum
values of subgroup set qual-
ity and diversity indicate that
the levelwise skylines span al-
most the same ranges as the
exact skylines. Table 3 shows
a more elaborate comparison.
The second column shows the
fraction of points on the lev-
elwise skyline that are domi-
nated by any point on the exact skyline. This reveals that substantial parts of
the approximation are on the Pareto front. For those points that are dominated,
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Fig. 3. Comparing exact and levelwise skylines (k=5); Cmc (left) and Credit-G (right)

it is of interest to investigate by how much. This is shown in the rightmost two
columns, for both quality and diversity. These numbers are very small and in-
dicate that the levelwise skylines approximate the exact skylines very well. To
further illustrate this, consider the skylines plotted in Figure 3. The Credit-G
approximate skyline is virtually identical to the exact one, and the Cmc approx-
imation, one of the worst according to Table 3, is still a close approximation for
all practical purposes.

The results obtained on Adult and Mushroom, shown at the bottom of Ta-
ble 2, demonstrate that levelwise can handle moderately sized datasets and
candidate sets, although runtimes may increase substantially. However, note that
the levelwise approach finds all skylines up to k – not just for k. For Adult, for
example, 85 hours of runtime gives all skylines for k = 2 up to and including
k = 10. Provisional results can be inspected at any time, and search can be ter-
minated when the user thinks k is large enough. Such an approach is impossible
with the exact method, as it only enumerates subgroup sets of exactly size k.

Finally, it is important to note that the quality and diversity ranges spanned
by the skylines are often quite large (see Table 2 and Figure 3). For example, for
both Cmc and Credit-G diversity ranges from 1.5 up to almost 5 bits – taking
into account that 5 bits is the maximum for k = 5, this implies large differences
between the corresponding subgroup sets. This demonstrates that very different
trade-offs between quality and diversity are possible, and hence investigating
these skylines is useful. For Cmc, for example, Figure 3 shows that diversity can
be increased from 1.5 to 3 bits without affecting quality much. Such knowledge
is likely to influence the preference of the end user.

7.2 Evaluating a Heuristic Subgroup Set Selection Method

In the introduction, we argued that disadvantages of existing heuristic subgroup
selection methods are that 1) it is unknown whether the resulting subgroup sets
are Pareto optimal, and 2) it is hard to tune the quality-diversity trade-off. To
illustrate this, we evaluate a heuristic using levelwise skylines.
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Table 4. Comparing levelwise (L) with the entropy-based selection heuristic (H)

dataset k #{H � L} Δq(H � L) Δd(H � L) #{L � H} Δq(L � H) Δd(L � H)

Car 5 3.45% 0.00% 0.01% 75.86% 16.36% 7.29%
10 1.79% 0.01% 0.00% 86.21% 12.65% 6.37%

Cmc 5 15.38% 1.67% 1.52% 65.52% 12.06% 2.07%
10 0.43% 0.00% 0.01% 82.76% 6.03% 1.12%

Credit-A 5 0.00% - - 86.21% 1.99% 1.06%
10 0.09% 0.00% 0.01% 79.31% 2.36% 1.94%

Credit-G 5 0.00% - - 68.97% 4.32% 0.27%
10 0.00% - - 82.76% 6.16% 0.71%

Mushroom 5 0.67% 0.00% 0.01% 79.31% 10.92% 5.18%
10 0.00% - - 93.10% 6.35% 4.68%

Pima 5 0.91% 0.00% 0.01% 51.72% 2.65% 0.36%
10 0.59% 0.00% 0.01% 89.66% 2.36% 0.62%

Tictactoe 5 0.00% - - 62.07% 9.03% 1.08%
10 0.00% - - 93.10% 4.73% 1.92%

The recently proposed cover-based subgroup set selection heuristic [10] se-
lects a diverse k-subgroup set from a candidate set, but preliminary experiments
revealed that it performed badly in terms of our diversity measure, i.e. joint
entropy. We therefore slightly modified it to use entropy as selection criterion:

Given a candidate set C, first order it descending by subgroup quality (ϕ).
Initialise subgroup set S to contain only the highest-quality subgroup and remove
it from C. Then, iteratively add subgroups until |S| = k. In each iteration, pick
that subgroupG ∈ C that maximises αϕ(G)+(1−α)H(S∪{G}), where α ∈ [0, 1]
is a parameter. The selected subgroup is added to S and removed from C.

With this entropy-based heuristic, a single subgroup set can be found. By
carefully varying the α parameter, we obtain a ‘skyline’ consisting of 29 subgroup
sets for each dataset (except for Adult, for which running this heuristic many
times took too long). Table 4 presents a comparison of this skyline to the one
obtained with levelwise. The heuristic rarely finds better solutions than the
levelwise method, but most of the solutions found by the heuristic are dominated
by the levelwise skyline. Also when considering the relative differences in quality
and diversity for those points that are dominated, it is clear that the levelwise
method often finds much better skylines than the heuristic.

We conclude that even when carefully tuning the parameter of a pattern
set selection method, this does not guarantee that we discover a set of Pareto
optimal solutions. Furthermore, this comparison also demonstrates that skyline
discovery can be a useful tool in the evaluation of (existing) heuristics.

8 Conclusions

We have argued that whenever there is a quality-diversity trade-off in a k-subset
selection task, it is important to explicitly consider the skyline of Pareto optimal
solutions. In this paper we focused on the task of pattern set selection in the
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context of Subgroup Discovery, but many similar ‘diverse top-k’ tasks exist, not
only in exploratory data mining but also for example in information retrieval.

We proposed two algorithms for discovering skylines of k-subgroup sets. If
we use joint entropy as diversity measure and use its properties for pruning,
the exact method can be used with modest candidate sets and k. levelwise

performs a greedy, levelwise search and is therefore considerably faster. Further-
more, experiments showed that the obtained skylines closely approximate the
exact solutions. Finally, we demonstrated that the skyline discovery algorithms
can be used for the objective evaluation of heuristic selection methods.

One might argue that having multiple subgroup sets instead of one only com-
plicates the situation, but observe that this skyline always exists ; the problem is
that users may not be aware of this. Therefore, the explicit discovery of skylines
is an important step towards a better understanding of ‘diverse top-k’s’. Sky-
lines of subgroup sets can be interactively explored, allowing the user to make
informed choices based on both the subgroup sets and the shape of the skyline.
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of the Netherlands Organisation for Scientific Research (NWO).
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Abstract. For the task of subgroup discovery, generalization-aware in-
teresting measures that are based not only on the statistics of the pat-
terns itself, but also on the statistics of their generalizations have recently
been shown to be essential. A key technique to increase runtime perfor-
mance of subgroup discovery algorithms is the application of optimistic
estimates to limit the search space size. These are upper bounds for the
interestingness that any specialization of the currently evaluated pattern
may have. Until now these estimates are based on the anti-monotonicity
of instances, which are covered by the current pattern. This neglects im-
portant properties of generalizations. Therefore, we present in this paper
a new scheme of deriving optimistic estimates for generalization aware
subgroup discovery, which is based on the instances by which patterns
differ in comparison to their generalizations. We show, how this technique
can be applied for the most popular interestingness measures for binary
as well as for numeric target concepts. The novel bounds are incorpo-
rated in an efficient algorithm, which outperforms previous methods by
up to an order of magnitude.

1 Introduction

Subgroup discovery [17] is a key technique for data mining and machine learning.
It aims at identifying descriptions for subsets of instances in a dataset, which
have an interesting deviation with respect to the distribution of a predefined
concept of interest. This task has been studied under different terminology such
as contrast set mining [7], emerging pattern mining [11], correlated itemset min-
ing [21], discriminative pattern mining [10] or association rule mining with a fixed
consequent [20]. While the specific goal of these tasks may vary, the algorithmic
challenges and approaches are very closely related, see [18,26].

The selection of patterns in the search space is commonly based on an in-
terestingness measure. These measures use statistics derived from the instances
covered by a pattern to determine a score for the pattern. The best patterns
according to this score are then returned to the user. As an example, con-
sider a dataset of patients and their medical data. Let the target concept be
surgery successful, which is true for 30% of the patients. Then a pattern like
gender=male ∧ smoker=false with a higher rate of successful surgeries, e.g.
50%, receives a higher score and is more likely to be included in the result.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 288–303, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Practical applications have shown that results for traditional interestingness
measures often contain variants of the same pattern multiple times. To avoid
this problem, several authors postulated that a pattern should not only be eval-
uated with respect to its own statistics, but also with respect to the statistics
of its generalizations, see for instance [8,4,5,19]. Considering the example above
the pattern gender=male ∧ smoker=false would be rated as less interesting
if it can be explained by one of its generalizations alone, e.g., if the pattern
smoker=false already describes a set of patients with a 50% surgery success
rate. While the practical use of such generalization-aware interestingness mea-
sures has been widely acknowledged, the efficient mining in this setting has
received little attention. A key technique to improve runtime performance of
subgroup discovery in general is the application of optimistic estimates, that
is, upper bounds for the interestingness of any specialization of the currently
evaluated pattern. Although research has shown that improving the tightness of
the utilized bounds improves the runtime performance substantially [15], there
has been no extensive research so far concerning upper bounds for generaliza-
tion aware interestingness measures beyond the trivial transfer of bounds for
traditional measures.

In this paper we propose a novel method to exploit specific properties of
generalization-aware measures to derive additional optimistic estimate bounds,
which allow to speed-up the search. Unlike previous approaches, the bounds
are not exclusively based on the instances that are contained in the currently
examined subgroup, but on the instances that were excluded in comparison to
generalizations of the current pattern. We show, how this general concept can be
applied to exemplary interestingness measures in different setting, i.e., for sub-
group discovery with binary target concepts and with numeric target concepts
using a mean-based interestingness measure. The bounds are incorporated in a
novel apriori-based algorithm that allows efficient propagation of the required
statistics. Experiments show that exploiting the presented bounds results in sub-
stantial runtime improvements. The optimistic estimates are especially effective
in tasks that incorporate selectors, which cover a majority of the dataset.

The rest of the paper is structured as follows: Section 2 provides background
on subgroup discovery and the used terminology. Then, related work is discussed
in Section 3. Next, the new scheme to derive optimistic estimate bounds and
its application to different interestingness measures is presented in Section 4.
Afterwards, we explain, how the new optimistic estimate bounds can efficiently
be exploited in an algorithm in Section 5. Section 6 presents experimental results,
before we conclude in Section 7.

2 Background

Let A be an attribute space A = A1 × . . . × Am, where each set Ai represents
an attribute. A dataset is a tuple D = (I, A) with I ⊆ A. Each i ∈ I is called
a data instance. Selectors sel (also called basic patterns) are boolean functions
sel : I → {false, true} defined by selection expressions on the set of attributes. In
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the case of nominal attributes typical selection expressions are given by attribute-
value pairs, in the case of numeric attributes by intervals. For example, the
selector age =]12;∞[ is true, iff the attribute age has a value greater than 12.
A (complex) pattern (also called subgroup description) combines selectors into
a boolean formula. For a typical conjunctive description language, on which we
focus in this paper, a pattern P = {sel1, . . . , selk} is defined by a set of selectors
selj , which are interpreted as a conjunction, i.e., P =sel1 ∧ . . .∧ selk. Thus, an
instance i ∈ I is covered by pattern P , iff (∀sel ∈ P : sel(i) = true) or short
P (i) = true. A subgroup sg(P ) is given by the set of individuals covered by the
pattern P : sg(P ) = {i ∈ I|P (i) = true}. For short notation, iP = |sg(P )| is
the number of individuals covered by a pattern P . Furthermore we denote as
Δ(A,B) = sg(A) \ sg(B) the instances, which are covered by A, but not by B.
We call a pattern G a generalization of its specialization S, iff G ⊂ S.

A pattern mining task is specified by a 5-tuple (D,T, q,Σ, k). D is a dataset.
The target concept T assigns a target value tc(i) to each instance. It can either
be defined by a pattern (binary case) or by a single numeric attribute (numeric
case). In the binary case, we write pP (nP ) for all individuals with a true (false)
target concept. q : 2Σ → R is a quality function that measures the interest-
ingness of a pattern with respect to the chosen target concept T . Σ defines the
search space by providing a set of selectors to build conjunctive patterns from.
k specifies the number of patterns contained in the result set. The overall task
is then to identify the best k patterns in the search space 2Σ according to the
quality function q (q ) 0).

A huge amount of quality functions has been proposed in literature, cf. [17,13].
While the general approach of this paper could also be applied to other qual-
ity functions, we especially focus on the following popular measures: The most
popular interestingness measures trade-off the covered instances iP of a pattern
versus the deviation of the target share τP − τ∅, where τP = pP

pP+nP
is the ratio

of positive instances versus all instances in pattern P and τ∅ is the same ratio
for the overall population. This is formalized as:

qabin(P ) = iaP · (τP − τ0), a ∈ [0; 1]

This includes for example the weighted relative accuracy for the size parameter
a = 1, a simplified binomial function for a = 0.5, or the added value for a = 0.
For numeric target concepts this can easily adapted by replacing the target share
for the pattern and the overall population with the respective mean values μP

and μ∅ of the target attribute:

qanum(P ) = iaP · (μP − μ∅), a ∈ [0; 1].

This definition includes the mean test quality function [17] for a = 0.5 and the
impact quality function [23] for a = 1.

Consider a pattern P with an interestingly high target share τP . If another
selector sel with sel �∈ P is added to the pattern P , which does either cover a
majority of the instances of P (sg(P ) ≈ sg(P ∧sel) or is statistically independent
from P and the target concept, then the pattern P ∧ sel will have roughly the
same target share as pattern P . Thus, this pattern may also receive a high
score according to the previously presented quality measures due to its high
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target share. However, it should not be presented to users in the result set, since
the additional selector sel does not contribute to the increased target share.
To avoid such redundant output the minimum improvement constraint has been
introduced, see [8]. By using this additional filter, all patterns with a target share
that is lower or equal to the target share of any of its generalizations are removed
from the result set. Nonetheless, patterns that improve the target share only by
a small margin, e.g., due to noise, will still be contained in the result. Therefore,
more recent approaches incorporate the comparison of pattern statistics with the
statistics of its generalizations directly into the interestingness measure [5,14,19]
resulting in generalization-aware interesting measures. The target share (or the
mean value in case of numeric targets) within the pattern is not compared to the
target share (mean value) of the overall population but to the maximum target
share (mean value) of all its generalizations:

rabin(P ) = iaP · (τP − max
H⊂P

τH), a ∈ [0; 1]

ranum(P ) = iaP · (μP − max
H⊂P

μH), a ∈ [0; 1]

Thus, a pattern is only regarded as interesting if its target share (mean value) is
considerably higher than it is in all of its generalizations. Although other inter-
estingness measures can be adapted accordingly, we focus on these two families of
generalization-aware measures in this paper, since they are the only ones, which
have been described in previous literature and applied in practical applications.
We will also not argue about advantages of these functions in comparison to
traditional measures or other methods that avoid redundant output, such as
closed pattern [12], but focus on efficient mining for these generalization-aware
measures by introducing novel, difference-based optimistic estimates.

The concept of optimistic estimates has been introduced in order to speed up
the subgroup discovery task, see [22,25]. The basic idea of optimistic estimates
is as following: if one can guarantee that no specialization of the currently evalu-
ated pattern will have a quality, which is good enough to include the respective
pattern into the result set, then we can safely omit these patterns from the
search. In doing so we can substantially reduce the number of patterns, which
have to be evaluated, while maintaining the optimality of the results. In this
regard, we aim at as strict as possible bounds to reduce the remaining search
space and thus to speed up the search process. Formally, given a pattern P and
an interestingness measure q an optimistic estimate function oeq(P ) is a function
such that for each specialization S ⊃ P of P the quality is lower than the value
of the optimistic estimate function for pattern P : ∀S ⊃ P : q(S) ≤ oeq(P ).

3 Related Work

Subgroup discovery is a long studied field [17]. An essential technique for effi-
cient discovery showed to be pruning based on optimistic estimates [22,25]. As
Grosskreutz et al. showed, the efficiency of the pruning is strongly influenced
by the tightness of the bounds [15]. A more general method to derive optimistic
estimates for a whole class of interestingness measures, that is, convex measures,
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was introduced in [20] and later extended in [26]. In this paper, we provide a
different technique to determine optimistic estimates to another family of inter-
estingness measures, i.e., generalization-aware measures.

The necessity to consider also generalizations of patterns in selection criteria
has been recognized in [8,4]. These early approaches used a minimum improve-
ment constraint, which is applied only as a post-processing operation after the
mining algorithm. Webb and Zhang presented an efficiency improvement in min-
ing with this constraint in the context of association rules [24] by introducing
a pruning condition based on the difference in covering. While the method of
Webb and Zhang requires full coverage on all instances, the method presented in
this work can also be applied with only partial coverage. In addition our method
is used to derive upper bounds for interestingness measures instead of exploiting
constraints and is also applied in settings with numeric target concepts.

Recent approaches incorporate differences with respect to generalizations di-
rectly in the interestingness measure. This showed positive results in descrip-
tive [14,19] as well as predictive settings [6] for both binary and numeric target
concepts. However, these papers focus more on which patterns are to be se-
lected and not on efficient mining through pruning. As an exception, Batal and
Hausknecht utilized a pruning scheme in an Apriori-based algorithm that is based
exclusively on the positives covered by a subgroup [5]. This algorithm is used for
comparison in the evaluation section. Utilizing pruning in settings with numeric
concepts of interest is more challenging than in the binary case [2]. While for
the impact measure q1num an optimistic estimate has been employed [2,23] in the
standard subgroup setting, to the authors knowledge no other pruning bounds
for numeric generalization-aware measures have been proposed so far.

4 Estimates for Generalization-Aware Subgroup Mining

In this section, we introduce a novel scheme to derive optimistic estimates for
generalization-aware interestingness measures. These optimistic estimates help
to improve the runtime performance of algorithms by pruning the search space.
We start by generalizing estimates that have been previously presented for this
task to outline the conventional approach to derive estimates. Then, we present
the core idea of our new scheme to derive upper bounds: difference-based opti-
mistic estimates. Next, we show how this concept can be exploited by deriving
estimates for quality functions in the binary and the numeric case using the
quality functions rabin and ranum.

4.1 Optimistic Estimates Based on Covered Positive Instances

Traditionally, optimistic estimates for subgroup discovery are based only on the
anti-monotonicity of instance coverage. That is, when adding an additional se-
lector to a pattern P , then the resulting pattern only covers a subset of the
instances covered by P . To give an example for this traditional approach, the
following theorem generalizes the optimistic estimate bounds for rabin used in [5],
which covers only the special case using the parameter a = 0.5.
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Theorem 1. Let pP be the number of all positive instances covered by the cur-
rently evaluated pattern P and maxH⊂P (τH) the maximum of the target shares
for P and any of its generalizations. Then, optimistic estimate bounds for the
family of quality functions rabin are given by: oera

bin
= (pP )

a · (1−maxH⊆P τH).

Proof. We first show that the quality of any specialization S does not decrease,
if all negatives are removed. Let ns be the number negatives in S. Then,

rabin(S) = (pS+nS)
a ·( pS

pS + nS
−max

H⊂S
τH) =

pS
(pS + nS)1−a

−(pS+nS)
a ·max

H⊂S
τH

We examine this term as a function of nS , nS ≥ 0: The first summand decreases
with increasing nS , since 1 − a ≥ 0. The second, negative summand increases
with increasing nS , as maxt ≥ 0. Thus, the maximum is reached for nS = 0. We
can conclude that:

rabin(S) = (pS + nS)
a · ( pS

pS + nS
−max

H⊂S
τH)

≤ (pS)
a · (pS

pS
−max

H⊂S
τH) ≤ (pP )

a · (1− max
H′⊆P

τH′ ),

as the number of positives in the specialization S is smaller than the number of
positives in the more general pattern P , and the generalizations of S include all
generalizations of P . ��

As has been exemplified in [5] this bound can already achieve significant runtime
improvements. Note, that these bounds use only the anti-monotonicity of the
covered positive instances. In contrast, we will show in the next sections, how
we can exploit additional information on the difference of negative instances
between patterns and their generalizations to derive additional bounds.

4.2 Difference-Based Pruning

Next, we provide the core idea for our novel scheme to derive optimistic esti-
mates. It utilizes that the instances by which a pattern and its specialization
differ are – in a certain way – anti-monotonic. More specifically, we will exploit
the following lemma to derive optimistic estimates:

Lemma 1. Let P = A ∧ B be any pattern with A,B potentially being a con-
junction of patterns themselves and B �= ∅. Then for any specialization S ⊃ P
there exists a generalization γ(S) ⊂ S, such that Δ(γ(S), S) ⊆ Δ(A,B).

Proof. Consider for any specialization S = A ∧ B ∧ X (X being potentially a
conjunction itself) the pattern γ(S) = A ∧ X , which is a real generalization of
S, since B �= ∅. Then, Δ(γ(S), S) = sg(A ∧ X) \ sg(A ∧ B ∧ X) = (sg(A) ∩
sg(X)) \ (sg(A) ∩ sg(B) ∩ sg(X)) = sg(X) ∩ (sg(A) \ (sg(A) ∩ sg(B)) =
sg(X) ∩ (sg(A)\sg(B)) = sg(X) ∩ Δ(A,B), which is a subset of Δ(A,B). ��

The subset property implies directly that for each specialization S the gener-
alization γ(S) contains at most isg(S) + iΔ(A,B) instances. Additionally, in the
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case of a binary target, we can estimate the number of negative instances in this
generalization: nγ(S) ≤ nS +nΔ(A,B). Furthermore, in the case of a numeric tar-
get, the minimum target value of Δ(γ(S), S) is higher than the minimum target
value in Δ(A,B). In mining algorithms, statistics for Δ(A,B) can be computed
with almost no additional effort. For instance, nA and nA∧B are both required
anyway in order to evaluate the pattern A∧B with rabin. Then, nΔ(A,B) is given
by nΔ(A,B) = nA − nA∧B.

As an example, assume that the pattern A covers 20 positive and 10 negative
instances and the evaluation of the pattern A ∧ B shows that this pattern also
covers 10 negative instances. That is, B covers all negative instances, which are
covered by A, nΔ(A,B) = 0. Now consider any specialization S of this pattern.
According to the lemma, S has another generalization γ(S) that contains the
same number of negative instances as S since nγ(S) ≤ nS + nΔ(A,B). As S (as a
specialization of γ(S)) additionally has no more positive instances than S, the
target share in S is equal or smaller than for its generalization γ(S). Thus, the
quality of S according to any generalization-aware measure rabin is ≤ 0. Since
this is the case for any specialization of A ∧ B, specializations of A ∧B can be
pruned from the search space without influencing the results.

This is an extreme example: all negative instances of A are also covered by A∧
B. Now assume that A∧B had covered only 8 negative instance, thus nΔ(A,B) =
10− 8 = 2. In this case the lemma guarantees that S has a generalization γ(S)
with at most 2 negative instances more than S. If S itself covers a decent amount
of instances, the target share in S cannot be much higher than in γ(S). Thus,
either S is small or there is only a small increase (or a decrease) in the target
share comparing S and its generalization γ(S). In both cases, the interestingness
of S according to rabin is low.

Overall we conclude that, if the difference of covered instances between A and
A∧B is small, then the interestingness score for all specializations is limited. In
the next sections we formalize these considerations by deriving formal optimistic
estimate bounds that can be used to prune the search space.

4.3 Difference-Based Optimistic Estimates for Binary Targets

Following, we provide for generalization-awaremeasures rabin = iaP ·(τP−max
H⊂P

τH)

with binary targets new optimistic estimates, which are based on the difference
of pattern coverage in comparison to the coverage of generalizations.

Theorem 2. Consider the pattern P with pP positive instances. P ′ ⊆ P is
either P itself or one of its generalizations and P ′′ ⊂ P ′ a generalization of P ′.
Let nΔ = nP ′′ − nP ′ be the difference in coverage of negative instances between
these patterns. Then, an optimistic estimate of P for rabin is given by:

oera
bin

(P ) =

⎧⎪⎨⎪⎩
pP ·nΔ

pP+nΔ
, if a = 1

nΔ

1+nΔ
, if a = 0

p̂a·nΔ

p̂+nΔ
, with p̂ = min(a·nΔ

1−a , pP ), else
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Proof. Let S be any specialization of P and G = γ(S) the generalization with
Δ(G,S) ⊆ Δ(P ′, P ′′), which exists according to the previous lemma, since S is
also a specialization of P ′. The number of negatives in G is equal to the number
of negatives covered by S plus the number of negatives, which are covered by G,
but not by S: nG = nS + nΔ(G,S). By construction it holds that nΔ(G,S) ≤ nΔ.
Additionally, we can assume pS > 0, that is, S contains at least one positive
instance, since rabin(S) ≤ 0 otherwise.

In the proof, we will first derive an upper bound that depends on the number
of positives in the specialization S, which is unknown at the time P is evaluated.
In a second step we therefore determine the maximum value of this function. The
quality of S is given by:

rabin(S) = (pS + nS)
a · (τS −max

H⊂S
τH) (1)

≤ (pS + nS)
a · (τS − τG) (2)

= (pS + nS)
a · ( pS

pS + nS
− pG
pG + nS + nΔ(G,S)

) (3)

≤ (pS + nS)
a · ( pS

pS + nS
− pS
pS + nS + nΔ(G,S)

) (4)

= (pS + nS)
a · (

pS · (pS + nS + nΔ(G,S))− (pS · (pS + nS))

(pS + nS)(pS + nS + nΔ(G,S))
) (5)

=
pS · nΔ(G,S)

(pS + nS)1−a(pS + nS + nΔ(G,S))
(6)

≤
pS · nΔ(G,S)

(pS)1−a(pS + nΔ(G,S))
(7)

=
paS · nΔ(G,S)

(pS + nΔ(G,S))
(8)

≤ paS · nΔ

(pS + nΔ)
:= fa(pS) (9)

The transformation to line 2 is possible, since G ⊂ S. In line 4 it is used that
pS ≤ pG, as the positives of S are a subset of the positive of its generalization G.
In line 7 it is exploited that the denominator is strictly increasing with increasing
nS , because 1 − a ∈ [0; 1]. Therefore, the smallest denominator and thus the
largest value for the overall term is achieved by setting nS = 0. The term in
line 8 is strictly increasing as a function of nΔ(G,S). Since nΔ(G,S) ≤ nΔ, line 9
follows.

In the final line 9, the function fa(pS) is defined, which provides an upper bound
on the interestingness of P that depends on the number of positives within the
specialization. This number is not known, when the pattern P is evaluated. Intu-
itively, for large number of positives in the specialization removing nΔ negative
instances will not change the target share in the subgroup much, therefore the
interestingness of the generalization is limited. On the other hand, for small num-
bers of positive instances S is overall small and possibly not interesting for that
reason. pS is at least 1, since S otherwise is not interesting anyway and at most pP ,
as the number of positives for S is smaller than for its generalization P . Next, we
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analyze for which value of pS the function fa(pS) of line 9 reaches its maximum
in the interval [1; pP ]. This depends on the parameter a of the interestingness
measure:

1. For a = 1 it holds that f1(pS) =
pS ·nΔ

pS+nΔ
. This function is strictly increasing

in pS . That is, the more positive instances are contained in S, the higher is
the derived upper bound. The maximum is reached at highest value in the
domain of definition: max(f1(pS)) = f1(pP ) =

pP ·nΔ

pP+nΔ
.

2. In contrast for a = 0, f0(pS) = nΔ

pS+nΔ
is strictly decreasing. Thus, the

maximum value of f0 is reached for pS = 1, the minimum possible value of
pS : max(f0(pS)) = f0(1) = nΔ

1+nΔ
.

3. For 0 < a < 1, fa reaches a maximum for a certain value p∗ within the
domain of definition. To determine that, we compute the first derivative of
fa using the quotient rule.

d

d pS
fa(pS) = nΔ · d

dpS

paS
pS + nΔ

= nΔ
(nΔ + pS) · a · pa−1

S − paS
(nΔ + pS)2

= nΔ · pa−1
S

anΔ + a · pS − pS
(nΔ + pS)2

:= (fa)′

The only root of this derivative is at p∗ := a·nΔ

1−a . As can be easily shown,
(fa)′(pS) is greater than zero for pS smaller than p∗ and lower than zero
for pS greater than p∗. Therefore, p∗ is the only maximum of fa(pS). Thus,
if pP > p∗, then p∗ is the maximum value of fa, otherwise the maximum
is reached at the highest value of the domain of definition: max(fa(pS)) =

fa(p̂) = p̂a·nΔ

p̂+nΔ
,with p̂ = min(a·nΔ

1−a , pP ).

Overall, for any specialization S it holds that rabin(S) ≤ fa(pS) ≤
max fa(pS) = oerbina

(P ), with the function maxima as described above,
therefore oerbina

(P ) as defined in the theorem is a correct optimistic
estimate. ��

For any pair of generalizations of P (P ’ and P ′′) as well as for any pair of P
(P ′ = P ) and one of its generalization (P ′′), this theorem provides an optimistic
estimate of P . The optimistic estimate bound is dependent on the number of
positives in the subgroup and the difference of negative instances between P ′

and P ′′. It is low, if either there are only few positives in P or the difference of
negative instances between the pair of generalizations is small (or a combination
of both). Since the number of positives in P is independent of the chosen pair
P ′, P ′′, the pair with the minimum difference of negative instances implies the
tightest upper bound, which should be used to maximize the effects of pruning.

As a special case the theorem includes that the interestingness of any pattern
is ≤ 0, if nΔ is 0. To the authors knowledge, it is the first measure that includes
these differences in optimistic estimate bounds for subgroup discovery.
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4.4 Difference-Based Optimistic Estimates for Numeric Targets

Next, we will show that a related approach can be used to obtain optimistic
estimates for generalization-aware interestingness ranum = iaP · (μP −max

H⊂P
μH) in

settings with numeric target concepts.

Theorem 3. In a task with a numeric target concept, consider the pattern P
with iP instances and a maximum target value of maxP . P

′ ⊆ P is either P
itself or one of its generalizations and P ′′ ⊂ P ′ is a generalization of P ′. Let
iΔ = |Δ(P ′′, P ′)| be the number of instances contained in P ′′, but not in P ′ and
minΔ the minimum target value contained in Δ(P ′′, P ′). Then, an optimistic
estimate of P for the generalization aware quality function ranum is given by:

oeranum
(P ) = max(0, oe′ranum

(P )),

oeranum
(P )′ =

⎧⎪⎨⎪⎩
iΔ·iP
iP+iΔ

· (maxP −minΔ), if a = 1
iΔ

1+iΔ
· (maxP −minΔ), if a = 0

îa·iΔ
î+iΔ

· (maxP −minΔ), with î = min(a·iΔ1−a , iP ), else

Proof. We consider any specialization S ⊃ P and its generalization G = γ(S)
according to Lemma 1. Then we can estimate the interestingness of S:

ranum(S) = iS
a · (μS −max

H⊂S
μH) (1)

≤ iS
a · (μS − μG) (2)

= iS
a · (

∑
i∈sg(S)

tc(i)

iS
−

∑
i∈sg(S)

tc(i) +
∑

j∈Δ(G,S)

tc(j)

iS + iΔ(G,S)
) (3)

= iS
a−1 · (

∑
i∈sg(S)

tc(i)−
iS · (

∑
i∈sg(S)

tc(i) +
∑

j∈Δ(G,S)

tc(j))

iS + iΔ(G,S)
) (4)

= iS
a−1 · (

iΔ(G,S)

∑
i∈sg(S)

tc(i)− iS
∑

j∈Δ(G,S)

tc(j)

iS + iΔ(G,S)
) (5)

≤ iS
a−1 · (

iΔ(G,S) · iS ·max
i∈S

tc(i)− iS · iΔ(G,S) · min
j∈Δ(G,S)

tc(j)

iS + iΔ(G,S)
) (6)

=
iΔ(G,S) · iS a

iS + iΔ(G,S)
· (max

i∈S
tc(i)− min

j∈Δ(G,S)
tc(j)) (7)

≤ iΔ · iS a

iS + iΔ
· (max

P
−min

Δ
) = f(iS) · (max

P
−min

Δ
) (8)

In line 2 it is used that G is a generalization of S, then it is exploited that
sg(G) = sg(S) ∪Δ(G,S), S ∩Δ(G,S) = ∅. In line 6 we utilize that the sum of
any set of values is bigger than the minimum appearing value times the size of
the set, but smaller than the maximum appearing value times the size of the set.
Line 8 uses that iΔ(G,S) ≤ iΔ.
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fa is a function over the unknown number of all instances in the special-
ization, which can be any number in [1; iP ]. f

a is always positive. Therefore,
if (maxP −minΔ) ≤ 0, the optimistic estimate is given by 0. Else, the max-
ima of fa, which have already been derived in the proof of Theorem 2, deter-
mine the bound: fa(iS) is strictly increasing for a = 1, strictly decreasing for
a = 0 and reaches a maximum at a·iΔ

1−a or at iP otherwise. Thus: ranum(S) ≤
(fa(iS)) · (maxP −minΔ) ≤ max(fa(iS) · (maxP −minΔ). The bounds follow
directly from the inserting the resp. maxima values. Since this holds for any
specialization S of P , oeranum

(P ) is a correct optimistic estimate for P . ��

Similar to the optimistic estimate in the binary case, the derived optimistic
estimate is low, if either the number of instances covered by P is low, or if
the difference in the number of instances covered between the generalizations
P ′′ and P ′ is low (or a combination of both). However additionally, the bound
also considers the range of the target variable in these patterns, that is, the
maximum occurring target value in P and the minimum target value in the
difference set of instances. As a result, the bound gets zero, if the minimum
target value removed by adding a selector to a generalization of P was higher
than the maximum remaining target value in P .

5 Algorithm

The presented optimistic estimates can in general be applied in combination
with any search strategy. In this paper we focus on adapting an exhaustive
algorithm, i.e., apriori [1,16]. This approach is especially suited for the task of
generalization-aware subgroup discovery, since its levelwise search strategy guar-
antees that specializations are always evaluated after their generalizations and
the highest target share found in generalizations can efficiently be propagated
from generalizations to specializations, see [5]. Therefore, and for better com-
parability with previous approaches, we chose apriori as a basis for our novel
algorithm. Using the following adaptations the algorithm is not only capable
of determining the proposed optimistic estimates. The algorithm also propa-
gates the required information very efficiently. Due to limited space, we will
not describe the base algorithm, which has been extensively described in litera-
ture [1,20,16,5], but instead focus only on the differences. We start by describing
the binary case.

Apriori performs a levelwise search, where new candidate patterns are gen-
erated from the last level of more general patterns. In our adaptation of the
algorithm additional information is stored for each candidate. This includes the
maximum target share in generalizations of this pattern, the minimum number
of negatives covered by any generalization and the minimum number of nega-
tives that were removed in generalizations of this pattern. After the evaluation
of a pattern the number of positives, the number of negatives and the resulting
target share are additionally saved in each candidate. The minimum number
of negative instance in a generalization is required to compute the minimum
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number of instances, which are contained in the pattern, but not in a general-
ization. The other statistics are directly required to compute either the quality
or the optimistic estimates of the pattern. Whenever a new candidate pattern
P is generated in apriori, it is checked for all its direct generalizations G, if it is
contained in the last levels candidate set. During this check, the statistics for the
maximum target share in generalizations, the minimum number of negatives in a
generalization and the minimum number of negatives that were removed in any
generalization of this pattern can be computed by using the information stored
in the generalizations and simple minimum/maximum functions. In doing so,
the statistics required to compute the quality of the pattern and the optimistic
estimates are propagated very efficiently from one level of patterns to the next
level of more specific patterns.

In the evaluation phase (the counting phase in classical apriori) each candidate
is evaluated. This requires to determine the coverage of the pattern. Combined
with previously computed statistics about generalizations this is used to compute
the interestingness according to the chosen generalization-aware measure. Sub-
groups with sufficient high score are placed in the result set, potentially replacing
others in a top-k approach. Afterwards the target share in generalizations and
the minimum number of removed negative instances are updated by using the
statistics of the current patterns coverage. After the evaluation of a pattern all
optimistic estimates, that is, traditional estimates (see theorem 1) and difference-
based estimates are computed from the information stored for a candidate. If any
optimistic estimate is lower than the threshold given by the result set for a top-k
pattern, then the pattern is removed from the list of current candidates. Thus, no
specializations of this pattern are explored in the next level of search.

The approach for numeric target concepts is very similar, except that mini-
mum/maximum and mean target values as well as overall instance counts of the
candidate patterns are stored instead of counts of positives and negatives. When
determining the pruning bounds, a pattern is compared with all its direct gen-
eralizations. For each generalization an optimistic estimate bound is computed
based on the difference of instances between the generalization and the special-
ization and the stored minimum/maximum target values. The tightest bound
can be applied for pruning.

For the experiments, the algorithm was implemented in the open-source en-
vironment VIKAMINE [3]. The implementation utilizes an efficient bitset-based
data structure to determine the coverage of patterns efficiently.

6 Evaluation

In this section, we show the effectiveness of the presented approach in exper-
iments using well-known datasets from the UCI [9] repository. As a baseline
algorithm we use a variant of the MPR-algorithm presented in [5], as this is
the most recently proposed algorithm for this task. The algorithm was slightly
modified to support top-k mining and to incorporate the bounds of Theorem 1
for any a. Since this algorithm follows the same search strategy as our novel al-
gorithm, that is, apriori, it allows to determine the improvements that originate
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directly from the advanced pruning bounds presented in this paper. Results be-
low are shown for k = 20, a realistic number for practical applications, which was
also used for example as beam size in [26]. Different choices of k lead to similar
results. For the numeric attributes an equal-frequency discretization was used,
using all half-open intervals from the cutpoints as selectors. The experiments
were performed on an office PC with 2.8 Ghz and 6GB RAM.

In the first part of the evaluation we investigated the setting of a binary
target concept using different generalization-aware quality functions rabin. We
compared the runtimes of the presented algorithm with traditional pruning only
and with the novel generalization-aware bounds. The results show, that utilizing
difference-based pruning leads to significant runtime improvements in almost all
tasks, see Table 1. The improvements range from a factor of about 2 to over
20 in the datasets hypothyroid, audiology and spammer. For a more detailed
analysis we investigated these tasks more closely. It turned out that the search
space for these datasets contained multiple selectors that covered a vast ma-
jority of the instances. Conjunctive combinations of subsets of these selectors
still cover a large part of the dataset and especially of the positive instances.
As traditional optimistic estimates are based on this number of covered posi-
tive instance, pruning cannot be applied on these combinations efficiently. In
contrast, since the number of negative instances, by which those patterns differ
from generalizations, is often very low in these cases, such combination can be
pruned often using the difference-based optimistic estimates presented in this
paper. This leads to the massive improvements. We can conclude that our new
pruning scheme is especially efficient, if many selectors cover a majority of the
dataset. In some cases the algorithms did not finish due to out of memory errors
despite the large amount of available memory. This does occur less often using
the novel bounds, see for example the results for the vehicle dataset, since less
candidates are generated in apriori, if more advanced bounds are applied.

In the second part of the evaluation the interestingness measure r0.5bin, a
generalization-aware variant of the binomial-test, was further analyzed by com-
paring the runtimes for different search depth (maximum number of selectors
in a pattern), see Table 2. As before, almost all tasks finished earlier using the
novel difference-based pruning. While the improvement is only moderate for low
search depth, massive speedups can be observed for d = 5 and d = 6. For d = 6
many algorithms with only traditional pruning did not finish because of limited
memory. When additionally using the novel bounds, this happened only in two
datasets, as less candidates were generated.

In the last part of the evaluation the improvements in a setting with numeric
target concepts and quality functions qanum were examined. For subgroup discov-
ery with numeric targets and generalization-aware quality functions no optimistic
estimates have been proposed so far. To allow for a comparison nonetheless, we use
the optimistic estimate bound ōe1num =

∑
x:tc(x)>μ∅(tc(x) − μ∅), which has been

shown to be a correct optimistic estimate for q1num. Since ranum(P ) ≤ r1num(P ) ≤
q1num(P ) this can also be used as a (non-tight) optimistic estimate for any
generalization-aware quality function ranum. Results are shown in Table 3. Since
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Table 1. Runtime comparison (in s) of the base algorithm with traditional pruning
based on the positives (std) and the novel algorithm with additional difference-based
pruning (dbp) using different size parameters a for quality functions rabin. The maximum
number describing selectors was limited to d = 5. ”-” indicates that the algorithm did
not finish due to lack of memory.

a 0.0 0.1 0.5 1.0
pruning dpb std dpb std dpb std dpb std

adults 1.1 1.0 17.8 48.7 1.6 8.1 1.0 1.7
audiology 0.2 62.3 24.9 51.6 0.6 51.7 0.1 57.4
census-kdd 16.4 16.2 - - 107.9 2954.3 18.5 94.0
colic <0.1 <0.1 1.7 4.8 0.4 5.1 0.1 1.2
credit-a <0.1 <0.1 2.6 4.1 1.2 3.6 <0.1 0.4
credit-g 0.2 0.2 24.4 42.5 4.0 35.2 0.4 4.6
diabetes 1.0 3.8 5.9 12.6 1.2 9.3 <0.1 0.7
hepatitis 1.5 11.8 2.3 4.9 0.8 3.3 <0.1 0.5
hypothyroid 0.1 1.2 2.0 37.1 1.7 39.0 <0.1 21.2
spammer 4.3 5.5 133.0 - 29.3 172.2 0.5 27.6
vehicle 2.3 2.7 - - 15.6 - 0.9 -

Table 2. Runtime comparison (in s) of the base algorithm with traditional pruning
based on the positives (std) and the novel algorithm with additional difference-based
pruning (dbp) using different maximum numbers d of describing selectors in a pattern.
As quality functions the generalization-aware mean test r0.5bin was used. ”-” indicates
that the algorithm did not finish due to lack of memory.

d 3 4 5 6
pruning dpb std dpb std dpb std dpb std

adults 1.0 1.1 0.9 1.8 1.6 8.1 1.7 30.2
audiology 0.1 0.1 0.1 2.8 0.6 51.7 - -
census-kdd 17.9 20.6 37.2 99.8 107.9 2954.3 267.5 -
colic 0.1 0.2 0.3 1.1 0.4 5.1 0.4 16.4
credit-a 0.1 0.1 0.3 0.7 1.2 3.6 1.2 12.9
credit-g 0.2 0.2 1.5 4.0 4.0 35.2 7.0 -
diabetes 0.1 0.1 0.5 1.3 1.2 9.3 2.0 67.1
hepatitis <0.1 0.1 0.2 0.6 0.8 3.3 0.3 11.9
hypothyroid 0.1 0.2 0.5 2.7 1.7 39.0 - -
spammer 1.3 1.6 5.7 15.5 29.3 172.2 88.3 -
vehicle 1.0 1.3 4.8 57.8 15.6 - - -

the applied traditional bound is tight for a = 1, the runtimes in this case are rel-
atively low already for the studied datasets, leaving only little room for improve-
ment. For lower values of a, significant runtime improvements can be observed,
which reach a full order of magnitude (e.g., for the datasets concrete data and
housing). The relative runtime improvement is on average highest for a = 0.5.
This can be explained by the fact that for lower values of a even small subgroups
can be considered as interesting. This makes it more difficult to exclude subgroups
by pruning also when using the difference-based bounds.
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Table 3. Runtime comparison (in s) of the base algorithm with traditional pruning
based on the positives (std) and the novel algorithm with additional difference-based
pruning (dbp) using different size parameters a for quality functions ranum for numeric
target concepts. The maximum number describing selectors was limited to d = 5.

a 0.0 0.1 0.5 1.0
pruning dpb std dpb std dpb std dpb std

adults 19.6 92.5 22.5 89.6 14.8 64.7 3.9 14.9
concrete data 4.7 20.8 6.2 20.1 1.3 11.2 0.1 0.3
credit-a 3.7 14.1 5.1 13.8 3.1 9.7 0.4 0.8
credit-g 6.6 53.0 8.5 54.5 7.9 40.3 0.5 1.0
diabetes 5.6 20.4 8.5 18.6 5.2 15.0 0.3 0.7
forestfires 2.3 10.4 3.4 11.1 2.7 9.6 2.4 6.5
heart-c 3.5 17.5 5.6 17.5 2.9 13.2 0.2 0.5
housing 2.0 28.2 3.4 26.4 1.7 23.8 0.1 3.0
yeast 3.1 14.3 3.5 13.9 1.5 8.4 0.1 0.8

7 Conclusions

In this paper we proposed a new scheme of deriving optimistic estimates bounds
for subgroup discovery with interesting measures that take statistics of gener-
alizations into account. In contrast to previous approaches the bounds are not
only based on the anti-monotonicity of instances, which are contained within
the subgroup, but also on the number of instance that are covered by a pattern,
but not by its generalization. The optimistic estimates have been incorporated
in an efficient algorithm that outperforms previous approaches by up to an order
of magnitude. The speed-up is especially high, if the dataset contains selection
expressions that cover a large part of the dataset.

In the future we plan to extend this approach to explore novel interestingness
measures that take generalizations into account. Furthermore, an analysis of
different search strategies, e.g., reverse-depth-first search, for this task is an
interesting direction.
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Abstract. Outlier detection aims at searching for a small set of objects
that are inconsistent or considerably deviating from other objects in a
dataset. Existing research focuses on outlier identification while omit-
ting the equally important problem of outlier interpretation. This paper
presents a novel method named LODI to address both problems at the
same time. In LODI, we develop an approach that explores the quadratic
entropy to adaptively select a set of neighboring instances, and a learning
method to seek an optimal subspace in which an outlier is maximally sep-
arated from its neighbors. We show that this learning task can be solved
via the matrix eigen-decomposition and its solution contains essential
information to reveal features that are most important to interpret the
exceptional properties of outliers. We demonstrate the appealing perfor-
mance of LODI via a number of synthetic and real world datasets and
compare its outlier detection rates against state-of-the-art algorithms.

1 Introduction

Data mining aims at searching for novel and actionable knowledge from data.
Mining techniques can generally be divided into four main categories: cluster-
ing, classification, frequent pattern mining and anomalies detection. Unlike the
first three main tasks whose objective is to find patterns that characterize for
majority data, the fourth one aims at finding patterns that only represent the
minority data. Such kind of patterns usually do not fit well to the mechanisms
that have generated the data and are often referred to as outliers, anomalies or
surprising patterns. Mining that sort of rare patterns therefore poses novel issues
and challenges. Yet, they are of interest and particularly important in a number
of real world applications ranging from bioinformatics [28], direct marketing [18],
to various types of fraud detection [4].

Outlying patterns may be divided into two types: global and local outliers.
A global outlier is an object which has a significantly large distance to its k-
th nearest neighbor (usually greater than a global threshold) whereas a local
outlier has a distance to its k-th neighbor that is large relatively to the average
distance of its neighbors to their own k-th nearest neighbors [6]. Although it is
also possible to create a ranking of global outliers (and select the top outliers), it
is noted in [6,3] that the notion of local outliers remains more general than that of

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 304–320, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Local Outlier Detection with Interpretation 305

global outliers and, usually, a global outlier is also a local one but not vice versa,
making the methods to discover local outliers typically more computationally
expensive. In this study, our objective is to focus on mining and interpreting
local outliers.

Although there is a large number of techniques for discovering global and local
anomalous patterns [29,26], most attempts focus solely on the aspect of outlier
identification, ignoring the equally important problem of outlier interpretation.
For many application domains, especially those with data described by a large
number of features, the description/intepretation of outliers is essential. As such,
an outlier should be explained clearly and compactly, like a subset of features,
that shows its exceptionality. This knowledge obviously assists the user to eval-
uate the validity of the uncovered outliers. More importantly, it offers him/her a
facility to gain insights into why an outlier is exceptionally different from other
regular objects. To our best knowledge, the study developed in [13] is the only
attempt that directly addresses this issue, yet for global outliers but not for the
more challenging patterns of local outliers (shortly reviewed in Section 2).

In this work, we introduce a novel approach that achieves both objectives
of local outlier detection and interpretation at the same time. We propose a
technique relying on the information theoretic measure of entropy to select an
appropriate set of neighboring objects of an outlier candidate. Unlike most exist-
ing methods which often select the k closest objects as neighbors, our proposed
technique goes further by requiring strong interconnections (or high entropy)
amongst all neighboring members. This helps to remove irrelevant objects that
can be nearby outliers or the objects coming from other distributions, and thus
ensures all remaining objects to be truly normal inliers generated by the same
distribution (illustrated via examples later). This characteristic is crucial since
the statistical properties of the neighborhood play an essential role in our ex-
planation of the outlierness. We then develop a method, whose solution firmly
relies on the matrix eigen-decomposition, to learn an optimal one-dimensional
subspace in which an outlier is most distinguishable from its neighboring set.
The basic idea behind this approach is to consider the local outlier detection
problem as a binary classification and thus ensure that a single dimension is
sufficient to discriminate an outlier from its vicinity. The induced dimension is
in essence a linear combination of the original features and thus contains all
intrinsic information to reveal which original features are the most important
to explain outliers. A visualization associated with the outlier interpretation is
provided for intuitive understanding. Our explanation form not only shows the
relevant features but also ranks objects according to their outlierness.

2 Related Work

Studies in outlier detection can generally be divided into two categories stem-
ming from: (i) statistics and (ii) data mining. In the statistical approach, most
methods assume that the observed data are governed by some statistical process
to which a standard probability distribution (e.g., Binomial, Gaussian, Poisson
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etc.) with appropriate parameters can be fitted to. An object is identified as
an outlier based on how unlikely it could have been generated by that distri-
bution [2]. Data mining techniques, on the other hand, attempt to avoid model
assumptions; relying on the concepts of distance and density, as stated earlier.
For most distance-based methods [12,27], two parameters called distance d and
data fraction p are required. Following that, an outlier has at least fraction p of
all instances farther than d from it [12]. As both d and p are parameters defined
over the entire data, methods based on distance can only find global outliers.
Techniques relying on density, in contrast, attempt to seek local outliers, whose
outlying degrees (“local outlier factor”—LOF) are defined w.r.t. their neighbor-
hoods rather than the entire dataset [3,6]. There are several recent studies that
attempt to find outliers in spaces with reduced dimensionality. Some of them
consider every single dimension [10] or every combination of two dimensions [7]
as the reduced dimensional subspaces, others [19,11] go further in refining the
number of relevant subspaces. While the work in [19] makes assumptions that
outliers can only exist in subspaces with non-uniform distributions, the method
developed in [11] assumes that outliers only appear in subspaces showing high
dependencies amongst their related dimensions. These studies, exploring either
subspace projections [19,11] or subspace samplings [18,10,7], appear to be ap-
propriate for the purpose of outlier interpretation. Nonetheless, as the outlier
score of an object is aggregated from multiple spaces, it remains unclear which
subspace should be selected to interpret its outlierness property. In addition, the
number of explored subspaces for every object should be large in order to obtain
good outlier ranking results. These techniques are hence closer to outlier ensem-
bles [25] rather than outlier interpretation. The recent SOD method [14] pursues
a slightly different approach in which it seeks an axis-parallel hyperplane (w.r.t.
an object) as one spanned by the attributes with the highest data variances.
The anomaly degree of the object is thus computed in the space orthogonal to
this hyperplane. This technique also adopts an approach based on the shared
neighbors between two objects to measure their similarity, which alleviates the
almost equi-distance effect among all instances in a high dimensional space and
thus can achieve better selection for neighboring sets. SOD was demonstrated to
be effective in uncovering outliers that deviate from the most variance attributes
yet it seems somewhat limited in searching outliers having extreme values in such
directions. A similar approach is adopted in [16] where the subspace can be ar-
bitrarily oriented (not only axis-parallel) and a form of outlier characterization
based on vector directions have been proposed. ABOD [15] pursues a different
approach where variance of angles among objects is taken into account to com-
pute outlierness, making the method suitable for high dimensional data. In terms
of outlier detection, we provide experimental comparisons with state-of-the-art
algorithms in Section 4.

3 Our Approach

In this work, we consider X = {x1,x2, . . . ,xN} a dataset of N instances and
each xi ∈ X is represented as a vector in a D-dimensional space. Each dimension
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represents a feature f1 to fD. We aim for an algorithm that can rank the objects
in X w.r.t. their outlier degrees with the most outlying objects on the top.
Having been queried for M outliers in X , the algorithm returns the top M
outliers and for a threshold λ ∈ (0, 1) (to be clear in Section 3.3), each outlier

xi is associated with a small set of features {f (xi)
1 , . . . , f

(xi)
d }, d* D explaining

why the object is exceptional. The value of d may vary across different outliers.

In addition, f
(xi)
1 , . . . , f

(xi)
d are also weighted according to the degree to which

they contribute to discriminate xi as an outlier.

3.1 Neighboring Set Selection

Compared to global anomalous patterns, mining local outliers is generally harder
and more challenging since it has to further deal with the problem of locally dif-
ferent densities in the data distribution. An outlier is considered anomalous if
its density value is significantly different from the average density computed
from the neighboring objects. The anomalous property of an outlier is thus de-
cided by the local density distribution rather than the global knowledge derived
from the entire distribution. For most existing studies [3,14], the set of k nearest
neighboring objects (kNNs) is used. Nonetheless, this approach has not been
thoroughly investigated and may be misleading for outlier explanation. The dif-
ficulty comes from the fact that identifying a proper value of k is not only a
non-trivial task [22,3] but such a set of k closest neighbors might also contain
nearby outliers or inliers from several distributions, which both strongly affect
the statistical properties of the neighboring set. To give an illustration, we bor-
row a very popular data set from subspace clustering [23,17] which includes four
clusters in a 3-dimensional space with 20 outliers randomly added as shown in
Figure 1(a). Each cluster is only visible in 2-dimensional subspace [17] and each
outlier is considered anomalous w.r.t. its closest cluster. Now taking the outlier
o1 as an example, regardless of how small k is selected, other nearby outliers
such as o2,o3 or o4 are included in its neighbors since they are amongst the
closest objects (see Figure 1(a)). On the other hand, increasing k to include
more inliers from the upper distribution can alleviate the effect of these outliers
on the o1’s anomalous property. Unfortunately, such a large setting also com-
prises instances from the lower right distribution as shown in Figure 1(b). To
cope with these issues, our objective is to ensure that all o1’s neighbors are truly
inliers coming from a single closest distribution and thus o1 can be considered
as its local outlier. Our proposed approach to handle this issue stems from the
well-studied concept of entropy in information theory. The technique is adaptive
by not fixing the number of neighboring inliers k. Instead, we only use k as a
lower bound to ensure that the number of final nearby inliers is no less than k.

In information theory, entropy is used to measure the uncertainty (or disorder)
of a stochastic event. Following the definition by Shannon, the entropy of that
event is defined by H(X) = −

∫
p(x) log p(x)dx, of which X is the stochastic

event or more specifically, a continuous random variable, and p(x) is its cor-
responding probability distribution. If the entropy of X is large, its purity is
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low, or equivalently, X ’s uncertainty is high. Therefore, it is natural to exploit
entropy for our task of selecting neighboring inliers. Intuitively, for the entropy
computed with respect to this set, we would expect its value to be small in order
to infer that objects within the set are all similar (i.e., high purity) and thus
there is a high possibility that they are being generated from the same statis-
tical mechanism or distribution. Nonetheless, computing entropy in Shannon’s
definition is not an easy task since it requires p(x) to be known. We thus utilize
a more general form, the Renyi entropy [24], which enables a straightforward
computation. Mathematically, given α as an order, Renyi entropy is defined as:

HRα(X) =
1

1− α
log

∫
p(x)αdx, for α > 0, α �= 1. (1)

in which Shannon entropy is a special case when α is approaching 1 (i.e.,
limα→1HRα(X) = H(X) [24]). However, in order to ensure the practical com-
putation and impose no assumption regarding the probability distribution p(x),
we select α = 2, yielding the quadratic form of entropy, and use the non-
parametric Parzen window technique to estimate p(x). More specifically, let us
denote R(o) = {x1,x2, . . . ,xs} as the initial set of nearest neighboring instances
closest to an outlier candidate o. Following the Parzen window technique, we ap-
proximate p(x) w.r.t. this set via the sum of kernels placed at each {xi}si=1 and
it follows that:

p(x) = s−1
∑
i

G(x − xi, σ
2) (2)

where G(x − xi, σ
2) = (2πσ)−D/2 exp

{
− ||x−xi||2

2σ2

}
is the Gaussian in the D-

dimensional space used as the kernel function. In combination with setting α = 2,
this leads to a direct computation of the local quadratic Renyi entropy as follows:

QE(R(o)) = − ln

∫ (
1

s

s∑
i=1

G(x− xi, σ
2)

)⎛⎝1

s

s∑
j=1

G(x − xj , σ
2)

⎞⎠
= − ln

1

s2

s∑
i

s∑
j

G(xi − xj , 2σ
2) (3)

Notice that, unlike Shannon entropy, the above computation removes burden
of the computation of the numerical integration due to the advantages of the
quadratic form and the convolution property of two Gaussian functions. Essen-
tially, the sum within the logarithm operation can be interpreted as the local
information potential. Each term in the summation satisfies the positivity and
increases as the distance between xi and xj decreases, very much analogous to
the potential energy between two physical particles. As such, our objective of
minimizing the entropy is equivalent to maximizing the information potential
within the neighboring set. The higher the information potential of the set is,
the more similar the elements within the set are.

Having the way to capture the local quadratic entropy, an appropriate set
of nearest neighbors can be selected adaptively as follows. We begin by setting
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Fig. 1. Neighbors selection: object under consideration is o1 and circle points are its
nearest neighbors (figures are best visualized in colors).

the number of initial nearest neighbors to s (in our experiments, a setting of
s = 2k often gives good results), and aim to find an optimal subset of no less
than k instances with maximum local information potential. Obviously, a naive
way to find such an optimal set may require computing all

∑s
i=k

(
s
i

)
possible

combinations, which is prohibitively expensive. We thus make use of an heuris-
tic approach to select such a subset. Specifically, removing an object from the
neighboring set will lead to a decrement in the total information potential. Those
instances resulting in the most decrement are important ones whereas those caus-
ing least decrement tend to be irrelevant for the neighboring set. With the latter
objects, their potential energy is minor as they loosely interact with the rest
of neighboring objects and thus excluding them makes the neighboring set less
uncertain or more pure. These objects in fact can be either other outliers or part
of nearby distributions. Our method thus ranks the total information potential
left in the increasing order and removes objects behind the first significant gap
as long as the number of remaining instances is no less than k. A significant gap
is defined to have a value larger than the average gap.

For illustration, we plot in Figure 1(c) the total information potential left
(ordered increasingly) after excluding each of nearest neighboring objects rep-
resented in Figure 1(b). One may observe that there are two remarkably large
gaps in the plot (noted by the red vertical lines in Figure 1(c)), which indeed
reflect the nature of local distribution surrounding outlier o1. In particular, the
first large gap signifies the information decrement in removing instances from
the lower right distribution whereas the second one corresponds to the removal
of nearby outliers. By excluding these irrelevant objects from the set of o1’s
neighboring instances, the remaining ones are true inliers coming from the same
and closest distribution shown as blue points in Figure 1(d).

3.2 Anomaly Degree Computation

Given a way to compute the neighboring (or “reference”) set above, we develop
a method to calculate the anomaly degree for each object in the dataset X .
Essentially, directly computing that measure in the original multidimensional
data space is often less reliable since many features may not be relevant for
the task of identifying local outliers. We thus exploit an approach of a local
dimensionality reduction. For the remaining discussion, let us denote o as an
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outlier candidate under consideration, R(o) as its neighboring inliers found by
the entropy-based technique presented in the previous section and R as the
matrix form of R(o). Each neighboring inlier xi ∈ R(o) corresponds to a column
in R and together with o, they are all vectors in the RD space.

Essentially, we view the local outlier detection as a binary classification prob-
lem in the sense that the outlier candidate o should be distinguished from its
neighbors R(o). By dimensionality reduction, this objective is equivalent to the
objective of learning an optimal subspace such that o is maximally separated
from every object in R(o). More specifically, o needs to be strongly deviating
fromR(o) while at the same time R(o) shows high density or low variance in that
induced subspace. Following this approach, we denote the optimal 1-dimensional
subspace as w and in order to achieve our goal, data variance is obviously an
important statistical measure to explore. Toward this goal, we define the first
variance of all neighboring objects projected onto w as follows:

V ar(R(o)) = wT
(
R−ReeT /No

) (
R−ReeT/No

)T
w = wTAATw (4)

where A =
(
R−ReeT/No

)
, No is the number of neighboring instances in R(o)

and e is the vector with all entries equal to 1.
Another important statistic in our approach is the distance between o and

every object in R(o). This resembles an average proximity in a hierarchical clus-
tering technique[9] where all pairwise data distances are taken into account.
Compared to the two extremes of using minimum or maximum distance, this
measure often shows better stability. We hence formulate their variance in the
projected dimension w as the following quantity:

D(o,R(o)) = wT
(∑

(o− xi)(o− xi)
T
)
w = wTBBTw, (5)

where xi ∈ R(o) and B is defined as the matrix whose each column corresponds
to a vector (o − xi). Intuitively, in order to achieve the goal of optimally dis-
tinguishing o from its neighboring reference inliers, we want to learn a direction
for w such that the variance of R(o) projected onto it is minimized whereas the
variance between o and R(o) also projected on that direction is maximized. One
possible way to do that is to form an objective function resembling Rayleigh’s
quotient which maximizes the ratio between D(o,R(o)) and R(o) as follows:

argmax
w

J(w) =
D(o,R(o))

V ar(R(o))
=

wTBBTw

wTAATw
. (6)

It is obvious that setting the derivative of J(w) w.r.t. w equal to 0 results
in (wTBBTw)AATw = (wTAATw)BBTw, which is in essence equivalent to
solving the following generalized eigensystem:

J(w)AATw = BBTw. (7)

In dealing with this objective function, note that AAT , though symmetric,
may not be full rank as the number of neighbors can be smaller than the number



Local Outlier Detection with Interpretation 311

of features. This matrix is thus not directly invertible. Moreover, the size ofAAT

can be large and quadratically proportional to the feature number which makes
its eigendecomposition computationally expensive. To alleviate this problem, we
propose to approximateA via its singular value decomposition and consequently
w can be computed using the pseudo inversion of AAT .

Specifically, since A in general is a rectangular matrix, it can be decomposed
into three matrices A = UΣVT of which U and V are matrices whose columns
are A’s left and right singular eigenvectors and Σ is the diagonal matrix of
its singular values. In essence, as our objective is to compute matrix inversion,
we remove singular values which are very close to 0 and approximate A by its
set of leading singular values and vectors. More concretely, we estimate A =∑

� u�σ�v
T
� such that the sum over keeping singular values σ�’s explains for

95% (as demonstrated in our experimental studies) of the total values in the
diagonal matrix Σ. Additionally, we compute U via the eigendecomposition of
ATA which has a lower dimensionality. Particularly, we can see that:

ATA = VΣ2VT . (8)

Then, taking the square of both sides and pre-multiplying with Σ−1VT and
post-multiplying with VΣ−1, we obtain:

Σ−1VTAT (AAT )AVΣ−1 = Σ2

UT (AAT )U = Σ2. (9)

This implies that columns in U are the eigenvectors of AAT and they can
be computed via the eigenvectors of the smaller matrix ATA, i.e., U = AVΣ−1.
Thus, the final pseudo inversion (AAT )† can be simply approximated by
UΣ−2UT . Plugging this value into our objective function in Eq.(7), it is straight-
forward to see that the optimal direction for w is the first eigenvector of the ma-
trix UΣ−2UTBBT of which J(w) achieves the maximum value as the largest
eigenvalue of this matrix.

Given the optimal direction w uncovered by the technique developed above,
the statistical distance between o and R(o) can be calculated in terms of the
standard deviation as follows:

AD(o) =max

⎧⎨⎩
√

(wTo−
∑

i
wTxi

No
)2

V ar(wTR(o))
,
√
V ar(wTR(o))

⎫⎬⎭ (10)

where the second term in the max operation is added to ensure that the pro-
jection of o is not too close to the center of the projected neighboring instances
(calculated in the first term). Notice that unlike most techniques that find multi-
ple subspaces and have to deal with the problem of dimensionality bias [20], our
approach naturally avoids this issue since it learns a 1-dimensional subspace and
thus directly enables a comparison across objects. Therefore, with the objective
of generating an outlier ranking over all objects, the relative difference between
the statistical distance of an object o defined above and that of its neighboring
objects is used to define its local anomalous degree:
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LAD(o) = AD(o) ×
(∑

AD(xi)/No

)−1

. (11)

For this relative outlier measure, it is easy to see that if o is a regular object
embedded in a cluster, its local anomaly degree is close to 1 whereas if it is a
true outlier, the value will be greater than 1.

3.3 Outlier Interpretation

In interpreting the anomaly degree of an outlier, it is possible to rely on the
correlation between the projected data in w and those in each of the original di-
mensions (i.e., R’s rows). Features with highest absolute values can be used to
interpret the anomaly degree of o since values of o and its referenced objects on
these features are correlated to those projected ontow. Nonetheless, this approach
requires computing correlations with respect to all original features. A better and
more direct approach is to exploit the optimal direction w directly. Recall that
the projection of R(o) over w is equivalent to the local linear combination of the
original features. Consequently, coefficients within the eigenvectorw are truly the
weights of the original features. The feature corresponding to the largest absolute
coefficient is the most important in determining o as an outlier. Analogously, the
second important feature is the one corresponding to the second w ’s largest ab-
solute component and so on. In this way, we are not only able to figure out which
original features are crucial in distinguishing o but also show how important they
are via the weights of the corresponding components in w.

Generally, we can provide the user with a parameter λ, whose values are be-
tween (0, 1), to control the number of features used to interpret the anomaly
degree. We select {fi}di=1 as the set of features that correspond to the top d

largest absolute coefficients in w and s.t.
∑d

i=1 |wi| ≥ λ ×
∑D

j=1 |wj |. The de-
gree of importance of each respective fi can be further computed as the ratio
|wi|/

∑D
j=1 |wj |. An object o therefore can be interpreted as an outlier in the

d-subspace {f1, ..., fd} with the corresponding feature importance degrees. An
illustration is given in Figure 1 where w is plotted as the green line whose
coefficients in the rightmost subgraph are (0.11, 4.63, 5.12) (or in terms of im-
portance degrees (0.03,0.46,0.51)) which obviously reveals {f2, f3} being two
important features to explain o1 as an outlier. Note that the corresponding val-
ues of w (green lines) in Figures 1(a) and (b) are respectively (6.12, 5.17, 0.59)
and (2.91, 4.72, 2.01), which tend to select {f1, f2} and {f1, f2, f3} as the sub-
spaces for o1 due to the influence of nearby irrelevant instances. The advantage
of our entropy-based neighbor selection is thus demonstrated here where only
the direction of w in Figures 1(d) is in parallel to the relevant subspace {f2, f3}
(compared to the slant lines of w shown in Figures 1(a) and (b)).

3.4 Algorithm Complexity

We name our algorithm LODI which stands for Local Outlier Detection with
Interpretation and its computation complexity is analyzed as follows. LODI
requires the calculation of the neighboring set as well as the local quadratic
Renyi entropy. Both these steps take O(DN logN) with the implementation of
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Fig. 2. Feature visualization over 5 top ranking outliers found in Syn1, Syn2 and Syn3
datasets (x- and y-axis are respectively the features’ index and importance degree).

the k−d tree data structure. The size of the matrix ATA is s × s and thus
its eigen-decomposition is O(Ds log s) using the Lanczos method [8]. Similarly,
computing the eigen-decomposition of UΣ−2UTBBT amounts to O(D2 logD).
We compute these steps for all instances to render the outlier ranking list so
these computations take O(DN(s log s + D logD)). The overall complexity is
thus at most O(DN(logN + s log s+D logD)).

4 Experimental Results

In this section, we provide experimental results on both synthetic and real-world
datasets. We compare LODI against the following algorithms: LOF (density-
based technique) [3], ABOD (angle-based) [15] and SOD (axis-parallel sub-
spaces) [14]. The last two algorithms are adapted from the ELKI package1 with
some small changes in their output formats. Unless specified differently, we use
k = 20 as the lower bound for the number of kNNs used in LODI. We also vary
the number of neighbors, like minPts in LOF or reference points in SOD, be-
tween 10 and 40 and report the best results. With SOD, we further set α = 0.8
as recommended by the authors [14].

4.1 Synthetic Data

Data Description. We generate three synthetic datasets Syn1, Syn2 and Syn3,
each consists of 50K data instances generated from 10 normal distributions. For
each dimension ith of a normal distribution, the center μi is randomly selected
from {10, 20, 30, 40, 50} while variance σi is taken from either of two (consid-
erably different) values 10 and 100. Such a setting aims to ensure that if the
dimension ith of a distribution takes the large variance, its corresponding gener-
ated data will spread out in almost entire data space and thus an outlier close to
this distribution can be hard to uncover in the ith dimension due to the strongly
overlapping values projected onto this dimension. We set the percentage of the
large variance to 40%, 60% and 80%, respectively, to generate Syn1, Syn2 and
Syn3. For each dataset, we vary 1%, 2%, 5% and 10% of the whole data as the

1 http://elki.dbs.ifi.lmu.de/
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number of randomly generated outliers within the range of the data space and
also vary the dimensionality of each dataset from 15 to 50.

Outlier Explanation. In Figure 2, we provide a feature visualization of the 5
top-ranked outliers returned by our LODI algorithm on the three datasets. For
each graph in the figure, the x-axis shows the index of features while the y-axis
shows their degree of importance. For the purpose of visualization, we plot the
results where three datasets are generated with 5% outlier percentage and in 15
dimensions. The results for higher dimensionalities and other outlier percentages
are very similar to those plotted here and thus were omitted to save space (yet,
they are summarized in Table 1 and will be soon discussed). As observed from
these graphs, the number of relevant features used to explain the anomalous
property of each outlier is varied considerably across the three datasets. In Syn1
(Figure 2(a)), each identified outlier can be interpreted in a large number of di-
mensions since the percentage of the large variance used to generate this dataset
is small, only 40%. When increasing the percentage to 60% in Syn2 and to 80%
in Syn3 (Figures 2(b-c)), the number of relevant features reduces accordingly.
In Syn3 dataset, generally only 3 features are needed to interpret its outliers.
These results have been anticipated and quite intuitive since once the number
of dimensions with large variance increases, the dimensionality of the subspaces
in which an outlier can be found and explained will be narrowed down. This is
due to the wide overlapping of outliers and regular objects projected onto these
(large variance) dimensions.

For comparison against other techniques, we select the SOD algorithm. Recall
that SOD is not directly designed for outlier interpretation, yet its uncovered
axis-parallel subspaces might be used to select outliers’ relevant features. For
these experiments, we select Syn3 dataset and vary the outlier percentage from
1% to 10%, and the data dimensionality from 15 to 50 features. Table 1 reports
the average subspace’s dimensionality of LODI and SOD computed from their
top ranking outliers. The first column shows the outlier percentages while D15,
D30 and D50 denote the data dimensionality. We set λ = 0.8 (see Section 3.3)
for LODI and α = 0.8 for SOD to ensure their good performance. As one can
observe, LODI tends to select subspaces with dimensionality close to the true
one whereas the dimensionality of the axis-parallel subspaces in SOD is often
higher. For example, at D15, LODI uses around 3 original features to explain
each outlier, which is quite consistent with the percentage of 80% of the large
variance while it is approximately 8 features for SOD. It can further be observed
that the number of relevant features uncovered by SOD also greatly varies, which
is indicated by the high standard deviation. Additionally, it tends to increase
as the percentage of outliers increases. In contrast, our method performs better
and the relevant subspace dimensionality is less sensitive to the variation of the
outlier percentages as well as to the number of original features.

Outlier Detection. For comparison of outlier detection rates, we further include
the angle-based ABOD and the density-based LOF techniques. The receiver
operating characteristic (ROC) is used to evaluate the performance of all al-
gorithms. It was observed that all methods performed quite competitively in
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Table 1. Average dimensionality of the subspaces selected for outlier explanation in
LODI and SOD in Syn3 dataset (values after ± are standard deviations).

D15 D30 D50

Outlier % LODI SOD LODI SOD LODI SOD

1% 3.12±0.84 8.35±1.61 6.34±1.27 16.05±2.46 10.92±2.15 26.50±3.95
2% 3.20±0.72 8.40±1.68 6.41±1.14 16.13±2.56 11.03±2.07 27.57±4.15
5% 3.15±0.81 8.16±1.69 6.70±1.18 16.20±2.69 10.87±2.21 26.62±4.31
10% 3.14±0.96 7.84±1.85 6.42±1.23 15.87±3.05 11.08±2.31 25.87±4.81
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Fig. 3. Outlier detection rate of all algorithms on three synthetic datasets (D=50)

the low dimensionality yet their performances were more divergent on higher
dimensional data. We hence report in Figure 3 the outlier detection rates of all
methods in D50, setting for all 3 datasets. As observed from these graphs, the
outlier detection performance of all algorithms is likely to be decreased as the the
large variance percentage used to generate the data increases. However, while the
detection rates decrease vastly for other methods, our technique LODI remains
stable from Syn1 to Syn2 dataset, and only slightly reduces in Syn3. Nonetheless,
its area under the ROC (AUC) is still around 96% for this dataset. Amongst
other techniques, the AUCs of LOF are the lowest. This could be explained
through its density-based approach which often makes LOF’s performance dete-
riorated in high dimensional data. The performances of both ABOD and SOD
are quite competitive yet their ROC curves are still lower than that of LODI
for all three examined datasets. In Figure 3, we also report the performance
of LODI not using the entropy-based approach in kNNs selection (denoted as
LODIw/o). Instead, k is varied from 10 to 40 and the best result is reported.
As seen in Figure 3, the AUC of LODIw/o in all cases are smaller than that of
LODI, which highlights the significance of the entropy-based approach for kNNs
selection. However, compared to other techniques, LODIw/o’s outlier detection
rate is still better, demonstrating the appealing approach of computing outlier
degrees in subspaces learnt from the objective function developed in Eq.(6).

Parameters Sensitivity. To provide more insights into the performance of our
LODI technique, we further test its detection rates with various parameter set-
tings. In Figure 4(a), we plot its AUC performance on the Syn3 dataset when
the data dimensionality increases from D15 to D50 and the outlier percentage
varies from 1% to 10%. The lower threshold k for the neighboring set remains
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(a) Varying %outlier and dimensionality (b) Varying lower threshold k (D=30) (c) Varying lower threshold k (D=50)
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Fig. 4. Performance of LODI on Syn3 dataset with varying % outliers and threshold k

(a) Varying percentage of sValues (D=30) (b) Varying percentage of sValues (D=50)
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Fig. 5. Performance of LODI on Syn3 dataset with varying % singular values

at 20. One may see that LODI’s performance slightly deteriorates as the num-
ber of outliers generated in the dataset increases. This happens since once the
number of outliers increases, there are higher chances for them to be included in
other instances’ neighboring sets. Recall that LODI has alleviated this issue by
excluding those with low information potential via the use of quadratic entropy.
And in order to gain insights into this matter, we further test the case when
the lower threshold for the neighboring set is varied. Figures 4(b-c) show the
algorithm’s ROC curves when k is changed from 15 to 40 for two cases of D30
and D50. As expected, once k increases, LODI has more capability in exclud-
ing irrelevant instances from the neighboring sets and its overall performance
increases. As visualized from Figures 4(a-b), a general setting of k around 20
or 25 often leads to competitive results. We finally provide the impact of the
total number of singular values used in our matrix approximation. In Figure 5,
our algorithm’s ROC curves are plotted as the percentage of keeping singular
values is varied from 85%, 90%, 95% to 99%. We use Syn3 dataset for these
experiments with the data dimensionality at 30 and 50. It is clearly seen that
LODI performs better for higher percentages of singular values and in order to
keep it at high performance, this parameter should be set around 90% or 95%.

4.2 Real World Data

In this section, we provide the experimental results of all algorithms on three
real-world datasets selected from the UCI repository [1]. The first dataset is
the image segmentation data which includes 2 310 instances of outdoor images
{brickface, sky, foliage, cement, window, path, grass} classified into 7 classes.
Each instance is a 3× 3 region described by 19 attributes. However, we remove
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Fig. 6. Feature visualization over 5 top outliers found in: Ionosphere data (a), Image
segmentation data (b) and Vowel data (c) (relevant features are shown with labels)

three features 5,7 and 9 from this data as they are known to be repetitive with
the attributes 4,6 and 8 [1]. The second dataset is the vowel data consisting
of 990 instances and is described by 11 variables (low pass filtered signals), of
which the last one is the class label corresponding to 11 different English vowels
{hid, hId, hEd, hAd, hYd, had, hOd, hod, hUd, hud, hed}. The third dataset is
the ionosphere data containing 351 instances and being described by 32 features
(electromagnetic signals). Instead of randomly generating artificial outliers and
adding them to these datasets, it is more natural to directly downsample several
classes and treat them as hidden outliers (as suggested in [19,11]). Specifically,
we keep instances from two randomly selected classes of segmentation data as
regular objects and downsample five remaining classes, each to 2 instances to
represent hidden outliers. Likewise with the vowel dataset, we keep one class of
regular objects and randomly sample 10 instances from the remaining classes
to represent outliers. With the 2-class ionosphere data, we select instances from
the second class as outliers since its number of objects is much lower than that
of the first class.

Unlike the synthetic data where we can manage the data distributions and
report the average subspace sizes for all outliers, it is harder to perform such
analysis for the real-world datasets since different outliers may have relevant
subspaces of different sizes. However, in an attempt to interpret the results of
LODI, we plot in Figures 6(a-c) the original features’ important degrees of 5
top-ranking outliers respectively selected from the ionosphere, image segmen-
tation and vowel datasets. Figure 6(a) reveals that, for each outlier, there are
only few features having high importance degrees and they can be selected as
the subspace to interpret the abnormal property of the outlier. However, as
this dataset has a large number of outliers, the subspaces do not have many
features in common. It is thus more interesting to observe the feature visualiza-
tion for the two other datasets. Looking at the the 5 top outliers of the image
segmentation dataset in Figure 6(b), one can see that out of 15 original fea-
tures, only a few are suitable to interpret the outliers. For example, the space
spanned by {row icd, exgreen, saturatioin, hue} attributes is suitable to inter-
pret the exceptional property of the first 3 outliers while the space spanned by
{exred, exgreen, saturatioin, hue} is appropriate to explain the last 2 outliers.
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Fig. 7. Performance of all algorithms on three UCI real datasets.

Taking a closer look, we find out that these two types of outliers are indeed
exceptional with respect to the 2 main distributions which correspond to the
outdoor imaging instances of 2 classes (number 3rd and 6th) in the segmen-
tation data. In the last dataset, vowel, shown in 6(c), few prominent features
stand out for outlier interpretation, yet the features vary across different out-
liers (using λ = 0.8). Nevertheless, a common and interesting point is that the
first attribute always has the highest value across all outliers, indicating it is
the most important feature. Recall that for this dataset, we keep instances from
only a single vowel (by random selection it is ”hYd”) as normal objects while
randomly downsample one from each of the remaining vowels as hidden outliers.
This might also justify the diversity of the other prominent features across the
5 outliers shown here.

We now compare the performance of LODI and the other algorithms through
their outlier detection rates. In Figure 7, we report the ROC curves of all al-
gorithms over the three datasets. As observed, LODI shows the best detection
performance compared to all three techniques. In the segmentation data, LOF
is less successful with its AUC value around 88% though we have tried to opti-
mize its parameter minPts. The detection rates of ABOD and SOD are quite
competitive and achieve 90% AUC which yet is still lower than LODI’s 94%.
Moreover, LODI is also likely to uncover all true outliers earlier than the other
techniques. As observed in Figure 7, its false positive rate is only at 24% when
all outliers are found compared to that of 43% for SOD or 60% for LOF. With
the vowel dataset, we observe a similar behavior. Nevertheless, in the ionosphere
where the number of outliers is considerably larger, none of the algorithms can
discover all outliers before their false positive rate reaches 100%. However, it is
seen that while both SOD and ABOD can uncover at most 70% of true outliers
when the false positive rate is at 20%, LODI retrieves 86% at the same level.
Its overall area under the curve is 89% which is clearly better than the other
algorithms.

5 Conclusion

In this work, we developed the LODI algorithm to address outlier identification
and explanation at the same time. In achieving this twin-objective, our method
makes use of an approach firmly rooted from information theory to select appro-
priate sets of neighboring objects. We developed an objective function to learn
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subspaces in which outliers are most separable from their nearby inliers. We
showed that the optimization problem can be optimally solved from the matrix
eigen-decomposition of which relevant features are obtained to understand ex-
ceptional properties of outliers. Our thorough evaluation on both synthetic and
real-world datasets demonstrated the appealing performance of LODI and its
interpretation form over outliers is intuitive and meaningful. Nonetheless, LODI
has some limitations. First, its computation is rather expensive (quadratic in the
dimensionality), making LODI less suitable for very large and high dimensional
datasets. In dealing with this issue, approaches based on features’ sampling [21]
seem to be potential; yet they also lead to some information loss. The challenge
is thus to compromise the trade-off between these two criteria. Second, LODI
made an assumption that an outlier can be linearly separated from inliers. This
assumption may not be practical if distributions of inliers exhibit non-convex
shapes. Though several learning techniques based on nonlinear dimensionality
reduction can be applied to uncover such outliers [5], this, however, still leaves
open to the difficult question of what can be an appropriate form to interpret
these ”nonlinear” outliers. We consider these challenges as the immediate issues
for our future work.
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Abstract. Observations of physical processes suffer from instrument
malfunction and noise and demand data cleansing. However, rare events
are not to be excluded from modeling, since they can be the most inter-
esting findings. Often, sensors collect features at different sites, so that
only a subset is present (vertically distributed data). Transferring all data
or a sample to a single location is impossible in many real-world appli-
cations due to restricted bandwidth of communication. Finding interest-
ing abnormalities thus requires efficient methods of distributed anomaly
detection.

We propose a new algorithm for anomaly detection on vertically dis-
tributed data. It aggregates the data directly at the local storage nodes
using RBF kernels. Only a fraction of the data is communicated to a cen-
tral node. Through extensive empirical evaluation on controlled datasets,
we demonstrate that our method is an order of magnitude more commu-
nication efficient than state of the art methods, achieving a comparable
accuracy.

Keywords: 1-class learning, core vector machine, distributed features,
communication efficiency.

1 Introduction

Outlier or anomaly detection [8] refers to the task of identifying abnormal or
inconsistent patterns in a dataset. It is a well studied problem in the literature
of data mining, machine learning, and statistics. While outliers are, in general,
deemed as undesirable entities, their identification and further analysis can be
crucial to many tasks such as fraud and intrusion detection [7], climate pattern
discovery in Earth sciences [29], quality control in manufacturing processes [15],
and adverse event detection in aviation safety applications [11].

Large amounts of data are accumulated and stored in an entirely decentralized
fashion. In cases where storage, bandwidth, or power limitations prohibit the
transfer of all data to a central node for analysis, distributed algorithms are
needed that are communication efficient, but nevertheless accurate. For example,
the high amount of data in large scale applications such as Earth sciences makes
it infeasible to store all the data at a central repository. Communication is one of
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the most expensive operations in wireless networks of battery-powered sensors
[3] and mobile devices [6].

Research has focused on horizontally partitioned data [24], where each node
stores a subset of all observations. In contrast, many applications such as the
detection of outliers in spatio-temporal data have the observations vertically par-
titioned, i.e. each node stores different feature sets of the (same set of) observa-
tions. For instance, at the NASA’s Distributed Active Archive Centers (DAAC),
all precipitation data for all locations on the earth’s surface can be at one data
center while humidity observations for the same locations can be at another
data center. Another example are oceanic water levels and weather conditions
recorded by spatially distributed sensors over one day before a Tsunami. Only
few communication efficient algorithms have been proposed for the vertically par-
titioned scenario. This task is particularly challenging, if the analysis depends
on a combination of features from more than a single data location.

In this paper, we introduce a distributed method for 1-class learning which
works in the vertically partitioned data scenario and has low communication
costs. In particular, the contributions of this paper are:

– A new method for distributed 1-class learning on vertically partitioned data
is proposed, the Vertically Distributed Core Vector Machine (VDCVM).

– It is theoretically proven and empirically demonstrated that the VDCVM
can have an order of magnitude lower communication cost compared to a
current state of the art method for distributed 1-class learning [10].

– The anomaly detection accuracy of VDCVM is systematically assessed on
synthetic and real world datasets of varying difficulty. It is demonstrated
that VDCVM can have similar accuracy as the state of the art [10] while
reducing communication cost.

The rest of this paper is organized as follows. In the next section (Section 2) we
discuss some work related to the task of outlier detection. Relevant background
material concerning traditional and distributed 1-class learning is discussed in
Section 3. Details about the core algorithmic contribution of VDCVM are pre-
sented in Section 4. We demonstrate the performance of VDCVM in Section 5.
Finally, we conclude the paper in Section 6.

2 Related Work

Several researchers have developed methods for parallelizing or distributing the
optimization problem in SVMs. This is particularly useful when the datasets
are large and the computation cannot be executed on a single machine. The
cascade SVM by Graf et al. [14] uses a cascade of binary SVMs arranged in an
inverted binary tree topology to train a global model. This method is guaranteed
to reach a global optimum. In a different method, Chang et al. [9] present a
parallel SVM formulation which reduces memory use through performing a row-
based, approximate matrix factorization, and which loads only essential data to
each machine to perform parallel computation. The solution to the optimization
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problem is achieved using a parallel interior point method (IPM) which computes
the update rules in a distributed fashion. Hazan et al. [16] presents a method for
parallel SVM learning based on the parallel Jacobi block update scheme derived
from the convex conjugate Fenchel duality. Unfortunately, this method cannot
guarantee optimality. In a related method, Flouri et al. [12] and Lu et al. [22]
have proposed techniques in which the computation is done by the local nodes
and then the central node performs aggregation of the results. In their method,
SVMs are learned at each node independently and then the SVs are passed onto
the other nodes for updating the models of the other nodes. This process has
to be repeated for a few iterations to ensure convergence. Another interesting
technique is the ADMM-based consensus SVM method proposed by Forero et al.
[13] where the authors build a global SVM model in a sensor network without any
central authority. The proposed algorithm is asynchronous in which messages are
exchanged only among the neighboring nodes.

The aforementioned methods distribute the SVM problem, but do not fo-
cus on outlier detection. Those can be detected using unsupervised, supervised,
or semi-supervised techniques [17,8]. In the field of distributed anomaly detec-
tion, researchers have mainly focused on the horizontally distributed scenario.
In the PBay algorithm by Lozano and Acuna [21], a master node first splits the
data into separate chunks for each processor. Then the master node loads each
block of test data and broadcasts it to each of the worker nodes. Each worker
node then executes a distance based outlier detection technique using its local
database and the test block. Hung and Cheung [18] present a parallel version of
the basic nested loop algorithm which is not suitable for distributed computation
since it requires all the dataset to be exchanged among all the nodes. Otey et
al. [24] present a distributed algorithm for mixed attribute datasets. Angiulli et
al. [1] present a distributed distance-based outlier detection algorithm based on
the concept of solving set which can be viewed as a compact representation of
the original dataset. The solving set is such that by comparing any data point
to only the elements of the solving set, it can be concluded if the point is an
outlier or not. More recently, Bhaduri et al. [2] have developed a distributed
method by using an efficient parallel pruning rule. For the vertically partitioned
scenario, Brefeld et al. [4] use co-regularisation and block coordinate descent for
least squares regression. Lee et al. [20] have proposed a separable primal formu-
lation of the SVM training local SVM models and combining their predictions.
While their algorithm can be extended to anomaly detection, their main focus is
on supervised learning. A technique more focused on anomaly detection in the
vertically partitioned scenario is proposed by Das et al. [10] for Earth science
datasets. It trains local 1-class models and reduces communication by a pruning
rule. This technique is used for comparisons and discussed in details in Sec. 3.3.

3 The Problem of 1-Class Learning

The next sections introduce important notations by giving some background
information on 1-class learning and the problem of vertically partitioned data.
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3.1 Support Vector Data Description

The task of data description, or 1-class classification [23], is to find a model that
well describes a training set of observations. The model can then be used to check
whether new observations are similar or dissimilar to the previously seen data
points and mark dissimilar points as anomalies or outliers. It has been shown
by Tax and Duin [27] that instead of estimating the data distribution based on
a training set, it is more efficient to compute a spherical boundary around the
data. This method, called the Support Vector Data Description (SVDD), allows
for choosing the diameter of an enclosing ball in order to control the volume of
the training data that falls within the ball. Observations inside the ball are then
classified as normal whereas those outside the ball are treated as outliers.

Given a vector space X and a set S = {x1, . . . ,xn} ⊆ X of training instances,
the primal problem is to find a minimum enclosing ball (MEB) with radius R
and center c around all data points xi ∈ S:

min
R,c

R2 : ||c− xi||2 ≤ R2, i = 1, . . . , n

When the input space is not a vector space or the decision boundary is non-
spherical, observations may be mapped by ϕ : X → F to a feature space F
for which an inner product is defined. The explicit computation of this mapping
to an (possibly) infinite dimensional space can be avoided by use of a kernel
function k : X × X → R, which computes the inner product in F between
the input observations. The dual problem after the kernel transformation then
becomes

max
α

n∑
i=1

αik(xi,xi)−
n∑

i,j=1

αiαjk(xi,xj) (1)

s.t. αi ≥ 0, i = 1, . . . , n,
n∑

i=1

αi = 1

Here α = (α1, . . . , αn)
T is a vector of Lagrange multipliers and the primal vari-

ables can be recovered using

c =

n∑
i=1

αiϕ(xi), R =
√
αT diag(K)− αTKα

where Kn×n = (k(xi,xj)) is the kernel matrix. After optimal αs are found, the
model consists of all data points for which αi > 0, called the support vectors
(set SV ), and the corresponding αs. An observation x is said to belong to the
training set distribution if its distance from the center c is smaller than the
radius R, where the distance is expressed in terms of the support vectors and
the kernel function as

||c− ϕ(x)||2 = k(x,x) − 2

|SV |∑
i=1

αik(x,xi) +

|SV |∑
i,j=1

αiαjk(xi,xj) ≤ R2
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It can be shown [28] that for kernels k(x,x) = κ (κ constant), that map all input
patterns to a sphere in feature space, (1) can be simplified to the optimization
problem

max
α

−αTKα : α ≥ 0, αT1 = 1 (2)

where 0 = (0, . . . , 0)T and 1 = (1, . . . , 1)T .
Whenever the kernel satisfies k(x,x) = κ, any problem of the form (2) is an

MEB problem. For example, Schölkopf [25] proposed the 1-class ν-SVM that,
instead of minimizing an enclosing ball, separates the normal data by a hyper-
plane with maximum margin from the origin in feature space. If k(x,x) = κ, the
optimization problems of the SVDD and the 1-class ν-SVM with C = 1/(νn)
are equivalent and yield identical solutions.

3.2 Core Vector Machine (CVM)

Bǎdoiu and Clarkson [5] have shown that a (1+ε)-approximation of the MEB can
be computed with constant time and space requirements. Their algorithm only
depends on ε, but not on the dimension m or the number of training examples n.
Tsang et al. [28] have adopted this algorithm for kernel methods like the SVDD.

Let S be the training data as described in Section 3.1. For an ε > 0, the
ball B(c, (1 + ε)R) with center c and radius R is an (1 + ε)-approximation of
the MEB(S), the minimum enclosing ball that contains all data points of S. A
subset Q ⊆ S is called the core set of S if the expansion of MEB(Q) by the
factor (1 + ε) contains S.

The Core Vector Machine (CVM) algorithm shown in Figure 1 starts with
an empty core set and extends it consecutively by the furthest point from the
current center in feature space until all data is contained in an approximate MEB.
The algorithm uses a modified kernel function k̃ for the reason that optimization
problem (1) yields a hard margin solution, but can be transformed into a soft
margin problem [19] by introducing a 2-norm error on the slack variables, i.e. by
replacing C

∑n
i=1 ξi with C

∑n
i=1 ξ

2
i , and replacing the original kernel function

k with a new kernel function k̃ : ϕ̃→ F̃ , where

k̃(xi,xi) = k(xi,xj) +
δij
C
, δij =

{
1 : i = j

0 : i �= j
(3)

The new kernel again satisfies k̃(z, z) = κ̃ with κ̃ being constant.
The furthest point calculation in step 2 takes O(|St|2 + n|St|) time for the

tth iteration. However, as is mentioned by Schölkopf [26], the furthest point
obtained from a randomly sampled subset S ′ ⊂ S of size 59 already has a
probability of 95% to be among the furthest 5% points in the whole dataset S.
By using this probabilistic speed-up strategy, i.e. determining the furthest point
on a small sampled subset of points in each iteration, the running time for the
furthest point calculation can be reduced to O(|St|2). As shown by Tsang et
al. [28], with probabilistic speed-up and a standard QP solver, the CVM reaches
a (1+ε)2-approximation of the MEB with high probability. The total number of
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Core Vector Machine (CVM)

S : training set, consisting of n examples
St ⊆ S : core set of S at iteration t
ct: center of the MEB around St in feature space
Rt: radius of the MEB

1. Initialization: Uniformly at random choose a point z ∈ S . Determine a point
za ∈ S that is furthest away from z in feature space, then a point zb ∈ S that is
furthest away from za. Set S0 := {za, zb} and the initial radius

R0 :=
1

2

√
2κ̃− 2κ̃(za, zb)

2. Furthest point calculation: Find z ∈ S such that φ̃(z) is furthest away from
ct. The new core set becomes St+1 = St ∪ {z}. The squared distance of any point
from the center in F̃ can be calculated using the kernel function

||ct − φ̃(z�)||2 =
∑

zi,zj∈St

αiαj k̃(zi, zj)− 2
∑

zi∈St

αik̃(zi, z�) + k̃(z�, z�)

3. Termination check: Terminate if all training points are inside the (1 + ε)-ball
B(ct, (1 + ε)Rt) in feature space, i.e. ||ct − φ̃(z)|| ≤ Rt(1 + ε).

4. MEB calculation: Find a new MEB(St+1) by solving the QP problem

max
α

−αT K̃α : α ≥ 0, αT1 = 1, K̃ = [k̃(zi, zj)]

on all points of the core set. Set Rt+1 :=
√

κ̃− αT K̃α.
5. t := t+ 1, then go to step 2.

Fig. 1. Core Vector Machine (CVM) algorithm by Tsang et al. [28]

iterations is bounded by O(1/ε2), the running time by O(1/ε8), and the space
complexity by O(1/ε4). The running time and resulting core set size are thus
constant and independent of the size of the whole dataset.

The CVM already seems to be better suited for a network setting than the
1-class ν-SVM, as it works incrementally and could sample only as much data as
needed from the storage nodes. However, it is no distributed algorithm. Section 4
discusses how the CVM can be turned into a distributed algorithm that is even
more communication efficient.

3.3 Vertically Distributed 1-Class Learning

In the vertically partitioned data scenario, each data site has all observations,
but only a subset of the features. Let P0, ..., Pk be a set of nodes where P0 is des-
ignated as the central node and the others are denoted as the data nodes. For the
rest of the paper, it is assumed that all nodes can also be used for computations.

Let the dataset at node Pi (∀i > 0) be denoted by Si = [x
(i)
1 . . . x

(i)
n ]T consisting
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Fig. 2. Components of the VDCVM

of n rows where x
(i)
j ∈ Rmi and mi is the number of variables in the ith site.

Here, each row corresponds to an observation and each column corresponds to
a variable (feature). There should be a one-to-one mapping between the rows
across the different nodes. There exist crossmatching techniques that can be used
to ensure that. The global set of features A is the vertical concatenation of all
the m =

∑k
i=1mi features over all nodes and is defined as A = [A1 A2 . . . Ak]

(using Matlab notation). Hence, the global data S is the n×m matrix defined
as the union of all data over all nodes, i.e. S = [x1 . . . xn]

T with xj ∈ Rm. The
challenge is to learn an accurate 1-class model without transferring all data to
a central node.

Das et al. [10] have proposed a synchronized distributed anomaly detection
algorithm (called VDSVM in this paper) for vertically partitioned data based on
the 1-class ν-SVM. At each data node Pi, a local 1-class model is trained. Points
identified as local outliers are sent to the central node P0, together with a small
sample of all observations. At the central node, a global model is trained on the
sample and used to decide if the outlier candidates sent from the data nodes are
global outliers or not. The VDSVM cannot detect outliers which are global due
to a combination of attributes. However, the algorithm shows good performance
if global outliers are also local outliers. Moreover, in the application phase, the
algorithm is highly communication efficient, since the number of outlier candi-
dates is often only a small fraction of the data. A major drawback is that the
fixed-size sampling approach gives no guarantees or bounds on the correctness of
the global model. For a user, it is therefore difficult to set the sampling size cor-
rectly, in advance. Moreover, during training, no other strategies than sampling
are used for reducing communication costs. We address these issues in this pa-
per by developing a distributed version of the Core Vector Machine (VDCVM)
which is more communication-efficient in the training phase and samples only
as many points as needed, with known bounds for the correctness of the global
model.

4 Vertically Distributed CVM (VDCVM)

In this section, we introduce the Vertically Distributed Core Vector Machine
(VDCVM). It consists of the components shown in Figure 2. The Coordinator
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communicates with Worker components that reside locally on the data nodes
and can access the values of the local feature subsets directly, without any net-
work communication. While the termination check and the QP optimization
(steps 3 and 4 of the CVM algorithm in Figure 1) are still done centrally by
the Coordinator, the sampling and furthest point calculations are combined in a
single step and done in parallel by the Worker components, as described in the
next sections.

4.1 Distributed Furthest Point Calculation

In any iteration t, the original CVM algorithm (Figure 1) with probabilistic
speedup draws a fixed-sized sample of data points from the whole dataset. Let Vt
denote the sample drawn at iteration t and |Vt| denote its size. From the sample,
the CVM determines the point zt furthest away from the current center ct in
feature space by calculating the squared distance ||ct − φ̃(z�)||2 for each sample
point z� ∈ Vt. Since k̃(z�, z�) = κ̃ is constant and the sum

∑
zi,zj∈St

αiαj k̃(zi, zj)
does not depend on the sampled points, the furthest point calculation at iteration
t can be simplified to

zt = argmaxz�∈Vt

⎡⎣− ∑
zj∈St

αj k̃(zj , z�)

⎤⎦ (4)

Let z[i] denote the ith component of vector z. With the linear dot product
kernel k(zi, zj) = 〈zi, zj〉, the sum in (4) could be written as

zt = argminz�∈Vt

∑
zj∈St

αj〈zj , z�〉 = argminz�∈Vt

m∑
i=1

∑
zj∈St

αjzj [i]z�[i] (5)

Since the dot product kernel multiplies each component i of the z� and zj
vectors independently, we only need the index i of the vector component and all
α values for calculating the partial inner sums separately on each node

v
(p)
� =

mp∑
i=1

∑
z
(p)
j ∈St

αj z
(p)
j [i] z

(p)
� [i] (6)

over its subset of attributes Ap for all random indices � ∈ It and send these
partial sums back to the coordinator. The coordinator then aggregates the sums
and determines the index �max ∈ It of the furthest point:

�max = argmin�∈It

k∑
p=1

v
(p)
� (7)

Each data node thus only transmits a single numerical value for each point of
the random sample, instead of sending all attribute values of the sampled points
to the central node.
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VDCVM Coordinator

on workerInitialized():
if received message from all workers then

Determine random index set I0 for data points.
Send getPartialSums( I0 ) to all workers.

on getPartialSumsAnswer( v
(p)
� ∀� ∈ It ):

Store partial sums received from worker p.
if received message from all workers then

�max = argmin�∈It

∑k
p=1 v

(p)
�

Send getData( {�} ) to all repositories.

on getDataAnswer( {zt[1 . . .mp]} ):
Store attribute values received from Data Repository p.
if received message from all repositories then

Construct furthest point zt from attribute values.
if ||ct − φ(zt)|| ≤ (1 + ε) · Rt then

Broadcast stop and return model.
else

S := S ∪ {zt}.
Calculate new MEB(St+1). (Solve QP problem.)

Rt+1 :=
√

κ̃− αT K̃α.
Determine random index set It for data points.
Send getPartialSums( It, αs ) to workers.
t := t+ 1.

Fig. 3. Operations of the VDCVM Coordinator

Splitting (4) into partial sums can be done for the linear kernel, but it is im-
possible or at least non-trivial for non-linear mappings. For example, the SVDD
is usually used with the RBF kernel k(zi, zj) = e−γ||zi−zj ||2 and the CVM re-
quires k(x,x) to be constant, which holds for the RBF kernel. One possible
choice for a kernel is the summation of kernels defined on the local attributes
only, like a combination of RBF kernels (see also Lee et al. [20]):

k(zi, zj) =

k∑
p=1

e−γp||z(p)i −z
(p)
j ||2 (8)

In Section 5 it is empirically shown that such a combination yields a similar
accuracy as VDSVM on most of the tested datasets.

4.2 The VDCVM Algorithm

The Coordinator retrieves meta information attached to the datasets from all
Data Repository components. As initial point z, the algorithm takes the mean
vector of the minimum and maximum attribute values. Thereby, z does not
need to be sampled from the network. The constant κ̃ is calculated and all data
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VDCVM Worker

on initializeWorker( parameters, z, κ̃ ):
Store C, γ, z and κ̃.
Set S = ∅, t := 0.
Send workerInitialized to Coordinator.

on getPartialSums( It, αs ):
if t ≥ 2 then store new αs.
S := S ∪ {z�max [1 . . .mp]}.
Calculate v

(p)
� ∀� ∈ It — see (6) and (7)

on stop():
Free all resources.

Fig. 4. Operations of the VDCVM Worker

structures (the core set) are initialized. These are transmitted together with the
parameters C and γ1, . . . , γp to all Worker components.

The main part of the Coordinator is shown in Figure 3. The indices of |Vt|
random data points are sampled and sent to the workers in a request for the
partial sums v�. When the Coordinator has received all partial sums, it can
calculate the index �max of the furthest point zt and ask the repositories for
their feature values. If the termination criterion is not fulfilled, the coordinator
goes on with solving the QP problem and calculates the new radius Rt+1. It
then determines a new random index set It and requests the next partial sums
from the workers. It furthermore transmits all updated α values.

Based on the updated αs, each Worker gets the local components of points

zt by its furthest index �max. It then calculates v
(p)
� for all random indices � ∈ It

received from the Coordinator, according to Equation (7). The partial sums are
then sent back to the Coordinator which continues with the main algorithm.

4.3 Analysis of Running Time and Communication Costs

The VDCVM performs exactly the same calculations as the original CVM al-
gorithm. It therefore inherits all properties of the CVM, including the constant
bound on the total number of iterations (see Section 3.2) and the (1 + ε)2-
approximation guarantee for the calculated MEB.

Regarding communication costs, we assume that messages can be broadcast
to all workers, that training point indices are represented by 4 bytes and real
numbers by 8 bytes. The total number of bytes transferred (excluding initializa-
tion and message headers) when sending all m attributes of n points in a sample
to a central server for training (as does VDSVM) is

Bcentral(n) = n · 4 + n ·m · 8



Vertically Distributed Core Vector Machine (VDCVM) 331

Table 1. Numbers of iterations up to which VDCVM is more communication efficient
than VDSVM, for different numbers of nodes k and attributes m, s = 59

m k=1 k=2 k=5 k=10 k=25

10 1,042 924 570 0 -
25 2,782 2,664 2,310 1,720 0
50 5,682 5,564 5,210 4,620 2,850

100 11,482 11,364 11,010 10,420 8,650

In contrast, the bytes transferred by VDCVM up to iteration T are

BVDCVM(T ) = [T · s · 4 + T · s · k · 8] + [T · 4 + T ·m · 8] +
[
T (T + 1)

2
· 8
]

The coordinator at the central node first broadcasts s index values to all data
nodes and receives partial kernel sums for each, from k workers (first term in
brackets). Then, the index value of the furthest point is broadcast to all data
nodes and the coordinator receives its m feature values (second term). The total
number of αs transmitted is quadratic in the number of iterations (last term).

The break even point Tworse, i.e. the iteration from when on the VDCVM has
worse communication costs than central sampling, can be calculated by setting
Bcentral(n) with n = Ts equal to BVDCVM(T ) and solving for T :

Tworse = 2 ·m · (s− 1)− 2 · k · s (9)

According to (9), the communication efficiency of VDCVM depends on the
number of attributes per node. Table 1 contains values of Tworse for different
numbers of data nodes k and attributes m. The number of iterations occuring
in practice is often much lower than those in Table 1 (cf. Section 5).

5 Experimental Evaluation

In this section we demonstrate the performance of VDCVM on a variety of
datasets and compare it to VDSVM and a single central model. In 1-class learn-
ing, the ground truth about the outliers is often not available. For a systematic
performance evaluation of the algorithms, synthetic data containing known out-
liers was therefore generated. In addition, the methods also have been evaluated
on three real world datasets with known binary class labels.

Synthetic Data. Figure 5 visualizes the generated datasets for two dimensions.
The points were generated randomly in a unit hypercube of m dimensions (for
m = 2, 4, 8, 16, 32, 64). The different types of data pose varying challenges to the
algorithms when vertically partitioned among network nodes. The easiest sce-
nario is the one in which each attribute reveals all information about the label,
represented by SepBox. For Gaussian, the means μ+,− and standard deviations
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x2
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x2
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Gaussian
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x1

Box

x2

x1

Linear

Fig. 5. Generated normal data (grey) and outliers (black) in two dimensions

Table 2. Number of data points (total, training, test and validation set)

Dataset Total Training
Test Validation

normal outliers normal outliers

Random datasets 60,000 20,000 10,000 10,000 10,000 10,000
letter 1,000 400 150 150 150 150

kddcup-99 60,000 20,000 10,000 10,000 10,000 10,000
face 20,000 10,000 2,500 2,500 2,500 2,500

σ+,− of two Gaussians were chosen randomly and independently for each at-
tribute (with μ+,− ∈ [0.1, 0.9] and σ+,− ∈ [0, 0.25]). If the Gaussians overlap in
each single dimension, they may nevertheless become separable by a combination
of attributes. In the Box dataset, an outlier is a point for which ∃x[i] > ρ with
ρ = 0.5(1/m) (i.e. the normal data lies in half the volume of the m-dimensional
unit hypercube). Separation is only given by all dimensions in conjunction. The
same is true for the Linear dataset, where the normal data is separated from
the outliers by the hyperplane h = {x |x/||m|| − 0.5||m|| = 0}.

Real World Data. All real world data was taken from the CVM authors’
web site1. The letter dataset consists of 20,000 data points for the 26 letters
of the latin alphabet, each represented by 16 attributes. For the experiments,
773 examples of the letter G were taken as normal data and 796 of letter T

extracted as outliers. The KDDCUP-99 data consists of 5,209,460 examples of
network traffic described by 127 features. The task is to differentiate between
normal and bad traffic patterns. The extended MIT face dataset contains 513,455
images consisting of 19x19 (361) grey scale values. The task is to decide if the
image contains a human face or not.

5.1 Experimental Setup

VDCVM was implemented in Java using the Spread Toolkit2. VDSVM was
implemented in Python using LibSVM.

Table 2 shows that 60,000 points were generated for each of the random
datasets. From each of the real-world datasets, only a random sample was taken

1 http://c2inet.sce.ntu.edu.sg/ivor/cvm.html
2 http://www.spread.org

http://c2inet.sce.ntu.edu.sg/ivor/cvm.html
http://www.spread.org
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Fig. 6. Performance of VDCVM, VDSVM and a central model with standard RBF
kernel on the generated datasets

(column Total). These sets were randomly splitted further into independent sets
for training, testing (i.e. parameter optimization) and validation, with sizes as
shown. The central and local VDSVM models were trained on the whole train-
ing set, while VDCVM was allowed to sample up to the same amount of data.
The methods require different parameters γ and ν (or C), since VDSVM uses a
standard RBF kernel and the 1-norm on its slack variables, while VDCVM uses
the 2-norm and a combination of local kernels. For VDSVM, 75 random param-
eter combinations were tested, and for VDCVM 100 combinations, alternatingly
conducting a local and global random search. All error rates shown in the next
section result from a single run on the validation set, with tuned parameters.

5.2 Results

The plots in Figure 6 compare the performance of VDCVM to a single central 1-
class model with standard RBF kernel and to VDSVM, i.e. local 1-class models
which communicate only outlier candidates to the central model for testing. The
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Table 3. Results on real world datasets (m: attributes, k: nodes, err: error rate in %,
bytes: amount of bytes transferred)

Dataset m k
Central model VDSVM VDCVM

err Kbytes err Kbytes err Kbytes

letter 16 2 10.000 54 9.333 54 6.500 9
4 11.000 54 9.333 54 10.500 16

kddcup-99 127 2 0.285 20,401 0.220 20,401 0.000 1,206
4 0.450 20,401 0.290 20,401 0.002 1,526

face 361 2 6.220 29,006 7.900 29,006 4.940 808
4 5.580 29,006 6.880 29,006 5.100 969
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Fig. 7. Bytes transferred (log scale) by VDSVM and VDCVM with a growing number
of iterations (T), for 10 (left) and 500 (right) attributes, s = 59, k = 1

error rates are averaged over the results obtained for different numbers of nodes
(2, 4, 8, 16, 32).

All methods, including the central 1-class model, have difficulties to sepa-
rate the Linear and Box datasets in higher dimensions. In low dimensions, the
combined RBF kernel has worse error rates than a standard RBF kernel and
VDSVM’s ensemble of local classifiers. VDCVM shows similar or even slightly
better performance on the Gaussian and SepBox datasets, whose attribute val-
ues provide more information about the label locally. Even for the maximum
number of 20,000 points allowed to sample (VDCVM max), it already has much
lower communication costs than VDSVM in most cases. When the data is easy
to separate (Gaussian and SepBox), the real number of sampled points is often
lower, resulting in even less communication (see VDCVM real).

All methods achieve similar error rates on the real world datasets (see Table 3),
with VDCVM being more communication efficient. The central 1-class model
performing worse in some cases can be explained by VDSVM using an ensemble
of (local and global) classifiers, increasing chances by at least one of them making
the correct prediction. The better performance of VDCVM might be explained
by better parameters found with the random tuning strategy.

The plots in Figure 7 show how the number of transmitted bytes grows with
the number of iterations, for a fixed number of features. As shown in the left
figure for 10 features, the crossover occurs at 1,000 iterations. The right figure
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plots the transmitted bytes for 500 features. Here, the VDCVM is at least an
order of magnitude more communication efficient for all plotted iterations of the
algorithm. In general, the more attributes are stored at each data node, the more
can be saved in comparison to transmitting all data to the central node.

6 Conclusion

In this paper we have developed VDCVM – a distributed algorithm for anomaly
detection from vertically distributed datasets. VDCVM is based on the recently
proposed Core Vector Machine algorithm which uses a minimum enclosing ball
formulation to describe the data. The algorithm solves local problems which
are iteratively coordinated with the central server to compute the final solution.
The proposed algorithm can be as accurate as state of the art methods, with an
order of magnitude less communication overhead in the training phase. Extensive
experiments on datasets containing ground truth demonstrate the validity of the
claims. In future work, we want to explore other combinations of local kernels
and learning tasks such as distributed support vector clustering using VDCVM.
Moreover, an implementation on embedded devices remains to be done, together
with measuring real energy consumption.
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Research Center SFB 876 (http://sfb876.tu-dortmund.de/), project B3.
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Abstract. In this paper we will propose a new probabilistic topic model
to score the expertise of participants on the projects that they contribute
to based on their previous experience. Based on each participant’s score,
we rank participants and define those who have the lowest scores as out-
lier participants. Since the focus of our study is on outliers, we name the
model as Mining Outlier Participants from Projects (MOPP) model.
MOPP is a topic model that is based on directional distributions which
are particularly suitable for outlier detection in high-dimensional spaces.
Extensive experiments on both synthetic and real data sets have shown
that MOPP gives better results on both topic modeling and outlier de-
tection tasks.

1 Introduction

We present a new topic model to capture the interaction between participants
and the projects that they participate in. We are particularly interested in outlier
projects, i.e., those which include participants who are unlikely to join in based
on their past track record.

Example: Consider the following example. Three authors A1, A2 and A3 come
together to write a research paper. The authors and the paper profiles are cap-
tured by a “category” vector as shown in Table 1. A category can be a “word”
or “topic” and is dependent upon the model we use.

Table 1. Example: “category” vectors for authors and paper profiles. The dot products
determine the “outlierness” of the authors to the paper

Entity Category 1 Category 2 Category 3 Dot.P

Paper 0.1 0.1 0.8

A1 0.1 0.2 0.7 0.59
A2 0.2 0.2 0.6 0.52
A3 0.8 0.1 0.1 0.17

Then we can compute the dot products < Paper, A1 >, < Paper, A2 > and
< Paper, A3 > as shown in the last column. Based on the dot product, A3 is the
most outlier participant in the paper.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 337–352, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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The challenge we address in this paper is to develop a new topic model to accu-
rately form categories which can be used to discover outlier behavior as illustrated
in Table 1.

A natural approach is to use Latent Dirichlet Allocation (LDA) to model the
track record of the participants and also the project descriptions. The advantage
of using LDA is that we carry out the analysis in the “topic” space, which is
known to be more robust compared to a word-level analysis. However, LDA is
not particularly suitable for outlier detection as we illustrate in the following
example.

Assume that we want to cluster five documents into two clusters (C1, C2)
and there are three unique words in the vocabulary (i.e. the dimension is three).
Let d = [n1,n2,n3] represents number of occurrences of word w1, w2, and w3

in document d. Assume we have: d1 = [3,0,0], d2 = [0,8,3], d3 = [0,9,2], d4 =
[0,2,10], and d5 = [0,2,7] (illustrated in Fig. 1(a)). It is likely that d1 does not
share any similarity with the other documents because w1 in d1 does not appear
in the other documents. On the other hand, d2, d3, d4 and d5 have some common
words, i.e., w2 and w3. Intuitively, d1 should be clustered separately (C1), while
d2, d3, d4 and d5 should be clustered together (in C2). However, because LDA
is mainly affected by the word counts, d2 will be clustered together with d3
(in C1), and d4 with d5 (in C2); while d1 will be clustered either to C1 or C2.
Figure 1(b) shows the results of running ten consecutive trials with LDA1. As we
can observe that none of the ten consecutive trials follows our first intuition (i.e.
d1 in a separate cluster). On the other hand, our proposed model gives a better
solution which is shown in Fig. 1(c). Notice from Fig. 1(d) that if we represent
the documents as unit vectors on a sphere, document d1 is well separated from
d2 and d3 or d3 and d4.

As the above example illustrates, the weakness of LDA is that it is not fully
sensitive to the directionality of data and is essentially governed by word counts.
Our proposed approach extends LDA by integrating directional distribution and
treating the observations in a vector space. Specifically, we represent very high
dimensional (and often sparse) observations as unit vectors, where direction plays
a pivotal role in distinguishing one entity from another.

We highlight the importance of our proposed model from two perspectives.
First, due to the integration of directional distribution, the resulting clusters
are more robust against outliers and it could potentially give a better clustering
solution. Secondly, because of the robustness, the outliers are well separated
from the rest of the data, which could be used as a base for outlier detection.
We present more details about the directional distribution that we use, the von
Mises-Fisher (vMF) distribution, in Sect. 2. We summarize our contributions as
follows:

1. We introduce a novel problem for discovering outlier participants in projects
based on their previous working history.

1 As LDA treats a document as a finite mixture over a set of topics, we assume a topic
with the largest proportion as the topic of a document.
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(a) (b) (c) (d)

Fig. 1. Example: (a) the word counts for five documents; Topic assignments for the
five documents: (b) LDA (c) MOPP; (d) Distribution of the documents on the unit
sphere. Notice from (c) that MOPP separates d1 from the other documents 6 out of 10
times.

2. We model the proposed problem using a topic-based hierarchical generative
model based on the von Mises-Fisher (vMF) directional distribution. The
model is named MOPP: Mining Outlier Participants from Projects.

3. We have implemented MOPP and compared it with a variation of Latent
Dirichlet Allocation (LDA) on several synthetic and real data sets. We show
thatMOPP improves both the ability to detect outliers and form high quality
clusters compared to LDA.

2 Related Work

The outlier or anomaly detection problem has been extensively researched in
the data mining, machine learning and statistical communities. The survey by
Chandola et. al. [1], provides an overview of contemporary data mining meth-
ods used for outlier detection. Our proposed model is mainly inspired by the
concept of hierarchical structure in topic model used in Latent Dirichlet Allo-
cation (LDA) [2]. In this section we present LDA and some work in directional
distributions.

2.1 Latent Dirichlet Allocation

Latent Dirichlet Allocation (LDA) is a generative probabilistic model proposed
by Blei et al. [2]. LDA describes the generative process and captures the latent
structure of topics in a text corpus. LDA is now widely used for the clustering and
topic modeling tasks. The graphical representation of LDA is shown in Fig. 2.

The plate M represents documents and the plate Nm represents words in doc-
ument m. Wm,n represents the observed word n in document m. Zm,n represents
topic assignment of word n in document m. θm represents topic mixture in doc-
ument m. β represents the underlying latent topics of those documents. Both α
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Fig. 2. LDA: Graphical Representation

and η represent the hyperparameters for the model. The generative process of
LDA is summarized as follows:

Topic mixture: θm|α ∼ Dirichlet(α), m ∈ M
Topic: βk|η ∼ Dirichlet(η), k ∈ K
Topic assignment: Zm,n|θm ∼ Multinomial(θm), n ∈ Nm
Word: Wm,n|βZm,n

∼ Multinomial(βZm,n
)

2.2 Directional Distribution

Mardia [3,4] and Fisher [5] discussed von Mises-Fisher (vMF) distribution as
a natural distribution and the simplest parametric distribution for directional
statistics. The vMF distribution has support on Sd−1 or unit (d-1)-sphere em-
bedded in Rd, and has properties analogous to the multi-variate Gaussian distri-
bution. More details about vMF distribution can be found in [3]. The probability
density function of vMF distribution is described as follows:

f(x|μ, κ) = κd/2−1

(2π)d/2Id/2−1(κ)
eκμ

Tx (1)

where μ is called mean direction, ‖μ‖ = 1; κ is called concentration parameter
and characterizes how strongly the unit random vectors are concentrated2 about
the mean direction (μ), and κ ≥ 0. Ir(·) represents the modified Bessel function
of the first kind of order r.

A body of work has shown the effectiveness of directional distribution for
modeling text data. Zhong et al. [6] shown that vMF distribution gives supe-
rior results in high dimensions comparing to Euclidean distance-based measures.
Banerjee et al. [7,8] proposed the use of EM algorithm for a mixture of von
Mises-Fisher distributions (movMF). Banerjee et al. [9] also observed the con-
nection between vMF distributions in a generative model and the spkmeans algo-
rithm [10] which is superior for clustering high-dimensional text data. Reisinger
et al. [11] proposed a model named SAM that decomposes spherically distributed
data into weighted combinations of component vMF distributions. However, both
movMF and SAM lack a hierarchical structure and cannot be scaled-up for do-
mains involving multiple levels of structure.

The effectiveness of vMF distribution has also been studied in many outlier
detection studies. Ide et al. [12] proposed an eigenspace-based outliers detection

2 Specifically, if κ = 0, the distribution is uniform and, if κ → ∞, the distribution
tends to concentrate on one density.
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in computer systems, especially in the application layer of Web-based systems.
Fujimaki et al. [13] proposed the use of vMF distribution for spacecraft outliers
detection. Both of these two papers use a single vMF distribution and compute
the angular difference of two vectors to determine outliers. Kriegel et al. [14] pro-
posed an approach to detect outliers based on angular deviation. Our proposed
model uses a mixture of K-topics as latent factors that underlie the generative
process of observations to detect outlier participants from projects.

3 Mining Outlier Participants

3.1 The Proposed Model

Figure 3(a) shows the graphical model of our proposed model. We use the fol-
lowing assumption: rectangular with solid line represents replication of plates,
rectangular with dashed-line represents a single plate (named as a dummy plate),
a shaded circle represents an observable variable, an unshaded circle represents
latent/unobservable variable, and a directed arrow among circles represents a
dependency among them.
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Zcp Fcp θc 

Participants of the investigated projects 

Zgp Fgp θg 

Pg Investigated projects 

 Dummy plate 

(a)

 

 

 

 

α    

K

μ 
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Fig. 3. Graphical representation: (a) MOPP, (b) The simplified MOPP

Recall that each project has a profile vector and each participant has a set of
profile vectors. We refer the project as the investigated project. Each investigated
project is represented by an L2-normalized TF-IDF unit vector and each par-
ticipant of the investigated project at time t has a number of previous projects
before t. The subscripts on the participants and the investigated projects plates
in Fig. 3(a) are used to differentiate between the two plates. We keep a record
about the respective subscripts and merge them to simplify MOPP. We call the
new model as simplified MOPP and use it in the learning and inference process.
The record will be used later after the learning and inference process to recover
information about which plates the learnt latent values originally belong to. We
show the simplified MOPP in Fig. 3(b). Notice that in the simplified MOPP, we
“stack” the dummy plate G (with Pg) and the participants of the investigated
projects plates CPg (with Pc). We then refer the stacked G and CPg as S. Pg and
Pc on the respective G and CPg plates are referred as Rs. We also rename the
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subscripts c and g as s, and the subscripts p as r. Table 2 summarizes the main
symbols we use in this work. We present the generative process of the proposed
model in Algorithm 1.

Table 2. Main symbols and their definitions used in this work

Symbol Definition Symbol Definition

α Hyperparameter θg Topic proportions for dummy plate
K Numb. of topics Pg Investigated projects
μ Mean direction of vMF |Pg | Numb. of Pg

κ Concentration parameter of vMF Zgp Topic assignment of project p∈Pg

V Dimension of unit vector F Fgp L2-normalized TF-IDF unit vector
CPg Participants (of the investigated of project p∈Pg

projects at snapshot t) plate S C + a dummy plate, C=∀CPg

|CPg | Numb. of CPg |S| |C| + 1
θc Topic proportions for participant c Rs Projects on plate s, Rs∈ {∀Pg ,∀Pc}
Pc Projects of participant c before t |Rs| Numb. of Rs

|Pc| Numb. of Pc θs Topic proportions for s, s∈S
Zcp Topic assignment of project p∈Pc Zsr Topic assignment of project r∈Rs

Fcp L2-normalized TF-IDF unit vector of Fsr L2-normalized TF-IDF unit vector
project p∈Pc of project r∈Rs

G Dummy plate

Algorithm 1. Generative process of the proposed model

for s=1 to |S|, s ∈ S do
Choose topic proportions θs ∼ Dir(α)

for r=1 to |Rs|, r ∈ Rs do
Choose a topic μk, {1..K} � Zsr ∼ Multinomial(θs)
Compute L2-normalized TF-IDF unit vector ||Fsr||2 ∼ vMF(μk, κ)

3.2 Learning and Inference Process

The joint distribution for a plate s is given as follows:

p(θ, Z, F|α, κ, μ) = p(θ|α)
|Rs|∏
r=1

p(Zr|θ)p(Fr|Zr, μ, κ) (2)

We introduce variational parameters γ and φ in the following variational distri-
bution q for the inference step in (3).

q(θ, Z|γ, φ) = q(θ|γ)
|Rs|∏
r=1

q(Zr|φr) (3)

Application of Jensen’s inequality for a plate s [2] results in:

log p(F|α, μ, κ) = L(γ, φ;α, μ, κ) +KL(q(θ, Z|γ, φ)||p(θ, Z|F, α, μ, κ)) (4)

where KL represents the Kullback-Leibler divergence notation. By using the
factorization of p and q, we then expand the lower bound L(γ,φ;α,μ,κ) in (5):
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L(γ, φ;α, μ, κ) = Eq[log p(θ|α)] + Eq[log p(Z|θ)] + Eq[log p(F|Z, μ, κ)]
− Eq[log q(θ)]− Eq[log q(Z)] (5)

The derivation from (4) to (5) is similar with the derivation from (13) to (14) in
([2] p.1019) except for the third terms on the right hand side of (5) (highlighted),
which now includes the vMF distribution. Due to the space constraint, interested
readers should refer to [2] for the expansion details of the first, second, fourth,
and fifth terms on the right hand side of (5).

The variational parameter γk is calculated by maximizing (5) w.r.t. variational
parameter γk. Using the same approach, the variational parameter φ is computed
by maximizing (5) w.r.t. variational parameter φrk and introducing Lagrange
multiplier,

∑K
k=1 φrk = 1. Both of these two steps result in (6).

γ∗k = αk +

|Rs|∑
r=1

φrk

φ∗
rk ∝ exp((Ψ(γk)− Ψ(

K∑
k=1

γk)) + log p(Fr|μk, κ)) (6)

where Ψ is the digamma function (the first derivative of the log Gamma func-
tion). To compute μ, we need to calculate:

μ∗ = argmax
μk

|S|∑
s=1

|Rs|∑
r=1

K∑
k=1

φsrk log p(Fsr|μk, κ) (7)

Equation (7) is the same as fitting von Mises-Fisher distributions in a mixture
of von Mises-Fisher distributions [7], where φsrk is the mixture proportions. The
complete process for variational EM algorithm in the learning and inference
process includes the following iterative steps:

E-step: Compute the optimized values of γ and φ for each plate s using (6).
M-step: Maximize the lower bound w.r.t. to the model parameters α and μ

described in the standard LDA model [2] and (7) respectively.

3.3 Scoring the Expertise to Project’s Topic

The learning and inference process (Sect. 3.2) assigns a topic to each project on
Rs. Recall from Section 3.1 that we keep a record about the subscripts in MOPP
but use the simplified MOPP for the learning and inference process. After the
learning and inference process, we need to reverse map the learnt latent values
back to the plate that they originally belong to. This process is crucial because
our goal is to retrieve the topic proportions of each participant (θc) and the topic
assignment of the investigated project (Zgp). The topic proportions in θc based
on the investigated project’s topic will become the score of each participant in
that project. An end-to-end pseudo-code that summarizes the steps to score each
participant’s expertise to projects and mine the outlier participants is shown in
Algorithm 2.
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Algorithm 2. Mining outlier participants algorithm

Input: 1) Investigated projects’ L2-normalized unit vectors, 2) Each participant from
the investigated projects with their L2-normalized unit vectors, 3) O: number of
outlier participants

Output: topO : List of Top-O [<outlier participants, his project, his score>] outlier
participants

Steps:

1: Let lPart ← ∅, topO ← ∅
2: Translate MOPP to simplified MOPP (Sect. 3.1)
3: Do the learning and inference process (Sect. 3.2)
4: Reverse map the learnt latent values to the respective projects. (Sect. 3.3)

5: for every investigated project p ∈ Pg

6: Get its topic assignment Zgp

7: for every participant c ∈ CPg

8: Get the topic proportions θc
9: Get his score, partScore ← θc[Zgp]
10: lPart ← <c, p, partScore>
11: Sort lPart in an ascending order based on partScore values
12: topO ← take the participants in the first Top-O lowest scores in lPart
13: Output topO

We translate MOPP to simplified MOPP (Line 2) following our description in
Sect. 3.1. Line 3 refers to the learning and inference process, which is summa-
rized in the E-step and M-step (Sect. 3.2). Line 4: after we learn the model, we
translate back the simplified MOPP to MOPP. Lines 5–10: for every project p in
Pg, we infer its topic assignment (Zgp) and score each participant based on his
topic proportion in Zgp. Lines 11–13: we label topO lowest scores participants as
outlier participants.

4 Experiments

In this section we present our experiments to evaluate the performance of our
proposed model. The proposed model is implemented in Matlab and we conduct
the experiments on a machine with Intel
 Core(TM) Duo CPU T6400 @2.00
GHz, 1.75 GB of RAM.

4.1 Baseline Methods

For our baseline methods, we use a cosine similarity test and a latent topic model
Latent Dirichlet Allocation (LDA). We specifically measure the cosine similarity
between the TF-IDF vectors of each participant and his/her current project.
We form the TF-IDF vector of each participant from the words of all his/her
previous projects, while the TF-IDF vector for a project is extracted from the
words in the title. The cosine similarity is defined as follows:
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cos(vec1, vec2) =
vec1 · vec2
|vec1||vec2|

(8)

The original LDA model (Sect. 2.1) is not suitable to be used directly for our
purpose. We introduce the modified LDA for our purpose in Fig. 4. Following
the translation for the simplified MOPP in Sect. 3.1, we keep a record of the
subscripts. We perform the reverse mapping after the learning and inference
process. The remaining steps are the same as step 5-13 in Algorithm 2. We set
η = 0.1 and α = 50/K, where K is the number of topics [15]. Because LDA
returns topic mixture for each project and each participant, we use (9) to score
the participants. We sort the scores in an ascending order to list the outlier
participants, where tp is the topic mixture of project p and si,p is the topic
mixture of a participant i in project p.

< tp · si,p > (9)

 

 Investigated projects 

  

 Words 

   

 
Words from the 
previous projects 

 Participants of the investigated projects η 

β 

K 

α 

Fig. 4. The modified LDA for mining outlier participants

4.2 Semi Synthetic and Synthetic Data Sets

Our experiments are divided into two parts: using semi-synthetic and synthetic
data sets. For the semi-synthetic data set, we use data from the Arxiv HEP-TH
(high energy physics theory) network3. This data set was originally released as a
part of 2003 KDD Cup. We analyze the publications in year 2003 and extract the
authors. We then take a number of authors from DBLP4 and their publications.
These DBLP authors will act as the outlier participants. For all publications
extracted from HEP-TH and DBLP, we use words from the title. We then inject
the authors from DBLP to the HEP-TH randomly. We have 1,212 HEP-TH
authors in 554 projects. We vary the number of outlier participants and the
results are the average values over ten trials. To evaluate the performance of our
proposed model and the baseline methods, we use precision, recall and the F1
score. We show the results in Fig. 5.

3 http://snap.stanford.edu/data/cit-HepTh.html
4 www.informatik.uni-trier.de/ ley/db/
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Fig. 5. Recall and F1 score for the first Top-5, 10 and 15 lowest scores in MOPP, LDA,
and cosine similarity (Cos-Sim)

Figure 5 shows that LDA gives the lowest performance in detecting outlier
participants (both the recall and F1 score are very low), while cosine similarity
seems to be slightly better than MOPP. This is intuitive because the nature of
the data set itself (HEP-TH and DBLP) is almost well-separated (the words in
computer science are less likely to appear in the physics publications)5.

We use the Normalized Mutual Information (NMI) measure to compare the
performance of LDA and MOPP in reconstructing the underlying label distribu-
tion in the data set. NMI [17] is used to evaluate the clustering result [18,19].
NMI is defined as follows:

NMI(X,Y ) =
I(X,Y )√
H(X)H(Y )

(10)

where X represents cluster assignments, Y represents true labels on the data set,
I and H represent mutual information and marginal entropy. Table 3 presents
the result and shows that MOPP gives a better cluster quality than LDA does.

Table 3. NMI score: MOPP vs. LDA. The best values are highlighted, where NMI
score close to 0 represents bad clustering quality and NMI = 1 for perfect clustering
quality

NMI

LDA

MOPP

Number of Outliers Injected
80 100 150

0.308
0.803

0.404
0.811

0.626
0.815

5 In our initial experiments, we also included a classical outlier detection method Local
Outlier Factor (LOF) [16]. Unfortunately LOF fails to detect outlier participants in
any settings so we do not include the result here.
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In the second part of the experiment, we form a small synthetic data set that
represents a scenario illustrated in Fig. 6(a). This scenario is often observed
in the real word that the extracted words from the participants may not ap-
pear in the investigated projects’ extracted words. For example in Fig. 6(a) the
word W1 and W2 appear in the investigated project 2, but do not appear in the
previous projects of participant P4. Because cosine similarity compares directly
between TF-IDF vector of a participant and an investigated project, obviously
P1 and P4 in Fig. 6(a) will be marked as outlier participants in project 1 and 2
respectively. However if we analyze in the topic space, the true outlier partici-
pant should be P1, because P4’s words are likely to share same topic with the
investigated project 2 (through words in P5 and P6). We generate the synthetic
data set by first generating words with random occurrence for the investigated
projects. We then generate words for the participants with also random occur-
rence6. We generate three types of participant: “normal”, “spurious-outlier”,
and “true-outlier” participants. P2, P3, P5 and P6 are examples of the normal
participants, P4 is an example of the spurious-outlier participant, and P1 is an
example of the true-outlier participant. We randomly assign all the participants
to the investigated projects and inject the true-outlier participants.

The table in Fig. 6(b) shows that MOPP outperforms both cosine similarity
and LDA7 in this scenario. As we can observe MOPP returns all the true-outlier
participants and all true-outlier participants have the lowest score. The cosine
similarity returns all the true-outlier participants together with the spurious-
outlier participants (low precision and high recall score). On the other hand,
LDA correctly returns the true-outlier participants (high precision score), but
misses many true outliers (low recall score).

W1 W2 Wdim

Investigated Project 1

P1
P

P
2

3

W1 W2 Wdim

Investigated Project 2

P4
P

P
5

6

Wn Wn

(a)

MOPP Cos-Sim LDA
Precision
Recall
F1 Score

0.7

0.8
1.0

1.0
1.0
1.0

1.0
0.05
0.09

(b)

Fig. 6. (a) Scenario used in the synthetic experiment: dim is the dimensionality of
vocabulary, W represents word, P represents participant, shaded box of Wn represents
a certain number of appearances of word Wn and unshaded box of Wn means word Wn

does not appear (b) Precision, recall and F1 score of MOPP, cosine similarity (Cos-Sim)
and LDA

6 To fit the scenario, we generate words with occurrence > 0.
7 For MOPP and cosine similarity, we consider results from the lowest returned score,
while for LDA we take the results from the Top-5 lowest returned scores.
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Running time: MOPP vs. LDA. In this section we compare the running time
of LDA and MOPP w.r.t. the dimension of data. We form synthetic data sets
with various dimensions: 100, 500, 1,000, 1,500, 2,000, 2,500, 3,000, 3,500, 4,000,
4,500, and 5,000. We then run LDA and MOPP with various number (5, 10, 15
and 20) of topics/clusters. Figure 7 presents the results of the running time for
1,000 iterations of the respective model. It is clear that MOPP scales linearly
as the dimensionality of the data set increases. As the number of topics and
dimension keep increasing, MOPP can run under 500 seconds for 1,000 iterations
or less than half second per iteration.
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Fig. 7. Running time: MOPP vs. LDA for synthetic data set with various dimensions

4.3 Real Data set

Experimental Settings.We use a subset of DBLP to evaluate the performance
of MOPP. In a bibliographic setting, a publication represents a project and an
author represents a participant in our proposed model8.

We take projects from year 2005 to 2011 of four conferences that represent
four main research fields, i.e. VLDB (databases), SIGKDD (data mining), SIGIR
(information retrieval), and NIPS (machine learning). We analyze the title of
each project. We remove words which are too common or too rare9 from our
analysis. We have 141,999 projects in total.

We only consider projects which have at least two participants who have more
than nine previous10 projects. We assume that a participant who has at least
ten previous projects in his/her profile has already “matured” his/her research
direction. We refer these filtered projects as the investigated projects.

8 Henceforth we use the term a project for a publication and a participant for an
author.

9 We determine words that appear less than 100 times are too rare and more than
100,000 times are too often.

10 This includes projects before year 2005 as well.
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At the end of process, we have 792 investigated projects, 1,424 participants
and the dimensionality of data (size of vocabulary) is 2,108. In average, each
participant has 28.71 previous projects before he/she joins in the investigated
project. The number of topics K that we use is five, i.e. four main research topics
and one for the other), κ for MOPP = 2,500, and α for MOPP is initialized to 1
to represent a non-informative prior [20,21].

Convergence Rate. We now show our empirical verification that the varia-
tional EM of MOPP is able to converge. The convergence rate of α and varia-
tional EM for DBLP data set are shown in Fig. 8(a) and Fig. 8(b) respectively.
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Fig. 8. DBLP: Rate of convergence of (a) α value (b) variational EM

Experimental Results. From MOPP and the baseline methods, we aim to
mine those participants who have the lowest scores. We examine these three cases
for our analysis and present the results in the following paragraphs (Fig. 9, 10
and 11):

Case 1: Participant who has the lowest score from the cosine similarity only
Case 2: Participant who has the lowest score from LDA only
Case 3: Participant who has the lowest θc from MOPP only

Case 1. The cosine similarity measures the correlation between two vectors.
We focus on the participants who have cosine similarity with the investigated
project equal to 0. Figure 9 shows the extracted words from an investigated
project and previous projects of a participant (ID 16544 )11 . The cosine similar-
ity of this participant’s TF-IDF vector and the investigated project’s TF-IDF
vector is zero. This participant is marked as an outlier participant by cosine
similarity. However, we can observe that the words from his previous projects
(multiprocessor, microprocessor, chip, pipeline, architecture) have a strong rela-
tion with the the word from the investigated project (i.e. multicore). The score
from LDA is 0.23 and from MOPP is 0.047. Both of these scores are not the
lowest scores in the respective models.

11 We use an anonymous ID for a participant.
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Words extracted from the investigated project: map-reduce, machine, learning, multicore

Venue of this investigated project: NIPS – 2006 

Participant ID: 16544

Words extracted from participant's previous projects and the frequency:
multiprocessor (6), caching (4), microprocessor (4), application (3), design (3), java (3), programs
(3), system (3), transaction (3), chip (2), clustering (2), coherent (2), consistent (2), data (2), dynamic
(2), implemented (2), optimal (2), parallel (2), pipeline (2), spaces (2), speculative (2), address (1), 
alternate (1), analysis (1), approach (1), architecture (1), associated (1), bandwidth (1), benefits (1), 
circuits (1), clock (1), concurrent (1), considerations (1), correct (1), efficient (1), embedded (1), 
environment (1), evaluation (1), exploitation (1), explorer (1), extraction (1), filtering (1), framework
(1), hardware-software (1), high-performance (1), impact (1), increasing (1), investigation (1), 
language (1), memory (1), on-chip (1), performance (1), polymorphic (1), porting (1), primary (1), 
profiles (1), prototype (1), real-time (1), shared-memory (1), sharing (1), specification (1), support
(1), synchronizing (1), testing (1), threading (1), timed (1), verifiably (1), verification (1)

Fig. 9. Case 1: participant with the lowest score from cosine similarity only (Cos-Sim
score: 0). Highlight the weakness of cosine similarity at the word level.

Case 2. In case 2, we present a participant (ID 10261 ) which LDA marks
as an outlier participant (Figure 10). However, as we can see here too that
the words from his previous projects (internet, network, malicious, online) are
related to the extracted words in the investigated project (spammer, online,
social, networks). The scores from LDA, cosine-similarity and MOPP are 0.095,
0.097, and 0.167 respectively.

Words extracted from the investigated project:
detecting, spammers, content, 
promoters, online, video, social, 
networks

Venue of this investigated project: SIGIR – 2009 

Participant ID: 10261

Words extracted from participant's previous projects and the frequency:
analyzing (3), characterization (3), content (3), interactions (3), internet (3), management
(3), media (3), network (3), stream (3), adaptive (1), analysis (1), architecture (1), auctions
(1), behavior (1), clients (1), comparative (1), distributed (1), dynamic (1), education (1), 
energy (1), graphs (1), incentives (1), live (1), malicious (1), methodology (1), mobile (1), 
online (1), p2p (1), peer (1), perspectives (1), placement (1), protocols (1), quality (1), 
resource (1), search (1), security (1), self-adaptive (1), server (1), service-oriented (1), 
sharing (1), summary (1), system (1), theoretical (1), tradeoffs (1), traffic (1), understanding
(1), user (1), video (1), wide-area (1), workload (1)

Fig. 10. Case 2: participant with the lowest score from LDA only (LDA score: 0.095)

Case 3. The last case that we consider is when MOPP gives the lowest
score. Figure 11 presents the results for participant ID 116471. From the words
extracted from this participant’s previous projects, it seems that this participant
focus more on web graph analysis. However, the words from the investigated
project suggest that this project presents method in text analysis algorithms.
This participant has a score 0.197 from LDA and 0.0828 from cosine similarity.
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Words in title of the investigated publication: variable, latent, semantic, indexing
Venue of this investigated publication: KDD – 2005 
Participant ID: 116471
Words extracted from participant's previous projects and the frequency:
web (6), analysis (3), graphs (3), models (3), algorithm (2), caching (2), information (2), 
prefetchers (2), random (2), semantic (2), system (2), abstraction (1), algebraic (1), 
annotating (1), application (1), automated (1), based (1), bootstrap (1), bounded (1), clock
(1), comparison (1), computing (1), connection (1), discovery (1), extending (1), extraction
(1), fast (1), hypertext (1), interval (1), knowledge (1), large-scale (1), linear (1), markov (1), 
measuring (1), method (1), metrics (1), minimality (1), mining (1), online (1), parallel (1), 
probabilistic (1), recommendation (1), retrieval (1), scheduler (1), segmentation (1), 
skewed (1), sub-graph (1), targeted (1), tasks (1), teaching (1), transition (1), tree (1), 
understanding (1), walk (1), zero (1)

Fig. 11. Case 3: participant with the lowest score from MOPP only (MOPP score: 0)

5 Conclusion

In this paper, we introduce the Mining Outlier Participants from Projects
(MOPP) model, to address the problem of scoring and ranking participant’s
expertise to their projects. Each participant is scored based on their project
working history to the project’s topic. Participants who have the lowest scores
are marked as outlier participants, which means that these participants have dif-
ferent topic interests compare to the projects that they are working on.MOPP in-
corporates the structure and nature of hierarchical generative model and
directional distribution, the von Mises-Fisher distribution. Experiments on semi-
synthetic and synthetic data sets show that MOPP outperforms baseline meth-
ods. We also present the result from real data set extracted from DBLP. The
proposed model consistently gives more meaningful and semantically correct
results from the bibliographic network DBLP. For future work, we would like
to extend the model to non-parametric model and compare its performance to
other non-parametric topic models. We also plan to implementMOPP in different
domains.
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Abstract. Publishing datasets about individuals that contain both re-
lational and transaction (i.e., set-valued) attributes is essential to sup-
port many applications, ranging from healthcare to marketing. However,
preserving the privacy and utility of these datasets is challenging, as it
requires (i) guarding against attackers, whose knowledge spans both at-
tribute types, and (ii) minimizing the overall information loss. Existing
anonymization techniques are not applicable to such datasets, and the
problem cannot be tackled based on popular, multi-objective optimiza-
tion strategies. This work proposes the first approach to address this
problem. Based on this approach, we develop two frameworks to offer
privacy, with bounded information loss in one attribute type and mini-
mal information loss in the other. To realize each framework, we propose
privacy algorithms that effectively preserve data utility, as verified by
extensive experiments.

1 Introduction

Privacy-preserving data mining has emerged to address privacy concerns related
to the collection, analysis, and sharing of data and aims at preventing the disclo-
sure of individuals’ private and sensitive information from the published data.
Publishing datasets containing both relational and transaction attributes, RT-
datasets for short, is essential in many real-world applications. Several marketing
studies, for example, need to find product combinations that appeal to specific
types of customers. Consider the RT -dataset in Fig. 1a, where each record cor-
responds to a customer. Age, Origin and Gender are relational attributes, whereas
Purchased-products is a transaction attribute that contains a set of items, repre-
senting commercial transactions. Such studies may require finding all customers
below 30 years old who purchased products E and F. Another application is in
healthcare, where several medical studies require analyzing patient demographics
and diagnosis information together. In such RT -datasets, patients features (e.g.,
demographics) are modeled as relational attributes and diagnosis as a transac-
tion attribute. In all these applications, the privacy protection of data needs
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Relational attributes Transaction attribute
Id Name Age Origin Gender Purchased-products

0 John 19 France Male E F B G
1 Steve 22 Greece Male E F D H
2 Mary 28 Germany Female B C E G
3 Zoe 39 Spain Female F D H
4 Ann 70 Algeria Female E G
5 Jim 55 Nigeria Male A F H

(a)

Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:22] Europe Male E F (A,B,C,D) G
1 [19:22] Europe Male E F (A,B,C,D) H
2 [28:39] Europe Female E (A B,C D) G
3 [28:39] Europe Female F (A,B,C,D) H
4 [55:70] Africa All E G
5 [55:70] Africa All F (A,B,C,D) H

(b)

Fig. 1. (a) An RT -dataset with patient demographics and IDs of purchased products,
and (b) a 2-anonymous dataset with respect to relational attributes and 22-anonymous
with respect to the transaction attribute. Identifiers Id and Name are not published.

to performed without adding fake or removing truthful information [5,16]. This
precludes the application of ε-differential privacy [3], which only allows releasing
noisy answers to user queries or noisy summary statistics, as well as suppression
[19], which deletes values prior to data release.

A plethora of methods can be used to preserve the privacy of datasets con-
taining only relational or only transaction attributes [9,12,15,18]. However, there
are currently no methods for anonymizing RT -datasets, and simply anonymizing
each attribute type separately, using existing methods (e.g., [9,12,15,18]), is not
enough. This is because information concerning both relational and transaction
attributes may lead to identity disclosure (i.e., the association of an individ-
ual to their record) [15]. Consider, for example, the dataset in Fig. 1a which
is anonymized by applying the methods of [18] and [8] to the relational and
transaction attributes, as shown in Fig. 1b. An attacker, who knows that Jim is
a 55-year-old Male from Nigeria who purchased F, can associate Jim with record
5 in Fig. 1b. Thwarting identity disclosure is essential to comply with legisla-
tion, e.g., HIPAA, and to help future data collection. At the same time, many
applications require preventing attribute disclosure (i.e., the association of an
individual with sensitive information). In medical data publishing, for example,
this ensures that patients are not associated with sensitive diagnoses [17].

Furthermore, anonymized RT -datasets need to have minimal information loss
in relational and in transaction attributes. However, these two requirements are
conflicting, and the problem is difficult to address using multi-objective opti-
mization strategies [4]. In fact, these strategies are either inapplicable or incur
excessive information loss, as we show in Section 3.

Contributions. Our work makes the following specific contributions:

– We introduce the problem of anonymizing RT -datasets and propose the first
approach to tackle it. Our privacy model prevents an attacker, who knows
the set of an individual’s values in the relational attributes and up tom items
in the transaction attribute, from linking the individual to their record.

– We develop an approach for producing (k, km)-anonymous RT -datasets with
bounded information loss in one attribute type and minimal information loss
in the other. Following this approach, we propose two frameworks which em-
ploy generalization [15] and are based on a three-phase process: (i) creating
k-anonymous clusters with respect to the relational attributes, (ii) merging
these clusters in a way that helps anonymizing RT -datasets with low infor-
mation loss, and (iii) enforcing (k, km)-anonymity to each merged cluster.
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Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:22] Europe Male D E (B,D) G
1 [19:22] Europe Male E E (B,D) H

2 [28:39] Europe Female (B,C,F) (D,E) G
3 [28:39] Europe Female (B,C,F) (D,E) H

4 [55:70) Africa All (A,E,F) G
5 [55:70) Africa All (A,E,F) H

(a)

Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:70] All All E F (A,B,C,D) G
1 [19:70] All All E F (A,B,C,D) H
2 [19:70] All All E (A,B,C,D) G
3 [19:70] All All F (A,B,C,D) H
4 [19:70] All All E G
5 [19:70] All All F (A,B,C,D) H

(b)

Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:39] Europe All E F (B,C,D) G
1 [19:39] Europe All E F (B,C,D) H
2 [19:39] Europe All E (B,C,D) G
3 [19:39] Europe All F (B,C,D) H

4 [55:70) Africa All (A,E,F) G
5 [55:70) Africa All (A,E,F) H

(c)

Relational attributes Transaction attribute
Id Age Origin Gender Purchased-products

0 [19:70] All All E F (A,B,D) G
1 [19:70] All All E F (A,B,D) H
4 [19:70] All All E G
5 [19:70] All All F (A,B,D) H

2 [28:39] Europe Female (B,C,F) (D,E) G
3 [28:39] Europe Female (B,C,F) (D,E) H

(d)

Fig. 2. The (2, 22)-anonymous datasets from applying (a) Rfirst, and (b) Tfirst to
the dataset of Fig. 1a, and (c) RmergeR, and (d) RmergeT , to the clusters of Fig. 2a

– We propose a family of algorithms to implement the second phase in each
framework. These algorithms operate by building clusters, which can be
made (k, km)-anonymous with minimal information loss, and preserve dif-
ferent aspects of data utility.

– We investigate the effectiveness of our approach by conducting experiments
on two real-world RT -datasets. Our results verify that the proposed ap-
proach is effective at preserving data utility.

Paper organization. Section 2 defines concepts used in this work. Section 3
clarifies why popular multi-objective optimization strategies are unsuited for en-
forcing (k, km)-anonymity and formulates the target problems. Sections 4 and 5
present our approach and an instance of it. Sections 6 and 7 present experiments
and discuss related work, and Section 8 concludes the paper.

2 RT -Datasets and Their Anonymity

RT -datasets. An RT-dataset D consists of records containing relational at-
tributes R1, . . . , Rv, which are single-valued, and a transaction attribute T ,
which is set-valued. For convenience, we consider that: (i) identifiers have been
removed from D, and (ii) a single transaction attribute T is contained in D1.

(k, km)-anonymity. We propose (k, km)-anonymity to guard against identity
disclosure. To prevent both identity and attribute disclosure, (k, km)-anonymity
can be extended, as we explain in Section 5.

Before defining (k, km)-anonymity, we associate each record r in an RT -
dataset D with a group of records G(r), as shown below.

1 Multiple transaction attributes T1, . . . , Tu can be transformed to a single transaction
attribute T , whose domain contains every item in the domain of T1, . . . , Tu, preceded
by the domain name, i.e., dom(T ) = {d.t | d = Ti and t ∈ dom(Ti), i ∈ [1, u]}.
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Definition 1. For a record r ∈ D, its group G(r) is a set of records that con-
tains r and each record q ∈ D, such that q[R1, . . . , Rv] = r[R1, . . . , Rv] and q[T ]∩
I = r[T ] ∩ I, where I is any set of m or fewer items of r[T ]2.

Group G(r) contains r and all records that are indistinguishable from r to an
attacker, who knows the values of r in relational attributes and up to m items
in the transaction attribute. The size of G(r), denoted with |G(r)|, represents
the risk of associating an individual with a record r. Thus, to provide privacy,
we may lower-bound |G(r)|. This idea is captured by (k, km)-anonymity.

Definition 2. A group of records G(r) is (k, km)-anonymous, if and only if
|G(r)| ≥ k, for each record r in G(r). An RT-dataset D is (k, km)-anonymous,
if and only if the group G(r) of each record r ∈ D is (k, km)-anonymous.

For example, in Fig. 2a groups {0,1} (=G(0)=G(1)), {2,3} (=G(2)=G(3)) and
{4,5} (=G(4)=G(5)) are (2, 22)-anonymous, rendering the whole dataset (2, 22)-
anonymous. Note that in each group, all records have the same values in the
relational attributes, as required by Definition 1, but do not necessarily have the
same items in the transaction attribute Purchased-products (see Fig. 2b).

The notion of (k, km)-anonymity for RT -datasets extends and combines rela-
tional k-anonymity [15] and transactional km-anonymity [17].

Proposition 1. Let D[R1, . . . , Rv] and D[T ] be the relational and transaction
part of an RT-dataset D, respectively. If D is (k, km)-anonymous, then D[R1, . . . ,
Rv] is k-anonymous and D[T ] is km-anonymous.

Proposition 1 shows that (k, km)-anonymity provides the same protection
as k-anonymity [15], for relational attributes, and as km-anonymity [17], for
transaction attributes. Unfortunately, the inverse does not hold. That is, an
RT -dataset may be k and km but not (k, km)-anonymous. For instance, let
D be the dataset of Fig. 1b. Note that D[Age,Origin,Gender] is 2-anonymous and
D[Purchased-products] is 22-anonymous, but D is not (2, 22)-anonymous.

Generalization. We employ the generalization functions defined below.

Definition 3. A relational generalization function R maps a value v in a re-
lational attribute R to a generalized value ṽ, which is a range of values, if R is
numerical, or a collection of values, if R is categorical.

Definition 4. A transaction generalization function T maps an item u in the
transaction attribute T to a generalized item ũ. The generalized item ũ is a
non-empty subset of items in T that contains u.

The way relational values and transactional items are generalized is fundamen-
tally different, as they have different semantics [19]. Specifically, a generalized
value bears atomic semantics and is interpreted as a single value in a range or
a collection of values, whereas a generalized item bears set semantics and is in-
terpreted as any non-empty subset of the items mapped to it [12]. For instance,

2 Expression r[A] is a shortcut for the projection πA(r).
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the generalized value [19:22] in Age, in the record 0 in Fig. 2a, means that the ac-
tual Age is in [19, 22]. Contrary, the generalized item (B, D) in Purchased-products

means that B, or D, or both products were bought. Given a record r, the func-
tion R is applied to a single value v ∈ R, and all records in the k-anonymous
group G(r) must have the same generalized value in R. On the other hand, the
function T is applied to one of the potentially many items in T , and the records
in the km-anonymous G(r) may not have the same generalized items.

Data utility measures. In this work, we consider two general data utility mea-
sures; Rum, for relational attributes, and Tum, for the transaction attribute.
These measures satisfy Properties 1, 2 and 3.

Property 1. Lower values in Rum and Tum imply better data utility.

Property 2. Rum is monotonic to subset relationships. More formally, given
two groups G and G′ having at least k records, and a relational generalization
function R, it holds that Rum(R(G) ∪R(G′)) ≤ Rum(R(G ∪G′)).

Property 2 suggests that data utility is preserved better, when we generalize
the relational values of small groups, and is consistent with prior work on re-
lational data anonymization [2,6]. Intuitively, this is because the group G ∪ G′

contains more distinct values in a relational attribute R than G or G′, and thus
more generalization is needed to make its values indistinguishable.

A broad class of measures, such as NCP, the measures expressed as Minkowski
norms [6], Discernability [1], and the Normalized average equivalence class size
metric [9], satisfy Property 2 [6], and can be used as Rum.

Property 3. Tum is anti-monotonic to subset relationships. More formally, given
two groups G and G′ having at least k records, and a transaction generalization
function T that satisfies Definition 4 and (i) maps each item in the group it is
applied to a generalized item that is not necessarily unique, and (ii) constructs
the mapping with the minimum Tum, it holds that Tum(T (G) ∪ T (G′)) ≥
Tum(T (G ∪G′)).

Property 3 suggests that generalizing large groups can preserve transaction
data utility better, and is consistent with earlier works [12,17]. Intuitively, this
is because, all mappings between items and generalized items constructed by
T when applied to G and G′ separately (Case I) can also be constructed when
T is applied to G ∪ G′ (Case II), but there can be mappings that can only be
considered in Case II. Thus, the mapping with the minimum Tum in Case I
cannot have lower Tum than the corresponding mapping in Case II.

3 Challenges of Enforcing (k, km)-Anonymity

Lack of optimal solution. Constructing a (k, km)-anonymous RT -dataset
D with minimum information loss is far from trivial. Lemma 1 follows from
Theorem 1 and shows that there is no (k, km)-anonymous version of D with
minimum (i.e., optimal) Rum and Tum, for any D of realistic size.
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Theorem 1. Let DR and DT be the optimal (k, km)-anonymous version of an
RT-dataset D with respect to Rum and Tum, respectively. Then, no group in
DR contains more than 2k − 1 records, and DT is comprised of a single group.

Proof. (Sketch) The proof that no group in DR contains more than 2k−1 records
is based on Property 2, and has been given in [6]. The proof that DT is comprised
of a single group is similar and, it is based on Property 3.

Lemma 1. There is no optimal (k, km)-anonymous version D of an RT-dataset
D with respect to both Rum and Tum, unless |D| ∈ [k, 2k − 1].

Inadequacy of popular optimization strategies. Constructing useful
(k, km)-anonymous RT -datasets requires minimizing information loss with re-
spect to both Rum and Tum. Such multi-objective optimization problems are
typically solved using the lexicographical, the conventional weighted-formula, or
the Pareto optimal approach [4]. We will highlight why these approaches are not
adequate for our problem.

Lexicographical. In this approach, the optimization objectives are ranked and
optimized in order of priority. In our case, we can prioritize the lowering of
information loss in (i) the relational attributes (i.e., minimal Rum), or (ii) the
transaction attribute (i.e., minimal Tum).

Given an RT -datasetD and anonymization parameters k andm, an algorithm
that implements strategy (i) is Rfirst. This algorithm partitions D into a set of
k-anonymous groups C, with respect to the relational attributes (e.g., using [18]),
and applies T to generalize items in each group of records in C, separately (e.g.,
using [17]). Symmetrically, to implement strategy (ii), we may use an algorithm
Tfirst, which first partitions D into a set of km-anonymous groups (e.g., using
the LRA algorithm [17]), and then applies a relational generalization function
(see Definition 3) to each relational attribute, in each group.

Both Rfirst and Tfirst enforce (k, km)-anonymity, but produce vastly dif-
ferent results. For instance, Figs. 2a and 2b show (2, 22)-anonymous versions of
the dataset in Fig. 1a, produced by Rfirst and Tfirst, repectively. Observe
that Rfirst did not generalize the relational attributes as heavily as Tfirst

but applied more generalization to the transaction attribute. This is because,
Rfirst constructs small groups, and does not control the grouping of items.
Contrary, the groups created by Tfirst contain records, whose items are not
heavily generalized, unlike their values in the relational attributes. In either
case, the purpose of producing anonymized RT -datasets that allow meaningful
analysis of relational and transaction attributes together, is defeated.

Conventional weighted-formula. In this approach, all objectives are combined
into a single one, using a weighted formula. The combined objective is then op-
timized by a single-objective optimization algorithm. For example, a clustering-
based algorithm [13] would aim to minimize the weighted sum of Rum and
Tum. However, this approach works only for commensurable objectives [4]. This
is not the case for Rum and Tum, which are fundamentally different and have
different properties (see Section 2). Therefore, this approach is not suitable.
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Algorithm: Rum-bound

// Initial cluster formation
1 {C1, . . . , Cn} := ClusterFormation(D, k)
2 D := {C1, . . . , Cn}
3 if Rum(D) > δ then return false

// Cluster merging
4 D := Rmerge(D, T , δ)

// (k, km)-anonymization
5 for each cluster C ∈ D do
6 D := (D \ C) ∪ T (C)

7 return D

Algorithm: Tum-bound

// Initial cluster formation
1 {C1, . . . , Cn} := ClusterFormation(D, k)
2 D := {C1, · · · , Cn}
3 if Tum(T (D)) ≤ δ then return D

// Cluster merging
4 D := Tmerge(D,T , δ)

// (k, km)-anonymization
5 for each cluster C ∈ D do
6 D := (D \ C) ∪ T (C)

7 if Tum(D) > δ then return false

8 return D

Pareto optimal. This approach finds a set of solutions that are non-dominated
[4], from which the most appropriate solution is selected by the data publisher,
according to their preferences. However, the very large number of non-dominated
solutions that can be constructed by flexible generalization functions, such as
those in Definitions 3 and 4, render this approach impractical.

Problem formulation. To construct a (k, km)-anonymous version of an RT -
dataset, we either upper-bound the information loss in relational attributes and
seek to minimize the information loss in the transaction attribute (Problem 1),
or upper-bound the information loss in the transaction attribute and seek to
minimize the information loss in relational attributes (Problem 2).

Problem 1. Given an RT -dataset D, data utility measures Rum and Tum, pa-
rameters k and m, and a threshold δ, construct a (k, km)-anonymous version D
of D, such that Rum(D) ≤ δ and Tum(D) is minimized.

Problem 2. Given an RT -dataset D, data utility measures Rum and Tum, pa-
rameters k and m, and a threshold δ, construct a (k, km)-anonymous version D
of D, such that Tum(D) ≤ δ and Rum(D) is minimized.

Threshold δ must be specified by data publishers, as in [6]. Thus, constructing
D might be infeasible for an arbitrary δ. Solving Problem 1 or Problem 2 ensures
that D preserves privacy and utility, but it is NP-hard (proof follows from [12]).

4 Anonymization Approach

We propose an approach that overcomes the deficiencies of the aforementioned
optimization approaches and works in three phases:

Initial cluster formation: k-anonymous clusters with respect to relational at-
tributes, which incur low information loss, are formed.

Cluster merging: Clusters are merged until the conditions set by Problems 1 or
2 are met.

(k, km)-anonymization: Each cluster becomes (k, km)-anonymous, by generaliz-
ing the its items with low Tum.
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Based on our approach, we developed two anonymization frameworks, Rum-

bound and Tum-bound, which address Problems 1 and 2, respectively. Rum-

bound seeks to produce a dataset with minimal Tum and acceptable Rum,
and implements the phases of our approach, as follows.

Initial cluster formation (Steps 1–3): Algorithm Rum-bound clusters D, using
a function ClusterFormation, which can be implemented by any generaliza-
tion-based k-anonymity algorithm [9,18,2]. This function produces a set of k-
anonymous clusters C1, . . . , Cn, from which a dataset D containing C1, . . . , Cn,
is created (Step 2). The dataset D must have a lower Rum than δ, since sub-
sequent steps of the algorithm cannot decrease Rum (see Property 2). If the
dataset D does not satisfy this condition, it cannot be a solution to Problem 1,
and false is returned (Step 3).

Cluster merging (Step 4): This phase is the crux of our framework. It is performed
by a function Rmerge, which merges the clusters of D to produce a version
that can be (k, km)-anonymized with minimal Tum and without violating δ. To
implementRmerge we propose three algorithms, namely RmergeR,RmergeT

and RmergeRT , which aim at minimizing Tum using different heuristics.

(k, km)-anonymization (Steps 5–7): In this phase, D is made (k, km)-anonymous,
by applying a transaction generalization function T to each of its clusters.

Tum-bound, on the other hand, focuses on Problem 2 and aims at creating
a dataset with minimal Rum and acceptable Tum. This framework has the
following major differences from Rum-bound.

• At Step 3, after the formation of D, Tum-bound checks if D has lower Tum
than the threshold δ. In such case, D is a solution to Problem 2.

• At Step 4, function Tmerge merges clusters until the Tum threshold is
reached, or no more merging is possible. To implement Tmerge we propose
three algorithms: TmergeR, TmergeR and TmergeRT , which aim at min-
imizing Rum using different heuristics.

• At Step 7, Tum-bound checks if Tum(D) > δ; in this case, we cannot satisfy
Problem 2 conditions and, thus, return false.

Cluster-merging algorithms. We now present three algorithms that imple-
ment function Rmerge, which is responsible for the merging phase of Rum-

bound (Step 4). Our algorithms are based on different merging heuristics. Specif-
ically, RmergeR merges clusters with similar relational values, RmergeT with
similar transaction items and RmergeRT takes a middle line between these
two algorithms. In all cases, relational generalization is performed by a set of
functions G = {L1, . . . ,Lv}, one for each relational attribute (Definition 3) and
transaction generalization is performed by function T (Definition 4).

RmergeR selects the cluster C with the minimum Rum(C) as a seed (Step
2). Cluster C contains relational values that are not highly generalized and is
expected to be merged with a low relational utility loss. The algorithm locates the
cluster C′ with the most similar relational values to C (Step 3) and constructs a
temporary dataset Dtmp that reflects the merging of C and C′ (Step 4). If Dtmp

does not violate the Rum threshold, it is assigned to D (Step 5).
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Algorithm: RmergeR

1 while D changes do
2 Select, as a seed, the cluster C ∈ D

with minimum Rum(C)
3 Find the cluster C′ ∈ D that

minimizes Rum(G(C ∪ C′)) .
4 Dtmp := ((D \ C) \ C′) ∪ G(C ∪ C′)
5 if Rum(Dtmp) ≤ δ then

D := Dtmp

6 return D

Algorithm: RmergeT

1 while D changes do
2 Select, as a seed, the cluster C ∈ D with

minimum Rum(C)
// Find the appropriate cluster C′ to be

merged with C
3 Let {C1, . . . , Ct} be the set of clusters in

D \ C ordered by increasing
Tum(T (C ∪ Ci)), i ∈ [1, t)

4 for i := 1 to t do // Test if C′ = Ci

5 Dtmp := ((D \ C) \ Ci) ∪ G(C ∪ Ci)

6 if Rum(Dtmp) ≤ δ then // C′ is Ci

7 D := Dtmp

8 exit the for loop

9 return D

Algorithm: RmergeRT

1 while D changes do
2 Select, as a seed, the cluster C ∈ D with minimum Rum(C)

3 Let {C1, . . . , Ct} (resp. {Ĉ1, . . . , Ĉt}) be the set of clusters in D \ C ordered by

increasing Rum(G(C ∪ Ci)) (resp. Tum(T (C ∪ Ĉi))), i ∈ [1, t)
// Find the appropriate cluster C′ to be merged with C

4 for i := 1 to t do
5 Find cluster C′, that has the i-th minimum sum of indices u + v s.t.

Cu ∈ {C1, . . . , Ct} and Cv ∈ {Ĉ1, . . . , Ĉt}
6 Dtmp := ((D \ C) \ Ci) ∪ G(C ∪ Ci)
7 if Rum(Dtmp) ≤ δ then
8 D := Dtmp

9 exit the for loop

10 return D

RmergeT starts by selecting the same seed C as RmergeR (Step 2) and
seeks a cluster C′ that contains similar transaction items to C and, when merged
with C, results in a dataset with Rum no higher than δ. To this end, RmergeT

mergesC with every other cluster Ci inD\C and orders the clusters by increasing
Tum(T (C ∪ Ci)) (Step 3). This allows efficiently finding the best merging for
minimizing Tum that does not violate Rum(D) ≤ δ. The algorithm considers
the clusters with increasing Tum(T (C ∪Ci)) scores. The first cluster that gives
a dataset with acceptable Rum is used for merging (Steps 4–5).

RmergeRT combines the benefits of RmergeR and RmergeT . It selects the
same seed cluster C as RmergeT , and constructs two orderings, which sort the
generalized merged clusters in ascending order of Rum and Tum, respectively
(Step 3). Then, a cluster C′ that is as close as possible to C, based on both
orderings (i.e., it has the i-th minimum sum (u + v), where u and v are the
indices of C′ in the {C1, . . . , Ct} and orderings {Ĉ1, . . . , Ĉt} repsectively), is
found (Step 5). The next steps of RmergeRT are the same as in RmergeT .

We now discussTmergeR,TmergeR, andTmergeRT , used inTum-bound.
These algorithms perform cluster merging, until D satisfies the Tum threshold,
or all possible mergings have been considered. The pseudocode of RmergeR is
the same as that of TmergeR, except that Step 5 in RmergeR is replaced by
the following steps. Note that D is returned if it satisfies the Tum threshold,
because Rum cannot be improved by further cluster merging (Property 2).



362 G. Poulis et al.

The pseudocode of TmergeR and TmergeRT can be derived by replacing
the same steps with Steps 5 and 7 in TmergeR and TmergeRT , respectively.

5 if Tum(Dtmp) ≤ δ then
6� D := Dtmp

7� return D

The runtime cost of anonymization is O(F + |C|2·(KR+KT )), where F is the
cost for initial cluster formation, |C| the number of clusters in D, and KR and
KT the cost of generalizing the relational and transaction part of a cluster.

All

Male Female

All

EuropeAfrica

GenderOrigin

Algeria Nigeria Greece France Germany Spain

Fig. 3. Hierarchies for the dataset of Fig. 1a

5 Instantiating and Extending the Frameworks

Our frameworks can be parameterized by generalization functions, data utility
measures, and initial cluster formation algorithms. This section presents such
instantiations and strategies to improve their efficiency, as well as extensions of
our frameworks to prevent both identity and attribute disclosure.

Generalization functions. We employ the local recoding [18] and set-based
generalization [8,12]. As an example, the dataset in Fig. 1b has been created by
applying these functions to the dataset in Fig. 1a, using the hierarchies in Fig. 3.

Data utility measures. To measure data utility in relational and transac-
tion attributes, we used Normalized Certainty Penalty (NCP ) [18] and Utility
Loss (UL) [12], respectively. The NCP for a generalized value ṽ, a record r,

and an RT -dataset D, is defined as: NCPR(ṽ) =
{

0, |ṽ| = 1
|ṽ|/|R|, otherwise ,NCP(r) =∑

i∈[1,v]

wi·NCPRi(r[Ri]) andNCP(D) =
∑

r∈D NCP(r)

|D| resp., where |R| denotes the

number of leaves in the hierarchy for a categorical attribute R (or domain size for
a numerical attribute R), |ṽ| denotes the number of leaves of the subtree rooted
at ṽ in the hierarchy for a categorical R (or the length of the range for a numer-
ical R), and wi ∈ [0, 1] is a weight that measures the importance of an attribute.
The UL for a generalized item ũ, a record r, and an RT -dataset D, is defined as:

UL(ũ) = (2|ũ|− 1) ·w(ũ), UL(r) =
∑

∀ũ∈r UL(ũ)

2σ(r)−1
and UL(D) =

∑
∀r∈D UL(r)

|D| resp.,

where |ũ| is the number of items mapped to ũ, w(ũ) ∈ [0, 1] a weight reflecting
the importance of ũ [12], and σ(r) the sum of sizes of all generalized items in r.

Initial cluster formation with Cluster. The initial cluster formation
phase should be implemented using algorithms that create many small clusters,
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with low Rum, because this increases the chance of constructing a (k, km)-
anonymous dataset with good data utility. Thus, we employ Cluster, an algo-
rithm that is instantiated with NCP and local recoding, and it is inspired by

the algorithm in [2]. The time complexity of Cluster is O( |D|2
k · log(|D|)).

Algorithm: Cluster

1 C := ∅
// Create clusters of size k

2 while |D| ≥ k do
3 Select, as a seed, a random record s from D
4 Add s and each record r ∈ D having one of the lowest k−1 values in NCP(G({s, r})) to

cluster C
5 Add cluster C to C and remove its records from D

// Accommodate the remaining |D| mod k records
6 for each record r ∈ D do
7 Add r to the cluster C ∈ C that minimizes NCP(G(C ∪ r))

8 Apply G to the relational values of each cluster in C
// Extend clusters

9 for each cluster C ∈ C do
10 Let S be the set of clusters in C with the same values in relational attributes as C.
11 Extend C with the records of S and remove each cluster in S from C.
12 return C

Efficiency optimization strategies. To improve the efficiency of cluster-
merging algorithms, we compute Rum(Dtmp) incrementally, thereby avoiding
to access all records in Dtmp, after a cluster merging. This can be performed for
all measures in Section 2, but we illustrate it for NCP . We use a list λ of tuples
<|C|,NCP (rc))>, for each cluster C in Dtmp and any record rc in C, which is

initialized based on D. Observe that NCP(Dtmp) =

∑
∀C∈Dtmp

(|C|·NCP(rc))

|D| , and

it can be updated, after C and C′ are merged, by adding: (|C|+|C′|)·NCP(rc∪c′ )
|D| −

|C|·NCP(rc)−|C′|·NCP(rc′ )
|D| . This requires accessing only the records in C ∪ C′.

The efficiency of RmergeT , RmergeRT , TmergeR, and TmergeRT can
be further improved by avoiding computing Tum(T (C ∪C1)), . . . ,Tum(T (C ∪
Ct)). For this purpose, we merge clusters using Bit-vector Transaction Distance

(BTD). The BTD for records r1, r2 is defined as BTD(r1, r2) = ones(b1�b2)+1
ones(b1∧b2)+1 ·

ones(b1 ∨ b2), where b1 and b2 are the bit-vector based representations of r1[T ]
and r2[T ], �, ∧ and ∨ are the Boolean operators, for XOR, AND, and OR, and
the function ones counts the number of 1 bits in a bit-vector. The BTD of a
cluster C is defined as BTD(C) = max{BTD(r1, r2)| for all r1, r2 ∈ C}. BTD
helps enforcing (k, km)-anonymity with minimal Tum, as it favors the grouping
of records with a small number of items, many of which are common.

Preventing both identity and attribute disclosure. To prevent both
types of disclosure, we propose the concept of (k, �m)-diversity, defined below.

Let G(r) be a group of records and G(r′) be a group with the same records
as G(r) projected over {R1, . . . , Rv, T

′}, where T ′ contains only the nonsensitive
items in T . G(r) is (k, �m)-diverse, if and only if G(r′) is (k, km)-anonymous,
and an attacker, who knows up to m nonsensitive items about an individual,
cannot associate any record in G(r) to any combination of sensitive items, with
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Table 1. Description of the datasets

Dataset |D| Rel. att. |dom(T )| Max, Avg # items/record

Informs 36553 5 619 17, 4.27

YouTube 131780 6 936 37, 6.51

a probability greater than 1
� . An RT -dataset D is (k, �m)-diverse, if and only if

the group G(r) of each record r ∈ D is (k, �m)-diverse.
(k, �m)-diversity forestalls identity disclosure, and, additionally, the inference

of any combination of sensitive items, based on �m-diversity [17]. Extending
our anonymization frameworks to enforce (k, �m)-diversity requires: (i) applying
Tum to nonsensitive items, and (ii) replacing the transaction generalization
function T , which enforces km-anonymity to each cluster, with one that applies
�m-diversity. The �m-diversity version of AA [17] was used as such a function.

6 Experimental Evaluation

In this section, we evaluate our algorithms in terms of data utility and efficiency,
and demonstrate the benefit of choices made in their design.

Experimental setup. We implemented all algorithms in C++ and applied
them to Informs (https://sites.google.com/site/informsdataminingcontest)
and YouTube (http://netsg.cs.sfu.ca/youtubedata) datasets, whose charac-
teristics are shown in Table 11. The default parameters were k=25, m=2, and
δ=0.65, and hierarchies were created as in [17]. Our algorithms are referred to
in abbreviated form (e.g., RmR for RmergeR) and were not compared against
prior works, since they cannot (k, km)-anonymize RT -datasets. The algorithms
that enforce (k, �m)-diversity are named after those based on (k, km)-anonymity.
All experiments ran on an Intel i5 at 2.7 GHz with 8 GB of RAM.

Data utility. We evaluated data utility on Informs and YouTube using
k=25 and k=100, respectively, and varied δ in [X, 1), where X is the NCP
of the dataset produced by Cluster, for Rum-bound, or the UL, for Tum-

bound. Data utility is captured using ARE [9,12,16], which is invariant of the
way our algorithms work and reflects the average number of records that are re-
trieved incorrectly, as part of query answers. We used workloads of 100 queries,
involving relational, transaction, or both attribute types, which retrieve random
values and/or sets of 2 items by default [9,12]. Low ARE scores imply that ano-
nymized data can be used to accurately estimate the number of co-occurrences
of relational values and items. This statistic is an important building block of
several data mining models.

Figs. 4a to 4g demonstrate the conflicting objectives of minimizing information
loss in relational and transaction attributes, and that Rum-bound can produce
useful data. By comparing Fig. 4a with 4c, and Fig. 4d with 4g, it can be seen

1
Informs contains the relational attributes {month of birth, year of birth, race, years
of education, income}, and the transaction attribute diagnosis codes. YouTube con-
tains the relational attributes {age, category, length, rate, #ratings, #comments},
and the transaction attribute related videos.

https://sites.google.com/site/informsdataminingcontest
http://netsg.cs.sfu.ca/youtubedata
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Fig. 4. ARE for queries involving (x, y) relational values and items. Figs. (a)-(c) are for
Informs; (d)-(g) for YouTube (Rum-bound). Fig. (h) is for Informs (Tum-bound).
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Fig. 5. ARE for queries involving (x, y) relational values and items. Figs. (a)-(c) are
for Informs (Rum-bound); Fig. (d) is for Informs (Tum-bound).

that a small δ forces all algorithms to incur low information loss in the relational
attributes, whereas a large δ favors the transaction attribute. Also, NCP is at
most δ, in all tested cases, and data remain useful for queries involving both
attribute types (see Figs. 4b, 4e, and 4f). We performed the same experiments for
the Tum-bound and present a subset of them in Fig. 4h. Note that, increasing
δ (i.e., the bound for UL), favors relational data, and that the information loss
in the transaction attribute is low. Similar observations can be made for the
(k, lm)-diversity algorithms (see Fig. 5).

Next, we compared RmR, RmT , and RmRT . As shown in Fig. 4, RmR in-
curred the lowest information loss in the transaction attribute, and the highest
in the relational attributes, and RmT had opposite trends. RmRT allows more
accurate query answering than RmR, in relational attributes, and than RmT , in
the transaction attribute, as it merges clusters, based on both attribute types.
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bound. UL vs. number of cluster mergings for (g) Rum-bound, and (h) Tum-bound

Similar results were obtained for YouTube (see Figs. 4d-4g), from comparing
TmT , TmR, and TmRT (see e.g., Fig. 4h), and from comparing the (k, lm)-
diversity algorithms (see Figs. 5). Figs. 6a and 6b show the size of the largest
cluster created by RmR, RmT , and RmRT , for varying δ. RmR created the
largest clusters, as it merges many clusters with similar relational values. These
clusters have low UL, as shown in Figs. 6c and 6d. Furthermore, Figs. 6a and 6c,
show that RmRT created slightly larger clusters than RmT , which have lower
UL scores. The results for TmT , TmR, and TmRT and the (k, lm)-diversity al-
gorithms were similar.

Efficiency. We studied the impact of dataset size using random subsets of
Informs, whose records were contained in all larger sets. As can be seen in
Fig. 7a, RmT outperformed RmR and RmRT , and it was more scalable, due
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to the use of the BTD measure. RmRT was the slowest, because it computes
two cluster orderings. TmT , TmR, and TmR perform similarly to RmR, RmT ,
and RmRT (their results were omitted). Fig. 7a shows the cost of Cl. We also
studied the impact of k using the largest dataset of the previous experiment.
Fig. 7b shows that the runtime of RmR, RmT , and RmRT improves with k, as
fewer clusters are merged. RmT was up to 2.2 times more efficient than RmR

and RmRT was the least efficient. Fig. 7b shows that the runtime of Cl improves
with k. The cost of the (k, lm)-diverse algorithms was similar (omitted).

Benefits of algorithmic choices. To show that BTD helps efficiency with-
out degrading data utility, we developed the baseline algorithmsRmTUL,RmTUL,
TmTUL, and TmRTUL, which do not perform the optimization of Section 5. Due
to their high runtime, a subset of Informs with 4K records was used. Observe
in Figs. 7c and 7e that RmT and RmRT have the same UL scores with their
corresponding baseline algorithms, but are at least 10 times more efficient and
scalable with respect to δ. Similar observations can be made from Figs. 7d and
7f, for TmR and TmRT . Last, we show that UL decreases monotonically, as our
algorithms merge clusters. Figs. 7g-7h show the results with δ = 1 for the dataset
used in the previous experiment. The fact that UL never increases shows that
avoiding to compute UL(T (Dtmp)) after a cluster merge does not impact data
utility but helps efficiency. The (k, lm)-diversity algorithms performed similarly.

7 Related Work

Preventing identity disclosure is crucial in many real-world applications [5,11]
and can be achieved through k-anonymity [15]. This privacy principle can be
enforced through various generalization-based algorithms (see [5] for a survey).
Thwarting attribute disclosure may additionally be needed [14,19,17], and this
can be achieved by applying other privacy models, such as l-diversity [14], to-
gether with k-anonymity.

Privacy-preserving transaction data publishing requires new privacy models
and algorithms, due to the high dimensionality and sparsity of transaction data
[19,7,17]. km-anonymity is a model for protecting transaction data against at-
tackers, who know up to m items about an individual [17]. Under this condition,
which is often satisfied in applications [17,16,11], an individual cannot be asso-
ciated with fewer than k records in the dataset. km-anonymity can be enforced
using several algorithms [17,12,8], which can be incorporated into our frame-
works. However, km-anonymity does not guarantee protection against stronger
attackers, who know that an individual is associated with exactly certain items
[17,16]. This is because, by excluding records that have exactly these items from
consideration, the attackers may be able to increase the probability of associat-
ing an individual with their record to greater than 1

k (although not necessarily
1). A recent method [20] can guard against such attackers while preserving data
utility based on a nonreciprocal recoding anonymization scheme. To thwart both
identity and attribute disclosure in transaction data publishing, [17] proposes
�m-diversity, which we also employ in our frameworks.
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Our frameworks employ generalization, which incurs lower information loss
than suppression [17] and helps preventing identity disclosure, contrary to buck-
etization [7]. Also, we seek to publish record-level and truthful data. Thus, we
do not employ ε-differential privacy [3], nor disassociation [16]. However, the
relationship between (k, km)-anonymization and relaxed differential privacy def-
initions is worth investigating to strengthen protection. For instance, Li et al.
[10] proved that safe k-anonymization algorithms, which perform data group-
ing and recoding in a differentially private way, can satisfy a relaxed version of
differential privacy when preceded by a random sampling step.

8 Conclusions

In this paper, we introduced the problem of anonymizing RT -datasets and pro-
posed the first approach to protect such datasets, along with two frameworks for
enforcing it. Three cluster-merging algorithms were developed, for each frame-
work, which preserve different aspects of data utility. Last, we showed how our
approach can be extended to prevent both identity and attribute disclosure.
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Abstract. Two fundamental tasks of mobility modeling are (1) to track
the number of distinct persons that are present at a location of interest
and (2) to reconstruct flows of persons between two or more different
locations. Stationary sensors, such as Bluetooth scanners, have been ap-
plied to both tasks with remarkable success. However, this approach has
privacy problems. For instance, Bluetooth scanners store the MAC ad-
dress of a device that can in principle be linked to a single person. Unique
hashing of the address only partially solves the problem because such a
pseudonym is still vulnerable to various linking attacks. In this paper we
propose a solution to both tasks using an extension of linear counting
sketches. The idea is to map several individuals to the same position
in a sketch, while at the same time the inaccuracies introduced by this
overloading are compensated by using several independent sketches. This
idea provides, for the first time, a general set of primitives for privacy
preserving mobility modeling from Bluetooth and similar address-based
devices.

1 Introduction

Advanced sensor technology and spread of mobile devices allows for increasingly
accurate mobility modeling and monitoring. Two specific tasks are crowd mon-
itoring, i.e., counting the number of mobile entities in an area, and flow moni-
toring between locations, i.e., counting the number of entities moving from one
place to another within a given time interval.1 Both have several applications in
event surveillance and marketing [10, 16]. Moreover, matrices containing the flow
between every pair of locations (origin-destination, or OD-matrices) are an impor-
tant tool in many GIS applications, notably traffic planning and management [3].

Today’s sensor technologies such as GPS, RFID, GSM, and Bluetooth have
revolutionized data collection in this area, although significant problems remain
to be solved. One of those problems are privacy concerns. They mandate that,
while the count of groups of people can be inferred, inference on an individual
person remains infeasible. Directly tracing IDs through the sensors violates this

1 In this paper, we use the term ‘flow’ always as a short-hand for ‘flow between two or
more locations’.
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Fig. 1. The two mobility modeling tasks addressed in this paper: (a) crowd monitoring
and (b) flow monitoring

privacy constraint, because the amount of information stored allows for linking
attacks [12]. In such an attack, sensor information is linked to additional knowl-
edge in order to identify a person and infer upon her movement behavior. Hence,
application designers have to design and use new, privacy preserving methods.

The contribution of this paper is to provide a general set of primitives for
privacy-preserving mobility monitoring and modeling using stationary sensor
devices. Following the privacy-by-design paradigm [17, 21], we present a method
that stores just enough information to perform the desired inference task and
discards the rest. Thereby, privacy constraints are much easier to enforce.

Technically, the method we propose is based on Linear Counting sketches [26],
a data structure that allows to probabilistically count the distinct amount of
unique items in the presence of duplicates. Linear Counting not only obfuscates
the individual entities by hashing, but furthermore provides a probabilistic form
of k-anonymity. This form of anonymity guarantees that, by having access to all
stored information, an attacker cannot be certain on a single individual but can
at most infer upon k individuals as a group. Furthermore, Linear Counting is
an efficient and easy to implement method that outperforms other approaches
in terms of accuracy and privacy on the cost of higher memory usage [19].

The rest of the paper is structured as follows. After discussing related work
in section 2, we describe the application scenarios in section 3. In section 4
we present our extension to the linear counting method and give a theoretical
analysis of the error. Subsequently, we analyze the privacy of our method in
section 5. In section 6 we conduct extensive experiments on the accuracy of
Linear Counting and flow estimation under different privacy requirements to
test our approach. These experiments have been carried out on a a real-world
simulation. Section 7 concludes with a discussion of the results and pointers to
future directions.

2 Related Work

The basic tool we are using in this paper are sketches (see Cormode et al. [9]
for a good general introduction). Sketches are summaries of possibly huge data
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collections that, on the one hand, discard some information for the sake of space
efficiency or privacy, but that, on the other hand, still contain enough information
to restore the current value of certain variables of interest. Sketches are a very
universal tool and have been successfully applied for inferring heavy hitters,
moments of a distribution, distinct elements, and more. The general idea of
using sketches for privacy is described in Aggarwal and Yu [1] and Mir et al.
[20]. The first relates the privacy of a sketch to the variance of the estimator.
The latter discusses privacy paradigms that go beyond differential privacy [11]
and address security as well. They use various techniques for achieving privacy,
notably adding noise. In our approach, we do not employ noise as a source of
privacy. However, due to the probabilistic nature of our method, noise has no
excessive impact on the accuracy. Hence, adding noise to improve privacy can
be combined with our method.

The crucial task in this paper is to count the number of distinct objects at a
location (see Gibbons [14] for a general overview on approaches for this problem).
The method discussed in our paper, Linear Counting, is first described in [26].
This method can be seen as a special case of Bloom filters for counting [6]. So far,
it has received relatively little attention, because it is not as space efficient as log-
space approaches such as FM sketches, and traditionally sketches have mainly
been used to provide short summaries of huge data collections. However, in the
context of privacy preservation in the mobility modeling scenarios of this paper,
space is not so much an issue as is accuracy. To this end, recently very positive
results are reported for comparisons of Linear Counting with FM sketches and
other methods [19, 15]. Especially for smaller set sizes that appear in mobility
mining, Linear Counting has often an advantage in terms of accuracy. Hence,
for our scenario, it is a promising choice.

The idea of using Linear Counting for stationary sensors, specifically Blue-
tooth measurements, recently has also been described by Gonçalves et al. [15]
and similar work for mobile devices is reported in Bergamini et al. [4]. However,
here, for the first time, we describe extensions of the basic Linear Count sketches
that can be used to monitor flows between locations as well as to compensate
for the precision loss incurred for raising privacy.

Our approach for tracking flows is based on the ability to compute the inter-
section of sketches. A general method for computing general set expressions from
sketches is described in Ganguly et al. [13]. Though highly general, the approach
is ruled out for our application because the scheme requires to store information
at the coordinator which could be used for identifying persons and thus is not
privacy aware—it should be noted that it was not build for that purpose.

3 Application Scenarios

In the following, the two application scenarios in mobility monitoring covered
by this paper are described. The general setup in both applications is using
stationary sensor devices centralizing their sensor readings at a coordinator.

In general, a well-studied approach to monitoring people in an area is to
use sensors that count the number of mobile devices in their sensor radius [14,
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15], such as Bluetooth, or GSM scanners. From the amount of mobile devices,
the actual amount of people can be accurately estimated by assuming a stable
average fraction of people carrying such a device [18].

A stationary sensor S scans periodically for devices in its sensor range. Each
device is identifiable by its address a from a global address space A. The
stream of sensor readings of a sensor S is defined by RS ⊆ A × R+ where
(a, t) ∈ RS means that S has read a device address a at time stamp t. For a mea-
surement interval T = [b, e] ⊆ R+, the readings of sensor S in this time interval
is denoted by RT

S = {a ∈ A|∃t ∈ T : (a, t) ∈ RS}. In both application scenarios,
the sensor readings are evaluated to solve the application-specific problem.

3.1 Crowd Monitoring

In major public events, such as concerts, sport events or demonstrations, con-
tinuously monitoring the amount of people in certain areas is a key tool for
maintaining security. It is vital for the prevention of overcrowding as well as for
allocating security and service personnel to the places they are needed most.

To monitor an area using stationary sensor devices, a set of sensors S =
{S1, ..., Sk} is distributed over the area such that the union of their sensor ranges
covers the complete area (see Fig. 1(a)). For a single sensor S, the count dis-
tinct of unique entities that have been present in its range during a time in-
terval T is

∣∣RT
S

∣∣. The task is then to continuously monitor at a central site the
count distinct of the union of all sensor ranges. That is, we aim to monitor
|RTi

S1
∪ ... ∪ RTi

Sk
| for consecutive measurement intervals T0, T1, T2... of a fixed

time resolution.
Note that the problem of duplicates in the sensor readings cannot be avoided

in practice because of several reasons: Covering an area with circular sensor
ranges requires overlap and the radius of each sensor range cannot be accurately
estimated beforehand. Furthermore, entities can move between sensor ranges
during a measurement interval. Thus, independent of the specific application
design, summing the distinct counts of individual sensor readings usually over-
estimate the true number of devices. Without privacy restrictions, this problem
can be solved by centralizing the read device addresses or a unique hash of them
to eliminate duplicates. However, when addresses or unique identifiers are cen-
tralized, devices can be tracked and linked to real persons, thereby violating
common privacy constraints.

To solve this problem, we use Linear Counting that has been introduced as
an accurate and privacy preserving method for estimating the number of distinct
items in the presence of duplicates. Linear counting is a sketching technique, i.e.,
the vector of sensor readings is compressed to a lower dimensional vector, the so
called sketch, in such a way that a desired quantity can still be extracted suffi-
ciently accurate from the sketch. The linear count sketch maintains privacy by
deliberately compressing the sensor readings with a certain amount of collisions,
such that a deterministic inference from a sketch to an address is impossible.
A detailed analysis of the privacy aspect is provided in section 5. The distinct
amount of people in an area covered by several overlapping sensors is estimated
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by combining the individual sketches to a sketch of the union of sensor ranges.
The method is described in section 4.1. For that, only the sketches have to be
stored and send to the coordinator so that privacy is preserved at a very basic
level. This provides two general primitives for monitoring the amount of entities
in an area: linear count sketches for privacy-preserving estimation of the count
distinct of mobile entities in a sensor radius and estimation of the distinct count
of entities in an area defined as the union of sensor ranges.

3.2 Flow Monitoring

The flow of mobile entities, such as pedestrians, cars or trains, is a key quantity
in traffic planning. Streets, rails and public transportation networks are opti-
mized for handling these flows. For a given set of locations, all flows between the
locations can be combined in the form of an origin-destination matrix. These
matrices are an important tool in traffic management [2].

Flows of mobile entities between a set of locations can be estimated using
stationary sensors [3]. For that, given a set of locations of interest, a sensor is
placed at each location (e.g., see Fig. 1(b)). For a given time period, the flow
between two locations denotes the amount of mobile entities that have been
present at one location at the beginning of that time period and present at the
other location at the end of the period. An entity is present at a location, if it
is staying within the range of the sensor placed at that location. Thus, given a
time interval at the beginning of the period, Tb, and one at the end, Te, the flow
between two sensors S and S′ is defined as v (S, S′) = |{a ∈ A | a ∈ RTb

S ∧ a ∈
RTe

S′ }|. For convenience, we assume that sensor ranges do not overlap. In the case
of overlap, this notion of flow has to be extended so that the number of mobile
devices that stayed in the intersection is handled separately.

The existing approaches to flow monitoring with stationary sensors rely on
tracing unique identifiers through the sensor network. Hence, identifying and
tracking a specific device, i.e., a specific person, is possible in monitoring sys-
tems as soon as the identifier can be linked to a person. Again, this violates
common privacy restrictions. In order to monitor flows in a privacy-preserving
manner using linear count sketches, the definition of flow is modified to be able
to express the flow as the intersection of sensor readings of different time inter-
vals. Therefore, let Tb and Te be disjoint time intervals as in the aforementioned
definition of flow, then the flow can be expressed as v (S, S′) = |RTb

S ∩ RTe

S′ |.
In section 4.2, we show how local linear count sketches can be combined in a
privacy-preserving manner to estimate the size of an intersection.

The extension to paths of arbitrary length is straightforward. Given three
consecutive, disjoint time intervals T1, T2, T3, the flow on a path S1 → S2 → S3

can be represented as |RT1

S1
∩ RT2

S2
∩ RT3

S3
|. However, the accuracy of the flow

estimation is highly dependent on the size of the intersection compared to the
original sets. Moreover, the accuracy drops drastically in the number of inter-
sections, thereby limiting the length of paths that can be monitored. To boost
the accuracy and thereby ensure applicability, we present an improved estimator
that uses a set of intermediate estimators and their mean value in section 4.3.
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An OD-matrix L for a set of locations {l1, ..., lk} is defined as the flow between
each pair of locations, i.e., L ∈ Rk×k with Lij = v (li, lj). By placing a sensor at
each location, that is, sensor Si is placed at location li, an OD-matrix L can be
estimated by Lij = v (Si, Sj). This provides another mobility mining primitive:
the estimation of flows, paths and OD-matrices based on the intersection of
sensor readings.

4 Extending Linear Counting

In this section, we present the technical solution to the application scenarios
introduced in section 3. We start by recapitulating Linear Counting sketches,
which serve as fundamental tool. In particular, for the flow-monitoring it is
necessary to extend this sketching technique to monitoring the size of an inter-
section of two or more sensor readings. For both application scenarios, privacy
preservation demands that we use basic sketches at the sensors with relatively
high variance in their estimates. This variance even increases when estimating
intersections. In order to increase the accuracy again on the output layer, we
present an improved estimator that reduces the variance by combining several
independent sketches.

4.1 From Sensors to Sketches

Given the sensor readings RT
S = {a ∈ A | ∃t ∈ T : (a, t) ∈ RS} of a sensor

S during a time interval T , the goal is to represent the number of distinct
devices observed without explicitly storing their addresses. A problem of this
kind is referred to as count distinct problem, which can be tackled by Linear
Counting sketches [26]. They have originally been introduced to estimate the
number of unique elements within a table of a relational database.

In our scenario, this means that, instead of storing all readings within a mea-
surement interval T , a sensor just maintains a binary sketch sk

(
RT

S

)
∈ {0, 1}m

of some fixed length m. The sketch is determined by a random hash map
h : A → {0, . . . ,m − 1} such that the following uniformity property holds:
for all a ∈ A and all k ∈ {0, . . . ,m − 1} it holds that P(h(a) = k) = 1/m.
For practical purposes this can be approximately achieved by choosing, e.g.,
h(a) = ((va+w) mod p) mod m, with uniform random numbers v, w ∈ N and
a fixed large prime number p. Other choices of hash functions are possible (see
e.g., Preneel [22]).

A sensor maintains its sketch as follows. At the beginning of the measurement
interval it starts with an empty sketch (0, . . . , 0), and on every address a ∈ A
read, until the end of the interval, the sketch is updated by setting the h(a)-th
position to 1. For the whole measurement interval this results in a sketch

sk
(
RT

S

)
[k] =

{
1 , if ∃a ∈ RT

S , h(a) = i

0 , otherwise
.

In our application scenarios, a global population of mobile entities P ⊆ A of
size |P| = n is monitored with a set of sensors. The size of the global population
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n is an upper bound to the number of mobile entities in a sensor reading. In
each sensor reading, a subset of the global population is captured, i.e., RT

S ⊆ P ,
thus |RT

S | ≤ |P|, or nS ≤ n (from now on we denote
∣∣RT

S

∣∣ as nS).
The number of distinct addresses within a sensor reading can then be es-

timated based on the sketch as follows. Assume a sensor reading RT
S with∣∣RT

S

∣∣ = nS and the respective sketch sk
(
RT

S

)
. Let uS denote the number of zeros

in the sketch and vS = uS/m the relative zero count. Now, the maximum like-
lihood count estimator for the number of distinct items nS is n̂S = −m lnvS .
Whang et al. [26] shows that the expected value, and the variance of this esti-
mator are asymptotically well-behaved. Here, asymptotically refers to the limit
for increasing n while the loadfactor t = n/m and the relative size cS = nS/n
of S are kept constant. With this notion of limit, that we simply denote by lim
for the remainder of this paper, the expected value and the variance can be
expressed as

limE[n̂S ] = nS + (enS/m − nS/m− 1)/2 = nS (1)

limV(n̂S) = m
(
enS/m − nS/m− 1

)
, (2)

respectively. Hence, asymptotically, the estimator is unbiased and has a bounded
variance. Standard concentration inequalities can be used to convert this result
into probabilistic error guarantees.

In the crowd monitoring scenario, the size of the global population n can
be estimated as the size of the union of all individual sensor readings. By con-
struction of the sketches, it is possible to build a sketch of the union of sensor
readings RT

S and RT
S′ by combining the individual sketches with the point-wise

binary OR operation (i.e., sk
(
RT

S

)
[k] ∨ sk

(
RT

S′
)
[k] is equal to 1 if and only if

sk
(
RT

S

)
[k] = 1 or sk

(
RT

S′
)
[k] = 1). The following statement holds:

Proposition 1 (Whang et al. [26]). Let RS1 , ...,RSk
be readings of a set of

sensors S = S1, ..., Sk. The sketch constructed from the union of these readings
can be obtained by calculating the binary or of the individual sketches. That is,

sk

(
k⋃

i=1

RSi

)
=

k∨
i=1

sk(RSi) .

This is already sufficient to continuously track the total number of distinct ad-
dresses in the crowd monitoring scenario: for a pre-determined time resolution,
the sensor nodes construct sketches of their readings, send them to a monitoring
coordinator, and start over with new sketches. As required by the application,
the coordinator can then compute the estimate of distinct counts of mobile
entities based on the OR-combination of all local sketches. However, for the
flow-monitoring scenario we have to be able to compute the number of distinct
addresses in the intersection of sensor readings. Therefore, we have to extend
the Linear Counting approach.
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4.2 Intersection Estimation

In the following, a method is presented for estimating the intersection of two sets
using linear count sketches. The sketch of the intersection cannot be constructed
from the individual sketches (note that using the binary ’and’ operation on the
two sketches does in general not result in the correct sketch of the intersection).
Therefore, this method is based on the inclusion-exclusion formula for sets. That
is, we can express the size of the intersection of two sets A,B as |A ∩ B| =
|A| + |B| − |A ∪ B|. The estimator for the intersection of two sensor ranges is
defined in a similar way, using the estimators for each sensor and their union. Let
n̂S , n̂S′ denote the estimator for

∣∣RT
S

∣∣, respectively ∣∣RT
S′
∣∣. Let furthermore n̂S∪S′

denote the estimator based on the sketch of the union of the sensor readings RT
S

andRT
S′ as defined in proposition 1. Then the intersection estimator is defined

as

ñS,S′ = n̂S + n̂S′ − n̂S∪S′ (3)

It turns out that also this estimator asymptotically is unbiased and has a bounded
variance. The first follows directly from the linearity of the expected value. Thus,
we can note:

Proposition 2. For a constant loadfactor t and constant fractions cS , c
′
S, the

estimator ñS,S′ is asymptotically unbiased, i.e., limE[ñS,S′ ]/|S ∩ S′| = 1.

Furthermore, we can bound the variance of our estimator by the variance of
the union estimator. This implies that resulting probabilistic error guarantees
become tighter the closer the ratio |S ∩ S′|/|S ∪ S′| is to one.

Proposition 3. Asymptotically, the variance of the intersection estimator ñS,S′

is bounded by the variance of the count estimator for the union, i.e., limV(ñS,S′)
≤ limV(n̂S∪S′).

Proof (sketch). For some subset A ⊆ P and a fixed sketch position k ∈ {0, . . . ,m−
1} let us denote by pA = P(sk(A)[k] = 0) the probability that the sketch of A
has entry 0 at position k. Due to the uniformity of the hash function h it holds
that pA = (1− 1/m)

nA . The limit of this probability p∗A = lim pA is equal to
lim (1− t/n)

ncA = e−t·cA . The variance of the intersection estimator can be
re-expressed in terms of the covariances σ of the individual count estimators:

V(ñS,S′) = V(n̂S + n̂S′ − n̂S∪S′)

= V(n̂S) + V(n̂S′) + V(n̂S∪S′) + 2σ(n̂S , n̂S′)

− 2σ(n̂S , n̂S∪S′)− 2σ(n̂S′ , n̂S∪S′) . (4)

In order to determine the limit of the covariances for the count estimators n̂A and
n̂B for some arbitrary subsets A,B ⊆ P we can use Whang et al. [26, Eq. (8)]
and the bi-linearity of the covariance

limσ(n̂A, n̂B) = σ(m (tcA − vA/p
∗
A − 1),m (tcB − vB/p

∗
B − 1))

= m2σ(vA,vB)/(p
∗
Ap

∗
B) = m2σ(uA/m,uB/m)/(p∗Ap

∗
B)

= σ(uA,uB)/(p
∗
Ap

∗
B) . (5)
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Let sk(A) [k] denote the binary negation of sketch position k. The co-variances
of the absolute number of zero entries uA and uB is

σ(uA,uB) =

m∑
k=1

m∑
l=1

σ
(
sk(A) [k], sk(B) [l]

)
(6)

=

m∑
k=1

σ
(
sk(A) [k], sk(B) [k]

)
+

m∑
k,l=1
k �=l

σ
(
sk(A) [k], sk(B) [l]

)
.

Let U = A ∪B and I = A ∩B. We state without proof that the co-variances of
the individual sketch positions are given by

σ
(
sk(A) [k], sk(B) [k]

)
= pU − pApB

σ
(
sk(A) [k], sk(B) [l]

)
= pA\B pA\B(1− 2/m)|I| − pApB

for the cases k = l and k �= l, respectively. From this and Eq. (6) it follows that

limσ(uA,uB) = m (p∗U − p∗Ap
∗
B) +m(m− 1)

(
p∗A\Bp

∗
B\A(1− 2/m)

|I| − p∗Ap
∗
B

)
= m

(
e−t(cA+cB−cI) − e−t(cA+cB) − cIte

−t(cA+cB)
)

,

where the second equality follows from several steps of elementary calculus that
we omit here. By Eq. (5) we can then conclude

limσ(n̂A, n̂B) = m
(
etcI − tcI − 1

)
= limV(n̂I)

Inserting this result in Eq. (4), and noting that for fixed cA ≤ cB it holds that
limV(n̂A) ≤ limV(n̂B) (see eq. (2)), in particular Var[n̂S∩S′ ] ≤ Var[n̂S ] as well
as Var[n̂S∩S′ ] ≤ Var[n̂S′ ], yields

limV(ñS,S′) = lim(V(n̂S∪S′) + 2V(n̂S∩S′)− V(n̂S)− V(n̂S′))

≤ lim(V(n̂S∪S′) + 2V(n̂S∩S′)− V(n̂S∩S′)− V(n̂S∩S′))

= limV(n̂S∪S′)

��
When estimating the flow, the intersection of the readings of sensor S in a

time interval Tb are intersected with the readings of sensor S′ in consecutive
time interval Te. Let ΔT denote the time period between those two intervals.
Then we denote the estimator for the flow between S and S′ for this time period
as ñΔT

S,S′. This method can straight-forwardly be extended to paths. The flow on

a path S1 → S2 → S3 can be represented as |RT1

S1
∩ RT3

S2
∩ RT3

S3
|. This quantity

can again be estimated using the inclusion-exclusion formula.

ñΔT
S1 S2,S3

=n̂S1 + n̂S2 + n̂S3 − n̂S1∪S2 − n̂S1∪S3 − n̂S2∪S3 + n̂S1∪S2∪S3

The drawback of estimating the flow on paths is that the accuracy decreases
drastically in the number of nodes on the path. In conclusion, we now have two
major sources of high variance. A high loadfactor that is necessary to comply
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with high privacy requirements and a large number of intersections, required to
monitor long paths. In the following a method for reducing the variance of the
estimators is presented that improves the estimation of count distinct at a single
sensor, as well as union and intersection estimation. Through this improvement,
a higher loadfactor can be chosen to increase privacy while maintaining the same
estimation accuracy. Furthermore, this improvement allows for monitoring the
flow on longer paths with sufficient accuracy.

4.3 Improved Estimator

The improved estimator is based on the idea that the average of independent
estimations of the same quantity is again an equally biased estimator with lower
variance [7]. Hence, at each sensor, not one sketch is constructed, but r different
sketches using r different and independent hash functions. This yields r different
intermediate estimates, n̂1, ..., n̂r. The improved estimator is then defined as the
mean of these intermediate estimates, i.e., η̂ = 1

r

∑r
i=1 n̂

i. The n̂1, ..., n̂r are
maximum likelihood estimators for count distinct and as such they are normally
distributed and independent with common mean and variance [24], i.e., for all
i ∈ {1, ..., r} it holds that n̂i ∼ N (E[n̂],V(n̂)). Thus, the improved estimator is
normally distributed with η̂ ∼ N

(
E[n̂], 1rV(n̂)

)
. The improved estimator has the

same expected value as the intermediate estimates, that is, it is asymptotically
unbiased, whereas the variance of the improved estimator is reduced by a factor of
1/r. Furthermore, because the intermediate estimators are normally distributed
and asymptotically unbiased, the improved estimator based on their mean is not
only again a maximum likelihood estimator for the count distinct, it is also the
uniformly minimum variance unbiased estimator and the minimum risk invariant
estimator [23].

However, in the pathological event that a sketch becomes full, i.e., un = 0,
the estimate for the count distinct based on this sketch is infinity. If only one of
the r sketches runs full, the estimator fails. This drawback can be circumvented
by using the median of the intermediate results instead of their mean. The
median is very robust to outliers but has also weaker error guarantees, i.e., to
guarantee an error not larger than ε with probability 1− δ, the mean estimator
requires r ≥ z1−δ

√
V(n̂)/ε, the median method requires r ≥ log (1/δ)/ε2 [8]

intermediate estimators. Consequently, for ε < 1, the mean estimator requires
less intermediate estimates to be as accurate as the median method.

5 Privacy Analysis

The main threat to privacy in the presented application scenarios is the so called
linking attack, i.e., an attacker infiltrates or takes over the monitoring system and
links this knowledge to background information in order to draw novel conclu-
sions. For example, in a standard monitoring system that distributes the sensor
readings, i.e., the device addresses, an attacker that knows the device address
of a certain person as background knowledge, and furthermore infiltrates the
monitoring system, is able to track this person throughout the monitored area.
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Sketching prevents these linking attacks in two ways, obfuscation and k-
anonymity. Obfuscation is accomplished by hashing the device address to sketch
positions. Hence, before an attacker is able to re-identify a device, she has to
infer the employed hash function. However, this very basic obfuscation tech-
nique can be vanquished using statistical analysis on sensor readings. The second
anonymization technique is accomplished by the natural property of sketches to
compress the address space, implicating collisions of addresses when mapped to
sketch positions. Whereas these collisions entail a loss in accuracy, they create
a form of anonymity, because an attacker can only infer upon a set of devices
whose addresses are all mapped to that very same sketch position.

Formally, a monitoring system guarantees k-anonymity (see Sweeney [25]), if
every monitored entity is indistinguishable from at least k other entities. Using
linear count sketches with a loadfactor t results in t collisions per bucket on
expectation, as implied by the uniformity property of the hash function, i.e.,

∀i ∈ {0, ...,m− 1} : E
[∣∣{a ∈ RT

S : h(a) = i}
∣∣] = t .

Hence, the expected level of anonymity is t. We denote this form of anonymity
expected k-anonymity, because the number of collisions is not deterministi-
cally guaranteed as required by regular k-anonymity. For a mathematical deriva-
tion of a similar probabilistic guarantee in the context of Bloom filters the reader
is referred to Bianchi et al. [5].

The union of sensor readings is estimated by the binary or of the individual
sketches. The binary or of a set of sketches has a loadfactor at least as high as
the individual sketches themselves. Therefore, the level of expected k-anonymity
is at least as high.

The intersection of sensor readings can contain far less device addresses than
the individual readings. A sketch that is created on the readings of the intersec-
tion has thus a lower loadfactor. Even so, the intersection estimator presented in
this paper is based on the estimators of the individual sketches and their union;
the sketch of the intersection is not constructed at all. Therefore, the level of
k-anonymity of this estimator for the intersection is again at least as high as the
anonymity of the individual sketches.

6 Experiments

In this section the empirical analysis of our method is presented. The general set
up of experiments is as follows. A set of n addresses is randomly sampled out of
a pre-defined address range (A = {1, · · · , 5×107}). Out of this set we repeatedly
sample with duplicates. The set is partitioned into k subsets S1, · · · , Sk where
Si represents the sensor readings of sensor i. For each sensor Si, a sketch ski of
size m is generated using a global hash function h for all sensors. The estimate of
sketches, their unions and intersections are then calculated as explained above.

6.1 Properties of the Estimator

For the first experiment, we simulate 3 sensors and vary the number of persons
inside the sensor range from 500 to 250,000. Results for the average ratio of
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estimator and true value and the standard deviation of the ratio are shown in
Fig. 2(a) and Fig. 2(b), respectively. The estimate is highly accurate—the error
is always below 1%. Compared to the error introduced by the inference of the
number of persons present in the area from the number of active Bluetooth
devices [18], the error is negligible.

For simple Linear Counting, these results confirm existing expectations from
theory and experimental studies. We need not go into a detailed comparison
with other sketching methods in this paper, since two recent studies [19, 15]
have done that already. One of the basic findings in these studies is that Linear
Counting gives, using a suitable loadfactor, much more accurate estimates of
the number of distinct objects than other sketching methods, e.g. FM-sketches
or sampling based methods. This holds especially for small set sizes—where a
number of 10,000 might already be considered small. For our application scenario
this is important, since the size—especially of the intersections—can decrease to
a few hundred persons. The experiment goes beyond the existing studies by
showing that for the intersection of two sets the error can also be very low with
a suitable loadfactor and that we can always set up a very accurate estimator
using Linear Counting. A significant error of the estimator comes in only because
we deliberately trade privacy against accuracy. As shown in section 5 the basic
mechanism responsible for privacy is increasing the loadfactor. We analyze this
trade-off, i.e., we investigate the impact of the loadfactor on the accuracy of
estimates of one sensor as well as of intersections of up to five sensors. We
simulate 5 sensors, and vary the loadfactor and the number of intersections. We
average the results over 2,000 runs. The results are depicted in Fig. 3(a).

(a) (b)

Fig. 2. Average estimate n̂ (a) and average standard deviation (b) relative to the true
value n for a loadfactor of 1

The results confirm that the standard error increases with the loadfactor
(Fig. 3(a), upper part), and even more rapidly with the number of intersections
(Fig. 3(a), lower part). From this experiment we conclude that simple Linear
Counting is indeed suitable for loadfactors smaller than 2 and intersection of
at most two sensors. But for higher loadfactors or more intersections the trade-
off can become unacceptable. This finding motivates the improved estimator
investigated in the following.
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(a) (b)

Fig. 3. (a) Distribution of estimates for loadfactors 0.5, 1, 2, 3, 4, 5 (upper part) and
numbers of sensors intersected, 1, 2, 3, 4, 5 with a constant loadfactor of 5 (lower part).
(b) Distribution of estimates using improved estimator with number of intermediate
estimates r set to 5 (upper left), 15, 30 and 50 (lower right).

For that, we concentrate on a loadfactor of 5, because in regular k-anonymity
5 is a common value to ensure privacy. For each sensor, we take r ∈ {5, 15, 30, 50}
different random initializations of the hash function, resulting in r different
sketches per sensor. Results, averaged over 500 runs, are shown in Fig. 3(b).
The mean of estimates reduces the variance and is close to the true value. A
good trade-off between the increase in accuracy and the higher memory require-
ments for storing multiple sketches is in the range between 15-30 sketches, since
for higher numbers of sketches the variance reduction per additional sketch be-
comes insignificant. With these results we have demonstrated how to achieve a
good trade-off between accuracy, privacy level, and memory consumption.

6.2 Real-World Simulation

To investigate the flow and crowd monitoring in a more realistic setting, we
implemented a simulation environment as follows. A random graph of k nodes
with Bernoulli Graph Distribution (p = 0.4) is generated; the position of nodes
in 2D-space is calculated using an automatic graph layout method. A number s
of node locations is attached with sensors with a predefined range. In general, a
sensor may cover more than one node and several edges. A number of n objects,
i.e. the global population, is created. For each object a random sequence of tour
stops (nodes of the graph) is generated. For every pair of tour stops the shortest
path is determined using Dijkstra’s method and inserted into the sequence be-
tween the stops. Finally, to each object a velocity, starting time and a step size
is assigned (the latter because objects are not only at the node positions, but
travel along the edges). During the simulation, for each time step the objects
follow the tour with the assigned velocity and starting time, and their position
along the edges is calculated. Each sensor monitors at each time step the objects
in its sensor range. For each sensor and time period a new sketch is calculated
and stored. As a ground truth, also the object address are stored. The simulation
stops when the last object has completed its tour.
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(a) (b)

Fig. 4. (a)Crowd simulation with Random Bernoulli Graph, 1000 persons (red dots),
5 Bluetooth sensors with overlapping range. (b) Estimated value (green dashed) and
true value (red dotted) for each sensor for the first 50 time steps.

(a)

S1 S2 S3 S4 S5

S1 0.005 0.008 0.007 0.018 0.001

S2 0.026 0.026 0.01 0.006 0.015

S3 0.004 0.003 0.016 0.002 0.014

S4 0.02 0.03 0.011 0.004 0.012

S5 0.014 0.005 0.004 0.017 0.027

(b)

Fig. 5. Flow estimation (green) and true values (red) between four sensors (a) as
well as relative error of an OD-matrix between five sensors (b). Results are from flow
simulation with 20000 persons and 5 sensors.

For the crowdmonitoring scenario, overlapping sensors are simulated. Fig. 4(a)
shows a snapshot from a simulation run. For the flow monitoring we use non-
overlapping areas. The main difference compared to the experiments discussed
in the last section is that the distribution of objects at nodes is not independent
from each other because of flow constraints along the graph. The distribution is
generated by a process very similar to real traffic flow, so that we have realistic
flow properties over time. Fig. 4(b) shows an example for crowd monitoring
with 15 nodes, 5 sensors, 1000 objects and a loadfactor of 5. Evidently, the es-
timates closely track the true values, as expected from the theoretical analysis
and the experiments reported in the last section. For the flow monitoring sce-
nario, Fig. 5(a) shows the estimate (green, dashed) and true (red, dotted) value
of the flows between 4 sensors over time. Next we simulated the OD-matrix
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construction problem. Table 5(b) shows the relative error of an OD-matrix con-
struction for 20,000 persons moving over a period of 15 time steps in a system
with 12 nodes, tracked by 5 sensors. Each sensor uses the improved estimator
with 30 sketches and a loadfactor of 5. From these results we conclude that even
for moderately sized sets, the error is very low. Overall, we conclude from the
experiments that Linear Counting behaves in the more complex setting of the
simulation as expected from a theoretical point of view and is a very promising
approach for deployment in real-world applications.

7 Discussion

In this paper we present a new, privacy aware method for estimating flows and
tracks as well as for estimating OD-matrices. This way, we extended the Linear
Counting approach to a general set of primitives for privacy-preserving mobility
modeling. We show theoretically and empirically that two challenging application
scenarios can be solved using and combining this set of primitives. To compensate
the accuracy deficit of Linear Counting for strict privacy requirements we present
a method for increasing the accuracy, while maintaining the privacy. This method
is also applicable to boost accuracy in flow estimation, allowing to monitor even
tracks.

In contrast to many privacy-preserving approaches, this one is easy to im-
plement, has excellent accuracy and can be implemented efficiently. Our experi-
ments suggest that it is immensely useful in a practical settings and can have a
real impact on how stationary sensor based data collection is done.

While being accurate on count distinct and flow estimation, even for strict pri-
vacy, the accuracy of our method drops drastically with the length of monitored
tracks. The improved estimator can compensate this drop to a certain level.
However, experiments show that estimating tracks of length greater 5 leads to
large errors. Therefore, we recommend using our method on count distinct and
flows. When monitoring tracks, depending on their length, a user might have to
reduce privacy requirements in order to maintain a certain accuracy.

The main drawback of Linear Counting when compared to other sketching
techniques is the memory usage. Most sketching techniques, e.g., FM Sketches,
use memory logarithmic in the number of items it estimates. The linear count
sketches, however, have linear memory usage, leading to potentially large sketches.
Fortunately, stationary sensors usually can be equipped with large memory (e.g.,
32GB flash memory). Hence, this is unproblematic for our application scenarios.
Still, the memory footprint can become problematic, because communication is
in general costly. If large sketches have to be send very frequently, communi-
cation costs can become significant, or sketch sizes might even exceed network
capacities.

In follow up research, we want to tackle the general problem of communica-
tion costs when using stationary sensors. However, when monitoring non-linear
functions, like the union or intersection of sets, this task is not trivial. The LIFT-
approach provides a framework for communication reduction in distributed sys-
tems, allowing communication efficient monitoring of non-linear functions. We
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want to apply the LIFT-approach to our monitoring system and test the benefits
of employing the LIFT-approach in a real-world experiment.
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Abstract. In security-sensitive applications, the success of machine
learning depends on a thorough vetting of their resistance to adversarial
data. In one pertinent, well-motivated attack scenario, an adversary may
attempt to evade a deployed system at test time by carefully manipu-
lating attack samples. In this work, we present a simple but effective
gradient-based approach that can be exploited to systematically assess
the security of several, widely-used classification algorithms against eva-
sion attacks. Following a recently proposed framework for security eval-
uation, we simulate attack scenarios that exhibit different risk levels for
the classifier by increasing the attacker’s knowledge of the system and her
ability to manipulate attack samples. This gives the classifier designer
a better picture of the classifier performance under evasion attacks, and
allows him to perform a more informed model selection (or parameter
setting). We evaluate our approach on the relevant security task of mal-
ware detection in PDF files, and show that such systems can be easily
evaded. We also sketch some countermeasures suggested by our analysis.

Keywords: adversarial machine learning, evasion attacks, support vec-
tor machines, neural networks.

1 Introduction

Machine learning is being increasingly used in security-sensitive applications
such as spam filtering, malware detection, and network intrusion detection [3, 5,
9, 11, 14–16, 19, 21]. Due to their intrinsic adversarial nature, these applications
differ from the classical machine learning setting in which the underlying data
distribution is assumed to be stationary. To the contrary, in security-sensitive
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applications, samples (and, thus, their distribution) can be actively manipulated
by an intelligent, adaptive adversary to confound learning; e.g., to avoid detec-
tion, spam emails are often modified by obfuscating common spam words or
inserting words associated with legitimate emails [3, 9, 16, 19]. This has led to
an arms race between the designers of learning systems and their adversaries,
which is evidenced by the increasing complexity of modern attacks and coun-
termeasures. For these reasons, classical performance evaluation techniques are
not suitable to reliably assess the security of learning algorithms, i.e., the per-
formance degradation caused by carefully crafted attacks [5].

To better understand the security properties of machine learning systems
in adversarial settings, paradigms from security engineering and cryptography
have been adapted to the machine learning field [2, 5, 14]. Following common
security protocols, the learning system designer should use proactive protection
mechanisms that anticipate and prevent the adversarial impact. This requires
(i) finding potential vulnerabilities of learning before they are exploited by the
adversary; (ii) investigating the impact of the corresponding attacks (i.e., eval-
uating classifier security); and (iii) devising appropriate countermeasures if an
attack is found to significantly degrade the classifier’s performance.

Two approaches have previously addressed security issues in learning. The
min-max approach assumes the learner and attacker’s loss functions are an-
tagonistic, which yields relatively simple optimization problems [10, 12]. A more
general game-theoretic approach applies for non-antagonistic losses; e.g., a spam
filter wants to accurately identify legitimate email while a spammer seeks to
boost his spam’s appeal. Under certain conditions, such problems can be solved
using a Nash equilibrium approach [7, 8]. Both approaches provide a secure
counterpart to their respective learning problems; i.e., an optimal anticipatory
classifier.

Realistic constraints, however, are too complex and multi-faceted to be incor-
porated into existing game-theoretic approaches. Instead, we investigate the vul-
nerabilities of classification algorithms by deriving evasion attacks in which the
adversary aims to avoid detection by manipulating malicious test samples.1 We
systematically assess classifier security in attack scenarios that exhibit increas-
ing risk levels, simulated by increasing the attacker’s knowledge of the system
and her ability to manipulate attack samples. Our analysis allows a classifier
designer to understand how the classification performance of each considered
model degrades under attack, and thus, to make more informed design choices.

The problem of evasion at test time was addressed in prior work, but limited
to linear and convex-inducing classifiers [9, 19, 22]. In contrast, the methods
presented in Sections 2 and 3 can generally evade linear or non-linear classifiers
using a gradient-descent approach inspired by Golland’s discriminative direc-
tions technique [13]. Although we focus our analysis on widely-used classifiers
such as Support Vector Machines (SVMs) and neural networks, our approach is
applicable to any classifier with a differentiable discriminant function.

1 Note that other kinds of attacks are possible, e.g., if the adversary can manipulate
the training data. A comprehensive taxonomy of attacks can be found in [2, 14].
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This paper is organized as follows. We present the evasion problem in Sec-
tion 2 and our gradient-descent approach in Section 3. In Section 4 we first
visually demonstrate our attack on the task of handwritten digit recognition,
and then show its effectiveness on a realistic application related to the detection
of PDF malware. Finally in Section 5, we summarize our contributions, discuss
possibilities for improving security, and suggest future extensions of this work.

2 Optimal Evasion at Test Time

We consider a classification algorithm f : X �→ Y that assigns samples repre-
sented in some feature space x ∈ X to a label in the set of predefined classes
y ∈ Y = {−1,+1}, where −1 (+1) represents the legitimate (malicious) class.
The classifier f is trained on a dataset D = {xi, yi}ni=1 sampled from an under-
lying distribution p(X, Y ). The label yc = f(x) given by a classifier is typically
obtained by thresholding a continuous discriminant function g : X �→ R. In the
sequel, we use yc to refer to the label assigned by the classifier as opposed to the
true label y. We further assume that f(x) = −1 if g(x) < 0, and +1 otherwise.

2.1 Adversary Model

To motivate the optimal attack strategy for evasion, it is necessary to disclose
one’s assumptions of the adversary’s knowledge and ability to manipulate the
data. To this end, we exploit a general model of the adversary that elucidates spe-
cific assumptions about adversary’s goal, knowledge of the system, and capability
to modify the underlying data distribution. The considered model is part of a
more general framework investigated in our recent work [5], which subsumes eva-
sion and other attack scenarios. This model can incorporate application-specific
constraints in the definition of the adversary’s capability, and can thus be ex-
ploited to derive practical guidelines for developing the optimal attack strategy.

Adversary’s goal. As suggested by Laskov and Kloft [17], the adversary’s
goal should be defined in terms of a utility (loss) function that the adversary
seeks to maximize (minimize). In the evasion setting, the attacker’s goal is to
manipulate a single (without loss of generality, positive) sample that should be
misclassified. Strictly speaking, it would suffice to find a sample x such that
g(x) < −ε for any ε > 0; i.e., the attack sample only just crosses the decision
boundary.2 Such attacks, however, are easily thwarted by slightly adjusting the
decision threshold. A better strategy for an attacker would thus be to create a
sample that is misclassified with high confidence; i.e., a sample minimizing the
value of the classifier’s discriminant function, g(x), subject to some feasibility
constraints.

Adversary’s knowledge. The adversary’s knowledge about her targeted learn-
ing system may vary significantly. Such knowledge may include:

2 This is also the setting adopted in previous work [9, 19, 22].
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– the training set or part of it;
– the feature representation of each sample; i.e., how real objects such as

emails, network packets are mapped into the classifier’s feature space;
– the type of a learning algorithm and the form of its decision function;
– the (trained) classifier model; e.g., weights of a linear classifier;
– or feedback from the classifier; e.g., classifier labels for samples chosen by

the adversary.

Adversary’s capability. In the evasion scenario, the adversary’s capability is
limited to modifications of test data; i.e.altering the training data is not allowed.
However, under this restriction, variations in attacker’s power may include:

– modifications to the input data (limited or unlimited);
– modifications to the feature vectors (limited or unlimited);
– or independent modifications to specific features (the semantics of the input

data may dictate that certain features are interdependent).

Most of the previous work on evasion attacks assumes that the attacker can
arbitrarily change every feature [8, 10, 12], but they constrain the degree of
manipulation, e.g., limiting the number of modifications, or their total cost.
However, many real domains impose stricter restrictions. For example, in the
task of PDF malware detection [20, 24, 25], removal of content is not feasible,
and content addition may cause correlated changes in the feature vectors.

2.2 Attack Scenarios

In the sequel, we consider two attack scenarios characterized by different levels
of adversary’s knowledge of the attacked system discussed below.

Perfect knowledge (PK). In this setting, we assume that the adversary’s goal
is to minimize g(x), and that she has perfect knowledge of the targeted classifier;
i.e., the adversary knows the feature space, the type of the classifier, and the
trained model. The adversary can transform attack points in the test data but
must remain within a maximum distance of dmax from the original attack sample.
We use dmax as parameter in our evaluation to simulate increasingly pessimistic
attack scenarios by giving the adversary greater freedom to alter the data.

The choice of a suitable distance measure d : X × X �→ R+ is application
specific [9, 19, 22]. Such a distance measure should reflect the adversary’s effort
required to manipulate samples or the cost of these manipulations. For example,
in spam filtering, the attacker may be bounded by a certain number of words
she can manipulate, so as not to lose the semantics of the spam message.

Limited knowledge (LK). Here, we again assume that the adversary aims to
minimize the discriminant function g(x) under the same constraint that each
transformed attack point must remain within a maximum distance of dmax from
the corresponding original attack sample. We further assume that the attacker
knows the feature representation and the type of the classifier, but does not know
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either the learned classifier f or its training data D, and hence can not directly
compute g(x). However, we assume that she can collect a surrogate dataset
D′ = {x̂i, ŷi}nq

i=1 of nq samples drawn from the same underlying distribution
p(X, Y ) from which D was drawn. This data may be collected by an adversary in
several ways; e.g., by sniffing some network traffic during the classifier operation,
or by collecting legitimate and spam emails from an alternate source.

Under this scenario, the adversary proceeds by approximating the discrimi-
nant function g(x) as ĝ(x), where ĝ(x) is the discriminant function of a surrogate

classifier f̂ learnt on D′. The amount of the surrogate data, nq, is an attack pa-

rameter in our experiments. Since the adversary wants her surrogate f̂ to closely
approximate the targeted classifier f , it stands to reason that she should learn
f̂ using the labels assigned by the targeted classifier f , when such feedback is
available. In this case, instead of using the true class labels ŷi to train f̂ , the
adversary can query f with the samples of D′ and subsequently learn using the
labels ŷci = f(x̂i) for each xi.

2.3 Attack Strategy

Under the above assumptions, for any target malicious sample x0 (the adver-
sary’s desired instance), an optimal attack strategy finds a sample x∗ to minimize
g(·) or its estimate ĝ(·), subject to a bound on its distance3 from x0:

x∗ = argmin
x

ĝ(x) (1)

s.t. d(x,x0) ≤ dmax.

Generally, this is a non-linear optimization problem. One may approach it
with many well-known techniques, like gradient descent, or quadratic techniques
such as Newton’s method, BFGS, or L-BFGS. We choose a gradient-descent
procedure. However, ĝ(x) may be non-convex and descent approaches may not
achieve a global optima. Instead, the descent path may lead to a flat region
(local minimum) outside of the samples’ support (i.e., where p(x) ≈ 0) where
the attack sample may or may not evade depending on the behavior of g in this
unsupported region (see left and middle plots in Figure 1).

Locally optimizing ĝ(x) with gradient descent is particularly susceptible to
failure due to the nature of a discriminant function. Besides its shape, for many
classifiers, g(x) is equivalent to a posterior estimate p(yc = −1|x); e.g., for neural
networks, and SVMs [23]. The discriminant function does not incorporate the
evidence we have about the data distribution, p(x), and thus, using gradient
descent to optimize Eq. 1 may lead into unsupported regions (p(x) ≈ 0). Because
of the insignificance of these regions, the value of g is relatively unconstrained
by criteria such as risk minimization. This problem is compounded by our finite

3 One can also incorporate additional application-specific constraints on the attack
samples. For instance, the box constraint 0 ≤ xf ≤ 1 can be imposed if the f th

feature is normalized in [0, 1], or x0
f ≤ xf can be used if the f th feature of the target

x0 can be only incremented.
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g(x) − λ p(x|yc=−1), λ=0
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Fig. 1. Different scenarios for gradient-descent-based evasion procedures. In each, the
function g(x) of the learned classifier is plotted with a color map with high values
(red-orange-yellow) for the malicious class, and low values (green-cyan-blue) for the
legitimate class. The decision boundary is shown in black. For every malicious sample,
we plot the gradient descent path against a classifier with a closed boundary around
the malicious class (top-left) and against a classifier with a closed boundary around
the benign class (top-right). Finally, we plot the modified objective function of Eq. (2)
and the resulting descent paths against a classifier with a closed boundary around the
benign class (bottom).

(and possibly small) training set, since it provides little evidence in these regions
to constrain the shape of g. Thus, when our gradient descent procedure produces
an evasion example in these regions, the attacker cannot be confident that this
sample will actually evade the corresponding classifier. Therefore, to increase the
probability of successful evasion, the attacker should favor attack points from
densely populated regions of legitimate points, where the estimate ĝ(x) is more
reliable (closer to the real g(x)), and tends to become negative in value.

To overcome this shortcoming, we introduce an additional component into
our attack objective, which estimates p(x|yc = −1) using a density estimator.
This term acts as a penalizer for x in low density regions and is weighted by a
parameter λ ≥ 0 yielding the following modified optimization problem:

argmin
x

F (x) = ĝ(x)− λ

n

∑
i|yc

i=−1

k
(
x−xi

h

)
(2)

s.t. d(x,x0) ≤ dmax , (3)

where h is a bandwidth parameter for a kernel density estimator (KDE), and
n is the number of benign samples (yc = −1) available to the adversary. This
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Algorithm 1. Gradient-descent evasion attack

Input: x0, the initial attack point; t, the step size; λ, the trade-off parameter; ε > 0 a
small constant.
Output: x∗, the final attack point.

1: m ← 0.
2: repeat
3: m ← m+ 1
4: Set ∇F (xm−1) to a unit vector aligned with ∇g(xm−1)− λ∇p(xm−1|yc = −1).
5: xm ← xm−1 − t∇F (xm−1)
6: if d(xm,x0) > dmax then
7: Project xm onto the boundary of the feasible region.
8: end if
9: until F (xm)− F

(
xm−1

)
< ε

10: return: x∗ = xm

alternate objective trades off between minimizing ĝ(x) (or p(yc = −1|x)) and
maximizing the estimated density p(x|yc = −1). The extra component favors
attack points that imitate features of known legitimate samples. In doing so, it
reshapes the objective function and thereby biases the resulting gradient descent
towards regions where the negative class is concentrated (see the bottom plot
in Fig. 1). This produces a similar effect to that shown by mimicry attacks in
network intrusion detection [11].4 For this reason, although our setting is rather
different, in the sequel we refer to this extra term as the mimicry component.

Finally, we point out that, when mimicry is used (λ > 0), our gradient de-
scent clearly follows a suboptimal path compared to the case when only g(x) is
minimized (λ = 0). Therefore, more modifications may be required to reach the
same value of g(x) attained when λ = 0. However, as previously discussed, when
λ = 0, our descent approach may terminate at a local minimum where g(x) > 0,
without successfully evading detection. This behavior can thus be qualitatively
regarded as a trade-off between the probability of evading the targeted classifier
and the number of times that the adversary must modify her samples.

3 Gradient Descent Attacks

Algorithm 1 solves the optimization problem in Eq. 2 via gradient descent. We
assume g(x) to be differentiable almost everywhere (subgradients may be used
at discontinuities). However, note that if g is non-differentiable or insufficiently
smooth, one may still use the mimicry / KDE term of Eq. (2) as a search
heuristic. This investigation is left to future work.

4 Mimicry attacks [11] consist of camouflaging malicious network packets to evade
anomaly-based intrusion detection systems by mimicking the characteristics of the
legitimate traffic distribution.
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Fig. 2. The architecture of a multi-layer perceptron with a single hidden layer

3.1 Gradients of Discriminant Functions

Linear classifiers. Linear discriminant functions are g(x) = 〈w,x〉 + b where
w ∈ Rd is the feature weights and b ∈ R is the bias. Its gradient is ∇g(x) = w.

Support vector machines. For SVMs, g(x) =
∑

i αiyik(x,xi)+ b. The gradi-
ent is thus∇g(x) =

∑
i αiyi∇k(x,xi). In this case, the feasibility of our approach

depends on whether the kernel gradient ∇k(x,xi) is computable as it is for
many numeric kernels. For instance, the gradient of the RBF kernel, k(x,xi) =
exp{−γ‖x− xi‖2}, is ∇k(x,xi) = −2γ exp{−γ‖x− xi‖2}(x − xi), and for the
polynomial kernel, k(x,xi) = (〈x,xi〉+ c)p, it is ∇k(x,xi) = p(〈x,xi〉+ c)p−1xi.

Neural networks. For a multi-layer perceptron with a single hidden layer of
m neurons and a sigmoidal activation function, we decompose its discriminant
function g as follows (see Fig. 2): g(x) = (1+e−h(x))−1, h(x) =

∑m
k=1 wkδk(x)+b,

δk(x) = (1 + e−hk(x))−1, hk(x) =
∑d

j=1 vkjxj + bk. From the chain rule, the ith

component of ∇g(x) is thus given by:

∂g
∂xi

= ∂g
∂h

∑m
k=1

∂h
∂δk

∂δk
∂hk

∂hk

∂xi
= g(x)(1 − g(x))

∑m
k=1 wkδk(x)(1 − δk(x))vki .

3.2 Gradients of Kernel Density Estimators

Similarly to SVMs, the gradient of kernel density estimators depends on the
kernel gradient. We consider generalized RBF kernels of the form k

(
x−xi

h

)
=

exp
(
− d(x,xi)

h

)
, where d(·, ·) is any suitable distance function. Here we use the

same distance d(·, ·) defined in Eq. (3), but, in general, they can be different. For
�2- and �1-norms (i.e., RBF and Laplacian kernels), the KDE (sub)gradients are
respectively given by:

− 2
nh

∑
i|yc

i=−1 exp
(
− ‖x−xi‖2

2

h

)
(x− xi) ,

− 1
nh

∑
i|yc

i=−1 exp
(
− ‖x−xi‖1

h

)
(x− xi) .
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Note that the scaling factor here is proportional to O( 1
nh ). Therefore, to in-

fluence gradient descent with a significant mimicking effect, the value of λ in
the objective function should be chosen such that the value of λ

nh is comparable
with (or higher than) the range of values of the discriminant function ĝ(x).

3.3 Descent in Discrete Spaces

In discrete spaces, gradient approaches travel through infeasible portions of the
feature space. In such cases, we need to find a feasible neighbor x that maximally
decrease F (x). A simple approach to this problem is to probe F at every point
in a small neighborhood of x, which would however require a large number of
queries. For classifiers with a differentiable decision function, we can instead
select the neighbor whose change best aligns with ∇F (x) and decreases the
objective function; i.e., to prevent overshooting a minimum.

4 Experiments

In this section, we first report a toy example from the MNIST handwritten
digit classification task [18] to visually demonstrate how the proposed algorithm
modifies digits to mislead classification. We then show the effectiveness of the
proposed attack on a more realistic and practical scenario: the detection of mal-
ware in PDF files.

4.1 A Toy Example on Handwritten Digits

Similar to Globerson and Roweis [12], we consider discriminating between two
distinct digits from the MNIST dataset [18]. Each digit example is represented
as a gray-scale image of 28 × 28 pixels arranged in raster-scan-order to give
feature vectors of d = 28× 28 = 784 values. We normalized each feature (pixel)
x ∈ [0, 1]d by dividing its value by 255, and we constrained the attack samples
to this range. Accordingly, we optimized Eq. (2) subject to 0 ≤ xf ≤ 1 for all f .

We only consider the perfect knowledge (PK) attack scenario. We used the
Manhattan distance (�1-norm), d, both for the kernel density estimator (i.e.,
a Laplacian kernel) and for the constraint d(x,x0) ≤ dmax in Eq. (3), which
bounds the total difference between the gray level values of the original image
x0 and the attack image x. We used dmax = 5000

255 to limit the total gray-level
change to 5000. At each iteration, we increased the �1-norm value of x − x0 by
10
255 , or equivalently, we changed the total gray level by 10. This is effectively
the gradient step size. The targeted classifier was an SVM with the linear kernel
and C = 1. We randomly chose 100 training samples and applied the attacks to
a correctly-classified positive sample.

In Fig. 3 we illustrate gradient attacks in which a “3” is to be misclassified
as a “7”. The left image shows the initial attack point, the middle image shows
the first attack image misclassified as legitimate, and the right image shows the
attack point after 500 iterations. When λ = 0, the attack images exhibit only
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Fig. 3. Illustration of the gradient attack on the digit data, for λ = 0 (top row) and
λ = 10 (bottom row). Without a mimicry component (λ = 0) gradient descent quickly
decreases g but the resulting attack image does not resemble a “7”. In contrast, the
attack minimizes g slower when mimicry is applied (λ = 0) but the final attack image
closely resembles a mixture between “3” and “7”, as the term “mimicry” suggests.

a weak resemblance to the target class “7” but are, nevertheless, reliably mis-
classified. This is the same effect demonstrated in the top-left plot of Fig. 1: the
classifier is evaded by making the attack sample sufficiently dissimilar from the
malicious class. Conversely, when λ = 10, the attack images strongly resemble
the target class because the mimicry term favors samples that are more similar
to the target class. This is the same effect seen in the bottom plot of Fig. 1.

Finally note that, as expected, g(x) tends to decrease more gracefully when
mimicry is used, as we follow a suboptimal descent path. Since the targeted
classifier can be easily evaded when λ = 0, exploiting the mimicry component
would not be the optimal choice in this case. However, in the case of limited
knowledge, as discussed at the end of Section 2.3, mimicry may allow us to
trade for a higher probability of evading the targeted classifier, at the expense
of a higher number of modifications.

4.2 Malware Detection in PDF Files

We now focus on the task of discriminating between legitimate and malicious
PDF files, a popular medium for disseminating malware [26]. PDF files are excel-
lent vectors for malicious-code, due to their flexible logical structure, which can
described by a hierarchy of interconnected objects. As a result, an attack can be
easily hidden in a PDF to circumvent file-type filtering. The PDF format fur-
ther allows a wide variety of resources to be embedded in the document including
JavaScript, Flash, and even binary programs. The type of the embedded ob-
ject is specified by keywords, and its content is in a data stream. Several recent
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works proposed machine-learning techniques for detecting malicious PDFs using
the file’s logical structure to accurately identify the malware [20, 24, 25]. In this
case study, we use the feature representation of Maiorca et al. [20] in which each
feature corresponds to the tally of occurrences of a given keyword.

The PDF structure imposes natural constraints on attacks. Although it is
difficult to remove an embedded object (and its keywords) from a PDF without
corrupting the PDF’s file structure, it is rather easy to insert new objects (and,
thus, keywords) through the addition of a new version to the PDF file [1]. In our
feature representation, this is equivalent to allowing only feature increments, i.e.,
requiring x0 ≤ x as an additional constraint in the optimization problem given
by Eq. (2). Further, the total difference in keyword counts between two samples
is their Manhattan distance, which we again use for the kernel density estimator
and the constraint in Eq. (3). Accordingly, dmax is the maximum number of
additional keywords that an attacker can add to the original x0.

Experimental setup. For experiments, we used a PDF corpus with 500 mali-
cious samples from the Contagio dataset5 and 500 benign samples collected from
the web. We randomly split the data into five pairs of training and testing sets
with 500 samples each to average the final results. The features (keywords) were
extracted from each training set as described in [20]. On average, 100 keywords
were found in each run. Further, we also bounded the maximum value of each
feature to 100, as this value was found to be close to the 95th percentile for each
feature. This limited the influence of outlying samples.

We simulated the perfect knowledge (PK) and the limited knowledge (LK)
scenarios described in Section 2.1. In the LK case, we set the number of samples
used to learn the surrogate classifier to ng = 100. The reason is to demonstrate
that even with a dataset as small as the 20% of the original training set size,
the adversary may be able to evade the targeted classifier with high reliability.
Further, we assumed that the adversary uses feedback from the targeted classifier
f ; i.e., the labels ŷci = f(x̂i) for each surrogate sample x̂i ∈ D′.6

As discussed in Section 3.2, the value of λ is chosen according to the scale of
the discriminant function g(x), the bandwidth parameter h of the kernel density
estimator, and the number of legitimate samples n in the surrogate training
set. For computational reasons, to estimate the value of the KDE at x, we only
consider the 50 nearest (legitimate) training samples to x; therefore, n ≤ 50 in
our case. The bandwidth parameter was set to h = 10, as this value provided
a proper rescaling of the Manhattan distances observed in our dataset for the
KDE. We thus set λ = 500 to be comparable with O(nh).

For each targeted classifier and training/testing pair, we learned five surrogate
classifiers by randomly selecting ng samples from the test set, and we averaged
their results. For SVMs, we sought a surrogate classifier that would correctly
match the labels from the targeted classifier; thus, we used parameters C = 100,
and γ = 0.1 (for the RBF kernel) to heavily penalize training errors.

5 http://contagiodump.blogspot.it
6 Similar results were also obtained using the true labels (without relabeling), since
the targeted classifiers correctly classified almost all samples in the test set.

http://contagiodump.blogspot.it
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Fig. 4. Experimental results for SVMs with linear and RBF kernel (first and sec-
ond row), and for neural networks (third row). We report the FN values (attained at
FP=0.5%) for increasing dmax. For the sake of readability, we report the average FN
value ± half standard deviation (shown with error bars). Results for perfect (PK) and
limited (LK) knowledge attacks with λ = 0 (without mimicry) are shown in the first
column, while results with λ = 500 (with mimicry) are shown in the second column.
In each plot we considered different values of the classifier parameters, i.e., the regu-
larization parameter C for the linear SVM, the kernel parameter γ for the SVM with
RBF kernel, and the number of neurons m in the hidden layer for the neural network,
as reported in the plot title and legend.
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Experimental results. We report our results in Figure 4, in terms of the
false negative (FN) rate attained by the targeted classifiers as a function of
the maximum allowable number of modifications, dmax ∈ [0, 50]. We compute
the FN rate corresponding to a fixed false positive (FP) rate of FP= 0.5%. For
dmax = 0, the FN rate corresponds to a standard performance evaluation using
unmodified PDFs. As expected, the FN rate increases with dmax as the PDF is
increasingly modified. Accordingly, a more secure classifier will exhibit a more
graceful increase of the FN rate.

Results for λ = 0. We first investigate the effect of the proposed attack in the
PK case, without considering the mimicry component (Figure 4, first column),
for varying parameters of the considered classifiers. The linear SVM (Figure 4,
top-left plot) is almost always evaded with as few as 5 to 10 modifications, in-
dependent of the regularization parameter C. It is worth noting that attacking
a linear classifier amounts to always incrementing the value of the same highest-
weighted feature (corresponding to the /Linearized keyword in the majority of
the cases) until it reaches its upper bound. This continues with the next highest
weighted non-bounded feature until termination. This occurs simply because the
gradient of g(x) does not depend on x for a linear classifier (see Section 3.1).
With the RBF kernel (Figure 4, middle-left plot), SVMs exhibit a similar be-
havior with C = 1 and various values of its γ parameter,7 and the RBF SVM
provides a higher degree of security compared to linear SVMs (cf. top-left plot
and middle-left plot in Figure 4). Interestingly, compared to SVMs, neural net-
works (Figure 4, bottom-left plot) seem to be much more robust against the
proposed evasion attack. This behavior can be explained by observing that the
decision function of neural networks may be characterized by flat regions (i.e.,
regions where the gradient of g(x) is close to zero). Hence, the gradient descent
algorithm based solely on g(x) essentially stops after few attack iterations for
most of the malicious samples, without being able to find a suitable attack.

In the LK case, without mimicry, classifiers are evaded with a probability
only slightly lower than that found in the PK case, even when only ng = 100
surrogate samples are used to learn the surrogate classifier. This aspect highlights
the threat posed by a skilled adversary with incomplete knowledge: only a small
set of samples may be required to successfully attack the target classifier using
the proposed algorithm.

Results for λ = 500. When mimicry is used (Figure 4, second column), the
success of the evasion of linear SVMs (with C = 1) decreases both in the PK
(e.g., compare the blue curve in the top-left plot with the solid blue curve in the
top-right plot) and LK case (e.g., compare the dashed red curve in the top-left
plot with the dashed blue curve in the top-right plot). The reason is that the
computed direction tends to lead to a slower descent; i.e., a less direct path that
often requires more modifications to evade the classifier. In the non-linear case
(Figure 4, middle-right and bottom-right plot), instead, mimicking exhibits some
beneficial aspects for the attacker, although the constraint on feature addition

7 We also conducted experiments using C = 0.1 and C = 100, but did not find
significant differences compared to the presented results using C = 1.
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may make it difficult to properly mimic legitimate samples. In particular, note
how the targeted SVMs with RBF kernel (with C = 1 and γ = 1) in the PK case
(e.g., compare the solid blue curve in the middle-left plot with the solid blue curve
in the middle-right plot) is evaded with a significantly higher probability than
in the case of λ = 0. The reason is that, as explained at the end of Section 2.3, a
pure descent strategy on g(x) may find local minima (i.e., attack samples) that
do not evade detection, while the mimicry component biases the descent towards
regions of the feature space more densely populated by legitimate samples, where
g(x) eventually attains lower values. For neural networks, this aspect is even more
evident, in both the PK and LK settings (compare the dashed/solid curves in
the bottom-left plot with those in the bottom-right plot), since g(x) is essentially
flat far from the decision boundary, and thus pure gradient descent on g can not
even commence for many malicious samples, as previously mentioned. In this
case, the mimicry term is thus critical for finding a reasonable descent path to
evasion.

Discussion. Our attacks raise questions about the feasibility of detecting ma-
licious PDFs solely based on logical structure. We found that /Linearized,
/OpenAction, /Comment, /Root and /PageLayout were among the most com-
monly manipulated keywords. They indeed are found mainly in legitimate PDFs,
but can be easily added to malicious PDFs by the versioning mechanism. The
attacker can simply insert comments inside the malicious PDF file to augment
its /Comment count. Similarly, she can embed legitimate OpenAction code to add
/OpenAction keywords or add new pages to insert /PageLayout keywords.

5 Conclusions, Limitations and Future Work

In this work we proposed a simple algorithm for evasion of classifiers with dif-
ferentiable discriminant functions. We investigated the attack effectiveness in
the case of perfect and limited knowledge of the attacked system, and empir-
ically showed that very popular classification algorithms (in particular, SVMs
and neural networks) can still be evaded with high probability even if the adver-
sary can only learn a copy of the classifier from a small surrogate dataset. Thus,
our investigation raises important questions on whether such algorithms can be
reliably employed in security-sensitive applications.

We believe that the proposed attack formulation can be extended to classifiers
with non-differentiable discriminant functions as well, such as decision trees and
k-nearest neighbors; e.g., by defining suitable search heuristics similar to our
mimicry term to minimize g(x).

Interestingly our analysis also suggests improvements for classifier security.
From Fig. 1, it is clear that a tighter enclosure of the legitimate samples increas-
ingly forces the adversary to mimic the legitimate class, which may not always
be possible; e.g., malicious network packets or PDF files must contain a valid
exploit for the attack to be successful. Accordingly, more secure classifiers can be
designed by employing regularization terms that promote enclosure of the legit-
imate class; e.g., by penalizing “blind spots” - regions with low p(x) - classified
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as legitimate. Alternatively, one may explicitly model the attack distribution,
as in [4]; or add the generated attack samples to the training set. Nevertheless,
improving security probably must be balanced with a higher FP rate.

In our example applications, the feature representations could be inverted to
obtain a corresponding real-world objects (e.g., spam emails, or PDF files); i.e., it
is straightforward to manipulate the given real-world object to obtain the desired
feature vector x∗ of the optimal attack. However, in practice some complex
feature mappings can not be easily inverted; e.g., n-gram features [11]. Another
idea would be to modify the real-world object at each step of the gradient descent
to obtain a sample in the feature space which is as close as possible to the sample
that would be obtained at the next attack iteration. A similar technique has been
already exploited by [6] to overcome the pre-image problem.

Other interesting extensions of our work may be to (i) consider more effective
strategies such as those proposed by [19, 22] to build a small but representative
set of surrogate data; and (ii) improve the classifier estimate ĝ(x). To this end,
one may exploit ensemble techniques such as bagging or the random subspace
method to train several classifiers and then average their output.
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25. Šrndić, N., Laskov, P.: Detection of malicious pdf files based on hierarchical doc-
ument structure. In: Proc. 20th Annual Net. & Dist. Sys. Sec. Symp. (2013)

26. Young, R.: 2010 IBM X-force mid-year trend & risk report. Tech. rep., IBM (2010)



The Top-k Frequent Closed Itemset Mining Using
Top-k SAT Problem

Said Jabbour, Lakhdar Sais, and Yakoub Salhi

CRIL - CNRS, Université d’Artois, France
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Abstract. In this paper, we introduce a new problem, called Top-k SAT, that
consists in enumerating the Top-k models of a propositional formula. A Top-k
model is defined as a model with less than k models preferred to it with respect
to a preference relation. We show that Top-k SAT generalizes two well-known
problems: the partial Max-SAT problem and the problem of computing minimal
models. Moreover, we propose a general algorithm for Top-k SAT. Then, we give
the first application of our declarative framework in data mining, namely, the
problem of enumerating the Top-k frequent closed itemsets of length at least min
(FCIMk

min). Finally, to show the nice declarative aspects of our framework, we
encode several other variants of FCIMk

min into the Top-k SAT problem.

Keywords: Data Mining, Itemset Mining, Satisfiability.

1 Introduction

The problem of mining frequent itemsets is well-known and essential in data mining,
knowledge discovery and data analysis. It has applications in various fields and becomes
fundamental for data analysis as datasets and datastores are becoming very large. Since
the first article of Agrawal [1] on association rules and itemset mining, the huge num-
ber of works, challenges, datasets and projects show the actual interest in this problem
(see [2] for a recent survey of works addressing this problem). Important progress has
been achieved for data mining and knowledge discovery in terms of implementations,
platforms, libraries, etc. As pointed out in [2], several works deal with designing highly
scalable data mining algorithms for large scale datasets. An important problem of item-
set mining and data mining problems, in general, concerns the huge size of the output,
from which it is difficult for the user to retrieve relevant informations. Consequently,
for practical data mining, it is important to reduce the size of the output, by exploiting
the structure of the itemsets data. Computing for example, closed, maximal, condensed,
discriminative itemset patterns are some of the well-known and useful techniques. Most
of the works on itemset mining require the specification of a minimum support thresh-
old λ. This constraint allows the user to control at least to some extent the size of the
output by mining only itemsets covering at least λ transactions. However, in practice,
it is difficult for users to provide an appropriate threshold. As pointed out in [3], a too
small threshold may lead to the generation of a huge number of itemsets, whereas a too
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high value of the threshold may result in no answer. In [3], based on a total ranking be-
tween patterns, the authors propose to mine the n most interesting itemsets of arbitrary
length. In [4], the proposed task consists in mining Top-k frequent closed itemsets of
length greater than a given lower boundmin, where k is the desired number of frequent
closed itemsets to be mined, and min is the minimal length of each itemset. The au-
thors demonstrate that setting the minimal length of the itemsets to be mined is much
easier than setting the usual frequency threshold. Since the introduction of Top-k min-
ing, several research works investigated its use in graph mining (e.g. [5,6]) and other
datamining tasks (e.g. [7,8]). This new framework can be seen as a nice way to mine the
k preferred patterns according to some specific constraints or measures. Starting from
this observation, our goal in this paper is to define a general logic based framework for
enumerating the Top-k preferred patterns according to a predefined preference relation.

The notion of preference has a central role in several disciplines such as economy, op-
erations research and decision theory in general. Preferences are relevant for the design
of intelligent systems that support decisions. Modeling and reasoning with preferences
play an increasing role in Artificial Intelligence (AI) and its related fields such as non-
monotonic reasoning, planning, diagnosis, configuration, constraint programming and
other areas in knowledge representation and reasoning. For example, in nonmonotonic
reasoning the introduction of preferential semantics by Shoham [9] gives an unifying
framework where nonmonotonic logic is reduced to a standard logic with a preference
relation (order) on the models of that standard logic. Several models for representing
and reasoning about preferences have been proposed. For example, soft constraints [10]
are one of the most general way to deal with quantitative preferences, while CP-net
(Conditional Preferences networks) [11] is most convenient for qualitative preferences.
There is a huge literature on preferences (see [12,13,14] for a survey at least from the AI
perspective). In this paper we focus on qualitative preferences defined by a preference
relation on the models of a propositional formula. Preferences in propositional satisfi-
ability (SAT) has not received a lot of attention. In [15], a new approach for solving
satisfiability problems in the presence of qualitative preferences on literals (defined as
partial ordered set) is proposed. The authors particularly show how DPLL procedure
can be easily adapted for computing optimal models induced by the partial order. The
issue of computing optimal models using DPLL has also been investigated in SAT [16].
paper we propose a new framework, where the user is able to control through a param-
eter k the output by searching only for the top-k preferred models.

The contribution of this paper is twofold. Firstly, we propose a generic framework for
dealing with qualitative preferences in propositional satisfiability. Our qualitative pref-
erences are defined using a reflexive and transitive relation (preorder) over the models
of a propositional formula. Such preference relation on models is first used to introduce
a new problem, called Top-k SAT, defined as the problem of enumerating the Top-k
models of a propositional formula. Here a Top-k model is defined as a model with no
more than k-1 models preferred to it with respect to the considered preference relation.
Then, we show that Top-k SAT generalizes the two well-known problems, the partial
Max-SAT problem and the problem of generating minimal models. We also define a
particular preference relation that allows us to introduce a general algorithm for com-
puting the Top-k models.
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Secondly, we introduce the first application of our declarative framework to data min-
ing. More precisely, we consider the problem of mining Top-k frequent closed itemsets
of minimum length min [17]. In this problem, the minimum support threshold usually
used in frequent itemset mining is not known, while the minimum length can be set to 0
if one is interested in itemsets of arbitrary length. In itemset mining, the notion of Top-k
frequent itemsets is introduced as an alternative to finding the appropriate value for the
minimum support threshold. It is also an elegant way to control the size of the output.
Consequently, itemset mining is clearly a nice application of our new defined Top-k
SAT problem. In this paper, we provide a SAT encoding and we show that computing
the Top-k closed itemsets of length at least min corresponds to computing the Top-k
models of the obtained propositional formula. Finally, to show the nice declarative as-
pects of our framework, we encode several other variants of this data mining problem
as Top-k SAT problems. Finally, preliminary experiments on some datasets show the
feasibility of our proposed approach.

2 Preliminary Definitions and Notations

In this section, we describe the Boolean satisfiability problem (SAT) and some neces-
sary notations. We consider the conjunctive normal form (CNF) representation for the
propositional formulas. A CNF formula Φ is a conjunction of clauses, where a clause is
a disjunction of literals. A literal is a positive (p) or negated (¬p) propositional variable.
The two literals p and ¬p are called complementary. A CNF formula can also be seen
as a set of clauses, and a clause as a set of literals. Let us recall that any propositional
formula can be translated to CNF using linear Tseitin’s encoding [18]. We denote by
Var(Φ) the set of propositional variables occuring in Φ.

An interpretation M of a propositional formula Φ is a function which associates a
valueM(p) ∈ {0, 1} (0 corresponds to false and 1 to true) to the variables p in a set V
such that Var(Φ) ⊆ V . A model of a formula Φ is an interpretationM that satisfies the
formula. The SAT problem consists in deciding if a given CNF formula admits a model
or not.

We denote by l̄ the complementary literal of l. More precisely, if l = p then l̄ is ¬p
and if l = ¬p then l̄ is p. For a set of literals L, L̄ is defined as {l̄ | l ∈ L}. Moreover,
we denote by M (M is an interpretation over Var(Φ)) the clause

∨
p∈Var(Φ) s(p),

where s(p) = p if M(p) = 0, ¬p otherwise. Let Φ be a CNF formula and M an inter-
pretation over Var(Φ). We denote by M(Φ) the set of clauses satisfied by M. Let us
now consider a set X of propositional variables such that X ⊆ Var(Φ). We denote by
M∩ X the set of variables {p ∈ X |M(p) = 1}. Moreover, we denote by M|X the
restriction of the model M to X .

3 Preferences and Top-k Models

Let Φ be a propositional formula and ΛΦ the set of all its models. A preference relation
& over ΛΦ is a reflexive and transitive binary relation (a preorder). The statementM&
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M′ means that M is at least as preferred as M′. We denote by P (Φ,M,&) the subset
of ΛΦ defined as follows:

P (Φ,M,&) = {M′ ∈ ΛΦ | M′ +M}

where M′ +M means that M′ &M holds but M&M′ does not. It corresponds to
all models that are strictly preferred to M.

We now introduce an equivalence relation ≈X over P (Φ,M,&), where X is a set
of propositional variables. It is defined as follows:

M′ ≈X M′′ iff M′ ∩X =M′′ ∩X

Thus, the set P (Φ,M,&) can be partitioned into a set of equivalence classes by ≈X ,
denoted by [P (Φ,M,&)]X . In our context, this equivalence relation is used to take
into consideration only a subset of propositional variables. For instance, we introduce
new variables in Tseitin’s translation [18] of propositional formula to CNF, and such
variables are not important in the case of some preference relations.

Definition 1 (Top-k Model). Let Φ be a propositional formula, M a model of Φ, & a
preference relation over the models of Φ and X a set of propositional variables. M is
a Top-k model w.r.t. & and X iff |[P (Φ,M,&)]X | ≤ k − 1.

Let us note that the number of the Top-k models of a formula is not necessarily equal
to k. Indeed, it can be strictly greater or smaller than k. For instance, if a formula is
unsatisfiable, then it does not have a Top-k model for any k ≥ 1. Furthermore, if the
considered preference relation is a total order, then the number of Top-k models is al-
ways smaller than or equal to k.

It is easy to see that we have the following monotonicity property: if M is a Top-k
model and M′ &M, then M′ is also a Top-k model.

Top-k SAT problem. Let Φ be propositional formula, & a preference relation over
the models of Φ, X a set of propositional variables and k a strictly positive integer. The
Top-k SAT problem consists in computing a set L of Top-k models of Φ with respect to
& and X satisfying the two following properties:

1. for all M Top-k model, there exists M′ ∈ L such that M≈X M′; and
2. for all M and M′ in L, if M �=M′ then M �≈X M′.

The two previous properties come from the fact that we are only interested in the truth
values of the variables in X . Indeed, the first property means that, for all Top-k model,
there is a model in L equivalent to it with respect to≈X . Moreover, the second property
means that L does not contain two equivalent Top-k models.

In the following definition, we introduce a particular type of preference relations, called
δ-preference relation, that allows us to introduce a general algorithm for computing
Top-k models.
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Definition 2. Let Φ be a formula and & a preference relation on the models of Φ.
Then & is a δ-preference relation, if there exists a polytime function f� from Boolean
interpretations to the set of CNF formulae such that, for all M model of Φ and for all
M′ Boolean interpretation, M′ is a model of Φ ∧ f�(M) iff M′ is a model of Φ and
M �+M′.

Note that, given a model M of a CNF formula Φ, f�(M) is a formula such that when
added to Φ together with M, the models of the resulting formula are different from
M and they are at least as preferred as M. Intuitively, this can be seen as a way to
introduce a lower bound during the enumeration process. From now, we only consider
δ-preference relations.

3.1 Top-k SAT and Partial MAX-SAT

In this section, we show that the Top-k SAT problem generalizes the Partial MAX-
SAT problem (e.g. [19]). In Partial MAX-SAT each clause is either relaxable (soft) or
non-relaxable (hard). The objective is to find an interpretation that satisfies all the hard
clauses together with the maximum number of soft clauses. The MAX-SAT problem is
a particular case of Partial MAX-SAT where all the clauses are relaxable.

Let Φ = Φh ∧ Φs be a partial MAX-SAT instance such that Φh is the hard part and Φs

the soft part. The relation denoted by&Φs corresponds to preference relation defined as
follows: for all M and M′ models of Φh defined over Var(Φh ∧ Φs), M &Φs M′ if
and only if |M(Φs)| ≥ |M′(Φs)|.

Note that &Φs is a δ-preference relation. Indeed, we can define f�Φs
as follows:

f�Φs
(M) = (

∧
C∈Φs

pC ↔ C) ∧
∑
C∈Φs

pC ≥ |M(Φs)|

where pC for C ∈ Φs are fresh propositional variables.
The Top-1 models of Φh with respect to&Φs and Var(Φ) correspond to the set of all

solutions of Φ in Partial Max-SAT. Naturally, they are the most preferred models with
respect to &Φs , and that means they satisfy Φh and satisfy the maximum number of
clauses in Φs. Thus, the Top-k SAT problem can be seen as a generalization of Partial
MAX-SAT.

The formula f�Φs
(M) involves the well-known cardinality constraint (0/1 linear in-

equality). Several polynomial encodings of this kind of constraints into a CNF formula
have been proposed in the literature. The first linear encoding of general linear inequal-
ities to CNF has been proposed by Warners [20]. Recently, efficient encodings of the
cardinality constraint to CNF have been proposed, most of them try to improve the
efficiency of constraint propagation (e.g. [21,22]).

3.2 Top-k SAT and X-minimal Model Generation Problem

Let M and M′ be two Boolean interpretations and X a set of propositional variables.
Then, M is said to be smaller than M′ with respect to X , written M �X M′, if
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Algorithm 1: Top-k
Input: a CNF formula Φ, a preorder relation �, an integer k ≥ 1, and a set X of Boolean variables
Output: A set of Top-k models L

1 Φ′ ← Φ;
2 L ← ∅; /* Set of all Top-k models */
3 while (solve(Φ′)) do /* M is a model of Φ′

*/
4 if (∃M′ ∈ L.M ≈X M′ & M � M′) then
5 replace(M,M′,L);
6 else if (∀M′ ∈ L.M �≈X M′ & |preferred(M,L)| < k) then
7 S ← min top(k,L);
8 add(M,L);
9 remove(k,L);

10 S ← min top(k,L) \ S;
11 Φ′ ← Φ′ ∧

∧
M′∈S f	(M′);

12 else
13 Φ′ ← Φ′ ∧ f	(M)

14 Φ′ ← Φ′ ∧ M;
15 return L;

M∩ X ⊆ M′ ∩ X . We now consider �X as a preference relation, i.e., M �X M′

means that M is at least as preferred as M′.

We now show that �X is a δ-preference relation. We can define f�X as follows:

f�X (M) = (
∨

p∈M∩X

p) ∨
∧

p′∈X\M
p′

Absolutely,M′ is a model of a formula Φ∧M∧f�X (M) if and only ifM′ is a model
of Φ, M′ �= M, and either M′ ∩ X = M∩ X or (M∩ X)\(M′ ∩ X) �= ∅. The
two previous statements mean that M �≺X M′. In fact, if M′ satisfies

∧
p′∈X\M p′,

thenM′∩X ⊆M∩X holds. Otherwise,M′ satisfies
∨

p∈M∩X p and that means that
(M∩X)\(M′∩X) �= ∅. This latter statement expresses that eitherM′∩X ⊂M∩X
or M and M′ are incomparable with respect to �X .

Let Φ be a propositional formula, X a set of propositional variables and M a model
ofΦ. ThenM is said to be anX-minimal model ofΦ if there is no model strictly smaller
than M with respect to �X . In [23], it was shown that finding an X-minimal model is
PNP [O(log(n))]-hard, where n is the number of propositional variables.

The set of all X-minimal models corresponds to the set of all top-1 models with
respect to �X and Var(Φ). Indeed, if M is a top-1 model, then there is no model
M′ such that M′ ≺X M, and that means that M is an X-minimal model. In this
context, let us note that computing the set of Top-k models for k ≥ 1 can be seen as a
generalization of X-minimal model generation problem.

3.3 An Algorithm for Top-k SAT

In this section, we describe our algorithm for computing Top-k models in the case of
the δ-preference relations (Algorithm 1). The basic idea is simply to use the formula
f�(M) associated to a model M to obtain models that are at least as preferred as M.
This algorithm takes as input a CNF formula Φ, a preference relation &, a strictly posi-
tive integer k, and a set X of propositional variables allowing to define the equivalence
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relation≈X . It has as output a set L of Top-k models of Φ satisfying the two properties
given in the definition of the Top-k SAT problem.

Algorithm Description. In the while-loop, we use lower bounds for finding optimal
models. These lower bounds are obtained by using the fact that the preorder relation
considered is a δ-preference relation. In each step, the lower bound is integrated by
using the formula: ∧

M′∈S

f�(M′)

– Lines 4 – 5. Let us first mention that the procedure replace(M,M′,L) re-
places M′ with M in L. We apply this replacement because there exists a model
M′ in L which is equivalent to M′ and M allows to have a better bound.

– Lines 6 – 11. In the case where M is not equivalent to any model in L and the
number of models in L preferred to it is strictly less than k (|preferred(M,L)|
< k), we add M to L (add(M,L)). Note that S contains first the models of L
before addingM that have exactly k−1 models preferred to them in this set. After
adding M to L, we remove from L the models that are not Top-k, i.e., they have
more than k − 1 models in L that are strictly preferred to them (remove(k,L)).
Next, we modify the content of S. Note that the elements of S before addingM are
used as bounds in the previous step. Hence, in order to avoid adding the same bound
several times, the new content of S corresponds to the models inL that have exactly
k − 1 models preferred to them in L (min top(k,L)) deprived of the elements of
the previous content of S. In line 11, we integrate lower bounds in Φ′ by using
the elements of S. Indeed, for all model M of a formula Φ′ ∧

∧
M′∈S f�(M′),

M′ �+ M holds, for any M′ ∈ S.
– Lines 12 – 13. In the case whereM is not a Top-kmodel, we integrate its associated

lower bound.
– Line 14. This instruction enables us to avoid finding the same model in two differ-

ent steps of the while-loop.

Proposition 1. Algorithm 1 (Top-k) is correct.

Proof. The proof of the partial correctness is based on the definition of the δ-preference
relation. Indeed, the function f� allows us to exploit bounds to systematically improve
the preference level of the models. As the number of models is bounded, adding the
negation of the found model at each iteration leads to an unsatisfiable formula. Conse-
quently the algorithm terminates.

As explained in the algorithm description, we use lower bounds for finding optimal
models. These bounds are obtained by using the function f�.

4 Total Preference Relation

We here provide a second algorithm for computing Top-k models in the case of the total
δ-preference relations (Algorithm 2). Let us recall that a δ-preference relation& is total
if, for all models M and M′, we have M&M′ or M′ &M.
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Our algorithm in this case is given in Algorithm 2:

– Lines 3 – 8. In this part, we compute a set L of k different models of Φ such that,
for all M,M′ ∈ L with M �=M′, we have M �≈X M′. Indeed, if M is a model
of Φ and M′ is a model of Φ ∧M1

|X ∧ · · · ∧Mn
|X ∧M|X , then it is trivial that

M �≈X M′.

– Line 9. Note that the set min(L) corresponds to the greatest subset of L satisfy-
ing the following property: for all M ∈ min(L), there is no model in L which is
strictly less preferred than M. The assignment in this line allows us to have only
models that are at least as preferred as an element of min(L). Indeed, we do not
need to consider the models that are less preferred than the elements of min(L)
because it is clear that they are not Top-k models. Note that all the elements of
min(L) are equivalent with respect to the equivalence relation ≈ induced by &,
since this preorder relation is total.

– Line 10 – 21. This while-loop is similar to that in Algorithm 1 (Top-k). We only
remove the condition |preferred(M,L)| < k and replace min top(k,L) with
min(L). In fact, since the preference relation& is a total preorder, it is obvious that
we have |preferred(M,L)| < k because of the lower bounds added previously.
Moreover, as & is total, the set of removed models by remove(k,L) (Line 16) is
either the empty set or min(L).

Proposition 2. Algorithm 2 (Top-kT ) is correct.

Correctness of this algorithm is obtained from that of the algorithm Top-k and the fact
that the considered δ-preference relation is total.

5 An Application of Top-k SAT in Data Mining

The problem of mining frequent itemsets is well-known and essential in data mining [1],
knowledge discovery and data analysis. Note that several data mining tasks are closely
related to the itemset mining problem such as the ones of association rule mining, fre-
quent pattern mining in sequence data, data clustering, etc. Recently, De Raedt et al. in
[24,25] proposed the first constraint programming (CP) based data mining framework
for itemset mining. This new framework offers a declarative and flexible representation
model. It allows data mining problems to benefit from several generic and efficient CP
solving techniques. This first study leads to the first CP approach for itemset mining
displaying nice declarative opportunities.

In itemset mining problem, the notion of Top-k frequent itemsets is introduced as an
alternative to finding the appropriate value for the minimum support threshold. In this
section, we propose a SAT-based encoding for enumerating all closed itemsets. Then we
use this encoding in the Top-k SAT problem for computing all Top-k frequent closed
itemsets.
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Algorithm 2: Top-kT

Input: a CNF formula Φ, a total preorder relation �, an integer k ≥ 1,and a set X of Boolean variables
Output: the set of all Top-k models L

1 Φ′ ← Φ;
2 L ← ∅; /* Set of all Top-k models */
3 for (i ← 0 to k − 1) do
4 if (solve(Φ′)) then
5 add(M,L); /* M is a model of Φ′

*/

6 Φ′ ← Φ′ ∧ M|X ;
7 else
8 return L;

9 Φ′ ← Φ ∧
∧

M∈L M ∧
∧

M′∈min(L) f	(M′);

10 while (solve(Φ′)) do /* M is a model of Φ′
*/

11 if (∃M′ ∈ L.M ≈X M′ & M � M′) then
12 replace(M,M′,L);
13 else if (∀M′ ∈ L.M �≈X M′) then
14 S ← min(L);
15 add(M,L);
16 remove(k,L);
17 S ← min(L) \ S;
18 Φ′ ← Φ′ ∧

∧
M′∈S f	(M′);

19 else
20 Φ′ ← Φ′ ∧ f	(M)

21 Φ′ ← Φ′ ∧ M;
22 return L;

5.1 Problem Statement

Let I be a set of items. A transaction is a couple (tid, I) where tid is the transac-
tion identifier and I is an itemset, i.e., I ⊆ I. A transaction database is a finite set of
transactions over I where, for all two different transactions, they do not have the same
transaction identifier. We say that a transaction (tid, I) supports an itemset J if J ⊆ I .

The cover of an itemset I in a transaction database D is the set of transaction iden-
tifiers in D supporting I: C(I,D) = {tid | (tid, J) ∈ D, I ⊆ J}. The support of an
itemset I in D is defined by: S(I,D) =| C(I,D) |. Moreover, the frequency of I in D
is defined by: F(I,D) = S(I,D)

|D| .

For instance, consider the following transaction database D:

tid itemset
1 a, b, c, d
2 a, b, e, f
3 a, b, c,m
4 a, c, d, f, j
5 j, l
6 d
7 d, j

In this database, we have S({a, b, c},D) = |{1, 3}| = 2 and F({a, b},D) = 3
7 .
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Let D be a transaction database over I and λ a minimum support threshold. The fre-
quent itemset mining problem consists in computing the following set:

FIM(D, λ) = {I ⊆ I | S(I,D) ≥ λ}

Definition 3 (Closed Itemset). Let D be a transaction database (over I) and I an
itemset (I ⊆ I) such that S(I,D) ≥ 1. I is closed if for all itemset J such that I ⊂ J ,
S(J,D) < S(I,D).

One can easily see that all frequent itemsets can be obtained from the closed frequent
itemsets by computing their subsets. Since the number of closed frequent itemsets is
smaller than or equal to the number of frequent itemsets, enumerating all closed item-
sets allows us to reduce the size of the output.

In this work, we mainly consider the problem of mining Top-k frequent closed item-
sets of minimum length min. In this problem, we consider that the minimum support
threshold λ is not known.

Definition 4 (FCIMk
min). Let k and min be strictly positive integers. The problem

of mining Top-k frequent closed itemsets consists in computing all closed itemsets of
length at least min such that, for each one, there exist no more than k − 1 closed
itemsets of length at least min with supports greater than its support.

5.2 SAT-Based Encoding for FCIMk
min

We now propose a Boolean encoding of FCIMk
min. Let I be a set of items, D =

{(0, ti), . . . , (n − 1, tn−1)} a transaction database over I, and k and min are strictly
positive integers. We associate to each item a appearing in D a Boolean variable pa.
Such Boolean variables encode the candidate itemset I ⊆ I, i.e., pa = true iff a ∈ I .
Moreover, for all i ∈ {0, . . . , n − 1}, we associate to the i-th transaction a Boolean
variable bi.

We first propose a constraint allowing to consider only the itemsets of length at least
min. It corresponds to a cardinality constraint:∑

a∈I
pa ≥ min (1)

We now introduce a constraint allowing to capture all the transactions where the candi-
date itemset does not appear:

n−1∧
i=0

(bi ↔
∨

a∈I\ti

pa) (2)

This constraint means that bi is true if and only if the candidate itemset is not in ti.

By the following constraint, we force the candidate itemset to be closed:

∧
a∈I

(

n−1∧
i=0

bi → a ∈ ti)→ pa (3)
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Intuitively, this formula means that if S(I) = S(I ∪ {a}) then a ∈ I holds. Thus, it
allows us to obtain models that correspond to closed itemsets.

In this context, computing the Top-k closed itemsets of length at least min corresponds
to computing the Top-k models of (1), (2) and (3) with respect to&B and X = {pa|a ∈
I}, whereB = {b0, . . . , bn−1} and&B is defined as follows:M&B M′ if and only if
|M(B)| ≤ |M′(B)|. This preorder relation is a δ-preference relation. Indeed, one can
define f�B as follows:

f�B (M) = (

n−1∑
i=0

bi ≤ |M(B)|)

Naturally, this formula allows us to have models corresponding to closed itemsets with
supports greater or equal to the support of the closed itemset obtained from M.

5.3 Some Variants of FCIMk
min

In this section, our goal is to illustrate the nice declarative aspects of our proposed
framework. To this end, we simply consider slight variations of the problem, and show
that their encodings can be obtained by simple modifications.

Variant 1 (FCIMk
max). In this variant, we consider the problem of mining Top-k

closed itemsets of length at most max. Our encoding in this case is obtained by adding
to (2) and (3) the following constraint:∑

a∈I
pa ≤ max (4)

In this case, we use the δ-preference relation &B defined previously.

Variant 2 (FCIMk
λ). Let us now propose an encoding of the problem of mining Top-

k closed itemsets of supports at least λ (minimal support threshold). In this context, a
Top-k closed itemset is a closed itemset such that, for each one, there exist no more
than k - 1 closed itemsets of length greater than its length. Our encoding in this case is
obtained by adding to (2) and (3) the following constraint:

n∑
i=0

bi ≥ λ (5)

The preference relation used in this case is &I defined as follows: M &I M′ if and
only if |M(I)| ≥ |M′(I)|. It is a δ-preference relation because f�I can be defined as
follows:

f�I (M) =
∑
a∈I

pa ≥ |M(I)|
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Variant 3 (FMIMk
λ). We consider here a variant of the problem of mining maximal

frequent itemsets. It consists in enumerating Top-k maximal itemsets of supports at least
λ and for each one, there exist no more than k - 1 maximal itemsets of length greater
than its length. Our encoding of this problem consists of (2) and (5). We use in this
case the δ-preference relation &I .

6 Experiments

This section evaluates the performance of our Algorithm for Top-k SAT empirically.
The primary goal is to assess the declarativity and the effectiveness of our proposed
framework. For this purpose, we consider the problem FCIMk

min of computing the
Top-k frequent closed itemsets of minimum length min described above.
For our experiments, we implemented the Algorithm 1 (Top-k) on the top of the state-
of-the-art SAT solver MiniSAT 2.2 1. In our SAT encoding of FCIMk

min, we used the
sorting networks, one of the state-of-the-art encoding of the cardinality constraint (0/1
linear inequality) to CNF proposed in [26].

We considered a variety of datasets taken from the FIMI repository 2 and CP4IM 3.
All the experiments were done on Intel Xeon quad-core machines with 32GB of RAM
running at 2.66 Ghz. For each instance, we used a timeout of 4 hours of CPU time.
The table 1 details the characteristics of the different transaction databases (D). The first
column mentions the name of the considered instance. In the second and third column,
we give the size of D in terms of number of transactions (#trans) and number of items
(#items) respectively. The fourth column shows the density (dens) of the transaction
database, defined as the percentage of 1’s in D. The panel of datasets ranges from
sparse (e.g. mushroom) to dense ones (e.g. Hepatitis). Finally, in the two last columns,
we give the size of the CNF encoding (#vars, #clauses) of FCIMk

min. As we can see,
our proposed encoding leads to CNF formula of reasonable size. The maximum size is
obtained for the instance connect (67 815 variables and 5 877 720 clauses).

In order to analyze the behavior of our Top-k algorithm on FCIMk
min, we con-

ducted two kind of experiments. In the first one, we set the minimum length min of
the itemsets to 1, while the value of k is varied from 1 to 10000. In the second experi-
ment, we fix the parameter k to 10, and we vary the minimal length min from 1 to the
maximum size of the transactions.

Results for a representative set of datasets are shown in Figure 1 (log scale). The
other instances present similar behavior. As expected, the CPU time needed for com-
puting the Top-k models increase with k. For the connect dataset, our algorithm fails to
compute the Top-k models for higher value of k > 1000 in the time limit of 4 hours.
This figure clearly shows that finding the Top-k models (the most interesting ones) can
be computed efficiently for small values of k. For example, on all datasets the top-10
models are computed in less than 100 seconds of CPU time. When a given instance
contains a huge number of frequent closed itemsests, the Top-k problem offers an alter-
native to the user to control the size of the output and to get the most preferred models.

1 MiniSAT: http://minisat.se/
2 FIMI: http://fimi.ua.ac.be/data/
3 CP4IM: http://dtai.cs.kuleuven.be/CP4IM/datasets/
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Table 1. Characteristics of the datasets

instance #trans #items dens(%) #vars #clauses

zoo-1 101 36 44 173 2196
Hepatitis 137 68 50 273 4934
Lymph 148 68 40 284 6355
audiology 216 148 45 508 17575
Heart-cleveland 296 95 47 486 15289
Primary-tumor 336 31 48 398 5777
Vote 435 48 33 531 14454
Soybean 650 50 32 730 22153
Australian-credit 653 125 41 901 48573
Anneal 812 93 45 990 39157
Tic-tac-toe 958 27 33 1012 18259
german-credit 1000 112 34 1220 73223
Kr-vs-kp 3196 73 49 3342 121597
Hypothyroid 3247 88 49 3419 143043
chess 3196 75 49 3346 124797
splice-1 3190 287 21 3764 727897
mushroom 8124 119 18 8348 747635
connect 67558 129 33 67815 5877720
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Fig. 1. FCIMk
1 results for different values of k

In Figure 2, we show the results obtained on the hardest instance from Table 1. On
splice-1, the algorithm fails to solve the problem under the time limit for k > 20.

In our second experiment, our goal is to show the behavior of our algorithm when
varying the minimum length. In Figure 3, we give the results obtained on the three
representative datasets (mushroom, connect and chess) when k is fixed to 10 and min
is varied from 1 to the maximum size of the transactions. The problem is easy at both the
under-constrained (small values ofmin - many Top-k models) and the over-constrained
(high values of min - small number of Top-k models) regions. For the connect dataset,
the algorithm fails to solve the problem for min > 15 under the time limit. For all the
other datasets, the different curves present a pick of difficulty for medium values of the
minimal length of the itemsets.
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7 Conclusion and Perspectives

In this paper, we introduce a new problem, called Top-k SAT, defined as the problem of
enumerating the Top-k models of a propositional formula. A Top-k model is a model
having no more than k-1 models preferred to it with respect to the considered preference
relation. We also show that Top-k SAT generalizes the two well-known problems: the
partial Max-SAT problem and the problem of computing minimal models. A general
algorithm for this problem is proposed and evaluated on the problem of enumerating
top-k frequent closed itemsets of length at least min.

While our new problem of computing the Top-k preferred models in Boolean satis-
fiability is flexible and declarative, there are a number of questions that deserve further
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research efforts. One direction is the study of (preferred/Top-k) model enumeration al-
gorithm so as to achieve a further speedup of the runtime. This fundamental problem
has not received a lot of attention in the SAT community, except some interesting works
on enumerating minimal/preferred models.

Acknowledgments. This work was supported by the French Research Agency (ANR)
under the project DAG ”Declarative Approaches for Enumerating Interesting Patterns”
- Défis program 2009.
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Abstract. In recent years, clustering has been extended to constrained
clustering, so as to integrate knowledge on objects or on clusters, but
adding such constraints generally requires to develop new algorithms.
We propose a declarative and generic framework, based on Constraint
Programming, which enables to design clustering tasks by specifying an
optimization criterion and some constraints either on the clusters or on
pairs of objects. In our framework, several classical optimization crite-
ria are considered and they can be coupled with different kinds of con-
straints. Relying on Constraint Programming has two main advantages:
the declarativity, which enables to easily add new constraints and the
ability to find an optimal solution satisfying all the constraints (when
there exists one). On the other hand, computation time depends on the
constraints and on their ability to reduce the domain of variables, thus
avoiding an exhaustive search.

1 Introduction

Clustering is an important task in Data Mining and many algorithms have been
designed for it. It has been extended to semi-supervised clustering, so as to
integrate previous knowledge on objects that must be or cannot be in the same
cluster, and most algorithms have been adapted to handle such information.
Other kinds of constraints could be specified by the user, as for instance the
sizes of the clusters or their diameters, but classical frameworks are not designed
to integrate different types of knowledge. Yet, in the context of an exploratory
process, it would be important to be able to express constraints on the task
at hand, tuning the model for getting finer solutions. Constrained clustering
aims at integrating constraints in the clustering process, but the algorithms are
usually developed for handling one kind of constraints. Developing general solvers
with the ability of handling different kinds of constraints is therefore of high
importance for Data Mining. We propose a declarative and generic framework,
based on Constraint Programming, which enables to design a clustering task by
specifying an optimization criterion and some constraints either on the clusters
or on pairs of objects.

Relying on Constraint Programming (CP) has two main advantages: the
declarativity, which enables to easily add new constraints and the ability to
find an optimal solution satisfying all the constraints (when there exists one).

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 419–434, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



420 T.-B.-H. Dao, K.-C. Duong, and C. Vrain

Recent progress in CP have made this paradigm more powerful and several work
[1,2,3] have already shown its interest for Data Mining.

In a recent work[4], we have proposed a CP model for constrained clustering,
aiming at finding a partition of data that minimizes the maximal diameter of
classes. In this paper, we generalize the model with more optimization criteria,
namely maximizing the margin between clusters and minimizing the Within-
Cluster Sums of Dissimilarities (WCSD). Clustering with WCSD criterion is
NP-Hard, since one instance of this problem is the weighted max-cut problem,
which is NP-Complete. Recent work [5] has addressed the problem of finding
an exact optimum but the size of the database must be quite small, all the
more when k is high. We have developed propagation algorithms for the WCSD
problem, and experiments show that we are able of finding the optimal solution
for small to medium databases. Moreover, adding constraints allows to reduce
the computation time.

The main contribution of our paper is a general framework for Constrained
Clustering, which integrates different kinds of optimization criteria and finds a
global optimum. Moreover, we show that coupling optimization with some types
of constraints allows to handle larger databases and can be interesting for the
users.

The paper is organized as follows. In Section 2, we give background notions
on clustering, constrained clustering and Constraint Programming. Section 3
presents related work. Section 4 is devoted to the model and Section 5 to exper-
iments. A discussion on future work is given in Section 6.

2 Preliminaries

2.1 Clustering

Clustering is the process of grouping data into classes or clusters, so that objects
within a cluster have high similarity but are very dissimilar to objects in other
clusters. More formally, we consider a database of n objectsO = {o1, . . . , on} and
a dissimilarity measure d(oi, oj) between two objects oi and oj of O. Clustering
is often seen as an optimization problem, i.e., finding a partition of the objects
which optimizes a given criterion. Optimized criteria may be, among others: (the
first four criterion must be minimized whereas the last one must be maximized)
• Within-Cluster Sum of Dissimilarities (WCSD) criterion:

E =
∑k

c=1

∑
oi,oj∈Cc

d(oi, oj)
2

• Within-Cluster Sum of Squares (WCSS) criterion, also called the least square
criterion (mc denotes the center of cluster Cc):

E =
∑k

c=1

∑
oi∈Cc

d(mc, oi)
2

• Absolute-error criterion (rc denotes a representative object of the cluster Cc):

E =
∑k

c=1

∑
oi∈Cc

d(oi, rc)
• Diameter-based criterion: E = maxc∈[1,k],oi,oj∈Cc

(d(oi, oj)). E represents the
maximum diameter of the clusters, where the diameter of a cluster is the maxi-
mum distance between any two of its objects.
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• Margin-based criterion: E = minc<c′∈[1,k],oi∈Cc,oj∈Cc′ (d(oi, oj)). E is the min-
imal margin between clusters, where the margin between two clusters Cc, Cc′ is
the minimum value of the distances d(oi, oj), with oi ∈ Cc and oj ∈ Cc′ .

We do not detail here well-known classical clustering algorithms, such as k-
means that finds a local optimum of the WCSS criterion, or k-medoids for the
absolute-error criterion. The FPF (Furthest Point First) method introduced in
[6] is a very efficient method (complexity O(kn)) for finding a local optimum of
the maximum diameter criterion. Moreover theoretical bounds are given and we
show in Section 4 how such bounds can be used to reduce the complexity, when
modeling the problem in CP.

Some algorithms do not rely on an optimization algorithm, as for instance
DBSCAN [7], based on the notion of density. Parameters are needed to adjust
the notion of density. Although our model does not currently allow to simulate
the behavior of DBSCAN, the notion of density can be integrated as a constraint
on the clustering task.

2.2 Constraint-Based Clustering

Most clustering methods rely on an optimization criterion, and because of the
inherent complexity search for a local optimum. Several optima may exist, some
may be closer to the one expected by the user. In order to better model the
task, but also in the hope of reducing the complexity, user-specified constraints
are added, leading to Constraint-based Clustering that aims at finding clusters
that satisfy user-specified constraints. User constraints can be classified into
cluster-level constraints, specifying requirements on the clusters, or instance-
level constraints, specifying requirements on pairs of objects.

Most of the attention has been put on instance-level constraints, first intro-
duced in [8]. Commonly, two kinds of constraints are used. A must-link con-
straint specifies that two objects oi and oj have to appear in the same cluster:
∀c ∈ [1, k], oi ∈ Cc ⇔ oj ∈ Cc. A cannot-link constraint specifies that two
objects must not be in the same cluster: ∀c ∈ [1, k], ¬(oi ∈ Cc ∧ oj ∈ Cc).

Cluster-level constraints impose requirements on the clusters. We give some
examples of such constraints that have been integrated to our model.

The minimum capacity constraint requires that each cluster has a number
of objects greater than a given threshold α: ∀c ∈ [1, k], |Cc| ≥ α, whereas the
maximum capacity constraint requires each cluster to have a number of objects
inferior to a predefined threshold β: ∀c ∈ [1, k], |Cc| ≤ β.

The maximum diameter constraint specifies an upper bound on the diameter
of the clusters: ∀c ∈ [1, k], ∀oi, oj ∈ Cc, d(oi, oj) ≤ γ (γ is a given parameter).
The minimum margin constraint, also called the δ-constraint in [9], requires the
distance between any two points of different clusters to be superior to a given
threshold δ: ∀c ∈ [1, k], ∀c′ �= c, ∀oi ∈ Cc, oj ∈ Cc′ , d(oi, oj) ≥ δ.

The ε-constraint introduced in [9] requires for each point oi to have in its
neighborhood of radius ε at least another point of the same cluster:

∀c ∈ [1, k], ∀oi ∈ Cc, ∃oj ∈ Cc, oj �= oi and d(oi, oj) ≤ ε.
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This constraint tries to capture the notion of density, introduced in DBSCAN.
We propose a new density-based constraint, stronger than the ε-constraint: it
requires that for each point oi, its neighborhood of radius ε contains at least
MinPts points belonging to the same cluster as oi.

In the last ten years, many works have been done to extend classical algorithms
for handling must-link and cannot-link constraints, as for instance an extension
of COBWEB [8], of k-means [10,11], hierarchical non supervised clustering [12]
or spectral clustering [13,14], etc. This is achieved either by modifying the dis-
similarity measure, or the objective function or the search strategy. However, to
the best of our knowledge there is no general solution to extend traditional al-
gorithms to different types of constraints. Our framework relying on Constraint
Programming allows to add directly user-specified constraints.

2.3 Constraint Programming

Constraint Programming is a powerful paradigm to solve combinatorial prob-
lems, based on Artificial Intelligence or Operational Research methods. A Con-
straint Satisfaction Problem (CSP) is a triple 〈X,D,C〉 where X = {x1, x2, . . . ,
xn} is a set of variables, D = {D1, D2, . . . , Dn} is a set of domains (xi ∈ Di),
C = {C1, C2, ..., Ct} is a set of constraints where each constraint Ci expresses
a condition on a subset of X . A solution of a CSP is a complete assignment of
values from Di to each variable xi that satisfies all the constraints of C. A Con-
straint Optimization Problem (COP) is a CSP with an objective function to be
optimized. An optimal solution of a COP is a solution of the CSP that optimizes
the objective function. In general, solving a CSP is NP-hard. Nevertheless, the
methods used by the solvers enable to efficiently solve a large number of real
applications. They rely on constraint propagation and search strategies.

Constraint propagation operates on a constraint c and removes all the values
that cannot be part of a solution from the domains of the variables of c. A set of
propagators is associated to each constraint, they depend on the kind of consis-
tency required for this constraint (e.g. arc consistency removes all the inconsis-
tent values, while bound consistency modifies only the bounds of the domain).
Consistency is chosen by the programmer when the constraint is established.
Let us notice that a formula or a mathematic relation can be a constraint in CP
only if a set of propagators can be defined on it.

In a CP solver, two steps, constraint propagation and branching, are repeated
until a solution is found. Constraints are propagated until a stable state, in which
the domains of the variables are reduced as much as possible. If the domains of all
the variables are reduced to singletons then a solution is found. If the domain of
a variable becomes empty, then there exists no solution with the current partial
assignment and the solver backtracks. In the other cases, the solver chooses a
variable whose domain is not reduced to a singleton and splits its domain into
different parts, thus leading to new branches in the search tree. The solver then
explores each branch, activating constraint propagation since the domain of a
variable has been modified.
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The search strategy can be determined by the programmer. When using a
depth-first strategy, the solver orders branches, following the order given by the
programmer and explores in depth each branch. For an optimization problem,
a branch-and-bound strategy can be integrated to depth-first search: each time
a solution, i.e. a complete assignment of variables satisfying the constraints, is
found, the value of the objective function for this solution is computed and a
new constraint is added, expressing that a new solution must be better than this
one. This implies that only the first best solution found is returned by the solver.
The solver performs a complete search, pruning only branches that cannot lead
to solutions and therefore finds an optimal solution. The choice of variables and
of values at each branching is very important, since it may drastically reduce
the search space and therefore computation time. For more details, see [15].

Example 1. Let us illustrate by the following COP: find an assignment of letters
to digits such that SEND+MOST = MONEY , which maximizes MONEY .
This problem can be modeled by a COP with eight variables S,E,N,D,M,O,
T, Y , of the domain the set of digits {0, . . . , 9}. Constraints for this problem are:

– the digits for S and M are different from 0: S �= 0, M �= 0
– the values of the variables are pairwise different: alldifferent(S,E,N,D,
M,O, T, Y ). Let us notice that instead of using a constraint �= for each pair
of variables, the constraint alldifferent on a set of variables is used. This is
a global constraint in CP, as the following linear constraint.

– (1000× S+100×E +10×N +D) + (1000×M +100×O+10× S + T ) =
10000×M + 1000×O + 100×N + 10× E + Y

– maximize(10000×M + 1000× O + 100×N + 10× E + Y ).

The initial constraint propagation leads to a stable state, with the domains:
DS = {9}, DE = {2, 3, 4, 5, 6, 7}, DM = {1}, DO = {0}, DN = {3, 4, 5, 6, 7, 8}
and DD = DT = DY = {2, 3, 4, 5, 6, 7, 8}. Since some domains are not reduced
to singletons, branching is then performed. At the end of the search, we get the
optimal solution with the assignment S = 9, E = 7, N = 8, D = 2,M = 1, O =
0, T = 4, Y = 6, leading to MONEY = 10876.

Strategies specifying the way branching is performed are very important.
When variables are chosen in the order S,E,N,D,M,O, T, Y and when values
are chosen following an increasing order, the search tree is composed of 29 nodes
and 7 intermediary solutions (solutions satisfying all the constraints, better than
the previous ones found but not optimal). When variables are chosen in the or-
der S, T, Y,N,D,E,M,O, the search tree has only 13 nodes and 2 intermediary
solutions.

3 Related Work

Recent work [16,17] has proposed to use Constraint Programming for conceptual
clustering. The problem is then formalized as the search of frequent, pairwise non
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overlapping k-patterns that cover the whole dataset. Several optimization criteria
are considered as maximizing the minimal size of the clusters or minimizing the
difference between the sizes of classes. These approaches can only be applied
to qualitative databases, whereas our approach can handle all kinds of data, as
soon as a dissimilarity measure is defined on data. Another approach is based
on Integer Linear Programming [18,19], where a set of candidate clusters must
be known beforehand and the model searches for the best clustering among
the subset of clusters. It has been experimented in the context of conceptual
clustering, based on frequent patterns. This framework is less convenient for
clustering in general since finding a good set of candidate clusters is difficult
as the number of candidate clusters is exponential in the number of objects.
A SAT framework [20] is proposed for constrained clustering, but only for a
2-class problem (k = 2). Several kinds of constraints are considered: must-link
and cannot-link constraints on instances, constraints on cluster diameters and
margins. Based on SAT, the algorithm allows to obtain a global optimum. Our
approach is more general, since the number of classes is not limited to 2, and
several optimization criteria as well as a larger class of constraints are considered.

Clustering with the presented criteria is NP-Hard, most algorithms are heuris-
tics. For instance, k-means finds a local optimum for the WCSS criterion. There
are few exact algorithms for the WCSD and WCSS criteria: they rely on lower
bounds, which must be computed in a reasonable time and finding such bounds
is a difficult subtask. The best known exact method for both WCSD and the
maximum diameter criterion is a repetitive branch-and-bound algorithm [5]. This
algorithm is efficient when the number k of groups is small; it solves the problem
first with k+1 objects, then with k+2 objects and so on, until all n objects are
considered. When solving large problems, smaller problems are solved for quickly
calculating good lower bounds. The authors give the size n of the databases that
can be handled: n = 250 for the minimum diameter criterion, n = 220 for the
WCSS criterion, and only n = 50 with k up to 5 or 6 for the WCSD criterion. For
the WCSS criterion, the best known exact method is a recent column generation
algorithm [21]. The method solves problems with n = 2300, however, the number
of objects per group (n/k) must be small, roughly equal to 10, in order to have
a reasonable computation time. To the best of our knowledge, there exists no
exact algorithm for WCSD or WCSS criterion that integrates user-constraints.

4 A CP Framework for Constrained Clustering

We present a CP model for constrained clustering. As input, we have a dataset of
n points and a dissimilarity measure between pairs of points, denoted by d(i, j).
Without loss of generality, we suppose that points are indexed and named by
their index. The number of clusters is fixed by the user and we aim at finding a
partition of data into k clusters, satisfying a set of constraints specified by the
user and optimizing a given criterion.
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4.1 A Constraint-Based Model

Variables. For each cluster c ∈ [1, k], the point with the smallest index is con-
sidered as the representative point of the cluster1. An integer variable I[c] is
introduced, its value is the index of the representative point of c; the domain
of I[c] is therefore the interval [1, n]. Assigning a point to a cluster becomes
assigning the point to the representative of the cluster. Therefore, for each point
i ∈ [1, n], an integer variable G[i] ∈ [1, n] is introduced: G[i] is the representative
point of the cluster which contains the point i.

Let us for instance suppose that we have 7 points o1, . . . , o7 and that we have 2
clusters, the first one composed of o1, o2, o4 and the second one composed of the
remaining points. The points are denoted by their integer (o1 is denoted by 1, o2
by 2 and so on). Then I[1] = 1 and I[2] = 3 (since 1 is the smallest index among
{1, 2, 4} and 3 is the smallest index among {3, 5, 6, 7}), G[1] = G[2] = G[4] = 1
(since 1 is the representative of the first cluster) and G[3] = G[5] = G[6] =
G[7] = 3 (since 3 is the representative of the second cluster).

A variable is introduced for representing the optimization criterion. It is de-
noted by D for the maximal diameter, S for the minimal margin and V for the
Within-Cluster Sum of Dissimilarities. It is a real-valued variable, since distance
are real numbers. The domains of D and S are the interval whose lower (upper)
bound is the minimal (maximal, resp.) distance between any two points. The
domain of V is upper-bounded by the sum of the distances between all pairs of
points. The clustering task is represented by the following constraints.

Constraints on the representation.

– Each representative belongs to its cluster: ∀c ∈ [1, k], G[I[c]] = I[c].
– Each point is assigned to a representative: ∀i ∈ [1, n],

∨
c∈[1,k](G[i] = I[c]).

This relation can be expressed by a cardinality constraint in CP:
∀i ∈ [1, n], #{c | I[c]=G[i]} = 1.

– The representative of a cluster is the point in this cluster with the minimal
index; in other words, the index i of a point is greater or equal to the index
of its representative given by G[i]: ∀i ∈ [1, n], G[i] ≤ i.

A set of clusters could be differently represented, depending on the order of
clusters. For instance, in the previous example, we could have chosen I[1] = 3
and I[2] = 1, thus leading to another representation of the same set of clusters.
To avoid this symmetry, the following constraints are added:

– Representatives are sorted in increasing order: ∀c < c′ ∈ [1, k], I[c] < I[c′].
– The representative of the first cluster is the first point: I[1] = 1.

Modeling different objective criteria. When minimizing the maximal diameter:

– Two points at a distance greater than the maximal diameter must be in
different clusters: ∀i < j ∈ [1, n], d(i, j) > D → (G[i] �= G[j]). (∗)

1 It allows to have a single representation of a cluster. It must not be confused with
the notion of representative in the medoid approach.
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– The maximal diameter is minimized: minimize D.

When maximizing the minimal margin between clusters:

– Two points at a distance less than the minimal margin must be in the same
cluster: ∀i < j ∈ [1, n], d(i, j) < S → G[i] = G[j].

– The minimal margin is maximized: maximize S.

When minimizing the Within-Cluster Sum of Dissimilarities (WCSD):

– V =
∑

i,j∈[1,n](G[i] == G[j])d(i, j)2. (**)

– The sum value is minimized: minimize V .

Modeling user-defined constraints. All popular user-defined constraints may be
straightforwardly integrated:

– Minimal size α of clusters: ∀c ∈ [1, k],#{i | G[i]=I[c]} ≥ α.

– Maximal size β of clusters: ∀c ∈ [1, k],#{i | G[i]=I[c]} ≤ β.

– A δ-constraint expresses that the margin between two clusters must be at
least δ. Therefore, for each i < j ∈ [1, n] satisfying d(i, j) < δ, we put the
constraint: G[i] = G[j].

– A diameter constraint expresses that the diameter of each cluster must be
at most γ, therefore for each i < j ∈ [1, n] such that d(i, j) > γ, we put the
constraint: G[i] �= G[j].

– A density constraint that we have introduced expresses that each point must
have in its neighborhood of radius ε, at least MinPts points belonging to
the same cluster as itself. So, for each i ∈ [1, n], the set of points in its
ε-neighborhood is computed and a constraint is put on its cardinality:

#{j | d(i, j) ≤ ε,G[j]=G[i]} ≥MinPts.

– A must-link constraint on two points i and j is expressed by: G[i] = G[j].

– A cannot-link constraint on i and j is expressed by: G[i] �= G[j].

Adding such constraints involves other constraints on D or S, as for instance
G[i] = G[j] implies D ≥ d(i, j) and G[i] �= G[j] implies S ≤ d(i, j).

Search strategy. Let us recall that a solver iterates two steps: constraint propa-
gation and branching when needed. In our model, variables I[c] (c ∈ [1, k]) are
instantiated before variables G[i] (i ∈ [1, n]). This means that cluster representa-
tives are first instantiated, allowing constraint propagation to assign some points
to clusters; when all the I[c] are instantiated, the variables G[i] whose domains
are not singletons are instantiated.

Variables I[c] are chosen from I[1] to I[k]. Since the representative is the
one with the minimal index in the cluster, values for instantiating each I[c] are
chosen in an increasing order. Variables G[i] are chosen so that the ones with
the smallest remaining domain are chosen first. For instantiating G[i], the index
of the closest representative is chosen first.
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4.2 Model Improvement

Using constraint propagation to reduce the search space by deleting values in
the domain of variables that cannot lead to a solution, CP solvers perform an
exhaustive search, allowing to find an optimal solution. In order to improve the
efficiency of the system, different aspects are considered.

Improvement by ordering the points. To instantiate the variables I[c], the values
(which are point indices) are chosen in an increasing order. The way points
are indexed is therefore really important. Points are then ordered and indexed,
so that points that are probably representatives have small index. In order to
achieve this, we rely on FPF algorithm, introduced in Section 2. The algorithm
is applied with k = n (as many classes as points): a first point is chosen, the
second point is the furthest from this point, the third one is the furthest from
the two first and so on until all points have been chosen.

Improvement when minimizing the maximal diameter. Let us consider first the
case where no user-defined constraints are put in the model. In [6], it is proven
that if dFPF represents the maximal diameter of the partition computed by
FPF, then it satisfies dopt ≤ dFPF ≤ 2dopt, with dopt the maximal diameter of
the optimal solution. This knowledge gives bounds on D: D ∈ [dFPF /2, dFPF ].
Moreover, for each pair of points i, j :

– if d(i, j) < dFPF /2, the reified constraint (*) on i, j is no longer put,
– if d(i, j) > dFPF , the constraint (*) is replaced by: G[i] �= G[j].

Such a result allows to remove several reified constraints, without modifying the
semantics of the model, and thus allows to improve the efficiency of the model,
since handling reified constraints requires to introduce new variables.

In the case where user constraints are added, this result is no longer true,
since the optimal diameter is in general greater than the optimal diameter dopt
obtained without user-constraints. The upper bound is no longer satisfied but
the lower bound, namely dFPF /2, still holds. Therefore for each pair of points
i, j, if d(i, j) < dFPF /2, the constraint (*) on i, j is not put.

Improvement when minimizing WCSD. Computing WCSD (**) requires to use
a linear constraint on boolean variables (G[i] == G[j]). However, a partial as-
signment of points to clusters does not allow to filter the domain of the remaining
values, thus leading to an inefficient constraint propagation. We have proposed
a new method for propagating this constraint and filtering the domain of re-
maining variables. It is out of the scope of this paper, for more details, see [22].
Experiments in Section 5 show that it enables to handle databases that are out
of reach of the most recent exact algorithms.

5 Experiments

5.1 Datasets and Methodology

Eleven datasets are used in our experiments. They vary significantly in their
size, number of attributes and number of clusters. Nine datasets are from the
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Table 1. Properties of data sets used in the experimentation

Dataset # Objects # Attributes # Clusters

Iris 150 4 3
Wine 178 13 3
Glass 214 9 7
Ionosphere 351 34 2
GR431 431 2 not available
GR666 666 2 not available
WDBC 569 30 2
Letter Recognition 600 16 3
Synthetic Control 600 60 6
Vehicle 846 18 4
Yeast 1484 8 10

UCI repository [23]: Iris, Wine, Glass, Ionosphere, WDBC, Letter Recognition,
Synthetic Control, Vehicle, Yeast. For the dataset Letter Recognition, only 600
objects are considered from the 20.000 objects of the initial data set, they are
composed of the first 200 objects of each class. The datasets GR431 and GR666
are obtained from the library TSPLIB [24]; they contain coordinates of 431 and
666 European cities [25]. These two datasets do not contain information about
the number of clusters and we choose k = 3 for the tests. Table 1 summarizes
information about these datasets. There are few systems aiming at reaching a
global optimum. In Subsection 5.2, our model without user-constraints is com-
pared to the Repetitive Branch-and-Bound Algorithm (RBBA) [5]2. To the best
of our knowledge, it is the best exact algorithm for the maximal diameter and
WCSD criteria but it does not integrate user-constraints. The distance between
objects is the Euclidean distance and the dissimilarity is measured as the squared
Euclidean distance. As far as we know, there is no work optimizing the criteria
presented in the paper and integrating user-constraints (with k > 2). In Subsec-
tions 5.3, 5.4 and 5.5, we show the ability of our model to handle different kinds
of user-constraints.

Our model is implemented with the Gecode 4.0.0 library3. In this version
released in 2013, float variables are supported. This property is important to
obtain exact optimal value. All the experiments (our model and RBBA) are
performed on a PC Intel core i5 with 3.8 GHz and 8 GB of RAM. The time limit
for each test is 2 hours.

5.2 Minimizing Maximum Diameter without User-Constraint

Table 2 shows the results for the maximal diameter criterion. The first column
gives the datasets, the second column reports the optimal values of the diameter.
They are the same for both our model and the RBBA approach, since both

2 The program can be found in http://mailer.fsu.edu/˜mbrusco/
3 http://www.gecode.org
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Table 2. Comparison of performance with the maximal diameter criterion

Dataset Optimal Diameter CP Framework RBBA

Iris 2.58 0.03s 1.4s
Wine 458.13 0.3s 2.0s
Glass 4.97 0.9s 42.0s
Ionosphere 8.60 8.6s > 2 hours
GR431 141.15 0.6s > 2 hours
GR666 180.00 31.7s > 2 hours
WDBC 2377.96 0.7s > 2 hours
Letter Recognition 18.84 111.6s > 2 hours
Synthetic Control 109.36 56.1s > 2 hours
Vehicle 264.83 14.9s > 2 hours
Yeast 0.67 2389.9s > 2 hours

approaches find the global optimal. The third and fourth columns give the total
CPU times (in seconds) for each approach.

The results show that RBBA finds the optimal diameter only for the first
three datasets. In [5], the authors mention that their algorithm is effective for
databases with less than 250 objects. Table 2 shows that our model is able to
find the optimal diameter for a data set with up to n = 1484 and k = 10.
The performance does not only depend on the number of objects n and on the
number of groups k, but also on the margin between objects and on the database
features. The behavior of our model differs from classical models: for instance,
when k increases, the search space is larger and in many approaches, solving such
a problem takes more time. Indeed, since there are more clusters, the maximum
diameter is smaller, and propagation of the diameter constraint is more effective,
thus explaining that in some cases, it takes less computation time. As already
mentioned, they may exist several partitions with the same optimal diameter;
because of the search strategy of Constraint Optimization Problem in CP, our
model finds only one partition with the optimal diameter.

5.3 Minimizing Maximum Diameter with User-Constraints

Let us consider now the behavior of our system with user-constraints considering
the Letter Recognition dataset. Figure 1 presents the results we obtain when
must-link constraints (generated from the true classes of objects) and a margin
constraint δ (the margin between two clusters must be at least δ) is used. The
number of must-link constraints varies from 0.01% to 1% the total number of
pairs of objects where δ ranges from 3% to 12% the maximum distance between
two objects. Regarding to the results, both must-link and margin constraints
boost the performance for this data set.
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Fig. 1. Must-link and margin constraints

5.4 Minimizing Within-Cluster Sum of Dissimilarities

Minimizing the Within-Cluster Sum of Dissimilarities (WCSD) is a difficult task
since the propagation of the sum constraint is less efficient than the propaga-
tion of the diameter constraint. Without users-constraints, both our model and
the RBBA approach can find the optimal solutions only with the Iris dataset.
Our model needs 4174s to complete the search whereas the RBBA takes 3249s.
However, with appropriate user-constraints, the performance of our model can
be significantly improved.

WCSD and the margin constraint. Let us add a margin constraint δ, where
δ ranges from 0% (no constraint) to 12% of the maximum distance between
two objects. Table 3 (left) reports the WCSD value of an optimal solution
and the total computation time. It shows that when the margin constraint is
weak, the optimal WCSD value does not change. But the computation time de-
creases significantly when this additional constraint becomes stronger. The rea-
son is that the total number of feasible solutions decreases and the search space
is reduced. When the margin constraint is weak, propagating this constraint is
more time-consuming than its benefits.

Table 3. margin and must-link constraint with dataset Iris

Margin Constraint WCSD Total time # must-link WCSD Total time
no constraint 573.552 4174s no constraint 573.552 4174s
δ = 2% max Dist 573.552 1452s 0.2% 602.551 1275.1s
δ = 4% max Dist 573.552 84.4s 0.4% 602.551 35.6s
δ = 6% max Dist 573.552 0.3s 0.6% 617.012 16.1s
δ = 8% max Dist 2169.21 0.1s 0.8% 622.5 3.5s
δ = 10% max Dist 2412.43 0.04s 1% 622.5 1.6s
δ = 12% max Dist 2451.32 0.04s 100% 646.045 0.04s
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WCSD and must-link constraints. Let us now add must-link constraints, where
the number of must-link constraints, generated from the true classes of objects,
varies from 0.2 to 1% of the total number of pairs. Results are expressed in Table
3 (right), giving the WCSD value and the total computation time. In fact, the
optimal value of WCSD, with no information on classes, does not correspond
to the WCSD found when considering the partition of this dataset into the 3
defined classes. The more must-link constraints, the less computation time is
needed for finding the optimal value, and the closer to the value of WCSD,
when considering the 3 initial classes. The reduction of computation time can
be easily explained, since when an object is instantiated, objects that must be
linked to it are immediately instantiated too. Furthermore, with any kind of
additional constraint, the total number of feasible solutions is always equal or
less than the case without constraint.

Table 4. Example of appropriate combinations of user-constraints

Data set User constraints WCSD Total time

Wine margin: δ = 1.5% max Distance 1.40× 106 11.2s
minimum capacity: β = 30

GR666 margin: δ = 1.5% max Distance 1.79× 108 12.4s
diameter: γ = 50% max Distance

Letter Recognition # must-link constraints = 0.1% total pairs 5.84× 106 11.5s
# cannot-link constraints = 0.1% total pairs
margin: δ = 10% max Distance

Vehicle margin: δ = 3% max Distance 1.93× 109 1.6s
diameter: γ = 40% max Distance

WCSD and appropriate user-constraints. Finding an exact solution minimiz-
ing the WCSD is difficult. However, with appropriate combination of user-
constraints, the performance can be boosted. Table 4 presents some examples
where our model can get an optimal solution with different user-constraints,
which reduce significantly the search space.

5.5 Interest of the Model Flexibility

Our system finds an optimal solution when there exists one; otherwise no solution
is returned. Let us show the interest of combining different kinds of constraints.
Figure 2 presents 3 datasets in 2 dimensions, similar to those used in [7].

The first dataset is composed of 4 groups with different diameters. The second
one is more difficult, since groups do not have the same shape. The third one
contains outliers: outliers are not handled and are therefore integrated in classes.

When optimizing the maximal diameter, the solver tends to find rather ho-
mogeneous groups, as shown in Figure 3. Adding a min-margin constraint (with
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Fig. 2. Datasets

Fig. 3. Max-diameter optimization

Fig. 4. Maximal diameter optimization + margin constraint

Fig. 5. Diameter opt. (left) Margin opt. (center) Margin opt. + density const. (right)
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δ = 5% of the maximum distance between pairs of points) improves the quality of
the solution (see Figure 4). Let us notice that maximizing the minimum margin
allows also to find this solution.

Concerning the third dataset, minimizing the maximum diameter or maxi-
mizing the minimum margin do not allow finding a good solution (see Figure 5).
The quality of the solution is improved when a density constraint is added with
MintP ts = 4 and ε = 25% from the maximal distance between pairs of points.

6 Conclusion

We have proposed a declarative framework for Constrained Clustering based on
Constraint Programming. It allows to choose among different optimization cri-
teria and to integrate various kinds of constraints. Besides the declarativity of
CP, one of its advantage is that it allows to find an optimal solution, whereas
most approaches find only local optima. On the other hand, complexity makes it
difficult to handle very large databases. Nevertheless, integrating constraints en-
ables to reduce the search space, depending on their ability to filter the domain
of variables. Moreover, working on search strategies and on constraint propaga-
tion enables to increase the efficiency and to deal with larger problems. We plan
to work on the search strategies and on the constraint propagators, thus being
able to address larger databases. We do believe that global constraints adapted
to the clustering tasks must be developed. From the Data Mining point of view,
more optimization criteria should be added.

References

1. De Raedt, L., Guns, T., Nijssen, S.: Constraint programming for itemset mining.
In: Proceedings of the 14th ACM SIGKDD International Conference on Knowledge
Discovery and Data Mining, pp. 204–212 (2008)

2. De Raedt, L., Guns, T., Nijssen, S.: Constraint Programming for Data Mining
and Machine Learning. In: Proc. of the 24th AAAI Conf. on Artificial Intelligence
(2010)

3. Boizumault, P., Crémilleux, B., Khiari, M., Loudni, S., Métivier, J.P.: Discovering
Knowledge using a Constraint-based Language. CoRR abs/1107.3407 (2011)

4. Dao, T.B.H., Duong, K.C., Vrain, C.: Une approche en PPC pour la classification
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Abstract. The success of portfolio algorithms in competitions in the
area of combinatorial problem solving, as well as in practice, has moti-
vated interest in the development of new approaches to determine the
best solver for the problem at hand. Yet, although there are a number
of ways in which this decision can be made, it always relies on a rich
set of features to identify and distinguish the structure of the problem
instances. In this paper, we show how one of the more successful port-
folio approaches, ISAC, can be augmented by taking into account the
past performance of solvers as part of the feature vector. Testing on a
variety of SAT datasets, we show how our new formulation continuously
outperforms an unmodified/standard version of ISAC.

1 Introduction

It is becoming increasingly recognized in the constraint programming (CP) and
satisfiability (SAT) communities that there is no single best solver for all prob-
lems. Instead solvers tend to excel on a particular set of instances while offering
subpar performance on everything else. This observation has led to the pursuit
of approaches that, given a collection of existing solvers, attempt to select the
most appropriate one for the problem instances at hand. The way in which these
portfolio solvers make the selection, however, varies greatly. One approach can
be to train a regression model to predict the performance of each solver, select-
ing the expected best one [16,15]. Alternatively, a ranking approach can be used
over all solvers [6]. It is also possible to train a forest of trees, where each tree
makes a decision for every pair of solvers, deciding which of the two is likely
to be better, selecting the one voted upon most frequently [17]. Research has
also been conducted on creating a schedule of solvers to call in sequence rather
than committing to a single one [7,12]. An overview of many of these approaches
is presented in [9]. Yet regardless of the implementation, portfolio-based ap-
proaches have been dominating the competitions in satisfiability (SAT) [7,16],
constraint programming (CP) [12], and quantified Boolean formulae (QBF) [14].

One of the most successful portfolio techniques is referred to as Instance-
Specific Algorithm Configuration (ISAC) [8]. Originally the approach was demon-
strated to outperform the then reigning regression-based approach, SATzilla, in
the SAT domain [16], as well as a number of other existing portfolios [11]. The

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 435–450, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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approach was later embraced by the 3S solver which won 2 gold medals in the
2011 SAT competition [1]. ISAC’s applicability has also been demonstrated in
other domains such as set covering (SCP) and mixed integer (MIP) problems [8].

The guiding principle behind ISAC is to cluster the training instances based
on a representative feature vector. It is assumed that if the feature vector is
good, then the instances within the same cluster will all have similar underlying
structure and will therefore yield to the same solver. Up to now, however, ISAC
has relied on a pre-specified set of features and an objective-oblivious cluster-
ing. This means that any anomalous behavior of the features could result in
an improper clustering. Similarly, it cannot be assumed the identified clusters
group the instances in an optimal manner. In short, there has been a disconnect
between the clustering objective and the performance objective.

For this reason we propose a new approach, SNNAP, in which we try to
use the past performance of the solvers in the portfolio as part of the feature
vector. This approach redefines the feature vector to automatically encode our
desired objective of having similar instances in the same cluster, and is thus able
to significantly improve the results of the original algorithm. However, unlike
feature landmarking [13,3] where the evaluation of multiple simple algorithms
provide insight into the success of more complex algorithms, SNNAP tackles a
domain where a problem needs to only be evaluated once, but highly efficiently.

In this paper, we will first give an overview of the ISAC methodology and
demonstrate that straightforward feature filtering is not enough to significantly
improve performance. We will then show a number of modifications to the em-
ployed distance metric that improve the quality of the clusterings, and thus
the overall performance. We will conclude by presenting SNAPP, an approach
that combines predictive modeling as a way of generating features to be used
by dynamic clustering. To demonstrate our results, we use a collection of SAT
datasets: one that contains only randomly generated instances, one with only
handcrafted instances, one with industrial instances, and finally a mixture of all
three.

2 ISAC

The fundamental principle behind ISAC is that instances with similar features
are likely to have commonalities in their structure, and that there exists at
least one solver that is best at solving that particular structure. Therefore the
approach works as presented in Algorithm 1. In the training phase, ISAC is
provided with a list of training instances T, their corresponding feature vectors
F, and a collection of solvers A.

First, the computed features are normalized so that every feature ranges in
[-1,1]. This normalization helps keep all the features at the same order of magni-
tude, and thereby avoids the larger values being given more weight than smaller
values. Using these normalized values, the instances are clustered. Although any
clustering approach can be used, in practice g-means [5] is employed in order to
avoid specifying the desired number of clusters. This clustering approach assumes
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Algorithm 1. ISAC

1: function ISAC-Train(T,F,A)
2: (F̄ ) ← Normalize(F )
3: (k,C, S) ← Cluster(T, F̄ )
4: for all i = 1, . . . , k do
5: BSi ← FindBestSolver(T, Si, A)
6: end for
7: return (k, C,BS)
8: end function

1: function ISAC-Run(x,k, C,BS)
2: j ← FindClosestCluster(k, x, C)
3: return BSj(x)
4: end function

that a good cluster is one in which the data follows a Gaussian distribution.
Therefore, starting with all instances in the same cluster, g-means iteratively
applies 2-means clustering, accepting the partition only if the two new clusters
are more Gaussian than their predecessor. Once the instances are clustered, we
add an additional step that merges all clusters smaller than a predefined thresh-
old into their neighboring clusters. The final result of the clustering is a set of
k clusters S, and a set of cluster centers C. For each cluster we then determine
a single solver, which is usually the one that has best average performance on
all instances in its cluster. When the procedure is presented with a previously
unseen instance x, ISAC assigns it to the nearest cluster and runs the solver
designated to that cluster on the instance x.

In practice, this standard version of ISAC has been continuously shown to
perform well, commonly outperforming the choice of a single solver on all in-
stances. In many situations ISAC has even outperformed existing state-of-the-
art regression-based portfolios [11]. However, the current version of ISAC also
accepts the computed clustering on faith, even though it might not be opti-
mal or might not best capture the relationship between problem instances and
solvers. It also does not take into account that some of the features might be
noisy or misleading. Therefore, the following sections will show the advantages
of applying feature filtering. We will then show how the feature vector can be
extended to include the performance of solvers on the training instances. This
has the effect of increasing the chances that instances for which the same solver
performs well are placed into the same cluster. Finally, we extend the approach
to combine predictive modeling and dynamic clustering to find the best cluster
for each new instance.

3 Experimental Setup

The satisfiability (SAT) domain was selected to test our proposed methodologies
due to the large number of diverse instances and solvers that are available. We
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compiled four datasets using all instances from the 2006 SAT Competition to
the present day 2012 SAT Challenge [2]. These four datasets contain 2140, 735,
1098 and 4243 instances, respectively, as follows:

RAND: instances have been generated at random;
HAND: instances are hand-crafted or are transformations from other NP-

Complete problems;
INDU: instances come from industrial problems;
ALL: instances are the union of the previous datasets.

We rely on the standard set of 115 features that have been embraced by
the SAT community [16]. Specifically, using the feature code made available by
UBC,1 we compute features with the following settings: -base, -sp, -dia, -cl, -ls,
and -lobjois ; but having observed previously that the features measuring compu-
tation time are unreliable, we discard those 9. These features cover information
such as the number of variables, number of clauses, average number of literals
per clause, proportion of positive to negative literals per clause, etc. Finally, we
also run 29 of the most current SAT solvers, many of which have individually
shown very good performance in past competitions. Specifically, we used:

– clasp-2.1.1 jumpy

– clasp-2.1.1 trendy

– ebminisat

– glueminisat

– lingeling

– lrglshr

– picosat

– restartsat

– circminisat

– clasp1

– cryptominisat 2011

– eagleup

– gnoveltyp2

– march rw

– mphaseSAT

– mphaseSATm

– precosat

– qutersat

– sapperlot

– sat4j-2.3.2

– sattimep

– sparrow

– tnm

– cryptominisat295

– minisatPSM

– sattime2011

– ccasat

– glucose 21

– glucose 21 modified.

Each of the solvers was run on every instance with a 5,000 second timeout.
We then removed instances that could not be solved by any of the solvers within
the allotted time limit. We further removed instances that we deemed too easy,
i.e. those where every solver could solve the instance within 15 seconds. This
resulted in our final datasets comprising of 1949 Random, 363 Crafted, and 805
industrial instances, i.e. 3117 instances in total.

All the experiments presented in this paper were evaluated using 10-fold cross
validation, where we averaged the results over all folds. We then repeat each
experiment 10 times to decrease the bias of our estimates of the performance.
In our experiments we commonly present both the average and the PAR-10
performance; PAR-10 is a weighted average where every timeout is treated as
having taken 10 times the timeout. We also present the percentage of instances
not solved.

1 http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/

http://www.cs.ubc.ca/labs/beta/Projects/SATzilla/
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We evaluate all our results comparing them to three benchmark values:

– Virtual Best Solver (VBS): This is the lower bound of what is achievable
with a perfect portfolio that, for every instance, always chooses the solver
that results in the best performance.

– Best Single Solver (BSS): This is the desired upper bound, obtained by
solving each instance with the solver whose average running time is the
lowest on the entire dataset.

– Instance-Specific Algorithm Configuration (ISAC): This is the pure ISAC
methodology obtained with the normal set of features and clustering.

Our results will always lie between the VBS and the BSS with the ultimate goal
to improve over ISAC. Results will be divided according to their dataset.

4 Applying Feature Filtering

The current standard version of ISAC assumes that all features are equally im-
portant. But as was shown in [10], this is often not the case, and it is possible to
achieve comparable performance with a fraction of the features, usually also re-
sulting in slightly better overall performance. The original work presented in [10]
only considered a rudimentary feed-forward selection. In this paper we utilize
four common and more powerful filtering techniques: Chi-squared, information
gain, gain ratio, and symmetrical uncertainty. Because all these approaches de-
pend on a classification for each instance, we use the name of the best solver for
that purpose.

Chi-squared. The Chi-squared test is a correlation-based filter and makes use
of “contingency tables”. One advantage of this function is that it does not need
the discretization of continuous features. It is defined as:

χ2 =
∑
ij

(Mij −mij)
2/mij where mij =Mi.M.j/m

Mij is the number of times objects with feature values Y = yj , X = xi appear
in a dataset, yi are classes and xj are features.

Information gain. Information gain is based on information theory and is often
used in decision trees and is based on the calculation of entropy of the data as
a whole and for each class. For this ranking function continuous features must
be discretized in advance.

Gain ratio. This function is a modified version of the information gain and it
takes into account the mutual information for giving equal weight to features
with many values and features with few values. It is considered to be a stable
evaluation.

Symmetrical uncertainty. The symmetrical uncertainty is built on top of the
mutual information and entropy measures. It is particularly noted for its low
bias for multivalued features.
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Table 1. Results on the SAT benchmark, comparing the Virtual Best Solver (VBS),
the Best Single Solver (BSS), the original ISAC approach (ISAC) and ISAC with
different feature filtering techniques: “chi.squared“, ”information.gain”, “symmetri-
cal.uncertainty” and “gain.ratio”.

RAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 1551 (0) 13154 (0) 25.28 (0)
ISAC 826.1 (6.6) 4584 (40.9) 8.1 (0.2)
chi.squared 1081 (42.23) 7318 (492.7) 14 (1)
information.gain 851.5 (32.33) 5161 (390) 8.7 (0.8)
symmetrical.uncertainty 840.2 (13.15) 4908 (189.5) 8.76 (0.4)
gain.ratio 830.3 (21.3) 4780 (210) 9 (0.4)
VBS 358 (0) 358 (0) 0 (0)

HAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 2080 (0) 15987 (0) 30.3 (0)
ISAC 1743 (34.4) 13994 (290.6) 26.5 (0.9)
chi.squared 1544 (37.8) 11771 (435) 23.5 (0.9)
information.gain 1641 (38.9) 12991 (443) 24.3 (0.9)
symmetrical.uncertainty 1686 (27.3) 13041 (336) 25.7 (0.7)
gain.ratio 1588 (43.7) 12092 (545) 22.4 (1)
VBS 400 (0) 400 (0) 0 (0)

INDU Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 871 (0) 4727 (0) 8.4 (0)
ISAC 763.4 (4.7) 3166 (155.6) 5.2 (0.7)
chi.squared 708.1 (25.3) 3252 (218) 5.8 (0.4)
information.gain 712.6 (7.24) 2578 (120) 4.3 (0.3)
symmetrical.uncertainty 716.4 (16.76) 2737 (150) 4.4 (0.3)
gain.ratio 705.4 (19.9) 2697 (284) 4.1 (0.6)
VBS 319 (0) 319 (0) 0 (0)

ALL Runtime - avg (std) Par 10 - avg (std) % not solved

BSS 2015 (0) 4726 (0) 30.9 (0)
ISAC 1015 (10.3) 6447 (92.4) 11.8 (0.2)
chi.squared 1078 (29.7) 7051 (414) 11.79 (0.8)
information.gain 1157 (18.9) 7950 (208) 15 (0.4)
symmetrical.uncertainty 1195 (28.7) 8067 (341) 15.6 (0.7)
gain.ratio 1111 (17.4) 6678 (225) 13.39 (0.5)
VBS 353 (0) 353 (0) 0 (0)

Restricting our filtering approaches to finding the best 15 features, we can
see in Table 1 that the results are highly dependent on the dataset taken into
consideration. For the random dataset there is no major improvement due to
using just a subset of the features. Yet we can achieve almost the same result
as the original ISAC by just using a subset of the features calculated using
the gain.ratio function, a sign that not all the features are needed. We can
further observe the improvements are more pronounced in the hand-crafted and
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industrial datasets. For them, the functions that give the best results are, respec-
tively, chi.squared and gain.ratio, but in the latter the result is almost identical
to the one given by chi.squared.

These results show that not all features are necessary for the clustering, and
that it is possible to improve performance through the careful selection of the
features. However, we also observe that the improvements can sometimes be
minor, and are highly dependent on the filtering approach used and the dataset
it is evaluated on.

5 Extending the Feature Space

While the original version of ISAC employs Euclidean distance for clustering,
there is no reason to believe that this is the best distance function. As an alter-
native one might learn a weighted distance metric, where the weights are tuned
to match the desired similarity between two instances. For example, if two in-
stances have the same best solver, then the distance between these two instances
should be small. Alternatively, when a solver performs very well on one instance,
but poorly on another, it might be desirable for these instances to be separated
by a large distance.

In our initial experiments, we have trained a distance function that attempts
to capture this desired behavior. Yet the resulting performance often times
proved worse than the standard Euclidean distance. There are a number of
reasons for this. First, while we know that some instances should be closer or
farther from each other, the ideal magnitude of the distance cannot be readily
determined. Second, the effectiveness of the distance function depends on near
perfect accuracy since any mistake can distort the distance space. Third, the ex-
act form of the distance function is not known. It is, for example, possible that
even though two instances share the same best solver, they should nevertheless
be allowed to be in opposite corners of the distance space. We do not necessarily
want every instance preferring the same solver to be placed in the same cluster,
but instead want to avoid contradictory preferences within the same cluster.

Due to these complications, we propose an alternate methodology for refining
the feature vector. Specifically, we propose to add the normalized performance
of all solvers as part of the features. In this setting, for each instance, the best
performing solver is assigned a value of -1, while the worst performing is assigned
to 1. Everything in between is scaled accordingly. The clustering is then done on
both the set of the normal features and the new ones. During testing, however,
we do not know the performance of any of the solvers beforehand, so we set all
those features to 0.

We see in Table 2 that the performance of this approach (called NormTimes
ISAC) was really poor: never comparable with the running times of the normal
ISAC. The main reason was that we were taking into consideration too many
solvers during the computation of the new features.

As an alternative, we consider that matching the performance of all solvers
is too constraining. Implicitly ISAC assumes that a good cluster is one where
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Table 2. Results on the SAT benchmark, comparing the Best Single Solver (BSS), the
Virtual Best Solver (VBS), the original ISAC approach (ISAC), the ISAC approach
with extra features coming from the running times: “NormTimes ISAC” has the nor-
malized running times while “BestTwoSolv ISAC” takes into consideration just the
best two solvers per each instance.

RAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 1551 (0) 13154 (0) 25.28 (0)
ISAC 826.1 (6.6) 4584 (40.9) 8.1 (0.2)
NormTimes ISAC 1940 (-) 15710 (-) 30 (-)
BestTwoSolv ISAC 825.6 (5.7) 4561 (87.8) 8.1 (0.2)
VBS 358 (0) 358 (0) 0 (0)

HAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 2080 (0) 15987 (0) 30.3 (0)
ISAC 1743 (34.4) 13994 (290.6) 26.5 (0.9)
NormTimes ISAC 1853 (-) 14842 (-) 28.3 (-)
BestTwoSolv ISAC 1725 (29.2) 13884 (124.4) 26.5 (0.8)
VBS 400 (0) 400 (0) 0 (0)

INDU Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 871 (0) 4727 (0) 8.4 (0)
ISAC 763.4 (4.7) 3166 (155.6) 5.2 (0.7)
NormTimes ISAC 934.3 (-) 5891 (-) 10.8 (-)
BestTwoSolv ISAC 750.5 (2.4) 2917 (157.3) 4.7 (0.4)
VBS 319 (0) 319 (0) 0 (0)

ALL Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 2015 (0) 4727 (0) 30.9 (0)
ISAC 1015 (10.3) 6447 (92.4) 11.8 (0.2)
NormTimes ISAC 1151 (-) 6923 (-) 12.5 (-)
BestTwoSolv ISAC 1019 (11.5) 6484 (172.3) 11.9 (0.3)
VBS 353 (0) 353(0) 0 (0)

the instances all prefer the same solver. For this reason we decided to take into
account only the performance of the best two solvers per each instance. This
was accomplished by extending the normal set of features with a vector of new
features (one per each solver), and assigning a value of 1 to the components
corresponding to the best two solvers and 0 to all the others. In the testing
set, since we again do not know which are the best two solvers before hand, all
the new features are set to the constant value of 0. As can be seen in Table 2,
depending on which of the four datasets was used we got different results (this
approach is called bestTwoSolv ISAC): we observed a small improvement in the
hand-crafted and industrial datasets, while for the other two datasets the results
were almost the same as the pure ISAC methodology.

The drawbacks of directly extending the feature vector with the performance
of solvers are two-fold. First, the performance of the solvers is not available
prior to solving a previously unseen test instance. Secondly, even if the new
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features are helpful in determining a better clustering, there is usually a large
number of original features that might be resisting the desired clustering. Yet
even though these extensions to the feature vector did not provide a compelling
case to be used instead of the vanilla ISAC approach, they nonetheless supported
the assumption that by considering solver performances on the training data it
is possible to improve the quality of the overall clustering. This has inspired the
Solver-based Nearest Neighbor Approach that we describe in the next section.

6 SNNAP

There are two main takeaway messages from extending the feature vector with
solver performances. First, the addition of solver performances can be helpful,
but the inclusion of the original features can be disruptive for finding the desired
cluster. Second, it is not necessary for us to find instances where the relation of
every solver is similar to the current instance. It is enough to just know the best
two or three solvers for an instance. Using these two ideas we propose SNNAP
which is presented as Algorithm 2.

During the training phase the algorithm is provided with a list of training
instances T, their corresponding features vectors F and the running times R of
every solver in our portfolio. We then train a single model PM for every solver
to predict the expected runtime on a given instance. We have claimed previously
that such models are difficult to train properly since any misclassification can
result in the selection of the wrong solver. In fact, this was partly why the original
version of ISAC outperformed these types of regression-based portfolios. Clusters
provide better stability of the resulting prediction of which solver to choose. We
are, however, not interested in using the trained model to predict the single best
solver to be used on the instance. Instead, we just want to know which solvers
are going to behave well on a particular instance.

For training the model, we scale the running times of the solvers on one
instance so that the scaled vector will have a mean of 0 and unitary standard
deviation. We saw that this kind of scaling is crucial in helping the following
phase of prediction. Thus we are not training to predict runtime. We are learning
to predict when a solver will perform much better than usual. Doing so, for every
instance, every solver that behaves better than one standard deviation from the
mean will receive a score less than -1, the solvers which behaves worse than one
standard deviation from the mean a score greater of 1, and the others will lie in
between. Random forests [4] were used as the prediction model.

In the prediction phase the procedure is presented with a previously unseen
instance x, the prediction models PM (one per each solver), the training in-
stances T, their running times R (and the scaled version R̄), the portfolio of
solvers A and the size of the desired neighborhood k. The procedure first uses
the prediction models to infer the performances PR of the solvers on the instance
x, using its originally known features. SNNAP then continues to use these per-
formances to compute a distance between the new instance and every training
instance, selecting the k nearest among them. The distance calculation takes into
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Algorithm 2. Solver-based Nearest Neighbor for Algorithm Portfolios

1: function SNNAP-Train(T,F,R)
2: for all instances i in T do
3: R̄i ← Scaled(Ri)
4: end for
5: for all solver j in the portfolio do
6: PMj ← PredictionModel(T, F, R̄)
7: end for
8: return PM
9: end function

1: function SNNAP-Run(x,PM, T, R, R̄, A, k)
2: PR ← Predict(PM,x)
3: dist ← CalculateDistance(PR,T, R̄)
4: neighbors ← FindClosestInstances(dist, k)
5: j ← FindBestSolver(neighbors,R)
6: return Aj(x)
7: end function

account only the scaled running time of the instances of the training set and the
predicted performances PR of the different solvers on the instance x. At the end
the instance x will be solved using the solver that behaves best (measured as
the average running time) on the k neighbors previously chosen.

It is worth highlighting again that we are not trying to predict the running
times of the solvers on the instances but, after scaling, we predict a ranking
amongst the solvers on a particular instance: which will be the best, which the
second best, etc. Moreover, as shown in the next section, we are not interested
in learning a ranking among all the solvers, but just among a small subset of
them, specifically for each instance which will be the best n solvers.

6.1 Choosing the Distance Metric

The k -nearest neighbors approach is usually used in conjunction with the
weighted Euclidean distance; unfortunately the Euclidean distance does not take
into account the performances of the solvers in a way that is helpful to us. What
is needed is a distance metric that takes into account the performances of the
solvers and that would allow the possibility of making some mistakes in the pre-
diction phase without too much prejudice on the performances. Thus the metric
should be trained with the goal that the k -nearest neighbors always prefer to
be solved by the same solver while instances that prefer different solvers are
separated by a large margin.

Given two instances a, b and the running times of the m algorithms in the
portfolio A on both of them Ra1 , . . . Ram and Rb1 , . . . Rbm , we identify which
are the best n solvers on each (Aa1 , . . . Aan) and (Ab1 , . . . Abn) and define their
distance as a Jaccard distance:
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1− |intersection((Aa1 , . . . Aan), (Ab1 , . . . Abn))|
|union((Aa1 , . . . Aan), (Ab1 , . . . Abn))|

Using this definition two instances that will prefer the exact same n solvers
will have a distance of 0, while instances which prefer completely different solvers
will have a distance of 1. Moreover, using this kind of distance metric we are
no longer concerned with making small mistakes in the prediction phase: even
if we switch the ranking between the best n solvers the distance between two
instances will remain the same. In our experiments, we focus on setting n = 3,
as with higher values the performances degrades.

6.2 Numerical Results

In our approach, with the Jaccard distance metric, for each instance we are
interested in knowing which are the n best solvers. In the prediction phase we
used random forests which achieved high levels of accuracy: as stated in Table 3
we correctly made 91, 89, 91 and 91% (respectively RAND, HAND, INDU and
ALL datasets) of the predictions. We compute these percentages in the following
manner. There are 29 predictions made (one per each solver) per each instance,
giving us a total of 5626, 1044, and 2320 predictions per category. We define
accuracy as the percentage of matches between the predicted best n solvers and
the true best n.

Table 3. Statistics of the four datasets used: instances generated at random “RAND”,
hand-crafted instances “HAND”, industrial instances “INDU” and the union of them
“ALL”.

RAND HAND INDU ALL

Number of instances considered 1949 363 805 3117
Number of predictions 5626 1044 2320 9019
Accuracy in the prediction phase 91% 89% 91% 91%

Having tried different parameters we use the performance of just the n = 3
best solvers in the calculation of the distance metric and a neighborhood size of
60. Choosing a larger number of solvers degrades the results. This is most likely
due to scenarios where one instance is solved well by a limited number of solvers,
while all the others time out.

As we can see in Table 4 the best improvement, as compared to the standard
ISAC, is achieved in the hand-crafted dataset. Not only are the performances
improved by 60%, but also the number of unsolved instances is halved; this
also has a great impact on the PAR10 evaluation.2 It is interesting to note that

2 PAR10 score is a penalized average of the runtimes: for each instance that is solved
within 5000 seconds (the timeout threshold), the actual runtime in seconds denotes
the penalty for that instance. For each instance that is not solved within the time
limit, the penalty is set to 50000, which is 10 times the original timeout.
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Table 4. Results on the SAT benchmark, comparing the Best Single Solver (BSS), the
original ISAC approach (ISAC), our SNNAP approach (SNNAP) (also with feature
filtering) and the Virtual Best Solver (VBS)

RAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 1551 (0) 13154 (0) 25.28 (0)
ISAC 826.1 (6.6) 4584 (40.9) 8.1 (0.2)
SNNAP 791.4 (15.7) 4119 (207) 7.3 (0.2)
SNNAP + Filtering 723 (9.27) 3138 (76.9) 5.28 (0.1)
VBS 358 (0) 358 (0) 0 (0)

HAND Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 2080 (0) 15987 (0) 30.3 (0)
ISAC 1743 (34.4) 13994 (290.6) 26.5 (0.9)
SNNAP 1063 (33.86) 6741 (405.5) 12.4 (0.4)
SNNAP + Filtering 995.5 (18.23) 6036 (449) 10.5 (0.4)
VBS 400 (0) 400 (0) 0 (0)

INDU Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 871 (0) 4727 (0) 8.4 (0)
ISAC 763.4 (4.7) 3166 (155.6) 5.2 (0.7)
SNNAP 577.6 (21.5) 1776 (220.8) 2.6 (0.4)
SNNAP + Filtering 540 (15.52) 1630 (149) 2.4 (0.4)
VBS 319 (0) 319 (0) 0 (0)

ALL Runtime - avg (std) Par 10 - avg (std) % not solved - avg (std)

BSS 2015 (0) 4727 (0) 30.9 (0)
ISAC 1015 (10.3) 6447 (92.4) 11.8 (0.2)
SNNAP 744.2 (14) 3428 (141.2) 5.8 (0.2)
SNNAP + Filtering 692.9 (7.2) 2741 (211.9) 4.5 (0.1)
VBS 353 (0) 353 (0) 0 (0)

the hand-crafted dataset is the one that proves to be most difficult, in terms of
solving time, while being the setting in which we achieved the most improvement.

We also achieved a significant improvement, although lower than that with
the Hand-crafted dataset, on the Industrial and ALL (∼ 25%) datasets. Here
the number of unsolved instances was also halved. In the random dataset we
achieved the lowest improvement but, yet, we were able to overtake significantly
the standard ISAC approach.

We have also applied feature filtering to SNNAP and the results are shown in
Table 4. Feature filtering is again proving beneficial, significantly improving the
results for all our datasets and giving us a clue that not all 115 features are essen-
tial. Results in the table have been reported only for the more successful ranking
function (gain.ratio for the Random dataset, chi.squared for Hand-crafted and
Industrial and the overAll dataset).

These consistent results for SNNAP are encouraging. In particular, it is clear
that the dramatic decrease in the number of unsolved instances is highly
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Table 5. Matrix for comparing instances solved and not solved using SNNAP and
ISAC for the four datasets: RAND, HAND, INDU and ALL. Values are in percentages

RAND
SNNAP \ISAC Solved Not Solved

Solved 89.4 3.3
Not Solved 2.5 4.8

HAND
SNNAP \ISAC Solved Not Solved

Solved 70.2 17.4
Not Solved 3.3 9.1

INDU
SNNAP \ISAC Solved Not Solved

Solved 93.9 3.5
Not Solved 0.9 1.7

ALL
SNNAP \ISAC Solved Not Solved

Solved 85.8 8.4
Not Solved 2.4 3.4

important, as they are key to lowering the average and the PAR10 scores. This
result can also be observed in Table 5, where we can see the percentage of in-
stances solved/not solved by each approach. In particular the most significant
result is achieved, again, in the HAND dataset where the number of instances
not solved by ISAC, but solved by our approach is 17.4% of the overall instances,
while the number of instances not solved by our approach but solved by ISAC
is only 3.3%. As we can see this difference is also considerable in the other three
datasets. Deliberately, we chose to show this matrix only for the version of ISAC
and SNNAP without feature filtering as it offers an unbiased comparison be-
tween the two approaches, as we have shown that ISAC does not improve after
feature filtering.

Another useful statistic is represented by the number of times that an ap-
proach is able to select the best solver for a given instance. In the random dataset
SNNAP is able to select the best solver for 39% of the instances, as compared
with 35% for ISAC. For the Hand-crafted dataset those values are 25% and 17%,
respectively, for the Industrial 29% and 21%, respectively, and for the ALL 32%
and 26%, respectively. These values suggest that ISAC is already behaving well
on the RAND dataset and, for this reason, the improvement achieved with our
new approach is smaller in that case, while the improvement is more significant
in the other three datasets. These results also show that there is room for further
improvement.

The final thing we analyze are the frequencies with which the solvers are
chosen by the three strategies: the Virtual Best Solver (VBS), ISAC and SNNAP.
Table 6 presents the frequency with which each of the 29 solvers in our portfolio
were selected by each strategy, highlighting the best single solver (BSS) for each
category. In this table we can see that ISAC tends to favor selecting the Best
Single Solver. This is particularly clear in the Hand-crafted dataset: the BSS (15)
is chosen only in 8% of the instances by the VBS, while it is the more frequently
chosen solver by ISAC. Note also that in the ALL dataset the VBS approach
never chooses the BSS, while this solver is one of the top three chosen by ISAC.
On the other hand, the more often a solver is chosen by the VBS, the more often
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Table 6. Frequencies of solver selections for VBS, ISAC and SNNAP. Results are ex-
pressed as percentages and entries with value < 0.5 have been reported as ’-’. In bold
the top three solvers for each approach are identified. Reported are also the Best Single
Solver (BSS) for each dataset. Solvers are: 1: clasp-2.1.1 jumpy, 2: clasp-2.1.1 trendy,
3: ebminisat, 4: glueminisat, 5: lingeling, 6: lrglshr, 7: picosat, 8: restartsat, 9: circmin-
isat, 10: clasp1, 11: cryptominisat 2011, 12: eagleup, 13: gnoveltyp2, 14: march rw,
15: mphaseSAT, 16: mphaseSATm, 17: precosat, 18: qutersat, 19: sapperlot, 20: sat4j-
2.3.2, 21: sattimep, 22: sparrow, 23: tnm, 24: cryptominisat295, 25: minisatPSM, 26:
sattime2011, 27: ccasat, 28: glucose 21, 29: glucose 21 modified.
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it is chosen by SNNAP. This big discrepancy between the VBS and BSS in this
dataset is one of the reason for the poorer performance of ISAC and one of the
reasons for the improvement observed when using SNNAP.

7 Conclusions

Instance-Specific Algorithm Configuration (ISAC) is a successful approach to
tuning a wide range of solvers for SAT, MIP, set covering, and others. This
approach assumes that the features describing an instance are enough to group
instances so that all instances in the cluster prefer the same solver. Yet there
is no fundamental reason why this hypothesis should hold. In this paper we
show that the assumptions that ISAC makes can be strengthened. We show that
not all employed features are useful and that it is possible to achieve similar
performance with only a fraction of the features that are available. We then show
that it is possible to extend the feature vector to include the past performances of
solvers to help guide the clustering process. In the end, however, we introduce an
alternative view of ISAC which uses the existing features to predict the best three
solvers for a particular instance. Using k-nearest neighbors, the approach then
scans the training data to find other instances that preferred the same solvers,
and uses them as a dynamically formed training set to select the best solver
to use. We call this methodology Solver-based Nearest Neighbors for Algorithm
Portfolios (SNNAP).

The benefit of the SNNAP approach over ISAC is that the cluster formulated
by the k-NN comprises of instances that are most similar to the new instance,
something that ISAC assumes but has no way of enforcing. Additionally, the
approach is not as sensitive to incorrect decisions by the predictive model. For
example, it does not matter if the ranking of the top three solvers is incorrect, any
permutation is acceptable. Furthermore, even if one of the solvers is incorrectly
included in the top n, the k-NN generates a large enough training set to find a
reasonable solver that is likely to work well in general.

This synergy between prediction and clustering that enforces the desired qual-
ities of our clusters is the reason that SNNAP consistently and significantly out-
performs the traditional ISAC methodology. Consequently, this paper presents
a solver portfolio for combinatorial problem solving that out-performs the state-
of-the-art in the area.
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Abstract. The area under the precision-recall curve (AUCPR) is a sin-
gle number summary of the information in the precision-recall (PR)
curve. Similar to the receiver operating characteristic curve, the PR curve
has its own unique properties that make estimating its enclosed area
challenging. Besides a point estimate of the area, an interval estimate is
often required to express magnitude and uncertainty. In this paper we
perform a computational analysis of common AUCPR estimators and
their confidence intervals. We find both satisfactory estimates and in-
valid procedures and we recommend two simple intervals that are robust
to a variety of assumptions.

1 Introduction

Precision-recall (PR) curves, like the closely-related receiver operating character-
istic (ROC) curves, are an evaluation tool for binary classification that allows the
visualization of performance at a range of thresholds. PR curves are increasingly
used in the machine learning community, particularly for imbalanced data sets
where one class is observed more frequently than the other class. On these im-
balanced or skewed data sets, PR curves are a useful alternative to ROC curves
that can highlight performance differences that are lost in ROC curves [1]. Be-
sides visual inspection of a PR curve, algorithm assessment often uses the area
under a PR curve (AUCPR) as a general measure of performance irrespective
of any particular threshold or operating point (e.g., [2,3,4,5]).

Machine learning researchers build a PR curve by first plotting precision-recall
pairs, or points, that are obtained using different thresholds on a probabilistic
or other continuous-output classifier, in the same way an ROC curve is built by
plotting true/false positive rate pairs obtained using different thresholds. Davis
and Goadrich [6] showed that for any fixed data set, and hence fixed numbers of
actual positive and negative examples, points can be translated between the two
spaces. After plotting the points in PR space, we next seek to construct a curve
and compute the AUCPR and to construct 95% (or other) confidence intervals
(CIs) around the curve and the AUCPR.

However, the best method to construct the curve and calculate area is not read-
ily apparent. The PR points from a small data set are shown in Fig. 1. Questions
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immediately arise about what to do with multiple points with the same x-value
(recall), whether linear interpolation is appropriate, whether the maximum pre-
cision for each recall are representative, if convex hulls should be used as in ROC
curves, and so on. There are at least four distinct methods (with several varia-
tions) that have been used in machine learning, statistics, and related areas to
compute AUCPR, and four methods that have been used to construct CIs. The
contribution of this paper is to discuss and analyze eight estimators and four CIs
empirically. We provide evidence in favor of computing AUCPR using the lower
trapezoid, average precision, or interpolated median estimators and using binomial
or logit CIs rather than other methods that include the more widely-used (in ma-
chine learning) ten-fold cross-validation. The differences in results using these ap-
proaches are most striking when data are highly skewed, which is exactly the case
when PR curves are most preferred over ROC curves.
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Fig. 1. Empirical PR points obtained from
a small data set with 10 positive examples
and 20 negative examples

Section 2 contains a review of PR
curves, Section 3 describes the esti-
mators and CIs we evaluate, and Sec-
tion 4 presents case studies of the
estimators and CIs in action.

2 Area Under the
Precision-Recall Curve

Consider a binary classification task
where models produce continuous
outputs, denoted Z, for each example.
Diverse applications are subsumed by
this setup, e.g., a medical test to iden-
tify diseased and disease-free patients,
a document ranker to distinguish rele-
vant and non-relevant documents to a
query, and generally any binary clas-
sification task. The two categories are often naturally labelled as positive (e.g.,
diseased, relevant) or negative (e.g., disease-free, non-relevant). Following the
literature on ROC curves [7,8], we denote the output values for the negative
examples by X and the output values for the positive examples by Y (Z is a
mixture of X and Y ). These populations are assumed to be independent when
the class is known. Larger output values are associated with positive examples,
so for a given threshold c, an example is predicted positive if its value is greater
than c. We represent the category (or class) with the indicator variable D where
D = 1 corresponds to positive examples and D = 0 to negative examples. An
important aspect of a task or data set is the class skew π = P (D = 1). Skew is
also known as prevalence or a prior class distribution.

Several techniques exist to assess the performance of binary classification
across a range of thresholds. While ROC analysis is the most common, we are
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interested in the related PR curves. A PR curve may be defined as the set of
points:

PR(·) = {(Recall(c), P rec(c)),−∞ < c <∞}

where Recall(c) = P (Y > c) and Prec(c) = P (D = 1|Z > c). Recall is equiva-
lent to true positive rate or sensitivity (the y-axis in ROC curves), while precision
is the same as positive predictive value. Since larger output values are assumed
to be associated with positive examples, as c decreases, Recall(c) increases to
one and Prec(c) decreases to π. As c increases, Prec(c) reaches one as Recall(c)
approaches zero under the condition that “the first document retrieved is rele-
vant” [9]. In other words, whether the example with the largest output value is
positive or negative greatly changes the PR curve (approaching (0, 1) if positive
and (0, 0) if negative). Similarly, estimates of precision for recall near 0 tend to
have high variance, and this is a major difficulty in constructing PR curves.

It is often desirable to summarize the PR curve with a single scalar value.
One summary is the area under the PR curve (AUCPR), which we will denote
θ. Following the work of Bamber [7] on ROC curves, AUCPR is an average of
the precision weighted by the probability of a given threshold.

θ =

∫ ∞

−∞
Prec(c)dP (Y ≤ c) (1)

=

∫ ∞

−∞
P (D = 1|Z > c)dP (Y ≤ c). (2)

By Bayes’ rule and using that Z is a mixture of X and Y ,

P (D = 1|Z > c) =
πP (Y > c)

πP (Y > c) + (1 − π)P (X > c)

and we note that 0 ≤ θ ≤ 1 since Prec(c) and P (Y ≤ c) are bounded on the unit
square. Therefore, θ might be viewed as a probability. If we consider Eq. (2) as an
importance-sampled Monte Carlo integral, we may interpret θ as the fraction of
positive examples among those examples whose output values exceed a randomly
selected c ∼ Y threshold.

3 AUCPR Estimators

In this section we summarize point estimators for θ and then introduce CI
methods.

3.1 Point Estimators

Let X1, . . . , Xm and Y1, . . . , Yn represent observed output values from negative
and positive examples, respectively. The skew π is assumed to be given or is set
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to n/(n+m). An empirical estimate of the PR curve, P̂R(·), can be derived by
the empirical estimates of each coordinate:

R̂ecall(c) = n−1
n∑

i=1

I(Yi > c)

P̂ rec(c) =
πR̂ecall(c)

πR̂ecall(c) + (1 − π)m−1
∑m

j=1 I(Xj > c)

where I(A) is the indicator function for event A.
We review a number of possible estimators for θ.

Trapezoidal Estimators. For fixed R̂ecall(t), the estimated precision may

not be constant (so P̂R(·) is often not one-to-one). This corresponds to cases
where an observed Y(i) < Xj < Y(i+1) for some i and j where Y(i) denotes
the ith order statistic (ith largest value among the Yi’s). As the threshold is
increased from Y(i) to Xj , recall remains constant while precision decreases. Let

ri = R̂ecall(Y(n−i)), so that r1 ≤ r2 ≤ · · · ≤ rn, and pmax
i be the largest sample

precision value corresponding to ri. Likewise, let p
min
i be the smallest sample

precision value corresponding to ri. This leads immediately to a few choices for
estimators based on the empirical curve using trapezoidal estimation [10].

θ̂LT =

n−1∑
i=1

pmin
i + pmax

i+1

2
(ri+1 − ri) (3)

θ̂UT =

n−1∑
i=1

pmax
i + pmax

i+1

2
(ri+1 − ri) (4)

corresponding to a lower trapezoid (Eq. (3)) and upper trapezoid (Eq. (4)) ap-
proximation. Note the upper trapezoid method uses an overly optimistic linear
interpolation [6]; we include it for comparison as it is one of the first methods
a non-expert is likely to use due to its similarity to estimating area under the
ROC curve.

Interpolation Estimators. As suggested by Davis and Goadrich [6] and Goad-
rich et al. [1], we use PR space interpolation as the basis for several estimators.
These methods use the non-linear interpolation between known points in PR
space derived from a linear interpolation in ROC space.

Davis and Goadrich [6] and Goadrich et al. [1] examine the interpolation
in terms of the number of true positives and false positives corresponding to
each PR point. Here we perform the same interpolation, but use the recall and
precision of the PR points directly, which leads to the surprising observation
that the interpolation (from the same PR points) does not depend on π.
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Theorem 1. For two points in PR space (r1, p1) and (r2, p2) (assume WLOG
r1 < r2), the interpolation for recall r′ with r1 ≤ r′ ≤ r2 is

p′ =
r′

ar′ + b
(5)

where

a = 1 +
(1 − p2)r2
p2(r2 − r1)

− (1 − p1)r1
p1(r2 − r1)

b =
(1− p1)r1

p1
− (1− p2)r1r2

p2(r2 − r1)
+

(1 − p1)r
2
1

p1(r2 − r1)

Proof. First, we convert the points to ROC space. Let s1, s2 be the false posi-
tive rates for the points (r1, p1) and (r2, p2), respectively. By definition of false
positive rate,

si =
(1− pi)πri
pi(1− π)

. (6)

A linear interpolation in ROC space for r1 ≤ r′ ≤ r2 has a false positive rate of

s′ = s1 +
r′ − r1
r2 − r1

(s2 − s1). (7)

Then convert back to PR space using

p′ =
πr′

πr + (1− π)s′
. (8)

Substituting Eq. (7) into Eq. (8) and using Eq. (6) for s1 and s2, we have

p′ = πr′
[
πr′ +

π(1− p1)r1
p1

+
π(r′ − r1)

r2 − r1

(
(1− p2)r2

p2
− (1− p1)r1

p1

)]−1

= r′
[
r′
(
1 +

(1− p2)r2
p2(r2 − r1)

− (1− p1)r1
p1(r2 − r1)

)
+

(1− p1)r1
p1

− (1− p2)r1r2
p2(r2 − r1)

+
(1 − p1)r

2
1

p1(r2 − r1)

]−1

��
Thus, despite PR space being sensitive to π and the translation to and from

ROC space depending on π, the interpolation in PR space does not depend on π.
One explanation is that each particular PR space point inherently contains the
information about π, primarily in the precision value, and no extra knowledge
of π is required to perform the interpolation.

The area under the interpolated PR curve between these two points can be
calculated analytically using the definite integral:∫ r2

r1

r′

ar′ + b
dr′ =

br′ − a log(a+ br′)

b2

∣∣∣∣r′=r2

r′=r1

=
br2 − a log(a+ br2)− br1 + a log(a+ br1)

b2

where a and b are defined as in Theorem 1.
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With the definite integral to calculate the area between two PR points, the
question is: which points should be used. The achievable PR curve of Davis
of Goadrich [6] uses only those points (translated into PR space) that are on
the ROC convex hull. We also use three methods of summarizing from multiple
PR points at the same recall to a single PR point to interpolate through. The
summaries we use are the max, mean, and median of all pi for a particular ri.
So we have four estimators using interpolation: convex, max, mean, and median.

Average Precision. Avoiding the empirical curve altogether, a plug-in esti-
mate of θ, known in information retrieval as average precision [11], is:

θ̂A =
1

n

n∑
i=1

P̂ rec(Yi) (9)

which replaces the distribution function P (Y ≤ c) in Eq. (2) with its empirical
cumulative distribution function.

Binormal Estimator. Conversely, a fully parametric estimator may be con-
structed by assuming that Xj ∼ N (μx, σ

2
x) and Yj ∼ N (μy , σ

2
y). In this binormal

model [12], the MLE of θ is

θ̂B =

∫ 1

0

πt

πt+ (1− π)Φ
(

μ̂y−μ̂x

σx
+

σ̂y

σ̂x
Φ−1(t)

) dt (10)

where μ̂x, σ̂x, μ̂y, σ̂y are sample means and variances of X and Y and Φ(t) is the
standard normal cumulative distribution function.

3.2 Confidence Interval Estimation

Having discussed AUCPR estimators, we now turn our attention to computing
confidence intervals (CIs) for these estimators. Our goal is to determine a simple,
accurate interval estimate that is logistically easy to implement. We will compare
two computationally intensive methods against two simple statistical intervals.

Bootstrap Procedure. A common approach is to use a bootstrap procedure
to estimate the variation in the data and to either extend a symmetric, normal-
based interval about the point estimate or to take the empirical quantiles from
resampled data as interval bounds [13]. Because the relationship between the
number of positive examples n and negative examples m is crucial for estimating
PR points and hence curves, we recommend using stratified bootstrap so π is
preserved exactly in all replicates. In our simulations we chose to use empirical
quantiles for the interval bounds and perform 1000 bootstrap replicates.
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Cross-Validation Procedure. Similarly, a cross-validation approach is a
wholly data driven method for simultaneously producing the train/test splits
required for unbiased estimation of future performance and producing variance
estimates. In k-fold cross-validation, the available data are partitioned into k
folds. k − 1 folds are used for training while the remaining fold is used for test-
ing. By performing evaluation on the results of each fold separately, k estimates
of performance are obtained. A normal approximation of the interval can be
constructed using the mean and variance of the k estimates. For more details
and discussion of k-fold cross-validation, see Dietterich [14]. For our case studies
we use the standard k = 10.

Binomial Interval. Recalling that 0 ≤ θ ≤ 1, we may interpret θ̂ as a prob-
ability associated with some binomial(1, θ) variable. If so, a CI for θ can be
constructed through the standard normal approximation:

θ̂ ± Φ1−α/2

√
θ̂(1 − θ̂)

n

We use n for the sample size as opposed to n+m because n specifies the (max-

imum) number of unique recall values in P̂R(·). The binomial method can be

applied to any θ̂ estimate once it is derived. A weakness of this estimate is that
it may produce bounds outside of [0, 1], even though 0 ≤ θ ≤ 1.

Logit Interval. To obtain an interval which is guaranteed to produce endpoints

in [0, 1], we may use the logistic transformation η̂ = log θ̂
(1−θ̂)

where τ̂ = s.e.(η̂) =

(nθ̂(1 − θ̂))−1/2 by the delta method [15].
On the logistic scale, an interval for η is η̂ ± Φ1−a/2τ̂ . This can be converted

pointwise to produce an asymmetric logit interval bounded in [0, 1]:[
eη̂−Φ(1−α/2)τ̂

1 + eη̂−Φ(1−α/2)τ̂
,

eη̂+Φ(1−α/2)τ̂

1 + eη̂+Φ(1−α/2)τ̂

]
.

4 Case Studies

We use simulated data to evaluate the merits of the candidate point and in-
terval estimates discussed in Section 3 with the goal of selecting a subset of
desirable procedures.1 The ideal point estimate would be unbiased, robust to
various distributional assumptions on X and Y , and have good convergence as
n+m increases. A CI should have appropriate coverage, and smaller widths of
the interval are preferred over larger widths.

1 R code for the estimators and simulations may be found at
http://pages.cs.wisc.edu/~boyd/projects/2013ecml_aucprestimation/

http://pages.cs.wisc.edu/~boyd/projects/2013ecml_aucprestimation/
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Fig. 2. Probability density functions for X (negative) and Y (positive) output values
for binormal (X ∼ N(0, 1), Y ∼ N(1, 1)), bibeta (X ∼ B(2, 5), Y ∼ B(5, 2)), and offset
uniform (X ∼ U(0, 1), Y ∼ U(0.5, 1.5)) case studies

We consider three scenarios for generating output values X and Y . Our inten-
tion is to cover representative but not exhaustive cases whose conclusions will
be relevant generally. The densities for these scenarios are plotted in Fig. 2. The
true PR curves (calculated using the cumulative distribution functions of X and
Y ) for π = 0.1 are shown in Fig. 3. Fig. 3 also contains sample empirical PR
curves that result from drawing data from X and Y . These are the curves the
estimators work from, attempting to recover the area under the true curve as
accurately as possible.

For unbounded continuous outputs, the binormal scenario assumes that X ∼
N (0, 1) and Y ∼ N (μ, 1) where μ > 0. The distance between the two normal
distributions, μ, controls the discriminative ability of the assumed model. For
test values bounded on [0, 1] (such as probability outputs), we replace the normal
distribution with a beta distribution. So the bibeta scenario hasX ∼ B(a, b) and
Y ∼ B(b, a) where 0 < a < b. The larger the ratio between a and b, the better
able to distinguish between positive and negative examples. Finally, we model
an extreme scenario where the support of X and Y is not the same. This offset
uniform scenario is given by X ∼ U(0, 1) and Y ∼ U(γ, 1 + γ) for γ ≥ 0: that
is X lies uniformly on (0, 1) while Y is bounded on (γ, γ + 1). If γ = 0 there is
no ability to discriminate, while γ > 1 leads to perfect classification of positive
and negative examples with a threshold of c = 1. All results in this paper use
μ = 1, a = 2, b = 5, and γ = 0.5. These were chosen as representative examples
of the distributions that produce reasonable PR curves.

This paper exclusively uses simulated data drawn from specific, known distri-
butions because this allows calculation of the true PR curve (shown in Fig. 3)
and the true AUCPR. Thus, we have a target value to compare the estimates
against and are able to evaluate the bias of an estimator and the coverage of a
CI. This would be difficult to impossible if we used a model’s predictions on real
data because the true PR curve and AUCPR are unknown.
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Fig. 3. True PR curves (calculated from the theoretical density functions) and sampled
empirical PR curves, both at π = 0.1. Sampled PR curves use n + m = 500. The
sampled PR curves were generated by connecting PR points corresponding to adjacent
thresholds values.

4.1 Bias and Robustness in Point Estimates

For each scenario, we evaluate eight estimators: the non-parametric average pre-
cision, the parametric binormal, two trapezoidal estimates, and four interpolated
estimates. Fig. 4 shows the bias ratio versus n +m where π = 0.1 over 10,000
simulations, and Fig. 5 shows the bias ratio versus π where n+m = 1000. The
bias ratio is the mean estimated AUCPR divided by the true AUCPR, so an un-
biased estimator has a bias ratio of 1.0. Good point estimates of AUCPR should
be unbiased as n+m and π increase. That is, an estimator should have an ex-
pected value equal to the true AUCPR (calculated by numerically integrating
Eq. 2).

As n+m grows large, most estimators converge to the true AUCPR in every
case. However, the binormal estimator shows the effect of model misspecification.
When the data are truly binormal, it shows excellent performance but when the
data are bibeta or offset uniform, the binormal estimator converges to the wrong
value. Interestingly, the bias due to misspecification that we observe for the
binormal estimate is lessened as the data become more balanced (π increases).

The interpolated convex estimate consistently overestimates AUCPR and ap-
pears far from the true value even at n+m = 10000. The poor performance of
the interpolated convex estimator seems surprising given how it uses the popu-
lar convex hull ROC curve and then converts to PR space. Because the other
interpolated estimators perform adequately, the problem may lie in evaluating
the convex hull in ROC space. The convex hull chooses those particular points
that give the best performance on the test set. Analogous to using the test set
during training, the convex hull procedure may be overly optimistic and lead to
the observed overestimation of AUCPR.
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Fig. 4. Ratio of estimated AUCPR to true AUCPR (bias ratio) versus total number
of examples (n+m). π = 0.1 for all cases.

It is important to note that since π = 0.1 in Fig. 4, data are sparse at
n+m = 100: there are n = 10 values of Y to evaluate the estimate. In these sit-
uations there is no clear winner across all three scenarios and estimators tend to
overestimate AUCPR when n is small with a few exceptions. Among related esti-
mators, lower trapezoid appears more accurate than the upper trapezoid method
and the mean or median interpolation outperform the convex and max interpo-
lation. Consequently, we will only consider the average precision, interpolated
median, and lower trapezoid estimators since they are unbiased in the limit, less
biased for small sample sizes, and robust to model misspecification.

4.2 Confidence Interval Evaluation

We use a two-step approach to evaluate confidence intervals (CIs) based on Chap-
ter 7 of Shao [16]. In practice, interval estimates must come with a confidence guar-
antee: if we say an interval is an (1−α)%CI, we should be assured that it covers the
true value in at least (1−α)% of datasets [16,17,18]. It may be surprising to non-
statisticians that an interval with slightly low coverage is ruled inadmissible, but
this would invalidate the guarantee. Additionally, targeting an exact (1−α)% in-
terval is often impractical for technical reasons, hence the at least (1−α)%. When
an interval provides at least (1−α)% coverage, it is considered a valid interval and
this is the first criteria a potential interval must satisfy.
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Fig. 5. Ratio of estimated AUCPR to true AUCPR (bias ratio) versus π. In all cases
n+m = 1000.

After identifying valid methods for CIs, the second step is that we prefer the
narrowest (or optimal) intervals among the valid methods. The trivial [−∞,+∞]
interval is a valid 95% CI because it always has at least 95% coverage (indeed,
it has 100% coverage), but it conveys no useful information about the estimate.
Thus we seek methods that produce the narrowest, valid intervals.

CI Coverage. The first step in CI evaluation is to identify valid CIs with
coverage at least (1−α)%. In Fig. 6, we show results over 10,000 simulations for
the coverage of the four CI methods described in 3.2. These are 95% CIs, so the
target coverage of 0.95 is denoted by the thick black line. As mentioned at the
end of Section 4.1, we only consider the average precision, interpolated median,
and lower trapezoid estimators for our CI evaluation.

A strong pattern emerges from Fig. 6 where the bootstrap and cross-validation
intervals tend to have coverage below 0.95, though asymptotically approaching
0.95. Since the coverage is below 0.95, this makes the computational intervals
technically invalid. The two formula-based intervals are consistently above the
requisite 0.95 level. So binomial and logit produce valid confidence intervals.

Given the widespread use of cross-validation within machine learning, it is
troubling that the CIs produced from that method fail to maintain the confidence
guarantee. This is not an argument against cross-validation in general, only a
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Fig. 6. Coverage for selected estimators and 95% CIs calculated using the four interval
methods. Results for selected n+m are shown for π = 0.1. To be valid 95% CIs, the
coverage should be at least 0.95. Note that the coverage for a few of the cross-validation
intervals is below 0.75. These points are represented as half-points along the bottom
border.

caution against using it for AUCPR inference. Similarly, bootstrap is considered
a rigorous (though computationally intensive) fall-back for non-parametrically
evaluating variance, yet Fig. 6 shows it is only successful assymptotically as
data size increases (and the data size needs to be fairly large before it nears 95%
coverage).

CI Width. To better understand why bootstrap and cross-validation are fail-
ing, an initial question is: are the intervals too narrow? Since we have simulated
10,000 data sets and obtained AUCPR estimates on each using the various esti-
mators, we have an empirical distribution from which we can calculate an ideal
empirical width for the CIs. When creating a CI, only 1 data set is available,
thus this empirical width is not available, but we can use it as a baseline to com-
pare the mean width obtained by the various interval estimators. Fig. 7 shows
coverage versus the ratio of mean width to empirically ideal width. As expected
there is a positive correlation between coverage and the width of the intervals:
wider intervals tend to provide higher coverage. For cross-validation, the widths
tend to be slightly smaller than the logit and binomial intervals but still larger
than the empirically ideal width. Coverage is frequently much lower though,
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Fig. 7. Mean normalized width ratio versus coverage for binomial, logit, cross-
validation, and bootstrap methods. Normalized width is the ratio of the CI width to
the empirically ideal width. Width ratios below 1 suggest the intervals are overopti-
mistic. Results shown for n + m ∈ 200, 500, 1000, 5000, 10000 and π = 0.1. Note that
the coverage for some of the cross-validation intervals is below 0.75. These points are
represented as half-points along the bottom border.

suggesting the width of the interval is not the reason for the poor performance
of cross-validation. However, interval width may be part of the issue with boot-
strap. The bootstrap widths are either right at the empirically ideal width or even
smaller.

CI Location. Another possible cause for poor coverage is that the intervals
are for the wrong target value (i.e., the intervals are biased). To investigate this,
we analyze the mean location of the intervals. We use the original estimate on
the full data set as the location for the binomial and logit intervals since both
are constructed around that estimate, the mid-point of the interval from cross-
validation, and the median of the bootstrap replicates since we use the quantiles
to calculate the interval. The ratio of the mean location to the true value (similar
to Fig. 4) is presented in Fig. 8. The location of the cross-validation intervals
is much farther from the true estimate than either the bootstrap or binomial
locations, with bootstrap being a bit worse than binomial. This targeting of the
wrong value for small n +m is the primary explanation for the low coverages
seen in Fig. 6.
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Fig. 8. Mean location of the intervals produced by the binomial, bootstrap, and cross-
validation methods (logit is identical to binomial). As in Fig. 4, the y-axis is the bias
ratio, the ratio of the location (essentially a point estimate based on the interval) to
the true AUCPR. Cross-validation is considerably more biased than the other methods
and bootstrap is slightly more biased than binomial.

Comments on Bootstrap and Cross-validation Intervals. The increased
bias in the intervals produced by bootstrap and cross-validation occurs because
these methods use many smaller data sets to produce a variance estimate.K-fold
cross-validation reduces the effective data sets by a factor of k while bootstrap
is less extreme but still reduces the effective data sets by a factor of 1.5. Since
the estimators become more biased with smaller data sets (demonstrated in
Fig. 4), the point estimates used to construct the bootstrap and cross-validation
intervals are more biased, leading to the misplaced intervals and less than (1 −
α)% coverage.

Additionally, the bootstrap has no small sample theoretical justification and it
is acknowledged it tends to break down for very small sample sizes [19]. When
estimating AUCPR with skewed data, the critical number for this is the number
of positive examples n, not the size of the data set n + m. Even when the
data set itself seems reasonably large with n + m = 200, at π = 0.1 there
are only n = 20 positive examples. With just 20 samples, it is difficult to get
representative samples during the bootstrap. This also contributes to the lower
than expected 95% coverage and is a possible explanation for the bootstrap widths
being even smaller than the empirically ideal widths seen in Fig. 7.
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We emphasize that both the binomial and logit intervals are valid and do not
require the additional computation of cross-validation and bootstrap. For large
sample sizes bootstrap approaches (1 − α)% coverage, but it approaches from
below, so care should be taken. Cross-validation is even more problematic, with
proper coverage not obtained even at n + m = 10, 000 for some of our case
studies.

5 Conclusion

Our computational study has determined that simple estimators can achieve
nearly ideal width intervals while maintaining valid coverage for AUCPR esti-
mation. A key point is that these simple estimates are easily evaluated and do
not require resampling or add to computational workload. Conversely, compu-
tationally expensive, empirical procedures (bootstrap and cross-validation) yield
interval estimates that do not provide adequate coverage for small sample sizes
and only asymptotically approach (1− α)% coverage.

We have also tested a variety of point estimates for AUCPR and determined
that the parametric binormal estimate is extremely poor when the true gener-
ating distribution is not normal. Practically, data may be re-scaled (e.g., the
Box-Cox transformation) to make this assumption fit better, but, with easily
accessible nonparametric estimates that we have shown to be robust, this seems
unnecessary.

The scenarios we studied are by no means exhaustive, but they are represen-
tative, and the conclusions can be further tested in specific cases if necessary.
In summary, our investigation concludes that the lower trapezoid, average preci-
sion, and interpolated median point estimates are the most robust estimators and
recommends the binomial and logit methods for constructing interval estimates.
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Abstract. Sensor placement on water networks is critical for the detection of ac-
cidental or intentional contamination event. With the development and expansion
of cities, the public water distribution systems in cities are continuously growing.
As a result, the current sensor placement will lose its effectiveness in detecting
contamination event. Hence, in many real applications, we need to solve the in-
cremental sensor placement (ISP) problem. We expect to find a sensor placement
solution that reuses existing sensor deployments as much as possible to reduce
cost, while ensuring the effectiveness of contamination detection. In this paper,
we propose scenario-cover model to formalize ISP and prove that ISP is NP-
hard and propose our greedy approaches with provable quality bound. Extensive
experiments show the effectiveness, robustness and efficiency of the proposed
solutions.

1 Introduction

Monitoring water networks in cities for the safety of water quality is of critical impor-
tance for the living and development of societies. One of the efforts for water safety
is building early warning systems (EWSs) with the aim to detect contamination event
promptly by installing sensors in a water distribution network. When placing sensors
in a water network, it is always desired to maximize the effectiveness of these sensors
with minimal deployment cost. Hence, optimizing the sensor placement on water net-
work so that the adverse impact of contaminant event on public health is minimized
under the budget limit becomes one of the major concerns of researchers or engineers
when building EWSs.

Problem Statement. With the development and expansion of cities, especially those
cities in developing countries like China, India, the public municipal water distribu-
tion systems are ever-expanding. As a consequence, the current sensor placement of
EWS generally will lose its effectiveness in detecting contamination events. See Fig-
ure 1 as an example. The sensor deployment in the original water network is shown
in Figure 1(a). Sometime later, the water network may significantly expand (the ex-
panded network is shown in Figure 1(b)). Clearly, if we keep the sensor deployment
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unchanged, it will be hard for the sensors in the original locations to detect the contam-
ination events occurring in the expanded part of the network (marked by the red dotted
line in Figure 1(b)).

To keep the effectiveness of EWS in detecting such contamination events, in most
cases people needs to add more sensors or reinstall existing sensors. In the previous
example, to ensure the effectiveness of contamination detection on the expanded net-
work, we may move one sensor deployed in v2 (the green node in Figure 1(a)) from
the original network and reinstall it on a location (say v9) of the expanded network. We
may also need to buy two new sensors and deploy them on v13 and v16.

Effectiveness of above redeployment comes at the cost of reinstalling and adding new
sensors. However, in many cases, the budget is limited. To reduce the cost, the newly
installed sensors and reinstalled sensors are always expected to be minimized. Conse-
quently, in real applications of water network, an incremental sensor placement (ISP)
problem usually arises, in which we need to find a sensor placement that reuses existing
sensor placement as much as possible, and meanwhile guarantees the effectiveness to
detect contaminations.

Despite of the importance of ISP, rare efforts can be found to solve it efficiently
and effectively. Most of existing related works focus on sensor placement on a static
water network. These solutions on static water networks can not be straightforwardly
extended to solve ISP since reusing current sensor placement is a new objective of the
problem. If we directly recalculate a sensor placement on the current water networks,
the resulting sensor deployment may not have sufficient overlap with the current deploy-
ment, which will lead to high cost of redeployment. Furthermore, the water networks in
real life are generally evolving in a complicated way, which also poses new challenges
to solve ISP.

In summary, it is a great challenge to design a strategy to deploy sensors incremen-
tally under limited budget without losing the effectiveness of contamination detection.

v1

v4

v7

v8

v2

v6

v3

v5
water tank

junction without sensor deployed

junction whose sensor was moved

junction with sensor deployed currently
extended water distribution network
original water distribution network

(a) Original Network

v3 v12
v1

v2

3

v10

12

v13
v15

v4

v7
v6

v5

v9
v11

v14

15

v17
7

v8

9

v16

(b) Current Network

v2 v6

v9

v13v16

S0 S
S1= S0 – S = { v2 }

(c)

Fig. 1. Demonstration of a possible incremental sensor deployment solution. Originally, 2 sensors
were deployed. When the network was expanded, 2 additional sensors would be deployed and one
original sensor (marked by green node) was moved to the expanded part of the network.

Contribution and Organization. To overcome the difficulties stated above, we reduce
the ISP problem to maximal coverage (MC) problem. Based on this model, we develop
several heuristic algorithms to solve ISP. The contribution of this paper can be summa-
rized as follows:

1. We reduce sensor placement optimization to maximal coverage problem.
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2. We propose the problem of ISP. We show that ISP is NP-hard, and the objective
function of ISP is submodular.

3. We propose a series of greedy algorithms with provable bound on the solution
quality to solve static sensor placement and then extend them to solve ISP.

4. We conduct extensive experiments to show the effectiveness, robustness and effi-
ciency of our proposed solutions.

The remainder is organized as follows. Sec 2 briefly reviews the related works. Sec 3
formalizes the ISP problem and builds the theory for this problem. In Sec 4, we present
the solutions for the proposed problems. Sec 5 shows the experimental results. We close
the paper with a brief conclusion in Sec 6.

2 Related Work

A large number of approaches have been proposed for optimizing water sensor net-
works. They differ from each other in the design and/or performance objective. [1] de-
veloped a formulation related to a set covering problem with an premise that sampling at
a location supplied by upstream nodes provides information about water at the upstream
nodes. Subsequently several researchers refined the model by greedy heuristic-based al-
gorithm [2] and genetic algorithm [3]. [4,5] introduced a scenario in which the objective
is to ensure a pre-specified maximum volume of contaminated water consumed prior
to detection and also reduced this problem to set cover problem. [6,7] introduced an
MIP(mixed integer programming) solution for the objective to minimize the expected
fraction of population exposed to a contamination. The objective of [8,9] is to ensure
that the expected impact of a contamination event is within a pre-specified level, and [8]
introduced a formulation based on set cover and solved the problem using genetic al-
gorithm while [9] use a MIP based solution. In order to achieve the objective defined in
[10], [11,12,13,14,15,16,17,18,19,20,21] adopted multi-objective optimization by dif-
ferent methods such as heuristic, predator-prey model or local search method and [22]
used the submodular property to achieve an approximation guarantee.

In our paper, we use the concept of submodularity [23,24] to solve the problem of
sensor placement on dynamic water network. Submodularity was widely used in sen-
sor placement optimization [22,25]. But these solutions are mostlybuilt for static water
network. Besides sensor placement, submodularity has also been widely adopted in
finding influencers [26], influence maximization [27] and network structural learning
[28]. All the solutions mentioned above are not designed for incremental sensor place-
ment, which is a more realistic problem in real-world. To the best of our knowledge,
this paper is the first one addressing the incremental sensor placement on dynamic water
networks.

3 Incremental Sensor Placement

In this section, we formalize ISP. We start this section with the introduction of prelimi-
nary concepts in Sec 3.1. Please refer to [6] for more background knowledge. Then, we
propose a scenario-cover based model in Sec 3.3, upon which ISP is defined in Sec 3.2.
Finally, we show that ISP is NP-hard in Sec 3.4 and the submodularity of the objective
function used in ISP in Sec 3.5.



470 X. Xu et al.

3.1 Preliminaries

A water distribution system is modeled as an undirected graph G = (V,E), with ver-
tices in V representing junctions, tanks, and other resources in the systems; edges in
E representing pipes, pumps, and valves. Suppose we need to monitor a set of con-
tamination scenarios A. Each contamination scenario c ∈ A can be characterized by
a quadruple of the form (vx, ts, tf , X), where vx ∈ V is the origin of the contamina-
tion event, ts and tf are the start and stop times of a contamination event, respectively,
and X is the contamination event profile (which describes the contamination material
injected at a particular concentration or at a given rate).

Let L ⊆ V be the set of all possible sensor locations (e.g. junctions in the water
network). A placement of p sensors on L ⊆ V is called a sensor placement. In general,
we do not distinguish sensors placed at different locations. Thus, a subset of L holding
the sensors can uniquely determine a sensor placement. In this paper, we always use the
subset of L to describe a sensor placement.

One of key issues in water sensor placement is the measurement of the total impact of
contamination scenario cwhen c is detected by a sensor deployed at vertex v in a sensor
placement S. We use dc,v to denote such an impact. More specifically, dc,v represents
the total damaging influence caused by contamination scenario c during the time period
from the beginning of c to the time point at which c was detected by a sensor deployed
at vertex v. dc,v can be defined from various aspects, including volume of contaminated
water consumed [4], population affected [6], and the time until detection [2]. In this
paper, we use the time until detection as the quantitative criteria to evaluate the adverse
impact of each contamination scenario. Solutions proposed in this paper can be directly
extended on other adverse impact measures.

The contamination scenarios can be simulated by water quality analysis software
(e.g. EPANET 1). Based on the simulation data, dc,v can be computed accordingly.
In this paper, each dc,v can be considered as the input of the major problem that will
be addressed. Given a set of contamination scenarios A and sensor locations L, we
have a |A| × |L| matrix with each element representing dc,v. We call this matrix as
contamination scenario matrix (CS for short) and denote it byDA,L. We use Example 1
to illustrate above basic concepts.

Example 1 (Basic Concepts). We give in Table 1(a) a scenario set (i.e., A) for water
distribution network described in Figure 1(a). A matrix DA,L provided by contami-
nation simulation is given in Table1(b), in which the time until detection is adopted
as the measure of the adverse impact of each contamination scenario. As an example,
dc1,v1 = 7 implies that placing a sensor on v1 can detect contamination event c1 within
7 minutes.

3.2 Scenario-Cover Based Modeling

In this subsection, we will reduce sensor placement optimization to maximal coverage
problem. Based on this model, we will formalize the static sensor placement problem

1 http://www.epa.gov/nrmrl/wswrd/dw/epanet.html
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Table 1. Table 1(a): Scenario set A. Table 1(b): Contamination scenario matrix DA,L. Each
element in the matrix denotes the the time (in minutes). Table 1(c): Rv,M for each vertex shown
in Figure 1(a).

(a)

scenarios vx ts tf X(mg/min)
c1 v1 0:00 1:00 1000

c2 v2 0:20 1:00 1000
c3 v7 0:15 1:00 1000
c4 v5 0:12 1:00 1000

(b)

v1 v2 v3 v4 v5 v6 v7 v8
c1 7 9 12 18 14 13 23 14
c2 12 5 8 16 12 12 15 17
c3 14 12 16 15 12 7 5 11
c4 26 18 17 13 5 7 14 15

(c)

V Rv,M V Rv,M

v1 {c1} v5 {c4}
v2 {c1,c2} v6 {c3,c4}
v3 {c2} v7 {c3}
v4 ∅ v8 ∅

and incremental sensor placement problem. After that, in subsection 3.4, we will show
that problem ISP (Definition 4) is NP-hard.

In real applications, it is a reasonable objective to limit the worst damage caused by
a potential contamination event under a certain level. For example, we usually expect
that the contaminated population can not exceed a certain threshold when we choose a
rational water sensor placement strategy. We use credit M to capture the worst damage
that we can afford.

Definition 1 (Covered Scenario with Credit M ). Given a contamination scenario
matrix DA,L and a sensor placement S, if a contamination scenario c can be detected
by a sensor deployed at vertex v ∈ S such that dc,v ≤M , then we say that the contam-
ination scenario c is covered by S with credit M .

Given the contamination scenario matrix DA,L, the set of scenarios in A that is cov-
ered by v with credit M can be uniquely determined. This set can be formally defined
as:

Rv,M = {c|dc,v ∈ DA,L, dc,v ≤M} (1)

Rv,M is the set of scenarios in A whose total harmful impact is within credit M if we
place a sensor on vertex v. If we add vertex v into sensor placement S, then each con-
tamination scenario in Rv,M would be covered by S. In other words, Rv,M represents
the contamination detection performance when v is added into sensor placement.

Given the water network,DA,L and creditM , we hope that the sensor placement can
cover contamination scenarios with credit M as many as possible. For this purpose,
we use F (S), an evaluation function defined on sensor placement, formally defined in
Definition 2, to precisely quantify the the number of scenarios covered by S with credit
M . Thus, our design objective is to maximize F (S).

Definition 2 (Evaluation Function). Given a credit M and a contamination scenario
matrix DA,L, the evaluation function F (S) of a sensor placement S ⊆ L is defined as:

F(S) = |
⋃
v∈S

Rv,M | (2)

Now the static sensor placement optimization on a water network can be rewritten
in the scenario-cover based model. We illustrate key concepts in scenario-cover based
modeling and the SP problem based on this modeling in Example 2.

Definition 3 (Sensor Placement (SP)). Given a water networkG with sensor locations
L, scenario set A, CS matrix DA,L, a credit M and an integer p, finding a sensor
placement S ⊆ L such that |S| ≤ p and F (S) is maximized.
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Example 2 (Scenario-cover Based Modeling). Continue the previous example and con-
sider the water network shown in Figure 1(a). Suppose the detection time creditM = 10
minutes and contamination scenario set is A shown in Table 1(a). Table 1(c) shows the
covered scenario set Rv,M for each v. We find that S = {v2, v6} can cover all the
scenarios in A. Hence, S is a solution of SP.

Note that sensor placement optimization can be also reduced to integer linear pro-
gramming (ILP), which could be solved by the state-of-the-art mixed integer program-
ming (MIP) solver such as ILOG’s AMPL/CPLEX9.1 MIP solver that was widely used
in the previous works [9]. However, in general, these solvers are less efficient and can
not scale up to large water distribution networks.

3.3 Incremental Sensor Placement

Now, we are ready to formalize incremental sensor placement (ISP). In ISP, beside
quality, cost is another major concern. Following the scenario-cover based modeling,
the quality of a sensor placement can also be measured by F (S). Next, we first give the
cost constraint in ISP then give the formal definition of ISP.
Cost Constraint. Let S0, S be the sensor placement in the original water network and
the adjusted sensor placement in the expanded network, respectively. In general, when
the network grows larger, we need more sensors. Hence, |S| ≥ |S0|. To reduce the cost
of S, we may reuse S0. There are two kinds of reuse:

1. First, the sensor placement on some location may be completely preserved. S ∩ S0

contains such sensor locations. No cost will be paid for this kind of reuse.
2. Second, we may move sensors to other locations. For such kind of reuse, we need

to pay the uninstall and reinstall cost.

Let S1 ⊆ S be the set of sensor locations in which sensors are reused in the second
case. The relationships among S0, S1 and S for the running example is illustrated in
Figure 1(c).

LetC1, C2 be the cost of installing and uninstalling a sensor, respectively. The cost of
replacing an existing sensor to a different location can be approximated by C1 and C2.
Suppose the overall cost budget C is given. Then, we expect |S1|(C1 + C2) + (|S| −
|S0|)C1 ≤ C. In general, C1, C2 can be considered as constants in a typical water
network. Hence, limiting the cost is equivalent to limiting |S1| and |S| − |S0|. Thus,
we can use two input parameters k1, k2 to bound |S1| and |S| − |S0|, respectively, to
precisely model the cost constraint.
Problem Definition. Now, we can define the Incremental Sensor Placement (ISP) prob-
lem in Definition 4. We use Example 3 to illustrate ISP.

Definition 4 (Incremental Sensor Placement(ISP)). Given a water network G with
sensor locationsL, scenario setA, CS matrixDA,L, a creditM and a sensor placement
S0 ∈ L and two integers k1, k2, find a new sensor placement S ⊆ L such that (1)
|S1| ≤ k1, |S| − |S0| = k2, where S1 = S0 − S is the set of places at which sensors
have been uninstalled from S0 and replaced on a sensor location outside of S0; and (2)
F (S) is maximized.
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Example 3 (ISP). Continue the previous example shown in Figure 1, where S0 =
{v2, v6}. Suppose k1 = 1,k2 = 2, which means that we could modify the location
of at most 1 sensor deployed in S0 and 2 additional sensors would be deployed on the
network. Our goal is to find a sensor placement solution S such that |S0 − S| ≤ 1,
|S| − |S0| = 2 and F (S) is maximized.

Notice that in our problem Definition 4(ISP), the sensor placement S cannot guaran-
tee that all the contamination scenarios in scenario setA are covered. In fact, according
to previous works [25,16,17], it requires an exponential number of sensors to detect all
scenarios in A, which is unaffordable in real world due to the limited budget. Hence,
covering scenarios as many as possible under the budget limit is a more realistic objec-
tive for real applications.

3.4 NP-Hardness of ISP

In this subsection, we will show that ISP is NP-hard. Our proof consists of two steps.
We first show that SP in our model is NP-hard by the reduction from the NP-Complete
problem Maximal Coverage Problem (Definition 5) to SP. Then, we prove the NP-
hardness of ISP by showing that SP is a special case of ISP.

Definition 5 (Maximal Coverage Problem (MC)). Given a number k, universe V
with n elements and a collection of sets C = {C1...Cm} such that each Ci ⊆ V , find a
subset C′ ⊆ C such that |C′| ≤ k and |

⋃
Ci∈C′

Ci| is maximized.

Theorem 1 (NP-hardness of SP). SP is NP-hard.

Proof. It can be shown that for any instance of MC, i.e. < V, C = {C1, ..., Cm}, k > we can
construct an instance of SP accordingly such that there exists solution for this instance of MC if
and only if the corresponding SP instance could be solved. For this purpose, let V = A, k = p,
and for each Ci we define a sensor location vi such that |L| = m. Then, we just need to show
that given C = {C1, ..., Cm}, we can always construct a pair < M,DA,L > such that each
Rvi,M = Ci. Clearly, it can be easily constructed. For any M (without loss of generality, we
may assume it as an integer), we can create matrix DA,L as follows. For each vi ∈ L and each
scenario a ∈ A, we set da,vi = ∞ at first. Then, for each c ∈ Ci, i = 1, ..., m, we set dc,vi to
M − 1. As a result, we surely have Rvi,M = Ci.

Theorem 2 (NP-hardness of ISP). ISP is NP-hard.

Proof. Let k be the number of senors to be placed in problem SP. We can simply set S0 = ∅,
and k1 = 0, k2 = k to transform an instance of SP into a problem instance of ISP. Since SP is
NP-hard, ISP is also NP-hard.

3.5 Submodularity of Evaluation Function

In this subsection, we will present the major properties of evaluation function F (·),
especially the submodularity of this function, which underlies our major solution for
ISP.
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F (S) has some obvious properties. First, it is nonnegative. It is obvious by definition.
F(∅) = 0, i.e., if we place no sensors, the evaluation function is 0. It is also nondecreas-
ing, i.e., for placement placements A ⊆ B ⊆ L, it holds that F (A) ≤ F (B). The last
but also the most important property is submodularity. Intuitively, adding a sensor to
a large deployment brings less benefits than adding it to a small deployment. The di-
minishing returns are formalized by the combinatorial concept of submodularity [23]
(given in Definition 6). In other words, adding sensor s to the smaller set A helps more
than adding it to the larger set B. Theorem 3 gives the results.

Definition 6 (Submodularity). Given a universe set S, a set function F is called
submodular if for all subsets A ⊆ B ⊆ S and an element s ∈ S, it holds that
F (A ∪ {s})− F (A) ≥ F (B ∪ {s})− F (B).

Theorem 3 (Submodularity ofF (·)). Sensor placement evaluation functionF (·) given
in Definition 2 is submodular.

Proof. For sensor placement A ⊆ L, F (A ∪ {i}) = |Ri,M ∪ (
⋃

v∈A

Rv,M )|. Then, we have

F (A ∪ {i}) − F (A) = |Ri,M ∪
⋃

v∈A

Rv,M | − |
⋃

v∈A

Rv,M | = |Ri,M −
⋃

v∈A

Rv,M |. Given

two sensor placements A ⊆ B ⊆ L. We have
⋃

v∈A

Rv,M ⊆
⋃

v∈B

Rv,M . Thus, Ri,M −

(
⋃

v∈A

Rv,M ) ⊇ Ri,M − (
⋃

v∈B

Rv,M ). Consequently, we have F (A ∪ {i})− F (A) ≥ F (B ∪

{i}) − F (B).
Thus, the SP problem on water distribution networks can be cast as a submodular

optimization problem, which has been proven to be NP-hard and can be solved with
bounded quality [22]. Next, we will present the detail of solutions based on submodu-
larity of the evaluation function.

4 Algorithm Solutions

Let L be the set of locations that can hold sensors and q be the number of sensors to
be installed. To solve SP, a brute-force solution needs to enumerate all Cq

|L| sensor de-
ployments, where C represents the binomial coefficient. For ISP, we should enumerate∑

0≤i≤k1
Ci

|S0|C
i+k2

|V |−|S0| possible deployments, where S0 is the original sensor place-
ment. In both cases, the search space is exponential. Hence, it is computationally pro-
hibitive to find the global-optimal deployment for large water distribution network by
an exhaustive enumeration approach. To overcome the complexity, we will first present
a greedy approach to solve SP. Then, we will further extend it to solve ISP.

4.1 Greedy Algorithms for SP

The basic greedy heuristic algorithm starts from the empty placement S = ∅ and pro-
ceeds iteratively. In each iteration, a new place v ∈ V which leads to the most increase
of F , i.e.,

δv = F (S ∪ {v})− F (S), (3)
vc = argmaxv/∈S(δv) would be added to S. In other words, at each iteration, we always
select the place covering the largest number of uncovered scenarios. A fundamental
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result in [23] shows that the above greedy procedure will produce a near optimal
solution for the class of nondecreasing submodular functions. More specifically, for
any instance of SP, the greedy algorithm always return a sensor placement S such that
F (S) ≥ (1− 1

e )F (S∗), where S∗ is the global optimal solution to this instance. Hence,
the greedy solutions achieve an approximation ratio at least 1− 1

e ≈ 63% compared to
the global optimal solution.

We present the greedy procedure in Algorithm 1. After the selection of vc, we update
Rv,M by excluding the contamination scenarios that have been covered by vc (line 6-8).
Thus, when the procedure proceeds, the size of Rv,M becomes progressively smaller.
Note that the size of Rv,M for each candidate vertex in the beginning of each iteration
is equal to δv as defined in Equation 3.

The running time of the algorithm is proportional to the number of sensor locations
|L| = n of the water network, the number of sensors to be deployed p, the size of
contamination scenarios |A| = m and the time taken to calculate the size of remaining
uncovered scenarios for each v ∈ L− SG. The update of Rv,M needs set union opera-
tion, whose complexity is O(m). In each iteration, O(n) vertices need to be evaluated
on its quality function. Hence, the total running time is O(pnm).

Algorithm 1. GreedySP
Input: p, M , Rv,M for each v ∈ L
Output: SG

1: iter ← 1
2: SG ← ∅
3: while iter ≤ p do
4: vc ← argmaxv∈L−SG |Rv,M |
5: SG ← {vc}

⋃
SG

6: for each v ∈ L− SG do
7: Rv,M ← Rv,M −Rvc,M

8: end for
9: iter ← iter + 1

10: end while
11: return SG

4.2 Algorithms for ISP

In this section, we will further apply the above greedy heuristic to solve ISP. Compared
to SP, effective reuse of the original sensor placement S0 is one of the distinctive con-
cern of ISP. We use a function Select to decide the subset of the original sensor place-
ment to be reused. And we will discuss different selection strategies used in Select and
their effectiveness in detail later. According to our definition of ISP (see Definition 4),
there are at least |S0| − k1 sensors remain unchanged in the new sensor placement.

The greedy algorithm to solve ISP is presented in Algorithm 2, which consists of
three major steps. In the first step (line 1), we use Select to choose |S0| − k1 sensors
in S0 to be preserved (denoted by Sr). In the second step (line 2-5), the algorithm
updates Rv,M for every sensor location v ∈ L − Sr at which no sensor is deployed by
eliminating the scenarios covered by the |S0| − k1 sensors. In the last step (line 7), we
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directly call Algorithm 1 to calculate a solution for deploying k1+k2 sensors onL−Sr.
The union of the result of the last step and Sr will be returned as the final answer.

Obviously, the selection strategy used in Select function has a significant impact
on the quality of the final sensor placement. We investigate three candidate strategies:
randomized, greedy and simulated annealing. The effectiveness of three strategies will
be tested in the experimental section.

Randomized Heuristic (RH). The straightforward strategy is choosing |S0| − k1
sensors from the original sensor placement S0 randomly such that each sensor has the
same probability to be selected.

Greedy Heuristic (GH). The greedy heuristic is identical to that used in Algorithm
1. Start with the empty placement, S = ∅ and proceeds |S0| − k1 times iteratively.
In each iteration, select vertex v ∈ S0 such that δ(v) is maximal from the remaining
vertices in S0.

Simulated Annealing (SA). First, we use Randomized Heuristic to choose |S0|−k1
sensors denoted as SRH . Then, we start from SRH , and perform a local search based
approach called Simulated Annealing to get a local optimal solution. Simulated Anneal-
ing proceeds iteratively. Let Scur be the solution to be optimized in current iteration.
The simulated annealing proceeds as follows. At each round, it proposes an exchange
of a selected vertex s ∈ Scur and an unselected vertex s′ ∈ S0 − Scur randomly, then
computes the quality gain function for the exchange of s, s′ by

α(s, s′) = F (Scur ∪ {s′} − {s})− F (Scur) (4)
If α(s, s′) is positive, i.e. the exchange operation improves the current solution, the

proposal is accepted. Otherwise, the proposal is accepted with probability exp(α(s,s
′)

ϑt
),

where ϑt is the annealing temperature at round t, and ϑt = Cqt for some large constant
C and small constant q (0 < q < 1). We use exponential decay scheme for annealing
temperature. Such exchanges are repeated until the number of iterations reach to the
user-specified upper limit.

Algorithm 2. Greedy Algorithm for ISP
Input: p, M , Rv,M for each v ∈ V , S0, k1
Output: SG

1: Sr ← Select(S0, |S0| − k1)
2: for each u ∈ Sr do
3: for each v ∈ L− Sr do
4: Rv,M ← Rv,M −Ru,M

5: end for
6: end for
7: S′ ← GreedySP (k1 + k2,M, {Rv,m|v ∈ L− Sr})
8: return Sr ∪ S′

5 Experimental Study

In this section, we present our experimental study results. We show in Sec 5.1 the ex-
periment setup. Then, in Sec 5.2 we justify our scenario-cover based modeling through
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comparisons of different solutions to SP. Sec 5.3 5.4 5.5 5.6 will study our solution to
ISP, including the influence of parameters k1, k2, robustness and performance.

5.1 Experiment Setup

We use two real water networks provided by BWSN challenge [10] to test our algo-
rithms. The first one is BWSN1 containing 129 nodes. The second one is BWSN2 con-
taining 12,527 nodes. We run EPANET 1 hydraulic simulation and water quality sim-
ulation for the two water distribution networks and use the time until detection [10] as
the criteria to evaluate contamination impact. For network BWSN1, 516 contamination
scenarios were generated for each of the vertices in the water distribution network at 4
different attack time (i.e. the start time of contamination ts): 6 A.M., 12 A.M., 6 P.M.,
12 P.M.. The reason why we vary the start time is that during simulation of water net-
work, parameters of resources in the water systems such as junction’s water pressure or
pipe’s flow velocity would change over time, which will influence the propagation of
contamination events. Each contamination scenario features 96-hour injection of a fic-
tional contaminant (i.e. stop time point tf of each scenario is set to be the end time point
of contamination simulation) at strength 1000mg/min (using EPANET’s ’MASS’ in-
jection type). We record the contaminant concentration at intervals of 5 minutes and use
these time points as the time series.

For network BWSN2, we generate 4000 contamination scenarios originating from
1000 randomly selected vertices in the water distribution network with settings identical
to that of BWSN1. In the following experiments, we fix M as 120 min and 150 min for
BWSN1 and BWSN2, respectively. For the water quality simulation on the two networks,
we assume that a deployed sensor would alarm when the concentration of contaminant
surpasses 10mg/L. To compare the effectiveness of our solution, we use detect ratio,
defined as F (S)

|A| , i.e, the proportion of covered contamination scenario, to measure the
quality of the sensor placement S, where |A| denotes the total number of contamination
scenarios considered. We run all algorithms on a machine with 2G memory and 2.2GHZ
AMD processor. All algorithms are implemented in C++.

5.2 Effectiveness and Efficiency of Solutions to SP

In this subsection, we will show the effectiveness and efficiency of our SP solution. The
purpose is to justify the scenario-cover based model. Through the comparisons to other
solutions, we will show that by modeling sensor placement optimization in the form of
scenario-cover, our solution achieves good solution quality (comparable to the state-of-
the-art solution) but consumes significantly less running time. With the growth of real
water network, improving the scalability without sacrificing the quality will be a more
and more critical concern.

We compare to the following approaches:

1. Random placement. In a random placement, we randomly select p sensor locations
as a solution. We repeat it for 100 times. For each random placement, we calculate
its detect ratios. Then, we summarize the the median, minimum, maximum, 10th,
25th, 75th, and 90th-percentiles over 100 random solutions in our experiment.
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2. Exhaustive search. It’s a brute-force solution by enumerating all possible sensor
placements. Clearly it gets the optimal result but consumes the most time. Since
the time cost is unaffordable, we estimate the entire running time by multiplying
the time of enumerating one placement and the number of possible enumerations .

3. MIP(mixed-integer programming). The state-of-the-art approach for SP uses mixed-
integer programming modeling. We use LINDO 2, a state-of-the-art MIP solvers,
to solve SP.

On large network We first compare random placement to our greedy approach on the
large network BWSN2. MIP and exhaustive search can not scale to large networks,
hence are omitted here. The result is shown in Figure 2(a). We can see that our method
can detect significantly more scenarios than random placement. Even the optimal one
in 100 random placements is worse than our greedy solution. Hence, in the following
test, random placement will not compared.

On small network We also compared different approaches on the small network: BWSN1.
The result is given in Figure 2(b) and Figure 2(c). From Figure 2(b),we can see that our
greedy solution’s quality is comparable to that produced by MIP. Their difference is less
than 3.7%. However, MIP costs almost one order of magnitude more time than greedy
solution. This can be observed from Figure 2(c).

(a) (b) (c)

Fig. 2. Comparison of effectiveness and time. Figure 2(a) compares the results of greedy solution
and random placement strategy on BWSN2. Figure 2(b) compares solution quality(detect ratio)
of our greedy algorithm and MIP. Figure 2(c) compares running time of our greedy algorithm,
exhaustive search and MIP.

5.3 Influence of k1

In this experiment, we explore the influence of k1, i.e., the maximal number of rede-
ployed sensors, on the solution quality of ISP. By this experiment, we justify the motiva-
tion of ISP. We show that we only need to modify a relatively small part of the original
sensor placement to keep the effectiveness of sensors while significantly reducing the
deployment cost.

We first need to simulate the growth of a water network since no real evolving water
network data is available. For the simulation, we first find a subregion of the entire water
network and consider it as the network at the earlier time. We solve the SP problem on

2 http://www.lindo.com/
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this subregion and obtain a sensor placement S0 on this subregion. Then, the entire
water network can be regarded as the network after growth with S0 as the original
sensor placement.

Due to the expansion of water network, S0 may fail to detect contamination events.
In this experiment, we exclude the influence caused by deploying new sensors through
setting k2 as 0. Note that by setting k2 = 0, no new sensors will be added in our
solution. Hence, the detect ratio may be quite small for a large network (as indicated in
Figure 3(c)). Then, we vary the upper bound of reinstalled sensors k1 from 0 to |S0| and
observe the evolution of detect ratio varying with k1. For each network, we set |S0| = 5
and |S0| = 10 for BWSN1 and BWSN2, respectively. We define increase rate of detect
ratio as the difference of detect ratio between k1 = d and k1 = d+ 1.

The results are shown in Figure 3(a) and 3(c). It is clear that detect ratio increases
with the growth of k1, indicating that if we allow more sensors to be redeployed, we can
cover more contamination scenarios. However, the increase rate gradually decreases
when k1 increases. It is interesting to see that there exist critical points for both two
networks (k1 = 2 for BWSN1 and k1 = 4 for BWSN2, respectively), after which the
detect ratio will increase very slowly.

Considering results given above, we find a good trade-off between detect ratio and
deployment cost. Since after the critical point, the improvement of detect ratio is slower
than the increase of cost, generally we can set k1 at the critical point to trade quality for
cost.

Note that k1 is the upper limit of the actual redeployed sensors. We further summa-
rize the actual number of redeployed sensors in Figure 3(b) and 3(d). We can see that
the actual number of reinstalled sensors is always equal to k1, which implies that the
original sensor placement S0 needs to be redeployed completely to enhance the detect
ratio on current water network.

(a) (b) (c) (d)

Fig. 3. (a)(c):detect ratio for BWSN1 and BWSN2 (b)(d): the actual number of redeployed sen-
sors in BWSN1 and BWSN2. The results show that solution quality generally increases with the
growth of k1 and there exists some critical point at which we can seek for a good tradeoff between
solution quality and deployment cost.

5.4 Influence of k2 and the Selection Strategies

In this experiment, we explore the influence of k2 and compare the effectiveness of
three strategies used in Select function to solve ISP. We set k1 as 2 and 5 for BWSN1
and BWSN2, respectively. Other parameters are the same as the previous experiment.
We set iteration number to be 1000 for the simulated annealing strategy.
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From Figure 4(a), i.e., the result on BWSN1, we can see that simulated annealing
and random heuristic strategy show only minor priority in detect ratio over the greedy
heuristic. However, on BWSN2 (shown in Figure 4(b)), the performance of the three
strategies are quite close to each other. Such results imply that our solution is generally
independent on the selection strategy. For comparison, we also present median of detect
ratio of 100 complete random placements in Figure 4(b).

(a) BWSN1 (b) BWSN2 (c) BWSN1 (d) BWSN2

Fig. 4. Figure 4(a),4(b) show the influence of k2 and compare different selection strategies used
in Select function. It shows that solution quality increases with the growth of k2, and three strate-
gies shows similar effectiveness. Figure 4(c),4(d) present the robustness of proposed solutions.
Expected represents the detect ratio on the training scenario set; Actual represents the average
of detect ratio on test scenario sets. These figures show that our sensor placement solution is
robust against newly introduced contamination scenarios.

5.5 Robustness of Solutions

In general, there may exist potentially infinite number of possible contamination scenar-
ios. A placement strategy with high detect ratio on the training contamination scenario
set may be ineffective to detect contamination scenarios not belonging in the training
set. An ideal solution is expected to be robust against the newly introduced contamina-
tion scenarios. In this section, we will show the robustness of our solution.

In our experiments, we set |S0| = 5, 10, k1 = 2, 5 for BWSN1 and BWSN2, respec-
tively. We use simulated annealing with 1000 iterations for the Select function. We
randomly generate four scenario sets for BWSN1 and BWSN2 as test sets, respectively.
Each test set contains 100 scenarios. We choose one set as A and get solution S using
Algorithm 2 with simulated annealing heuristic. Then, we compare detect ratio of S on
the training set A and the average detect ratio of S on the other three sets.

The result is shown in Figure 4(c) and 4(d), where we vary the number of new sen-
sors (k2) and observe the evolution of detect ratio. It can be observed that when k2
increases, detect ratio of test case on average is quite close to that of the training sets,
implying that our sensor placement which is effective on training scenario set A works
well on other scenario sets as well. Hence, our solution to ISP is robust against unknown
contamination scenarios.

5.6 Performance of Our Solution for ISP

In this experiment, we test the performance of our solutions for ISP. MIP can not be eas-
ily extended on ISP problem. Random placement is certainly the fastest, but as shown
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in Sec 5.2, is of quite low quality. Hence, in this experiment, we only compare to ex-
haustive searching whose time is estimated as stated in Sec 5.2. We fix |S0| = 5 and
|S0| = 10 for BWSN1 and BWSN2, respectively.

The result is shown in Figure 5, from which we can see that our solution is faster
than exhaustive search, and the speedup is almost two or three orders of magnitudes.
Our algorithm generally linearly increases with the growth of k2. Even on the large
network with ten thousands of nodes, our solution finds a solution within 2-3 hours.
The performance result implies that our approach can scale up to large water networks.

(a) BWSN1 (b) BWSN2

Fig. 5. Running time comparison of solutions to ISP.

6 Conclusion

In this paper, we propose a new problem: incremental sensor placement optimization
problem (ISP), in which we need to find an optimal sensor placement for the dynamic-
evolving water network with the following two objectives: (1) keeping the deployment
cost limited and (2) maximizing the effectiveness of the new sensor placement. We
show this problem is NP-hard. We prove that the objective function used in the defini-
tion of ISP is submodular. Based on this property, we propose several greedy algorithms
to solve this problem. Experimental results verify the effectiveness, robustness and effi-
ciency of proposed solutions. We will further consider more realistic constraints on our
problem to solve more specific real sensor optimization problems.
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Abstract. In this paper, we mine a special group of microblog users:
the “marionette” users, who are created or employed by backstage “pup-
peteers”, either through programs or manually. Unlike normal users that
access microblogs for information sharing or social communication, the
marionette users perform specific tasks to earn financial profits. For ex-
ample, they follow certain users to increase their “statistical popularity”,
or retweet some tweets to amplify their “statistical impact”. The fabri-
cated follower or retweet counts not only mislead normal users to wrong
information, but also seriously impair microblog-based applications, such
as popular tweets selection and expert finding. In this paper, we study
the important problem of detecting marionette users on microblog plat-
forms. This problem is challenging because puppeteers are employing
complicated strategies to generate marionette users that present similar
behaviors as normal ones. To tackle this challenge, we propose to take
into account two types of discriminative information: (1) individual user
tweeting behaviors and (2) the social interactions among users. By inte-
grating both information into a semi-supervised probabilistic model, we
can effectively distinguish marionette users from normal ones. By apply-
ing the proposed model to one of the most popular microblog platform
(Sina Weibo) in China, we find that the model can detect marionette
users with f-measure close to 0.9. In addition, we propose an application
to measure the credibility of retweet counts.

Keywords: marionette microblog user, information credibility, fake
followers and retweets.

1 Introduction

The flourish of Microblog services, such as Twitter, Sina Weibo and Tencent
Weibo, has attracted enormous number of web users. According to recent statis-
tics, the number of Twitter users has exceeded 500 million in July 2012,1 and

1 http://semiocast.com/publications
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Sina Weibo has more than 300 million users in Match 2012.2 Such a large vol-
ume of participants has made microblog a new social phenomenon that attracts
attention from a variety of domains, such as business intelligence, social science
and life science.

In Microblog services, the messages (tweets) usually deliver time sensitive
information, e.g., “What the user is doing now?”. By following others, a user will
be notified of all their posted tweets and thus keep track of what these people are
doing or thinking about. Therefore, the number of followers measures someone’s
popularity, and can indicate how much influence someone has. For celebrities,
a large number of followers shows their social impact and can increase their
power in advertisement contract negotiations. As for normal users, a relatively
large number of followers represents rich social connections and promotes one’s
position in social networks. Therefore, both celebrities and normal users are
eager to get more followers.

Due to the retweet mechanism, information propagation is quite efficient in
microblog services. Once a user posts a message, his followers will be notified
immediately. If these followers further retweet this message, their followers can
view it immediately as well. In this way, the number of audiences can grow at
an exponential rate. Therefore, the retweet count of a message represents its
popularity, as more users wish to share with their followers. On many microblog
platforms (e.g., Sina Weibo), the retweet count is adopted as the key metric
to select top stories.3 As a result, some microblog users are willing to purchase
more retweets to promote their messages for commercial purpose.

The desire for more followers and retweets triggers the emergence of a new
microblog business: follower and retweet purchase. The backstage puppeteers
maintain a large pool of marionette users. To purchase followers or retweets, the
buyer first provides his user id or tweet id. Then the puppeteer activates certain
number of marionette users to follow this buyer or retweet his message. The
number of followers or retweets depends on the price paid. The fee is typically
modest, 25 USD for 5,000 followers in Twitter, and 15 Yuan (i.e., 2.5 USD) for
10,000 followers in Sina Weibo. Moreover, the massive following process is quite
efficient. For example, it only takes one night to add 10,000 followers in Sina
Weibo, which can make someone become “famous” overnight.

From the perspectives of people who made the follower and retweet purchase,
the marionette users can satisfy their needs to become famous and help in pro-
moting commercial advertisements, but overall the fabrications conducted by
marionette users can lead to serious damages:

– The purchased followers fabricate the social influence of users, and the pur-
chased retweets amplify the public attention paid to the messages. As a
result, the fake numbers can mislead real users and data mining applications
based on microblog data, such as [1]

– Beside promoting advertisements, the marionette users are sometimes em-
ployed to distribute rumors [2]. It will not only mislead normal users but

2 http://news.sina.com.cn/m/news/roll/2012-03-31/003724202903.shtml
3 http://hot.weibo.com
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also provide wrong evidence for business [3] and government’s establishment
of policies and strategies. Thus, this becomes a serious financial and political
problem.

– To disguise as normal users, the marionette users are operated by puppeteers
to perform some random actions, including following, retweeting and reply-
ing. Such actions can interfere operating and viewing experiences of normal
users and result in unpleasant user experience.

Therefore, identifying marionette users is a key challenge for ensuring normal
functioning of microblog services. However, marionette users are difficulty to de-
tect. Monitoring the marionette users over the past two years, we find that the
difficulty of detecting marionette users has gradually gone up. Back in Novem-
ber 2011, we purchased 2,000 followers from Taobao (China EBay) and all these
fake followers were recognized by microblog services and deleted within two days.
Such quick detection can be attributed to the several discriminative features. For
example, the marionette accounts are usually created from the same IP address
within a short period of time, many marionette users posted no original tweets
but only performed massive following or retweeting, and so on. Therefore, the
microblog services can employ simple rules to detect marionette users and delete
their accounts. However, the marionette users are evolving and becoming more
intelligent. Nowadays, the puppeteers hire people or use crowdsourcing to cre-
ate marionette accounts manually. To make these accounts behave like normal
users, the puppeteers develop highly sophisticated strategies that operate the
marionette users to follow celebrities, reply to hot tweets, and conduct other
complicated operations. These disguises can easily overcome the filtering strate-
gies of microblog platforms and make marionette users much more difficult to
be detected. In February 2012, we purchased another 4,000 followers. This time,
1,790 marionette users survived after five weeks, and around 1,000 marionette
users are still active by Feb 2013.

After analyzing the behaviors of marionette users and comparing them with
normal users, we find that the following two types of information are useful in
detecting marionette users.

– Local Features: The features that describe individual user behaviors, which
could be either textual or numerical. The local features can capture the
different behaviors between normal and marionette users. For example, the
following/follower counts are important features that distinguish a large por-
tion of normal users from marionette users. The time interval between tweets
and the tweet posting devices also serve as effective clues to detect marionette
users.

– Social Relations: The following, retweeting or other relationships among
users. Such relations provide important information for marionette user de-
tection. For example, the marionette users will follow both normal users and
other marionette users. They follow normal users to disguise or for profits,
and follow other marionette users to help them to disguise. On the other
hand, the normal users are less likely to follow marionette users. Therefore
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the neighboring users that are connected by the “following” relation can be
used to recognize marionette users.

The two types of features provide complementary predictive powers for the
task of marionette user detection. Therefore, we propose a probabilistic model
that seamlessly takes both the rich local features as well as social relations
among users into consideration to detect marionette users more effectively. On
the dataset collected from Sina Weibo, the proposed model is able to detect
marionette users with the f-measure close to 0.9. As a result, we are able to
measure the true popularity of hot tweets. For example, given a hot tweet, we
can first extract the users who retweet it and then evaluate whether these users
are marionette users. The percentage of normal users can be used to measure
the true popularity.

2 The Proposed Model

In this section, we describe the proposed probabilistic model that integrates local
features and social relations in marionette user detection.

2.1 Notation Description

Let ui denote a microblog user and let the vector xi denote the features of ui.
Each dimension of xi represents a local feature, which could be the follower count
of ui or the tweeting device ui has used before. Let the binary variable yi denote
the label of ui, 1 stands for the marionette user and 0 stands for the normal user.

Let V (i) = {v(i)1 , v
(i)
2 , . . . , v

(i)
M(i)} denote the M(i) users who are related to ui. In

microblog services, the social relations between users can be either explicit or
implicit. To be concrete, “followed” and “following” are explicit relations while
retweeting one’s tweet or “mention” someone in a tweet establish implicit social
relations. In this paper, we target to predict the label yi of ui given its local
features xi and his social relations V (i).

2.2 Problem Formulation

We will first describe how to only use local features that describe user behavior
on the microblogging platform, such as follower/following counts, the posting
devices, to build a discriminative model. We will later describe how to incor-
porate social relations into this model to further improve the performance. If
we only consider the local features, marionette user detection is a typical clas-
sification problem. A variety of classification models can be used, among which
we choose Logistic Regression because it can be adapted to incorporate social
relations which will be shown later in this paper. We first describe how to model
local user features using Logistic Regression model.



Detecting Marionette Microblog Users for Improved Information Credibility 487

We introduce the sigmoid function in Eq.(1) to represent the probability of
belonging to marionette or normal class given feature values, i.e., P (yi|xi), for
each user.

Pθ(yi|xi) = hθ(xi)
yi(1− hθ(xi))

(1−yi) (1)

where hθ(xi) =
1

1+e−θT xi
is equal to the probability that ui is a marionette user.

θ is the set of parameters that characterizes the sigmoid function. With Eq.(1),
we can formulate the joint probability over N labeled users in Eq.(2), in which
we try to find the parameter θ that maximizes this data likelihood.

max
θ

N∏
i=1

Pθ(yi|xi) (2)

In the above formulation, each user is treated separately and the prediction of
a marionette user only depends on one’s local features. However, besides the
local features, the relations between users are also discriminative for the task of
predicting marionette users. To incorporate the social relations, we modify the
objective function from Eq.(2) to Eq.(3).

max
θ,α

N∏
i=1

{Pθ(yi|xi)
M(i)∏
j=1

Pα(yi|y(i)j )d} (3)

In Eq.(3), we assume that, for each user ui, the label of its M(i) neighbors y
(i)
0 ,

y
(i)
1 , . . ., y

(i)
M(i) are known in advance. Then we can integrate the effect of local

features and user connections together to predict marionette users. d is the co-
efficient that balances between the social relations and local features. The larger
d is, the more biased the model is towards the social relations in making the pre-
dictions. Note that to simplify the presentation, we consider the case where only
one type of social relations exists in Eq.(3). However, the proposed model is gen-
eral enough and can be easily adapted to cover multi-type social relations. Take
the microblog system for example, the common user relations include follower,
following, mention, retweet and reply. We can introduce different parameter α
to correspond to each kind of relation and model all relations in one unified
framework.

In Eq.(3), Pθ(yi|xi) is formulated using the same sigmoid function shown in

Eq.(1). Pα(yi|y(i)j ) will be modeled using Bernoulli distribution and characterized
by parameter α as shown in Eq.(4).

Pα(yi|y(i)j = k) = αyi

k (1− αk)
(1−yi) (k = 0, 1) (4)

As k is either 1 or 0, we can write down all the possible Pα(yi|y(i)j = k) in Eq.(5).[
P (yi=0|y(i)j =0)=α0 P (yi=1|y(i)j =0)=1−α0

P (yi=0|y(i)j =1)=α1 P (yi=1|y(i)j =1)=1−α1

]
(5)
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For each user, the parameter α measures the influence received from his neigh-
bors. α0 indicates the chance of a user being a normal user if his neighbor is a
normal user. If the neighbor is normal, the larger α0 is, this user is more likely
to be a normal user. Similarly, α1 indicates the chance of a user being a normal
user if his neighbor is a marionette user. If the neighbor is marionette, the larger
α1 is, this user is more likely to be a normal user. The logarithm of the joint
probability in Eq.(3) can be represented in Eq.(6):

�(θ, α) =

N∑
i=1

yi log hθ(xi) + (1− yi)

N∑
i=1

log(1− hθ(xi))

+d
N∑
i=1

M(i)∑
j=1

∑
k=y

(i)
j

(yi logαk + (1− yi) log(1− αk)) (6)

The model parameters θ and α will be inferred by maximizing the log-
likelihood in Eq.(6). To solve this optimization problem, it is natural to apply
gradient descent approaches. Notice that θ is only included in the first part of
Eq.(6) and α is only included in the second part, we can maximize each part sep-
arately to infer θ and α. θ can be obtained via numerical optimization methods
using the same procedure in the aforementioned Logistic Regression formula-
tion. As for α, we can derive the following analytical solution by maximizing the
following objective function.

αk =

∑N
i=1

∑M(i)
j=1

∑
k=y

(i)
j

yi∑N
i=1

∑M(i)
j=1

∑
k=y

(i)
j

1
(7)

The above model takes social relations into consideration, but it has several
disadvantages that may prevent its usage in real practice: First, the model only
works in a supervised scenario where the class labels of all the neighbors of each
user are observed. This is a strong assumption and can only be achieved by
spending huge amounts of time and labeling costs to get sufficient training data.
Second, even if we acquire sufficient labeled data, the discriminative information
hidden in the labeled data is not fully utilized in the model. As shown in Eq.(3),

the labels on a user’s neighbors are only used in modeling P (yi|y(i)j ) without
considering the relationship between the labels of these neighbors and their local
features. Intuitively, if two neighbors have the same class label but different local
features, their effect on the target user’s label should be different.

Therefore, we propose to adapt Eq.(3) to Eq.(8) by considering both class
labels and local features of a user’s neighbors:

max
θ,α

N∏
i=1

{Pθ(yi|xi)
M(i)∏
j=1

Pα,θ(yi|x(i)j )d} (8)

The only difference between Eq.(3) and Eq.(8) is that we replace Pα(yi|y(i)j )

with Pα,θ(yi|x(i)j ). In this way, the proposed model incorporates the local features
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of the neighbors and the model does not have the strong assumption that the
neighbors’ labels are fully observed.

In Eq.(8), we represent Pθ(yi|xi) using the same sigmoid function shown in

Eq.(1). As for Pα,θ(yi|x(i)j ), its formulation can be inferred based on Eq.(9).

Pα,θ(yi|x(i)j ) =

1∑
k=0

Pα,θ(yi, y
(i)
j = k|x(i)j ) (9)

=

1∑
k=0

Pα,θ(yi|y(i)j = k, x
(i)
j )Pθ(y

(i)
j = k|x(i)j )

We assume that the label of a user yi is conditionally independent of the local

features x
(i)
j of his neighbor given the label of this neighbor y

(i)
j , and thus we have

Pα,θ(yi|y(i)j = k, x
(i)
j ) = Pα(yi|y(i)j = k). Hence, we modify Eq.(9) accordingly

into Eq.(10).

Pα,θ(yi|x(i)j ) =

1∑
k=0

Pα(yi|y(i)j = k)Pθ(y
(i)
j = k|x(i)j ) (10)

By plugging the above definition of Pα,θ(yi|x(i)j ) into the proposed objective
function in Eq.(8), we effectively integrate users and their neighbors’ local fea-
tures together with social relations in the discriminative model to distinguish
marionette and normal users. Accordingly, the log-likelihood in Eq. (6) is mod-
ified to Eq. (11).

�(θ, α) =

N∑
i=1

yi log hθ(xi) + (1 − yi)

N∑
i=1

log(1− hθ(xi))

+d
N∑
i=1

M(i)∑
j=1

log
1∑

k=0

Pα(yi|y(i)j = k)Pθ(y
(i)
j = k|x(i)j ) (11)

2.3 Parameter Estimation

In the proposed model, two sets of parameters need to be estimated: θ in both

Pθ(yi|xj) and Pα,θ(yi|x(i)j ), and α in Pα,θ(yi|x(i)j ). These parameters should be
obtained by maximizing the logarithm of Eq.(11). As the class labels of one’s
neighbors are unknown, we treat them as latent hidden variables during the

inference procedure. The following hidden variable z
(i)
jk is introduced in Eq. (12).

z
(i)
jk ∝ Pα,θ(yi, y

(i)
j = k|x(i)j ))

∝ Pα(yi|y(i)j = k)Pθ(y
(i)
j = k|x(i)j ) (12)
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Based on this hidden variable, the objective function in Eq.(11) can be repre-
sented in Eq.(13):

�′(z
(i)
jk , θ, α) =

N∑
i=1

logPθ(yi|xi) + d
N∑
i=1

M(i)∑
j=1

1∑
k=0

z
(i)
jk logPα(yi|y(i)j = k)

+d

N∑
i=1

M(i)∑
j=1

1∑
k=0

z
(i)
jk logPθ(y

(i)
j = k|x(i)j ) (13)

We propose to use EM method to iteratively update model parameters and

hidden variables. At the E-Step, the hidden variable z
(i)
jk can be calculated via

Eq.(14):

z
(i)
jk =

Pα(yi|y(i)j = k)Pθ(y
(i)
j = k|x(i)j )∑1

k=0 Pα(yi|y(i)j = k)Pθ(y
(i)
j = k|x(i)j )

(14)

At the M-Step, we maximize the parameter �′(z
(i)
jk , θ, α) with respect to α and

get the following solution of α in Eq.(15).

αk =

∑N
i=1

∑M(i)
j=1 z

(i)
jk yi∑N

i=1

∑M(i)
j=1 z

(i)
jk

(15)

The estimation of θ can be transformed into the parameter estimation process of
Logistic Regression by constructing a training set. Initially, the training data set
only includes N labeled users {(x1, y1), . . . , (xN , yN )}. Then for each neighbor

of the users, two instances (x
(i)
j , y

(i)
j = 0) and (x

(i)
j , y

(i)
j = 1) are generated and

added into the training data set. In total, there are 2
∑N

i=1M(i) new instances
added. The weights of the newly added instances are different from those of
the initial ones. For the initial training instance (xi, yi), its weight is 1, while

the weight of the newly added instance (x
(i)
j , y

(i)
j = k) is d × z

(i)
jk . The detailed

parameter estimation process is summarized in Algorithm 1.
After obtaining the values of α and θ using Algorithm 1 from data, we can

now use the proposed model to predict the class label of a new user ui. This
user’s label yi can be predicted according to Eq.(16).

argmax
yi

Pθ(yi|xi)
M(i)∏
j=1

Pα,θ(yi|x(i)j )d (16)

where Pθ(yi|xi) can be calculated using Eq.(1) and Pα,θ(yi|x(i)j ) can be calculated
using Eq.(10).

2.4 Time Complexity

Another perspective we want to discuss is the time complexity and the number
of iterations needed to converge. As shown in Algorithm 1, the parameter es-
timation process basically consists of EM iterations. During each iteration, the
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Algorithm 1. Parameter Estimation Process

Data: Training data set D = {(x1, y1), . . . , (xN , yN )} and their unlabeled
neighbors.

Result: Value of θ and α
1 while EM not converged do
2 E step:

3 Update z
(i)
jk according to Eq.(14).

4 M step:
5 Update α according to Eq.(15).
6 For each neighbor of each instance in D, add two instances

{(x(i)
j , y

(i)
j = k), k = 0, 1} and assign weights d× z

(i)
jk .

7 Apply parameter estimation of Logistic Regression to calculate θ.

value of the hidden variable z
(i)
jk , θ and α are updated. According to Eq.(14) and

Eq.(15), the time complexity for calculating z
(i)
jk and α is O(NM) where N is

the number of instances and M is the average of the number of neighbors. As
for θ, the calculation is the same as parameter estimation process of Logistic Re-
gression, whose time complexity depends on the optimization method adopted.
In total, the time complexity for training is O(TNM +TL) where T denotes the
number iterations and L represents the time complexity of Logistic Regression
optimization.

Fig. 1. The Log-likelihood Value with EM Iterations

We illustrate the convergence speed of the algorithm on the Weibo data set in
Figure 1. We calculate the log-likelihood after each round of iteration and plot
the values of log-likelihood with respect to each iteration. It can be observed
that Algorithm 1 converges quickly. After 8 rounds, the log-likelihood becomes
stable. Therefore, a small iteration number can achieve good performance. On
the training data set consisting of 12,000 users with 30 iterations, the proposed
approach only takes less than 10 seconds to converge on a commodity PC.
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3 Experiments

In this section, we evaluate the proposed probabilistic model from two perspec-
tives: (1) we calculate the classification accuracy and show that incorporating
social relations can indeed improve the performance; (2) we demonstrate an
application which measures the credibility of hot tweets with the suspicion of
marionette user promotion.

3.1 Data Sets

Classification Corpus. We acquire a data set that consists of labeled mari-
onette and normal users to evaluate the proposed model.

– Marionette Users: To collect the corpus of marionette users, we first cre-
ated three phishing Sina Weibo accounts and bought followers from three
Taobao shops for three times. Each time we purchased 2,000 followers and
altogether there are 6,000 in total. The first purchase was made on November
2011 and the other two were made on February 2012. On Feb 2013, one year
after the purchase, we re-examined these bought marionette users and found
that around 1,000 are still active while the rest have already been deleted
or blocked by Sina Weibo. Over 1/6 marionette users are not discovered by
Sina weibo for over a year. To target a more challenging problem and com-
pensate the existing detecting methods of Sina Weibo, we select these well
hidden marionette users into our corpus.

– Normal Users: As for the normal users, we first select several seed users
manually and crawl the users that they are following. After that, the crawled
users are taken as new seeds to continue the crawling. Through this iterative
procedure, we collect users whose identifications have been verified by Sina
Weibo. As Sina requires the users to fax their ID copies for verification,
we are confident these users are normal users. From these verified users,
we randomly select 1,000 into our corpus that is the same amount as the
marionette users. In real life, the distribution of normal and marionette users
is usually imbalanced. However, to make the classifier more accurate, we
decide to under sample the normal users and use a balanced training set to
train the classifier which is commonly used in imbalanced classification [4].

For each obtained user, we further randomly select 5 users from all their followers
into the data set. As a result, this data set consists of 2,000 labeled users and
10,000 unlabeled users. The profiles and posted tweets of all these 12,000 users
are crawled.

Suspicious Hot Tweet Corpus. In Sina Weibo, the account named “social
network analysis”4 listed several hot tweets that were suspiciously promoted by
marionette users. This account visualized the retweeting propagations of these

4 http://weibo.com/dmonsns
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suspicious tweets and identified the topological differences compared with the
normal hot tweets. For each suspicious tweet mentioned by this account, we first
retrieve the list of users who have retweeted this tweet and randomly select 200
users to crawl their profiles, posted tweets as well as that of their 5 neighbors.

3.2 Feature Description

In this subsection, we analyze some local features of microblog users whether
they are discriminative in marionette user classification.

Number of Tweets/Followings/Followers. For each user, we extract the
number of their posted tweets, the number of their followings and followers, and
demonstrate the comparison results in three sub-figures of Figure 2 respectively.
The x-axis represents different numbers of tweets, followings and followers, while
the y-axis represents the number of users with the same number of tweets, fol-
lowings and followers. Both axis are in the logarithmic scale.

In Figure 2(a), we find the marionettes are relatively inactive in tweeting,
a large proportion marionettes post less than 20 tweets. On the contrary, the
normal users are more active. The most “energetic” normal user posts more than
30,000 tweets. Therefore, a large number of tweets can be an effective feature to
recognize normal users; In Figure 2(b), we find the number of followings of most
marionettes lies between 100 to 1,000. One possible explanation to this range is
that the puppeteer restricts the maximal following times to avoid being detected
by microblog services.
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Fig. 2. User Number Distribution on Number of Tweets, Followings and Followers

Tweet Posting Device. Microblog services provide multiple access manners,
including web interface, mobile clients, third party microblog applications, etc.
Thus, we try to figure out whether there are any differences in posting devices
between normals and marionettes. All the tweets are posted from 1,912 differ-
ent sources, in which 1,707 different sources are used by normal users and 869
different sources are used by marionette users. Table 1 lists the top 5 mostly
used sources for normals and marionettes respectively. We find that more than
half tweets of normal users are posted via “Sina Web”, thus the web interface
remains the primary choice for accessing microblog and “iPhone” and “Android”
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are two most popular mobile clients. While for marionette users, most tweets are
posted via “Sina Mobile” which denotes that majority tweets are posted via the
web browsers of cell phones. In this case, if massive user accounts are created
from some mobile IP address, the microblog service could not block this IP as it
could be the real requests from normal users in the same district. Besides, the
IP address can change when the puppeteer relocates.

Table 1. Top 5 Most Used Devices to Post Tweets

Normal Marionette

Device #Tweet Device #Tweet

Sina Web 356,192 Sina Mobile 209,739

iPhone 59,996 Sina Web 29,365

Android 54,778 UC Browser 4,775

Sina Mobile 19,733 Android 2,577

S60 19,278 iPhone 2,112

Besides above local features, we also select: the maximal, minimal, middle
and average length of tweets; the maximal, minimal, middle and average time
interval between tweets; the percentage of retweets. We did not include the word
bag features here, this is because we want make the model more generic. Since
the marionette users owned by the same backstage puppeteer will retweet the
same tweet, if the bag-of-word features are utilized as features, the trained model
will incline to these word features and become over fit. To our knowledge, the
bot detection of a popular search engine [5] only use behavior features, the words
are used in blacklist for pre-filtering.

3.3 Classification Evaluation

To show the advantages of incorporating social relations, we compare with the
baseline method which only applies Logistic Regression on the local features
without considering social relations. When evaluating the proposed model, we
set different values of d and different numbers of neighbors to illustrate the
impact of social relations on the marionette user detection task. We implement
the proposed method based on Weka [6] and the recorded accuracy is the average
computed based on 5-fold cross validation.

– Baseline: The baseline model is a Logistic Regression classification model
which adopts the local features introduced in previous sub section.

– Light-Neighbor: This model is the proposed model which adopts the same
local features as the baseline model and incorporates the social relations with
the setting of 5 neighbors and d = 0.1.

– Heavy-Neighbor: Similar to Light-Neighbor model, except this model biases
more towards social relations with a higher degree setting d = 0.5.
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Table 2. Classification Results on Three Models

Precision Recall F-Measure

Baseline 0.884 0.875 0.872

Light-Neighbor 0.900 0.890 0.887

Heavy-Neighbor 0.907 0.895 0.892

Table 2 lists the weighted classification precision, recall and f-measure over
three models. We can find that incorporating social relation increases the per-
formance of detecting marionette users.

We also evaluate the proposed model with different settings of d and different
number of neighbors and show the results in Figure 3. From this figure, we can
find that in general when the number of neighbors increases, the classification
accuracy increases. Similarly, when the value d increases, the accuracy improves
as well. This clearly demonstrates the importance of casting social relations
in the classification model. The more neighbors we included and the stronger
influence we give to social relations, the better the performance is.

Fig. 3. Classification F-Measure with Different Neighbor and Degree Settings

3.4 Credibility Measurement

We further apply the proposed probabilistic model to detect the credibility of
hot retweets. Firstly we apply the model learned from the Classification Corpus
to classify the users in Suspicious Hot Tweets Corpus, and then we can obtain
the percentage of marionette users who retweet the hot tweets.

Table 3 lists some Weibo accounts that post suspicious hot tweets, the possible
promotion purpose and the percentage of marionette users. The percentages for
the first four tweets are quite high, which suggests that most of their retweets
are conducted by marionette users. Although the retweet of the last tweet shown
in Table 3 involves more normal users, it might be attributed to the fact that
marionette users attract the attention of many normal users and thus the goal
of promotion is achieved through marionette user purchase.
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Table 3. The Marionette User Percentage of Suspicious Hot Tweets

Tweet Author Promotion Purpose Marionette

A Web Site of Clothing Industry Web Site Promotion 100.00%
A Famous Brand of Women’s Dress Weibo Account Promotion 98.61%
Provincial Culture Communication Co., LTD Ceremony Advertisement 93.62%
A Anti-Worm Software for Mobile Device A Security Issue Reminder 92.44%
A Famous China Smart Phone Manufacturer The Advertisement of Sale Promotion 43.04%

4 Related Works

In this section, we describe related works from two perspectives: (1) the credi-
bility issues of web data and corresponding solutions; (2) the credibility issues
of microblog data.

4.1 Credibility of Web Data

Prior to the emergence of microblog services, the web has existed for over two
decades. Many web services have been experiencing all kinds of malicious at-
tacks. For example, the robot users submit specific queries or conduct fake clicks
towards search engines, aiming to hack the ranking or auto-suggestion results
[7]. The approaches like [5,8] have been proposed to detect and exclude such
automated traffic. Different from the robot users, the marionette users possess
social relations which can be utilized to build better classifiers.

Besides robot users and automated traffic, another web data issue is the link
spam that tries to increase the PageRank of certain pages by creating a large
number of links pointing to them. [9,10,11,12] propose to optimize search engine
ranking and minimize the effects of the link spam. The marionette user detection
is different from link spam detection, as the former is a classification problem
which targets to separate the marionette users from normal users, while the
latter is a ranking problem that targets to lower the rank of link spam web
pages. Moreover, the link spam detection methods like [9] rely on the large link
structure on the web, while the marionette detection only requires the local
features and social connections of each user.

4.2 Credibility of Microblog Data

Due to the massive usage of microblog data, the credibility of microblog data
becomes extremely important. [13] explored the information credibility of news
propagated through Twitter and proposed to assess the credibility level of news-
worthy topics. [14,15] identified the “Link Farmer” in microblog systems. This
type of users try to acquire more followers and distribute spams. The main dif-
ference between the link farmers and marionette users is that the former one is
seeking for followers and the latter one is providing followers. [16,17] analyzed
the possible harm that link farmers could have done to microblog applications
and [18] proposed several classifiers to detect the link farmers on Facebook. [19]
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identified the cyber criminals. Different from marionette users, the cyber crimi-
nals generate direct harm to normal users by spreading phishing scams.

The SMFSR method proposed by [20] is related to the proposed approach
in the sense that it combines user activities, social regularization and semi-
supervised labeling in one framework. Specifically, it employed a matrix factor-
ization based method to find spammers in social networks. Different from the
proposed approach, this method is transductive rather than inductive. In other
words, it is difficult to be used tof predict over new users not originally in the
training set. Every time, new users are added, the entire matrix factorization
needs to run again.

5 Conclusions

In the paper, we first discuss the business model of puppeteers and marionette
users or how they make profits in microblog services. The following facts moti-
vate the emergence of marionette user purchase: 1) to increase the number of
followers and fake their popularity, some users purchase marionette users to fol-
low them; and 2) to increase the retweet time and make promotion tweet to the
front page story, the advertiser pays marionette users to retweet their tweets.
Marionette users cheat in microblog services by manipulating fake retweets and
following relations. Therefore, to ensure information trustworthiness and secu-
rity guarantee, it is extremely important to detect marionette users in a timely
manner. Facing the challenges posed by the complicated strategies adopted by
marionette users, we propose an effective probabilistic model to fully utilize local
user features and social relations in detecting marionette users. We propose an
iterative EM procedure to infer model parameters from data and the model can
then be used to predict whether a user is marionette or normal. Experiments on
Sina Weibo data show that the proposed method achieves a very high f-measure
close to 0.9, and the further analysis on some retweet examples demonstrates
the effectiveness of the proposed model in measuring the true credibility of in-
formation on microblog platforms.
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Abstract. All askers who post questions in Community-based Question Answer-
ing (CQA) sites such as Yahoo! Answers, Quora or Baidu’s Zhidao, expect to re-
ceive an answer, and are frustrated when their questions remain unanswered. We
propose to provide a type of “heads up” to askers by predicting how many an-
swers, if at all, they will get. Giving a preemptive warning to the asker at posting
time should reduce the frustration effect and hopefully allow askers to rephrase
their questions if needed. To the best of our knowledge, this is the first attempt
to predict the actual number of answers, in addition to predicting whether the
question will be answered or not. To this effect, we introduce a new prediction
model, specifically tailored to hierarchically structured CQA sites. We conducted
extensive experiments on a large corpus comprising 1 year of answering activity
on Yahoo! Answers, as opposed to a single day in previous studies. These exper-
iments show that the F1 we achieved is 24% better than in previous work, mostly
due the structure built into the novel model.

1 Introduction

In spite of the huge progress of Web search engines in the last 20 years, many users’
needs still remain unanswered. Query assistance tools such as query completion, and
related queries, cannot, as of today, deal with complex, heterogeneous needs. In addi-
tion, there will always exist subjective and narrow needs for which content has little
chance to have been authored prior to the query being issued.

Community-based Question Answering (CQA) sites, such as Yahoo! Answers, Quora,
Stack Overflow or Baidu Zhidao, have been precisely devised to answer these different
needs. These services differ from the extensively investigated Factoid Question An-
swering that focuses on questions such as “When was Mozart born?”, for which unam-
biguous answers typically exist, [1]. Though CQA sites also feature factoid questions,
they typically address other needs, such as opinion seeking, recommendations, open-
ended questions or very specific needs, e.g. “What type of bird should I get?” or “What
would you choose as your last meal?”.

Questions not only reflect diverse needs but can be expressed in very different styles,
yet, all askers expect to receive answers, and are disappointed otherwise. Unanswered
questions are not a rare phenomenon, reaching 13% of the questions in the Yahoo!
Answers dataset that we studied, as detailed later, and users whose questions remain
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unanswered are considerably more prone to churning from the CQA service [2] . One
way to reduce this frustration is to proactively recommend questions potential answer-
ers, [3,4,5,6]. However, the asker has little or no influence on the answerers’ behavior.
Indeed, a question by itself may exhibit some characteristics that reduce its potential
for answerability. Examples include a poor or ambiguous choice of words, a given type
of underlying sentiment, the time of the day when the question was posted, as well as
sheer semantic reasons if the question refers to a complex or rare need.

In this work, we focus on the askers, investigate a variety of features they can control,
and attempt to predict, based on these features, the expected number of answers a new
question might receive, even before it is posted. With such predictions, askers can be
warned in advance, and adjust their expectations, if their questions have little chances
to be answered. This work represents a first step towards the more ambitious goal of
assisting askers in posting answerable questions, by not only indicating the expected
number of answers but also suggesting adequate rephrasing. Furthemore, we can imag-
ine additional usages of our prediction mechanism, depending on the site priorities. For
instance, a CQA site such as Yahoo! Answers that attempts to satisfy all users might
decide to promote questions with few predicted answers in order to achieve a higher
answering rate. Alternatively a socially oriented site like Quora, might prefer to pro-
mote questions with many predicted answers in order to encourage social interaction
between answerers.

We cast the problem of predicting the number of answers as a regression task, while
the special case of predicting whether a question will receive any answer at all is viewed
as a classification task. We focus on Yahoo! Answers, one of the most visited CQA sites
with 30 millions questions and answers a month and 2.4 asked questions per second [7].
For each question in Yahoo! Answers, we generate a set of features that are extracted
only from the question attributes and are available before question submission. These
features capture asker’s attributes, the textual content of the question, the category to
which the question is assigned and the time of submission.

In spite of this rich feature set, off-the-shelf regression and classification models
do not provide adequate predictions in our tasks. Therefore, we introduce a series of
models that better address the unique attributes of our dataset. Our main contributions
are threefold:

1. we introduce a novel task of predicting the number of expected answers for a ques-
tion before it is posted,

2. we devise hierarchical learning models that consider the category-driven structure
of Yahoo! Answers and reflect their associated heterogeneous communities, each
with its own answering behavior, and finally,

3. we conduct the largest experiment to date on answerability, as we study a year-long
question and answer activity on Yahoo! Answers, as opposed to a day-long dataset
in previous work.

2 Background

With millions of active users, Yahoo! Answers hosts a very large amount of questions
and answers on a wide variety of topics and in many languages. The system is content-
centric, as users are socially interacting by engaging in multiple activities around a
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specific question. When a user asks a new question, she also assigns it to a specific cat-
egory, within a predefined hierarchy of categories, which should best match the general
topic of the question. For example, the question “What can I do to fix my bumper?” was
assigned to the category ‘Cars & Transportation> Maintenance & Repairs’. Each new
question remains “open” for four days (with an option for extension), or less if the asker
chose a best answer within this period. Registered users may answer a question as long
as it remains “open”.

One of the main issues in Yahoo! Answers, and in community-based question an-
swering in general, is the high variance in perceived question and answer quality. This
problem drew a lot of research in recent years. Some studies attempted to assess the
quality of answers [8,9,10,11], or questions [12,13], and rank them accordingly. Others
looked at active users for various tasks such, scoring their “reliability” as a signal for
high quality answers or votes [14,15,16], identifying spammers [17], predicting whether
the asker of a question will be satisfied with the received answers [18,19] or matching
questions to specific users [3,4,5].

Our research belongs to the same general school of work but focuses on estimating
the number of answers a question will receive. Prior work that analyzes questions, did
it in retrospect, either after the questions had been answered [9], or as a ranking task for
a given collection of questions [12,13]. In contrast, we aim at predicting the number of
answers for every new question before it is submitted.

In a related work, Richardson and White [20] studied whether a question will re-
ceive an answer or not. Yet, they conducted their study in a different environment, an
IM-based synchronous system, in which potential answerers are known. Given this en-
vironment they could leverage features pertaining to the potential answerers, such as
reputation. In addition, they considered the specific style of messages sent over IM,
including whether a newline was entered and whether some polite words are added.
Their experiment was of a small scale on 1,725 questions, for which they showed im-
provement over the majority baseline. We note that their dataset is less skewed than
in Yahoo! Answers. Indeed their dataset counted about 42% of unanswered questions,
while Yahoo! Answers datasets typically count about 13% of unanswered questions.
We will later discuss the challenges involved in dealing with such a skewed dataset.

A more related prior work that investigated question answerability is Yang et al. [21],
who addressed the same task of coarse (yes/no) answerability as above but in the same
settings as ours, namely Yahoo! Answers. Yang et al. approached the task as a classi-
fication problem with various features ranging from content analysis, such as category
matching, polite words and hidden topics, to asker reputation and time of day. They
used a one-day dataset of Yahoo! Answers questions and observed the same ratio of
unanswered questions as we did in our one-year dataset, namely 13%. Failing to con-
struct a classifier for this heavily skewed dataset, Yang et al. resorted to learning from
an artificially balanced training set, which resulted in improvements over the majority
baseline. In this paper, we also address this classification task, with the same type of
skewed dataset. However, unlike Yang et al., we attempt to improve over the majority
baseline without artificially balancing the dataset.



502 G. Dror, Y. Maarek, and I. Szpektor

Finally another major differentiator with the above previous work is that we do not
stop at simply predicting whether a question will be answered or not, but predict the
exact number of answers the question would receive.

3 Predicting Question Answerability

One key requirement of our work, as well as a differentiator with typical prior work on
question analysis, is that we want to predict answerability before the question is posted.
This imposes constraints on the type of data and signals we can leverage. Namely, we
can only use data that is intrinsic to a new question before submission. In the case of
Yahoo! Answers, this includes: (a) the title and the body of the question, (b) the category
to which the question is assigned, (c) the identity of the user who asked the question
and (d) the date and time the question is being posted.

We view the prediction of the expected number of answers as a regression problem,
in which a target function (a.k.a the model) ŷ = f(x) is learned, with x being a vector-
space representation of a given question, and ŷ ∈ R an estimate for y, the number of
answers this question will actually receive. All the different models we present in this
section are learned from a training set of example questions and their known number
of answers, D = {(xi, yi)}. The prediction task of whether a question will receive
an answer at all is addressed as a classification task. It is similarly modeled by a target
function ŷ = f(x) and the same vector space representation of a question, yet, the train-
ing target is binary, with answered (unanswered) questions being the positive (negative)
examples.

To fully present our models for the two tasks, we next specify how a question repre-
sentation x is generated, and then introduce for each task novel models (e.g. f(x)) that
address the unique properties of the dataset.

3.1 Question Features

In our approach, each question is represented by a feature vector. For any new question,
we extract various attributes that belong to three main types of information: question
meta data, question content, and user data. In the rest of this paper we use the term fea-
ture family to denote a single attribute extracted from the data. Question attributes may
be numerical, categorical or set-valued (e.g. the set of word tokens in the title). Hence,
in order to allow learning by gradient-based methods, we transformed all categorical
attributes to binary features, and binned most of the numeric attributes. For example,
the category of a question is represented as 1287 binary features and the hour it was
posted is represented as 24 binary features. Tables 3.1, 2 and 3 describe the different
feature families we extract, grouped according to their information source: the question
text, the asker and question meta data.

3.2 Regression Models

Following the description of the features extracted from each question, we now intro-
duce different models (by order of complexity) that use the question feature vector in
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Table 1. Features extracted from title and body texts

Feature Family Description # Features

Title tokens The tokens extracted from the title, not including stop words 45,011
Body tokens The tokens extracted from the body, not including stop words 45,508
Title sentiment The positive and negative sentiment scores of the title, calculated

by the SentiStrength tool [22]
2

Body sentiment The mean positive and negative sentiment scores of the sentences
in the body

2

Supervised LDA The number of answers estimated by supervised Latent Dirichlet
Allocation (SLDA) [23], which was trained over a small subset
of the training set

1

Title WH WH-words (what, when, where . . . ) extracted from the question’s
title

11

Body WH WH-words extracted from the question’s body 11
Title length The title length measured by the number of tokens after stopword

removal, binned on a linear scale
10

Body length The body length, binned on an exponential scale since this length
is not constrainted

20

Title URL The number of URLs that appear within the question title 1
Body URL The number of URLs that appear within the question body 1

order to predict the number of answers. We remind the reader that our training set con-
sists of pairs D = {(xi, yi)}, where xi ∈ RF is the F dimensional feature vector
representation of question qi, and yi ∈ {0, 1, 2 . . .} is the known number of answers
for qi.

Baseline Model. Yang et al. [21] compare the performance of several classifiers, linear
and non-linear, on a similar dataset. They report that a linear SVM significantly outper-
forms all other classifiers. Given these findings, as well as the fact that a linear model is
both robust [24] and can be trained very efficiently for large scale problems, we chose
a linear model f(xi) = wTxi + b as our baseline model.

Feature Augmentation Model. One of the unique characteristics of the Yahoo! An-
swers site is that it consists of questions belonging to a variety of categories, each with
its community of askers and answerers, temporal activity patterns, jargon etc., and that
the categories are organized in a topical taxonomy. This structure, which is inherent to
the data, suggests that more complex models might be useful in modeling the data. One
effective way of incorporating the category structure of the data in a regression model
is to enrich the features with category information. Specifically, we borrowed the idea
from [25], which originally utilized such information for domain adaptation.

To formally describe this model, we consider the Yahoo! Answers category taxon-
omy as a rooted tree T with “All Categories” as its root. When referring to the category
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Table 2. Features extracted based on the asker

Feature Family Description # Features

Asker ID The identity of the asker, if it asked at least 50 questions in the
training set. We ignore askers who asked fewer questions since
their ID statistics are unreliable

175,714

Mean # of answers The past mean number of answers the asker received for her ques-
tions, binned on an exponential scale

26

# of questions The past number of questions asked by the asker, binned on a
linear scale and on an exponential scale

26

Log # of questions The logarithm of the total number of questions posted by the
asker in the training set, and the square of the logarithm. For both
features we add 1 to the argument of the logarithm to handle test
users with no training questions.

2

Table 3. Features extracted from the question’s meta data

Feature Family Description # Features

Category The ID of the category that the question is assigned to 1,287
Parent Category The ID of the parent category of the assigned category for the

question, based on the category taxonomy
119

Hour The hour at which the question was posted, capturing daily pat-
terns

24

Day of week The day-of-week in which the question was posted, capturing
weekly patterns

7

Week of year The week in the year in which the question was posted, capturing
yearly patterns

51

tree we will use interchangeably the term node and category. We denote the category
of a question qi by C(qi). We further denote by P (c) the set of all nodes on the path
from the tree root to node c (including c and the root). For notational purposes, we use
a binary representation for P (c): P (c) ∈ {0, 1}|T |, where |T | is the number of nodes
in the category tree.

The feature augmentation model represents each question qi by x̂i ∈ RF |T | where
x̂i = P (C(qi)) ⊗ xi where ⊗ represents the Kronecker product. For example, given
question qi that is assigned to category ‘Dogs’, the respective node path in T is ‘All
Questions/Pets/Dogs’. The feature vector x̂i for qi is all zeros except for three copies of
xi corresponding to each of the nodes ‘All Questions’,‘Pets’ and ‘Dogs’.

The rationale behind this representation is to allow a separate set of features for each
category, thereby learning category specific patterns. These include learning patterns for
leaf categories, but also learning lower resolution patterns for intermediate nodes in the
tree, which correspond to parent and top categories in Yahoo! Answers. This permits a
good tradeoff between high resolution modeling and robustness, obtained by the higher
level category components shared by many examples.
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(a) Tree of categories (b) Tree of models

Fig. 1. An illustration of the subtree model structure. Shaded nodes in (a) represent categories
populated with questions, while unshaded nodes are purely navigational.

Subtree Model. An alternative to the feature augmentation model is to train several
linear models, each specializing on a different subtree of T . Let us note a subset of
the dataset as Dc = {(xi, yi)|qi ∈ S(c)}, where S(c) is the set of categories in the
category subtree rooted at node c. We also note a model trained on Dc as fc. Since
there is a one-to-one correspondence between models and nodes in T , the set of models
fc can be organized as a tree isomorphic to T . Models in deeper levels of the tree
are specialized on fewer categories than models closer to the root. Figure 1 illustrates
a category tree and its corresponding model tree structure. The shaded nodes in 1(a)
represent categories to which some training questions are assigned.

One simplistic way of using the model tree structure is to apply the root model (fA
in Figure 1(b)) to all test questions. Note that this is identical to the baseline model. Yet,
there are many other ways to model the data using the model tree. Specifically, any set
of nodes that also acts as a tree cut defines a regression model, in which the number of
answers for a given question qi is predicted by the first model in the set encountered
when traversing from the category ci, assigned to qi, to the root of T . In this work, we
shall limit ourselves to three such cuts:

TOP: qi is predicted by model fTop(ci), where Top(c) is the category in P (c) directly
connected to the root.

PARENT: qi is predicted by model fParent(ci)

NODE: qi is predicted by model fci

In Figure 1 the TOP model refers to {fB , fC}, the PARENT model refers to {fB , fC ,
fF , fH} and the NODE model refers to {fD, fE , . . . fM}.

Ensemble of Subtree Models. In order to further exploit the structure of the category
taxonomy in Yahoo! Answers, the questions in each category c are addressed by all
models in the path between this category and the tree root, under the subtree frame-
work described above. Each model in this path introduces a different balance between
robustness and specificity. For example, the root model is the most robust, but also the
least specific in terms of the idiomatic attributes of the target category c. At the other
end of the spectrum, fc is specifically trained for c, but it is more prone for over fitting
the data, especially for categories with few training examples.
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Instead of picking just one model on the path from c to the root, the ensemble model
for c learns to combine all subtree models by training a meta linear model:

f(xi) =
∑

c′∈P (c)

αcc′fc′(xi) + bc (1)

where fc′ are the subtree models described previously and the weights αcc′ and bc are
optimized over a validation set. For example, the ensemble model for questions assigned
to categoryE in Figure 1(a) are modeled by a linear combination of models fA, fB and
fE , which are trained on training sets D, DB and DE respectively.

3.3 Classification Models

The task of predicting whether a question will be answered or not is an important spe-
cial case of the regression task. In this classification task, we treat questions that were
not answered as negative examples and questions that were answered as the positive
examples. We emphasize that our dataset is skewed, with the negative class constituting
only 12.68% of the dataset. Furthermore, as already noted in [26], the distribution of
the number of answers per question is very skewed, with a long tail of questions having
high number of answers.

As described in the background section, this task was studied by Yang et al. [21], who
failed to provide a solution for the unbalanced dataset. Instead, they artificially balanced
the classes in their training set by sampling, which may reduce the performance of the
classifier on the still skewed test set. Unlike Yang et al., who used off-the-shelf clas-
sifiers for the task, we devised classifiers that specifically address the class imbalance
attribute of the data. We noticed that a question that received one or two answers could
have easily gone unanswered, while this is unlikely for questions with dozen answers
or more. When projecting the number of answers yi into two values, this difference be-
tween positive examples is lost and may produce inferior models. The following models
attempt to deal with this issue.

Baseline Model. Yang et al. [21] found that linear SVM provides superior performance
on this task. Accordingly, we choose as baseline a linear model, f(xi) = wTxi + b
trained with hinge loss. We train the model on the binarized datasetD0 = {(xi, sign(yi−
1/2))} (see our experiment for more details).

Feature Augmentation Model. In this model, we train the same baseline classifier
presented above. Yet the feature vector fed into the model is the augmented feature
representation introduced for the regression models.

Ensemble Model. In order to capture the intuition that not “all positive examples are
equal”, we use an idea closely related to works based on Error Correcting Output Cod-
ing for multi-class classification [27]. Specifically, we construct a series of binary clas-
sification datasets Dt = {(xi, zti)} where zti = sign(yi − 1/2− t) and t = 0, 1, 2, . . ..
In this series, D0 is a dataset where questions with one or more answers are considered
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positive, while in D10 only examples with more than 10 answers are considered posi-
tive. We note that these datasets have varying degrees of imbalance between the positive
and the negative classes.

Denoting by ft the classifier trained onDt, we construct the final ensemble classifier
by using a logistic regression

f(x) = σ(
∑
t

αtft(x) + b) (2)

where σ(u) = (1+ e−u)−1 and the coefficients αt and b are learned by minimizing the
log-likelihood loss on the validation set.

Ensemble of Feature Augmentation Models. In this model, we train the same ensem-
ble classifier presented above. Yet the feature vector fed into the model is the augmented
feature representation introduced for the regression models.

Classification Ensemble of Subtree Models. As our last classification model, we di-
rectly utilize regression predictions to differentiate between positive examples. We use
the same model tree structure used in the regression by ensemble of subtree models.
All models are linear regression models trained exactly as in the regression problem, in
order to predict the number of answers for each question. The final ensemble model is
a logistic regression function of the outputs of the individual regression models:

f(xi) = σ(
∑

c′∈P (c)

αcc′fc′(xi) + bc) (3)

where fc′ are the subtree regression models and the weights αcc′ and bc are trained
using the validation set.

4 Experiments

We describe here the experiments we conducted to test our regression and classification
models, starting with our experimental setup, then presenting our results and analyses.

4.1 Experimental Setup

Our dataset consists of a uniform sample of 10 million questions out of all non-spam
English questions submitted to Yahoo! Answers in 2009. The questions in this dataset
were asked by more than 3 million different users and were assigned to 1, 287 categories
out of the 1, 569 categories. A significant fraction of the sampled questions (12.67%)
remained unanswered. The average number of answers per question is 4.56 (σ =
6.11). The distribution of the number of answers follows approximately a geometric
distribution.

The distributions of questions among users and among categories are extremely
skewed, with a long tail of users who posted one or two questions and sparsely pop-
ulated categories. These distributions are depicted in Figure 2, showing a power law
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(a) Questions per user (b) Questions per category

Fig. 2. Distribution of number of questions depicted as a function of ranks

behavior for the questions per asker distribution. A large fraction of the categories have
quite a few questions, for example, about half of all categories in our dataset count less
than 50 examples.

We randomly divided our dataset into three sets: 80% training, 15% test and 5% val-
idation (for hyper-parameter tuning). Very few questions in the dataset attracted hun-
dreds of answers. To eliminate the ill effect of these questions on model training, we
modified the maximum number of answers per question to 64. This resulted in changing
the target of about 0.03% of the questions.

Due to its speed, robustness and scalability, we used the Vowpal Wabbit tool1 when-
ever possible. All regression models were trained with squared loss, except for ensem-
ble of subtree models, Eq. 1, whose coefficients were learned by a least squares fit.
All classification models were trained using Vowpal Wabbit with hinge loss, except for
the ensemble models, Eq. 2 and 3, whose coefficients were learned by maximizing the
log-likelihood of the validation set using Stochastic Gradient Descent. We note that for
a node c, where ensemble models should have been trained based on less than 50 val-
idation examples, we refrained from training the ensemble model and used the NODE

subtree model of c as a single component of the ensemble model.
Table 4 compares between the various trained models with respect to the number

of basic linear models used in composite models and the average number of features
observed per linear model. The meta-parameters of the ensemble models (Eq. 1 and 3)
were not included in the counting.

4.2 Results

The performance of the different regression models on our dataset was measured by
Root Mean Square Error (RMSE) [28] and by the Pearson correlation between the pre-
dictions and the target. Table 5 presents these results. As can be seen, all our models
outperform the baseline off-the-shelf linear regression model, with the best performing

1 http://hunch.net/˜vw/

http://hunch.net/~vw/
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Table 4. Details of the regression and classification models, including the number of linear mod-
els in each composite model, and the average number of features used by each linear model

Regression
Model # linear features

models per model
Baseline 1 267,781
Feature augmentation 1 12,731,748
Subtree - TOP 26 88,358
Subtree - PARENT 119 26,986
Subtree - NODE 924 9,221
Ens. of subtree models 955 13,360

Classification
Model # linear features

models per model
Baseline 1 267,781
Feature augmentation 1 12,731,748
Ensemble 7 267,781
Feature augmentation Ens. 7 12,731,748
Ens. of subtree models 955 13,360

Table 5. Test performance for the regression
models

Model RMSE Pearson
Correlation

Baseline 5.076 0.503
Feature augmentation 4.946 0.539
Subtree - TOP 4.905 0.550
Subtree - PARENT 4.894 0.552
Subtree - NODE 4.845 0.564
Ens. of subtree models 4.606 0.620

Table 6. Test performance for the classifica-
tion models

Model AUC
Baseline 0.619
Feature augmentation 0.646
Ensemble 0.725
Feature augmentation ensemble 0.739
Ensemble of subtree models 0.781

model achieving about 10% relative improvement. These results indicate the impor-
tance of explicitly modeling the different answering patterns within the heterogeneous
communities in Yahoo! Answers, as captured by categories. Interestingly, the feature-
augmentation model, which attempts to combine between categories and their ances-
tors, performs worse than any specific subtree model. One of the reasons for this is
the huge number of parameters this model had to train (see Table 4), compared to the
ensemble of separately trained subtree models, each requiring considerably fewer pa-
rameters to tune. A t-test based on the Pearson correlations shows that each model in
Table 5 is significantly better than the preceding one, with P-values close to zero.

The performance of models for the classification task was measured by the area
under the ROC Curve (AUC) [29]. AUC is a preferred performance measure when
class distributions are skewed, since it measures the probability that a positive example
is scored higher than a negative example. Specifically, the AUC of a majority model is
always 0.5, independently of the distribution of the targets.

Inspecting the classification results in Table 6, we can see that all the novel models
improve over the baseline classifier, with the best performing ensemble of subtrees
classifier achieving an AUC of 0.781, a substantial relative improvement of 26% over
the baseline’s result of 0.619. A t-test based on the estimated variance of AUC [30]
shows that each model in Table 6 is statistically significantly superior to its predecessor
with P-values practically zero.
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We next examine in more depth the performance of the ensemble of classifiers and
the ensemble of subtree regressors (the third and fifth entries in Table 6 respectively).
We see that the ensemble of classifiers explicitly models the differences between ques-
tions with many and few answers, significantly improving over the baseline. Yet, the
ensemble of subtree regressors not only models this property of the data but also the
differences in answering patterns within different categories. Its higher performance in-
dicates that both attributes are key factors in prediction. Thus the task of predicting the
actual number of answers has additional benefits, it allows for a better understanding of
the structure of the dataset, which also helps for the classification task.

Finally, we compared our results to those of Yang et al. [21]. They measured the
F1 value on the predictions of the minority class of unanswered questions, for which
their best classifier achieved an F1 of 0.325. Our best model for this measure was again
the ensemble of subtree models classifier, which achieved an F1 of 0.403. This is a
substantial increase of 24% over Yang et al.’s best result, showing again the benefits of
a structured classifier.

4.3 Error Analysis

We investigated where our models err by measuring the average performance of our
best performing models as a function of the number of answers per test question, see
Figure 3. We split the test examples into disjoint sets characterized by a fixed num-
ber of answers per question and averaged the RMSE of our best regressor on each set
(Figure 3(a)). Since our classifier is not optimized for the Accuracy measure, we set a
specific threshold on the classifier output, choosing the 12.672 percentile of test exam-
ples with lowest scores as negatives. Figure 3(b) shows the error rate for this threshold.
We note that the error rate for zero answers refers to false positives rate and for all other
cases it refers to the false negatives rate.

Figure 3(a) exhibits a clear minimum in the region most populated with questions,
which shows that the regressor is optimized for predicting values near 0. Although the
RMSE increases substantially with the number of answers, it is still moderate. In gen-
eral, the RMSE we obtained is approximately linear to the square root of the number of
answers. Specifically, for questions with large number of answers, the RMSE is much
smaller than the true number of answers. For example, for questions with more than 10
answers, which constitute about 13% of the dataset, the actual number of answers is ap-
proximately twice the RMSE on average. This shows the benefit of using the regression
models as input to a answered/unanswered classifier, as we did in our best performing
classifier. This is reflected, for example, in the very low error rates (0.0064 or less) for
questions with more than 10 answers in Figure 3(b).

While the regression output effectively directs the classifier to the correct decision
for questions with around 5 or more answers, Figure 3(b) still exhibits substantial error
rates for questions with very few or no answers. This is due to the inherent random-
ness in the answering process, in which questions that received very few answers could
have easily gone unanswered and vice versa and are thus difficult to predict accurately.

2 This is the fraction of negative examples in our training set.
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(a) Regression task (b) Classification task

Fig. 3. Performance of the Subtree Ensemble models as a function of the number of answers

In future work, we want to improve these results by employing boosting approaches
and constructing specialized classifiers for questions with very few answers.

4.4 Temporal Analysis

Intuitively, the time at which a question is posted should play a role in a social-media
site, therefore, like Yang et al. [21], we use temporal features. Our dataset, which spans
over one year, confirms their reported patterns of hourly answering: questions posted at
night are most likely to be answered, while “afternoon questions” are about 40% more
likely to remain unanswered.

To extend this analysis to longer time periods, we analyzed weekly and yearly pat-
terns. We first calculated the mean number of answers per question and the fraction
of unanswered questions as a function of the day of week, as shown in Figure 4. A
clear pattern can be observed: questions are more often answered towards the end of
the week, with a sharp peak on Fridays and a steep decline over the weekend. The dif-
ferences between the days are highly statistically significant (t-test, two sided tests).
The two graphs in Figure 4 exhibit extremely similar characteristics, indicating that the
fraction of unanswered questions is negatively correlated with the average number of
answers per question. This suggests that both phenomena are controlled by a supply and
demand equilibrium. This can be explained by two hypotheses: (a) both phenomena are
driven by an increase in questions (Yang et al.’s hypothesis) or (b) both phenomena are
driven by a decrease in the number of answers.

To test the above two hypotheses, we extracted the number of questions, number of
answers and fraction of unanswered questions on a daily basis. Each day is represented
in Figure 5 as a single point, as we plot the daily fraction of unanswered questions as
a function of the daily average number of answers per question (Figure 5(a)) and as a
function of the total number of daily questions (Figure 5(b)). We note that while some
answers are provided on a window of time longer than a day, this is a rare phenomenon.
The vast majority of answers are obtained within about twenty minutes from the ques-
tion posting time [5], hence our daily analysis.
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(a) Mean answers (b) Frac. unanswered

Fig. 4. Mean number of answers and fraction of number of answers as a function of the day of
the week, where ’1’ corresponds to Monday and ’7’ to Sunday

(a) (b)

Fig. 5. The daily fraction of unanswered questions as a function of the daily mean number of
answers and as a function of the total number of questions

Figure 5(a) exhibits a strong negative correlation (Pearson correlation r = −0.631),
while almost no effect is observed in Figure 5(b) (r = 0.010). We further tested the
correlation between the daily total number of answers and the fraction of fraction of
unanswered questions, and here as well a significant negative correlation was observed
(r = −0.386). These findings support the hypothesis that deficiency in answerers is the
key factor affecting the fraction of unanswered questions, and not the overall number of
questions, which was Yang et al’s hypothesis. This result is important, because it implies
that more questions in a community-based question answering site will not reduce the
performance of the site, as long as an active community of answerers strives at its core.

5 Conclusions

In this paper, we investigated the answerability of questions in community-based ques-
tion answering sites. We went beyond previous work that returned a binary result of
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whether or not the question will be answered. We focused on the novel task of pre-
dicting the actual number of expected answers for new questions in community-based
question answering sites, so as to return feedback to askers before they post their ques-
tions. We introduced a series of novel regression and classification models explicitly
designed for leveraging the unique attributes of category-organized community-based
question answering sites. We observed that these categories host diverse communities
with different answering patterns.

Our models were tested over a large set of questions from Yahoo! Answers, showing
significant improvement over previous work and baseline models. Our results confirmed
our intuition that predicting answerability at a finer grained level is beneficial. They also
showed the strong effect of the different communities interacting with questions on the
number of answers a question will receive. Finally, we discovered an important and
somehow counter-intuitive fact, namely that an increased number of questions will not
negatively impact answerability, as long as the community of answerers is maintained.

We constructed models that are performant at scale: even the ensemble models are
extremely fast at inference time. In future work, we intend to increase response time
even further and consider incremental aspects in order to return predictions as the asker
types, thus providing, in real-time, dynamic feedback and a more engaging experience.
To complement this scenario, we are also interested in providing question rephrasing
suggestions for a full assistance solution.
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Abstract. Our goal is to automatically detect patterns of crime. Among
a large set of crimes that happen every year in a major city, it is challeng-
ing, time-consuming, and labor-intensive for crime analysts to determine
which ones may have been committed by the same individual(s). If auto-
mated, data-driven tools for crime pattern detection are made available
to assist analysts, these tools could help police to better understand pat-
terns of crime, leading to more precise attribution of past crimes, and
the apprehension of suspects. To do this, we propose a pattern detection
algorithm called Series Finder, that grows a pattern of discovered crimes
from within a database, starting from a “seed” of a few crimes. Series
Finder incorporates both the common characteristics of all patterns and
the unique aspects of each specific pattern, and has had promising re-
sults on a decade’s worth of crime pattern data collected by the Crime
Analysis Unit of the Cambridge Police Department.

Keywords: Pattern detection, crime data mining, predictive policing.

1 Introduction

The goal of crime data mining is to understand patterns in criminal behavior in
order to predict crime, anticipate criminal activity and prevent it (e.g., see [1]).
There is a recent movement in law enforcement towards more empirical, data
driven approaches to predictive policing, and the National Institute of Justice
has recently launched an initiative in support of predictive policing [2]. How-
ever, even with new data-driven approaches to crime prediction, the fundamental
job of crime analysts still remains difficult and often manual; specific patterns
of crime are not necessarily easy to find by way of automated tools, whereas
larger-scale density-based trends comprised mainly of background crime levels
are much easier for data-driven approaches and software to estimate. The most
frequent (and most successful) method to identify specific crime patterns involves
the review of crime reports each day and the comparison of those reports to past
crimes [3], even though this process can be extraordinarily time-consuming. In
making these comparisons, an analyst looks for enough commonalities between
a past crime and a present crime to suggest a pattern. Even though automated
detection of specific crime patterns can be a much more difficult problem than
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estimating background crime levels, tools for solving this problem could be ex-
tremely valuable in assisting crime analysts, and could directly lead to actionable
preventative measures. Locating these patterns automatically is a challenge that
machine learning tools and data mining analysis may be able to handle in a way
that directly complements the work of human crime analysts.

In this work, we take a machine learning approach to the problem of detecting
specific patterns of crime that are committed by the same offender or group.
Our learning algorithm processes information similarly to how crime analysts
process information instinctively: the algorithm searches through the database
looking for similarities between crimes in a growing pattern and in the rest of
the database, and tries to identify the modus operandi (M.O.) of the particular
offender. The M.O. is the set of habits that the offender follows, and is a type of
motif used to characterize the pattern. As more crimes are added to the set, the
M.O. becomes more well-defined. Our approach to pattern discovery captures
several important aspects of patterns:

– Each M.O. is different. Criminals are somewhat self-consistent in the way
they commit crimes. However, different criminals can have very different
M.O.’s. Consider the problem of predicting housebreaks (break-ins): Some
offenders operate during weekdays while the residents are at work; some
operate stealthily at night, while the residents are sleeping. Some offenders
favor large apartment buildings, where they can break into multiple units in
one day; others favor single-family houses, where they might be able to steal
more valuable items. Different combinations of crime attributes can be more
important than others for characterizing different M.O’s.

– General commonalities in M.O. do exist. Each pattern is different but, for
instance, similarity in time and space are often important to any pattern and
should generally by weighted highly. Our method incorporates both general
trends in M.O. and also pattern-specific trends.

– Patterns can be dynamic. Sometimes the M.O. shifts during a pattern. For
instance, a novice burglar might initially use bodily force to open a door. As
he gains experience, he might bring a tool with him to pry the door open.
Occasionally, offenders switch entirely from one neighborhood to another.
Methods that consider an M.O. as stationary would not naturally be able to
capture these dynamics.

2 Background and Related Work

In this work, we define a “pattern” as a series of crimes committed by the
same offender or group of offenders. This is different from a “hotspot” which
is a spatially localized area where many crimes occur, whether or not they are
committed by the same offender. It is also different than a “near-repeat” effect
which is localized in time and space, and does not require the crimes to be
committed by the same offender. To identify true patterns, one would need to
consider information beyond simply time and space, but also other features of
the crimes, such as the type of premise and means of entry.
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An example of a pattern of crime would be a series of housebreaks over the
course of a season committed by the same person, around different parts of East
Cambridge, in houses whose doors are left unlocked, between noon and 2pm on
weekdays. For this pattern, sometimes the houses are ransacked and sometimes
not, and sometimes the residents are inside and sometimes not. This pattern
does not constitute a “hotspot” as it’s not localized in space. These crimes are
not “near-repeats” as they are not localized in time and space (see [4]).

We know of very few previous works aimed directly at detecting specific pat-
terns of crime. One of these works is that of Dahbur and Muscarello [5],1 who use
a cascaded network of Kohonen neural networks followed by heuristic processing
of the network outputs. However, feature grouping in the first step makes an
implicit assumption that attributes manually selected to group together have
the same importance, which is not necessarily the case: each crime series has
a signature set of factors that are important for that specific series, which is
one of the main points we highlighted in the introduction. Their method has
serious flaws, for instance that crimes occurring before midnight and after mid-
night cannot be grouped together by the neural network regardless of how many
similarities exists between them, hence the need for heuristics. Series Finder has
no such serious modeling defect. Nath [6] uses a semi-supervised clustering algo-
rithm to detect crime patterns. He developed a weighting scheme for attributes,
but the weights are provided by detectives instead of learned from data, similar
to the baseline comparison methods we use. Brown and Hagen [7] and Lin and
Brown [8] use similarity metrics like we do, but do not learn parameters from
past data.

Many classic data mining techniques have been successful for crime analysis
generally, such as association rule mining [7–10], classification [11], and clustering
[6]. We refer to the general overview of Chen et al. [12], in which the authors
present a general framework for crime data mining, where many of these standard
tools are available as part of the COPLINK [13] software package. Much recent
work has focused on locating and studying hotspots, which are localized high-
crime-density areas (e.g., [14–16], and for a review, see [17]).

Algorithmic work on semi-supervised clustering methods (e.g., [18, 19]) is
slightly related to our approach, in the sense that the set of patterns previ-
ously labeled by the police can be used as constraints for learned clusters; on
the other hand, each of our clusters has different properties corresponding to
different M.O.’s, and most of the crimes in our database are not part of a pat-
tern and do not belong to a cluster. Standard clustering methods that assume
all points in a cluster are close to the cluster center would also not be appro-
priate for modeling dynamic patterns of crime. Also not suitable are clustering
methods that use the same distance metric for different clusters, as this would ig-
nore the pattern’s M.O. Clustering is usually unsupervised, whereas our method
is supervised. Work on (unsupervised) set expansion in information retrieval
(e.g., [20,21]) is very relevant to ours. In set expansion, they (like us) start with

1 Also see http://en.wikipedia.org/wiki/Classification System

for Serial Criminal Patterns

http://en.wikipedia.org/wiki/Classification_System_for_Serial_Criminal_Patterns
http://en.wikipedia.org/wiki/Classification_System_for_Serial_Criminal_Patterns
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a small seed of instances, possess a sea of unlabeled entities (webpages), most of
which are not relevant, and attempt to grow members of the same set as the seed.
The algorithms for set expansion do not adapt to the set as it develops, which
is important for crime pattern detection. The baseline algorithms we compare
with are similar to methods like Bayesian Sets applied in the context of Growing
a List [20, 21] in that they use a type of inner product as the distance metric.

3 Series Finder for Pattern Detection

Series Finder is a supervised learning method for detecting patterns of crime.
It has two different types of coefficients: pattern-specific coefficients �ηP̂,j�j ,

and pattern-general coefficients �λj�j. The attributes of each crime (indexed by
j) capture elements of the M.O. such as the means of entry, time of day, etc.
Patterns of crime are grown sequentially, starting from candidate crimes (the
seed). As the pattern grows, the method adapts the pattern-specific coefficients
in order to better capture the M.O. The algorithm stops when there are no more
crimes within the database that are closely related to the pattern.

The crime-general coefficients are able to capture common characteristics of all
patterns (bullet 2 in the introduction), and the pattern-specific coefficients adjust
to each pattern’s M.O. (bullet 1 in the introduction). Dynamically changing
patterns (bullet 3 in the introduction) are captured by a similarity S, possessing
a parameter d which controls the “degree of dynamics” of a pattern. We discuss
the details within this section.

Let us define the following:

– C – A set of all crimes.
– P – A set of all patterns.
– P – A single pattern, which is a set of crimes. P � P .
– P̂ – A pattern grown from a seed of pattern P . Ideally, if P is a true pattern

and P̂ is a discovered pattern, then P̂ should equal P when it has been
completed. Crimes in P̂ are represented by C1, C2, ...C�P̂�.

– CP̂ – The set of candidate crimes we will consider when starting from P̂ as
the seed. These are potentially part of pattern P . In practice, CP̂ is usually
a set of crimes occurring within a year of the seed of P . CP̂ � C .

– sj�Ci, Ck� – Similarity between crime i and k in attribute j. There are a
total of J attributes. These similarities are calculated from raw data.

– γP̂�Ci, Ck� – The overall similarity between crime i and k. It is a weighted
sum of all J attributes, and is pattern-specific.

3.1 Crime-Crime Similarity

The pairwise similarity γ measures how similar crimes Ci and Ck are in a pattern
set P̂ . We model it in the following form:

γP̂�Ci, Ck� �
1

ΓP̂

J�
j�1

λjηP̂,jsj�Ci, Ck�,



Learning to Detect Patterns of Crime 519

where two types of coefficients are introduced:

1. λj – pattern-general weights. These weights consider the general importance
of each attribute. They are trained on past patterns of crime that were
previously labeled by crime analysts as discussed in Section 3.4.

2. ηP̂,j – pattern-specific weights. These weights capture characteristics of a

specific pattern. All crimes in pattern P̂ are used to decide ηP̂,j , and further,

the defining characteristics of P̂ are assigned higher values. Specifically:

ηP̂,j �

�P̂��
i�1

�P̂��
k�1

sj�Ci, Ck�

ΓP̂ is the normalizing factor ΓP̂ �
�J

j�1 λjηP̂,j. Two crimes have a high γP̂ if
they are similar along attributes that are important specifically to that crime
pattern, and generally to all patterns.

3.2 Pattern-Crime Similarity

Pattern-crime similarity S measures whether crime C̃ is similar enough to set P̂
that it should be potentially included in P̂ . The pattern-crime similarity incorpo-
rates the dynamics in M.O. discussed in the introduction. The dynamic element
is controlled by a parameter d, called the degree of dynamics. The pattern-crime
similarity is defined as follows for pattern P̂ and crime C̃:

S�P̂ , C̃� �

�
� 1

�P̂�

�P̂��
i�1

γP̂�C̃, Ci�
d

�
�
�1�d�

where d � 1. This is a soft-max, that is, an �d norm over i 	 P̂ . Use of the
soft-max allows the pattern P̂ to evolve: crime i needs only be very similar to a
few crimes in P̂ to be considered for inclusion in P̂ when the degree of dynamics
d is large. On the contrary, if d is 1, this forces patterns to be very stable and
stationary, as new crimes would need to be similar to most or all of the crimes
already in P̂ to be included. That is, if d � 1, the dynamics of the pattern are
ignored. For our purpose, d is chosen appropriately to balance between including
the dynamics (d large), and stability and compactness of the pattern (d small).

3.3 Sequential Pattern Building

Starting with the seed, crimes are added iteratively from CP̂ to P̂. At each

iteration, the candidate crime with the highest pattern-crime similarity to P̂
is tentatively added to P̂ . Then P̂ ’s cohesion is evaluated, which measures the
cohesiveness of P̂ as a pattern of crime: Cohesion�P̂� � 1

�P̂�

�
i�P̂ S�P̂
Ci, Ci�.

While the cohesion is large enough, we will proceed to grow P̂ . If P̂’s cohesion
is below a threshold, P̂ stops growing. Here is the formal algorithm:
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1: Initialization: P̂ � �Seed crimes�
2: repeat
3: Ctentative � argmaxC��CP̂�P̂� S�P̂, C�
4: P̂ � P̂ � �Ctentative�
5: Update: ηP̂,j for j 	 �1, 2, . . . J�, and Cohesion�P̂�
6: until Cohesion(P̂�  cutoff
7: P̂final :� P̂
Ctentative

8: return P̂final

3.4 Learning the Pattern-General Weights λ

The pattern-general weights are trained on past pattern data, by optimizing a
performance measure that is close to the performance measures we will use to
evaluate the quality of the results. Note that an alternative approach would be to
simply ask crime analysts what the optimal weighting should be, which was the
approach taken by Nath [6]. (This simpler method will also be used in Section
5.2 as a baseline for comparison.) We care fundamentally about optimizing the
following measures of quality for our returned results:

– The fraction of the true pattern P returned by the algorithm:

Recall�P , P̂� �
�

C�P 1�C 	 P̂�
�P � .

– The fraction of the discovered crimes that are within pattern P :

Precision�P , P̂� �
�

C�P̂ 1�C 	 P�
�P̂�

.

The training set consists of true patterns P1,P2, ...P�, ...P�P�. For each pattern

P� and its corresponding P̂�, we define a gain function g�P̂�,P�,λ� containing
both precision and recall. The dependence on λ � �λj�

J
j�1 is implicit, as it was

used to construct P̂�.

g�P̂�,P�,λ� � Recall�P�, P̂�� � β � Precision�P�, P̂��

where β is the trade-off coefficient between the two quality measures. We wish
to choose λ to maximize the gain over all patterns in the training set.

maximize
λ

G�λ� �
�
�

g�P̂�,P�,λ�

subject to λj � 0, j � 1, . . . , J,

J�
j�1

λj � 1.

The optimization problem is non-convex and non-linear. However we hypoth-
esize that it is reasonably smooth: small changes in λ translate to small changes
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in G. We use coordinate ascent to approximately optimize the objective, starting
from different random initial conditions to avoid returning local minima. The
procedure works as follows:

1: Initialize λ randomly, Converged=0
2: while Converged=0 do
3: for j � 1� J do
4: λnewj � argmaxλj G�λ� (using a linesearch for the optima)
5: end for
6: if λnew � λ then
7: Converged� 1
8: else
9: λ � λnew

10: end if
11: end while
12: return λ

We now discuss the definition of each of the J similarity measures.

4 Attribute Similarity Measures

Each pairwise attribute similarity sj : C � C � �0, 1� compares two crimes along
attribute j. Attributes are either categorical or numerical, and by the nature of
our data, we are required to design similarity measures of both kinds.

4.1 Similarity for Categorical Attributes

In the Cambridge Police database for housebreaks, categorical attributes include
“type of premise” (apartment, single-family house, etc.), “ransacked” (indicating
whether the house was ransacked) and several others. We wanted a measure of
agreement between crimes for each categorical attribute that includes (i) whether
the two crimes agree on the attribute (ii) how common that attribute is. If the
crimes do not agree, the similarity is zero. If the crimes do agree, and agreement
on that attribute is unusual, the similarity should be given a higher weight.
For example, in residential burglaries, it is unusual for the resident to be at
home during the burglary. Two crimes committed while the resident was in the
home are more similar to each other than two crimes where the resident was not
at home. To do this, we weight the similarity by the probability of the match
occurring, as follows, denoting Cij as the jth attribute for crime Ci:

sj�Ci, Ck� �

�
1�

�
q�Q p2j�x� if Cij � Ckj � x

0 if Cij � Ckj

where p2j�x� �
nx�nx�1�
N�N�1� , with nx the number of times x is observed in the

collection of N crimes. This is a simplified version of Goodall’s measure [22].
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4.2 Similarity for Numerical Attributes

Two formats of data exist for numerical attributes, either exact values, such as
time 3:26pm, or a time window, e.g., 9:45am - 4:30pm. Unlike other types of
crime such as assault and street robbery, housebreaks usually happen when the
resident is not present, and thus time windows are typical. In this case, we need
a similarity measure that can handle both exact time information and range-of-
time information. A simple way of dealing with a time window is to take the
midpoint of it (e.g., [15]), which simplifies the problem but may introduce bias.

Time-of-day profiles. We divide data into two groups: exact data �t1, t2, . . . , tme�,
and time window data �t̃1, t̃2, . . . , t̃mr� where each data point is a range, t̃i �
�ti,1, ti,2�, i � 1, 2, . . .mr. We first create a profile based only on crimes with exact
time data using kernel density estimation: p̂exact�t��

1
me

�me

i�1K�t � ti� where
the kernel K��� is a symmetric function, in our case a gaussian with a chosen
bandwidth (we chose one hour). Then we use this to obtain an approximate
distribution incorporating the time window measurements, as follows:

p�t�t̃1, . . . , t̃mr� � p�t� � p�t̃1, . . . , t̃mr �t�

� p̂exact�t� � p̂�range includes t�t�.

The function p̂�range includes t�t� is a smoothed version of the empirical prob-
ability that the window includes t:

p̂�range includes t�t��
1

mr

mr�
i�1

K̃�t, t̃i�

where t̃i � �ti,1, ti,2� and K̃�t, t̃i� :�
�
τ
1τ�	ti,1,ti,2
K�t � τ�dτ . K is again a

gaussian with a selected bandwidth. Thus, we define:

p̂range�t� � p̂exact�t� �
1

mr

mr�
i�1

K̃�t, t̃i�.

We combine the exact and range estimates in a weighted linear combination,
weighted according to the amount of data we have from each category:

p̂�t��
me

me �mr
p̂exact�t� �

mr

me �mr
p̂range�t�.

We used the approach above to construct a time-of-day profile for residential
burglaries in Cambridge, where p̂�t� and p̂exact�t� are plotted in Figure 1(a). To
independently verify the result, we compared it with residential burglaries in
Portland between 1996 and 2011 (reproduced from [23]) shown in Figure 1(b).2

The temporal pattern is similar, with a peak at around 1-2pm, a drop centered
around 6-7am, and a smaller drop at around midnight, though the profile differs
slightly in the evening between 6pm-2am.

2 To design this plot for Portland, range-of-time information was incorporated by
distributing the weight of each crime uniformly over its time window.
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(a) Cambridge, from year 1997 to 2012 (b) Portland, from year 1996 to 2011

Fig. 1. Time of day profiling for house breaks in two different cities

A unified similarity measure for numeric attributes. We propose a similarity
measure that is consistent for exact and range numerical data. The similarity
decays exponentially with the distance between two data values, for either exact
or range data. We use the expected average distance over the two ranges as the
distance measure. For example, let crime i happen within ti :� �ti,1, ti,2� and
crime k happen within tk :� �tk,1, tk,2�. Then

d̃�ti, tk� �

	 ti,2

ti,1

	 tk,2

tk,1

p̂�τi�ti�p̂�τk�tk�d�τi, τk�dτidτk

where p̂ was estimated in the previous subsection for times of the day, and
d�τi, τk� is the difference in time between τi and τk. The conditional probability
is obtained by renormalizing p̂�τi�ti� to the interval (or exact value) ti. The
distance measure for exact numerical data can be viewed as a special case of this
expected average distance where the conditional probability p̂�τi�ti� is 1.

The general similarity measure is thus:

sj�Ci, Ck� :� exp


�d̃�zi, zk��Υj

�
where Υj is a scaling factor (e.g, we chose Υj � 120 minutes in the experiment),
and zi, zk are values of attribute j for crimes i and k, which could be either
exact values or ranges of values. We applied this form of similarity measure for
all numerical (non-categorical) crime attributes.

5 Experiments

We used data from 4855 housebreaks in Cambridge between 1997 and 2006
recorded by the Crime Analysis Unit of the Cambridge Police Department. Crime
attributes include geographic location, date, day of the week, time frame, loca-
tion of entry, means of entry, an indicator for “ransacked,” type of premise, an
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indicator for whether residents were present, and suspect and victim informa-
tion. We also have 51 patterns collected over the same period of time that were
curated and hand-labeled by crime analysts.

5.1 Evaluation Metrics

The evaluation metrics used for the experimental results are average precision
and reciprocal rank. Denoting P̂ i as the first i crimes in the discovered pattern,
and ΔRecall�P , P̂ i� as the change in recall from i� 1 to i:

AveP�P , P̂� :�
�P̂��
i�1

Precision�P , P̂ i�ΔRecall�P , P̂ i�.

To calculate reciprocal rank, again we index the crimes in P̂ by the order in
which they were discovered, and compute

RR�P , P̂� :� 1
��P̂�
r�1

1
r

� �
Ci�P

1

Rank�Ci, P̂�
,

where Rank�Ci, P̂� is the order in which Ci was added to P̂. If Ci was never
added to P̂, then Rank�Ci, P̂� is infinity and the term in the sum is zero.

5.2 Competing Models and Baselines

We compare with hierarchical agglomerative clustering and an iterative nearest
neighbor approach as competing baseline methods. For each method, we use
several different schemes to iteratively add discovered crimes, starting from the
same seed given to Series Finder. The pairwise similarity γ is a weighted sum of
the attribute similarities:

γ�Ci, Ck� �
J�

j�1

λ̂jsj�Ci, Ck�.

where the similarity metrics sj�Ci, Ck� are the same as Series Finder used. The

weights λ̂ were provided by the Crime Analysis Unit of the Cambridge Police
Department based on their experience. This will allow us to see the specific
advantage of Series Finder, where the weights were learned from past data.

Hierarchical agglomerative clustering (HAC) begins with each crime as a sin-
gleton cluster. At each step, the most similar (according to the similarity crite-
rion) two clusters are merged into a single cluster, producing one less cluster at
the next level. Iterative nearest neighbor classification (NN) begins with the seed
set. At each step, the nearest neighbor (according to the similarity criterion) of
the set is added to the pattern, until the nearest neighbor is no longer sufficiently
similar. HAC and NN were used with three different criteria for cluster-cluster or
cluster-crime similarity: Single Linkage (SL), which considers the most similar
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(a) (b)

Fig. 2. Boxplot of evaluation metrics for out-of-sample patterns

pair of crimes; Complete Linkage (CL), which considers the most dissimilar pair
of crimes, and Group Average (GA), which uses the averaged pairwise similar-
ity [24]. The incremental nearest neighbor algorithm using the SGA measure,
with the weights provided by the crime analysts, becomes similar in spirit to
the Bayesian Sets algorithm [20] and how it is used in information retrieval
applications [21].

SSL�R, T � :� max
Ci�R,Ck�T

γ�Ci, Ck�

SCL�R, T � :� min
Ci�R,Ck�T

γ�Ci, Ck�

SGA�R, T � :�
1

�R��T �

�
Ci�R

�
Ck�T

γ�Ci, Ck�.

5.3 Testing

We trained our models on two-thirds of the patterns from the Cambridge Police
Department and tested the results on the remaining third. For all methods,
pattern P̂� was grown until all crimes in P� were discovered. Boxplots of the
distribution of average precision and reciprocal ranks over the test patterns for
Series Finder and six baselines are shown in Figure 2(a) and Figure 2(b). We
remark that Series Finder has several advantages over the competing models: (i)
Hierarchical agglomerative clustering does not use the similarity between seed
crimes. Each seed grows a pattern independently, with possibly no interaction
between seeds. (ii) The competing models do not have pattern-specific weights.
One set of weights, which is pattern-general, is used for all patterns. (iii) The
weights used by the competing models are provided by detectives based on their
experience, while the weights of Series Finder are learned from data.

Since Series Finder’s performance depends on pattern-specific weights that
are calculated from seed crimes, we would like to understand how much each
additional crime within the seed generally contributes to performance. The av-
erage precision and reciprocal rank for the 16 testing patterns grown from 2, 3
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Fig. 3. Performance of Series Finder with 2, 3 and 4 seeds

and 4 seeds are plotted in Figure 3(a) and Figure 3(b). For both performance
measures, the quality of the predictions increases consistently with the number
of seed crimes. The additional crimes in the seed help to clarify the M.O.

5.4 Model Convergence and Sensitivity Analysis

In Section 3, when discussing the optimization procedure for learning the weights,
we hypothesized that small changes in λ generally translate to small changes in
the objective G�λ�. Our observations about convergence have been consistent
with this hypothesis, in that the objective seems to change smoothly over the
course of the optimization procedure. Figure 4(a) shows the optimal objective
value at each iteration of training the algorithm on patterns collected by the
Cambridge Police Department. In this run, convergence was achieved after 14
coordinate ascent iterations. This was the fastest converging run over the ran-
domly chosen initial conditions used for the optimization procedure.

0 2 4 6 8 10 12 14 16
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40
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50
52

Optimal G(λ)−−Iterations

(a) Convergence of G�λ� (b) Sensitivity analysis

Fig. 4. Performance analysis

We also performed a sensitivity analysis for the optimum. We varied each of
the J coefficients λj from 65% to 135%, of its value at the optimum. As each
coefficient was varied, the others were kept fixed. We recorded the value of G�λ�
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at several points along this spectrum of percentages between 65% and 135%,
for each of the λj ’s. This allows us to understand the sensitivity of G�λ� to
movement along any one of the axes of the J-dimensional space. We created
box plots of G�λ� at every 5th percentage between between 65% and 135%,
shown in Figure 4(b). The number of elements in each box plot is the number of
dimensions J . These plots provide additional evidence that the objective G�λ�
is somewhat smooth in λ; for instance the objective value varies by a maximum
of approximately 5-6% when one of the λj ’s changes by 10-15%.

6 Expert Validation and Case Study

We wanted to see whether our data mining efforts could help crime analysts
identify crimes within a pattern that they did not yet know about, or exclude
crimes that were misidentified as part of a pattern. To do this, Series Finder
was trained on all existing crime patterns from the database to get the pattern-
general weights λ. Next, using two crimes in each pattern as a seed, Series Finder
iteratively added candidate crimes to the pattern until the pattern cohesion
dropped below 0.8 of the seed cohesion. Crime analysts then provided feedback
on Series Finder’s results for nine patterns.

There are now three versions of each pattern: P which is the original pattern
in the database, P̂ which was discovered using Series Finder from two crimes
in the pattern, and Pverified which came from crime experts after they viewed
the union of P̂ and P . Based on these, we counted different types of successes
and failures for the 9 patterns, shown in Table 1. The mathematical definition
of them is represented by the first 4 columns. For example, correct finds refer
to crimes that are not in P , but that are in P̂ , and were verified by experts as
belonging to the pattern, in Pverified.

Table 1. Expert validation study results

Type of crimes P P̂ Pverified P1 P2 P3 P4 P5 P6 P7 P8 P9

Correct hits � � � 6 5 6 3 8 5 7 2 10

Correct finds � � � 2 1 0 1 0 1 2 2 0

Correct exclusions � � � 0 0 4 1 0 2 1 0 0

Incorrect exclusions � � � 0 0 1 0 1 0 0 0 1

False hits � � � 2 0 0 0 2 2 0 0 0

Correct hits, correct finds and correct exclusions count successes for Series
Finder. Specifically, correct finds and correct exclusions capture Series Finder’s
improvements over the original database. Series Finder was able to discover 9
crimes that analysts had not previously matched to a pattern (the sum of the
correct finds) and exclude 8 crimes that analysts agreed should be excluded (the
sum of correct exclusions). Incorrect exclusions and false hits are not successes.
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Table 2. Example: A 2004 Series

NO Cri type Date Loc of entry Mns of entry Premises Rans Resid Time of day Day Suspect Victim

1 Seed 1/7/04 Front door Pried Aptment No Not in 8:45 Wed null White F

2 Corr hit 1/18/04 Rear door Pried Aptment Yes Not in 12:00 Sun White M White F

3 Corr hit 1/26/04 Grd window Removed Res Unk No Not in 7:30-12:15 Mon null Hisp F

4 Seed 1/27/04 Rear door Popped Lock Aptment No Not in 8:30-18:00 Tues null null

5 Corr exclu 1/31/04 Grd window Pried Res Unk No Not in 13:21 Sat Black M null

6 Corr hit 2/11/04 Front door Pried Aptment No Not in 8:30-12:30 Wed null Asian M

7 Corr hit 2/11/04 Front door Pried Aptment No Not in 8:00-14:10 Wed null null

8 Corr hit 2/17/04 Grd window Unknown Aptment No Not in 0:35 Tues null null

9 Corr find 2/19/04 Door: unkn Pried Aptment No Not in 10:00-16:10 Thur null White M

10 Corr find 2/19/04 Door: unkn Pried Aptment No Not in 7:30-16:10 Thur null White M

11 Corr hit 2/20/04 Front door Broke Aptment No Not in 8:00-17:55 Fri null null

12 Corr hit 2/25/04 Front door Pried Aptment Yes Not in 14:00 Wed null null

(a) Locations of crimes (b) λ and 1
ΓP̂

λ � η for a pattern in 2004

Fig. 5. An example pattern in 2004

On the other hand, false hits that are similar to the crimes within the pattern
may still be useful for crime analysts to consider when determining the M.O.

We now discuss a pattern in detail to demonstrate the type of result that Series
Finder is producing. The example provided is Pattern 7 in Table 1, which is a
series from 2004 in Mid-Cambridge covering a time range of two months. Crimes
were usually committed on weekdays during working hours. The premises are
all apartments (except two unknowns). Figure 5(a) shows geographically where
these crimes were located. In Figure 5(a), four categories of crime within the 2004
pattern are marked with different colored dots: seed crimes are represented with
blue dots, correct hits are represented with orange dots, the correct exclusion is
represented with a red dot and the two correct finds are represented with green
dots. Table 2 provides some details about the crimes within the series.

We visualize the M.O. of the pattern by displaying the weights in Figure 5(b).
The red bars represent the pattern-general weights λ and the blue bars repre-
sent the total normalized weights obtained from the product of pattern-general
weights and pattern-specific weights for this 2004 pattern. Notable observations
about this pattern are that: the time between crimes is a (relatively) more im-
portant characteristic for this pattern than for general patterns, as the crimes
in the pattern happen almost every week; the means and location of entry are
relatively less important as they are not consistent; and the suspect information
is also relatively less important. The suspect information is only present in one
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of the crimes found by Series Finder (a white male). Geographic closeness is less
important for this series, as the crimes in the series are spread over a relatively
large geographic distance.

Series Finder made a contribution to this pattern, in the sense that it detected
two crimes that analysts had not previously considered as belonging to this
pattern. It also correctly excluded one crime from the series. In this case, the
correct exclusion is valuable since it had suspect information, which in this case
could be very misleading. This exclusion of this crime indicates that the offender
is a white male, rather than a black male.

7 Conclusion

Series Finder is designed to detect patterns of crime committed by the same
individual(s). In Cambridge, it has been able to correctly match several crimes
to patterns that were originally missed by analysts. The designer of the near-
repeat calculator, Ratcliffe, has stated that the near-repeat calculator is not a
“silver bullet” [25]. Series Finder also is not a magic bullet. On the other hand,
Series Finder can be a useful tool: by using very detailed information about the
crimes, and by tailoring the weights of the attributes to the specific M.O. of the
pattern, we are able to correctly pinpoint patterns more accurately than similar
methods. As we have shown through examples, the extensive data processing
and learning that goes into characterizing the M.O. of each pattern leads to
richer insights that were not available previously. Some analysts spend hours
each day searching for crime series manually. By replicating the cumbersome
process that analysts currently use to find patterns, Series Finder could have
enormous implications for time management, and may allow analysts to find
patterns that they would not otherwise be able to find.
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Abstract. One of the hardest resources to manage in retail is space. Re-
tailers need to assign limited store space to a growing number of product
categories such that sales and other performance metrics are maximized.
Although this seems to be an ideal task for a data mining approach, there
is one important barrier: the representativeness of the available data. In
fact, changes to the layout of retail stores are infrequent. This means
that very few values of the space variable are represented in the data,
which makes it hard to generalize. In this paper, we describe a Decision
Support System to assist retailers in this task. The system uses an Evo-
lutionary Algorithm to optimize space allocation based on the estimated
impact on sales caused by changes in the space assigned to product cat-
egories. We assess the quality of the system on a real case study, using
different regression algorithms to generate the estimates. The system
obtained very good results when compared with the recommendations
made by the business experts. We also investigated the effect of the rep-
resentativeness of the sample on the accuracy of the regression models.
We selected a few product categories based on a heuristic assessment
of their representativeness. The results indicate that the best regression
models were obtained on products for which the sample was not the best.
The reason for this unexpected results remains to be explained.

Keywords: Retail, Representativeness of Sample, Evolutionary Algo-
rithms, Regression.

1 Introduction

This paper adresses the problem of assigning space to product categories in retail
stores. According to the business specialists, space is one of the most expensive
resources in retail [1]. This makes product category space allocation one of the

� Part of this work was carried out while the authors were at Faculdade de Economia,
Universidade do Porto.
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most difficult decisions while defining the layout1 of a retail store. Given that
space is a limited resource, it is essential for the retailer to assess the effects
of allocating more space to product category x instead of product category y.
One approach is based on the estimated space elasticity of product categories [2].
Space elasticity is the impact on the sales of a given product or product category
of varying (typically 1%) the space allocated to it.

We developed a Decision Support System (DSS) for space allocation that com-
bines machine learning techniques with a meta-heuristic optimization method
(Figure 1). The meta-heuristic searches the space of all admissible space alloca-
tions. For each solution considered, the corresponding total sales are estimated
based on individual forecasts of the sales of each product category obtained us-
ing sales forecasting models. Besides the space allocated to the corresponding
category in the solution, the inputs to these models include other variables char-
acterizing the store and the product category. The models are induced using
machine learning techniques on historical data.

This approach involves a number of challenges, the most important of which
are 1) the representativeness of the data, 2) the evaluation of the individual
models and 3) the evaluation of the whole system. The data collected by retail
companies represents a tiny fraction of its domain because changes to the space
assigned to a product category are not frequent. Therefore, it is hard to obtain
models with good generalization capacity. To address this issue, we developed

1 The layout is a schema combining text, graphics and photos to represent the physical
distribution of products and product categories in a retail store, as well as their sizes
and weights.
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a measure of the space volatility of product categories. Surprisingly, however,
the best models were not obtained on the product categories with more space
volatility according to our measure.

The evaluation of both the individual models and the complete system are
also challenging. The development of the individual models is hard because it
is difficult to relate their accuracy with the quality of the global store layout.
Therefore, knowing when to stop the development process is hard. We addressed
this issue by setting thresholds, which were defined in collaboration with the
business experts. Finally, the evaluation of the impact on sales of the layouts
recommended by the system on real stores is not possible. On the other hand,
evaluating them on historical data, even if a suitable resampling methodology is
used, is not entirely convincing to the business users. We addressed this issue by
using the system to make recommendations for a store that had its layout been
recently makeover. We compared our recommendation to the new layout which
was implemented, with very satisfactory results according to the experts.

We discuss these issues in this paper, which is organized as follows. Section 2
presents related work. In Section 3 we describe the data used as well as the
measure to assess space volatility and the results of its application. Section 4
presents the methodology used to build the sales forecasting models. Sections 5
and 6 describe two experiments in modeling product categories sales: first, only
four product categories were modeled, carefully selected according to the space
volatility measure; secondly, we model all product categories. In Section 7 we
specify how we combined the forecasting models with an optimization algorithm
for our DSS. The case study is presented in Section 8, together with the results
obtained. Finally, in Section 9 we present some conclusions and define future
work.

2 Space Allocation in Retail Stores

Space allocation is done at multiple occasions. Retailers are obviously faced
with this problem when opening new stores. Additionally, they must also make
seasonal adjustments (e.g., add a camping section before summer) as well as
temporary ones (e.g., to accommodate brand promotions). Finally, as the busi-
ness evolves due to changes in the socio-economic conditions of the customer
base (e.g., economic crisis) and new trends (e.g., inclusion of gourmet section),
the layout must also be adapted.

Space allocation is done at multiple levels of granularity, namely the shop
sections (e.g., vegetables) and all levels of the product hierarchy, including indi-
vidual brands and products. Depending on the granularity level, decisions may
involve location in 3D (i.e., not only the position in the store but also the height
of the shelf in which the products are displayed) as well as size (e.g., length of
shelf space assigned) and positioning relative to other products. Furthermore
decisions are affected by a number of business constraints (i.e., contracts with
product manufacturers), which makes the problem of space allocation even more
complex.
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Thus it comes as not surprise that product space allocation within a retail
store is a common research topic. Several studies were conducted for studying
the process of product allocation using Econometrics [3], Operations Research [4]
and even Machine Learning, with the application of association rules [5] and
Genetic Algorithms [6]. However, these papers are not concerned with product
category space allocation. They focus on distributing products on previously
assigned product category space.

Desmet and Renaudin [2] published the first paper concerning the problem
of product category space allocation. They used Econometrics to model sales
behaviour of product categories and estimated the respective space elasticity
for each. Despite interesting, their results were partially questionable, with some
estimated space elasticities with negative value. Castro [1] followed a very similar
approach.

We believe that this is the first published work combining optimization and
machine learning techniques on this problem.

3 Data

This Section details the data collected for the project and describes the process
of identifying the categories with the most representative samples, including the
space volatility measure.

3.1 Data Collection

The dataset comprises two years (2009-10) of data with monthly observations
for 110 product categories. Overall, the dataset contains 332,885 observations.

The majority of the variables were provided by the retail company in which
this project was developed. Due to confidentiality reasons, we can not give
insights about their construction but we can motivate the purpose for their
inclusion in our dataset. For all variables, i represents a product category,m rep-
resents a month and s a store: 1) Salesi,m,s is the target variable; 2) Area ti,m,s

is the total area,2 in square meters, assigned to a product category. [1] showed
its significance on sales forecasting models for retail; 3) Area pei,m,s is the per-
manent area, in square meters, of a product category. Permanent area does not
change due to seasonality factors. This type of area only changes during store
layout restructuring; 4) Area pri,m,s is the promotional area, in square meters,
of a product category. Promotional area changes mainly due to seasonality fac-
tors; 5) m is the month of the example. It is included for seasonality purposes as
retail sales are highly seasonal and we expect to model that volatility with this
nominal variable; 6) Insignias is the insignia of the store. The retail company
has three different types (insignias) of stores. This nominal variable captures dif-
ferent sales behaviour among these insignias; 7) Clusters is the sales potential
cluster of the store (nominal variable). The retail company divides its stores into

2 The total area is the sum of the permanent and promotional areas.
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four distinct clusters according to their sales potential; 8) Cluster Clients is
the client profile cluster of the store. The retail company divides its stores in four
distinct clusters according to the profile of their customers. Again, the inclusion
of this nominal variable seemed relevant given that it is expected that different
customers will result in stores with different sales behaviour; 9) PPI Countys

is the Purchasing Power Index of the region in which the store is located. It is
expected that the larger the value of this variable, the larger the value of sales;
10) N W Daysm is the number of non-working days of the month. Customers
do most of their shopping on non-working days so it is expected that the larger
the value of this variable, the larger the value of sales; 11) C P Indexi,s is the
category penetration index by store’s client profile cluster. This is a discrete
variable calculated for each product category within each customer cluster, so,
there are 4 indexes by product category, one for each cluster. This variable can
capture the impact that different customers have in product category sales.

Although there may have another important factors affecting sales and space,
these are the variables that were available for this project.

3.2 Representativeness of Sample

The main goal of the project is to implement an optimization algorithm that
maximizes sales given the decision variables Area ti,m,s for all categories i.
Therefore, we need models that predict sales accurately over a wide range of
values of the latter variables. To achieve this, it is necessary to have data that
covers a representative part of the space. However, this is very unlikely, as there
are few changes to the space allocated to a category. Given the importance of
space to retail, changes must be carefully motivated. The categories that are
changed most often may be changed twice a year, while many have constant
shelf area over much longer periods than that. Furthermore, most variations are
relatively small.

This is an important issue because the quality of the results depends not only
on the quality of the variables but also on the representativeness of the training
sample. This is illustrated in Figure 2. Samples A and B contain examples in
every region of the combined domain of both variables, x1 and x2. However,
without further domain knowledge, sample A is better than sample B because it
is more dense. Sample C is the worst of the three because only a small subset of
the space is represented. The data in our case study is both sparse (as in sample
B) and concentrated in a very small area of the domain space (as in sample C).

To understand how serious this problem is in our case study, we developed two
measures to characterize shelf space volatility. These measures can be applied to
all variables representing space allocation, namely Area ti,m,s, Area pei,m,s and
Area pri,m,s, which are represented by ai,m,s. The Mean Number of Changes
(MNCi) of the shelf space of category i is defined as

MNCi =

∑n
s=1 fi,m,s

n
(1)
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Fig. 2. Sample representativeness

where n is the number of observations and

fi,m,s =

{
1 if ai,m,s �= ai,m−1,s

0 otherwise

The Absolute Mean Monthly Variation (AMMVi) of the shelf space of
category i is defined as (a percent value)

AMMVi =

∑n
s=1

∑k
m=2 | ai,m,s−ai,m−1,s

ai,m−1,s
|

k

n
× 100 (2)

The NMCi and AMMVi measures are combined into a space volatility score,
defined as SVi =MNCi ×AMMVi.

Figure 3 shows the values of MNCi and AMMVi for each product category
in our dataset. The categories with a score value equal or greater than the 90th
percentile are considered to have a high score level and are represented in red.
As hypothesized, a great part of the product categories lie in the lower left side
of the chart, meaning that those categories have reduced space volatility.

However, a high volatility score is not sufficient to ensure that the data sample
for the corresponding category is representative of its domain. It is also important
that the category has a homogeneous sales behavior across stores. The purpose
of this requirement is to reduce the impact of the factor store in the relationship
between product category space and sales. To do this, we compute the standard
deviation of sales as a percentage of total sales by product category. The lower
this value, the more homogeneous are the sales of the product category in the
set of stores.

The graph of Figure 4 illustrates different scenarios that were found. It presents
the indicators for the eleven product categories with a high volatility score: on
the x-axis, the score for the permanent area of the categories; on the y-axis, the
score for the promotional area; and the size of each point relates to the store
homogeneity value of the respective product category, which are distinguished
by different colours.

Interesting categories are: 3204, with high volatility in terms of permanent
area; above-average store homogeneity; 3101 with high volatility in terms of
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promotional area and store homogeneity slightly below average; 3001 with con-
siderable volatility in both area components and which is the product category
with the best record of store homogeneity among the categories with a high
volatility score; and 308, with considerable volatility in both area components
and which it is the product category with the worst record of store homogeneity
among the selected categories. The latter category is the one with the worst data
sample, according to our measures, while the other have the best samples.

4 Methodology

The problem is adressed as a regression task with Salesi,m,s as the dependent
variable. Next, we describe how error is estimated and which regression algo-
rithms were used.

4.1 Error Estimation

The error measures for the evaluation of the predictive models are:Mean Relative

Error(MRE ), defined as

∑n
j=1 | yj−ŷj

yj
|

n × 100; Root Mean Squared Error (RMSE ),

defined as

√∑n
j=1(yj−ŷj)2

n ; and Variation Index (varIndex ), defined as RMSE
ȳ .

For all measures, yj is the true value, ŷj is the predicted value, and ȳ is the
mean of the output variable.

The performance of the regression algorithms will be compared with two
benchmarks: a linear regression (LR), given that this technique was applied
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in past experiments on this problem [1][2]; and a baseline, whose predictions
consist of the average of the target variable for the store which is being ana-
lyzed. These comparisons will help assess the difficulty of the phenomenon that
we are modeling as well as how much useful knowledge the regression models
are capturing.

The retail company defined 10% as the (maximum) target MRE value. We
used this value as a treshold for sucess of our models.

Given that the dataset used in this work consisted of time series, the error was
estimated using a hold-out strategy, ensuring that the test data was more recent
than training data. The training set for each product category (and each model)
consisted of one year and four months of observations; the remaining examples
(eight months) were splited (4 months each) for a validation and a test set. The
validation set was used for algorithm parameter tuning and the test set to assess
the generalization error of the models.

4.2 Regression Algorithms

Several regression models were tested, namely:Cubist, an improvement of Quin-
lan’s M5 regression trees [7];Artificial Neural Networks (ANN), based on the
empirical evidence of the capacity of ANN to successfully predict retail sales [8];
Multivariate Adaptive Regression Splines (MARS) [9]; Support Vector
Machines (SVM) [10]; Generalized Boosted Models (GBM), R package
implementation of boosting [11] models; and Random Forests (RF) [12].

The implementation of these algorithms available in the R [13] software was
used in the experiments.

5 Modeling Categories with High Sales Volatility

The measures that were proposed in Section 3.2 to quantify space volatility were
validated by the business experts. Nevertheless, we decided to analyze empiri-
cally if they are, in fact, good measures of the representativeness of the data
samples. In case of positive results, we can define a strategy to systematically
collect data for the product categories with data of insufficient quality based on
the space volatility measures.

We focused on the four categories that were identified in Section 3.2, namely,
3204, 3101, 3001 and 308. The results obtained on the category 308 are ex-
pected to be worse than on the others, given that the computed measures of
space volatility and store homogeneity are clearly worst for this product cate-
gory. Different parameters settings were tested and the best results are presented
here.

Figure 5 shows the results for the four selected product categories in terms
of MRE. Surprisingly, the MRE estimated for the models is far from the target
value of 10%, except for product category 308, which is actually quite close to
the threshold. These results do not confirm our hypothesis. There seems to be
no correlation between the variables calculated to characterize the representa-
tiveness of the data for each product category and the predictive performance
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Fig. 5. Results for selected product categories, in terms of MRE. The dotted horizontal
line represents the threshold defined by the client.

of the algorithms. Further analysis provided possible explanations for some of
these results. For instance, the product category with the worst results is 3204.
Given that the models of this category do not include the variable m, since there
was only one year of data for this category, we assume that the problem may
be lack of representative data, as retail sales are seasonal. Nevertheless, at this
point it became clear that we could not yet develop the data collection strategy
based on the current version of these measures.

Table 1 presents more detailed results, according to three error measures. In
terms of performance of the regression algorithms, SVM, RF and ANN obtain
the best results. Overall, for these product categories, SVM is the best algo-
rithm, according to the average of the error measures. Further observations can
be made: 1) for all product categories, there is always at least one regression
algorithm that is better than both benchmarks; 2) ANN presents reasonable
performance from modeling retail sales, confirming previous results [8]; and 3)
LR obtains poor performance for modeling retail sales. This fact is particularly
important if we remember that the previous papers on the topic of product
category space allocation [1][2] used this technique.

6 Modeling All Product Categories

Given the unexpected results in the preliminary experiments, we decided to
run experiments on all product categories. Given that some of the 110 product
categories of our dataset showed a very low number of observations, we only
used the 89 categories with more than 1000 observations. Additionally, for 10 of
these product categories, we only had one year of data.

We decided not to test ANN because of its computational cost. Additionally,
the best SVM results in the previous section were obtained using two kernels,
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Table 1. Detailed results on selected product categories results

Product Categories
Error

Algorithm Measure 3204 3101 3001 308 Average

Cubist
MRE 149.02% 31.10% 26.64% 16.97% 55.93%
RMSE 300.57 4160.69 22118.84 6218.20 8199.58
varIndex 182.33% 48.05% 44.12% 28.96% 75.86%

ANN
MRE 74.09% 28.97% 26.96% 14.49% 36.13%
RMSE 208.57 2238.49 26816.24 5809.25 8768.14
varIndex 135.97% 25.08% 60.33% 39.27% 65.16%

MARS
MRE 187.64% 27.16% 59.30% 25.70% 74.95%
RMSE 348.37 2437.43 31767.91 7055.82 10402.38
varIndex 211.33% 28.15% 63.36% 32.86% 83.93%

SVM
MRE 87.84% 16.70% 24.19% 11.22% 34.98%
RMSE 94.81 2153.42 18680.24 5458.18 6596.66
varIndex 57.52% 24.87% 37.26% 25.42% 36.27%

GBM
MRE 127.86% 109.4% 35.36% 26.93% 74.89%
RMSE 220.68 6414.26 30985.78 15500 13280.18
varIndex 127.78% 74.50% 59.28% 64.93% 81.62%

RF
MRE 121.28% 20.53% 22.92% 11.12% 43.96%
RMSE 151.23 3044.51 19620.52 8373.84 7797.53
varIndex 90.26% 35.20% 38.36% 38.28% 50.53%

LR
MRE 139.10% 236.87% 110.20% 71.13% 139.33%
RMSE 264.26 5299.86 30761.88 18619.4 13736.35
varIndex 160.31% 61.20% 61.35% 86.72% 92.40%

Baseline
MRE 90.40% 37.14% 136.72% 35.45% 74.93%
RMSE 136.22 6485.44 78004.39 26796.21 27855.56
varIndex 82.64% 74.90% 155.56% 124.80% 109.48%

therefore, we decided to use those two different kernels. So, we tested three
algorithms: SVM with the radial and sigmoid kernels and RF.

6.1 Results

Figure 6 shows the results obtained for the three regression algorithms in terms
of MRE on 89 product categories. The dotted horizontal line represents the
threshold defined in Section 4. Surprisingly, given the results obtained earlier,
several models are below or very close to the threshold. On one hand, this con-
firms that the measures used to assess space volatility need to be improved but,
on the other, it indicates that the approach followed is viable, regardless of the
apparent lack of representativeness of the data.

The statistical significance of the differences was based on the results of paired
t-tests with α = 0.05. Overall, SVM with the radial kernel obtained the best
performance in 77 product categories; RF obtained the best performance in
10 product categories; and finally, SVM with sigmoid kernel presented superior
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Fig. 6. Results of SVM - radial kernel, SVM - sigmoid kernel and RF for all product
categories

performance in only two product categories. In several product categories, RF
and SVM with radial kernel function showed a very similar performance and the
statistical test did not distinguish them.

In Table 2 we compare the best model for each product category (of the three
that were generated) with the respective baseline. On average, the regression
algorithms show a better predictive performance than the baseline. More im-
portantly, approximately half of them obtained an error that was very close or
better than the threshold set by the retail company.

Table 2. Summary: best model vs Baseline (MRE)

Algorithm Min 1stQ Median Mean 3rdQ Max

Best model 6.51 8.76 11.01 19.05 22.95 126.11

Baseline 7.69 10.58 13.78 27.73 27.83 198.90

7 Decision Support System

Given that the models presented results that were very close to the goal set by the
business experts, we decided to develop the method to optimize the assignment
of shelf space to the product categories. As explained in more detail next, this
method uses the models to predict the sales for the shelf space assigned by the
solutions tested in the search process.

The optimization algorithm is an adapted version of a Genetic Algorithm
(GA), an Evolutionary Computation (EC) framework. For further details on
GAs, we refer the reader to [14].
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Algorithm 1 shows the pseudocode of the algorithm implemented. The general
EC method must be adapted to take into account specific issues of the problem
at hand. In our case, solutions must not violate three fundamental constraints:
a minimum value for each gene (the minimum space of a certain product cate-
gory); a maximum value for each gene (the maximum space of a certain product
category); and a maximum value for the sum of all genes (the maximum space
of the sum of all product categories and layout).

begin
INITIALISE population with historical and random solutions;
EVALUATE each candidate;
repeat

SELECT parents;
RECOMBINE pairs of parents with whole arithmetic recombination;
MUTATE the resulting offspring;
EVALUATE new candidates;
SELECT top 30 individuals for the next generation;

until number of iterations = it ;

end

Algorithm 1. Optimization algorithm.

Representation of the solutions. A solution consists of the area of all
product categories in a given store, solh = g1,h, g2,h, ..., gi,h. Each solution has
as many elements as the number of product categories.

The initial population consists of 30 solutions: 10 are historical assignments
of shelf space to product categories in the store that is being optimized; and
the remaining 20 are random solutions. The range of valid space values for each
product category is defined by the corresponding maximum and minimum values
that occurred in the most recent year available in the dataset for the store that
is being optimized: mini ≤ gi,h ≤ maxi.

The fitness function that evaluates the solutions is based on the predictive
models generated in Section 6. It uses those models to estimate the sales of the
product categories, given the shelf size in the solutions together with the values
of the remaining independent variables. The fitness of a solution is the sum of
all sales forecasts, plus a penalty function ωh for controlling the total space of
the solution: Fitnessh = sal̂es1 + sal̂es2 + ...+ sal̂esi + ωh.

Parents selection. The selection of the solutions that will generate offspring
is based on a probability associated with each, taking into account the fitness

function output for each solution: Prob(k) = Fitness(k)/
(∑30

k=1 Fitness
)
.

Then, from 30 solutions that constitute the population, 10 are selected for
crossover.

Crossover. In this stage, the 10 selected solutions, generate 10 new solutions.
In order not to violate the constraints that were imposed on all solutions, we
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applied an operator named whole arithmetic crossover [14]: given two selected
solutions, sol1 and sol2, the average of the two is calculated, originating a new
solution: sol3 =

g1,1+g1,2
2 ,

g2,1+g2,2
2 , ...,

g1,h+g1,h
2 .

Mutation. This operator randomly selects one or more solutions from the
offspring. Two genes are randomly chosen from each of the selected solutions, and
1 unit (square meter) is transferred from the first category to the second: sol3 =
g1,3+1, g2,3−1, ..., gh,3. However, this operator may disregard restrictions on the
minimum and maximum area of each product category. In order to circumvent
the problem, the mutation only occurs if the selected gene does not have a
minimum or maximum value. The number of offspring selected for mutation is
controlled by the mutation rate parameter.

Survival Selection. After the operators are applied, the offspring are added
to the population. With a total population of 40 solutions, a new evaluation by
the fitness function occurs. The top 30 are kept for new iteration. In this work
we have opted for an elitist approach in the survivor selection mechanism [14],
instead of the typical probabilistic one. We chose this approach given that the
fitness values for our solutions were very close to each other, and a probabilistic
selection lead the algorithm to the loss of good solutions.

The DSS performs optimization at the monthly level: given a store, a par-
ticular number of product categories and one month, the algorithm seeks the
set of areas that maximizes monthly sales according to the predictive models
generated in Section 6.

8 Case Study

The retail company proposed a test for a more realistic assessment of the system.
In May 2011, a given store had a makeover of its logistics which included a new
layout. The vast majority of the product categories that were available in this
store underwent major changes in the shelf space. For this makeover, the analysts
of the retail company based their space recommendations on data from 2009 to
2010, the very same that allowed us to build our dataset. Thus, it was proposed
to test the developed DSS in this store and compare the results obtained with
the recommendations of the business specialists.

8.1 Experimental Setup

In this experiment, we assumed that, except for the variables Area ti,m,s and
N W Daysm, the other independent variables remained constant, given that it
seems acceptable that from 2010 to 2011 they have not changed substantially.
The predictive models generated for this experiment integrated all observations
available in the dataset. Based on the experiments in Section 6, we selected the
best algorithm for each product category.

Out of the 89 categories for which it is possible to build predictive models, 85
are part of the store layout, so, the solutions consisted of 85 genes. To evaluate
the quality of the optimization and compare its results with recommendations
from the business specialists, we used Pearson’s correlation coefficient.
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8.2 Results

For 75,000 iterations, the optimization algorithm presents the performance
showed in Figure 7. Due to confidentially issues, the fitness values were scaled
between 0 and 1, 0 being the minimum fitness value and 1 being the maximum
fitness achieved by the best solution in the population. There is a steep increase
in fitness, which slows down as the system converges. A steady state is achieved
near iteration 60,000.

Comparing the results obtained by the DSS with the recommendations made
by the business specialists, we estimated a correlation of 0.66. Assuming that the
space recommendations of the business specialists are ideal, these results are a
good indicator of the quality of the developed DSS. We compared the predicted
total sales according to our models of the two solutions.

Analysing the results in detail, some important questions arise. A first com-
parison between the output of the DSS and the real areas of the store in May
2011, shows that three product categories are clearly overvalued by the system.
These categories have a common factor: they have very strong promotional cam-
paigns at specific times of the year. It is clear that the models of these product
categories (with MRE values of 11.17%, 24.90% and 16.80%) are failing to asso-
ciate this boom in sales to seasonal factors. Those strong promotional campaigns
also imply a significant, albeit temporary, increase in shelf space, which seems to
be confusing the learning algorithms. Given that the m variable (month of the
observation) varies systematically and the variable Area ti,m,s presents a large
increase at those times just like the variable Salesi,m,s, the forecasting models
associated the sales boom to changes in the value of the variable Area ti,m,s.
This has implications in the DSS output: for these product categories, its rec-
ommendation is to have promotional campaigns at any time of the year. This
clearly does not make sense in seasonal products.
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Although, we assume that the recommendations made by the specialists are
ideal, due to lack of better information, the product categories for which the sys-
tem differs from those values are also interesting. For instance, for the adjacent
product categories 1502 and 1503, the DSS suggests areas that are quite differ-
ent from the recommendations of the business specialists. Given the excellent
predictive accuracy of the models in question (6.92% and 12.17%, respectively),
we found this information to be quite useful for the retail company.

9 Conclusions and Future Work

This paper presents the combination of sales forecasting models for individual
product categories and a GA to develop a DSS for product category space allo-
cation in retail stores. As far we know, this is the first time that machine learning
and optimization techniques are applied to deal with this problem.

Given that not many changes are made to the layout of stores, it is expected
that the data collected from the daily operation of retail stores is not adequate
for modeling purposes. We developed two measures to assess the representative-
ness of the data associated with each product category. However, an empirical
study indicated that the measures were not good predictors of the predictive
accuracy of the models. Given the importance of collecting adequate data, an
important goal is to improve these measures to serve as the basis for a system-
atic data collection strategy. This work can benefit from existing work on active
learning [15].

Somewhat surprisingly, many of the models generated obtained satisfactory
results and, thus, we developed the DSS. The system was evaluated with data
from a major change in layout at a specific store, which had recently been per-
formed. The results indicate that this system recommends space allocations in
retail stores that are very similar to the recommendations made by business
specialists. Furthermore, some of the differences in the recommendations were
interesting from the business perspective.

We have developed models that are independent of each other. However, it
is likely that there is some dependence between the sales of at least some of
the product categories. We plan to test multi-target regression methods [16] to
address this problem.

In this project, we have addressed only a very small part of the space allocation
problem. An important development is the extension of the current system with
recommendations concerning which categories to place next to each other. One
approach to this problem is market basket analysis [17]. However, the challenge
is how to combine the two types of recommendation.
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Abstract. Accurate prediction of future onset of disease from Electronic
Health Records (EHRs) has important clinical and economic implica-
tions. In this domain the arrival of data comes at semi-irregular intervals
and makes the prediction task challenging. We propose a method called
multiplicative-forest point processes (MFPPs) that learns the rate of fu-
ture events based on an event history. MFPPs join previous theory in
multiplicative forest continuous-time Bayesian networks and piecewise-
continuous conditional intensity models. We analyze the advantages of
using MFPPs over previous methods and show that on synthetic and
real EHR forecasting of heart attacks, MFPPs outperform earlier meth-
ods and augment off-the-shelf machine learning algorithms.

1 Introduction

Ballooning medical costs and an aging population are forcing governments and
health organizations to critically examine ways of providing improved care while
meeting budgetary constraints. A leading candidate to fulfill this mandate is the
advancement of personalized medicine, the field surrounding the customization
of healthcare to individuals. Predictive models for future onset of disease are the
tools of choice here, though the application of existing models to existing data
has had mixed results.

The research into improvements in predictive modeling has manifested in two
main areas: better data and better models. Electronic health records (EHRs) now
provide rich medical histories on individuals including diagnoses, medications,
procedures, family history, genetic information, and so on. The individual may
have regular check-ups interspersed with hospitalizations and medical emergen-
cies, and the sequences of semi-irregular events can be considered as timelines.

Unlike timelines, the majority of models incorporating time use a time-series
data representation. In these models data are assumed to arrive at regular
intervals. Irregular arrivals of events violate this assumption and lead to miss-
ing data and/or aggregation, resulting in a loss of information. Experimen-
tally, such methods have been shown to underperform analogous continuous-time
models [1].

To address the irregularity of medical event arrivals, we develop a continuous-
time model: multiplicative-forest point processes (MFPPs). MFPPs model the
rate of event occurrences and assume that they are dependent on an event history
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in a piecewise-constant manner. For example, the event of aspirin consumption
(or lack thereof) may affect the rate of myocardial infarction, or heart attack,
which in turn affects the rate of thrombolytic therapy administration. Our goal
is to learn a model that identifies such associations from data.

MFPPs build on previous work in piecewise-constant conditional intensity
models (PCIMs) using ideas from multiplicative-forest continuous-time Bayesian
networks (mfCTBNs) [2,3]. MFPPs extends the regression tree structure of
PCIMs to regression forests. Unlike most forest learning algorithms, which min-
imize a classification loss through function gradient ascent or ensembling, MF-
PPs are based on a multiplicative-forest technique developed in CTBNs. Here, a
multiplicative assumption for combining regression tree values leads to optimal
marginal log likelihood updates with changes in forest structure. The multi-
plicative representation allows MFPPs to concisely represent composite rates,
yet also to have the flexibility to model rates with complicated dependencies. As
the multiplicative forest model leads to representational and computational gains
in mfCTBNs, we show that similar gains can be achieved in the point process
domain. We conduct experiments to test two main hypotheses. First, we test for
improvements in learning MFPPs over PCIMs, validating the usefulness of the
multiplicative-forest concept. Second, we assess the ability of MFPPs to classify
individuals for myocardial infarction from EHR data, compared to PCIMs and
off-the-shelf machine learning algorithms.

Specifically we address two modeling scenarios for forecasting: ex ante (mean-
ing “from the past”) forecasting and supervised forecasting. An ex ante forecast
is the traditional type of forecasting and occurs if no labels are available in the
forecast region. An example of ex ante forecasting is the prediction of future
disease onset from the present day forwards. Acquiring labels from the future
is not possible, and labels from the past may introduce bias through a cohort
effect. However, in some cases, labels may be used, and we call such forecasts
“supervised”. An example of supervised forecasting is the retrospective cohort
study to predict the class of unlabeled examples as well as to identify risk factors
leading to disease. The application of continuous-time models to the forecast-
ing case is straightforward. When labels are available, however, we choose to
apply MFPPs in a cascade learning framework, where the MFPP predictions
contribute as features to supervised learning models.

In Section 2, we discuss point processes and contrast them from continuous-
time Bayesian networks (CTBNs) noting their matching likelihood formulations
given somewhat different problem setups. We show that multiplicative forest
methods can be extended to point processes. We also introduce the problem of
predicting myocardial infarction, discuss the various approaches to answering
medical queries, and introduce our method of analysis. In Section 3, we present
results on synthetic timelines and real health records data and show that MF-
PPs outperform PCIMs on these tasks, and that the timeline analysis approach
outperforms other standard machine learning approaches to the problem. We
conclude in Section 4.



Forest-Based Point Processes for Myocardial Infarctions 549

A B A C AB

A
B
C

time

Fig. 1. A timeline (top) deconstructed into point processes (bottom)

2 Point Processes

Data that arrive at irregular intervals are aptly modeled with timelines. A time-
line is a sequence of {event,time} pairs capturing the relative frequency and
ordering of events. This representation arises in many domains, including neu-
ron spike trains [4], high-frequency trading [5], and medical forecasting [6]. We
describe and build upon one such model: the point process.

A point process treats each event type individually and specifies that it
(re-)occurs according to the intensity (or rate) function λ(t|h) over time t given
an event history h. Figure 1 shows a sample timeline of events deconstructed into
individual point processes. The conditional intensity model (CIM) is a proba-
bilistic model formed by the composition of such processes. Our work will build
on piecewise-constant conditional intensity models (PCIMs), which make the
assumption that the intensity functions λ(t|h) are constant over positive-length
intervals. PCIMs represent the piecewise-constant conditional intensity functions
with regression trees, and one is shown in Figure 2 (left).

The piecewise-constant intensity assumption is convenient for several reasons.
For one, the likelihood can be computed in closed form. We can also compute
the sufficient statistics by counting events and computing a weighted sum of
constant-intensity durations. With these, we can directly estimate the maxi-
mum likelihood model parameters. Finally, we note that with this assumption
the likelihood formulation becomes identical to the one used in continuous-time
Bayesian networks (CTBNs). The shared likelihood formula lets us apply a re-
cent advance in learning CTBNs: the use of multiplicative forests. Multiplicative
forests produce intensities by taking the product of the regression values in ac-
tive leaves. For example, a multiplicative forest equivalent to the tree described
above is shown in Figure 2 (right). These models were shown to have large em-
pirical gains for parameter and structure learning similar to those seen in the
transition from tree models to random forests or boosted trees [3]. Our first goal
is to show that a similar learning framework can be applied to point processes.
We describe the model in fuller detail below.

2.1 Piecewise-Continuous Conditional Intensity Models (PCIMs)

Let us consider the finite set of event types l ∈ L. An event sequence or trajectory
x is an ordered set of {time, event} pairs (t, l)ni=1. A history h at time t is the
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Fig. 2. A piecewise-constant conditional intensity tree for determining the rate of event
type A (left). An equivalent multiplicative intensity forest (right). An example of active
paths are shown in red. The active path in the tree corresponds to the intersection of
active paths in the forest, and the output intensity is the same (3 = 1× 3).

subset of x whose times are less than t. Let l0 denote the null event type, and
use the null event pairs (l0, t0) and (l0, tend) to denote the start and end times
of the trajectory. Then the likelihood of the trajectory given the CIM θ is:

p(x|θ) =
∏
l∈L

n∏
i=1

λl(ti|hi, θ)�(l=li)e
∫

t
−∞ λl(τ |x,θ)dτ

PCIMs introduce the assumption that the intensity functions are constant over
intervals. As described in [2], let Σl be a set of discrete states so that we obtain
the set of parameters λls for s ∈ Σl. The active state s is determined by a
mapping σl(t, x) from time and trajectory to s. Let Sl hold the pair (Σl, σl(t, x))
and let S = {Sl}l∈L. Then the PCIM likelihood simplifies to:

p(x|S, θ) =
∏
l∈L

∏
s∈Σl

λ
Mls(x)
ls e−λlsTls(x) (1)

where Mls(x) is the count of events of type l while s is active in trajectory x,
and Tls(x) is the total duration that s, for event type l, is active.

2.2 Continuous-Time Bayesian Networks (CTBNs)

Continuous-time Bayesian networks model a set of discrete random variables
x1, x2, . . . , xd = X over continuous time, each with si number of discrete states
for i in {1, . . . , d} [7]. CTBNs make the assumption that the probability of transi-
tion for variable x out of state xj at time t is given by the exponential distribution
λxj |ue

−λxj |ut with rate parameter (intensity) λxj |u given parents setting u. The

variable transitions from state xj to xk with probability Θxjxk|u, where Θxjxk|u
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is an entry in state transition matrix Θu. The parents setting u is an element
of the joint state Ux over parent variables of x, and the parent dependencies
are provided in a directed possibly-cyclic graph. A complete CTBN model can
be described by two components: a distribution B over the initial joint state,
typically represented by a Bayesian network, and a directed graph over variables
X with corresponding conditional intensity matrices (CIMs). The CIMs hold the
intensities λxj |u and state transition probability matrices Θu.

The CTBN likelihood is defined as follows. A trajectory, or a timeline, is
broken down into independent intervals of fixed state. For each interval [t0, tend),
the duration t = tend − t0 passes and a variable x transitions at tend from state
xj to xk. All other variables xi �= x rest during this interval in their active states
x′i. Then, the interval density is given by:

λxj |ue
−λxj |ut

︸ ︷︷ ︸
x transitions

Θxjxk|u︸ ︷︷ ︸
to state xk

∏
x′
i:xi �=x

e
−λx′

i
|ut

︸ ︷︷ ︸
while xi’s rest

The trajectory likelihood is given by the product of intervals:∏
x∈X

∏
xj∈x

∏
u∈Ux

λ
Mxj |u
xj |u e−λxj |uTxj |u

∏
xk �=xj

Θ
M

xjxk|u
xjxk|u (2)

where the Mxj|u (and Mxjxk|u) are the numbers of transitions out of state xj (to

state xk), and where the Txj|u are the amounts of time spent in xj given parents
settings u. Defining rate parameter λxixj |u = λxi|uΘxixj |u and set element p =
xj × u (as in [3]), Equation 2 can be rewritten as:∏

x∈X

∏
x′∈x

∏
p

λ
Mx′|p
x′|p e−λx′|pTp (3)

Note how the form of the likelihood in Equation 1 is identical to Equation 3.

2.3 Contrasting PCIMs and CTBNs

Despite the similarity in form, PCIMs and CTBNs model distinctly different
types of continuous-time processes. Table 1 contrasts the two models. The pri-
mary difference is that, unlike point processes, CTBNs model a persistent, joint
state over time. That is, a CTBN provides a distribution over the joint state for
any time t. Additionally, CTBN variables must possess a 1-of-si state represen-
tation for si > 1 whereas point processes typically assume non-complementary
event types. Furthermore, in CTBNs, observations are typically not of changes in
state at particular times but instead probes of the state at a time point or inter-
val. With persistent states, CTBNs can be used to answer interpolative queries,
whereas CIMs are designed specifically for forecasting. Another notable differ-
ence is that CTBNs are Markovian: the intensities are determined entirely by the
current state of the system. While more restrictive, this assumption allows for
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Table 1. Contrasting piecewise-constant continuous intensity models (PCIMs) and
multiplicative-forest continuous-time Bayesian networks (mfCTBNs). Key similarities
are highlighted in blue.

PCIM mfCTBN

Model of: event sequence persistent state

Intensities piecewise-constant network-dependent constant

Dependence event history joint state (Markovian)

Labels event types variables

Emissions events states (x′, 1 of si)

Structure regression tree multiplicative forest

Evidence events (partial) observations of states

Likelihood
∏

l

∏
s λ

Mls
ls e−λlsTls

∏
x′
∏

p λ
Mx′|p
x′|p e−λx′|pTp

variational and MCMC methods to be applied. On the other hand, PCIMs lend
themselves to forecasting because the potentially prohibitive inference about the
persistent state that CTBNs require is no longer necessary. This is because the
rate of event occurrences depends on the event history instead of the current
state.

2.4 Multiplicative-Forest Point Processes (MFPPs)

The similar likelihood forms allow us to extend the multiplicative-forest concept
[3] to PCIMs. Following [2], we define the state Σl and mapping σl(t, x) according
to regression trees. Let Bl be the set of basis state functions f(t, x) that maps
to a basis state set Σf , akin to σ(t, x) that maps to a single element s. As in
[3], we can view the basis functions as set partitions of the space over Σ =
Σl1 × Σl2 × . . .Σl|L| . Each interior node in the regression tree is associated
with a basis function f . Each leaf holds a non-negative real value: the intensity.
Thus one path ρ through the regression tree for event type l corresponds to a
recursive subpartition resulting in a set Σρ, and every (l, s) ∈ Σρ corresponds to
leaf intensity λlρ, i.e., we set λls = λlρ. Figure 2 shows an example of the active
path providing the intensity (λls = λlρ = 3).

MFPPs replace these trees with random forests. Given that each tree repre-
sents a partition, the intersection of trees, i.e. a forest, forms a finer partition.
The subpartition corresponding to a single intensity is given by the intersection
Σρ =

⋂k
j=1Σρ,j of sets corresponding to the active paths through trees 1 . . . k.

The intensity λlρ is given by the product of leaf intensities. Figure 2 (right)
shows an example of the active paths in a tree, producing the forest intensity
(λls = λlρ = 1× 3).

MFPPs use the PCIM generative framework. Forecasting is performed by
forward sampling or importance sampling to generate an approximation to the
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distribution at future times. Learning MFPPs is analogous to learning mfCTBNs.
A tree is learned iteratively by replacing a leaf with a branch with corresponding
leaves. As in forest CTBNs, MFPPs have (1) a closed form marginal log likeli-
hood update and (2) a simple maximum likelihood calculation for modification
proposals. The intensities for the modification are the ratios between observed
(Mls) divided by expected (λlsTls) number of events prior to modification and
while Σρ is active. These two properties together provide the best greedy update
to the forest model.

The use of multiplicative forest point processes has several advantages over
previous methods.

– Compared to trees, forest models can represent more intensities per param-
eter, which is equal to the number of leaves in the model. For example, if a
ground truth model has k stumps, that is, k single-split binary trees, then
the forest can represent the model with 2k parameters. An equivalent tree
would require 2k parameters. This example arises whenever two risk factors
are independent, i.e., their risks multiply.

– While forests can represent these independences when needed, they also can
represent non-linear processes by increasing the depth of the tree beyond
one. This advantage was established in previous work comparing trees to
Poisson Networks [2,8], and forests possess advantages of both approaches.

– Unlike most forest models, multiplicative-forest trees may be learned in an
order that is neither sequential nor simultaneous. The forest appends a stump
to the end of its tree list when that modification improves the marginal
likelihood the most. Otherwise it increases the depth of one tree. The data
determines which expansion is selected.

– Multiplicative forests in CTBNs are restricted to learning from the current
state (the Markovian assumption), whereas MFPPs learn from a basis set
over some combination of the event history, deterministic, and constant fea-
tures.

– Compared to the application of supervised classification methods to temporal
data, the point process model identifies patterns of event sequences over time
and uses them for forecasting. Figure 3 shows an example of the supervised
forecasting setup. In this case, it may be harder to predict event B without
using recurrent patterns of event sequences.

We hypothesize that these advantages will result in improved performance at
forecasting, particularly in domains where risk factors are independent. As many
established risk factors for cardiovascular disease are believed to contribute to
the overall risk independently, we believe that MFPPs should outperform tree
methods at this task. Because of their facility in modeling irregular series of
events, we also believe that MFPPs should also outperform off-the-shelf machine
learning methods.

2.5 Related Work

A rich literature exists on point processes focusing predominantly on spatial
forecasting. In spatial domains, the point process is the temporal component of
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Fig. 3. Supervised forecasting. Labels are provided by the binary classification out-
come: whether at least one event occurs in the forecasted region.

a model used to predict spatiotemporal patterns in data. The analysis of multi-
variate, spatial point processes is related to our work in its attempt to charac-
terize the joint behavior of variables, for example, using Ripley’s K function test
for spatial homogeneity [9]. However, these methods do not learn dependency
structures among variables; instead they seek to characterize cross-correlations
observed in data. Generalized linear models for simple point processes are more
closely related to our work. Here, a linear assumption for the intensity function is
made, seen for example in Poisson networks [8]. PCIMs adopt a non-parametric
approach and was shown to substantially improve upon previous methods in
terms of model accuracy and learning time [2]. Our method builds on upon the
PCIM framework.

Risk assessment for cardiovascular disease is also well studied. The primary
outcome of most studies is the identification of one or a few risk factors and the
quantification of the attributable risk. Our task is slightly different; we seek to
predict from data the onset of future myocardial infarctions. The prediction task
is closely related to risk stratification. For cardiovascular disease, the Framing-
ham Heart Study is the landmark study for risk assessment [10]. They provide a
10-year risk of cardiovascular disease based on age, cholesterol (total and HDL),
smoking status, and blood pressure. A number of studies have been since con-
ducted purporting significant improvements over the Framingham Risk Score
using different models or by collecting additional information [11]. In particular,
the use of EHR data to predict heart attacks was previously addressed in [12].
However, in that work the temporal dependence of the outcome and its predic-
tors was strictly logical and limited the success of their approach. We seek to
show that, compared to standard approaches learning from features segmented
in time, a point process naturally models timeline data and results in improved
risk prediction.

3 Experiments

We evaluate MFPPs in two experiments. The first uses a model of myocardial
infarction and stroke, and the goal is to learn MFPPs to recover the ground truth
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Fig. 4. Ground truth dependency structure of heart attack and stroke model. Labels
on the edges determine the active duration of the dependency. Omitted in the graph
is the age dependency for all non-deterministic nodes if the subject is older than 18.

model from sampled data. The second is an evaluation of MFPPs in predicting
myocardial infarction diagnoses from real EHR data.

3.1 Model Experiment: Myocardial Infarction and Stroke

We introduce a ground truth PCIM model of myocardial infarction and stroke.
The dependency structure of the model is shown in Figure 4. To compare
MFPPs with PCIMs, we sample k trajectories from time 0 to 80 for k =
{50, 100, 500, 1000, 5000, 10000}. We train each model with these samples and
calculate the average log likelihood on a testing set of 1000 sampled trajectories.
Each model used a BIC penalty to determine when to terminate learning. For
features, we constructed a feature generator that uniformly at random selects an
event type trigger and an active duration of one of {t−1, t−5, t−10, t−20, t−50}
to t. Note that the feature durations do not have a direct overlap with the depen-
dency intervals shown in Figure 4. Our goal was to show that, even without being
able to recover the exact ground truth model, we could get close with surrogate
features. MFPPs were allowed to learn up to 10 trees each with 10 splitting fea-
tures; PCIMs were allowed 1 tree with 100 splitting features. We also performed
a two-tailed paired t-test to test for significant differences in MFPP and PCIM
log likelihood. We ran each algorithm 250 times for each value of k.
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MFPPs and PCIMs were significant at a p-value of 1-e20. Dotted lines show the like-
lihoods when ground truth features were made available to the models.

Figure 5 shows the average log likelihood results. Both MFPPs and PCIMs
appear to converge to close to the ground truth model with increasing training
set sizes. The lack of complete convergence is likely due to the mismatch in
ground truth dependencies and the features available for learning. Error bars
indicating the empirical 95 percent confidence intervals are also shown for MFPP.
Similar error bars were observed for the ground truth and PCIMmodels but were
omitted for clarity. The width of the interval is due to the variance in testing
set log likelihoods. If we look at level average log likelihood lines in Figure 5, we
observe that we only need a fraction of the data to learn a MFPP model equally
good as the PCIM model. Both models completed all runs in under 15 minutes
each.

We used a two-sided paired t-test to test for significant differences in the
average log likelihood. For all numbers of trajectories k, the p-value was smaller
than 1e-20. We conclude that the MFPP algorithm significantly outperformed
the PCIM algorithm at recovering the ground truth model from data of this
size.

3.2 EHR Prediction: Myocardial Infarction

In this section we describe the experiment on real EHR data. We define the
task to be forecasting future onset of myocardial infarction between the years
2005 and 2010 given event data prior to 2005. We propose two forms of this
experiment: ex ante and supervised forecasting. First, we test the ability of
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Fig. 6. Ex ante (traditional) forecasting. No labels for any example are available in the
forecast region. The goal is to recover the events (B and C) from observations in the
past.

MFPP to forecast events between 2005 and 2010 in all patients given the data
leading up to 2005. Figure 6 depicts the ex ante forecasting setup.

Second, we split our data into training and testing sets to test MFPP in its
ability to perform supervised forecasting. In this setup, we provide data between
2005 and 2010 for the training set in addition to all data prior to 2005 for both
training and testing sets. We choose to focus on the outcome of whether a subject
has at least one myocardial infarction event between the 2005 and 2010. Figure
3 shows the supervised forecasting setup.

We use EHR data from the Personalized Medicine Research Project (PMRP)
cohort study run at the Marshfield Clinic Research Foundation [13]. The Marsh-
field Clinic has followed a patient population residing in northern Wisconsin and
the outlying areas starting in the early 1960s up to the present. From this cohort,
we include all subjects with at least one event between 1970 and 2005, and with
at least one event after 2010 or a death record after 2005. Filtering with these
inclusion criteria resulted in a study population of 15,446, with 428 identified
individuals with a myocardial infarction event between 2005 and 2010.

To make learning and inference tractable, we selected additional event types
from the EHR corresponding to risk factors identified in the Framingham Heart
Study[10]: age, date, gender, LDL (critical low, low, normal, high, critical high,
abnormal), blood pressure (normal, high), obesity, statin use, diabetes, stroke,
angina, and bypass surgery. Because the level of detail specified in EHR event
codes is fine, we use the above terms that represent aggregates over the terms
in our database, i.e., we map the event codes to one of the coarse terms. For
example, an embolism lodged in the basilar artery is one type of stroke, and we
code it simply as “stroke”. The features we selected produced an event list with
over 1.8 million events. As MFPPs require selecting active duration windows to
learn, we used durations of size {0.25, 1, 2, 5, 10, 100 (ever)}, with more features
focused on the recent past. Our intuition suggests that events occurring in the
recent past are more informative than more distant events.

We compare MFPP against two sets of machine learning algorithms based on
the experimental setup. For ex ante forecasting, we test against PCIMs [2] and
homogeneous Poisson point processes, which assume independent and constant
event rates. We assess their performance using the average log likelihood of the
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true events in the forecast region and precision-recall curves for our target event
of interest: myocardial infarction. For supervised forecasting, we test against
random forests and logistic regression [2,14]. As MFPP is not an inherently
supervised learning algorithm, we also include a random forest learner using fea-
tures corresponding to the intensity estimates based on the ex ante forecasting
setup. We call this method MFPP-RF. We use modified bootstrapping to gen-
erate non-overlapping training and testing sets, and we train on 80 percent of
the entire data. We compare the supervised forecasting methods only in terms
of precision-recall due to the non-correspondence of the methods’ likelihoods.

We also make a small modification to the MFPP and PCIM learning procedure
when learning for modeling myocardial infarction, i.e., rare, events. On each
iteration we expand one node in the forest of every event type instead of the
forest of a single event type. The reason for this is that low intensity variables
contribute less to the likelihood, so choosing the largest change in marginal
log likelihood will tend to ignore modeling low intensity variables. By selecting
an expansion for every event type each iteration, we ensure a rich modeling of
myocardial infarction in the face of high frequency events such as blood pressure
measurements and prescription refills. We note that because of the independence
of likelihood components for each event type, this type of round-robin expansion
is still guaranteed to increase the model likelihood. This statement would not
hold, for example, in CTBNs, where a change in a variable intensity may change
its latent state distribution, affecting the likelihood of another variable. Finally,
for ease of implementation and sampling, we learn trees sequentially and limit
the forest size to 40 total splits.

Ex Ante Forecasting Results. Table 2 shows the average log likelihood re-
sults for ex ante forecasting for the MFPP, PCIM and homogeneous Poisson
point process models. Both MFPPs and PCIMs perform much better than the
baseline homogeneous model. MFPPs outperform PCIMs by a similar margin
observed in the synthetic data set.

Table 2. Log likelihood of {MFPP,
PCIM, independent homogeneous
Poisson processes} for forecasting
patient medical events between 2005
and 2010.

Method Log likelihood

MFPP 12.1
PCIM 10.3
Poisson -54.8

Figure 7 shows the precision-recall curve
for predicting a myocardial infarction event
between 2005 and 2010 given data on sub-
jects prior to 2005. MFPPs and PCIMs per-
form similarly at this task. The high-recall
region is of particular interest in the medi-
cal domain because it is more costly to miss
a false negative (e.g. undiagnosed heart at-
tack) than a false positive (false alarm). Sim-
ply put, clinical practice follows the “better
safe than sorry” paradigm, so performance
high-recall region is of highest concern. We
plot the precision-recall curves between recalls of 0.5 and 1.0 for this reason. The
absolute precision for all methods remains low and might exhibit the challenging
nature of ex ante forecasting. Alternatively, the low precision results could be
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Fig. 7. Precision-recall curves for ex ante forecasting. MFPPs are compared against
PCIMs and homogeneous Poisson point processes.

a result of potential incompatibility of the exponential waiting time assumption
and medical event data. Since forecasting can be considered a type of extrap-
olative prediction, a violation of the model assumptions could lead to subopti-
mal predictions. Despite these limitations, compared to the baseline precision of
428/15,446 = 0.028, the trained methods do provide utility in forecasting future
MI events nonetheless.

Supervised Forecasting Results. Figure 8 provides the precision-recall curve
for the supervised forecasting experiment predicting at least one myocardial
infarction event between 2005 and 2010. As we see, MFPP underperforms com-
pared to all supervised learning methods. However, the MFPP predicted intensi-
ties features boosts the MFPP-RF performance compared to the other classifiers.
This suggests that while MFPP is a valuable model but may not be optimized
for classification.

MFPPs also provide insight into the temporal progression of events. Figure 9
shows the first two trees of the forest learned for the rate of myocardial infarction.
We observe the effects on increased risk: history of heart attack, elevated LDL
cholesterol levels, abnormal blood pressure, and history of bypass surgery. While
the whole forest is not shown (see http://cs.wisc.edu/~jcweiss/ecml2013/),
the first two trees provide the main effects on the rate. As you progress
through the forest, the range over intensity factors narrows towards 1. The taper-
ing effect of relative tree “importance” is a consequence of experimental decision
to learn the forest sequentially, and it provides for nice interpretation: the first
few trees identify the main effects, and subsequent trees make fine adjustments
for the contribution of additional risk factors.

As Figure 9 shows, the dominating factor of the rate is whether a recent
myocardial infarction event was observed. In part, this may be due to an in-
creased risk of recurrent disease, but also because some EHR events are “treated

http://cs.wisc.edu/~jcweiss/ecml2013/
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Fig. 8. Precision-recall curves for supervised forecasting. MFPPs are compared against
random forests, logistic regression, and random forests augmented with MFPP intensity
features.

l=MI

MI in [t-2,t)?

Tree 1

MI in [t-1,t)?

Tree 2

LDL(high) in [t-0.25,t)?

T

Bypass surgery in [ t-1, t)?

F

BP(normal) in [t-5,t)?

F

9

T

3

T

5

F

0.05

T

0.004

F

LDL(low) in [t-0.25,t)?

T

MI in (-Inf,t)?

F

LDL(low) in [t-2,t)?

F

3

T

0.8

T

2

F

0.07

T

0.9

F

Fig. 9. First two trees in the MFPP forest. The model shows the rate predictions for
myocardial infarction (MI) based on cholesterol (LDL), blood pressure (BP), previous
MI, and bypass surgery. Time is in years; for example, [t-1,t) means “within the last
year”, and (-Inf, t) means “ever before”.

for” events, meaning that the diagnosis is documented because care is provided.
Care for incident heart attacks occurs over the following weeks, and so-called
myocardial infarction events may recur over that time frame.

Despite the recurrence effect, the MFPP model provides an interpretable rep-
resentation of risk factors and their interactions with other events. For example,
Tree 1 shows that elevated cholesterol levels increase the rate of heart attack
recurrence while normotensive blood pressure measurements decrease it. The
findings corroborate established risk factors and their trends.
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4 Conclusion

In this work we introduce an efficient multiplicative forest learning algorithm
to the point process community. We developed this algorithm by combining
elements of two continuous-time models taking advantage of their similar likeli-
hood forms. We contrasted the differences between the two models and observed
that the multiplicative forest extension of the CTBN framework would inte-
grate cleanly into the PCIM framework. We showed that unlike CTBNs, MFPP
forests can be learned independently because of the PCIM likelihood decompo-
sition and intensity dependence on event history. We applied this model to two
data sets: a synthetic model, where we showed significant improvements over the
original PCIM model, and a cohort study, where we observed that MFPP-RFs
outperformed standard machine learning algorithms at predicting future onset
of myocardial infarctions. We provide multiplicative-forest point process code at
http://cs.wisc.edu/~jcweiss/ecml2013/.

While our work has shown improved performance in two different compar-
isons, it would also be worthwhile to consider extensions of this framework to
marked point processes. Marked point processes are ones where events contain
additional information. The learning framework could leverage the information
about the events to make better predictions. For example, this could mean the
difference between reporting that a lab test was ordered and knowing the value
of the lab test. The drawback of immediate extension to marked point processes
is that the learning algorithm needs to be paired with a generative model of
events in order to conduct accurate forecasting. Without the generative ability,
sampled events would lack the information required for continued sampling. The
integration of these methods with continuous-state representations would also
help allow modeling of clinical events such as blood pressure to be more precise.
Finally, we would like to be able to scale our methods and apply MFPPs to any
disease. Because EHR systems are constantly updated, we can acquire new up-
to-date information on both phenotype and risk factors. To fully automate the
process in the present framework, we need to develop a way to address the scope
of the EHR, selecting and aggregating the pertinent features for each disease of
interest and identifying the meaningful time frames of interest.
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Abstract. ‘Gait’ is a person’s manner of walking. Patients may have an
abnormal gait due to a range of physical impairment or brain damage.
Clinical gait analysis (CGA) is a technique for identifying the underly-
ing impairments that affect a patient’s gait pattern. The CGA is critical
for treatment planning. Essentially, CGA tries to use patients’ physical
examination results, known as static data, to interpret the dynamic char-
acteristics in an abnormal gait, known as dynamic data. This process is
carried out by gait analysis experts, mainly based on their experience
which may lead to subjective diagnoses. To facilitate the automation of
this process and form a relatively objective diagnosis, this paper pro-
poses a new probabilistic correlated static-dynamic model (CSDM) to
discover correlated relationships between the dynamic characteristics of
gait and their root cause in the static data space. We propose an EM-
based algorithm to learn the parameters of the CSDM. One of the main
advantages of the CSDM is its ability to provide intuitive knowledge.
For example, the CSDM can describe what kinds of static data will lead
to what kinds of hidden gait patterns in the form of a decision tree,
which helps us to infer dynamic characteristics based on static data. Our
initial experiments indicate that the CSDM is promising for discovering
the correlated relationship between physical examination (static) and
gait (dynamic) data.

Keywords: Probabilistic graphical model, Correlated static-dynamic
model (CSDM), Clinical gait analysis (CGA), EM algorithm, Decision
tree.

1 Introduction

The past 20 years have witnessed a burgeoning interest in clinical gait analysis
for children with cerebral palsy (CP). The aim of clinical gait analysis is to
determine a patient’s impairments to plan manageable treatment. Usually, two
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Table 1. An Excerpt Data Set from the Static Data

Subject Internal Rotation r Internal Rotation l Anteversion r · · · Knee Flexors l

1 58 63 25 · · · 3+

2 60 71 15 · · · 4

3 53 52 29 · · · 3

...
...

...
...

...
...

types of data are used in clinical gait analysis: static data, which is the physical
examination data that is measured when the patient is not walking, such as the
shape of the femur and the strength of the abductor muscles. Table 1 shows
an excerpt data set from the static data. From the table, we can see that there
are many attribute values for each subject. The other type of data is dynamic
data, which records the dynamic characteristics that evolve during a gait trial
and usually can be displayed in curves. Fig. 1 shows gait curve examples for one
subject. Gait curves are recorded from multiple dimensions (i.e., from different
parts of the body), such as the pelvis and hips. Since each subject has multiple
trials, there are multiple curves for each dimension. In addition, each dimension
has both the left and right side of the body. Thus, the total number of curves for
each dimension is the number of trials multiplied by two. We use the red line to
denote the dynamic of the left side and the blue line to denote the counterpart
of the right side. Fig. 1(a)-(d) show 4 different dimensions of the dynamics. Each
curve in each dimension represents the corresponding dynamics of one trial for
the left or right part. The grey shaded area termed as normal describes the
dynamic curve obtained from healthy people with a range of +/- 1 standard
deviations for each observation point. From the example data shown above, we
can see that describing the relationship between the static and dynamic data in
the clinical gait data is not intuitive.

In practice, static data is used to explain abnormal features in dynamic data.
In other words, gait analysis experts try to discover the correlated relationships
between static and dynamic data for further clinical diagnosis. This process has
been conducted empirically by clinical experts and thus is qualitative. In this
paper, we make an initial exploration to discover the quantitative correlated
relationships between the static data and dynamic curves.

The rest of the paper is organize as following: The next section reviews the
work related to this paper and Section 3 follows by the problem formalization.
Then, Section 4 proposes a probabilistic graphical model to simulate the gener-
ating process of the data and gives an EM-based recipe for learning the model
given training data. Experimental results on both synthetic and real-world data
sets are reported in Section 5 and Section 6 concludes this paper.
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Fig. 1. Example Gait Curves for One Patient with 6 Trials: (a) The Pelvic Tilt Di-
mension; (b) The Hip Flexion Dimension; (c) The Knee Flexion Dimension; (d) The
Dorsiflexion Dimension

2 Related Work

Recent research in CGA [3,5,13,12] have made initial attempts at the automatic
discovery of correlated relationships in clinical gait data by machine learning
methods such as multiple linear regression [5] and fuzzy decision trees [12]. How-
ever, previous researchers usually preprocessed the gait data and discarded the
dynamic characteristics of that data, which fails to explore the correlated rela-
tionship between static data and dynamic curves. To the best of our knowledge,
our work is a first attempt to explore this correlated relationship comprehen-
sively.

Probabilistic models related to this paper exists, for example, hidden Markov
models (HMMs) [11] and conditional random fields (CRFs) [6]. Since these mod-
els focus on modeling dynamic curves, they cannot be applied directly here. By
contrast, the aim of this paper is to jointly model the static and dynamic data
considering their correlated relationships.

3 Problem Statement

The following terms are defined:

– A static profile is a collection of static physical examination features of one
subject denoted by y = (y1, y2, · · · , yL), where the subscript i (1 ≤ i ≤
L) denotes the ith attribute of the physical examination features, e.g., the
Internal Rotation r attribute in Table 1.

– A gait profile is a collection of M gait trials made by one subject denoted by
X1:M = {X1,X2, · · · ,XM}.

– A gait trial (cycle) is multivariate time series denoted by
Xm = (xm1,xm2, · · · ,xmN ), where xmj (1 ≤ m ≤M and 1 ≤ j ≤ N) is the

jth vector observation of the time series and xmj =
[
xm1j xm2j · · · xmDj

]T
(D is the number of the dimensions for dynamic data and N is the length of
the time series). For example, one dimension of the multivariate time series
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(xmj1, xmj2, · · · , xmjN ) (1 ≤ j ≤ D) can be plotted as one curve in Fig. 1(a)
and represents the dynamics of that dimension for one trial. Xm can be seen
as a collection of such curves in different dimensions.

Our goal was to develop a probabilistic model p(X1:M ,y) that considers the
correlated relationships between the static profile (i.e., static data) and the cor-
responding gait profile (i.e., dynamic data). In other words, we aim to produce
a probabilistic model that assigns ‘similar’ data high probability.

4 Proposed Model

4.1 Motivation

The basic idea is to construct the data generating process based on the domain
knowledge gained by gait experts and model the process. Specifically, static
profile y of a subject determines the generation of that subject’s potential gait
pattern. We denote this hidden gait pattern as a latent variable h, a vector
whose elements hg (1 ≤ g ≤ G)1 are 0 or 1 and sum to 1, where G is the number
of hidden gait patterns. The generation of the corresponding gait profile X1:M

is then determined by this latent variable h. In other words, the gait pattern is
characterized by a distribution on the gait data. Due to the high dimensionality
of p(X1:M |h), the generating process of it is not intuitive. Thus, we need to
consider the corresponding physical process. According to [8], a gait trial can
usually be divided into a number of phases and each vector observation xmj

belongs to a certain state indicating its phase stage. These states are usually
not labeled and we thus introduce latent variables zmj (1 ≤ m ≤ M , 1 ≤
j ≤ Nm) for each vector observation xmj in each gait trial Xm. We thus have
two advantages: firstly, p(X1:M |h) can be decomposed into a set of conditional
probability distributions (CPDs) whose forms are intuitive to obtain; secondly,
the dynamic process of the gait trials are captured by utilizing the domain
knowledge.

4.2 The Correlated Static-Dynamic Model

We propose a novel correlated static-dynamic model (CSDM), which models the
above conjectured data generating process. As mentioned before, existing models
(e.g., HMMs and CRFs), cannot be directly used here. This is because HMMs
only model the dynamic data p(Xm) and CRFs only model the relationship
between Xm and zm, i.e., p(zm|Xm) (1 ≤ m ≤ M), which is different to our
goal of jointly modeling the static and gait profiles p(X1:M ,y). The graphical
model for the CSDM is shown in Fig. 2 (subscript m is omitted for convenience).
We use conventional notation to represent the graphical model [2]. In Fig. 2,
each node represents a random variable (or group of random variables). For
instance, a static profile is represented as a node y. The directed links express

1 hg = 1 denotes the gth hidden gait pattern.
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y h

z1 z2 · · · zN

x1 x2 · · · xN

M

Fig. 2. The Graphical Model of the CSDM

probabilistic causal relationships between these variables. For example, the arrow
from the static profile y to the hidden gait pattern variable h indicates their
causal relationships. For multiple variables that are of the same kind, we draw
a single representative node and then surround this with a plate, labeled with
a number indicating that there are many such kinds of nodes. An example can
be found in Fig. 2 in which M trials Z1:M ,X1:M are indicated by a plate label
with M . Finally, we denote observed variables by shading the corresponding
nodes and the observed static profile y is shown as shaded node in Fig. 2. To
further illustrate the domain knowledge-driven data generating process in Fig. 2,
the generative process for a static profile y to generate a gait profile X1:M is
described as follows:

1. Generate the static profile y by p(y)

2. Generate the latent gait pattern h by p(h|y)
3. For each of the M trials

(a) Generate the initial phase state zm1 from p(zm1|h)
(b) Generate the corresponding gait observation xm1 by p(xm1|zm1,h)

(c) For each of the gait observations xmn (2 ≤ n ≤ N)

i. Generate the phase state zmn from p(zmn|zm,n−1,h)
ii. Generate the the corresponding gait observation xmn from

p(xmn|zmn,h)

4.3 The Parameters of the CSDM

The parameters (i.e., the variables after the semicolon of each CPD) governing
the CPDs of the CSDM are listed in the following2:

2 We assume p(y) = const and the const is normalized and determined empirically
from the data for convenience. Thus, we do not put it as a parameter.
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p(h|y;d) =
G∏

g=1

dg(y)
hg (1)

where dg (1 ≤ g ≤ G) is a set of mapping functions (y → dg(y) ≡ p(hg =
1|y)) and hg is the gth element of h. Since the input y of the functions is a
mixture of discrete and continuous values, it is not intuitive to assume the
format of the functions. Thus, here we use the form of a probability esti-
mation tree (PET) [9] to represent the CPD p(h|y;d). To be more specific,
the parameters governing the CPD is similar to the form “if y in some value
ranges, then the probability of hg = 1 is dg(y)”.

p(zm1|h;π) =
G∏

g=1

K∏
k=1

π
hg , zm1k

gk (2)

where π is a matrix of probabilities with elements πgk ≡ p(zm1k = 1|hg = 1).

p(zmn|zm,n−1, h;A) =
G∏

g=1

K∏
k=1

K∏
j=1

a
hg , zm,n−1,j , zmnk

gjk (3)

where A is a matrix of probabilities with elements
agjk ≡ p(zmnk = 1|zm,n−1,j = 1, hg = 1).

p(xml|zml, h;Φ) =

G∏
g=1

K∏
k=1

p(xml|φgk)
hg ,zmlk (4)

where Φ is a matrix with elements φgk. For efficiency, in this paper, we
assume that p(xml;φgk) = N (xml;μgk,σgk), which is Gaussian distribution,
and thus φgk = (μgk,σgk).

Thus, the CSDM can be represented by the parameters θ = {d,π,A,μ,σ}.

4.4 Learning the CSDM

In this section we present the algorithm for learning the parameters of the CSDM,
given a collection of gait profiles Xs,1:M and corresponding static profiles ys

(1 ≤ s ≤ S) for different subjects. We assume each pair of gait and static
profiles are independent of every others since they are from different subjects
and share the same set of model parameters. Our goal is to find parameters θ
that maximize the log likelihood of the observed data X1:S,1:M ,y1:S

3.

L(θ) =

S∑
s=1

log p(Xs,1:M |ys; θ) (5)

3 We add the subscript s for representing the sth profile in the rest of the paper.
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Algorithm 1. The Learning Algorithm for the Proposed CSDM.

Input : An initial setting for the parameters θold

Output: Learned parameters θnew

1 while the convergence criterion is not satisfied do
2 Estep();
3 θnew = Mstep();

4 end

Directly optimizing the above function with respect to θ is very difficult be-
cause of the involvement of latent variables [2]. We adopted an expectation-
maximization (EM)-based algorithm [4] to learn the parameters, yielding the
iterative method presented in Algorithm 1. First, the parameters θold need to
be initialized. Then in the E step, p(zs,1:M ,hs|Xs,1:M ,ys, θ

old) (1 ≤ s ≤ S) is

inferred given the parameters θold and will be used in M step. The M step then
obtains the new parameters θnew that maximize the Q(θ, θold) function with
respect to θ as follows:

Q(θ, θold) =
∑
s,h,z

p(zs,1:M ,hs|Xs,1:M ,ys; θ
old) log p(hs, zs,1:M ,Xs,1:M ,ys; θ)

(6)
The E and M steps iterate until the convergence criterion is satisfied. In this
manner, L(θ) is guaranteed to increase after each interaction.

Challenges of the Learning Algorithms. The challenges of the above algo-
rithm is in the calculation of the E step and the M step. A standard forward-
backward inference algorithm [11] cannot be directly used here for the E step
because of the introduction of latent variables hs (1 ≤ s ≤ S). We provided a
modified forward-backward inference algorithm in Algorithm 2 considering the
involvement of hs (1 ≤ s ≤ S). In calculating the M step, it was difficult to
find an analytic solution for d(·). We utilized a heuristic algorithm to solve it in
Procedure estimatePET. The details of the implementation for E and M steps
are discussed in the following.

The E Step. Here we provide the detailed process of inferring the posterior dis-
tribution of the latent variables h1:S , z1:S,1:M given the parameters of the model

θold. Actually, we only infer some marginal posteriors instead of the joint poste-
rior p(zs,1:M ,hs|Xs,1:M ,ys, θ

old). This is because only these marginal posteriors
will be used in the following M-step. We define the following notations for these
marginal posteriors γ and ξ and auxiliary variables α and β (1 ≤ s ≤ S, 1 ≤
m ≤M, 1 ≤ n ≤ N, 2 ≤ n

′ ≤ N, 1 ≤ j ≤ K, 1 ≤ k ≤ K, 1 ≤ g ≤ G):

αsgmnk = p(xsm1, · · · ,xsmn, zsmnk|hsg; θold) (7)

βsgmnk = p(xs,m,n+1, · · · ,xsmN |zsmnk, hsg; θ
old) (8)
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Procedure. forward
input : A set of the parameters θ
output: The variables α

// Initialization;

αsgm1k = πgkN (xsm1;μgk,σgk) for all s, g, m and k;

1 for s=1 to S do // Induction

2 for g=1 to G do
3 for m=1 to M do
4 for n=1 to N-1 do
5 for k=1 to K do

6 αs,g,m,n+1,k =
∑K

j=1 αsgmnjagjkN (xs,m,n+1;μgk,σgk);

7 end

8 end

9 end

10 end

11 end

Procedure. backward
input : A set of the parameters θ
output: The variables β

// Initialization;

βsgmNk = 1 for all s, g, m and k;
1 for s=1 to S do // Induction

2 for g=1 to G do
3 for m=1 to M do
4 for n=N-1 to 1 do
5 for j=1 to K do

6 βsgmnk =
∑K

j=1 agjkN (xs,m,n+1;μgk,σgk)βs,g,m,n+1,j ;

7 end

8 end

9 end

10 end

11 end

γsgmnk = p(zsmnk, hsg|Xsm,ys; θ
old) (9)

ξs,g,m,n′−1,j,n′ ,k = p(zs,m,n′−1,j , zsmn′k|hsg,Xsm,ys; θ
old) (10)

The inference algorithm is presented in Algorithm 2. Specifically, line 1 calls
Procedure forward to calculate the forward variables α, while line 2 calls Pro-
cedure backward to calculate the backward variables β. Then line3-15 calculate
the value of each element of the posteriors γ and ξ and the h∗s (1 ≤ s) on the
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Algorithm 2. Estep()

input : An initial setting for the parameters θold

output: Inferred posterior distributions γ, ξ and h∗
s (1 ≤ s ≤ S)

/* Calculation of α, β */

1 Call Procedure forward using θold as input;

2 Call Procedure backward using θold as input;
/* Calculation of γ, ξ and h∗

s (1 ≤ s ≤ S) */

3 for s=1 to S do
4 for g=1 to G do
5 for m=1 to M do

6 p(Xsm|hsg ;θ
old) =

∑K
k=1 αsgmNk ;

7 for n=1 to N do

8 γsgmnk =
αsgmnkβsgmnk

p(Xsm|hsg ;θold)
;

9 ξs,g,m,n−1,j,n,k =
αs,g,m,n−1,kN (x

smn
′ ;μgk,σgk)agjkβsgmnk

p(Xsm|hsg ;θold)
(n > 2);

10 end

11 end

12 end

13 p(hsg|ys;θ
old) =

∏M
m=1 p(Xsm|hsg ;θ

old)

p(hsg|Xs,1:M ,ys;θ
old) =

p(hsg |ys;θ
old)p(hsg |ys;θ

old)∑G
g=1 p(hsg |ys;θold)p(hsg |ys;θold)

;

14 h∗
s = argmax

g
p(hsg|Xs,1:M ,ys;θ

old);

15 end

basis of the α, β and θold. These posteriors will be used in the M-step for
updating the parameters.

The M Step. Here we provide the detailed process for M step. Basically, it
updates the parameters by maximizing the Q(θ, θold) with respect to them. If
substituting the distributions with inferred marginal posteriors in the Q function,
we can obtain

Q(θ, θold) =
∑

s,h,zs,1:M

p(zs,1:M ,h|Xs,1:M ,ys; θ
old)

G∑
g=1

hsg log dg(y)

+
∑

s,g,m,k

γsgm1k log πgk

+
∑

s,g,m,j,k

N∑
n=2

ξs,g,m,n−1,j,n,k log agjk

+
∑

s,g,m,n,k

γsgmnk logN (xsmn;μgk,σgk) (11)
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Procedure. estimatePET
input : The data tuple (ys, h

∗
s) (1 ≤ s ≤ S)

output: The learned PET d

1 while stopping rule is not satisfactory do
2 Examine all possible binary splits on every attribute of ys (1 ≤ s ≤ S);
3 Select a split with best optimization criterion;
4 Impose the split on the PET d;
5 Repeat recursively for the two child nodes;

6 end
7 for node in the PET d(·) do
8 Do Laplace correction on each node;
9 end

Then the update formula for parameters d,π,A,μ,σ can be obtained by
maximizing the Q with respect to them, respectively:

– Updating of d: Maximizing Q with respect to d is equivalent to maximizing
the first item of Equation 11. However, y is a mixture of discrete and con-
tinuous values and it is impractical to find an analytic solution to d. Here
we consider a heuristic solution through the formation of probability esti-
mation trees (PETs), which is a decision tree [7] with a Laplace estimation
[10] of the probability on class memberships [9]. The heuristic algorithm for
estimating the PET is described in Procedure estimatePET.

– Updating of π, A, μ and σ: Maximization Q with respect to π,A,μ,σ
is easily achieved using appropriate Lagrange multipliers, respectively. The
results are as follows:

πgk =

∑
s,m,g

γsgm1k∑
s,m,k,g

γsgm1k
(12)

agjk =

∑
s,m,n,g

ξs,g,m,n−1,j,n,k∑
s,m,l,n,g ξs,g,m,n−1,j,n,k

(13)

μgk =

∑
s,m,g,n

γsgmnkxsmn∑
s,m,n,g

γsgmnk
(14)

σgk =

∑
s,m,g,n

γsgmnk(xsmn − μgk)(xsmn − μgk)
T

∑
s,m,n,g

γsgmnk
(15)

Algorithm 3 summarizes the whole process of the M step.
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Algorithm 3. Mstep()

input : Inferred posterior distributions γ, ξ and h∗
s (1 ≤ s ≤ S)

output: The updated parameters θnew

1 Call Procedure estimatePET to update d(·);
2 Update π,A,μgk,σgk according to Equation 12-15;

5 Empirical Study

The aim of this study is to test:

– The feasibility of the learning algorithm for the CSDM. Since we have pro-
posed an iterative (i.e., EM-based) learning method, it is pivotal to show its
convergence on the gait data set.

– The predictability of the CSDM. The aim of the CSDM is to discover the
correlated relationship between the static and dynamic data. Thus, it is
interesting to validate its predictive power on other data falling outside the
scope of the training data set.

– The usability of the CSDM. Because the CSDM is designed to be used by
gait experts, we need to demonstrate intuitive knowledge extracted by the
CSDM.

5.1 Experimental Settings

we sampled the synthetic data from the true parameters listed in Table 2. We
varied the s0 for different sample sizes (e.g., s0 = 100, 500, 1500) to represent
relatively small, medium and large data sets. The real-world data set we used
was provided by the gait lab at the Royal Children’s Hospital, Melbourne4. We
have collected a subset of static and dynamic data for 99 patients. The static
data subset consisted of 8 attributes summarized in Table 3. There were at most
6 gait trials for each subject and each gait trial had 101 vector observations.
In principle, curves for both left and right sides may be included. However, for
simplicity and consistency, we only used the right side curves of the hip rotation
dimension for analysis in this pilot study.

5.2 Experimental Results

Convergence of the Learning Process. For each iteration, we calculate the
averaged log-likelihood as 1

S

∑S
s=1

∑M
m=1 log p(Xsm,ys; θ

old), where θold is the
parameters updated from last iteration. Fig. 3(a) shows the CSDM against the
iteration numbers for different sample sizes of the synthetic data and Fig. 3(b)
shows the results of the averaged log-likelihoods for CSDMs using different num-
bers (represented as G) of hidden gait patterns. As expected, the averaged log-
likelihood is not monotonic all the time, since part of the learning process uses

4 http://www.rch.org.au/gait/
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Table 2. The Parameters for the Synthetic Data

d

if −50 ≤ y < −25, p(h1 = 1|y) = 1,
if −25 ≤ y < 0, p(h2 = 1|y) = 1,
if 0 ≤ y < 25, p(h1 = 1|y) = 1,
if 25 ≤ y < 50, p(h2 = 1|y) = 1.

π π1,1:2 =
[
0.5 0.5

]
π2,1:2 =

[
0.5 0.5

]
A a1,1:2,1:2 =

[
0.6 0.4
0.4 0.6

]
a2,1:2,1:2 =

[
0.4 0.6
0.6 0.4

]

μ μ1,1:2,1 =

[
0
3

]
μ2,1:2,1 =

[
1
4

]
σ σ1,1:2,1 =

[
1 1

]
σ2,1:2,1 =

[
1 1

]

Table 3. Description of the Static Data

Name of Attributes Data Type Value Range

internalrotation r (ir r) continuous 23 to 90

internalrotation l (ir l) continuous 20 to 94

externalrotation r (er r) continuous -5 to 57

externalrotation l (er l) continuous -26 to 51

anteversion r (a r) continuous 10 to 50

anteversion l (a l) continuous 4 to 45

hipabductors r (h r) discrete -1 to 5

hipabductors l (h l) discrete -1 to 5

a heuristic algorithm. However, the best averaged log-likelihoods are usually
achieved after at most 5 iterations, which proves the convergence of the pro-
posed learning algorithm. It can be seen from Fig. 3(a), a larger sample size will
lead to a higher log-likelihood for the learning algorithm. For the real-world data
set, G = 45 shows the fastest convergence rate of the three settings for CSDMs.

Predictive Performance. We measured the CSDM predictive accuracy in
terms of how well the future gait profile can be predicted given the static profile
and learned parameters. Since the final prediction is a set of complex variables,

we measure the predictive log-likelihood
∑S

′

s′=1 log p(Xs′ ,1:M |ys′ ; θ) in the test-

ing data with S
′
static and gait profiles, where θ is learned from the training

data. Then, the following can be obtained by using Bayes rule:

log p(Xs′ ,1:M |ys′ ; θ) = log(
∑
g

p(hs′g|ys′ ; θ)p(Xs′ ,1:M |hs′g; θ)) (16)

where p(hs′g|ys′ ; θ) and p(Xs′ ,1:M |hs′g; θ) can be calculated by using the line
13 and 14 of Algorithm 2 (i.e., E step).

5 The number of G is suggested by gait experts not exceeding 4.
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(b) The Real-world Data Set

Fig. 3. Log-likelihood for the CSDM against the iteration numbers for different num-
bers of hidden gait pattern G

z1 z2 · · · zN

x1 x2 · · · xN

S M

Fig. 4. The Graphical Model for the Baseline Algorithm

Without loss of generality, we proposed a baseline algorithm which ignored the
static data for modeling and prediction to compare with our proposed method.
The baseline model is a standard HMM with multiple observation sequences,
whose graphical model is depicted in Fig. 4. It assumes all the gait trials are
independently generated from an HMM. Using the standard algorithm provided
in [1,11], we can learn the parameters of the baseline model, denoted as θ0 from
the training data. Accordingly, the predictive averaged log-likelihood for new

gait trials can be calculated as
∑S

′

s′=1 log p(Xs′ ,1:M ; θ0).
We compare the CSDM with the alternating baseline scheme, an HMM with

multiple sequences. We report on averages over 10 times 5-fold cross validations
for the synthetic and real-world data, respectively. As shown in Table 4(a), all the
CSDMs outperformed the baseline algorithm significantly. This may be because
the proposed CSDM captures the correlated relationships existing in the data
rather than ignoring them. Similarly, it can be observed from Table 4(b) that
all the CSDMs achieved higher log-likelihoods than their counterparts of the
baseline model. This proves the predictive power of our proposed CSDM on
real-world data.
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Table 4. The Comparison of the Log-likelihoods

(a) The Synthetic Data

s0 = 100 s0 = 500 s0 = 1500

CSDM -8016 -40090 -120310

Baseline -8025 -40132 -120420

(b) The Real-world Data

G = 2 G = 3 G = 4

CSDM -1310 -1388 -1299

Baseline -1426 -1502 -1426

Extracting Knowledge from the CSDM. In this section, we provide an
illustrative example of extracting intuitive knowledge from a CSDM on the gait
data. Our real-world data are described in Section 5.1. We used the EM algorithm
described in Section 4.4 to find the model parameters for a 4-hidden-gait-pattern
CSDM as suggested by gait experts. Given the learned CSDM, we can extract
the intuitive knowledge from the data set to answer the following questions:

– What kinds of static data will lead to what kinds of hidden gait patterns?
– What does the gait look like for each hidden gait pattern?

The first question is actually asking what is p(h|y; θ) (and subscript s is
omitted since all s share the same parameters). Fig. 5(a) shows an answer to the
first question in the form of a decision tree representation. This tree6 decides
hidden gait patterns based on the 8 features of the static data (e.g., ir r, er r and
a r) used in the data set. To decide the hidden gait patterns based on the static
data, start at the top node, represented by a triangle (1). The first decision is
whether ir r is smaller than 57. If so, follow the left branch, and see that the
tree classifies the data as gait pattern 2. If, however, anteversion exceeds 57,
then follow the right branch to the lower-right triangle node. Here the tree asks
whether er r is is smaller than 21.5. If so, then follow the right branch to see
the question of next node until the tree classifies the data as ones of the gait
patterns. For other nodes, the gait patterns can be decided in similar manners.

The second question is actually asking argmax
g

p(hsg|Xs,1:M ,ys; θ) (1 ≤ s ≤
S). In other words, we need to infer which gait trials belong to the corresponding
hidden gait patterns in the corpus. We use line 14 described in Algorithm 2
to obtain the hidden gait pattern names of the gait trials. We can then plot
representative gaits for each hidden gait pattern to answer the second question
above, as shown in Figures 5(b)-5(e). Fig. 5(e) shows a collection of gaits for
the hidden gait pattern 4. We can see that most of them fall into the normal
area, which may indicate that these gaits are good. Fig. 5(c) shows a collection
of gaits for the hidden gait pattern 2 and most of them are a little below the
normal area, indicating that these gaits are not as good. By contrast, most of the
gaits in Fig. 5(b) representing hidden gait pattern 1 fall outside the normal area
and are abnormal gaits. Fig. 5(d) shows that the representative gaits for hidden
gait pattern 3 are slightly above the normal area, which indicates these gaits are

6 For simplicity, we do not display the fully tree and only display the gait pattern with
the highest probability.
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Fig. 5. Extracted Knowledge from the CSDM: (a) The Decision Tree to Predict Gait
Patterns Given the Static Data, (b)-(e) Representative Gaits for Gait Pattern 1-4.

only slightly abnormal. Most subjects displaying pattern 1 and some subjects
displaying pattern 3 would be susceptible to have surgery. By extracting the
different paths that lead to those two patterns from the decision tree in Fig. 5(a),
we can infer what combinations of static data may have clinical implications.

6 Conclusions and Future Work

This paper presents a new probabilistic graphical model (i.e., CSDM) for quanti-
tatively discovering the correlated relationship between static physical examina-
tion data and dynamic gait data in clinical gait analysis. To learn the parameters
of the CSDM on a training data set, we proposed an EM-based algorithm. One
of the main advantages of the CSDM is its ability to provide intuitive knowledge.
For example, the CSDM informs us what kinds of static data will lead to what
kinds of hidden gait patterns and what the gaits look like for each hidden gait
pattern. The experiments on both synthetic and real-world data (excerpted from
patient records at the Royal Children’s Hospital, Melbourne) showed promising
results in terms of learning convergence, predictive performance and knowledge
discovery. One direction for future work is to improve the CSDM with semi-
supervised learning. Currently the CSDM is learned totally unsupervised, which
may generate unexpected results due to its highly stochastic nature. Further col-
laboration with gait analysis experts may alleviate this problem through manual
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labeling of some examples. We also plan to collect more real-world data and in-
clude all static and dynamic outputs from clinical gait analysis.

Acknowledgments. We thank the four anonymous reviewers for their valuable
comments on our manuscript!
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Abstract. Drug repositioning helps identify new indications for marketed drugs 
and clinical candidates. In this study, we proposed an integrative computational 
framework to predict novel drug indications for both approved drugs and 
clinical molecules by integrating chemical, biological and phenotypic data 
sources. We defined different similarity measures for each of these data sources 
and utilized a weighted k-nearest neighbor algorithm to transfer similarities of 
nearest neighbors to prediction scores for a given compound. A large margin 
method was used to combine individual metrics from multiple sources into a 
global metric. A large-scale study was conducted to repurpose 1007 drugs 
against 719 diseases. Experimental results showed that the proposed algorithm 
outperformed similar previously developed computational drug repositioning 
approaches. Moreover, the new algorithm also ranked drug information sources 
based on their contributions to the prediction, thus paving the way for 
prioritizing multiple data sources and building more reliable drug repositioning 
models. 

Keywords: Drug Repositioning, Drug Indication Prediction, Multiple Data 
Sources, Metric Integration, Large Margin Method. 

1 Introduction 

In response to the high cost and risk in traditional de novo drug discovery, discovering 
potential uses for existing drugs, also known as drug repositioning, has attracted 
increasing interests from both the pharmaceutical industry and the research 
community [1]. Drug repositioning can reduce drug discovery and development time 
from 10-17 years to potentially 3-12 years [2]. 

Candidates for repositioning are usually either market drugs or drugs that have 
been discontinued in clinical trials for reasons other than safety concerns. Because the 
safety profiles of these drugs are known, clinical trials for alternative indications are 
cheaper, potentially faster and carry less risk than de novo drug development. Then, 
any newly identified indications can be quickly evaluated from phase II clinical trials. 
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Among the 51 new medicines and vaccines that were brought to market in 2009, new 
indications, new formulations, and new combinations of previously marketed 
products accounted for more than 30% [3]. Drug repositioning has drawn widespread 
attention from the pharmaceutical industry, government agencies, and academic 
institutes. However, current successes in drug repositioning have primarily been the 
result of serendipity or clinical observation. Systematic approaches are urgently 
needed to explore repositioning opportunities. 

A reasonable systematic method for drug repositioning is the application of 
phenotypic screens by testing compounds with biomedical and cellular assays. 
However, this method also requires the additional wet bench work of developing 
appropriate screening assays for each disease being investigated, and it thus remains 
challenging in terms of cost and efficiency. Data mining and machine learning offer 
an unprecedented opportunity to develop computational methods to predict all 
possible drug repositioning using available data sources. Most of these methods have 
used chemical structure, protein targets, or phenotypic information (e.g., side-effect 
profiles, gene expression profiles) to build predictive models and some have shown 
promising results [4-11]. 

In this study, we proposed a new drug repositioning framework: Similarity-based 
LArge-margin learning of Multiple Sources (SLAMS), which ranks and integrates 
multiple drug information sources to facilitate the prediction task. In the experiment, 
we investigated three types of drug information: (1) chemical properties - compound 
fingerprints; (2) biological properties - protein targets; (3) phenotypic properties - 
side-effect profiles. The proposed framework is also extensible, and thus the SLAMS 
algorithm can incorporate additional types of drug information sources. 

The rest of the paper is organized as follows. Section 2 presents the related work. 
Section 3 describes our SLAMS algorithm. Section 4 presents the conducted 
experiment and the achieved results. Finally, section 5 concludes the paper. 

2 Related Work 

Recent research has shown that computational approaches have the potential to offer 
systematic insights into the complex relationships among drugs, targets, and diseases 
for successful repositioning. Currently, there are five typical computational methods 
in drug repositioning: (1) predicting new drug indications on the basis of the chemical 
structure of the drug [4]; (2) inferring drug indications from protein targets interaction 
networks [5, 6]; (3) identifying relationships between drugs based on the similarity of 
their side-effects [7, 8]; (4) analyzing gene expression following drug treatment to 
infer new indications [9, 10]; (5) building a background chemical-protein interactome 
(CPI) using molecular docking [11]. All of these methods only focus on different 
aspects of drug-like activities and therefore result in biases in their predictions. Also, 
these methods suffer according to the noise in the given drug information source.  

Li and Lu [12] developed a method for mining potential new drug indications by 
exploring both chemical and bipartite-graph-boosted molecular features in similar 
drugs. Gottlieb et al. [13] developed a method called PREDICT where the drug 
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pairwise similarity was measured by similarities of chemical structures, side effects, 
and drug targets. These computed similarities were then used as features of a logistic 
regression classifier for predicting the novel associations between drugs and diseases. 

This paper differs from the related studies in the following aspects:  

1. We consider multiple chemical properties, biological properties, and 
phenotypic properties at the same time, unlike references [4-11]. Our 
SLAMS algorithm can also incorporate additional types of drug properties.  

2. Li and Lu [12], tried all representative weights for multiple data sources in a 
brute-force way, but SLAMS assigns weights to all data sources without 
manual tuning. 

3. We use a large margin method (i.e., minimize hinge-rank-loss) to integrate 
multiple sources, which is usually more optimal than a logistic regression 
method (i.e., minimize log-loss) [13] from the machine learning theory 
perspective. Also, the weight vector derived from a large margin method is 
more interpretable. 

4. We use canonical correlation analysis (CCA) [14] to impute missing values 
of side-effect profiles. Then, we augmented known side-effect profiles with 
predicted side-effect profiles to build a new side-effect source. 

5. We use multiple measures (e.g., precision, recall, F-score) to evaluate the 
results of drug repositioning experiments. Many previous methods used only 
area under the ROC curve (AUC) to evaluate their performance, but a high 
AUC score does not mean much in a highly imbalanced classification task 
[15] and unfortunately drug repositioning is such a task. 

3 Method 

In this section, we present the SLAMS algorithm for drug repositioning by integrating 
multiple data sources. First, we present the algorithmic framework. Second, we 
present a similarity-based scoring component for each data source. We also introduce 
the CCA to imputing missing side-effect profiles. Third, we present a large margin 
method to integrate multiple scoring components.  

3.1 Algorithm Overview 

The SLAMS algorithm is based on the observation that similar drugs are indicated for 
similar diseases. In this study, we identify a target drug dx's potential new indications 
through similar drugs (e.g., dy) as follows: If two drugs dx and dy are found to be 
similar, and dy is used for treating disease s, then dx is a repositioning candidate for 
disease s treatment. There are multiple metrics to measure the similarity between two 
drugs from different aspects of drug-like activities. The objective of SLAMS is to 
integrate individual metrics from multiple sources into a global metric. 

The SLAMS process framework is illustrated in Fig. 1, where m data sources are 
involved in the integration process. Each candidate drug dx queries i-th (i=1,…,m) 
data source and gets the prediction score for indicated disease s as f i(dx,s). Then m 
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prediction scores from multiple data sources are combined into a single, final score 
fE(dx,s). The details of scoring a single data source via k-nearest neighbor classifier 
and integrating multiple prediction scores via large margin method will be presented 
next. 

 

Fig. 1. Illustration of SLAMS Framework 

3.2 Similarity Measures  

A drug's chemical structure, protein targets, and side-effect profiles are important 
features in drug design, and evidently associated with its therapeutic use. Also these 
features are orthogonal to each other and so we consider them in the study. 

Computing Similarity of Drug Chemical Structures. Our method for calculating 
the pairwise similarity simchem(dx,dy) is based on the 2D chemical fingerprint 
descriptor of each drug’s chemical structure in PubChem [16]. We used chemistry 
development kit 1 (CDK) [17] to encode each chemical component into an 881-
dimensional chemical substructure vector defined in PubChem. That is, each drug d is 
represented by a binary fingerprint h(d) in which each bit indicates the presence of a 
predefined chemical structure fragment. The pairwise chemical similarity between 
two drugs dx and dy is computed as the Tanimoto coefficient of their fingerprints: 

( ) ( )
( , )

| ( ) | | ( ) | ( ) ( )
x y

chem x y
x y x y

h d h d
sim d d

h d h d h d h d

•
=

+ − •
 

where |h(dx)| and |h(dy)| are the counts of structure fragments in drugs dx and dy 
respectively. The dot product h(dx)h(dy) represents the number of structure fragments 
shared by two drugs. The simchem score is in the [0, 1] range. 

                                                           
1  Available at http://sourceforge.net/projects/cdk/. 
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Computing Similarity of Drug Protein Targets. A drug target is the protein in the 
human body whose activity is modified by a drug resulting in a desirable therapeutic 
effect. Our method for calculating the pairwise similarity simtarget(dx,dy) is based on 
the average of sequence similarities of the two target protein sets: 

| ( )|| ( )|

target
1 1

1
( , ) ( ( ), ( ))

| ( ) || ( ) |

yx
P dP d

x y i x j y
i jx y

sim d d g P d P d
P d P d = =

=    

where given a drug d, we present its target protein set as P(d); then | P(d)| is the size 
of the target protein set of drug d. The sequence similarity function of two proteins g 
is calculated as a Smith-Waterman sequence alignment score [18]. The simtarget score 
is in the [0, 1] range. 

Computing Similarity of Drug Side-Effect Profiles. Clinical side effects provide a 
human phenotypic profile for the drug, and this profile can suggest additional drug 
indications. In this subsection, we define the side-effect similarity first. Then, we 
introduce a method to predict drug side-effect profiles from chemical structure. There 
are two reasons for this: (1) the current side-effect dataset doesn’t cover all drugs. By 
imputing missing side-effect profiles and using the predicted side-effect profiles with 
other known data sources, we have more data to train a predictive drug repositioning 
model; (2) in a real drug discovery pipeline, side-effect information is collected from 
phase I all the way through phase IV. The candidate drugs for repositioning may not 
have completed side-effect profiles in the early phases. It is easier to apply the 
predictive model to the candidate drug with predicted side-effect profiles with other 
known information. 

Definition of Side-effect Similarity. Side-effect keywords were obtained from the 
SIDER database, which contains information about marketed medicines and their 
recorded adverse drug reactions [19]. Each drug d was represented by 1385-
dimensional binary side-effect profile e(d) whose elements encode for the presence or 
absence of each of the side-effect key words by 1 or 0 respectively. The pairwise side-
effect similarity between two drugs dx and dy is computed as the Tanimoto coefficient 
of their fingerprints: 
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where |e(dx)| and |e(dy)| are the counts of side-effect keywords for drugs dx and dy 
respectively. The dot product e(dx)e(dy) represents the number of side effects shared 
by two drugs. The simse score is in the [0, 1] range. 

Predicting drug side-effect profiles. Suppose that we have a set of n drugs with p 
substructure features and q side-effect features. Each drug is represented by a 
chemical substructure feature vector x=(x1,…,xp)

T, and by a side-effect feature vector 
y=(y1,…,yq)

T. Consider two linear combinations for chemical substructures and side 
effects as ui=αTxi and vi=βTyi (i=1,2,…,n), where α=(α1,…, αp)

T and β=(β1,…, βq)
T are 
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weight vectors. The goal of canonical correlation analysis is to find weight vectors α 
and β which maximize the following canonical correlation coefficient [14]: 

1

2 2
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n T T
i ii

n nT T
i ii i
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α β
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= =

⋅
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Let X denote the n×p matrix as X=[x1,…,xn]
T, and Y denote the n×q matrix as 

Y=[y1,…,yn]
T. Then consider the following optimization problem:  

max{ }T TX Yα β  subject to 2 2
2 2|| || 1,|| || 1α β≤ ≤  

Solving the problem, we obtain m pairs of weight vectors α1,…, αm and β1,…, βm (m is 
the counts of canonical components). 

Given the profile of chemical substructure xnew for a drug of unknown side effects, 
we use the following prediction score for its potential side-effect profile ynew as: 

1

m
T T

new k k k new new
k

B Aβ ρ α
=

= = Λy x x  

where A=[α1,…, αm], B=[β1,…, βm] and Λ is the diagonal matrix whose elements are 
canonical correlation coefficients. If the j-th element in ynew has a high score, the new 
drug is predicted to have the j-th side-effect (j=1,2,…,q). 

CCA was showed to be accurate and computationally efficient in prediction of the 
drug side-effect profiles [20]. Using CCA we augmented the drug-side-effect 
relationship list with side-effect predictions for drugs that are not included in SIDER, 
based on their chemical properties. We can use the similarity metric defined in the last 
subsection to calculate the side-effect similarity. 

Computing Prediction Score from a Single Data Source. To calculate the likelihood 
that drug dx has the indication s, we use a weighted variant of the k-nearest neighbor (k-
NN) algorithm. The optimization of the model parameter k was done in a cross 
validation setting (k=20 in the study). For the i-th data source, the prediction score f of 
an indication s for the drug dx is calculated as: 

( )

( , ) ( , ) ( ( ))
y k x

i i
x x y y

d N d

f d s sim d d C s indications d
∈

= ⋅ ∈  

where simi(dx,dy) denotes the similarity score between two drugs dx and dy from the i-
th source, C is a characteristic function that return 1 if dy has an indication s and 0 
otherwise, and Nk(dx) are the k nearest neighbors of drug dx according to the metric 
simi which is determined by the type of i-th data source. The metric simi can be one of 
the similarities defined in the previous subsections (i.e., chemical structure, protein 
targets, and side effects), or any additional types of drug information sources. Thus, 
our SLAMS algorithm is extensible. We propose a k-NN scoring component for drug 
repositioning tasks due to its simplicity of implementation on multiple data sources, 
straightforward use of multiple scores, and its competitive accuracy with more 
complex algorithms [21]. 
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3.3 Combining Multiple Measures 

We considered multiple data sources and obtained several prediction scores for each 
pair (d,s). Given m scores for a drug-disease pair (d,s) (i.e., there are m different data 
sources), we propose a large margin method to calculate final score f E as a weighted 
average of individual scores: 

1

( , ) ( , )
m

E i
x i x

i

f d s w f d s
=

=  

where wi is the corresponding weight for the i-th (i=1,…,m) data source. 
We learn the weights from training data using a large margin method as follows. 

Let us assume that we are given m data sources, {Dj, j = 1,…,m}, and n drugs {xi, i = 
1,...,n}. Each drug is assigned to several indications from the set of k indications. Let 

Yi denote the set of indications that drug xi is assigned to, and iY  denote the set of 

indications that drug xi is not assigned to. Then, let f(x,y) be a vector of length m, 
whose j-th element is the score of drug x for indication y on the data source Dj. A 
weight vector w, used for integration of m prediction, is found by solving the 
following optimization problem: 
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where e is a vector of ones. The resulting convex optimization problem can be solved 
using standard optimization tools, such as CVX2. With the trained weight vector w, 
the drug-indication scores from different data sources can be integrated by taking 
their weighted average as wT·f i(x,y). 

4 Experimental Results 

In this section we experimentally evaluate the proposed SLAMS algorithm on a drug 
repositioning task.  

4.1 Data Description 

In the experiment, we analyzed the approved drugs from DrugBank [22], which is a 
widely used public database of drug information. From DrugBank, we collected 1007 
approved small-molecule drugs with their corresponding target protein information. 
Furthermore, we mapped these drugs to several other key drug resources including 

                                                           
2  Available at http://cvxr.com/. 
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PubChem [16] and UMLS [23] in order to extract other drug related information. In 
the end, we extracted chemical structures of the 1007 drugs from PubChem. Each 
drug was represented by an 881-dimensional binary profile whose elements encode 
for the presence or absence of each PubChem substructure by 1 or 0, respectively. 
There are 122,022 associations between 1007 drugs and 881 PubChem substructures. 

To facilitate collecting target protein information, we mapped target proteins to 
UniProt Knowledgebase [24], a central knowledgebase including most comprehensive 
and complete information on proteins. In the end, we extracted 3152 relationships 
between 1007 drugs and 775 proteins. 

Side-effect keywords were obtained from the SIDER database [19]. SIDER 
presents an aggregate of dispersed public information on drug side effects. SIDER 
extracted information on marked medicines and their recorded side effects from 
public documents and package inserts, which resulted in a collection of 888 drugs and 
1385 side-effect keywords. Merging these 888 SIDER drugs to the 1007 DrugBank 
approved drugs, we obtained 40,974 relationships between 613 drugs and 1385 side 
effects. A total number of 394 drugs from DrugBank approved list could not be 
mapped to SIDER drug names. We used the method described in subsection 3.2 to 
predict their side-effect profiles. Finally we obtained 19,385 predicted relationships 
between these 394 drugs and 1385 side effects. 

We obtained a drug's known use(s) through extracting treatment relationships 
between drugs and diseases from the National Drug File - Reference Terminology3 
(NDF-RT), which is part of the UMLS [23]. The drug-disease treatment relationship 
list is also used by Li and Lu [12] as the gold standard set of drug repositioning task. 
We normalized various drug names in NDF-RT to their active ingredients. From the 
normalized NDF-RT data set, we were able to extract therapeutic uses for 799 drugs 
out of the 1007 drugs, which constructed a gold standard set of 3250 treatment 
relationships between 799 drugs and 719 diseases. We plotted the statistics of the gold 
drug-disease relationship in Fig. 2. Most of drugs (75%) treat <5 indicated diseases; 
18% of drugs treat 5 to 10 diseases; only 7% of drugs treat >10 diseases (Fig. 2(a)). 
Although the disease hypertension has 78 related drugs, 80% of diseases have only <5 
drugs; 10% of diseases have 5-10 drugs; and remaining 10% of diseases have >10 
drugs (Fig. 2(b)). 

All the data used in our experiments are available at our website4. 

4.2 Evaluation Measures 

In the study, we modeled the drug repositioning task as a binary classification 
problem where each drug either treats or does not treat a particular disease. We 
measure the final classification performance using four criteria: precision, recall, F-
score, and area under the ROC curve. In order to provide the definitions of these four 
criteria, we first define the classification confusion table for binary classification 

                                                           
3  NDF-RT found at http://www.nlm.nih.gov/research/umls/ 
sourcereleasedocs/current/NDFRT/. 

4  Available at http://astro.temple.edu/~tua87106/drugreposition.html. 
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problems where the two classes are indicated as positive and negative, which is 
constructed by comparing the actual data labels and predicted outcomes (see Table 1). 

Then we can define the classification evaluation metrics as: True Positive Rate = 
TP / (TP+FN), False Positive Rate = FP / (FP+TN), Precision = TP / (TP+FP), 
Recall = TP / (TP+FN), and F-Score = 2  Precision  Recall / (Precision+Recall). 

 

Fig. 2. Statistics of the drug-disease relationship dataset. (a) The number of indicated diseases 
per drug. (b) The number of drugs per indicated disease. 

Table 1. Confusion matrix 

  Actual Value 

Predicted True Positive (TP) False Positive (FP) 

Value False Negative (FN) True Negative (TN) 
 
The confusion matrix can be used to construct a point in the ROC curve, which is a 

graphical plot of true positive rate against false positive rate. The whole ROC curve 
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can be plotted by varying threshold value for prediction score, above which the output 
is predicted as positive, and negative otherwise. Then we can use the area under the 
ROC curve (AUC) as a measure. The other three measures (precision, recall, and F-
score) require setting the prediction threshold. In the experiment, a threshold was 
selected according to the maximum F-score of the predictions. Finally the precision, 
recall, and F-score are calculated over this specific threshold. 

4.3 Method Comparison 

To evaluate our SLAMS algorithm, we applied it in a 10-fold cross-validation setting. 
To avoid easy prediction cases, we hid all the associations involved with 10% of the 
drugs in each fold, rather than hiding 10% of the associations. In our comparisons, we 
considered three multiple source integration methods: (1) PREDICT [13] that uses 
similarity measures as features, and learns a logistic regression classifier that weighs 
the different features to yield a classification score. Replicating the settings of 
Gottlieb et al. [13], the training set used for the PREDICT logistic regression 
classifier was the true drug-disease associations (positive set), and a randomly 
generated negative set of drug-disease pairs (not part of the positive set), twice as 
large as the positive set. (2) Simple Average that assumes that each data source is 
equally informative, thus simply averages all k-NN prediction scores from multiple 
data sources. (3) The SLAMS algorithm proposed in this paper that uses a large 
margin method to automatically weigh and integrate multiple data sources. All 
evaluation measures are summarized in Table 2. 

Table 2. Comparison of SLAMS vs. alternative integration methods according to AUC, 
precision, recall, and F-score 

Method AUC Precision Recall F-score 

Simple Average 0.8662 0.3144 0.6085 0.4146 

PREDICT 0.8740 0.3228 0.5987 0.4194 

SLAMS 0.8949 0.3452 0.6505 0.4510 

 
As shown in Table 2, our proposed SLAMS algorithm obtained an AUC score of 

0.8949. The score was superior to the Simple Average (AUC = 0.8662) and 
PREDICT (AUC = 0.8740). Also our proposed SLAMS algorithm produced a higher 
precision of 34.52% and a recall of 65.05% compared with Simple Average (31.44% 
for precision and 60.85% for recall) and PREDICT (32.28% for precision and 59.87% 
for recall). The results showed that our proposed SLAMS algorithm, a large-margin 
method, is better at integrating multiple drug information sources than simple average 
and logistic regression strategies. 

An interesting observation is that for all methods, the AUC score is quite large 
(around 0.9 in the experiment), but the actual ability to detect and predict positive 
samples (i.e., the new drug-disease pairs) is low: even for the best method in the 
experiment - SLAMS, on average 34.52% of its predicted indications will be correct 
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and about 65.05% of the true indications will be revealed for the previously unseen 
drugs. The reason for this is that the drug repositioning task is a highly imbalanced 
problem where the dataset has an approximate 1:176 positive to negative ratio. 
Consequently, a large change in the number of false positives can lead to a small 
change in the false positive rate used in ROC analysis. Therefore, AUC scores can 
present an overly optimistic view of an algorithm’s performance for the drug 
repositioning task. Unlike Li and Lu [12] and Gottlieb et al. [13], we reported 
precision, recall, and F-score in addition to AUC. 

4.4 Data Source Comparison 

In the study, the three data sources we used reveal three different aspects of a drug: 
(1) chemical properties - compound fingerprints; (2) biological properties - protein 
targets; (3) phenotypic properties - side-effect profiles. The weight vector w derived 
from SLAMS is interpretable: the i-th element of w corresponds to the i-th data 
source, and the sum of all elements of w is 1. The SLAMS weights of each data 
source and standard deviation during the 10-fold cross-validation are plotted in Fig. 3. 

To further characterize the abilities of different data sources and/or their 
combinations to predict new drug-disease relationships (i.e., drug repositioning), we 
used SLAMS through a 10-fold validation with different data-source combinations. 
To conduct a fair and accurate comparison across different data sources, the same 
experimental conditions were maintained by using the same training drugs and test 
drugs for each fold. Fig. 4 shows the ROC curves for different data sources based on 
cross-validation experiments, and Table 3 summarizes the evaluation results. 

 

Fig. 3. Distribution of SLAMS weights and standard deviation for chemical, biological and 
phenotypic data sources in 10-fold cross-validation experiments 
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Fig. 4. The ROC comparison in 10-fold cross validation for various data-source combinations 
using SLAMS. chem: chemical properties; bio: biological properties; pheno: phenotypic 
properties. Data sources are sorted in the legend of the figure according to their AUC score. 

Table 3. Comparison of various data-source combinations according to AUC, precision, recall, 
and F-score 

Data Source AUC Precision Recall F-score 

chem 0.8171 0.2232 0.4633 0.3013 

bio 0.8139 0.2166 0.4592 0.2944 

pheno 0.8492 0.2685 0.5117 0.3522 

chem+bio 0.8339 0.2366 0.5012 0.3215 

chem+pheno 0.8876 0.3281 0.6244 0.4302 

bio+pheno 0.8503 0.2733 0.5119 0.3563 

chem+bio+pheno 0.8949 0.3452 0.6505 0.4510 

 
When the data sources were compared independently, the phenotypic data appeared 

to be the most informative (highest AUC of 0.8492), and chemical and biological data 
achieved similar AUC. This could be partially explained with the following reasons. 
Drug indications (i.e., drug's indicated diseases) and side effects are both measureable 
behavioral or physiological changes in response to the treatment. Intuitively, if drugs 
treating a disease share the same side-effects, this may be manifestation of some 
underlying mechanism-of-action (MOA) linking the indicated disease and the side-
effect. Furthermore, both drug indications and side-effects are observations on human in 
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the clinical stage, so there is less of a translational issue. Therefore, phenotypic data is a 
much more important drug information source with regard to predicting drug 
indications. 

In the experiment while combing any two data sources will improve the AUC, the 
increase obtained by adding chemical structures on top of phenotypic properties (from 
0.8492 to 0.8876) is much more significant than adding biological targets information 
on it (from 0.8492 to 0.8503). It seems that chemical properties and phenotypic 
properties are complementary. Combing all three data sources, we obtained the 
highest AUC score. On the other hand, if we focus on precision and recall, adding 
chemical properties to phenotypic properties yielded a dramatic increase (~22% in 
precision and recall). However, in our experiments there was no significant 
improvement when adding biological properties to phenotypic properties. 

4.5 Analysis of Novel Predictions 

During the 10-fold cross-validation, our SLAMS method with all chemical, 
biological, and phenotypic properties produced 3870 false-positive drug-disease 
associations. In other words, these associations were predicted by our method but they 
were not present in the gold standard. Some of these associations could be false, but a 
few associations could be true and can be considered as drug repositioning candidates 
in the real-world drug discovery. Taking the disease Rheumatoid Arthritis as an 
example, in Table 4 our SLAMS method found 10 drugs to treat it. These 10 drugs 
don’t have associations with Rheumatoid Arthritis in the gold standard, and they have 
their own indications other than Rheumatoid Arthritis. 

In order to test whether our predictions are in accordance with current experimental 
knowledge, we checked the extent to which they appear in current clinical trials. In 
Table 4, the drugs Ramipril, Meloxicam, and Imatinib have been tested for treating 
the disease Rheumatoid Arthritis in some clinical trials. In other words, 
pharmaceutical investigators have been aware of the associations of the drugs and 
Rheumatoid Arthritis, although they are still in the experimental stage. We 
downloaded all drug-disease data from registry of federally and privately supported 
clinical trials conducted around the world5. Overall, we acquired 18,392 unique drug-
disease associations that are being investigated in clinical trials (phases I-IV). In all, 
4798 of these associations involve drugs and diseases that are present in our data set 
with the exact names, spanning 4066 associations that are not part of our gold 
standard. Of these 4066 associations, our 3870 false-positive drug-disease 
associations cover 21% (i.e., 854 associations). It was highly unlikely that our false-
positive predictions identified this set of 854 experimental drug-disease associations 
by chance (p < 0.0001, Fisher’s exact test [25]). Hence, we conclude that false-
positive novel uses predicted by our method attained significant coverage of drug-
disease associations tested in clinical trials. All predicted drug-disease associations in 
our experiments are available at our website6. 

                                                           
5  Clinical trials found at http://clinicaltrials.gov/. 
6  Available at http://astro.temple.edu/~tua87106/drugreposition.html. 
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Table 4. Repositioned drugs for Rheumatoid Arthritis predicted by our method 

Drug Name Original Uses Treat Rheumatoid Arthritis in clinical trial 

Ramipril Hypertension NCT00273533 proposed in Jan 2006 

Diabetic Nephropathies 

  Heart Failure   

Lisinopril Hypertension N/A 

  Heart Failure   

Mercaptopurine Lymphoma N/A 

Meloxicam Osteoarthritis NCT00042068 proposed in July 2002 

Mefenamic Acid Menorrhagia N/A 

Fever 

  Dysmenorrhea   

Zileuton Asthma  N/A 

Imatinib Gastrointestinal Neoplasms NCT00154336 proposed in Sept 2005 

Leukemia, Myeloid 

  Blast Crisis   

Allopurinol Gout N/A 

Imiquimod Condylomata Acuminata N/A 

Masoprocol Keratosis  N/A 

5 Conclusion 

In response to the high cost and risk in traditional de novo drug discovery, discovering 
potential uses for existing drugs, also known as drug repositioning, has attracted 
increasing interests from both the pharmaceutical industry and the research 
community. From a serendipitous drug repositioning to systematic or rational ways, a 
variety of computational approaches using single source have been developed. 
However, the complexity of the problem clearly needs methods to integrate drug 
information from multiple sources for better solutions.  

In this paper, we proposed SLAMS, a new drug repositioning framework by 
integrating chemical (i.e., compound signatures), biological (i.e., protein targets), and 
phenotypic (i.e., side effects) properties. Experimental results showed that our method 
is superior to a few existing computational drug repositioning methods. Furthermore, 
our predictions statistically overlap drug-disease associations tested in clinical trials, 
suggesting that the predicted drugs may be regarded as valuable repositioning 
candidates for further drug discovery research. An important property of our method 
is that it allows easy integration of additional drug information sources. Moreover, the 
method ranked multiple drug information sources based on their contributions to the 
prediction, thus paving the way for prioritizing multiple data sources and building 
more reliable drug repositioning models. 
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Abstract. We introduce Score As You Lift (SAYL), a novel Statistical
Relational Learning (SRL) algorithm, and apply it to an important task
in the diagnosis of breast cancer. SAYL combines SRL with the mar-
keting concept of uplift modeling, uses the area under the uplift curve
to direct clause construction and final theory evaluation, integrates rule
learning and probability assignment, and conditions the addition of each
new theory rule to existing ones.

Breast cancer, the most common type of cancer among women, is cat-
egorized into two subtypes: an earlier in situ stage where cancer cells are
still confined, and a subsequent invasive stage. Currently older women
with in situ cancer are treated to prevent cancer progression, regardless
of the fact that treatment may generate undesirable side-effects, and the
woman may die of other causes. Younger women tend to have more ag-
gressive cancers, while older women tend to have more indolent tumors.
Therefore older women whose in situ tumors show significant dissimilar-
ity with in situ cancer in younger women are less likely to progress, and
can thus be considered for watchful waiting.

Motivated by this important problem, this work makes two main con-
tributions. First, we present the first multi-relational uplift modeling
system, and introduce, implement and evaluate a novel method to guide
search in an SRL framework. Second, we compare our algorithm to pre-
vious approaches, and demonstrate that the system can indeed obtain
differential rules of interest to an expert on real data, while significantly
improving the data uplift.

1 Introduction

Breast cancer is the most common type of cancer among women, with a 12%
incidence in a lifetime [2]. Breast cancer has two basic categories: an earlier in
situ stage where cancer cells are still confined to where they developed, and a
subsequent invasive stage where cancer cells infiltrate surrounding tissue. Since
nearly all in situ cases can be cured [1], current practice is to treat in situ occur-
rences in order to avoid progression into invasive tumors [2]. Nevertheless, the
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time required for an in situ tumor to reach invasive stage may be sufficiently long
for an older woman to die of other causes, raising the possibility that treatment
may not have been necessary.

Cancer occurrence and stage are determined through biopsy, a costly, invasive,
and potentially painful procedure. Treatment is also costly and may generate
undesirable side-effects. Hence there is a need for pre-biopsy methods that can
accurately identify patient subgroups that would benefit most from treatment,
and especially, those who do not need treatment. For the latter, the risk of
progression would be low enough to employ watchful waiting (mammographic
evaluation at short term intervals) rather than biopsy [26].

Fortunately, the literature confirms that the pre-biopsy mammographic ap-
pearance as described by radiologists can predict breast cancer stage [28,29].
Furthermore, based on age, different pre-biopsy mammographic features can be
used to classify cancer stage [18]. A set of mammography features is differentially-
predictive if it is significantly more predictive of cancer in one age group as com-
pared to another. We may be able to use such differentially-predictive features
to recommend watchful waiting for older in situ patients accurately enough to
safely avoid additional tests and treatment.

In fact, younger women tend to have more aggressive cancers that rapidly pro-
liferate, while older women tend to have more indolent cancers [8,13]. We assume
that younger in situ patients should always be treated, due to the longer poten-
tial time-span for cancer progression. We also assume that older in situ patients
whose mammography features are similar to in situ in younger patients should
also be treated, because the more aggressive nature of cancer in younger patients
may be conditioned on those features. On the other hand, older in situ patients
whose mammography features are significantly different from features observed
in younger in situ patients are less likely to experience rapid proliferation, and
can thus be recommended for watchful waiting.

The general task of identifying differentially predictive features occurs natu-
rally in diverse fields. Psychologists initially assessed for differential prediction
using linear regression, defining it as the case where a common regression equa-
tion results in systematic nonzero errors of prediction for given subgroups [6].
The absence of differential prediction over different groups of examinees was an
indicator of the fairness of a cognitive or educational test [31].

Psychologists aim to decrease differential prediction on their tests. This is
not the case in the closely related concept of uplift modeling, a modeling and
classification method used in marketing to determine the incremental impact of
an advertising campaign on a given population. Uplift modeling is effectively
a differential prediction approach aimed at maximizing uplift [11,16,23]. Uplift
is defined as the difference in a model or intervention M ’s lift scores over the
subject and control sets:

UpliftM = LiftM(subject)− LiftM(control). (1)

Given a fraction ρ such that 0 ≤ ρ ≤ 1, a model M ’s lift is defined as the
number of positive examples amongst the model’s ρ-highest ranking examples.



Score As You Lift (SAYL): A Statistical Relational Learning Approach 597

Uplift thus captures the additional number of positive examples obtained due
to the intervention. We generate an uplift curve by ranging ρ from 0 to 1 and
plotting UpliftM . The higher the uplift curve, the more profitable a marketing
model/intervention is.

The motivating problem at hand can readily be cast as an uplift modeling
problem (see Table 1). Even though we are not actively altering the cancer stage
as a marketing intervention would alter the subject population behavior, one
may argue that time is altering the cancer stage. Our subject and control sets
are respectively older and younger patients with confirmed breast cancer —where
time, as an intervention, has altered the cancer stage— and we want to predict
in situ versus invasive cancer based on mammography features. By maximizing
the in situ cases’ uplift, which is the difference between a model’s in situ lift on
the older and younger patients, we are identifying the older in situ cases that
are most different from younger in situ cases, and thus are the best candidates
for watchful waiting. Exactly like a marketing campaign would want to target
consumers who are the most prone to respond, we want to target the ones that
differ the most from the control group.

Table 1. Casting mammography problem in uplift modeling terms

Intervention Subject Group Control Group Positive Class Negative Class

Time Older cohort Younger cohort In Situ Invasive

In recent work, Nassif et al. inferred older-specific differentially-predictive in
situ mammography rules [20]. They used Inductive Logic Programming (ILP)
[14], but defined a differential-prediction-sensitive clause evaluation function that
compares performance over age-subgroups during search-space exploration and
rule construction. To assess the resulting theory (final set of rules), they con-
structed a TAN classifier [9] using the learned rules and assigned a probability
to each example. They finally used the generated probabilities to construct the
uplift curve to assess the validity of their model.

The ILP-based differential prediction model [20] had several shortcomings.
First, this algorithm used a differential scoring function based on m-estimates
during clause construction, and then evaluated the resulting theory using the
area under the uplift curve. This may result in sub-optimal performance, since
rules with a high differential m-estimate score may not generate high uplift
curves. Second, it decoupled clause construction and probability estimation: af-
ter rules are learned, a TAN model is built to compute example probabilities.
Coupling these two processes together may generate a different theory with a
lower ILP-score, but with a more accurate probability assignment. Finally, rules
were added to the theory independently of each other, resulting in redundancies.
Having the addition of newer rules be conditioned on the prior theory rules is
likely to improve the quality and coverage of the theory.

In this work, we present a novel relational uplift modeling Statistical Rela-
tional Learning (SRL) algorithm that addresses all the above shortcomings. Our
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method, Score As You Lift (SAYL), uses the area under the uplift curve score
during clause construction and final theory evaluation, integrates rule learning
and probability assignment, and conditions the addition of new theory rules to
existing ones. This work makes two main contributions. First, we present the first
multi-relational uplift modeling system, and introduce, implement and evaluate
a novel method to guide search in an SRL framework. Second, we compare our
algorithm to previous approaches, and demonstrate that the system can indeed
obtain differential rules of interest to an expert on real data, while significantly
improving the data uplift.

2 Background: The SAYU Algorithm

Score As You Use (SAYU) [7] is a Statistical Relational Learner [10] that inte-
grates search for relational rules and classification. It starts from the well known
observation that a clause or rule r can be mapped to a binary attribute b, by
having b(e) = 1 for an example e if the rule r explains e, and b(e) = 0 otherwise.

This makes it possible to construct classifiers by using rules as attributes,
an approach known as propositionalization [32]. One limitation, though, is that
often the propositional learner has to consider a very large number of possible
rules. Moreover, these rules tend to be very correlated, making it particularly
hard to select a subset of rules that can be used to construct a good classifier.

SAYU addresses this problem by evaluating the contribution of rules to a
classifier as soon as the rule is generated. Thus, SAYU generates rules using a
traditional ILP algorithm, such as Aleph [27], but instead of scoring the rules
individually, as Aleph does, every rule SAYU generates is immediately used to
construct a statistical classifier. If this new classifier improves performance over
the current set of rules, the rule is added as an extra attribute.

Algorithm 1. SAYU

Rs ← {};M0 ← InitClassifier(Rs)
while DoSearch() do

e+ ← RandomSeed();
⊥e+ ← saturate(e);
while c ← reduce(⊥e+) do

M ← LearnClassifier(Rs ∪ {c});
if Better(M,M0) then

Rs ← Rs ∪ {c};M0 ← M ;
break

end if
end while

end while

Algorithm 1 shows SAYU in more detail. SAYU maintains a current set of
clauses, Rs, and a current reference classifier, M0. SAYU extends the Aleph [27]
implementation of Progol’s MDIE algorithm [17]. Thus, it starts search by ran-
domly selecting a positive example as seed, e+, generating the corresponding
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bottom clause, ⊥e+ , and then generating clauses that subsume ⊥e+ . For every
new such clause c, it constructs a classifier M and compares M with the current
M0. If better, it accepts c by adding it to Rs and makingM the default classifier.
SAYU can terminate search when all examples have been tried without adding
new clauses. In practice, termination is often controlled by a time limit.

Quite often, most execution time will be spent learning classifiers. Therefore,
it is important that the classifier can be learned in a reasonable time. Further,
the classifier should cope well with many related attributes. We use the TAN
classifier, a Bayesian network that extends naive Bayes with at most one other
edge per attribute [9]. TAN has quadratic learning time, which is acceptable for
SAYU, and compensates well for highly dependent attributes.

Second, comparing two classifiers is not trivial. SAYU reserves a tuning set
for this task: if the classifier M has a better score on both the initial training
and tuning sets, the new rule is accepted. The scoring function depends on the
problem at hand. Most often SAYU has been used in skewed domains, where
the area under the precision-recall curve is regarded as a good measure [5], but
the algorithm allows for any metric.

The original SAYU algorithm accepts a logical clause as soon as it improves
the network. It may be the case that a later clause would be even better. Un-
fortunately, SAYU will switch seeds after selecting a clause, so the better clause
may be ignored. One solution is to make SAYU less greedy by exploring the
search space for each seed, up to some limit on the number of clauses, before
accepting a clause. We call this version of SAYU exploration SAYU : we will refer
to it as e-SAYU, and to the original algorithm as greedy SAYU, or g-SAYU.

Algorithm 2. e-SAYU

Rs ← {};M0 ← InitClassifier(Rs)
while DoSearch() do

e+ ← RandomSeed();
⊥e+ ← saturate(e+);
ce+ ← �; Me+ ← M0;
while c ← reduce(⊥e+) do

M ← LearnClassifier(Rs ∪ {c});
if Better(M,Me) then

ce+ ← c;Me+ ← M ;
end if

end while
if ce+ �= � then

Rs ← Rs ∪ {ce+};M0 ← Me+ ;
end if

end while

Algorithm 2 details e-SAYU. It differs from g-SAYU in that it keeps track,
for each seed, of the current best classifier Me+ and best clause ce+ . At the end,
if a clause ce+ was found, we commit to that clause and update the classifier.
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3 Background: Uplift Modeling

Next we discuss uplift in more detail and compare it to related measures.

3.1 Uplift

Let P be the number of positive examples and N the number of negative exam-
ples in a given dataset D. Lift represents the number of true positives detected
by model m amongst the top-ranked fraction ρ. Varying ρ ∈ [0, 1] produces a lift
curve. The area under the lift curve AUL for a given model and data becomes:

AUL =

∫
Lift(D, ρ)dρ ≈ 1

2

P+N∑
k=1

(ρk+1− ρk)(Lift(D, ρk+1)+Lift(D, ρk)) (2)

Uplift compares the difference between the modelM over two groups, subjects
s and controls c. It is obtained by:

Uplift(Ms,Mc, ρ) = LiftMs(S, ρ)− LiftMc(C, ρ). (3)

Since uplift is a function of a single value for ρ, the area under the uplift curve is
the difference between the areas under the lift curves of the two models,Δ(AUL).

It is interesting to note the correspondence of the uplift model to the differen-
tial prediction framework [20]. The subjects and controls groups are disjoint sub-
sets, and thus form a 2-strata dataset. LiftM is a differential predictive concept,
since maximizing Uplift(Ms,Mc, ρ) requires LiftMs(S, ρ) ) LiftMc(C, ρ). Fi-
nally, Uplift is a differential-prediction-sensitive scoring function, since it is pos-
itively correlated with LiftMs(S, ρ) and negatively correlated with LiftMc(C, ρ).

3.2 Lift AUC and ROC AUC

In order to obtain more insight into this measure it is interesting to compare
uplift and lift curves with receiver operating characteristic (ROC) curves. We
define AUL as the area under the lift curve, and AUR as the area under the
ROC curve. There is a strong connection between the lift curve and the ROC
curve: Let π = P

P+N be the prior probability for the positive class or skew, then:

AUL = P ∗ (π
2
+ (1− π) AUR) [30, p. 549]. (4)

In uplift modeling we aim to optimize for uplift over two sets, that is we aim
at obtaining new classifiers such that Δ(AUL∗) > Δ(AUL), where Δ(AUL) =
AULs − AULc, subscripts s and c referring to the subject and control groups,
respectively. The equation Δ(AUL∗) > Δ(AUL) can be expanded into:

AUL∗
s −AUL∗

c > AULs −AULc. (5)
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Further expanding and simplifying we have:

Ps(
πs
2

+ (1− πs)AUR
∗
s)− Pc(

πc
2
− (1− πc)AUR

∗
c) >

Ps(
πs
2
+(1− πs)AURs)− Pc(

πc
2
− (1 − πc)AURc)

Ps(1 − πs)AUR
∗
s − Pc(1− πc)AUR

∗
c > Ps(1− πs)AURs − Pc(1− πc)AURc

Ps(1− πs)(AUR
∗
s −AURs) > Ps(1− πs)(AUR

∗
c −AURc)

and finally
AUR∗

s −AURs

AUR∗
c −AURc

>
Pc

Ps

1− πc
1− πs

. (6)

In a balanced dataset, we have πc = πs = 1
2 and Pc = Ps, so we have that

1−πc

1−πs
= 1. In fact, if the subject and control datasets have the same skew we can

conclude that Δ(AUL∗) > Δ(AUL) implies Δ(AUR∗) > Δ(AUR).
In the mammography dataset, the skews are Ps = 132, πs = 132

132+401 (older),

and Pc = 110, πc =
110

110+264 (younger). Thus equation 6 becomes:

AUR∗
s −AURs

AUR∗
c −AURc

> 0.86. (7)

Therefore we cannot guarantee that Δ(AUL∗) > Δ(AUL) implies Δ(AUR∗) >
Δ(AUR) on this data, as we can increase uplift with rules that have similar
accuracy but cover more cases in the older cohort, and there are more cases to
cover in the older cohort. On the other hand, breast cancer is more prevalent in
older women [1], so uplift is measuring the true impact of the model.

In general, we can conclude that the two tests are related, but that uplift is
sensitive to variations of dataset size and skew. In other words, uplift is more
sensitive to variations in coverage when the two groups have different size. In
our motivating domain, this is particularly important in that it allows capturing
information related to the larger prevalence of breast cancer in older populations.

4 SAYL: Integrating SAYU and Uplift Modeling

SAYL is a Statistical Relational Learner based on SAYU that integrates search
for relational rules and uplift modeling. Similar to SAYU, every valid rule gen-
erated is used for classifier construction via propositionalization, but instead of
constructing a single classifier, SAYL constructs two classifiers; one for each of
the subject and control groups. Both classifiers use the same set of attributes,
but are trained only on examples from their respective groups. If a rule improves
the area under the uplift curve (uplift AUC) by threshold θ, the rule is added
to the attribute set. Otherwise, SAYL continues the search.

The SAYL algorithm is shown as Algorithm 3. Like SAYU, SAYL maintains
separate training and tuning example sets, accepting rules only when the clas-
sifiers produce a better score on both sets. This requirement is often extended
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Algorithm 3. SAYL

Rs ← {};Ms
0 ,M

c
0 ← InitClassifiers(Rs)

while DoSearch() do
e+s ← RandomSeed();
⊥

e+s
← saturate(e);

while c ← reduce(⊥
e+s

) do

Ms,Mc ← LearnClassifiers(Rs ∪ {c});
if Better(Ms,Mc,Ms

0 ,M
c
0 ) then

Rs ← Rs ∪ {c};Ms
0 ,M

c
0 ← Ms,Mc;

break
end if

end while
end while

with a specified threshold of improvement θ, or a minimal rule coverage require-
ment minpos. Additionally, SAYL also has a greedy (g-SAYL) and exploratory
(e-SAYL) versions that operate in the same fashion as they do for SAYU.

The key difference between SAYL and SAYU, then, is that SAYL maintains
a distinction between the groups of interest by using two separate classifiers.
This is what allows SAYL to demonstrate differential performance as opposed
to standard metrics, such as the area under a precision-recall curve. To compute
uplift AUC, SAYL simply computes the area under the lift curve for each of the
groups using the two classifiers and returns the difference.

SAYL and SAYU also differ in selecting a seed example to saturate. Instead
of selecting from the entire set of positive examples, SAYL only selects seed
examples from the positive examples in the subject group. This is not necessary,
but makes intuitive sense as clauses produced from examples in the subject set
are more likely to produce greater lift on the subject set in the first place.

5 Experimental Results

Our motivating application is to detect differential older-specific in situ breast
cancer by maximizing the area under the uplift curve (uplift AUC). We apply
SAYL to the breast cancer data used in Nassif et al. [20]. The data consists of two
cohorts: patients younger than 50 years form the younger cohort, while patients
aged 65 and above form the older cohort. The older cohort has 132 in situ and
401 invasive cases, while the younger one has 110 in situ and 264 invasive.

The data is organized in 20 extensional relations that describe the mammo-
gram, and 35 intensional relations that connect a mammogram with related
mammograms, discovered at the same or in prior visits. Some of the extensional
features have been mined from free text [19]. The background knowledge also
maintains information on prior surgeries. The data is fully described in [18].

We use 10-fold cross-validation, making sure all records pertaining to the same
patient are in the same fold. We run SAYL with a time limit of one hour per
fold. We run folds in parallel. On top of the ILP memory requirements, SAYL
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requires an extra 0.5 gigabyte of memory for the Java Virtual Machine. For each
cross-validated run, we use 4 training, 5 tuning and 1 testing folds. For each fold,
we used the best combination of parameters according to a 9-fold internal cross-
validation using 4 training, 4 tuning and 1 testing folds. We try both e-SAYL and
g-SAYL search modes, vary the minimum number minpos of positive examples
that a rule is required to cover between 7 and 13 (respectively 5% and 10% of
older in situ examples), and set the threshold θ to add a clause to the theory if
its addition improves the uplift AUC to 1%, 5% and 10%. We concatenate the
results of each testing set to generate the final uplift curve.

Table 2. 10-fold cross-validated SAYL performance. AUC is Area Under the Curve.
Rule number averaged over the 10 folds of theories. For comparison, we include results
of Differential Prediction Search (DPS) and Model Filtering (MF) methods [20]. We
compute the p-value comparing each method to DPS, * indicating significance.

Algorithm Uplift Lift(older) Lift(younger) Rules DPS
AUC AUC AUC Avg # p-value

SAYL 58.10 97.24 39.15 9.3 0.002 *

DPS 27.83 101.01 73.17 37.1 -
MF 20.90 100.89 80.99 19.9 0.0039 *

Baseline 11.00 66.00 55.00 - 0.0020 *
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Fig. 1. Uplift curves for the ILP-based methods (Differential Prediction Search (DPS)
and Model Filtering (MF), both with minpos = 13 [20]), a baseline random classifier,
and SAYL with cross-validated paramters. Uplift curves start at 0 and end at 22, the
difference between older (132) and younger (110) total in situ cases. The higher the
curve, the better the uplift.
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Table 2 compares SAYL with the Differential Prediction Search (DPS) and
Model Filtering (MF) ILP methods [20], both of which had minpos = 13 (10%
of older in situ). A baseline random classifier achieves an uplift AUC of 11. We
use the Mann-Whitney test at the 95% confidence level to compare two sets
of experiments. We show the p-value of the 10-fold uplift AUC paired Mann-
Whitney of each method as compared to DPS, DPS being the state-of-the-art
in relational differential prediction. We also plot the uplift curves in Figure 1.

SAYL 10-fold cross-validation chose g-SAYL in 9 folds and e-SAYL in 1, while
minpos was 13 (10% of older in situ) in 5 folds, and 7 (5%) in the remaining 5
folds. θ was selected to be 1% in 4 folds, 5% in 3 folds, and 10% in the remaining
3 folds. Table 3 shows how sensitive SAYL is to those different parameters.

Table 3. 10-fold cross-validated SAYL performance under various parameters. minpos
is the minimum number of positive examples that a rule is required to cover. θ is the up-
lift AUC improvement threshold for adding a rule to the theory. We also include results
of SAYL using cross-validated parameters and Differential Prediction Search (DPS).
We compute the p-value comparing each method to DPS, * indicating significance.

minpos θ search Uplift Lift(older) Lift(younger) Rules DPS
(%) mode AUC AUC AUC Avg # p-value

13 1 g-SAYL 63.29 96.79 33.50 16.4 0.002 *
13 1 e-SAYL 43.51 83.82 40.31 2.0 0.049 *
13 5 g-SAYL 58.06 96.14 38.07 5.9 0.002 *
13 5 e-SAYL 53.37 85.66 32.29 1.8 0.027 *
13 10 g-SAYL 61.68 96.26 34.58 3.6 0.002 *
13 10 e-SAYL 65.36 90.50 25.14 1.1 0.002 *
7 1 g-SAYL 65.48 98.82 33.34 18.3 0.002 *
7 1 e-SAYL 25.50 74.39 48.90 3.0 0.695
7 5 g-SAYL 58.91 96.67 37.76 5.8 0.002 *
7 5 e-SAYL 32.71 79.52 46.81 2.5 0.557
7 10 g-SAYL 61.98 96.87 34.89 3.6 0.002 *
7 10 e-SAYL 52.35 83.64 31.29 1.6 0.002 *

- - SAYL 58.10 97.24 39.15 9.3 0.002 *
13 - DPS 27.83 101.01 73.17 37.1 -

6 Discussion

6.1 Model Performance

SAYL significantly outperforms DPS (Table 2, Figure 1), while ILP-based runs
have the highest older and younger lift AUC (Tables 2, 3). This is because ILP
methods use different metrics during clause construction and theory evaluation,
and decouple clause construction from probability estimation. SAYL builds mod-
els that are slightly less predictive of in situ vs. invasive over the younger subset,
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as measured by the slightly lower older lift AUC, but on the other hand it ef-
fectively maximizes uplift. In fact, increasing lift on one subset will most often
increase lift on the other subset, since both sets share similar properties. SAYL
avoids this pitfall by selecting rules that generate a high differential lift, ignor-
ing rules with good subject lift that are equally good on the controls. These
results confirm the limitations of a pure ILP approach, demonstrating signifi-
cantly higher uplift using SAYL.

e-SAYL explores a larger search space for a given seed before selecting a
rule to add to the theory. This results in smaller theories than greedy g-SAYL.
Increasing θ, the uplift AUC improvement threshold for adding a rule to the
theory, also results in smaller theories, as expected. Ranging minpos between 7
and 13 doesn’t seem to have a sizable effect on rule number.

g-SAYL’s performance remains constant across all parameters, its uplift AUC
varying between 58.06 and 65.48. At the same time, its theory size ranges from
3.6 to 18.3. This indicates that the number of rules is not correlated with uplift
AUC. Another indication comes from e-SAYL, whose theory size changes little
(1.1 – 3.0), while its performance tends to increase with increasingminpos and θ.
Its uplift AUC jumps from the lowest score of 25.50, where it is significantly worse
than g-SAYL, to nearly the highest score of 65.36. In fact, g-SAYL outperforms
e-SAYL on all runs except minpos = 13 and θ = 10%.

e-SAYL is more prone to over fitting, since it explores a larger search space
and is thus more likely to find rules tailored to the training set with a poor gen-
eralization. By increasing minpos and θ, we are restricting potential candidate
rules to the more robust ones, which decreases the chances of converging to a
local minima and overfitting. This explains why e-SAYL had the worst perfor-
mances with lowestminpos and θ values, and why it achieved the second highest
score of all runs at the highest minpos and θ values. These limited results seem
to suggest using e-SAYL with minpos and θ equal to 10%.

6.2 Model Interpretation

SAYL returns two TAN Bayes-net models, one for the older and one for the
younger, with first-order logic rules as the nodes. Each model includes the clas-
sifier node, presented top-most, and the same rules. All rules depend directly on
the classifier and have at least one other parent. Although both models have the
same rules as nodes, TAN learns the structure of each model on its correspond-
ing data subset separately, resulting in different networks. SAYL identifies the
features that best differentiate amongst subject and control positive examples,
while TAN uses these features to create the best classifier over each set.

To generate the final model and inspect the resulting rules, we run SAYL
with 5 folds for training and 5 for tuning. As an example, Figures 2 and 3
respectively show the older and younger cases TAN models of g-SAYL with
minpos = 13 and θ = 5%. The older cohort graph shows that the increase in the
combined BI-RADS score is a key differential attribute. The BI-RADS score is a
number that summarizes the examining radiologist’s opinion and findings con-
cerning the mammogram [3]. We then can see two sub-graphs: the left-hand side
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sub-graph focuses on the patient’s history (prior biopsy, surgery and family his-
tory), whereas the right-hand side sub-graph focuses on the examined breast
(BI-RADS score, mass size). In contrast, the younger cohort graph is very dif-
ferent: the graph has a shorter depth, and the combined BI-RADS increase node
is linked to different nodes. . .

As the number of rules increases, it becomes harder for humans to interpret
the cohort models, let alone their uplift interaction. In ILP-based differential
prediction methods [20], theory rules are independent and each rule is an older in
situ differential rule. In SAYL, theory rules are dependent on each other, whereas
a rule can be modulating another rule in the TAN graph. This is advantageous
because such modulated rule combinations can not be expressed in ILP-theory,
and therefore might not be learnable. On the other hand, SAYL individual rules
are not required to be older in situ specific. A SAYL rule can predict invasive,
or be younger specific, as long as the resulting model is uplifting older in situ.
Which decreases clinical rule interpretability.

The average number of rules returned by SAYL is lower than ILP-based meth-
ods (Table 2), SAYL effectively removes redundant rules by conditioning the

breast category

combined BI-RADS increased up to 3 points over previous mammogram

had previous in situ biopsy at same location breast BI-RADS score = 4

no family history of cancer, and no prior surgery breast has mass size ≤ 13 mm

Fig. 2. TAN model constructed by SAYL over the older cases: the topmost node is
the classifier node, and the other nodes represent rules inserted as attributes to the
classifier. Edges represent the main dependencies inferred by the model.

breast category

combined BI-RADS increased
up to 3 points

over previous mammogram

had previous in situ biopsy
at same location

breast BI-RADS score = 4
no family history of cancer,

and no prior surgery breast has mass size ≤ 13 mm

Fig. 3. TAN model constructed by SAYL over the younger cases. Notice that it has
the same nodes but with a different structure than its older counterpart.
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addition of a new rule on previous ones. We also note that SAYL, like SAYU,
tends to like short rules [7]. DPS found five themes amongst its older in situ
rules with a significantly better precision and recall: calcification, prior in situ
biopsy, BI-RADS score increase, screening visit, and low breast density [20].

For SAYL runs returning small theories, the resulting rules tend to be differ-
ential and fall within these 5 themes. For example, g-SAYL with minpos = 13
and θ = 10% returns 3 rules:

1. Current study combined BI-RADS increased up to 3 points over previous
mammogram.

2. Had previous in situ biopsy at same location.
3. Breast BI-RADS score = 4.

These rules cover two of the 5 DPS themes, namely prior in situ biopsy and
BI-RADS score increase.

As the number of SAYL returned rules increases, rule interactions become
more complex, individual rules tend not to remain older in situ differential, and
rules are no longer confined to the above themes. In the Figures 2 and 3 example,
we recover the prior in situ biopsy and BI-RADS score increase themes, but
we also have non-thematic rules like “no family history of cancer, and no prior
surgery”. In the two runs returning the largest theories, g-SAYL with θ = 1% and
minpos = 7 and 13, we recover 4 of the themes, only missing calcification. Note
that, as the graph size increases, medical interpretation of the rules becomes
more difficult, as well as identifying novel differential themes, since rules are
conditioned on each other.

Although the SAYL rules may not be differential when viewed individually, the
SAYL final model is differential, significantly outperforming DPS in uplift AUC.
DPS, on the other hand, is optimized for mining differential rules, but performs
poorly as a differential classifier. SAYL returns a TAN Bayes net whose nodes
are logical rules, a model that is human interpretable and that offers insight
into the underlying differential process. Greedy g-SAYL’s performance depended
little on the parameters, while exploratory e-SAYL’s performance increased when
requiring more robust rules.

7 Related Work

Differential prediction was first used in psychology to assess the fairness of cog-
nitive and educational tests, where it is defined as the case where consistent
nonzero errors of prediction are made for members of a given subgroup [6]. In
this context, differential prediction is usually detected by either fitting a com-
mon regression equation and checking for systematic prediction discrepancies for
given subgroups, or by building regression models for each subgroup and testing
for differences between the resulting models [15,31]. If the predictive models dif-
fer in terms of slope or intercept, it implies that bias exists because systematic
errors of prediction would be made on the basis of group membership. An ex-
ample is assessing how college admission test scores predict first year cumulative
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grades for males and females. For each gender group, we fit a regression model.
We then compare the slope, intercept and/or standard errors for both models. If
they differ, the test exhibits differential prediction and may be considered unfair.

In contrast to most studies of differential prediction in psychology, marketing’s
uplift modeling assumes an active agent. Uplift modeling is used to understand
the best targets for an advertising campaign. Seminal work includes Radcliffe
and Surry’s true response modeling [23], Lo’s true lift model [16], and Hanso-
tia and Rukstales’ incremental value modeling [11]. As an example, Hansotia
and Rukstales construct a regression and a decision tree, or CHART, model
to identify customers for whom direct marketing has sufficiently large impact.
The splitting criterion is obtained by computing the difference between the esti-
mated probability increase for the attribute on the subject set and the estimated
probability increase on the control set.

In some applications, especially medical decision support systems, gaining
insight into the underlying classification logic can be as important as system
performance. Insight into the classification logic in medical problems can be an
important method to discover disease patterns that may not be known or eas-
ily otherwise gleaned from the data. Recent developments include tree-based
approaches to uplift modeling [24,25], although ease-of-interpretation was not
an objective in their motivating applications. Wanting to maximize rule inter-
pretability, Nassif et al. [20] opted for ILP-based rule learning instead of decision-
trees because the latter is a special case of the former [4].

To the best of our knowledge, the first application of uplift modeling in medical
domains is due to Jaśkowski and Jaroszewicz [12], who adapt standard classifiers
by using a simple class variable transformation. Their transformation avoids us-
ing two models by assuming that both sets have the same size and combining
the examples into a single set. They also propose an approach where two classi-
fiers are learned separately but they help each other by labeling extra examples.
Instead, SAYL directly optimizes an uplift measure.

Finally, we observe that the task of discriminating between two dataset strata
is closely related to the problem of Relational Subgroup Discovery (RSD), that is,
“given a population of individuals with some properties, find subgroups that are
statistically interesting” [32]. In the context of multi-relational learning systems,
RSD applies a first propositionalization step and then applies a weighted covering
algorithm to search for rules that can be considered to define a sub-group in the
data. Although the weighting function is defined to focus on unexplored data
by decreasing the weight of covered examples, RSD does not explicitly aim at
discovering the differences between given partitions.

8 Future Work

A key contribution of this work is constructing a relational classifier that maxi-
mizes uplift. SAYL effectively identifies older in situ patients with mammography
features that are significantly different from those observed in the younger in situ
cases. But one may argue that, for a model to be clinically relevant, we should
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take into account all mammography features when staging an uplift comparison.
We can start the SAYL TAN model with the initial set of attributes, and then
learn additional rules, composed of relational features or a combinations of at-
tributes, to maximize uplift [21]. This could potentially increase the achievable
lift on both the subject and control groups, making the uplift task harder.

Given the demonstrated theoretical similarity between lift and ROC curves
(Section 3.2), and the fact that ROC curves are more widely used especially in
the medical literature, it is interesting to compare our approach with a SAYL
version that optimizes for ROC AUC.

Finally, we are in the process of applying SAYL to different problems. For
example, working on uncovering adverse drug effects, SAYL can be used to con-
struct a model identifying patient subgroups that have a differential prediction
before and after drug administration [22].

9 Conclusion

In this work, we present Score As You Lift (SAYL), a novel Statistical Rela-
tional Learning algorithm and the first multi-relational uplift modeling system.
Our algorithm maximizes the area under the uplift curve, uses this measure
during clause construction and final theory evaluation, integrates rule learning
and probability assignment, and conditions the addition of new theory rules to
existing ones. SAYL significantly outperforms previous approaches on a mam-
mography application (p = 0.002 with similar parameters), while still producing
human interpretable models. We plan on further investigating the clinical rele-
vance of our model, and to apply SAYL to additional differential problems.
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Abstract. Exploratory Data Mining (EDM), the contemporary heir of
Exploratory Data Analysis (EDA) pioneered by Tukey in the seventies,
is the task of facilitating the extraction of interesting nuggets of informa-
tion from possibly large and complexly structured data. Major concep-
tual challenges in EDM research are the understanding of how one can
formalise a nugget of information (given the diversity of types of data
of interest), and how one can formalise how interesting such a nugget of
information is to a particular user (given the diversity of types of users
and intended purposes). In this Nectar paper we briefly survey a number
of recent contributions made by us and collaborators towards a theoret-
ically motivated and practically usable resolution of these challenges.

1 Exploratory Data Mining

From the seventies of the previous century, Tukey, Friedman, and collaborators
advocated complementing research into statistical tools for confirmatory analy-
sis of hypotheses with the development of tools that allow the interactive and
exploratory analysis of data [24]. The sort of techniques they proposed for this
ranged from the very simple (the use of summary statistics for data, and sim-
ple visual data summarisation techniques including the box plot as well as now
largely obsolete techniques such as the stem-and-leaf plot), to advanced tech-
niques for dimensionality reduction such as projection pursuit and its variants
[6,10]. While recognising the development of confirmatory analysis techniques
(such as hypothesis tests and confidence intervals, allowing us to infer population
properties from a sample) as one of the greatest achievements of the twentieth
century, Tukey complained that “Anything to which a confirmatory procedure
was not explicitly attached was decried as ‘mere descriptive statistics’, no matter
how much we learned from it.”

Since then, data has evolved in size and complexity, and the techniques de-
veloped in the past century for EDA are only rarely applicable in their basic
unaltered form. Nevertheless, we argue that the problem identified by Tukey is
greater than ever. Today’s data size and complexity more often than not de-
mand an extensive exploration stage by means of capable and intuitive EDM
techniques, before predictive modelling or confirmatory analysis can realistically
and usefully be applied.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 612–616, 2013.
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There are however a few important research challenges that need resolving
before EDM techniques can optimally fulfil this need:

– The concept of a ‘nugget of information’ found in data needs to be formalised.
We will refer to such a nugget of information as a pattern.

– To allow for automating the search for interesting patterns in data, the con-
cept of interestingness of a pattern needs to be formalised mathematically.
Clearly, interestingness is a subjective concept, such that the formalisation
must depend on the user’s perspective.

– These theoretical insights need to be turned into practical methods and
eventually a toolbox for EDM ‘in the wild’.

Given the nature of this Nectar paper track, in most of the remainder of this
short note we will focus on our own contributions towards the resolution of these
challenges. Here we only briefly mention a very incomplete list of works that have
influenced our thinking or that have otherwise impacted on EDM research: In
2000 Mannila wrote a highly insightful letter in SIGKDD Explorations about
frameworks for data mining [19]; Several prominent researchers advocate data
compression as the key operation in the data mining process [5,20]; Recent in-
fluential work from Mannila and others on swap randomizations has advocated
the use of empirical hypothesis testing in the development of interestingness
measures [8,9,18]; The work on tiling databases [7] has been inspirational to our
earliest work on this topic. For a more comprehensive overview of data min-
ing interestingness measures based on novelty we refer the reader to our survey
paper [14]. Finally, much of our work was also inspired by applied bioinformat-
ics research where exploratory analysis was required, and where we found that
current techniques fell short [17,16].

2 Patterns and Their Interestingness

Let us start by clarifying the key terminology. Let Ω be the (measurable) space
to which the data, denoted as x, is known to belong. We will refer to Ω as the
data domain. Then, in our work we defined the notion of a pattern by means of a
subset Ω′ of the data domain, saying that a pattern defined by Ω′ ⊆ Ω is present
in the data x iff x ∈ Ω′. This definition is as expressive as it is simple. Most, if
not all, types of data mining patterns can be expressed in this way, including the
results of frequent pattern miners, dimensionality reduction methods, clustering
algorithms, methods for community detection in networks, and more.

The simplicity of this definition further allows us to reason about the inter-
estingness of a pattern in terms of how it affects a user’s beliefs about the data.
To achieve this, we have opted to represent the beliefs of a user by means of a
probability measure P defined over the data domain Ω, to which we refer as the
background distribution. The interestingness of a pattern is then related to how
the background distribution is affected by revealing a pattern to a user, i.e. the
degree to which revealing a pattern enhances the user’s belief attached to the
actual value of the data under investigation.
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To do this, several issues need to be studied, such as how to come up with
a sensible background distribution without putting too large a burden on the
user, how the revealing of a pattern affects the background distribution, how a
change in background distribution should be translated into interestingness, and
the cost (e.g. in terms of mental energy or processing capacity) presented to a
user when processing the revealed pattern.

In answer to these questions, in [2,1,4] we presented formal arguments demon-
strating that a robust approach to quantifying interestingness is based on three
elements: (1) inferring the background distribution as the one of maximum en-
tropy subject to constraints that formalise the user’s prior beliefs about the data;
(2) the quantification of the information content of the pattern, as minus the
logarithm of the probability P (x ∈ Ω′) under this background distribution that
the data belongs to the restricted domain Ω′ defined by the pattern; and (3)
trading off this information content with the length of the description required
to communicate the pattern to the user.

Most commonly the purpose of the data miner is to obtain as good an under-
standing of the data (overall information content of the set of patterns revealed)
within specific bounded resource constraints (overall description length of all the
patterns revealed). Initially in [2] and later more formally in [1], we argued that
this amounts to solving a weighted budgeted set coverage problem. While this
problem does not allow for an efficient optimal solution, it can be approximated
provably well in a greedy way, iteratively selecting the next best pattern. Hereby,
the next best pattern is defined as the one that maximizes the ratio of its in-
formation content (given the current background distribution) to its description
length. Thus, matching this common usage setting, we proposed to formalize the
interestingness of a pattern as the ratio of its information content and its de-
scription length, called its information ratio (or compression ratio). It represents
how densely information is compressed in the description of the pattern.

3 Data and Users in the Real World

Initially we demonstrated our theoretical results on the particular data mining
problem of frequent itemset mining [2] for a relatively simple type of prior beliefs
(namely the row and column sums), and for a simple type of pattern (namely a
tile [7]). In our later work we extended it in the following directions:

– Using more complex types of pattern (in casu noisy tiles) [11] as well as
allowing more complex types of prior beliefs to be taken into account on
simple binary databases, such as tile densities and itemset frequencies [12].

– Expanding these ideas toward real-valued data, for local pattern types [15]
as well as global clustering pattern types [3,13].

– The development of a new expressive pattern syntax for multi-relational
data with binary and n-ary relationships, the formalisation of subjective
interestingness for a certain type of prior information, and the development
of efficient algorithms to mine these patterns [21,22,23].
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4 An Encompassing Toolbox for Exploratory Data
Mining?

We believe there is significant value to be gained by further expanding these
theoretical insights as well as the practical instantiations of the framework. We
hope and anticipate that this may ultimately result in a modular and expandable
toolbox for EDM that can be applied to data as it presents itself in real-life, and
that is effectively usable by experts and lay users alike.

Most real-world structured data is multi-relational data in some way, includ-
ing simple binary and attribute-value tables, traditional (relational) databases,
(annotated) graphs, as well as RDF data and the semantic web. We therefore
believe that a general EDM toolbox could most easily be built upon our recent
work on multi-relational data mining. In this work we developed a new pattern
syntax for multi-relational data with categorical attribute values, an associated
interestingness measure along the lines of the advocated framework (demon-
strated for a simple but important type of prior beliefs), as well as efficient
mining algorithms [21,22,23].

Of course, in order to mature into a fully fledged EDM toolbox, this starting
point requires a number of advances. Some of these, however, we have already
partially developed for simpler types of data. For example, the resulting toolbox
will need to be able to deal with real-valued data, which requires the definition
of a new multi-relational pattern syntax and the adaptation of the prior belief
types for real-valued data developed in [15,3,13] to the multi-relational case.
Another required step will be the incorporation of more complex types of prior
information also for categorical data, along the lines of our previous work on
single-relational data [12].

Acknowledgements. Most importantly we are grateful to Kleanthis-Nikolaos
Kontonasios, as well as to Jilles Vreeken, Mario Boley, and Matthijs van Leeuwen,
all of whom have made important contributions to the development of the vision
advocated in this Nectar paper. This work was partially funded by EPSRC grant
EP/G056447/1.

References

1. De Bie, T.: An information-theoretic framework for data mining. In: Proc. of the
17th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining, KDD 2011 (2011)

2. De Bie, T.: Maximum entropy models and subjective interestingness: an application
to tiles in binary databases. Data Mining and Knowledge Discovery 23(3), 407–446
(2011)

3. De Bie, T.: Subjectively interesting alternative clusters. In: Proceedings of the 2nd
MultiClust Workshop: Discovering, Summarizing and Using Multiple Clusterings
(2011)

4. De Bie, T., Kontonasios, K.-N., Spyropoulou, E.: A framework for mining inter-
esting pattern sets. SIGKDD Explorations 12(2) (December 2010)



616 T. De Bie and E. Spyropoulou

5. Faloutsos, C., Megalooikonomou, V.: On data mining, compression, and kol-
mogorov complexity. Data Mining and Knowledge Discovery 15, 3–20 (2007)

6. Friedman, J., Tukey, J.: A projection pursuit algorithm for exploratory data anal-
ysis. IEEE Transactions on Computers 100(9), 881–890 (1974)
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Abstract. Tensor factorization has emerged as a promising approach
for solving relational learning tasks. Here we review recent results on a
particular tensor factorization approach, i.e. Rescal, which has demon-
strated state-of-the-art relational learning results, while scaling to knowl-
edge bases with millions of entities and billions of known facts.

1 Introduction

Exploiting the information contained in the relationships between entities has
been essential for solving a number of important machine learning tasks. For
instance, social network analysis, bioinformatics, and artificial intelligence all
make extensive use of relational information, as do large knowledge bases such as
Google’s Knowledge Graph or the Semantic Web. It is well-known that, in these
and similar domains, statistical relational learning (SRL) can improve learning
results significantly over non-relational methods. However, despite the success
of SRL in specific applications, wider adoption has been hindered by multi-
ple factors: without extensive prior knowledge about a domain, existing SRL
methods often have to resort to structure learning for their functioning; a pro-
cess that is both time consuming and error prone. Moreover, inference is often
based on methods such as MCMC and variational inference which introduce
additional scalability issues. Recently, tensor factorization has been explored as
an approach that overcomes some of these problems and that leads to highly
scalable solutions. Tensor factorizations realize multi-linear latent factor models
and contain commonly used matrix factorizations as the special case of bilin-
ear models. We will discuss tensor factorization for relational learning by the
means of Rescal [6,7,5], which is based on the factorization of a third-order
tensor and which has shown excellent learning results; outperforming state-of-
the-art SRL methods and related tensor-based approaches on benchmark data
sets. Moreover,Rescal is highly scalable such that large knowledge bases can be
factorized, which is currently out of scope for most SRL methods. In our review
of this model, we will also exemplify the general benefits of tensor factorization
for relational learning, as considered recently in approaches like [10,8,1,4,2]. In
the following, we will mostly follow the notation outlined in [3]. We will also
assume that all relationships are of dyadic form.
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2 Relational Learning via Tensor Factorization

Dyadic relational data has a natural representation as an adjacency tensor
X ∈ Rn×n×m whose entries xijk correspond to all possible relationships between
n entities over m different relations. The entries of X are set to

xijk =

{
1, if the relationship relationk(entityi, entityj) exists

0, otherwise.

Rescal [6] is a latent factor model for relational learning, which factorizes an
adjacency tensorX into a core tensorR ∈ Rr×r×m and a factor matrix A ∈ Rn×r

such that
X ≈ R×1 A×2 A. (1)

Equation (1) can be equivalently specified as xijk ≈ aT
i Rkaj , where the column

vector ai ∈ Rr denotes the i-th row of A and the matrix Rk ∈ Rr×r denotes the
k-th frontal slice of R. Consequently, ai corresponds to the latent representation
of entityi, while Rk models the interactions of the latent variables for relationk.
The dimensionality r of the latent space A is a user-given parameter which spec-
ifies the complexity of the model. The symbol “≈” denotes the approximation
under a given loss function. Figure 1 shows a visualization of the factorization.
Probabilistically, eq. (1) can be interpreted as estimating the joint distribution
over all possible relationships

P(X |A,R) =

n∏
i=1

n∏
j=1

m∏
k=1

P(xijk |aT
i Rkaj). (2)

Hence, a Rescal factorization of an adjacency tensor X computes a complete
model of a relational domain where the state of a relationship xijk depends on the
matrix-vector product aT

i Rkaj . Here, a Gaussian likelihood model would imply
a least squares loss function, while a Bernoulli likelihood model would imply
a logistic loss function [6,5]. To model attributes of entities efficiently, coupled
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tensor factorization can be employed [7,11], where simultaneously to eq. (1) an
attribute matrix F ∈ Rn×� is factorized such that F ≈ AW and where the
latent factor A is shared between the factorization of X and F . Rescal and
other tensor factorizations feature a number of important properties that can be
exploited for tasks like link prediction, entity resolution or link-based clustering:

Efficient Inference. The latent variable structure of Rescal decouples inference
such that global dependencies are captured during learning, whereas prediction
relies only on a typically small number of latent variables. It can be seen from
eq. (2) that a variable xijk is conditionally independent from all other variables
given the expression aT

i Rkaj . The computational complexity of these matrix-
vector multiplications depends only on the dimensionality of the latent space A,
what enables, for instance, fast query answering on knowledge bases. It is impor-
tant to note that this locality of computation does not imply that the likelihood
of a relationship is only influenced by local information. On the contrary, the
conditional independence assumptions depicted in fig. 2 show that information
is propagated globally when computing the factorization. Due to the colliders
in fig. 2, latent variables (ai, aj , Rk) are not d-separated from other variables
such that they are possibly dependent on all remaining variables. Therefore,
as the variable xijk depends on its associated latent variables {ai,aj , Rk}, it
depends indirectly on the state of any other variable such that global dependen-
cies between relationships can be captured. Similar arguments apply to tensor
factorizations such as the Tucker decomposition and CP, which explains the
strong relational learning results of Rescal and CP compared to state-of the-art
methods such as MLN or IRM [6,7,2,5].

Unique Representation. A distinctive feature of Rescal is the unique represen-
tation of entities via the latent space A. Standard tensor factorization models
such as CP and Tucker compute a bipartite model of relational data, mean-
ing that entities have different latent representations as subjects or objects in a
relationship. For instance, a Tucker-2 model would factorize the frontal slices
of an adjacency tensor X as Xk ≈ ARkB

T such that entities are represented as
subjects via the latent factor A and as objects via the latent factor B. However,
relations are usually not bipartite and in these cases a bipartite modeling would
effectively break the flow of information from subjects to objects, as it does not
account for the fact that the latent variables ai and bi refer to the identical en-
tity. In contrast, Rescal uses a unique latent representation ai for each entity
in the data set, what enables efficient information propagation via the depen-
dency structure shown in fig. 2 and what has been demonstrated to be critical
for capturing correlations over relational chains. For instance, consider the task
to predict the party membership of presidents of the United States of America.
When the party membership of a president’s vice president is known, this can be
done with high accuracy, as both persons have usually been members of the same
party, meaning that the formula vicePresident(x, y) ∧ party(y, z)⇒ party(x, z)
holds with high probability. For this and similar examples, it has been shown
that bipartite models such as CP and Tucker fail to capture the necessary
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correlations, as, for instance, the object representation by does not reflect that
person y is in a relationship to party z as a subject. Rescal, on the other hand,
is able to propagate the required information, e.g. the party membership of y,
via the unique latent representations of the involved entities [6,7].

Latent Representation. In relational data, the similarity of entities is determined
by the similarity of their relationships, following the intuition that “if two ob-
jects are in the same relation to the same object, this is evidence that they may
be the same object” [9]. This notion of similarity is reflected in Rescal via
the latent space A. For the i-th entity, all possible occurrences as a subject are
grouped in the slice Xi,:,: of an adjacency tensor, while all possible occurrences
as an object are grouped in the slice X:,i,: (see figs. 3 and 4). According to the
Rescal model, these slices are computed by vec (Xi,:,:) ≈ aiR(1)(I ⊗A)T and
vec (X:,i,:) ≈ aiR(2)(I ⊗A)T . Since the terms R(1)(I⊗A)T and R(2)(I⊗A)T are
constant for different values of i, it is sufficient to consider only the similarity
of ap and aq to determine the relational similarity of entityp and entityq. As
this measure of similarity is based on the latent representations of entities, it
is not only based on counting identical relationships of identical entities, but
it also considers the similarity of the entities that are involved in a relation-
ship. The previous intuition could therefore be restated as if two objects are in
similar relations to similar objects, this is evidence that they may be the same
object. Latent representations of entities have been exploited very successfully
for entity resolution and also enabled large-scale hierarchical clustering on rela-
tional data [6,7]. Moreover, since the matrix A is a vector space representation
of entities, non-relational machine learning algorithms such as k-means or kernel
methods can be conveniently applied to any of these tasks.

X:,i,:

X:,j,:

Fig. 3. Incoming Links

Xi,:,:

Xj,:,:

Fig. 4. Outgoing Links

High Scalability. The scalability of algorithms has become of utmost importance
as relational data is generated in an unprecedented amount and the size of
knowledge bases grows rapidly. Rescal-ALS is a highly scalable algorithm to
compute the Rescal model under a least-squares loss. It has been shown that
it can efficiently exploit the sparsity of relational data as well as the structure
of the factorization such that it features linear runtime complexity with regard
to the number of entities n, the number of relations m, and the number of
known relationships nnz(X), while being cubic in the model complexity r. This
property allowed, for instance, to predict various high-level classes of entities
in the Yago 2 ontology, which consists of over three million entities, over 80
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relations or attributes, and over 33 million existing relationships, by computing
low-rank factorizations of its adjacency tensor on a single desktop computer [7].

3 Conclusion and Outlook

Rescal has shown state-of-the-art relational learning results, while scaling up
to the size of complete knowledge bases. Due to its latent variable structure,
Rescal does not require deep domain knowledge and therefore can be easily
applied to most domains. Its latent representation of entities enables the appli-
cation of non-relational algorithms to relational data for a wide range of tasks
such as cluster analysis or entity resolution. Rescal is applicable if latent fac-
tors are suitable for capturing the essential information in a domain. In ongoing
research, we explore situations where plain latent factor models are not a very
efficient approach to relational learning and examine how to overcome the un-
derlying causes of these situations.
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Abstract. There is much recent discussion on data streams and big data,
which except of their volume and velocity are also characterized by volatil-
ity. Next to detecting change, it is also important to interpret it. Consider
customer profiling as an example: Is a cluster corresponding to a group of
customers simply disappearing or are its members migrating to other clus-
ters? Does a new cluster reflect a new type of customers or does it rather
consist of old customers whose preferences shift? To answer such questions,
we have proposed the framework MONIC [20] for modeling and tracking
cluster transitions. MONIC has been re-discovered some years after pub-
lication and is enjoying a large citation record from papers on community
evolution, cluster evolution, change prediction and topic evolution.

Keywords: cluster monitoring, change detection, dynamic data, data
streams, big data.

1 Motivation

MONIC stands for MONItoring Clusters. It has appeared in [20] with following
motivation:“In recent years, it has been recognized that the clusters discovered
in many real applications are affected by changes in the underlying population.
Much of the research in this area has focused on the adaptation of the clusters, so
that they always reflect the current state of the population. Lately, research has
expanded to encompass tracing and understanding of the changes themselves, as
means of gaining valuable insights on the population and supporting strategic
decisions. For example, consider a business analyst who studies customer profiles.
Understanding how such profiles change over time would allow for a long-term
proactive portfolio design instead of reactive portfolio adaptation.”

Seven years later, this motivation holds unchanged and the need for evolu-
tion monitoring is exarcebated through the proliferation of big data. Next to

� Work on model monitoring (2013) partially supported by the German Research
Foundation, SP 572/11-1 IMPRINT: Incremental Mining for Perennial Objects.
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“Volume” and “Velocity”, “Volatility” is a core characteristic of big data. Data
mining methods should not only adapt to change but also describe change.

Citations to MONIC (according to Google scholar) follow a rather unusual
distribution. There has been one citation to the article in 2006 and 11 in 2007.
From 2008 on though, 15-30 new citations are added every year, reaching 132
in 2012 and achieving 141 in 2013. This means that the article has been re-
discovered in 2008, reaching a peak in popularity increase in 2011 (31 citations)
and remaining stable thereafter. We associate these values with the intensive
investigation of the role of time in data mining and the study of drift in stream
mining. The topics associated with MONIC are multifaceted. MONIC is cited
by papers on community evolution, on evolution of topics in text streams, on
cluster evolution in general (for different families of cluster algorithms) and on
frameworks for change modeling and change prediction. An important followup
in terms of specifying a research agenda is the work of Boettcher et al [3] on
“exploiting the power of time in data mining”.

2 MONIC at a Glance

MONIC models and traces the transitions of clusters built upon an accumulating
dataset. The data are clustered at discrete timepoints, cluster transition between
consecutive time points are detected and “projected” upon the whole stream so
as to draw conclusions regarding the evolution of the underlying population.

To build a monitoring framework for streaming data, the following challenges
should be addressed: (a) what is a cluster? (b) how do we find the “same” cluster
at a later timepoint? (c) what transitions can a cluster experience and (d) how
to detect these transitions?

Regarding challenge (a), in MONIC a cluster is described by the set of points
it contains. MONIC is thus not restricted to a specific cluster definition and
can be used equally with partitioning, density-based and hierarchical clustering
methods. More importantly, this cluster description allows for different forget-
ting strategies over a data stream, and even allows for changes in the feature
space. Feature space evolution may occur in document streams, where new fea-
tures/words may show up. Hence, MONIC is flexible enough for change moni-
toring on different clustering algorithms with various data forgetting models.

Challenge (b), i.e. tracing a cluster at a later timepoint is solved by comput-
ing the overlap between the original cluster and the clusters built at the later
timepoint. The overlap is a set intersection, except of considering only those
cluster members that exist at both timepoints. Hence, the impact of data decay
on cluster evolution is accounted for.

Cluster evolution, challenge (c), refers to the transitions that may be observed
in a cluster’s “lifetime”. The simplest transitions are disappearance of an exist-
ing cluster, and the emerging of a new one. MONIC proposes a typification of
cluster transitions, distinguishing between internal transitions that affect the
cluster itself and external transitions that concern the relationship of a clus-
ter to other clusters. Cluster merging, the absorption of a cluster by another,
the split of a cluster into more clusters, as well as cluster survival, appearance
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and disappearance are external transitions. An internal transition is a change in
the cluster’s properties, such as its cardinality (shrink, expand), compactness or
location (repositioning of its center, change in the descriptors of its distribution).

Next to specifying a list of transitions, there is need for a mechanism detecting
them. Challenge (d) is dealt through transition indicators. These are heuristics
which may be tailored to a specific algorithm, e.g. by tracing movements of a
cluster’s centroid, or algorithm-independent, e.g. by concentrating only on the
cardinality of the cluster and the similarity among its members. The transition
indicators are incorporated in a transition detection algorithm that takes as input
the clusterings between two consecutive timepoints and outputs the experienced
cluster transitions. The algorithm first detects external transitions corresponding
to “cluster population movements” between consecutive timepoints and for clus-
ters that “survive” at a later timepoint, internal transitions are detected. Based
on the detected transitions, temporal properties of clusters and clusterings, such
as lifetime and stability, are derived and conclusions about the evolution of the
underlying population are drawn.

The low complexity of the algorithm, O(K2), where K is the maximum num-
ber of clusters in the compared clusterings, makes MONIC applicable to real big
volatile data applications. The memory consumption is also low, only the clusters
at the compared timepoints are required as input to the clustering algorithm,
whereas any previous clustering results is removed.

In the original paper, we investigated evolution over a document collection,
namely ACM publications on Database Applications (archive H2.8) from 1998
to 2004 and studied particularly the dominant themes in the most prominent
subarea of database applications, namely “data mining”. In [19,14], we extended
MONIC into MONIC +, which in contrast to MONIC that is a generic cluster
transition modeling and detection framework, encompasses a typification of clus-
ters and cluster-type-specific transition indicators, by exploiting cluster topology
and cluster statistics for transition detection. Transition specifications and tran-
sition indicators form the basis for monitoring clusters over time. This includes
detecting and studying their changes, summarizing them in an evolution graph,
as done in [16,15], or predicting change, as done in [17].

3 MONIC and Beyond

MONIC has been considered in a variety of different areas and applications.
Rather than elaborating on each paper, we explain very briefly the role of evo-
lution in each area, picking one or two papers as examples.

Evolution in social networks: There are two aspects of evolution in social net-
works [18], best contrasted by the approaches [18,21,4]. In [21] the problem of com-
munity evolution is investigated from the perspective of migration of individuals.
They observe communities as stable formations and assume that an individuum is
mostly observed with other members of the own community and rarely with mem-
bers of other communities, i.e. movement from one community/cluster to another
is rare. This can be contrasted to the concept of community evolution, as investi-
gated in [4], where it is asserted that the individuals define the clusters, and hence
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the clusters may change as individuals migrate. The two aspects of evolution are
complementary: the one aspect concentrates on the clusters as stable formations,
the other on the clusters as the result of individuals’ movements.

Frameworks for change prediction & stream mining: Due to the high volatile
nature of modern data, several generic works for change detection or incorpo-
ration of time in the mining process have been proposed. In [7] the problem of
temporal relationship between clusters is studied and the TRACDS framework
is proposed which “adds” to the stream clustering algorithms the temporal or-
dering information in the form of a dynamically changing Marcov Chain. In [6]
the problem of cluster tracing in high dimensional feature spaces is considered.
Subspace clustering is applied instead of full dimensional clustering thus associ-
ating each cluster with a certain set of dimensions. In [17] the MEC framework
for cluster transition detection and visualization of the monitoring process is
proposed. Other citations in this area include [2,16,15].

Spatiotemporal data: With the wide spread usage of location aware devices and
applications, analyzing movement data and detecting trends is an important task
nowadays. The problem of convoy discovery in spatiotemporal data is studied in
[10], a convoy being a group of objects that have traveled together for some time.
Thediscovery of flock patterns is considered in [22], defined as all groups of trajecto-
ries that stay “together” for the duration of a given time interval. Continuous clus-
tering of moving objects is studied in [9]. Other citations in this area include [1,13].

Topic evolution: Topic monitoring is a necessity nowadays due to the continu-
ous stream of published documents. In [11] a topic evolution graph is constructed
by identifying topics as significant changes in the content evolution and connect-
ing each topic with the previous topics that provided the context. [8] studies how
topics in scientific literature evolve by using except for the words in the docu-
ments the impact of one document to the other in terms of citations. In [23] a
method is proposed for detecting, tracking and updating large and small bursts
in a stream of news. Recently [24], the method has been coupled with classifier
counterparts for each topic in order to study dynamics of product features and
their associated sentiment based on customer reviews. Other citations are [5,12].

4 Tracing Evolution Today

Scholars become increasingly aware on the importance of understanding evo-
lution. This is reflected in the increasing number of citations on MONIC and
in the diversity of the areas it is cited from. Modeling evolution, summarizing
it and predicting it are cornerstone subjects in learning from data. Big data,
characterized by volatility, will contribute further to the trend.
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Abstract. Learning robots that can acquire new motor skills and re-
fine existing ones have been a long-standing vision of both robotics, and
machine learning. However, off-the-shelf machine learning appears not
to be adequate for robot skill learning, as it neither scales to anthro-
pomorphic robotics nor do fulfills the crucial real-time requirements. As
an alternative, we propose to divide the generic skill learning problem
into parts that can be well-understood from a robotics point of view. In
this context, we have developed machine learning methods applicable to
robot skill learning. This paper discusses recent progress ranging from
simple skill learning problems to a game of robot table tennis.

1 Introduction

Despite the many impressive motor skills exhibited by anthropomorphic robots,
the generation of motor behaviors has changed little since classical robotics. The
roboticist models the task dynamics as accurately as possible while using human
insight to create the desired robot behavior, as well as to eliminate all uncertain-
ties of the environment. In most cases, such a process boils down to recording a
desired trajectory in a pre-structured environment with precisely placed objects.
Such highly engineered approaches are feasible in highly structured industrial or
research environments. However, for robots to leave factory floors and research
environments, the strong reliance on hand-crafted models of the environment
and the robots needs to be reduced. Instead, a general framework is needed
for allowing robots to learn their tasks with minimal programming and in less
structured, uncertain environments. Such an approach clearly has to be based on
machine learning combined with robotics insights to make the high-dimensional
domain of anthropomorphic robots accessible. To accomplish this aim, three
major questions need to be addressed:

1. How can we develop efficient motor learning methods?
2. How can anthropomorphic robots learn basic skills similar to humans?
3. Can complex skills be composed with these elements?
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In the next sections, we will address these questions. We focus on model-free
methods, which do not maintain an internal behavior simulator (i.e., a for-
ward model) but operate directly on the data. Note that most methods transfer
straightforwardly to model-based approaches.

2 Motor Learning Methods

After formalizing the necessary assumptions on robotics from a machine learning
perspective, we show the concepts behind the our learning methods.

2.1 Modeling Assumptions

Fig. 1. Modeling of the learning
task of paddling a ball

For addressing these questions, we focus on
anthropomorphic robot systems which always
are in a state x ∈ Rn that includes both the
internal state of the robot (e.g., joint angles,
velocities, acceleration in Fig. 1, but also in-
ternal variables) as well as external state vari-
ables (e.g., ball position and velocity), and
execute motor commands u ∈ Rm at a high fre-
quency (usually 500–1000Hz). The actions are
taken in accordance to a parametrized, station-
ary, stochastic policy, i.e., a set of rules with
exploration u ∼ πθ(u|x) = p(u|x, θ) where the
parameters θ ∈ RN allow for learning. The
stochasticity in the policy allows capturing the variance of the teacher, can ease
algorithm design, and there exist well-known problems where the optimal sta-
tionary policy is stochastic. Frequently used policies are linear in state feature
φ(x) and have Gaussian exploration, i.e., πθ(u|x) = N (u|φT (x)θ, σ2). After
every motor command, the system transfers to a next state x′ ∼ p(x′|x,u), and
receives a learning signal r(x,u). The learning signal can be a general reward
(i.e., in full reinforcement learning), but can also contain substantially more
structure (e.g., prediction errors in model learning or proximity to a demonstra-
tion in imitation), see [1].

During experiments, the system obtains a stream of data consisting of episodes
τ = [x1,u1,x2,u2, . . . ,xT−1,uT−1,xT ] of length T , often also called trajectories
or paths. These paths are obviously distributed according to

pθ(τ ) = p(x1)
∏T

t=1p(xt+1|xt,ut)πθ(u|x), (1)

where p(x1) denotes the start-state distribution. We will refer to the distribu-
tion of teacher’s demonstrations or past data p(τ ) by simply omitting θ. The
rewards of a path can be formulated as a weighted sum of immediate rewards
r(τ ) =

∑T
t=1 atr(xt,ut). Most motor skill learning problems can be phrased as

optimizing the expected returns J(θ) = Eθ{r(τ )} =
´
pθ(τ )r(τ )dτ .
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2.2 Method Development Approach

The problem of learning robot motor skills can be modeled as follows: (1) The
robots starts with an initial training data set obtained from demonstrations
from which it learns an initial policy. (2) It subsequently learns how to improve
this policy by repetitive training over multiple episodes. The first goal is accom-
plished by imitation learning while the second requires reinforcement learning.
In addition, model learning is often needed for improved execution [2].

Imitation Learning. The goal of imitation learning is to successfully reproduce
the policy of the teacher π(u|x). Many approaches exist in the literature [3,4].
However, this problem can be well-understood for stochastic policies: How can
we reproduce the stochastic policy π given a demonstrated path distribution
p(τ )? The path distribution pθ(τ ) generated by the policy πθ should be as close
as possible to the teacher’s, i.e., it minimizes the Kullback-Leibler Divergence

D(p(τ )||pθ(τ )) =
´
p(τ) log

p(τ )

pθ(τ )
dτ =

´
p(τ )

∑T
t=1 log

π(ut|xt)

πθ(ut|xt)
dτ ,

where the model of the system and the start-state distribution naturally cancel
out. As log π(ut|xt) is an additive constant, the path rewards become

r(τ ) ∝ −
∑T

t=1 log πθ(ut|xt) = −
∑T

t=1

∥∥u− φT (x)θ
∥∥2 ,

where the second part only holds true for our policy which is linear in the features
and has Gaussian exploration. Clearly, the model-free imitation learning problem
can be solved in one shot in this way [4].

Reinforcement Learning. For general rewards, the problem is not straightfor-
ward as the expected return has no notion of data. Instead, for such a brute-force
problem, learning can only happen indirectly as in value function methods [1] or
using small steps in the policy space, as in policy gradient methods [5]. Instead
of circumventing this problem, we realized that there exits a tight lower bound

J(θ) =
´
pθ(τ )r(τ )dτ ≥ D(p(τ )r(τ )||pθ(τ )).

Hence, reinforcement learning becomes a series of reward-weighted self-imitation
steps (Intuitively: “Do what you are but better ”) with the resulting policy update

θ′ = argmaxθ′D(R(τ )pθ(τ )||pθ′(τ ))

which is guaranteed to converge to a local optimum. Taking such an approach,
which stays close to the training data is often crucial for robot reinforcement
learning as the robot avoids trying arbitrary, potentially destructive actions. The
resulting methods have led to a series of highly successful robot reinforcement
learning methods such as reward-weighted regression [5], LAWER [6], PoWER
[4], and Cost-regularized Kernel Regression [7].
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3 Application in Robot Skill Learning

Fig. 2. Swing the
ball into the cup

The imitation and reinforcement learning approaches have so
far been general, despite being geared for the robotics sce-
nario. To apply these methods in robotics, we need appro-
priate policy representations. Such representation are needed
both for simple and complex tasks.

3.1 Learning Simple Tasks with Motor Primitives

We chose policy features based on dynamical systems, which
are an extension the ground-breaking work of Ijspeert, Nakan-
ishi & Schaal refined in [4]. We will use these features to rep-
resent elementary movements, or Movement Primitives (MP).
The methods above are straightforward to apply by using a single motor primi-
tive as a parametrized policy. Such elementary policies πθ(u|x) have both shape
parameters w as well as task parameters γ where θ = [w,γ]. For example, an
elementary policy can be used to learn a dart throwing movement by learning
the shape parameters w without considering the task parameters γ. However,
when playing a dart game (e.g., around the clock), the robot has to adapt the
elementary policy (which represents the throwing movement) to new fields on
the dart board. In this case, the shape parameters w can be kept at fixed value
and the goal-adaptation happens purely through the task parameters γ.

Learning only the shape parameters of rhythmic motor primitives using just
imitation learning, we have been able to learn ball paddling [4] as shown in
Fig. 1. Using the combination of imitation and reinforcement learning, our robot
managed to learn ball-in-a-cup in Fig. 2 to perfection within less than a hundred
trials using only shape parameters [4]. By learning dart throwing with the shape
parameters, and, subsequently, adapting the dart throwing movement to the
context, we have managed to learn dart games based on context as well as
another, black-jack-style sequential throwing game [7]. The latter two have been
accomplished by learning a task parameter policy γ ∼ π̂(γ|x).

3.2 Learning a Complex Task with Many Motor Primitives

Fig. 3. Learning to Play
Robot Table Tennis

When single primitives no longer suffice, a robot learn-
ing system does not only need context but also mul-
tiple motor primitives, as for example, in robot table
tennis, see Fig. 3. A combination of primitives allows
the robot to deal with many situations where only few
primitives are activated in the same context [8]. The
new policy combines multiple primitives as follows

u ∼ πθ(u|x) =
∑K

i=1πθ0
(i|x)πθi

(u|x).

The policy πθ0
(i|x) represents the probability of se-

lecting primitive i, represented by πθi(u|x), based on
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the incoming ball and the opponent’s position. The resulting system learned to
return 69% of all balls after imitation learning, and could self-improve against a
ball gun to up to 94% successful returns.

4 Conclusion

In this paper, we reviewed the imitation and reinforcement learning methods
used to learn a large variety of motor skills. These range from simple tasks, such
as ball-paddling, ball-in-a-cup, dart games, etc up to playing robot table tennis.
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Abstract. Sparse models embed variable selection into model learning
(e.g., by using l1-norm regularizer). In small-sample high-dimensional
problems, this leads to improved generalization accuracy combined with
interpretability, which is important in scientific applications such as bi-
ology. In this paper, we summarize our recent work on sparse models,
including both sparse regression and sparse Gaussian Markov Random
Fields (GMRF), in neuroimaging applications, such as functional MRI
data analysis, where the central objective is to gain a better insight into
brain functioning, besides just learning predictive models of mental states
from imaging data.

Keywords: neuroimaging, fMRI, l1-norm regularization, Lasso, Elastic
Net, sparse Gaussian Markov Random Fields (GMRF).

1 Introduction

Predicting person’s mental state based on his or her brain imaging data, such
as functional MRI (fMRI), is an exciting and rapidly growing research area on
the intersection of neuroscience and machine learning. A mental state can be
cognitive, such as viewing a picture or reading a sentence [8], emotional, such as
feeling happy, anxious, or annoyed while playing a virtual-reality videogame [1],
reflect person’s perception of pain [11,12,3], or person’s mental disorder, such as
schizophrenia [2,10], drug addiction [6], and so on.

In fMRI, an MR scanner non-invasively records a subject’s blood-oxygenation-
level dependent (BOLD) signal, known to be related to neural activity, as a sub-
ject performs a task of interest or is exposed to a particular stimulus. Such scans
produce a sequence of 3D images, where each image typically has on the order
of 10,000-100,000 subvolumes, or voxels, and the sequence typically contains a
few hundreds of time points, or TRs (time repetitions). Thus, each voxel is as-
sociated with a time series representing the average BOLD signal within that
subvolume (i.e., voxel activity) at each TR; a task or a stimulus is associated
with the corresponding time series over the same set of TRs.

2 Sparse Regression

Our work is motivated by the traditional fMRI goal of discovering task-relevant
brain areas. However, we wish to avoid limitations of traditional mass-univariate
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Fig. 1. Predictive accuracy of the Elastic Net for the task of predicting (a) “Instruc-
tions” task in PBAIC and (b) thermal pain perception. The insets visualize the sparse
solutions found by the Elastic Net.

approaches such as GLM [4] that essentially performs filter-based variable selec-
tion based on individual voxel correlations with the task, and thus can miss
important multivariate interactions, as noted by [5] and others. Thus, we focus
instead on sparse multivariate models capable of identifying a relatively small
subset of variables (voxels) that (jointly) predict the task well. In [1], we were
among the first ones to apply sparse methods to fMRI, presenting our analysis
of the PBAIC 2007 competition data [9] that we obtained using the Elastic Net
(EN) approach [15]. EN improves upon the basic LASSO [14] by using a convex
combination of l1- and l2-norm regularizers instead of just l1. The effect of such
combined penalty is that, on top of sparsity (voxel selection), a grouping effect
is encouraged, i.e. joint inclusion (or exclusion) of groups of highly correlated
variables (such as spatial clusters of voxels). The grouping property is particu-
larly important from the interpretability perspective, since we hope to discover
relevant brain areas rather than their single-voxel representatives sufficient for
accurate prediction, as the basic LASSO does. We investigate the effects of both
l1 and l2 regularization parameters on the predictive accuracy and stability, mea-
sured here as a support overlap between the regression coefficients learned for
different runs of the experiment. We conclude that, (a) EN can be highly predic-
tive about various mental states, achieving 0.7−0.9 correlation between the true
and predicted response variables (see Figure 1a), and (b) even among equally
predictive models, increasing the l2-regularization weight can help to improve
the model stability.

Furthermore, our subsequent work presented in [11], demonstrates that the
Elastic Net can be highly predictive about such subjective and seemingly hard-
to-quantify experience as pain, achieving up to 0.75 − 0.8 correlation between
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the predicted and actual pain perception ratings, drastically outperforming un-
regularized linear regression, and identifying novel areas undiscovered by GLM1.

However, given a brain map of task-relevant voxels, does this imply that the
rest of the brain voxels is irrelevant? Not necessarily, since multiple sparse predic-
tive solutions are possible in presence of highly-correlated predictors. In [12], we
explore the space of sparse solutions, by first finding the best EN solution with
1000 voxels, removing those voxels from the set of predictors, and repeating the
procedure until there are no more voxels left. Interestingly, for multiple tasks we
considered, including pain perception and others, no clear separation between rel-
evant and irrelevant areas was observed, as shown in Figure 1b, suggesting highly
non-localized, “holographic” distribution of task information in the brain. The
only task which demonstrated fast (exponential) performance degradation, and
clear separation of relevant vs irrelevant areas, was a relatively simple auditory
task from PBAIC (Figure 1a)2. Note that standard GLM method does not reveal
such phenomenon, since, as shown in [12], individual voxel-task correlations al-
ways seem to decay exponentially, and for many reasonably predictive (but not
best) sparse solutions, their voxel would not even pass 0.1 correlation thresh-
old. Thus, multivariate sparse regression is a much better tool than GLM for
exploring actual distribution of task-relevant information in the brain.

3 Sparse Gaussian Markov Random Fields (GMRFs)

Though task-relevant brain areas are still the most common type of patterns
considered in fMRI analysis, they have obvious limitations, since the brain is an
interconnected, dynamical system, whose behavior may be better captured by
modeling interactions across different area. For example, in our recent study of
schizophrenia [2,10], task-based voxel activations are dramatically outperformed
by network-based features, extracted from the voxel-level correlation matrices
(“functional networks”), and yielding from 86% to 93% classification accuracy
on schizophrenic vs. control subjects. Furthermore, we investigate structural dif-
ferences of sparse Gaussian Markov Random Fields, or GMRFs, constructed
from fMRI data via l1-regularized maximum likelihood (inverse covariance esti-
mation). Used as probabilistic classifiers, GMRFs often outperform state-of-art
classifiers such as SVM (e.g., see Figure 2a from [2]). In [13], we proposed a
simple, easily parallelizable greedy algorithm SINCO, for Sparse INverse CO-
variance estimation.

Next, we developed a variable-selection structure learning approach for GM-
RFs in [7]. A combination of (�1,�p) group-Lasso penalty with the l1-penalty
selects the most-important variables/nodes, besides simply sparsifying the set of

1 The predictive accuracy can be further improved by combining EN for predicting the
intensity of the painful stimulus (e.g., the temperature) from fMRI data with a novel
analytic, differential-equation model that links temperature and pain perception [3].

2 A possible hypothesis is that, while “simple” tasks are localized, more complex
tasks/experiences (such as pain) tend to involve much more distributed brain areas
(most of the brain, potentially).
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Fig. 2. (a) Gaussian MRF classifier predicts schizophrenia with 86% accuracy using
just 100 top-ranked (most-discriminative) features, such as voxel degrees in a functional
network. (b) Structures learnt for cocaine addicted (left) and control subjects (right),
for sparse Markov net learning method with variable-selection via �1,2 method (top) and
without variable-selection, i.e., standard graphical lasso approach (bottom). Positive
interactions are in blue, negative – in red. Structure density on top is 0.0016, while on
the bottom it is 0.023 (number of edges in a complete graph is ≈378000).

edges. Our main advantage is a better interpretability of the resulting networks
due to elimination of noisy variables (see below), combined with improvements
in model likelihood and more accurate recovery of ground-truth structure. From
an algorithmic point of view, we show that a block coordinate descent method
generates a sequence of positive definite solutions. Thus, we reduce the original
problem into a sequence of strictly convex (�1,�p) regularized quadratic mini-
mization subproblems for p ∈ {2,∞}. Our algorithm is well founded since the
optimal solution of the maximization problem is unique and bounded. Figure
2b shows the network structures learnt for cocaine addicted vs healthy control
subjects, comparing the two methods. The disconnected variables are not shown.
The variable-selection sparse Markov network approach yields much fewer con-
nected variables but a higher log-likelihood than graphical lasso, as reported
in [7], which suggests that the discarded edges from the disconnected nodes
are not important for accurate modeling of this dataset. Moreover, removal of
a large number of nuisance variables (voxels) results into a much more inter-
pretable model, clearly demonstrating brain areas involved in structural model
differences that discriminate cocaine addicts from healthy control subjects. Co-
caine addicts show increased interactions between the visual cortex (back of the
brain, on the left here) and the prefrontal cortex (front of the brain image, on
the right), while at the same time decreased density of interactions between the
visual cortex with other brain areas. Given that the trigger for reward in this
experiments was a visual stimulus, and that the prefrontal cortex is involved in
higher-order cognitive functions such as decision making and reward processing,
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the alteration in this pathway in the addict group is highly significant from a
neuroscientific perspective.
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Abstract. Large quantities of image data are generated daily and visualizing
large image datasets is an important task. We present a novel tool for image data
visualization and analysis, Image Hub Explorer. The integrated analytic func-
tionality is centered around dealing with the recently described phenomenon of
hubness and evaluating its impact on the image retrieval, recognition and rec-
ommendation process. Hubness is reflected in that some images (hubs) end up
being very frequently retrieved in ’top k’ result sets, regardless of their labels and
target semantics. Image Hub Explorer offers many methods that help in visualiz-
ing the influence of major image hubs, as well as state-of-the-art metric learning
and hubness-aware classification methods that help in reducing the overall im-
pact of extremely frequent neighbor points. The system also helps in visualizing
both beneficial and detrimental visual words in individual images. Search func-
tionality is supported, along with the recently developed hubness-aware result set
re-ranking procedure.

Keywords: image retrieval, object recognition, visualization, k-nearest neigh-
bors, metric learning, re-ranking, hubs, high-dimensional data.

1 Introduction

Image Hub Explorer is the first image collection visualization tool aimed at understand-
ing the underlying hubness [1] of the k-nearest neighbor data structure. Hubness is a
recently described aspect of the well known curse of dimensionality that arises in vari-
ous sorts of intrinsically high-dimensional data types, such as text [1], images [2] and
audio [3]. Its implications were most thoroughly examined in the context of music re-
trieval and recommendation [4]. Comparatively little attention was given to emerging
hubs and the skewed distribution of influence in image data. One of the main goals
of the Image Hub Explorer was to enable other researchers and practitioners to eas-
ily detect hubs in their datasets, as well as test and apply the built-in state-of-the-art
hubness-aware data mining methods.
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2 Resources

Image Hub Explorer is an analytics and visualization tool that is built on top of the
recently developed Hub Miner Java data mining library that is focused on evaluating
various types of kNN methods. Additional resources on the use of Image Hub Explorer
(http://ailab.ijs.si/tools/image-hub-explorer/) and the Hub Miner library
(http://ailab.ijs.si/nenad_tomasev/hub-miner-library/) are available on-
line. This includes the demo video: http://youtu.be/LB9ZWuvm0qw.

3 Related Work

3.1 Hubs in High-Dimensional Data

The concentration of distances [5] in intrinsically high-dimensional data affects the dis-
tribution of neighbor occurrences and causes hubs to emerge as centers of influence
in form of very frequent neighbor points. The kNN hubs often act as semantic singu-
larities and are detrimental for the analysis [6]. Different representations and metrics
exhibit different degrees of neighbor occurrence distribution skewness [2]. Selecting an
appropriate feature representation paired with an appropriate distance measure is a non-
trivial task and very important for improving system performance. This is what Image
Hub Explorer was designed to help with.

Hubness-aware methods have recently been proposed for instance selection [7], clus-
tering [8], metric learning [9][4], information retrieval [10], classification [11] and re-
ranking [12]. Most of these methods are implemented and available in Image Hub
Explorer.

3.2 Visualizing Image Collections

Visualization plays an essential role in examining large image databases. Several
similarity-based visualization approaches have been proposed [13][14] and ImagePlot
(http://flowingdata.com/2011/09/18/explore-large-image-collections-with-imageplot/)
is a typical example. What these systems have in common is that they mostly focus
on different ways of similarity-preserving projections of the data onto the plane, as well
as selection strategies that determine which images are to be shown. Some hierarchical
systems are also available [15]. These systems allow for quick browsing through large
collections, but they offer no support for examining the distribution of influence and
detection of emerging hub images.

4 System Components and Functions

Image Hub Explorer implements several views of the data, to facilitate easier analy-
sis and interpretation. All images in all views can be selected and the information is
shared among the views and updated automatically. The desired neighborhood size k is
controlled by a slider and its value can be changed at any time.

http://ailab.ijs.si/tools/image-hub-explorer/
http://ailab.ijs.si/nenad_tomasev/hub-miner-library/
http://youtu.be/LB9ZWuvm0qw
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(a) MDS Data Overview (b) Class Comparisons

Fig. 1. Screenshots of some selected Image Hub Explorer functions

Metric Learning plays an important role in the analysis. For any loaded data repre-
sentation, many different metrics can be employed. Image Hub Explorer supports 7
primary metrics and 5 secondary metrics that are learned from the primary distance
matrices. This includes two recently proposed hubness-aware distance measures:
simhubs [9] and mutual proximity [4].

Data Overview gives a quick insight into the hub-structure of the data (Fig. 1(a)). The
most influential image hubs are projected onto a visualization panel via multi-
dimensional scaling (MDS) and the background coloring is determined based on
the nature of their occurrences - green denotes the beneficial influences, red the
detrimental ones. The occurrence frequency distribution is shown, followed by a
set of statistics describing various aspects of neighbor occurrences and kNN set
purity.

Neighbor View offers a deeper insight into the local neighbor structure. For each se-
lected image, its k-neighbors and reverse k-neighbors are listed and any selected
image can be inserted into the local subgraph visualization panel. This allows the
user to visualize all kNN relations among a selected set of images as a graph, with
distance values displayed on the edges.

Class View allows the user to compare the point type distributions among different
classes, as well as a way to quickly select and examine the top hubs, good hubs
and bad hubs for each class separately( Fig. 1(b)). Additionally, the global class-to-
class occurrence matrix can be used to determine which classes cause most label
mismatches in k-neighbor sets and which classes these mismatches are directed at.

Search, Re-ranking and Classification : Apart from simple browsing, image search
is an important function in examining large image databases. Image Hub Explorer
supports image queries, for which a set of k most similar images from the database
is retrieved. Image Hub Explorer implements 8 different kNN classification meth-
ods to help with image labeling, as well as a hubness-aware result set re-ranking
procedure [12].

Feature Assessment for quantized feature representations can easily be performed in
Image Hub Explorer, as it calculates the occurrence profile for each visual word
(codebook vector) and determines which features help in increasing the intra-class
similarity and which increase the inter-class similarity. Beneficial and detrimental
features and texture regions can be visualized on each image separately.
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5 Applicability

The Image Hub Explorer system can also be used to visualize other data types, when
rectangular nodes are shown instead of the loaded image thumbnails. Only the fea-
ture visualization and image search functions are restricted to working with image data
specifically.

Acknowledgements. This work was supported by the Slovenian Research Agency, the
ICT Programme of the EC under XLike (ICT-STREP-288342), and RENDER (ICT-
257790-STREP).
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Abstract. This article presents an overview on Ipseity [1], an open-
source rich-client platform developed in C++ with the Qt [2] frame-
work. Ipseity facilitates the synthesis of artificial cognitive systems in
multi-agent systems. The current version of the platform includes a set
of plugins based on the classical reinforcement learning techniques like
Q-Learning and Sarsa. Ipseity is targeted at a broad range of users
interested in artificial intelligence in general, including industrial practi-
tioners, as well as machine learning researchers, students and teachers. It
is daily used as a course support in Artificial Intelligence and Reinforce-
ment Learning and it has been used successfully to manage power flows
in simulated microgrids using multi-agent reinforcement learning [4].

Keywords: Multi-Agent Systems, Reinforcement Learning.

1 Introduction

Multi-agent systems constitute a fitted paradigm for solving various kinds of
problems in a distributed way or for simulating complex phenomena emerg-
ing from the interactions of several autonomous entities. A multi-agent system
(MAS) consists of a collection of agents that interact within a common environ-
ment. Every agent perceives some information extracted from its environment
and acts upon it based on these perceptions.

The individual behaviors of the agents composing a MAS can be defined by
using many decision making mechanisms and many programming languages ac-
cording to the objective at hand. For instance, a planification mechanism can
be used to fulfill the agent goals. A powerful alternative is to implement Re-
inforcement Learning (RL) algorithms that allow the agents to learn how to
behave rationally. In this context, a learning agent tries to achieve a given task
by continuously interacting with its environment. At each time step, the agent
perceives the environment state and performs an action, which causes the envi-
ronment to transit to a new state. A scalar reward evaluates the quality of each
transition, allowing the agent to observe the cumulative reward along sequences
of interactions. By trials and errors, such agents can manage to find a policy, that
is a mapping from states to actions, which maximizes the cumulative reward.

To our knowledge, there is currently no multi-agent platform that allow users
interested in multi-agent RL in particular to easily study the influence of some

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 641–644, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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(learning) parameters on the performance and the results obtained by different
dedicated algorithms using accepted benchmarks. Indeed, RL-Glue1, CLSquare2,
PIQLE3, RL Toolbox4, JRLF5, LibPG6only support single-agent RL techniques.
The MARL Toolbox7 supports multi-agent reinforcement learning under Matlab,
but unlike Ipseity, it is not possible to remotely control other systems.

2 Overview

Ipseity is a rich-client platform especially dedicated to facilitating the imple-
mentation and the experimental validation of different kinds of behaviors for
cooperative or competitive agents in MASs.

2.1 Kernel Concepts

In Ipseity, a set A of agents interact within a given environment. A set G =
{G1, · · · ,GN} of agent groups, called taxons in Ipseity, can be defined. Agents
grouped together into the same taxon are likely to behave similarly (they share
the same decision making mechanism). The behavior of an agent is exhibited
according to its cognitive system. A cognitive system implements the decision
process that allows an agent to carry out actions based on its perceptions. It
can be plugged directly to a given agent or to a taxon. In the latter case, all the
agents associated to the same taxon use the same decision process. If a cognitive
system is based on RL techniques, plugging it to a taxon shared by several agents
may speed up their learning in some cases, as any agent can immediately benefit
from the experiences of the others.

The agents interact within the environment from different possible initial
configurations, or scenarios. Scenarios allow the user to study the quality of
the decisions taken individually or collectively by the agents under some initial
environmental conditions. During a simulation, the agents evolve within the en-
vironment by considering several predefined scenarios whose order is handled by
a supervisor, who can be the user himself or an agent.

2.2 Platform Architecture

Ipseity simulates discrete-time or continuous-time multi-agent environments
inherating from AbstractEnvironment (see Fig. 1a). Several agents (inherating
from AbstractAgent) interact in a multi-agent environment on the basis of their
cognitive system inherating from AbstractCognitiveSystem. A set of scenarii has
to be defined in order to carry out the simulations. These are selected by a
AbstractSupervisionModule.

8 http://glue.rl-community.org/wiki/Main_Page
9 http://ml.informatik.uni-freiburg.de/research/clsquare

10 http://piqle.sourceforge.net
11 http://www.igi.tu-graz.ac.at/gerhard/ril-toolbox/general/overview.html
12 http://mykel.kochenderfer.com/jrlf
13 https://code.google.com/p/libpgrl
14 http://busoniu.net/repository.php

http://glue.rl-community.org/wiki/Main_Page
http://ml.informatik.uni-freiburg.de/research/clsquare
http://piqle.sourceforge.net
http://www.igi.tu-graz.ac.at/gerhard/ril-toolbox/general/overview.html
http://mykel.kochenderfer.com/jrlf
https://code.google.com/p/libpgrl
http://busoniu.net/repository.php
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The cognitive systems in Ipseity can be decomposed into several plugins.
Each of them takes part in the decision process. As shown in Fig. 1b, the re-
inforcement learning cognitive system is currently built from three classes of
plugins: a behavior module, that selects actions from states, a memory, that
stores the Q-values of the state-action pairs, and a learning module, that updates
the contents of the memory from data obtained after environmental transitions.
Currently, Epsilon-Greedy and Softmax are predefined plugins that can be used
as behavior modules, Q-Learning and Sarsa have been implemented and can
be used as learning modules. The Q-value memory can be instanciated by a
plugin implementing either a static or a dynamic lookup table, or a linear func-
tion approximator using a feature extraction module like CMAC for example.
More details about the kernel concepts and about the software architecture are
available on the web site15.

(a) Ipseity (b) RL Cognitive System

Fig. 1. Architecture of Ipseity and architecture of a RL cognitive system

2.3 Properties

Ipseity was designed to possess the following properties:

Flexibility: Ipseity uses kernel concepts and components (i.e. data represen-
tations and algorithms) that are as flexible as possible. For example, the
perceptions and the responses of agents are represented by 64-bit float vec-
tors, allowing agents to be immerged either in discrete environments or in
continuous environments.

Modularity: Ipseity uses modules, or plugin, to implement kernel concepts
and components. For example, the environments, the cognitive systems, the
agent scheduling, and the selection of the simulation scenarios are all defined
as plugins.

Easy Integration: These plugins (and in particular those related to cognitive
systems) can be easily integrated in other systems and applications. For
example, Ipseity can be used to learn the behaviors of some agents. Once

15 At http://www.ipseity-project.com/docs/IpseityTechnicalGuide.pdf.

http://www.ipseity-project.com/docs/IpseityTechnicalGuide.pdf
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the learning phase is finished, agents can perceive information from a remote
environment and act according to the learnt behavior. Such integration has
been realized between Ipseity and Janus [3]: remote cognitive systems with
behaviors learnt using Ipseity communicate using TCP-IP sockets with
agents of a microgrid simulator developed under Janus.

Extensibility: Ipseity can easily be extended by specialized plugins for the
target application area. Customized extensions include new environments,
algorithms that take part in the decision processes of some cognitive systems
or rendering modules for some predefined environments.

System Analysis: Ipseity supports the user in keeping track of all the data,
performed actions and results of a RL task. This data set is linked to a
session, allowing the user to easily and rapidly compare the results obtained
from different algorithms.

Graphical Interface: Ipseity provides a user-friendly interface (see Fig.2)
with informative icons and widgets for setting up all the parameters involved
in the simulation of a MAS, including those of a cognitive system.

Fig. 2. Screenshots of some tabs in Ipseity

3 Conclusion

An overview of Ipseity has been presented in this article, focusing on RL. Ipse-
ity is highly modular and broadly extensible. It can be freely downloaded from
http://www.ipseity-project.com under a GNU GPLv3 open-source licence.
It is intended to be enriched with state-of-the-art RL techniques very soon. Per-
sons who want to contribute to this project are cordially encouraged to contact
the first author.
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Abstract. We present OpenML, a novel open science platform that pro-
vides easy access to machine learning data, software and results to encour-
age further study and application. It organizes all submitted results online
so they can be easily found and reused, and features a web API which is
being integrated in popular machine learning tools such asWeka, KNIME,
RapidMiner and R packages, so that experiments can be shared easily.

Keywords: Experimental Methodology, Machine Learning, Databases,
Meta-Learning.

1 Introduction

Research in machine learning and data mining can be speeded up tremendously
by moving empirical research results “out of people’s heads and labs, onto the
network and into tools that help us structure and alter the information” [3].
The massive streams of experiments that are being executed to benchmark new
algorithms, test hypotheses or model new datasets have many more uses beyond
their original intent, but are often discarded or their details are lost over time.
In this paper, we present OpenML1, an open science platform for machine learn-
ing research. OpenML is a website where researchers can share their datasets,
implementations and experiments in such a way that they can easily be found
and reused by others. It offers a web API through which new resources and re-
sults can be submitted, and is being integrated in a number of popular machine

1 OpenML can be found at http://www.openml.org.
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learning and data mining platforms, such as Weka, RapidMiner, KNIME, and
data mining packages in R, so that new results can be submitted automatically.
Vice versa, it enables researchers to easily search for certain results (e.g., evalu-
ations on a certain dataset), to directly compare certain techniques against each
other, and to use all submitted data in advanced queries. An overview of the key
components of OpenML is provided in Figure 1.

Fig. 1. Components of the OpenML platform

OpenML engenders a novel, collaborative approach to experimentation with
important benefits. First, many questions about machine learning algorithms
won’t require the laborious setup of new experiments: they can be answered on
the fly by querying the combined results of thousands of studies on all available
datasets. OpenML also keeps track of experimentation details, ensuring that we
can easily reproduce experiments later on, and confidently build upon earlier
work [2]. Reusing experiments also allows us to run large-scale machine learning
studies, yielding more generalizable results [1] with less effort. Finally, beyond the
traditional publication of algorithms in journals, often in a highly summarized
form, OpenML allows researchers to share all code and results that are possibly
of interest to others, which may boost their visibility, speed up further research
and applications, and engender new collaborations.

2 Sharing Experiments

To make experiments from different researchers comparable, OpenML uses tasks,
well-described problems to be solved by a machine learning algorithm or work-
flow. A typical task would be: Predict (target) attribute X of dataset Y with
maximal predictive accuracy. Somewhat similar to a data mining challenge, re-
searchers are thus challenged to build algorithms that solve these tasks. Different
tasks can be defined, e.g., parameter optimization, feature selection and cluster-
ing. They can be searched online, and will be automatically generated for newly
submitted datasets. OpenML provides all necessary information to complete
the task, such as a URL to download the input dataset, and what information
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should be submitted to the server. For some tasks, e.g., predictive tasks, it of-
fers more structured input and output, such as exact train and test splits for
cross-validation, and a submission format for all predictions. The server will then
evaluate the predictions and store the scores for various evaluation metrics.

An attempt to solve a task is called a run, and includes the task itself, the
algorithm or workflow (i.e., implementation) used, and a file detailing the ob-
tained results. These are all submitted to the server, where new implementations
will be registered. Workflows are represented as a set of algorithms, and can be
downloaded into the workbenches for detailed inspection. For each implemen-
tation, an overview page will be generated containing data about all tasks on
which this algorithm was run. This will detail the performance of the algorithm
over a potentially wide range of datasets, with various parameter settings. For
each dataset, a similar page is created, containing a ranking of algorithms that
were run on tasks with that dataset as input.

OpenML provides a RESTful API for downloading tasks and uploading
datasets, implementations and results. This API is currently being integrated
in various machine learning platforms such as Weka, R packages, RapidMiner
and KNIME. For instance, in WEKA2, OpenML is integrated as part of the
Weka Experimenter. Given a task, it automatically downloads all associated
input data, runs the experiment, and uploads the results to OpenML.

3 Searching OpenML

OpenML links various bits of information together in a single database. All re-
sults for different algorithms on the same tasks are stored in such a way that
algorithms can directly be compared against each other (using various evaluation
measures), and parameter settings are stored so that the impact of individual
parameters can be tracked. Moreover, for all datasets, it calculates meta-data
concerning their features (e.g., type, distinct values or mean and standard devi-
ation) and their distributions, such as the number of features, instances, missing
values, default accuracy, class entropy and landmarking results [4]. Likewise, for
algorithms, it includes information about the (hyper)parameters and properties,
such as whether the algorithm can handle nominal/numeric features, whether it
can perform classification and/or regression and a bias-variance profile.

OpenML allows users to easily search for results of interest. First, it stores tex-
tual descriptions for datasets, algorithms and implementations so that they can
be found through simple keyword searches, linked to overview pages that detail
all related results. Second, runs can be searched to directly compare many algo-
rithms over many datasets (e.g., for benchmarking). Furthermore, the database
can be queried directly through an SQL editor, or through pre-defined advanced
queries such as “Show the effect of a parameter P on algorithm A on dataset
D” and “Draw the learning curve for algorithm A on dataset D”.3 The results
of such queries are displayed as data tables, scatterplots or line plots, which can
be downloaded directly.

2 A beta version can be downloaded from the OpenML website.
3 See the ‘Advanced’ tab on http://www.openml.org/search.
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4 Related Work

OpenML builds on previous work on experiment databases [5], but also enhances
it by markedly facilitating the sharing of new experiments through the web API
and by making results much easier to find and compare.

In terms of sharing algorithms or workflows, it is somewhat similar to MyEx-
periment4, an online repository where users can search and share workflows so
that interesting workflows can be reused. However, MyExperiment offers little
support for storing the results of workflows, or comparing workflows based on
performance metrics.

On the other hand, MLComp5 is a platform on which users can run their algo-
rithms on known datasets (or vice versa). These runs are performed on the servers
of MLComp, which saves the user resources. Although very useful, especially for
comparing runtimes, OpenML differs from MLComp in two key aspects: First,
OpenML allows users much more flexibility in running experiments: new tasks
can easily be introduced for novel types of experiments and experiments can be
run in any environment. It is also being integrated in data mining platforms
that researchers already use in daily research. Finally, OpenML allows more ad-
vanced search and query capabilities that allow researchers to reuse results in
many ways beyond direct comparisons, such as meta-learning studies [5].

5 Conclusions and Future Work

OpenML aims to engender an open, collaborative approach to machine learn-
ing research. Experiments can be shared in full detail, which generates a large
amount of reproducible results available for everyone. Moreover, integration with
popular data mining tools will make it very easy for researchers to share exper-
iments with OpenML and the community at large.

Future work includes support for a broader range of task types, e.g., time
series analyses, graph mining and text mining.

Acknowledgments. This work is supported by grant 600.065.120.12N150 from
the Dutch Fund for Scientific Research (NWO), and by the IST Programme
of the European Community, under the Harvest Programme of the PASCAL2
Network of Excellence, IST-2007-216886.
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Abstract. The paper presents the ViperCharts web-based platform for
visual performance evaluation of classification, prediction, and infor-
mation retrieval algorithms. The platform enables to create interactive
charts for easy and intuitive evaluation of performance results. It in-
cludes standard visualizations and extends them by offering alternative
evaluation methods like F -isolines, and by establishing relations between
corresponding presentations like Precision-Recall and ROC curves. Ad-
ditionally, the interactive performance charts can be saved, exported to
several formats, and shared via unique web addresses. A web API to the
service is also available.

Keywords: classifiers, performance evaluation, web application.

1 Introduction and Related Work

Empirical evaluation of classification algorithms is mainly focused on their ability
to correctly predict the desired class of data instances. Hence, several performance
measures are derived from the confusionmatrix, which provides the distribution of
the predicted classes over the actual classes of a dataset.The choice of an evaluation
measure depends on the task to be solved. Typically, classification is evaluated by
accuracy which is the average of correct predictions over all the classes, however
in the case of unbalanced class distributions, medical diagnostic or information
retrieval tasks other evaluation measures which focus on a certain class, like pre-
cision, recall, false positive rate or specificity, may be more desirable. This paper
presents the ViperCharts web-based platform for visual performance evaluation
of classification, prediction, or information retrieval algorithms used in machine
learning and data/text mining. Our goal is to provide a web environment which
enables intuitive visualization of results and sharing of performance charts that
are of interest to machine learning and data mining practitioners.

Tools for graphical representation of numerical data are provided by different
software applications for calculation, numerical computing, statistical comput-
ing and statistical analysis, like Microsoft Excel1, MATLAB2, R3 and SPSS4.

1 http://office.microsoft.com/en-us/excel/
2 http://www.mathworks.com/products/matlab/
3 http://www.r-project.org/
4 http://www.ibm.com/software/analytics/spss/
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Also several JavaScript, SVG or Flash based charting libraries and charting soft-
ware, such as Highcharts5, D36 or Google Chart Tools7, offer data visualizations
which can be embedded in web pages. However, among the usually supported
chart types only specific line and scatter charts are interesting from the point of
visualizing algorithm performance, since they depict the relation between differ-
ent variables and/or performance measures of algorithms.

Common visualizations of algorithm performance in machine learning in-
clude the Lift curves [11], ROC curves [5], Precision-Recall Curves [8], and Cost
curves [4], for probabilistic classifiers or ranking algorithms, and scatter charts
in the ROC space or Precision-Recall space (PR space) for discrete classification
algorithms. Existing environments for machine learning and data mining, like
Weka [6], RapidMiner [9], KNIME [1] and Orange [3], as well as MATLAB and
R, only offer support for the computation and visualization of ROC and Lift
curves, whereas support for other performance visualizations may be available
as third-party packages for different programing languages.

In this paper we present the ViperCharts platform, which aims to provide chart-
ing support for the evaluation of machine learning, data/text mining and infor-
mation retrieval algorithms. It offers a range of performance visualizations and
reveals the relations among different performance measures. Its main distinctive
feature is its web-based design which requires no installation on the user’s system,
enables sharing of performance results, and offers enhanced visual performance
evaluation through interactive charts and additional advanced functionality. Fur-
thermore, it provides a unique environment for computing, visualizing and com-
paring performance results of different algorithms for various evaluationmeasures.
The ViperCharts platform is accessible online at http://viper.ijs.si.

2 The ViperCharts Platform

The platform is designed to serve as a tool for data mining practitioners with
the goal to produce visualizations of performance results achieved by their algo-
rithms. ViperCharts is a web application running in the client’s Web browser.
The server side is written in Python8 and uses the Django Web Framework9.

Creating a chart requires two simple steps. First, the user selects the desired
chart type, choosing among Scatter chart, Curve chart and Column chart. Where
Scatter charts visualize the performance of discrete prediction algorithms in
the ROC or PR space, Curve charts visualize Lift, ROC, PR and Cost curves,
whereas Column charts visualize arbitrary values for a selection of algorithms.
Second, the required data for the specific chart is copy-pasted into the provided
form. Different data input formats are supported: TAB delimited data for copy-
pasting from spreadsheet applications, CSV data and JSON formatted data.
Finally, a Draw chart button triggers the chart visualization.

5 http://www.highcharts.com
6 http://d3js.org
7 https://developers.google.com/chart/
8 http://www.python.org/
9 http://www.djangoproject.com

http://viper.ijs.si
http://www.highcharts.com
http://d3js.org
 https://developers.google.com/chart/
http://www.python.org/
http://www.djangoproject.com
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The desired performance measures are calculated from the provided data and
stored in the platforms’ database. In this way the visualization components have
access to the data of a specific chart whenever the chart needs to be displayed.

Charts are drawn with the help of a JavaScript charting library, called
Highcharts5. For each chart type we created a specific template including indi-
vidual functionality available for a certain type of performance visualization. For
example, in PR space charts we included the novel F-isoline evaluation approach
[10] which enables to simultaneously visually evaluate algorithm performance in
terms of recall, precision and the F -measure. As additional novelty, for ROC
curve charts a corresponding PR curve chart can be created (and vice versa),
since PR curves give a more informative picture of the algorithm’s performance
when dealing with highly skewed datasets, which provides additional insight for
algorithms design, as discussed in [2]. A screenshot of the ViperCharts platform
showing a chart of the PR space with F -isolines can be found in Figure 1.

The ViperCharts platform enables users to make their charts public and share
them with research colleagues, export and publish them in research papers, or
include them in their web sites. The sharing and embedding of charts is made
easy by a unique URL address assigned to each chart. Exporting the charts into
SVG, JPG, PNG or PDF formats is taken care of by the exporting module of the
charting library that we use for chart visualization. A web API provides direct
access to our performance visualization services, which were also integrated in
the cloud based data mining platform, called ClowdFlows [7].

Fig. 1. A screenshot of the ViperCharts platform showing the performance of discrete
prediction algorithms in the PR space enhanced by F -isolines.
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3 Conclusion and Further Work

We have developed a novel web-based platform for visual performance evaluation
of classification, prediction and information retrieval algorithms. The web-based
design of the platform allows users to create, save and export their results’ visu-
alizations, without any installation needed. Users can easily publish and share
their charts, since public charts can be simply accessed through unique web ad-
dresses. The performance visualizations can also be accesses through a web API
or used as integrated components in the ClowdFlows data mining platform. We
are working on covering even a wider range of performance visualizations used
by machine learning practitioners, as well as including support for statistical
significance tests. We will continue the development on the support for different
input data formats and on the relations and conversions between different per-
formance visualizations. We also plan to extend our API to enable integration
into several existing data mining environments.
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FIRST under the grant agreement n. 257928.

References

1. Berthold, M.R., Cebron, N., Dill, F., Gabriel, T.R., Kötter, T., Meinl, T., Ohl, P.,
Thiel, K., Wiswedel, B.: KNIME - the Konstanz information miner: version 2.0
and beyond. SIGKDD Explor. Newsl. 11(1), 26–31 (2009)

2. Davis, J., Goadrich, M.: The relationship between Precision-Recall and ROC
curves. In: Proceedings of the 23rd ICML Conference, pp. 233–240 (2006)
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Abstract. Targeted Hypernym Discovery (THD) performs unsuper-
vised classification of entities appearing in text. A hypernym mined
from the free-text of the Wikipedia article describing the entity is used
as a class. The type as well as the entity are cross-linked with their
representation in DBpedia, and enriched with additional types from DB-
pedia and YAGO knowledge bases providing a semantic web interoper-
ability. The system, available as a web application and web service at
entityclassifier.eu, currently supports English, German and Dutch.

1 Introduction

One of the most significant challenges in text mining is the dimensionality and
sparseness of the textual data. In this paper, we introduce Targeted Hypernym
Discovery (THD), a Wikipedia-based entity classification system which identifies
salient words in the input text and attaches them with a list of more generic
words and concepts at varying levels of granularity. These can be used as a lower
dimensional representation of the input text.

In contrast to the commonly used dimensionality reduction techniques, such as
PCA or LDA, which are sensitive to the amount of data, THD provides the same
quality of output for all sizes of input text, starting from just one word. Since
THD extracts these types from Wikipedia, it can also process infrequent, but
often information-rich words, such as named entities. Support for live Wikipedia
mining is a unique THD feature allowing coverage of “zeitgeist” entities which
had their Wikipedia article just established or updated.

THD is a fully unsupervised algorithm. A class is chosen for a specific entity
as the one word (concept) that best describes its type according to the consensus
of Wikipedia editors. Since the class (so as the entity) is mapped to DBpedia,
the semantic knowledge base, one can traverse up the taxonomy to the desired
class granularity. Additionally, the machine-readable information obtainable on
the disambiguated entity and class from DBpedia and YAGO can be used for
feature enrichment.
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2 Architecture

THD is implemented in Java on top of the open source GATE framework1.
Entity extraction module identifies entity candidates (noun phrases) in the

input text. Depending on setting, entities can be restricted to named entities
(“Diego Maradona”) or common entities (“football”).

Disambiguation module assigns entity candidate with a Wikipedia entry
describing it. This module combines textual similarity between the entity can-
didate and article title with the importance of the article.

Entity classification module assigns each entity with one or more hyper-
nyms. The hypernyms are mined with the THD algorithm (see Sec. 3) from
the Wikipedia articles identified by the Disambiguation module. This mining
is performed either on-line from live Wikipedia or from a Wikipedia mirror.
The default option is to use the Linked Hypernyms Dataset, which contains 2.5
million article-hypernym pairs precomputed from a Wikipedia mirror.

Semantization module maps the entity as well as the class to DBpedia.org
concepts. A “semantic enrichment” is also performed: once the entity is mapped,
additional types are attached from DBpedia [1] and YAGO [2], the two prominent
semantic knowledge bases. The final set of types returned for an entity thus
contains the “linked hypernym” (hypernym mapped to DBpedia obtained with
THD), and a set of DBpedia and YAGO types.

Fig. 1. Architecture overview

3 Hypernym Discovery Algorithm and Benchmark

Hypernym discovery is performed with hand-crafted lexico-syntactic patterns.
These were in the past primarily used on larger text corpora with the intent to
discover all word-hypernym pairs in the collection [7]. With Targeted Hypernym
Discovery we apply lexico-syntactic patterns on a suitable document (Wikipedia
article) with the intent to extract one hypernym at a time (details in [3,4]).

THD performance was measured on the following benchmarks independent
on the input text: a) discovering correct hypernym given a Wikipedia article, b)
linking hypernym to a semantic web identifier. The outcome of the evaluation2

1 http://gate.ac.uk
2 The results and the “High accuracy dataset” are available at
http://ner.vse.cz/datasets/linkedhypernyms/ .

DBpedia.org
http://gate.ac.uk
http://ner.vse.cz/datasets/linkedhypernyms/
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Fig. 2. Screenshot of the system (edited to fit the page)

altogether on 16.500 entity articles (English, German, Dutch) is reported in [3].
The best results were obtained for the German person subset, with precision
0.98 and recall 0.95. This is on par with the the best results in the respective
metrics recently reported in [5]: 0.97 precision for lexico-syntactic patterns and
0.94 recall for Syntactic-Semantic Tagger. The overall accuracy of discovering
plain text (linked) hypernyms for English is 0.95 (0.85), for Dutch 0.93 (0.88)
and German 0.95 (0.77). These numbers provide a lower bound on the error of
THD, since they do not include the entity recognition error and particularly the
disambiguation error (matching entity with a Wikipedia article).

4 Comparison with Related Systems

While techniques for Named Entity Recognition and classification (NER) are
well-researched, NER classifiers typically need to be trained on large labeled doc-
ument corpora, which generally involve only several labels, making them unsuit-
able for dimensionality reduction. Replacement of “Maradona” with “Person”
loses too much meaning for most applications. The recent shift from human-
annotated corpora to Wikipedia in some systems allows to provide types with
finer granularity, and also broadening of the scope to “common” entities. In
this section (and accompanying screencasts), we present a comparison with two
best-known academic systems DBpedia Spotlight [6] and AIDA [8].

Real-time Mining. THD directly incorporates a text mining algorithm. Once
an entity is disambiguated to a Wikipedia article, the system retrieves the article
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from Wikipedia and extracts the hypernym from its free text. The mining speed
is about 1 second per entity including network overhead. This allows to discover
types for entities, which had their article only recently added to Wikipedia, or
adapt to changes in Wikipedia. The authors are not aware of any other system
that incorporates query-time Wikipedia mining. AIDA and DBpedia Spotlight
lookup the disambiguated entity in a database of types.

Complementarity to other Systems. Since THD extracts the types from free
text, the results are largely complementary to types returned by other Wikipedia-
based systems. These typically rely on DBpedia or YAGO knowledge-bases,
which are populated from article categories and “infoboxes”, the semistructured
information in Wikipedia. As a convenience, THD returns types from DBpedia
and YAGO in addition to the mined hypernym. The complementary character
of the results can be utilized for classifier fusion.

Right Granularity. For many entities DBpedia and YAGO-based systems pro-
vide a long list of possible types. For example, DBpedia assigns Diego Maradona
with 40 types including dbpedia-owl:SoccerManager, foaf:Person as well as
the highly specific yago:1982FIFAWorldCupPlayers. THD aids the selection
of the “right granularity” by providing the most frequent type, as selected by
Wikipedia editors for inclusion into the article’s first sentence. For Maradona,
as of time of writing, THD returns “manager”.3

Multilinguality. System currently supports English, Dutch and German, ex-
tensibility to a new language requires only providing two JAPE grammars and
plugging in correct POS tagger (ref. to Fig. 2). DBpedia Spotlight and AIDA
support only English.

Acknowledgements. This research was supported by the European Union’s
7th Framework Programme via the LinkedTV project (FP7-287911) and CTU
in Prague grant (SGS13/100/OHK3/1T/18).

References

1. Bizer, C., et al.: DBpedia - a crystallization point for the web of data. Web Se-
mant 7(3), 154–165 (2009)

2. Hoffart, J., Suchanek, F.M., Berberich, K., Weikum, G.: YAGO2: A spatially and
temporally enhanced knowledge base from Wikipedia. Artificial Intelligence 194,
28–61 (2013)

3. Kliegr, T., Dojchinovski, M.: Linked hypernyms: Enriching DBpedia with Targeted
Hypernym Discovery (Submitted)

4. Kliegr, T., et al.: Combining captions and visual analysis for image concept classi-
fication. In: MDM/KDD 2008. ACM (2008)

5. Litz, B., Langer, H., Malaka, R.: Sequential supervised learning for hypernym dis-
covery from Wikipedia. In: Fred, A., Dietz, J.L.G., Liu, K., Filipe, J. (eds.) IC3K
2009. CCIS, vol. 128, pp. 68–80. Springer, Heidelberg (2011)

3 As demonstrated in [4], the algorithm used can also return multi-word hypernyms
(“soccer manager”). This feature is not yet available in THD.



658 M. Dojchinovski and T. Kliegr

6. Mendes, P.N., Jakob, M., Garcia-Silva, A., Bizer, C.: DBpedia spotlight: Shedding
light on the web of documents. In: I-Semantics (2011)

7. Snow, R., Jurafsky, D., Ng, A.Y.: Learning syntactic patterns for automatic hyper-
nym discovery. In: Advances in Neural Information Processing Systems, vol. 17, pp.
1297–1304. MIT Press, Cambridge (2005)

8. Yosef, M.A., et al.: AIDA: An online tool for accurate disambiguation of named
entities in text and tables. PVLDB 4(12), 1450–1453 (2011)



 

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 659–662, 2013. 
© Springer-Verlag Berlin Heidelberg 2013 

Hermoupolis: A Trajectory Generator  
for Simulating Generalized Mobility Patterns 

Nikos Pelekis1, Christos Ntrigkogias2, Panagiotis Tampakis2,  
Stylianos Sideridis2, and Yannis Theodoridis2 

1 Dept. of Statistics and Insurance Science, Univ. of Piraeus, Greece  
npelekis@unipi.gr 

2 Dept. of Informatics, Univ. of Piraeus, Greece  
xdrigog@gmail.com, {ptampak,ytheod}@unipi.gr, siderste@yahoo.gr 

Abstract. During the last decade, the domain of mobility data mining has 
emerged providing many effective methods for the discovery of intuitive 
patterns representing collective behavior of trajectories of moving objects. 
Although a few real-world trajectory datasets have been made available 
recently, these are not sufficient for experimentally evaluating the various 
proposals, therefore, researchers look to synthetic trajectory generators. This 
case is problematic because, on the one hand, real datasets are usually small, 
which compromises scalability experiments, and, on the other hand, synthetic 
dataset generators have not been designed to produce mobility pattern driven 
trajectories. Motivated by this observation, we present Hermoupolis, an 
effective generator of synthetic trajectories of moving objects that has the main 
objective that the resulting datasets support various types of mobility patterns 
(clusters, flocks, convoys, etc.), as such producing datasets with available 
ground truth information.  

Keywords: Mobility Data Mining, Trajectory Patterns, Synthetic Generators. 

1 Introduction 

The explosion of mobile devices and positioning technologies has now made possible 
and easier the collection of trajectory data of moving objects. The rapid growth of 
these technologies has increased the interest for data analysis upon trajectory datasets. 
As such, the field of mobility data mining has already many success stories to narrate, 
as these are described by works that identify various types of patterns, including, 
among others, clusters of entire trajectories [11] or of sub-trajectories [9][14], moving 
clusters [7], flocks [8][5], sequential trajectory patterns [3], convoys [6], swarms [10], 
and top-k representative trajectory samples [12]. 

The effectiveness of most of the afore-mentioned methods has been evaluated with 
the use of small datasets w.r.t. potential sizes of real-world datasets, which however, 
are not available, usually due to privacy issues. Even when datasets are available, the 
ground truth for such kind of patterns is absent, thus researchers have to evaluate their 
proposals with general-purpose validation metrics (e.g. intra vs. inter cluster 
distance). On the other hand, utilizing synthetic generators is a typical approach for 
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researchers since it can support scalability experiments, however, synthetic datasets 
cannot guarantee the cardinality (or even the existence) of patterns within the 
synthetic population. For instance, experimentation of density-based clustering 
algorithms, like T-OPTICS [11] and TRACLUS [9], may be biased if the distribution 
of the data under experimentation does not include a sufficient number of density-
connected groups of objects; similarly for other mobility patterns. We argue that the 
effectiveness, efficiency and scalability experiments should not be applied 
independently and over different datasets. Like efficiency and scalability, 
effectiveness should be tested in very large datasets; like effectiveness, efficiency and 
scalability should be tested in datasets that include patterns of varying, known 
cardinality. Only this way, experimental results are interpretable and useful. 

To meet the above-described requirements, we present Hermoupolis1, a pattern-
aware synthetic trajectory generator, which produces annotated trajectories of 
moving objects following given mobility patterns. These mobility patterns imply the 
different profiles of movement that we want to reproduce, covering many of the 
examples cited earlier. On the other hand, related work includes data generators 
simulating either movement in free space, including GSTD [15], CENTRE [4] and 
C4C [11], or network-constrained movement, including Brinkhoff [1] and 
BerlinMOD [2]. Although the above generators present very interesting features, they 
cannot be considered pattern-aware, in the sense that we described earlier.  

In what follows, Section 2 presents the details about Hermoupolis methodology 
and Section 3 describes demo specifications. 

2 Generating Pattern-Aware Synthetic Trajectories  

Hermoupolis takes as input a set of Generalized Mobility Patterns (GMP) along with 
a road network and a set of Points of Interest (PoI), and generates a set of network-
constrained trajectories conforming to the requirements posed by GMP.  

More formally, a GMP is a time ordered sequence of pairs <AMP, c>, where c is 
the cardinality of the trajectories that will be simulated and AMP is an Atomic 
Mobility Pattern. In turn, a AMP is a triplet <MBB, MFV, AFV>, where MBB is a 
Minimum Bounding Box that approximates the spatio-temporal space where the 
motion of simulated trajectories takes place, MFV is a Movement Feature Vector 
containing parameters that affect movement (distribution of speed, duration, agility, 
etc.) and AFV is an Annotation Feature Vector that contains textual information that 
is used to annotate the simulated recordings. Having in mind the recent advances in 
semantic trajectory modeling [13], AFV includes meta-information about a Stop at a 
PoI, where the user performed e.g. a leisure activity, or a Move (or trip) between two 
PoI, in-between which was performed e.g. by foot for a fitness activity.  

In order to perform the trajectory generation task, Hermoupolis simulates all 
concurrent AMP from the set of GMP, while at the same time it interprets the 
sequence of each GMP and appropriately simulates Stops and Moves. Stop could be 
either stillness at or jerky movement around a PoI; Move could be a navigation from 
one Stop to another.  

The simulation of the trips between Stops is actually performed by the well-known 
Brinkhoff data generator [1], which has been appropriately adapted in order to 
                                                           
1 Hermoupolis, polis (=town) of Hermes, is the capital of Cyclades prefecture in Greece. 
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constrain movements according to the spatio-temporal restrictions set by MBB and 
MFV. Moreover, road networks and PoI databases that are public available at 
OpenStreetMap open source repository can be automatically loaded in Hermoupolis. 

3 Demo Specifications 

Hermoupolis design allows for the simulation of an extensive range of mobility 
patterns. For instance, Fig. 1(a) illustrates the generation of a set of trajectories 
representing the mobility behaviour of six different profiles of people (each depicted 
with a different colour) throughout a weekday. Although non-visible, each of these 
profiles corresponds to a GMP and is accompanied by a respective activity pattern 
(e.g. the green profile reflects young, single, working men following Home – Campus 
– Leisure - Home pattern). Obviously, such a dataset is appropriate for evaluating 
clustering techniques, such as [11] and [9]. 
 

 
(a) (b) 

 
(c) (d) 

Fig. 1. Hermoupolis in action 

Moreover, as a food for thought, in Fig. 1(b-d), we illustrate three simple different 
GMP aiming to simulate mobility patterns already available in the literature. In 
particular, Fig. 1(b) illustrates a GMP consisting of 9 AMP (5 Stops, for which we 
visualize their bounding circles, and 4 Moves). As the respective MBB of the 5 Stops 
are overlapping, one expects that some kind of flock or convoy pattern be hidden in 
the resulted trajectories. Then, in Fig. 1(c), we depict a GMP, composed of 3 Stops 
with varying spatial extent (indicated by the circles’ radiuses). The first Move 
(between the first and second Stop) has large speed and small agility, while the 
opposite is true for the second Move (between the second and third Stop). We argue 
that such a simulation is appropriate for evaluating both sub-trajectory clustering 
algorithms, as well as moving object clusters like convoys, swarms, even patterns that 
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can capture the thickness of the mobility patterns. Finally, in Fig. 1(d), we exhibit a 
GMP that simulates objects starting from a wide Stop (the large circle) routed towards 
a short Stop (the small circle) that lies inside the first! Intuitively, this is a simple way 
of simulating that several people from a region converge to a “meeting place”. 

Throughout the demonstration2, users will be able to interact with Hermoupolis and 
generate the volumes of synthetic trajectories they wish by simulating various 
mobility patterns, such as the ones discussed above. 
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1 Introduction

The deep penetration of mobile phones offers cities the ability to opportunisti-
cally monitor citizens’ interactions and use data-driven insights to better plan
and manage services. In this context, transit operators can leverage pervasive
mobile sensing to better match observed demand for travel with their service
offerings. With large scale data on mobility patterns, operators can move away
from the costly and resource intensive transportation planning processes preva-
lent in the West, to a more data-centric view, that places the instrumented user
at the center of development. In this framework, using mobile phone data to per-
form transit analysis and optimization represents a new frontier with significant
societal impact, especially in developing countries.

In this demo, we present AllAboard, a system for optimizing public transport
using cellphone data. Our system uses mobile phone location data to infer origin-
destination flows in the city, which is then converted to ridership on the existing
transit network. Sequential travel patterns extracted from individual call location
data are used to propose new candidate transit routes. An optimization model
evaluates which new routes would best improve the existing transit network to
increase ridership and user satisfaction, both in terms of reduced travel and wait
time. The system provides also a User Interface that allows the interaction with
results and the data themselves. The system in its whole is intended to be used
by city authorities for improving their public transport systems, using cell phone
data, which have a large penetration even in developing countries, and provide
a cheaper, faster, alternative to costly surveys.

The system has been tested using Call Detail Record data from Orange for
the city of Abidjan, Ivory Coast, with the focus to improve the existing tran-
sit network. Four new routes have been proposed by the optimization system,
resulting in an expected reduction of 10% city-wide travel times.

Several projects deal with the analysis of mobility and mobile phone data
[2,1]. They present powerful mining engines but do not provide direct interaction
with data and results. Other projects providing visualization and interaction, on
the other hand, do not integrate the optimisation based on analytical results
[3,4]. Our system integrates all these modules: the mobility analysis engine, the

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 663–666, 2013.
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optimisation, and an interactive user interface, providing a new environment to
extract and use information from mobile phone data.

2 The AllAboard Platform

The system is implemented with a modular architecture. We isolate our data
models using an abstraction layer that separates algorithm implementations from
data stores. The current version of the system includes two core modules: Mo-
bility Mining and Optimizer. These modules are implemented as components
within an extensible framework, and other components can easily be added in
the future. Each component provides a lightweight REST service exposing its
functionalities. The REST services are also used to implement the AJAX-based
Web user interface. The main algorithms for the current two cores are described
in Sections 2.1, and 2.2 respectively.

Fig. 1. Architecture of the AllAboard platform

2.1 Mobility Mining

This module is able to process mobile phone data in the form of records: (userID,
timestamp, cellID), where a location is associated to each cellID, and extract
information about users’ stops, trajectories, Origin/Destination (O/D) flows (i.e.
number of people moving from the origin O to the destination D in a given 1
hour time interval), frequent travel sequences, and home and work locations for
each user.
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The methodology to process the data follows these steps:

1. we extract the location of the stops performed by users
2. based on those, we estimate the O/D flows, used to feed the optimization

module presented in Section 2.2
3. we exploit the data to better understand the mobility of the users, and

use the results as additional input to the optimization module. For this, we
extract frequent sequential patterns from the sequences of stops

4. we identify for each user, when possible, most likely home and work locations
based on both stops and mobile phone activity patterns

The results of this process are visualised by the framework, allowing the user
to interact with them. For instance, the user can select a particular antenna and
then the system visualises its O/D flows and the relative temporal profile. The
system is also able to show the sequential patterns emerging over time from the
mobile phone data, highlighting the most frequent ones. An example of the two
visualisations is represented in Figure 2.

Fig. 2. Exploring mobility with AllAboard: O/D flows with temporal profiles (left);
sequential patterns emerging from the data (right)

2.2 Optimal Transit Design

Given (a) an existing transit network, (b) O/D flows derived from mobile data
representing travel demand, (c) a set of frequent sequences that serve as candi-
date new routes, (d) travel time estimates across the network, and (e) a resource
budget in terms of fleet size, this module is able to determine an optimal set of
new routes and their associated service frequencies, such that passenger journey
times city-wide are minimized. A new route is defined by a sequence of transit
stops and has an associated frequency.

The problem is strategic in nature as it represents a longer-term decision on
the part of a public transport operator. The addition of new routes to the service
network are intended to match current supply with revealed demand. From a
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Fig. 3. Exploring optimization results with AllAboard: waiting times (left); comparing
ridership on optimized network (right)

demand perspective, new routes will attract riders only if they offer competitive
service to existing routes. The model therefore considers the user perspective,
in terms of optimal strategies. From a supply side, new routes should fill service
gaps and map user activity patterns observed in the data. The optimization
routine therefore includes frequent sequences as potential new services. Taken
together, a potential new route is only recommended if it directly addresses
under-serviced demand, and does so by offering shorter journey times than the
ones possible on the existing network.

The system offers an interactive User Interface that allows to visualise the
results of the optimisation module, in particular in terms of ridership improve-
ments, and decrease in waiting times, comparing the results between the existing
network and the new extended one (see Figure 3).

Acknowledgements. We wish to thank the Orange D4D Challenge
(http://www.d4d.orange.com) organizers for releasing the data we used for
building and testing our prototype.
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Abstract. In this paper we present ScienScan1 – a browsing and vi-
sualization tool for academic search. The tool operates in real time by
post-processing the query results returned by an academic search engine.
ScienScan discovers topics in the search results and summarizes them in
the form of a concise hierarchical topic map. The produced topical sum-
mary informatively represents the results in a visual way and provides an
additional filtering control. We demonstrate the operation of ScienScan
deploying it on top of the search API of Microsoft Academic Search.

1 Introduction

We often use academic search engines for exploratory tasks, such as reviewing
related work or investigating unfamiliar topics, when the goal is not to retrieve
specific publications but rather to improve our understanding of the topic in
question. Performing exploratory search, we tightly interact with the search en-
gine, refining our queries based on the retrieved results. Presented as endless
unstructured lists, typical search results are difficult to examine and interpret,
often making our exploratory search task tedious and even frustrating.

In this paper we describe ScienScan – an academic search tool that provides
concise visual summaries of the query results. These summaries convey useful
information about the topical structure of the result set in an intuitive way, with-
out the user having to sift through individual items. In addition, the produced
summaries serve as a filtering control, allowing the user to focus on the relevant
subtopics of the query, and thus find papers more efficiently.

ScienScan presents a novel approach to visualization and browsing of academic
search results. It employs state-of-the-art external tools and services as well as
newly developed methods, and can run on top of third-party search engines.
Based on the practical solutions, ScienScan is, to the best of our knowledge, the
only available prototype tool providing this type of functionality.

2 Web Interface

ScienScan is a Web tool with an interface of a typical search engine (see Figure
2). Users type queries into the search box and obtain the list of search results. In

1 http://scienscan.disi.unitn.it/
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Fig. 1. Example summary of 100 search results for the query “quadratic programming”

addition to the standard controls, ScienScan displays a topic map of the retrieved
results. The topic map is a small taxonomy of topics built so as to summarize
the search results in the most informative way (see Figure 1 for an example).

The topic map is a directed acyclic graph, in which the child nodes represent
the subtopics of the parent nodes. The nodes in the topic map represent topics
relevant to the search results. Each topic covers a subset of the results in such a
way that a parent topic always covers all the results covered by its child topics
and, possibly, some additional results. The number of covered results is displayed
in the parentheses near the topic title, with the font size of the title being
proportional to this number. When the user clicks on a topic in the hierarchy,
the topic and its subtopics become highlighted, and the displayed results get
restricted to those covered by the selected topic.

The user can control the number of nodes in the topic map by moving the
slider. ScienScan builds multiple instances of the topic maps of various sizes,
and moving the slider switches between these instances, making the displayed
topic map grow or shrink visually. The algorithms of ScienScan are implemented
in such a way that bigger topic maps are built incrementally from smaller ones.
This makes the computations efficient, and ensures that no topic disappears from
the map when the map size is increased.

Fig. 2. The interface of ScienScan
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3 Architecture

When the user submits the search query, ScienScan performs the following steps:

1. forward the query to an existing search engine and collect the results;
2. link the results to Wikipedia articles with the help of a topic annotator;
3. build the topic graph based on the retrieved Wikipedia articles, their cate-

gories and hierarchical relations between them;
4. summarize the constructed topic graph into a concise topic map;
5. visualize the topic map using a graph-drawing tool.

A detailed description of the steps 2-5 can be found in [4].

Search Engine. The current version of ScienScan relies on the search API of
Microsoft Academic Search. The API restricts usage to 200 requests per
minute and returns up to 100 search results per request. The latter restriction
is not too limiting, as users seldom look beyond the first one hundred results.

Topic Annotation. During this step the search result titles and abstracts are
mapped to Wikipedia articles, which can be viewed as fine-grained meaningfully
labeled topics. Recently, there have been proposed multiple methods and tools
for annotating texts with links to Wikipedia articles. Some of the implementa-
tions have publicly available demos, restricted web service APIs, and standalone
tools requiring a snapshot of Wikipedia database (see, for example, TAGME,
Machine Linking, DBPediaSpotlight and Wikipedia Miner[3]). We deployed an
instance of the Wikipedia Miner web service for the purpose of topic annotation.

Building the Topic Graph. The following steps expand the set of article
topics into a large topic graph based on the network of Wikipedia categories:

1. retrieve the parent categories of the discovered articles (transforming the set
of articles into a bipartite article-category graph);

2. connect the categories according to their taxonomic relations in Wikipedia
(transforming the bipartite graph into a general directed topic graph);

3. merge similar topics and break the cycles (making the topic graph acyclic);
4. detect and extend the main topic of the query (that with the most search

results, making the topic graph more detailed in the area of the main topic).

Summarizing and Displaying the Topic Graph. At this step we have to
reduce the graph containing about three hundred nodes to a concise taxonomy,
such as shown in Figure 1. A good taxonomy must possess a number of important
properties, such as high coverage of the search results, relevance, high frequency
and low redundancy of the included topics. The current version of ScienScan
applies a frequency-based heuristic algorithm to select the most informative set
of nodes from the topic graph. A new version being under development uses a
more advanced summarization algorithm based on structured-output prediction
[4]. The mentioned algorithms prescribe which topics from the original topic
graph should be included into the summary. In order to completely define the
summary, we connect the topics with the minimum number of links that still
maintain the hierarchical relations induced by the original graph. After the topic

http://academic.research.microsoft.com/About/Help.htm#4
http://tagme.di.unipi.it/
http://www.machinelinking.com/wp/
http://dbpedia-spotlight.github.io/demo/
http://wikipedia-miner.cms.waikato.ac.nz/
http://wikipedia-miner.cms.waikato.ac.nz/
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map is built, we submit it to the graphviz package [1] for visualization. The dot
algorithm used in graphviz for drawing directed graphs produces the layered
layout appropriate for displaying topic hierarchies.

4 Related Work and Discussion

To the best of our knowledge, there exist no other online academic search tools
providing structured visual representations of the query results. Current popular
scholarly services include publishers’ digital libraries (such as ACM or IEEE),
search engines (Google Scholar, Microsoft Academic Search or CiteSeer) and so-
cial networking sites (Mendeley, CiteULike, ResearchGate). These services typ-
ically provide browsing based on metadata, such as publication venue, authors
or year, or a predefined topic categorization scheme. As categorization schemes
are independent of the current query and rather coarse-grained, no visualization
of the search results is provided based on them, nor on the metadata attributes.

In contrast to available tools, in the literature there have been proposed nu-
merous sophisticated methods for detecting and visualizing research topics. The
main approaches to this problem include frequent keyword-based methods, anal-
yses of citation graph, and probabilistic topic models, the latter probably rep-
resenting the most developed class of methods (see [2] for an example). In the
context of search result visualization, these methods have the following shortcom-
ings: a) they typically require access to the whole corpus of papers rather than
only current results, b) (except for keyword-based methods) they do not pro-
vide short meaningful labels for discovered topics. Keyword-based methods have
an additional shortcoming in that the topics correspond to verbatim keywords.
ScienScan avoids these shortcomings by relying on Wikipedia-based topics.

TAG MY SEARCH [5] is an example of Wikipedia-based topic discovery applied
to a related task of general Web search result clustering. Unlike ScienScan, TAG
MY SEARCH uses only articles but not categories of Wikipedia to represent topics,
and thus performs flat rather then hierarchical grouping of the search results.
Action Science Explorer and Sci2 represent publication collections as networks
(for instance, citation-based), and provide visualization and exploration tools
typical for network analysis, such as clustering and filtering based on metadata
and network statistics. In contrast, ScienScan builds a higher-level view that is
focused on the explicit labeled semantic topics and their hierarchical relations.

Acknowledgments. This research was partially supported by grant PRIN
2009LNP494 (Statistical Relational Learning: Algorithms and Applications)
from Italian Ministry of University and Research.
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Abstract. We present InVis, a tool to visually analyse data by in-
teractively shaping a two dimensional embedding of it. Traditionally,
embedding techniques focus on finding one fixed embedding, which em-
phasizes a single aspects of the data. In contrast, our application enables
the user to explore the structures of a dataset by observing and control-
ling a projection of it. Ultimately it provides a way to search and find
an embedding, emphasizing aspects that the user desires to highlight.

1 Introduction

We present an application1 that enables the user to layout a two dimensional
embedding of a possibly higher dimensional dataset by selecting and rearranging
some of the embedded data points as control points. Working with our applica-
tion resembles observing the shadow of a higher dimensional object from different
angles and actively reshaping it. As the constellation of control points and the
projection angle are dependent, specifying where the shadow of the chosen con-
trol points falls to, enforces the rest of the embedding to follow, see Figure 1.
Gradually rearranging the constellation also changes the shadow gradually. An
example for this is depicted on a real world dataset in Figure 2.

Fig. 1. The projection can be con-
trolled by arranging the control
points (dataset from [7])

Fig. 2. Re-positioning the control point gin and
tonic (green) influences the location of related,
gin containing, cocktails (dark)

Embedding data into a lower dimensional space for visual analysis is a wide
field that is approached by a lot of different techniques. Many of them are un-
supervised, like the well known principle component analysis (PCA) [5], Isomap

1 The tool can be downloaded under:
http://www-kd.iai.uni-bonn.de/index.php?page=software_details&id=31
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[11], Locally linear embedding [10], non-negative matrix factorization [6], archety-
pal analysis [3] and CUR decomposition [4].

Apart from these unsupervised embedding techniques, there are methods that
take supervision into account, like guided locally linear embedding [1] and super-
vised PCA [2]. Many of the classic embedding methods also have a semi super-
vised extensions [12]. One particularly interesting setting is utilizing must-link
and cannot-link constraints [13]. In this paper we employ the semi-supervised
least squares projections (LSP) [8, 9] method, which computes an embedding
based on a set of exemplary embedded data points.

In contrast to other authors applying semi-supervised embedding techniques,
our aim is not a fixed one-time-embedding. Our application rather exploits the
influence of the control points in order to enable the user to shape and steer a life-
updating embedding. This active layout approach ultimately empowers the user
to highlight aspects of the dataset that he considers interesting. This is illustrated
in Figure 3 on a selection of four persons from the CMU Face Images dataset.
While a regular PCA embedding does not directly convey insights, arranging
a few control points in different constellations, can highlight different semantic
aspects of the data.

Fig. 3. A dataset of facial images embedded in different ways. The left figure shows a
plain PCA embedding, while the other two figures use LSP to group the control points
by person and by pose (looking-straight, -up, -left and -right), respectively.

2 Method

Consider a dataset X with n data records x1, ..., xn from an instance space
X ⊆ Rd and the general task to map {x1, ..., xn} into an embedding space
Y ⊆ R2, yielding {y1, ...yn}. To determine this mapping, the user chooses a set
of k data records from X , denoted by X̂, and fixes their coordinates in the
embedding space, providing Ŷ . For the purpose of our application, we consider
the desired projection P : X → Y to be the linear projection matrix with the
least squared error in mapping X̂ to Ŷ . Regarding X̂ and Ŷ as data matrices of
shape d× k and 2× k we can formulate the system of linear equations PX̂ ≈ Ŷ ,
which can be solved for P with least squared error efficiently, especially since
the calculation only depends on k and not all n data points. The least squares
projection matrix P is then used to determine the final embedding Y of all
n data points X by matrix multiplication PX = Y . Note, that every time Ŷ
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changes P has to be recalculated. P can be derived by right multiplying the
pseudo inverse of X̂ (given by X̂† = X̂T (X̂X̂T )†) to Ŷ . As long as the user only
relocates the k control points, X̂† does not change and P can be determined
by matrix multiplication with a time complexity of O(d2 · k). However, if the
user alters the selection of the control points, the pseudo inverse X̂† has to be
recalculated, which leads to an additional calculation with a time complexity of
O(d3 + d2 · k).

3 User Interface

Figure 4 shows the user interface of our application running an exemplary analy-
sis of a cocktail ingredient dataset. The core of our tool is the interactive canvas
on the left side, displaying the embedding. The initial control points are pro-
vided by five randomly chosen points, placed according to their coordinates of
a PCA-embedding on the whole dataset. From here the user can interact with
the canvas in the usual way by clicking and dragging. The user can select, or
de-select a control point by middle-clicking it and he can reposition the point
simply by left-clicking and dragging it to the new location. While relocating a
control point, the embedding is constantly updated to provide the user with a
“hands on” sensation.

To support practical usability of the application, we also provide some extra
features that can help a user in the exploration process. The user can shift the
center of the displayed data by Ctrl -dragging on the canvas and zoom in and out
of different regions by using the mouse wheel. He can also search for a data record

Fig. 4. A screenshot of InVis. The embedding shows some control points (black), a
search result (red) and ingredient information (gray box). Interaction with the embed-
ding is done by directly clicking and dragging. Setting the constraint ”orange juice:>:0”
fades the points not satisfying the restriction out.
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by its name and highlight it in the embedding, or request additional information
on any data point by right-clicking the according point in the embedding. In case
of the cocktail dataset, ingredients and amounts of the particular cocktail are
displayed. In case of an image database a thumbnail picture is rendered into the
embedding. For deeper inspection of an attribute, we offer the option to colorize
the data points according to the attribute-value and to fade out data points that
do not satisfy a {>,<,=}-constraint. In addition, unwanted attributes can be
excluded from any calculation and running sessions can be saved and restored.

4 Conclusion

We present a tool that encourages the user to explore a dataset in a “hands
on” manner, by directly interacting with an embedding of it. In contrast to
traditional one-time-embeddings our approach enables the user to develop a
feeling for the underlying structure of the dataset by browsing it from different
angles and layout the embedding in such a way that user desired aspects are
emphasized.

Acknowledgment. Part of this work was supported by the German Science
Foundation (DFG) under the reference number ‘GA 1615/1-1’.
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Abstract. External knowledge bases, both generic and domain specific,
available on the Web of Data have the potential of enriching the content
of text documents with structured information. We present the Kanopy
system that makes explicit use of this potential. Besides the common task
of semantic annotation of documents, Kanopy analyses the semantic net-
work that resides in DBpedia around extracted concepts. The system’s
main novelty lies in the translation of social network analysis measures
to semantic networks in order to find suitable topic labels. Moreover,
Kanopy extracts advanced knolwedge in the form of subgraphs that cap-
ture the relationships between the concepts.

1 Introduction

Recent research has made progress in interlinking text documents with the Web
of Data. One of the main benefits of this linkage is that the external knowledge
can be used as a complementary source of information, enriching the content of
the original documents and revealing semantic relations between them. There
exist several popular systems for this task. Zemanta [13] focuses on enriching
blog posts by recommending the authors publicly available content that can
be added to the post, for example, images or links. OpenCalais [11] aims at
annotating text with semantic entities and events that are extracted from it.
WikipediaMiner [9] provides links to corresponding pages in Wikipedia [12] and
related concepts, while DBpedia Spotlight [5] focuses on linking entities from
text to those in DBpedia [6].

However, most of these systems just annotate the text with the disambiguated
concepts extracted from external data sources. While this does add value to the
user experience, we argue that this leaves most of the potential unexploited. DB-
pedia and other semi-structured knowledge bases offer a wealth of exploration
options available with comparatively low processing costs. The relations between
concepts can be analysed together with the graph structure around them, re-
sulting in the discovery of rich knowledge that is not necessarily obvious from
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the text itself. Advantages of such an analysis are manifold. Besides concept
linking, it can serve to: (i) provide explanations for concept linkage; (ii) enrich
texts with a wealth of background knowledge; (iii) provide starting points for
further knowledge exploration; (iv) provide insights in the quality/quantity of
information the knowledge base contains about the topics discussed in the text
reveling possible knowledge gaps.

Our system Kanopy demonstrates these advantages. It extracts a list of rele-
vant topics from an input document, where each topic consists of a set of related
words. The main objective of Kanopy is to automatically label each topic with
a concept that captures its essence. Thus, for each topic Kanopy returns the
topics, the top k recommended labels as well as a topic signature graph. This
graph shows the relations between the topic words and the suggested labels, as
well as other strongly related concepts. In order to achieve this, Kanopy tackles
a number of difficult problems: keyphrase extraction from text, topic finding,
concept linking and disambiguation, graph extraction and topic labelling.

An important approach related to our work is the REX system [1]. Given a
pair of entities and a knowledge base (i.e, DBpedia), REX extracts a ranked
list of semantic paths that explain the relationship between the two concepts.
MING [4] is another related system that, given a group of concepts and a knowl-
edge base, returns the most informative subgraph that contains all the given
concepts and the relations between them. These systems are focused on extract-
ing the relations between the seed concepts. Kanopy’s main contribution lies
in applying graph-based centralities to rank related concepts and extract the
ones suitable for labelling the topic. The resulted concept must be central, from
a semantic-graph perspective, with respect to all the topic words. In order to
measure this semantic centrality, we analyse the semantic network that inter-
connects the concepts behind the words. When combined with a convenient user
interface, Kanopy offers knowledge discovery beyond that offered by simple topic
labelling.

2 The Kanopy System

In this section, we overview the key stages of the Kanopy processing pipeline, as
illustrated in Figure 1.

Fig. 1. Diagram illustrating the complete Kanopy processing pipeline



Kanopy: Analysing the Semantic Network around Document Topics 679

1. Noun Phrase Extraction. The main noun phrases are extracted from the
raw input using the Stanford CoreNLP library [8]. These phrases are weighted
and then filtered according to their TF-IDF score, computed with respect to the
Wikipedia full-text corpus.
2. Noun Phrase Clustering. As in probabilistic topic models, we assume that
a text document contains one or more sets of related “meaning-bearing words”,
where each set corresponds to a different topic. To identify these topics, we
cluster the noun phrases obtained from the previous stage using agglomerative
hierarchical clustering. Positive Pointwise Mutual Information (PPMI), with re-
spect to the Wikipedia full-text corpus, is used as similarity metric. The applied
linkage strategy and cut-off point can be adjusted from the user interface. After
this stage, we obtain several clusters of noun phrases.
3. Concept linking & disambiguation. This stage links and, if necessary,
disambiguates every noun phrase in each obtained topic to concepts from DB-
pedia. While many algorithms exists for word-sense disambiguation (WSD), we
use the Eigenvalue-based WSD [2]. It is unsupervised, does not need preprocess-
ing and it supports simultaneous disambiguation of a group of related words.
It achieved approximately 10% better accuracy at disambiguating topic models
than the state-of-art unsupervised WSD algorithms [2]. Its drawback lies in the
higher computational complexity, but the parallel implementation inside Kanopy
meets the requirements of an online demonstration.
4. Graph extraction. At the beginning of this stage, each remaining noun
phrase is linked to exactly one DBpedia concept, which we refer to as seed
concepts. A semantic network is extracted by activating the concepts and their
relations within a distance of two hops from each seed. In the majority of cases,
this is sufficient to connect the single concept subgraphs into one larger graph,
which provides the input for the next stage [3].
5. Topic labelling. From this extracted topic graph we finally identify the most
relevant concepts. We apply the focused random walk betweenness and focused
information centrality, as defined in [3], which rank the nodes in the topic graph
with respect to their semantic centrality to the seed concepts.

At this stage, each previously identified topic is represented by the set of seed
concepts, the ranked label nodes, and the semantic network extracted at Step
4. This network contains some hundreds or thousands of nodes and edges. In
the user interface, we present compressed topic graphs, consisting of only the
shortest paths between seeds and labels as well as the nodes on these paths.
Colour coding is used to differentiate the types of nodes and their relevance to
the topic. Users can dynamically select how many of the top labels they want to
inspect, resulting in graphs of different complexity.

3 Kanopy in Action

Kanopy is deployed as a web application. Users are encouraged to input any
text in the user interface. Let us assume they copy and paste the body of a text
related to research about the indian tigers endangered by extinction due to poor
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genetic diversity [10]. In the following, we exemplify some key insights that can
be gained with the current version of Kanopy [7].

Some topics that Kanopy identifies with the default settings are about locality
(India), scientific research, and genetics. The third one is of particular interest.
As the column Extracted Concepts shows, it brings together different con-
cepts found in the text, such as “Preservation breeding”, “DNA”, “Gene pool”,
“Extinction” and “Genetic structure”. Opening the topic graph and setting the
Top Labels slider to 1 reveals that the top candidates for labelling are either
Genetics or Biology, depending on the chosen Centrality Measure. Hovering
over the topic graph highlights that Genetics is directly connected to the text
mentions of “Genetic structure” and “DNA”, a fact that explains its high score.
The graph also clarifies that Population Genetics, the second-ranked label, is
part of Genetics – which in turn is part of Biology. None of these recommended
labels occured in the original text. Setting the Topic granularity to ”Fine” in
the user interface, Kanopy splits this topic into two more focused ones, labelled
Population Genetics and Conservation Biology. Besides these multi-concept top-
ics, Kanopy also displays single concepts that remained isolated, such as Tiger,
together with the DBpedia categories and classes they belong to.

We plan to demonstrate Kanopy’s research along the lines outlined above.
A future extension we envisage for the system is that of corpus analysis and
exploration. Here, Kanopy can be used to extract an interconnected network of
concepts, topics and documents. This use case would bring value for a range of
domains, such as online journalism, education, and knowledge management.
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Abstract. This paper presents the first version of a new inductive data-
base system called SCCQL. The system performs constraint-based clus-
tering on a relational database. Clustering problems are formulated with
a query language, an extension of SQL for clustering that includes
must-link and cannot-link constraints. The functioning of the system
is explained. As an example of use of this system, an application in the
context of microbiology has been developed that is presented here.

Keywords: inductive database, inductive query language, clustering.

1 Introduction

Data analysis is a non-trivial task: many methods require knowledge of advanced
mathematics and statistics to be used correctly, and among those methods that
do not, there is still the task of choosing among the many implementations that
are available. Data mining environments such as Weka, Orange, RapidMiner,
KNIME, etc., facilitate data analysis by allowing the user to construct work-
flows from predefined building blocks, helping the user choose among alternative
techniques, etc. While this provides much support and flexibility, full flexibility
is only achieved by allowing scripting or programming in addition to this.

Inductive databases go one step further. Based on the principle that there
should be no inherent difference between querying and mining, they offer “data
mining query languages”, in which data mining tasks can be expressed as queries,
and the results are again queriable (the “closure principle”). They set the stage
for a more declarative approach to data mining: Just like SQL made it possible to
query complex databases without having to program data navigation, inductive
query languages should make it possible to formulate complex mining problems
without having to choose or compose the optimal mining algorithm. Examples
of such systems are SINDBAD/SiQL [6], ATLAS [8], DMX [5].

Constraint-based clustering is an example of a mining task where flexibility
is desirable. It is a generalization of standard clustering in which the user can
impose constraints on the clustering to be found, such as must-link and cannot-
link constraints. Note that also classical parameters of clustering algorithms, such
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as the number of clusters to be constructed, can be seen as constraints. One could
then think of a language that allows the user to naturally formulate “clustering
queries”, which may involve a variety of constraints, and of an inductive database
system that can execute such queries.

Adam et al. [1] recently proposed such a language. It extends SQL with the
CLUSTER statement. The basic structure of this statement is as follows:

CLUSTER attributes FROM data [WITH constraints]

The currently available constraints are the number of clusters wanted and must-
link and cannot-link constraints. These last ones are specified as follows:

[SOFT] MUST|CANNOT LINK (cdata) [BY attribute]

The complete grammar definition of the language and examples of queries can be
found in the aforesaid paper. Note that, while some existing inductive database
systems offer clustering queries, none of them offer constraint-based clustering
in this manner.

The purpose of this demo is to exhibit a system that allows the user to run
this type of query, and to demonstrate the ease with which such a system can
be used to solve practical data mining questions. In the remainder of this paper,
we briefly describe the architecture of the system and some of its features.

2 The SCCQL System

Figure 1 shows the architecture of the SCCQL (“Structured Constraint-based
Clustering Query Language”) system, which allows for clustering tuples in a
relational database using the mentioned query language. When a cluster query
is parsed, the parser does not interpret the data and cdata parts; these are
sent to the actual SQL database, which retrieves the data and sends it to the
cluster engine. For soft equivalence constraints, the engine learns a Mahalanobis
distance as in [2]. The engine next chooses the algorithm to execute: CopKMeans
[7] if there are hard equivalence constraints; the Weka [3] implementation of EM
otherwise. Respecting the closure principle, which states that the result of a
query should be queriable, the result returned is a table. It is a copy of the data
table with an extra column holding the cluster assignment of each instance.

The system we developed includes an interface that provides two ways of
building a query. On one hand, the user can make the query step by step: select
the data to cluster, choose the attributes to use for the clustering, specify the
number of clusters and add equivalence constraints. The query is then built from
the different elements. On the other hand, the user can directly type in the query
he wants to execute. The interface also includes some representation of the result
table to help visualize it.

3 Application

The SCCQL system is being developed in a project that groups scientists from
microbiology and computer science. One of the goals is to build a platform
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Fig. 1. Architecture scheme

that will help microbiologists to analyse data using data mining techniques. The
SCCQL system will be part of this platform.

In the application, clustering has two purposes: finding groups of similar in-
stances, and identifying outliers (instances that are far from any cluster, or
in isolated clusters). Such outliers can help microbiologists better understand
microbial behavior and growth characteristics. The relational database of the
application stores different microbiological parameters of cells, such as the de-
scendancy and physiological states within a population. For instance, one can
be interested in clustering cells according to a number of static and/or dynamic
parameters. This can be formulated by the following query:

CLUSTER LengthMean, WidthMean

FROM (SELECT c.Id, l.Mutant, AVG(s.Length) AS LengthMean,

AVG(s.Width) AS WidthMean

FROM stateovertime s, cell c, lineage l

WHERE l.ExperimentId=5 AND c.LineageId = l.Id

AND s.CellId = c.Id

GROUP BY c.id) AS data

WITH SOFT MUST LINK WHERE data.Mutant=0 BY Mutant

More examples of queries can be found in [1] and on http://people.cs.

kuleuven.be/~antoine.adam/.

4 Discussion and Conclusion

A first advantage of the SCCQL system is that it seamlessly integrates the
specification of clustering constraints and of the data to be clustered. The latter
allows for non-trivial data preprocessing. Not all kinds of preprocessing are easily
expressed in SQL, but one could also integrate the system with a language such
as SiQL, which does allow more advanced preprocessing. A second advantage
is that it is goal-oriented: the user can tell the system what data to cluster,
and under what constraints, without stating which clustering method should
be used. Although the current implementation uses standard algorithms in its

http://people.cs.
kuleuven.be/~antoine.adam/
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clustering engine, one could also use general solvers for those cases where no
standard algorithm will suffice. The intelligence to chose the system correctly
can be built into the system. No other system that we know of combines these
two advantages.

For now, SCCQL focuses specifically on constraint-based clustering. Within
this setting, its most important limitation is that it can exploit only predefined
types of constraints. More types could be introduced (e.g., imposing a minimal
cluster size, or requiring balanced clusters), but this will raise the problem of
how to solve clustering tasks that combine certain types of constraints. SCCQL
is not extensible in the sense of allowing the user to specify any constraint using
a general-purpose constraint language. Finally, in the current implementation,
the clustering process is not integrated in the database management system: the
data is first retrieved from the database, then clustering is performed externally.
This is transparent for the user, who just sees the resulting table, but a closer
integration may have efficiency advantages.

The SCCQL system is work in progress. We have presented a first version
that executes constraint-based clustering queries on a database. An application
in the field of microbiology has been shown, but the system is essentially domain
independent and can be combined with any SQL database.

Acknowledgements. We thank Tias Guns for his useful comments on this pa-
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4. Imieliński, T., Mannila, H.: A Database Perspective on Knowledge Discovery. Com-
munication of the ACM 39(11), 58–64 (1996)

5. Data Mining eXtensions DMX,
http://msdn.microsoft.com/en-us/library/ms132058.aspx

6. Wicker, J., Richter, L., Kessler, K., Kramer, S.: SINDBAD and SiQL: An Induc-
tive Database and Query Language in the Relational Model. In: Daelemans, W.,
Goethals, B., Morik, K. (eds.) ECML PKDD 2008, Part II. LNCS (LNAI), vol. 5212,
pp. 690–694. Springer, Heidelberg (2008)

7. Wagstaff, K.L.: Intelligent Clustering with Instance-level Constraints. PhD diss.,
Cornell University (2002)

8. Wang, H., Zaniolo, C.: Atlas: A Native Extension of SQL for Data Mining. In:
Proceedings of the 3rd SIAM International Conference on Data Mining (2003)

http://msdn.microsoft.com/en-us/library/ms132058.aspx


Erratum: Area under the Precision-Recall

Curve: Point Estimates and Confidence Intervals

Kendrick Boyd1, Kevin H. Eng2, and C. David Page1

1 University of Wisconsin-Madison, Madison, WI
boyd@cs.wisc.edu, page@biostat.wisc.edu
2 Roswell Park Cancer Institute, Buffalo, NY

Kevin.Eng@RoswellPark.org

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part III, LNAI 8190, pp. 451–466, 2013.

c© Springer-Verlag Berlin Heidelberg 2013

———————————————————————————————-
DOI 10.1007/978-3-642-40994-3 55

The right hand side of the equation for interpolated area under the PR curve
at the bottom of page 455 inadvertently transposes a and b. This typo does not
affect the validity of the proof.

The corrected formula should read:∫ r2

r1

r′

ar′ + b
dr′ =

ar′ − b log(ar′ + b)

a2

∣∣∣∣r′=r2

r′=r1

=
ar2 − b log(ar2 + b)− ar1 + b log(ar1 + b)

a2

———————————————————————————
The original online version for this chapter can be found at
http://dx.doi.org/10.1007/978-3-642-40994-3_29
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Gärtner, Thomas III-672
Gaud, Nicolas III-641
Gaur, Neeraj II-194
Geiger, Bernhard C. II-612
Geist, Matthieu I-1, I-17
Geng, Guanggang II-660
Georgiopoulos, Michael III-224

Ghahramani, Zoubin II-531
Ghosh, Joydeep II-194
Giacinto, Giorgio III-387
Gionis, Aristides II-32
Gkoulalas-Divanis, Aris III-353
Goethals, Bart I-353
Gohr, André I-321
Goldszmidt, Moises II-95
Govers, Sander III-681
Greene, Derek III-677
Gretton, Arthur II-304
Grosse, Ivo I-321
Grosskreutz, Henrik I-369
Gunasekar, Suriya II-194
Guo, Hongyu I-433
Guo, Jun II-161
Guo, Yuhong II-417
Gupta, Manish I-557
Gutmann, Michael U. II-596

Habrard, Amaury II-433
Han, Jiawei I-557
Hayes, Conor III-677
He, Qing II-353, III-208
Henelius, Andreas I-337
Herrera-Joancomart́ı, Jordi I-590
Hilaire, Vincent III-641
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