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Preface

These are the proceedings of the 2013 edition of the European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases, or ECML PKDD for short. This conference series has grown out of
the former ECML and PKDD conferences, which were Europe’s premier confer-
ences on, respectively, Machine Learning and Knowledge Discovery in Databases.
Organized jointly for the first time in 2001, these conferences have become in-
creasingly integrated, and became one in 2008. Today, ECML PKDD is a world–
leading conference in these areas, well–known in particular for having a highly
diverse program that aims at exploiting the synergies between these two differ-
ent, yet related, scientific fields.

ECML PKDD 2013 was held in Prague, Czech Republic, during September
23–27. Continuing the series’ tradition, the conference combined an extensive
technical program with a variety of workshops and tutorials, a demo track for
system demonstrations, an industrial track, a nectar track focusing on particu-
larly interesting results from neighboring areas, a discovery challenge, two poster
sessions, and a rich social program.

The main technical program included five plenary talks by invited speak-
ers (Rayid Ghani, Thorsten Joachims, Ulrike von Luxburg, Christopher Re and
John Shawe-Taylor) and a record–breaking 138 technical talks, for which further
discussion opportunities were provided during two poster sessions. The indus-
trial track had four invited speakers: Andreas Antrup (Zalando), Ralf Herbrich
(Amazon Berlin), Jean-Paul Schmetz (Hubert BurdaMedia), and Hugo Zaragoza
(Websays). The demo track featured 11 software demonstrations, and the nectar
track 5 talks. The discovery challenge, this year, focused on the task of rec-
ommending given names for children to soon–to–be–parents. Twelve workshops
were held: Scalable Decision Making; Music and Machine Learning; Reinforce-
ment Learning with Generalized Feedback; Languages for Data Mining and Ma-
chine Learning; Data Mining on Linked Data; Mining Ubiquitous and Social
Environments; Tensor Methods in Machine Learning; Solving Complex Machine
Learning Problems with Ensemble Methods; Sports Analytics; New Frontiers
in Mining Complex Pattern; Data Analytics for Renewable Energy Integration;
and Real–World Challenges for Data Stream Mining. Eight tutorials completed
the program: Multi–Agent Reinforcement Learning; Second Order Learning;
Algorithmic Techniques for Modeling and Mining Large Graphs; Web Scale
Information Extraction; Mining and Learning with Network–Structured Data;
Performance Evaluation of Machine Learning Algorithms; Discovering Roles and
Anomalies in Graphs: Theory and Applications; and Statistically Sound Pattern
Discovery.

The conference offered awards for distinguished papers, for the paper from
ECML / PKDD 2003 with the highest impact after a decade, and for the best
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demonstration. In addition, there was the novel Open Science Award. This award
was installed in order to promote reusability of software, data, and experimental
setups, with the aim of improving reproducibility of research and facilitating
research that builds on other authors’ work.

For the first time, the conference used a mixed submission model: work could
be submitted as a journal article to Machine Learning or Data Mining and
Knowledge Discovery, or it could be submitted for publication in the conference
proceedings. A total of 182 original manuscripts were submitted to the journal
track, and 447 to the proceedings track. Of the journal submissions, 14 have
been published in the journal, as part of a special issue on ECML PKDD 2013,
and 14 have been redirected to the proceedings track. Among the latter, 13
were accepted for publication in the proceedings. Finally, of the 447 submissions
to the proceedings track, 111 have been accepted. Overall, this gives a record
number of 629 submissions, of which 138 have been scheduled for presentation
at the conference, making the overall acceptance rate 21.9%.

The mixed submission model was introduced in an attempt to improve the
efficiency and reliability of the reviewing process. Reacting to criticism on the
conference–based publication model that is so typical for computer science,
several conferences have started experimenting with multiple reviewing rounds,
continuous submission, and publishing contributions in a journal instead of the
conference proceedings. The ECML PKDD model has been designed to maxi-
mally exploit the already existing infrastructure for journal reviewing. For an
overview of the motivation and expected benefits of this new model, we refer to
A Revised Publication Model for ECML PKDD, available at arXiv:1207.6324.

These proceedings of the 2013 European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases contain full
papers of work presented at the main technical track, abstracts of the jour-
nal articles and invited talks presented there, and short papers describing the
demonstrations and nectar papers. We thank the chairs of the demo track (An-
dreas Hotho and Joaquin Vanschoren), the nectar track (Rosa Meo and Michèle
Sebag), and the industrial track (Ulf Brefeld), as well as the proceedings chairs
Yamuna Krishnamurthy and Nico Piatkowski, for their help with putting these
proceedings together. Most importantly, of course, we thank the authors for their
contributions, and the area chairs and reviewers for their substantial efforts to
guarantee and sometimes even improve the quality of these proceedings. We wish
the reader an enjoyable experience exploring the many exciting research results
presented here.

July 2013 Hendrik Blockeel
Kristian Kersting
Siegfried Nijssen

Filip Železný

http://arxiv.org/abs/1207.6324
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Matěj Holec, Webmaster Czech Technical University in Prague,
Czech Republic
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Using Machine Learning Powers for Good

Rayid Ghani

The past few years have seen increasing demand for machine learning and data
mining—both for tools as well as experts. This has been mostly motivated by a
variety of factors including better and cheaper data collection, realization that
using data is a good thing, and the ability for a lot of organizations to take
action based on data analysis. Despite this flood of demand, most applications
we hear about in machine learning involve search, advertising, and financial
areas. This talk will talk about examples on how the same approaches can be
used to help governments and non-prpofits make social impact. I’ll talk about
a summer fellowship program we ran at University of Chicago on social good
and show examples from projects in areas such as education, healthcare, energy,
transportation and public safety done in conjunction with governments and non-
profits.

Biography

Rayid Ghani was the Chief Scientist at the Obama for America 2012 campaign
focusing on analytics, technology, and data. His work focused on improving dif-
ferent functions of the campaign including fundraising, volunteer, and voter mo-
bilization using analytics, social media, and machine learning; his innovative use
of machine learning and data mining in Obama’s reelection campaign received
broad attention in the media such as the New York Times, CNN, and others.
Before joining the campaign, Rayid was a Senior Research Scientist and Direc-
tor of Analytics research at Accenture Labs where he led a technology research
team focused on applied R&D in analytics, machine learning, and data min-
ing for large-scale & emerging business problems in various industries including
healthcare, retail & CPG, manufacturing, intelligence, and financial services.
In addition, Rayid serves as an adviser to several start-ups in Analytics, is an
active organizer of and participant in academic and industry analytics confer-
ences, and publishes regularly in machine learning and data mining conferences
and journals.



Learning with Humans in the Loop

Thorsten Joachims

Machine Learning is increasingly becoming a technology that directly interacts
with human users. Search engines, recommender systems, and electronic com-
merce already heavily rely on adapting the user experience through machine
learning, and other applications are likely to follow in the near future (e.g., au-
tonomous robotics, smart homes, gaming). In this talk, I argue that learning
with humans in the loop requires learning algorithms that explicitly account for
human behavior, their motivations, and their judgment of performance. Towards
this goal, the talk explores how integrating microeconomic models of human be-
havior into the learning process leads to new learning models that no longer
reduce the user to a “labeling subroutine”. This motivates an interesting area
for theoretical, algorithmic, and applied machine learning research with connec-
tions to rational choice theory, econometrics, and behavioral economics.

Biography

Thorsten Joachims is a Professor of Computer Science at Cornell University. His
research interests center on a synthesis of theory and system building in ma-
chine learning, with applications in language technology, information retrieval,
and recommendation. His past research focused on support vector machines,
text classification, structured output prediction, convex optimization, learning
to rank, learning with preferences, and learning from implicit feedback. In 2001,
he finished his dissertation advised by Prof. Katharina Morik at the University
of Dortmund. From there he also received his Diplom in Computer Science in
1997. Between 2000 and 2001 he worked as a PostDoc at the GMD Institute for
Autonomous Intelligent Systems. From 1994 to 1996 he was a visiting scholar
with Prof. Tom Mitchell at Carnegie Mellon University.



Unsupervised Learning with Graphs:

A Theoretical Perspective

Ulrike von Luxburg

Applying a graph–based learning algorithm usually requires a large amount of
data preprocessing. As always, such preprocessing can be harmful or helpful. In
my talk I am going to discuss statistical and theoretical properties of various
preprocessing steps. We consider questions such as: Given data that does not
have the form of a graph yet, what do we loose when transforming it to a graph?
Given a graph, what might be a meaningful distance function? We will also see
that graph–based techniques can lead to surprising solutions to preprocessing
problems that a priori don’t involve graphs at all.

Biography

Ulrike von Luxburg is a professor for computer science/machine learning at
the University of Hamburg. Her research focus is the theoretical analysis of
machine learning algorithms, in particular for unsupervised learning and graph
algorithms. She is (co)–winner of several best student paper awards (NIPS 2004
and 2008, COLT 2003, 2005 and 2006, ALT 2007). She did her PhD in the Max
Planck Institute for Biological Cybernetics in 2004, then moved to Fraunhofer
IPSI in Darmstadt, before returning to the Max Planck Institute in 2007 as
a research group leader for learning theory. Since 2012 she is a professor for
computer science at the University of Hamburg.



Making Systems That Use Statistical Reasoning

Easier to Build and Maintain over Time

Christopher Re

The question driving my work is, how should one deploy statistical data–analysis
tools to enhance data–driven systems? Even partial answers to this question may
have a large impact on science, government, and industry—each of whom are
increasingly turning to statistical techniques to get value from their data.

To understand this question, my group has built or contributed to a diverse
set of data–processing systems: a system, called GeoDeepDive, that reads and
helps answer questions about the geology literature; a muon filter that is used
in the IceCube neutrino telescope to process over 250 million events each day in
the hunt for the origins of the universe; and enterprise applications with Oracle
and Pivotal. This talk will give an overview of the lessons that we learned in
these systems, will argue that data systems research may play a larger role in
the next generation of these systems, and will speculate on the future challenges
that such systems may face.

Biography

Christopher Re is an assistant professor in the department of Computer Sciences
at the University of Wisconsin-Madison. The goal of his work is to enable users
and developers to build applications that more deeply understand and exploit
data. Chris received his PhD from the University of Washington, Seattle under
the supervision of Dan Suciu. For his PhD work in the area of probabilistic data
management, Chris received the SIGMOD 2010 Jim Gray Dissertation Award.
Chris’s papers have received four best papers or best–of–conference citations
(best paper in PODS 2012 and best–of–conference in PODS 2010, twice, and
one in ICDE 2009). Chris received an NSF CAREER Award in 2011.



Deep–er Kernels

John Shawe-Taylor

Kernels can be viewed as shallow in that learning is only applied in a single (out-
put) layer. Recent successes with deep learning highlight the need to consider
learning richer function classes. The talk will review and discuss methods that
have been developed to enable richer kernel classes to be learned. While some
of these methods rely on greedy procedures many are supported by statistical
learning analyses and/or convergence bounds. The talk will highlight the trade–
offs involved and the potential for further research on this topic.

Biography

John Shawe-Taylor obtained a PhD in Mathematics at Royal Holloway, Uni-
versity of London in 1986 and joined the Department of Computer Science in
the same year. He was promoted to Professor of Computing Science in 1996.
He moved to the University of Southampton in 2003 to lead the ISIS research
group. He was Director of the Centre for Computational Statistics and Ma-
chine Learning at University College, London between July 2006 and September
2010. He has coordinated a number of European wide projects investigating the
theory and practice of Machine Learning, including the PASCAL projects. He
has published over 300 research papers with more than 25000 citations. He has
co-authored with Nello Cristianini two books on kernel approaches to machine
learning: “An Introduction to Support Vector Machines” and “Kernel Methods
for Pattern Analysis”.
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ML and Business: A Love–Hate Relationship

Andreas Antrup

Based on real world examples. the talk explores common gaps in the mutual
understanding of the business and the analytical side; particular focus shall be
on misconceptions of the needs and expectations of business people and the re-
sulting problems. It also touches on some approaches to bridge these gaps and
build trust. At the end we shall discuss possibly under–researched areas that
may open the doors to a yet wider usage of ML principles and thus unlock more
of its value and beauty.

Bayesian Learning in Online Service:

Statistics Meets Systems

Ralf Herbrich

Over the past few years, we have entered the world of big and structured data—
a trend largely driven by the exponential growth of Internet–based online ser-
vices such as Search, eCommerce and Social Networking as well as the ubiquity
of smart devices with sensors in everyday life. This poses new challenges for
statistical inference and decision–making as some of the basic assumptions are
shifting:

– The ability to optimize both the likelihood and loss functions
– The ability to store the parameters of (data) models
– The level of granularity and ’building blocks’ in the data modeling phase
– The interplay of computation, storage, communication and inference and

decision–making techniques

In this talk, I will discuss the implications of big and structured data for Statistics
and the convergence of statistical model and distributed systems. I will present
one of the most versatile modeling techniques that combines systems and sta-
tistical properties—factor graphs—and review a series of approximate inference
techniques such as distributed message passing. The talk will be concluded with
an overview of real–world problems at Amazon.



Machine Learning in a Large

diversified Internet Group

Jean-Paul Schmetz

I will present a wide survey of the use of machine learning techniques across a
large number of subsidiaries (40+) of an Internet group (Burda Digital) with
special attention to issues regarding (1) personnel training in state of the art
techniques, (2) management buy–in of complex non interpretable results and
(3) practical and measurable bottom line results/solutions.

Some of the Problems and
Applications of Opinion Analysis

Hugo Zaragoza

Websays strives to provide the best possible analysis of online conversation to
marketing and social media analysts. One of the obsessions of Websays is to
provide “near–man–made” data quality at marginal costs. I will discuss how we
approach this problem using innovative machine learning and UI approaches.
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The full articles have been published in Machine Learning or Data Mining and
Knowledge Discovery.

Fast sequence segmentation using log–linear models
Nikolaj Tatti
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-012-0301-y

Sequence segmentation is a well–studied problem, where given a sequence of
elements, an integer K, and some measure of homogeneity, the task is to split
the sequence into K contiguous segments that are maximally homogeneous. A
classic approach to find the optimal solution is by using a dynamic program.
Unfortunately, the execution time of this program is quadratic with respect to
the length of the input sequence. This makes the algorithm slow for a sequence
of non–trivial length. In this paper we study segmentations whose measure of
goodness is based on log–linear models, a rich family that contains many of the
standard distributions. We present a theoretical result allowing us to prune many
suboptimal segmentations. Using this result, we modify the standard dynamic
program for 1D log–linear models, and by doing so reduce the computational
time. We demonstrate empirically, that this approach can significantly reduce
the computational burden of finding the optimal segmentation.

ROC curves in cost space
Cesar Ferri, Jose Hernandez-Orallo and Peter Flach
Machine Learning
DOI 10.1007/s10994-013-5328-9

ROC curves and cost curves are two popular ways of visualising classifier per-
formance, finding appropriate thresholds according to the operating condition,
and deriving useful aggregated measures such as the area under the ROC curve
(AUC) or the area under the optimal cost curve. In this paper we present new
findings and connections between ROC space and cost space. In particular, we
show that ROC curves can be transferred to cost space by means of a very nat-
ural threshold choice method, which sets the decision threshold such that the
proportion of positive predictions equals the operating condition. We call these
new curves rate–driven curves, and we demonstrate that the expected loss as
measured by the area under these curves is linearly related to AUC. We show
that the rate–driven curves are the genuine equivalent of ROC curves in cost
space, establishing a point–point rather than a point–line correspondence. Fur-
thermore, a decomposition of the rate–driven curves is introduced which sepa-
rates the loss due to the threshold choice method from the ranking loss (Kendall

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-012-0301-y
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5328-9
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τ distance). We also derive the corresponding curve to the ROC convex hull in
cost space: this curve is different from the lower envelope of the cost lines, as the
latter assumes only optimal thresholds are chosen.

A framework for semi–supervised and unsupervised optimal
extraction of clusters from hierarchies
Ricardo J.G.B. Campello, Davoud Moulavi, Arthur Zimek and Jörg Sander
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-013-0311-4

We introduce a framework for the optimal extraction of flat clusterings from local
cuts through cluster hierarchies. The extraction of a flat clustering from a cluster
tree is formulated as an optimization problem and a linear complexity algorithm
is presented that provides the globally optimal solution to this problem in semi–
supervised as well as in unsupervised scenarios. A collection of experiments is
presented involving clustering hierarchies of different natures, a variety of real
data sets, and comparisons with specialized methods from the literature.

Pairwise meta–rules for better meta–learning–based algorithm
ranking
Quan Sun and Bernhard Pfahringer
Machine Learning
DOI 10.1007/s10994-013-5387-y

In this paper, we present a novel meta–feature generation method in the con-
text of meta–learning, which is based on rules that compare the performance
of individual base learners in a one–against–one manner. In addition to these
new meta–features, we also introduce a new meta–learner called Approximate
Ranking Tree Forests (ART Forests) that performs very competitively when
compared with several state–of–the–art meta–learners. Our experimental re-
sults are based on a large collection of datasets and show that the proposed
new techniques can improve the overall performance of meta–learning for al-
gorithm ranking significantly. A key point in our approach is that each per-
formance figure of any base learner for any specific dataset is generated by
optimising the parameters of the base learner separately for each dataset.

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-013-0311-4
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5387-y
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Block coordinate descent algorithms for large–scale sparse multiclass
classification
Mathieu Blondel, Kazuhiro Seki and Kuniaki Uehara
Machine Learning
DOI 10.1007/s10994-013-5367-2

Over the past decade, �1 regularization has emerged as a powerful way to learn
classifiers with implicit feature selection. More recently, mixed–norm (e.g., �1/�2)
regularization has been utilized as a way to select entire groups of features. In
this paper, we propose a novel direct multiclass formulation specifically designed
for large–scale and high–dimensional problems such as document classification.
Based on a multiclass extension of the squared hinge loss, our formulation em-
ploys �1/�2 regularization so as to force weights corresponding to the same fea-
tures to be zero across all classes, resulting in compact and fast–to–evaluate
multiclass models. For optimization, we employ two globally–convergent vari-
ants of block coordinate descent, one with line search (Tseng and Yun in Math.
Program. 117:387423, 2009) and the other without (Richtrik and Tak in Math.
Program. 138, 2012a, Tech. Rep. arXiv:1212.0873, 2012b). We present the two
variants in a unified manner and develop the core components needed to ef-
ficiently solve our formulation. The end result is a couple of block coordinate
descent algorithms specifically tailored to our multiclass formulation. Experi-
mentally, we show that block coordinate descent performs favorably compared
to other solvers such as FOBOS, FISTA and SpaRSA. Furthermore, we show
that our formulation obtains very compact multiclass models and outperforms
�1/�2–regularized multiclass logistic regression in terms of training speed, while
achieving comparable test accuracy.

A comparative evaluation of stochastic–based inference methods for
Gaussian process models
Maurizio Filippone, Mingjun Zhong and Mark Girolami
Machine Learning
DOI 10.1007/s10994-013-5388-x

Gaussian process (GP) models are extensively used in data analysis given their
flexible modeling capabilities and interpretability. The fully Bayesian treatment
of GP models is analytically intractable, and therefore it is necessary to re-
sort to either deterministic or stochastic approximations. This paper focuses on
stochastic–based inference techniques. After discussing the challenges associated
with the fully Bayesian treatment of GP models, a number of inference strategies
based on Markov chain Monte Carlo methods are presented and rigorously as-
sessed. In particular, strategies based on efficient parameterizations and efficient
proposal mechanisms are extensively compared on simulated and real data on
the basis of convergence speed, sampling efficiency, and computational cost.

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5367-2
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5388-x
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Probabilistic topic models for sequence data
Nicola Barbieri, Antonio Bevacqua, Marco Carnuccio, Giuseppe Manco and
Ettore Ritacco
Machine Learning
DOI 10.1007/s10994-013-5391-2

Probabilistic topic models are widely used in different contexts to uncover the
hidden structure in large text corpora. One of the main (and perhaps strong) as-
sumptions of these models is that the generative process follows a bag–of–words
assumption, i.e. each token is independent from the previous one. We extend the
popular Latent Dirichlet Allocation model by exploiting three different condi-
tional Markovian assumptions: (i) the token generation depends on the current
topic and on the previous token; (ii) the topic associated with each observation
depends on topic associated with the previous one; (iii) the token generation de-
pends on the current and previous topic. For each of these modeling assumptions
we present a Gibbs Sampling procedure for parameter estimation. Experimental
evaluation over real–word data shows the performance advantages, in terms of
recall and precision, of the sequence–modeling approaches.

The flip–the–state transition operator for restricted Boltzmann
machines
Kai Brügge, Asja Fischer and Christian Igel
Machine Learning
DOI 10.1007/s10994-013-5390-3

Most learning and sampling algorithms for restricted Boltzmann machines
(RBMs) rely on Markov chain Monte Carlo (MCMC) methods using Gibbs
sampling. The most prominent examples are Contrastive Divergence learning
(CD) and its variants as well as Parallel Tempering (PT). The performance of
these methods strongly depends on the mixing properties of the Gibbs chain.
We propose a Metropolis–type MCMC algorithm relying on a transition opera-
tor maximizing the probability of state changes. It is shown that the operator
induces an irreducible, aperiodic, and hence properly converging Markov chain,
also for the typically used periodic update schemes. The transition operator can
replace Gibbs sampling in RBM learning algorithms without producing compu-
tational overhead. It is shown empirically that this leads to faster mixing and in
turn to more accurate learning.

Differential privacy based on importance weighting
Zhanglong Ji and Charles Elkan
Machine Learning
DOI 10.1007/s10994-013-5396-x

This paper analyzes a novel method for publishing data while still protecting pri-
vacy. The method is based on computing weights that make an existing dataset,

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5391-2
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5390-3
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5396-x
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for which there are no confidentiality issues, analogous to the dataset that must
be kept private. The existing dataset may be genuine but public already, or it
may be synthetic. The weights are importance sampling weights, but to protect
privacy, they are regularized and have noise added. The weights allow statistical
queries to be answered approximately while provably guaranteeing differential
privacy. We derive an expression for the asymptotic variance of the approximate
answers. Experiments show that the new mechanism performs well even when
the privacy budget is small, and when the public and private datasets are drawn
from different populations.

Activity preserving graph simplification
Francesco Bonchi, Gianmarco De Francisci Morales, Aristides Gionis and
Antti Ukkonen
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-013-0328-8

We study the problem of simplifying a given directed graph by keeping a small
subset of its arcs. Our goal is to maintain the connectivity required to explain
a set of observed traces of information propagation across the graph. Unlike
previous work, we do not make any assumption about an underlying model
of information propagation. Instead, we approach the task as a combinatorial
problem.
We prove that the resulting optimization problem is NP–hard. We show that a
standard greedy algorithm performs very well in practice, even though it does not
have theoretical guarantees. Additionally, if the activity traces have a tree struc-
ture, we show that the objective function is supermodular, and experimentally
verify that the approach for size–constrained submodular minimization recently
proposed by Nagano et al (2011) produces very good results. Moreover, when
applied to the task of reconstructing an unobserved graph, our methods perform
comparably to a state–of–the–art algorithm devised specifically for this task.

ABACUS: frequent pattern mining based community discovery in
multidimensional networks
Michele Berlingerio, Fabio Pinelli and Francesco Calabrese
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-013-0331-0

Community Discovery in complex networks is the problem of detecting, for each
node of the network, its membership to one of more groups of nodes, the com-
munities, that are densely connected, or highly interactive, or, more in general,
similar, according to a similarity function. So far, the problem has been widely
studied in monodimensional networks, i.e. networks where only one connection
between two entities may exist. However, real networks are often multidimen-
sional, i.e., multiple connections between any two nodes may exist, either re-
flecting different kinds of relationships, or representing different values of the

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-013-0328-8
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-013-0331-0
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same type of tie. In this context, the problem of Community Discovery has to
be redefined, taking into account multidimensional structure of the graph. We
define a new concept of community that groups together nodes sharing member-
ships to the same monodimensional communities in the different single dimen-
sions. As we show, such communities are meaningful and able to group nodes
even if they might not be connected in any of the monodimensional networks.
We devise ABACUS (frequent pAttern mining–BAsed Community discoverer
in mUltidimensional networkS), an algorithm that is able to extract multidi-
mensional communities based on the extraction of frequent closed itemsets from
monodimensional community memberships. Experiments on two different real
multidimensional networks confirm the meaningfulness of the introduced con-
cepts, and open the way for a new class of algorithms for community discovery
that do not rely on the dense connections among nodes.

Growing a list
Benjamin Letham, Cynthia Rudin and Katherine A. Heller
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-013-0329-7

It is easy to find expert knowledge on the Internet on almost any topic, but
obtaining a complete overview of a given topic is not always easy: Information
can be scattered across many sources and must be aggregated to be useful. We
introduce a method for intelligently growing a list of relevant items, starting from
a small seed of examples. Our algorithm takes advantage of the wisdom of the
crowd, in the sense that there are many experts who post lists of things on the
Internet. We use a collection of simple machine learning components to find these
experts and aggregate their lists to produce a single complete and meaningful list.
We use experiments with gold standards and open–ended experiments without
gold standards to show that our method significantly outperforms the state of
the art. Our method uses the ranking algorithm Bayesian Sets even when its
underlying independence assumption is violated, and we provide a theoretical
generalization bound to motivate its use.

What distinguish one from its peers in social networks?
Yi-Chen Lo, Jhao-Yin Li, Mi-Yen Yeh, Shou-De Lin and Jian Pei
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-013-0330-1

Being able to discover the uniqueness of an individual is a meaningful task in
social network analysis. This paper proposes two novel problems in social net-
work analysis: how to identify the uniqueness of a given query vertex, and how
to identify a group of vertices that can mutually identify each other. We further
propose intuitive yet effective methods to identify the uniqueness identification
sets and the mutual identification groups of different properties. We further con-

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-013-0329-7
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-013-0330-1
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duct an extensive experiment on both real and synthetic datasets to demonstrate
the effectiveness of our model.

Spatio–temporal random fields: compressible representation and
distributed estimation
Nico Piatkowski, Sangkyun Lee and Katharina Morik
Machine Learning
DOI 10.1007/s10994-013-5399-7

Modern sensing technology allows us enhanced monitoring of dynamic activities
in business, traffic, and home, just to name a few. The increasing amount of sen-
sor measurements, however, brings us the challenge for efficient data analysis.
This is especially true when sensing targets can interoperate—in such cases we
need learning models that can capture the relations of sensors, possibly with-
out collecting or exchanging all data. Generative graphical models namely the
Markov random fields (MRF) fit this purpose, which can represent complex spa-
tial and temporal relations among sensors, producing interpretable answers in
terms of probability. The only drawback will be the cost for inference, storing
and optimizing a very large number of parameters—not uncommon when we
apply them for real–world applications.
In this paper, we investigate how we can make discrete probabilistic graphical
models practical for predicting sensor states in a spatio–temporal setting. A set
of new ideas allows keeping the advantages of such models while achieving scal-
ability. We first introduce a novel alternative to represent model parameters,
which enables us to compress the parameter storage by removing uninformative
parameters in a systematic way. For finding the best parameters via maximum
likelihood estimation, we provide a separable optimization algorithm that can
be performed independently in parallel in each graph node. We illustrate that
the prediction quality of our suggested method is comparable to those of the
standard MRF and a spatio–temporal k–nearest neighbor method, while using
much less computational resources.

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5399-7
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Abstract. Numerous applications in dynamic social networks, rang-
ing from telecommunications to financial transactions, create evolving
datasets. Detecting outliers in such dynamic networks is inherently chal-
lenging, because the arbitrary linkage structure with massive information
is changing over time. Little research has been done on detecting out-
liers for dynamic social networks, even then, they represent networks as
un-weighted graphs and identify outliers from a relatively global perspec-
tive. Thus, existing approaches fail to identify the objects with abnormal
evolutionary behavior only with respect to their local neighborhood. We
define such objects as local evolutionary outliers, LEOutliers. This paper
proposes a novel incremental algorithm IcLEOD to detect LEOutliers
in weighted graphs. By focusing only on the time-varying components
(e.g., node, edge and edge weight), IcLEOD algorithm is highly efficient
in large and gradually evolving networks. Experimental results on both
real and synthetic datasets illustrate that our approach of finding local
evolutionary outliers can be practical.

Keywords: Outlier detection, Dynamic Social Networks, Weighted
evolving graphs, Local information.

1 Introduction

Outlier detection is a task to uncover and report observations which appear to
be inconsistent with the remainder of that set of data [1]. Since outliers are
usually represented truly unexpected knowledge with underlying value, research
has been widely studied in this area, often applicable to static traditional strings
or attribute-value datasets [2].

Little work, however, has focused on outlier detection in dynamic graph-based
data. With the unprecedented development of social networks, various kinds of
records like credit, personnel, financial, medical, etc. all exist in a graph form,
where vertices represent objects, edges represent relationships among objects and
edge weights represent link strength [3]. Graph-based outlier detection problem
is specially challenging for three major reasons as follows:

Dynamic Changes : Vertices, the relationships among them as well as the weight
of the relationships are all continuously evolving. For example, users join friend-
ship networks (e.g. Facebook), friendships are established, and communication
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becomes increasingly frequent. To capture outliers in evolving networks, detect-
ing approaches should obtain temporal information from a collection of snapshots
instead of a particular instant. For example, snapshots of the Facebook graph
should be taken periodically, forming a sequence of snapshot graphs [4].

Massive Information: Compared with average data sets, social networks are sig-
nificantly larger in size. The volume is even larger when the network is dynamic,
massive information involved in a series of snapshots with millions of nodes
and billions of edges[5]. In this case, it is difficult for algorithms to obtain full
knowledge of the entire networks.

Deeply Hidden Outliers : Recent studies suggest that social networks usually
exhibit hierarchical organization, in which vertices are divided into groups that
can be further subdivided into groups of groups, and so forth over multiple scales
[21]. Therefore, outliers are more difficult to distinguish from normal ones if they
are hidden deeply among their neighbored but not globally.

However, outlier detection in social networks has not yet received as much at-
tention as some other topics, e.g. community discovery [9,10]. Only a few studies
have been conducted on graph-based outlier detection (e.g. [3], [6], [7], [8]). While
a more detailed discussion on these approaches will be provided in section 2, it
suffices to point out here that most of these approaches identify outliers in un-
weighted graphs from a more global perspective. For example, community-based
algorithms [3,6] identify objects whose evolving trends are different with that of
entire community. All such global outlier detection algorithms require the entire
structure of the graph be fully known, which is impractical when dealing with
large evolving networks. Furthermore, the local abnormality may be highly cov-
ered by global evolution trend. Thus, existing global methods fail to identify the
objects with abnormal evolutionary behavior only relative to their local neigh-
borhood. We define such objects as local evolutionary outliers, LEOutliers. The
following example is adopted to illustrate directly the feature of LEOutliers.

Example: Who Should be Liable for Examination Leakage

Figure 1 shows a communication network with two communities, teacher com-
munity C1 and student community C2. Different colors are used to distinguish
between members of two communities. Because of space constraints, links be-
tween nodes have been omitted. It is worthwhile to note that we use the over-
lapping area of two communities to denote the interactions between teachers
and students. The more they are connected, the larger the overlapping area
becomes.

Figure 1(a) contains two snapshots at time T-1 and T and we suppose that the
Entrance Examination time is near at T. It is obvious that, from T-1 to T, the
evolution trend of entire teacher community is communicating more frequently
with student community, which is reasonable since more guidance is needed
before examination. According to the global-view algorithms, objects that follow
the entire community evolution trend are regarded as normal ones. Interestingly,
once local neighborhood is taken into account, as illustrated in Figure 1(b),
the black node v is an example of local evolutionary outlier. We suppose v
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and its neighbors at time T-1 (blue triangles) are a special kind of teachers,
paper setters. The blue triangles avoid communicating with students as the
examination approaches for confidential reasons. On the contrary, node v is
behaving abnormally as he frequently interacts with students at T, which is
a violation of principle. Therefore, although node v evolving consistently with
entire community, he is the most likely suspect in examination leakage.

Fig. 1. Example of LEOutlier

The above example shows that the global-view algorithm is adequate under
certain conditions, but not satisfactory for the case when evolutionary outliers
are hidden deeply among their neighborhood. In this paper, we propose a novel
method named IcLEOD to effectively detect LEOutlier in weighted graphs from
a local perspective. The technical contributions of our work can be summarized
as follows:

– Besides descriptive concept, we put forward a novel measurable definition
of local evolutionary outlier. To the best of our knowledge, this is the first
straightforward concept of a local evolutionary outlier which quantifies how
outlying an object’s evolving behavior is from a local perspective.

– We propose an incremental local evolutionary outlier detection algorithm
(IcLEOD), which fully considers the varying temporal information and the
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complex topology structure of social networks. Our algorithm consists of two
stages: In stage I, a local substructure named Corenet(v) is constructed for
every object v according to structure information and edge weights; In stage
II, we detect local evolutionary outliers by carefully analyzing and comparing
the Corenet(v) at different snapshots.

– Our algorithm greatly increases the efficiency by incrementally analyzing
the dynamic components (e.g., node, edge and edge weight) and the limited
number of nodes affected by them. This technique is more favorable than
algorithms that require global knowledge of the entire network, especially in
the case that the snapshot graphs are gradually evolving.

– Finally, the extensive experiments on both real and synthetic datasets con-
firm the capability and the performance of our algorithm. We conclude that
finding local evolutionary outliers using IcLEOD is meaningful and practical.

The rest part of this work is organized as follows: Section 2 discusses the
recent related work; Section 3 proposes our incremental local evolutionary outlier
detection algorithm, IcLEOD; Section 4 gives experiments for our approach on
both real and synthetic data sets, and shows the achieved results. Section 5
makes a conclusion about the whole work.

2 Related Work

To focus on the theme, the traditional non-graph based outlier detection al-
gorithms will no more be introduced in this paper (e.g., distance-based [17],
distribution-based [1] and density-based methods [15,16]). We are eager to dis-
cuss some state-of-the-art algorithms that conduct on graphs. Graph-based out-
lier detection has been studied from two major perspectives: global versus local.
We will introduce some typical methods in both categories respectively.

Graph-Based Global Outlier Detection Methods: Most recent work on
graph-based outlier detection has focused on unweigted graphs from a more
global perspective (i.e. entire graph, community). For example, a stream-based
outlier detection algorithm [14] takes a global view of entire graph to identify
graph objects which contain unusual bridging edges. Community-based outlier
detection methods [7,13] detect outliers within the context of communities such
that the identified outliers deviate significantly from the rest of the community
members. Some methods [3,6] capture the dynamic anomalous objects whose
evolution behaviors are quite different from that of their respective communities.
All global outlier detection algorithms require that the entire graph should be
obtained, which may be impractical if networks are too large or too dynamic.

Graph-Based Local Outlier Detection Methods: Saligrama [11] proposes
a statistical method based on local K-nearest neighbor distances to identify
anomalies localized to a small spatial region, which is used mainly to deal with
spatial data and cannot be easily generalized to non-spatial networks. OddBall
algorithm [12] takes a egocentric view to search weighted graphs based upon a
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set of power laws, and determines four types of anomalous subgraphs centered on
individual nodes: near-cliques, near-stars, heavy vicinities and dominant heavy
links. Los Alamos National Laboratory [20] explores local areas and paths in the
network which are least likely to occur under normal conditions by combining
anomaly scores from edges in a neighborhood. Most methods in this category
utilize only single snapshot data to find unexpected nodes/edges/sub-structures
and hence they cannot detect temporal changes.

In summary, most of existing methods represent social networks (static and
dynamic) as unweighted graphs, and find outliers from a global point of view.
Thus the outliers detected by previous algorithms are not local evolutionary
outliers as proposed in this paper.

3 IcLEOD Algorithm

Consider a dynamic social network as a sequence of snapshots G1, G2, ...,GT ,
each snapshot is represented by weighted graphs G = (V, E), where V is the
set of objects (nodes) and E is the set of weighted edges. The weight of an edge
denotes the link strength (connecting times). In this paper, we focus on the
problem of detecting local evolutionary outliers from any of the two snapshots
Gi and Gj . Local evolutionary outliers across multiple snapshots can be obtained
by simple post-processing. More specifically, input for our problem thus consists
two snapshots of a weighted evolving network, and meaningful LEOutliers are
output.

Our LEOD algorithm involves two major phases. In the first phase, Corenet
for individual object is formed according to local topology structure and edge
weights information. In the second phase, local evolutionary outliers are identi-
fied by comparing individual’s Corenets of different snapshots. We will present
two phases in Subsection 3.1 and 3.2 respectively.

3.1 Phase I: Discovering Corenet for Individual Object

As noted above, the evolutionary behavior of a LEOutlier is extremely different
from that of its “closest” neighbors. Thus, the primary goal in phase I is to
reasonably measure the closeness between objects, so as to determine which
nodes could be regarded as the closest ones. There are two basic concepts usually
used to group local nodes in un-weighted graph [19]. We will briefly introduce
them before providing the notion of Corenet.

Definition 1 (Egonet). Given a node(ego) vi ∈ V, the egonet of vi is defined
as egonet(vi)={vi} ∪ {vj | vj ∈ V, eij ∈ E}

Where eij is the edge between vi and vj .

Definition 2 (Super-egonet). Given a node(ego) vi ∈ V, the super-egonet of
vi is defined as super-egonet(vi)={ego(vi)} ∪ {ego(vj) | vj ∈ V, eij ∈ E}

Obviously, these two concepts are very simple in obtaining the local substruc-
ture: they just regard 1-hop neighbors(egonet) or neighbors within 2-hop(super-
egonet) as the ego’s closest neighbors. However, they will encounter problems
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when dealing with weighted graphs. As in the case of a friendship network with
edge-weights representing interactions between friends, one is likely to be closer
to his intimate friend’s intimate friend instead of his nodding acquaintances.
Consider the situation in Figure 2, where node X is the ego, Y1, Y2,Y3 are 1-hop
neighbors of X, Z1 is its 2-hop neighbor. By following the definition of egonet,
as Figure 2(b) shows, Y1, Y2 and Y3 are the 3-closest neighbors of X. The con-
cept of egonet focuses only on structural connection but ignores the power of
closeness transmission. Therefore, it requires a forceful measurement considering
both connectivity and closeness.

First, we propose the following two notions to assess the closeness between
ego and its neighbors. We call the node of interest core to differentiate it from
egonet.

Fig. 2. Comparison of Egonet and Corenet

Definition 3 (Closeness related to the core). Let node v0 be core, v0∈V.
For ∀vl ∈ V , we assume that there are d paths connecting v0 and vl. The j th
path (l in length) passes through nodes {v0, v1, v2, ..., vl} in sequence, where
1 � j �d . Then the closeness between v0 and vl is defined as:

Closeness(v0, vl) = max
1≤j≤d

l−1∏
i=0

wvivi+1

wvi
(1)

Where wvivi+1 is the weight of the edge between vi and vi+1, and wvi is the
sum of the weights of the edges connected to node vi. Obviously, ∀vl ∈ V ,
Closeness(v0, vl) ∈ [0, 1]. The higher the value, the more intimate the rela-
tion is. It is possible that a node directly connected with the core owns a
smaller closeness. For example, in Figure 2, Closeness(X,Y1) = 2

2+4+12 = 1
9

and Closeness(X,Z1) =
12

2+4+12 × 8
12+8 = 4

15 .

In the case that two (or more) identical values of closeness are obtained from
two (or more) different paths, to avoid closeness drift, we prefer the path that
includes the edge directly connecting the core with maximum weight.
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Definition 4 (k-closeness of the core). Let node v0 be core, v0∈V. For ∀
k>0, the k-closeness of the core, denoted as k-closeness(v0), is defined as :

(i) For at least k nodes vp∈ V\{v0}, it holds that Closeness(v0,vp)≥
k-closeness(v0), and

(ii) For at most k-1 nodes vp∈ V\{v0}, it holds that Closeness(v0,vp)>
k-closeness(v0).

Different with the concepts of Egonet and Super-egonet, the definition 4 con-
siders the top-k ”closest” neighbors of the core only based on closeness transmis-
sion, instead of linking relationships. In this definition, the ”closest” neighbors
are those nodes with larger value of closeness, rather than directly connecting
with the core.

Definition 5 (k-closeness neighborhood of the core). Given the k-closeness
of core v0, the k-closeness neighborhood of v0 contains every node whose closeness
related to v0 is not smaller than the k-closeness(v0). Formally, Nk(v0)= {vp ∈
V\{v0} | Closeness(v0,vp) ≥ k-closeness(v0)}.

As mentioned above, egonet concerns only the nodes directly connected with
the node of interest, while the closeness measurement (Def. 3-5) mainly consider
closeness transmission. The former completely ignores the edge-weight informa-
tion, similarly, the latter ignores the risk that the reliability may reduce after
successive transmissions. Thus, for the purpose of discovering the local context
for the core, we propose a notion named Corenet that balances the topology
structure and the closeness transmission.

Definition 6 (Corenet). Given the k-closeness of core, k-closeness(v0), the
Corenet of v0 contains nodes that satisfy the conditions: (i) the closeness related
to v0 is not smaller than the k-closeness(v0), and (ii) they are in the super-egonet
of v0. Formally, vp∈ super-egonet(v0)\{v0}, Corenet(v0) is defined as:

Corenet(v0) =

{
super−egonet(v0), if min

vp

Closeness(v0, vp) ≥ k−closeness(v0)

Nk(v0), others

So far, we have defined corenet as the local context of the core, which fully
takes closeness transmission into account and avoids meaningless excessive trans-
missions by imposing a structural restriction. It is obvious that only the nodes
in super-egonet(v0) need to be calculated closeness related to the core and the
maximum size of corenet is the number of the core’s neighbors within 2-hop.

3.2 Phase II: Measuring Outlying Score

In this subsection, we will discuss how to detect LEOutliers by comparing
Corenets at different snapshots. Since most real social networks are gradually
evolving, which means successive snapshots are likely similar to each other (shar-
ing more than 99% of their edges [4]). We utilize this property to exploit redun-
dancies among similar snapshots and focus only on the components changing
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over time. The time-varying components and their notations are listed in Ta-
ble 1. The changes of these components will affect their neighbors in a certain
range. For example, if Z1 is deleted from Figure 2(c), it will affect the Corenet
of X. Thus, the Corenet of X need to be redetermined and X has to be exam-
ined for any anomalous evolving behavior. The following definition describes the
influence of the time-vary components.

Table 1. Time-varying Components and their Notations

Time-varying Component Event at time t+1 Symbol

Node
insertion of a new object v+

deletion of an old object v−

Edge
generation of a new edge e+ with endpoints ve+

deletion of an old edge e− with endpoints ve−

Edge-weight
increase weight of an edge w+ with endpoints vw+

decrease weight of an edge w− with endpoints vw−

Definition 7 (Incremental nodes collection: IC ). Given two snapshots
GT−1 and GT , the differences between them are time-vary components, as il-
lustrated in Table 1. The range of nodes that could be affected by time-varying
components is defined as:

IC = superegonetT (v+) ∪ superegonetT−1(v−)
∪ egonetT (ve+) ∪ egonetT−1(ve−)

∪ egonetT (vw+) ∪ egonetT−1(vw−)
Where superegonetT (v+) is the super-egonet of time-varying node v+ in graph
GT , and other five are similar.

From definition 7, the time-vary components influence only limited number of
their neighbors, namely nodes in IC. Thus our algorithm only need to examine
the nodes in IC instead of the total number of nodes in the social network.

Before we present the particular measuring function, we first analyze the signs
that a node is evolving abnormally. Consider we have two snapshots GT−1 and
GT , and the node of interest is v, there are two major signs to show that v is
likely to be a LEOutlier:

(1) The members of Corenet(v) in GT−1 no longer belong to Corenet(v) or
their closeness related to v is getting weaker from GT−1 to GT ;

(2) The new members added to Corenet(v) at time T have clear distinction
with the former members, moreover, their closeness related to v can be unex-
pected high.

These two anomalous indication can be measured by Score 1 and Score 2
respectively, and the outlying score is the sum.
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Definition 8 (Outlying Score). Given two snapshots GT−1 and GT ,
CorenetT−1(v) and CorenetT (v) represent the Corenets of node v in GT−1 and
GT respectively. We denote the intersection of CorenetT−1(v) and CorenetT (v)
except v as Cold, which is the set of old neighbors of node v. The elements of
CorenetT−1(v)\Cold are the neighbors removed from Corenet(v) at time T, de-
noted as Cremoved. The elements of CorenetT (v)\Cold are new neighbors of v,
denoted as Cnew . The outlying score of node v is defined as:

OutlyingScore(v) =
∑

vi∈Cold

[closenessT−1(vi, v)− closenessT (vi, v)]

+
∑

vr∈Cremoved

closenessT−1(vr, v)

+
∑

vj∈Cnew

vi∈Cold

[(1 −
wvivj
wvj

)× closenessT (vj , v)]

(2)

Where wvivj is the weight of edge between vi and vj , wvj is the sum of the
weights of the edges connected to vj .

The sum of former summation terms is Score 1, which measures outlying
degree caused by situation (1). Similarly, the third summation term repre-
sents Score 2, which measures outlying degree caused by new neighbors in
situation (2).

Algorithm. IcLEOD Algorithm (High level definition)

Input: Snapshots GT−1 and GT , the number of closet neighbors related to the
core k, the number of LEOutliers n;
Output: n LEOutliers

Step 1: Identify the time-varying components by comparing GT−1 and GT ;
Step 2: Determine incremental nodes collection IC based on time-varying com-
ponents;
Step 3: For each node v in IC, compute CorenetT−1(v) and CorenetT (v);
Step 4: Compute outlying score for each object according to Eq.2;
Step 5: Select and output the objects with the first n-largest Outlying Score;

4 Experiments

In this section, we illustrate the general behavior of the proposed IcLEOD algo-
rithm. Since there is no ground truth for outlier detection, we test the accuracy
of our approach on multiple synthetic datasets with injected outliers. We also
compare scalability performance of our approach with several baseline methods
on synthetic datasets, and we present some meaningful cases obtained by our
approach on real data set DBLP.
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4.1 Baselines

We compare the proposed algorithm with the following three baseline methods:

– CEOD : This baseline is a community-based outlier detection method [3,6],
which takes three necessary procedures to detect outliers evolving differently
with their communities, including community discovery, community match-
ing and outlier detection.

– EGO : In this approach, we regard the nodes in egonet are the closest neigh-
bors of ego (node of interest), and we detect outliers by comparing the
egonets at different timestamps.

– SuperEGO : This method is similar to EGO except that it considers neighbors
within 2-hop as the ego’s closest neighbors.

4.2 Data Description and Evaluation Measure

Synthetic Data Sets: We generate a variety of synthetic datasets, each of which
consists of two snapshots.

First, we use the Butterfly generator [18] in order to generate datasets with
normal nodes. The synthetic weighted graph follows WPL(weight power law)
and SPL(snapshot power law), i.e., W (t) = E(t)α and Wn ∝ dβn. E(t), W(t) are
the number of edges and total weight of a graph respectively at time t, Wn is
the total weight of the edges attached to each node and dn is the degree of the
node. We set α and β to be 1.3 and 1.1 respectively.

Next, for each dataset, we inject outliers. We first set the percentage of outliers
η, and inject |V|snapshot1×η outliers into datasets. |V|snapshot1 is the number of
vertices in Snapshot1. Then we choose a random couple of objects e.g. v1 and
v2, which exist in both Snapshot1 and Snapshot2. If v1 and v2 are far apart
with common acquaintances few enough, we swap v1 and v2 in Snapshot2. Thus,
we inject two outliers in the dataset. More detail information about synthetic
datasets is shown in Table 2. Change ratio is the percentage of time-varying
components.

Table 2. Summary of Synthetic Datesets

Dataset |V|snapshot1 |E|snapshot1 |V|snapshot2 |E|snapshot2 Change Ratio

SYN1 1,000 6,520 1,054 7,093 9.42%

SYN2 5,000 19,762 5,109 20,251 3.56%

SYN2 10,000 29,415 10,184 30,019 2.01%

DBLP: We adopt DBLP as the real dataset (dblp.uni-trier.de/), which con-
tains computer science scientific publications. In our representation, we consider
a undirected co-authorship network. The weighted graph W is constructed by
extracting author-paper information: each author is denoted as a node in W;
journal and conference papers are represented as links that connect the authors
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together; the edge weight is the number of joint publications by these two au-
thors. We first removed the nodes with too low degree, than we extracted two
co-authorship snapshots corresponding to the years 2001-2004 (13,511 authors)
and 2005-2008 (14,270 authors).

We measured the performance of different algorithms using well-known metric
F1 measure, which is defined as follows.

F1 =
2×Recall× Precision

Recall+ Precision

Where recall is ratio of the number of relevant records retrieved to the total
number of relevant records in the dataset; precision is ratio of the number of
relevant records retrieved to the total number of irrelevant and relevant records
retrieved.

4.3 The Accuracy of IcLEOD Algorithm

We evaluate the accuracy of the proposed algorithms on the simulated datasets.
The accuracy of the algorithms is measured by detecting the injected outliers as
that of the groundtruths. We set the number of closet neighbors k to 30, 15, 10 for
SYN1, SYN2 and SYN3, respectively. We vary the percentage of injected outliers
η as 1%, 2% and 5%. In fairness to all algorithms, we perform 50 experiments
for each parameter setting and report the average F1 of all algorithms. Table 3
illustrates the comparison results.

Table 3. The Accuracy Comparison on the Synthetic Datasets

Dataset Outlier η CEOD EGO SuperEGO IcLEOD

SYN1

1% 0.1554 0.2012 0.2965 0.8940

2% 0.2018 0.1912 0.2244 0.7836

5% 0.1614 0.2845 0.3122 0.9065

SYN2

1% 0.0867 0.2150 0.4016 0.7926

2% 0.1945 0.2631 0.4936 0.8012

5% 0.2124 0.1983 0.6288 0.9174

SYN3

1% 0.2182 0.2064 0.5462 0.7329

2% 0.3796 0.2042 0.4986 0.7074

5% 0.1862 0.3216 0.6032 0.8922

As it can be observed from Table 3, the proposed algorithm (IcLEOD) out-
performs the others in indicating outliers precisely for all the settings. It is clear
that CEOD and EGO fail to find local evolutionary outliers. This is because
the former identifies outliers form the view of entire community instead of the
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local neighborhood substructure, and the latter only consider the neighbors with
direct connectivity. The overall performance of SuperEGO is better than other
baselines, but it significantly underperforms when the individual object’s edge-
weight distribution is clearly not uniform, like SYN1. This is due to SuperEGO
ignores the edge-weight information. In contrast, the proposed algorithm de-
tects outliers by considering both the local topology structure and the closeness
transmission.

Fig. 3. Sensitivity

Figure 3 shows the sensitivity of the IcLEOD algorithm on parameter k. Two
black lines represent the performance of baseline methods EGO and SuperEGO,
respectively. We vary k from 10 to 20 for IcLEOD algorithm, as illustrated using
the red line. The three algorithms are applied on the same data set, SYN2 and
5% outliers. Obviously, the proposed method is superior to two baseline methods,
in spite of some changes caused by parameter variation.

4.4 The Scalability of IcLEOD Algorithm

To evaluate the scalability of IcLEOD, we conduct experiments on generated
datasets as they vary the number of nodes. In Figure 4, the X-axis represents
the number of nodes, whereas the Y-axis illustrates the computation time. We
noticed that the processing time of the proposed approach is obviously lower
than CEOD method. This is because the proposed approach only needs to cal-
culate Corenets for nodes in IC (Def. 7), whereas CEOD method has to discover
communities for entire network at each snapshot, even when there is no appar-
ent change between two snapshots. Despite the EGO and SuperEGO approaches
need less computation time, they have no specific procedure to determine the
closeness neighborhood, which is likely to cause unfavorable results. The exper-
iments demonstrate that there is a linear dependency of IcLEOD’s processing
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Fig. 4. Scalability Test of algorithms

time on the number of time-varying components in networks. Moreover, we can
see that for the 104 network, the computation time is less than 20 seconds. This
property means that the algorithm is practical in real applications.

4.5 Case Studies for Real Data Set

We will discuss an interesting outlier discovered by our algorithm on DBLP
data set, which provides an intuitive perception about the effectiveness of our
approach.

LEOutlier Case: [DBLP] Alexander Tuzhilin
We notice that Alexander Tuzhilin is a LEOutlier corresponding to DBLP 2001-
2004 and DBLP 2005-2008. In DBLP 2001-2004 he was interested in Association
Rules Analysis, and he shifted the focus of his research to Recommendation
System in DBLP 2005-2008. We further noticed that his coauthors and the
number of joint publications with these coauthors in two snapshots are very
different. The principal members of his Corenets in two snapshots are listed as
follows:

– Snapshot DBLP 2001-2004, Corenet1(Alexander Tuzhilin): Tianyi Jiang,
Hong Zhang, Balaji Padmanabhan, Gediminas Adomavicius etc.

– Snapshot DBLP 2005-2008, Corenet2(Alexander Tuzhilin): Ada wai chee
Fu, Cosimo Palmisano, Michele Gorgoglione, David jensen, Tianyi Jiang,
Christos Faloutsos, Gueorgi Kossinets etc.

As the number of his publications increased, he established partnership with new
researchers in recommendation system domain in the years 2005-2008 instead
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of keeping or strengthening relationships with his coauthors in 2001-2004. The
research field of most his former coauthors was still association rules analysis,
still others turned research direction to other domains except recommendation
system.

5 Conclusions

Since dynamic social networking applications are becoming increasingly popu-
lar, it is very important to detect anomalies in the form of unusual evolution-
ary behaviors. In this paper, we focus on outlier detection in evolving weighted
graphs from a local perspective. We propose a novel outlier detection algorithm
IcLEOD, to identify objects with anomalous evolutionary behavior particularly
relative to their local neighborhoods. IcLEOD is an effective two-stage algorithm.
In the first phase, we carefully design the local neighborhood subgraph named
Corenet for individual object, which contains the node of interest and its clos-
est neighbors in terms of associated structure and edge-weight information. To
quantify how outlying an object is, we put forward a measurement in the second
phase by analyzing and comparing the Corenets at different snapshots. IcLEOD
algorithm is significant efficient for LEOutlier detection in gradually evolving
networks, because it could avoid repeated calculations by incrementally analyz-
ing the dynamic components. The experimental results on both real datasets
and synthetic datasets clearly ascertain that the proposed algorithm is capable
of identifying local evolutionary outliers accurately and effectively.

Future work could will concentrate on further refinement of IcLEOD algorithm
for dealing with general evolving datasets with multiple snapshots efficiently.

Acknowledgment. This work was supported by the National High Technol-
ogy Research and Development Program of China (Grant No. 2012AA011002),
National Science and Technology Major Program (Grant No. 2010ZX01042-
002-002-02, 2010ZX01042-001-003-05), National Science & Technology Pillar
Program (Grant No. 2009BA H44B03), Natural Science Foundation of China
61073018, the Cultivation Fund of the Key Scientific and Technical Innovation
Project, Ministry of Education of China (Grant No. 708001) and the Shenzhen-
Hong Kong Innovation Cooperation Project (No. JSE201007160004A). We
would like to thank anonymous reviewers for their helpful comments.

References

1. Barnett, V., Lewis, T.: Outliers in Statistical Data, 3rd edn. Wiley, New York
(1994)

2. Chandola, V., Banerjee, A., Kumar, V.: Anomaly detection: A survey. Technical
Report, University of Minnesota (2007)

3. Gupta, M., Gao, J., Sun, Y., Han, J.: Integrating Community Matching and Outlier
Detection for Mining Evolutionary Community Outliers. In: KDD (2012)



Incremental Local Evolutionary Outlier Detection 15

4. Ren, C., Lo, E., Kao, B., Zhu, X., Cheng, R.: On Querying Historical Evolving
Graph Sequences. In: VLDB (2011)

5. Parthasarathy, S., Ruan, Y., Satuluri, V.: Community Discovery in Social Net-
works: Applications, Methods and Emerging Trends. In: Social Network Data An-
alytics. Springer, US (2011)

6. Gupta, M., Gao, J., Sun, Y., Han, J.: Community Trend Outlier Detection using
Soft Temporal Pattern Mining. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.)
ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 692–708. Springer, Heidelberg
(2012)

7. Gao, J., Liang, F., Fan, W., Wang, C., Sun, Y., Han, J.: On Community Outliers
and their Efficient Detection in Information Networks. In: KDD (2010)

8. Aggarwal, C.C., Zhao, Y., Yu, P.S.: Outlier Detection in Graph Streams. In: ICDE
(2011)

9. Flake, G., Lawrence, S., Giles, C.L.: In: SIGKDD (2000)
10. Bagrow, J.P., Bollt, E.M.: Phys. Rev. E (2005)
11. Saligrama, V., Zhao, M.: Local anomaly detection. In: AISTATS (2012)
12. Akoglu, L., McGlohon, M., Faloutsos, C.: Oddball: Spotting Anomalies in Weighted

Graphs. In: Zaki, M.J., Yu, J.X., Ravindran, B., Pudi, V. (eds.) PAKDD 2010, Part
II. LNCS (LNAI), vol. 6119, pp. 410–421. Springer, Heidelberg (2010)

13. Ji, T., Gao, J., Yang, D.: A Scalable Algorithm for Detecting Community Outliers
in Social Networks. In: Gao, H., Lim, L., Wang, W., Li, C., Chen, L. (eds.) WAIM
2012. LNCS, vol. 7418, pp. 434–445. Springer, Heidelberg (2012)

14. Aggarwal, C.C., Zhao, Y., Yu, P.S.: Outlier Detection in Graph Streams. In: ICDE
(2011)

15. Breunig, M.M., Kriegel, H.-P., Ng, R.T., Sander, J.: LOF: Identifying Density-
Based Local Outliers. In: SIGMOD (2000)

16. Aggarwal, C.C., Yu, P.S.: Outlier Detection with Uncertain Data. In: SDM (2008)
17. Knorr, E.M., Ng, R.T., Tucakov, V.: Distance-Based Outliers: Algorithms and

Applications. The VLDB Journal 8, 237–253 (2000)
18. Mcglohon, M., Akoglu, L., Faloutsos, C.: Weighted graphs and disconnected com-

ponents: patterns and a generator. In: KDD (2008)
19. Wasserman, S., Faust, K.: Social Network Analysis. Cambridge University Press

(1994)
20. Neil, J.C., Fisk, M., Storlie, C., Brugh, A.: Graph-Based Network Anomaly Detec-

tion. In: JSM (2010)
21. Clauset, A., Moore, C., Newman, M.E.J.: Hierarchical structure and the prediction

of missing links in networks. Nature 453, 98–101 (2008)



How Long Will She Call Me? Distribution,

Social Theory and Duration Prediction�

Yuxiao Dong1,5, Jie Tang2, Tiancheng Lou3,
Bin Wu4, and Nitesh V. Chawla1,5

1 Department of Computer Science and Engineering, University of Notre Dame
2 Department of Computer Science and Technology, Tsinghua University

3 Google Inc., USA
4 Beijing University of Posts and Telecommunications

5 Interdisciplinary Center for Network Science and Applications,
University of Notre Dame

{ydong1,nchawla}@nd.edu, jietang@tsinghua.edu.cn, acrush@google.com,

wubin@bupt.edu.cn

Abstract. Call duration analysis is a key issue for understanding un-
derlying patterns of (mobile) phone users. In this paper, we study to
which extent the duration of a call between users can be predicted in
a dynamic mobile network. We have collected a mobile phone call data
from a mobile operating company, which results in a network of 272,345
users and 3.9 million call records during two months. We first exam-
ine the dynamic distribution properties of the mobile network including
periodicity and demographics. Then we study several important social
theories in the call network including strong/weak ties, link homophily,
opinion leader and social balance. The study reveals several interesting
phenomena such as people with strong ties tend to make shorter calls
and young females tend to make long calls, in particular in the evening.
Finally, we present a time-dependent factor graph model to model and
infer the call duration between users, by incorporating our observations
in the distribution analysis and the social theory analysis. Experiments
show that the presented model can achieve much better predictive perfor-
mance compared to several baseline methods. Our study offers evidences
for social theories and also unveils several different patterns in the call
network from online social networks.

1 Introduction

Analysis of mobility-based usage patterns can not only help understand users’
requirements but also reveal underlying patterns behind user behaviors. The
discovered patterns can be used to evaluate traffic demand and forecast call
volumes, and also as a tool for infrastructure monitoring (such as switches and
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cables). There is a lot of work on mobile call network analysis, e.g., scaling prop-
erties analysis [22,5], distribution analysis [21,19,1], behavior prediction [27,28],
social ties analysis [3,2,25], and link prediction [14,20].

Vaz de Melo et al. [19] studied the call duration distributions of individual
users in large mobile networks. They found that the call duration distribution
of each user follows the log-logistic distribution, a power-law-like distribution
and further designed a model for modeling the behavior of users based on their
call duration distributions. The work has mainly focused on studying the call
duration distributions of individual users. In [21], Seshadri et al. examined the
distributions of the number of phone calls per customer; the total talk minutes
per customer; and the distinct number of calling partners per customer. They
found that the distributions significantly deviate from the expected power-law
or lognormal distributions. However, both papers do not answer questions like
what is the call duration distribution between two different users? How the dis-
tributions depend on the status (e.g., position, age, and gender) of the commu-
nicating users? And how the call duration reflects different properties of social
ties between (or among) mobile users?

We focus on the call duration analysis. We understand and model the intri-
cacies of social theory with the predictability of call duration between given two
nodes in a network. What are the fundamental patterns underlying the call du-
ration between people? What is the difference of call duration patterns between
different groups of people? To which extent can we predict a call’s duration
between two users?

Contribution. We conduct systematic investigation of the call duration be-
haviors in mobile phone networks. Specifically, the paper makes the following
contributions:

1. We first present a study on the call duration distributions. In particular, we
focus on the dynamic properties of the duration distributions.

2. Second, we study the call duration network from a sociological point of view.
We investigate a series of social theories in this network including social
balance [4], homophily [13], two-step information flow [10], and strong/weak
ties hypothesis [6,11]. Interestingly, we have found several unique patterns
from the call duration network. For example, different from the online instant
messaging networks, where people with more interactions would stay longer
in each communication, while in the mobile call network, it seems that people
who are familiar with each other tend to make shorter calls.

3. Based on the discovered patterns, we develop a time-dependent factor graph
model, which incorporates those patterns into a semi-supervised machine
learning framework. The discovered patterns of social theories are defined
as social correlation factors and the dynamic properties of call duration are
defined as temporal correlation factors. The model integrates all the factors
together and learns a predictive function for call duration forecast.

Experimental results show that the presented model incorporating the dis-
covered social patterns and the dynamic distributions significantly improves the
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Fig. 1. Duration Periodicity. (a). X-axis: Time in one week. Y-axis: Average call
duration. (b). X-axis: Time in one day. Y-axis: The ratio between call times (<60s)
and call times (>60s).

prediction performance (5-18%) by comparing with several baseline methods us-
ing Support Vector Machine, Logistic Regression, Bayesian Network, and Con-
ditional Random Fields.

2 Mobile Data and Characteristics

The data set used in this paper is made of a large collection of non-America
call records provided by a large mobile communication company1. The data set
contains 3.9 million call records during two months (December 2007 and January
2008). Each call record contains the phone numbers of the caller and the callee,
and the start and end time of the call. Based on this, we construct a social
network by viewing each phone number as a user and creating a relationship
between user A and B if A made a call to B. The weight of the relationship is
quantified by the number of calls between the two related users. In this way, the
resultant network contains around 272,345 nodes and 521,925 edges.

We first study the distribution of calls between users. Clearly, the distribution
fits a “power-law” distribution in the network. We also found that some users
had intensive communications (more than 10 calls in 8 weeks) with each other.
About 20% of the pairs of users produce 80% of the call records, which satisfied
the Pareto Principle (also known as 80-20 rule) [18,16]. Thus in this work we
mainly focus on the call duration between these pairs of users. For each user,
we also extract her/his profile information such as age and gender information.
A further statistic shows that there are about 60% calls which are less than 60
seconds (1 minute) and remaining 40% calls (>60s).

2.1 Periodicity

There exist periodic patterns for call duration between human beings. We reach
this conclusion by tracking daily calls of mobile phone users. Figure 1(a) shows
the average call duration curve on both weekdays and weekends. It clearly shows

1 Data and codes are publicly available at
http://arnetminer.org/mobile-duration

http://arnetminer.org/mobile-duration
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Fig. 2. Call duration of users by gender and age. (a). duration of different genders.

(b). duration of different pairwise genders. (c). duration of different age(J: junior, Y:

youth, M: middle-age, S: senior). (d). heat-map by plotting age vs. age and the color

represents the duration of calls.

that there exists obvious week-period and day-period laws for the duration. From
Monday to Sunday, we can see that the daily duration curves are very similar:
1) In work hours from 8:00 a.m. to 7:00 p.m., people call each other with stable
average duration (75s); 2) After getting off work, the average duration between
each other increases to 150 seconds gradually until mid-night; 3) From mid-
night to early morning, the duration becomes shorter gradually and reaches to
its lowest value (about 50s); 4) It ascends to 75 seconds at 8:00 a.m. Moreover,
we perform a temporal analysis by tracking the hourly call duration in one day
(see Figure 1). We observe that the curve of ratio between the number of calls
(<60s) and calls (>60s) varies unevenly over hours: 1) From mid-night to 8:00
a.m., probability that people call each other with duration (<60s) is at least
twice than duration which is greater than 60 seconds; 2) In work hours, the
ratio is stable to 1.5. 3) From 18:00 p.m. to mid-night, the number of calls with
a duration less than 60 seconds is almost the same as the number of calls with
a duration larger than 60 seconds.

2.2 Demographics

How does the call duration distribution depend on the gender and age of callers?
In this section, we examine the interplay of communication and user demographic
attributes. First, we seek to understand how long males and females call. Figure
2 (a) and (b) represent the duration difference by different genders or between
different gender-gender pairs. Figure 2 (a) shows that females tend to make
longer calls than males. In Figure 2 (b), it shows that, in male-male calls, 84
seconds are taken per call which is lower than 91 seconds for female-female,
whereas male-female calls, per call takes 86 seconds, whereas 81 seconds for
female-male. Second, we report the analysis on different duration distribution
based on age of users. Figure 2 (c) shows that, the average durations for juniors
(0, 25], youths (25, 40], middle-aged people (40, 55], seniors (55, +) are 105, 91,
86, 84 seconds respectively, and they decrease as people get older. Figure 2 (d)
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Fig. 3. Tie strength and Link homophily. X-axis: (a)(b). Tie strength as the

increase of call times; (c)(d). The number of common neighbors between two callers.

Y-axis: (a)(c). Probability that the duration is less than 60s, conditioned on tie strength

or #common neighbors; (b)(d). Average call duration.

uses a heat-map visualization to call duration for different age-age pairs. The
rows and columns represent the age of both caller and receiver and the color at
each age-age cell captures the duration of this pair. The color spectrum extends
from blue (short duration) through green, yellow, and onto red (long duration).
In this Figure, it is evident that older people tend to have shorter conversations
than young users. This trend of obviously descending-order duration in pairwise
age fits individual case, as age increases.

3 Social Theory

Besides the dynamic properties of duration distribution, we investigate the inter-
play of human call behaviors and social theory, and try to answer the question:
how social theories, i.e., social tie, homophily, social balance theory etc. are
satisfied in the mobile social network? More specifically, we connect the call du-
ration to four classical social psychological theories and focus our analysis on
the network based correlation via the following statistics:
1. Strong/weak Ties [6,11]. How long do people with a strong or weak tie call?
2. Link homophily [13]. Do similar users tend to call each other with long or

short duration?
3. Opinion leader [10]. How different (or how similar) are the calling behavior

patterns between opinion leaders and ordinary users?
4. Social balance [4]. How does the duration-based network satisfy the social

balance theory? To which extent?

Social Tie. Interpersonal ties, generally, come in two varieties: strong and weak.
It is argued that weak ties are responsible for the majority of the structure of
social networks and the transmission of information through the networks [6],
but strong ties make people move to the same circles [11]. The strength of tie
represents the extent of closeness of social contacts [4]. In mobile network, we
define strong ties, representing frequent calls between two users, and weak ties,
representing more casual social contacts with less calls between two users. Such a
definition suggests a way of thinking about and answering the following question:
How long do people call each other with a strong or weak tie? Figure 3 (a)
illustrates our interesting finding: weak ties have a lower probability that their
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Fig. 4. Opinion leader. OL-Opinion leader; OU-Ordinary user. X-axis: (a)(b). calls be-

tween two users; (c)(d). calls made by OL or OU. Y-axis: (b)(d). average call duration;

(b)(d). probability that the duration is less than 60s.

duration is less than 60 seconds. The stronger the tie between two users is, the
larger the probability that their duration is less than 60 seconds is. When their tie
strength reaches to 1,000 (calls before), there is a high probability (approximately
80%) that the duration of their future call is less than 60 seconds. In Figure 3
(b), we can see that the average call duration between strong ties is shorter than
the calls between weak ties. This finding from both figures seems to be different
from the situation in online instant messaging networks, where people with more
interactions would stay longer in each communication.

Link Homophily. The principle of homophily [13] suggests that users with sim-
ilar characteristics tend to associate with each other. Particularly, we study link
homophily and test whether two users who share common links (caller or receiver)
will have a tendency to call each other with longer or shorter duration. In Figure
3 (c), we can see clearly that the probability that the duration is less than 60 sec-
onds when people have more common neighbors becomes higher gradually. Fig-
ure 3 (d) shows that the average duration between pairwise users becomes shorter
and shorter when they havemore and more common neighbors. Intuitively, in mo-
bile communication, more homophily (more common neighbors) and stronger ties
(more call times) between two people means that they are familiar with each other.
In the point of human behaviors, thus, we can say that the call duration between
acquaintances has larger probability to make a short call.

Opinion Leader. Opinion leadership is a concept that arises out of the theory
of two-step flow of communication propounded by Lazarsfeld [12] and Katz [9,10],
which suggests that innovation (idea) usually flows first to opinion leaders, and
spreads to more people from them. There are several considerable algorithms to
detect opinion leaders in social networks. We apply PageRank [17] to sort all
users in our mobile phone data, then top 1% users are labeled as opinion leader
according to their PageRank score and the others as ordinary users [8]. Figure
4 clearly shows that the calls between two opinion leaders have 30% shorter
duration than the calls between two ordinary users in Figure 4 (a), and the
average duration made by opinion leaders is also approximately 30% lower than
ordinary users in Figure 4 (c). Figure 4 (b) shows that there is 80% possibility
that the duration is less than 60 seconds, when an opinion leader calls another
opinion leader, and the possibility is 60% when an ordinary user calls an ordinary
user. As to individuals, there are the similar patterns in Figure 4 (d).
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Fig. 5. Social Balance. X-axis: Whether a link is a non-friend(negative) one based on

call duration(a)(c) or call times(b)(d). Y-axis: (a)(b) structural balance rate. (c)(d)

relationship balance rate.

Social Balance. Now, we connect our work to the social balance theory [4].
For each triad (a group of three users), structural balance property implies that
either all three of these users are friends or only one pair of them are friends.
We assume two users are friends if they call each other at least once. In Figure
5 (a) and (b), it clearly shows that the mobile call network does not satisfy
the structural balance theory and the balance rate decreases when the average
duration or call times increases. As to relationship balance, the balance rate
is the percentage of triangles with even number of negative ties. To adapt the
theory to our problem, we assume whether a tie is a negative one based on
either average call duration or call times, where the premise is that there exists
at least one call between any two users in the triangle. Figure 5 (c) and (d)
show that it is much more likely (more than 50%) for users to be connected
with a balanced relationship when their duration is less than 60 seconds or they
call each other less than 40 times. It represents that mobile network satisfies
relationship balance in lower call times or shorter duration.

4 Duration Prediction

4.1 Problem Definition

Now, we study how to design a machine learning model to infer the call duration
in the mobile call network based on the discovered patterns from the analysis of
data distribution and social theory. We first give necessary definitions and then
present a formal definition of the duration prediction problem. We assume that
each user is associated with a number of attributes and thus have the following
definition.

Definition 1. Attributes Matrix: Let X be an N×d attribute matrix of people
in which every row Xi corresponds to a user, each column an attribute, and an
element xij denotes the jth attribute value of user vi.

The attributes matrix describes user-specific characteristics and can be de-
fined in different ways. In the call network, an attribute can be defined as night
call ratio and the value of an attribute can be defined as the frequency of calls
occurring at night. Then, we define a dynamic call network with node attributes
and call duration logs, as the input of our problem.
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Definition 2. Dynamic Call Network: A network at time t can be denoted
as Gt = (V,E,X, Y t), where V is the set of users and E is the set of call links
between users, and X represents the attribute matrix of all users in the network,
and Y t is a set of the call duration score between two users at time t. Then we can
define the dynamic call network G = {V,E,X,Y} and Y = Y 1 ∪Y 2 ∪ · · · ∪Y T .

Based on the above concepts, we can define the problem of call duration
prediction.

Problem 1. Call Duration Prediction. Given a dynamic call network G =
{V,E,X,Y}, the goal of the prediction is to learn a mapping function f :

(G,Y) → Y T+1to predict the call duration in the next time stamp.

Future call duration can be defined as two cases, first, we use the past call
duration to predict the duration of next call; and the second case is to predict
the average duration of several calls in a future period (one user can call the
other user more than one time) based on the historic call records. Furthermore,
there might be more than one call between two users in the next time stamp. We
consider two kinds of test cases. The first one is to predict the first call duration
in next time stamp, which is called next call duration prediction; The other case
is to predict the average call duration in the next time stamp, which is called
average call duration prediction. We consider two different scenarios: a binary
classification task by setting a threshold Tthreshold in call duration.

4.2 Prediction Model

Social Time-dependent Factor Graph Model. Tang et. al. [25] first pro-
posed a partially labeled factor graph model to infer social tie. Hopcroft et
al. [8] also proposed a triad based factor graph model for reciprocal relationship
prediction in the Twitter network. Tan et al. [23] proposed a noise tolerant time-
varying factor graph model for predicting users’ behavior in social networks. In
this work, we come up with a dynamic factor graph model based on previous
partially labeled and triad factor graph model. The dynamic factor graph model
incorporates both the correlations among latent variables in different timestamps
and other social or attribute features for modeling and prediction. We take next
call duration prediction as an example to formalize it in a dynamic factor graph
model referred as Social Time-dependent Factor Graph Model (STFG) and pro-
pose an approach to learn the model for predicting call duration of pairwise
callers. The name is derived from the idea that we incorporate social theory into
the factor graph model.

Figure 6 illustrates the graphical illustration of STFG model. The top figure
shows the dynamic call network of five users with duration and the bottom figure
shows the proposed STFG model. The arrows indicate calls between two users
and weight indicates the duration. In bottom figure, the model incorporates
three different types of information including social theory (social correlation),
user attributes and user’s historic duration records (temporal correlation).
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Fig. 6. Model illustration of duration prediction in a dynamic mobile call network

Now, we explain the proposed STFG model in details. Given a dynamic call
networkG= {V,E,X,Y}, we can define the joint distribution over the durations
Y T+1 given G as

p(Y T+1|G) =
∏

f(xi, yi)g(Xc, Yc)h(Y, y
T+1
i ) (1)

The joint probability has three kinds of factor function, corresponding to the
illustration in Figure 6. Specifically,
1. Attribute factor: f(xi, yi). It represents the influence of an attribute of

user vi.
2. Social correlation factor: g(Xc, Yc). It denotes the influence of social re-

lation Yc.
3. Temporal correlation factor: h(Y, yT+1

i ). It represents the dependency
of one’s duration at time T + 1 on its durations at time t (t ∈ {1, · · · , T }),
which denotes the difference between our dynamic model with others [25,8].

In principle, the three factors can be instantiated in different ways. In this
work, we model them by the Hammersley-Clifford theorem [7] in a Markov ran-
dom field. For the attribute factor, we accumulate all the attributes and obtain
a local entropy for all users:

1

Zα
exp{

|E|∑
i=1

d∑
j=1

αjfj(xij , yi)} (2)

where α is the weight of function fj and Zα is a normalization factor. It can be
defined as either a binary function or a real-value function. For example, for the
user’s social tie feature, we simply define it as a binary feature, that is if the link
between user vi and vj is a strong tie and vi calls vj with duration (>60s), then
a feature fj(xij = 1, yi = 1) is defined and its values is 1, otherwise 0. For social
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correlation factor, we define a set of correlation feature functions gk(Xc, Yc) over
each triad Yc in the network. Then we define a social correlation factor function
as follows:

1

Zβ
exp{

∑
c

∑
k

βkgk(Xc, Yc)} (3)

where βk is the weight of the function, representing the influence degree of kth

factor function on Y . We take opinion leader feature as the example to explain
social correlation factor. It is defined as a binary function, that is, if a triad
contains an opinion leader, then the value of a corresponding triad factor function
is 1, otherwise 0.

For temporal correlation factor, we try to use it to model dynamic properties
of duration distribution define it as:

1

Zγ
exp{

|E|∑
i=1

T∑
t=1

∑
m

γmhm(Y, yT+1
i )} (4)

where Y is the past durations of the ith pair callers; γm represents how strongly
the periodicity of the mth pair is. In reality, some users may call each other
with similar durations in approximately same time every day or every week.
For example, if user vi and vj call each other more than ten minutes in every
everything, we can define a temporal function with value 1, otherwise 0.

Finally, a factor graph model is constructed by combining Eqs. 2-4 together
into Eq. 1, i.e.,

p(Y T+1|G) =
1

Z
exp{

|E|∑
i=1

d∑
j=1

αjfj(xij , yi)

+
∑
c

∑
k

βkgk(Xc, Yc) +

|E|∑
i=1

T∑
t=1

∑
m

γmhm(Y, yT+1
i )}

(5)

where Z = ZαZβZγ is a normalization factor. Based on Eq. 5, we define the
following log-likelihood objective function O(θ) = log p(Y T+1|G) :

O(θ) =

|E|∑
i=1

d∑
j=1

αjfj(xij , yi) +
∑
c

∑
k

βkgk(Xc, Yc)

+

|E|∑
i=1

T∑
t=1

∑
m

γmhm(Y, yT+1
i )− logZ

(6)

where θ = ({α}, {β}, {γ}) indicates a parameter configuration.

Model Learning. Learning STFG is to estimate the remaining free param-
eters θ, which maximizes the log-likelihood objective function O(θ), i.e., θ∗ =
argmaxO(θ)

We use a gradient decent method (or a Newton-Raphson method) to optimize
the objective function. We adopt α as the example to explain how we learn the
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parameters. Specifically, we first write the gradient of each αj with regard to the
objective function:

∂O(θ)

∂αj
= E[fj(yi, xij)]− EPαj

(yi|xij ,G)[fj(yi, xij)] (7)

where E[fj(yi, xij)] is the expectation of feature function fj(yi, xij) given the
data distribution and EPαj

(yi|xij,G)[fj(yi, xij)] is the expectation of feature func-

tion fj(yi, xij) under the distribution Pαj (yi|xij , G) given by the estimated
model. Similar gradients can be derived for parameter βk and γm.

Here, there is a challenge that the graphical structure in STFG model can be
arbitrary and may contain circles, which makes it intractable to directly calculate
the marginal distribution Pαj (yi|xij , G). Several approximate algorithms have
been proposed, such as Loopy Belief Propagation (LBP) [15] and Mean field
[26]. Due to the ease of implementation and effectiveness of LBP, in this work,
we use LBP to approximate the marginal distribution Pθk(yi|xij , G). We are
then able to obtain the gradient by summing over all the factor graph nodes
with the marginal probabilities. It is worth noting that we need to perform the
LBP twice in each iteration, one time for estimating the marginal distribution
of unknown variables yi =? and the other time for marginal distribution over
all features. Finally, we update each parameter with a learning rate η with the
gradient. Related algorithms can be found in [25,24].

Prediction. With the estimated parameter θ, we can predict the future call
durations. Specifically, the prediction problem can be cast as assigning the value
of unknown call durations Y T+1 which maximizes the objective function given
the learned parameters and network data.

Y ∗ = argmax O(Y T+1|G,X,Y, θ) (8)

Obtaining an exact solution is again intractable. The LBP is utilized to cal-
culate the marginal probability for each node in the factor graph. Finally, labels
that produce the maximal probability will be assigned to each factor graph node.

5 Experiments

Our goal here is to predict the next call duration and the average duration of calls
in next time stamp based on historic call detail records.We use the first 7 week call
detail records as historic data, the first call in the 8th week as next call duration
and the average duration of calls in the 8th week as average call duration. For
binary duration prediction, we present the results with Tthreshold = 60s.

Baseline Methods. We compare our proposed model with four methods.
SVM: it uses the same attributes associated with each edge or node as features
to train a classification model and then apply it to predict the call duration label
in the test data. For SVM, we use SVM-light2.

2 http://svmlight.joachims.org/

http://svmlight.joachims.org/
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Table 1. Binary duration prediction performance of different methods. Case 1: Next
Call Duration Prediction; Case 2: Average Call Duration Prediction.

Method Precision Recall F1-Measure

Case 1.

SVM 0.5057 0.5021 0.5042

LRC 0.6184 0.5548 0.5173

BNet 0.5812 0.5705 0.5692

CRF 0.5865 0.5886 0.5871

STFG 0.6501 0.6375 0.6393

Case 2.

SVM 0.4869 0.4875 0.4847

LRC 0.6143 0.6044 0.5996

BNet 0.5943 0.5902 0.5873

CRF 0.6085 0.6054 0.6049

STFG 0.6695 0.6707 0.6692

LRC: it uses the same attributes in SVM as features to train a logistic regression
classification model and them apply it to predict the label in the test data.
BNet: the method uses the same features as that in SVM. The only difference
is that it uses the Naive Bayes classifier.
CRF: it trains a Conditional Random Field model with attributes associated
each edge. The difference of this method from our model is that it does not
consider structural balance factors.
STFG: our proposed model, which trains a factor graph model with unlabeled
data.

5.1 Prediction Performance

We quantitatively evaluate the performance of inferring call duration in terms
of Precision, Recall and F1-Measure.

Table 1 shows the results for binary duration prediction next call duration
prediction and average call duration prediction, set under the threshold. From
Table 1, we see that our method clearly outperforms the baseline methods on
both cases. For next call duration prediction, the STFG achieves a 5-13% im-
provement compared with SVM, LRC, BNet, CRF methods in terms of F1-
Measure. Now, we further validate the effectiveness of our STFG model in the
following three aspects: (1) contributions of distribution and social factors in the
model; (2) convergence of the learning algorithm; (3) effect of different settings
for the duration threshold.

Distribution Factor Contribution Analysis. Now, we analyze how different
distribution factors: gender (G), age (A), week periodicity (W), day periodic-
ity (D), can help infer future call duration. We first remove the gender factor
(denoted as STFG-G), followed by further removing the age factor (STFG-GA),



28 Y. Dong et al.

Case 1 Case 2
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8
F

1−
m

ea
su

re

 

 
STFG
STFG−G
STFG−GA
STFG−GAW
STFG−GAWD

(a) Distribution factor contribution analysis

Case 1 Case 2
0.4

0.45

0.5

0.55

0.6

0.65

0.7

0.75

0.8

F
1−

m
ea

su
re

 

 
STFG
STFG−B
STFG−BT
STFG−BTH
STFG−BTHO

(b) Social factor contribution analysis

Fig. 7. Factor contribution analysis
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Fig. 8. Convergence and parameter analysis

week periodicity (STFG-GAW), and finally removing day periodicity (STFG-
GAWD). Figure 7 (a) shows the F1-Measure of the different STFG models.
Obviously, we can observe clear drops on the performance when removing each
of the factors. The result indicates that our model works well by combining the
dynamic properties of data distribution, and each factor in our model contributes
improvement in the performance.

Social Factor Contribution Analysis. In STFG, we also consider five dif-
ferent social factors: social balance theory (B), social tie (T), link homophily
(H) and opinion leaders (O). Here, we take the analysis to evaluate the contri-
bution of different social factors for the prediction performance. With the same
removing operations, we also can see clear drops in F1-Measure score in Figure
7 (b). For both two cases, we can find that there is a quick drop when ignoring
social tie or link homophily factors. Figure 7 (b) also shows that the other social
factors contribute to the prediction of call duration in two cases.

Convergence Analysis. We conduct an experiment to analyze the conver-
gence property of the loopy belief propagation based learning algorithm. Figure
8(a) illustrates the convergence analysis results of the learning algorithm. For
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Fig. 9. Case study. Portion of the dynamic call network. The numbers associated with
each link in left figure are the number of calls in first 7 weeks. v1 : f, 46, OL means v1
is a 46-year female opinion leader. The right figure shows the real average call duration
in the 8th week.

case 1, the LBP-based learning algorithm converges in about 300 iterations.
For case 2, the learning algorithm reach to convergence in about 750 iterations.
This suggests that the learning algorithm is able to reach convergence and its
efficiency is acceptable.

Threshold Analysis. Finally, we analyze how different settings for the param-
eter Tthreshold influence the performance of call duration prediction. Figure 8 (b)
lists the average prediction performance of all methods in case 1 with Tthreshold
varied. There are similar patterns in case 2. In general, most methods have sim-
ilar patterns with different parameter settings, except SVM which is unstable
as Tthreshold varies. It shows that when setting Tthreshold less 60 seconds, the
prediction performance of all models is not very acceptable, while when setting
it more than 60 seconds, the performance varies very little and has a slightly
increasing trend. However, when Tthreshold comes to 180s, the number of calls
(<180s) is about 9 times to the number of calls (>180s). It means that only one
of ten calls in our daily life tends to be greater than 3 minutes.

5.2 Qualitative Case Study

We present a case study to demonstrate the effectiveness of STFG model, see
Figure 9. The left figure shows a portion of the dynamic call network from
1st to 7th week. Green colored sign indicates that our model predicts correctly
whether the label of duration (<60s or >60s) between respective users or not.
Red colored sign means that our model did not infer the real duration label. In
left figure, there exists stronger ties in (v1, v2), (v1, v5) and (v4, v5) than (v3, v4)
and (v3, v5). STFG model predicted (v1, v2), (v1, v5), (v4, v5) as short calls (<60s)
and (v3, v4), (v3, v5) as long calls (>60s) based on social tie theory. Our model
predicted four of five labels successfully. User v5 as a young female tends to
make short calls with others, so STFG predicted (v1, v5), (v4, v5) correctly. As
to (v3, v5), our model made a compromise between gender factor and social tie
factor, and finally predicted it as a long call (>60s) because of the weak tie
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between v3 and v5. STFG missed the prediction between v1 and v2, as it was
misguided by the strong tie and opinion leader status of v1.

6 Conclusion

In this paper, we systematically investigated a large mobile call duration net-
work. We first identified and studied the dynamic properties of mobile calling
patterns and characteristics, and how they relate to the social network attributes.
We discover some interesting social patterns — stronger the ties, lower the prob-
ability of call duration; average duration between pairwise users becomes shorter
and shorter when they have more and more common neighbors; opinion leaders
tend to have shorter call durations; and social balance tends to emerge with
shorter call durations. Inspired by these observations, we combined them in to a
feature vector to learn a time-dependent factor graph model. Experimental re-
sults show that the presented model incorporating the discovered social patterns
and the dynamic distributions significantly improves the predictive performance
(5-18%) by comparing it with several baseline methods.

Our work has a significant impact in studying the usage patterns of cell
phone communication, which can then impact the capacity planning of the com-
munication networks, as well as informing social attitudes and behaviors. Our
study can inform cascading effect of information and behavior through a cell
phone network, and how duration of phone calls and social topology are closely
intertwined.
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Abstract. Finding communities in graphs is one of the most well-
studied problems in data mining and social-network analysis. In many
real applications, the underlying graph does not have a clear community
structure. In those cases, selecting a single community turns out to be
a fairly ill-posed problem, as the optimization criterion has to make a
difficult choice between selecting a tight but small community or a more
inclusive but sparser community.

In order to avoid the problem of selecting only a single community we
propose discovering a sequence of nested communities. More formally,
given a graph and a starting set, our goal is to discover a sequence of
communities all containing the starting set, and each community forming
a denser subgraph than the next. Discovering an optimal sequence of
communities is a complex optimization problem, and hence we divide it
into two subproblems: 1) discover the optimal sequence for a fixed order
of graph vertices, a subproblem that we can solve efficiently, and 2) find
a good order. We employ a simple heuristic for discovering an order and
we provide empirical and theoretical evidence that our order is good.

Keywords: community discovery, monotonic segmentation, graph
mining, nested communities.

1 Introduction

Discovering communities, tightly connected subgraphs, is one of the most well-
studied problems in the field of graph mining. Given some optimization crite-
rion, discovering a community is a computationally challending task, typically
NP-hard. Additionally, as pointed out by Leskovec et al. [17], in many real
applications the underlying graph does not have a clear community structure.
Such cases make the community-finding problem inherently ill-posed, as the
optimization criterion has to make a difficult, and eventually arbitrary, choice
between selecting a tight but small community or a more inclusive but more
sparse community. Moreover, the existence of a universal criterion for making
such a choice is unlikely as the balance between the size and the density of the
desired community will depend on the underlying application.

In order to avoid the problem of selecting only a single community, we propose
a problem of discovering a sequence of nested communities. More formally, given
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a graph G and a set of source vertices S, our goal is to discover a sequence of k
communities around S, such that each community is a subset of the next one. The
first community will consist only of S while the last community will contain the
whole graph. Inner communities should be tighter than the outer communities.
We express this requirement by computing the density of each community and
require that the next community should have a lower density than the current
community. In addition, we require that each community should be as uniform
as possible. We measure uniformity by computing the variance of weights of the
edges and requiring it to be small.

Discovering a sequence of communities by optimizing the uniformity criterion
is a challenging problem. We will show that several optimization problems re-
lated to the optimal solution are NP-hard. Hence, we split the problem into
two subproblems. We can view a community sequence as a bucket order on the
vertices, each bucket consisting of vertices contained in the community and not
contained in the previous community. Our first subproblem is to discover a total
order on the vertices respecting the optimal bucket order. The second subprob-
lem is to discover the optimal sequence of communities, given an order on the
graph vertices. Fortunately, this subproblem can be formulated as a standard
sequence-segmentation problem, and thus, it can be solved in polynomial time.
In particular, we can solve this problem optimally in quadratic time or we can
find an approximate solution in nearly-linear time. Discovering the order is more
difficult as this is a complex combinatorial problem. We propose a simple order-
ing technique used for discovering dense subgraphs: pick iteratively a vertex
with the lowest degree, and remove it from the graph. We provide theoretical
evidence implying that this is a good order and we also show experimentally
that this order outperforms several baselines.

The rest of the paper is organized as follows. We introduce preliminary nota-
tion in Section 2 and formalize our optimization problem in Section 3. In sec-
tion 4 we develop our discovery algorithm and point out theoretical properties
of our approach. Section 5 is devoted to related work and Section 6 is devoted
to experimental evaluation. We conclude our paper with a short conclusion in
Section 7.

2 Preliminaries

We consider a weighted undirected graph G = (V,E,w) over a set of vertices
V and edges E ⊆

(
V
2

)
. We use the notation

(
V
2

)
to denote the set of unordered

pairs of distinct vertices from V . The function w : E → R assigns a weight w(e)
to each edge e ∈ E. Also, given a subset of vertices V ′ ⊆ V we denote by E(V ′)
the set of edges in the induced subgraph of G defined by V ′.

The definitions and algorithms in this paper rely on a notion of edge density,
which is defined not only over subsets of vertices, but also over arbitrary pairs
of subsets of vertices. Even though it is conceptually simple, our edge-density
definition requires slightly complex notation for determining the set of poten-
tial edges to be used as a denominator in the density ratio. To simplify our
presentation we use the notation described below.
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Given the graph G = (V,E,w), we consider its completed representation G0 =
(V,E0,w0 ), where E0 =

(
V
2

)
, and where w0 is an extension of w , so that w0 (e) =

w(e) if e ∈ E, and w0 (e) = 0 if e 	∈ E. In other words, G0 can be seen as a
complete graph, where all non-edges of G become zero-weight edges in G0. We
note again that we use the completed graph representation only to simplify our
notation; in our implementation there is no need to store the zero-weight edges.

Now consider the completed representation G0 = (V,E0,w0 ) of a graph G,
and let F ⊆ E0 be a non-empty subset of edges. We define the weight and density
of F as

w(F ) =
∑
e∈F

w(e) and d(F ) =
w(F )

|F | .

Consider now two subsets of vertices S, T ⊆ V . We define the set of cross edges
from S to T as c(S, T ) = {(x, y) ∈ E | x ∈ S, y ∈ T }. It is important to note that
we do not impose any constraint on the sets S and T ; they may overlap in an
arbitrary way. For instance, if the sets S and T are disjoint the edges in c(S, T )
are the cut edges from S to T , while if S ⊆ T the edge set c(S, T ) contains,
among others, all the edges within S.

Finally, we write w(S, T ) as a shorthand of w(c(S, T )) and we write d(S, T )
as a shorthand of d(c(S, T )).

3 Nested Communities

As we discussed in the introduction, our goal is to find the optimal sequence
of nested communities, with respect to a set of source vertices of the input
graph. We denote this set of source vertices by S. For conceptual simplicity,
one may think of S as a singleton set, that is, identifying the sequence of nested
communities for a single vertex. However, all our problem definitions, algorithms,
and proofs, hold for the general case of S being any subset of V .

Our objective is to find k nested communities, where the parameter k is
part of the problem input. Given a set of source vertices S, we represent a
sequence of nested communities with respect to S, by the sequence of vertex
sets S = V0 ⊆ V1 ⊆ · · · ⊆ Vk = V .

Intuitively, the inner sets of the nested-community sequence are expected to
be more strongly related to the source set S. This type of relatedness is expressed
by the notion of density. So, V1 is the densest community that contains S, V2 is
the second densest community, and in general, we require that the density of Vi
should decrease as i increases.

Considering the requirement of monotonically decreasing density in isolation
is not sufficient to determine in a well-defined manner a desirable sequence of
nested communities. Indeed, given a graph G, a set of source vertices S, and
integer k, there is a potentially exponential number of ways to partition the set
of vertices of the graph into a sequence of nested communities V0, . . . , Vk.

The main question we are facing is to decide where exactly to draw the bound-
ary between each pair of communities Vi and Vi+1. To answer this question, we
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follow an approach inspired by segmentation problems. In particular, our ap-
proach is as follows: consider the set of vertices Di+1 = Vi+1 \ Vi that need to
be added to the community Vi in order to form community Vi+1. Consider also
the set of edges Ei+1 = E(Vi+1)\E(Vi), defined as the additional edges brought
in by extending the community Vi to the community Vi+1. We can then define
the density of the set of edges Ei+1. To capture the intuition that the set Di+1

should form a coherent extension to Vi we require that the density of Ei+1 is as
uniform as possible.

The notion of uniformity for a set of edges, among many ways, can be ex-
pressed as a sum of square of difference of the weight of each edge from the
average weight of the set. We thus have the following definition.

Definition 1. Given a set of edges F ⊆ E, we define the density-uniformity
score as

q(F ) =
∑
e∈F

(w(e)− d(F ))
2
.

Our goal is then to find a sequence of nested communities so that the suc-
cessive segments of added edges are as uniform as possible with respect to their
density. Formulating this objective as an optimization problem not only gives
meaningful semantics to the nested community detection problem, but it also
makes the problem well-defined. Motivated by the discussion above, our main
problem definition is given below.

Problem 1. Given a weighted input graph G = (V,E,w), a set of source vertices
S ⊂ V , and an integer k, find the sequence of nested communities V = {S =
V0 ⊆ V1 ⊆ · · · ⊆ Vk = V } that minimizes the density-uniformity score

q(V) =
k∑
i=1

q(E(Vi) \ E(Vi−1)) ,

subject to the constraint d(Vi) < d(Vi−1) for i = 2, . . . , k.

4 An Algorithm for Discovering Nested Communities

In this section we present our algorithm for discovering nested communities. We
begin by demonstrating a necessary condition for the optimal solution based on
dense subgraphs. Discovering such subgraphs turns out to be computationally
intractable. We then split the original problem into two subproblems: discover-
ing community sequence for a fixed order of vertices, a problem which we can
solve efficiently, and discovering such an order. We provide a simple heuristic for
discovering an order, and provide theoretical evidence that this order is good.

4.1 Nested Communities and Dense Subgraphs

We start our discussion by demonstrating a connection of the problem of find-
ing the optimal sequence of nested communities, i.e., solving Problem 1, with
problems related to finding dense subgraphs of a given graph.
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Fig. 1. Communities related to Proposition 1. If d(X,X ∪D1) > d(Y,D1), then either
adding X to D1 or removing Y from D1 will yield a better score.

To establish this connection, consider a triple of communities Vi−1 ⊆ Vi ⊆
Vi+1 in an optimal solution to Problem 1. Consider the two corresponding seg-
ments Di+1 = Vi+1 \ Vi and Di = Vi \ Vi−1. Consider also any two subsets of
those segments, X ⊆ Di+1 and Y ⊆ Di, that is, X is a subset of the outer
segment, while Y is a subset of the inner segment, see Figure 1(a) for a visual-
ization. As we will show shortly, adding the outer subset X in the community Vi
leads to a situation where the density of the subset X with respect to the overall
community Vi is no better than the density of the subset Y with respect to the
community Vi. Otherwise, either adding X to Vi (see Figure 1(b)) or removing Y
from Vi (see Figure 1(c)) lead to a better solution. This follows from the fact that
we require that the densities of the nested communities in any feasible solution
of Problem 1 decrease monotonically.

Before proceeding to discussing the implications of this observation, we first
give a formal statement and its proof.

Proposition 1. Consider a graph G = (V,E,w), a set of source vertices S ⊆ V ,
and an integer k. Let V = (S = V0 ⊆ V1 ⊆ · · · ⊆ Vk = V ) be the optimal sequence
of nested communities, that is, a solution to Problem 1. Fix i such that 1 ≤ i ≤
k − 1 and let X ⊆ Vi+1 \ Vi and Y ⊆ Vi \ Vi−1. Then

d(X,X ∪ Vi) ≤ d(Y, Vi) .

For the proof of the proposition we require the following lemma, which states
that the mean square error of a set of numbers from a single point, increases
with the distance of that point from the mean of the numbers. The lemma can
be derived by simple algebraic manipulations, and its proof is omitted.

Lemma 1. Let w1, . . . , wN and x1, . . . , xN be two sets of real numbers. LetW =∑N
i=1 wi and μ = 1

W

∑N
i=1 wixi. For any real number d it is

N∑
i=1

wi(xi − d)2 =

N∑
i=1

wi(xi − μ)2 +W (d− μ)2.
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We are now ready to prove the proposition.

Proof (Proposition 1). Let C1 = E(Vi+1) \E(Vi) and C2 = E(Vi) \E(Vi−1). Let
us break C1 into two parts, D11 = c(X,X ∪ Vi) and D12 = C1 \D11. Similarly,
let us break C2 into two parts, D21 = c(Y, Vi) and D22 = C2 \D21. Define the
centroids μij = d(Dij) and λi = d(Ci). Lemma 1 now implies that

s = q(C1) + q(C2) = const + |D11|(μ11 − λ1)
2 + |D21|(μ21 − λ2)

2,

s1 = q(C1 ∪D21) + q(D22) = const + |D11|(μ11 − λ1)
2 + |D21|(μ21 − λ1)

2,

s2 = q(D12) + q(C1 ∪D11) = const + |D11|(μ11 − λ2)
2 + |D21|(μ21 − λ2)

2,

where const is equal to

2∑
i=1

q(Di1) + q(Di2) + |Di2|(μi2 − λi)
2 .

Since V is optimal we must have s ≤ s1 and s ≤ s2. Otherwise, we can obtain
a better segmentation by attaching X to Vi or deleting Y from Vi. This implies
that |μ21 − λ2| ≤ |μ21 − λ1| and |μ11 − λ1| ≤ |μ11 − λ2|. Since λ2 ≥ λ1, this
implies that μ21 ≥ (λ1 + λ2)/2 and μ11 ≤ (λ1 + λ2)/2, which implies μ11 ≤ μ21.
This completes the proof. �

Proposition 1 implies that in an optimal solution the graph vertices can be or-
dered in such a way so that subgraph density, as specified by the proposition,
decreases along this order. This observation motivates the following greedy algo-
rithm for solving the problem of discovering nested communities:

Algorithm Outline: Greedy–add–densest–subgraph

1. Start with S, the set of source vertices.
2. Given the current set S, find a subset of vertices T that maximize d(T, S ∪ T ).
3. Set S ← S ∪ T , and repeat the previous step until the set S includes all the

vertices of the graph.
4. Consider the vertices in the order discovered by the previous process. Find

the optimal sequence of k nested communities that respects this order.

One potential problem with the above greedy approach is that the subroutine
that is called iteratively in step 2, is an NP-hard problem. This is formalized
below as problem DenseSuperset.

Problem 2 (DenseSuperset). Given a weighted graph G = (V,E,w) and a
subset of vertices S ⊆ V , find a subset of vertices T maximizing d(T, S ∪ T ).

Proposition 2. The DenseSuperset problem is NP-hard.

Proof (Sketch). Due to space constraints we will only sketch the proof. The
complete proof is available in Appendix.1 We will reduce Clique to DenseSu-

perset. Given a graph G, we add a vertex s and connect it to each vertex with
a weight of α = 1− 1

2|V |2 . Let k < n < m. It follows that

1 For the appendix, see http://users.ics.aalto.fi/~ntatti/

http://users.ics.aalto.fi/~ntatti/
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(
n
2

)
+ αn(

n
2

)
+ n

>

(
k
2

)
+ αk(

k
2

)
+ k

and

(
n
2

)
+ αn(

n
2

)
+ n

>

(
m
2

)
+ αm− 1(
k
2

)
+m

.

The left-hand side term in the first equation is the density of n-clique while the
the right-hand side term bounds the density of a graph with k vertices. The
right-hand side term in the second equation upper bounds the density of a non-
clique with m vertices. Consequently, the largest clique, say X , in G will also
have the largest density d(X,X ∪ s), which is a sufficient to prove the result. �

Similarly, one can think of solving the problem by working on the opposite
direction, that is, start with the whole vertex set V and “peel off” the set V by
removing the sparsest subgraph, until left with the set of source vertices S. The
corresponding algorithm will be the following.

Algorithm Outline: Greedy–remove–sparsest–subgraph

1. Start with V , the vertex set of G.
2. Given a current set V , find a subset of vertices T that does not include the

source vertex set S and minimizes the density d(T, V ).
3. Set V ← V \ T , and repeat the previous step until left only with the set of

source vertices S.
4. Consider the vertices in the order removed by the previous process. Find the

optimal sequence of k nested communities that respects this order.

Not surprisingly, the problem of finding the sparsest subgraph, which corre-
sponds to step 2 of the above process is NP-hard.

Problem 3 (SparseNbhd). Given a weighted graph G = (V,E,w) find a set of
vertices T minimizing d(T, V ).

Proposition 3. The SparseNbhd problem is NP-complete.

Proof (Sketch). Due to space constraints we will only sketch the proof. The com-
plete proof is available in Appendix. We will reduce Clique to SparseNbhd.
Assume that we are given a graph G with l nodes. We extend the graph by
adding two vertices s and t with an edge of such high weight that neither s or t
will appear in the optimal solution. We then add an edge from s to each vertex
v in G with a weight of p − deg (v), where p = (l + 1) − 1

2 (l + 1)−2. This will
make the weighted degree of all vertices in G equal so a dense subgraph X will
have a low density d(X,X ∪ {s, t}). Let k < n < m. Then a straightforward
calculation reveals that

pn−
(
n
2

)
(l + 1)n−

(
n
2

) < pk −
(
k
2

)
(l + 1)k −

(
k
2

) and
pn−

(
n
2

)
(l + 1)n−

(
n
2

) < pm−
(
m
2

)
+ 1

(l + 1)m−
(
m
2

) .

The left-hand side term in the first equation is the density of n-clique while the
right-hand side term bounds the density of a graph with k vertices. The right-
hand side term in the second equation lower bounds the density of a non-clique
with m vertices. Consequently, the largest clique, say X , in G will also have the
lowest density d(X,X ∪ {s, t}), which is a sufficient to prove the result. �



Discovering Nested Communities 39

4.2 Algorithm for Discovering Nested Communities

Armed with intuition from the previous section, we now proceed to discuss the
proposed algorithm. The underlying principle of both of the greedy algorithms
described above is to consider the vertices of the graph in a specific order and
then find a sequence of nested communities that respects this order. In one case,
the order of graph vertices is obtained by starting from S and iteratively adding
the densest subgraph, while in the other case, the order is obtained by starting
from the full vertex set V and iteratively removing the sparsest subgraph.

Our algorithm is an instantiation of this general principle. We specify in detail
(i) how to obtain an order of the graph vertices, and (ii) how to find a sequence
of nested communities that respects a given order.

We start our discussion from the second task, i.e., finding the sequence of
nested communities given an order. As it turns out, this problem is an instance
of sequence segmentation problems. We define this problem below, which is a
refinement of Problem 1.

Problem 4 (Sequence of nested communities from a given order). Given a graph
G = (V,E,w) with ordered vertices, a set of source vertices S = {v1, . . . , vs} ⊂ V ,
and an integer k, find a monotonically increasing sequence of k + 1 integers
b = (b0 = s, . . . , bk = |V |) such that

V = (S = V0 ⊆ V1 ⊆ · · · ⊆ Vk = V ) , where Vk = {v1, . . . , vbi} ,

minimizes the density-uniformity score q(V) and satisfies the monotonicity con-
straint d(Vi) < d(Vi−1) for i = 1, . . . , k.

It is quite easy to see that Problem 4 can be cast as a segmentation problem.
Typical segmentation problems can be solved optimally using dynamic program-
ming, as shown by Bellman [3]. The most interesting aspect of Problem 4, seen
as segmentation problem, is the monotonicity constraint d(Vi) < d(Vi−1), for
i = 1, . . . , k. That is, not only we ask to segment the ordered sequence of vertices
so that we minimize the density variance on the segments, but we also require
that the density scores of each segment decrease monotonically. The situation
can be abstracted to the monotonic segmentation problem stated below.

Problem 5 (Monotonic segmentation). Let a1, . . . , an and x1, . . . , xn be two se-
quences of real numbers. Given an integer k, find k + 1 indices b0 = 1, . . . , bk =
n+ 1 minimizing

n∑
j=1

bj−1∑
i=bj−1

ai(xi − μj)
2,

where μj is the weighted centroid of j-th segment such that μj < μj−1.

In order to express Problem 4 with Problem 5, consider a group of edges,
Pi = c(vi, {v1, . . . , vi−1}) for each vertex vi ∈ V \ S. If we set ai =

∣∣Pi+|S|
∣∣ and

xi = d
(
Pi+|S|

)
, we can apply Lemma 1 and show that the score of community
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sequence is equal to the variance minimized by Problem 5, plus a constant. In
fact, this constant is the sum of the variances within each Pi.

Similarly to the unconstrained segmentation problem, the monotonic segmen-
tation problem can be solved optimally. The idea is to use as preprocessing step
the classic “pool of adjacent violators” algorithm (PAV) [2], which merges points
until there are no monotonicity violations, and then apply the classic dynamic-
programming algorithm on the resulting sequence of merged points. This al-
gorithm runs in O(|V |) time. By definition the merged points do not contain
any monotonicity violations, and thus, the resulting segmentation respects the
monotonicity constraint, as well. As shown by Haiminen et al. [14], this two-phase
algorithm gives the optimal k segmentation under the monotonicity constraints.
As a result of the optimality of the monotonic segmentation problem, Problem 4
can be solved optimally.

We next proceed to discuss the first component of the algorithm, namely, how
to obtain an order of the graph vertices. Recall that, according to the principles
discussed in the previous section, we can either start from S and iteratively
add dense subgraphs, or start from V and remove sparse subgraphs. We follow
the latter approach. In order to overcome the NP-hard problem of finding the
sparsest subgraph and in order to obtain a total order, we use the heuristic of
iteratively removing the sparsest subgraph of size one, namely, a single vertex.
The sparsest one-vertex subgraph is simply the vertex with the smallest weighted
degree. Thus, overall, we obtain the simple algorithm SortVertices, whose
pseudocode is given as Algorithm 1.

As an interesting side remark, we note that the algorithm SortVertices is
encountered in the context of finding subgraphs with the highest average degree.
In particular, it is known that the densest subgraph obtained by the algorithm
during the process of iteratively removing the smallest-degree vertex is a factor-2
approximation to the optimally densest subgraph in the graph [4].

The natural question to ask is how good is the order produced by algorithm
SortVertices? As we will demonstrate shortly, it turns out that the order is
quite good. First, we note that the optimal solution obtained for Problem 4, sat-
isfies an analogous structural property, with respect to subgraph densities, as the
optimal solution for Problem 1, We omit the proof of the following proposition
as it is similar to the one of Proposition 1.

Proposition 4. Consider a graph G = (V,E,w) with ordered vertices, a set of
source vertices S ⊂ V , and an integer k. Let V = (S = V0 ⊆ V1 ⊆ · · · ⊆ Vk = V )
be the optimal sequence of nested communities with respect to the order, that
is, a solution to Problem 1. Fix i such that 1 ≤ i ≤ k − 1 and let b = |Vi|.
Let X ⊆ Vi+1 \ Vi and Y ⊆ Vi \ Vi−1 such that X =

{
vb+1, . . . , vb+|X|

}
and

Y =
{
vb−|Y |+1, . . . , vb

}
. Then d(X,X ∪ Vi) ≤ d(Y, Vi).

The only difference between Proposition 1 and Proposition 4 is that in Propo-
sition 4 we require additionally that Vi+1 starts with X and Vi ends with Y with
respect to the order. We want this condition to be redundant, otherwise the given
order is suboptimal. For example, consider the adjacency matrix of G given in
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Figure 2(a). The given segmentation is optimal with respect to the given order.
However if we rearrange the vertices in D1 and D2, given in Figure 2(b), then
the same segmentation is no longer optimal as X and Y violate Proposition 4.
The additional condition in Proposition 4 becomes redundant if Vi ends with
the sparsest subset while Vi+1 starts with densest subset. We will show that the
algorithm SortVertices produces an order that satisfies this property approx-
imately. The exact formulation of our claim is given as Propositions 5 and 6.

Algorithm 1. SortVertices. Sort vertices of a weighted graph by itera-
tively removing a vertex with the least weight of adjacent edges.

input : weighted graph G = (V, E,w), a set S
output : order on V

1 W ← V \ S;
2 o ← empty sequence;
3 while |W | > 0 do
4 x ← argminx∈W d(x,W ∪ S);
5 delete x from W and add x to the beginning of o;

6 add S in an arbitrary order to the beginning of o;
7 return o;

Proposition 5. Consider a weighted graph G = (V,E,w), whose vertices are
ordered by algorithm SortVertices. Let 1 ≤ b < c ≤ |V |. Let U = {vb, . . . , vc}
and W = {v1, . . . , vc}. Let f = d(vc,W ). Then 2f ≤ d(X,W ) for any X ⊆ U .

Proof. Note that s =
∑

x∈X w(x,W ) = 2w(X) + w(X,W \X) ≤ 2w(X,W ).
Write mx = |c(x,W )|. Since vc has the smallest d(vc,W ), we have

s =
∑
x∈X

mxd(x,W ) ≥ d(vc,W )
∑
x∈X

mx ≥ d(vc,W ) |c(X,W )| .

Combining the inequalities and dividing by |c(X,W )| proves the result. �

D1

D2

S

(a) Original order

D1

D2

S

Y

X

(b) Improved order

Fig. 2. Consequences of Proposition 4. If we reorder the vertices in D1 and D2, then
an optimal solution with respect to the order may become suboptimal with respect to
the improved order.
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Proposition 6. Consider a weighted graph G = (V,E,w), whose vertices are
ordered by algorithm SortVertices. Let 1 ≤ b < c ≤ |V |. Let U = {vb, . . . , vc}
and W = {v1, . . . , vb−1}. Assume that there is α ≥ 0 such that for all v ∈ U it
is αw(v,W ) ≥ w(v, U). Let f = d(vb,W ). Then (1 + α)2f ≥ d(X,X ∪W ) for
any X ⊆ U .

Proof. Let A = c(X,W ) and B = c(X,X). The density of X is bounded by

d(X,X ∪W ) =
w(A) + w(B)

|A|+ |B| ≤ w(A) + αw(A)

|A|+ |B| ≤ (1 + α)w(A)

|A| = (1+α)d(A) .

Select x ∈ X with the highest d(x,W ). Then d(A) ≤ d(x,W ). Let us prove that
d(x,W ) ≤ (1 + α)f . If vb = x, then we are done. Assume that vb 	= x. Since
G is fully-connected, SortVertices always picks the vertex with the lowest
weight. Let Z = {v1, . . . , x}. Then w(x,W ) ≤ w(x, Z) ≤ w(vb, Z) = w(vb,W ) +
w(vb, U) ≤ (1 + α)w(vb,W ). Since, G is fully-connected w(y,W ) = |W |d(y,W )
for any y ∈ U . Hence, dividing the inequality gives us d(x,W ) ≤ (1+α)f , which
proves the proposition. �

5 Related Work

Finding communities in graphs and social networks is one of the most well-
studied topics in graph mining. The amount of literature on the subject is very
extensive. This section cannot aspire to cover all the different approaches and
aspects of the problem, we only provide a brief overview of the area.

Community Detection. A large part of the related work deals with the prob-
lem of partitioning a graph in disjoint clusters or communities. A number of
different methodologies have been applied, such as hierarchical approaches [11],
methods based on modularity maximization [1, 6, 11, 26], graph-theoretic ap-
proaches [8, 9], random-walk methods [21, 24, 28], label-propagation approaches
[24], and spectral graph partition [5,15,18,25]. A thorough review on community-
detection methods can be found on the survey by Fortunato [10]. We note that
this line of work is different than the present paper, since we do not aim at
partitioning a graph in disjoint communities.

Overlapping Communities. Researchers in community detection have real-
ized that, in many real situations and real applications, it is meaningful to con-
sider that graph vertices do not belong only to one community. Thus, one asks
to partition a graph into overlapping communities. Typical methods here rely on
clique percolation [19], extensions to the modularity-based approaches [12, 20],
analysis of ego-networks [7], or fuzzy clustering [27]. Again the problem we ad-
dress in this paper is quite different. First, we find communities centered around
a given set of source vertices, and not for the whole graph. Second, the commu-
nities output by our algorithm do not have arbitrary overlaps, but they have a
specific nested structure.

Centerpiece Subgraphs and Community Search. Perhaps closer to our
approach is work related to the centerpiece subgraphs and the community-search
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problem [16,22,23]. In this class of problems, a set of source vertices S is given and
the goal is to find a subgraph so that S belongs in the subgraph and the subgraph
forms a tight community. The quality of the subgraph is measured with various
objective functions, such as degree [22], conductance [16], or random-walk-based
measures [23]. The difference of these methods with the one presented here is
that these methods return only one community, while in this paper we deal with
the problem of finding a sequence of nested communities.

In summary, despite the numerous research on the topic of community detec-
tion in graphs and social networks, to the best of our knowledge, this is the first
paper to address the topic of nested communities with respect to a set of source
vertices. Furthermore, our approach offers novel technical ideas, such as provid-
ing a solid theoretical analysis that allows to decompose the problem of finding
nested communities into two sub-problems: (i) ordering the set of vertices, and
(ii) segmenting the graph vertices according to that given order.

6 Experimental Evaluation

We will now provide experimental evidence that our method efficiently discovers
meaningful segmentations and that our ordering algorithm outperforms several
natural baselines.

Datasets and Experimental Setup. In our experiments we used six datasets,
five obtained from Mark Newman’s webpage,2 and a bibliographic dataset ob-
tained from DBLP. The datasets are as follows: Adjnoun: adjacency graph of
common adjectives and nouns in the novel David Copperfield, by Charles Dick-
ens. Dolphins: an undirected social graph of frequent associations between 62
dolphins in a community living off Doubtful Sound, New Zealand. Karate: social
graph of friendships between 34 members of a karate club at a US university
in the 1970s. Lesmis: coappearance graph of characters in the novel Les Miser-
ables. Polblogs: a directed graph of hyperlinks between weblogs on US politics,
recorded in 2005. DBLP: coauthorship graph between researchers in computer
science. The statistics of these datasets are given in Table 1.

For each dataset and a given source set S, we considered three different weight-
ing schemes: First we run personalized PageRank using the source node with a
restart of 0.1. Let p(v) be the PageRank weight of each vertex. Given an edge
e = (v, w), we set three different weighting schemes,

wn(e) =
p(v)

deg(v)
+

p(w)

deg(w)
, ws(e) = p(v) + p(w), wm(e) = min(p(v), p(w)).

These weights are selected so that the vertices that are hard to reach with a
random walk will have edges with small weights, and hence will be placed in
outer communities. For DBLP, we weighted the edges during PageRank compu-
tation with the number of joint papers, each paper normalized by the number
of authors. We use the vertex with the highest degree as a starting set.

2 http://www-personal.umich.edu/~mejn/netdata/

http://www-personal.umich.edu/~mejn/netdata/
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Table 1. Basic statistics of graphs (first two columns) and performance over hops
baseline. The third column represents a typical running time while the fourth column
represents a typical number of entries during the segmentation. The last three columns
represent the normalized score compared to the baseline score q(H).

performance q(V) /q(H)

Name |V (G)| |E(G)| Time N wn ws wm

Adjnoun 112 425 2ms 84 0.90/0.95 0.88/0.95 0.77/0.94
Dolphins 62 159 1ms 41 0.67/0.80 0.61/0.78 0.57/0.80
Karate 34 78 1ms 21 0.78/0.91 0.76/0.91 0.60/0.93
Lesmis 77 254 2ms 37 0.77/0.93 0.84/0.94 0.62/0.94
Polblogs 1 222 16 714 84ms 872 0.87/0.96 0.95/0.99 0.57/0.96
DBLP 703 193 2 341 362 23s 1 797 0.87/0.99 0.98/1.00 0.45/0.99

Time Complexity. Our first step is to study the running time of our algorithm.
We ran our experiments on a laptop equipped with a 1.8 GHz dual-core Intel Core
i7 with 4 MB shared L3 cache, and typical running times for each dataset are
given in 3rd column of Table 1.3 Our algorithm is fast: for the largest dataset with
2 million edges, the computation took only 20 seconds. The algorithm consists
of 4 steps, computing PageRank, ordering the vertices, grouping the vertices
into blocks such that monotonicity condition is guaranteed, and segmenting the
groups. The only computationally strenuous step is segmentation which requires
quadratic time in the number of blocks. The number of vertices in DBLP is over
700 000, however, grouping according to the PAV algorithm leaves only 2 000
blocks, which can be easily segmented. It is possible to select weights in such
a way that there will no reduction when grouping vertices, so that finding the
optimal segmentation becomes infeasible. However, in such a case, we can always
resort to a near-linear approximation optimization algorithm [13].

Comparison to Baseline. A key part in our approach is discovering a good
order. Our next step is to compare the order induced by SortVertices against
several natural baselines. For the first baseline we group the vertices based on the
length of a minimal path from the source. We then compared these communities,
say H, to the (same number of) communities obtained with our method. The
scores, given in Table 1, show that our approach beats this baseline in every
case, which is expected since this näıve baseline does not take into account
density. For our next two baselines we order vertices based on vertex degree
and PageRank. We then compute community sequences with 2–10 communities
from these orders. Typical scores are given in Figure 3. Out of 6× 3× 9 = 162
comparisons, SortVertices wins both orders 158 times, ties once (Karate,
wm , 3 communities) and loses 3 times to the degree order (DBLP, wn , 3–5
communities).

3 For the code, see http://users.ics.aalto.fi/~ntatti/

http://users.ics.aalto.fi/~ntatti/


Discovering Nested Communities 45

2 4 6 8 10

0.86

0.88

0.9

0.92

number of communities

q
(V

)
/
q
(B

)
weight wn

2 4 6 8 10

0.94

0.95

0.96

0.97

number of communities

weight ws

2 4 6 8 10

0.55

0.6

0.65

0.7

number of communities

weight wm

SortVertices Degree PageRank

Fig. 3. Quality scores of community sequences based on different orders as a function
of number of communities for Polblogs. The scores are normalized by the score of a
community sequence B with a single community.

Table 2. Top-3 communities from a sequence of 5 communities for Christos Papadim-
itriou from DBLP set and using ws

1. segment D. Johnson E. Dahlhaus V. Vianu G. Gottlob A. Itai
M. Yannakakis M. Garey P. Crescenzi P. Kanellakis M. Sideri A. Schäffer
F. Afrati R. Karp P. Seymour S. Abiteboul E. Koutsoupias A. Aho
2. segment R. Fagin O. Vornberger A. Piccolboni C. Daskalakis P. Serafini
J. Ullman 3. segment M. Blum D. Goldman X. Deng P. Raghavan
Y. Sagiv G. Papageorgiou K. Ross E. Arkin P. Goldberg P. Bernstein
S. Cosmadakis V. Vazirani P. Kolaitis I. Diakonikolas T. Hadzilacos
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(a) Karate, source vertex 1
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(b) Karate, source vertices 33, 34

source
1. segment
2. segment
3. segment
ws

wn

Fig. 4. 4 community sequences with 3 communities of Karate. Segmentations in Fig-
ure 4(a) use 1 as a source and community sequences in Figure 4(b) use 33, 34 as sources.
Communities are decoded as colors, the top-half represents ws , the bottom-half repre-
sents wn .

Examples of Communities. Our final step is to provide examples of discov-
ered communities. In Figure 4 we provide 4 different community sequences with
3 communities using weights ws and wn and sources S = {1} and S = {33, 34}.
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The inner-most community for 1 contains a near 5-clique. The inner-most com-
munity for 33, 34 contains two 4-cliques. The normalized weight wn penalizes
hubs. This can be seen in Figure 4(a), where hubs 33, 34 move from the outer
community to the middle community. Similarly, hub 1 changes communities in
Figure 4(b). Finally, we give an example of communities discovered in DBLP. Ta-
ble 6 contains communities discovered around Christos Papadimitriou. Authors
in inner communities share many joint papers with Papadimitriou.

7 Concluding Remarks

We considered a problem of discovering nested communities, a sequence of sub-
graphs such that each community is a more connected subgraph of the next
community. We approach the problem by dividing it into two subproblems: dis-
covering the community sequence for a fixed order of vertices, a problem which
we can solve efficiently, and discovering an order. We provided a simple heuristic
for discovering an order, and provided theoretical and empirical evidence that
this order is good.

Discovering nested communities seems to have a lot of potential as it is possible
to modify or extend the problem in many ways. We can generalize the problem
by not only considering sequences but, for example, trees of communities, where
a parent node needs to be a denser subgraph than the child node. Another
possible extension is to consider multiple source sets instead of just one.

Acknowledgements. This work was supported by Academy of Finland grant
118653 (algodan).
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Abstract. Modeling how information propagates in social networks driven by
peer influence, is a fundamental research question towards understanding the
structure and dynamics of these complex networks, as well as developing viral
marketing applications. Existing literature studies influence at the level of indi-
viduals, mostly ignoring the existence of a community structure in which multiple
nodes may exhibit a common influence pattern.

In this paper we introduce CSI, a model for analyzing information propagation
and social influence at the granularity of communities. CSI builds over a novel
propagation model that generalizes the classic Independent Cascade model to
deal with groups of nodes (instead of single nodes) influence. Given a social net-
work and a database of past information propagation, we propose a hierarchical
approach to detect a set of communities and their reciprocal influence strength.
CSI provides a higher level and more intuitive description of the influence dy-
namics, thus representing a powerful tool to summarize and investigate patterns
of influence in large social networks. The evaluation on various datasets suggests
the effectiveness of the proposed approach in modeling information propagation
at the level of communities. It further enables to detect interesting patterns of
influence, such as the communities that play a key role in the overall diffusion
process, or that are likely to start information cascades.

1 Introduction

Understanding the dynamics of influence in online social networks is becoming an in-
teresting point of convergence for different subjects, including social science, statistical
analysis and computational marketing. Social influence analysis is receiving a growing
attention by both academic and industrial communities, mainly due to the wide range
of applications, e.g personalized recommendations, viral marketing, feed ranking, and
scenarios in which influence plays an important role in predicting users’ behavior. Most
of the networks of interests for this analysis are very large, with millions of edges.
Therefore, graph summarization techniques are needed in order to help the analysis by
highlighting the main properties of the influence dynamics and recurring patterns. Most
of the research in graph summarization has focused on finding abstraction of a graph
(e.g., by aggregating nodes in meta-nodes) that preserves the structural properties of
the original graph, or properties defined as aggregates over the node attributes. In this
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paper instead, our goal is to devise a graph summarization paradigm for the analysis of
the phenomena of information propagation and social influence. More in concrete, we
aim to find an abstraction which, although being coarser than the original data, it still
describes well a database of past propagation traces. Our technique provides the data
analyst with a compact, and yet meaningful, view of the patterns of influence and infor-
mation diffusion over the considered network, where members of the same community
tend to play the same role in the information propagation process.

Towards this goal, we extend the well known Independent Cascade model [10], to
study influence at the level of communities. Briefly, the community structure detected
by our approach reflects macro influence propagation patterns. A community is iden-
tified by a set of connected nodes that share a similar influence tendency over nodes
belonging to other communities. The strength of influence relationships between com-
munities can be used to understand the importance of their connection. Moreover, by di-
rectly modeling community-level influence relationships, we can provide an high level
picture of the global diffusion process over the network, and a summary of the main
influence patterns that shape the underlying process of information propagation.

The main contributes of this paper are the following:

– We introduce the CSI (Community-level Social Influence) model, which extends
the peer-influence relationships that define the Independent Cascade model at the
granularity of communities.

– We devise a greedy algorithm which explores a given hierarchical partitioning of
the network and provides as output the community structure that achieves a good
balance between the accuracy in describing observed propagation data, and a com-
pact representation of the influence relationships.

– Given a set of disjoint communities, we devise an Expectation-Maximization algo-
rithm to effectively learn the strength of their pairwise influence relationships.

– Through an experimental evaluation on three real-world datasets, we show the ef-
fectiveness of our approach, which is able to provide a meaningful and compact
summary of the influence patterns on the considered networks.

The rest of the paper is organized as follows. We briefly review related prior art in Sec. 2.
In Sec. 3, we formally define the problem tackled in this paper while our algorithm is
presented in Sec. 4. The experimental evaluation is in Sec. 5. Finally, Sec. 6 concludes
the paper with a summary of our major findings and future direction of research.

2 Related Work

Social influence and the phenomenon of influence-driven propagations in social net-
works have received considerable attention in the last years. One of the key problems
in this area is the identification of a set of influential users in a given social network.
Domingos and Richardson [4] approach the problem with Markov random fields, while
Kempe et al. [10] frame influence maximization as a discrete optimization problem.
Another vein of study has focused on the problem of learning the influence probabili-
ties on every edge of a social network given an observed log of propagations over this
network [16,18,7,20]. In this paper we use the method by Saito et al. [16].
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Although our goal is that of summarizing the social graph, our work could also be
collocated in the wide community detection literature: for a thorough survey of the topic
we refer the reader to [5]. While the bulk of this literature only focuses on the struc-
ture of the social graph, a recent paper [1] is the first to define a community-detection
mechanism that exploits information propagation traces to find better communities. Our
contribution in this paper is different as we aim at modeling community-to-community
influence, while the goal of [1] is to find good communities w.r.t. the graph structure
and information propagation.

Finally, many tasks in machine learning and data mining involve finding simple and
interpretable models that nonetheless provide a good fit to observed data. In graph sum-
marization the objective is to provide a coarse representation of a graph for further
analysis. Tian et al. [19] as well as Zhang et al. [21] consider algorithms to build graph
summaries based on node attributes, while Navlakha et al. [13] use MDL to find good
structural summaries of graphs. In [14] this method is applied to study protein inter-
action networks. Our work is also related to research that uses a taxonomy to impose
the right level of granularity to the model being learned. Garriga et al. [6] consider the
problem of feature selection for regression models given a taxonomy over the indepen-
dent variables, while Bonchi et al. [2] use a hierarchical decomposition a state space
to simplify Markov models. Lavrač et al. [11] construct interpretable rules by selecting
attributes with the help of a hierarchical ontology.

3 Community-Level Social Influence Model

We first (Sec. 3.1) recall the independent cascade propagation model [10], that is at
the basis of our proposal. Then we introduce CSI (Sec. 3.2), our model that general-
izes peer-influence to the community level: we devise the procedure for learning the
parameters of the model (Sec. 3.3), and we discuss model selection (Sec. 3.4).

3.1 Preliminaries: The Independent Cascade (IC) Model

Let G = (V,E) denote a directed network, where V is the set of vertices and E ⊆
V × V denotes a set of directed arcs. Each arc (u, v) ∈ E represents an influence
relationship, i.e u is a potential influencer for v, and it is associated with a probability
p(u, v) representing the strength of such influence relationship. Let D = {α1, · · · , αr}
denote a log of observed propagation traces over theG. For each trace α the log contains
the activation time of each node tα(v), where tα(v) = ∞ if v does not become active
in trace α.

We assume that each propagation trace in D is initiated by a special node Ω 	∈ V ,
which models a source of influence that is external to the network. More specifically,
we have tα(Ω) < tα(v) for each α ∈ D and v ∈ V . Time unfolds in discrete steps.
At time t = 0 all vertices in V are inactive, and Ω makes an attempt to activate every
vertex v ∈ V and succeeds with probability p(Ω, v). At subsequent time steps, when
a node u becomes active, it makes one attempt at influencing each inactive neighbor v
with probability p(u, v). Multiple nodes may try to activate, independently, the same
node at the same time. If at least one attempt to activate node v at time t succeeds, then
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v becomes active at t + 1. Therefore, at a given time step, each node is either active or
inactive, and active nodes never become inactive again.

Note that we have not specified the function p in detail. The independent cascade
model can be instantiated with an arbitrary choice of p, but these come with different
trade-offs. Kempe et al. [10] use a uniform probability q in their experiments, that is,
p(u, v) = q for all (u, v) ∈ E. On the other hand, Saito et al. [16] estimate a sepa-
rate probability p(u, v) for every (u, v) ∈ E from a set of observed traces. These two
approaches can be viewed as opposite ends of a complexity scale. Using a single pa-
rameter leads to a simple but potentially inaccurate model, while estimating a different
probability for each arc might provide a good fit but at the price of risking to overfit,
due to the very large number of parameters [12,8].

Next we introduce our CSI model, that shifts the modeling of influence strength
from node-to-node, to community-to-community. In our community-based variant of
the IC model, all vertices that belong to the same cluster are assumed to have identical
influence probabilities towards other clusters.

3.2 The CSI Model

We start by introducing the likelihood of a single trace α when expressed as a function
of single edge probability: this is needed to define the problem that we tackle in this
paper.

When it comes to fit real data, some of the assumptions of the the theoretical IC
propagation model are hardly met. For instance time is not coarsely discrete, and we
cannot assume that in real data, if u activates at time t and it succeeds in influencing
some of its peers, then this will happen at time t+1. Following [12], we circumvent this
problem by adopting a delay threshold Δ to distinguish between potential influencers
that may have triggered an activation, and those who have certainly failed. Let F+

α,u be
the set of u’s neighbors that potentially influenced u’s activation in the trace α:

F+
α,u = {v | (v, u) ∈ E, 0 ≤ tα(u)− tα(v) ≤ Δ}.

Similarly, we define as F−
α,u the set of u’s neighbors who definitely failed in influencing

u on α:
F−
α,u = {v | (v, u) ∈ E, tα(u)− tα(v) > Δ}.

Let p : V × V → [0, 1] denote a function that maps every pair of nodes to a proba-
bility. The log likelihood of the traces in D given p can be expressed as

logL(D | p) =
∑
α∈D

logLα(p), (1)

because the traces are assumed to be i.i.d. The likelihood of a single trace α is

Lα(p) =
∏
v∈V

⎡⎣1− ∏
u∈F+

α,v

(1− p(u, v))

⎤⎦ ·

⎡⎣ ∏
u∈F−

α,v

(1− p(u, v))

⎤⎦ . (2)

As we already anticipated, in the CSI model we shift the influence strength estima-
tion from node-to-node, to community-to-community. To this end, we use a hierarchical
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decompositionH of the underlying networkG. In particular,H is a tree rooted at r, with
the nodes in V as leaves, and an arbitrary number of internal nodes. A cut h of H is a
set of edges of H, so that for every v ∈ V , one and only one edge e ∈ h belongs to the
path from the root r to v. Therefore, the removal of the edges in h from H disconnects
every v ∈ V from r.

Let C(H) denote the set of all possible cuts of H. Each h ∈ C(H) induces thus a
partition Ph of the network G, so that all vertices in V that are below the same edge
e ∈ h in H belong to the same cluster ce ⊆ V . Let a(v) denote the cluster to which the
node v ∈ V belongs to in the partition Ph.

In the CSI model, all vertices that belong to the same cluster are assumed to have
identical influence probabilities towards other clusters. Given a function p̃h : Ph ×
Ph → [0, 1] that assigns a probability between any two clusters of the partition Ph, we
define

ph(u, v) = p̃h (a(u), a(v)) .

Below, in Section 3.3, we will show that given G, H, the cut h, and D, we can find
p̃h using an expectation maximization (EM) algorithm. For the moment we can assume
that p̃h is induced by h in a deterministic way, because our aim is to define our problem
in terms of finding an optimal cut h∗ ∈ C(H).

A straightforward observation is that the likelihood defined in equations 1 and 2 is
maximized by the cut at the leaf level of H. Reducing the number of pairwise influence
probabilities used by the model can only result in a lower likelihood. Therefore, we
use a model selection function f that takes into account both likelihood as well as the
complexity of the model. We discuss choices for f later in Section 3.4. Note that since
the networkG and the hierarchy H remain fixed, model complexity is only affected by
the cut h ∈ C(H).

Example 1. Figures 1 and 2 illustrate a possible input for our problem and a possible
output, i.e., a CSI model, respectively. In particular in the example, the cut h1 corre-
sponds to the leaf level model where each single node of the social graph constitutes a
state of the CSI model: this is the maximum likelihood cut. However, this would cor-
respond to the standard IC model and is not our goal. In the picture two other cuts are
shown, where h2 corresponds to the clustering {{A,F}, {D,E}, {BC}, {H}, {I},
{J,K}, {L,M}}, and the cut h3 results in the CSI model in Figure 2 , which in our
example is the “best” model according to the model selection function f .

Now we have all necessary ingredients to formally state the problem addressed in
this paper.

Problem 1 (Learning a CSI model). Given a networkG = (V,E), a log of propagation
traces D across this network, a hierarchical partitioning H of G, and a model selection
function f , find the optimal cut of H defined as

h∗ = argmin
h∈C(H)

f (L(D, ph), h) .

We do not formally address the complexity of the problem in this paper. An ex-
haustive enumeration of all possible cuts is infeasible, since the size of C(H) can be
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Fig. 1. An example of input for our problem: a social graph G (here represented as undirected, but
we can always consider each undirected edge as the corresponding two directed arcs), a hierarchy
H over G, and a log D of observed propagation traces over the social graph G

 

H …M 
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ADEF 

Fig. 2. A possible CSI model resulting from the input of Figure 1 and corresponding to the cut
h3. The arcs tickness represent the strength of the influence along that arc, i.e., the ticker the arc,
the larger the associated probability.

exponential in the size of V . Moreover, using the structure of H is complicated by the
possibly complex interplay between the likelihood and the model selection function f .
Designing efficient algorithms might be possible, at least for some choices of f , but we
leave those as future work.

Finally, it is worth noting that the two extreme cases outlined above, i.e., all links
have the same probability, or all links have a different probability can be modeled in
our framework. The cut h1 in Figure 1 places all vertices of G in separate clusters,
which corresponds to the most complex model with a separate influence probability
on every edge. The cuts h2 and h3 induce models with a lower granularity. Finally, a
cut right above the root of H (assuming that there is a “super-root” above r) places all
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vertices in the same cluster, which results in the simplest possible model with a constant
p(u, v) for each arc (u, v).

3.3 Learning Inter-community Influence Strength

Next we devise an expectation-maximization (EM) approach for estimating the pair-
wise influence strength among the clusters of nodes, i.e., the parameters of the CSI
model. We assume that the clusters have been induced by a cut of a given hierarchical
decomposition H ofG as discussed above, but the EM method presented in this section
can be applied to an arbitrary disjoint partition of V . Recall that a(v) denotes the cluster
where v ∈ V , and let A(x) ⊆ V denote the set of vertices that belong to cluster x ∈ P .

Consider a single trace α ∈ D. According to the discrete-time independent cascade
model, each user u such that u ∈ F+

α,v performs an independent attempt to activate v.
If v becomes active then at least one of the influencers in F+

α,v was successful, but we
don’t know which one. Hence, we introduce a probability distribution ϕα,v over the
nodes in F+

α,v , where ϕα,v,u represents the probability that in trace α the activation of
v was due to the success of the activation trial performed by u.

We use these probabilities to derive a standard EM algorithm. For a given cut h,
each u ∈ F+

α,v succeeds in activating v on the considered trace with probability
ph(a(u), a(v)) and fails with probability (1 − ph(a(u), a(v))). By exploiting users’
responsabilities ϕα,v,u, we can define the complete expectation (log)likelihood of the
observed propagation as follows:

Q(p̃h; p̃
old
h ) =

∑
α∈D

∑
v

⎧⎨⎩ ∑
u∈F+

α,v

(
ϕα,v,u log p̃h(a(u), a(v))+

(1− ϕα,v,u) log (1− p̃h(a(u), a(v)))

)
+

∑
u∈F−

α,v

log (1− p̃h(a(u), a(v)))

⎫⎬⎭ .
(3)

Given an estimate of every ϕα,v,u, we can determine the p̃h which maximizes Eq.3 by

solving ∂Q(p̃h;p̃
old
h )

∂p̃h(x,y)
= 0 for all pair of clusters x, y ∈ Ph. This gives the following

estimate of p̃h(x, y):

p̃h(x, y) =
1

|S+
x,y|+ |S−

x,y|
∑
α∈D

∑
v∈A(y)

∑
u∈F

+
α,v

u∈A(x)

ϕα,v,u, (4)

where

S+
x,y =

∑
α

∑
v∈A(y)

∑
u∈A(x)

I(u ∈ F+
α,v) and S−

x,y =
∑
α

∑
v∈A(y)

∑
u∈A(x)

I(u ∈ F−
α,v).

We still must provide an estimate for every ϕα,v,u. We do this on the basis of the as-
sumption that the probability distributionsϕα,v are independent of the partition P . That
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is, if u is believed to be the activator for v in the trace α, this belief should not change
for different ways of clustering the two nodes. Therefore, we estimate the ϕα,v,us from
the model where every v ∈ V belongs to its own cluster, because this will lead to esti-
mates that only depend on the network structure. Denote this model by p̃l. We obtain:

ϕα,v,u =
p̃l(v, u)

1−
∏
w∈F+

α,u(1−p̃l(w,u))
. (5)

Thus we design the following procedure:

– Run the EM algorithm without imposing a clustering structure (which is equivalent
to the estimation proposed in [16]) to obtain p̃l(u, v)∀(u, v) ∈ E.

– Compute each ϕα,v,u using Equation 5.
– For different partitions P , keep the ϕα,v,u fixed, and update p̃(x, y) according to

Eq.4.

3.4 Model Selection

Recall that the likelihood logL(D | ph) is maximized for the cut h that places every
node in its own cluster. We need thus a way to address the trade-off between fit and
model complexity. Two principled approaches to this are Bayesian Information Crite-
rion (BIC) and Minimum Description Length (MDL), which we both use in this paper.

We instantiate BIC [17] as follows: BIC = −2 logL(D | ph) + |h| log(|D|).
In the basic two-part MDL [15], we first use the model, in our case the cut h, to

encode the observed data (the traces in D), and then encode the model itself. We denote
the encoding length of D given h by L(D | h), and the encoding length of the cut by
L(h).

To apply MDL in our context, we must specify both L(D | h) as well as L(h). A
standard result is that we can simply use the log-likelihood of D given h as L(D | h)
(see e.g. [3]). That is, we let L(D | h) = logL(D | ph). The encoding length L(h)
of the cut h is defined as the number of bits needed to communicate h to a receiving
party. We assume that the recipient already has the hierarchy H as well as the network
G. We must send every edge in h using |h| · log(|H|) bits, as well as the influence
probabilities between all pairs of communities where this probability is nonzero. If there
areX ≤ |h|2 such pairs, we useX (2 log(|h|) + C) bits (probabilities are encoded with
C bits each) for the probabilities. The total encoding length of h is thus:

L(h) = |h| · log(|H|) +X (2 log(|h|) + C) .

MDL favors the model that minimizes the combined encoding: L(D | h) + L(h).

4 Algorithm

In the previous section, we introduced the CSI model and discussed how to evaluate
different cuts of h ∈ C(H) of the hierarchical decomposition of the network. However,
as mentioned in Sec. 3, the search space C(H) can in general be exponential in the size
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of V , making exhaustive search infeasible. Next we present a heuristic algorithm that
performs a bottom-up greedy visit of C(H), and provides the best solution found as
output.

In our implementation,H is always a binary tree, but the approach applies to general
trees as well. The procedure starts from the cut corresponding to the leaf level; at each
iteration we compute all the possible cuts which can be obtained from the current one
by merging communities that share a same parent in the hierarchy. Since H is a binary
tree, each merge will involve exactly two communities. More formally, given a cut
h = {e1, · · · , e|h|} ∈ C(H), let M(h) denote the set of candidate merges available
from the cut h:

M(h) = {〈y, y′〉 : (x, y) ∈ h ∧ (x, y′) ∈ h, x 	= r}

where r is the root of H. A simple greedy heuristic would pick the merge in M(h) that
results in the best value of the objective function. However, evaluating our objective
function is computationally intensive, because it involves re-estimating model parame-
ters, and computing the likelihood of D given those parameters. This is too slow to be
useful in practice.

To speed-up the algorithm, we make use of the following observation: in an “ideal
merge” (with respect to the outgoing influence patterns) the two communities exhibit
exactly the same influence probabilities with other communities. That is, if for some y
and y′ we have p(y, z) = p(y′, z) and p(z, y) = p(z, y′) for every z, merging the com-
munities y and y′ does not affect the likelihood of D at all. In practice these influence
probabilities are never exactly identical, but we can still find a merge where they are as
similar as possible. Rather than computing the entire objective function for every pos-
sible merge in M(h), we find the merge that is the best in terms of the above condition.
To this end we use a similarity function defined as

similarity(y, y′, p) =
∑
z

(p(y, z)p(y′, z) + p(z, y)p(z, y′)) , (6)

which can be thought of as the dot product between the influence probability vectors
associated with communities y and y′.

Our whole procedure, summarized in Algorithm 1, finds in each iteration the best
merge using Eq. 6 and updates the model given this. The resulting cut as well as the
corresponding parameters are stored in a set, denoted L. Once the algorithm reaches
the root of H, it evaluates the objective function for every cut in the set L and returns
the one having the best value. The function updateModel runs the estimation procedure
described in Section 3.3.

5 Experimental Evaluation

CSI provides a compact description of influence patterns in the underlying network; in
the following we will describe how this approach can be exploited for several purposes,
including data understanding and characterization of information propagation flow.

Datasets. The evaluation focuses on three datasets where each dataset comprises of a
networkG and the propagation log D. The first dataset has been extracted from Yahoo!
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Algorithm 1. CSI model learning
Input : A propagation log D, a network G = (V,E) and hierarchical decomposition H.
Output: The cut h ∈ C (H) which achieves the best value of the objective function.
h ← leafLevel(H)
p ← updateModel(h, G,D)
L ← ∅
while C(h) �= ∅ do

〈x∗, y∗〉 ← argmax〈x,y〉∈C(h){similarity(x, y, p)}
h ← merge(h, 〈x∗, y∗〉)
p ← updateModel(h, G,D)
L ← L ∪ {〈h, p〉}

end
〈h∗, p∗〉 ← argmin〈h,p〉∈L{objFunc(h, p,D)}
return h∗

Table 1. Datasets statistics

MEME FLIXSTER TWITTER

Number of Nodes 9, 523 6, 354 23, 537
Number Links 759, 369 97, 314 1, 299, 652

Traces 9, 578 7, 158 6, 139
Activations 552, 732 1, 439, 875 383, 866

Avg. number of activations per node 84 221 16
Avg. number of nodes per trace 58 200 62

Meme, a microblogging service1, in which users can share different kinds of informa-
tion called “memes”. Memes are shared on the main user’s stream and a re-post button
allows to display an item from another user’s stream on the personal one. If the user
v posts a meme which is later re-posted by the user u, we say that the meme propa-
gates from v to u, and thus v is a potential influencer of u. The second dataset has been
crawled from Flixster2, one of the main social movie website. It allows users to share
ratings on movies and to meet other users with similar tastes. In Flixster,the propagation
log records the time at which a user rated a particular movie. In this context, an item
or movie is considered to propagate from v to u, if u rates the item shortly after the
rating by v. The last dataset was obtained by crawling the public timeline of Twitter3.
We track the propagation of URLs across the network where an activation corresponds
to the instance when a user uses a certain URL for sharing with other friends. In Table 1
we report the main characteristics of the datasets.

Experiment Settings. The optimization algorithm proposed in Sec. 4 requires as input
a hierarchical decomposition of the network. We obtain this hierarchy by recursively
partitioning the underlying network using METIS [9], which reportedly provides high

1 Discontinued in May 25, 2012.
2 http://www.cs.sfu.ca/˜sja25/personal/datasets/
3 https://dev.twitter.com/docs/api/1/get/
statuses/public timeline

http://www.cs.sfu.ca/~sja25/personal/datasets/
https://dev.twitter.com/docs/api/1/get/statuses/public_timeline
https://dev.twitter.com/docs/api/1/get/statuses/public_timeline
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Fig. 3. Model selection: MDL (first row), and BIC (second row) - the subplots show a focused
view on the region of the minimum

quality partitions. At each stage in the recursive procedure, we split the network to
two components that are roughly equal in size. The resulting hierarchical partitioning
is thus a binary tree. In order to reduce the computational overhead of the algorithm,
we initialize the hill climbing clustering procedure with a cut slightly above the leaf
level. This is obtained by making 5 passes over the leafs, and during each pass we
merge leafs that have a common parent. While the choice of the similarity function is
somewhat arbitrary, we found that the cosine similarity of Eq. 6 works well in practice.
Finally, the delay threshold Δ is set to ∞: i.e., for a given node we consider potential
influencer any neighbor active before the node in a given trace. We ran our experiments
on a Intel Xeon 2.4 GHz processor and 8 GB memory. The learning time ranges from
few hours (Flixster and Y!Meme) to several days for Twitter, where the number of links
(approx. 1.3 million) impact the learning time as it increases the computational effort
in Eq. 4 where a greater number of potential activators of v needs to be considered. It is
worth noting that parallelizing the EM computation of Section 3.3 is possible and it is
planned in our future work.

Model Selection. In Figure 3, we compare the BIC and MDL scores that we obtain for
each cut found by our algorithm from the lowest (many communities) to the highest
(few communities). The two model selection criteria do not agree on the identifica-
tion of the optimal model. MDL tends to favor less complex models than BIC in our
case, which is most likely caused by the quadratic dependence on |h| of L(h). For in-
stance, MDL provides us 115 communities for Flixster dataset whereas BIC provides
454 communities (just after a couple of iterations of the main algorithm). In the rest of
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Fig. 4. Community to community influence probabilities (first row) and social links (second row)

this section we will characterize one model found for each dataset. More specifically,
for Flixster we select the model provided by MDL since it provides a more compact
view of the influence pattern, with (29 communities, after removing singleton node
communities). For the other two datasets, we select the model provided by BIC. The
number of communities for Twitter and Y!Meme, after removing singletons, are 60 and
53, respectively.

Community-Level Social Influence Analysis. The output of the CSI model can be
easily graphically represented according to two different, and complementary, perspec-
tives. The first way to analyze the strength of the influence and social link relation-
ships is by plotting the corresponding heat-maps, as shown in Figure 4. In these figures,
we plot the intensity of the influence probability between two communities, and the
probability of observing a link between them, respectively. On the whole, we register
almost no correlation between influence and link probabilities. From the heat maps cor-
responding to link probabilities, we can see that the clustering procedure use to find the
hierarchy H (METIS) has correctly identified communities of highly connected nodes.
Influence relationships, however, do not in general exhibit any clear structure, although
we have a slight diagonal in the Twitter dataset. Interestingly, even if a community is
dense, it does not necessarily exhibit strong internal influence.

An alternate and perhaps more effective way of summarizing influence relationships
in the network is to consider the community-level influence propagation network. In
Figure 5 we show the CSI propagation network for the Flixster dataset, where node
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Fig. 5. The CSI model found in the Flixster dataset

size is proportional to community size, “Start” represents the Ω node, and edge width
is proportional to influence probability. We preprocessed the graph by pruning all the
edges between communities having influence probability less than 0.1, while we use
0.03 as threshold for the links connectingΩ with the rest of the network. Interestingly,
the network is almost acyclic, and this suggests a clear directionality pattern in the
flow of information. This finding is further confirmed by the analysis of the other two
datasets, for which, due to the limited space, we omit the CSI propagation networks.

Both the heat-map representation and the compact propagation network provide an
useful tool to understand influence relationships between communities, and at the level
of the whole network. We can evaluate the capabilities of this approach in providing
a compact and yet accurate description of the real influence process on the underlying
network, by setting up two simple tests.

In the first test, the goal is to verify if our approach detects correctly the communities
that play a key role in the information propagation process. To quantify the importance
of each community, we run the greedy influence maximization algorithm [10] (with a
budget of 100 nodes) on the considered networks, where the influence probabilities are
the ones estimated at the leaf level and we employ 5000 Monte Carlo simulation to
estimate the spread. This procedure provides a ranked list S of nodes that should be
targeted to maximize the expected spread on the network. For each s ∈ S we recordΔs
as the gain, in terms of spread, that can be achieved by adding s to the set S. We can
measure its importance in the overall diffusion process as the percentage of the over-
all spread achieved by targeting the seed nodes selected in the considered community.
More formally:

score(c) =

∑
s′∈S∧s′∈A(c)Δs′∑

s′∈S Δs′
.
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Fig. 6. Influence spread and early adoption scores of the communities produced by CSI

As clearly visible in Figure 6(a), a high fraction of the overall spread can be explained
by only a few communities. The high score of the most important communities is due to
the fact that the multiple nodes having a large spread gain belong to those communities.
As instance, the greedy procedure picks 13 nodes in the community 29 for Meme, 17
belonging to the community 21 for Flixster, 13 in the community 42 for Twitter. Inter-
estingly, the community structure provided by our approach gathers “high influential”
nodes in the same community.

The second validation test to provide a qualitative evaluation of the CSI model is
focused on the identification of early adopter communities. For each trace we consider
the communities that have highest number of active nodes during the first quarter of the
trace’s overall propagation time, and rank communities accordingly. Again, as shown
in Figure 6(b), a significant number of traces involves the initial activation of nodes be-
longing to a small set of communities. The identity of those communities can be easily
tracked by considering the length of the path from the “Start” node in the CSI prop-
agation graph. As instance, on Flixster (Figure 5), the communities 14 and 19 exhibit
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Fig. 7. Distribution of number of communities touched by propagation traces

a direct connection with the “Start” node, while community 21, can be reached in two
hops, characterized by an high influence weight.

Finally, the community structure detected by CSI can be useful to study the proper-
ties of the information propagation flow on the considered networks. As instance, we
may be interested in studying the typical flow of information in the network, by ana-
lyzing the number of communities reached. We provide, in Figure 7, the histogram of
the number of communities reached by the information propagation traces, where we
consider that a trace enters in a community if at least 10% of its nodes become active.
We observe different information propagation patterns: in Flixster a larger fraction of
traces propagate in a small number of communities. The number of communities par-
ticipating in a propagation declines as the number of communities increase, however, it
rises again for relatively large number of communities and, thereby, making a near U-
shaped distribution. Hence, a significant number of traces exhibit either local or global
diffusion. In Y!Meme, the number of communities involved in the propagation flow
follows a normal distribution, and again only a limited number of communities (15 in
average) are typical involved in the propagation. This “local propagation” behavior is
emphasized on Twitter, where each trace generally involves less than 5 communities.

6 Conclusions

In this paper we introduce a hierarchical approach to summarize patterns of influence
in a network, by detecting communities and their reciprocal influence strength. Our
model, dubbed CSI, generalizes the Independent Cascade propagation model, by mod-
eling influence between communities of connected nodes rather than a pairwise node
influence. This enables more compact representation of the network of influence, which
can be easily plotted and exploited to understand and detect interesting properties in the
information propagation flow over the network. Our empirical analysis over real-world
networks highlights two interesting observations: (i) the propagation networks found
by CSI are almost acyclic, (ii) information propagates in the network mainly “locally”,
reaching few communities. While the first observation offers interesting insights, since
it shows the existence of a clear direction in the propagation of information, the latter
confirms a strong relationships between information propagation and the community
structure, that might be exploited for community detection [1].
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Abstract. In this paper we address the problem of automatically con-
structing structured knowledge from plain texts. In particular, we present
a supervised learning technique to first identify definitions in text data,
while then finding hypernym relations within them making use of ex-
tracted syntactic structures. Instead of using pattern matching meth-
ods that rely on lexico-syntactic patterns, we propose a method which
only uses syntactic dependencies between terms extracted with a syntac-
tic parser. Our assumption is that syntax is more robust than patterns
when coping with the length and the complexity of the texts. Then, we
transform the syntactic contexts of each noun in a coarse-grained tex-
tual representation, that is later fed into hyponym/hypernym-centered
Support Vector Machine classifiers. The results on an annotated dataset
of definitional sentences demonstrate the validity of our approach over-
taking the current state of the art.

1 Introduction

Nowadays, there is a huge amount of textual data coming from different sources
of information. Wikipedia1, for example, is a free encyclopedia that currently
contains 4,168,348 English articles2. Even Social Networks play a role in the
construction of data that can be useful for Information Extraction tasks like
Sentiment Analysis, Question Answering, and so forth. From another point of
view, there is the need of having more structured data in the forms of ontologies,
in order to allow semantics-based retrieval and reasoning. Ontology Learning is
a task that permits to automatically (or semi-automatically) extract structured
knowledge from plain text. Manual construction of ontologies usually requires
strong efforts from domain experts, and it thus needs an automatization in such
sense. In this paper, we focus on the extraction of hypernym relations. The first
step of such task relies on the identification of what [21] called definitional sen-
tences, i.e., sentences that contain at least one hypernym relation. This subtask
is important by itself for many tasks like Question Answering [8], construction

1 http://www.wikipedia.org/
2 February 19, 2013.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part II, LNAI 8189, pp. 64–79, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.wikipedia.org/
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of glossaries [18], extraction of taxonomic and non-taxonomic relations [19,25],
enrichment of concepts [13,6], and so forth.

The main contribution of this work is to relax the problem of inducing se-
mantic relations by separating it into two easier subtasks and facing them in-
dependently with the most appropriate techniques. Indeed, hypernym relation
extraction involves two aspects: linguistic knowlege, and model learning. Pat-
terns uses to collapse both of them, preventing to tackle them separately with
the most suitable techniques. On the one hand, patterns have limited expressiv-
ity, while linguistic knowledge inside patterns is learned from small corpora so it
is likely to have low coverage. On the other hand, classification strictly depends
on the learned patterns, so performance decreases and the available classifica-
tion techniques are restricted to those compatible with the pattern approach.
Instead, we use a syntactic parser for the first aspect (with all its native and
domain-independent knowledge on language expressivity), and a state-of-the-art
approach to learn models with the use of Support Vector Machine classifiers.

2 Motivating Examples

Most of the existing work in this field use manual rather than automatic genera-
tion of sequential patterns inducing hypernym relations. Although this approach
achieves good results, as demonstrated in well-founded papers like [8] and [21], it
is limited in the sense that it exclusively relies on the sequentiality of the expres-
sions. Natural language offers potentially infinite ways of expressing concepts,
without any limits on the length and complexity of the sentences.

Definitions can present a great variety of linguistic constructions in natural
language. For instance, it is possible to have definitions that make use of punc-
tuation, as in the following sentence:

“IP: a protocol for sending data across a network.”

Some work concentrated on the English copular verb to be, as in [3], while even
other verbs can indicate the presence of a hypernym relation, as in the sentence
below:

“The term ontology stands for a formal representation of objects in a
specific domain.”

Still, in the sentence:

“Browsers, tools for navigating the Web, can also reproduce sound.”

the identification of the syntactic apposition is necessary to determine the hy-
pernym relation. Modifiers are other linguistic constructions that can lengthen
the sentences, making them more complex to match with trained patterns, as in
this example:

“The Aardvark is a medium-sized, burrowing, nocturnal mammal native
to Africa”
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Notice that, however, a POS-aware pattern mathing technique like the one
by [21] can handle this type of complexity. Finally, linguistic coordinations need
to be identified to be able to extract all possible hypernyms, as in this last
example:

“Agathon was an Athenian tragic poet and friend of Euripides and Plato”

where “Agathon” is a “poet”, a “friend of Euripides”, and a “friend of Plato”.

3 Related Work

In this section we present the current state of the art concerning the automatic
extraction of definitions and hypernym relations from plain text.

3.1 Definition Classification

Considering the initial formal representation proposed by [26], a definitional
sentence is composed by different information fields:

– a definiendum (DF), i.e., the word being defined with its modifiers,
– a definitor (VF), i.e., the verb phrase to introduce the definition,
– a definiens (GF), i.e., the genus phrase that usually contains the hypernym,
– and the rest of the sentence (REST), that can contain additional clauses.

An example of annotated definition is represented by the following sentence:

[In computer science, a [pixel ]DF [is]V F [a dot]GF [that is part of a
computer image]REST .

In this paper, we will use the term definitional sentence referring to the more
general meaning given by [21]: A sentence that provides a formal explanation for
the term of interest, and more specifically as a sentence containing at least one
hypernym relation.

So far, most of the proposed techniques rely on lexico-syntactic patterns, either
manually or semi-automatically produced [17,31,28]. Such patterns are sequences
of words like “is a” or “refers to”, rather than more complex sequences including
part-of-speech tags.

In the work of [28], after a manual identification of types of definitions and
related patterns contained in a corpus, the author successively applied Machine
Learning techniques on syntactic and location features to improve the results.

A fully-automatic approach has been proposed by [3], where the authors
applied genetic algorithms to the extraction of English definitions containing
the keyword “is”. In detail, they assign weights to a set of features for the
classification of definitional sentences, reaching a precision of 62% and a recall
of 52%.

Then, [8] proposed an approach based on soft patterns, i.e., probabilistic
lexico-semantic patterns that are able to generalize over rigid patterns enabling
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partial matching by calculating a generative degree-of-match probability between
a test instance and the set of training instances.

[10] used three different Machine Learning algorithms to distinguish actual
definitions from other sentences, relying on syntactic features and reaching high
accuracy levels.

The work of [18] relies on a rule-based system that makes use of “cue phrases”
and structural indicators that frequently introduce definitions, reaching 87% of
precision and 75% of recall on a small and domain-specific corpus.

Finally, [21] proposed a system based on Word-Class Lattices (WCL), i.e.,
graph structures that try to generalize over the POS-tagged definition patterns
found in the training set. Nevertheless, these mechanisms are not properly able
to handle linguistic exceptions and linguistic ambiguity.

3.2 Hypernym Extraction

According to [2] and [4], the problem of extracting ontologies from text can be
faced at different levels of granuarity. According to the former, our approach
belongs to the extraction of terminological ontologies based on IS-A relations,
while for the latter we refer to the concept hierarchies of their Ontology Learning
layer cake.

As for the task of definition extraction, most of the existing approaches use
symbolic methods that are based on lexico-syntactic patterns, which are manu-
ally crafted or deduced automatically. The seminal work of [16] represents the
main approach based on fixed patterns like “NPx is a/an NPy” and “NPx such
as NPy”, that usually imply < x IS-A y >. The main drawback of such technique
is that it does not face the high variability of how a relation can be expressed
in natural language. Still, it generally extracts single-word terms rather than
well-formed and compound concepts. The work of [21], as already mentioned in
the previous section, is based on graph structures that generalize over the POS-
tagged patterns between x and y. [1] proposed similar lexico-syntactic patterns
to extract part-whole relationships.

[9] proposed a rule-based approach to the extraction of hypernyms that, how-
ever, leads to very low accuracy values in terms of Precision.

[23] proposed a technique to extract hypernym relations from Wikipedia by
means of methods based on the connectivity of the network and classical lexico-
syntactic patterns. [29] extended their work by combining extracted Wikipedia
entries with new terms contained in additional web documents, using a distri-
butional similarity-based approach.

Finally, pure statistical approaches present techniques for the extraction of
hierarchies of terms based on words frequency as well as co-occurrence values,
relying on clustering procedures [5,12,30]. The central hypothesis is that similar
words tend to occur together in similar contexts [15]. Despite this, they are
defined by [2] as prototype-based ontologies rather than formal terminological
ontologies, and they usually suffer from the problem of data sparsity in case of
small corpora.
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4 Approach

In this section we present our approach to identify hypernym relations within
plain text. Our methodology consists in relaxing the problem in two different
subtasks. Given a semantic relation between two terms rel(x, y) within a sen-
tence, the task becomes to find 1) a possible x, and 2) a possible y. In case of
more than one possible x or y, a further step is needed to associate the correct
x to the right y.

By seeing the problem as two different classification problems, there is no
need to create abstract patterns between the target terms x and y. In addition
to this, the general problem of identifying definitional sentences can be seen as
to find at least one x and one y in a single sentence.

4.1 Local Syntactic Information

Dependency parsing is a procedure that extracts syntactic dependencies among
the terms contained in a sentence. The idea is that, given a hypernym relation,
hyponyms and hypernyms may be characterized by specific sets of syntactic
contexts. According to this assumption, the task can be seen as a classifica-
tion problem where each noun in a sentence has to be classified as hyponym,
hypernym, or neither of the two.

More in detail, for each noun “a” the system creates one instance composed
by textual items describing its syntactic context. Each item can be seen as a
classic word, and it represents a single syntactic relation taking a as one of its
arguments. To build these items, extracted dependencies are transformed into
abstract textual representation in the form of triples. In particular, for each
syntactic dependency dep(a, b) (or dep(b, a)) of a target noun “a”, we create an

abstract term dep-target -b̂ (or dep-b̂-target), where “a” becomes “target” and

where “b̂” is transformed into the generic string “noun” in case it is a noun;
otherwise it is equal to “b”. This way, the nouns are transformed into coarse-
grained context abstractions, creating a level of generalization of the feature set
that collapses the variability of the nouns involved in the syntactic dependencies.
The string “target” is useful to determine the exact position of the noun in a
syntactic dependency (as a left argument, or as a right argument).

Running Example. In order to describe the process of tranforming the input
data to fit with a standard classification problem, we present here a step-by-step
concrete example. Let us consider the sentence below:

The Albedo of an object is the extent to which it diffusely reflects light
from the sun.

The result of the Part-Of-Speech tagging procedure will be the following:

The/DT Albedo/NNP of/IN an/DT object/NN is/VBZ the/DT ex-
tent/NN to/TO which/WDT it/PRP diffusely /RB reflects/VBZ light/NN
from/IN the/DT sun/NN.
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where DT stands for determiner, NNP is a proper name, and so on3. Then,
the syntactic parsing will produce the following dependencies (the numbers are
unique identifiers)4:

det(Albedo-2, The-1)
nsubj (extent-8, Albedo-2)
det(object-5, an-4)
prepof (Albedo-2, object-5)
cop(extent-8, be-6)
det(extent-8, the-7)
rel(reflects-13, which-10)
nsubj (reflects-13, it-11)
advmod(reflects-13, diffusely-12)
rcmod(extent-8, reflect-13)
dobj (reflect-13, light-14)
det(sun-17, the-16)
prepfrom(reflect-13, sun-17)

where the dependency nsubj represents a noun phrase which is the syntactic
subject of a clause, dobj identifies a noun phrase which is the (accusative) object
of the verb, and so on5. The related parse tree is shown in Figure 1.

At this point, the system creates one instance for each term labeled as “noun”
by the POS-tagger. For example, for the noun “Albedo”, the instance will be
represented by three abstract terms, as shown in Table 1.

Fig. 1. The resulting parse tree of the example

Once the instance for the noun “Albedo” is created, it is passed to the clas-
sification process that will decide if “Albedo” can be considered as part of a

3 A complete overview of the parts-of-speech can be found at
http://nlp.stanford.edu/software/tagger.shtml

4 We used the Stanford Syntactic Parser available at
http://nlp.stanford.edu/software/lex-parser.shtml

5 A complete overview of the Stanford dependencies is available at
http://nlp.stanford.edu/software/dependencies_manual.pdf

http://nlp.stanford.edu/software/tagger.shtml
http://nlp.stanford.edu/software/lex-parser.shtml
http://nlp.stanford.edu/software/dependencies_manual.pdf
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Table 1. The instance created for the noun “Albedo” is composed by three items (one
for each syntactic dependency related to “Albedo”). Note that the considered noun
“Albedo” is replaced by the generic term “target”, while the other nouns are replaced
with “noun”.

Dependence Instance Item

det(Albedo, The) det-target-the

nsubj(extent, Albedo) nsubj-noun-target

prepof(Albedo, object) prepof-target-noun

hypernym relation, as explained in the next section. This is done for each noun
in a sentence.

4.2 Learning Phase

Our model assumes a transformation of the local syntactic information into
labelled numeric vectors. More in detail, given a sentence S annotated with
some terms linked by one hypernym relation, the system produces as many
input instances as the number of nouns contained in S. Only the nouns that
are involved in the annotated hypernym relation (as x or y in rel(x, y)) will be
positive instances.

More specifically, for each noun n in S, the method produces two instances
Snx and Sny (i.e., one for each argument of a hypernym relation). The difference
between the two will be only the class label:

1. If n = x in rel(x, y), label(Snx ) = positive, and label(Sny ) = negative
2. If n = y in rel(x, y), label(Snx ) = negative, and label(Sny ) = positive
3. If n 	= x ∧ n 	= y in rel(x, y), label(Snx ) = negative, and label(Sny ) =
negative

If a noun is not involved in a hypernym relation, both the two instances
will have the label negative. At the end of this process, two training sets are
built, i.e., one for each relation argument, namely the x-set and the y-set. All
the instances of both the datasets are then transformed into numeric vectors
according to the Vector Space Model [24], and are finally fed into a Support
Vector Machine classifier6 [7]. We refer to the two resulting models as the x-
model and the y-model. These models are binary classifiers that, given the local
syntactic information of a noun, estimate if it can be respectively an x or a y in
a hypernym relation.

Once the x-model and the y-model are built, we can both classify definitional
sentences and extract hypernym relations. In the next section we deepen our
proposed strategy in that sense.

6 We used the Sequential Minimal Optimization implementation of the Weka frame-
work [14].
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Running Example. We present here a complete example of the learning phase.
In detail, all the nouns contained in all the sentences of the dataset are trans-
formed into textual instances, as shown in Table 1. The result of the sentence
illustrated in the previous section is shown in Table 2.

Table 2. The instances created for the sentence of the example (one for each noun).
Note that the nouns “Albedo” and “extent” are labeled as x and y respectively, as in
the annotated dataset. The nouns “object”, “light” and “sun” are negative examples
for both the x-set and the y-set that will be used by the classifier for learning the
models.

noun Instance x y

Albedo det-target-the nsubj-noun-target prepof-target-noun + -

extent nsubj-target-noun cop-target-be det-target-the rcmod-target-reflect - +

object det-target-a prepof-noun-target - -

light dobj-reflect-target - -

sun det-target-the prepfrom-reflect-target - -

The whole set of instances of all the sentences are fed into two Support Vector
Machine classifiers, one for each target label (i.e., x and y).At this point, it is
possible to classify each term as possible x or y by querying the respective
classifiers with its local syntactic information.

4.3 Classification of Definitional Sentences

As already mentioned in previous sections, we label as definitional all the sen-
tences that contain at least one noun n classified as x, and one noun m classified
as y (where n 	= m). In this phase, it is not further treated the case of having
more than one x or y in one single sentence. Thus, given an input sentence:

1. we extract all the nouns (POS-tagging),
2. we extract all the syntactic dependencies of the nouns (dependency parsing),
3. we classify each noun (i.e., its instance) with the x-model and to the y model,
4. we check if there exist at least one noun classified as x and one noun classified

as y: in this case, we classify the sentences as definitional.

4.4 Extraction of Hypernym Relations

Our method for extracting hypernym relations makes use of both the x-model
and the y-model as for the the task of classifying definitional sentences. If exactly
one x and one y are identified in the same sentence, they are directly connected
and the relation is extracted. The only constraint is that x and y must be
connected within the same parse tree.

Now, considering our target relation hyp(x, y), in case the sentence contains
more than one noun that is classified as x (or y), there are two possible scenarios:
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1. there are actually more than one x (or y), or
2. the classifiers returned some false positive.

Up to now, we decided to keep all the possible combinations, without further
filtering operations7. Finally, in case of multiple classification with both x and
y (i.e., if there are multiple x and multiple y at the same time, the problem
becomes to select which x is linked to which y. To do this, we simply calculate
the distance between these terms in the parse tree (the closer the terms, the
better the connection between the two). Nevertheless, in the used corpus, only
around 1.4% of the sentences are classified with multiple x and y.

5 Evaluation

In this section we present the evaluation of our approach, that we carried out on
an annotated dataset of definitional sentences [22]. The corpus contains 4,619
sentences extracted from Wikipedia, where 1,908 are annotated as definitional.
On a first instance, we test the classifiers on the extraction of hyponyms (x) and
hypernyms (y) from the definitional sentences, independently. Then, we evaluate
the classification of definitional sentences. Finally, we evaluate the ability of our
technique when extracting whole hypernym relations. With the used dataset,
the constructed training sets for the two classifiers (x-set and y-set) resulted to
have approximately 1.5k features.

5.1 Dataset Problems

In this section we present some problems we encountered in the dataset provided
by [22]. In these cases, however, we decided not to remove such sentences from
the data, in order to be fully compliant with the results obtained by [21].

Incorrect Relationships. We found relationships that were different from the
target one, i.e., IS-A, or that were incorrectly annotated in general. For example,
considering the sentence:

→ A hull is the body of a ship or boat.

the annotation indicates two hypernyms for the term “hull”, namely “body
of a ship” and “boat”. First, this can be more correctly seen as a part-whole
relationship. Then, the second relation <hull IS-A boat> is incorrect8.

Incorrect Hypernyms. Some sentences present incorrectly annotated hyper-
nyms. For instance, let us consider the following sentence:

7 We only used the constraint that x has to be different from y.
8 This is due to the untreated linguistic coordination between “ship” and “boat”.
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→ An actor is defined both as the person who originates or gives exis-
tence to anything and as one who sets forth written statements in the
Oxford English Dictionary.

where italic and bold represent the hyponym and the hypernym respectively.
In this case, the IS-A relationships should have linked the term actor with the
hypernym person, while the chosen hypernym one seems quite forced.

Missing Hypernyms. Some sentences provide partial annotations, like:

→ In Greco-Roman mythology, Aeneas was a Trojan hero, the son of
prince Anchises and the goddess Aphrodite.

where only <Aeneas IS-A hero> has been annotated, while also <Aeneas is-a
son of Anchises> and <Aeneas is-a son of Aphrodite> can be part of the
annotation.

Fixed Hyponym. In each sentence, only one hyponym has been annotated,
while the data actually contain sentences with more than one possible hyponym.
For this reason, we could not correctly evaluate and compare our Precision and
Recall values if we did not fix the hyponym during the automatc construction
of the relation, in case of multiple choices.

Misaligned Modifiers and Matching Strategy. The evaluation has been
carried out only looking for substring matching between the manual annotation
and the estimation given by our system (as also done by [21]), since it seems that
no guideline has been given for the annotators during the annotation phase. In
fact, identical cases were annotated differently in terms of inclusion/exclusion of
noun modifiers. For instance, the following two similar instances present different
annotations:

→ Argon is a chemical element designated by the symbol Ar.

→ An acid (often represented by the generic formula HA) is traditionally
considered as any chemical compound that, when dissolved in water,
(...)

where italic and bold represent the hyponym and the hypernym respectively. In
the first case only the noun has been marked as hypernym, while in the second
case even the modifier has been included. Notice that, in such case, both the
two modifiers present the same degree of information, so they should have been
identically annotated.

Finally, since our method is able to extract single nouns that can be involved
in a hypernym relation, we included modifiers preceded by preposition “of ”,
while the other modifiers are removed, as shown by the extracted hypernym
relation of the following sentence:
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→ An Archipelago is a chain of islands.

where the whole chunk chain of islands has been extracted, from the single
triggered noun chain.

5.2 Results

In this section we present the evaluation of our technique on both the tasks of
classifying definitional sentences and extracting hypernym relations. Notice that
our approach is susceptible from the errors given by the POS-tagger and the
syntactic parser. In spite of this, our approach demonstrates how syntax can be
more robust for identifying semantic relations. Our approach does not make use
of the full parse tree, thus we are not dependent on a complete and correct result
of the parser.

The goal of our evaluation is threefold: first, we evaluate the ability of the
proposed approach to classify single hypernyms or hyponyms by means of their
(Bag-Of-Words tranformed) local syntactic information; then, we evaluate the
ability of classifying definitional sentences; finally, we measure the accuracy of
the hypernym relation extraction.

Table 3. Accuracy levels for the classification of single hyponyms (x) and hypernyms
(y) using their local syntactic context, in terms of Precision (P ), Recall (R), and F-
Measure (F ), using 10-folds cross validation

Target P R F

x 93.85% 79.04% 85.81%

y 82.26% 76.77% 79.42%

In the first phase, no x-to-y linking procedure is evaluated. Table 3 shows the
results, in terms of Precision, Recall, and F-Measure. As can be noticed, the
approach is able to identify correct x and y with high accuracy. Interestingly,
hyponyms seem to have more stable syntactic contexts rather than hypernyms.
Moreover, while Recall seems to be quite similar between the two, Precision is
much higher (+11.6%) for the extraction of hyponyms.

While these results demonstrate the potential of the approach, it is interesting
to analyze which syntactic information frequently reveal hyponyms and hyper-
nyms. Table 4 shows the top 10 most important features for both the x and the
y in a hyp(x, y) relation, computing the value of the chi-squared statistics with
respect to the class (x and y, respectively). A part from dataset-specific features
like amod-target-geologic (marked in italic), many interesting considerations can
be done by looking at Table 4. For example, the syntactic dependency nsubj
results to be important for the identification of both hyponyms and hypernyms.
The formers, in fact, are often syntactic subjects of a clause, and vice versa for
the latters. Interestingly, nsubj-noun-target (marked in bold in Table 4) is im-
portant to both identify a correct hyponym and to reveal that a noun is not a
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Table 4. The top 10 most relevant features for the classification of single hyponyms
and hypernyms from a sentence, computing the value of the chi-squared statistic with
respect to the class (x and y, respectively). The feature “nsubj-noun-target” (marked
in bold) is important to identify a correct hyponym and to estimate that a noun is not
a hypernym, while this seems not true for “nsubj-target-noun”. Clear dataset-specific
features are marked in italic.

Top Features for x Top Features for y

nsubj-noun-target cop-target-be

det-target-a nsubj-target-noun

nsubj-refer-target det-target-a

cop-target-be prepin-target-noun

nsubj-target-noun nsubj-noun-target

prepof-noun-target partmod-target-use

prepof-target-noun prepto-refer-target

nn-noun-target prepof-target-noun

det-noun-a det-target-any

nsubjpass-define-target amod-target-geologic

Table 5. Evaluation results for the classification of definitional sentences, in terms of
Precision (P ), Recall (R), F-Measure (F ), and Accuracy (Acc), using 10-folds cross
validation

Algorithm P R F Acc

WCL-1 [21] 99.88% 42.09% 59.22 % 76.06 %

WCL-3 [21] 98.81% 60.74% 75.23 % 83.48 %

Star Patterns [21] 86.74% 66.14% 75.05 % 81.84 %

Bigrams [8] 66.70% 82.70% 73.84 % 75.80 %

Our approach 88.09% 76.01% 81.61% 89.67%

hypernym (nsubj-noun-target is present in both the two columns x and y), while
this seems not true for nsubj-target-noun (it is only important to say if a noun
can be a hypernym, and not to say if such noun is not a hyponym).

A definitional sentences is extracted only if at least one x and one y are found
in the same sentence. Table 5 shows the accuracy of the approach for this task.
As can be seen, our proposed approach has a high Precision, with a high Recall.
Although Precision is lower than the pattern matching approach proposed by
[21], our Recall is higher, leading to an higher F-Measure.

Table 6 shows the results of the extraction of the whole hypernym relations.
We also added the performance of a system named “Baseline”, which implements
our strategy but only using the POS tags of the nouns’ neighbor words instead of
their syntactic dependencies. Its low effectiveness demonstrates the importance
of the syntactic information, independently from the learning phase. Finally,
note that our approach reached high levels of accuracy. In particular, our system
outperforms the pattern matching algorithm proposed by [21] in terms of both
Precision and Recall.
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Table 6. Evaluation results for the hypernym relation extraction, in terms of Precision
(P ), Recall (R), and F-Measure (F ). These results are obtained using 10-folds cross
validation (* Recall has been inherited from the definition classification task).

Algorithm P R F

WCL-1 [21] 77.00% 42.09% * 54.42%

WCL-3 [21] 78.58% 60.74% * 68.56%

Baseline 57.66% 21.09% 30.76%

Our approach 83.05% 68.64% 75.16%

5.3 Further Considerations

The data provided by [22] also contain a dataset of over 300,000 sentences re-
trieved from the UkWac Corpus [11]. Unfortunately, Precision was only manually
validated, therefore we could not be able to make any fair comparison. Never-
theless, they made available a subset of 99 definitional sentences. On such data,
our technique obtained a Recall of 59.6% (59 out of 99), while their approaches
reached 39.4%, 56.6%, and 63.6% respectively for WCL-1, WCL-3, and Star
Patterns.

In the dataset, the syntactic parser found hundreds of cases of coordinated
hyponyms, while the annotation provides only one hyponym for each sentence.
For this reason, we were not able to evaluate our method on the extraction of
all possible relations with all coordinated hyponyms.

The really-desired result of the task of extracting hypernym relations from
text (as for any semantic relationships in general) depends on the domain and
the specific later application. Thus, we think that a precise evaluation and com-
parison of any systems strictly depends on these factors. For instance, given a
sentence like:

→ In mathematics, computing, linguistics and related disciplines, an
algorithm is a sequence of instructions.

one could want to extract only “instructions” as hypernym (as done in the
annotation), rather than the entire chunk “sequence of instructions” (as ex-
tracted by our technique). Both results can be valid, and a further discrimination
can only be done if a specific application or use of this knowlege is taken into
consideration.

In this work, we only suggest how syntax can be more robust for identifying
semantic relations, avoiding general discussions on the growth of web data and the
complexity / noise of the contents deriving from personal blogs and social network
communities. Nevertheless, we are not dependent on a complete and correct result
of the parser. For example, we could apply our methodology to the result of simple
chunk parsers. Still, to the best of our knowledge, no other work considers noisy
data on this specific task, and we based our idea thinking on encyclopedic and
formal texts, where syntax is less subjected to language inflections and the need
to support semantic resources construction is even more tangible.



Definitions and Hypernyms Extraction Using Syntactic Contexts Learning 77

6 Conclusion and Future Work

We presented an approach to reveal definitions and extract underlying hypernym
relations from plain text, making use of local syntactic information fed into Sup-
port Vector Machine classifiers. The aim of this work was to revisit these tasks
as classical supervised learning problems that usually carry to high accuracy
levels with high performance when faced with standard Machine Learning tech-
niques. Our approach demonstrates that relaxing the problem into two different
subtasks can actually improve the identification of hypernym relations. Never-
theless, this could not be true for any possible semantic relations, since semantics
is independent from syntax to a certain extent. The results of the presented ap-
proach highlight its validity by significantly improving current state-of-the-art
techniques in the classification of definitional sentences as well as in the extrac-
tion of hypernym relations from text. In future works, we aim at using larger
syntactic contexts as well as additional semantic information. Despite the suc-
cessful results, we plan to also examine the context between x and y in order
to further strengthen the technique. Then, the problem of finding meaningful
noun modifiers as part of the entities involved in hypernym relations needs to
be studied carefully, starting from a task-specific annotated corpus. Finally, we
aim at evaluating our approach on the construction of entire taxonomies relying
on domain-specific text corpora, as in [20,27].
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Abstract. In this paper, we propose a probabilistic framework for pre-
dicting the root causes of errors in data processing pipelines made up of
several components when we only have access to partial feedback; that
is, we are aware when some error has occurred in one or more of the
components, but we do not know which one. The proposed error model
enables us to direct the user feedback to the correct components in the
pipeline to either automatically correct errors as they occur, retrain the
component with assimilated training examples, or take other corrective
action. We present the model and describe an Expectation Maximiza-
tion (EM)-based algorithm to learn the model parameters and predict
the error configuration. We demonstrate the accuracy and usefulness of
our method first on synthetic data, and then on two distinct tasks: error
correction in a 2-component opinion summarization system, and phrase
error detection in statistical machine translation.

Keywords: error modeling, user feedback, binary classification, EM.

1 Introduction and Motivation

In this work we are interested in predicting the root cause of errors for data that
have been processed through a pipeline of components when we only have access
to partial feedback. That is, an input X goes through a series of components that
ultimately results in an output Y . Each component in the processing pipeline
performs some action on X , and each of the components might result in an
error. However, the user often only has access to the final output, and so it is
unclear which of the components was at fault when an error is observed in the
final output. In cases where the user is aware of the intermediate results, it is
also typically more complex to have to specify the exact component that was at
fault when providing error feedback. Therefore, given only the fact that an error
has occurred or not, we would like to predict the root causes of the error.

Pipeline processing, or Pipes and Filters, has been a stalwart of computing
since the concept was invented and integrated into the UNIX operating system
in the 1970’s [1]. The simple idea is that complex processing and powerful results
can be achieved by running an input through a series of more basic components
to in turn produce a more intricate output than would have been possible with
a single method. This approach has seen increasing use in recent years as the

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part II, LNAI 8189, pp. 80–94, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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F1input output

1.0.0.0

F2

Fig. 1. Typical data processing pipeline with two components resulting in a marked-up
output. The components are often black boxes that the user is unaware of which can
render providing user feedback complicated.

outputs desired by users have become more complex. It is seen especially in Nat-
ural Language Processing (NLP) applications such as named entity recognition
[2], text summarization [3], and recognizing textual entailment [4].

For example, the majority of comment or opinion summarization systems
described in the literature make use of a collection of diverse techniques in a
pipeline-like architecture [5,6]. A first component might filter out spam com-
ments and then a second could categorize the comments into aspects. This fits
a typical data processing pipeline consisting of two components as is shown in
Figure 1. It is also a common technique for applications such as identifying
evaluative sentences [7] and MacCartney et al.’s three stage approach to tex-
tual inference: linguistic analysis (which consists of a pipeline itself), followed
by graph alignment, ending with determining an entailment [8]. More generally,
GATE provides a software architecture for building NLP pipelines [9]. Recent
work has also shown that running two binary classifiers in a series can result in
improved results over a more complex multi-class classification approach provid-
ing a further reason to consider problems associated with errors in processing
pipelines [10].

We begin with a simple motivating toy example. Figure 2 visualizes a set of
input data X = (x1, x2) ∈ R2 (left) running through two affine transformation
components in a pipeline. The first component translates the data by T1 = x1+6,
and the second component translates the output of the first component by T2 =
x2 − 6. However, each of the components have some region where they commit
errors and an error causes the translation to be distorted by scaling it by uniform
noise. Since the user only observes the final output (right), there are two classes
of partial feedback: fi = 0 means that for point Xi, the data transformations
were successful and no errors occurred; fi = 1, on the other hand, means that
there was some error, though it is not clear whether it was the result of the first
component committing an error, the second component committing an error, or
both.

The user is generally able to identify an overall error much more efficiently
than having to specify its source. With K components, full feedback would re-
quire selecting from 2K − 1 distinct configurations of error. In many cases, it
will be impossible to identify the source of error. In a Named Entity Recogni-
tion pipeline that consists first of a part-of-speech (POS) tagging component,
followed by a chunker, followed by a named entity classifier, an incorrectly iden-
tified named entity can easily be spotted, but it may very well be impossible to
identify if it was the POS tagger, the chunker, or the classifier that was the root
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Fig. 2. Input data X = (x1, x2) ∈ R2 (left) is first translated by T1 (centre) and then
T2 (right). When either translation component commits an error, the translation fails
and instead results in a translation distorted by uniform random error.

cause of the error. In Figure 3, the incorrectly translated output datapoints have
been identified as red circles and the error-free datapoints as blue squares (right).
We also show the same colour-coding on the input and intermediate results (left)
and (centre). In these latter plots, we have also plotted the component-specific
linear error predictor. Knowing this relationship, we can then predict the prior
probability of a component committing an error given some input, and the poste-
rior probability of error configuration given that an error has been observed. One
could then take corrective measure by directing training data to the component
at fault, or automatically attempting to rectify the error through a component
wrapper.

In this paper, we propose a probabilistic framework that aims to uncover
the predictors of error for each of the arbitrary number of components in a
data processing pipeline, and predict the configuration of error for each data
observation. After discussing some related work, we present our probabilistic
model that is based on binary classification of error through logistic regression.
We then present an Expectation Maximization (EM)-based algorithm to learn
component-specific error model parameters and to estimate the configuration of
error. We demonstrate the accuracy of our approach first on synthetic data, and
then on two real-world tasks: a two-component opinion summarization pipeline
and a phrase error prediction task for post-editing in machine translation. We
conclude with some discussion and thoughts on future work.

2 Related Work

While our probabilistic error model has some connections to sigmoid belief net-
works (SBN) [11], the most closely related work with respect to improving per-
formance in pipelines when errors occur comes from the NLP domain. In [12],
Marciniak and Strube explain how NLP problems can generally be cast as a
set of several classification tasks, some of which are mutually related. A dis-
crete optimization model is presented that is shown to deliver higher accuracy
in a language generation task than the equivalent task implemented as solving
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Fig. 3. Colour-coded data X where blue represents the feedback f = 0 (no error) and
red represents the partial feedback f = 1 (error in one or more of the components).
The linear predictors of error for T1 (left) and T2 (centre) are also plotted.

classification tasks sequentially. However, they do not address either a general
approach to improve the accuracy of each of the classifiers, nor do they consider
how user feedback might be taken into consideration.

Finkel et al. show that modeling a pipeline as a Bayesian network where each
component is seen as a random variable and then performing approximate infer-
ence to determine the best output can outperform a greedy pipeline architecture
where a best decision is made at each node [4]. While a general method to solve
any kind of multi-stage algorithm is proposed, a principal requirement is that
each component must be able to generate samples from a posterior. The authors
note:

If ... all NLP researchers wrote packages which can generate samples from
the posterior, then the entire NLP community could use this method as
easily as they can use the greedy methods that are common today... [4]

Our proposed method is also a Bayesian network [13]. However, its aim is to
predict the root causes of errors in a pipeline and it requires no changes to
any of the underlying methods. Depending on the composition of the underlying
components, knowing the cause of an output error could allow us to dynamically
correct it by asking for a training label in an active learning setting, or flipping
the erroneous prediction if the component consists of a binary classifier.

3 Probabilistic Model

For each component n in a pipeline processing system, we model the probability
that it will commit an error en as a Bernoulli random variable modeled using
binary logistic regression: p(en = 1|x, β) = σ(φn(x)

�β) where σ(·) is the logistic
function and φn(·) is a function that extracts the features required for component
n. In this setting we address the case where the system only has access to partial
feedback; that is, the only error observation, f , is with respect to the aggregate
error. In this case, a user provides feedback only pertaining to whether some
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fm

β

Fig. 4. Graphical model of error prediction framework. There are M observations and
N components in the pipeline; β is a vector parameter of the component error models.

error occurred at an indeterminate set of components (f = 1), or that the
output contains no errors at all (f = 0).

We let e = (e1, . . . , eN ) be the collection of error random variables for each
component, such that

p(f, e|x, β) = p(e|x, β)p(f |e), (1)

where the first term p(e|x, β) contains the probability of a given error configu-
ration e, and the second term p(f |e) encodes how the user feedback f relates to
the error configuration. In the general case of the former, we have

p(e|x, β) =
N∏
i=1

p(ei|x, β) (2)

For the latter term in the standard case where 1 or more errors committed in the
components leads to an observed final error f = 1 we have p(f = 1|e) = δ(

∑
i ei)

and p(f = 0|e) = 1 − p(f = 1|e) = 1 − δ(
∑

i ei) where δ(z) = 1 if z > 0 and
δ(z) = 0 otherwise. Note that this term could be modeled more intricately by
allowing a user to specify a degree of error or by leading the model in the general
direction of error(s) without having to explicitly report them.

All errors are assumed to be conditionally independent given the features x:
p(e|x, β) = p(e1, . . . , eN |x, β) =

∏N
i=1 p(ei|x, β), and the posterior probabilities

of error are then given by

p(e|f, x, β) =
{

δ{e1=0,...,en=0} if f = 0,∏N
i=1 σ((2ei−1)φi(x)

�β)

1−∏
N
i=1 σ(−φi(x)�β).

if f = 1.
(3)

A graphical model depiction of the error model framework is shown in Figure 4.
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4 Parameter Estimation

We can learn the component-specific error model parameters β by maximizing
the likelihood which is obtained by integrating out the latent error variables ei.
The likelihood and its derivative can be computed in closed form and the pa-
rameters then optimized using gradient descent [14]. However, as the number of
components grows, the terms in the gradient and the likelihood grow unwieldy.
For simplicity, we therefore decompose the error estimation and parameter learn-
ing by turning to a stochastic EM-based approach [15].

Where there are M observations and N components, the log likelihood is:

lnL = �(β) =

M∑
m=1

ln
∑
e1

· · ·
∑
eN

p(fm, e1, . . . , eN |xm, β)

=

M∑
m=1

ln
∑
e

p(fm, e|xm, β) (4)

which includes the log of a sum. By the Jensen inequality, however,

�(β) =

M∑
m=1

ln
∑
e∈e

p(fm, e|xm, β)

≥
M∑
m=1

∑
e∈e

wm,e ln p(fm, e|xm, β) +H(wm)

=g(w, β) (5)

where wm contains a non-negative weight for each configuration of error (size
2N − 1),

∑
e∈{e\e0...0} wm,e = 1 and ∀e, wm,e ≥ 0. g(w, β) is then a lower bound

for the log likelihood.
Because g(w, β) is a lower bound for the log likelihood, maximizing g(w, β)

will also maximize �(β). However, we now have the latent parameters w so we
iteratively maximize w (E-step) and β (M-step).

E-step. Where e ∈ e is one of the 2N −1 permutations of e1e2...eN where there
is at least one error we have, for each observation m:

wm,e =
p(fm, e = e|xm, β)∑

e′∈e p(fm, e = e′|xm, β)
(6)

Therefore, for the example where there are N = 3 components in an observation,
there will be 23 − 1 = 7 w’s for each configuration of error (e1, e2, e3): w001,
w010, w100, w110, w101, w011, and w111. Each w is a weight in the sense that
it represents the probability of the given configuration (for observations where
there is no error, f = 0, the weight w0...0 = 1). This exponential explosion
of error combinations can be managed for medium numbers of components,
which is reasonable for many applications. For large numbers of components, an
approximate E-step could be derived using a variational EM algorithm.
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M-step. The M-step is a weighted maximum likelihood of the following:

g(w, β) =

M∑
m=1

∑
e∈e

wm,e ln p(fm, e|xm, β)

=

M∑
m=1

∑
e∈e

wm,e

N∑
i=1

[ei lnσ(φi(xm)�β) + (1− ei) ln(1 − σ(φi(xm)�β))]

(7)

where each ei takes on its value assigned by the permutation indexed by e.
For example, if N = 2, then e = (e1, e2) = {1 : (0, 1), 2 : (1, 0), 3 : (1, 1), 4 :
(0, 0)}. Therefore, each observationm with fm = 1 requires 3 w calculations, and
contributes 3 weighted samples to the maximum likelihood. Things are further
complicated by the fact that β will generally be different for each component.
We get around this issue by having each feature vector φi(x) be of size D ×N
where there are D features and place zeros in the components that align with
β values not considered by this component. A dot product between a sparse
feature vector and the parameters that pertain to the given component can be
efficiently computed. For the M-step we run a small number of iterations of SGD
or batch gradient descent (depending on the application) at each step.

It is well known that EMalgorithms are often highly sensitive to how the param-
eters are initialized [16]. Our algorithm is no different and we empirically observed
falling into local minima for certain initializations. We overcome this problem by
initializing the model parameters to those obtained by running an independent
logistic regression with the observed labels being the overall feedback for the en-
tire pipeline. In other words, for observation X with 2 components, we learn βi
for component i with features φi(X ) and label f , even though f = 1 is partial as
it could imply any of the following configurations: (e1 = 1, e2 = 0), (e1 = 0, e2 =
1), (e1 = 1, e2 = 1). This initialization seems to discourage local minima that
could trap the algorithm with a random initialization.

5 Experiments

We demonstrate the viability of our method on three separate tasks. First, we
show that our model and inference algorithm are sound by learning the error
configuration and model parameters on synthetic data for different lengths of
pipelines and numbers of feedback observations. We then show results on im-
proving a 2-stage opinion summarization system by learning the probability of
two static components committing an error given partial feedback. Finally, we
describe the results of a semi-synthetic experiment on phrase error prediction
for post-editing in machine translation where we predict the phrases most likely
to contain translation errors given that we know there is some error in the
translation.
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5.1 Synthetic Data

To demonstrate how our model is able to learn the probability of a component
committing an error with access only to partial feedback, we revisit the motivat-
ing N = 2 component example that we presented in the introduction. Here, we
draw up to M = 500 datapoints with d = 2 features from a multivariate normal
distribution with μ = (−3, 3) and Σ = I2. We randomly select a true β param-
eter for each component which corresponds to what we hope to learn. An error
matrix E ∈ {0, 1}M×N is generated where em,n = 1 implies that φn(xm) would
result in an error for component n. Each element em,n is computed by drawing
a random Bernoulli variable with parameter modeled by a binary logistic regres-
sion resulting in data with some added noise. This tends to result in a dataset
that is roughly balanced between fm = 0 and fm = 1 observations. The transla-
tion Tn is applied for point xm if em,n = Bernoulli(σ(φn(xm)�β)) = 0, otherwise
the translation is scaled by some noise and the data gets translated randomly.
The observations are then (xm, fm)

M
m=1 where fm = 1 if any of em,n = 1 and

fm = 0 otherwise. Before proceeding all em,n are removed and the algorithm
learns β (and eventually em,n) given only xm,n and fm. This is synthetic data
experiment 1.
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Fig. 5. Precision and Recall values for synthetic data experiment 1 (left) and 2 (right).
Both experiments demonstrate that the precision and recall increase with the number
of observations, as expected, but also that we approach perfect prediction with only
very few labels.

We learn the parameters with varying number of error observations and then
test the precision and recall of predicted prior probability of error on a separate
test set of 500 observations drawn from the same distribution. For each number
of observations (10 to 500), we run 5 trials and report the average precision and
recall. Figure 5 (left) shows that we do very well even from very few observations
and we predict essentially perfectly from 250 observations on.
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Next, we examine the precision and recall statistics for another synthetic ex-
periment that considers how our model performs as the number of components
varies. This is synthetic data experiment 2. Here, to simplify things, indepen-
dent features are drawn for each component from a standard multivariate normal
distribution. We randomly select error parameters and generate ground truth la-
bels. Our algorithm then observes the features and only the partial feedback f
for each observation. We are then interested in how many observations are re-
quired for different lengths of processing pipelines. We consider between N = 2
and N = 6 components. For testing, we again draw data from the same distri-
bution but with M = 100 observations; this will amount to MN values of ei to
be predicted. We show F1-scores for different lengths of pipelines as the number
of observations grows in Figure 5 (right). This shows that even with up to 6
components, we can learn the error model parameters very well with few obser-
vation examples. Also, the number of required observations for good predictive
performance does not seem to heavily depend on the number of components at
least for medium numbers of components as we tested.

5.2 Opinion Summarization

Next, we present a simple 2-component deterministic opinion summarization
system that first filters out comments that do not contain opinion, and then
labels the comments with up to K category labels. For determining opinionated
texts, we use the MPQA Subjectivity Lexicon [17]. Here, among other designa-
tions, words can be described as strong subj and weak subj for being commonly
associated with strong and weak subjectivity, respectively. Our intuition is that
strongly subjective words result in opinionated texts. For each text, if a word
is marked as strong subj it scores 1.0, if it is marked as weak subj it scores 0.5,
and all other words score 0. The opinion score is the average word score for
the text, and a text is considered opinionated if its opinion score is above some
threshold ΓO.

For determining whether a text can be labeled with some category marker ck,
we use a method that is common in text summarization: average word probability
[18]. We use LDA [19] to learn word distributions for each category and then
consider a text’s average word probability under a word distribution for each
category. Again, we consider a text to be a positive example for a category if
its average word probability for that category is above some threshold ΓC . The
underlying methods are relatively basic but our aim is to demonstrate how we
can predict when each of the components has commit an error given that the
final observation resulted in an error. Because each component is made up of
binary classifiers, we can improve the system in the light of user feedback without
modifying the underlying components. We wrap each of the components in an
error model wrapper such that when the error model predicts that the current
input would result in an error, we flip the prediction.

Our data to summarize consists of a subset of public comments on the US De-
partment of Agriculture’s (USDA) proposed National Organic Program (NOP)
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Opinion Summary

GMO

Animals

I strongly oppose including genetically

           altered products in the NOP rules.
►

Genetically engineered crops have

           not been proven safe at all.
►

I want the animals that I eat to have 

           lived healthy and happy lives.
►

Factoring farming is inhumans, hurts 

           animals, and should not be allowed.
►

Fig. 6. The base components produce a summary and the user gives partial feedback by
stating whether a given sentence either contains opinion and is in the correct category
(f = 0), or that one or both of these is incorrect (f = 1)

(“USDA-TMD-94-00-2”).1 These are comments by concerned citizens with re-
spect to a proposed rule on what standards would apply to allow products to
be designated as organic. This data fits our problem nicely because a sizable
portion of the data consists of no opinion, and most of the texts can be sensibly
placed into different categories given what aspect of the proposed legislation a
citizen was referring to (animal well-being, genetically modified organisms, hu-
man health, etc.). 650 texts were manually labeled as either containing opinion
or not, and for membership in up to 6 categories. We randomly select 100, 300,
and 500 texts for training and leave the rest aside for testing. In this experiment,
the feedback is whether a comment is correctly identified as containing opinion
and labeled with the correct category (f = 0), or some labeling error exists.
Figure 6 visualizes the setting, and the features are simple bag-of-words. We
are interested in the accuracy of all predicted labels for the “wrapped” system.
That is, we use the base system described above, run the testing data through
the pipeline, and at each component if our error model predicts an error, we flip
that prediction. We run each experiment 5 times with different random permu-
tations of training and testing data and report the average accuracy. Figure 7
shows the opinion component accuracy (left) and the aspect component accuracy
(right) as the number of feedback examples varies.

With 100 and more partial feedback examples, the error model-wrapped opin-
ion component does better than the base component. For the aspect labeling
component, 100 examples was not enough to provide adequate predictive ac-
curacy to do better than the base component. However, with 300 labels and
more, it handily beats the base component. The reason for this discrepancy is
data sparsity; each feedback example is only with respect to one aspect label
and with 6 labels, a training set perfectly balanced amongst the 4 different er-
ror combinations would only include 100 × 1

6 × 1
4 ≈ 4 training examples per

1 http://erulemaking.cs.cmu.edu/Data/USDA

http://erulemaking.cs.cmu.edu/Data/USDA
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Fig. 7. Accuracy results for the opinion (left) and aspect (right) components in our
augmented summarization system. The “base” curve shows the accuracy of the base
components and the “error” curve shows the accuracy when our error model is applied.

context. Of course, in practice we never achieve this perfect balance and certain
contexts will be over-represented while others will have no training examples at
all. Nevertheless, even with a relatively small amount of feedback, we can see
that the system is able to predict the error configuration and therefore improve
the accuracy of the overall system. In practice, when the error model is used as a
wrapper in such an experiment, it would only be activated once an appropriate
amount of training data was obtained.

5.3 Error Detection in Machine Translation

For our final experiment, we describe a semi-synthetic experiment in that the
features are true data, but the labels are partially generated. Machine Transla-
tion (MT) quality has yet to reach a state where translations can be used reliably
without user supervision. Therefore, when a high quality translation is required,
a post-editing stage is typically conducted. In post-editing, professional transla-
tors review and correct a translation before it is used. Error detection is therefore
an important subject in machine translation [20,21]. It is a useful means of re-
ducing post-editing effort by directing the translator to specific segments in the
translation which are estimated to be erroneous. This could also be used within
the MT system itself, by avoiding erroneous translations and reverting to the
next best alternatives proposed by the system in the light of a predicted error.

Here, we use our error model framework to predict the phrases in a translated
sentence that are most likely to contain errors. Connecting the setting to the
previous examples, each phrase is a component, and each sentence is a pipeline.
Feedback consists of either a perfectly translated sentence (f = 0) or a sentence
that contains at least one error (f = 1). There are simply 4 features for this
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Error Model ROC Curve
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Fig. 8. ROC Curves for predicting prior probability of an incorrect phrase translation
learned with the partial feedback error model (left) vs. the baseline which assigns an
error to all phrases in a sentence when f = 1 (right)

experiment: the probability of the source phrase given the target phrase; the
lexical weighting of the source phrase given the target phrase; the probability of
the target phrase given the source phrase; and the lexical weighting of the target
phrase given the source phrase. Each of these features is computed automatically
using the Moses phrase-based SMT system [22].

Because we need phrase-specific error labels for testing, we take a synthetic
approach to labeling. We manually labeled ∼ 400 translated phrases as either
containing or not containing an error and then learned an independent binary
classifier on this fully-labeled data. Using this classifier, we then generated labels
for a set of 5000 sentences that are segmented into phrases. We then took all
of the sentences that contained 6 phrases or less to end up with 1002 training
sentences. Each of these sentences receives a label f = 1 if any of its phrases
contain errors, and f = 0 otherwise. We learn the error model and then predict
the prior probability of each phrase-pair containing an error.

We compare our model to a simple baseline. The baseline learns a binary
logistic regression classifier on phrases where the labels are simply the partial
feedback f . That is, when f = 0, each phrase is an independent example with the
(correct) label 0. When f = 1, each phrase is also an independent example but
now the label will only sometimes be correct. In fact, it will rarely be correct
because most translated sentence errors are confined to 1 or 2 phrases. The
behavior of the baseline is best understood by showing its ROC curve. The
ROC curves for each method are shown in Figure 8 and demonstrate that there
is little problem with choosing a discrimination threshold in our method (left)
and that the baseline (right) is a poor method especially when the density of
errors in a pipeline is low.
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6 Conclusions and Future Work

In this paper, we have described a probabilistic error model framework that aims
to predict the configuration of error in components in a pipeline and therefore
learn the probability of each component committing an error given only partial
feedback. In many cases it is difficult or time consuming for a user to provide
full feedback to a system when the output is the result of decisions made by
numerous components. Conversely, it is generally easy to be able to tell if the
output is perfect versus containing some error. In our model, we are able to
probabilistically infer the component-specific error model parameters from par-
tial feedback and use that information to either dynamically improve the system
if it consists of binary classifiers (opinion summarization example), alert the user
to components that should be examined (translation post-editing example), or
properly direct the feedback for further training.

In the near future, we plan to apply it to other natural language process-
ing tasks, such as named entity recognition, which could benefit a great deal
from human feedback, and which would be very difficult for a human to pin-
point the exact cause of error. We also plan to combine it with active learning
techniques to choose which examples to show to the user. At the moment, this
is done randomly, irrespective of the quality of the individual components and
the predictions we make. This strategy is clearly suboptimal. In principle, we
could reduce the amount of feedback to be provided by the user for a same level
of accuracy if we choose the examples to provide feedback on in a sensible way.
Finally, we are also interested in exploring non-linear versions of the error model.

Acknowledgments. The research leading to these results has received fund-
ing from the European Commission Seventh Framework Programme (FP/2007-
2013) through the projects Fupol and Fusepool.
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Abstract. There is tremendous interest in mining the abundant user
generated content on the web. Many analysis techniques are language
dependent and rely on accurate language identification as a building
block. Even though there is already research on language identification, it
focused on very ‘clean’ editorially managed corpora, on a limited number
of languages, and on relatively large-sized documents. These are not the
characteristics of the content to be found in say, Twitter or Facebook
postings, which are short and riddled with vernacular.

In this paper, we propose an automated, unsupervised, scalable solu-
tion based on publicly available data. To this end we thoroughly evaluate
the use of Wikipedia to build language identifiers for a large number of
languages (52) and a large corpus and conduct a large scale study of
the best-known algorithms for automated language identification, quan-
tifying how accuracy varies in correlation to document size, language
(model) profile size and number of languages tested. Then, we show the
value in using Wikipedia to train a language identifier directly applicable
to Twitter. Finally, we augment the language models and customize them
to Twitter by combining our Wikipedia models with location information
from tweets. This method provides massive amount of automatically la-
beled data that act as a bootstrapping mechanism which we empirically
show boosts the accuracy of the models.

With this work we provide a guide and a publicly available tool [1]
to the mining community for language identification on web and social
data.

Keywords: Language Identification, Wikipedia, Twitter.

1 Introduction

The last decade has seen the exponential rise of user-generated content such
as contributions to web forums, Facebook posts and Twitter messages. There
is a tremendous interest in mining this content to extract trends, to perform
sentiment analysis [14], for automatic machine translation [10], and for different
types of social analytics [2]. There is consequently an entire industry providing
infrastructure, tools, and platform support to address these problems. Many of
the techniques are either language dependent (i.e., affective words for sentiment
analysis) or can benefit dramatically from knowing the language to apply certain
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type of rules and knowledge. Thus, reliable automatic language identification is
a basic requirement for providing higher level analytic capabilities.

Even though there is a large body of research on language identification,
labeled as “solved” by some [13], the conventional wisdom is no longer valid.
Computers and smartphones have become internationalized, making it trivial to
publish postings in one’s native language. Constraints in the number of char-
acters have resulted in abbreviations (such as OMG, LOL), and in sentiment
and emphasis being expressed using repetition of letters. In addition a new ver-
nacular, particular to each language, using misspellings and incorporating other
languages into the mix has emerged. These characteristics are different from
clean and editorially managed corpora used to train language identifiers in the
past. These trends combined with the rise of microblogging has caused renewed
interest on research in language identification [3,4].

An big obstacle to adapting established models and techniques for language
identification is the generation of a sizable corpus of labeled data for all languages
in the world that keeps up with the trends described above. In this paper we
propose and evaluate such a methodology. The first step is to use Wikipedia as
training material for producing an initial set of language identifiers. Wikipedia
provides a good source of user generated content, covering a wide variety of
topics in 280 languages. We restrict ourselves to the 52 languages with at least
50,000 documents each. Besides being user-generated, these documents have
interesting characteristics such as incorporating words from non-primary lan-
guages (e.g., Latin and Greek word definitions, pronunciation guidance, etc.),
making classifiers more robust to multilingual content. Using language identi-
fiers trained this way, we first characterize the tradeoff of the various parameters
for a popular set of language classifiers. We then directly apply the classifiers
trained on Wikipedia to two sets of labeled Tweets with different characteristics.
Our results indicate that this procedure already yield acceptable identifiers. In
order to further improve performance in the context of Twitter, we combine our
language prediction with the country information found in tweets to assemble a
more appropriate training corpus – each tweet that is labeled as being in lan-
guage “L” comes from a region where the native language is indeed “L”. We
retrain our language identifiers using this corpus and repeat our experiment on
tweets, resulting in a significant accuracy increase.

All our experiments are performed on well established language identification
models and algorithms. The contributions of this paper are:

1. A careful empirical quantification of the different tradeoffs in the selection
of the free parameters of existing language identifiers to be used as a guide
on selecting the most efficient solution for training and testing depending on
the task and the scale.

2. A methodology for automated and unsupervised labeled data generation for
current social and colloquial postings by taking advantage of side information
such as location. This can be generalized for any additional feature besides
location and provides a boot-strapping mechanism for other social data sets.
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This paper is organized as follows: Section 2 provides a taxonomic overview of
statistical language classifiers and tokenization methodology; Section 3 defines a
principled way to evaluate language identification, Section 4 describes the setup
and detailed results of our experiments; Section 5 surveys related work, and
Section 6 offers concluding thoughts.

2 Statistical Language Classifiers

Automatic language identification is a classification task consisting of finding
a mapping from a document to the language it is written in. In this paper we
consider statistical classifiers, namely those that model both languages and doc-
uments using token frequencies.

In order to construct language models, we use a corpus of documents labeled
with their respective languages, extract tokens from each document, compile
their frequencies, and use the token frequencies of all documents in a given
language to build a language profile, a function from tokens to frequencies. The
document to be classified is represented by a document profile using the same
techniques. The classification process consists of computing a similarity score
between a document profile and each language profile, and reporting the language
whose profile is most similar to the document.

Such a statistical approach is language-agnostic and presents the advantages
that (i) models can be constructed without any knowledge of the morphology or
grammar of a language; and (ii) there is no need for stemming, part-of-speech
tagging, and the like. Still, there are several design choices to be made regarding
text normalization, tokenization, profile size, and the choice of profile similarity
metric, all of which we explore in this paper.

Text normalization refers to any cleanup performed on the training corpus or
the document instance prior to tokenization, e.g. the removal of spurious whites-
pace characters and punctuation. It may also include case folding: whether to
convert upper-case characters into their lower-case equivalents or not. For some
languages, there are firm grammatical rules governing capitalization; for exam-
ple, in German, all nouns are capitalized. Other languages, including English,
only capitalize the first word of a sentence and certain parts of speech.

In virtually all previous work, tokens are either character n-grams or word
n-grams1. Language profiles may contain n-grams for multiple values of n. We
write {n1, n2, n3} -grams to denote token sets that include n1-grams, n2-grams
and n3-grams. There are various trade-offs to consider when choosing between
character n-grams and word n-grams and when deciding on the value(s) of n.
The alphabet of Western languages is quite limited (52 lower- and upper-case
letters in English), so the set of possible n-grams remain manageable for small
values of n. By contrast, the set of valid words in a language is very large.

1 In the context of this paper, a character is a Unicode symbol. We break words on
whitespace characters; ignoring the different word-breaking rules of Asian languages.
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We consider three different families of profile similarity measures:

1. Rank-based approaches (RANK). In these approaches the tokens in the lan-
guage and document models are ranked (according to their observed fre-
quencies in the training corpus and document respectively). In this paper
we investigated two rank correlation measures in order to compute a simi-
larity score between these two rankings: Spearman’s footrule (SF) [16] and
Spearman’s rho (SR) [15].

2. Vector-based approaches (VECTOR). These approaches assume that each
language model defines a vector in the (very high-dimensional) space of to-
kens, and the similarity between the vector of the language model and the
vector of the document model is given by the cosine between the vectors.
Vector-based approaches are used widely in Information Retrieval systems
to quantify the similarity between a document and a query.

3. Likelihood-based approaches (LIKELY). These approaches use the frequen-
cies in the models to estimate the probability of seeing a token. Given a
document to be classified we can estimate the likelihood that the document
was generated from the language model. Likelihood-based approaches differ
from the rank and vector approaches in that the document under consider-
ation does not need to be converted into a document profile.

The remainder of this section provides a more formal definition of the profile
similarity measures we consider in this paper. We use D to denote a document
and L to denote a language profile. All of the measures described below have
been adjusted such that higher values indicate greater similarity between D and
L. Let T denote the universe of tokens. We write FΨ (t) to denote the frequency
of token t in profile Ψ , and we write PΨ (t) to denote the normalized frequency

of token t in profile Ψ , PΨ (t) =
FΨ (t)∑

t′∈T FΨ (t′) . We will write t ∈ Ψ to denote the

tokens in Ψ , that is, those t ∈ T where FΨ (t) > 0.

Rank-Based Approaches (RANK): All rank-based similarity measures rank-
order the tokens in D and L and then compute a similarity measure on the
rank-ordering. It is worth pointing out that rank-based approaches use token
frequency information only to rank-order tokens (and discards the difference in
magnitude). Let RΨ (ti) = i denote the rank of the token in the sorted order.
If there are z ranks, we define RΨ (t) = z + 1 for all t /∈ T . Our variant of
Spearman’s footrule is defined as SF (D,L) = −

∑
t∈D |RL(t)−RD(t)|, where

|x| denotes the absolute value of x. Our variant of Spearman’s rho is defined
as SR(D,L) = −

∑
t∈D(RL(t) − RD(t))

2. In both these measures a value of 0
indicates perfect similarity between D and L.

Vector-Based Approaches (VECTOR): The prototypical similarity measure
between two vectors in a high-dimensional space is their cosine similarity,
that is, their dot product normalized by their Euclidean lengths: CS (D,L) =∑

t∈D FD(t)FL(t)√∑
t∈D FD(t)2

√∑
t∈L FL(t)2

.
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Likelihood-Based Approaches (LIKELY): Likelihood-based approaches use
the statistical information captured in each language profile to estimate the
probability that document d was generated from a given language model. As-
sume that d consists of symbols (characters or words) (s1 . . . sz) ∈ S, S the
universe of symbols, and that the language models capture n-gram frequency in-
formation. We estimate the probability that d is generated by language model L
by directly looking up PL(s1 . . . sn), and then sliding an n-symbol window over d,
advancing one symbol at a time, and computing PL(s1+i . . . sn+i|s1+i . . . sn+i−1),
the probability that symbol sn+i is preceded by s1+i . . . sn+i−1. Thus PL(s1 . . . sz)
≈ PL(s1 . . . sn)

∏z−n
i=1 PL(s1+i . . . sn+i |s1+i . . . sn+i−1), where PL(s1+i . . . sn+i |

s1+i . . . sn+i−1) = PL(s1+i...sn+i)∑
s∈S PL(s1+i...sn+i−1s)

. It is possible for L not to contain an

entry for some n-gram in d. As we are performing a maximum likelihood es-
timation of the parameters this will be a problem as we will divide by zero.
One standard approach to this problem is to smooth the maximum likelihood
estimate by using information from a larger (and related) population that has
a non-zero values. There are many choices including the amount of smoothing
(usually a linear combination of values) as well as the selection of a suitable
population. After experimentation, we settled for an approach that assumes a
small value such as the min P ′

L(t
′) amongst all tokens t′ in all languages L′.

3 Performance Measures

The accuracy A of an identifier is estimated as follows [6]: Let True(�) be
the number of documents in language � in L, and TP(�) be the number of
true positives – that is, documents in � that were correctly classified, then

A =
∑

�∈L TP(
)∑
�∈L True(
) . Given the fact that different languages have very different

numbers of documents for testing (and training), we would like our estimate to
reflect that our confidence in a classifier performance depends on the number of
samples. To this end, we use weighted accuracy, where each language is weighted
using the standard deviation of the estimate of the accuracy as a measure of the
uncertainty on that estimate. Thus we think of TP(�) as coming from a Bino-
mial distribution with parameters (A(�),True(�)), where A(�) is the maximum

likelihood estimate of the accuracy: A(�) = TP(
)
True(
) . Now, we take the weight the

inverse of the standard deviation of this estimate: W (�) =
√

True(
)
A(
)(1−A(
)) . So the

weighted accuracy of an identifier is: WA =
∑

�∈L A(
)W (
)∑
�∈LW (
) .

To compare the statistical significance between the reported accuracies WA1

and WA2 of identifiers 1 and 2, we can use a Wald test [19] directed at reject-
ing the null hypothesis (H0) that WA1 − WA2 = 0 as advocated in [19] when
comparing predictors. Again assuming that the accuracies come from a Bino-
mial distribution, and letting n1 and n2 denote the number of samples used in
classifiers 1 and 2 respectively, we have that

WA1 −WA2√
WA1∗(1−WA1)

n1
+ WA2∗(1−WA2)

n2

(1)
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essentially computes the number of standard deviations providing a degree of
confidence necessary to reject H0. Regarding this expression as approximating a
standard Normal distribution,2 we can reject H0 and declare the accuracies as
different if this expression is bigger than 2 with approximately 95% confidence.

For example, assume n1 = n2 = 20 million samples, and one classifier has a
weighted accuracy of 0.901 and another has a weighted accuracy of 0.90. The
difference is 0.001 – is this significant? An application of Eq. 1 yields a results of
10.5, which is bigger than 2 and provides us with confidence that the difference is
significant.3 This should not be surprising with this number of samples. Indeed,
taking the weighted accuracy as coming from a Binomial with around 20 million
samples, only differences in the fourth digit should start concerning us.

4 Experiments

We used Wikipedia to build our language profiles and evaluate the various lan-
guage identifier design choices. We downloaded the XML files for all languages.
We selected the languages that have over 50000 documents as the popular and
most representative ones. We concatenated the text of all documents of a lan-
guage into a single document and build the language profile. Table 1 shows a
summary of information for the languages we considered.

In our experiments, we probed a variety of design choices for language iden-
tifiers. For character n-grams, we considered {3}-grams (a popular choice in the
literature) as well as {1, 2, 3, 4, 5}-grams (as suggested by Cavnar & Trenkle [6]).
Going above the 5 character grams did not produce any benefits and increased
the language profiles dramatically. For word n-grams, we considered only 1-
grams – in other words, a language profile is simply the lexicon of that language.
Multi-gram words could be used, but this would be more suitable for phrase
prediction than language prediction, and the space required for even bi-grams
words made it computationally infeasible for us. For language and document
profile sizes, we explored retaining all tokens, and for performance reasons we
also explored using the 10k or 500 most frequent ones. Table 2 summarizes our
choices. In each case, we explored both case folding and leaving the capitaliza-
tion unchanged. In other words, in each of the experiments described below we
compare the performance of 42 different classifiers.

4.1 Language Identification Design Alternatives

In-Model Accuracy: Our first experiment compares the performance of the 21
design choices described in Table 2. We used the uncleaned Wikipedia abstracts
of the 52 languages shown in Table 1 for both training and testing; we did not
perform any case folding. We conducted in-model testing using every abstract in
the collection. The results are summarized in Table 3. We observe the following:

2 This will certainly be true for all tests sets involving Wikipedia data, given that even
the smallest test set contains millions of samples.

3 When the samples are the same we are violating an assumption of independence that
will impact the degrees of freedom; yet with this many samples this has no effect.
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Table 1. Basic statistics for the 52 languages we trained and tested on

Language # docs # words # chars Language # docs # words # chars

English 3,841,701 69,995,728 420,822,801 Arabic 154,105 3,638,910 21,077,370
German 1,334,677 21,476,871 153,119,580 Serbian 151,409 1,850,106 12,006,824
French 1,175,638 19,664,258 116,384,106 Lithuanian 142,468 1,314,498 10,254,168
Italian 874,827 14,892,786 92,885,963 Slovak 130,348 1,703,213 11,452,875
Dutch 871,310 16,666,710 108,570,923 Malay 130,170 1,878,252 12,846,493
Polish 852,219 11,107,886 79,515,315 Hebrew 124,884 2,408,802 13,677,123
Spanish 851,369 18,239,492 109,873,261 Bulgarian 124,665 2,192,227 13,911,993
Russian 800,527 8,972,267 66,586,091 Kazakh 122,442 1,879,736 14,817,377
Japanese 791,350 5,390,566 40,296,474 Slovene 121,968 1,496,767 10,103,516
Portuguese 706,771 13,518,871 81,500,258 Volapük 118,923 1,757,761 9,813,402
Swedish 417,092 7,671,785 49,951,384 Croatian 109,103 1,499,300 10,120,238
Chinese 385,528 2,526,386 19,823,371 Basque 106,846 1,463,312 11,361,999
Catalan 359,848 7,860,184 44,345,082 Hindi 92,371 4,337,272 10,367,220
Ukrainian 330,559 4,148,304 29,714,043 Estonian 90,333 1,061,293 8,128,345
Norwegian 320,318 5,557,555 34,993,643 Azerbaijani 84,265 714,444 5,041,032
Finnish 284,303 3,093,762 25,700,474 Galician 78,419 2,089,220 12,265,696
Vietnamese 247,286 5,141,075 25,607,852 Nynorsk 75,399 1,385,501 8,466,704
Czech 214,219 3,040,486 20,456,549 Thai 70,863 2,085,809 9,704,446
Hungarian 206,518 2,613,681 19,410,794 Greek 67,634 1,676,886 11,126,017
Korean 186,746 2,751,819 11,251,750 Latin 62,985 1,149,511 8,383,645
Indonesian 182,026 3,174,474 22,359,174 Occitan 55,520 830,662 4,685,239
Romanian 170,328 2,372,032 15,006,843 Tagalog 54,796 809,647 4,856,032
Persian 170,137 3,397,007 16,845,518 Georgian 53,736 731,235 5,847,744
Turkish 164,263 2,114,148 15,257,393 Haitian 53,575 509,151 2,650,222
Danish 158,497 2,711,688 17,229,078 Slavomacedonian 53,185 857,418 5,538,833
Esperanto 158,152 2,761,440 17,518,543 Serbo-Croatian 52,922 826,400 5,460,844

Table 2. Design alternatives explored in this paper

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF × × × × × × × × × VECTOR × ×
RANK SR × × × × × × × × × LIKELY ×

Table 3. Weighted accuracy % of in-model testing

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF 93.35 89.17 78.56 89.45 88.56 80.92 90.97 88.66 83.39 VECTOR 80.19 79.88

RANK SR 93.35 89.64 79.08 87.41 87.57 81.14 83.03 81.17 77.96 LIKELY 88.68

– {1, · · · , 5}-char RANK(SF, all) and RANK(SR, all) have the highest weighted
accuracy.

– {1, · · · , 5}-char RANK is preferable.
– Using the full language profile (all) is better than restricting to smaller sizes.

– The vector-based approaches are not competitive.
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Table 4. Weighted accuracy change for ten-fold cross validation vs in-model testing
from Table 3. Negative values indicate over-fitting.

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF -0.51 0.01 0.00 -2.87 -0.04 0.00 -2.90 -0.09 0.03 VECTOR -0.02 -0.51

RANK SR -0.57 0.00 0.00 -2.87 -0.08 -0.02 -3.65 -0.12 0.01 LIKELY -0.90

Table 5. Weighted accuracy change for case folding. Negative values indicated that
case folding hurts accuracy (compared to Table 4).

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF -0.82 0.02 0.21 0.00 -0.56 -0.41 -0.96 -0.14 0.31 VECTOR -0.42 -0.61

RANK SR -0.96 -0.02 0.28 0.13 -1.03 -0.35 -1.06 -0.19 0.19 LIKELY -0.61

Cross-Validation: In order to quantify the impact of over-fitting we repeated
the same experiment using ten-fold cross validation. Table 4 shows the differ-
ence between the weighted accuracies of ten-fold and in-model experiments. A
negative value indicates the ten-fold accuracy is lower, i.e. over-fitting occurred.
We observe the following:

– {1, · · · , 5}-char, RANK(SF, all) and RANK(SR, all) still have the highest
weighted accuracy.

– Over-fitting is a bigger issue when using the full language profile (all). This
makes sense: the truncated language profiles omit low frequency tokens.

– Amongst rank-based approaches, {1, · · · , 5}-char are less affected.
– Rank-based classifiers are more affected than Vector or Likelihood-based for

the same tokenization scheme and profile limit.

Case Folding:We lowercased both training and test data and repeated the same
ten-fold cross validation experiment with all other choices unmodified. Table 5
shows the difference between the weighted accuracies of using case folding vs
leaving the capitalization as is. A negative value indicates that case folding
lowers accuracy, i.e. lower casing is a bad idea. We observe the following:

– {1, · · · , 5}-char, RANK(SF, all) and RANK(SR, all) still have the highest
weighted accuracy.

– By and large, case folding not only does not help much, but in many cases
produces statistically significant worse results. We attribute this to the fact
that in some languages, such as German, capitalization is governed by strict
grammatical rules.

Language Specific Results: Next, we tested the accuracy of classifiers with
respect to the 52 languages in our corpus. The results are shown in Figure 1. The
solid black line shows the weighted accuracy of the classifier from Table 2 that
performed best for each given language; the dotted red line shows the weighted
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Fig. 1. Classification accuracy broken down by language. The solid black line shows
the accuracy of the classifier from Table 2 that performed best for each given language;
the dotted red line shows the accuracy of {1, · · · , 5}-char RANK(SF, all), and the
dashed green line shows the accuracy of {1, · · · , 5}-char RANK(SR, all). For the three
languages (Occitan, Thai, and Turkish) where these two classifiers did not perform
best, the best-performing classifier is listed along the upper horizontal axis.

accuracy of {1, · · · , 5}-char RANK(SF, all), and the dashed green line shows the
weighted accuracy of {1, · · · , 5}-char RANK(SR, all). There were only three lan-
guages where neither of these two classifiers performed best: Occitan, Thai, and
Turkish. In the case of Thai, the accuracy gap was minor, in the case of Turk-
ish and more so Occitan it was substantial. For Occitan, 1-word RANK(SR,all)
performed best; for Turkish, it was 3-char RANK(SF,all), and in the case of
Thai, the 3-char LIKELY classifier slightly outperformed the overall leaders. We
speculate that Occitan is sufficiently close to Catalan that their character n-
gram profiles are very similar, while their lexica are different enough to allow
differentiation, giving an edge to word-based approached. We are not sure why
3-character tokens work better than one- to five-character tokens for Turkish.
Languages with languages-specific characters sets (such as Hebrew and Greek)
provide a strong signal to any character-based classifier, and thus can be recog-
nized with high accuracy. By contrast, our classifiers performed relatively poorly
on Chinese. This is to be expected because it has a large alphabet of information-
rich symbols, meaning the space of character n-grams is both large and sparse.

Number of Languages: We hypothesized that language detection becomes
harder as the set of languages increases. In order to test that hypothesis we
repeated the experiment described in Table 3 using only the 8 languages listed
in [6] (namely, English, German, Dutch, Polish, Portuguese, Spanish, Italian
and French). Table 6 shows the difference between the weighted accuracies of 52
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Table 6. Weighted accuracy change for restricting the set of languages to 8. Positive
values indicate fewer languages produce better accuracy (compared to Table 3).

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF -0.39 2.10 5.99 0.04 1.49 6.14 1.18 2.84 4.22 VECTOR 6.31 9.02

RANK SR -0.71 1.90 5.58 -1.25 1.37 5.72 3.35 5.07 7.41 LIKELY 2.65

Table 7. Two best classifiers applied to full Wikipedia articles and Wikipedia abstracts
of at least 150 characters for both 8 and 52 languages

[1, 5]-char, all 8L full 8L abs 52L abs 8L full 8L abs 52L abs

RANK(SF) weighted 99.52 99.96 99.95 un-weighted 98.91 99.90 99.74

RANK(SR) weighted 99.46 99.97 99.98 un-weighted 97.47 99.82 99.71

and 8 languages. Generally speaking differences are positive, indicating that it is
indeed easier to classify languages when presented with fewer choices. However,
the two classifiers that perform the best ({1, · · · , 5}-char RANK(SF, all) and
RANK(SR, all)) perform slightly worse for fewer languages. Moreover, none of
the accuracy values approaches the accuracy scores reported by [6].

Limiting Minimum Document Size: In order to understand the difference
between our performance and that of [6] we explored three alternative hypothe-
ses: (i) the quality of Wikipedia abstracts might be low; full Wikipedia docu-
ments might be better, (ii) some abstracts are very short, and these tend to be of
low quality, (iii) the weighted accuracy measure we use might produce different
results. We tested this by taking the two best performing classifiers from our pre-
vious experiments (({1, · · · , 5}-char RANK(SF, all) and RANK(SR, all))) and
applied them to (i) full Wikipedia articles, (ii) only abstracts with at least 150
characters, and (iii) computed both weighted and un-weighted accuracy mea-
sures. Besides testing on only the 8 languages described in [6], we also computed
weighted and un-weighted accuracies for the length-restricted abstracts of the
52 languages from Table 1. Restricting to abstracts of minimum length elimi-
nated about 71.5% of the Wikipedia abstracts. The results are shown in Table 7.
We observed that both the weighted and un-weighted accuracies are in the same
range to those from [6]. This is a dramatic improvement over the previous results
we reported in Tables 3 and 6. The false negative rate was reduced by 99%. We
attribute this to the longer average size of each document tested. Using the full
Wikipedia articles does not provide an improvement over the length-restricted
abstracts. Furthermore, there is no statistically significant difference between the
8 and 52 languages. Finally, the un-weighted accuracy is lower but inline with [6].
So considering only documents with at least 150 characters when building the
language profile shows significant improvement.

Length of Test Documents: To examine whether classifier accuracy is indeed
affected by the length of test documents, we constructed a synthetic collection
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Fig. 2. Accuracy as a function of test document size in characters

of test cases where we control the size of the documents. For a language � with
n
 Wikipedia abstracts, we generated 0.1n
 documents consisting of consecutive
words drawn from the concatenated wikipedia abstracts of �. The lengths of
these synthetic documents is uniformly distributed in the range of 1 to 500
characters per language. We tested the performance of the two best classifiers
– {1, · · · , 5}-char RANK(SF, all) and RANK(SR, all) – on this collection, using
the 52 languages from Table 1. Figure 2 shows the weighted and un-weighted
accuracies for the classifiers. We observe that the weighted accuracy of both
classifiers reaches 99% at around 9 characters average document length. The un-
weighted accuracy grows more gradually, approaching 98% at the 500 character
limit. The curves show some noise which is due to the limited sample size – for
example, less popular languages have just 10 test cases per bucket.

4.2 Short Colloquial Postings and Tweets

Synthetic Tweets: We assembled a synthetic collection with a word count dis-
tribution that follows that of Twitter. We used all 52 languages and again 0.1n

documents per language. The Twitter word count distribution was based on
one month worth of real tweets, with Twitter commands, usernames, emoticons
and URLs removed. 12.5% of cleaned tweets contained a single word and 64.5%
contained at most ten words. Table 8 shows the weighted accuracy for all our
classifiers applied to this synthetic data set. We observe that the two best clas-
sifiers – {1, · · · , 5}-char RANK(SF, all) and RANK(SR, all) – still perform best.
However, when comparing with the results of Table 3, RANK(SR, all) improves
slightly whereas RANK(SF, all) deteriorates slightly.

Real Tweets from Tromp and Pechenizkiy [17]: The experiment uses the
9066 labeled tweets made available by [17]. They extracted tweets from accounts
known to only contain messages in a specific language, namely German, English,
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Table 8. Synthetic documents using Twitter’s word-length distribution

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF 94.05 89.78 81.40 87.55 86.27 78.39 82.56 79.38 72.96 VECTOR 76.87 66.06

RANK SR 93.03 89.05 80.47 84.03 83.68 77.45 79.07 76.60 71.23 LIKELY 88.80

Table 9. Trained on Wikipedia and applied on tweets from [17]

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF 98.00 99.10 95.34 95.83 98.19 96.84 97.51 98.35 94.89 VECTOR 91.51 85.15

RANK SR 89.22 99.12 95.08 89.21 95.51 96.67 96.41 98.03 94.78 LIKELY 98.75

French, Spanish, Italian, and Dutch. They also used six different accounts per
language, to provide diversity (tweets from different accounts) and consistency
(several tweets from the same account). The tweets in the corpus are all lower-
case, thus for this experiment we only applied our classifiers with models that
had case-folding. We limited the language profiles used by our classifier to the
six languages found in the data set. The results are displayed in Table 9. As in
our previous experiments the {1, · · · , 5}-char RANK classifiers perform best. We
observed the tweets in the test set are longer and relatively cleaner than average
tweets, in fact the length is even higher than the median length of Wikipedia
abstracts. Therefore, the numbers produced are inline with our findings on min-
imum 150 character length. Furthermore, we highlight that we are able to beat
the results from [17]. Even though we used Wikipedia as the training data and
our rank-based classifier, in contrast to their specialized Machine Learning ap-
proach trained and tested on this very same data set.

Real Tweets – Uniform Random Sample: We sampled 2000 random tweets
from the Twitter stream using uniform distribution. We labeled them ourselves
to the correct language resulting in 869 tweets that we could process confidently.
We run the same set of language identifiers on the labeled tweets and report
the results in Table 10. The two best-performing classifiers are {1, · · · , 5}-char
RANK(SF,10k) and {1, · · · , 5}-char RANK(SR,10k). Compared to Table 9, the
performance is worse overall. We attribute this to the tweets in this sample be-
ing shorter and much less pristine than those provided by [17]. The best way
to illustrate this is with some examples: (a) “u nah commmming ?”, (b) “al-
readyyyy!!!!!!!!”, (c) “omg im bussin up”. Note the use of letter repetition for
emotion, single letter such as ‘u’ for ‘you’, and what is becoming standard ab-
breviations such as ‘omg’ for ‘oh my god ’. These should be contrasted with the
tweets from [17], which look like: “egypts supreme military council to sack cab-
inet suspend both houses of parliament and govern with head of supreme court
from reuters”. The performance difference is expected once we consider such
differences in the sets of tweets. We feel the random sample of our tweets is rep-
resentative of what to expect from average tweets. The results indicate that our
language identifiers trained on Wikipedia do a good job in processing tweets.
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Table 10. Trained on Wikipedia and applied on a random sample of real tweets

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF 81.73 87.90 72.57 81.20 82.47 70.55 79.40 80.28 67.81 VECTOR 53.61 37.11

RANK SR 74.58 87.89 74.24 67.44 72.51 69.61 74.13 77.77 66.00 LIKELY 79.60

Tweets from an Uncommon Language with Latin Alphabet: To test the
strength of our methodology, we chose to explore the performance of a classifier
trained on Wikipedia and applied on Twitter, but this time on a language that
had the following characteristics: (i) is written mostly in Latin characters (so
the character set will not help the classification), (ii) was not on the top list in
terms of data available for training (i.e., relatively obscure), and (iii) we have
access to a native speaker capable of labeling the results. One language that met
all these conditions was Romanian (with 170,000 abstracts – see Table 1). For
this experiment we sampled 250 tweets that our classifier labeled as Romanian
and that had more than 50 characters (to avoid too much ambiguity) and asked
our native speaker to label them. We found that 85.2% (213 of 250) were indeed
Romanian. While this result is based on a moderately sized sample, in combina-
tion with the previous experiments it provides evidence that classifiers trained
on Wikipedia is generally helpful in automatically classifying tweets.

Boot-strapping Twitter Labels: As our experiments have demonstrated,
Wikipedia is a great resource for building language profiles, however its cor-
pus is missing idioms that are particular to social postings such as tweets (e.g.,
the examples given above). One way to address this problem is to train models
using large amounts of labeled tweets which is an expensive proposition (when
human provide the labels). We automatically (and inexpensively) created this
labeled set using the following methodology: by selecting tweets containing a
country code in their metadata, labeling each tweet with our best language pre-
diction as “L”, and verifying it comes from a country where the native language
is indeed “L”. To avoid over-representation of popular languages, we put a cap
of 10 million tweets at most per language. We were able to generate 88.3 million
labeled documents – pairs of tweet and corresponding language. The set of 52
languages from Table 1 was reduced to 26, as we can only capture the actively
used languages for which we could extract location information from the tweets.
Using these documents we constructed new language profiles and repeated the
set of experiments on real tweets.

Table 11 summarizes the results for the tweets from Tromp & Pechenizkiy [17].
In comparison to Table 9, accuracy is higher across the set of models tested, and
even the (previously) weaker performing algorithms perform great. This is truly
an indication of the value of our method for generating boot-strapped labels
– the large amount of automatically training data generated by our method
boosts the accuracy of our relatively simple classifiers, perform better than the
specialized approach in [17] and the relatively more complex approach in [11]
which were tested on the same dataset.
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Table 11. Boot-strapped Twitter labels, applied on tweets as in Table 9

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF 99.11 99.52 96.40 99.02 99.06 97.97 99.31 99.44 97.03 VECTOR 95.41 93.98

RANK SR 95.05 99.53 96.42 96.53 97.44 97.93 98.83 99.27 96.99 LIKELY 99.64

Table 12. Boot-strapped Twitter labels, applied on tweets as in Table 10

{1, · · · , 5}-char {3}-char {1}-word {3}-char {1}-word
all 10k 500 all 10k 500 all 10k 500 all all

RANK SF 96.23 95.37 89.07 93.85 95.05 90.22 92.80 94.25 90.06 VECTOR 84.55 79.16

RANK SR 93.95 95.44 88.78 87.99 90.27 90.83 90.25 92.02 88.73 LIKELY 95.09

Table 12 summarizes the results for the random sample of tweets we obtained
directly from the Twitter stream. As we discussed earlier, we believe this data
set to be a closer representation of the average tweet. The results show a very
high degree of accuracy. We note that our language identifiers are triggered on
all tweets – we will always return our top language guess. Consequently, the
overall best results have precision above 96% with 100% recall.

5 Related Work

Our study is inspired by the work on using n-grams for text classification and
statistical language identification, like [5,7,8], and in particular Cavnar and Tren-
kle [6]. This work proposed to use character n-grams for values of n ranging from
1 to 5, to limit the number of n-gram/frequency pairs retained for each language
to 400, to compare languages and documents using a rank-based approach, and
specifically to use Spearman’s footrule [16] to estimate rank correlation. Cavnar
and Trenkle recognized 8 languages and trained on a total of 3713 samples (doc-
uments) from a Usenet group. They reported accuracy of 92.9% for language
profiles of 100 tokens and documents of less than 300 characters, and accu-
racy of 99.8% for language profiles of 400 tokens documents over 400 characters
in length. We achieved similar accuracy (99.82; see Table 7) using the same 8
languages but training and testing on Wikipedia. Furthermore, we did a more
exhaustive study: we experimented on 52 languages, trained on over 18 million
Wikipedia documents, and tested on both Wikipedia and Twitter documents
with different characteristics. We found that language profiles should be one to
two orders of magnitude larger than suggested by [6].

Our work compares a larger number of models and classifiers including those
based on using words as tokens, and those that take the frequencies of the tokens
to estimate probabilities, and use likelihood for discrimination. In that sense our
work is closer in spirit to Grothe et al. [9]. Once again, our study differs from
theirs in terms of scale: we recognize almost three times as many languages
(52 vs. 18), use a much larger corpus for training and testing, and also expand
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on the number of classifiers, the use of capitalization, and the length of the doc-
uments to be classified.4 We are also able to explain their observed phenomena
of restricting the number of tokens in the profile based on word models. Using
all the words (as opposed to the top ones) will result in over-fitting.

More recently Majlis [12] proposed a study using n-grams with W2C (WebTo-
Corpus) training corpora and various methods like SVM, naive Bayes, regression
tree and their own YALI algorithm. The results show high precision for large
documents but much lower precision for document sizes of 30 to 140 characters.
In some cases the results are in the order of 70% precision for the smaller docu-
ments. The YALI method proposed in the paper produces the best results when
using 4-grams and shows an in-model testing accuracy of around 93% for small
documents. Conceptually, there are similarities between YALI and our approach
in that we both use a variation of n-gram retrieval to determine the language
of documents. Another important difference is in the testing methodology. We
trained and tested on Wikipedia and also tested on real tweets. The authors of
YALI trained and tested on a carefully curated W2C corpus. By comparison, we
achieved significantly better accuracies on “dirtier” data.

Dunning in [8] considered using probabilistic methods to identify the language
of a document including Markov chains and Bayesian inference. Our likelihood
classifier is similar in spirit and has similar performance characteristics.

Tromp and Pechenizkly [17] explore a supervised machine learning approach
to language identification in the context of Twitter. They made their corpus
available, enabling us to benchmark our implementations on their test corpus. In
comparing the tweets contained in their collection to a uniform random sample
of tweets we collected and labeled, we found the tweets in their collection to
be much “cleaner” than the average tweet: They are fairly long, tend to be
grammatically well formed, and contain fewer Twitter-specific acronyms than
we observe “in the wild”. Tromp and Pechenizkly used the same corpus for
training and for testing. Our classifiers are unsupervised, start with Wikipedia
and can be extended with automatically generated Twitter labels, and produce
better results on their test set.

Another approach that is similar to ours is the work described in [11]. Their
approach is based on a combination of a naive Bayes classifier using n-grams as
features, with separate feature selection for each use case. By contrast our ap-
proach relies on side information to automatically obtain labeled data, allowing
us to use over 80 million Tweets for training – three orders of magnitude larger
than the corpus used by [11]. Moreover, the corpus can be generated dynami-
cally and therefore our approach adapts to changes in style and usage patterns.
Finally, [11] report 94% accuracy on the dataset from [17] while our method
yields accuracies above 99% on the same dataset.

The work in [18] explores the task of identification of very short text seg-
ments on the order of 5 to 21 characters, training on the Universal Declaration
of Human Rights as a corpus. They explore this space at full scale in terms of the

4 We note that in one of their evaluation they use 135 documents from Wikipedia.
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number of languages, using 281 (we restricted to 52 because of limitations on
the labeled data of the corpus). They also explore n-grams-based models, but
because of their restrictions to very short text they have to explore smoothing
techniques (which do not seem to be necessary for identification of longer ob-
jects). We did not find that expanding the set of languages has a deleterious
effect, but we did find that accuracy is sensitive to document length.

Finally, there is recent work in identifying the language in coping with short
idiomatic text, such as tweets. The authors in [4] propose to use both endoge-
nous and exogenous information to improve classification accuracy. In addition
to the text of a tweet, they use the posting history of the author and other users
mentioned in a tweet and web page content referred in the message. The under-
lying idea is to increase the size of each document by leveraging the structure
of Twitter messages. The results reported are in line with our findings in that
an increase in document length will yield higher accuracy. The authors in [3]
focus on tweets from low-resource languages. Their approach is to collect such
tweets, label them via the use of Mechanical Turk and use a supervised learning
algorithm to train a classifier. They compare against three readily available lan-
guage identifier systems, including an implementation of Cavnar and Trenkle [6].
Like [4], they also incorporate some meta information, such as tweet authorship.
In contrast, our classifiers are unsupervised, using Wikipedia and tweet location
to boot-strap mass labeling, and perform in a higher accuracy range.

6 Conclusions

In this paper we focused on two aspects of language identification. (i) study the
various algorithms and free parameters and offer a guide on what works well and
what not, and (ii) determine a methodology to provide high quality language
identification for short colloquial postings, e.g. Twitter.

For language identification in general we learned that: (a) rank based classi-
fiers are both effective and efficient, (b) if memory-limited, we can obtain good
results with the top 10k tokens in the language model, (c) case folding does not
matter, (d) the number of languages makes little difference, if enough training
data exists, and (e) the length of test documents make a big difference, with
larger being easier to classify.

Specifically to Twitter postings we learned that (a) Wikipedia works great for
a solid baseline language model, and (b) generating labeled data using a com-
bination of Wikipedia classification and a Twitter specific signal, like location,
allows us to boot-strap superior language models.

According to our knowledge, this work describes the best overall methodology
for an automated, unsupervised, and scalable technique in language identification
on short colloquial postings. Our implementation is available [1] as a building
block for further research in the area of social analytics.
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Abstract. In this paper, we are interested in the label ranking problem. We are
more specifically interested in the recent trend consisting in predicting partial but
more accurate (i.e., making less incorrect statements) orders rather than complete
ones. To do so, we propose a ranking method based on pairwise imprecise scores
obtained from likelihood functions. We discuss how such imprecise scores can
be aggregated to produce interval orders, which are specific types of partial or-
ders. We then analyse the performances of the method as well as its sensitivity to
missing data and parameter values.

Keywords: Label ranking, imprecise probabilities, Pairwise voting.

1 Introduction

In recent years, learning problems with structured outputs have received a growing
interest. Such problems appear in a variety of applications fields requiring to deal with
complex data: natural language treatment [6], biological data [32], image analysis. . .

In this paper, we are concerned with the problem of label ranking, where one has
to learn a mapping from instances to rankings (complete orders) defined over a finite
number of labels. Different methods have been proposed to perform this task. Ranking
by pairwise comparison (RPC) [25] transforms the problem of label ranking into binary
classification problems, combining all results to obtain the final ranking. Constraint
classification and log-linear models [23,15] intend to learn, for each label, a (linear)
utility function from which the ranking is deduced. Other approaches propose to fit a
probabilistic ranking model (Mallows, Placket-Luce [28]) using different approaches
(instance-based, linear models, etc. [29,10]).

Recently, some authors [13] have discussed the interest, in label ranking and more
generally in preference learning problems, to predict partial orders rather than complete
rankings. Such an approach can be seen as an extension of the reject option imple-
mented in learning problems [3] or of the fact of making partial predictions [14]. Such
cautious predictions can prevent harmful decisions based on incorrect predictions. In
practice, current methods [13] consist in thresholding a pairwise comparison matrix
containing probabilistic estimates. More recently, it was shown [12] that probabilities
issued from Placket-Luce and Mallows models are particularly interesting in such a
thresholding approach, as they are guaranteed to produce consistent orders (i.e., with-
out cycles) that belong to the family of semi-orders.
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In this paper, we adopt a different approach in which we propose to use imprecise
probabilities and non-parametric estimations to predict partial orderings. As making
partial predictions is one central feature of imprecise probabilistic approaches [14], it
seems interesting to investigate how one can use such approaches to predict partial
orders. In addition, these approaches are also well-designed to cope with the problem
of missing or incomplete data [33].

More precisely, we extend the proposal of [25] to imprecise estimates, and propose
to get these estimates from a method based on instance-based learning and likelihood
functions. The paper is organized as follows: Section 2 discusses the basics of label
ranking and of label ranking evaluation when predicting complete and partial orders.
Section 3 then presents the method. It first provides a means to obtain imprecise esti-
mates from a likelihood-based approach, before discussing how such estimates can be
aggregated to produce interval orders (a sub-family of partial orders including semi-
orders) as predictions. Finally, Section 4 ends up with experiments performed on vari-
ous data sets.

2 Preliminaries

This section introduces the necessary elements concerning label ranking problems.

2.1 Label Ranking Problem

The usual goal of classification problems is to associate an instance x coming from
an instance space X to a single (preferred) label of the space Λ = {λ1, . . . ,λm} of
possible classes. Label ranking problems correspond to the case where an instance x
is no longer associated to a single label of X but to a total order over the labels, that
is a complete, transitive, and asymmetric relation �x over Λ ×Λ , or equivalently to
a complete ranking over the labels Λ = {λ1, . . . ,λm}. Hence, the space of prediction
is now the whole set L (Λ) of complete rankings of Λ . It is equivalent to the set of
permutations of Λ and contains |L (Λ)| = m! elements. We can identify a ranking �x
with a permutation σx on {1, . . . ,m} such that σx(i) < σx( j) iff λi �x λ j, as they are
in one-to-one correspondence. In the following, we will use the terms rankings and
permutations interchangeably.

The task in label ranking is the same as the task in usual classification: to use the
training instances (xi,yi), i = 1, . . . ,n to estimate the theoretical conditional probability
measure Px : 2L (Λ) → [0,1] associated to an instance x ∈ X . Ideally, observed outputs
yi should be complete orders over Λ , however this is seldom the case and in this paper
we allow training instance outputs yi to be incomplete (i.e., partial orders over Λ ).

In label ranking problems the size of the prediction space quickly increases, even
when Λ is of limited size (for instance, |L (Λ)| = 3628800 for m = 10). This makes
the estimation of Px difficult and potentially quite inaccurate if only little data is avail-
able, hence an increased interest in providing accurate yet possibly partial predictions.
This rapid increase in |L (Λ)| size also means that estimating directly the whole mea-
sure Px is in general untractable except for very small problems. The most usual means
to solve this issue is either to decompose the problem into many simpler ones or to as-
sume that Px follows some parametric law. In this paper, we shall focus on the pairwise
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decomposition approach, recalled and extended in Section 3. To simplify notations, we
will drop the subscript x in the following when there is no possible ambiguity.

2.2 Evaluating Partial Predictions

The classical task of label ranking is to predict a complete ranking ŷ ∈ L (Λ) of la-
bels as close as possible to an observed complete ranking y. When the observed and
predicted rankings y and ŷ are complete, various accuracy measures [25] (0/1 accuracy,
Spearman’s rank, . . . ) have been proposed to measure how close ŷ is to y. In this pa-
per, we retain Kendall’s Tau, as it will be generalized to measure the quality of partial
predictions. Given y and ŷ, Kendall’s Tau is

Aτ(y, ŷ) =
C−D

m(m−1)/2
(1)

whereC = |{(λi,λ j)|(σ(i)< σ( j))∧ (σ̂ (i)< σ̂( j))}| is the number of concording pairs
of labels in the two rankings, and D = |{(λi,λ j)|(σ( j) < σ(i))∧ (σ̂(i)< σ̂( j)))}| the
number of discording pairs of labels. Aτ(y, ŷ) has value 1 when y = ŷ and −1 when ŷ
and y are reversed rankings.

Aτ(y, ŷ) assumes that the prediction ŷ is a complete ranking and that the model can
compare each pair of labels in a reliable way. Such an assumption is quite strong, es-
pecially if the information in the training samples is not complete (e.g., incomplete
rankings). When we allow the prediction ŷ to be a partial order, Aτ(y, ŷ) needs to be
adapted.

[13] propose to decompose the usual accuracy measures into two components: the
correctness (CR) measuring the quality of the predicted comparisons; and the complete-
ness (CP) measuring the completeness of the prediction. They are defined as

CR(y, ŷ) =
C−D
C+D

and CP(y, ŷ) =
C+D

m(m−1)/2
, (2)

where ŷ is a partial order and where C and D have the same definitions as in Eq. (1).
When the predicted order ŷ is complete (C +D = m(m−1)/2), CR(y, ŷ) = Aτ(y, ŷ) and
CP(y, ŷ) = 1, while CP(y, ŷ) = 0 and by convention CR(y, ŷ) = 1 if no comparison is
done (as all orders are then considered possible).

To summarize, the following assumptions are made in this paper:

– the theoretical model we seek to estimate is a probability measure P defined on the
space L (Λ) of complete rankings;

– training instance outputs yi, i = 1, . . . ,n are allowed to be incompletely observed
(i.e., partial orders), while test instances are assumed to be fully observed (i.e. com-
plete rankings);

– the predictions ŷ are allowed to be partial orders.

3 Partial Orders Prediction Method

This section describes our likelihood pairwise comparison (LPC) method. It first re-
calls the principle of pairwise decomposition (Section 3.1). It then details the proposed
likelihood-based method used to obtain imprecise estimates (Section 3.2) before dis-
cussing how such estimates can be aggregated to obtain partial orders (Section 3.3).
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3.1 Pairwise Decomposition

Pairwise decomposition is a well-known procedure used in classification to simplify the
initial problem [27,20], which is divided into several binary problems then combined
into a final prediction. A similar approach can also be used in preference learning and
label ranking problems: it consists in estimating, for each pair of labels λi,λ j, the proba-
bilities P({λi � λ j}) or P(λ j � λi) and then to predict an (partial) order on Λ from such
estimates. In practice, this can be done by decomposing the data set into (m−1)m/2 data
sets, one for each pair. This decomposition is illustrated in Figure 1 on an imaginary
label ranking training data set with four input attributes.

X1 X2 X3 X4 Y
107.1 25 Blue 60 λ1 � λ3 � λ2
−50 10 Red 40 λ2 � λ3
200.6 30 Blue 58 λ2 � λ1 � λ3
107.1 5 Green 33 λ1 � λ2
. . . . . . . . . . . . . . .

pair λ1,λ2

X1 . . . X4 Y
107.1 60 λ1 � λ2
200.6 58 λ2 � λ1
107.1 33 λ1 � λ2
. . . . . . . . .

pair λ1,λ3

X1 . . . X4 Y
107.1 60 λ1 � λ3
200.6 58 λ1 � λ3
. . . . . . . . .

pair λ2,λ3

X1 . . . X4 Y
107.1 60 λ3 � λ2
−50 40 λ2 � λ3
200.6 58 λ2 � λ3
. . . . . . . . .

Fig. 1. Pairwise decomposition of rankings

From a data perspective, working with pairwise comparisons is not very restrictive,
as almost all models working with preferences can be decomposed into such pair-
wise preferences: complete rankings, top-t preferences where only the first t labels
σ(1), . . . ,σ(t) are ordered [8], rankings of subsets A of Λ where only labels in A are
ordered [22], rankings over a partition of Λ (or bucket orders) [21]. Pairwise prefer-
ences are even more general, as most of the previous models cannot model a unique
preference λi � λ j [7].

For each pair λi,λ j, the data (xk,yk) is retained if it contains the information λi � λ j

or λ j � λi, and is forgotten otherwise. Using all data for which λi,λ j are compared, the
goal is then to estimate the probability

P({λi � λ j}) = 1−P({λ j � λi}). (3)

Any probabilistic binary classifier can be used to estimate this probability once the data
set has been decomposed (possibly by mapping λi � λ j to value 1 and λi ≺ λ j to 0 or
−1). We will denote by P̂({λi � λ j}) the obtained estimate of the theoretical probability
P({λi � λ j}).
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Rather than using only a precise estimate P̂({λi � λ j}) as score, we propose in
this paper to learn an imprecise estimate of P({λi � λ j}) in the form of an interval

[P̂({λi � λ j})] = [P̂({λi � λ j}), P̂({λi � λ j})] and to use such imprecise estimates
to predict partial orders. The next section introduces a method inspired from imprecise
probabilistic approaches that provides a continuous range of nested imprecise estimates,
going from a precise one (P̂({λi � λ j}) = P̂({λi � λ j})) to a completely imprecise one
([P̂({λi � λ j})] = [0,1]).

3.2 Pairwise Imprecise Estimates by Contour Likelihood

One of the goal of imprecise probabilistic methods is to extend classical estimation
methods to provide imprecise but cautious estimates of quantities. Some of them extend
Bayesian approaches by considering sets of priors [4], while others extend maximum
likelihood approaches [9]. One of the latter is retained here, called contour likelihood
method [9], as it will allow us to go from a totally precise to a totally imprecise estimate
in a smooth way.

Given a parameter θ taking its values on a space Θ (e.g., P({λi � λ j}) on [0,1]) and
a positive likelihood function L : Θ →R+, we call contour likelihood L∗ the function

L∗(θ ) =
L(θ )

maxθ∈Θ L(θ )
. (4)

Using this function as an imprecise probabilistic model (and more specifically as a
possibility distribution) has been justified by different authors [17,31,9], and we refer
to them for a thorough discussion. Historically, the use of relative likelihood to get
estimates of parameters dates back to Fisher [24] and Birnbaum [5].

Imprecise estimates are then obtained by using the notion of β -cut. Given a value
β ∈ [0,1], the β -cut L∗

β of L∗ is the set such that

L∗
β = {θ ∈Θ |L∗(θ )≥ β}. (5)

Given Eq. (4), we have L∗
1 = argmaxθ∈Θ L(θ ) (the precise maximum likelihood esti-

mator) and L∗
0 = Θ (the whole set of possible parameter values). In between, we have

that L∗
β1

⊆ L∗
β2

for any values β1 > β2, that is the lower the value of β , the more impre-
cise and cautious is our estimate L∗

β . Such estimates are usually simple to obtain and
have the advantage (e.g., over frequentist confidence intervals) to follow the likelihood
principle, that is to say they depend on the sampling model and data only through the
likelihood function (they do not require extra information such as prior probabilities).

In a binary space where θ ∈ [0,1] is the probability of success, Eq. (4) becomes

L∗(θ ) =
θ s(1−θ )n−s

(s/n)s(1− s/n)n−s (6)

with n the number of observations, s the number of success and argmaxθ∈Θ L(θ ) = s/n.
Once they are decomposed into pairwise preferences, we can use training examples

(xk,yk), k = 1, . . . ,n and Eq. (6) to estimate P({λi � λ j}) for any pair λi,λ j and for a
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new instance x. To do so, we assume that a metric d is defined (or can be defined) on
X and we propose a simple instance-based strategy.

For a given upper distance d, let Nd,x = {xi : d(x,xi) ≤ d} the set of training in-

stances whose distance from x is lower than some (upper) distance d. In this set of
training examples, let us denote by

– Nd,x(i, j) = {xk : xk ∈ Nd,x,(λi � λ j)∨ (λ j � λi) ∈ yk} the set of all instances that
provides a comparison for the labels λi and λ j;

– Nd,x(i > j) = {xk : xk ∈ Nd,x(i, j)∧ (λi � λ j) ∈ yk} the set of items where λi is
preferred to λ j.

Using these information, interval estimates [P̂({λi � λ j})]β are then simply obtained
using Eq. (6) with |Nd,x(i, j)| the number of observations, |Nd,x(i> j)| the number of
successes and β a fixed level of confidence.

Figure 2 pictures two contour likelihoods together with estimates obtained for a
given β . As can be seen from the picture, for a given β the imprecision of the esti-
mate [P̂({λi � λ j})]β will depend on the amount of data used to compute L∗(θ ).

X1

X2

x
λ1 � λ3

λ1 � λ3λ1 ≺ λ3
λ1 ≺ λ3

λ1 ≺ λ3

λ1 � λ3

L∗(Px({λ1 � λ3}))

Px({λ1 � λ3})

1

0 1

β
[P̂x({λ1 � λ3})]β

L∗

1/2

X1

X2

x
λ1 � λ2

λ1 ≺ λ2

L∗(Px({λ1 � λ2}))

Px({λ1 � λ2})

1

0 1

β
[P̂x({λ1 � λ2})]β

L∗

1/2

Fig. 2. Imprecise estimates through β -cut of relative likelihood: illustration

As other instance-based methods (e.g., k-nearest neighbour ), this approach is based
on the assumption that Px is constant around the instance x. In practice, this means that
d should not be too high, but also not too small (otherwise there may be no data in
the neighbourhood). As we fix d rather than the number of neighbours, the presence of
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missing data will lead to a lower value of |Nd,x(i, j)| and to a more imprecise estimate
(for a given β ). The amount of missing data is therefore automatically considered by
the method.

Once precise or imprecise estimates [P̂({λi � λ j})] are obtained, the next step is to
combine them to obtain a predicted (partial) order ŷ. In this paper, we extend the voting
approach detailed in [25]. Note that the values that (theoretical) probabilities

P({λi � λ j}) = ∑
y∈L (Λ),λi�λ j

P({y})

can assume are constrained, as they are linked by the following weak transitivity relation
for any three labels λi,λ j,λk [25]:

P({λi � λ j})≥ P({λi � λk})+P({λk � λ j})− 1. (7)

This relation may not be satisfied by all estimates [P̂({λi � λ j})]. Luckily, post-
processing methods of estimates [P̂({λi � λ j})] (such as the voting approach) usually
do not require this relation to be satisfied to predict a consistent order.

3.3 Aggregating Imprecise Estimates to Get Partial Orders

In [25], precise estimates P̂({λi � λ j}) are considered as (weighted) votes and aggre-
gated for each label λi into a global score

Ŝ(i) = ∑
j∈{1,...,m}\i

P̂({λi � λ j}). (8)

Labels are then ordered according to their scores Ŝ(i), that is λi � λ j if and only if
Ŝ(i)≥ Ŝ( j). It has been shown [25] that using this strategy provides optimal predictions
for the Spearman rank correlation in the sense that it maximizes its expected accuracy if
P̂({λi � λ j})=P({λi � λ j}) (Kendall Tau can also be optimized by using only P({λi �
λ j}), however it requires to solve the NP-hard minimum feedback arc set problem [1]).
We will denote by S( j) the (theoretical) scores that would have been obtained by using
the theoretical measure P.

Example 1. We consider the space of labels Λ = {λ1,λ2,λ3} with the following matrix
of estimates P̂({λi � λ j}) and scores Ŝ(i)

P̂({λi � λ j}) λ1 λ2 λ3 Ŝ(i)
λ1 0.6 0.6 1.2
λ2 0.4 0.3 0.7
λ3 0.4 0.7 1.1

The obtained prediction is λ2 ≺ λ3 ≺ λ1 (Note that estimates P̂({λi � λ j}) satisfy con-
straints (7) and could originate from a theoretical model P).
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Let us now deal with the case where estimates [P̂({λi � λ j})] are imprecise (here,
originating from the method presented in Section 3.2). It is straightforward to extend
Eq. (8) to imprecise estimates by defining the imprecise score [Ŝ(i)] as

[Ŝ(i)] = ∑
j∈{1,...,m}\i

[P̂({λi � λ j})] (9)

= [ ∑
j∈{1,...,m}\i

P̂({λi � λ j}), ∑
j∈{1,...,m}\i

P̂({λi � λ j})].

There are multiple ways to compare intervals [Ŝ(i)] to get a partial or a complete
order. Let us denote ŷD the prediction obtained by a decision rule D and intervals [Ŝ(i)].
We think that decision rules producing partial orders from interval-valued scores should
obey at least the two following properties:

Definition 1 (Imprecision monotonicity). Consider two assessments [P̂] and [P̂∗] such
that, for every pair i, j ∈ {1, . . . ,m} we have [P̂({λi � λ j})]⊆ [P̂∗({λi � λ j})]. A deci-
sion rule D is said imprecision monotonic if

λi � λ j ∈ ŷ∗D ⇒ λi � λ j ∈ ŷD

for any pair i, j and with ŷD, ŷ∗D the predictions produced using estimates [P̂] and [P̂∗],
respectively.

This property basically says that getting less information cannot make our prediction
more precise, in the sense that every label pair comparable according to estimates [P̂∗]
should also be comparable according to [P̂] under decision rule D. If we denote by C (ŷ)
the set of linear extensions (i.e., of completions into complete orders) of the partial order
ŷ, another way to formalise imprecision monotonicity is to ask C (ŷD)⊆ C (ŷ∗D), that is
to require every possible completion of ŷD to be also a completion of ŷ∗D. The second
property is not related to imprecision, but to the coherence between the predicted partial
order and the complete order that would be obtained using the theoretical model P.

Definition 2 (Model coherence). Let S( j) be the theoretical scores, y the associated
complete order and [P̂] an assessment with associated scores [Ŝ( j)]. Then, a decision
rule D is said model coherent if

S( j) ∈ [Ŝ( j)]∀ j ∈ {1, . . . ,m}⇒ y ∈ C (ŷD)

This property requires that if our estimates are consistent with the theoretical model
(i.e., include the true value), then the optimal complete ranking is an extension of our
prediction. That is, our prediction is totally consistent with the optimal solution, but is
possibly incomplete. In particular, satisfying model coherence ensures that the predic-
tion optimizing Spearman rank correlation is in C (ŷD), provided P ∈ [P̂].

To produce a partial ranking from intervals [Ŝ( j)], we propose to use the following
decision rule, that we call strict dominance and denote I :

λi �I λ j ⇔ Ŝ(i)≥ Ŝ( j).
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That is, label λi is ranked before label λ j only when we are certain that the score of
λ j is lower than the one of λi. Partial orders obtained following this rule correspond to
so-called interval-orders [18], that have been widely studied in the literature. The next
proposition shows that such a procedure satisfies the properties we find appealing.

Proposition 1. The ordering �I is imprecision monotonic and model coherent.

Proof. Let �I ,�∗
I be the interval orders obtained by estimates [P̂] and [P̂∗] with rule

I .

Imprecision Monotonic: if for every pair i, j ∈ {1, . . . ,m} we have [P̂({λi � λ j})] ⊆
[P̂∗({λi � λ j})], then [Ŝ(i)] ⊆ [Ŝ∗(i)] for any label λi and λi �∗

I λ j implies λi �I λ j,
since the inequalities

Ŝ( j) ≤ Ŝ∗( j)≤ Ŝ∗(i)≤ Ŝ(i)

hold. The second is due to λi �∗
I λ j, while the first and third are due to [Ŝ(i)]⊆ [Ŝ∗(i)]

for any label λi. This is sufficient to show imprecision monotonicity.

Model Coherence: assume that P({λi � λ j})∈ [P̂({λi � λ j})]. Then we can show that
λi �I λ j implies λi � λ j, where � is the ordering obtained from P. Simply observe
that inequalities

S( j)≤ Ŝ( j)≤ Ŝ(i)≤ S(i)

hold as λi � λ j and S( j)∈ [Ŝ( j)]∀ j ∈ {1, . . . ,m} by definition. This is sufficient to show
model coherence.

Example 2. Consider the following matrix of imprecise scores that include the matrix
of Example 1

P̂({λi � λ j}) λ1 λ2 λ3 S(i)
λ1 [0.4,0.6] 0.6 [1,1.2]
λ2 [0.4,0.6] [0.1,0.3] [0.5,0.9]
λ3 0.4 [0.7,0.9] [1.1,1.3]

Applying the I rule results in λ2 ≺I λ3 and λ2 ≺I λ1, without being able to compare
λ3 and λ1. This prediction is more cautious but coherent with the ordering obtained in
Example 1, which was λ2 ≺ λ3 ≺ λ1.

In summary, the likelihood pairwise comparison (LPC) method consists in the fol-
lowing steps:

1. decompose the training data set (xk,yk), k = 1, . . . ,n into pairwise data sets;
2. pick a distance d and a level β ∈ [0,1];
3. for each pair λi,λ j, take as estimate the interval [P̂({λi � λ j})]β from L∗;
4. compute [Ŝ( j)] and use strict dominance to predict an interval order �I .

By varying β , we can go smoothly from a precise ordering �I (β = 1) to an ordering
making no comparison at all (β = 0), similarly to what is done in [13] by varying the
threshold. Note, however, that this approach is quite different from [13,12]:
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– we rely on aggregation of imprecise estimates to predict partial orders rather than
thresholding a precise model (in [13,12], the prediction λi � λi is made if P̂x({λi �
λ j})≥ α with α ∈ [0.5,1]);

– we always predict an interval order (a family of partial orders that includes semi-
orders, the type of orders predicted in [12]) and do not have to face issues related
to the presence of cycles [13];

– we use a non-parametric estimation method rather than parametric probabilities
[12], which makes our approach computationally more demanding. As the aggrega-
tion methods presented in Section 3.3 applies to any imprecise estimates, it would
be interesting to study how confidence intervals can be extracted from estimated
parametric models, or to which extent are the results affected by considering other
imprecise estimates (e.g., confidence intervals).

4 Experiments

In this section, we first compare the performances of our approach with two other tech-
niques in the case of complete order predictions. We use the WEKA-LR [2] implemen-
tation. We also discuss the behaviour of our approach with respect to missing data.

The datasets used in the experiments come from the UCI machine repository [19] and
the Statlog collection [26]. They are synthetic label ranking data sets built either from
classification or regression problems. From each original data set, a transformed data
set (xi,yi) with complete rankings was obtained by following the procedure described
in [11]. A summary of the data sets used in the experiments is given in Table 1.

Table 1. Experimental data sets

Data set Type #Inst #Attributes #Labels
authorship classification 841 70 4

bodyfat regression 252 7 7
calhousing regression 20640 4 4
cpu-small regression 8192 6 5
elevators regression 16599 9 9

fried regression 40768 9 5
glass classification 214 9 6

housing regression 506 6 6
iris classification 150 4 3

pendigits classification 10992 16 10
segment classification 2310 18 7

stock regression 950 5 5
vehicle classification 846 18 4
vowel classification 528 10 11
wine classification 178 13 3

wisconsin regression 194 16 16
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4.1 Comparative Experiments with Precise Predictions

To show that our approach performs satisfyingly, we apply our method to complete
data sets of Table 1 and compare its results with other label ranking approaches in the
case where predictions are complete (β = 1 in Eq. (5)). More precisely, we compare
the results of the proposed approach with the Ranking by Pairwise Comparison method
(RPC) using a logistic regression as base classifier [25] and the Label Ranking Tree
(LRT) method [11]. Note that if β = 1 in Eq. (5), LPC is equivalent to adopt a ranking
by pairwise comparison approach (RPC) with another base classifier.

Kendall tau is used to assess the accuracy of the classifiers, and reported results are
averages over a 10-fold cross validation. Concerning the LPC method, the Euclidean
distance d was used, with a maximum radius d = aEd where a> 0 multiplies the aver-
age distance

Ed = n(n−1)/2 ∑
xi,x j∈x1,...,xn

j 	=i

d(xi,x j)

between all training instances. As the goal of these experiments is to assess whether
our method provides satisfying results, we set a = 1.0 (the effect of modifying a when
preferences are missing is studied in the next section).

Table 2. Results on precise case

LPC RPC LRT
Data set accuracy rank accuracy rank accuracy rank

authorship 0.910 1 0.908 2 0.887 3
bodyfat 0.216 2 0.282 1 0.11 3

calhousing 0.273 2 0.244 3 0.357 1
cpu-small 0.421 2 0.449 1 0.423 3
elevators 0.701 3 0.749 2 0.758 1

fried 0.789 3 0.999 1 0.888 2
glass 0.853 3 0.887 2 0.893 1

housing 0.699 2 0.674 3 0.799 1
iris 0.92 2 0.893 3 0.947 1

pendigits 0.879 1 0.932 3 0.942 2
segment 0.880 3 0.934 2 0.956 1

stock 0.792 2 0.779 3 0.892 1
vehicle 0.843 2 0.857 1 0.833 3
vowel 0.805 1 0.652 3 0.795 2
wine 0.947 1 0.914 2 0.88 3

wisconsin 0.451 2 0.634 1 0.328 3
Average rank 1.8 2 2.2

To compare the different results, Demsar [16] approach is used on the results of Ta-
ble 2. Friedman test was used on the ranks of algorithm performances for each data-set,
finding a value 1.13 for the Chi-square test with 2 degree of freedom and a corre-
sponding p-value of 0.57, hence the null-hypothesis (no significant differences between
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algorithms) cannot be rejected. The algorithms therefore display comparable perfor-
mances. It should be noted, however, that no optimisation was performed for the pro-
posed method (either on the value d or on the shape of the neighbourhood region).

4.2 Accuracy of Partial Predictions

In the previous section, we have shown that our method is competitive with other label
ranking methods in situations where complete orders are predicted (β = 1 in LPC). In
this section, we study the behaviour of LPC with respect to completeness and correct-
ness (2) when we allow for partial predictions, that is β ∈ [0,1] in Eq. (5) and we use
the strict dominance rule I to produce predictions. As in [11,12], we span a whole set
of partial orders by going from precise orders (β = 1) to completely imprecise ones
(β = 0). However we span a richer family of partial orders, namely interval orders.

To study how LPC behaves when some pairwise preferences are missing, we also
consider incomplete rankings in training instances. Missing preferences in the training
data sets are induced with the following strategy [11]: for a given training instance yk,
each label is removed with a probability γ (here, either 30 or 60%).

Intuitively, we may expect the predictions to be more accurate (i.e., predicted com-
parisons to be more often correct) as they become more partial. That is, as β decreases,
the average completeness CP decreases, with the hope that this decrease is counter-
balanced by an increase in correctness CR. To verify this intuition, we have compared
our approach with the following base-line: for a given β , we have considered the com-
plete ordering obtained with β ∗ = 1 in (5), and have randomly removed each pairwise
comparison induced by this ordering with a probability 1−β .

Figure 3 shows the evolution of completeness and correctness for two data sets (a
classification one, vowel, and a regression one, wisconsin) as β decreases for various
choices of d and for different percentages of missing data. As expected, the (average)
correctness is increasing as completeness decreases for our method, while the baseline
that performs random suppression of preferences does not show a significant increase of
correctness as completeness decreases. This confirms that our method provides cautious
yet more accurate predictions as β decreases.

There are other facts that we may notice from the graphs in Figure 3:

– the higher is the distance d, the more stable is the evolution of correctness/
completeness, showing that LPC with higher distances is less affected by missing
preferences. In particular, correctness for a level β = 1 (CP = 1) does not change
significantly when d is high, whether preferences are missing or not. On the con-
trary, the effect of missing preferences is quite noticeable for lower values of d,
particularly when β is low. This is not surprising, as a higher d means using more
training instances to assess the model;

– when there are no missing preference, taking a lower d usually provides better cor-
rectness than a higher one. This can be explained by the fact that the instance-based
assumption (i.e. assuming Px constant around x) becomes less and less supported
when d increases. However, when the number of missing preferences is significant,
correctness is usually better for large d, as the model is then less sensible to such
missing preferences.
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CP/CR trade-off for d = 0.5Ed

CP/CR trade-off for d = 1.0Ed

CP/CR trade-off for d = 1.5Ed

Fig. 3. Results for vowel (left column) and wisconsin (right column) data set

These experiments suggest that the choice of a good d heavily depends on the data: if
full rankings are given for each training instance, then d should be kept low, while if
the information is poor (many partial rankings with few preferences), a higher d should
be preferred.
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5 Conclusion

In this paper, we have introduced the likelihood pairwise comparison (LPC) approach to
achieve label ranking by pairwise comparisons, which can be seen as an instance-based
non-parametric approach.

Although the method can produce complete rankings as predictions, one of its main
interest lies in the ability to produce partial but more accurate orders as predictions. This
is done by using the interpretation [17,9] seeing the normalised likelihood function as
an imprecise probabilistic model, and more precisely as a possibility distribution from
which are derived imprecise estimates. To build this normalised likelihood, we have
proposed a simple instance-based approach using the neighbours that are within a given
radius of the instance.

Our results indicate that the choice of the distance (i.e., radius) used to estimate our
model can be important: a higher distance will usually produce less accurate predic-
tions when preferences are complete and more accurate predictions when preferences
are missing, while a lower distance will produce more accurate predictions when pref-
erences are complete, but will be more sensible to missing data.

Compared to [12], our method also guarantees the consistency of predicted partial
orders while being potentially more expressive, as predicted partial orders are interval
orders (that include semi-orders). First experimental results show a good increase of
correctness when partial predictions are considered. In the future, it would be interest-
ing to compare the obtained results to other methods, or to study the problem of pre-
dicting partial orders from imprecisely specified parametric models (as non-parametric
instance-based methods are computationally costly), possibly combining them with
other decision rules of imprecise probabilistic approaches [30].

References

1. Alon, N.: Ranking tournaments. SIAM Journal on Discrete Mathematics 20, 137–142 (2006)
2. Balz, A., Senge, R.: Weka-lr: A label ranking extension for weka (July 2011),

http://www.uni-marburg.de/fb12/kebi/research/software/WEKA-LR-PAGE

3. Bartlett, P., Wegkamp, M.: Classification with a reject option using a hinge loss. The Journal
of Machine Learning Research 9, 1823–1840 (2008)

4. Bernard, J.: An introduction to the imprecise dirichlet model for multinomial data. Interna-
tional Journal of Approximate Reasoning 39(2), 123–150 (2005)

5. Birnbaum, A.: On the foundations of statistical inference. Journal of the American Statistical
Association 57(298), 269–306 (1962)

6. Bordes, A., Glorot, X., Weston, J., Bengio, Y.: Joint learning of words and meaning represen-
tations for open-text semantic parsing. Journal of Machine Learning Research - Proceedings
Track 22, 127–135 (2012)

7. Boutilier, C., Lu, T.: Learning mallows models with pairwise preferences. In: Proceedings of
the 28th Annual International Conference on Machine Learning - ICML, pp. 145–152 (2011)

8. Busse, L., Orbanz, P., Buhmann, J.: Cluster analysis of heterogeneous rank data. In: ACM
International Conference Proceeding Series, vol. 227, pp. 113–120 (2007)

9. Cattaneo, M.: Statistical Decisions Based Directly on the Likelihood Function. Ph.D. thesis,
ETH Zurich (2007)

http://www.uni-marburg.de/fb12/kebi/research/software/WEKA-LR-PAGE


126 S. Destercke
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25. Hüllermeier, E., Fürnkranz, J., Cheng, W., Brinker, K.: Label ranking by learning pairwise
preferences. Artificial Intelligence 172, 1897–1916 (2008)

26. King, R., Feng, C., Sutherland, A.: Statlog: Comparison of classification algorithms on large
real-world problems. Applied Artificial Intelligence 9(3), 289–333 (1995)

27. Lorena, A., de Carvalho, A., Gama, J.: A review on the combination of binary classifiers in
multiclass problems. Artificial Intelligence Review 30(1), 19–37 (2008)

28. Marden, J.: Analyzing and modeling rank data, vol. 64. Chapman & Hall/CRC (1996)
29. Meila, M., Chen, H.: Dirichlet process mixtures of generalized mallows models. In: Proceed-

ings of the 26th Conference in Uncertainty in Artificial Intelligence, pp. 358–367 (2010)
30. Troffaes, M.: Decision making under uncertainty using imprecise probabilities. Int. J. of

Approximate Reasoning 45, 17–29 (2007)

http://archive.ics.uci.edu/ml


A Pairwise Label Ranking Method with Imprecise Scores and Partial Predictions 127

31. Walley, P., Moral, S.: Upper probabilities based only on the likelihood functions. Journal of
the Royal Statistical Society: Series B (Statistical Methodology) 61, 831–847 (1999)

32. Weskamp, N., Hüllermeier, E., Kuhn, D., Klebe, G.: Multiple graph alignment for the struc-
tural analysis of protein active sites. IEEE/ACM Transactions on Computational Biology and
Bioinformatics 4(2), 310–320 (2007)

33. Zaffalon, M.: Exact credal treatment of missing data. Journal of Statistical Planning and
Inference 105(1), 105–122 (2002)



Learning Socially Optimal Information Systems

from Egoistic Users

Karthik Raman and Thorsten Joachims

Department of Computer Science,
Cornell University, Ithaca, NY, USA

{karthik,tj}@cs.cornell.edu

http://www.cs.cornell.edu

Abstract. Many information systems aim to present results that maxi-
mize the collective satisfaction of the user population. The product search
of an online store, for example, needs to present an appropriately diverse
set of products to best satisfy the different tastes and needs of its user
population. To address this problem, we propose two algorithms that
can exploit observable user actions (e.g. clicks) to learn how to com-
pose diverse sets (and rankings) that optimize expected utility over a
distribution of utility functions. A key challenge is that individual users
evaluate and act according to their own utility function, but that the
system aims to optimize collective satisfaction. We characterize the be-
havior of our algorithms by providing upper bounds on the social regret
for a class of submodular utility functions in the coactive learning model.
Furthermore, we empirically demonstrate the efficacy and robustness of
the proposed algorithms for the problem of search result diversification.

Keywords: Online Learning, Coactive Learning, Implicit Feedback,
Diversified Retrieval.

1 Introduction

Many information systems serve a diverse population of users who have conflict-
ing preferences. This poses the challenge of maximizing collective user satisfac-
tion over a distribution of conflicting needs. A typical example is the problem
of search result diversification [1]. For an ambiguous query such as “jaguar”,
a diversified set of results should ideally provide some relevant results for each
of the query intents. Similar challenges also arise in an online store that wants
to appeal to a range of customers with different tastes, or in a movie recom-
mendation system where even a single user may have different preferences (e.g.
moods, viewing companions) on different days. More generally, “diversification”
describes the problem of hedging against uncertainty about a user’s preferences.

Much prior work on this problem has focused on manually-tuned methods
for generating diverse results [2–6]. Some learning approaches exist as well and
have been shown to outperform manually tuned methods [7–10]. Unfortunately,
the practical use of those learning methods is limited, since most require expert
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annotated training data that explicitly lists all facets of an information need
(e.g. the different moods a user can be in).

The use of implicit feedback from user interaction (e.g. clicks) has the po-
tential to overcome this data bottleneck. Not only is it available in abundance,
but it also directly reflects the users’ – not the experts’ – preferences. The chal-
lenge, however, is that the learning algorithm no longer gets (expert constructed)
examples of socially optimal results, but needs to construct a socially optimal
compromise from the egoistic actions of the users. Some learning methods for
this problem already exist, but these methods either cannot generalize across
queries [11] or are specific to a particular notion of user utility that cannot be
adjusted through learning [12].

In this paper we consider the problem of learning socially optimal rankings
from egoistic user feedback in the following online learning model. In each iter-
ation a user, drawn from an unknown but fixed distribution, presents a context
(e.g., query) to the system and receives a ranking in response. The user is repre-
sented by a utility function that determines the actions (e.g. clicks) and therefore
the feedback to the learning algorithm. The same utility function also determines
the value of the presented ranking. We focus on utility functions that are sub-
modular in the elements of the ranking, since those naturally lead to diverse
result sets. The goal is to learn a ranking function that has high social utility,
which is the expected utility over the user distribution.

For this model, we present two coactive learning algorithms that learn to com-
pose rankings that optimize social utility. Note that this setup is fundamentally
different from previous coactive learning problems [13–15], which assume that
user actions always come from the same utility function. After characterizing
the informativeness and noisiness of the implicit feedback, we give theoretical
results bounding the regret of our algorithms in terms of the social utility. Fur-
thermore, we empirically show that the algorithms perform well for both single
query and cross-query diversification tasks. In particular, we show that the al-
gorithms can robustly learn, using only implicit feedback, to compose rankings
with an appropriate amount of diversity.

2 Related Work

Coactive learning [13] is a framework for modeling the interaction between users
and a learning algorithm, where the user feedback is interpreted as a revealed
preference from a boundedly rational user. Recently, coactive learning [14] has
been applied to the problem of intrinsic diversity. As opposed to our problem
(i.e., extrinsic diversity [1]) intrinsic diversity is diversity required by a sin-
gle individual among their various different interests. More specifically, in their
problem there is only a single user utility, based on which feedback is received.
However in our problem, users have different utilities, which may conflict, and
the goal of the system is finding a socially optimal solution.

Yue and Guestrin [16] also proposed online learning algorithms for the problem
of intrinsic diversity. While they too maximize submodular utilities, their model
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relies on observing cardinal utilities which can be substantially less reliable than
preference feedback, as shown in user studies [17]. El-Arini and Guestrin [18]
also propose submodularity-based techniques to optimize for both diversity and
relevance in the context of scientific literature discovery. However, their model is
motivated by exploration diversity that hedges against uncertainty about a single
utility, while we optimize social utility over a distribution of utility functions.

Our work also relates to a large body of work in the game theory literature
on finding social optimally solutions, such as work on maximizing welfare in
congestion games [19, 20], auctions [21, 22] and social choices [23]. However, to
the best of our knowledge, there has been no work on learning socially optimal
rankings from noisy user feedback. While coactive learning is related to partial
monitoring games [24], here the loss and feedback matrices are not revealed to
the learning algorithm. Furthermore partial monitoring games have no explicit
notion of context that is available at the beginning of each round.

3 Learning Problem and Model

Let’s start with an example to motivate the formalization of the learning problem
considered in this paper. Suppose we have a search engine that receives an am-
biguous query (e.g. “jaguar”). In particular, there are three user populations that

User Type Prob. Relevant docs

1 0.5 a1, a2, a3, . . .

2 0.25 b1, b2, b3, . . .

3 0.25 c1, c2, c3, . . .

Fig. 1. Illustrative example show-
ing different user preferences

consider different documents relevant to the
query as detailed in Fig. 1. The user popula-
tions have different sizes, and Fig. 1 lists the
probability of each type. Note that the search
engine has no way of identifying which type
of user issued the query (i.e., the search en-
gine does not know whether “jaguar” refers
to the cat or the car for this user). Suppose
the utility of a ranking R to users of type i

is Ui(R) =
√
#of rel docs in top 4 of R. This means it is beneficial to show at

least one relevant document, and that the marginal utility of showing additional
relevant documents is sub-linear.

Now consider the following two rankings that the search engine could show.

– R1=(a1, a2, a3, a4): While ideal for the predominant users (i.e., type 1 users
get utility U1 = 2), it provides no value for the other users (utility U2 =
U3=0). Thus in expectation, this ranking has expected utility of E[U ] = 1.

– R2 = (a1, b1, c1, a2): This ranking provides some relevant documents for all
user types (U1 ∼ 1.4;U2 = 1;U3 = 1 ), maximizing the collective user
satisfaction with E[U ] ∼ 1.2.

Our goal is to find rankings of the latter type, which we call socially optimal
since they maximize expected utility (i.e., social utility).

In this paper we use implicit feedback from the users for learning these rank-
ings. Consider, for example, a user of type 1 that chooses to click/read relevant
documents a1, a2 from the presented ranking yt = (b1, c1, b2, a1, c2, a2). These
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actions reveal information about the user’s utility functions which we can ex-
ploit to construct a feedback ranking ȳt, such as (b1, c1, a1, b2, a2, c2), that has
higher utility for that user (or at least not worse utility) i.e., U1(ȳt) ≥ U1(yt).

The key challenge in learning socially optimal rankings from the feedback
of individual users lies in resolving the contradicting feedback from different
user types. Each user’s feedback reflects only their own utility, not social utility.
For example, even if presented with the socially optimal ranking R2, users may
provide feedback indicating a preference for a different ranking (e.g. type 1 users
may indicate their preference for R1). Thus, a successful learning algorithm for
this problem should be able to reconcile such differences in preference and display
stability despite the egoistic feedback, especially when the presented solution
approaches the optimal.

3.1 Learning Problem

We now define the learning problem and user-interaction model more formally.
We assume there are N types of users, each associated with a probability pi
according to which individual users accessing the system are sampled. Given a
context xt (e.g., query), the personal utility of an object (e.g., ranking) yt
for users of type i is Ui(xt,yt). The social utility U(xt,yt) is defined as the
expected utility over the user distribution.

U(xt,yt) = E[Ui(xt,yt)] =

N∑
i=1

piUi(xt,yt) (1)

The optimal object for context xt and user type i is denoted as

y∗,i
t := arg max

yt∈Y
Ui(xt,yt). (2)

The socially optimal object for context xt is denoted as

y∗
t := arg max

yt∈Y
U(xt,yt). (3)

Users interact with the system like in the standard coactive learning model
[13], but it is no longer assumed that all users act according to a single utility
function. Specifically, at each timestep t the system receives a context xt and
a user type i is sampled from the user distribution. In response, the system
presents the user with an object yt and the user draws utility Ui(xt,yt). The
algorithm then observes (implicit) feedback from the user (who acts according
to Ui), updates its model, and repeats. The goal of the algorithm is to present
objects as close to the social optimal y∗

t , as measured by the following notion of
regret over time steps t of the learning process:

REGT :=
1

T

T−1∑
t=0

(U(xt,y
∗
t )− U(xt,yt)) . (4)

Thus the lower the regret, the better the performance of the algorithm. Note that
the social optimal y∗

t is never given to the learning algorithms, but nevertheless
used to measure predictive performance.
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To be able to prove anything about the regret of any learning algorithm, we
need to make an assumption about the quality of the user feedback. Coactive
learning assumes that the user feedback reveals an object ȳt that has improved
utility compared to the presented object yt. In a ranked retrieval system, for
example, ȳt can be constructed from yt by moving the clicked documents to
the top. Unlike in the traditional coactive learning model, this paper studies the
case where users do not provide feedback from a single global utility function
that directly reflects social utility. Instead, users valuate and provide feedback
according to their own personal utility. Thus, we characterize feedback quality
through the following definition.

Definition 1. User feedback is expected αi, δi-informative for a presented
object yt under context xt for a user with personal utility function Ui, if ξ̄t ∈ �
is chosen such that for some given αi ∈]0, 1] and δi > 0 it holds that

Eȳt [Ui(xt, ȳt)] ≥ (1 + δi)Ui(xt,yt) + αi

(
Ui(xt,y

∗,i
t )− Ui(xt,yt)

)
− ξ̄t. (5)

Note that the expectation is over the user feedback.

The expected αi, δi-informative criterion states that the user’s feedback object
ȳt has better personal utility than the presented object yt on average. More pre-
cisely, the first term on the right-hand side implies that the improvement should
be at least by a factor of (1 + δi). Note, though, that this condition is based
only on the personal utility of the specific user, not the social utility. The second
term on the right-hand side further prescribes that personal utility increases
proportional to how far yt is away from the optimal object y∗,i

t , and the factor
αi ∈ [0, 1] describes the informativeness of the feedback. This second term cap-
tures that it is easier to make large improvements in utility when the presented
yt is far from optimal for this user. Finally, since it would be unreasonable to
assume that user feedback is always strictly αi, δi-informative, the ξ̄t captures
the amount of violation.

3.2 Submodular Utility Model

The following defines the class of utility function we consider for modeling users.
As done in previous work [14], we assume that the utility functions Ui(xt,yt) is
linear in its parameters vi ∈ Rm.

Ui(xt,yt) = v�
i φF (xt,yt) (6)

φF (xt,yt) is a feature vector representation of the context-object pair and F is
a submodular function as further elaborated on below. We require that all vi’s
and φF (xt,yt)’s are component-wise non-negative. The linear model implies that
one can write the social utility as

U(xt,yt) = w�
∗ φF (xt,yt), where w∗ =

N∑
i=1

pivi. (7)
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Algorithm 1. GreedyRanking(w,x)

1: y ← 0
2: for i = 1 to k do
3: bestU ← −∞
4: for all d ∈ x/ y do
5: if w�(x,y ⊕ d) > bestU then
6: bestU ← w�φ(x,y ⊕ d)
7: best ← d
8: y ← y ⊕ best {Append document to ranking y}
9: return y

We model φF (xt,yt) using a submodular aggregation of its components, which
is a well accepted method for modeling diversity [9, 14]. To simplify the ex-
position, we focus on rankings as objects y, but analogous constructions also
work for other types of objects. Given context x, each document in ranking
y = (di1 , di2 , . . . , din) has a feature representation given by φ(x, dij ) ∈ Rm. We
then obtain the overall feature vector φF (x,y) as

φjF (x,y) = F (γ1φ
j(x, di1 ), γ2φ

j(x, di2 ), ... . . . , γnφ
j(x, din)) (8)

where φj(x, d) and φjF (x,y) represent the j
th feature in the vectors φ(x, d) and

φF (x,y) respectively. We also introduce position-discounting factors γ1 ≥ . . . ≥
γj ≥ . . . ≥ γn ≥ 0, which determine how important each position in the ranking
is. The choice of aggregation function F determines the diminishing returns
profile of the users utility. For example, using a coverage-like aggregation function
F (A) = maxa∈A a, strongly promotes diversity, since a single document can
already maximize utility. On the other extreme lies the additive aggregation
function F (A) =

∑
a∈A a, which leads to a diversity-agnostic (i.e., modular)

feature vector. More generally, any monotone increasing and concave function
of
∑
a∈A a can be used. It was shown [9, 14] that this allows for a broad class of

performance measures to be modeled, including many common IR performance
metrics (e.g. NDCG, Precision, Coverage).

For a component-wise non-negative vector w, we can compute a
ranking that approximately maximizes the utility function, i.e., y :=
argmaxy∈Y w�φF (x,y), using the Greedy Algorithm 1. The algorithm itera-
tively picks the document with the highest marginal utility to be added to the
ranking. Despite its simplicity, Algorithm 1 has good approximation properties
for this NP-hard problem.

Lemma 1. For w ≥ 0 and monotone, concave F : Rn
≥0→R≥0 that commutes

in all arguments, Algorithm 1 produces a ranking that is a βgr-approximate so-

lution, with βgr=
(
1− 1

e

)
if γ1 = · · · = γk or βgr = 1/2 otherwise.

Proof. For γ1=. . .=γk this is a straightforward reduction to monotone submod-
ular maximization with a cardinality constraint for which the greedy algorithm
is (1− 1

e )-approximate [25]. For the more general case we reduce it to submodular
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maximization over a partition matroid. Suppose we have documents {d1,. . ., dN}
and want to find a ranking of length k. Let the new ground set A contain k copies
di,j:j ∈{1, k} of each document di, one for each position. The matroid only per-
mits sets containing at most one document per position. Define set function H
over A: For set B(⊆ A), let C={. . . dij ,j. . .}be the set obtained by removing all
duplicates from B (i.e., keep only the highest ranked occurrence of a document).
Define H(B)=F (. . .,γjφ(x, dij ),. . .). The lemma follows from observing that Al-
gorithm 1 is equivalent to the greedy algorithm for maximizing H over A under
a matroid constraint, which is known to provide a 1

2 -approximate solution [25].

4 Social Learning Algorithms

In this section, we present two coactive learning algorithms for predicting rank-
ings that optimize social utility. The first considers rankings with discount factors
for each rank while the second considers the special case of evaluating the top k
results as a set. For both algorithms, we characterize their regret by providing
upper bounds.

4.1 Social Perceptron for Rankings (SoPer-R)

Following the utility model introduced in Section 3.2, we now present an algo-
rithm for learning rankings y = (di1 , di2 , . . . , din) that aim to optimize social
utility where personal user utility can be represented as

Ui(xt,yt) = v�
i φF (xt,yt), (9)

φjF (x,y) = F (γ1φ
j(x, di1 ), γ2φ

j(x, di2 ), ... . . . , γnφ
j(x, din )), (10)

with γ1≥γ2≥ ... ≥ γn ≥ 0. The submodular DCG metric proposed in [9], where
the discount factors areγi=

1
log2(1+i)

, is an example of such a utility function.

The Social Perceptron for Rankings (SoPer-R) is detailed in Algorithm 2.
It applies to any F that satisfies the conditions of Lemma 1. The algorithm
maintains a weight vector wt, which is its estimate of w∗. For the given context
xt, the algorithm first computes ranking yt using the greedy Algorithm 1, which
is then presented to the user. The user actions (e.g., clicks) are observed and
used to construct the feedback as follows. The ranking is first partitioned into
adjacent pairs by randomly selecting an odd or even grouping. The feedback
ranking ȳt is constructed by swapping the documents whenever the user clicks
on the lower element of the pair. This relates to the idea of FairPairs [26], which
is used to help de-bias click data. Note that feedback is only generated whenever
the lower elements was clicked but not the upper, otherwise ȳt :=yt. After the
feedback ȳt is received, the algorithm performs a perceptron-style update to the
weight vector. To to ensure that the weight vector contains only non-negative
weights, any negative weights are clipped to zero.

Given function g and constant 0 ≤ λ ≤ 1 define τg(λ) as:

τg(λ) = lim
x→0

g(λ · x, 0, . . . , 0)
g(x, 0, . . . , 0)

(11)
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Algorithm 2. Social Perceptron for Ranking (SoPer-R)

1: Initialize w0 ← 0
2: for t = 0 to T − 1 do
3: Observe xt

4: Present yt ← GreedyRanking(wt,xt) {Present argmax ranking}
5: Observe user clicks D {Get User Feedback}
6: Construct feedback ȳt ← ListFeedback(yt,D) {Create Feedback Object}
7: Update: w̄t+1 ← wt + φ(xt, ȳt)− φ(xt,yt) {Perceptron Update}
8: Clip: wj

t+1 ← max(w̄j
t+1, 0) ∀1 ≤ j ≤ m.

9:
10: Function ListFeedback(y,D) {y: Presented Ranking; D: User clicks }
11: ȳ ← y {Initialize with presented object}
12: With probability 0.5: PR ← ({1, 2}, {3, 4}, {5, 6} · · · )
13: else: PR ← ({1}, {2, 3}, {4, 5}, {6, 7} · · · )
14: for i = 0 · · · len(PR) do
15: {jupper , jlower} ← PR[i] {Get Pair}
16: if y[jlower ] ∈ D AND y[jupper] /∈ D then
17: Swap(ȳ[jupper ], ȳ[jlower ]) {Place clicked doc above the other doc}
18: return ȳ

The below lemma bounds the change in a concave function on scaling arguments.

Lemma 2. For any function g (satisfying the conditions of Lemma 1), constant
0 ≤ λ ≤ 1 and values v1, v2, . . . , vn ≥ 0, we can bound the change in value of g
on scaling the values vi by λ as follows:

g(v1, . . . , vi, . . . , vn) ≥ τg(λ) · g(λ · v1, . . . , λ · vi, . . . , λ · vn) (12)

We use this to characterize the sequence of position discounts and their smooth-
ness, which is a key parameter of the main theorem. Thus for a utility measure
with function F and γi discount factors, we define:

ΓF = 1−min
i
τF (

γi+1

γi
) (13)

We can now characterize the regret suffered by the SoPer-R algorithm for
list-based utilities, as shown below in Theorem 1.

Theorem 1. For any w∗ ∈ Rm and ‖φ(x,y)‖
2 ≤ R the average regret of the
SoPer-R algorithm can be upper bounded as:

REGT ≤ 1

ηT

T−1∑
t=0

Ei[piξ̄t] +
βR‖w∗‖

η
+

√
2
√
4− β2R‖w∗‖
η
√
T

. (14)

with: δi ≥
(
ΓF · 1−pi

pi

)
, η = mini piαi and β = (1 − βgr) =

1
2 .

Before presenting the proof of the theorem, we first analyze the structure of the
regret bound. The first term on the right-hand side characterizes in how far the
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user feedback violates the desired αi, δi-informative feedback assumption due to
model misspecification and bias/noise in the user feedback. This term implies
that the regret does not necessarily converge to zero in such cases.

The second term results from the fact that we can only guarantee a βgr-
approximate solution for greedy Algorithm 1. In practice, however, the solutions
computed by greedy Algorithm 1 tend to be much better, making the second
term much smaller than in the worst case.

The third and final term converges to zero at a rate of T 0.5. Note that none
of the terms in the bound depend explicitly on the number of features, but that
that it scales only in terms of margin R||w∗||.

Proof. From Lemma 1, we get that:

w�
t φ(xt,yt) ≥ βgrw

�
t φ(xt, ȳt)

w�
t (φ(xt, ȳt)− φ(xt,yt)) ≤ (1− βgr)w

�
t φ(xt, ȳt) ≤ βR‖wt‖ (15)

Next, we bound the �2 norm of wT :

‖wT‖2 = ‖wT−1‖2 + 2w�
T−1(φ(xT−1, ȳT−1)− φ(xT−1,yT−1))

+ ‖φ(xT−1, ȳT−1)− φ(xT−1,yT−1)‖2

≤ ‖wT−1‖2 + 2β‖wT−1‖R+ 4R2

≤ (βT +
√
4− β2

√
2T )2R2 (16)

Eq. (15) is used for the second inequality. The last line is obtained using the
inductive argument made in [14]. Similarly we bound E[w�

Tw∗] using Cauchy-
Schwartz and concavity:

‖w∗‖E[‖wT+1‖] ≥ E[w�
Tw∗] =

T−1∑
t=0

E[U(xt, ȳt)− U(xt,yt)] (17)

Now we use the αi, δi-informativeness condition:

E[Ui(xt, ȳt)−Ui(xt,yt)]≥αi
(
Ui(xt,y

∗,i
t )−Ui(xt,yt)

)
+ δiUi(xt,yt)− ξ̄t

≥ η

pi

(
Ui(xt,y

∗,i
t )− Ui(xt,yt)

)
+ δiUi(xt,yt)− ξ̄t (18)

Next we bound the expected difference in the social utility between ȳt and yt
IF a user of type i provided feedback at iteration t:

Δi=E[U(xt, ȳt)−U(xt,yt)]≥−ΓF
∑
j �=i

pjUj(xt,yt) + piE[Ui(xt, ȳt)−Ui(xt,yt)]

= −ΓF (U(xt,yt)− piUi(xt,yt)) + piE[Ui(xt, ȳt)− Ui(xt,yt)]

≥−ΓFU(xt,yt)+piΓFUi(xt,yt)+η
(
Ui(xt,y

∗,i
t )−Ui(xt,yt)

)
+piδiUi(xt,yt)−piξ̄t

≥ η
(
Ui(xt,y

∗,i
t )− Ui(xt,yt)

)
+ ΓF

(
Ui(xt,yt)− U(xt,yt)

)
− piξ̄t (19)
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Algorithm 3. Social-Set-Based-Perceptron(C,M, p)

1: Function SetFeedback(y,D)
2: ȳ ← y {Initialize with presented object}
3: DO ← D/y[1 : M ] {Clicks on docs outside top M}
4: for i = 1 · · ·min(C, |DO |) do
5: c ← DO [i] {Clicked document}
6: u ← Random (unclicked) document from y[1 : M ] {Non-clicked document}
7: Swap(ȳ[ju], ȳ[jc])
8: return ȳ

The first line is obtained by using Lemma 2 and definition of ΓF (Eq. 13). The
second line uses the definition of the social utility (Eq. 1). The third line uses
Eq. 18. The fourth step uses the condition on δi and rearranging of terms. Note
that the expectations in the above lines are w.r.t. the user feedback (and the
feedback construction process).

We next consider the expected value of Δi (over the user distribution):

Ei[Δi] = E[U(xt, ȳt)−U(xt,yt)] ≥ η
(
Ei[Ui(xt,y

∗,i
t )]− U(xt,yt)

)
−Ei[piξ̄t]

≥ η
(
U(xt,y

∗
t )− U(xt,yt)

)
−Ei[piξ̄t] (20)

where the second line uses the fact that Ei[Ui(xt,y
∗,i
t )] ≥ U(xt,y

∗
t ). We can put

together Eqns. 16, 17 and 20 to give us the required bound.

4.2 Social Perceptron for Sets (SoPer-S)

While DCG-style position discounts γi that decay smoothly are often appropri-
ate, other models of utility require more discrete changes in the rank discounts.
The coverage metric is an example of such a metric, which measures what frac-
tion of the users will find atleast 1 document relevant to them in the set of M
documents [11, 8, 12]. We call these metrics set-based, since they consider the
firstM documents in a ranking as a set (i.e., position within the top-M positions
does not matter). Clearly, we can model such metrics by setting the γi in the
aggregation step (defined in Eq. 8) as

γi =

{
1 if i ≤M

0 if i > M.

However, the bound in Theorem 1 can be rather loose for this case, and the
pairwise feedback construction model “wastes” information. In particular, since
utility is invariant to reordering in the topM or below the top M , only pairwise
feedback between positionM andM +1 provides information. To overcome this
problem, we now present an alternate algorithm that is more appropriate for
set-based utility functions.

The Social Perceptron for Sets (SoPer-S), shown in Algorithm 3, uses the same
basic algorithm, but replaces the feedback mechanism. Now, clicked documents
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outside the top M are swapped with a random non-clicked document in the
top M . This leads to a feedback set ȳt (of size M), that contains more (or at
least as many) of the user’s preferred documents than the top M elements of
the presented ranking. Note that during the feedback creation, we only consider
the first C clicks outside the top M . This parameter C is used to restrict the
difference between the feedback set and the presented set. We now state a lemma
we will use to bound the regret of the SoPer-S algorithm.

Lemma 3. For any non-negative, submodular function g and set X with |X | =
n, we can lower bound the function value of a random subset of size k as:

EY :Y⊆X,|Y |=k[g(Y )] ≥ k

n
g(X) (21)

Using Lemma 3, we can now characterize the regret suffered by the SoPer-S
algorithm for set-based utilities, as shown below in Theorem 2.

Theorem 2. For any w∗ ∈ Rm and ‖φ(x,y)‖
2 ≤ R the average regret of the
SoPer-S algorithm can be upper bounded as:

REGT ≤ 1

ηT

T−1∑
t=0

Ei[piξ̄t] +
βR‖w∗‖

η
+

√
2
√
4− β2R‖w∗‖
η
√
T

. (22)

with: δi ≥
(
C
M · 1−pi

pi

)
, η = mini piαi and β = (1− βgr) =

1
e .

Note that the proposed algorithms are efficient (due to the online updates) and
scalable with the greedy algorithm requiring O(nk) time to find a length k
ranking over n documents. This can be further improved using lazy evaluation.

5 Empirical Evaluation

In this section, we empirically analyze the proposed learning algorithms for the
task of extrinsic [1] search result diversification. In particular, we (a) explore
how well the algorithms perform compared to existing algorithms that do single-
query learning; we (b) compare how close our algorithms get to the performance
of algorithms that require expert annotated examples of socially optimal ranking
for cross-query learning; and (c) we explore the robustness of our algorithm to
noise and misspecification of the utility model.

5.1 Experiment Setup

We performed experiments using the standard diversification dataset from the
TREC 6-8 Interactive Track. The dataset contains 17 queries, each with binary
relevance judgments for 7 to 56 different user types, which we translate into
binary utility values. Similar to previous work [9], we consider the probability
of a user type to be proportional to the number of documents relevant to that
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Table 1. Summary of key properties of the TREC dataset

Statistic Value

Average number of documents per query 46.3
Average number of user types 20.8
Fraction of docs. relevant to > 1 user 0.21
Average number of users a document is relevant for 1.33
Fraction of docs. relevant to most popular user 0.38
Average probability of most popular user 0.29
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Fig. 2. Performance of different methods for single-query learning to diversify. Perfor-
mance is averaged over all queries, separately considering Set Utility (Left) and List
Utility (Right). Standard error bars are shown in black.

user type. Also following [9], we only consider documents that are relevant to at
least 1 user type to focus the experiments on learning to diversify, not learning
to determine relevance. Table 1 summarizes some key properties of the data.

To simulate user behavior, we use the following model. Users scan the doc-
uments of a ranking in order and click on the first document they consider
relevant. Each (binary) decision of relevance is made incorrectly with a small
probability of error. This error probability was set to zero for most experiments
but later varied when studying the effect of user noise.

Unless mentioned otherwise, we used the coverage function (F (x1, . . . , xn) =
maxi xi) to define the submodular function for utility aggregation. We measured
performance of the different methods in terms of the utility being optimized -
i.e., Set Utility (of size 5 sets) for the Set-Based methods and List Utility (up to
rank 5) with DCG discounting factors, for the List-Based methods. Additionally
we normalize the maximum scores per query to 1 (i.e., ∀x : U(x,y∗) = 1), so
as to get comparable scores across queries. We report the performance of each
algorithm in terms of its running average of these scores (i.e., 1−REGT ).
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Fig. 3. Set (L) and List (R) Utilities for learning to diversify across queries

5.2 Can We Learn to Diversify for a Single Query?

We first evaluate our algorithms in the setting of the Ranked Bandits algorithm
[11], which serves as a baseline. The Ranked Bandit algorithm learns a separate
model for each query and cannot generalize across queries. Furthermore, its
original version was limited to optimizing the coverage function, corresponding
to the max aggregation in our framework. We use the UCB1 variant of the
Ranked Bandits algorithm, which was empirically found to be the best variant.

As a second baseline we report randomly ordering the results. Note that this
is a competitive baseline, since (a) all documents are relevant to at least 1 user,
and (b) the probability of users is proportional to the number of documents
relevant to them.

For the SoPer-R and SoPer-S algorithms, documents were represented as unit-
norm TFIDF word vectors. All learning algorithms were run twice for each of the
17 queries (with different random seeds) and the results are averaged across all 34
runs. As seen from Figure 2, the proposed algorithms perform much better than
either of the two baselines. The Ranked Bandits algorithm converges extremely
slowly, and is barely better than the random baseline after 1000 iterations. Both
the SoPer-R and SoPer-S algorithm are able to learn substantially faster. Already
within 200 iterations, the SoPer-S method is able to provide at least 1 relevant
document to 80% of the user population, while random and Ranked Bandits
perform at around 65%. Thus both proposed methods are clearly able to learn
the diversity required in such rankings from individual user feedback.

We also explore variants of the SoPer-S and SoPer-R algorithms where we
omit the final step of clipping negative weights to 0. While the unclipped ver-
sions of both algorithms still perform better than random, they fall short of the
corresponding clipped versions as seen from Figure 2. Thus we can conclude
that ensuring non-negative weights not only guarantees theoretical results, but
is important for empirical performance.
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5.3 Can We Learn a Cross-Query Model for Diversification?

While the previous experiments indicate that the new algorithms can learn to
diversify for a single query, such single-query learning is restricted to frequent
queries that are issued hundreds of times. Instead, it is more desirable for diver-
sification models to be trained across a distribution of queries.

To get a suitable representation that allows cross-query learning, we use the
same word-importance feature vectors that were used in previous work on learn-
ing from expert-annotated feedback [8, 9]. These features capture both the over-
all importance of a word (e.g., “Does the word appears in at least x% of the
documents?”), as well as the importance in the documents of the ranking (e.g.,
“Does the word appear with frequency of atleast y% in the document?”). Using
different such values of x and y along with other similar features, we get a total
of 1197 features.

To produce the following results, all methods were run for 1000 iterations with
5 random seeds. The values reported are averaged across these 5 runs.

In this cross-query setting, we cannot apply Ranked-Bandits as it only works
for a single query. Thus we again use the Random baseline in this experiment.
Existing supervised learning algorithms for diversification are also not applicable
here, as they require explicit training data of socially optimal rankings (i.e.,
knowledge of all document-user relevance labels). However, we would like to
estimate how well our algorithms can learn from (far weaker) implicit feedback
data, in relation to conventional methods trained in such a full information
setting. Thus we trained a structural perceptron, which internally uses the greedy
algorithm for prediction. This uses the same feature vector representation as our
algorithm, but is provided the social optimal at every iteration.

Fig. 3 shows the average utility for the SoPer-S and SoPer-R algorithms, as
well as the random baseline and the Structured Perceptron after 1000 iterations.
Both SoPer-S and SoPer-R substantially outperform the random baseline, indi-
cating that the proposed algorithms can learn to diversify for this cross-query
setting. Both methods get close to the performance of the supervised method
despite learning from far weaker feedback. For example, the SoPer-S method
is able to satisfy 70% of the user population, as compared to the 64% of the
baseline and 72% of the Structured Perceptron. We also again evaluate the un-
clipped versions of the algorithms. For the the unclipped SoPer-R, performance
never rises above random, indicating the practical importance of maintaining a
positive weight vector to ensure good performance of the greedy algorithm.

5.4 How Robust Are the Algorithms to Misspecification of the
Model?

While the previous experiments showed that the algorithms can learn efficiently
when the submodular function of the user population (as used in computing
the personal and social utilities) and the algorithm match, we now study what
happens when there is a mismatch. More specifically, for the cross-query diversi-
fication setting, we ran the algorithms with three different submodular functions
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Table 2. Set and List Utilities (with standard error) when the two submodular func-
tions i.e., of the population (fixed for row) and the algorithm (fixed for column) are
mismatched

UserF SET

Max Sqrt Lin Rand

Max .699 ±.005 .695 ±.005 .683 ±.005 .646 ±.006
Sqrt .675 ±.006 .686 ±.006 .706 ±.006 .634 ±.006
Lin .509 ±.006 .532 ±.006 .574 ±.007 .492 ±.006

UserF LIST

Max Sqrt Lin Rand

Max .630 ±.007 .620 ±.006 .618 ±.006 .557 ±.006
Sqrt .656 ±.007 .654 ±.007 .684 ±.006 .610 ±.007
Lin .500 ±.006 .504 ±.006 .566 ±.007 .474 ±.007

Table 3. Ranking performance in the presence of feedback noise

Utility Random No Noise Noise

Set .646 ±.006 .699 ±.005 .694 ±.006
List .557 ±.006 .630 ±.007 .631 ±.007

as defined by the concave function F : a) Max: F (x1, . . . , xn) = maxi xi; b) Lin:
F (x1, . . . , xn) =

∑
i xi; c) Sqrt: F (x1, . . . , xn) =

√∑
i xi. We also varied the

population utility to each of these three functions, and obtained the average
utility value (after 200 iterations) for all 9 combinations of functions. Note that
we still ensured that SoPer-R was used to optimize the List based utilities, while
SoPer-S was used for set-based ones.

The results (averaged over 5 runs) are shown in Table 2. We find that for both
methods and all three population utility functions, the utility value is always
better than the random baseline, regardless of the algorithm and function used.
While the values may be highest when the functions align, we still find significant
improvements over the baselines even when there is a mismatch. In fact, for some
situations we find that the utility is highest when there is a mismatch: The case
of a linear algorithm utility but SQRT population utility is one such example. We
conjecture that is due to the relatively small set/list size of 5. On short rankings
LIN and SQRT do not differ as much as on longer rankings. Additionally LIN
does not suffer any approximation degradation as the greedy algorithm always
provides an optimal solution for LIN.

5.5 Is the Method Robust to Noise in the Feedback?

In the real world, users make errors in judging the relevance of documents. To
model this, we simulated users who make an error in each binary relevance
judgment with 0.1 probability. This means that, as users go down the ranking,
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they may flip the true relevance label. Users now return as feedback the first
document they perceive as relevant, which contains significant noise. We ran
both our algorithms and measured the average utility after 200 iterations in the
cross-query setting, with matching algorithm and population utilities using the
Max function.

Table 3 shows the results (averaged over 5 runs) comparing the performance
of the algorithms in both the noise-free and noisy settings. We see that the
performance for both SoPer-S and SoPer-R is almost the same, with the gap to
the baseline still being significant. The robustness to noise is also supported by
the theoretical results. In particular, note that the definition of αi, δi-informative
feedback only requires that feedback be informative in expectations, such that
the slack terms ξ̄t may be zero even for noisy feedback. In general, we conclude
that the algorithms are robust and applicable in noisy settings.

6 Conclusions

We proposed two online-learning algorithms in the coactive setting for aggregat-
ing the conflicting preferences of a diverse user population into a ranking that
aims to optimize social utility. Formalizing the learning problem and model as
learning an aggregate utility function that is submodular in the elements of the
ranking and linear in the parameters, we were able to provide regret bounds
that characterize the worst-case behavior of the algorithm. In an empirical eval-
uation, the algorithms learned substantially faster than existing algorithms for
single-query diversification. For learning cross-query diversification models, the
algorithms are robust and the first that can be trained using implicit feedback.
This work was supported in part by NSF Awards IIS-1217686, IIS-1247696, IIS-
0905467, the Cornell-Technion Joint Research Fund, and a Google Fellowship.
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Shokouhi, M., Song, D., Yilmaz, E. (eds.) ICTIR 2009. LNCS, vol. 5766, pp. 188–
199. Springer, Heidelberg (2009)

7. Santos, R.L., Macdonald, C., Ounis, I.: Selectively diversifying web search results.
In: CIKM, pp. 1179–1188 (2010)



144 K. Raman and T. Joachims

8. Yue, Y., Joachims, T.: Predicting diverse subsets using structural SVMs. In: ICML,
pp. 1224–1231 (2008)

9. Raman, K., Joachims, T., Shivaswamy, P.: Structured learning of two-level dynamic
rankings. In: CIKM, pp. 291–296 (2011)

10. Kulesza, A., Taskar, B.: Learning determinantal point processes. In: UAI, pp. 419–
427 (2011)

11. Radlinski, F., Kleinberg, R., Joachims, T.: Learning diverse rankings with multi-
armed bandits. In: ICML, pp. 784–791 (2008)

12. Slivkins, A., Radlinski, F., Gollapudi, S.: Ranked bandits in metric spaces: learning
optimally diverse rankings over large document collections. JMLR 14, 399–436
(2013)

13. Shivaswamy, P., Joachims, T.: Online structured prediction via coactive learning.
In: ICML (2012)

14. Raman, K., Shivaswamy, P., Joachims, T.: Online learning to diversify from implicit
feedback. In: KDD, pp. 705–713 (2012)

15. Raman, K., Joachims, T., Shivaswamy, P., Schnabel, T.: Stable coactive learning
via perturbation. In: ICML (2013)

16. Yue, Y., Guestrin, C.: Linear submodular bandits and their application to diversi-
fied retrieval. In: NIPS, pp. 2483–2491 (2012)

17. Joachims, T., Granka, L., Pan, B., Hembrooke, H., Radlinski, F., Gay, G.: Eval-
uating the accuracy of implicit feedback from clicks and query reformulations in
web search. TOIS 25(2) (April 2007)

18. El-Arini, K., Guestrin, C.: Beyond keyword search: discovering relevant scientific
literature. In: KDD, pp. 439–447 (2011)

19. Blumrosen, L., Dobzinski, S.: Welfare maximization in congestion games. In: EC,
pp. 52–61 (2006)

20. Meyers, C.A., Schulz, A.S.: The complexity of welfare maximization in congestion
games. Netw. 59(2), 252–260 (2012)

21. Dobzinski, S., Schapira, M.: An improved approximation algorithm for combina-
torial auctions with submodular bidders. In: SODA, pp. 1064–1073 (2006)

22. Feige, U.: On maximizing welfare when utility functions are subadditive. In: STOC,
pp. 41–50 (2006)

23. Boutilier, C., Caragiannis, I., Haber, S., Lu, T., Procaccia, A.D., Sheffet, O.: Op-
timal social choice functions: a utilitarian view. In: EC, pp. 197–214 (2012)
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Abstract. In the age of information overload, collaborative filtering and
recommender systems have become essential tools for content discovery.
The advent of online social networks has added another approach to
recommendation whereby the social network itself is used as a source for
recommendations i.e. users are recommended items that are preferred by
their friends.

In this paper we develop a new model-based recommendation method
that merges collaborative and social approaches and utilizes implicit
feedback and the social graph data. Employing factor models, we repre-
sent each user profile as a mixture of his own and his friends’ profiles.
This assumes and exploits “homophily” in the social network, a phe-
nomenon that has been studied in the social sciences. We test our model
on the Epinions data and on the Tuenti Places Recommendation data, a
large-scale industry dataset, where it outperforms several state-of-the-art
methods.

1 Introduction

Online social networks (OSN) provide users with new forms of interaction that
currently shape the social lives of millions of people. The main ingredient of the
success of OSN’s is the ease with which friendships, groups and communities
arise. These groups often arise among like-minded users, i.e. users that share the
same interests. To explain our inexorable tendency to link up with one another
in ways that reinforce rather than test our preferences sociologists in the 1950s,
coined the term “homophily” a Greek word meaning love of the same.

Fundamental to online social networks and their commercial success is the
commercial exploitation of this phenomena. The principle of homophily is used
to recommend products and services through the social graph, i.e. if your friends
like an item it will be recommended to you. In effect, the social graph is used as
the recommendation engine. Leveraging the social graph to serve the user with
potentially useful services ( e.g. places, videos, coupons, etc.) can improve the
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satisfaction the involvement and the time the user spends on the network. Most
recommendation algorithms work by modeling the bipartite graph of user-item
preferences. In effect, an implicit social network among users who share the same
taste is built and exploited. Methods based on this principle are often referred
to as Collaborative Filtering (CF) methods.

Notation. Before going any further with CF some notations have to be intro-
duced. The data from which recommendations can be produced is typically de-
rived from interactions between users i ∈ U and items j ∈ M with a response
Yij ∈ Y. The data for n total users interacting with a collection of m items
can be thought of as a sparse n ×m so-called user-item matrix Y ∈ Y |U|×|M|

where |U| denotes the cardinal of set U . In this context, Yij = 1 indicates the
existence of an interaction (purchase, rating, etc.) between user i and item j. In
this sense, Yij = 0 is special since it does not indicate that a user dislikes an
item but rather that data is missing. We thus only have implicit information on
which items a user likes. To thus avoid an estimator that is overly optimistic
with regards to user preferences we need to take into account unobserved entries
(Yij = 0) as some form of negative feedback. Moreover from the social network
graph we know the set of friends Fi ⊂ U of user i.

A class of CF methods often used in recommender systems is memory or
similarity based methods [1] that work by computing similarity measures (e.g.
Pearson correlation) between users. Another common approach to collaborative
filtering and recommendation is to fit a factor model ( e.g. [2] ) to the data.
For example by extracting a feature vector Ui,Mj for each user and item in the
data set such that the inner product of these features minimizes an explicit or
implicit loss functional following a probabilistic approach). The underlying idea
behind these methods is that both user preferences and item properties can be
modeled by a number of latent factors.

The basic idea in matrix factorization approaches is to fit the original Y ma-
trix with a low rank approximation F = UM where matrix U contains the user
features and M the item features. More specifically, the goal is to find such an
approximation that minimizes the sum of the squared distances

∑
ij(Yij −Fij)2

between the known entries in Y and their predictions in F . Combining the two
approaches, i.e. direct recommendation over the social graph and recommenda-
tions using a collaborative filtering method can yield significant advantages both
in terms of the quality of the recommendations but also in terms of computa-
tional efficiency and speed.

In most recommendation domains the data come in the form of implicit feed-
back (purchases, clicks, etc.) in contrast to explicit feedback such as ratings
where a user explicitly expresses his positive, neutral or negative attitude to-
wards an item. A key challenge in modeling implicit feedback data is defining
negative feedback, since in this case the observed data (user-item interactions)
can only be considered as a form of positive feedback. Moreover for non-observed
user − item interactions we cannot be certain if the user did not consider the
items or if the user considered the items and simply chose not to interact with



Socially Enabled Preference Learning from Implicit Feedback Data 147

the items (reflecting a negative feedback). Hence we cannot ignore these entries
as this would lead to a model that would be overly optimistic with regard to
user preferences.

The Socially Enabled Collaborative Filtering model denoted as SECoFi in-
troduced here has several novel aspects:

– We develop a collaborative filtering model that also directly models the social
interactions and quantifies the influence/trust between each users based on
the implicit feedback data from the user and his friends.

– We develop a way to quantify and use this influence in the proposed col-
laborative filtering model, to our knowledge this is the first model to do so
without precomputing any affinity or similarity measures among users.

– SECoFi scales linearly to the number of user-item interactions and is tested
on a large-scale industry dataset with over 10M users where it outperforms
state-of-the-art socially enabled collaborative filtering methods.

– We extensively test SECoFi on two datasets (Tuenti, Epinions) and compare
it to three state-of-the-art socially-enabled collaborative filtering methods
and a matrix factorization method.

2 Socially Enabled Collaborative Filtering

The main idea behind factor models is to fit a model of a d dimensional latent
user U ∈ R|U|×d and item factors M ∈ Rd×|M| so that the scores between a
user and an item calculated by the inner product between the corresponding
rows of the user i and item j latent factor matrices Fij = UiMj can be used
to provide recommendations typically by displaying the top N scoring items to
the user. The latent factors U and M are typically computed by minimizing
some objective functions that either stem from regularized loss functions [3,4,5]
or are derived from probabilistic models [6]. In both cases the objectives are of
the form:

L(F, Y ) +Ω(F ) (1)

where L(F, Y ) is typically a loss function such as Frobenius norm of the error
‖F − Y ‖2F and Ω(F ) is a regularization term preventing from overfitting. A
typical choice is the Frobenius norm of the factors ‖M‖2F + ‖U‖2F [7].

2.1 Friends Influence

The key challenge of this work is to include the influence of the social graph
in a matrix factorization model. We choose to model the users preferences as
a mixture of his own and those of his friends. To this end we change the score
function to include the influence of the friendship network, and thus the score
function becomes:

Fij = UiMj +
∑
k∈Fi

αik
|Fi|

UkMj (2)
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where αik is a weight parameter that encodes how much friend k influences user
i. This weight α takes value between 0 and 1.

As we presume “homophily” in the social network it is reasonable to assume
that some of the users latent preferences might not have been expressed in the
user-item data but could instead be encoded in the users friendship network.

Moreover the score function in Equation 2 encodes the fact that the user is
“influenced” by his friendship network and the weight αik quantifies the amount
of influence each individual friend k has on the user i. OSN users tend to have
dozens of friends and we can expect that the user might have similar preferences
to only a fraction of his friends. Moreover it should be noted that the influence is
not necessarily symmetric as a user might be “influenced” by a friend but might
not be exerting influence on his friend in the same manner.

Given this score function and the objective function in Equation 1, we can
devise an objective function with respect to the U , M factors and the influ-
ence weights αik. We define the matrix A such that Aik = αik, ∀i, ∀k ∈ Fi, 0
otherwise.

min
U,M,A

J =
∑

(i,j)∈Y
cij
(
UiMj +

∑
k∈Fi

αikUkMj

|Fi|
− Yij

)2
+ΩU,M,A (3)

where ΩU,M,A = λ1‖U‖2F + λ2‖M‖2F + λ3‖A‖2F is a regularizer term and cij is
a constant defined to give more weight to the loss function when dealing with
observed entries Yij = 1 than when Yij = 0.

2.2 Optimization

Although Equation 3 is not jointly convex in U , M , and A, it is still convex
in each of this factors whenever the remaining two are kept fixed. Since we
are dealing with implicit feedback data, we cannot give the same importance
to information we know to be true, (i.e. the user clicked/purchased an item
represented as a 1 in the Y matrix and thus showed and interest in it), and to
information we do not know the real meaning (i.e. the user had no interaction
with the item thus a 0 in the Y matrix and thus we are unsure about the
potential interest). Note that in contrast to factor models for explicit data (i.e.
ratings) where learning is performed only over the observed ratings in this case
we perform the optimization over the whole matrix Y including the unobserved
entries as a form of weak negative feedback.

We optimize the objective function in Equation 3 using the following block
Gauss-Seidel process: fixing alternatively two of the three parameters (U , M or
A), we update the third parameter. When two out of three parameters are fixed
the remaining problem is a basic and convex quadratic least-square minimization
that can be efficiently solved. So the optimization process consists in efficiently
updating, at each iteration, alternatively the user matrix U , the item matrix M
and the weight matrix A.

To get the proper updates for each of the three parameters (Ui, Mj and αii′),
we need to calculate the partial derivative of the objective in Formula 3 according
to the corresponding factor matrices.
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Update U. To compute the update for the factor vector of a single user i, Ui,
we calculate ∂J

∂Ui
the derivative of the objective with respect to the users factors

and set it to 0. We can then analytically solve this expression with respect
to Ui. To formulate the update it is convenient to write the equations in a
matrix form. To this end we define a diagonal matrix Ci ∈ R|M|×|M| such that
Cijj = cij . cij encodes the confidence we have in each entry yij in the Y matrix,
i.e. observed entries clicks/purchases etc. get high confidence and thus a higher
weight cij = 1 + βyij where e.g. β = 20 while when yij = 0 i.e. no action has
been taken by user i on item j, yij = 0 and thus cij = 1.

Ui =

(
Yi•CiMT − AiUMCiMT

|Fi|

)
(MCiMT + λ1I)

−1 (4)

In this update rule, the real problem is not the inversion of the d× d (which is
in O(d3)) matrix but the computation of MCiMT (which seems to be at first
glance O(|M| × d2)). Note that MCiMT is an operation quadratic in |M| the
number of items. Computing this product is too expensive even for the smallest
datasets since it has to be done for each user. In the spirit of [8] we can replace
MCiMT by MMT +M(Ci − I)MT . Computing MMT is independent of the
user i and thus can be calculated once before each iteration (and not for each
user i), and by cleverly choosing cij , the productM(Ci−I)MT can be computed
efficiently. Since cij = 1+βyij , the diagonal terms of Ci− I will be zero for each
j where yij = 0. we can thus just compute MYi(C

i − I)YiM
T
Yi
, where Yi is the

set of items of user i. Because matrix Y is by it’s nature very sparse, we have
|Yi| � |M|. This leads to a computational complexity of O(|Yi| × d2) which is
linear in the number of items user i had interactions.

Update M. To update matrix M , we use a matrix U ′ defined by U ′
i = Ui +∑

k∈Fi

αikUk
|Fi|

for each user i. Using U ′ the loss function becomes:

L(U,M,A) =
∑
i,j

cij(U
′
iMj − Yij)

2

The partial derivative calculation is pretty much straightforward and can be
easily written in a matrix notation if we use a diagonal matrix Cj , defined by
Cjii = cij

1. The update rule of Mj is as follows:

Mj = (U ′TCjU ′ + λ2I)
−1U ′TCjY•j (5)

To compute the expensive product, we propose to reuse the trick described
above by writing it U ′TCjU ′ = U ′TU ′ + U ′T

Yj
(Cj − I)YjU

′
Yj
, where Yj is the set

of the users that have purchased/consumed item j . Just like in the paragraph
concerning the update of U , we compute U ′TU ′ once before the iteration over
all items. The computational complexity of the update is U ′T

Yj
(Cj − I)YjU

′
Yj

is

O(|Yj | × d2).

1 Note that Cj ∈ R|U|×|U| while Ci ∈ R|M|×|M|.
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Update A. One approach for updating A consists in working row by row, i.e.
update Ai• for each user i. Since Ai• has the same sparsity structure as the
adjacency matrix of the social graph we only need to compute the values AiFi .
By using the same procedure as above and setting the partial derivative of the
objective to 0 we get:

AiFi = (Yi•CiMTUTFi
− UiMCiMTUTFi

)

(
UFiMCiMTUTFi

|Fi|
+ λ3

)−1

(6)

Note again that the computational cost for calculating the product
UiMCiMTUTFi

, is limited since we can employ here the same trick we used
in the update rules for U and M . The main computational bottleneck is in the
computation of the inverse of the matrix which is of size |Fi| × |Fi|, implying
a complexity in O(|Fi|3) i.e. the computation scales cubically to the number of
friends per user. Depending on the social network, if we have d � |Fi| for a
significative fraction of users, this update rule could be problematic.

Another approach for the update of α, is to compute them not in a user-
by-user fashion but relationship-by-relationship, i.e. update αii′ for given user
i and friend i′. By calculating the gradient and setting it to zero, we reach the
following update rule:

αii′ =

⎛⎝Yi• − UiM −
∑

k∈Fik �=i′

αikUkM

|Fi|

⎞⎠CiMTUTi′

(
Ui′MCiMTUTi′

|Fi|
+ λ3

)−1

(7)

In this case, we just have to invert a scalar. And we can use the same trick as in
the update of U to compute the productMCiMT . This can indeed be rewritten
as MCiMT = MMT + MYi(C

i − I)YiM
T
Yi
, where Yi is the set of the items

liked/purchased by the user i.
Given that the complexity of computing Equation 7 is linear to the number

of friends of i, while the complexity of Equation 6 is polynomial to the number
of friends of i we choose to use 7. Finally note that the α parameters provide a
relative measure of the influence (or trust) of a given user on his friends.

Given the optimization procedures for U , M and A we iterativly update each
of the factor matrices by keeping the other two factor matrices fixed. We repeat
this procedure until convergence.

Prediction. Using Equation 2 at prediction time can be slow since it requires
extensive memory access due to the need to retrieve the friends from the social
graph. To speedup the computation of the scores at prediction time we can
simply precompute the mixed user factors U ′

i = Ui +
∑

k∈Fi

αik

|Fi|Uk. The score

computation then becomes Fij = U ′
iMj .
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3 Related Work

Much of the current work on OSN data and collaborative filtering models utilize
the social graph data in order to impose additional constrains on the modeling
process. Some methods [9,10,11] leverage the OSN graph information in factor
models by adding an additional term to the objective function of the matrix
factorization that penalizes the distance |Ui− 1

|Fi|
∑

k∈Fi
Uk|2 between the factors

of friends. This forces profiles among users that are friends to be similar. In [9]
a refinement to this approach was presented whereby the penalization of the
distance between friends was proportional to a Pearson correlation similarity

measure |Ui −
∑

k∈Fi
simikUk∑

k∈Fi
simik

|2computed on the items the users had consumed.

This enforced even greater similarity among friends that have consumed the
same items.

Another approach [12,13] that builds on [14] adds the OSN information by
minimizing a second binary loss function

∑
k∈Fi

L(Sik, UiUk), where S the ad-
jacency matrix of the graph, in the objective function that penalizes mistakes in
predicting friendship. These models also leverage side information (i.e. user, item
features) in the model. A similar method utilizing both a social regularization
and a social loss function approach was introduced in [15].

In [16] a trust ensemble model is introduced, the user is modeled as an en-
semble of his own and his friends preferences. While the functional form of this
model has similarities with the approach introduced in the current work there
are two crucial differences: 1) their method only deals with explicit feedback
data (ratings) while we focus on implicit feedback data which is the norm in
industry applications, 2) they precompute the weight of the influence or trust
of friends on the users based on the ratings, while in SECoFi the interaction
weights are computed in the model. This allows us to compute the interaction
weights even when the users do not actually share a common subset of items. We
demonstrate in the Experiments section that these are essential components
for the performance of the model.

The matrix factorization approach for implicit feedback data introduced in
[8] relies on using a least squares loss function and uses a trick that exploits the
sparse structure of the data (dominated by non-observed entries) to speed up the
optimization process. This approach though does not include any OSN informa-
tion. An approach that leverages the social network for apps recommendation
was introduced in [17]. Approaches such as [18] and [19] exploit geolocation in-
formation and context to recommend places to user. The focus of the current
work is on the OSN integration for place recommandation.

4 Experiments

Tuenti Places. In the experiment section we use data from the places service
of the Tuenti OSN. Tuenti is Spain’s leading online Social Network in terms of
traffic. Over 80% of Spaniards aged 14-27 actively use the service and today
counts more than 14M users and over a billion daily page views. Early 2010,
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Table 1. Summary of the data used for the experiments

Users Places/Items Edges in SN

Tuenti 10M 100K 700M
Epinions 50K 140K 500K

a feature was added to the Tuenti web platform whereby users could tell their
friends where they were, and which places they particularly enjoyed. These places
where added to the users profile.

The Data. To test SECoFi, we used the Tuenti place-user interaction matrix,
as the matrix Y , that contains all the places the users have added to their profile.
We also used the social network F , i.e. the friendship matrix of Tuenti users.
The data contains about 10 million users and approximately 100,000 places.
Both of the matrices are very sparse, as each user has on average 4 places in
his profile and 60 friends. The social graph among the Tuenti users contains
approximately 700M edges that is each user has on average 70 friends. Note that
this is an industry-scale dataset where the user/places graph takes up 2GB of
storage space and the social graph data 22GB.

The Epinions data contains about 50k users and approximately 140,000 arti-
cles. Here users form a social graph ( 500k edges) based on the trust they show
on each others reviews/ratings. Unlike the Tuenti data, the Epinions data is in
the form of ratings with values between 1 and 5. We replace the rating values by
1 to convert the data to implicit feedback (just like in the KDD cup challenge
2007 who-rated-what? ).

In contrast to the Tuenti data the relationships of the users are much more well
defined in the Epinions data in that they reflect trust in another users opinion.
Social relationships as the ones in the Tuenti data capture a much wider range
of relationships between users e.g. family relationships, neighbours, classmates
etc. which might not always translate into trust/influence.

Evaluation Protocol. For the evaluation procedure we adopt a similar strategy
to [20]. We split the dataset into two parts, a training set to learn our model and a
test set for evaluation. The test set contains the last 25% of places or items added
to each users profile, and the training set contains all the remaining places/items
that where added in the users profile. For each user we draw randomly some
unobserved entries Yij = 0 assuming that these places/items are irrelevant to
the user. We use these randomly chosen unobserved entries for training some
of the methods in comparison (see Section 4). We used this protocol for both
datasets.

We trained the model to compute a score Fij for each user i place j in the test
set along with the randomly drawn irrelevant items and rank the items for each
user according to their scores. In recommendation algorithms we ultimately care
about the ranking of the items, we thus use ranking metrics for the evaluation.
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A popular list-wise ranking measure for this type of data is the Mean Average
Precision metric (MAP) which is particularly well suited to recommendations
ranking since it puts an emphasis in getting the first items in the ranked list
right. MAP can be written as in equation 8.

MAP =
1

|U|

|U|∑
i=1

|M|∑
k=1

P (k)Yik

|Yi|
(8)

Where P (k) is the precision at the cut-off k. We also compute the RANK metric
described in [8] to evaluate the performance of the different models. In contrast
to the MAP metric, here smaller values indicate better performance. As we have
no rating data, the RANK metric can be written, as follows:

RANK =

∑
i,j

Yijrankij

|Y| (9)

Where rankij is the percentile-ranking of the item j for a given user i.

Fig. 1. The MAP and RANK metrics with respect to the value of the coefficient β

Methods in Comparison. The first method we compare against is a matrix
factorization method based on alternating least squares optimization described
in [8]. This method is tailored to implicit feedback data, but does not take the
social graph into account. We can gauge based on the comparison with this
method how much the use of the social data improves the recommendation
performance. In the remaining we denote this method as iMF.
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The second method we compare against is of [12], which takes advantage of
the social graph along with contextual information to perform their recommen-
dation. The resulting model is used to predict both items and friends for a given
user. As the focus here is on the social aspect we do not use any contextual
information but only the social graph. Thus adapting their objective function to
our evaluation environment we end up optimizing:

min
U,M

∑
(i,j)∈Y

L(UiMj, Yij) +
∑

i,i′∈Fi

L(UiU
T
i′ , Sij) +ΩU,M (10)

Where S represents the social graph (in which Sii′ is 1 if the users i and i′ are
friends, 0 otherwise), and where L and Ω are respectively the loss function and
the regularizer. The method was tested with several different loss function, we
picked the one that gave the best results, the logistic loss function and used
a simple l2-norm for the regularization term. Following [12] a stochastic gradi-
ent descent algorithm was used to optimize this objective. For the rest of the
experiment section, we will denote this method as LLA.

The third method we compare against was introduced in [9] and takes the
social data into account by penalizing the l2 distance between friends in the
objective function. Two ways are proposed to penalize the distance between
friends, we choose the one that gave them the best performance, i.e the one
denoted individual-based regularization. The objective function minimized in [9]
is the following:

min
U,M

∑
(i,j)∈Y

(UiMj − Yij)
2 +

∑
i,i′∈Fi

sim(i, i′)‖Ui − Ui′‖2F + λ1‖U‖2 + λ2‖M‖2

Where sim(i, i′) is a similarity score between a user i and a user i′. This sim-
ilarity can be computed using vector space similarity or a Pearson correlation
coefficient. Also here a stochastic gradient descent algorithm is used to optimize
the objective function. In the remainder of this section we denote this method
as RSR.

The last method we compare against is the one described in [16]. The focus
of that work is on explicit feedback (ratings) and the social trust matrix A is
precomputed. The model is then trained by optimizing a simple loss among
the factors U and V , using a user-item rating dataset. We fit their method to
the implicit feedback problem by, precomputing and fixing the matrix A at the
beginning, and using the ponderation trick on the objective (with the use of the
coefficients cij) to make implicit feedback learning possible. We will denote this
method as Trust Ensemble. We also compare SECoFi to a baseline : the average
predictor, which will recommend the overall most popular places to each user.

Computational Complexity. We first validate the efficiency of SECoFi by
measuring the time needed to execute one iteration of the SECoFi method using
a varying portion of the training data. We expect the method to show linear
scalability in terms of the users and the observed entries in the user/item dataset.
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To this end we use the Epinions data and run one iteration of the algorithm for
each random data split. Those tests has been performed using a single Intel i5
core. The resulting timing information is displayed in Figure 2. Note the linear
growth in the running-time of the method given the different data splits.
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Fig. 2. The running time of one iteration of SECoFi given different random data splits
20%, 40% etc. over the Epinions data

Results on the Tuenti Data. We performed cross-validation for model se-
lection. We randomly initialize U and M drawing from a uniform distribution
between 0 and 1. For the initialization of the friendship weight αij , we found out
empirically that the best performance is achieved by initializing with αij = 1. We
also estimate that the optimal value of the parameter β (used in the coefficient
cij) is β = 30, according to the MAP and the RANK metrics (see Figure 1). We
used this value of β for all the experiments.

We validate the performance of SECoFi also over a range of values of the
number of factors d parameter (1, 5, 10, 15 and 20) on Tuenti. We repeated the
experiments several (10) times for each method and report the mean values of
the runs along with the standard deviations. We run experiments for different
values of d for each method, results are shown in Figure 3.

We observe that even for a small number of factors, SECoFi outperforms the
alternative social LLA and RSR enabled methods both in terms of MAP and
RANK (over 17% improvement for the MAP and over 14% for the RANK).
Moreover SECoFi is significantly better than iMF in terms of MAP, and for
higher values of d our method becomes statistically equivalent to iMF in terms
of RANK. Note that for recommendations where only a small number of items
k is shown to the user the importance of MAP is bigger then RANK since MAP
is a top-biased evaluation measure, i.e. placing items at the top of the list is
more important then lowering the overall ranking of the all the items. SECoFi
clearly outperforms in terms of MAP and RANK the Trust Ensemble method.
Surprisingly iMF seems to outperform the alternative socially-enabled LLA and
RSR methods in the comparison. One of the reason for this might be the strong
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Fig. 3. The MAP and RANK metrics of the various methods on the Tuenti data
depending on the number of factors d

sparsity of the data which bodes well with methods that take all the non-observed
entries into account.

The relative performance between the methods does not depend strongly on
the number of latent variables used. Except for Trust Ensemble method which
was statistically equivalent to our method for small dimension, but we clearly
see the difference for bigger dimensions. Indeed, SECoFi outperforms Trust En-
semble as well in terms of MAP as of RANK for a number of factors d ≥ 10.
SECoFi outperforms the other methods for all the values of d we tested with.

We thus confirm that the relative performance of our model does not depend
on d for most of the alternative methods, we also observe that the relative perfor-
mance SECoFi method with regards to Trust Ensemble is enhanced with higher
numbers of factors. We also observe that the optimal regularization parameters
for SECoFi were always the same, independent of the value of d. This eases
the model selection process particularly compared to SGD based methods where
both a learning rate and a regularizer need to be tuned. Moreover it seems that
methods that are based on alternated least-square (ALS) optimization perform
better predictions than those that use SGD. Note that the SGD-based methods
subsample the unobserved entries to avoid biasing the estimator.

Experiments on the Epinions Data. We repeat the experimental evaluation
of SECoFi on the publicly available Epinions2 dataset. We follow the same pro-
cedure as described for the Tuenti data, the experiment results for the different
methods on the Epinions data are shown in Figure 4.

2 http://snap.stanford.edu/data/soc-Epinions1.html

http://snap.stanford.edu/data/soc-Epinions1.html
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Fig. 4. The MAP and RANK metrics of SECoFi and the remaining methods on the
Epinions dataset

From the results we can draw similar conclusions to the experiments with the
Tuenti data: learning the friendship weights A during the optimization process
significantly improves the performance over methods that just use the social
network information as proposed by [16] without quantifying these relationships.
Note that SECoFi outperforms the second best method Trust Ensemble by 2.4%
in terms of MAP and by 4.1% in terms of RANK, while SECoFi outperforms
the remaining methods in comparison by more then 6% both in terms of MAP
and RANK. We observe that ALS based methods that take all the “unobserved
entries” of the data into account perform better then SGD-based approaches that
sample the space of “unobserved entries”. Moreover SECoFi performs relatively
well even utilizing a smaller numbers of factors d. This can be particularly useful
in recommendation engines that need to be compact in terms of memory usage
e.g. on a smartphone.

In Figure 5 we plot the distribution of the values of α for the two datasets.
Recall that the values of alpha encode the degree of influence or trust among
users. We observe that for both of the datasets there is a bimodal distribution.
For the Epinions dataset, most of the values are between 0 and 1 (99%) and 70%
of the values are around 1, signalling strong trust relationships among users.
For Tuenti, fewer values of α are around 1, and most of the values are close
to 0. While there is still some significant influence/trust among users it is less
prevalent than in the Epinions dataset. This reflects the nature of the data: in
the Epinions dataset the social network of the users is based on the trust that the
users put on each others opinions/ratings while the social relationships on the
Tuenti network are of much broader scope and can range from close friendships
to simple acquaintances, thus we also expect that a smaller fraction of these
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(a)

(b)

Fig. 5. Distribution of the values of α on Tuenti (a) and Epinions (b) datasets. The
distributions are bimodal.

relationships will reflect trust/influence. Note also that SECoFi outperforms the
competing methods to a higher degree on the Epinions data, another indication
that the social information in this dataset provides more information on the
preferences of the users.

Another important point is that SECoFi depends less on the “quality” of the
users Social Network. In fact iMF, which does not utilize OSN information, is the
best runner up in the experiments on the Tuenti dataset. This can be attributed
to the more relaxed definition of friends in a general purpose social network
such as Tuenti where we can expect that not all friends share the same taste
and preferences with the user. Alternative approches relying on a non-adaptive
contribution of friends (RSR, LLA) suffer more in this context, while learning
the weights α helps SECoFI to keep only the useful part of the users social
network with respect to the recommendations.
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5 Conclusions

We presented a method minimizing a novel objective function that takes advan-
tage of the social graph data to perform personalized item recommendation on
implicit feedback data. SECoFi outperforms alternative state-of-the-art methods
in terms of ranking measures and also provides the added benefit of quantify-
ing the influence/trust relationships among users. The latter can be particularly
helpful when providing group recommendations e.g. when inviting a group of
users to an event etc. We can moreover use the computed αij values to perform
friend recommendation, by leveraging the fact that these values represent a mea-
sure of shared interest and taste among users which quantifies the “homophily”
effect.
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Abstract. Recommender systems always aim to provide recommenda-
tions for a user based on historical ratings collected from a single domain
(e.g., movies or books) only, which may suffer from the data sparsity
problem. Recently, several recommendation models have been proposed
to transfer knowledge by pooling together the rating data from multi-
ple domains to alleviate the sparsity problem, which typically assume
that multiple domains share a latent common rating pattern based on
the user-item co-clustering. In practice, however, the related domains do
not necessarily share such a common rating pattern, and diversity among
the related domains might outweigh the advantages of such common pat-
tern, which may result in performance degradations. In this paper, we
propose a novel cluster-level based latent factor model to enhance the
cross-domain recommendation, which can not only learn the common
rating pattern shared across domains with the flexibility in controlling
the optimal level of sharing, but also learn the domain-specific rating pat-
terns of users in each domain that involve the discriminative information
propitious to performance improvement. To this end, the proposed model
is formulated as an optimization problem based on joint nonnegative ma-
trix tri-factorization and an efficient alternating minimization algorithm
is developed with convergence guarantee. Extensive experiments on sev-
eral real world datasets suggest that our proposed model outperforms
the state-of-the-art methods for the cross-domain recommendation task.

1 Introduction

Most recommender systems based on collaborative filtering aim to provide rec-
ommendations or rating predictions of an active user on a set of items belonging
to only a single domain (e.g., movies or books) based on the historical user-item
preference records [1]. However, in many cases, users rate only a limited number
of items, even the item space is often very large. Then the available rating data
can be extremely sparse, which may cause the recommendation models suffer
from the overfitting problem and result in low-quality predictions as well.
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In fact, there exists a considerable number of publicly available user-item
rating datasets from multiple domains, which could have dependencies and cor-
relations among the domains. Taking Amazon as an example, since the products
in Book domain and Music domain may have correspondence in genre, and the
respective customers can be considered to belong to similar groups sampled from
the same population with alike social aspects [2], it would be useful to exploit
a user’s preferences on best-sellers in Book domain to help generate recommen-
dations for that user on MP3 albums from the Music domain. Thus, instead of
treating items from each single domain independently, users’ preferences knowl-
edge acquired in a single domain could be transferred and shared in other re-
lated domains, which has been referred to as Cross-Domain Recommendation
[3]. Recently, several cross-domain recommendation models [2] [4] [5] have been
proposed to transfer a common user-item rating pattern from a dense auxiliary
rating dataset in other domains to a sparse rating dataset in the target domain of
interest, which typically assume that multiple domains share the latent common
rating pattern based on the user-item co-clustering. Thus, knowledge transfer
and sharing among the related domains can be beneficial to alleviate the data
sparsity problem.

However, the limitation of the existing methods is two-fold.

1. The existing models usually construct a latent space to represent the com-
mon latent structure shared across domains, which captures the rating pat-
tern of user groups provided on item clusters. But in practice, the rating
datasets from multiple domains may rarely contain exactly the same items
or users, some domains are more closely related to the target domain of inter-
est than others, simply forcing the subspaces in each domain to be identical
is highly unrealistic. For example, books are more closely related to movies
than to electronic gadgets, thus the different level of relatedness among mul-
tiple domains can not be captured by the identical rating patterns, which
implies the existing methods are inflexible under the “all shared” latent fac-
tor assumption.

2. In practice, some related domains do not necessarily share such a common
rating pattern, which has the intuition of “Harmony in Diversity” from the
rating patterns in multiple domains. Moreover, the diversity among the re-
lated domains might outweigh the advantages of the common rating pattern,
which may result in performance degradations. That is, the existing models
cannot consider the domain-specific knowledge about the rating patterns to
improve the mutual strengths in cross-domain recommendation.

To this end, in this paper, we propose a novel cluster-level based latent factor
model to enhance the cross-domain recommendation. By deriving latent user-
cluster factor and latent item-cluster factor from the available rating data, our
proposed model can construct a latent space to represent the rating patterns
of user groups on the item clusters. Based on a subspace learning of the la-
tent space, the model can learn the common cluster-level user-item rating pat-
tern that is shared across domains, especially, with the flexibility in controlling
the optimal level of sharing the relatedness among multiple domains, while the
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existing models do not provide this function for fine analysis of intrinsic clus-
ter structure in rating data. Meanwhile, our proposed model can simultaneously
learn the domain-specific cluster-level rating pattern from each domain, which
contains the discriminative information propitious to improve across recommen-
dation accuracy. The proposed model thus can exploit the mutual strengths of
related domains by the shared common rating patterns as well as the domain-
specific rating patterns immune to the discernable knowledge from each domain.

Moreover, our proposed model can be formulated as an optimization problem
based on joint nonnegative matrix tri-factorization, and an efficient alternat-
ing method is developed to optimize the objective function with convergence
guarantee. Extensive experiments on several real world datasets suggest that
our proposed model outperforms the state-of-the-art methods for cross-domain
recommendation task.

The paper is structured as follows. In Section 2 we briefly introduce the back-
ground and problem definition. In Section 3 the proposed framework based on
the cluster-level latent factor model and the model specification are presented,
followed by the efficient optimization algorithm. Then we describe experiments
on several real world datasets, and provide comparisons with state-of-the-art
methods in Section 4. The related work is discussed in Section 5. In Section 6
we present conclusions.

2 Background

2.1 Basic Model

Our proposed latent factor model is based on the orthogonal non-negative matrix
tri-factorization (ONMTF) clustering algorithm [6], which is an effective frame-
work for data mining. In this section, we introduce the background paradigm
behind ONMTF that motivates our model.

In ONMTF model, a data matrix X ∈ RM×N from a rating dataset is fac-
torized into a product of three nonnegative factors U ∈ RM×K , S ∈ RK×L and
V ∈ RN×L, such that X ≈ USVT . This approximation can be achieved by the
following matrix norm optimization:

min
U,S,V≥0

JONMTF = ‖X−USVT ‖ (1)

where ‖·‖ is the Frobenious norm of matrix. X = [x1, ...,xN ] is anM×N rating
matrix containingM users and N items. From the co-clustering perspective, the
three nonnegative factors decomposed from ONMTF can be interpreted in the
following way:

– U = [u1, ...,uK ] represent latent user factors, where each uk is an M × 1
vector indicating a probability distribution over M users and referred to as
a user-cluster latent factor. Here argmaxk(U)ik = k∗ means the ith user
belongs to the k∗th user cluster (i.e., user group).
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– V = [v1, ...,vL] represent latent item factors, where each vl is an N × 1
vector indicating a probability distribution over N items and referred to as
a item-cluster latent factor. Here argmaxl(V)il = l∗ means the ith item
belongs to the l∗th item cluster (i.e., item topic).

– S = [s1, ..., sL] is an K × L weight matrix representing the rating patterns
from K user clusters provided on L item clusters. Sij can be considered as
the probability that the kth user group rates the lth item cluster.

By clustering both sides of the data matrix simultaneously, ONMTF makes
use of the interrelatedness between users and items, leading to better perfor-
mance than other clustering methods. In [4] the authors proposed a latent factor
model based on ONMTF clustering algorithm ( i.e., Equation (1) ) to provide rec-
ommendations for a sparse target domain (e.g., Xtgt) by sharing the latent com-
mon rating pattern knowledge in a latent space from the related dense domain
(e.g., Xsrc), which was referred to as a codebook as S (i.e., Xsrc ≈ UsrcSV

T
src).

Thus, the codebook S was constructed by simultaneously clustering the users
(rows) and items (columns) of Xsrc, indicating the rating that a user belonging
to a specific user cluster usrc provides on an item belonging to a specific item
cluster vsrc. Then the missing values in the target domain Xtgt could be learned
by duplicating the rows and columns of the codebook using UtgtSV

T
tgt, which

was called CodeBook Transfer (CBT) recommendation model. Experimental re-
sults have shown that latent common information from a related domain can
be derived to improve performance in the target domain. In the next section,
we will discuss the way how to derive the latent common rating pattern and
domain-specific rating pattern to enhance the cross-domain recommendation.

2.2 Problem Definition

Suppose that we are given multiple rating matrices from related domains for
personalized item recommendation. Let τ be the domain index, and τ ∈ [1, t]. In
the τ -th domain rating matrix Dτ there are a set of users Xτ = {xτ1 , ..., xτMτ

} to
rate a set of items Yτ = {yτ1 , ..., yτNτ

}, where Mτ and Nτ represent the numbers
of rows (users) and columns (items) respectively. Here the set of users and items
across multiple domains may overlap or be isolated with each other. In this work
we consider the more difficult case that neither the users or the items in the
multiple rating matrices are overlapping. Moreover, each rating matrix contains
a few observed ratings and some missing values to predict. We thus employ a
binary weighting matrix Wτ of the same size as Dτ to mask the missing entries,
where [Wτ ]ij = 1 if [Dτ ]ij is observed and [Wτ ]ij = 0 otherwise. For easy
understanding, we call the rating matrix of interest as the target domain and
other related rating matrices the source domains.

In this paper, we consider how to predict the missing ratings in the target
domain of interest by transferring correlated knowledge from the source domains
as well as to learn the relatedness among multiple domains.
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3 Our Proposed Model

Existing cross-domain recommendation models [2] [4] assume that the cluster-
level structures hidden across domains can be extracted to learn the rating-
pattern of user groups on the item clusters for knowledge transfer and sharing,
and to clearly demonstrate the co-clusters of users and items. In this paper, we
follow the framework proposed in [4] to extract the co-clustering of users and
items as well as the shared common rating pattern. Thus, the initial co-clustering
of the data matrix in domain τ can be performed by using ONMTF model as
follows:

min
Uτ ,Sτ ,Vτ≥0

Jτ =
∥∥[Dτ −UτS

∗
τV

T
τ ] ◦Wτ

∥∥2 (2)

where Uτ ∈ RMτ×Kτ denotes the Kτ user clusters in the τth domain, and
Vτ ∈ RNτ×Lτ denotes the Lτ item clusters in the τth domain. S∗

τ ∈ RKτ×Lτ

represents the rating pattern of the kth user cluster made on the lth item cluster
in the τth domain, where each entry [S∗

τ ]kl is considered to be the average rating
of the corresponding user-item co-cluster. Wτ is the binary mask matrix, and ◦
denotes the entry-wise product. In the case of multiple related domains involving
different sets of users or items, the assumption that users from different domains
have a similar rating pattern on similar item clusters or topics can be held due
to the harmony of users and items across the related domains, that denotes the
same clustering topics in items (i.e., Lτ = L) and the same cluster distributions
over user groups (i.e., Kτ = K) in each domain [4].

However, as we have introduced, the assumption does not hold in many real-
world applications, where the items from multiple domains can not always find
their explicit correspondence in the cluster level. Taking movie-rating and book-
rating web sites for example, the movies and books can be considered to have
similar clusters or topics based on their genre information (e.g., the categories
of comedy or tragedy), but various customer groups from different websites may
keep some domain-specific knowledge about the items of their respective domains
in mind, showing different rating patterns and cognitive styles, such as the rat-
ing information about some Oscar-winning movies can not necessarily help to
discover the clustering of the books on the topic of Oscar history. Inspired by
this observation, we relax the unrealistic assumption in [4], and consider that the
users from different domains should have similar explicit cluster-level correspon-
dence while the items in each domain may hold their domain-specific knowledge.

3.1 Model Formulation

We propose a latent factor model based on the ONMTF framework to cluster
the users and items in τth domain simultaneously and then learn a latent space
to construct the cluster-level rating pattern of user-item co-clusters. Specifically,
we partition the latent rating pattern across domains into a common part and
a domain-specific part by the subspace learning of the latent space, that is S∗

τ =
[S0,Sτ ], where S0 ∈ RKτ×T and Sτ ∈ RKτ×(Lτ−T ), T is the dimensionality of
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Fig. 1. Illustration of our proposed CLFM model in the context of two related do-
mains. U1 and U2 are the respective user-cluster latent factors, V1 and V2 are the
respective item-cluster latent factors, S0 denotes the common latent rating pattern
across domains, S1 and S2 are the domain-specific rating patterns in each domain.

shared common rating pattern and (Lτ − T ) the dimensionality of τth domain-
specific rating pattern.

Here the common part of rating pattern S0 captures the similar behavior
styles of user clusters when they face the shared T clusters of related items from
different domains, which can be captured to help alleviate the sparsity problem
in each rating matrix. While the domain-specific part of rating pattern Sτ can
be learned to denote the discriminative aspect of user groups providing ratings
on (Lτ − T ) item clusters, which can be used to reveal the relatedness among
multiple domains and improve the accuracy of recommendation.

Accordingly, in each domain our proposed Cluster-Level Latent Factor Model
(CLFM) can learn the user-cluster latent factor Uτ ∈ RMτ×Kτ where Kτ = K,
and item-cluster latent factor Vτ = [VT

τ0,V
T
τ1] ∈ RNτ×Lτ where Vτ0 ∈ RT×Nτ

corresponds to shared topics of item clusters andVτ1 ∈ R(Lτ−T )×Nτ corresponds
to domain-specific topics of item clusters in τth domain. The illustration of our
proposed CLFM model can be found in Figure 1.

Then the learning of our proposed model can be derived in a unified subspace
learning paradigm as the following objective function:

min
Uτ ,S0,Sτ ,Vτ≥0

J =
∑
τ

∥∥[Dτ −Uτ [S0,Sτ ]V
T
τ ] ◦Wτ

∥∥2
(3)

Specifically, to make the latent factors more accurate, we can impose some
prior knowledge on the latent factors during the model learning. For example,
the �1 normalization constraint can be imposed on each row of Uτ and Vτ , i.e.,
Uτ1 = 1 and Vτ1 = 1.
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Note that, from the construction of our proposed CLFM model, we can easily
find that the recently proposed cross-domain recommendation model CBT is
a special case of CLFM model with Lτ = T , which means that there is no
domain-specific rating pattern for each domain but only the shared common
rating pattern across all the domains with the dimensionality of T . Therefore,
our proposed CLFM model can not only exploit the optimal level of sharing
information across multiple domains, but also reveal the individual differences
in each domain.

3.2 Optimization

The optimization of our proposed model can be performed by an alternating
minimization algorithm until convergence. For ease of understanding and with-
out loss of generality, we set τ = 2 1. The general objective function in Equation
(3) can be rewritten as follows:

min
U,S0,S1,S2,V≥0

J =
∥∥[D1 −U1[S0,S1]V

T
1 ] ◦W1

∥∥2
+
∥∥[D2 −U2[S0,S2]V

T
2 ] ◦W2

∥∥2
s.t. U11 = 1,U21 = 1,V11 = 1,V21 = 1

(4)

whereU1 ∈ RM1×K ,U2 ∈ RM2×K ,V1 = [VT
10,V

T
11] ∈ RN1×L1,V2 = [VT

20,V
T
21]

∈ RN2×L2 , S0 ∈ RK×T , S1 ∈ RK×(L1−T ), S2 ∈ RK×(L2−T ).
To optimize the proposed model, we employ the alternating multiplicative

updating algorithm [7], which warrants the nonnegativity of latent factors and
provides an automatic step parameter selection. Since the objective function J
in Equation (4) is not convex in U,S0,S1,S2 and V together, the alternating
updating algorithm optimizes the objective function with respect to one set of
parameters while fixing the others, and then exchanges the roles of the parameter
sets alternatively. This procedure will be repeated for several iterations until
convergence.

Learning S1. Taking the learning of S1 as an example, we will show how to
optimize S1 by deriving its updating rule while fixing the other factors. For that
we can rewrite the objective function in Equation (4) as follows:

min
S1

J (S1) =
∥∥[D1 −U1S0V10 −U1S1V11] ◦W1

∥∥2
+
∥∥[D2 −U2S0V20 −U2S2V21] ◦W2

∥∥2 (5)

Then the derivative of J (S1) with respect to S1 is as follows:

∂J (S1)

∂S1
=2(UT

1 ([U1S0V10] ◦W1)V
T
11 −UT

1 (D1 ◦W1)V
T
11)

+ 2UT
1 ([U1S1V11] ◦W1)V

T
11

1 Following the definition in [4], domain D1 can be considered as the source domain,
and D2 the target domain of interest.
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Using the Karush-Kuhn-Tucker complementary condition for the nonnegativ-

ity of S1 and let ∂J (S1)
∂S1

= 0, we can get the following updating rule for S1:

S1 ←− S1

√
UT

1 (D1 ◦W1)VT
11

UT
1 ([U1S0V10] ◦W1)VT

11 +UT
1 ([U1S1V11] ◦W1)VT

11

(6)

Learning S2. The latent factor S2 can be learned in a similar way. Here we
can derive the updating rules for learning S2 as follows:

S2 ←− S2

√
UT

2 (D2 ◦W2)VT
21

UT
2 ([U2S0V20] ◦W2)VT

21 +UT
2 ([U2S2V21] ◦W2)VT

21

(7)

Learning S0. The updating rules for learning latent factor S0 can be derived
as follows:

S0 ←− S0

√
UT

1 (D1 ◦W1)VT
10 +UT

2 (D2 ◦W2)VT
20

A+B

A = UT
1 ([U1S0V10] ◦W1)V

T
10 +UT

1 ([U1S1V11] ◦W1)V
T
10

B = UT
2 ([U2S0V20] ◦W2)V

T
20 +UT

2 ([U2S2V21] ◦W2)V
T
20

(8)

Learning U1. The latent factor U1 can be learned in the similar way. Here we
can derive the updating rules for learning U1 as follows:

U1 ←− U1

√
(D1 ◦W1)V1[S0,S1]T

([U1[S0,S1]VT
1 ] ◦W1)V1[S0,S1]T

(9)

Note that during the learning of U1, we formulate the Lagrange function for the
optimization with normalization constraint on the latent factor.

Learning U2. The updating rules for learning latent factor U2 can be derived
as follows:

U2 ←− U2

√
(D2 ◦W2)V2[S0,S2]T

([U2[S0,S2]VT
2 ] ◦W2)V2[S0,S2]T

(10)

Here we also formulate the Lagrange function for the optimization with normal-
ization constraint in learning U2.

Learning V1. The latent factor V1 can be learned in the similar way as for
constrained optimization. Here we can derive the updating rules for learning V1

as follows:

V1 ←− V1

√
[S0,S1]TUT

1 (D1 ◦W1)

[S0,S1]TUT
1 ([U1[S0,S1]VT

1 ] ◦W1)
(11)

Note that VT
10 = V1(:, 1 : T ) and VT

11 = V1(:, (T + 1) : L1).
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Learning V2. The updating rules for learning latent factor V2 as for con-
strained optimization can be derived as follows:

V2 ←− V2

√
[S0,S1]TUT

2 (D2 ◦W2)

[S0,S2]TUT
2 ([U2[S0,S2]VT

2 ] ◦W2)
(12)

Note that VT
20 = V2(:, 1 : T ) and VT

21 = V2(:, (T + 1) : L2).

Convergence Analysis. Based on the above updating rules for learning dif-
ferent latent factors, we can prove that the learning algorithm is convergent.

Theorem 1. Using the updating rules for S0 in Equation (8), S1 in Equation
(6), S2 in Equation (7), U1 in Equation (9), U2 in Equation (10), V1 in Equa-
tion (11) and V2 in Equation (12), the objective function in Equation (4) will
monotonically decrease, thus the learning algorithm converges.

The proof could be refereed to [8] [9] for more details.

4 Experiments

In the experiments, we examine how our proposed model behaves on real-world
rating datasets and compare it with several state-of-the-art single-domain rec-
ommendation models and cross-domain recommendation models:

– NMF (Nonnegative Matrix Factorization) based model [7]: a single-domain
model which employs nonnegative matrix factorization method to learn the
latent factors in each domain and provide the prediction performance sepa-
rately.

– FMM (Flexible Mixture Model) based model [10]: a single-domain model
which uses probabilistic mixture model to learn latent cluster structure in
each single domain and then provide the single domain performance sepa-
rately.

– CBT (CodeBook Transfer) based model [4]: a cross-domain model which
can only transfer and share the common rating pattern by the codebook
information across multiple domains.

– CLFM model: our proposed model.

In terms of the cross-domain recommendation task, we evaluate these methods
in terms of two ways: one is the impact of different level of sharing common
information across domains, the other is to check the effectiveness of the cross-
domain models to alleviate the sparsity problem.

4.1 Datasets

For the experiments we have used three benchmark real-world datasets for per-
formance evaluation:
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– MovieLens dataset2: contains more than 100,000 movie ratings with the
scales from 1 to 5 provided by 943 users on 1,682 movies. Following [2] we
randomly choose 500 users with more than 16 ratings and 1000 movies for
experiments.

– EachMovie dataset3: contains 2.8 million movie ratings with the scales from 1
to 6 provided by 72,916 users on 1,628 movies. Following [2] we also randomly
choose 500 users with more than 20 ratings and 1000 movies for experiments.

– Book-Crossing dataset4: contains more than 1.1 million ratings with the
scales from 0 to 9 provided by 278,858 users on 271,379 books. We still
randomly select 500 users and 1000 books with more than 16 ratings for
each item in the experiments.

Note that for all the datasets we have normalized the rating scales from 1 to 5
in the average style for fair comparison. Our proposed CLFM model can handle
various types of users’ rating information, including the explicit rating (e.g., from
1 to 5) as well as the implicit preferences of users (e.g., visit, click or comment),
which are based on the flexible function of the inner product of the latent factors
learned from the observations in different styles.

4.2 Experimental Setup

Following the work in [4], we examine the compared models for the cross-domain
recommendation task. For that, 300 users with their ratings in each dataset are
randomly selected as the training data, and the remaining 200 users for testing.
For each test user, we consider to keep different sizes of the observed ratings as
the initialization of each user in the experiments, i.e., 5 or 10 ratings of each test
user are given to avoid cold-start problem (e.g., ML −Given5 or ML−Given10
in the MovieLens dataset as illustrated in Table 1 ) and the remaining ratings
are used for evaluation.

We chooseMovieLens vs EachMovie, EachMovie vs Book-Crossing andMovie-
Lens vs Book-Crossing as three kinds of related domains (the former is source
domain and the latter the target domain for CBT model in the experiments)
to discover the relatedness among different domains. To check the performances
of different methods, we use MAE (Mean Absolute Error)5 as the evaluation
metric. In the experiments we conduct the methods by repeating the process 10
times and report the average results.

4.3 Experimental Results

We compare the performances of different models under different configurations.
The parameters of different models have been manually tuned and we report here

2 http://www.grouplens.org/node/73
3 http://www.cs.cmu.edu/~lebanon/IR-lab.htm
4 http://www.informatik.uni-freiburg.de/~cziegler/BX/
5 MAE is computed as MAE =

∑
i∈O |Ri − R∗

i |/|O|, where |O| denotes the number
of test ratings, Ri is the true value and R∗

i is the predicted rating. The smaller the
value of MAE is, the better the model performs.

http://www.grouplens.org/node/73
http://www.cs.cmu.edu/~lebanon/IR-lab.htm
http://www.informatik.uni-freiburg.de/~cziegler/BX/
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Table 1. MAE performances of the compared models on MovieLens vs EachMovie
related domains under different configurations. ML-Given5 means 5 ratings of each
test user in MovieLens dataset are given while the remaining ratings are used for
evaluation. The combined settings ML-Given5 vs EM-Given5 and ML-Given10 vs
EM-Given10 are conducted. Best results are in bold.

NMF FMM CBT CLFM

ML-Given5 0.9652 0.9338 0.9242 0.9121
ML-Given10 0.9411 0.9203 0.9101 0.8815

EM-Given5 0.9803 0.9569 0.9333 0.9209
EM-Given10 0.9425 0.9396 0.9185 0.8907

the best results obtained based on the optimal combination of many parameter
settings. The number of users clusters K and item clusters L in each rating
dataset have been chosen in the range of [10, 100]. For NMFmodel, the dimension
of factorization is set to be 50. For CBT model, we set K = 30 and L = 80. For
all the matrix factorization based models, the number of iterations has been set
at 50.

Table 1 shows the MAE performance of the compared models in the Movie-
Lens vs EachMovie related domains under different configurations, where in the
both domains the number of users and item clusters K = 30 and L = 50 re-
spectively, the parameter T = 40 denoting the dimensionality of shared common
subspace. In the experiments, we have 5 and 10 ratings of each test user in the
MovieLens and EachMovie datasets that are given for training while the re-
maining ratings are used for test, and the compared models are evaluated on the
different combined settings as ML-Given5 vs EM-Given5 and ML-Given10 vs
EM-Given10. From the results we can observe that the best performing method
among all the models is our proposed CLFM model. The FMM model performs
slightly better than the NMF model, which implies that the cluster-level based
methods can gain meaningful knowledge from user and item clusters due to the
co-clustering property in the FMM model.

Moreover, the cross-domain based models (i.e., CBT and CLFM) clearly out-
performs the single domain basedmodels (i.e., NMF and FMM), which shows that
the latent cross-domain common rating pattern can indeed aggregate more useful
knowledge than the single-domain methods do individually. Specifically, our pro-
posed CLFM model provides even better results than the state-of-the-art cross-
domain recommendation model CBT, which proves the benefits of the CLFM
model with the ability of extracting the common rating pattern and the domain-
specific knowledge to enhance the cross-domain recommendation accuracy.

Again, Table 2 shows the MAE performances of the compared models on
EachMovie vs Book-Crossing related domains under different configurations,
where in the both domains the parameters K = 30, L = 80 and T = 40 as
the optimal values. The combined settings EM-Given5 vs BC-Given5 and EM-
Given10 vs BC-Given10 are conducted in the experiments. From the results we
can draw the similar conclusion, that is, our proposed CLFM model performs
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Table 2. MAE performances of the compared models on EachMovie vs Book-Crossing
related domains under different configurations. The combined settings EM-Given5 vs
BC-Given5 and EM-Given10 vs BC-Given10 are conducted. Best results are in bold.

NMF FMM CBT CLFM

EM-Given5 0.9803 0.9569 0.9541 0.9334
EM-Given10 0.9425 0.9366 0.9225 0.9091

BC-Given5 0.7326 0.7192 0.6978 0.6757
BC-Given10 0.7198 0.6924 0.6805 0.6514

better than the other related methods. The results about MovieLens vs Book-
Crossing domains have similar characteristics and are omitted here.

Meanwhile, from Table 1 and Table 2 we can also discover that the perfor-
mances for the item recommendation in the EachMovie dataset are not identical
even in terms of the same users and items when combined with different related
domains in the experiments. The results show that different domains may have
various levels of shared information, which are hidden across domains. The re-
markable advantage of our proposed CLFM model is to capture and control the
level of sharing the relatedness by the shared subspace dimensionality T . In the
CLFM model the value of the parameter T is limited between 0 and min(L1, L2),
i.e., ranges from no sharing to full sharing. Figure 2 provides the performances
of the compared models in EachMovie domain as a function of the parameter T
under the configuration of K = 30, L = 80 given 10 ratings observed for each
test user. From the figure, we can find that T increases with the level of shar-
ing pattern between the two domains until it reaches the optimal value T = 40.
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Fig. 2. MAE performance of the compared models with respect to the value of shared
subspace dimensionality T in EachMovie domain
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Fig. 3. Convergence curve of running CLFM model in MovieLens vs Book-Crossing
domains with respect to nb. of iterations

This observation confirms that our proposed CLFM model has more flexible and
efficient ability to capture latent common rating pattern than the other methods.

Figure 3 demonstrates the convergence curve of running the proposed CLFM
model in MovieLens vs Book-Crossing domains under the configuration of K =
30, L = 80 and T = 40 given 10 ratings available for each test user. From the
results we can observe that our proposed model can converge quickly after about
20 iterations, which proves the efficiency and scalability of the CLFM model in
the cross-domain recommendation task.

5 Related Work

Cross-domain recommendation is an emerging research topic, which considers
to incorporate relevant data sources from different domains and combine with
the original target data to improve the recommendation [11]. For example, it is
possible to merge multiple rating matrices to leverage rating behavior similarity
in one domain to predict ratings in the other domain. Kuflik et al. [12] first
proposed cross domain mediation problem and introduced several techniques for
importing relevant data. Pan et al. [13] proposed the model to transform knowl-
edge from domains which have heterogeneous forms of user feedback. Cremonesi
et al. [14] considered to model the classical similarity relationships as a direct
graph and explore all possible paths connecting users or items in order to find
new cross-domain relationships. Tang et al. [15] proposed the cross-domain topic
learning model to predict the cross-domain collaborations through topic layers
instead of at author layers, which alleviated the sparseness issue. Winoto et al.
[16] proposed to uncover the association between user preferences on related
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items across domains to provide the cross-domain recommendation. However,
all the above models always consider the same users or items across different
domains, which is not a realistic setting. Actually, the most relevant works with
ours are [2] [4]. They suggested to leverage useful knowledge from a different
domain and extracted latent rating pattern across domains with non-overlap
users and items. Moreno et al. [5] addressed the sparsity problem by integrating
the appropriate amount of knowledge from each domain in order to enrich the
target domain. Moreover, the majority of the existing work assumes that the
source and target domains are related but do not suggest methods to calculate
the relatedness among domains, which has been addressed in our work.

There are other recent studies which have been made on applying cross domain
techniques, and transfer learning in particular into information recommendation
task. Transfer learning aims to leverage the knowledge in the source domain to
facilitate the learning tasks in the target domain [17]. The general idea of the
existing methods is to utilize the common latent structure shared across domains
as the bridge for knowledge transfer. For example, Xue et al. [18] have addressed
the problem of using the auxiliary labeled data to help classify the unlabeled data
in the target domain. Shi et al. [19] proposed a generalized tag-induced cross-
domain collaborative filtering model to exploit user-contributed tags as common
characteristics to link different domains together and transfer the knowledge
between different domains. However, transferring knowledge across domains is
a challenging task since it cannot be guaranteed that the knowledge of other
domains is useful for the target domain. In this paper, we not only consider the
common latent rating pattern across domains but also extract the discriminative
domain-specific information to improve the mutual strengths in each domain.

6 Conclusion

In this paper, we proposed a novel Cluster-Level based Latent Factor Model
(CLFM) based on the framework of joint nonnegative matrix tri-factorization.
The CLFM model can construct a latent space to represent the rating patterns
of user groups on the item clusters from each domain, then based on a subspace
learning of the latent space, CLFM model not only learn shared common rating
pattern across multiple rating matrices to alleviate the sparsity problems in
individual domain, with the flexibility in controlling the optimal level of sharing
the relatedness among domains, but also learn the domain-specific cluster-level
rating pattern from each domain that contains the discriminative information
propitious to improve across recommendation accuracy. The proposed model
thus could exploit the mutual strengths of related domains by the shared common
rating patterns as well as the domain-specific rating patterns from each domain.
The experimental results have validated that our proposed CLFM model indeed
can benefit from the cluster-level rating patterns and outperforms the state-of-
the-art methods for cross-domain recommendation task.

There are still several extensions to improve our work. Firstly, it is necessary to
compare our proposed model against the two more recent methods [5] to explore
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a deeper understanding in the cross-domain recommendation task. Second, our
proposed CLFM model should be evaluated on large scale rating dataset to
exploit its scalable computational ability. Third, a probabilistic version would
be the natural extension of our proposed CLFM model, which may exhibit better
interpretable properties.
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Abstract. Noisy data recovery is an important problem in machine learning
field, which has widely applications for collaborative prediction, recommenda-
tion systems, etc. One popular model is to use trace norm model for noisy data
recovery. However, it is ignored that the reconstructed data could be shrank (i.e.,
singular values could be greatly suppressed). In this paper, we present novel noisy
data recovery models, which replaces the standard rank constraint (i.e., trace
norm) using Schatten-p Norm. The proposed model is attractive due to its sup-
pression on the shrinkage of singular values at smaller parameter p. We analyze
the optimal solution of proposed models, and characterize the rank of optimal
solution. Efficient algorithms are presented, the convergences of which are rigor-
ously proved. Extensive experiment results on 6 noisy datasets demonstrate the
good performance of proposed minimum shrinkage models.

1 Introduction

In big-data era, data is always noisy, development of robust noise tolerant algorithm for
data recovery, is always useful and highly demanded. On the other hand, the available
of large amount of data makes it more difficult to control the quality the data. The
chances of the damaged data or noisy data are increasing. Given input noisy data X,
the goal of low rank data recovery problem [1,2,3], is to find a low rank approximation
Z. Recovered data Z is expected to be low rank, and retain minimum reconstruction
errors (such as least square error) as compared to input data matrix X. In practice,
input data can be noisy and also has missing values. This problem has attracted a lot of
attentions due to its widely applications in recommendation systems [4], collaborative
prediction [5], image/video completion [6], etc.

Data recovery problem has close relations with dimension reduction or low dimen-
sion subspace recovery, since for most of high-dimensional data, they may have low-
dimensional subspace. Many efforts have been devoted along the direction of principal
component analysis (PCA) [7], compressive sensing [8], affine rank minimization [3],
etc. For example, Principal component analysis (PCA) seeks for a low-dimensional sub-
space given data matrix, which can be efficiently computed using singular value decom-
position (SVD). However, a major drawback of classical PCA [9] is that, it breaks down
under grossly corrupted or noisy observations, such as noises/corruptions in images, and
dis-measurement in bio-informatics, etc. In Regularized PCA model (e.g., [10,11]), it
aims at reducing the rank of the data without explicitly reducing the dimension. How-
ever, they do not return the clear representation of subspace and low-dimensional data
explicitly.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part II, LNAI 8189, pp. 177–193, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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(b) Enlarged Fig.(1a)
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Fig. 1. Optimal solution δk given singular value σk of input data X, at different p =
{1, 0.9, 0.8, · · · , 0.1} values with fixed β = 0.5, on dataset Mnist with 20 images, i.e.,
X = {x1,x2, · · · ,x20}. To avoid clutter, part of Fig.1a is zoomed in and shown in Fig.1b.
In Fig.1d, the solution at p = 0.3 is a faithful low-rank solution, and the solution at p = 0.9 is a
suppressed low-rank solution.

It is well known that it is a NP-hard problem to directly minimizing the rank of
data for recovering input data. Since trace norm can be viewed as a convex envelope
of rank function [12], different methods (e.g., [13,14,1,15,16,17]), have been proposed
by minimizing the trace norm. In this paper, we point out that, standard trace norm
model suffers from a serious problem: shrinkage of reconstructed data and suppres-
sion of singular values (see more details in Figs.(1-2) and §3). We find that the trace
norm relaxation may deviate the solution away from the real solution of original rank
minimization problem.

The goal of this paper is to develop new methods to solve the approximation of
the rank minimization problem. In this paper, we reformulate the noisy data recovery
problem using schatten p norm, where efficient algorithms are presented. To summarize,
the main contribution of this paper is listed as follows.



Minimal Shrinkage for Noisy Data Recovery Using Schatten-p Norm Objective 179

– From model construction point of view, we present new models for noisy data re-
covery, which minimize both data recovery error and rank of recovery data. The
proposed models give the minimum shrinkage of recovered data.

– From algorithmic development point of view, we present a complete analysis for
proposed model, where the rank of optimal solution is characterized by Theorem
1. Efficient algorithms are developed.

– Extensive experiments on noisy datasets indicate better noisy data recovery perfor-
mance at smaller p values (p is parameter of our model).

2 Proposed Data Recovery Models

Notation. Let X = (x1 · · ·xn) ∈ �d×n be input n data, each of dimension d. For
standard Schatten p norm of matrix Z,

||Z||sp = (

r∑
k=1

σp
k)

1
p

=
(

Tr[(ZTZ)
p
2 ]
) 1

p
, (1)

where σk is the singular value of Z, r = rank(Z).
Given a data matrix X, it is often of interest to compute a matrix Z that is “close” to

X and satisfies the constraint rank(Z) < rank(X). Singular value decomposition [18]
is the most popular method for such approximations. There are alternative methods that
replace this constraint with a more friendly constraint, like, for example, the trace norm.
In this paper, we present two models:

Model 1: Schatten p Model
We wish to solve the data recovery problem, i.e.,

min
Z

1

2
‖Z−X‖2F + βTr[(ZTZ)

p
2 ], (2)

where Tr(ZTZ)
p
2 =

∑r
k=1 σ

p
k , and σk is the singular value of Z, β is a parameter to

control the scale of schatten p term.
The fact is that the approximation has the same eigen-vectors as the original matrix,

and that only eigen-values are shrinked in standard matrix linear algebra. The particular
shrinkage of p Schatten norm is better than trace norm (p = 1, see Fig. 1), which is
corresponding to soft thresholding. At p = 0, this is corresponding to hard thresholding
(exactly the rank).

Model 2: Robust Schatten p Model
We wish to find low-rank data recovery Z given X, i.e.,

min
Z

‖Z−X‖1 + βTr[(ZTZ)
p
2 ]. (3)

This is used for noisy data recovery purpose, which can be viewed as an extension of
robust PCA [10].
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Motivation
The goal of proposed models is to provide minimum shrinkage of reconstructed data
and suppression of singular values. This is the reason, why we replace the trace norm
regularization with schatten p regularization. More detailed analysis is provided in §3-
4. Our experiment results indicate that proposed models at smaller p values give better
recovery performance.

As p becomes small, it is closer to the desired rank constraint:

lim
p→0

Tr(ZTZ)
p
2 = lim

p→0

∑
k

σpk = rank(Z).

This indicates that the lower p, the better that Schatten norm resembles the rank. Since
we wish to do reconstruction with low rank, thus parameter p is usually set to 0 ≤ p ≤
1. In general p > 1 case is un-interesting.

Differences of Two Models. The difference of above two models of Eqs.(2, 3) lies in
the first term. In Model 1 of Eq.(2), Frobenius norm or the least square error is used
to minimize the reconstruction error. In Model 2 of Eq.(3), the L1-norm is used to
minimize the reconstruction error. As is known to us, L1 error is more robust to noises
and outliers, because ||X− Z||1 =

∑
ij |X− Z|ij , where residue term is not squared.

In real world, the observations (like images, text features, etc) can be contaminated by
noises or outliers. Model of Eq.(2) is for the data recovery problem polluted by Gaussian
noise, while model of Eq.(3) is for data contaminated by Laplacian noises. Both models
can be used to solve noisy data recovery, matrix completion problem, etc. For second
term, for computational purpose, we add p power to standard term ||Z||sp , which plays
the same role as standard schatten term for low rank approximation purpose.

Relations with Previous Methods. At p = 1, Eq.(3) is equivalent to standard trace-
norm model, which optimizes

min
Z

||Z −X||1 + β||Z||∗, (4)

where ||Z||∗ = Tr(ZTZ)
1
2 is the trace norm, and σk is the singular value of Z. This

study is a special case of our model. Note in [10], Schatten p-Norm model at p = 1 is
called as Robust PCA, because it can correctly recover underlying low-rank structure Z
from the data X in the presence of gross errors and outlying observations.

3 Illustration of Model 1 and Model 2

Due to the non-smoothness of Schatten norm at p < 1, the computational algorithm
is challenging. We provide detailed analysis and efficient algorithms of both models in
§4, §5 and §6. Here we discuss the general features of the optimal solutions to these
two models. The key conclusion is that the solutions at small p are much better than the
solution at p = 1, which is a previously studied model.
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3.1 Illustration of Model 1

To illustrate results of Model 1, we use 20 images from real-world dataset mnist (more
details of this dataset is in §7). Let δk be the singular values of the optimal solution
Z∗. Let σk be the singular values of input data X. We show solution δk in Fig.1 along
with σk. We fix β = 0.5, but let p vary from p = 1 to p = 0.1. From Fig.1, we see
that at p = 1, the optimal solution Z∗

p=1, which is represented by (δ1, δ2, · · · , δ20), is a
simple downshift of (σ1, σ2, · · · , σ20). The high rank part (k = 17− 20) is zero. As p
decreases, more high rank part of the solution {δk} becomes zero, while the lower rank
part of {δk} moves closer to {σk} of the input data. For example, in Fig.1a, Fig.1b,
in optimal solution Z∗

p=0.9, the high rank part (k = 13 − 20) becomes zero, while the
low-rank part (k = 1 − 7) is higher than that of Z∗

p=1, i.e., this part moves towards
corresponding {σk}.

In general in low-rank data recovery, we wish the low-rank part ofZ∗ is close to those
of the input data, while the high-rank part is cut-off (close to zero). Looking in Fig.1d,
the solution at p = 0.3 is a “faithful” low-rank solution, because the low-rank part is
more close or faithful to the original data. The solution at p = 0.9 is a “suppressed”
low-rank solution because the low-rank part is far below the original data, i.e., they are
suppressed. Clearly, the solution at p = 0.3 is more desirable than solution at p = 0.9,
even though both solutions are low-rank: rank(Z∗

p=0.9)= rank(Z∗
p=0.3) = 12.

The Schatten p norm model at small p provides the desirable “faithful” low-rank
solution, while the previous work using p = 1 also provides a low-rank solution, but
the low-rank part is more suppressed.

3.2 Illustration of Model 2

Model 2 of Eq.(3) differs from Model 1 by using the L1 norm in error function. This
enables the model to do robust data recovery (e.g., moving outliers back to the correct
subspace). However, this model does not change the observed suppression in Model 1
at p close to 1 (see Fig.1d). The suppression of singular values leads to the shrinkage
effect in reconstructed data.

We demonstrate the robust data recovery and the shrinkage effects for Model 2 at dif-
ferent p values on a simple toy data in Fig.(2a). The original data X are shown as black
circles. Reconstructed data zi are shown as red-squares. We show the reconstructed re-
sults at p = 0.2 Fig.(2b, 2e, 2f), p = 0.5 (Fig.2c, 2g), p = 1 (Fig.2d, 2h). We have two
observations.

First, at 0 ≤ p ≤ 1, outliers (x13,x14,x15) all move towards the correct subspace,
indicating the desired denoising data recovery effects.

Second, for non-outlier data, the reconstructed data shrink strongly at p = 1, but
they shrink much less at p = {0.2, 0.5}. This shrinkage is result of the singular
value suppression in computed Z. At p = {0.2, 0.5, 1}, the largest singular value are
{5.35, 4.49, 2.93}, while the second singular values are very small, i.e., {1.7e-8, 1.7e-
16, 9.8e-9}, respectively.

In summary, the Schatten model at small p enables us to do robust data recovery but
without significant shrinkage in previous models which use p = 1.

To our knowledge the singular value suppression and shrinkage (both at p = 1 and
smaller p values) have not been studied previously.
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Fig. 2. Demonstration of robust Schatten-p model of Eq.(3) on a toy data shown in panel (a):
original data shown as black circles. (x1 · · ·x12) are non-outliers and (x13 · · ·x15) are outliers.
Reconstructed data zi are shown as red-diamonds. Blue line indicates the subspace computed
from standard PCA on non-outlier data. Results of Schatten model at p = 0.2 are shown in (e).
This p = 0.2 results are split to outliers and non-outliers as shown in (b) and (f). Similarly, results
for p = 0.5 shown in (c) and (g); results for p = 1 shown in (d) and (h). At p = 1, non-outliers
shrink towards coordinate (0,0). At smaller p, non-outliers shrink far less.

4 Analysis and Algorithm of Model 1

We show how to solve Model 1 of Eq.(2) at different p values. This also serves as the
basic step in solving Model 2 of Eq.(3) using the ALM of §5. To our knowledge, this
problem has not been studied before.

Property 1. The global optimal solution for Eq.(2) at all 0 ≤ p ≤ 1, can be efficiently
computed, even though it is non-convex at p < 1.

Property 2. Rank of the optimal solution Z∗ has a closed form solution:

Theorem 1. Let the singular value decomposition (SVD) of X be X =
∑

k σkukv
T
k .

Then rank of optimal solution Z∗: rank(Z∗) = largest k, such that

σk ≤
(βp(2− p)(2−p)

(1− p)(1−p)

) 1
2−p

, 0 < p ≤ 1. (5)

In particular, p = 1, σk ≤ β; p = 1
2 , σk ≤ (

√
27
16β)

2
3

.
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Property 3. Optimal solution Z∗ has a closed form solution at p = 1
2 .

Property 4. Optimal solution Z∗ at 0 < p < 1 can be obtained using Newton’s method.
To prove above 4 properties for Model 1 of Eq.(2), we need the following useful

lemma.

Lemma 1. Let the singular value decomposition (SVD) of X be X =
∑

k σkukv
T
k .

The global optimal Z for Eq.(2) is given by Z =
∑

k δkukv
T
k , where δk is given by

solving,

min
δ1,··· ,δr

r∑
k=1

[1
2
(δk − σk)

2 + βδpk

]
, s.t. δk ≥ 0, k = 1 · · · r. (6)

4.1 Proof of Lemma 1

Proof. Let the optimal solution of Z have the SVD Z = FΔGT where F = (f1 · · · fr)
and G = (g1 · · ·gr) are the singular vectors of Z, and Δ = diag(δ1 · · · δr) be their
singular values. The key is to prove that the singular vectors of Z∗ are the same as those
of the input data X. Using von Neumann’s trace inequality

|Tr(ZTX)| ≤ TrΔΣ =
r∑

k=1

δkσk. (7)

From this, we have

Tr(UΔVT )TX = TrΔΣ ≥ Tr(ZTX) = Tr(FΔGT )TX, (8)

where the inequality comes from Eq.(7). The inequality

Tr(UΔVT )TX ≥ Tr(FΔGT )TX

implies
1

2
‖UΔVT −X‖2 + βTrΔp ≤ 1

2
‖FΔGT −X‖2 + βTrΔp.

This indicates (U,V) are better singular vectors for Z than (F,G). This proves that
the optimal singular vectors for Z must be the same singular vectors of X. Setting
Z = UΔVT in Eq.(2), we obtain Eq.(6).

4.2 Analysis of Property 1

Due to Lemma 1, we now solve the simpler problem of Eq.(6) instead of the original
harder problem of Eq.(2). Clearly the optimization of Eq.(6) decouples into r indepen-
dent subproblems, each for one δk:

min
δk

1

2
(δk − σk)

2 + βδpk , s.t. δk ≥ 0. (9)

KKT complementarity slackness condition for δk ≥ 0 leads to
[
(δk − σk) +

pβδp−1
k

]
δk = 0. The optimization of Eq.(9) decouples into r independent subprob-

lems, and each of them is of the type:

min
x≥0

J(x) =
1

2
(x− a)2 + βxp, (10)
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where x, a ∈ �. Here the correspondence between Eq.(10) and Eq.(9) is a = σk,
x = δk.J(x) is a weight sum over two functions: J(x) = f1(x) + βf2(x), where
f1(x) = 1

2 (x − a)2, f2(x) = xp. f1(x) has a local minima at x1 = a. f2(x) is a
singular function, p ≤ 1 with singularity at x2 = 0, which is also a local minima.

Therefore, J(x) in general has two local minima (x∗1, x
∗
2). Because f2(x) is singular

at x2, for Eq.(10), the singular point (local minima) does not change with different
weight β. Thus x∗2 = 0 is always a local minima.

When β is small, x∗1 = a. As β increases, x∗1 moves towards 0. At certain (β, p),
this local minima disappears, J(x) has only one local minima x∗2 = 0. This condition is
determined by the same condition as in Theorem 1 or Eq.(12) with σk = a. x∗1 is easily
computed using Property 4.

In summary, the optimal solution of Eq.(10) is either the trivial one x∗2 = 0 or
min(x∗1, x

∗
2), when x∗1 exits. This means Eq.(9) can be easily solved. Thus Eq.(6) can

be easily solved for each rank one at a time.

4.3 Proof of Theorem 1

Proof. First, optimization of Eq.(2) is equivalent to optimizing Eq.(10), which can be
further written as,

min
z≥0

g(z) =
1

2
(z − 1)2 + β̂zp, (11)

where z = x/a, β̂ = βa(p−2). First, we note a key quantity, the zero crossing point z0
exists, where the second derivative g′′(z) changes its sign, i.e., g′′(z0) = 0. We need
two lemmas.

Lemma 2. This cross point z0 always exists at any β.

Lemma 3. If the slope of cost function of Eq.(11) at the crossing point z0 is negative,
i.e., g′(z0) < 0, there exists two distinct local minima: z2 = 0 and z1 > 0. If g′(z0) ≥ 0,
z2 = 0 is the global optimal solution.

Lemmas 2 and 3 give the key properties of optimization of Eq.(11). Set g′′(z0) = 0,
we obtain z0 = [β̂p(1 − p)]

1
2−p . Lemma 2 states that z2 = 0 is the global solution,

g′(z0) = z0 − 1 + β̂pzp−1
0 ≥ 0, i.e., [β̂p(1 − p)]

1
2−p − 1 + β̂p[β̂p(1 − p)]

p−1
2−p ≥ 0.

Solving for β, we have,

β ≥ 1(1− p)(1−p)

p(2− p)(2−p)
· σk

(2−p), 0 < p ≤ 1. (12)

This indicates that the optimal solution δk of Eq.(11) is zero (i.e., δk = 0), if Eq.(12)
holds. This completes the proof.

4.4 Analysis of Property 3

Clearly, at p = 1
2 , from Eq.(9), we need to solve δk−σk+(β/2)δ

−1/2
k = 0, s.t. δk ≥ 0.

Let ρk = ( δkσk
)
1/2

, μ = β

2σk

3
2

, this becomes ρ3k−ρk+μ = 0,where ρk ≥ 0. The analytic

solution of this cubic equation can be solved in closed form.
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Algorithm 1. ALM algorithm to solve Eq.(3)
Input: data matrix X, parameter ρ > 1.
Output: low rank approximation Z.
Procedure:
1: Initialize E, Z, Ω, μ > 0, t = 0, ; ρ = 1.1
2: while Not converge do
3: Updating E according to Eq.(16)
4: Updating Z according to Eq.(17)
5: Updating Ω: Ω := Ω + μ(Z −X−E)
6: Updating μ: μ := ρμ
7: end while

4.5 Analysis of Property 4

From analysis of property 1, the optimization of Eq.(10) has two local optima: x∗1 >
0, x∗2 = 0. Our algorithm is: (b1) to use Newton’s method to compute x∗1; (b2) compare
J(x∗1), J(x

∗
2), and pick the smaller one. It is easy to see J ′(x) = x − a + βpxp−1,

J ′′(x) = 1+βp(p−1)xp−2.Using standard Newton’s method, we can update x through

x ← x − J′(x)
J′′(x) . This algorithm has quadratic convergence. In practical applications,

we found this Newton’s algorithm typically converges to local minima within a few
iterations.

5 ALM Algorithm to Solve Model 2

Augmented lagrange multipliers(ALM) have been widely used to solve different kinds
of optimization problems ( [10], [19]). Here we adapt standard ALM method [20,19] to
solve Schatten-p model of Eq.(3). It is worth noting that it is not trivial to solve Eq.(3)
using ALM method. One challenging step is to solve the associated Schatten-p term
shown in §4.

According to ALM algorithm, by imposing constraint variable E = Z − X, the
problem of Eq.(3) is equivalent to solve,

min
E, Z

‖E‖1 + βTr(ZTZ)
p
2 , s.t. Z−X−E = 0. (13)

According to ALM algorithm, we need to solve,

min
E, Z

‖E‖1 + 〈Ω,Z−X−E〉+ μ

2
||Z −X−E||2F + βTr(ZTZ)

p
2 , (14)

where Lagrange multiplier is Ω and μ is penalty constant. For this problem, Ω and μ
updated in a specified pattern:

Ω ← Ω + μ(Z−X−E), μ← ρμ.

We need to search for optimal E, Z iteratively until the algorithm converges. Now we
discuss how we solve E, Z in each step.
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Update E. To update the error matrix E, we derive Eq.(15) with fixed Z and obtain the
following form:

min
E

μ

2
||E−A||2F + ||E||1 (15)

where A = X − Z + Ω
μ . It is well-known that the solution to the above LASSO type

problem [21] is given by,

Eij = sign(Aij)max(|Aij | −
1

μ
, 0). (16)

Update Z. To update Z while fixing E, we minimize the relevant part of Eq.(14),
which is

min
Z
βTr(ZZT )

p
2 +

μ

2
||Z−X−E+

Ω

μ
||2F . (17)

Setting B = X + E − Ω
μ , β̂ = β

μ , this optimization becomes Eq.(2), which has been
solved in §4.

6 Iterative Algorithm to Solve Model 2

We present another efficient iterative algorithm to solve Eq.(3), where the variable ma-
trix Z is updated iteratively. Suppose Zt is the value of Z at t-th step. At step t, the
key step of our algorithm is to iteratively update j-th column (zj) of Z one at a time,
according to

zj = A−1(A−1 + pλD−1
j )−1xj , (18)

where A = (ZtZ
T
t )
p/2−1,Wij = 1/|(Zt − X)ij |,Dj = diag(wj), wj is the j-th

column of W. This process is iteratively done for 1 ≤ j ≤ n. Then Z is updated until
the algorithm converges. More detailed algorithm is summarized in Algorithm 2. In
computing zj of Eq.(18), we first use conjugate gradient method to compute z̃j , where
(A−1 + pλD−1

j )z̃j = xj , and then zj = A−1z̃j .

Algorithm 2. An iterative algorithm to solve Eq.(3)
Input: X, λ
Output: Z
1: while not converge do
2: compute A−1

3: for j = 1 : n do
4: compute D−1

j , solve zj according to Eq.(18)
5: end for
6: end while
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6.1 Convergence of Algorithm

Let J(Z) = ‖Z−X‖1 + βTr(ZTZ)
p
2 , we have

Theorem 2. Updating Z using Eq.(18), J(Z) decreases monotonically.

The proof requires the following two Lemmas.

Lemma 4. Define the objective function

J2(Z) = ‖Z−X‖2W + pβTr(ZTAZ). (19)

where ‖A‖2W =
∑

ij A
2
ijWij . The updated Zt+1 using Eq.(18) satisfies

J2(Zt+1) ≤ J2(Zt) (20)

Lemma 5. The updated Zt+1 using Eq.(18) satisfies

J(Zt+1)− J(Zt) ≤
1

2

[
J2(Zt+1)− J2(Zt)

]
(21)

6.2 Proof of Theorem 2

Proof. From Eq.(20), clearly, LHS of Eq.(21) is LHS ≤ 0.

6.3 Proof of Lemma 4

Proof. Setting ∂J2(Z)/∂Zij = 0, we have (Z −X)ijWij + pλ(AZ)ij = 0. This can
be written as ZijWij+pλ(AZ)ij = XijWij . In matrix form, Djzj+pλAzj = Djxj .
Thus we have

zj = (Dj + pλA)−1Djxj = [Dj(A
−1 + pλD−1

j )A]−1Djxj , (22)

which gives Eq.(18).

6.4 Proof of Lemma 5

Proof. Let Δ = LHS - RHS of Eq.(21). We haveΔ = α+ β where

α =
∑
ij

[
|(Zt+1 −X)ij | − |(Zt −X)ij | −

(Zt+1 −X)2ij
2|(Zt −X)ij |

(Zt −X)2ij
2|(Zt −X)ij |

]
=
∑
ij

−1

2|(Zt −X)ij |

[
|(Zt+1 −X)ij | − |(Zt −X)ij |

]2
≤ 0.

and

β = λ
[
Tr(Zt+1Z

T
t+1)

p
2 − Tr(ZtZ

T
t )

p
2

]
− p

2
λ
[
TrZT

t+1(ZtZ
T
t )

p
2 Zt+1 − TrZT

t (ZtZ
T
t )

p
2 Zt

]
= λ
[
Tr(Zt+1Z

T
t+1)

p
2 − Tr(ZtZ

T
t )

p
2

]
− p

2
λTr
[(
Zt+1Z

T
t+1 − ZtZ

T
t

)
(ZtZ

T
t )

p
2

]
≤ 0, (23)

where in the last inequality, we set A = Zt+1Z
T
t+1, B = ZtZ

T
t and used Lemma 6

below. Clearly Δ = α+ β ≤ 0.
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Table 1. Description of Data sets

Dataset #data #dimension #class

AT&T oc 400 2576 40
Binalpha oc 1404 320 36

Umist oc 360 644 20
YaleB 256 2016 4

CMUPIE oc 680 1024 68
Mnist oc 150 784 10

Lemma 6. [24] For any two symmetric positive definite matrices F,G and 0 < p ≤ 2,

Tr [Fp/2 −Gp/2] ≤ p

2
Tr [(F−G)Gp/2−1] (24)

Due to space limit, we omit the proofs of Lemma 6 here.

7 Connection to Related Works

We note [22] proposes an algorithm to solve squared schatten p model, i.e.,minZ f(Z)+

β
(

Tr(ZTZ)
p
2

) 2
p

, which cannot be directly applied here. [23] proposes an iterative

reweighted algorithm for trace norm minimization problem, in the similar vein as what
has been proposed for adaptive lasso. However, it cannot be directly applied to solve
Eq.(3). As compared to [24,25,26,27], our goal is for noisy data recovery problem raised
in computer vision, instead of for matrix completion problems with missing values.

8 Experiments

We use six widely used image data sets, including four face datasets: AT&T Umist,
YaleB [28] and CMUPIE; and two digit datasets: Mnist [29] and Binalpha1. We gener-
ate occluded image datasets corresponding to 5 original data sets (except YaleB). For
YaleB dataset, the images are taken under different poses with different illumination
conditions. The shading parts of the images play the similar role of occlusion (noises).
Thus we use the original YaleB data with first 4 persons in our experiments. For the
other 5 datasets, half of the images are selected from each category for occlusion with
block size of wxw pixels (e.g., w = 10). The locations of occlusions are random gen-
erated without overlaps among the images from the same category. Occluded images
(with occlusion size 7× 7) generated from Umist data sets are shown in Fig. 4. Table 1
summarizes the characteristics of these occluded data sets.

We did all experiments using Eq.(3). At p < 1, objective function in Eq.(3) is
not convex any more, and we cannot get global minima. We initialize Z using trace
norm minimization solution, i.e., set p = 1 in Eq.(3). In the following experiments, we
did both algorithms proposed in §5-6, and reported the results using the one achieving
smaller objectives.

1 http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html

http://www.kyb.tuebingen.mpg.de/ssl-book/benchmarks.html
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Fig. 3. Reconstructed images (Z) of YaleB dataset using Model 2 of Eq.(3) shown in 1 panel. First
line: original images of one person, Second line: reconstructed images Z at p = 1, Third line:
reconstructed images at p = 0.2. One can see p = 1 images are very similar to each other (most
fine details are lost), while p = 0.2 images retain some fine details and are closer to original
images.

Fig. 4. Occluded image dataset Umist

Illustrative Examples. To visualize the denoising effect of proposed method, we apply
our model on YaleB dataset. YaleB contains images with different shading which plays
similar role of occlusion (noises). Thus we did not add occlusion and use the original
data. In this demonstration and following experiment, each data (image) is linearized
into a vector each xi, and the input matrix X is constructed as X = (x1,x2, · · ·,xn).
We typically set the rank k equal to the number of classes in the dataset. Due to space
limit, computed Z at different p values for the two persons are shown. In Fig.(3), 20
images are shown as 2 panels, each panel for one person. On each panel, the first line
images are original images X, the 2nd line are computed Z at p = 1, and 3rd line are
computed Z at 0.2.

Clearly, at different p values (such as p = {1, 0.2}), Schatten p-Norm model can
effectively recover the original data by removing the shadings. See 2nd line on each
panel in Fig.(3), almost every person is recovered to same template, not any difference
any more. In contrast, we have much better visualization results (with more details)
when p = 0.2 (see 3rd line on each panel). Moreover, these fine details are expected to
be helpful for classification on images from different persons.

True Data Recovery: True Signal Reconstruction Error. Given noisy data X,
X = X0 +XE , where X0 is the true signal and XE is the noise. Our goal is to recover
X0 using Eq.(3). We did experiments on above 6 datasets. To evaluate the performance,
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Table 2. True data recovery: True signal reconstruction error at different p on six datasets

dataset ||XE ||F
||X0||F

Noise-free reconstruction error at different p
p = 1 p = 0.75 p = 0.5 p = 0.2 p = 0

AT&T 0.3657 0.2672 0.2240 0.2199 0.2159 0.2132
Binalpha 0.2359 0.2023 0.1974 0.1845 0.1594 0.1729
Umist 0.3123 0.2816 0.2290 0.2199 0.2153 0.2151
YaleB N/A 0.2304 0.2264 0.2174 0.1912 0.2126
CMUPIE 0.2542 0.2012 0.1925 0.1845 0.1594 0.1729
Mnist 0.5574 0.5123 0.4993 0.4814 0.4542 0.4553

we define the true signal data recovery error, Etrue-signal =
||Z−X0||F
||X0||F . Clearly, smaller

Etrue-signal values indicate better recovery. Computed true signal reconstruction error are
shown in Table.2. The experiment results indicate that true signal reconstruction errors
are smaller at smaller p values. We also list ||XE ||F

||X0||F values in Table.2 to indicate the

level of occlusions. Interestingly, Etrue-signal <
||XE ||F
||X0||F on all datasets at different p

values. This further confirms “de-noisy” effects of proposed data recovery model.

Table 3. Loss of fine-details: variance of reconstructed Z on six datasets, original images: X0,
occluded images: X

dataset X0 X Variance of Z at different p
p = 1 p = 0.75 p = 0.5 p = 0.2 p = 0

AT&T 8.89 9.03 5.83 7.13 7.45 8.11 7.80
Binalpha 27.90 31.13 13.40 22.89 25.38 26.89 26.73
Umist 7.01 7.42 3.87 5.31 5.71 6.38 6.01
YaleB 9.75 9.75 7.28 8.22 8.59 9.19 8.76
CMUPIE 12.09 13.16 8.12 10.07 10.54 11.30 10.87
Mnist 9.24 10.26 0.49 4.41 5.45 7.04 5.85

Loss of Fine Details in Recovered Data and Its Measure. Due to suppression of
higher order/frequency terms associated with smaller singular values, fine details of
original data X are lost in the recovered Z. As a consequence, recovered individual
images are very similar to each other. One numeric measure is the variance of recon-
structed images. We therefore define var(Z) =

∑n
i=1 ||zi − z̄||2, z̄ = 1

n

∑n
i=1 zi,

where zi ∈ �d×1 is the reconstructed image corresponding to each original image xi.
Larger variance values indicate more fine details are preserved in the solution Z. Com-
puted variance of Z are shown in Table.3. Clearly, reconstructed images preserve more
detailed information at small p (say p = 0.2). One demonstrating example is shown in
Fig.3, where fine details of individual images are mostly suppressed at p = 1, but are
generally preserved/reetained at p = 0.2.
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Table 4. Classification accuracy(shown as percentage) on six occluded datasets using input cor-
rupted data X and reconstructed Z at different p values

dataset method X Reconstructed Z at different p
p = 1 p = 0.75 p = 0.5 p = 0.2 p = 0

AT&T
SVM 29.75 30.52 33.75 34.25 36.78 35.53
KNN 25.75 28.63 30.25 28.75 29.31 28.33

Binalpha
SVM 38.35 44.78 42.74 43.84 48.53 47.43
KNN 52.09 56.78 55.10 54.65 58.23 57.87

Umist
SVM 59.83 65.89 63.17 64.35 68.33 67.67
KNN 89.12 93.89 92.67 93.75 94.23 93.01

YaleB
SVM 46.11 52.12 51.89 53.78 54.67 54.96
KNN 85.43 90.89 90.36 91.15 91.76 91.40

CMUPIE
SVM 29.24 33.57 36.74 34.21 35.39 34.98
KNN 58.12 64.03 65.38 64.27 66.39 65.64

Mnist
SVM 49.38 51.93 53.24 57.18 56.79 54.67
KNN 76.63 81.35 80.75 81.56 82.47 82.34

Classification Results Using Recovered Z. So far we have discussed low rank recov-
ery capability of computed Z. Reconstructed low rank Z is expected to have much
clear structure after removing noises and outliers. As a by-product of solving low-rank
data recovery problem, computed Z can be used for classification tasks. We compare
the classification results by using the occluded images X and recovered data Z at dif-
ferent p. The experiments are done on two widely used classifiers: k nearest neighbor
(kNN) and support vector machine2 using 5 fold cross validation. Since the regular-
ization coefficient is also a hyper-parameter, the performance of each Schatten-p norm
model is evaluated at an optimal value of β (which is determined by cross validation).
The experiment results are shown in Table.4. We have two important observations from
experiment results. (1) Performances for image categorization tasks are improved by
using computed Z at different p values; (2) Classification accuracy is consistently bet-
ter at smaller p values on both SVM and kNN classifiers, as compared to that at large p
values. All above results suggest us to use Schatten p-Norm at small p values.

9 Conclusion

We present novel models for low-rank data recovery, where efficient algorithms are
proposed. Extensive experiment results indicate schatten pmodel gives relatively better
reconstructed results at small p values. In the next step, we will further explore how to
scale our model for large-size problems.

Acknowledgement. This work is partially supported by NSF-CCF-0939187, NSF-
DMS-0915228, NSF-CCF-0917274.

2 http://www.csie.ntu.edu.tw/˜cjlin/libsvm/

http://www.csie.ntu.edu.tw/~cjlin/libsvm/
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Abstract. The task of matrix completion involves estimating the entries of a
matrix, M ∈ Rm×n, when a subset, Ω ⊂ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}
of the entries are observed. A particular set of low rank models for this task
approximate the matrix as a product of two low rank matrices, M̂ = UV T , where
U ∈ Rm×k and V ∈ Rn×k and k � min{m,n}. A popular algorithm of choice
in practice for recovering M from the partially observed matrix using the low
rank assumption is alternating least square (ALS) minimization, which involves
optimizing over U and V in an alternating manner to minimize the squared error
over observed entries while keeping the other factor fixed. Despite being widely
experimented in practice, only recently were theoretical guarantees established
bounding the error of the matrix estimated from ALS to that of the original matrix
M . In this work we extend the results for a noiseless setting and provide the first
guarantees for recovery under noise for alternating minimization. We specifically
show that for well conditioned matrices corrupted by random noise of bounded
Frobenius norm, if the number of observed entries is O

(
k7n log n

)
, then the

ALS algorithm recovers the original matrix within an error bound that depends
on the norm of the noise matrix. The sample complexity is the same as derived in
[7] for the noise–free matrix completion using ALS.

1 Introduction

The problem of matrix completion has found application in a number of research areas
such as in recommender systems [10], multi-task learning [15], remote sensing[12] and
image inpainting [1]. In a typical setting for matrix completion, a matrix M ∈ Rm×n

is observed on a subset of entries Ω ⊂ {(i, j) : 1 ≤ i ≤ m, 1 ≤ j ≤ n}, while a
large number of entries are missing. The task is then to fill in the missing entries of
the matrix yielding an estimate M̂ of the complete matrix that is consistent with the
original matrixM .

Among the many models that try and tackle the matrix completion problem, low rank
models have enjoyed a great deal of success in practice and have proven to be very popu-
lar and effective for the matrix completion task on real life datasets [3,8,10,13,11]. Low
rank models with numerous variations have been heavily used in practice for matrix
completion specially towards the application of collaborative filtering [10,13]. Though
it is one of the most widely used techniques to model incomplete matrix data, there are
only a few algorithms for which theoretical guarantees have been established, most no-
tably the nuclear norm minimization [3,4] and OptSpace [8]. However, these algorithms
are computationally expensive and hence not scalable.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part II, LNAI 8189, pp. 194–209, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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A popular algorithm that is heavily used in practice for recovering M from the en-
tries observed on Ω under the low rank assumption is the alternating least squares min-
imization (ALS) [16,10]. The algorithm makes the assumption that the matrix M is of
a fixed low rank that has a latent factor representation M = UV T , where U ∈ Rm×k,
V ∈ Rn×k and k � n,m. Hence, one is interested in solving the following:

min
U,V

‖PΩ(M)− PΩ(UV
T )‖2F

WhereΩ is the set of observed entries and PΩ(M), also denoted byMΩ, is the projec-

tion of the matrixM onto the observed set Ω, given by,MΩ
ij =

{
Mij if (i, j) ∈ Ω
0 otherwise

The above problem as described is jointly non–convex in U and V . Alternating min-
imization proceeds by alternatively fixing one of the latent factors and optimizing the
other. Once one of the factors (say U ) is fixed, solving for the other (V ) is a convex
problem. In fact, it is a simple least squares problem. This simplicity of the alternating
minimization has made it a popular approach for low rank matrix factorization in prac-
tice. Recent results [7,6,14] give recovery guarantees for ALS in a noiseless setting.
However theoretical guarantees for ALS when the observed entries are corrupted by
noise are still lacking. On the other hand, in real life applications, the matrix entries are
often corrupted by various means including the noise in the matrix generation process,
outliers and inaccurate measurements. In this work we present the first guarantees for
recovery under noise for alternating least squares minimization. We rely heavily on the
analysis of [7,6] and also borrow results from [9].

The paper is organized as follows. After explaining the notations and defining a few
quantities in Section 1.1, we briefly review relevant work in Section 2. In Section 3, we
describe the algorithm and state the main result of the paper and compare the results
with the existing results. Our primary contribution in this paper is the proof of the result
stated in Section 3. We build the proof in Section 4. As the proof is fairly involved,
the proof of various lemmata in this section are deferred to the Appendix. We conclude
with an analysis of the results and possible future directions in Section 5.

1.1 Notations and Preliminaries

Unless stated otherwise, we use the following notation in the rest of the paper. Matrices
are represented by uppercase letters. For a matrix M , Mi represents the ith column,
M (i) represents the vector corresponding to the ith row, (all the vectors are column
vectors i.e they are or dimension d × 1, where d is the length of the vector) and Mij

is the (i, j)th entry. The spectral norm and Frobenius norm of a matrix M are denoted
by ‖M‖2 and ‖M‖F , respectively. The max norm of M , denoted by Mmax, is the
maximum of the absolute values of the entries of M . The transpose of a matrix M is
denoted by M †. Vectors are denoted by lowercase letters. For a vector u, ui is the ith
component of u. The p-norm of a vector is given by ‖u‖p = (

∑
i |ui|p)

1/p, p ≥ 1.
Finally, set of integers from 1 to m is denoted by [m] = {1, 2, . . . ,m}.
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Definition 1 (SVD (or truncated SVD)). The singular value decomposition (SVD) of
a matrix M ∈ Rm×n of rank k is given by M = UΣV †, where U ∈ Rm×k and
V ∈ Rn×k have orthonormal columns, i.e. U †U = V †V = I and Σ ∈ Rk×k is a
diagonal matrix whose entries are (σ1, σ2, . . . , σk). Here, the columns of U and V are
called the left and right singular vectors of M respectively and σ1 ≥ σ2, . . . , σk > 0
are the singular values.

Definition 2 (Condition number). Consider a matrix M of rank k, with singular val-
ues, σ1 ≥ σ2, . . . , σk > 0. The condition number of the matrix M , denoted by κM is
defined as κM = σ1

σk

Definition 3 (Reduced–QR factorization (or simply QR factorization)). The
Reduced–QR factorization, which is often overloaded as QR factorization, of a ma-
trix X ∈ Rm×k, m ≥ k, is given by X = QR, where Q ∈ Rm×k has orthonormal
columns and R ∈ Rk×k is an upper triangular matrix. The columns of the matrix Q is
an orthonormal basis for the subspace spanned by the columns of X .

Definition 4 (Distance between two matrices [5]). Given two matrices Û , Ŵ ∈ Rm×k,
the distance between the subspaces spanned by the columns of Û and Ŵ is given by
dist(Û , Ŵ ) = ‖U †

⊥W‖2 = ‖UW †
⊥‖2 where U and W are orthonormal bases of the

spaces span(Û) and span(Ŵ ), respectively. Similarly, U⊥ and W⊥ are orthonormal
bases of the spaces span(Û⊥) and span(Ŵ⊥).

Definition 5 (Incoherence of a matrix). A matrix M ∈ Rm×n is incoherent with
parameter μ if ‖U (i)‖2 ≤ μ

√
k√
m

∀i ∈ [m] and ‖V (j)‖2 ≤ μ
√
k√
n
∀j ∈ [n] where

M = UΣV † is the SVD of M . We remind that X(i) is the ith row of matrix X .

Definition 6 (Vector to matrix conversion). The operator vec2mat() converts
a vector to matrix in column–order, i.e. ∀ x ∈ Rnk, vec2mat(x) =⎡⎣ ↑ ↑ · · · ↑
x1:n xn+1:2n · · · x(k−1)n+1:kn

↓ ↓ · · · ↓

⎤⎦
2 Related Work

Candès and Recht [3] first demonstrated that under the assumptions of random sampling
and incoherence conditionsO(kn1.2 log n) samples allow for exact recovery of the true
underlying matrix via convex nuclear–norm based minimization. The sample complex-
ity result was further improved toO(kn log n) by Candès and Tao [4]. Later on, Candès
and Plan [2] analyzed the recovery guarantees for nuclear–norm based optimization al-
gorithm under bounded noise added to the true underlying matrix. However, one should
note that nuclear–norm based minimization approach is computationally expensive and
infeasible in practice for large scale matrices.

In the OptSpace algorithm [8], Keshavan et al. adopted a different approach for the
matrix completion problem where they first took the SVD of the matrix MΩ . Their
analysis showed that such a SVD provides a reasonably good initial estimate for the
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spanning subspace, which can further be refined by gradient descent on a Grassmanian
manifold. They show asymptotic recovery guarantees of original matrix if the number of
samples isO(nk (σ∗1/σ∗k)

2
logn). In a later paper, Keshavan et al. [9] also examined the

reconstruction guarantee of OptSpace under two noise models. The analysis (for both
noiseless and noisy recovery) of the algorithm only guarantees asymptotic convergence
and the convergence might take exponential time in the problem size in the worst case.

In practice, however, alternating minimization based approach produces good opti-
mal solution. Though the underlying optimization problem is non–convex, each step
is convex, computationally cheaper and solutions close to global optimal are often
reported in experiments [11]. The algorithm and its variations have been practically
deployed in many real life collaborative filtering datasets and have shown good per-
formance [10,13]. Wang and Xu [14] first showed that given a factorization algorithm
attains a global optimum, the space of the factors, U and V , and the estimated matrix
M̂ are robust against corruption of the observed entries by bounded noise. Jain et al.
[7,6], however, were the first to formulate the conditions for recovery of the underly-
ing matrix using alternating minimization. They showed that the true underlying matrix
M can be recovered within an error of ε in O(log(‖M‖F/ε)) steps and this requires
O((σ∗1/σ

∗
k)

4k7n logn log ‖M‖F/ε) number of samples. We build on the results of Jain
et al. [7] and provide recovery guarantees of noisy matrix completion problem with
alternating minimization.

3 Main Result

In the rest of the paper, the underlying true rank–k matrix to be completed is denoted
by M ∈ Rm×n. With a slight abuse of notation, the truncated SVD of M is given by
M = U∗Σ∗V ∗† with U∗ ∈ Rm×k, V ∗ ∈ Rn×k and Σ∗ = diag(σ∗1 , σ∗2 , . . . , σ∗k).
Without loss of generality, it is assumed that m ≤ n and α = n/m ≥ 1 is a constant
(independent of n). The noisy matrix which is partially observed is given by M̃ =M+
N , where N ∈ Rm×n is the noise matrix. Further, let N = UNΣNV

†
N be the SVD of

the noise matrix with UN ∈ Rm×m, VN ∈ Rn×m and ΣN = diag(σN1 , σ
N
2 , . . . , σ

N
m).

Each entry of the matrix M̃ is independently observed with probability p. Let Ω be the
set of indices where the matrix M̃ is observed. The task is to estimate M given M̃Ω

and Ω.

3.1 Noise Model

We consider a fairly general, worst case model for the noise matrixN , also used in [9].
In this modelN is distributed arbitrarily but bounded as |Nij | ≤ Nmax. This is a generic
setting, and any noise distribution with sub Gaussian tails can be approximated by this
model with high probability. However, tighter bounds can be obtained for individual
cases. Our bounds primarily depend on Nmax and the fractional operator norm of NΩ ,
‖NΩ‖2/p. We use the following result from [9]:

Theorem 1 ([9]). If N is a matrix from the worst case model, then for any realization
of N , ‖NΩ‖2 ≤ 2|Ω|

m
√
α
Nmax.
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Using, |Ω| ≈ pmn in Theorem 1, we have the following bound:

‖NΩ‖2
p

≤ 2
√
mnNmax, (1)

3.2 Algorithm

The algorithm analyzed in this paper is presented below [7]:

Algorithm 1. ALSM

1: Input: observed set Ω, values PΩ(M̃)
2: Create (2T +1) subsets from Ω — Ω1, Ω2 · · · , Ω2T , each of size |Ω|, with the elements of

Ω belonging to one of the Ωt’s with equal probability and sampled independently
3: Set Û0 = SVD(PΩ0(M̃)/p, k) i.e., top-k left singular vectors of PΩ0(M̃)/p

4: Clipping step: Set all elements of Û0 that have magnitude greater than 2μ
√

k√
n

to zero and

orthonormalize the columns of Û0 (using QR decomposition)
5: for t = 0, · · · , (T − 1) do

V̂ (t+1) ← argmin
V ∈Rn×k

‖PΩ(t+1) (Û
tV † − M̃)‖F (2)

Û (t+1) ← argmin
U∈Rm×k

‖PΩ(T+t+1)

(
U(V̂ (t+1))† − M̃

)
‖F (3)

end
6: Output: X = ÛT (V̂ T )†

For ease of analysis, we have modified the standard ALS algorithm. In Step 2 of the
algorithm, independently sampled subsets ofΩ are generated that are further used in the
rest of the algorithm. This modification was introduced purely for the ease of theoretical
analysis and is not required in practice. In the above algorithm, in each iteration, t, the
observed set Ω(t) is independent of the other iterations and hence, each iteration could
be analyzed independently. In the proof of our main result, while analyzing iteration, t,
we overload Ω to represent Ω(t) to avoid cluttering of symbols. Thus, the final sample
complexity for recovery would be 2T times the sample complexity requirements in each
iteration, where T is the total number of iterations required for convergence.

3.3 Result

Theorem 2. Let M = U∗Σ∗(V ∗)† ∈ Rm×n be a rank–k, incoherent matrix with

both U∗ and V ∗ being μ incoherent. Further, it is assumed that, Nmax ≤ C3
σ∗
k

n
√
k

and
‖NΩ‖2

p ≤ C2
σ∗
k

κMk . Additionally, let each entry of M̃ = M +N be observed uniformly
and independently with probability

p > C
κ4Mμ

4k7 logn log ‖M‖F

ε

mδ22k
(4)
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where, κM =
σ∗
1

σ∗
k

is the condition number of the M , δ2k ≤ σ∗
k

64σ∗
1

and C > 0 is a global

constant. Then with high probability, for T ≥ C′ log ‖M‖F

ε , the outputs ÛT and V̂ T of

Algorithm 1 with input (Ω,PΩ(M̃)) satisfy

1√
mn

‖M−ÛT (V̂ T )†‖F ≤ ε+20μκ2Mk
1.5

(
‖NΩ‖2
|Ω|

)
≤ ε+40μκ2Mk

1.5Nmax (5)

Worst Case Noise Model Requirements. The theorem requires that Nmax ≤ C3
σ∗
k

n
√
k

and ‖NΩ‖2

p ≤ C2
σ∗
k

κMk . For the worst case noise model, if Nmax ≤ C2
σ∗
k

2κMnk =⇒
‖NΩ‖2

p ≤ 2
√
mnNmax ≤ C2

σ∗
k

κMk Further,Nmax ≤ C3
σ∗
k

κMnk =⇒ Nmax ≤ C3
σ∗
k

nk ≤
C3

σ∗
k

n
√
k

. Thus, choosing C = min{C2/2, C3}, and Nmax ≤ C
σ∗
k

κMnk , both the condi-
tions on noise matrix for Theorem 2 are satisfied.

For a well conditioned matrix M of condition number close to 1, the above require-
ment is approximately equivalent toNmax ≤ C′k−1.5 ‖M‖F√

mn
, which is k−1.5 fraction of

root mean square value of the entries of matrix M . This is a fairly reasonable assump-
tion on the noise matrix for recovery guarantees.

3.4 Comparison with Similar Results

The most relevant work for our analysis is the analysis of low rank matrix completion
under alternating minimization approach proposed by Jain et. al. [7]. They have the
following result for ALS under noiseless setting, N = 0:

Theorem 3 ([7]). LetM = U∗Σ∗(V ∗)† ∈ Rm×n be a rank–k, incoherent matrix with
both U∗ and V ∗ being μ incoherent. Let each entry of M be observed uniformly and

independently with probability, p > C
κ4
Mμ4k7 log n log

√
k‖M‖2

ε

mδ2
2k

where, δ2k ≤ σ∗
k

64σ∗
1

and

C > 0 is a global constant. Then with high probability, for T ≥ C′ log ‖M‖F

ε , the out-

puts ÛT and V̂ T of Algorithm 1 with input (Ω,PΩ(M̃)) satisfy ‖M−ÛT (V̂ T )†‖F ≤ ε

Even for a very general noise model, the sample complexity required for our analysis is
the same as that required by the noise–free analysis.

Next, we compare our bounds with the bounds obtained for noisy matrix completion
by Keshavan et. al [9]. The algorithm suggested by Keshavan et. al., OptSpace, involves
optimizing the initial estimate from SVD of PΩ(M̃) over a Grassmann manifold. The
main result in their paper is stated below:

Theorem 4 ([9]). Let M̃ = M + N , where M is a rank–k, μ incoherent matrix. A
subset, Ω ⊂ [m]× [n], of entries of M̃ are revealed. Let M̂ be the output of OptSpace
on the input of (M̃,Ω). Then, there exists numerical constants, C and C′ such that,

if |Ω| ≥ Cn
√
ακ2M max{μk

√
α logn;μ2k2ακ4M} and ‖NΩ‖2

p ≤ C′ σ∗
k

κ2
M

√
k

then, with

probability atleast 1− 1/n3, 1√
mn

‖M − M̂‖F ≤ C′κ2Mk
0.5
(

‖NΩ‖2

|Ω|
)
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The requirements on the noise matrix for recovery guarantees by OptSpace is close to
that derived in our results for Alternating minimization. Also, the error in the recovered
matrix in our analysis is off by a small factor of k as compared to the analysis in [9].
However, the sample complexity required by ALS as evaluated by our analysis is much
higher than that of Keshavan et. al.

4 Proof of Theorem 2

In this section we present the proof of Theorem 2. The outline of the proof is as follows.
In Section 4.1, Theorem 5 states that the initialization step of the Algorithm described
in 1 provides a good starting point. In Section 4.2, we first propose a modification
to the ALSM algorithm and prove that the modification in practice is equivalent to the
original ALSM algorithm, while the modified algorithm is easier to analyze. Theorem 6
is then stated without proof. This theorem establishes that the space spanned by ALSM
estimates of Û and V̂ converge towards U∗ and V ∗ respectively. Finally, we combine
the results on initialization and above mentioned theorem to prove the main result. The
proof of Theorem 6 is deferred to Section 4.3. In each subsection, the relevant lemmata
are first presented and then the main theorems are proved. The proofs of the lemmata
are provided in the Appendix.

4.1 Initialization

Lemma 1 (Theorem 1.1 of [8]). Let M̃ = M + N be such that M is rank–k and
μ–incoherent and |Ω| ≥ Cnkmax{logn, k}. Further, from the SVD of M̃

Ω

p , we get a

rank–k approximation as, M̃Ω
k = Ũ0Σ̃0Ṽ 0†, where Ũ0 ∈ Rm×k and Ṽ 0 ∈ Rn×k. Let

α = n/m ≥ 1. Then the following is true with probability greater than (1 − 1/n3),

1√
mn

‖M − M̃Ω
k ‖2 ≤ CMmax

(
mα3/2

|Ω|

)1/2

+
2m

√
α

|Ω| ‖NΩ‖2. (6)

Lemma 2. Let Ũ0 be defined as in Lemma 1. Further, under the conditions of Theorem
2, the following is true with probability greater than (1− 1/n3),

dist(Ũ0, U∗) ≤ 1

64k
.

The proof of Lemma 2 is presented in Appendix B.1.

Theorem 5 (ALSM has a good initial point). Let U c be obtained from Ũ0 defined

above, by setting all the entries greater than 2μ
√
k√

m
to zero. Let U0 be the orthonormal

basis of U c. Then under the conditions of Lemma 2, w.h.p. we have

– dist(U0, U∗) ≤ 1/2.

– U0 is incoherent with parameter μ1 =
32σ∗

1μ
√
k

σ∗
k

.

The proof follows directly from Lemma C.2 in [6] and Lemma 2. �
Note that the U0 defined above is the same as the the initial estimate, Û0 from the
initialization step of the Algorithm 1.
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4.2 Convergence of ALS Minimization

Consider the following modification to Equation 2 and 3 of Algorithm 1:

V̂ (t+1) ← argmin
V̂ ∈Rn×k

‖PΩ(t+1)(U tV̂ † − M̃)‖F

V (t+1)R
(t+1)
V = V̂ (t+1) (QR decomposition)

Û (t+1) ← argmin
Û∈Rm×k

‖PΩ(T+t+1)

(
ÛV (t+1)† − M̃

)
‖F

U (t+1)R
(t+1)
U = Û (t+1) (QR decomposition) (7)

Lemma 3 (Lemma 4.4 of [7]). Let Û (t) be the t-th step iterate of ALSM Algorithm
1, and Ũ (t) = U (t)R

(t)
U be that of the modified algorithm presented above. Suppose

that both Ũ (t) and Û (t) are full rank and span the same space, then the same will be
true for subsequent iterates. i.e span(V̂ (t+1)) = span(Ṽ (t+1)) and span(Û (t+1)) =

span(Ũ (t+1)) and all the matrices at iterate t+ 1 are full rank.

Proof. As both Ũ (t), Û (t) ∈ Rm×k have full rank and span same subspace, there exists
a k × k full rank matrix R such that Û (t) = Ũ (t)R = U (t)R

(t)
U R. Thus,

min
V ∈Rn×k

‖PΩ(t+1)

(
Û (t)V † − M̃

)
‖2 = ‖PΩ(t+1)

(
Û (t)V̂ (t+1)† − M̃

)
‖2

= ‖PΩ(t+1)

(
U (t)(V̂ (t+1)(R

(t)
U R)†)† − M̃

)
‖2 ≥ min

V ∈Rn×k
‖PΩ(t+1)

(
U (t)V † − M̃

)
‖2

= ‖PΩ(t+1)

(
U (t)Ṽ (t+1)† − M̃

)
‖2

The above equation holds with equality for V̂ (t+1) = Ṽ (t+1)
(
(RtUR)

†)−1
. Further

Theorem 6 shows that Ṽ (t+1) is full rank (as dist(Ṽ (t+1), V ∗) < 1) and hence, V̂ (t+1) =

Ṽ (t+1)
(
(RtUR)

†)−1
is full rank and their columns span the same subspace. Similar ar-

guments can be used to show that Û (t+1) and Ũ (t+1) are both full rank and span the
same subspace. �
Further, as the initial estimate, Û0 satisfies the conditions of the above lemma, in the
rest of the proof it is assumed that the distances dist(Û t, U∗) and dist(V̂ t, V ∗) are the
same for the updates from both ALSM and its modified version presented above.

Theorem 6 (Each step of ALSM is good). Under the assumptions of Theorem 2, the
(t+ 1)th iterates, Û t+1 and V̂ t+1 satisfy the following w.h.p:

dist
(
V̂ t+1, V ∗

)
≤ 1

4
dist
(
Û t, U∗

)
+ 10

μκM‖NΩ‖2k
σ∗kp

dist
(
Û t+1, U∗

)
≤ 1

4
dist
(
V̂ t+1, U∗

)
+ 10

μκM‖NΩ‖2k
σ∗kp

(8)

where, κM = σ∗1/σ∗k is the condition number of the matrix M .

The proof of Theorem 6, involves few other lemmata and is deferred to Section 4.3. The
main theorem is now proved using the results from Theorem 5 and 6. �
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Proof of Main Result, Theorem 2. From Theorem 6, after T = O(log
√
k‖M‖2

ε ) steps,
we have:

dist
(
ÛT , U∗

)
≤ ε

2
√
k‖M‖2

+ 10
μκM‖NΩ‖2k

σ∗kp
(9)

Using Lemma 4, we have that:

‖M − ÛT V̂ (T+1)†‖F ≤ ‖(I − ÛT ÛT†)U∗Σ∗‖F + ‖F‖F + ‖Nres‖F (10)

Note that the bounds on ‖F‖2 and ‖Nres‖2 from Lemma 5 and Equation 16, also hold
for both ‖F‖F and ‖Nres‖F respectively. This can be seen from the proofs of Lemmata
5 and 6. Using these bounds we have the following:

‖M − ÛT V̂ (T+1)†‖F ≤
√
kσ∗

1dist(ÛT , U∗) +
δ2kσ

∗
1

1− δ2k
dist(ÛT , U∗) + Cσ∗

k

10μκM‖NΩ‖2k
σ∗
kp

≤ ε+
20μκ2

M‖NΩ‖2k1.5
p

(11)

Further, in order that each of the 2T +1 sub-sampled indicesΩt has O
(
μ4κ4

Mk7 logn

mδ22k

)
samples, the total sample complexity required is O

(
μ4κ4

Mk7 log n log
√

k‖M‖2
ε

mδ22k

)
. �

4.3 Proof of Theorem 6

To avoid cluttering of notations we define a few quantities first. In the following defini-
tions, we recall that U∗ and UN are the left singular vectors of M and N respectively,
and U t is the tth step iterate of the modified algorithm (U t = Û t(RtU )

−1). Further
U (i) and Ui represent the ith row and column vectors of U respectively and Uij is the
(i, j)th entry of U . For 1 ≤ p ≤ k and 1 ≤ q ≤ k we define diagonal matrices
Bpq, Cpq, Dpq ∈ Rn×n, where, Dpq = 〈U tp, U∗

q 〉In×n and the, j th diagonal entries
of Bpq and Cpq are given by:

(Bpq)jj =

⎡⎣1
p

∑
i:(i,j)∈Ω

U tipU
t
iq

⎤⎦ , (Cpq)jj =
⎡⎣1
p

∑
i:(i,j)∈Ω

U tipU
∗
iq

⎤⎦ .
Using the above matrices, we define the following matrices of dimension nk × nk:

B �

⎡⎢⎢⎣
B11 · · · B1k

...
. . .

...
Bk1 · · · Bkk

⎤⎥⎥⎦ , C �

⎡⎢⎢⎣
C11 · · · C1k

...
. . .

...
Ck1 · · · Ckk

⎤⎥⎥⎦ , D �

⎡⎢⎢⎣
D11 · · · D1k

...
. . .

...
Dk1 · · · Dkk

⎤⎥⎥⎦ , S �

⎡⎢⎢⎣
σ∗
1 In · · · 0

...
. . .

...
0 · · · σ∗

kIn

⎤⎥⎥⎦ .

Analogously, we define matrices, CN ∈ Rnk×nm and SN ∈ Rnm×nm as follows:

CN �

⎡⎢⎣C
N
11 · · · CN1m
...

. . .
...

CNk1 · · · CNkm

⎤⎥⎦ , SN �

⎡⎢⎣σ
N
1 In · · · 0
...

. . .
...

0 · · · σNmIn

⎤⎥⎦ (12)
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where, ∀ 1 ≤ p ≤ k and 1 ≤ q ≤ m, diagonal matrices CNpq ∈ Rn×n are defined as

(CNpq)jj =

⎡⎣ 1
p

∑
i:(i,j)∈Ω

U tipU
N
iq

⎤⎦. Additionally, we define the following vectors:

v∗ = [V †
1 , V

†
2 , · · · , V

†
k ]

† ∈ Rnk, vN = [V N†
1 , V N†

2 , · · · , V N†
m ]† ∈ Rnm.

Finally, we define the matrices, F = vec2mat
(
B−1(BD − C)Sv∗

)
∈ Rn×k and

Nres = vec2mat
(
B−1CNSNvN

)
∈ Rn×k.

Lemma 4. Let Û t be the tth step iterate of the above algorithm and let U t, V̂ t+1 and
V t+1 be obtained by Updates in 7. Then, using the matrices defined above, we have:

V̂ t+1 = V ∗Σ∗U∗†U t − F +Nres (13)

The proof of the above lemma is provided in Appendix B.2.

Lemma 5. Let F be the error matrix defined above and let U t be a μ1 incoherent
orthonormal matrix obtained from the tth update. Under the conditions of Theorem 2,
with probability at least 1− 1/n3, ‖F‖2 ≤ δ2kσ

∗
1

1−δ2k dist(U t, U∗).

This is the same as Lemma 5.6 of [7] and the proof follows exactly for the noisy case.

Lemma 6. Let Nres be the matrix defined above. Under the conditions of the Theorem
2 with probability at least 1− 1/n3

‖Nres‖2 ≤ μ1
√
k

(1− δ2k)

(
‖NΩ‖2
p

)
(14)

Lemma 7. Let R(t+1)
V be the upper triangular matrix obtained by QR decomposition

of V̂ t+1 an. Let F , Nres and U t be defined as above. Then,∥∥∥∥(R(t+1)
V

)−1
∥∥∥∥
2

≤ 1[
σ∗k

√
1− dist2(U t, U∗)− ‖F‖2 − ‖Nres‖2

] (15)

The proof of Lemma 6 and 7 are provided in Appendix B.3 and B.4 respectively. We
now use the above lemmata to prove Theorem 6.

If δ2k ≤ σ∗
k

Cσ∗
1

for appropriate C > 1, then 1
1−δ2k ≤ C/(C − 1) = C1. Fur-

ther as dist(U (t), U∗) ≤ dist(U (0), U∗) ≤ 1/2, we have
√
1− dist2(U (t), U∗) ≥

√
3/2. Finally, from Lemma 8, we have μ1 =

32σ∗
1μ

√
k

σ∗
k

. This implies that ‖Nres‖2 ≤
32μκMk
1−δ2k

(
‖NΩ‖2

p

)
. If further we have that ‖NΩ‖2

p ≤ C2
σ∗
k

κMk , then for small enoughC2,

we have

‖Nres‖2 ≤ C4μκMk
‖NΩ‖2
p

≤ C′σ∗k (16)
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Using Lemma 4, we have:

dist
(
V ∗, V (t+1)

)
=
∥∥∥[V ∗†

⊥ V ∗Σ∗U∗† − V ∗†
⊥ F + V ∗†

⊥ Nres

]
(R

(t+1)
V )−1

∥∥∥
2

≤
(
‖F‖2 + ‖Nres‖2

) ∥∥∥∥(R(t+1)
V

)−1
∥∥∥∥
2

(17)

For appropriate choice of C > 1 and small enough C′ < 1, we have From Lemma
5, 6 and 7 and Equation 17, we have the following:

dist(V ∗, V (t+1)) ≤ 1

4
dist(U (t), U∗) + 10

μκM‖NΩ‖2k
σ∗kp

Incoherence of Solutions in Each Iteration

Lemma 8. Under the conditions of Theorem 2, let U t be the tth step iterate obtained

by Eq. 3. If U t is μ1 =
32σ∗

1μ
√
k

σ∗
k

incoherent then with probability at least (1 − 1/n3),

the solution V (t+1) obtained from Eq. 7 is also μ1 incoherent.

The proof of the above lemma can be found in Appendix B.5. As for t = 0, U0 is
μ1 incoherent, the theorem can be used for inductively proving that U t and V t are μ1
incoherent for all t. �

5 Conclusion

We have established the first theoretical guaranties for recovery of a low rank matrix
perturbed by bounded noise, using alternating least squares minimization algorithm.
The algorithm is computationally more scalable than the algorithms that have previ-
ously established error bounds under noisy observations. We use the worst case noise
model and it is observed that for well conditioned matrices, the main result requires
a reasonable bound on the maximum noise entry. The results establish that under the
conditions of incoherence of the underlying matrix M and bounded noise, with suffi-
cient samples, the Frobenius norm of the deviation of the recovered matrix, M̂ , from

the original matrixM , ‖M−M̂‖F√
mn

can be made arbitrarily close to Ck1.5Nmax. Finally,

for well conditioned matrices, the sample complexity is O(k7n logn). This is the same
complexity as that required by the current proof of recovery guaranties of ALSM under
noiseless setting. However, this is looser compared to the established bounds of other
algorithms like nuclear norm minimization and OptSpace and tightening the sample
complexity will be considered in the future work. Another direction for future work
would include bounding the ALSM algorithm with cost function modified to include
regularization on the factors U and V .
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Appendix A

– ‖M‖2 ≤ ‖M‖F ≤
√
k‖M‖2

– If a matrixM is μ-incoherent, then,

Mmax ≤ μ2
√
k√

mn
‖M‖F ≤ μ2k√

mn
‖M‖2 (18)

– Bernstein’s Inequality: LetXi, i = {1, 2, . . . , n} be independent random numbers.
Let |Xi| ≤ L ∀ i w.p. 1. Then we have the following inequalities:

P [
∑n
i=1Xi −

∑n
i=1 E[Xi] > t] ≤ exp

(
−t2/2∑n

i=1 V ar(Xi)+Lt/3

)
P [
∑n

i=1Xi −
∑n

i=1 E[Xi] < −t] ≤ exp
(

−t2/2∑n
i=1 V ar(Xi)+Lt/3

)
(19)
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Appendix B

B.1 Initialization Proofs

Proof (Proof of Lemma 2)

‖M − M̃Ω
k ‖22 = ‖U∗Σ∗V ∗† − Ũ0Σ̃0Ṽ 0†‖22

= ‖(I − Ũ0Ũ0†)U∗Σ∗V ∗† + Ũ0(Ũ0†U∗Σ∗V ∗† − Σ̃0Ṽ 0†)‖22
(1)
= ‖(I − Ũ0Ũ0†)U∗Σ∗V ∗†‖22 + ‖Ũ0(Ũ0†U∗Σ∗V ∗† −ΣV †)‖22
≥ ‖(I − Ũ0Ũ0†)U∗Σ∗V ∗†‖22 = ‖Ũ0†

⊥ U
∗Σ∗‖22 ≥ σ∗2k ‖Ũ0†

⊥ U
∗‖22

where, (1) follows as the two terms span orthogonal spaces. Hence,

dist(Ũ0, U∗) ≤ 1

σ∗k
‖M − M̃Ω

k ‖2
(2)

≤ 1

σ∗k

⎛⎝CMmax

√
mα3/2

p
+ 2

‖NΩ‖2
p

⎞⎠
(3)

≤ Cμ2k
σ∗1
σ∗k

√
mα3/2

pmn
+

2‖NΩ‖2
pσ∗k

≤ 1

64k
, if p >

C′k4μ4σ∗21
mσ∗2k

and
‖NΩ‖2
p

≤ C′′ σ
∗
k

k
.

where, (2) follows from Lemma 1 and (3) follows from Equation 18

B.2 Proof of Lemma 4

We recall that M (i) is the ith row of the matrix M . Given, U t, the tth step iterate. The
update of V̂ (t+1) is guided by the following equation from 7.

V̂ (t+1) = argmin
V ∈Rn×k

‖PΩ(U tV †)− PΩ(M̃)‖2F

= argmin
V ∈Rn×k

∑
(i,j)∈Ω

(
U t(i)†V (j) − U∗(i)†Σ∗V ∗(j) − U

(i)†
N ΣNV

(j)
N

)2
Taking the gradient with respect to each V (j) and setting it to 0 for the optimum

V = V̂ (t+1), we have the following ∀ j ∈ [n]:∑
i:(i,j)∈Ω

U t(i)
(
U t(i)†

(
V̂ (t+1)

)(j)
− U∗(i)†Σ∗V ∗(j) − U

(i)†
N ΣNV

(j)
N

)
= 0 (20)

We further define matrices Bj , Cj , Dj ∈ Rk×k and CjN ∈ Rk×m for 1 ≤ j ≤ n as
follows:

Bj =
1

p

∑
i:(i,j)∈Ω

U t(i)U t(i)†, Cj =
1

p

∑
i:(i,j)∈Ω

U t(i)U∗(i)†,

Dj = U t†U∗, CjN =
1

p

∑
i:(i,j)∈Ω

U t(i)UN(i)†. (21)
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It is useful to note that Bj ∈ Rk×k is obtained by taking the j th diagonal elements
of Bpq (defined in Equation 12), for 1 ≤ p, q ≤ k, i.e. (Bj)pq = (Bpq)jj . The other
matrices are defined similarly. Using the above matrices, we have from the previous
equation:(

V̂ (t+1)
)(j)

= DjΣ∗V ∗(j) − (Bj)−1
(
BjDj −Cj

)
Σ∗V ∗(j) + (Bj)−1Cj

NΣNV
(j)
N

V̂ (t+1) = V ∗Σ∗U∗†U t − F +Nres

(22)

The last equation above can be easily seen by writing the structure of matrices defined
above.

B.3 Proof of Lemma 6

From Lemma C.6 of [6], under the assumptions on p andM specified in the Lemma, we
have, ‖B−1‖2 ≤ 1

1−δ2k . Further from the structure of the matrices CN , SN and CjN , it

can be verified that ‖CNSNvN‖22 =
n∑
j=1

‖C(j)
N ΣNV

(j)
N ‖22. Recall that V (j)

N ∈ Rm×1 is

the jth row of VN ∈ Rn×m (a similar decomposition is used in Equation 22). Thus we
have:

∥∥CNSNvN∥∥2
2
=

n∑
j=1

∥∥∥C(j)ΣNV
(j)
N

∥∥∥2
2
=

n∑
j=1

∥∥∥∥∥∥1p
∑

i:(i,j)∈Ω
U t(i)U

(i)†
N ΣNV

(j)
N

∥∥∥∥∥∥
2

2

≤ 1

p2

n∑
j=1

∑
i:(i,j)∈Ω

‖U t(i)Nij‖22 ≤
1

p2

∑
(i,j)∈Ω

‖U t(i)‖22|Nij |22

≤ μ21k

(
‖NΩ‖F√
mp

)2

≤ μ21k

(
‖NΩ‖2
p

)2

(23)

This implies that

‖Nres‖2 ≤ ‖Nres‖F = ‖B−1CNSNvN‖2 ≤ ‖B−1‖2‖CNSNvN‖2 (24)

≤ μ1
√
k

(1− δ2k)

(
‖NΩ‖2
p

)
.

B.4 Proof of Lemma 7

1

‖(R(t+1)
V )−1‖2

= σmin(R
(t+1)
V ) = min

z:‖z‖2=1
‖R(t+1)

V z‖2 = min
z:‖z‖2=1

‖V (t+1)R
(t+1)
V z‖2

= min
z:‖z‖2=1

‖V̂ (t+1)z‖2 = min
z:‖z‖2=1

‖
(
V ∗Σ∗(U∗)†U t − F +Nres

)
z‖2

≥ min
z:‖z‖2=1

[
‖V ∗Σ∗(U∗)†U tz‖2 − ‖F‖2 − ‖Nres‖2

]
≥ σ∗k min

z:‖z‖2=1
‖(U∗)†U tz‖2 − ‖F‖2 − ‖Nres‖2

= σ∗k
√
1− dist(U t, U∗)2 − ‖F‖2 − ‖Nres‖2
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Thus, ‖(R(t+1)
V )−1‖2 ≤ 1

σ∗
k

√
1−dist(Ut,U∗)2−‖F‖2−‖Nres‖2

B.5 Proof of Lemma 8

In this proof, we use the following set of inequalities:

‖(Bj)−1‖2 ≤ 1

1 + δ2k

‖Bj‖2 ≤ 1 + δ2k, ‖Cj‖2 ≤ 1 + δ2k, ‖Dj‖ ≤ ‖U∗‖2‖U t‖2 = 1.

(25)

The above set of equations involve terms that does not depend on the noise and hence
are incorporated from Appendix C.3 of [7]. It can be verified that the proof does not
change for the noisy case. We omit the derivation here to avoid redundancy.

Lemma 9. Under the conditions of Theorem 2, w.p. greater that 1− 1/n3

‖CjNΣNV
(j)
N ‖2 ≤ Nmaxμ1

√
km(1 + δ2k)

We prove the above lemma at the end of this section. Now, from Equation 22, we have:(
V̂ (t+1)

)(j)
= DjΣ∗V ∗(j) − (Bj)−1

(
BjDj − Cj

)
Σ∗V ∗(j) + (Bj)−1CjNΣNV

∗(j)
N

Thus,

∥∥∥∥
(
V (t+1)

)(j)
∥∥∥∥
2

≤ ‖(R(t+1))−1‖2
[(‖Dj‖2 + ‖(Bj )−1‖2(‖BjDj‖2 + ‖Cj‖2)

) ‖Σ∗‖‖V ∗(j)‖2

+ ‖(Bj )−1‖2‖Cj
NΣNV

∗(j)
N ‖2

]

(26)
Using equations from 25, Lemma 9 and 7, and δ2k ≤ 1

C , C > 1 we have the following:

∥∥∥∥
(
V (t+1)

)(j)
∥∥∥∥
2

≤ ‖(R(t+1))−1‖2
[
σ∗
1μ

√
k√

n

(
1 +

(2(1 + δ2k))

1− δ2k

)
+

Nmaxμ1

√
km(1 + δ2k)

1− δ2k

]

= ‖(R(t+1))−1‖2
[
4σ∗

1μ
√
k√

n
+ 2Nmaxμ1

√
km

]

(27)

We now use that for, μ1 =
32μσ∗

1

√
k

σ∗
k

and further, Nmax ≤ C3
σ∗
k

n
√
k

. Choosing C3 ap-

propriately, we have Nmaxμ1
√
km ≤ 2σ∗

1μ
√
k√

n
. Finally, using Lemmata 5 and 6, the

fact that dist(U∗, U t) ≤ dist(U∗, U0) ≤ 0.5 and using the conditions on ‖NΩ‖2 from
Theorem 2 , we have, ‖(R(t+1))−1‖2 ≤ 4

σ∗
k

. Using these we have:∥∥∥∥(V (t+1)
)(j)∥∥∥∥

2

≤ ‖(R(t+1))−1‖2
8σ∗1μ

√
k√

n
≤ 32σ∗1μ

√
k

σ∗k
√
n

(28)

Thus we have, μ(V (t+1)) ≤ 32σ∗
1μ

σ∗
k

≤ 32σ∗
1μ

√
k

σ∗
k

.
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Proof of Lemma 9. ‖CjNΣNV
(j)
N ‖2 = maxx:‖x‖2=1 x

†CjNΣNV
(j)
N . Given any x such

that ‖x‖2 = 1, then

x†CjNΣNV
(j)
N =

1

p

∑
i:(i,j)∈Ω

x†U t(i)U (i)†
N ΣNV

(j)
N =

1

p

∑
i:(i,j)∈Ω

x†U t(i)Nij (29)

We define δij =

{
1 if (i, j) ∈ Ω
0 otherwise

, Zi = 1
pδijx

†U t(i)Nij and Z =
∑m
i=1 Zi

E[Z] =

m∑
i=1

E[Zi] =

m∑
i=1

x†U t(i)Nij ≤ Nmax

m∑
i=1

‖U t(i)‖2 = Nmaxμ1
√
km (30)

var(Z) =

m∑
i=1

E[Z2
i ]− (E[Zi])

2 =
1− p

p

m∑
i=1

(
x†U t(i)

)2
N2
ij

≤ 1

p
N2
max

m∑
i=1

‖U t(i)‖22 =
1

p
N2
max‖U t‖2F =

N2
maxk

p

(31)

max
i
Zi =

1

p
max
i
xtU t(i)Nij ≤

Nmaxμ1
√
k

p
√
m

(32)

From Equations 29, 30, 31, 32 and using Bernstein’s inequality in Equation 19, we have
the following:

P
(
Z ≥ Nmaxμ1

√
km(1 + δ2k)

)
≤ exp

⎛⎝ −δ22kN
2
maxμ

2
1km/2

N2
maxk

p
+

N2
maxμ2

1kδ2k
3p

⎞⎠ = exp

⎛⎜⎝ −δ22kμ
2
1mp

2
(
1 +

μ2
1δ2k
3

)
⎞⎟⎠

From the conditions of Theorem 2, δ2k ≤ σ∗
1

Cσ∗
k

, p > 12 logn
mδ2k

, using (1 + μ21δ2k/3) ≤
(1 + μ21) ≤ 2μ21, we have:

P
(
Z ≥ Nmaxμ1

√
km(1 + δ2k)

)
≤ exp

(
−12μ21 logn

4μ1

)
=

1

n3
.

Thus, we have with probability grater that 1 − 1/n3, ∀ x : ‖x‖2 = 1, includ-

ing the maximizing x, we have x†CjNΣNV
(j)
N ≤ Nmaxμ1

√
km(1 + δ2k). Thus,

‖CjNΣNV
(j)
N ‖2 ≤ Nmaxμ1

√
km(1 + δ2k). �
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Abstract. Low-rank matrix completion is an important theme both theoretically
and practically. However, the state-of-the-art methods based on convex optimiza-
tion usually lead to a certain amount of deviation from the original matrix. To
perfectly recover a data matrix from a sampling of its entries, we consider a
non-convex alternative to approximate the matrix rank. In particular, we mini-
mize a matrix γ-norm under a set of linear constraints. Accordingly, we derive a
shrinkage operator, which is nearly unbiased in comparison with the well-known
soft shrinkage operator. Furthermore, we devise two algorithms, non-convex soft
imputation (NCSI) and non-convex alternative direction method of multipliers
(NCADMM), to fulfil the numerical estimation. Experimental results show that
these algorithms outperform existing matrix completion methods in accuracy.
Moreover, the NCADMM is as efficient as the current state-of-the-art algorithms.

1 Introduction

Applications of low-rank matrix completion become increasingly popular in machine
learning and data mining. For instance, in the system of collaborative filtering, we aim
to predict the unknown preference of a user on a set of unrated items, only according to
a few submitted rating. In image inpainting problems, large amount of missing pixels
should be estimated by exploiting the known content.

Typically, matrix completion is formed as minimizing the rank of matrix when given
a few known entries. However, the rank minimization problem is often numerically pro-
hibitive. Thus, many approximation strategies are encouraged. One principled approach
is to replace the matrix rank by the nuclear norm, because the nuclear norm is the best
convex relaxation of the matrix rank. In the literature [1–3], the authors proved that
under certain assumptions on the proportion of the missing entries and locations, most
low-rank matrices can be completed exactly by minimizing the nuclear norm under the
linear constraints (the completed matrix must be consistent with the observed matrix
for the few known entries).

Based on the nuclear norm, Cai et al. [4] devised a singular value thresholding (SVT)
algorithm for this convex optimization problem. Mazumder et al. [5] formed a uncon-
strained convex optimization problem and developed a soft-impute algorithm. Ma et
al. [6] devised a fixed point iterative algorithm inspired from the work of Hale et al. [7]
in the �1 regularization problem. Lin et al. [8, 9] proposed an alternative direction algo-
rithm based on the augmented Lagrangian multipliers. Other efficient algorithms based
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H. Blockeel et al. (Eds.): ECML PKDD 2013, Part II, LNAI 8189, pp. 210–225, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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on convex relaxation include [3, 10, 11]. There are also some other matrix norms that
have been considered, e.g., the max-norm which is also a convex approximation of the
matrix rank [12].

However, convex relaxation often makes the resulting solution deviate from the orig-
inal matrix [13]. To address this problem, non-convex approximation to the matrix
norm has been also exploited recently. Such treatments include the Schatten �p-norm
(0 < p < 1) used by Nie et al. [13], the truncated nuclear norm proposed by Hu et
al. [14] and a so-called matrix γ-norm studied by Wang et al. [15]. Note that matrix
γ-norm is not really a norm, since it does not satisfy triangle inequality.

The matrix γ-norm is a matrix extension of the MC+ function studied by Mazumder
et al. [16] and Zhang [17] for variable selection. The γ-norm is characterized by a
positive factor γ, and is tighter than the nuclear norm to the matrix rank. Wang
et al. [15] employed the γ-norm, giving a non-convex approach to robust principle
component analysis (RPCA). In this paper we introduce the γ-norm into the matrix
completion problem. We develop a shrinkage operator which is nearly unbiased from
non-convex rank approximation and put forward two effective algorithms called NCSI
and NCADMM.

The remaining parts of the paper are organized as follows. Section 2 reviews the
preliminaries for matrix completion. Section 3 presents the NCSI and NCADMM al-
gorithms. Section 4 gives the convergence analysis of our NCSI algorithm. Section 5
conducts the experimental analysis. Finally, we conclude our work in Section 6.

2 Preliminaries

We are given a matrix M = [mij ] ∈ Rn×m with missing entries. Without loss of
generality, we assume m ≤ n. Let X = [xij ] ∈ Rn×m be an unknown low-rank
matrix. The matrix completion problem is to address the following rank minimization
problem:

min
X

rank(X)

s.t. xij = mij , ∀(i, j) ∈ Ω,

in which Ω ⊂ {1, . . . , n} × {1, . . . ,m} is the set of indices of observation entries of
M. We denote the indices of the missing entries by Ω̄ = {1, . . . , n}× {1, . . . ,m} \Ω.

This rank minimization problem is generally NP-hard. However, it can be relaxed
to a feasible optimization problem via rank approximation. That is, we consider the
following alternative:

min
X

P (X; θ) (1)

s.t. xij = mij , ∀(i, j) ∈ Ω, (2)

where P (X; θ) represents the approximation of rank(X).
It is well known that the nuclear norm, the sum of singular values, is the tightest

convex relaxation of the matrix rank. Candès and Tao [2] proved that most low rank ma-
trices can be completed from (1) with P (X; θ) as the nuclear norm ‖X‖∗ if the number
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of given entries is greater than nrpolylog(n) up to a positive constant C. Meanwhile,
some researchers developed efficient algorithms to solve the above problem such as
singular value thresholding SVT [4].

In order to accommodate the small noise in observation, it is better to relax the con-
straints in (1) by adding a square loss to the objective function, forming an uncon-
strained problem [5]:

min
X

1
2‖PΩ(X−M)‖2F + λP (X; θ), (3)

where ‖A‖F =
√∑

i,j a
2
ij =

√
tr(AA�) =

√∑
i σ

2
i (A) is the Frobenius norm of

A = [aij ], and PΩ(A) is such an n×m matrix that its (i, j)th entry is aij if (i, j) ∈ Ω
and zero otherwise. P (X; θ) is usually called a regularization or penalty term.

In order to solve problem (3), a key step is to solve a subproblem of the form:

min
X

{1
2
‖X−Φ‖2F + λP (X; θ)

}
. (4)

First of all, we introduce a so-called shrinkage operator.

Definition 1 (Shrinkage Operator). Sλ,θ(Φ) = argminX{ 1
2‖X−Φ‖2F +λP (X; θ)}

is a shrinkage operator if it shrinks the small singular value of Φ to 0.

In this paper, we would like to consider the special penalty P (X; θ) which is con-
structed from a single variable function. Suppose p(x; θ) is a function of single vari-
able function with domain R+, then P (X; θ) =

∑
i p(σi(X)). We can construct many

penalty on matrix by this way. In this case we define the overloading of shrinkage op-
erator on R+ as Sλ,θ(z) = argminx≥0{ 1

2 (x− z)2 + λp(x; θ)}.
For example, the popular used nuclear norm P (X; θ) = ‖X‖∗ is derived from func-

tion p(x) = x. And Sλ(z) = argminx≥0{ 1
2 (x− z)2 + λx} for z ≥ 0.

Let Φ = UΣV� be the thin SVD of Φ. It has been proved that in the case of
P (X; θ) = ‖X‖∗ the shrinkage operator has a simple form which is given by Sλ(Φ) =
UΣλV

� with Σλ = diag(Sλ(σ1), . . . , Sλ(σm)) [4–6], where Sλ(·) defined for a
single variable is the overloading operator which is given by

Sλ(z) = [z − λ]+ =

{
z − λ if z > λ,

0 if z ≤ λ.

We call Sλ(·) the soft shrinkage operator.
Observe that problem (4) can be viewed as the extreme case of (3), when Ω is the

set of subscript indices of all entries of matrix. We find that soft shrinkage operator
derived from the nuclear norm may lead to deviation for large λ, since a same positive
number is subtracted from all the singular values of a matrix. This encourages us to use
a non-convex penalty which results in a shrinkage operator keeping the large singular
values unchanged while shrinking the small ones to zero. We establish this thought the
following definition.
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Definition 2 (Nearly Unbiasedness). We say that the operator Sλ,θ(Φ) is nearly un-
biased, if it keeps the sufficiently large singular value of Φ unchanged.

The non-convex penalty has been mentioned in [5] and further explored by some re-
searchers in matrix recovery as well as matrix completion problems [14, 15]. Here we
employ the treatment of Wang et al. [15] who devised a so-called γ-norm in their work
of matrix recovery problem. We will show that this non-convex penalty can make a
nearly unbiased estimator for the matrix completion problem.

3 Methodology

For a matrix X ∈ Rn×m with m ≤ n, X = UΣV� is the SVD factorization with
Σ = diag{σ1, ..., σm}. According to Wang et al. [15], γ-norm is defined as

‖X‖γ =

m∑
i=1

p(σi; γ),

where p(x; γ) =
∫ x
0 (1 − u

γ )+du = (x − x2

2γ )I(x < γ) + γ
2 I(x ≥ γ). A key step

to construct an algorithm is an optimization problem whose solution is summarized as
below.

Theorem 1. SupposeΦ = UΣV� is the SVD factorization. The minimizer of φ(X) =
1
2‖Φ−X‖2F + λ‖X‖γ with γ > λ is Sλ,γ(Φ) = UΣλ,γV

�, where Σλ,γ =
diag(Sλ,γ(σ1), · · · , Sλ,γ(σm)) is a diagonal matrix with the diagonal elements

Sλ,γ(σi) = argmin
x≥0

{1
2
(x− σi)

2 + λp(x; γ)} =

⎧⎪⎨⎪⎩
σi if σi ≥ γ,
σi−λ
1−λ

γ

if λ ≤ σi < γ,

0 if σi < λ.

Proof. Let the thin SVD ofX be of X = UΛVT , where U = [u1, . . . ,um] has or-
thonormal columns, V = [v1, . . . ,vm] is orthogonal, and Λ = diag(λ1, . . . , λm) is
arranged as λ1 ≥ λ2 ≥ · · · ≥ λm ≥ 0.

φ(X) =
1

2
‖Φ−X‖2F + λ

m∑
i=1

∫ λi

0

(1− u

γ
)+ du

=
1

2
‖Φ−UΣVT ‖2F + λ

m∑
i=1

∫ λi

0

(1− u

γ
)+ du

=
1

2
‖Φ‖2F +

1

2
(

m∑
i=1

λ2i − 2

m∑
i=1

λiu
T
i Φvi) + λ

m∑
i=1

∫ λi

0

(1 − u

γ
)+ du.

Fixing ui and vi, and then differentiating φ(X) with respect to λi yields

λi − uTi Φvi + λ(1− λi
γ
)+ = 0.
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Denoting ξi = uTi Φvi, we obtain

λ̂i = Sλ,γ(ξi) =

⎧⎪⎨⎪⎩
ξi if γ < ξi,
ξi−λ
1−λ

γ

if λ < ξi ≤ γ,

0 if ξi ≤ λ.

Substituting the λ̂i back into g(X) yields

φ(X) =
1

2
‖Φ‖2F+

1

2

m∑
i=1

λ̂i
2−

m∑
i=1

λ̂iξi+λ

m∑
i=1

{
(λ̂i−

λ̂i
2

2γ
)I(λ̂i ≤ γ)+

γ

2
I(λ̂i > γ)

}
.

We now see that minimizing φ(X) w.r.t. X is equivalent to the minimization of ψ w.r.t.
the ξi. Here

ψ =
1

2

m∑
i=1

λ̂i
2 −

m∑
i=1

λ̂iξi + λ

m∑
i=1

{(
λ̂i −

λ̂i
2

2γ

)
I(λ̂i ≤ γ) +

λγ

2
I(λ̂i > γ)

}
=

1

2

∑
λ<ξi≤γ

μ2(ξi − λ)2 +
1

2

∑
ξi>γ

ξi
2 −

∑
λ<ξi≤γ

μ(ξi − λ)ξi −
∑
ξi>γ

ξi
2

+λ
∑

λ<ξi≤γ

{
μ(ξi − λ)− μ2(ξi − λ)2

2γ

}
+
∑
ξi>γ

λγ

2
,

where μ = 1
1−λ

γ

= γ
γ−λ . Since the ξi are partitioned into the three parts, we consider

the corresponding terms of ψ separately. The term of ψ corresponding to λ < ξi ≤ γ is

ψ1 =
∑

λ<ξi≤γ

{1
2
μ2(ξi − λ)2 − μ(ξi − λ)ξi + λμ(ξi − λ)− λμ2(ξi − λ)2

2γ

}
= −

∑
i

μ

2
(ξi − λ)2.

The term of ψ corresponding to ξi > γ is

ψ2 =
∑
ξi>γ

{
− 1

2
ξ2i +

λγ

2

}
.

Recall that ξi = uTi Φvi. In order to minimize ψ w.r.t. ξi, ui and vi should be the sin-
gular vectors corresponding the singular values of Φ and ξi = σi. Thus, it is necessary
that the optimal solution to minφ(X) is X = Sλ,γ(Φ). �

Now we have introduced a so-called non-convex soft shrinkage operator Sλ,γ(·). Com-
pared to the popular soft shrinkage operator, it has an advantage of nearly unbiasedness,
since it keeps large singular values of a matrix unchanged, see Figure 1. It is expected
that our algorithms have higher accuracy compared to the state-of-the-art algorithms.

Based on this non-convex soft shrinkage operator, we develop two algorithms. One
is to directly solve an unconstrained problem and the other is to solve an equivalent
form but with explicit constraints.
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Fig. 1. Non-convex soft shrinkage operator vs. soft shrinkage operator (λ = 1)

3.1 The Non-convex Soft Imputation Algorithm

The γ-norm regularization problem is

min
X

{J(X) =
1

2
‖PΩ(X−M)‖2F + λ‖X‖γ}. (5)

We now derive an iterative process to minimize J(X). Suppose we have obtained Xk

at iteration k for a fixed λ, we bound J(X) from above by

Q(X|Xk) =
1

2
‖PΩ(Xk−M)‖2F+〈PΩ(Xk−M),X−Xk〉+λ‖X‖γ+

1

2α
‖X−Xk‖2F ,

where 0 < α < 1. It is obvious that J(X) ≤ Q(X|Xk), and the equality hold only
when X = Xk. Then we set

Xk+1 = argmin
X

Q(X|Xk)

= argmin
X

{1
2
‖X− (Xk + αPΩ(M−Xk))‖2F + αλ‖X‖γ}

= Sαλ,γ(X
k + αPΩ(M−Xk)).

The above described iterations constitute inner loop for a fixed λ. In the outer loop,
we decrease λ every time and use the previous solution as warm start for next iteration.
We call this algorithm as non-convex soft imputation (NCSI), see Algorithm 1.

3.2 The Non-convex Alternating Direction Method of Multipliers

The above NCSI algorithm is designed to iteratively minimize an unconstrained prob-
lem (5). We can equivalently reform it as a optimization problem with linear constraints:

min
X,E

‖X‖γ +
τ

2
‖PΩ(E)‖2F (6)

s.t. PΩ(M) = X+E.
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Algorithm 1. The NCSI algorithm
input: ν, PΩ(M) and tolerance ε, 0 < α < 1 , 0 < ρ < 1, γ
Initialize: Z0 = 0 , λ0

while λi > ν do
X0 = Zi

repeat
Xk+1 = Sαλi,γ(X

k + αPΩ(M−Xk))

until ‖PΩ(Xk−M)‖F
‖PΩ(M)‖F

< ε

Zi+1 = Xk

λk+1 = ρλk

end while
output Xsol = Zi

where τ = 1
λ . We employ alternating direction method of multipliers (ADMM) to

solve the optimization problem. ADMM was originally proposed in [18], and has been
applied to a number of convex optimization problems [19]. Recently ADMM algo-
rithm have been used in the minimization of a non-convex function [13, 20]. Here
we use ADMM to solve the non-convex problem (6). The derived algorithm is called
non-convex alternating direction method of multipliers (NCADMM). This algorithm is
similar to [8], while it has an advantage of taking noise into consideration. Thus it is
expected to have a higher accuracy.

The augmented Lagrangian function of problem (6) is

L(X,E,Y, μ) = ‖X‖γ+
τ

2
‖PΩE‖2F+〈Y, PΩ(M)−X−E〉+μ

2
‖PΩ(M)−X−E‖2F .

The NCADMM optimize w.r.t. one variable while keeping the others fixed. Specifically
the optimization problem can be solved efficiently by the following iterations.

Xk+1 = argmin
X

L(X,Ek,Yk, μ)

= argmin
X

‖X‖γ +
μ

2
‖X− (PΩ(M)−Ek +

1

μ
Yk)‖2F

= S 1
μ ,γ

(PΩ(M)−Ek +
1

μ
Yk),

Ek+1 = argmin
E

L(Xk+1,E,Yk, μ)

= argmin
PΩ(E)

τ + μ

2
‖PΩ(E)‖2F − 〈PΩ(Yk + μ(PΩ(M)−Xk+1)), PΩ(E)〉

+argmin
PΩ̄(E)

μ

2
‖PΩ̄(E)‖2F − 〈PΩ̄(Yk + μ(PΩ(M)−Xk+1)), PΩ̄(E)〉

= PΩ(E
k+1) + PΩ̄(E

k+1),
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and

Yk+1 = Yk + μ(PΩ(M)−Xk+1 −Ek+1),

where

PΩ(E
k+1) =

μ

τ + μ
PΩ(M−Xk+1) +

1

μ+ τ
PΩ(Y

k),

PΩ̄(E
k+1) = PΩ̄(−Xk+1) +

1

μ
PΩ̄(Y

k).

Note that if we set Y0 = 0, then during the iterations PΩ̄(Y
k) = 0 for all k. Using

this property and eliminating the variable E leads to the iteration as follows

Xk+1 = S 1
μ ,γ

(
Xk +

τ

τ + μ
PΩ(M−Xk)− 1

μ+ τ
PΩ(Y

k−1) +
1

μ
Yk

)
, (7)

Yk+1 = Yk + μ

(
τ

τ + μ
PΩ(M−Xk+1)− 1

μ+ τ
PΩ(Y

k)

)
. (8)

In previously described process, the penalty parameter μ is fixed. It is found that a
small constant μ may lead to slow convergence, while large μ may make the algorithm
ill-conditioned. Thus a dynamic μ is preferred in practice. Inspired by [9] we use the
following update rule for μ.

μk+1 = min(μmax, ρμk), (9)

where μmax is the upper bound on the penalty parameterμ. The value of ρ is determined
by

ρ =

{
ρ0, μk

‖Xk+1−Xk‖
‖PΩ(M)‖2

F
< ζ,

1, otherwise,
(10)

where ρ0 > 1 and ζ > 0 is a threshold fixed in advance. We summarize the entire
procedure in Algorithm 2.

4 Convergence Analysis of NCSI Algorithm

We need to further explore the γ-norm before proving the convergence property of
NCSI algorihtm. First we need a definition called absolutely symmetric function [21].

Definition 3 (Absolutely Symmetric). Suppose f is a mapping from Rm to R. We say
that f is absolutely symmetric if f(x1, x2, . . . , xm) = f(|xπ(1)|, |xπ(2)|, . . . , |xπ(m)|)
for any permutation π.

Lemma 1. The gamma-norm ‖X‖γ of a n × m matrix X can be decomposed as the
difference of two convex functions f(σ(X)) and g(σ(X)) of matrix X, where

f(σ(X)) =

m∑
i=1

σi(X), (11)
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Algorithm 2. The NCADMM algorithm
input: τ = 1/λ, PΩ(M), tolerance ε , threshold ζ, μmax, ρ0 > 1, γ
Initialize: X0

1 = 0, Y0 = 0,
repeat

Xk+1 = S 1
μ
,γ

(
Xk +

τ

τ + μ
PΩ(M−Xk)− 1

μ+ τ
PΩ(Yk−1) +

1

μ
Yk

)
Yk+1 = Yk + μ

(
τ

τ + μ
PΩ(M−Xk+1)− 1

μ+ τ
PΩ(Yk)

)
Update μk+1 according to (9) and (10)

until ‖PΩ(Xk+1−M)‖F
‖PΩ(M)‖F

< ε

Output Xsol = Xk

g(σ(X)) =

m∑
i=1

σ2i (X)

2γ
I{σi(X) < γ}+ (σi(X)− γ

2
)I{σi(X) ≥ γ}. (12)

The above Lemma can be inferred from [22]: If a mapping f is absolutely symmetric
and convex on Rm, then f(σ(X)) is convex w.r.t. matrix X. In Lemma 1, both f(σ)
and g(σ) are absolutely symmetric and convex, so f(σ(X)) and g(σ(X)) are convex
functions on matrix X.

Definition 4. We say that two matricesX andY in Rn×m have a simultaneous ordered
singular value decomposition if there exist two orthonormal matrices U ∈ Rn×m and
V ∈ Rm×m such that X = Udiag(σ(X))V�,Y = Udiag(σ(Y))V�.

Theorem 2. let a function f be absolutely symmetric and convex. Consider the corre-
sponding convex function f(σ(X)). The matrix Y is a subgradient of f(σ(X)) at X if
and only if σ(Y) is a subgradient of f at σ(X) and the two matrices X and Y admit
simultaneous ordered singular value decomposition.

Detailed proof of this theorem can be found in [21]. We can compute the subgradient
of function f(σ(X)) and g(σ(X)) w.r.t. X by applying this theorem directly.

Corollary 1. (1) Let f(σ(X)) and g(σ(X)) be defined as Eqn. (11) and (12). Suppose
X ∈ Rn×m.The matrix Yf is a subgradient of f(σ(X)) if and only if σi(Yf ) ={
1 if σi(X) > 0

α if σi(X) = 0
where 0 ≤ α ≤ 1, and the two matrices admit simultaneous ordered

singular value decomposition.
(2) Suppose hi(σ(X)) = σi(X)

γ I{σi(X) < γ}+I{σi(X) ≥ γ}. Yg is a subgradient
of g(σ(X)) if and only if σi(Yg) = hi(σ(X)) and the two matrices X and Yg admit
simultaneous ordered singular value decomposition.

The following theorem shows that our algorithm NSCI decreases the objective func-
tion at every iteration.
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Theorem 3. For every fixed 0 < α < 1 and λ > 0, define a sequence Xk

Xk+1 = Sαλ,γ(X
k + αPΩ(M −Xk)) (13)

with a starting point X0. The sequence Xk satisfies

J(Xk+1) ≤ J(Xk)− 1− α

2α
‖Xk+1 −Xk‖2F . (14)

.

Proof. Suppose

L(X,Z) =
1

2
‖PΩ(Z−M)‖2F + 〈PΩ(Z−M),X− Z〉+ λ‖X‖γ .

Since

Xk+1 = argmin
X

L(X,Xk) +
1

2α
‖X−Xk‖2F , (15)

then we have

J(Xk+1) ≤ L(Xk+1,Xk) +
1

2
‖Xk+1 −Xk‖2F

= L(Xk+1,Xk) +
1

2α
‖Xk+1 −Xk‖2F − 1− α

2α
‖Xk+1 −Xk‖2F

≤ L(Xk,Xk) +
1

2α
‖Xk −Xk‖2F − 1− α

2α
‖Xk+1 −Xk‖2F

= J(Xk)− 1− α

2α
‖Xk+1 −Xk‖2F .

�

The inequality (14) tells us that J(Xk) monotonously decrease to its limit point since
J(X) ≥ 0. Meanwhile the sequence {‖Xk+1 −Xk‖2F } converges to 0.

The next theorem states that any limit point generated by Algorithm 1 is a critical
point of objective function (5).

Theorem 4. For every fixed 0 < α < 1, λ > 0 and γ > λ. Each limit point of Xk

generated by Eqn. (13) is a critical point of J(X).

Proof. Suppose there is a subsequence {Xk}k∈K converging to X∞. According to the
minimization problem (15) and Lemma 1 we have

0 ∈ PΩ(Xk −M) +
1

α
(Xk+1 −Xk) + λ(∂f(σ(Xk+1))− ∂g(σ(Xk+1))).

Suppose Sk+1 ∈ ∂f(σ(Xk+1)), Tk+1 ∈ ∂g(σ(Xk+1)) satisfying

PΩ(X
k −M) +

1

α
(Xk+1 −Xk) + λ(Sk+1 −Tk+1) = 0. (16)
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Since Sk+1 and Tk+1 are subgradient of f(σ(X)) and g(σ(X)) at Xk+1, according
to Corollary 1, there exist a n×m orthonormal matrix Uk+1 and a m×m orthogonal
matrix Vk+1 such that

Sk+1 = Uk+1diag{σ(Sk+1)}V(k+1)�, (17)

Tk+1 = Uk+1diag{h(σ(Xk+1))}V(k+1)�, (18)

Xk+1 = Uk+1diag{σ(Xk+1)}V(k+1)�. (19)

Since orthogonal matrices Uk+1 , Vk+1 and the singular values σ(Sk+1) are bounded,
without loss of generality we suppose they converging to U∞ , V∞ and σ(S∞). Ac-
cording to (17), (18) and (19) we infer that S∞, the limit point of Sk+1 is subgradient
of f(σ(X∞)) and T∞, the limit point of Tk+1 is subgradient of g(σ(X∞)).

Make k → ∞, k ∈ K and use limk→∞ Xk+1 −Xk = 0 , the Eqn. (16) transfers to

PΩ(X
∞ −M) + λ(S∞ −T∞) = 0.

So X∞ is a critical point of J(X). �

5 Experiments

In this section, we conduct experiments on synthetic data, image data and three standard
collaborative filtering datasets. To show the effectiveness of NCSI and NCADMM, we
compare them with the following matrix completion solvers: ALM [8], SVT [4], Soft-
Impute [5], and OptSpace [3]. Particularly, ALM, SVT, and SoftImpute are based on
the nuclear norm, while OptSpace represent matrix as its factors and optimize a non-
convex objective function. Besides, in collaborative filtering experiment, we also add
PMF [23] and GECO [24] into our comparison list.

5.1 Synthetic Data

We generate synthetic dataX by X = M+σZ, where X,M,Z = [zij ] ∈ Rm×n. zi,j is
Gaussian white noise with zero mean and standard deviation of one. And M is a matrix
with rank of r produced by M = LR�, in which both L ∈ Rm×r and R ∈ Rn×r have
i.i.d. Guassian entries. The set of observed entries Ω is uniformly sampled among the
m×n indices. Suppose that the degree of freedom of matrix with rank r is dr. We fixed
the number of observed entries to 5dr and σ to 10−6.

We only compare our methods with ALM since none of the algorithms mentioned
before claimed to outperform ALM in terms of accuracy or efficiency on large synthetic
matrices. Additionally, We set the parameter γ to 4 in both NCSI and NCADMM. And
the same stop criterion is adopted for all algorithms:

‖PΩ(X−M)‖F
‖PΩ(M)‖F

< ε,

in which ε is set to 0.3σ. We evaluate the accuracy of the solution Xsol of our algorithm
by the relative error (RE), which is a widely used metric in matrix completion, defined
by

RE =
‖Xsol −M‖F

‖M‖F
.
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We report the RE and #SVD (number of doing SVD) in Table 1. Experimental re-
sults demonstrate that NCSI and NCADMM consistently outperform ALM in accuracy;
NCADMM achieve higher accuracy with nearly the same time cost as ALM; and NCSI
and NCADMM have almost the same accuracy ( since they solve matrix completion
problem using same γ-norm based scheme).

Table 1. Comparisons among NCSI, NCADMM, ALM on the synthetic data

(rank ratio) RE(10−7) #SVD CPU-time(minutes)

(r, |Ω|
(m×n)

) NCSI NCADMM ALM NCSI NCADMM ALM NCSI NCADMM ALM

m = 10000, n = 10000

(10,0.012) 5.412 5.412 6.230 1818 322 325 10.45 4.36 4.7

(20,0.024) 3.853 3.790 4.040 850 179 180 13.78 5.73 6.18

(30,0.035) 3.026 3.020 4.106 522 149 150 17.73 8.58 8.68

(50,0.057) 2.794 2.794 3.864 313 122 115 26.58 11.32 14.78

m = 20000, n = 20000

(10,0.006) 5.976 5.963 6.410 3755 800 683 48.41 37.02 32.28

(20,0.012) 4.428 4.416 5.246 1606 283 246 76.85 30.21 28.95

(30,0.018) 3.797 3.801 3.952 1034 199 201 76.85 28.24 28.61

(50,0.030) 2.839 2.839 3.957 613 173 164 114.3 60.13 57.41

5.2 Experiment on Image Data

In the image inpainting experiment, we aim to estimate missing (or masked) pixels
by exploiting the known content. As colored image is commonly represented as three
matrices( containing red, green and blue components respectively) we simply deal with
each of three matrix and combine them together to obtain the final results.

Performance of different algorithms are evaluated by the PSNR (Peak Signal-to-
Noise Ratio) metric. Suppose that the total number of missing pixel is T and the total
squared error TSE is defined by TSE = error2r + error2g + error2b , then the total
mean squared error MSE is defined by MSE = TSE/3T . And the PSNR can be
evaluated as PSNR = 10 log10 255

2/MSE.
In our experiments, the parameters of ALM, SVT, Soft-Impute, and OptSpace are

carefully chosen to achieve the best performance. For NCSI and NCADMM we fix
γ = 100 and empirically set λ = 0.001. Since large μ in NCADMM will make the
minimization problem ill-conditioned, we set μmax = 1010.

Two experiments using different image masks are reported. The first is a relatively
easy matrix completion problem with random mask. We report the results in Fig. 2 and
Fig. 3. We see that the γ-Norm minimization scheme always achieve larger PSNR
compared with other five methods from Fig. 2. Second experiment uses text mask. It
is generally agreed that image inpainting with text mask is more difficult since the
observed pixels are not randomly sampled and text mask may result in loss of important
image information. We report our results in Fig. 4. The results of NCSI and NCADMM
are also encouraging.
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Fig. 2. Comparison of matrix completion algorithms for recovery of a image under different ob-
served ratios

Original image Random masked image NCADMM PSNR = 24.56 NCSI PSNR = 24.64

ALM PSNR = 23.05 SVT PSNR = 23.20 Soft-Impute PSNR = 22.25 OptSpace PSNR = 17.10

Fig. 3. Comparison of matrix completion algorithms for recovery of a image only 30% of its
pixels are observed

Original image text masked image NCADMM PSNR = 26.13 NCSI PSNR = 26.58

ALM PSNR = 22.21 SVT PSNR = 23.43 Soft-Impute PSNR = 24.43 OptSpace PSNR = 11.10

Fig. 4. Comparison of matrix completion algorithms for recovery of a image masked by text
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5.3 Collaborative Filtering

Collaborative filtering (CF) is a technique used by some recommender systems. One of
the CF’s main purposes is to predict the unknown preference of a user on a set of unrated
items, according to other similar users or similar items. In order to validate the perfor-
mance of our methods, we compare our NCSI and NCADMM with three algorithms
using nuclear norm: ALM, SVT and Soft-Impute, and three other non-nuclear-norm
algorithms: OptSpace, GECO and PMF.

We use three standard MovieLens Data Sets1:

MovieLens-100K contains 100,000 ratings for 1682 movies by 943 users;
MovieLens-1M contains 1million ratings for 3,900 movies by 6,040 users;
MovieLens-10M contains 10 million ratings for 10,681 movies by 71,567 users.

For each data set, we randomly select 70% ratings as known samples, and use the rest
ratings to test the performance of the methods. Then, we run 5 repeats for each data set
and each method, and report the average results in table 2.

In our experiment, We fix γ = ‖PΩ(M)‖F and use the commonly accepted CF
metric RMSE (Root Mean Square Error) to evaluate the eight methods. RMSE is
defined by

RMSE =
1

|T |

√√√√√ |T |∑
(i,j)∈T

(Xij −Mij)2,

where T is the test set.
Our results in Table 2 show that γ-norm based algorithms outperform other matrix

completion algorithms and are competitive to the state-of-the-art collaborative filtering
method PMF.

Table 2. Performance of deference matrix completion methods on real collaborative filtering data
sets

Data set NCSI NCADMM ALM SVT Soft-Impute OptSpace GECO PMF

MovieLens-100k 0.9710 0.9710 1.083 1.536 1.071 1.583 0.9810 0.9790

MovieLens-1M 0.8670 0.8670 0.9037 0.9498 0.9185 1.007 0.8808 0.8683

MovieLens-10M 0.8250 0.8250 0.8843 0.9731 0.8854 too long 0.8402 0.8247

6 Conclusion

In this paper we have employed the matrix γ-norm as a non-convex relaxation to the
matrix rank and devised two algorithms: non-convex soft imputation (NCSI) and non-
convex alternative direction method of multipliers algorithm (NCADMM), to solve the

1 http://www.grouplens.org

http://www.grouplens.org
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matrix completion problem. The algorithms are effective, because they can achieve high
accuracy in the simulated datasets and real world datasets. Moreover, the NCADMM is
quite efficient as its running CPU-time is comparable with the current state-of-the-art
algorithms.

Acknowledgments. This work is partially supported by the National Natural Science
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Abstract. Rank minimization has attracted a lot of attention due to
its robustness in data recovery. To overcome the computational difficulty,
rank is often replaced with nuclear norm. For several rank minimization
problems, such a replacement has been theoretically proven to be valid,
i.e., the solution to nuclear norm minimization problem is also the solu-
tion to rank minimization problem. Although it is easy to believe that
such a replacement may not always be valid, no concrete example has
ever been found. We argue that such a validity checking cannot be done
by numerical computation and show, by analyzing the noiseless latent low
rank representation (LatLRR) model, that even for very simple rank min-
imization problems the validity may still break down. As a by-product,
we find that the solution to the nuclear norm minimization formulation
of LatLRR is non-unique. Hence the results of LatLRR reported in the
literature may be questionable.

1 Introduction

We are now in an era of big data as well as high dimensional data. Fortu-
nately, high dimensional data are not unstructured. Usually, they lie near low
dimensional manifolds. This is the basis of linear and nonlinear dimensionality
reduction [1]. As a simple yet effective approximation, linear subspaces are usu-
ally adopted to model the data distribution. Because low dimensional subspaces
correspond to low rank data matrices, rank minimization problem, which models
the real problem into an optimization by minimizing the rank in the objective
function (cf. models (1), (3) and (4)), is now widely used in machine learning
and data recovery [2–5]. Actually, rank is regarded as a sparsity measure for
matrices [3]. So low rank recovery problems are studied [6–9] in parallel with the
compressed sensing theories for sparse vector recovery. Typical rank minimiza-
tion problems include matrix completion [2, 4], which aims at completing the
entire matrix from a small sample of its entries, robust principal component anal-
ysis [3], which recovers the ground truth data from sparsely corrupted elements,
and low rank representation [10, 11], which finds an affinity matrix of subspaces
that has the lowest rank. All of these techniques have found wide applications,
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such as background modeling [3], image repairing [12], image alignment [12],
image rectification [13], motion segmentation [10, 11], image segmentation [14],
and saliency detection [15].

Since the rank of a matrix is discrete, rank minimization problems are usually
hard to solve. They can even be NP hard [3]. To overcome the computational
obstacle, as a common practice people usually replace rank in the objective func-
tion with nuclear norm, which is the sum of singular values and is the convex
envelope of rank on the unit ball of matrix operator norm [5], to transform rank
minimization problems into nuclear norm minimization problems (cf. models (2)
and (5)). Such a strategy is widely adopted in most rank minimization prob-
lems [2–4, 10–15]. However, this naturally brings a replacement validity problem
which is defined as follows.

Definition 1 (Replacement Validity Problem). Given a rank minimiza-
tion problem together with its corresponding nuclear norm formulation, the re-
placement validity problem investigates whether the solution to the nuclear norm
minimization problem is also a solution to the rank minimization one.

In this paper, we focus on the replacement validity problem. There is a related
problem, called exact recovery problem, that is more widely studied by scholars.
It is defined as follows.

Definition 2 (Exact Recovery Problem). Given a nuclear norm minimiza-
tion problem, the exact recovery problem investigates the sufficient conditions
under which the nuclear norm minimization problem could exactly recover the
real structure of the data.

As an example of the exact recovery problem, Candès et al. proved that when the
rank of optimal solution is sufficiently low and the missing data is sufficiently few
or the corruption is sufficiently sparse, solving nuclear norm minimization prob-
lems of matrix completion [2] or robust PCA problems [3] can exactly recover
the ground truth low rank solution with an overwhelming probability. As an-
other example, Liu et al. [10, 16] proved that when the rank of optimal solution
is sufficiently low and the percentage of corruption does not exceed a thresh-
old, solving the nuclear norm minimization problem of low rank representation
(LRR) [10, 11] can exactly recover the ground truth subspaces of the data.

We want to highlight the difference between our replacement validity prob-
lem and the exact recovery problem that scholars have considered before. The
replacement validity problem is to compare the solutions between two optimiza-
tion problems, while the exact recovery problem is to study whether solving a
nuclear norm minimization problem can exactly recover a ground truth low rank
matrix. As a result, in all the existing exact recovery problems, the scholars have
to assume that the rank of the ground truth solution is sufficiently low. In con-
trast, the replacement validity problem does not rely on this assumption: even if
the ground truth low rank solution cannot be recovered, we can still investigate
whether the solution to a nuclear norm minimization problem is also the solution
to the corresponding rank minimization problem.
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For replacement validity problems, it is easy to believe that the replacement
of rank with nuclear norm will break down for complex rank minimization prob-
lems. While for exact recovery problems, the existing analysis all focuses on
relatively simple rank minimization problems, such as matrix completion [2],
robust PCA problems [3], and LRR [10, 11], and has achieved affirmative re-
sults under some conditions. So it is also easy to believe that for simple rank
minimization problems the replacement of rank with nuclear norm will work.
This paper aims at breaking such an illusion. Here, we have to point out that
replacement validity problem cannot be studied by numerical experiments. This
is because: 1. rank is sensitive to numerical errors. Without prior knowledge,
one may not correctly determine the rank of a given matrix, even if there is a
clear drop in its singular values; 2. it is hard to verify whether a given solution
to nuclear norm minimization problem is a global minimizer to a rank minimiza-
tion problem, whose objective function is discrete and non-convex. So we should
study replacement validity problem by purely theoretical analysis. We analyze a
simple rank minimization problem, noiseless latent LRR (LatLRR) [17], to show
that solutions to a nuclear norm minimization problem may not be solutions of
the corresponding rank minimization problem.

The contributions of this paper include:

1. We use a simple rank minimization problem, noiseless LatLRR, to prove
that solutions to a nuclear norm minimization problem may not be solutions
of the corresponding rank minimization problem, even for very simple rank
minimization problems.

2. As a by-product, we find that LatLRR is not a good mathematical model
because the solution to its nuclear norm minimization formulation is non-
unique. So the results of LatLRR reported in the literature, e.g., [10, 17],
may be questionable.

2 Latent Low Rank Representation

In this section, we first explain the notations that will be used in this paper and
then introduce latent low rank representation which we will analyze its closed
form solutions.

2.1 Summary of Main Notations

A large amount of matrix related symbols will be used in this paper. Capital
letters are used to represent matrices. Especially, I denotes the identity matrix
and 0 is the all-zero matrix. The entry at the ith row and the jth column of
a matrix is denoted by [·]ij . Nuclear norm, the sum of all the singular values
of a matrix, is denoted by || · ||∗. Operator norm, the maximum singular value,
is denoted by || · ||2. Trace(A) represents the sum of the diagonal entries of A
and A† is the Moore-Penrose pseudo-inverse of A. For simplicity, we use the
same letter to present the subspace spanned by the columns of a matrix. The
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dimension of a space V is presented by dim(V ). The orthogonal complement
of V is denoted by V⊥. Range(A) indicates the linear space spanned by all the
columns of matrix A, while Null(A) represents the null space of A. They are
closely related: (Range(A))⊥ = Null(AT ). Finally, we always use UXΣXV

T
X to

represent the skinny SVD of the data matrixX . Namely, the numbers of columns
in UX and VX are both rank(X) and ΣX consists of all the non-zero singular
values of X , making ΣX invertible.

2.2 Low Rank Subspace Clustering Models

Low rankness based subspace clustering stems from low rank representation
(LRR) [10, 11]. An interested reader may refer to an excellent review on subspace
clustering approaches provided by Vidal [18]. The mathematical model of the
original LRR is

min
Z

rank(Z), s.t. X = XZ, (1)

where X is the data matrix we observe. LRR extends sparse subspace cluster-
ing [19] by generalizing the sparsity from 1D to 2D. When there is noise or
corruption, a noise term can be added to the model [10, 11]. Since this paper
considers closed form solutions for noiseless models, to save space we omit the
noisy model. The corresponding nuclear norm minimization formulation of (1)
is

min
Z

||Z||∗, s.t. X = XZ, (2)

which we call the heuristic LRR. LRR has been very successful in clustering data
into subspaces robustly [20]. It is proven that when the underlying subspaces are
independent, the optimal representation matrix is block diagonal, each block
corresponding to a subspace [10, 11].

LRR works well only when the samples are sufficient. This condition may
not be fulfilled in practice, particularly when the dimension of samples is large.
To resolve this issue, Liu et al. [17] proposed latent low rank representation
(LatLRR). Another model to overcome this drawback of LRR is fixed rank rep-
resentation [21]. LatLRR assumes that the observed samples can be expressed
as the linear combinations of themselves together with the unobserved data:

min
Z

rank(Z), s.t. X = [X,XH ]Z, (3)

where XH is the unobserved samples for supplementing the shortage of the
observed ones. SinceXH is unobserved and problem (3) cannot be solved directly,
by some deduction and mathematical approximation, LatLRR [17] is modeled
as follows:

min
Z,L

rank(Z) + rank(L), s.t. X = XZ + LX. (4)

Both the optimal Z and L can be utilized for learning tasks: Z can be used for
subspace clustering, while L is for feature extraction, thus providing us with the
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possibility for integrating two tasks into a unified framework. We call (4) the
original LatLRR. Similarly, it has a nuclear norm minimization formulation

min
Z,L

||Z||∗ + ||L||∗, s.t. X = XZ + LX, (5)

which we call the heuristic LatLRR. LatLRR has been reported to have better
performance than LRR [10, 17].

In this paper, we focus on studying the solutions to problems (1), (2), (4) and
(5), in order to investigate the replacement validity problem.

3 Analysis on LatLRR

This section provides surprising results: both the original and heuristic LatLRR
have closed form solutions! We are able to write down all their solutions, as
presented in the following theorems.

Theorem 1. The complete solutions to the original LatLRR problem (4) are as
follows

Z∗ = VXW̃V TX +S1W̃V TX and L∗ = UXΣX(I − W̃ )Σ−1
X UTX +UXΣX(I − W̃ )S2,

(6)
where W̃ is any idempotent matrix and S1 and S2 are any matrices satisfying:
1. V TX S1 = 0 and S2UX = 0; and 2. rank(S1) ≤ rank(W̃ ) and rank(S2) ≤
rank(I − W̃ ).

Theorem 2. The complete solutions to the heuristic LatLRR problem (5) are
as follows

Z∗ = VXŴV TX and L∗ = UX(I − Ŵ )UTX , (7)

where Ŵ is any block diagonal matrix satisfying: 1. its blocks are compatible
with ΣX , i.e., if [ΣX ]ii 	= [ΣX ]jj then [Ŵ ]ij = 0; and 2. both Ŵ and I − Ŵ are
positive semi-definite.

By Theorems 1 and 2, we can conclude that if the Ŵ in Theorem 2 is not
idempotent, then the corresponding (Z∗, L∗) is not the solution to the original
LatLRR, due to the following proposition:

Proposition 1. If the Ŵ in Theorem 2 is not idempotent, then Z∗ = VXŴV TX
cannot be written as Z∗ = VXW̃V TX + S1W̃V TX , where W̃ and S1 satisfy the
conditions stated in Theorem 1.

The above results show that for noiseless LatLRR, nuclear norm is not a valid
replacement of rank. As a by-product, since the solution to the heuristic LatLRR
is non-unique, the results of LatLRR reported in [11, 17] may be questionable.

We provide detailed proofs of the above theorems and proposition in the
following section.
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4 Proofs

4.1 Proof of Theorem 1

We first provide the complete closed form solutions to the original LRR in a
more general form

min
Z

rank(Z), s.t. A = XZ, (8)

whereA ∈ Range(X) so that the constraint is feasible. We call (8) the generalized
original LRR. Then we have the following proposition.

Proposition 2. Suppose UAΣAV
T
A is the skinny SVD of A. Then the minimum

objective function value of the generalized original LRR problem (8) is rank(A)
and the complete solutions to (8) are as follows

Z∗ = X†A+ SV TA , (9)

where S is any matrix such that V TX S = 0.

Proof. Suppose Z∗ is an optimal solution to problem (8). First, we have

rank(A) = rank(XZ∗) ≤ rank(Z∗). (10)

On the other hand, because A = XZ is feasible, there exists Z1 such that
A = XZ1. Then Z0 = X†A is feasible: XZ0 = XX†A = XX†XZ1 = XZ1 = A,
where we have utilized a property of Moore-Penrose pseudo-inverseXX†X = X .
So we obtain

rank(Z∗) ≤ rank(Z0) ≤ rank(A). (11)

Combining (10) with (11), we conclude that rank(A) is the minimum objective
function value of problem (8).

Next, let Z∗ = PQT be the full rank decomposition of the optimal Z∗, where
both P and Q have rank(A) columns. From UAΣAV

T
A = XPQT , we have V TA =

(Σ−1
A UTAXP )Q

T . Since both VA and Q are full column rank and Y = Σ−1
A UTAXP

is square, Y must be invertible. So VA and Q represent the same subspace.
Because P and Q are unique up to an invertible matrix, we may simply choose
Q = VA. Thus UAΣAV

T
A = XPQT reduces to UAΣA = UXΣXV

T
X P , i.e., V

T
X P =

Σ−1
X UTXUAΣA, and we conclude that the complete choices of P are given by P =

VXΣ
−1
X UTXUAΣA + S, where S is any matrix such that V TX S = 0. Multiplying

P with QT = V TA , we obtain that the entire solutions to problem (8) can be
written as Z∗ = X†A+ SV TA , where S is any matrix satisfying V TX S = 0. �
Remark 1. Friedland and Torokhti [22] studied a similar model as (8), which is

min
Z

||X − AZ||F , s.t. rank(Z) ≤ k. (12)

However, (8) is different from (12) in two aspects. First, (8) requires the data
matrix X to be strictly expressed as linear combinations of the columns in A.
Second, (8) does not impose an upper bound for the rank of Z. Rather, (8) solves
for the Z with the lowest rank. As a result, (8) has infinitely many solutions, as
shown by Proposition 2, while (12) has a unique solution when k fulfills some
conditions. So the results in [22] do not apply to (8).
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Similar to Proposition 2, we can have the complete closed form solution to
the following problem

min
Z

rank(L), s.t. A = LX, (13)

which will be used in the proof of Theorem 1.

Proposition 3. Suppose UAΣAV
T
A is the skinny SVD of A. Then the minimum

objective function value of problem (13) is rank(A) and the complete solutions
to problem (13) are as follows

L∗ = AX† + UAS, (14)

where S is any matrix such that SUX = 0.

Next, we provide the following propositions.

Proposition 4. rank(X) is the minimum objective function value of the original
LatLRR problem (4).

Proof. Suppose (Z∗, L∗) is an optimal solution to problem (4). By Proposition 2
and fixing Z∗, we have rank(L∗) = rank(X −XZ∗). Thus

rank(Z∗) + rank(L∗) ≥ rank(XZ∗) + rank(X −XZ∗) ≥ rank(X). (15)

On the other hand, if Z∗ and L∗ are adopted as X†X and 0, respectively, the
lower bound is achieved and the constraint is fulfilled as well. So we conclude
that rank(X) is the minimum objective function value of the original LatLRR
problem (4). �
Proposition 5. Suppose (Z∗, L∗) is one of the solutions to problem (4). Then

there must exist another solution (Z̃, L̃), such that XZ∗ = XZ̃ and Z̃ = VXW̃V TX
for some matrix W̃ .

Proof. According to the constraint of problem (4), we have XZ = (I−L)X , i.e.,
(XZ)T ∈ Range(XT ). Since VXV

T
X is the projection matrix onto Range(XT ),

we have
XZ∗VXV TX = XZ∗. (16)

On the other hand, given the optimal Z∗, L∗ is the optimal solution to

min
L

rank(L) s.t. X(I − Z∗) = LX. (17)

So by Proposition 2 we get

rank(L∗) = rank(X(I − Z∗)X†). (18)

As a result,

rank(X) = rank(Z∗) + rank(L∗)

= rank(Z∗) + rank(X(I − Z∗)X†)

= rank(Z∗) + rank(X(I − VXV
T
XZ

∗VXV TX )X†)

≥ rank(VXV
T
X Z

∗VXV TX ) + rank(X(I − VXV
T
XZ

∗VXV TX )X†)
≥ rank(X),

(19)
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where the last inequality holds since (VXV
T
XZ

∗VXV TX , X(I−VXV TXZ∗VXV TX )X†)
is a feasible solution to problem (4) and rank(X) is the minimum objec-
tive according to Proposition 4. (19) shows that (VXV

T
XZ

∗VXV TX , X(I −
VXV

T
X Z

∗VXV TX )X†) is an optimal solution. So we may take Z̃ = VXV
T
XZ

∗VXV TX
and write it as Z̃ = VXW̃V TX , where W̃ = V TXZ

∗VX .
Finally, combining with equation (16), we conclude that

XZ̃ = UXΣXV
T
X VXV

T
XZ

∗VXV TX = XZ∗VXV TX = XZ∗. (20)

�

Proposition 5 provides us with a great insight into the structure of problem (4):
we may break (4) into two subproblems

min
Z

rank(Z), s.t. XVXW̃V TX = XZ, (21)

and
min
L

rank(L), s.t. X −XVXW̃V TX = LX, (22)

and then apply Propositions 2 and 3 to find the complete solutions to problem
(4).

For investigating the properties of W̃ in (21) and (22), the following lemma
is critical.

Lemma 1. For A,B ∈ Rn×n, if AB = BA, then the following inequality holds

rank(A+B) ≤ rank(A) + rank(B)− rank(AB). (23)

Proof. On the basis of AB = BA, it is easy to check that

Null(A) + Null(B) ⊂ Null(AB), (24)

and
Null(A) ∩ Null(B) ⊂ Null(A+B). (25)

On the other hand, according to the well-known dimension formula

dim(Null(A))+dim(Null(B)) = dim(Null(A)+Null(B))+dim(Null(A)∩Null(B)),
(26)

by combining (26) with (24) and (25), we get

dim(Null(A)) + dim(Null(B)) ≤ dim(Null(AB)) + dim(Null(A+B)). (27)

Then by the relationship rank(S) = n − dim(Null(S)) for any S ∈ Rn×n, we
arrive at the inequality (23). �

Based on the above lemma, the following proposition presents the sufficient and
necessary condition on W̃ .
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Proposition 6. Let L∗ be any optimal solution to subproblem (22), then
(VXW̃V TX , L

∗) is optimal to problem (4) if and only if the square matrix W̃
is idempotent.

Proof. Obviously, (VXW̃V TX , L
∗) is feasible based on the constraint in problem

(22). By considering the optimality of L∗ for (22) and replacing Z∗ with VXW̃V TX
in equation (18), we have

rank(L∗) = rank(X(I − VXW̃V TX )X†). (28)

First, we prove the sufficiency. According to the property of idempotent ma-
trices, we have

rank(W̃ ) = trace(W̃ ) and rank(I − W̃ ) = trace(I − W̃ ). (29)

By substituting (VXW̃V TX , L
∗) into the objective function, the following equali-

ties hold

rank(VXW̃V TX ) + rank(L∗) = rank(W̃ ) + rank(X(I − VXW̃V TX )X†)

= rank(W̃ ) + rank(UXΣX(I − W̃ )Σ−1
X UTX)

= rank(W̃ ) + rank(I − W̃ )

= trace(W̃ ) + trace(I − W̃ )

= rank(X).

(30)

So (VXW̃V TX , L
∗) is optimal since it achieves the minimum objective function

value of problem (4).
Second, we prove the necessity. Suppose (VXW̃V TX , L

∗) is optimal to problem
(4). Substituting it into the objective follows

rank(X) = rank(VXW̃V TX ) + rank(X(I − VXW̃VX)X†)

= rank(W̃ ) + rank(I − W̃ )

≥ rank(X).

(31)

Hence rank(W̃ )+ rank(I − W̃ ) = rank(X). On the other hand, as W̃ and I − W̃
are commutative, by Lemma 1 we have rank(X) ≤ rank(W̃ ) + rank(I − W̃ ) −
rank(W̃ − W̃ 2). So rank(W̃ − W̃ 2) = 0 and thus W̃ = W̃ 2. �

We are now ready to prove Theorem 1.

Proof. Solving problems (21) and (22) by using Propositions 2 and 3, where W̃
is idempotent as Proposition 6 shows, we directly get

Z∗ = VXW̃V TX + S̃1V
T
A and L∗ = UXΣX(I − W̃ )Σ−1

X UTX + UBS̃2, (32)

where UAΣAV
T
A and UBΣBV

T
B are the skinny SVDs of UXΣXW̃V TX and

UXΣX(I−W̃ )V TX , respectively, and S̃1 and S̃2 are matrices such that V TX S̃1 = 0
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and S̃2UX = 0. Since we have Range((W̃V TX )T ) = Range(VA) and Range(UXΣX
(I − W̃ )) = Range(UB), there exist full column rank matrices M1 and M2 sat-
isfying VA = (W̃V TX )TM1 and UB = UXΣX(I − W̃ )M2, respectively. The sizes
of M1 and M2 are rank(X) × rank(W̃ ) and rank(X) × rank(I − W̃ ), respec-

tively. We can easily see that a matrix S1 can be decomposed into S1 = S̃1M
T
1 ,

such that V TX S̃1 = 0 and M1 is full column rank, if and only if V TX S1 =
0 and rank(S1) ≤ rank(W̃ ). Similarly, a matrix S2 can be decomposed into

S2 = M2S̃2, such that S̃2UX = 0 and M2 is full column rank, if and only if
S2UX = 0 and rank(S2) ≤ rank(I − W̃ ). By substituting VA = (W̃V TX )TM1,

UB = UXΣX(I − W̃ )M2, S1 = S̃1M
T
1 , and S2 =M2S̃2 into (32), we obtain the

conclusion of Theorem 1. �

4.2 Proof of Theorem 2

We first quote two results from [10].

Lemma 2. Assume X 	= 0 and A = XZ have feasible solution(s), i.e., A ∈
Range(X). Then

Z∗ = X†A (33)

is the unique minimizer to the generalized heuristic LRR problem:

min
Z

||Z||∗, s.t. A = XZ. (34)

Lemma 3. For any four matrices B, C, D and F of compatible dimensions, we
have the inequalities∥∥∥∥[B C

D F

]∥∥∥∥
∗
≥ ||B||∗ + ||F ||∗ and

∥∥∥∥[B C
D F

]∥∥∥∥
∗
≥ ||B||∗, (35)

where the second equality holds if and only if C = 0, D = 0, and F = 0.

Then we prove the following lemma.

Lemma 4. For any square matrix Y ∈ Rn×n, we have ||Y ||∗ ≥ trace(Y ), where
the equality holds if and only if Y is positive semi-definite.

Proof. We prove by mathematical induction. When n = 1, the conclusion is
clearly true. When n = 2, we may simply write down the singular values of Y
to prove.

Now suppose for any square matrix Ỹ , whose size does not exceed n− 1, the
inequality holds. Then for any matrix Y ∈ Rn×n, using Lemma 3, we get

||Y ||∗ =

∥∥∥∥[Y11 Y12Y21 Y22

]∥∥∥∥
∗

≥ ||Y11||∗ + ||Y22||∗
≥ trace(Y11) + trace(Y22)

= trace(Y ),

(36)
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where the second inequality holds due to the inductive assumption on the ma-
trices Y11 and Y22. So we always have ||Y ||∗ ≥ trace(Y ).

It is easy to check that any positive semi-definite matrix Y , it satisfies ||Y ||∗ =
trace(Y ). On the other hand, just following the above proof by choosing Y22 as
2 × 2 submatrices, we can easily get that ||Y ||∗ > trace(Y ) strictly holds if
Y ∈ Rn×n is asymmetric. So if ||Y ||∗ = trace(Y ), then Y must be symmetric.
Then the singular values of Y are simply the absolute values of its eigenvalues.
As trace(Y ) equals the sum of all eigenvalues of Y , ||Y ||∗ = trace(Y ) holds only
if all the eigenvalues of Y are non-negative. �

Using Lemma 2, we may consider the following unconstrained problem

min
Z
f(Z) � ||Z||∗ + ||X(I − Z)X†||∗, (37)

which is transformed from (5) be eliminating L therein. Then we have the fol-
lowing result.

Proposition 7. Unconstrained optimization problem (37) has a minimum ob-
jective function value rank(X).

Proof. Recall that the sub-differential of the nuclear norm of a matrix Z is [23]

∂Z ||Z||∗ = {UZV TZ +R|UTZR = 0, RVZ = 0, ||R||2 ≤ 1}, (38)

where UZΣZV
T
Z is the skinny SVD of the matrix Z. We prove that Z∗ = 1/2X†X

is an optimal solution to (37). It is sufficient to show that

0 ∈ ∂Zf(Z∗) = ∂Z ||Z∗||∗ + ∂Z ||X(I − Z∗)X†||∗
= ∂Z ||Z∗||∗ −XT∂X(I−Z)X† ||X(I − Z∗)X†||∗(X†)T .

(39)

Notice that X(I − Z∗)X† = UX(1/2I)U
T
X is the skinny SVD of X(I − Z∗)X†

and Z∗ = VX(1/2I)V TX is the skinny SVD of Z∗. So ∂Zf(Z∗) contains

VXV
T
X −XT (UXU

T
X)(X†)T = VXV

T
X − VXΣXU

T
XUXU

T
XUXΣ

−1
X V TX = 0. (40)

Substituting Z∗ = 1/2X†X into (37), we get the minimum objective function
value rank(X). �

Next, we have the form of the optimal solutions to (37) as follows.

Proposition 8. The optimal solutions to the unconstrained optimization prob-
lem (37) can be written as Z∗ = VXŴV TX .

Proof. Let (VX)⊥ be the orthogonal complement of VX . According to Propo-
sition 7, rank(X) is the minimum objective function value of (37). Thus we
get
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rank(X) = ||Z∗||∗ + ||X(I − Z∗)X†||∗

=

∥∥∥∥[ V TX
(VX)T⊥

]
Z∗ [VX , (VX)⊥

]∥∥∥∥
∗
+ ||X(I − Z∗)X†||∗

=

∥∥∥∥[ V TXZ
∗VX V TXZ

∗(VX)⊥
(VX)T⊥Z

∗VX (VX)T⊥Z
∗(VX)⊥

]∥∥∥∥
∗
+ ||X(I − Z∗)X†||∗

≥ ||V TXZ∗VX ||∗ + ||UXΣXV TX (I − Z∗)VXΣ−1
X UTX ||∗

= ||VXV TX Z∗VXV TX ||∗ + ||UXΣXV TX (I − VXV
T
XZ

∗VXV TX )VXΣ
−1
X UTX ||∗

= ||VXV TX Z∗VXV TX ||∗ + ||X(I − VXV
T
XZ

∗VXV TX )X†||∗
≥ rank(X),

(41)

where the second inequality holds by viewing Z = VXV
T
XZ

∗VXV TX as a feasible
solution to (37). Then all the inequalities in (41) must be equalities. By Lemma
3 we have

V TXZ
∗(VX)⊥ = (VX)T⊥Z

∗VX = (VX)T⊥Z
∗(VX)⊥ = 0. (42)

That is to say [
V TX

(VX)T⊥

]
Z∗ [VX , (VX)⊥

]
=

[
Ŵ 0
0 0

]
, (43)

where Ŵ = V TXZ
∗VX . Hence the equality

Z∗ =
[
VX , (VX)⊥

] [Ŵ 0
0 0

] [
V TX

(VX)T⊥

]
= VXŴV TX (44)

holds. �
Based on all the above lemmas and propositions, the following proposition gives
the whole closed form solutions to the unconstrained optimization problem (37).
So the solution to problem (37) is non-unique.

Proposition 9. The solutions to the unconstrained optimization problem (37)

are Z∗ = VXŴV TX , where Ŵ satisfies: 1. it is block diagonal and its blocks are

compatible with ΣX
1; 2. both Ŵ and I − Ŵ are positive semi-definite.

Proof. First, we prove the sufficiency. Suppose Z∗ = VXŴV TX satisfies all the
conditions in the theorem. Substitute it into the objective function, we have

||Z∗||∗ + ||X(I − Z∗)X†||∗ = ||Ŵ ||∗ + ||ΣX(I − Ŵ )Σ−1
X ||∗

= ||Ŵ ||∗ + trace(ΣX(I − Ŵ )Σ−1
X )

= ||Ŵ ||∗ + trace(I − Ŵ )

= ||Ŵ ||∗ + rank(X)− trace(Ŵ )

= rank(X)

= min
Z

||Z||∗ + ||X(I − Z)X†||∗,

(45)

1 Please refer to Theorem 2 for the meaning of “compatible with ΣX .”
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where based on Lemma 4 the second and the fifth equalities hold since I − Ŵ =
ΣX(I − Ŵ )Σ−1

X as Ŵ is block diagonal and both I − Ŵ and Ŵ are positive
semi-definite.

Next, we give the proof of the necessity. Let Z∗ represent a minimizer. Ac-
cording to Proposition 8, Z∗ could be written as Z∗ = VXŴV TX . We will show

that Ŵ satisfies the stated conditions. Based on Lemma 4, we have

rank(X) = ||Z∗||∗ + ||X(I − Z∗)X†||∗
= ||Ŵ ||∗ + ||ΣX(I − Ŵ )Σ−1

X ||∗
≥ ||Ŵ ||∗ + trace(ΣX(I − Ŵ )Σ−1

X )

= ||Ŵ ||∗ + trace(I − Ŵ )

= ||Ŵ ||∗ + rank(X)− trace(Ŵ )

≥ rank(X).

(46)

Thus all the inequalities above must be equalities. From the last equality and
Lemma 4, we directly get that Ŵ is positive semi-definite. By the first inequality
and Lemma 4, we know that ΣX(I − Ŵ )Σ−1

X is symmetric, i.e.,

σi
σj

[I − Ŵ ]ij =
σj
σi

[I − Ŵ ]ij , (47)

where σi represents the ith entry on the diagonal of ΣX . Thus if σi 	= σj , then

[I − Ŵ ]ij = 0, i.e., Ŵ is block diagonal and its blocks are compatible with ΣX .

Notice that I − Ŵ = ΣX(I − Ŵ )Σ−1
X . By Lemma 4, we get that I − Ŵ is also

positive semi-definite. Hence the proof is completed. �

Now we can prove Theorem 2.

Proof. Let Ŵ satisfy all the conditions in the theorem. According to Proposition
8, since the row space of Z∗ = VXŴV TX belongs to that of X , it is obvious that
(Z∗, X(I−Z∗)X†) is feasible to problem (5). Now suppose that (5) has a better

solution (Z̃, L̃) than (Z∗, L∗), i.e.,

X = XZ̃ + L̃X, (48)

and
||Z̃||∗ + ||L̃||∗ < ||Z∗||∗ + ||L∗||∗. (49)

Fixing Z in (5) and by Lemma 2, we have

||Z̃||∗ + ||(X −XZ̃)X†||∗ ≤ ||Z̃||∗ + ||L̃||. (50)

Thus
||Z̃||∗ + ||(X −XZ̃)X†||∗ < ||Z∗||∗ + ||X(I − Z∗)X†||∗. (51)

So we obtain a contradiction with respect to the optimality of Z∗ in Proposition
9, hence proving the theorem. �
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4.3 Proof of Proposition 1

Proof. Suppose the optimal formulation Z∗ = VXŴV TX in Theorem 2 could be
written as Z∗ = VXW̃V TX + S1W̃V TX , where W̃ is idempotent and S1 satisfies
W̃V TX S1 = 0. Then we have

VXŴV TX = VXW̃V TX + S1W̃V TX . (52)

By multiplying both sides with V TX and VX on the left and right, respectively,
we get

Ŵ = W̃ + V TX S1W̃ . (53)

As a result, Ŵ is idempotent:

Ŵ 2 = (W̃ + V TX S1W̃ )(W̃ + V TX S1W̃ )

= W̃ 2 + V TX S1W̃
2 + W̃V TX S1W̃ + V TX S1W̃V TX S1W̃

= W̃ + V TX S1W̃ + W̃V TX S1W̃ + V TX S1W̃V TX S1W̃

= W̃ + V TX S1W̃ = Ŵ ,

(54)

which is contradictory to the assumption. �

5 Conclusions

Based on the expositions in Section 3 and the proofs in Section 4, we conclude
that even for rank minimization problems as simple as noiseless LatLRR, re-
placing rank with nuclear norm is not valid. We have also found that LatLRR
is actually problematic because the solution to its nuclear norm minimization
formation is not unique. We can also have the following interesting connections
between LRR and LatLRR. Namely, LatLRR is indeed an extension of LRR
because its solution set strictly includes that of LRR, no matter for the rank
minimization problem or the nuclear norm minimization formulation. So we can
summarize their relationship as Figure 1.

Original LRR (1)

Original LatLRR (4) Heuristic LatLRR (5)

Heuristic LRR (2)

extension extension

valid surrogate

invalid surrogate

Fig. 1. The detailed relationship among the original LRR (1), the heuristic LRR (2),
the original LatLRR (4), and the heuristic LatLRR (5) in the sense of their solution
sets
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Although the existing formulation of LatLRR is imperfect, since some scholars
have demonstrated its effectiveness in subspace clustering by using a solution
which is randomly chosen in some sense, in the future we will consider how
to choose the best solution in the solution set in order to further improve the
performance of LatLRR.
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Abstract. Nonnegative matrix factorization (NMF) aims to decompose
a given data matrix X into the product of two lower-rank nonnegative
factor matrices UV T . Graph regularized NMF (GNMF) is a recently
proposed NMF method that preserves the geometric structure of X dur-
ing such decomposition. Although GNMF has been widely used in com-
puter vision and data mining, its multiplicative update rule (MUR) based
solver suffers from both slow convergence and non-stationarity problems.
In this paper, we propose a new efficient GNMF solver called rank-one
residue approximation (RRA). Different from MUR, which updates both
factor matrices (U and V ) as a whole in each iteration round, RRA up-
dates each of their columns by approximating the residue matrix by their
outer product. Since each column of both factor matrices is updated op-
timally in an analytic formulation, RRA is theoretical and empirically
proven to converge rapidly to a stationary point. Moreover, since RRA
needs neither extra computational cost nor parametric tuning, it enjoys
a similar simplicity to MUR but performs much faster. Experimental re-
sults on real-world datasets show that RRA is much more efficient than
MUR for GNMF. To confirm the stationarity of the solution obtained by
RRA, we conduct clustering experiments on real-world image datasets
by comparing with the representative solvers such as MUR and NeNMF
for GNMF. The experimental results confirm the effectiveness of RRA.

Keywords: Nonnegative matrix factorization, Manifold regularization,
Rank-one residue iteration, Block coordinate descent.

1 Introduction

Given n data points arranged in a nonnegative matrix X ∈ Rm×n
+ and m stands

for the dimension of the data, nonnegative matrix factorization (NMF) decom-
poses X into the product of two lower-rank nonnegative factor matrices, that is,
UV T , where U ∈ R

m×r
+ and V ∈ R

n×r
+ signify the basis of the low-dimensional

space and the coefficient, respectively. Although NMF performs well in several
tasks, it completely ignores the property where many datasets, for example,
human faces or hand-written digits, reside in a manifold that lies in a low-
dimensional space. Recently, Cai et al. [3] proposed graph regularized NMF

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part II, LNAI 8189, pp. 242–255, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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(GNMF) to address this problem. GNMF assumes that the neighborhoods of
one data point in high-dimensional space should be as close as possible to the
images of that point in low-dimensional space. Since GNMF preserves the geo-
metric structure of the data set, any label information can be propagated along
the surface of the manifold to its neighbourhoods. Such an advantage greatly
enhances the clustering performance of NMF and makes GNMF a powerful tool
in data mining [2][18].

Recently, many GNMF variants have been proposed for various applications.
Zhang et al. [18] proposed a topology preserving NMF (TPNMF) for face recog-
nition. TPNMF considers the manifold structure in face datasets and preserves
the local topology while face images are transformed to a subspace. For the
same purpose, Gu et al. [6] proposed neighborhood preserving NMF (NPNMF).
NPNMF represents each data point by a linear combination of its neighbours
in high-dimensional space and keeps such relationships in low-dimensional space
with the same combination coefficient. Yang et al. [17] developed non-negative
graph embedding (NGE) to integrate both intrinsic graph and penalty graph
in NMF in the spirit of marginal fisher analysis [16]. Guan et al. [7] proposed
a manifold regularized discriminative NMF (MD-NMF) for classification tasks.
MD-NMF preserves both local geometry and label information of data points
simultaneously by expecting data points in the same class close to be each other
and data points in different classes far from each other. Shen and Si [13] pro-
posed an NMF on multiple manifolds method (MM-NMF) to model the intrinsic
geometrical structure of data on multiple manifolds. MM-NMF assumes the data
points are drawn from multiple manifolds, if one data point can be reconstructed
by several neighbourhoods on the same manifold in high-dimensional space, it
can also be reconstructed in a similar way in low-dimensional space.

Although GNMF and its variants perform well in many fields, the multi-
plicative update rules (MUR) based algorithm suffers two drawbacks: 1) MUR
converges slowly because it is intrinsically a first-order gradient descent method,
and 2) MUR does not guarantee convergence to any stationary point [10]. These
two deficiencies seriously prohibit GNMF from practical applications. To rem-
edy these problems, Guan et al. [8] has recently proposed a NeNMF method for
optimizing GNMF. NeNMF applies Nesterovs’s method to alternatively update
each factor matrix. Since Nesterovs’s method updates each factor matrix in a
second-order convergence rate, it converges rapidly for optimizing GNMF. How-
ever, NeNMF needs a stop condition to check when to stop Nesterovs’s method,
and it is non-trivial to determine such tolerance on many datasets.

In this paper, we propose an efficient rank-one residue approximation (RRA)
method for GNMF and its variants. RRA decomposes the reconstruction UV T

into a summation of r rank-one matrices, i.e., X ≈
∑r

i=1 U·iV T·i . In contrast
to MUR which recursively updates the whole factor matrix, RRA recursively
updates each column of each factor matrix with the remaining variables fixed,
that is, UkV

T
k ≈ X −

∑r
l �=k UlV

T
l for each 1 ≤ k ≤ r. It is obvious that each

column of U can be updated in an analytic formulation based on non-negative
least squares, but it is difficult to update columns of V due to the incorporated
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manifold regularization term. In this paper, we show that each column of V
can also be updated in an analytic formulation. Since the objective function
is continuously differentiable on a Cartesian product of 2r closed convex sets,
RRA is proved to converge to a stationary point. However, an inverse of the
Hessian matrix is needed in updating each column of V and such matrix inverse
operator costs too much computational time. To overcome such deficiency, we
introduce the Sherman-Morrison-Woodbury (SMW) formula to approximate the
inverse of Hessian matrix. Since the approximation can be efficiently calculated
in advance, the SMW-based formula greatly reduces the time cost of RRA. Ex-
perimental results on real-world datasets show the efficiency of RRA compared
with representative GNMF solvers. To evaluate the effectiveness of RRA for
GNMF, we conduct clustering experiments on two popular image datasets in-
cluding COIL-20 [12] and CMU PIE [14], the experimental results show that
RRA is effective.

The rest of the paper is organized as follows. Section 2 briefly reviews the
graph regularized NMF (GNMF) method and its state-of-the-art solvers. Section
3 presents the RRA method for GNMF. Section 4 evaluate the efficiency and
effectiveness and gives the experimental results, while Section 5 summaries this
paper.

2 Related Works

Nonnegative matrix factorization (NMF) is a popular dimension reduction
method which has been widely used in pattern recognition and data mining.
Given a dataset X = [x1, x2, . . . , xn] ∈ R

m×n
+ , where each column of X presents

an data point, NMF aims to find two lower-rank nonnegative matrices U ∈ Rm×r
+

and V ∈ R
n×r
+ , where r ≤ min{m,n} is the reduced dimensionality, such that

their product UV T approximates the original matrix X :

X = UV T + E (1)

where E denotes the residual error. Assuming the entries in E to be I.I.D.
Gaussian distributed, we get the objective function of NMF:

min
U≥0,V≥0

1

2
‖X − UV T ‖2F (2)

where ‖·‖F signifies the Frobenius norm. The smaller the cost function, the
better the approximation of UV T .

Since NMF does not consider the intrinsic geometrical structure of dataset,
it does not always perform well in some real-world datasets, for example, face
images and hand-written digits. To remedy this problem, Cai et al. [3] proposed
graph regularized NMF (GNMF), which considers the geometrical structure of
the dataset in NMF. The basic assumption is that data points reside on the
surface of a manifold that lies in a low-dimensional space, that is, if two data
points are close enough in high-dimensional space they are still close in low-
dimensional space. To this end, GNMF constructs an adjacent graph G on a
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scatter of data points to represent the local geometric structure. In graph G,
each node associates an data point and an edge is established between two nodes
once one node belongs to the k nearest neighbourhoods of another. Based on G,
we can build an adjacent matrix W as follows:

Wij =

{
1, xj ∈ Nk(xi) | xi ∈ Nk(xj)
0, otherwise

(3)

where Nk(xi) denotes the k nearest neighbourhoods of xi. We are now ready
to preserve the geometrical structure of X in the low-dimensional space, the
objective is to minimize

n∑
i=1

n∑
j=1

‖vi − vj‖22Wij = tr(V TLV ) (4)

where L = D−W is the Laplacian matrix of G, whereD is a diagonal matrix and
Djj =

∑
lWjl , and tr(·) signifies the trace operator over a symmetric matrix.

Combing (2) and (4) together, we arrive at the objective of GNMF:

min
U≥0,V≥0

f(U, V ) =
1

2
‖X − UV T ‖2F +

β

2
tr(V TLV ) (5)

where β > 0 is a trade-off parameter over the manifold regularization term.
Although f(U, V ) is jointly non-convex w.r.t. both U and V , it is convex

w.r.t. either U or V . Therefore, we can apply block coordinate descent method
[1] to solve (5). Cai et al. [3] proposed a multiplicative update rule (MUR) to
recursively update matrices U and V , respectively. At the t− th iteration round,
Ut+1 and Vt+1 are updated as follows:

Ut+1 = Ut ◦
XVt

UtV Tt Vt
(6)

and

Vt+1 = Vt ◦
XTUt+1 + βWVt
VtUTt+1Ut+1 + βDVt

(7)

where ◦ signifies the element-wise multiplication.
Although MUR is proved to reduce the objective function f(U, V ), it converges

slowly in terms of number of iteration because it is intrinsically a first-order gra-
dient descent method. In addition, MUR suffers from non-stationarity problems
like NMF [10].

Recently, to remedy the problem of MUR, Guan et al. [8] proposed a NeNMF
algorithm to update both factor matrices by solving the following two sub-
problems

min
U≥0

1

2
‖X − UV T ‖2F (8)

and

min
V≥0

1

2
‖X − UV T ‖2F (9)
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Since NeNMF solves both (8) and (9) with Nesterovs’s method [8], it converges
rapidly because Nesterovs’s method is intrinsically a second-order gradient de-
scent method. However, NeNMF needs a tolerance to check the stopping of the
Nesterovs’s method. If the tolerance is set too small, NeNMF costs too much
extra iterations for solving (8) and (9). If the tolerance is set too large, NeNMF
gets a low-quality solution for either (8) or (9). Therefore, it is not easy to use
NeNMF in practical applications because it is non-trivial to determine a suitable
tolerance on many datasets.

3 Rank-one Residue Approximation for GNMF

In this section, we proposed an efficient rank-one residue approximation (RRA)
algorithm to overcome the deficiencies of both MUR and NeNMF by recursively
updating columns of U and V with an analytic formulation.

The main idea is inspired by the well-known rank-one residue iteration (RRI,
[9]) method and hierarchical alternating least squares (HALS, [5]) method for
NMF. In contrast to MUR and NeNMF which alternately updates the whole U
and V , RRA recursively updates columns of them with the remaining variables
fixed. For the k − th column of U and V , the sub-problems are

min
U·k≥0

1

2
‖Rk − U·kV T·k ‖2F (10)

and

min
V·k≥0

1

2
‖Rk − U·kV T·k ‖2F +

β

2
V T·kLV·k (11)

where Rk denotes the residue of X after eliminating the k− th column of U and
V , i.e., Rk = X −

∑
l �=k U·lV T·l . The formula (11) is derived from the following

equation: tr(V TLV ) =
∑r
k=1 V

T
·kLV·k.

The problem (10) should be solved in two cases, that is, V·k = 0 and V·k 	= 0.
If V·k = 0, eq. (10) has an infinite number of solutions. Therefore, the k − th
column of both U and V should be taken off in the remaining computation. If
V·k 	= 0, according to [3], the sub-problem (10) has a closed-form solution

U·k =

∏
+(RkV·k)
‖V·k‖22

(12)

where
∏

+(x) = max (0, x) is an element-wise projection that shrinks negative
entries of x to zero. Similar to (10), the problem (11) should be considered in
two cases, that is, U·k = 0 and U·k 	= 0. If U·k = 0, the k− th column of both U
and V does not take part in the remaining computation and should be taken off.
If U·k 	= 0, below we show how to solve (11) in an analytic formulation though
it is not as direct as (12).

We solved the constrained optimization (11) by using the Lagrangian multi-
plier method [1]. The Lagrangian function of (11) is

L =
1

2
‖Rk − U·kV T·k ‖2F +

β

2
V T·kLV·k − 〈V·k, λ〉 (13)
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where λ is the Lagrangian multiplier for the constraint V·k ≥ 0. Based on the
K.K.T. conditions, the solution of (11) satisfies⎧⎨⎩

V·k ≥ 0, λ ≥ 0,
∂L
∂V·k

= −RTk U·k + (‖U·k‖22I + βL)V·k − λ = 0

λ ◦ V·k = 0

(14)

where I ∈ Rn×n is an identity matrix. With simple algebra, based on (14), we
update columns of V as follows:

V·k =
∏
+

((‖U·k‖22I + βL)−1RTk U·k) (15)

by updating columns of U and V alternatively with (12) and (15), respectively,
until convergence, RRA solves GNMF. The following Proposition 1 shows that
alternating (12) and (15) reaches a stationary point. The proof is similar to [9],
we only include it here for completeness.

Proposition 1. Every limited point generated by alternating (12) and (15) is a
stationary point.

Proof. From (10) and (11), we know that the feasible sets of U·k and V·k are
ΩUk ⊂ Rm+ and ΩVk ⊂ Rn+. According to [11], since X is bounded, we can set an
upper bound for ΩUk andΩVk and thus can consider them as closed convex sets.

Therefore, the GNMF problem can be written as a bound-constrained opti-
mization problem

min
[U,V ]∈Ω

1

2
‖X −

r∑
k=1

U·kV T·k ‖2F +
β

2

r∑
k=1

V T·kLV·k (16)

where Ω =
∏r
k=1Ω

U
k ×

∏r
k=1Ω

V
k is a Cartesian product of closed convex sets.

Since the objective function of (16) is continuously differentiable over Ω and
RRA updates the k − th column of Uand V with the optimal solutions of (12)
and (15), according to Proposition 2.7.1 in [1], every limit point generated by
alternating (12) and (15) is a stationary point.

For completeness, we must consider cases when either U·k or V·k is zero. In
these cases, eq. (12) and (15) do not give unique solutions, and Proposition
2.7.1 in [1] cannot be applied. As mentioned above, such columns should be
taken off without changing the value of the objective function of (16). Therefore,
these columns do not destroy the theoretic analysis. It completes the proof.

Since L is a positive semi-definite matrix, the matrix inverse operator (‖U·k‖22I
+ βL)−1 in (15) is well-defined if U·k 	= 0. However, the matrix inverse operator
is inefficient because its time cost is O(n3). Fortunately, the matrix ‖U·k‖22I+βL
has a nice property, that is, it is composed of a symmetric positive semi-definite
matrix and a diagonal matrix. This property motivates us to apply the well-
known Sherman-Morrison-Woodbury (SMW, [15]) formula to approximate the
matrix inverse operator efficiently. That is why our method is called rank-one
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Algorithm 1. Rank-one Residue Approximation for GNMF

Input: X ∈ R
m×n
+ , L ∈ Rn×n, 1 ≤ r ≤ min(m,n), β

Output: U ∈ R
m×r
+ , V ∈ R

n×r
+

1: Initialize: U1 ∈ Rm×r
+ , V 1 ∈ Rn×r

+ , t = 1

2: Calculate: L = ΘΣΘT ≈ Θ̃Σ̃Θ̃T , R1 = X − U1V 1T

3: repeat
4: for k = 1 . . . r do
5: Calculate: Rt

k = Rt + U t
·kV

t
·k

T

6: Update: U t+1
·k =

∏
+(R

t
kV

t
·k))/‖V t

·k‖22)
7: Calculate: At

k ≈ (‖U t+1
·k ‖22I + βL)−1

8: Update: V t+1
·k =

∏
+(A

t
kR

t
k
T
U t+1

·k )

9: Update: Rt = Rt
k − U t+1

·k V t+1
·k

T

10: end for
11: Update: Rt+1 = Rt

12: Update: t ← t+ 1
13: until The Stopping Condition (18) is Satisfied.
14: U = U t, V = V t

residue approximation (RRA). In particular, we can approximate the matrix
inverse in (15) as

(‖U·k‖22I + βL)−1 = β−1(
‖U·k‖22
β

I +ΘΣΘT )
−1

≈ β−1(
‖U·k‖22
β

I + Θ̃Σ̃Θ̃T )−1

= (
1

‖U·k‖22)
I − β

‖U·k‖42)
Θ̃(Σ̃−1 +

β

‖U·k‖22
)−1Θ̃T ) (17)

where L = ΘΣΘT is a SVD of L, and Θ̃Σ̃Θ̃T is its approximation by taking the
first p most important components. The value p is usually determined by keeping
95% of the energy, i.e.,

∑p
i=1 σ

2
i /
∑n
i=1 σ

2
i ≤ 95%, where σ2i is the i− th largest

singular value. The following section will discuss how to choose the percentage of
energy kept. The main time cost of (17) is spent on the calculation of the second
term, whose time complexity is O(n2p) because the inverse operator is performed
over a diagonal matrix. Since p� n, the SMW formula greatly reduces the time
cost of (16) from O(n3 +mn) to O(n2p+mn).

By recursively updating columns of U and V with (12) and (15), respectively,
we can solve GNMF efficiently without tuning extra parameters. The total pro-
cedure is summarized in Algorithm 1, where the stopping condition is given as
follows:

|f(U t, V t)− f(U t+1, V t+1)| ≤ ε|f(U1, V 1)− f(U2, V 2)| (18)

where ε is the tolerance, for example, ε = 10−3.
The proposed RRA algorithm avoids parameter tuning thus it is more flexible

and convenient in practical applications. In Algorithm 1, since the SVD of L
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can be calculated beforehand and the residue Rtk can be updated recursively as
lines 5 and 9 in O(mn) time, the time complexity of RRA is mainly spent on
line 7 because the matrix-vector multiplication in lines 6 and 8 cost O(mn) time.
In summary, the time complexity of one iteration round of RRA is O(mnr +
prn2). According to [8], the time complexity of one iteration round of NeNMF is
O(mnr+mr2 + nr2) +K ×O(mr2 + nr2), where K is the number of iterations
performed by Nesterovs’s method. An unsuitable tolerance leads to a rather large
K for NeNMF and pulls down its efficiency. RRA overcomes such deficiency and
performs more efficiently than NeNMF without any parameter tuning. Although
the time complexity of one iteration round of MUR is O(mnr + rn2) [3], RRA
costs less time in total than MUR because it converges in far less iteration
rounds.

4 Experiments

In this section, we evaluate the efficiency of our RRA method by comparing
it with state-of-the-art GNMF solvers including MUR and NeNMF in terms of
CPU seconds. In addition, we evaluate the clustering performance of the RRA
based GNMF on popular image datasets, such as, COIL-20 [12] and CMU PIE
[14] to confirm its effectiveness.

4.1 Preliminaries

We followed [3] to evaluate RRA on two popular image datasets including COIL-
20 [12] and CMU PIE [14]. The COIL-201 image library contains images of 20
objects viewed from different angles. Totally 72 images were taken for each object
and each image was cropped to 32×32 pixels and rescaled to an 1024-dimensional
long vector. The CMU PIE2 face image database contains face images of 68
individuals. There are totally 42 facial images for each individual taken under
different lighting and illumination conditions. Similarly, each image was cropped
to 32 × 32 pixels and rescaled to a 1024-dimensional long vector. In summary,
the COIL-20 is composed of a 1024× 1440 matrix and CMU PIE is composed
of a 1024× 2856 matrix.

4.2 Efficiency Evaluation

We evaluated the efficiency of RRA by comparing its CPU seconds with those
spent by both MUR and NeNMF on whole COIL-20 and CMU PIE datasets. For
GNMF, we set the number of neighborhoods to k = 5, the trade-off parameter
β = 1, and r = 10, 50, 100, 200 to study the scalability of RRA. To keep the
fairness of comparison, all GNMF solvers start from an identical point and stop
when they reach an identical objective value. Then the CPU seconds it costs are
compared for the purpose of evaluation.

1 http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
2 http://www.ri.cmu.edu/projects/project_418.html

http://www1.cs.columbia.edu/CAVE/software/softlib/coil-20.php
http://www.ri.cmu.edu/projects/project_418.html
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Fig. 1. Objective values versus CPU seconds of MUR, NeNMF, and RRA on COIL-20
dataset. (a) r=20, (b) r=50, (c) r=100, (d) r=200

Figure 1 compares the objective values versus CPU seconds of MUR, NeNMF
and RRA on COIL-20 dataset. It shows that RRA performs much more rapidly
than MUR and NeNMF because it reaches lower objective values in the same
number of CPU seconds. In other words, to get a similar solution RRA costs far
less CPU seconds. When the reduced dimensionality r = 20, NeNMF performs
comparably with RRA because its time complexity O(mnr+mr2 +nr2) +K ×
O(mr2+nr2+ rn2) is dominated by O(mnr)+K×O(rn2) which is comparable
with the time complexity of RRA, that is, O(mnr + prn2). From subfigures (a)
to (d), we can see that RRA always performs better and better than MUR, but
it performs closely to NeNMF when the reduced dimensionality is 200.

Figure 2 compares the objective values versus CPU seconds of MUR, NeNMF
and RRA on the CMU PIE dataset. From Figure 2, we have the same observation
as Figure 1. It confirms that RRA is much more efficient than MUR and NeNMF.
To study the speedup rate of RRA versus MUR and NeNMF, we repeated the
experiments on the PIE dataset with r varying from 10 to 100. MUR, NeNMF,
and RRA start from the identical initial point and stop when the same objective
value is reached. Then, we calculated the speedup rate as the ratio of time costs
of MUR (or NeNMF) dividing those of RRA. Such trial was repeated ten times
with different randomly generated initial point.

Figure 3 gives the speedup rates of RRA versus NeNMF and MUR. It shows
that RRA is much faster than both MUR especially when the reduced dimen-
sionality is 10. RRA is also faster than NeNMF when the reduced dimensionality
is 10, and costs comparable CPU time in other cases. This observation shows
that RRA is much efficient when the reduced dimensionality is relatively small.
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Fig. 2. Objective values versus CPU seconds of MUR, NeNMF, and RRA on PIE
dataset. (a) r=20, (b) r=50, (c) r=100, (d) r=200.
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Fig. 4. AC and NMI of GNMF by MUR, NeNMF, and RRA on COIL-20 dataset.
NMF is used as a baseline.

4.3 Image Clustering

Based on Proposition 1, RRA converges to a stationary point of GNMF while
MUR does not. To evaluate the stationary level of RRA, we compared the clus-
tering performance of GNMF solved by RRA and MUR, respectively, on both
COIL-20 and CMU PIE datasets in terms of accuracy (AC) and normalized mu-
tual information (NMI). The details of AC and NMI can be found in [3]. To keep
the fairness of comparison, all GNMF solvers start from an identical initial point
and stop when the same stopping condition (18) is satisfied. In this experiment,
we randomly selected r = 2, . . . , 10 individuals from both datasets and the se-
lected images are clustered by using GNMF based on different solvers, that is,
RRA, NeNMF, and MUR. Such trails were repeated ten times and the average
AC and NMI are used to compare their performance. The standard NMF is also
compared as a baseline.

Figure 4 compares the averaged AC and NMI by MUR, NeNMF, and RRA
based GNMF on the COIL-20 dataset. It shows that the RRA slightly outper-
forms MUR and NeNMF in terms of AC and NMI. There are two reasons for this
observation: 1) RRA gets a stationary point (see Proposition 1) which better
approximates the data points and thus might perform better in clustering, and
2) RRA approximates the graph Laplacian L in (4) with the largest eigenvectors
(see (17)), according to the spectral graph theory [4], these eigenvectors associate
with most smooth functions over graph G, that is, RRA eliminates some outlier
functions on the graph and thus RRA propagates the geometrical information
better than the original GNMF method. For this reason, RRA clusters the data
points better.

Figure 5 compares the averaged AC and NMI by MUR, NeNMF, and RRA
based GNMF on the PIE dataset. Figure 5 confirms our analysis Figure 3. In
summary, RRA is effective for optimizing GNMF.
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Fig. 5. AC and NMI of GNMF by MUR, NeNMF, and RRA on PIE dataset. NMF is
used as a baseline.

Table 1. CPU seconds versus the percentage of energy kept for RRA on the PIE
dataset

the percentage of energy kept 65% 75% 85% 95% 100%

CPU Seconds 199.18 184.59 183.92 177.76 209.47

4.4 Parameter Selection

In RRA, the percentage of energy kept in (17) controls the approximation qual-
ity of the SMW formula to the Hessian inverse as well as the time complexity
because one iteration round of RRA costs O(mnr + prn2) time. The more en-
ergy kept, the larger the value p. It implies the higher the approximation quality
and the less iteration rounds RRA spent. However, a large p means that each
iteration round consumes much CPU time. So the percentage of energy kept
must be carefully selected to balance the two facts. To study this point, we test
RRA on PIE dataset when setting the reduced dimensionality to 10 and varying
the percentage of energy kept from 65% to 95% with a step-size 10%. Table 1
compares the CPU time spent. To keep the fairness of comparison, all trials of
RRA start from identical initial point and stop when same objective values are
reached.

Table 1 shows that the time cost decreases with increasing of the percentage of
energy kept. That is because the approximation quality is improved and iteration
number is reduced in this case. However, the percentage of energy kept cannot
be chosen too large such as 100% because that will increase the time complexity
of each iteration round. In our experiment, 95% is a good choice.

5 Conclusion

In this paper, we proposed a novel efficient rank-one residue approximation
(RRA) solver for graph regularized non-negative matrix factorization (GNMF).
Unlike the existing GNMF solvers which recursively update each factor matrix
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as a whole, RRA recursively updates each column of both factor matrices in
an analytic formulation. Although RRA needs a time-consuming matrix inverse
operator, it can be approximated by using the Sherman-Morrison-Woodbury for-
mula. Since the objective function of GNMF is continuously differentiable over
a Cartesian product of several closed convex sets and RRA finds the optimal so-
lution for each column of both factor matrices, RRA theoretically converges to a
stationary point of GNMF. Experimental results and real-world image datasets
confirm both the efficiency and the effectiveness of RRA.

References

1. Bertsekas, D.P.: Nonlinear programming. Athena Scientific (1999)
2. Cai, D., He, X., Han, J., Huang, T.S.: Graph regularized nonnegative matrix fac-

torization for data representation. IEEE Transactions on Pattern Analysis and
Machine Intelligence 33(8), 1548–1560 (2011)

3. Cai, D., He, X., Wu, X., Han, J.: Non-negative matrix factorization on manifold. In:
Eighth IEEE International Conference on Data Mining (ICDM 2008), pp. 63–72.
IEEE (2008)

4. Chung, F.R.: Spectral graph theory. In: CBMS Regional Conference Series in Math-
ematics, vol. 92 (1997)

5. Cichocki, A., Zdunek, R., Amari, S.-I.: Hierarchical als algorithms for nonnega-
tive matrix and 3d tensor factorization. In: Davies, M.E., James, C.J., Abdallah,
S.A., Plumbley, M.D. (eds.) ICA 2007. LNCS, vol. 4666, pp. 169–176. Springer,
Heidelberg (2007)

6. Gu, Q., Zhou, J.: Neighborhood preserving nonnegative matrix factorization. In:
Proc. 20th British Machine Vision Conf. (2009)

7. Guan, N., Tao, D., Luo, Z., Yuan, B.: Manifold regularized discriminative nonneg-
ative matrix factorization with fast gradient descent. IEEE Transactions on Image
Processing 20(7), 2030–2048 (2011)

8. Guan, N., Tao, D., Luo, Z., Yuan, B.: Nenmf: an optimal gradient method for
nonnegative matrix factorization. IEEE Transactions on Signal Processing 60(6),
2882–2898 (2012)

9. Ho, N.D., Van Dooren, P., Blondel, V.D.: Descent methods for nonnegative matrix
factorization. In: Numerical Linear Algebra in Signals, Systems and Control, pp.
251–293. Springer (2011)

10. Lin, C.J.: On the convergence of multiplicative update algorithms for nonnega-
tive matrix factorization. IEEE Transactions on Neural Networks 18(6), 1589–1596
(2007)

11. Lin, C.J.: Projected gradient methods for nonnegative matrix factorization. Neural
Computation 19(10), 2756–2779 (2007)

12. Nene, S.A., Nayar, S.K., Murase, H.: Columbia object image library (coil-20). Tech-
nical Report CUS-005-96, Columbia Univ. USA (1996)

13. Shen, B., Si, L.: Nonnegative matrix factorization clustering on multiple manifolds.
In: Proceedings of the 24th AAAI Conference on Artificial Intelligence, pp. 575–580
(2010)

14. Sim, T., Baker, S., Bsat, M.: The cmu pose, illumination, and expression database.
IEEE Transactions on Pattern Analysis and Machine Intelligence 25(12), 1615–
1618 (2003)



Efficient Rank-one Residue Approximation Method 255

15. Woodbury, M.A.: Inverting modified matrices. Memorandum Report 42, 106 (1950)
16. Xu, D., Yan, S., Tao, D., Lin, S., Zhang, H.-J.: Marginal fisher analysis and its vari-

ants for human gait recognition and content-based image retrieval. IEEE Transac-
tions on Image Processing 16(11), 2811–2821 (2007)

17. Yang, J., Yang, S., Fu, Y., Li, X., Huang, T.: Non-negative graph embedding. In:
IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 1–8.
IEEE (2008)

18. Zhang, T., Fang, B., Tang, Y.Y., He, G., Wen, J.: Topology preserving non-negative
matrix factorization for face recognition. IEEE Transactions on Image Process-
ing 17(4), 574–584 (2008)



Maximum Entropy Models for Iteratively Identifying
Subjectively Interesting Structure in Real-Valued Data

Kleanthis-Nikolaos Kontonasios1, Jilles Vreeken2, and Tijl De Bie1

1 Intelligent Systems Laboratory, University of Bristol, Bristol, United Kingdom
{kk8232,Tijl.DeBie}@bristol.ac.uk

2 Advanced Database Research and Modelling, University of Antwerp, Antwerp, Belgium
Jilles.Vreeken@ua.ac.be

Abstract. In exploratory data mining it is important to assess the significance
of results. Given that analysts have only limited time, it is important that we can
measure this with regard to what we already know. That is, we want to be able to
measure whether a result is interesting from a subjective point of view.

With this as our goal, we formalise how to probabilistically model real-valued
data by the Maximum Entropy principle, where we allow statistics on arbitrary
sets of cells as background knowledge. As statistics, we consider means and
variances, as well as histograms. The resulting models allow us to assess the
likelihood of values, and can be used to verify the significance of (possibly over-
lapping) structures discovered in the data. As we can feed those structures back
in, our model enables iterative identification of subjectively interesting structures.

To show the flexibility of our model, we propose a subjective informativeness
measure for tiles, i.e. rectangular sub-matrices, in real-valued data. The Infor-
mation Ratio quantifies how strongly the knowledge of a structure reduces our
uncertainty about the data with the amount of effort it would cost to consider it.

Empirical evaluation shows that iterative scoring effectively reduces redun-
dancy in ranking candidate tiles—showing the applicability of our model for a
range of data mining fields aimed at discovering structure in real-valued data.

1 Introduction

When analysing a database, what we already know will strongly determine which re-
sults we will find interesting. Rather than analysing results representing knowledge we
already have, we want to discover knowledge that is novel from our perspective. That
is, the interestingness of a data mining result is highly subjective. Hence, in order to
identify and mine such results we need theory and methods by which we can measure
interestingness, significance, or surprise, from a subjective point of view.

With this as our goal, we formalise how to probabilistically model real-valued data
using the Maximum Entropy principle [8], where we allow statistics over arbitrary sets
of cells—such as, but not limited to, rectangular tiles—as background information. Us-
ing our model, we can measure the likelihood of values and value configurations from
the perspective of what we already know about the data. As possible background knowl-
edge, we develop theory for two easily considered sets of statistics for characterising
distributions, namely means and variances, and histograms.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part II, LNAI 8189, pp. 256–271, 2013.
c© Springer-Verlag Berlin Heidelberg 2013



Iteratively Identifying Subjectively Interesting Structure 257

While being able to measure the significance of data mining results is important in
general, it is particularly so for the sub-fields of data mining that discover local struc-
tures, such as in (frequent) pattern mining, subspace clustering, subgroup discovery and
bi-clustering—each of which areas where we are typically faced with overly large and
highly redundant result sets. As our model allows us to incorporate information on any
area of the data, we are able to iteratively identify the most surprising pattern out of a
given collection of candidate patterns; as by subsequently updating our model with this
new information, all variations of the same theme will become predictable and hence
onward be considered uninformative.

To quantify the subjective informativeness of a local structure we propose an Infor-
mation Ratio measure for submatrices, or tiles, in real-valued data. It trades off how
strongly the knowledge of the structure reduces our uncertainty about the data, with the
amount of effort it would cost the analyst to consider it. For binary data, De Bie [5],
and Kontonasios and De Bie [10] successfully used an information ratio based measure
for identifying surprisingly dense tiles in binary data. Here, we generalise this notion to
more rich statistics on expected values of tiles in real-valued data.

The topic of measuring the significance of data mining results was first discussed
by Gionis et al. [6], who gave a method for testing significance by swap randomizing
binary data. Ojala et al. [15] extended swap randomization to real-valued data. With
swap randomization, however, only empirical p-values can be determined. Recently,
we gave theory for modelling real-valued data by the Maximum Entropy principle [11].
One key advantage, besides speed, of MaxEnt modelling over swap randomization is
that analytical modelling allows us to calculate exact probabilities.

Unlike the model we propose here, all of the above provide only relatively weak and
static null-hypotheses. That is, they can not incorporate information beyond row and
column margins, and hence can not identify redundancy in light of previous discover-
ies. Our model, on the other hand, allows for much stronger statistical testing as rich
background knowledge can be incorporated, as well as for iterative use.

Empirical evaluation of our model shows that the information ratio measure reliably
identifies highly informative tiles, and that by iteratively including the highest ranked
tiles in our model, we correctly and non-redundantly identify the subjectively most
informative tiles, subgroups, and bi-clusters on both synthetic and real data.

In sum, the main contributions of this paper are as follows:

– We give the first Maximum Entropy model for real-valued data that can incorpo-
rate knowledge of certain useful statistics (mean/variance, and histograms) over
arbitrary areas of the data, and hence allows for iterative identification of the sub-
jectively most informative data mining result;

– We formalise Information Ratio scores for contrasting the subjective informative-
ness of tiles in real-valued data against their descriptive complexity;

Finally, it is important to stress the main goal of this paper is theoretical. It is explic-
itly not our goal to define practical algorithms for the efficient search of non-redundant
selection of tiles/subgroups/biclusters/subspace clusters/etc., all of which will likely
need specialised solutions. Instead, our aim here is to provide the theoretical founda-
tions that can be used as building blocks to those ends. As such, the information ratio we
here propose for tiles in real-valued data is a proof-of-concept, not a general solution.
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2 Related Work

We discuss related work along the following lines: measuring significance, iterative data
mining, and identifying informative submatrices in real-valued data.

Assessing the significance of data mining results was first discussed by Gionis et
al. [6]. The general idea is to check how likely a result is in data that shares basic
properties, but is fully random otherwise. Swap-randomisation, essentially a Markov-
chain of many random, local, value-swaps, for generating random data that exactly
maintains the row and column margins of the original data. By sampling many random
datasets (10 000s), we can subsequently obtain empirical p-values for the result at hand.

Ojala et al. generalised this to maintaining means and variances over rows and
columns of real-valued data [15,14]. Recently, De Bie [5], and Kontonasios et al. [11]
gave theory to instead model real-valued data analytically by the Maximum Entropy
(MaxEnt) principle [8], maintaining properties by expectation instead of exactly. The
formalisation by De Bie only allowed to maintain row and column means [5], Kontona-
sios et al. [11] generalised towards means and variances as well as histograms over rows
and columns. Key advantages over swap-randomisation include the speed at which ran-
dom data can be sampled, and that exact probabilities and p-values can be calculated.

None of these can incorporate information on arbitrary submatrices as background
knowledge. As such, they are essentially static null hypotheses, and hence not applica-
ble for identifying which result is most significant in light of previous discoveries.

The general concept of iterative data mining was first proposed by Hanhijärvi et
al. [7]. A key advantage of the iterative approach is that it naturally eliminates redun-
dancy. Based on MaxEnt, to the end that we can make an informed decision which result
we should analyse next, Tatti and Vreeken [17] gave a general framework for measuring
the difference of results of arbitrary methods in terms of the information they provide
about the data at hand, and gave a proof-of-concept for binary data.

This paper broadly follows the lines of the framework for iterative data mining based
on Maximum Entropy modelling of prior beliefs [4]. While that work was mostly ab-
stract, we here bring these ideas closer to practice for a broad class of data and patterns.
The Information Ratio was introduced in De Bie [5] (there called Compression Ratio)
and Kontonasios and De Bie [10], respectively in the context of exact and noisy tile
patterns in binary databases. In the current paper it is extended to real-valued data.

Bi-clustering [13] and sub-space clustering [12] are also concerned with identifying
sub-matrices in real-valued data that exhibit structure different from the background.
As in pattern mining, these approaches typically result in overly large, and highly re-
dundant result sets [19]. Existing proposals to identify significant results either employ
simple null-hypotheses that do not allow for iterative updating, require strong assump-
tions on the distribution of the data, or cannot deal with overlapping tiles [12].

3 Preliminaries

3.1 Notation and Basic Concepts

As data we consider rectangular real-valued matrices D ∈ Rn×m. We denote the set
of row indices as I = {1, . . . , n} and the set of column indices as J = {1, . . . ,m}.
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A matrix element can be referred to using an element e from the Cartesian product of
I and J , i.e.: e ∈ I × J . For e = (i, j), De denotes the matrix element on row i and
column j, sometimes also explicitly denoted as Dij . W.l.o.g. we assume the attributes
to be normalised between 0 and 1.

Since the patterns we will consider in this paper are local patterns, we need to estab-
lish a notation for referring to such subsets. A subset of database entries can be indexed
using an index set, here defined as a subset of the Cartesian product of I and J , i.e.:
E ⊆ I × J . We will use DE to refer to the (multi-)set of matrix values indexed by E .

Special cases of index sets that will turn out to be of particular importance in this
paper are index sets referring to: the elements within one particular row i (i.e. E =
{(i, j) | j ∈ J }); the elements within one particular column j (i.e. E = {(i, j) | i ∈
I}); and the elements within a tile τ , which is defined as the set of elements in the
intersection between a set of rows Iτ ⊆ I and a set of columns Jτ ⊆ J .

Central in this paper is the notion of a pattern p, which we define as a triple p =
(E , s, ŝ). Here, E is an index set; s is a vector-valued function defined over sets of real-
valued elements, called a statistic; and ŝ is the value the data miner beliefs to hold over
the part of the data matrix indexed by E . In general, this will be the empirical value, i.e.:
ŝ = s(DE), yet our theory below allows ŝ to take any valid value for s.

We will focus on two statistics in particular. We define these by specifying the com-
ponents of this vector-valued function.

– The first statistic we will consider has two components s(1) and s(2): resp. the
function computing the sum of the set of values it is evaluated on, and the function
computing the sum of their squares: s(1)(DE ) =

∑
(i,j)∈E Dij , and s(2)(DE) =∑

(i,j)∈E D
2
ij . These two values (along with the cardinality of DE ) are sufficient to

compute the mean and the variance of DE , so patterns defined in these terms inform
a user also on the mean and the standard deviation of a set of database elements.

– The second statistic has dE components s(k)E , specifying a dE -dimensional his-
togram for the elements indexed by E . More specifically, given a set of dE + 1
real values b0,E < b1,E < . . . < bdE ,E ∈ R specifying the boundary values of the
histogram bins used for the set E (typically with b0,E = −∞ and bdE ,E = ∞),
we write kE for the bin index for any x ∈ R, i.e. kE(x) = max{k|x < bk,E}.

Then the k’th statistic s(k)E (DE) in this set is equal to the number of elements from

DE that fall between bk,E and bk−1,E , i.e. s(k)E (DE) =
∑

(i,j)∈E I(kE (Dij) = k),
with I the indicator function. A further piece of notation that will prove useful is
wE(k) = bk,E − bk−1,E , denoting the width of the k’th bin.

Given our broad definition of a pattern, we can assume that also background knowl-
edge can be specified in terms of patterns, as formalised above, the data miner expects
to be present in the data. The set of all triples specifying such background knowledge
will be denoted as B. We will show below how we will use such background knowledge
to obtain a probability distribution P for the data, representing the data miner’s back-
ground knowledge on D. Note that the analogy between patterns and the background
knowledge will prove useful in an iterative data mining setting: it allows us to naturally
incorporate previously shown patterns into the background knowledge.

All logarithms are base 2, and by convention, 0 log 0 = 0.
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3.2 The Maximum Entropy Principle, A Brief Primer

In our approach we make use of maximum entropy models, a class of probabilistic
models that are identified by the Maximum Entropy principle [8]. This principle states
that the best probabilistic model is the model that makes optimal use of the provided in-
formation, and that is fully random otherwise. This makes these models very suited for
identifying informative patterns: when measuring quality, we know our measurement is
based on our background information only, not on undue bias of the distribution.

Entropy maximisation problems are particularly well-suited to deal with background
information on expected values of certain properties of the data. For example, the data
miner may have an expectation about the value f̂ of a certain function f when evaluated
on the data. We embed this information in the background distribution by requiring that
the expected value of f evaluated on D is equal to f̂ :∫

P (D)f(D) dD = f̂

Thus, inference of background model P is done by solving the following problem:

P ∗ = maxP −
∫
P (D) log (P (D)) dD , (1)

s.t.
∫
P (D)f(D) dD = f̂ , ∀f , (2)∫
P (D) dD = 1 . (3)

where each function f computes a statistic of which the data miner expects the value to
be f̂ . It is clear that in the current context, these functions are determined by the triples
(E , s, ŝ) in the background knowledge. More specifically, for each pattern (E , s, ŝ) there
would be a corresponding set of functions f defined as f(D) = s(k)(DE ), and f̂ =
ŝ(k), and this for each component s(k) of s.

Entropy maximisation subject to such constraints is a convex problem, which can
often be solved efficiently. Furthermore, the resulting distributions are known to be-
long to the exponential family of distributions, the properties of which are very well
understood [18]. In particular, the maximum entropy distribution is of the form:

P (D) =
1

Z
exp

{∑
i

λff(D)

}
,

where Z is a normalisation factor known as the partition function and λf is a Lagrange
multiplier corresponding to the constraint involving f , the value of which can be found
by solving the dual optimisation problem.

4 Maximum Entropy Modeling

In this section we discuss the details of the maximum entropy modelling of the statistics
discussed in Sec. 3. More in particular, we discuss how the constraint functions f in
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Eq. (2) are to be instantiated, and we will provide the resulting probability distribution
as the solution to the MaxEnt optimisation problem.

Here, we focus on how to obtain the MaxEnt distribution; in the next section, we
will show how to use this model for identifying subjectively interesting tiles.

4.1 Encoding Means and Variances as Prior Knowledge

As we argued in Sec. 3, the information on the empirical mean and variance of a set
of values is equivalent with information on their sum and sum of squares, computed
by the functions s(1) and s(2) respectively. Thus, to consider background knowledge
on the empirical mean and variance for a set of elements E , we need the following two
functions as constraint functions in Eq. (2):

f
(1)
E (D) � s(1)(DE) =

∑
(i,j)∈E

Dij , f
(2)
E (D) � s(2)(DE ) =

∑
(i,j)∈E

D2
ij .

We will denote the corresponding Lagrange multipliers as λ(1)E and λ(2)E respectively.
Since we need these functions for each E for which background knowledge is available,
the total number of constraints of the type of Eq. (2) is equal to twice the number
of index sets E for which the sum of the elements and the sum of the squares of the
elements are part of the background knowledge.

Shape of the Solution. By solving the MaxEnt optimization problem using Lagrange
Multiplier theory we obtain the following probability distribution:

P (D) =
∏
i,j

√
βij
π

· exp
{
−
(Dij +

1
2 · αij

βij
)2

1
βij

}
, (4)

where the variables αij and βij can be expressed as follows in terms of the Lagrange
multipliers for the individual constraints:

αij =
∑

E:(i,j)∈E
λ
(1)
E , βij =

∑
E:(i,j)∈E

λ
(2)
E .

Thus the resulting probability distribution is a product of n×m independent Normal
distributions, with means equal to μij = − αij

2βij
and variance σ2ij =

1
2βij

. Each factor in
the product of Eq. (4) corresponds to the probability distribution for one value Dij in
the database. Sampling a full database from P hence comes down to n×m independent
univariate sampling operations. Also, note that the distribution of Dij depends only on
the Lagrange multipliers of the subsets E in which the cell participates, i.e. for which
(i, j) ∈ E , which makes the sampling easier to conduct.

4.2 Encoding Histograms as Prior Knowledge

In order to encode background knowledge on the histogram within an index set E , we
need dE constraint functions (as explained in Sec. 3, we assume that the histogram for
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subset E contains dE bins, defined by the bin boundaries b0,E , b1,E , . . . , bdE ,E ∈ R,
i.e. we allow number and values of the bin boundaries to be different for different E).
These functions are defined as: f (k)E (D) � s

(k)
E (DE ) =

∑
(i,j)∈E I(kE (Dij) = k)

where kE(Dij) denotes the bin index for the value Dij (see Sec. 3). The functions f (k)E
calculate the number of elements from DE that fall in the k’th bin of the histogram. We
will denote the corresponding Lagrange multiplier as λ(k)E .

Shape of the Solution. Using basic Lagrange multiplier theory one can show that the
resulting probability distribution decomposes to a product of n×m independent prob-
ability distributions, i.e. P (D) =

∏
i,j Pij(Dij). Each component Pij has the form

Pij(Dij) =
1

Zij
· exp

⎧⎨⎩ ∑
E:(i,j)∈E

dE∑
k=1

λ
(k)
E I (kE (Dij) = k)

⎫⎬⎭ ,

where Zij is the decomposed partition function, formally defined as

Zij =

∫ 1

0

exp

⎧⎨⎩ ∑
E:(i,j)∈E

dE∑
k=1

λ
(k)
E I (kE(Dij) = k)

⎫⎬⎭ dDij .

Each component refers to one data cell and it is affected only by the Lagrange Multi-
pliers assigned to the sets E in which the entry participates.

4.3 Inferring the Model

The values of the λ parameters, which uniquely determine the MaxEnt model, are in-
ferred by solving the Lagrange duals of the respective MaxEnt optimisation problems.
These dual optimisation problems are convex, such that they can be solved efficiently
using simple and well-known optimisation methods such as Conjugate Gradient (CG,
the method of our choice in this paper) providing the gradient can be computed effi-
ciently. Due to lack of space details cannot be shown here, but the theoretical complexity
of each CG step is O(#λ2) (with #λ the number of Lagrange multipliers), dominated
by the cost of computing the gradient vector. In practice, however, we observe that run
time develops linearly with the number of λs.

5 Measuring Subjective Interestingness

In this section we discuss how to use a MaxEnt model for measuring the subjective
interestingness of a pattern. From 5.4 onward we focus on the specific case of tiles, a
well-known and intuitive pattern type that lends itself for description in simple terms.

5.1 Quantifying Subjective Interestingness

The main goal of this section is defining a measure for the subjective interestingness of
a pattern from the user’s point of view. That is, how strongly a pattern contrasts to what
the user already knows or beliefs about the data.
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Loosely speaking, for a given pattern p, we have to define two important proper-
ties; the first we refer to as the Information Content of a pattern, or, the amount of
information the pattern can convey to the user. The second property we refer to as the
Description Length of a pattern, or, the cost for transmitting this information.

We can assume that a user, given his limited capacity for information processing, will
find patterns with larger Information Content for a constant Description Length more
interesting. In other words, the interestingness of a pattern can be formalised as a trade-
off between these two quantities. This motivates the Information Ratio as a suitable
measure of a pattern’s interestingness.

Definition. The Information Ratio of a pattern p is the ratio of its Information Content
and Description Length:

InfRatio(p) =
InfContent(p)

DescrLength(p)
,

The Information Ratio was originally introduced in the context of exact tiles in binary
data [5]. There it was shown that iteratively mining the tile with the highest InfRatio
amounts to searching for a set of tiles with maximal total self-information given a lim-
ited budget on the overall description length. This was abstracted in [4] by relating
iterative data mining in general to the budgeted set coverage problem, further justifying
the use of this measure in iterative data mining.

5.2 Information Content of a Pattern

Our goal here is to quantify the information a user can extract from a pattern. We define
the InfContent for a pattern p as the number of bits we gain when using p in addition
to our current background knowledge when describing D. More formally,

InfContent(p) = L(D | B)− L(D | B ∪ {p}) ,

where L(D | B) is the number of bits required to describe D using only B, and L(D |
B ∪ {p}) is the number of bits to describe D using both B and p.

We have, for the number of bits to encode D given background knowledge B,

L(D | B) =
∑

(i,j)∈I×J
L(Dij | B) ,

where we transmit, in a fixed order, the value of each cell Dij ∈ D. To encode a specific
value, we use optimal prefix codes [3]. We obtain the probabilities from our maximum
entropy model P built using the information in B. We hence have

L(Dij | B) = − logPij(Dij) ,

Intuitively, the better our model predicts the value of cell, i.e. the more expected a value
is, the fewer bits are needed to encode it.
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5.3 Estimating InfContent

With the above, we can measure the subjective interestingness of a pattern p, and so
identify the most informative pattern from a large collection. To do so, however, the
above formalisation requires us to infer the maximum entropy model for B∪p, and this
for each candidate pattern p. This is clearly bound to be computationally prohibitive
for large collections of candidate patterns. We therefore take a different approach, and
instead estimate the gain of adding a pattern p = (E , s, ŝ) to our model by focusing on
the information gained regarding the database entries in E . That is,

InfContent(p) = L(DE | B)− L(DE | p) ,

which is the difference between the number of bits we need under the current model
to describe the values of DE corresponding to the pattern, and the number of bits we
would need to encode this area by solely using the information the pattern p provides.
This approximation will be good as long as the pattern contains significantly more in-
formation about the database entries E concerned than the background information—a
reasonable assumption given our focus on identifying the most informative patterns.

As discussed in Sec. 5.2, the first term L(DE | B) can be computed directly. For
calculating L(DE | p) we consider two approaches, corresponding to the statistics dis-
cussed in Sec. 3.1. Each results in a different way of calculating the overall InfContent :

– Considering the first statistic, a pattern specifies the mean μ and variance σ2 of the
values in DE . We know [3] that in this case the maximum entropy model for DE
reduces to the normal distribution N (μ, σ2). Hence, with φμ,σ2 the normal density
function, we have (with the subscriptm to denote mean and variance):

Lm(DE | p) =
∑

(i,j)∈E
− logφμ,σ2 (Dij) ,

by which we encode the values in DE by an optimal prefix code proportional to the
probability of the entry under this normal distribution.

– Patterns defined in terms of the second type of statistic specify a histogram for the
values in E . The maximum entropy model subject to this information reduces to a

piecewise-constant density function, uniform with value ŝ
(k)
E
|E| ×

1
w(k) within the k’th

bin of the histogram, where ŝ
(k)
E
|E| represents the fraction of values from DE specified

to belong to the k’th bin. (This follows from the fact that the MaxEnt distribution
with a bounded domain is uniform [3].) Hence, we have (with the subscript h to
denote histogram):

Lh(DE | p) =
∑

(i,j)∈E
Lh(Dij | p) ,

where

Lh(Dij | p) = − log

(
ŝ
(kE (Dij))
E
|E|

)
− log

(
1

w(kE (Dij))

)
,

in which, per entry Dij , the first term represents the description length for the bin
index the entry falls in, and the second term for the actual value within that bin.
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5.4 Description Length of a Pattern

So far our discussion has been fully general with respect to the choice of E . From now
on our exposition will be focused on patterns defined by a tile. Recall that a tile, denoted
as τ , is defined as a sub-matrix of the original data matrix. The reason for focusing on
tiles is that a tile τ can be described conveniently and compactly by specifying their
defining row set Iτ and column set Jτ .

Thus, for the Description Length of a tile pattern p = (E , s, ŝ) where E = {(i, j) |
i ∈ Iτ , j ∈ Jτ}, we have DescrLength(p) = L(E) + L(s, ŝ) = L(Iτ ) + L(Jτ ) +
L(s, ŝ), where L(Iτ ) + L(Jτ ) is the number of bits we need to identify the position of
the tile. L(Iτ ) can be computed as:

L(Iτ ) = log(n) + log

(
n

|Iτ |

)
where the first term accounts for the transmission of the height |Iτ | of tile τ . With
this information, we can now identify which rows of D are part of the tile using an
index over a binomial. We calculate L(Jτ ) analogously. Note that as we know the
exact counts, encoding through an index over a binomial is at least as efficient as using
individual prefix codes [3] as it makes optimal use of the available knowledge.

The quantity L(s, ŝ) scores the cost for transmitting the remaining information con-
veyed by the pattern. It is straightforward that the way InfContent is calculated dictates
a certain approach for the DescrLength as well. Let us discuss these here in turn.

– For mean and variance of a tile as background knowledge we have

Lm(s, ŝ) = 2 log(10acc)

where we encode mean(Dτ ) and var (Dτ ) using a uniform prior.
– In the case of histograms as background information, we have

Lh(s, ŝ) = LN(dE) + log

(
10acc

dE − 1

)
+ log

(
|E|+dE − 1

dE − 1

)
where we first encode the number of bins dE in the histogram, using the MDL
optimal code LN for integers ≥ 1 [16]. This encoding requires progressively more
bits the higher the value—by which we explicitly reward simple histograms. In the
next term, log

(
10acc

dE−1

)
, we encode the split points between the bins. These terms

account for specifying the histogram, i.e. the statistic s used.
The last term, log

(|E|+dE−1
dE−1

)
, encodes ŝ: how many observations fall within each

bin. We have to partition |E| entries over dE possibly empty bins. This is known as
a weak composition. The number of weak compositions of k non-negative terms
summing up to n is given by

(
n+k−1
k−1

)
. Assuming an ordered enumeration, we need

log
(|E|+dE−1

dE−1

)
bits to identify our composition. Note that log

(
n
k

)
= log Γ(n+1)−

log Γ(k + 1)− log Γ(n− k + 1) and hence is calculable even for large n and k.

Each of these methods require an accuracy level acc to be specified. Ultimately to be
decided by the user, a natural choice is the number of significant digits of the data [9].
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5.5 Instantiating InfRatio

The discrimination between transmitting mean/variance and histograms allows us to
instantiate the InfRatio of a tile τ in two different ways per scheme.

InfRatios(p) =
L(DE | B)− Ls(DE | p)

L(E) + Ls(s, ŝ)

where s is the statistic used as prior knowledge in the modelling of the database.

6 Iteratively Identifying Subjectively Interesting Structure

In Section 4 we discussed how to obtain a Maximum Entropy model for a real-valued
database under background information of statistics s over arbitrary sets of cells E of the
data, and Section 5 proposed InfRatio as a measure for the informativeness of patterns
in the data based on their unexpectedness under this background knowledge.

In practice, to discover novel knowledge, we propose to iteratively find the most in-
formative pattern with regard to background knowledge; then present this pattern to the
user, and continue our search after incorporating the pattern in the background knowl-
edge and updating the MaxEnt model accordingly.

What background knowledge to start the search from is up to the user; it may be
empty, or can consist of already known patterns. In our experiments, we choose to
compute the initial Maximum Entropy model with statistics on the row and column
distributions as prior knowledge. We then use InfRatio to rank a collection of candi-
date patterns F , and identify the top-ranked pattern as most interesting. This pattern is
henceforth considered prior knowledge. From this point the algorithm iterates with

1. a Maximum Entropy modelling step, using all accumulated background knowledge
2. an InfRatio ranking for the tiles in F in each iteration.

We terminate when user dependent criteria are met. These criteria can be objective (e.g.
top-k, log-likelihood of the data, or a model selection criterion such as MDL, BIC or
AIC), subjective (e.g. human evaluation of patterns) or a combination of both.

7 Experiments

In this section we empirically evaluate our MaxEnt model for real-valued data. We
stress, however, that the contribution of this paper is theoretical in nature—this section
should be regarded as proof-of-concept, not a final application. Though our modelling
theory is general for E , for the practical reasons of defining meaningful InfRatio, as
well as for mining candidate patterns F we here restrict ourselves to tiles.

7.1 Setup

We evaluate whether iterative ranking helps to correctly identify the most informative
tiles on data with known ground truth. Second, for synthetic and real data, we investigate
the InfRatio and log-likelihood curves of the top-k identified patterns.
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We implemented our model in C++, and make our code available for research pur-
poses.1 All experiments were performed on a 2.66GHz Windows 7 machine.

As initial background knowledge to our model, we always include statistics over the
row and column distributions.

Data. In order to evaluate performance with a known ground truth, we use synthetic
data. We generate a 500-by-500 dataset, in which we plant four complexes of five over-
lapping tiles, for which the values are distributed significantly different from the back-
ground. We refer to this dataset as Synthetic.

Per complex, we plant three tiles of 15-by-15, one of 10-by-10, and one of 8-by-8.
Values of cells not associated with a complex are drawn from a Normal distribution
with mean μ = 0.3 and variance σ = 0.15. For cells associated with complex A we use
μ = 0.15 and σ = 0.05; for complex B we use μ = 0.2 and σ = 0.05; for complex C,
μ = 0.3 and σ = 0.05; and for complex D, μ = 0.4 and σ = 0.05.

For the set of candidate tiles to be ranked, in addition to the 20 true tiles, we randomly
generate 230 tiles of 15-by-15. Per random tile we uniformly randomly select columns
and rows. Note that by generating these at random, they may or may not overlap with
the complexes, and hence may or may not identify a local distribution significantly
different from the background.

We also evaluate on real data. The Alon dataset is a 62-by-2000 gene expression
dataset [1]. To obtain tiles for this data, using CORTANA2 at default settings, we mined
the top-1000 subgroups of up to 3 attributes. Subgroups naturally translate into tiles;
simply consider the features of the rule as columns, and the transactions satisfying
the rule as rows. The Arabidopsis thaliana, or Thalia, is a 734-by-69 gene expression
dataset.3 For this data we mined 1 600 biclusters using BIVISU at default settings [2].

7.2 Ranking Tiles

In our first experiment we evaluate iteratively identifying subjectively informative pat-
terns. In particular, we use InfRatio to rank the 250 candidate tiles of the Synthetic
dataset, starting with background knowledge B containing only statistics on the row
and column distributions. At every iteration, we incorporate the top-ranked tile into the
model, and re-rank the candidates.

We evaluate modelling with means-variances, and with histograms information. For
both, we report both the ranking of the first five iterations, and the final top-10 iterative
ranking. We depict the id of the top-ranked tile in an iteration in bold. We give the
results in Table 1. On the left, we give the InfRatio rankings for transmitting means-
variances, i.e. using Lm, while on the right we give the rankings for when transmitting
histograms information, i.e. using Lh.

Table 1 shows that InfRatio consistently ranks the largest and least-overlapping tiles
at the top. In the first iteration the top-10 tiles include the largest tiles from each of

1 http://www.tijldebie.net/software
2 CORTANA: http://datamining.liacs.nl/cortana.html
3 http://www.tik.ee.ethz.ch/˜sop/bimax/

http://www.tijldebie.net/software
http://datamining.liacs.nl/cortana.html
http://www.tik.ee.ethz.ch/~sop/bimax/
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Table 1. Iterative Ranking. The top-10 ranked tiles for the first five iterations, plus the final
ranking of the top-10 most informative tiles, from 250 candidate tiles. We give the results for
the Synthetic dataset both for mean-variance modelling and transmission using Lm (left), resp.
for histogram modelling with transmission using Lh (right). Tiles prefixed with a letter denote
planted tiles, those denoted with a plain number are random.

Mean-Variances Histograms

Rank It 1 It 2 It 3 It 4 It 5 Final It 1 It 2 It 3 It 4 It 5 Final

1. A2 B3 A3 B2 C3 A2 A1 C2 B1 C1 D1 A1
2. A4 B4 B2 C3 C4 B3 C2 B1 B2 D1 D3 C2
3. A3 B2 C3 C4 C2 A3 B1 C1 B3 D3 B2 B1
4. B3 A3 C4 C2 D2 B2 C1 C3 C1 B2 D2 C1
5. B4 C3 C2 B4 D4 C3 C3 B2 D1 D2 A2 D1
6. B2 C4 B4 D2 D3 C2 B2 B3 D3 A2 84 B2
7. C3 C2 D2 D4 D1 D2 B3 D1 D2 C3 25 A2
8. C4 D2 D4 D3 A5 D3 A3 D3 A2 25 228 D2
9. C2 D4 D3 D1 21 A5 A2 D2 C3 84 43 228

10. D2 D3 B1 A5 B5 B5 D1 A2 25 228 33 43

the four complexes. The final ranking shows that for each complex large and little-
overlapping tiles are selected. Note that due to the random value generation some tiles
within a complex may stand out more from the rest of the data than others.

In general, modelling with histograms is more powerful than the means-variances
case. Clearly, this does rely on the quality of the used histograms. Here, we use his-
tograms that balance complexity with the amount of data by the MDL principle [9]. As
we here mainly consider small tiles, the obtained histograms are likely to underfit the
underlying Normal distribution of the data. Nevertheless, Table 1 shows that the largest
tiles of each complex are again top-ranked. As an artifact of the above effect, the final
ranking does include a few randomly generated tiles—for which we find that by chance
their values indeed differ strongly from the background distribution, and hence identify
potentially interesting areas.

From this experiment we conclude that our InfRatio for real-valued tiles coupled
with iterative modelling leads to the correct identification of subjectively interesting
patterns, while strongly reducing redundancy.

7.3 InfRatio and Log-likelihood Curves

Next, we examine InfRatio and the iteratively obtained rankings on both artificial and
real-world data. Evaluating the interestingness of patterns found in real-world data is
highly subjective, however. The negative log-likelihood of the data is often considered
as a measure of the surprise of the data as a whole. Finding and encoding informative
patterns will provide more insight in the data, and so decrease surprise; the negative
log-likelihood scores. Since we have a probabilistic model computing these scores is
straightforward. In our experiments we expect to see significant decreases of the score
after the discovery of a surprising pattern.
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Fig. 1. InfRatio values for the top-10 ranked tiles (left column) and negative log-likelihood of
the data (right) for the Synthetic (top row), Alon (middle row), and Thalia (bottom row) datasets.
The solid blue line corresponds to histograms, the dashed black line to means variance modelling.
Note the downward trend for both plot types: the most informative tiles are ranked first.

Figure 1 presents the InfRatio and negative log-likelihood scores for the first 10
iterations of our algorithm for resp. the Synthetic, Alon, and Thalia datasets.

We observe the InfRatio values are non-increasing over the whole range of the ten
iterations, for all datasets and coding schemes. An immediate explanation is that in
successive iterations more (correct) information is encoded into the model, and hence
patterns become at most as surprising as they were in previous iterations. We further
observe decreasing negative log-likelihood curves over the ten iterations. The fact that
the data gets less surprising in every iteration is an indication that the patterns discov-
ered and encoded in the model are significant. Loosely speaking, we can also say that
the more the decrease per iteration the more interesting the corresponding pattern is.

We see that for Synth means-variance modelling obtains the best scores (note the
very low negative log-likelihood scores). This follows as the data was generated by
Normal distributions. For our real datasets, on the other hand, histogram modelling is
in its element as these datasets are less well explained by Gaussians.

The modelling time for these datasets, for the first ten iterations range between sec-
onds (Synthetic), tens of seconds (Thalia, and Histograms on Alon), up to hundreds of
seconds for Alon when modelling means/variances. Scalability experiments (not shown
due to lack of space) show run time scales linearly with the number of added tiles.
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8 Discussion

The experiments verify that by iteratively identifying the most surprising tile, and updat-
ing our model accordingly, we identify the top-k informative tiles without redundancy.

Our model is generally applicable for measuring the significance of results under
background knowledge that can be cast in the form of statistics over sets of entries, yet
it is currently particularly suited for iteratively measuring the significance of tiles.

We note that our analytical model allows a lot of freedom for constructing measures
of surprise, interestingness, or expected performance for tiles. In previous work [11],
we formalised how to calculate the expected Weighted Relative Accuracy (WRAcc)
of a pattern, such as used in subgroup discovery. More research on how to calculate
expected performance on other popular measures is needed.

In this paper, we are not concerned with mining interesting tiles directly; That is,
we here assume the candidate tiles are discovered externally, and we ‘simply’ order
them; by which it is currently particularly applicable for identifying the informative and
non-redundant results in pattern mining, bi-clustering, and sub-space clustering of real-
valued data. The development of efficient algorithms for mining surprising tiles will
make for exciting future work—likely with specific solutions per setting, as different
goals are to be optimised.

Moreover, our modelling theory will allow a generalisation of the recent proposal
by Tatti and Vreeken [17] on measuring differences between data mining results to
real-valued data—given meaningful translation of results into patterns p = (E , s, ŝ).

Perhaps most interesting from our perspective is to extend our modelling theory fur-
ther towards richer types of structure. A straightforward step would be to incorporate
into the model not just a statistic over the whole tile, but instead do so per row and/or
column. Beyond means-variances, and histograms, there are other important notions of
structure such as similarities between rows, as well as correlations between attributes—
each of which will further extend the applicability towards the above applications.

In this light it is important to note that our models, and in particular the histogram
variant, are already directly applicable for evaluating significances and measuring sub-
jective interestingness on ordinal and integer valued data.

9 Conclusion

We formalised how to probabilistically model a real-valued dataset by the Maximum
Entropy principle, such that we can iteratively feed in background information on the
distributions of arbitrary subsets of elements in the database. To show the flexibility of
our model, we proposed the InfRatio measure to quantify the subjective interestingness
of tiles, trading off how strongly the knowledge of the pattern reduces our uncertainty
about the data with how much effort would it costs the analyst to consider it.

Empirical evaluation showed that by iteratively scoring candidate tiles, and subse-
quently updating the model with the most informative tile, we can effectively reduce
redundancy in the set of candidate tiles—showing the applicability of our model for a
range of data mining fields dealing with real-valued data.
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Abstract. While tensor factorizations have become increasingly popu-
lar for learning on various forms of structured data, only very few theo-
retical results exist on the generalization abilities of these methods. Here,
we discuss the tensor product as a principled way to represent structured
data in vector spaces for machine learning tasks. By extending known
bounds for matrix factorizations, we are able to derive generalization er-
ror bounds for the tensor case. Furthermore, we analyze analytically and
experimentally how tensor factorization behaves when applied to over-
and understructured representations, for instance, when two-way ten-
sor factorization, i.e. matrix factorization, is applied to three-way tensor
data.

Keywords: Tensor Factorization, Structured Data, Generalization
Error Bounds.

1 Introduction

Learning from structured data is a very active line of research in a variety of
fields, including social network analysis, natural language processing, bioinfor-
matics, and artificial intelligence. While tensor factorizations have a long tradi-
tion in psycho- and chemometrics, only more recently have they been applied to
various tasks on structured data in machine learning. Examples include link pre-
diction and entity resolution on multi-relational data [18,13] and large knowledge
bases [3,19], item recommendation on sequential data [20,21], or the analysis of
time varying social networks [2]; only to name a few examples. A reason for
the success of tensor methods in these tasks is their very appealing property to
efficiently impose structure on the vector space representation of data. More-
over, tensor factorizations can be related to multilinear models, which overcome
some limitations of linear models, such as their limited expressiveness, but at the
same time remain more scalable and easier to handle than non-linear approaches.
However, despite their increasing popularity and their appealing properties, only
very few theoretical results exist on the generalization abilities of tensor factor-
izations. Furthermore, an important open question is what kind of generalization
improvements over simpler, less structured models can be expected. For instance,
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propositionalization, which transforms relational data into feature-based repre-
sentations, has been considered as a mean for relational learning [15,12]. In terms
of tensor factorization, propositionalization would be equivalent to transforming
a tensor into a matrix representation prior to computing the factorization. While
it has been shown empirically that tensor methods usually scale better with the
amount of missing data than their matrix counterparts [26,16,25,22] and that
they can yield significantly improved results over “flat” methods which ignore a
large part of the data structure [18], no theoretical justification of this behavior
is known in terms of generalization bounds.

In this paper, we approach several of these open questions. First, we will
briefly discuss the tensor product as a principled way to derive vector space
representations of structured data. Subsequently, we will present the first gen-
eralization error bounds of tensor factorizations for classification tasks. We will
analyze experimentally the effect of imposing structure on vector space repre-
sentations via the tensor product as well as the effect of constraints that are
applied to popular tensor decompositions. Based on the newly derived bounds
we discuss how these results can be interpreted analytically.

2 Theory and Methods

In this section we will briefly review concepts related to tensor factorization,
as far as they are important for the course of this paper. Furthermore, we will
discuss how structured data can be modeled as weighted sets of n-tuples, which
enables a closer analysis of the relations between tensor factorizations and struc-
tured data.

In the following, scalars will be denoted by lowercase letters x; vectors will be
denoted by bold lowercase letters x,y with elements xi, yj . Vectors are assumed
to be column vectors. Matrices will be denoted by uppercase letters X,Y with
elements xij . Tensors will be indicated by upright bold uppercase letters X,Y
with elements xi1,...,in . For notational convenience, we will often group tensor
indices into a vector i = [i1, · · · , in]T and write xi instead of xi1,...,in . Sets will
be denoted by calligraphic letters S and their cardinality will be denoted by |S|.

2.1 Tensor Product

First, we will review basic properties of the tensor product. The review closely
follows the discussions in [4] and [14].

Definition 1 (Tensor Product of Vectors). The tensor product of vectors
x ∈ Rn1 and y ∈ Rn2 , denoted by x⊗ y, is an array with n1n2 entries, where

(x⊗ y)ij = xiyj

The defining property of the tensor product of vectors is that (x⊗ y)ij = xiyj .
However, since the “shape” of x ⊗ y is not defined, there exists a deliberate
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ambiguity in how to compute the tensor product of vectors. In particular, for
two vectors x, y, we might obtain one- or two-dimensional arrays with

x⊗ y =
[
x1yT x2yT . . . xnyT

]T ∈ Rmn (1)

x⊗ y = xyT ∈ Rm×n (2)

We will refer to eq. (1) as a vectorized representation of the tensor product,
as its results is again a vector, while eq. (2) will be called a structured repre-
sentation. Usually, it will be clear from context which representation is used.
The tensor product of vectors is easily extended to more than two vectors,
e.g. (x⊗ y ⊗ z)ijk = xiyjzk. In the following, we will denote the tensor prod-
uct of n vectors also by

⊗
n vn. In the structured representation, the tensor

product of n vectors corresponds to an n-dimensional array. Furthermore, the
tensor product of vectors preserves their linear independence: if the vectors
{x1, . . . ,xn} and {y1, . . . ,ym} are, respectively, linearly independent, then the
vectors {xi ⊗ yj | i = 1 . . . n, j = 1 . . .m} are also linearly independent.

Definition 2 (Tensor Product of Vector Spaces). The tensor product of
vector spaces V and W , denoted by V ⊗W , is the vector space consisting of all
linear combinations

∑
i aivi ⊗wi, where vi ∈ V and wi ∈W .

Similarly to the tensor product of vectors, the tensor product of vector spaces
is easily extended to more than two vector spaces. In the following,

⊗
n Vn will

denote the tensor product of n vector spaces. We will refer to a vector space that
is the result of tensor products of vector spaces also as a tensor product space.

Definition 3 (Tensor). Let V =
⊗

nWn be a tensor product space with n ≥ 1.
The elements of V are called n-th order tensors.

Following definition 1 and definition 3, tensors can be interpreted in different
ways. One way is as a vector in a structured vector space, what corresponds to
the vectorized representation in eq. (1). However, according to the structured
representation in eq. (2), tensors can also be viewed as multidimensional ar-
rays, which is the more commonly used interpretation. Here, we will use both
interpretations interchangeably. It also follows immediately that any vector is
a first-order tensor and each matrix is a second-order tensor. In the following,
ord(X) will denote the order of a tensor X. For notational convenience, we will
also write X ∈ R

∏
i ni instead of X ∈ Rn1×···×nk .

2.2 Structured Data, the Cartesian, and the Tensor Product

To analyze the relation between the order of a tensor and the “structuredness”
of data representation we introduce the concept of the order of structured data.
The general framework in which we will describe structured data is in form of
sets of weighted m-tuples, which are defined as follows:
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Definition 4 (Set of Weighted m-Tuples). Let V = V(1) × · · · ×V(m) be the
Cartesian product over m sets V(1), . . . ,V(m) and let φ : E %→ R be a real-valued
function that assigns a weight to each m-tuple in E ⊆ V. A set of weighted m-
tuples T is then defined as a 4-tuple (V , E , φ,m). The order of T is defined as the
length of its tuples m. For conciseness, we will refer to sets of weighted m-tuples
also as weighted tuple-sets.

Weighted tuple-sets can be interpreted in the following way: The elements of the
sets V(1), . . . ,V(m) correspond to the constituents of the structured data. The
set E corresponds to the observed m-tuples, while V corresponds to all possible
m-tuples. For a tuple t ∈ E , the pair (t, φ(t)) corresponds to an observed data
point. This is a very general form of data representation that allows us to consider
many forms of structured data. For instance, dyadic multi-relational data – as
it arises in the Semantic Web or Linked Data – has a natural representation as
a weighted tuple-set, where V(e) is the set of all entities in the data, V(p) is the
set of all predicates, and the weight function φ : V(p) × V(e) × V(e) %→ {±1} is
defined as

φ(pi, ej , ek) =

{
+1, if the relationship pi(ej , ek) exits

−1, otherwise
.

Similarly, sequential or time-varying data can be modeled via m-tuples such as
(user, item, last item) triples for item recommendation [20] or (person,
person, month) triples in time-varying social networks [2]. In these cases, the
function φ could model the rating of a product or the interaction of persons.
Furthermore, traditional attribute-value data, as it is common in many machine
learning applications, can be modeled via (object, attribute) pairs, which
are weighted by the respective attribute values, e.g. φ(Anne,age) = 36.

Tuple-sets can be modeled very naturally using tensors in the following way:
Let T = (V , E , φ,m) be a weighted tuple-set and let I(i) be the standard basis of
dimension |V(i)|, such that it indexes all elements of V(i). T can then be modeled
as a tensor Y ∈

⊗m
i=1 I

(i) with entries yi1,...,im = φ(vi1 , . . . , vim) for all observed
tuples (vi1 , . . . , vim) ∈ E . For unobserved tuples (vi1 , . . . , vim) ∈ V \ E , the cor-
responding entries in Y are modeled as missing. Using this construction, each
set of objects V(i) is indexed separately by a mode of the tensor Y. Therefore,
it holds that the order of the tensor Y is identical to the order of the weighted
tuple-set T . This enables us to rephrase the question how the structuring of a
vector space representation affects the generalization ability of a factorization
in terms of the order of weighted tuple-sets and the order of tensors. In par-
ticular we are interested in how the generalization ability changes for a tensor
representation that has not the same order as the underlying weighted tuple-set;
compared to a tensor representation that has the identical order.

In this work, we will only consider the problem of learning from sets of binary-
weighted tuples, i.e. tuple-sets with weight functions of the form φ : E %→ {±1}.
This corresponds to a classification setting on binary tensors where yi ∈ {±1}
indicates the presence or absence of an m-tuple.
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2.3 Tensor Factorizations

Learning via tensor factorizations is based on the idea of explaining an observed
tensor Y through a set of latent factors. The Tucker decomposition is a very
general form of factorizing a tensor and allows us to consider different factoriza-
tion methods within this framework through additional constraints. The Tucker
decomposition is defined as

Definition 5 (Tucker Decomposition). Let Y ∈ R
∏

i ni be an observed ten-
sor with ord(Y) = m. The Tucker decomposition with n-rank (r1, . . . , rm) fac-
torizes Y such that each entry of Y is described by the multilinear polynomial

yi1,...,im ≈
r1∑
j1=1

r2∑
j2=1

· · ·
rm∑
jm=1

wj1,...,jm

m∏
k=1

u
(k)
ik,jk

(3)

We can now make the connection between the Tucker decomposition of a tensor
and weighted tuple-sets as defined in definition 4: the factorization eq. (3) can
be interpreted as learning a multilinear function γ : V(1)×· · ·×V(m) %→ R which
maps m-tuples to the entries of Y. In contrast to the weight function φ of a
tuple set, γ is defined over the whole Cartesian product V(1) × · · · × V(m).

In the following, it will prove convenient to state eq. (3) in different notations.
In tensor notation, eq. (3) is equivalent to

Y ≈ X = W ×1 U
(1) ×2 · · · ×m U (m) (4)

where ×k denotes the n-mode product of a tensor and a matrix in mode k, while
U (k) ∈ Rnk×rk is the latent factor matrix for mode k and W ∈ Rr1×...×rm is
the core tensor of the factorization. Furthermore, via the unfolding operation on
tensors and the Kronecker product, eq. (4) can be stated in matrix notation as

Y(k) ≈ U (k)W(k)

(
U (m) ⊗ · · · ⊗ U (k+1) ⊗ U (k−1) ⊗ · · · ⊗ U (1)

)T
(5)

We will also shorten n-rank(Y) = (r1, . . . , rm) to n-rank(Y) = r. Furthermore,
we define some quantities associated with the Tucker decomposition that will
prove convenient for the rest of this paper.

Definition 6. Let X = W ×1 U
(1) ×2 · · · ×m U (m) with n-rank(X) = r,

m = ord(X) and X ∈ R
∏

i ni . The number of variables of a Tucker decompo-
sition, i.e. the number of entries in the latent factors, is then given by

var(X) =

m∏
i=1

ri +

m∑
i=1

niri

The number of polynomials associated with X, i.e. the number of entries in X,
is denoted by

pol(X) =

m∏
i=1

ni
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By applying specific constraints on the core tensor or the latent factors, vari-
ous important factorization methods can be expressed as special cases within the
Tucker decomposition framework. One focus of this work is to analyze how these
constraints affect the generalization ability of a factorization. In the following,
we will briefly discuss some important models to illustrate these constraints:
Most matrix factorization methods, can be considered a Tucker decomposition
of a second-order tensor. For instance, the singular value decomposition can be
expressed as a Tucker decomposition of a second order tensor with orthogonal
factor matrices. Furthermore, Candecomp / Parafac (CP) [10,7] can be described
as a Tucker decomposition with the additional constraints that the core tensor
W is superdiagonal and r1 = r2 = · · · = rm. Similarly, the Block-Term decompo-
sition (BTD) [8] can be viewed as imposing the constraint that the core tensor
W is block-diagonal. While CP and BTD are decompositions that put special
constraints on the core tensor, Rescal [18] is a factorization that constrains the
number of different vector spaces under consideration and is particularly useful
for modeling knowledge representations [19]. Specifically, it requires that some
of the latent factors are identical, which corresponds to the fact that for some
sets V(i), V(j) of the underlying tuple-set, it holds that V(i) = V(j). Due to space
constraints we refer the interested reader to [14] for further details on tensor
factorization and the Tucker decomposition on particular.

3 Generalization Bounds for Low-Rank Factorizations

To get deeper theoretical insight into the generalization ability of tensor fac-
torizations, we will now present generalization error bounds. In section 3.1 and
section 3.2 we will derive generalization error bounds for the zero-one loss and
real-valued loss functions, based on the number of sign patterns that a factor-
ization can express. In these sections, we will closely follow the theory developed
in [24,23] and extend it to the general multilinear setting. The actual upper and
lower bounds on the number of sign patterns that a tensor factorization can
express are then given in section 3.3. To derive these bounds, we will employ
properties of the tensor product as discussed in section 2.

Consider the following setting: Let Y be the tensor representation of struc-
tured data T , where a subset of entries yi has been observed and let the set
Ω = {i | yi observed} hold the indices of these observed entries. Then, we seek
to predict the missing entries in Y, by computing a factorization such that

Y ≈ X = W ×1 U
(1) ×2 · · · ×m U (m).

Similar to the matrix case [23], we now seek to bound the true discrepancy
between the predicted tensor X and the target tensor Y as a function of the
discrepancy of the observed entries Ω of Y. The discrepancy of tensors is defined
relative to a specific loss function Δ( · , · ). The true discrepancy of a predicted
tensor X and a target tensor Y with ord(X) = ord(Y) = m is defined as

D(X,Y) =
1∏m
i=1 ni

n1∑
i1=1

n2∑
i2=1

· · ·
nm∑
im=1

Δ(xi1,...im , yi1,...,im)
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while the empirical discrepancy is given as

DΩ(X,Y) =
1

|Ω|
∑
i∈Ω

Δ(xi, yi)

We restrict the latent tensor X to the class of fixed n-rank tensors of a given
order, which will be denoted by

Xr := {X | n-rank(X) ≤ r}

Please note that by restricting the factorization to a Tucker-type decomposition
and by fixing n-rank(X) = r, we also fix the quantity var(X), while ord(X) and
pol(X) are already determined by the target tensor Y. We now seek to derive
PAC-type error bounds of the form

∀Y ∈ R
∏

n : Pr
Ω

(
∀X ∈ Xr : D(X,Y) ≤ DΩ(X,Y) + ε

)
> 1− δ (6)

such that the true discrepancy for all tensors in Xr is bounded by their discrep-
ancy on the observed entries Ω plus a second term ε. An important assumption
that will be made is that the set of observed entries Ω is chosen uniformly at
random.

3.1 Bounds for Zero-One Sign Agreement Loss

A reasonable choice for Δ(·, ·) in a classification setting is the zero-one loss, i.e.

Δ(a, b) =

{
0, if sgn(a) = sgn(b)

1, otherwise.

For target entries yi ∈ {±1}, the zero-one loss Δ(xi, yi) is independent of the
magnitude of the predictions xi and only depends on their sign. A central concept
in the following discussion will therefore be the equivalence classes of tensors with
identical sign patterns, i.e. the elements of the set

Sn,r =
{
sgn(X) ∈ {−1, 0,+1}

∏
n
∣∣∣X ∈ R

∏
n, n-rank(X) ≤ r

}
.

The cardinality |Sn,r| specifies therefore, how many different sign patterns can
be expressed by factorizations with n-rank(X) ≤ r and pol(X) =

∏
n.

Lemma 1. Let Y ∈ {±1}
∏

n be any binary tensor with ni > 2. Furthermore,

let Ω be a set of |Ω| uniformly chosen entries of Y, let δ > 0, and let r ∈ N
ord(Y)
+ .

Then, it holds with probability at least 1− δ that

∀X ∈ Xr : D(X,Y) < DΩ(X,Y) +

√
log |Sn,r| − log δ

2|Ω|

where |Sn,r| ≤
(

4e (ord(X)+1) pol(X)
var(X)

)var(X)
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Proof. The following proof is analogue to the matrix case [24], hence we will
only provide a brief outline. First, we fix Y and X. For an index i, chosen uni-
formly at random, it holds that Δ(xi, yi) ∼ Bernoulli(D(X,Y)). Consequently,
for independently and uniformly chosen observed entries, the sum of Bernoulli
distributed random variables |Ω|DΩ(X,Y) follows a binomial distribution with
mean |Ω|D(X,Y). It follows from Chernoff’s inequality that

Pr
Ω
(D(X,Y) ≥ DΩ(X,Y) + ε) ≤ exp

(
−2|Ω|ε2

)
Furthermore, since Δ(xi, yi) depends only on the sign of xi, the random variable
DΩ(X,Y) is identical for all tensors X in the same equivalence class of sign
patterns. Since there exist |Sn,r| different equivalence classes, lemma 1 follows
by taking a union bound of the events D(X,Y) ≥ DΩ(X,Y)+ε for these random
variables. The actual bound on |Sn,r| is deferred until section 3.3. �

3.2 Bounds for Real-Valued Loss Functions

Before deriving upper and lower bounds for the number of sign patterns, we also
provide a bound for real-valued loss functions, which is the more commonly used
setting for tensor factorizations. However, these loss functions, and therefore also
their associated discrepancies, are not only determined by the sign of an entry
xi but are also determined by the value of this entry. We will therefore derive
bounds for the pseudodimension of low-rank tensors.

Lemma 2. Let Y ∈ {±1}n be any binary tensor with ni > 2. Furthermore, let
|Δ(·, ·)| ≤ b be a bounded monotone loss function, let Ω be a set of |Ω| uniformly

chosen entries of Y, let δ > 0, and let r ∈ N
ord(Y)
+ . Then, it holds with probability

at least 1− δ

∀X ∈ Xr : D(X,Y) < DΩ(X,Y) +

√√√√
32

log |Sn,r,T| log b|Ω|
var(X) − log δ

|Ω|

Proof. Again, the following proof is analogue to the matrix case [24], hence we
will outline it only briefly. As mentioned in section 2.3, tensor factorizations
can be interpreted as real-valued functions, which map from tuples of indices
to entries of the tensor, i.e. a multilinear function γ : I(1) × · · · × I(n) %→ R,
where I(i) indexes the i-th mode. This allows to use the pseudodimension of
classes of real-valued functions to obtain similar generalization error bounds as
for matrices. The difference to the matrix case is that for tensors the domain of
the function φ ranges of tuples of fixed length n, while for matrices it ranges over
ordered pairs. Therefore, we first bound the pseudodimension of n-rank tensors
via the number of sign patterns relative to a threshold tensor T ∈ R

∏
n. The

equivalence classes for these relative sign patterns are given by the set

Sn,r,T =
{
sgn(X−T) ∈ {−1, 0,+1}

∏
n
∣∣∣X ∈ R

∏
n, n-rank(X) ≤ r

}
.

The concrete bound for |Sn,r,T| will be given in section 3.3. Using [23, Theorem
44] we can then obtain the desired bound. �
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3.3 Bounds on the Number of Sign Patterns

Following the discussion in section 3.1 and section 3.2, we now seek to bound the
number of possible sign patterns |Sn,r| and the number of relative sign patterns
|Sn,r,T| for tensors X ∈ Xr. For this purpose, consider the polynomial form of
the Tucker decompositions as given in eq. (3). Due to the multilinearity of tensor
factorizations, the degree of the polynomial in eq. (3) is equal to ord(X) + 1.
Furthermore, for tensors of fixed size and n-rank, the quantities pol(X) and
var(X) are also fixed. Using this property of multilinear factorizations, we can
bound the number of possible sign patterns of tensors with n-rank(X) = r by
using their polynomial representation. Following [27] it has been shown, that the
number of possible sign patterns for polynomials are bounded by

Theorem 1 ([23, Theorem 34, 35]). The number of sign patterns of m poly-
nomials, each of degree at most d, over q variables is at most(

4edm

q

)q
for all m > q > 2.

By combining the polynomial form of tensor factorizations eq. (3) and theorem 1,
we can immediately derive the following lemma which bounds the number of
possible sign patterns for n-rank tensors.

Lemma 3 (Upper Bound for Sign Patterns). The number of possible sign
patterns of a m-th order tensor X ∈ R

∏
n = W ×1 U

(1) ×2 · · · ×m U (m) with
n-rank(X) = r is at most

|Sn,r| ≤
(
4e (ord(X) + 1) pol(X)

var(X)

)var(X)

for pol(X) > var(X) > 2.

Furthermore, the number of relative sign patterns, i.e. |Sn,r,T|, can be bounded
in the same way, since for

yi1,...,im − ti1...,im =

r1∑
j1=1

r2∑
j2=1

· · ·
rm∑
jm=1

wj1,...,jm

m∏
k=1

u
(k)
ikjk

− ti1...,im

we have again pol(X) polynomials of degree ord(X) + 1 over var(X) variables.
Next, we provide a lower bound on the number of sign patterns, by interpreting

tensor factorization as multiple simultaneous linear classifications.

Lemma 4 (Lower Bound for Sign Patterns). The number of possible sign
patterns of a m-th order tensor X ∈ R

∏
n = W ×1 U

(1) ×2 · · · ×m U (m) with
n-rank(X) = r is at least

|Sn,r| ≥
(

ni
ri − 1

) 1
ni

(ri−1) pol(X)
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Proof. First, consider the Tucker decomposition in its unfolded variant, i.e.

X(i) = U (i)W(i)

(
U (m) ⊗ · · · ⊗ U (i+1) ⊗ U (i−1) ⊗ · · · ⊗ U (1)

)T
Let B = U (m) ⊗ · · · ⊗ U (i+1) ⊗ U (i−1) ⊗ · · · ⊗ U (1) ∈ R

∏
n/ni×

∏
r/ri , and fix

U (k) ∈ Rnk×rk with rows in general position for all k = 1 . . .m. We now consider
the number of possible sign patterns of matrices U (i)W(i)B

T . It follows from

the rows being in general position that rank
(
U (k)

)
= rk for all k = 1 . . .m [11,

Sec. 1.3.2]. Furthermore, since the tensor product preserves the linear indepen-
dence of vectors, it follows that span(B) = R

∏
r/ri [1, Sec. 6.1.4]. Although B

is highly structured, it follows that the matrix product W(i)B
T varies over all

possible ri ×
∏

n/ni matrices. Therefore, each column of sgn(U (i)W(i)B
T ) can

be considered an independent homogeneous linear classification of ni vectors in
Rri , for which exactly

2

ri−1∑
k=0

(
ni
k

)
>

(
ni

ri − 1

)ri−1

such classifications exists. Consequently, this many sign patterns exist for each
of the

∏
n/ni = pol(X)/ni columns of U (i)W(i)B

T . �

Next we analyze the tightness of bounds in lemma 3 and lemma 4. Let
m = ord(X), let α = 4e(m+ 1), let ∀i : rmin ≤ ri, and similarly let ∀i : nmax ≥
ni. Then, for rmin ≥ m

√
α it follows from lemma 3 that

|Sn,r| ≤
(
αnmmax
rmmin

)var(X)

≤
(

m
√
αnmax
rmin

)m var(X)

≤ nm var(X)
max

Furthermore, for low-rank factorizations with ni > r2i and pol(X) > m
ri−1 var(X)

it follows from lemma 4 that

|Sn,r| ≥
(

ni
ri − 1

) 1
ni

(ri−1) pol(X)

≥ √
ni

1
ni

(ri−1) pol(X) ≥ n
1

2ni
m var(X)

i

Hence, the bound is tight up to a multiplicative factor in the exponent.

4 The Effect of Structure and Constraints

In section 3 we derived bounds on the generalization error of tensor factoriza-
tions. In this section we discuss what conclusions can be drawn from the derived
bounds. In particular, we are interested in how additional structure or constraints
affect the generalization ability of tensor factorizations. For this purpose, we will
first present a setting in which it is reasonable to compare tensor factorizations
of different order. Furthermore, we will evaluate experimentally how the general-
ization ability of tensor factorizations behaves with the change of structure and
constraints. At last, we will discuss how these results can be interpreted with
respect to the derived generalization bounds.
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4.1 Comparable Tensors

Since it is not reasonable to compare arbitrary tensor factorizations, consider
the following setting: Let T = (V , E , φ,m) be a weighted tuple-set of order m
and let Y be the tensor representation of T . Furthermore, let Y− be a tensor
representation of T such that the k-th mode of Y− is indexed by the set

U (k) =

{
V(k) , k 	= i 	= j

V(i) × V(j) , k = i.

This means that for two index sets V(i), V(j) of T only a single vector space
representation is used in Y−. Consequently, it holds that ord(Y−) = ord(Y)−1.
This setting corresponds, for example, to propositionalization in multi-relational
learning. We will refer to Y− as an understructured representation of T . The
opposite setting would be an overstructured representation where the tensor Y−

is the correct representation of T , while Y represents one index set V(i) of T by
two modes, i.e.

V(k) =

{
U (k) , k 	= i 	= j

U (i) × U (j) , k = i

For both, the under- and the overstructured case, we are interested to see how the
generalization ability of a tensor factorization changes by factorizingY compared
to Y−. Without loss of generalization, let i = m− 1, j = m where m = ord(Y)
and � = ord(Y−) = m−1. Furthermore, let X = W×1U

(1)×2 · · ·×mU (m) ∈ Rn

and X− = W− ×1 U
(1)− ×2 · · · ×
 U (
)− ∈ Rn−

be factorizations of Y and Y−.
Since we are only interested in the effect that the order of data representation
has on the generalization ability, we want to exclude the effect of different ranks.
Analogously to section 3, we restrict therefore X and X− to be of similar n-rank,
in order to get comparable models. Since it holds for the Kronecker product that
rank(V ⊗W ) = rank(V ) rank(W ), we require that

r−k =

{
rk , k 	= m 	= �

rmr
 , k = �

It also follows immediately from the construction ofY andY− and the properties
of the Cartesian product that

n−k =

{
nk , k 	= m 	= �

nmn
 , k = �

In the following, we will refer to tensors X, X− who have these properties
as comparable tensors. Please note that for comparable tensors, it holds that
var(X−) > var(X), since nmn
rmr
 > nmrm + n
r
. Furthermore, it holds that
ord(X−) + 1 = ord(X) and pol(X−) = pol(X).
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Fig. 1. Mean and standard error of the F1-Score over 100 iterations per percentage
of missing data. SVD (i) denotes the singular value decomposition of Y(i), i.e. the
unfolding of the i-th mode of Y.

4.2 Experimental Results

Given comparable tensors, we evaluated experimentally how tensor factorization
behaves under the change of structure and constraints. The experiments were
carried out on synthetic data with different amounts of missing data. To evaluate
the effects of structure, we created a third-order tensorX = W ×1 A×2 B ×3 C,
where W ∈ R5×10×2, A ∈ R50×5, B ∈ R100×10, C ∈ R20×2 and where all
entries of the core tensor and the factor matrices had been drawn from the
standard normal distribution N (0, 1). From X we created the target tensor Y
by setting yijk = sgn(xijk). Furthermore, the set of observed entries Ω has been
drawn uniformly at random, where we increased the ratio of missing entries from
[0.1, 0.9]. To evaluate the effects of under- and overstructuring, we compared
three models: a Tucker-3 decomposition, which is the correct model, the SVD
which is an understructured model and a Tucker-4 decomposition, which is an
overstructured model. Moreover, the SVD has been computed on all possible
unfoldings Y(i), where i ∈ {1, 2, 3}. For the Tucker-4 decomposition, we split the
second mode of Y into two size-10 modes, such that Y4 ∈ R50×10×10×20. For
each model and each ratio of missing entries we computed 100 factorizations and
recorded the F1-score for the classification of the missing entries compared to the
ground truth. fig. 1(a) shows the results of these experiments. As expected, the
true model provides the best overall performance. One understructured model,
i.e. SVD (3), shows comparable results to the true model for low amounts of
missing entries but scales significantly worse as the missing data increases. The
overstructured model displays the opposite behaviour; it shows reduced overall
generalization ability compared to the true model but is more stable with the
amount of missing data.

In similar experiments we also evaluated the effects of constraints. For this
purpose, we created synthetic CP and Rescal models under similar conditions
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as in the previous experiment. However, in this experiment we evaluated how
the correct model compared to an unconstrained Tucker model. Figures fig. 1(b)
and fig. 1(c) show the results of these experiments. Again, the true models show
the best overall performance in both experiments. Furthermore, in both settings,
the constrained models scale better with the amount of missing data than the
unconstrained tucker model.

4.3 Discussion

The previously derived generalization bounds can provide insight in how to
interpret these experimental results. First, note that both terms in eq. (6),
i.e. DΩ(X,Y) and ε, are influenced by the number of sign patterns that a factor-
ization can express. For DΩ(X,Y) this is the case because the discrepancy will
increase when a model X is not expressive enough to model the sign patterns of
a target tensor Y. Furthermore, it has been shown in section 3 that the term ε
grows with the number of sign patterns. Since it has also been shown that the
upper bound on the number of sign configurations in lemma 3 is tight at least up
to a multiplicative factor in the exponent, we consider how this bound changes
with the order of the data representation; to see what possible effects the change
of structure can have in terms of the generalization ability.

Corollary 1. For comparable tensors X ∈ Rn, X− ∈ Rn−
with ord(X) =

ord(X)− + 1, n-rank(X) = r and n-rank(X)− = r−, the ratio of upper bounds
on then number of possible sign patterns is at most

1 <
O(|S−

n,r|)
O(|Sn,r|)

<

(
4e (ord(X−) + 1) pol(X)

var(X−)

)v
where v = nmn
rmr
 − (n
r
 + nmrm) > 0

Proof. It follows straight from the definition of comparable tensors that var(X−)
can be rewritten as var(X−) = var(X) + v. Furthermore, let

α = 4e (ord(X−) + 1) pol(X)

β = 4e (ord(X) + 1) pol(X) = α+ 4e pol(X)

Then, it holds that

O(|S−
n,r|)

O(|Sn,r|)
=

αvar(X)+v

var(X−)
var(X)+v

var(X)var(X)

βvar(X)

=

(
α

var(X−)

)v
αvar(X)

βvar(X)

var(X)var(X)

(var(X) + v)var(X)
≤
(

α

var(X−)

)v
�

The main result of corollary 1 for this discussion is that the bound increases
as we decrease the order of the tensor. This suggests that as we increase the
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order of the data representation, we will reduce the term ε in eq. (6). As the
amount of missing data increases, it is therefore likely to see increasingly severe
overfitting for X− compared to X. However, when X− is the correct and X
is an understructured representation, O(|S−

n,r|) > O(|Sn, r|) also suggests that
the model X might not be expressive enough to model the sign patterns of
Y−. This corresponds nicely to the experimental results shown in fig. 1(a). The
understructured models are expressive enough to model the sign patterns of Y,
as seen in the case of SVD (3). However, they also scale significantly worse than
the correct model with the amount of missing data. The overstructured Tucker-4
model scales even better with missing data than the true model, but at the same
time gives significantly worse overall results, what suggests that it might not be
expressive enough. A possible interpretation is therefore, that the ratio between
expressiveness and overfitting is superior for a correct model specification. Since
the correct model X has a much smaller number of variables, it should also be
noted that the memory complexity of X is significantly reduced compared to
X−.

Similar arguments apply for the effect of constraints. Here, the key insight is
that both CP-type and Rescal-type constraints decrease the number of vari-
ables in a model. Models like CP or the Block-Term Decompostion, require that
W is superdiagonal or block-superdiagonal and therefore set most entries in the
core tensor to wi = 0. Models like Rescal on the other hand, decrease the
number of variables through the constraint that some factor matrices U (i), U (j)

have to be identical. Since O(|Sn,r|) depends exponentially on var(X), conclu-
sions similar to the effects of structure can be drawn with regard to the effects of
constraints. It suggests that a model with a larger number of variables, i.e. fewer
constraints, has more capacity to model sign patterns, but at the same time
is more likely to overfit as the amount of missing data increases. Again, this
corresponds nicely to the experimental results in fig. 1(b) and fig. 1(c).

5 Related Work

We are not aware of any previous generalization error bounds for tensor fac-
torizations or of any theoretical results that relate the order of a tensor and
the order of structured data to the generalization ability of factorizations. Our
derivation of error bounds for the tensor case builds strongly on the work of
[24,23], which provided error bounds for matrix factorizations with zero-one loss
and general loss functions. [28] derived similar bounds in the context of rank-k
SVMs. For general matrices, [6,5] show that under suitable conditions a low-
rank matrix can be recovered from a minimal set of entries via convex optimiza-
tion and also provide theoretical bounds. [9,26] extends these methods to tensor
completion, although without providing error bounds. It has also been shown
experimentally that by adding structure to the vector space representations via
the tensor product, the amount of data needed for exact recovery can be greatly
reduced [26,25].
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6 Conclusion

To obtain a deeper understanding of the generalization ability of tensor factor-
izations, we derived generalization error bounds based on the number of sign
patterns that a tensor factorization can model. Using a general framework to
describe structured data based on weighted tuple-sets, we analyzed how tensor
factorizations behave when their order does not match the true order of the data.
We showed experimentally that structuring vector space representations via the
tensor product, up to the true order of the data, adds important information
such that tensor models often scale better with sparsity or missing data than
their understructured counterparts. We also discussed analytically how this be-
haviour can be explained in the light of the newly derived generalization bounds.
In this work, we only considered binary values for the target tensor Y, which
corresponds to a classification setting. For future work, it would prove very valu-
able to also derive error bounds for the more general case of real-valued weight
functions. Since the current error bounds are based on the assumption that the
observed entries are independently and identically distributed what – especially
on structured data – might not hold, it might also be useful to consider tech-
niques as in [17], to overcome this limitation.
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from Tensor Data
Using Multilinear Mixing Model
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Abstract. Independent component analysis (ICA) is a popular unsu-
pervised learning method. This paper extends it to multilinear mode-
wise ICA (MMICA) for tensors and explores two architectures in learning
and recognition. MMICA models tensor data as mixtures generated from
modewise source matrices that encode statistically independent informa-
tion. Its sources have more compact representations than the sources in
ICA. We embed ICA into the multilinear principal component analysis
framework to solve for each source matrix alternatively with a few itera-
tions. Then we obtain mixing tensors through regularized inverses of the
source matrices. Simulations on synthetic data show that MMICA can
estimate hidden sources accurately from structured tensor data. More-
over, in face recognition experiments, it outperforms competing solutions
with both architectures.

Keywords: independent component analysis, mixing model, tensor,
multilinear subspace learning, unsupervised learning.

1 Introduction

Independent component analysis (ICA) is an important unsupervised learning
method for finding representational components of data with maximum sta-
tistical independence [1]. While principal component analysis (PCA) [2] gives
independent components (ICs) only for Gaussian data, ICA finds ICs for the
general case of non-Gaussian data [3]. ICA can be performed under two dif-
ferent architectures for image representation and recognition [4]. Architecture I
treats images as random variables and pixels as random trials to find spatially
local basis images that are statistically independent. Architecture II treats pix-
els as random variables and images as random trials to find factorial code that
reflects global properties.

Real-world data are often specified in a high-dimensional space while they are
highly constrained to a subspace [5]. Thus, dimensionality reduction is frequently
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employed to transform a high-dimensional data set into a low-dimensional sub-
space while retaining most of the underlying structure. As the number of ICs
found by ICA typically corresponds to the dimension of the input, dimensionality
reduction in ICA is usually achieved through PCA [4].

Recently, there has been a surge of interest in learning subspace of multidi-
mensional data, i.e., tensor data, from their natural multidimensional represen-
tations. Examples are 2-D/3-D images, videos, and multi-way social networks
[6, 7]. Multilinear subspace learning of tensor data operates on natural tensor
representations without reshaping into vectors. Thus, it can obtain simpler and
more compact representations, and handle big data more efficiently [6]. There
have been many multilinear extensions of PCA [8–12], linear discriminant anal-
ysis [13–17], and canonical correlation analysis [18–20]. In contrast, multilinear
extensions of ICA have not been well addressed, though several works deal with
the ICA problem using tensor-based approaches.

In [21], ICAmixing matrix is identified by decomposing the higher-order cumu-
lant tensor for vector-valued observation data. In [22], a tensor probabilistic ICA
algorithm was formulated for fMRI analysis, with selected voxels represented as
very-high-dimensional vectors. The multilinear ICA (MICA) model in [23] ana-
lyzes multiple factors for image ensembles organized into a tensor according to
different image formation factors such as people, views, and illuminations. It re-
quires a large number of samples for training, e.g., 36 well-selected samples per
class in [23]. Furthermore, MICA represents images as vectors and needs to know
the forming factors. In this sense, MICA is a supervised learning method requiring
data to be labeled with such information. In unsupervised learning without labels,
it degenerates to classical ICA. Another work with the same name MICA in [24]
uses a multilinear expansion of the probability density function of source statistics
but represents data as vectors too. To the best of our knowledge, the only multi-
linear ICA formulation based on tensor input data is the directional tensor ICA
(DTICA) in [25, 26], which estimates two mixing matrices for images. It forms row
and column directional images by shifting the rows/columns and applies FastICA
[27] to row/column vectors. As in [4], PCA is used for dimensionality reduction in
DTICA. Neither MICA in [23] nor DTICA has demonstrated blind source sep-
aration capability, a classical application of ICA.

This paper aims to develop a multilinear extension of ICA that can do blind
source separation for tensors with appropriate modeling. For example, Fig. 1(a)
shows ten mixtures generated from two simple binary patterns in Fig. 1(b) with
a multilinear mixing model similar to classical ICA. We propose a multilinear
modewise ICA (MMICA) model for tensor data with modewise ICs that can
model this generation process like ICA. We then develop an MMICA algorithm
to estimate these modewise ICs, i.e., to estimate the sources in Fig. 1(b) from
the observed mixtures in Fig. 1(a). As an ICA extension to tensors, MMICA can
be applied to domains where ICA has been applied in the past.

This work is inspired by previous attempts in multilinear extensions of ICA
and motivated by the compact representations of multilinear subspace learning
methods. The MMICA model, to be presented in Section 2, assumes that tensor



290 H. Lu

(a)

(b)

Fig. 1. The structured data in (a) are all mixtures generated from the source data
in (b) with a multilinear mixing model. MMICA can recover the sources in (b) from
observed mixtures in (a).

observation data have rich structures and they are mixtures generated from
simple modewise sources, as illustrated in Fig. 1. We formulate the MMICA
algorithm in Section 3 as an extension of multilinear PCA (MPCA) [10] to the
non-Gaussian case by embedding ICA into MPCA to deal with non-Gaussianity
of data in each mode. Also, we explore two architectures suggested in [4] for
MMICA. Next, we discuss the differences with related works in Section 4. Finally,
in Section 5, we show the blind source separation capability of MMICA through
simulations and its recognition capability on real face data.

Note: for convenience of discussion, the acronym MICA below refers to the
method in [23] rather than that in [24].

2 Multilinear Mixing Model for Tensors

2.1 Notations and Fundamentals

We briefly introduce some notations and operations needed. For more details,
please refer to [6, 28–30].

Vectors are denoted by lowercase boldface letters, e.g., x; matrices by upper-
case boldface, e.g., U; and tensors by calligraphic letters, e.g., A. Their elements
are denoted with indices in parentheses. Indices are denoted by lowercase let-
ters and span the range from 1 to the uppercase letter of the index whenever
appropriate, e.g., n = 1, 2, ..., N .

Multidimensional arrays are referred to as tensors in mathematics. The num-
ber of dimensions N defines the order of a tensor. Tensor is a generalization of
vector and matrix. Vectors are first-order tensors, and matrices are second-order
tensors. An Nth-order tensor is denoted as A ∈ RI1×I2×...×IN . It is addressed
by N indices in, n = 1, ..., N , and each in addresses the n-mode of A.

The n-mode product of a tensor A by a matrix U ∈ RJn×In , denoted by
A×n U, is a tensor with entries [29]:

(A×n U)(i1, ..., in−1, jn, in+1, ..., iN) =
∑
in

A(i1, ..., iN ) ·U(jn, in). (1)
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The n-mode vectors of A are the In-dimensional vectors obtained by varying
in while keeping all the other indices fixed. The n-mode unfolded matrix of A,
denoted as A(n) ∈ RIn×(I1×...×In−1×In+1×...×IN ), is formed with the n-mode
vectors of A as its column vectors. An n-mode matrix or vector is denoted as
A(n) or a(n), respectively. A rank-one tensor A equals to the outer product
(denoted by ‘◦’) of N vectors [29]:

A = u(1) ◦ u(2) ◦ ... ◦ u(N), (2)

which means that

A(i1, i2, ..., iN ) = u(1)(i1) · u(2)(i2) · ... · u(N)(iN ) (3)

for all values of indices.

2.2 MMICA Model for Tensor Mixtures

The simplified noise-free ICA model [3] assumes that we observe M linear mix-
tures {xm} (m = 1, ...,M) of P sources {sp} (the latent variables):

xm = am1s1 + am2s2 + ...+ amP sP , (4)

where each mixture xm and each IC (source) sp are random scalar variables.
The P sources {sp} are assumed to be independent. In ICA for random vector
variables {xm}, each xm is a mixture of P independent vector sources {sp}:

xm = am1s1 + am2s2 + ...+ amP sP . (5)

For random Nth-order tensor variables {Xm} of dimension I1 × ... × IN , we
propose a mixing model similar to (4) and (5) assuming P tensor variables {Sp}
as the sources:

Xm = am1S1 + am2S2 + ...+ amP SP . (6)

Real-world tensor data often have rich structures. Therefore, we assume that the
source tensors have compact representation as rank-one tensors (see (2)). For a
simpler model, we further assume that these simple rank-one tensors are formed
by P1 ×P2 × ...×PN = P vectors with one set in each mode, where the n-mode

set has Pn independent column vectors : {s(n)pn , pn = 1, ..., Pn}, and each source
tensor is the outer product of N vectors, one from each mode, i.e.,

Sp = s(1)p1 ◦ s(2)p2 ◦ ... ◦ s(N)
pN . (7)

Next, we form an Nth-order mixing tensor Am ∈ RP1×P2×...×PN by stacking all
the P mixing parameters {am1 , am2 , ..., amP } in (6) into an Nth-order tensor so
its size P1 × P2 × ... × PN = P . Correspondingly, we form the n-mode source

matrix S(n) ∈ RIn×Pn with independent columns {s(n)pn , pn = 1, ..., Pn}. We can
then write the multilinear mixing model (6) in a form of the tensor-to-tensor-
projection [6], an adaption of the Tucker decomposition model [31] to subspace
learning, as

Xm = Am ×1 S
(1) ×2 S

(2) × ...×N S(N). (8)

We name this model as the MMICA model.
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2.3 Regularized Estimation of Mixing Tensor

When applying MMICA to learning and recognition, we estimate the source
matrices {S(n)} fromM observed mixtures {Xm} (to be described in Sec. 3). To
get the mixing tensor Am from an observation tensor Xm based on {S(n)}, we
use (8) to get

Am = Xm ×1 S
(1)+ ×2 S

(2)+ × ...×N S(N)+ , (9)

where S(n)+ = (S(n)TS(n))−1S(n)T is the left inverse of S(n). The superscript ‘T ’

denotes the transpose of a matrix1. As S(n)TS(n) can be poorly conditioned in
practice, we introduce a regularized left inverse of S(n) to reduce the estimation
variance by adding some small bias as [32, 33]

S(n)+

r = (S(n)TS(n) + ηIPn)
−1S(n)T , (10)

where η is a small regularization parameter and IPn is an identity matrix of size
Pn × Pn. Thus, the mixing tensor is approximated as

Âm = Xm ×1 S
(1)+

r ×2 S
(2)+

r × ...×N S(N)+

r . (11)

3 MMICA Algorithm

3.1 MMICA by Embedding ICA into MPCA

We solve the MMICA problem by embedding ICA into the MPCA framework
[10], following the PCA+ICA in [4]. The procedures are centering, initialization
of source matrices, partial multilinear projection, modewise PCA, and modewise
ICA. Modewise ICA can be carried out in two architectures as in [4], where
Architecture I is commonly used for traditional blind source separation task
of ICA and Architecture II is for estimation of ICs for images2. The MMICA
algorithm is summarized in Algorithm 1, with details described below.

The input to MMICA is a set ofM tensor data samples {Xm ∈ RI1×...×IN ,m =
1, ...,M}. We need to specify two parameters: one is Q, the percentage of energy
to be kept in PCA, and the other is K, the maximum number of iterations. Input
data are centered first as in ICA or MPCA by subtracting the sample mean

X̄ =
1

M

M∑
m=1

Xm. (12)

There is no other data manipulation involved, such as data re-sampling and
re-arrangement in DTICA [26].

1 Only real-valued data are considered in this paper.
2 We refer to the code at: http://mplab.ucsd.edu/∼marni/icaFacesCode.tar
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Algorithm 1. Multilinear Modewise ICA (MMICA)

Input: M tensor samples {Xm ∈ RI1×...×IN ,m = 1, ...,M}, the percentage of energy
to be kept in PCA Q, the maximum number of iterations K.
� Center the input samples by subtracting the mean X̄ .
� Initialize source matrices S(n) = IIn and Pn = In for n = 1, ..., N .
for k = 1 to K do

for n = 1 to N do
• Calculate partial multilinear projection Ãm according to (13) for m = 1, ...,M .
• Form Ã with columns consisting of n-mode vectors from {Ãm,m = 1, ...,M}.
• Perform PCA on Ã and keep Q% of the total energy. Obtain U with the first
R eigenvectors as its columns. Update Pn = R.
• Architecture I : Perform FastICA on UT to get A and W. Set S(n) = UA.
• Architecture II : Get V = UT Ã and perform FastICA on VT to get A and
W. Set S(n) = UWT .

end for
end for
Output: {S(n), n = 1, ..., N}

3.2 Iterative Alternating Estimation

In theMMICAmodel (8), data are generated fromallN sourcematrices {S(n), n =
1, ..., N} rather than any one of them individually. Unfortunately, we can not deter-
mine theseN matrices simultaneously, except whenN = 1where it is degenerated
to the classical ICA. EstimatingS(n) in a particularmode n needs the knowledge of
other source matrices {S(j), j 	= n}. Therefore, to solve MMICA, we follow the it-
erative alternating projection method [6]. We estimate S(n) conditioned on all the
other source matrices {S(j), j 	= n}, alternating between modes. This is signifi-
cantly different from DTICA [26], which is non-iterative.

Initialization: Since all source matrices depend on each other in estimation,
we need to initialize them before proceeding. We adopt a simple strategy to
initialize the n-mode source matrix S(n) to an identity matrix IIn of size In×In.
Thus, the n-mode source dimension Pn is initialized to In.

Modewise Processing: In each iteration, we process modewise from 1-mode to
N -mode, a simple mode ordering used by many other algorithms [6]. For a partic-
ular mode n, we have all other source matrices {S(j), j 	= n} fixed and estimate
S(n) by first calculating the partial multilinear projection based on (11) as

Ãm = Xm ×1 S
(1)+

r ...×n−1 S
(n−1)+

r ×n+1 S
(n+1)+

r ...×N S(N)+

r . (13)

Next, we form a matrix Ã ∈ R
In×(M×∏N

j=1,j �=n Pj) by concatenating {Ãm(n),m =

1, ...,M}, the n-mode unfolded matrix of {Ãm}, so that the columns of Ã consist
of n-mode vectors from {Ãm}. We then perform PCA on Ã and keep Q percent
of the total energy/variations, resulting a PCA basis matrix U ∈ RIn×R with R
leading eigenvectors. Subsequently, we update the n-mode source dimension as
Pn = R.
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3.3 Two Architectures

ICA can be performed under two architectures [4] and so can MMICA. We
use the popular FastICA [27] to maximize the modewise non-Gaussianity for
modewise IC estimation. FastICA takes a data matrix in and returns a mixing
matrix A and a separating matrix W. They can be used under two architectures
in MMICA in the following ways:

– Architecture I: FastICA on UT gives mixing matrix A and separating
matrix W. Thus, we set the n-mode source matrix as

S(n) = UA. (14)

– Architecture II: We first obtain the PCA projection as V = UT Ã, and
FastICA on VT gives A and W. Hence, we set the n-mode source matrix as

S(n) = UWT . (15)

3.4 Discussion on MMICA

Identifiability and Number of ICs: Following ICA [1], the independent
column vectors of modewise source matrices in MMICA are identifiable up to
permutation and scaling if they (except one at most) have non-Gaussian distri-
butions and the number of mixtures is no smaller than the number of ICs to be
estimated. However, MMICA can not estimate the number of modewise ICs, as
in the general case of ICA. When this number is unknown, we determine it by
specifying Q in PCA, as described above.

Convergence and Termination: The convergence problem is difficult in ICA.
To the best of our knowledge, for FastICA, local convergence analysis is only
available for the so-called one-unit case, which considers only one row of the
separating matrix [34]. Here, we provide empirical results on the convergence
properties of MMICA in Sec. 5, where it converges in one iteration in studies on
synthetic data while its classification accuracy stabilizes in just a few iterations
in face recognition experiments. Thus, we terminate the iteration by setting K,
the maximum number of iterations, to a small number for efficiency.

3.5 Feature Selection for Classification

After obtaining the separated source matrices {S(n)}, we have the MMICA repre-
sentation (coordinates in the mixing tensor) Â of a sample X from (11). Though
we can use Â directly for classification tasks, we can select a subspace for the
convenience of comparison with linear learning algorithms and also for better
classification accuracy, as pointed out in [4]. Thus, we further select and sort
MMICA features through the same class discriminability as in [4, 25, 26] to
study its classification performance.

We can view the MMICA representation Â ∈ RP1×...×PN as being projected

through
∏N
n=1 Pn elementary multilinear projections (EMPs) {s(n)pn , n = 1, ..., N}
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[12], where s
(n)
pn is the pnth column of S(n). For each component Â(p1, ..., pN ), ex-

tracted by EMP {s(n)pn , n = 1, ..., N}, we define a class discriminability γp1p2...pN
as the ratio of between-class variability to within-class variability, measured by
scatters calculated from the training samples:

γp1...pN =

∑C
c=1Nc ·

[
¯̂Ac(p1, ..., pN )− ¯̂A(p1, ..., pN )

]2
∑M
m=1

[
Âm(p1, ..., pN )− ¯̂Acm(p1, ..., pN )

]2 , (16)

where C is the number of classes, M is the number of training samples, Nc is
the number of samples for class c and cm is the class label for the mth training
sample Xm. Âm is the mixing tensor for Xm. The mean feature tensor

¯̂A =
1

M

∑
m

Âm (17)

and the class mean feature tensor

¯̂Ac =
1

Nc

∑
m,cm=c

Âm. (18)

We arrange the entries in Â into a feature vector â according to the magni-
tude of γp1...pN in descending order. The first P entries of â, i.e., the P most
discriminable components, are selected for classification tasks.

4 Differences with Related Works

MMICA is different from MICA, DTICA and ICA in several aspects, as discussed
in the following.

4.1 MMICA vs. MICA

The origin of MMICA in (8) traces back to the higher-order singular value de-
composition (HOSVD) [29] and Tucker decomposition [31]. Therefore, it shares
mathematical similarity with MICA [23] and DTICA [25, 26], which are both
based on HOSVD. However, the MMICA model represents multidimensional
data as tensors while the MICA model represents them as vectors (e.g., 2D
faces are represented as 8560 × 1 vectors in [23]). Thus, ‘N ’ in MMICA repre-
sents the order (number of dimensions) of a single tensor sample, while ‘N ’ in
MICA represents the number of forming factors for an ensemble of many sam-
ples, with each sample represented as a vector. As mentioned in Sec. 1, MICA
is designed as a supervised learning method for data labeled with forming fac-
tors such as people (subject ID), views and illuminations so the tensor in [23]
is formed with four modes as pixels × people × views × illuminations. Thus,
MICA degenerates to ICA when these factors are unknown, i.e., in unsupervised
learning. In contrast, MMICA is an unsupervised learning method that does not
require such labels. Furthermore, hidden sources are not defined in [23]. Hence,
the MICA model can not interpret tensor data as in (6) and it cannot perform
blind source separation for tensors while MMICA can do so.
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4.2 MMICA vs. DTICA

MMICA and DTICA both model a number of tensors with a generative model.
DTICA models tensor mixtures with N mixing matrices and one single source
tensor, built from a factor-analysis point of view. In contrast, MMICA models
tensor mixtures with one single mixing tensor and N source matrices, built
from an independent-component-analysis point of view. Thus, MMICA can be
interpreted in a similar manner as the classical ICA model [3] and perform
blind source separation while DTICA cannot be similarly interpreted as mixing
several sources and separate sources since its model only involves one single
source tensor. Furthermore, the MMICA algorithm is iterative while the DTICA
algorithm is noniterative, and DTICA requires resampling while MMICA does
not require. In addition, DTICA is only formulated for one architecture while
we have formulated both architectures for MMICA. Lastly, MMICA makes use
of regularization to get better results than DTICA.

4.3 MMICA vs. ICA

From (4) to (8), while the classical ICA model assumes that the sources are
mutually independent, the MMICA model assumes that the sources are struc-
tured tensors formed from modewise matrices with independent columns instead,
which has a simpler and more compact representation when N > 1. For the
same number of mixing parameters P =

∏N
n=1 Pn, the sources {S(n)} to esti-

mate in MMICA have a size of
∑N

n=1 (In × Pn) while those in ICA have a size

of
(∏N

n=1 In

)
×
(∏N

n=1 Pn

)
. E.g., for N = 3, P = 8, {Pn = 2} and {In = 10},

MMICA sources have a size of 60, while ICA sources have a size of 8000, which is
about 132 times larger. For N = 3, P = 125, {Pn = 5} and {In = 100}, MMICA
sources have a size of 1.5 × 103, while ICA sources have a size of 1.25 × 108,
which is about 8.3× 104 times larger.

5 Experiments

MMICA is applicable to tensors of any order, such as videos, 3-D images, and
multi-way social networks [6, 7]. In particular, MMICA can be applied to do-
mains where ICA has been applied in the past, such as biometrics [4], bioin-
formatics [35], and neuroimaging [36]. For easy visual illustration, this paper
studies 2-D images only, which are matrix data, i.e., second-order tensor data
(N = 2). We evaluate MMICA on both synthetic and real data. For synthetic
data, we study its capability in estimating hidden sources given their mixtures.
For real data, we test it on face recognition, which is widely-used for learning
algorithm evaluation [8, 14, 25, 26] with practical importance in security-related
applications such as biometric authentication and surveillance.



Multilinear Modewise ICA for Tensor Data 297

(a) (b)

�

�

�

�
(c)

(d) (e)

�

�

�

�
(f)

Fig. 2. Blind source separation on synthetic data: (a) true 1-mode source, (b) MMICA
estimate of 1-mode source, (c) equivalent patterns of 1-mode MMICA estimate, (d)
true 2-mode source, (e) MMICA estimate of 2-mode source, (f) equivalent patterns of
2-mode MMICA estimate. (The pattern matched with the true source is enclosed with
an oval.)

5.1 Blind Source Separation on Synthetic Data

Data Generation: This experiment studies whether MMICA can estimate
source matrices from synthetic mixture data generated according to (8). The
source matrices used are as shown in Fig. 1(b), which are reproduced in Figs.
2(a) and 2(d). Each source matrix is a randomly generated simple binary pattern
of size 10× 2 (In = 10, Pn = 2). We generated 100 mixtures (M = 100) accord-
ing to (8) by drawing the elements of mixing tensors randomly from a uniform
distribution on the unit interval. Figure 1(a) shows ten such mixtures as 8-bit
gray images.

Hidden Source Recovery: We applied MMICA with Q = 100 using Architec-
ture I for this blind source separation task, followed by binarization to obtain
binary source patterns in Figs. 2(b) and 2(e). Since ICA estimation is only
unique up to sign and permutation [3], the estimated MMICA sources in Figs.
2(b) and 2(e) are equivalent to the patterns in Figs. 2(c) and 2(f), respectively.
One pattern in Figs. 2(c) and 2(f) matches Figs. 2(a) and 2(d) exactly, respec-
tively. Thus, independent modewise source patterns are estimated correctly. To
the best of our knowledge, this is the first multilinear extension of ICA for tensor
data with demonstrated capability of blind source separation.

Effects of Iteration and Regularization: For this binary source estimation
problem, MMICA has recovered the true hidden patterns with only one iteration,
showing good convergence. If there is no regularization (using (9)), the mixing
tensors can be recovered exactly. Using (11) with η = 10−3, the estimation has
a small average error of 0.005(±0.001).

5.2 Face Recognition Studies

Data: The Pose, Illumination, and Expression (PIE) database [37] is widely
used for testing face recognition performance. It contains 68 individuals with
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face images captured under varying pose, illumination and expression. As using
the full set leads to low recognition rates for all compared ICA algorithms, here
we report the results from a subset of medium difficulty, with five frontal or
near frontal poses (C05, C07, C09, C27, C29) under 14 illumination conditions
(05 to 14 and 18 to 21, excluding the poorest 7 illumination conditions). Thus,
there are about 70 (5×14) samples per subject and a total number of 4,754 face
images (with six faces missing). All face images were manually cropped, aligned
(with manually annotated eye coordinate) and normalized to 32×32 pixels, with
256 gray levels per pixel. We test face recognition performance under varying
number of training samples per subject, denoted by L.

Algorithms and Settings: Since this paper focuses on examining ICA and its
extensions under both Architectures I and II, we evaluate MMICA against the
classical ICA, MICA in [23] and DTICA in [26]. For fair comparison, we consider
unsupervised learning only. Hence, training data are not labeled (with image
forming factors: poses, illuminations and expressions) and MICA degenerates to
the classical ICA in this case. Effectively, we have six algorithms to compare:
ICA1/MICA1, DTICA1 and MMICA1 for Architecture I, and ICA2/MICA2,
DTICA2 and MMICA2 for Architecture II. For DTICA, we form the directional
images with the amount of shift l = 2, as suggested in [26]. We fix the regular-
ization parameter in (10) as η = 10−3 for MMICA. All algorithms tested employ
FastICA version 2.53 [27] with identical (default) settings for fair comparison.
We test four values of Q (85, 90, 95, 98), the energy kept in PCA. For all six
algorithms, we sort extracted features in descending class discriminability γ in
(16) and take the first P features for recognition. To classify extracted features,
we use the nearest neighbor classifier with Euclidean distance measure.

Gray-level face images are naturally second-order tensors (matrices), i.e., N =
2. Therefore, they are input directly as 32× 32 tensors to DTICA and MMICA.
For ICA/MICA, they are vectorized to 1024×1 vectors as input. For each subject
in a face recognition experiment, L(= 4, 6, 8, 10) samples were randomly selected
for training and the rest were used for testing. We report the best results over
Q and P , averaged from ten such random splits (repetitions).

Impact of Iterations: We first study the effect of the number of iterations K
on the recognition performance of MMICA. Typical results are shown in Fig.
3 for up to 20 iterations with P = 60 and Q = 98. The figure shows that all
accuracy curves are stable with respect to K, while the first a few iterations are
more effective for MMICA2 than for MMICA1 in general. Based on this study,
we set K = 3 in MMICA to reduce the computational cost.

Recognition Results: Figures 4(a) and 4(b) show the best average recognition
rates for each algorithm with up to 300 features tested (P = 1, ..., 300) for Archi-
tectures I and II, respectively. The error bars indicate the standard deviations.
Different performance variation is observed for two architectures. Using Architec-
ture I, both DTICA1 and MMICA1 outperform ICA1/MICA1 by around 4% on
average. MMICA1 outperforms ICA1/MICA1 by 5.3%, 4.9%, 4.1% and 3.5% for

3 Code at http://www.cis.hut.fi/projects/ica/fastica/code/FastICA_2.5.zip

http://www.cis.hut.fi/projects/ica/fastica/code/FastICA_2.5.zip
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(a) (b)

Fig. 3. The impact of iteration numbers on the face recognition accuracy of MMICA
with (a) Architecture I (MMICA1) and (b) Architecture II (MMICA2), for L =
4, 6, 8, 10

(a) (b)

Fig. 4. The average face recognition accuracy comparison of ICA/MICA, DTICA and
MMICA for L = 4, 6, 8, 10 from ten repetitions with (a) Architecture I and (b) Archi-
tecture II. The error bars in (a) and (b) indicate the standard deviations. The results
are the best ones for each method from testing four values of Q (85, 90, 95, 98) and
300 values of P (1,...,300).

L = 4, 6, 8 and 10, respectively, with more advantage for a smaller L. However,
the performance difference between DTICA1 and MMICA1 is small (< 1% on
average). Using Architecture II, DTICA2 is inferior to ICA2/MICA2 in all cases.
MMICA2 outperforms ICA2/MICA2 by 7.7%, 5.7%, 4.0% and 2.6% (mean=5%)
for L = 4, 6, 8 and 10, respectively, again showing superior performance for a
smaller L.

5.3 Feature Characteristics

Next, we examine the characteristics of learned features to gain some insight.
Figure 5 depicts the eight most discriminable projection bases as 8-bit gray-level
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Fig. 5. Eight most discriminable bases obtained from the PIE database with L = 10
for (a) ICA1/MICA1, (b) ICA2/MICA2, (c) DTICA1, (d) DTICA2, (e) MMICA1, and
(f) MMICA2

images for ICA/MICA, DTICA and MMICA obtained from the PIE database
with L = 10 using Architectures I and II.

In Figs. 5(a), 5(c) and 5(e), similar to the observations in [4], each projection
basis reflects the closeness of each pixel to a cluster of pixels having similar
behavior across images. Therefore, these bases are sparse for all three algorithms.
In particular, several DTICA1 bases share similar characteristics with MMICA1
bases, showing more structured information than ICA1/MICA1 bases. This may
partly be the reason for their closer recognition performance.

With Architecture II, more global properties are encoded. Each ICA-based
projection basis attempts to capture a cluster of similar images or image patches,
as in Figs. 5(b), 5(d) and 5(f). While this architecture generates more face-
like bases for ICA2/MICA2, we found that DTICA2 and MMICA2 bases are
quite different, where each basis captures a particular local pattern of the face
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image instead. DTICA2 and MMICA2 bases have strong structures due to their
multilinear nature, with MMICA2 sparser than DTICA2 on the whole. Although
each MMICA basis has a size of 32 + 32 =64 while each ICA/MICA basis has
a size of 32 × 32 =1024, which means 15 times larger, the simpler MMICA
bases have achieved much better recognition performance than the more complex
ICA/MICA bases. A possible explanation is that the recognition task here has
the small sample size problem, where the number of samples is small relative
to the size of variables to be estimated. Sparser bases have more compact size,
leading to less overfitting and better generalization.

6 Conclusions

We have introduced the multilinear modewise ICA for tensor data using a mul-
tilinear mixing model. MMICA extracts modewise independent sources directly
from tensor representations through an iterative alternating projection method.
We solved this problem by embedding ICA into the MPCA framework and ex-
amined two ICA architectures. Studies on synthetic data indicate that MMICA
can recover hidden sources from their mixtures accurately. Moreover, experi-
ments on face recognition show different behaviors under different architectures.
Using Architecture I, MMICA has similar performance as DTICA while they
both outperform ICA/MICA. For Architecture II, MMICA gives the best per-
formance and it is particularly effective when there are only a small number
of samples for training. We further examined the extracted features in order to
understand the implications and found that MMICA features are sparser and
more structured even with Architecture II.
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Abstract. Taxonomies have been proposed numerous times in the lit-
erature in order to encode semantic relationships between classes. Such
taxonomies have been used to improve classification results by increasing
the statistical efficiency of learning, as similarities between classes can be
used to increase the amount of relevant data during training. In this paper,
we show how data-derived taxonomies may be used in a structured predic-
tion framework, and compare the performance of learned and semantically
constructed taxonomies. Structured prediction in this case is multi-class
categorization with the assumption that categories are taxonomically re-
lated. We make three main contributions: (i) We prove the equivalence
between tree-structured covariance matrices and taxonomies; (ii) We use
this covariance representation to develop a highly computationally effi-
cient optimization algorithm for structured prediction with taxonomies;
(iii) We show that the taxonomies learned from data using the Hilbert-
Schmidt Independence Criterion (HSIC) often perform better than im-
puted semantic taxonomies. Source code of this implementation, as well
as machine readable learned taxonomies are available for download from
https://github.com/blaschko/tree-structured-covariance .

1 Introduction

In many fields where large numbers of objects must be categorized, including
computer vision, bioinformatics, and document classification, an underlying tax-
onomic structure is applied. While such taxonomies are useful visualization tools
to organize data, and to talk about inter-relationships between (sub)categories,
it is less clear whether taxonomies can help to perform structured learning, or
whether learned taxonomies outperform those imposed by domain experts.

Several learning algorithms have been developed that make use of user-imposed
taxonomies, with the main goal being to improve discriminative performance by
using hierarchical structure. For example, [1] proposed a learning framework that
incorporated semantic categories, and [2] implemented structured output pre-
diction based on a fixed taxonomic structure. For the most part, these previous
works have have found that taxonomic structure results in slight improvements
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in performance at best, while sometimes decreasing performance. The empiri-
cal results in this paper give strong evidence that this may be the result of the
user-imposed taxonomy not being aligned to the feature similarities in the data.

In this paper, we make use of a non-parametric dependence measure, the
Hilbert-Schmidt Independence Criterion (HSIC), to learn taxonomies. We
establish the equivalence between taxonomies and tree structured covariance
matrices, and show that the latter constitute a natural way to encode
taxonomies in structured prediction problems (indeed, the HSIC is a regular-
izer for structured output SVM when taxonomies are used). Moreover, we use
this tree structured covariance representation to develop a highly efficient al-
gorithm for structured prediction with taxonomies, such that it can be used in
large scale problems.

A number of approaches have been proposed for the discovery of taxonomic
structure and relationships between classes. Dependency graphs and co-
occurrences were modeled in [3,4]. [5] proposed to perform a top-down greedy
partitioning of the data into trees. Hierarchical clustering has been employed
in [6,7]. Marsza�lek and Schmid first made use of a semantic hierarchy [8], and
later proposed to do a non-disjoint partition into a “relaxed hierarchy” which
can then be used for prediction [9]. [10] assume a given taxonomy and then uses
a group lasso structured sparsity regularizer with overlapping blocks conform-
ing to the taxonomic structure. In contrast, we do not make the assumption
implicit in the group lasso that individual features are exactly aligned with cate-
gory concepts. [11] perform hierarchical categorization using a taxonomic feature
map and loss, but perform an explicit feature map and do not gain the compu-
tational advantages arising from the use of tree structured covariance matrices.
[12] consider structured prediction of hierarchically organized image labels using
a latent variable method to estimate missing annotations in a weakly super-
vised setting. None of these methods has identified the relationship between
hierarchical prediction and tree-structured covariance matrices. [2] made use of
a learning framework that is perhaps the most similar to that employed here,
based on structured output prediction. However, they did not learn the taxon-
omy using a non-parametric dependence measure as we do, but instead used a
fixed taxonomic structure.

While these works all make use of some clustering objective distinct from the
learning procedure, in contrast, this work employs the Hilbert-Schmidt Indepen-
dence Criterion, which interestingly is coupled with the learning algorithm in its
interpretation as a direct optimization of the function prior in �2 regularized risk
with a taxonomic joint kernel map (cf. Equation (13) and Section 5).

Recent works addressing the machine learning aspects of taxonomic prediction
include [13], which embeds a taxonomic structure into Euclidean space, while
in contrast our method can efficiently learn from taxonomic structures without
this approximation. [14] learn a tree structure in order to improve computational
efficiency by only evaluating a logarithmic number of classifiers, while [15] relax
this tree structure to a directed acyclic graph. Such greedy methods are advan-
tageous when the number of categories is too large to evaluate exactly, while the
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current paper addresses the problem of efficient learning when exact evaluation
is desired.

In experiments on the PASCAL VOC [16], Oxford Flowers [17], and WIPO-
alpha [18] datasets, we show that learned taxonomies substantially improve over
hand-designed semantic taxonomies in many cases, and never perform signifi-
cantly worse. Moreover, we demonstrate that learning using taxonomies is widely
applicable to large datasets, thanks to the efficiency of our algorithm.

Our paper is organized as follows: in Section 2, we review structured out-
put SVMs, following [19]. We proceed in Section 3 to establish the equivalence
of taxonomies and tree structured covariance matrices. In Section 4, we show
how tree structured covariance matrices may be incorporated into a structured
output learning algorithm, and in particular that this representation of taxo-
nomic structure results in substantial computational advantages. In Section 5,
we determine how to learn edge lengths of a taxonomy given a fixed topology
using the Hilbert-Schmidt Independence Criterion. Finally, Section 6 contains
our experimental results.

2 Taxonomic Prediction

Given a training set of data S = {(x1, y1), . . . , (xn, yn)} ∈ (X × Y)n, a struc-
tured output SVM with slack rescaling [19,20] optimizes the following learning
objective

min
w∈Rd,ξ∈R

1

2
‖w‖2 + Cξ (1)

s.t.
∑
i

max
ỹi∈Y

(〈w, φ(xi, yi)− φ(xi, ỹi)〉 − 1)Δ(yi, ỹi) ≥ −ξ (2)

ξ ≥ 0 (3)

where φ is a joint feature map, and Δ(yi, ỹi) measures the cost of the erroneous
prediction ỹi when the correct prediction should be yi.

Cai and Hofmann proposed a special case of this learning framework in which
Y is taxonomically structured [21]. In that setting, φ(xi, yi) decomposes as
φy(yi)⊗ φx(xi) and φy(yi) is a binary vector that encodes the hierarchical rela-
tionship between classes. In particular, a taxonomy is defined to be an arbitrary
lattice (e.g. tree) whose minimal elements (e.g. leaves) correspond to the cate-
gories. φy(yi) is of length equal to the number of nodes in a taxonomy (equal to
the number of categories plus the number of ancestor concepts), and contains
non-zero entries at the nodes corresponding to predecessors of the class node. It
is straightforward to extend this concept to non-negative entries corresponding
to the relative strength of the predecessor relationship. The loss function em-
ployed may depend on the length of the shortest path between two nodes [22],
or it may be the length of the distance to the nearest common ancestor in the
tree [21].

We show in the next two sections that structured prediction with taxonomies
is intimately tied to the concept of tree-structured covariance matrices.
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(a) A binary rooted tree. Edges
are annotated by their length.
The tree metric is defined by
the sum of the path lengths be-
tween two leaf nodes.
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(b) Rerooting the tree by
setting node “b” to the
root. Distances between
leaf nodes are preserved
regardless of the rooting.

Fig. 1. An arbitrarily rooted binary tree may be rerooted without changing the pairwise
distances between leaf nodes. Furthermore, rerooting has no effect on the value of
HSICcov (Section 5 and Theorem 2).

3 Tree-Structured Covariance Matrices

Here we consider the structure of a covariance matrix necessary to encode tax-
onomic structure [23,24].

Definition 1 (Partition property). A binary matrix V of size k × (2k − 1)
has the partition property for trees of size k (i.e. having k leaves) if it satisfies
the following conditions:

1. V contains the vector of all ones as a column
2. for every column w in V with more than one non-zero entry, it contains two

columns u and v such that u+ v = w.

We now use this definition to construct a tree structured covariance matrix

Definition 2 (Tree covariance representation). A matrix B is a tree-struc-
tured covariance matrix if and only if B = V DV T where D is a diagonal matrix
with nonnegative entries and V has the partition property.

This definition is chosen to correspond to [24, Theorem 2]. Such an encoding of
tree-structured covariance matrices separates the specification of the topology
of the tree, which is encoded in V , from the lengths of the tree branches, which
is specified in D. As a concrete example, the tree structured covariance matrix
corresponding to Figure 1(a) is
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V =

⎛⎜⎜⎝
1 1 0 1 0 0 0
1 1 0 0 1 0 0
1 0 1 0 0 1 0
1 0 1 0 0 0 1

⎞⎟⎟⎠ , (4)

D = diag[0,M(a, b),M(a, c),M(b, d),M(b, e),M(c, f),M(c, g)]T ,

B =

⎛⎜⎜⎝
M(a, b) +M(b, d) M(a, b) 0 0

M(a, b) M(a, b) +M(b, e) 0 0
0 0 M(a, c) +M(c, f) M(a, c)
0 0 M(a, c) M(a, c) +M(c, g)

⎞⎟⎟⎠
Section 3.1 derives a mapping between tree structured covariance matrices and
tree metrics, giving a one-to-one relationship and implicitly showing the NP-
hardness of optimizing over tree-structured covariance matrices with arbitrary
topology.

3.1 Properties of Tree-Structured Covariances and Tree Metrics

In the sequel, the following lemma will be useful

Lemma 1. Bij contains the weighted path length from the root to the nearest
common ancestor of nodes i and j.

Proof. Each column of V can be associated with a node in the tree. Each row of
V contains a set of binary variables that are equal to 1 iff a corresponding node
in the tree is on the path to the leaf associated with that row. As V is binary,
Bij = Vi:DV

T
j: sums over those elements, m, of D for which Vim = Vjm = 1.

These elements are exactly the lengths of the branches leading to the common
ancestors of nodes i and j. �

Definition 3 (Four point condition). A metric M satisfies the four point
condition if the following holds

M(a, b) +M(c, d) ≤ max(M(a, c) +M(b, d),M(a, d) +M(b, c)) ∀a, b, c, d (5)

Theorem 1 (Equivalence of the partition property and the 4 point
condition). The following statements are equivalent

1. M is a tree metric.
2. M satisfies the four point condition.
3. M(i, j) = Bii+Bjj−2Bij where B = V DV T is a tree-structured covariance

matrix.

Proof. 1 ⇐⇒ 2 is shown in [25].
3 =⇒ 1: Using Lemma 1, M(i, j) is the length of the path from the root to

node i (Bii) plus the length of the path from the root to node j (Bjj) minus
two times the length of the path to the nearest common ancestor of nodes i and
j (Bij). Bii − Bij is therefore the length from node i to the nearest common
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ancestor of i and j, and Bjj − Bij is the length from node j to their nearest
common ancestor. M(i, j) is simply the sum of the two subpaths.

1 =⇒ 3 is a consequence of [24, Theorem 2]. �

We note that [25] considered unrooted trees while Definition 1 and Lemma 1
makes use of the root of a tree. This can be rectified by choosing a root arbitrarily
in an unrooted tree (Figure 1). Such a choice corresponds to a degree of freedom
in the construction of B that is customarily eliminated by data centering, or by
working in a canonical basis as in Definition 1. This is formalized in Theorem 2.

Theorem 2 (Centering trees with different roots but identical topol-
ogy). Trees with different roots but identical topology project to the same covari-
ance matrix when centered:

HkB1Hk = HkB2Hk, (6)

where B1 and B2 have identical topology and edge weights, but different roots,
and Hk = I − 1

k eke
T
k is a centering matrix, ek being the length k vector of all

ones.

Proof. We first note that the linear operator defined in part 3 of Theorem 1,
Bii + Bjj − 2Bij , projects to the same metric all tree structured covariance
matrices with identical topology and edge weights, but potentially different roots.
This is clear as M(i, j) is simply the sum of weights along the unique path from
node i to node j. Consequently, this operator applied to B1 − B2 yields the
zero matrix, yielding a system of linear equations describing the null space of
the operator. The null space can be summarized in compact matrix notation as
follows

Ceke
T
k + eke

T
kC (7)

where C is an arbitrary diagonal matrix. We can consequently write any matrix
with a fixed topology and edge weights as the summation of the component that
lies in the null space of the operator, and the component that is orthogonal to
the null space

B1 = B⊥ + C1eke
T
k + eke

T
kC1, (8)

where B⊥ is the component that is orthogonal to the null space, and is identical
for all matrices with the same tree topology and edge weights.

We have that Hkeke
T
k = eke

T
kHk = 0, which yields Hk(Ceke

T
k + eke

T
kC)Hk =

0. This in turn implies that

Hk(B1 −B2)Hk =Hk(B⊥ + C1eke
T
k + eke

T
kC1− (9)

B⊥ − C2eke
T
k − eke

T
kC2)Hk = 0

HkB1Hk =HkB2Hk. (10)

�
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4 Structured Prediction with Tree-Structured
Covariances

Given the concepts developed in Section 3, we find now that the specification of
joint feature maps and loss functions for taxonomic prediction is much simplified.
We may assume that a taxonomy is specified that encodes the loss function Δ for
a given problem, which need not be the same as a taxonomy for specifying the
feature map φ. For the minimal path distance, Δ(y, ỹ) = M(y, ỹ) for M defined
as in Theorem 1. ForΔ equal to the distance to the nearest common ancestor, we
may use Bỹỹ − Byỹ. We have used the minimal path distance in the experimen-
tal section whenever taxonomic loss has been employed. The standard taxonomic
structured loss functions therefore only require as an input a tree-structured co-
variance matrixBloss, which need not be the samematrix as the one used to define
a feature map (0-1 loss is recovered by using the identity matrix).

We now turn to the tree-structured joint kernel map (cf. Section 2). Given
a tree-structured covariance matrix B and its decomposition into B = V DV T ,
we may compactly define φy : Y %→ R2k−1 as the function that selects the

kth column of D
1
2V T when y specifies that the sample belongs to the kth class.1

Making use of the representer theorem for structured prediction with joint kernel
maps [26], we know that the solution to our structured prediction objective lies
in the span of our training input data X ⊂ X crossed with the output space, Y.
Assuming a kernel matrix Kx with associated reproducing kernel Hilbert space
F such that the i, jth entry of Kx corresponds to 〈φx(xi), φx(xj)〉F , we have
that the solution may be written∑

1≤i≤n

∑
y∈Y

αiyφ(xi, y) (11)

and that the corresponding joint kernel matrix decomposes as Kx⊗B. Although
the size of the joint kernel matrix is n · k × n · k, we may make use of several
properties of the Kronecker product to avoid high memory storage and costly
matrix operations.

Looking specifically at Tikhonov regularized risk:

min
g
λ‖g‖2H + �(g,S) = min

α
λαT (Kx ⊗B)α+ �(α,S) (12)

where � is some loss function (we have overloaded the notation in the kernelized
case). Interestingly, we may use the identity from Theorem 2.3 of [27]

αT (Kx ⊗B)α = Tr[Kxα̃
TBα̃] (13)

where α̃ ∈ Rn×k is the matrix such that vec α̃ = α.
In the case of a structured output SVM, where we have a quadratic regularizer

with linear constraints, we can make use of many optimization schemes, that,
e.g. require repeated efficient multiplication of a vector with the Hessian:

(Kx ⊗B)α = vecBα̃Kx. (14)

1 A rooted tree with k leaves can be encoded with at most 2k − 1 nodes (Figure 1).
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Using the popular SVMstruct framework [19,20] in this case generates a large
number of non-sparse constraints and is very memory inefficient, requiring the
storage of a number of kernel values proportional to the number of tuples in
X ×Y×X ×Y.2 This indicates that the resulting memory requirements for such
a scheme are O(n2k2), while making use of optimization with Equation (14)
requires only O(n2 + k2 + nk) memory, and standard large scale kernel learning
methods may be applied off-the-shelf to reduce the dominating O(n2) compo-
nent [28]. We have used a cutting plane training to efficiently train our taxonomic
predictors, giving the same convergence guarantees as SVMstruct, but with sub-
stantially less expensive computation for cutting plane inference.

Cutting plane optimization requires finding a setting of ỹ that minimizes the
right hand side of Equation (2). In the kernelized setting, we substitute for w as
in Equation (12), and search for parameters β ∈ Rnk×1 and δ ∈ R that give the
kernel coefficients and offset of the linear constraint

δ − αT (Kx ⊗B)β ≥ ξ. (15)

Using Equation (14) enables us to solve this cutting plane iteration efficiently,
both in terms of computation and memory usage. A reference implemen-
tation of this efficient optimization scheme is available for download from
https://github.com/blaschko/tree-structured-covariance.

In the next section, we discuss how to learn taxonomies from data that are
suitable for learning in this structured prediction model.

5 Optimizing Tree-Structured Covariances with the
Hilbert-Schmidt Independence Criterion

In this section, we show how a non-parametric dependence test may be employed
to learn taxonomies that can then be employed in the construction of a joint
feature map for taxonomic prediction.

The Hilbert-Schmidt Independence Criterion (HSIC) is a kernel statistical
measure that may be used to measure the dependence between empirical data
observations and matrices that encode the hypothesized taxonomic structure of
a data set [3]. The HSIC is defined to be the Hilbert-Schmidt norm of the cross
covariance operator Cxy between mappings from the input space X and from
the label space Y. For characteristic kernels [29],3 this is zero if and only if X
and Y are independent. Given a finite sample of size n from PrX,Y , the HSIC is

HSIC := Tr[HnKHnL] (16)

where K is the Gram matrix for samples from PrX with (i, j)th entry k(xi, xj),
and L is the Gram matrix with kernel l(yi, yj).

2 This follows from an analogous argument to the one used in binary classification that
the storage requirements of a SVM are proportional to the Bayes rate, and therefore
linear in the number of i.i.d. training samples.

3 e.g. the Gaussian Kernel on Rd.

https://github.com/blaschko/tree-structured-covariance
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To define our kernel matrix on the output space, we consider a family of
functions proposed several times in the literature in the context of HSIC [3,30].
In particular, we define the kernel in terms of a label matrix Π ∈ {0, 1}k×n, and
a covariance matrix, B ∈ Rk×k, that encodes the relationship between classes.
Given these matrices, L = ΠTBΠ . The HSIC with this kernel over Y is

HSICcov := Tr[HnKHnΠ
TBΠ ]. (17)

As pointed out by [31], HkΠHn = ΠHn, which in conjunction with Theorem 2
indicates that HSICcov is identical regardless of how the tree is rooted (cf.
Figure 1). We note that L is characteristic over Y whenever rank[B] ≥ k−1 and
the null space of B is empty or contains ek.

When Kx is centered, the functional form of Equation (13) is identical to
Equation (17), indicating that the regularizer is HSICcov with α̃ in place of Π .
While our derivation has focused on tree-structured covariance matrices, this
novel theoretical result is applicable to arbitrary covariances over Y, indicating
a tight coupling between non-parametric dependence tests and regularization in
structured prediction.

With this fundamental relationship in place, we consider in turn optimizing
over tree structured covariance matrices with fixed and arbitrary topology. The
learned taxonomies may then be employed in structured prediction.

5.1 Optimization Over Tree-Structured Covariance Matrices

Theorem 2 gives a convenient decomposition of a tree structured covariance ma-
trix into a binary matrix encoding the topology of the tree and a positive diagonal
matrix encoding the branch lengths. One such consequence of the existence of
this decomposition is

Theorem 3. The set of trees with identical topology is a convex set.

Proof. [24] Given two tree structured covariance matrices with the same topol-
ogy, B = V DV T and B̃ = V D̃V T , any convex combination can be written

ηB + (1− η)B̃ = V
(
ηD + (1− η)D̃

)
V T (18)

for arbitrary 0 ≤ η ≤ 1. �

Optimization of such covariance matrices with fixed topology is consequently sig-
nificantly simplified. For D∗ maximizing the HSIC subject to a norm constraint,
a closed form solution is given by

D∗ ∝ diag
[
V TΠTHnKxHnΠV

]
. (19)

We note that this optimization is analogous to that in [3] for tree structured
covariance matrices with arbitrary topology. In that work, a closed form solution
for arbitrary positive definite matrices was found, which was later projected onto
the space of tree-structured matrices using a numerical taxonomy algorithm with
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tight approximation bounds. We have employed the method of [3] for comparison
in the experimental results section. Theorems 1 and 2 justify the equivalence of
our procedures for learning tree-structured covariance matrices with both fixed
and arbitrary covariance matrices.

6 Experimental Results

We perform an empirical study on two popular computer vision datasets, PAS-
CAL VOC [16] and Oxford Flowers [17], and on the WIPO text dataset [18].

6.1 PASCAL VOC

We evaluate the performance of semantic vs. visual taxonomies on the PAS-
CAL VOC 2007 dataset. To construct features for this data, we have employed
results from the best performing submission to the 2007 classification chal-
lenge, INRIA Genetic, which won all but one category. Our feature vector is
constructed by concatenating variance normalized class prediction scores, after
which a Gaussian kernel is applied, setting the σ parameter to the median of the
pairwise distances in the feature space. As the parameters of the prediction func-
tions were trained on data separate from the test images, this is a proper kernel
over the test data set.4 By construction, we are certain that the relevant vi-
sual information is contained within this feature representation, indicating that
it is appropriate to use it to optimize the taxonomic structure. Furthermore,
the INRIA Genetic method did not make use of taxonomic relationships, mean-
ing that no imputed class relationships will influence the taxonomy discovery
algorithm.

The semantic taxonomy was transcribed from the one proposed by the com-
petition organizers [16]. As they do not provide edge lengths for their taxonomy
(i.e. relative similarities for each subclass), we have learned these optimally from
data using Equation (19). We have also learned a taxonomy with unconstrained
topology, which is presented in Figure 2. Interestingly, the semantic topology and
the learned topology are very close despite the learning algorithm’s not having
access to any information about the topology of the semantic taxonomy.

We have performed classification on the PASCAL VOC data set using the
taxonomic prediction method described in Section 2. We trained on the first
50% of the competition test set, and report results as ROC curves on the sec-
ond 50%. We emphasize that the results are designed for comparison between
semantic and learned visual taxonomies, and are not for comparison within the
competition framework. We additionally compare to the multi-class prediction
method proposed by [32]. Results are shown in Figure 3.

4 The learned taxonomy is available for download from https://github.com/

blaschko/tree-structured-covariance. We note that this taxonomy is not ap-
propriate to apply to the VOC 2007 dataset as that would involve training on the
test set. However, as subsequent years of the VOC challenge use a disjoint set of
images but the same classes, the taxonomy is applicable in those settings.

https://github.com/blaschko/tree-structured-covariance
https://github.com/blaschko/tree-structured-covariance
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(a) Semantic taxonomy from [16].

(b) Learned visual taxonomy.

Fig. 2. The semantic and learned taxonomies for the PASCAL VOC dataset. The
semantic and visual taxonomies are very close, despite that the construction of the
visual taxonomy made no use of the semantic relationships.

6.2 Oxford Flowers

In the second set of experiments, we have compared semantic to visual tax-
onomies on the Oxford Flowers data set. To construct a rich image representa-
tion, we have made use of the features designed by the authors of the dataset.
The image representations consist of information encoding color, shape, (local)
gradient histograms, and texture descriptors [17]. These features have resulted
in high performance on this task in benchmark studies. We have constructed
kernel matrices using the mean of Gaussian kernels as described in [33].
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Fig. 3. ROC curves for the PASCAL VOC dataset. The learned visual taxonomy per-
forms consistently better than the semantic taxonomy. Multi-class classification was
performed with a multi-label generalization of [32]. Only the first four classes are shown
due to space constraints. The other classes show qualitatively the same relationship
between methods.

Table 1. Classification scores for the Oxford Flowers data set. The semantic taxonomy
(Figure 4(a)) gives comparatively poor performance, likely due to the strong mismatch
between the biological taxonomy and visual similarity. The learned visual taxonomy
(Figure 4(b)), however, maintains good performance compared with one-vs.-rest clas-
sification.

One vs. rest [33] Semantic Taxonomy Learned Taxonomy

84.9± 1.9 56.3± 6.3 87.7± 2.6

The topology of the semantic taxonomy was constructed using the Linnaean
biological taxonomy, while edge distances were computed by optimizing D ac-
cording to Equation (19). The topologies of the semantic taxonomy and the
learned visual taxonomy are given in Figure 4.

We have additionally performed classification using the semantic and learned
visual taxonomies. We have applied the taxonomic prediction method described
in Section 2. The results are presented in Table 1. In line with previous results on
taxonomic prediction, the performance of the taxonomic method with a visual
taxonomy performs comparably to 1-vs.-rest classification (here we report the
results from [33], which use an identical kernel matrix to our method). However,
we note that the semantic taxonomy performs very poorly, while the learned
taxonomy maintains good results. We hypothesize that this is due to the strong
mismatch between the semantic relationships and the visual ones. In this case, it
is inappropriate to make use of a semantic taxonomy, but our approach enables
us to gain the benefits of taxonomic prediction without requiring an additional
information source to construct the taxonomy.

6.3 Text Categorization

We present timing and accuracies on the WIPO data set [18], a hierarchically
structured document corpus that is commonly used in taxonomic prediction [21].
Kernel design was performed simply using a bag of words feature representation
combined with a generalized Gaussian χ2 kernel with the bandwidth parameter
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(a) Semantic taxonomy constructed using biological infor-
mation.

(b) Learned taxonomy.

Fig. 4. Semantic and visual taxonomies on the Oxford Flowers dataset. The topologies
of the two taxonomies differ significantly, indicating a strong mismatch between the
semantic hierarchy and visual similarity.

set to the median of the pairwise χ2 distances. The topology, V , of the tree
structure was constructed using the taxonomy provided by the data set organiz-
ers. The loss function, Δ, was either set to 0-1 loss, or the taxonomic distance
between two concepts. The taxonomic distance between two concepts was mea-
sured as the unweighted path length between the two leaves in the taxonomy
(i.e. not making use of the learned taxonomy but instead fixing edge lengths
to 1).

We have computed results using a number of covariance structures, as well as
a number of loss functions. Table 2 lists these settings and shows their numeri-
cal accuracies. We emphasize that the results correspond to the learning setting
proposed by [21] when the covariance matrix is tree-structured. Any differences
in performance for this column are due to our using a more recent version of the
data set with a comparatively näıve feature representation, while Cai and Hof-
mann made use of an unspecified kernel function computed using a proprietary
software system [21].
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Table 2. Losses on the WIPO data set (lower is better). The columns correspond
to varying covariance structures, while the rows correspond to different loss functions.
For the covariance structures, I corresponds to a standard multi-class feature map [32],
B∗ is learned using the method proposed in [3] for learning taxonomies without fixed
topology, and D∗ is learned from Equation (19). Each system was trained with a
structured output support vector machine optimizing the loss on which it is evaluated.

I B∗ HkV D∗V THk V D∗V T

0-1 0.281 ± 0.027 0.278± 0.042 0.284 ± 0.037 0.362 ± 0.028
taxonomic 0.950 ± 0.100 0.833± 0.179 1.125 ± 0.071 1.120 ± 0.028
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Fig. 5. Computation time for constraint generation using the proposed method of
optimization vs. the popular SVMstruct optimization package [19,20]. The proposed
optimization is several orders of magnitude faster than SVMstruct for this problem,
and has constant computation time per iteration, while SVMstruct has computation
that grows linearly with the training iteration.

We focus on the efficiency of the optimization using our strategy, and the
kernelized variant of SVMstruct [19,20]. We compare the empirical time per cut-
ting plane iteration in Figure 5. We note that timing results are presented as
a fraction of the first training iteration to account for differences in vector and
matrix libraries employed in our implementation vs. SVMstruct. Nevertheless,
our implementation was several orders of magnitude faster than SVMstruct at
all iterations of training due to the avoidance of näıve looping over cached kernel
values as employed by their general purpose framework. In the SVMstruct im-
plementation of taxonomic prediction, the joint kernel function was implemented
by multiplying Kij by Byiyj , which were both kept in memory to optimize com-
putation time. The computation time of our algorithm is constant per iteration,
in contrast to SVMstruct, which grows approximately linearly with high slope
as the number of support vectors grows. In later training iterations, a single ker-
nelized cutting plane iteration of SVMstruct can take several minutes, while our
method takes only several milliseconds. The number of cutting plane iterations
required by both methods is identical.
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7 Conclusions

In this work, we have compared taxonomies learned from data with semantic
taxonomies provided by domain experts, where these taxonomies are used to
impose structure in learning problems. While a semantic taxonomy provides a
measure of prior information on class relationships, this may be unhelpful to
the desired learning outcome when the features available are not in accord with
this structure. Indeed, in such cases, we have shown that the imposition of prior
taxonomic information may result in a significant performance penalty.

By contrast, we have observed that learned taxonomies based on feature sim-
ilarity can do significantly better than hand-designed taxonomies, while never
performing significantly worse than alternatives. Moreover, we have shown that
the taxonomic structure may be encoded in a tree-structured covariance: as a
result, we were able to develop a highly computationally efficient learning algo-
rithm over taxonomies. Software and machine readable tree-structured covari-
ance matrices are available for download from https://github.com/blaschko/

tree-structured-covariance.

Acknowledgements. This work is partially funded by the European Research
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Abstract. There is a growing demand for multiple output prediction
methods capable of both minimizing residual errors and capturing the
joint distribution of the response variables in a realistic and consistent
fashion. Unfortunately, current methods are designed to optimize one
of the two criteria, but not both. This paper presents a framework for
multiple output regression that preserves the relationships among the
response variables (including possible non-linear associations) while min-
imizing the residual errors of prediction by coupling regression methods
with geometric quantile mapping. We demonstrate the effectiveness of
the framework in modeling daily temperature and precipitation for cli-
mate stations in the Great Lakes region. We showed that, in all climate
stations evaluated, the proposed framework achieves low residual errors
comparable to standard regression methods while preserving the joint
distribution of the response variables.

1 Introduction

Multiple output regression (MOR) is the task of inferring the joint values of
multiple response variables from a set of common predictor variables. The re-
sponse variables are often related, though their true relationships are generally
unknown a priori. An example application of multiple output regression is to
simultaneously estimate the projected future values of temperature, precipita-
tion, and other climate variables needed for climate change impact, adaptation
and vulnerability (CCIAV) assessments. The projected values are used as the
driving input variables for phenological and hydrological models to simulate the
responses of the ecological system to future climate change scenarios. To ensure
the projected values are realistic, there are certain constraints on the relationship
among the response variables that must be preserved; e.g., minimum tempera-
ture must not exceed maximum temperature or liquid precipitation should be
zero when temperature is below freezing. While there have been numerous mul-
tiple output regression methods developed in recent years [7,20,4,18,12], most
of them are focused on fitting the conditional mean or preserving covariance
structure of the outputs. Such methods do not adequately capture the full range
of variability in the joint output distribution, as illustrated in Figure 1(a).

The inability of standard regression-based approaches to reproduce the
shape of the true distribution of output variables, even for univariate response

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part II, LNAI 8189, pp. 320–335, 2013.
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Fig. 1. Scatter plot of observed daily maximum and minimum temperature at a climate
station in Michigan, USA

variables, is well-documented [2]. Univariate distribution-driven approaches such
as quantile mapping (QM) [13] and statistical asynchronous regression (SAR)
[17] have been developed to address this limitation, but the accuracy of these
approaches is generally poor since they are not designed to minimize residual
errors. Quantile mapping approaches map a univariate predictor variable x to
its corresponding response variable y by transforming the cumulative distribu-
tion function (CDF) of x to match that of y. More recently, a bivariate quantile
mapping approach (BQM) (see Figure 1(b)) has been developed to generate
bivariate response values that mimic the joint distribution of the observed re-
sponse data [11]. However, as will be shown in this paper, the residual error is
significantly worse when compared to regression-based methods because the po-
sition and rank correlation between the predictor and response variables remain
invariant under QM-based transformation, which in turn, hinders its ability to
minimize residual errors. Thus, unless the predictor variable has a high rank cor-
relation with the response variable, the residual error upon applying QM-based
approaches is likely to be large.

This suggests a possible hybrid approach to improve both the residual errors
and distribution fitting is by first applying a regression-based method to trans-
form the predictor variables so that their rank correlation with respect to the
response variable is high, before applying quantile mapping to adjust for the fit
in distribution. However, maximizing the rank correlation of the data points is
necessary but not sufficient condition for improvement in the residuals for QM,
unless the response values of the data points are uniformly spaced. Hence, the
need for position regularization, that would prioritize the prediction accuracy
of data points whose position, when incorrectly estimated, results in high resid-
ual. The term ‘position’ here refers to the geometric quantile of a data point
with respect to a multivariate distribution, which is analogous to the quantile
of a data point in the case of univariate distribution. In this paper, we present
a position-regularized, multi-output prediction framework called Multi-Output
Contour Regression (MCR), that addresses the dual objective of preserving
the associations among the multiple output variables as well as minimizing
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residuals. MCR is able to achieve the dual objective by applying a novel, position-
regularized regression method, followed by geometric quantile mapping (GQM)
to improve the fit in distribution. The position-regularized regression helps to al-
leviate the limitation associated with the rank invariant property of QM, which
contributes to the high residuals of QM-based approaches. MCR additionally
addresses the challenge of ensuring that its prediction of the response variables
will always abide by the constraints of the actual response data. MCR is also
not limited by the number of predictor variables that may be used nor does it
require them to have high correlation with the response variables, unlike quantile
mapping. The flexible nature of our framework allows for the incorporation of
other loss functions such as the L1 loss used in quantile regression1.

2 Related Work

Supervised learning methods for predicting continuous-valued outputs may be
categorized as either accuracy-driven or distribution-driven. Accuracy-driven ap-
proaches such as multiple linear regression (MLR), lasso regression, neural net-
works, and analog methods [13] are commonly used with emphasis on minimizing
sum-square residual (SSR) errors. In contrast, distribution-driven approaches fo-
cus on reproducing the distribution characteristics of the output variable. These
approaches include quantile mapping (QM) [13], Equidistant CDF Matching
(EDCDFm), statistical asynchronous regression (SAR) [17] and the transfer
functions proposed by Piani et al. [19]. These approaches are applicable even
when the predictor and response variables are asynchronous and are generally
susceptible to high residual errors. Given the drawbacks of accuracy-driven and
distribution-driven approaches, a hybrid method known as Contour Regression
(CR) [2] was developed to simultaneously minimize error and preserve the shape
of the fitted distribution. CR extends the loss functions of standard regression
methods (including linear and quantile regression) to regularize the area between
the CDF of the response variable and the CDF of the predicted output.

In addition to the single output regression (SOR) approaches, techniques for
inferring multiple response variables (MOR) simultaneously have been devel-
oped, including multi-output regression [10] and structured output regression
[5]. A number of these techniques focus on penalizing the regression coefficients
using low rank methods such as reduced rank regression [12]. However, these
approaches do not consider the correlation among the output variables. Another
common approach to multiple output prediction is to penalize the shared input
space, for co-linearity, such as partial least square regression discriminant anal-
ysis (PLSDA) [18]. However these models, too, do not capture the association
among response variables. Curds and Whey is an example of regression based
approach that considers the output correlation [7]. However, it assumes the rela-
tionship among the response variables is linear. Multiple output SVR is another
approach that takes advantage of correlation among response variables and ex-
tends Support Vector Regression (SVR) to multi-output systems by employing

1 We omit the derivation for other loss function in this paper due to lack of space.
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co-kriging, to account for the cross covariances between different response vari-
ables [20]. Group lasso [14], LL-MIMO [6], gaussian process MOR [3] are other
examples of MOR.

However, none of the these approaches preserve the full range of variability
of the joint distribution of the response variables. He et al. [11] proposed bi-
variate quantile mapping to extend QM to bivariate space. The method uses
the intuition proposed by Buja et al. [8] regarding geometric quantiles. While
this approach is capable of capturing the distribution characteristics of bivariate
response variables, similar to QM, it is susceptible to high residual errors.

3 Preliminaries

Let X = [x1, ..,xn]
T be an (n × d) data matrix and Y = [y1, ..,yn]

T be the
corresponding (n×q) response matrix, such that xi ∈ �d and yi ∈ �q are column
vectors representing the respective values of predictor and response variables for
the ith data point. The objective of multi-output regression (MOR) is to learn a
target function h(x, Ω) that best estimates the multi-output response y, where
Ω = (ω1, .., ωq) is the parameter set of the target function.

For a univariate random variable X ∈ �, let FX(x) be its cumulative distri-
bution function (CDF), i.e., FX(x) = P (X ≤ x). The corresponding α-quantile
of X is given by inf {x ∈ � : FX(x) ≥ α}. Intuitively, each quantile indicates the
value in which a certain fraction of the data points are below it, and thus, pro-
vides a measure of its position in the data. For example, the median, which
is equivalent to the 0.5-quantile, is the central location of the distribution.
More generally, the position [16] of data point z relative to a set of points
Z = (z1, .., zm)T is given by

pZ(z) =
1
m

∑m
i=1 η(z− zi) where η(w) =

{
w

‖w‖ , if w 	= 0

0, if w = 0

For univariate data, the position pZ(z) is equal to 2FZ(z) − 1, where FZ(z) is
the cumulative distribution function of Z. The multi-dimensional equivalent of
quantile function is geometric quantile [9].

Distribution correction methods such as quantile mapping is only applicable
if one can match the position of a data point in one univariate distribution (say
for x) to its corresponding position in another univariate distribution (say for
y). This is possible using the preceding definition of position for univariate data
since the values of pZ are always fixed in the range between [−1,+1] irrespective
of the values in Z. Unfortunately, when extended to multivariate positions, the
range of values for pZ may vary depending on the values in Z. To overcome this
problem, He et al. [11] introduce the notion of a stationary position by iteratively
applying the following position transformation function until convergence:

pkY (z) =
1

κn

n∑
i=1

pk−1
Y (z) − pk−1

Y (yi)

‖ pk−1
Y (z) − pk−1

Y (yi) ‖
, p1

Y (z) =
1

κn

n∑
i=1

z− yi
‖ z− yi ‖

(1)
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Here each component in yi must be converted to its marginal rank first before
applying the position transformation function. Marginal rank refers to the rank
of the data point divided by the largest rank and then normalized to the range
[−1, 1]. The normalization is done to negate the effect of variables having values
that correspond to different ranges. Data points with normalized marginal rank
close to ±1 correspond to extreme values for the particular variable, while those
close to 0 are located near the median of the distribution. In practice, the number
of iterations needed to reach a stationary distribution is quite small, typically
K > 5 [11]. For univariate data, it can be shown that Pk reaches a stationary
distribution at k = 1.

The term κ in Equation (1) is a normalization factor to ensure the distribution
of the geometric positions is supported in a q-dimensional unit hypersphere.
In the case of bivariate response variable Y, the stationary geometric quantile
distribution is circularly symmetric around the origin, with the radial density of
r/
√
1− r2 for r ∈ (0, 1) [11]. Therefore,

κ =

∫ 1

0

r√
1− r2

dr ⇒ κ =
π

4

In this paper, we denote the position of the multivariate data points in Y as
PY = [pY (y1), ..,pY (yn)]

T , where pY (yi) ∈ [−1, 1]q. We also use the notation
zXY = p−1

X (pY (y)) to represent a point in the domain of X that has the same
geometric quantile position as the data point y in Y, i.e., pX(zXY ) = pY (y).
Consequently, zY Y (yi) = yi. Finally, let ZXY = [zXY (y1)

T , .., zXY (yn)
T ]T be

the geometric quantiles in X that correspond to the data points in Y .

3.1 Quantile Mapping-Based Approaches

Quantile mapping transforms a univariate predictor variableX to its correspond-
ing response variable Y by adjusting the cumulative distribution function FX to
match that of FY :

QM : ŷ = F−1
Y (FX(x)) (2)

It can be shown that QM preserves the rank correlation2 between the variables.
For instance, consider the example in Table 1 where y is the response variable
and x1, x2 are two independent predictor variables. Let QM(x1) and QM(x2) be
the corresponding QM outputs for x1 and x2, respectively. If we sort the vectors
in ascending order, it is easy to see that the resulting rank vectors are invariant
under QM transformation. As a result, the rank correlation between x1 (or x2)
and y is identical to the rank correlation between QM(x1) (or QM(x2)) and y.
Furthermore, the empirical CDF for QM(x1) as well as QM(x2) are identical to
that for y, i.e., FY = FQM(x1) = FQM(x2).

2 Examples of rank correlation measures include Kendall τ and Spearman’s ρ coeffi-
cients.
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Even though quantile mapping was able to replicate the empirical distribution
of y perfectly, QM(x1) has a higher residual error than QM(x2). This can be
explained by the lower rank correlation between x1 and y compared to the rank
correlation between x2 and y. Note that the inverse relationship between rank
correlation and residual error holds only if the values of the response variable
are uniformly spaced. For example, if the response value y for the fourth data
point changes from 0.4 to 0.7, the residual error for QM(x2) increases from 0.02
to 0.32, and is larger than the residual error for QM(x1), which remains at 0.06.
In this case, a high rank correlation for x2 does not translate to lower residual
error when applying quantile mapping. A formal proof showing the relationship
between rank correlation and residual error for uniformly spaced data is given
in the next section.

Table 1. Quantile Mapping

x1 x2 y QM(x1) QM(x2)

0.6 0.7 0.2 0.1 0.2
0.8 0.6 0.1 0.3 0.1
0.7 0.9 0.3 0.2 0.4
0.9 0.8 0.4 0.4 0.3

SSR= 0.06 0.02

Table 2. Quantile Mapping

x3 x4 y QM(x3) QM(x4)

0.7 0.6 0.2 0.2 0.1
0.6 0.7 0.1 0.1 0.2
0.9 0.8 0.3 0.7 0.3
0.8 0.9 0.7 0.3 0.7

SSR= 0.32 0.02

Since most data sets are non-uniform, maximizing rank correlation is not a
sufficient condition to ensure a low residual error. Nevertheless, we observe that
data points associated with quantiles that are located in sparse regions (i.e., far
from their next closest quantiles) will contribute to higher residual error when
incorrectly ranked compared to data points associated with quantiles located in
dense regions. This is demonstrated by the example shown in Table 2, where both
x3 and x4 have the same rank correlation with respect to the response variable
y, yet have different SSR. The response values for the first three data points
(0.2, 0.1, and 0.3) are closer to each other than the last data point (0.7). An
incorrect ranking of the fourth data point will lead to much higher residual error
compared to the first three data points. Since x3 ranked the fourth data point
incorrectly, its residual error is larger than x4 even though they both have the
same rank correlation. This suggests a possible heuristic for improving both rank
correlation and residual error by emphasizing on data points that contribute to
high residual errors in prediction if ranked incorrectly.

3.2 Rank Correlation and Residual Errors of Quantile Mapping

This section presents several properties of the QM approach with respect to
the rank correlation and residual error of its output. First, we show that quan-
tile mapping preserves the rank correlation between the predictor and response
variables.
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Proposition 1. Rank correlation is invariant under QM transformation if the
values of the predictor and response variables in a data set are unique.

Proof. Consider a data set D = {(xi, yi)}ni=1 that contains n points. Let ŷi be the
quantile mapped value for the data point with predictor variable xi. To prove
that rank correlation is invariant under QM transformation, it is sufficient to
show that the rank for xi is identical to the rank of ŷi after quantile mapping.
Without loss of generality, assume the data points in D are sorted in increasing
order of their x values. Thus, the rank for data point xi is i (since the x values
are unique). Equation (2) can be rewritten as follows

FY (ŷi) = FX(xi)

Since FX(xi) = i/n, therefore FY (ŷi) = FX(xi) = i/n. Given that the response
values yi are distinct, the rank for ŷi is also i. ♦

Next, we illustrate the relationship between rank correlation and residual error
of QM output for data sets with uniformly spaced response values.

Proposition 2. The SSR of QM output is negatively proportional to the rank
correlation of the input and a uniformly spaced response data.

Proof. Given n data points, let ri and si be the respective ranks of the ith

input data point xi and the corresponding response output yi. Without loss
of generality, we assume that each data point has a unique rank. Since y is
uniformly spaced, yi = sic1 + c0, where c0 and c1 are constants. Similarly, the
QM output ŷi = ric1 + c0. The Spearman rank correlation can be written

ρ =

∑
i (ri − r̄)(si − s̄)√∑

i (ri − r̄)2
∑
i (si − s̄)2

We have ρ = (1/c2)(
∑

i risi + c3), where, c2 and c3 are constant for a fixed n.
Given, SSR =

∑
i (yi − ŷi)

2 and the QM output ŷ is a reordered instance of y,
we have SSR = 2(

∑
i y

2
i −
∑

i yiŷi).
∑
i yiŷi = (c21)

∑
i risi + c4. where, c4 is a

constants for a fixed n. Therefore, SSR = 2(
∑

i y
2
i − (c21c2)ρ− c3− c4). Since, c2

is a positive constant, (c21c2) will always be positive. Hence, SSR is negatively
proportional to ρ when y is uniformly spaced. ♦

We next show that the output of QM that perfectly replicated the response
variable can be improved to have lower residual errors by correcting the ranks
of the predictor variable to better match the response variable.

Proposition 3. Correcting the ranks of data points in x that do not match the
rank of the corresponding data point in y, maintains, if not, improves the SSR
of QM output.

Proof. Let elements of Rx1, Rx2 and O be the quantile positions of data points
in x1, x2 and y, respectively. Given, the QM output of x1 can be improved to
have lower residuals, SSRx1 =

∑
i ε

2
x1(i)/n > 0. Consequently, ∃j, such that
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Rx1(j) 	= O(j). Let x2(i) = x1(i) ∀i, where Rx1(i) = O(i) and ∃k, such that
Rx1(k) 	= O(k) and Rx2(k) = O(k) or Rx2(k) = Rx1(k). Therefore, ∀i, ε2x1(i) ≥
ε2x2(i). And since SSR =

∑
ε2i , we have SSRx2 ≤ SSRx1. Thus proving that it

SSR of QM output can be improved by correcting the ranks of those data points
that do not have the same rank as its corresponding response data point. ♦

Improving the rank correlation of predictor variable to perfectly match the re-
sponse variable would result in QM output having zeros SSR.

Proposition 4. The residual error obtained from QM is zero when there is
perfect rank correlation between predictor and response variable.

Proof. Let the elements of R and O be the quantile positions of the data points
in x and y respectively. Let εi = |F−1

y (Oi) − F−1
y (Ri)| be the residual error of

ith data point. Therefore, SSR = ε2i /n. Given a perfect rank correlation (Γ = 1)
between predictor and response variable, we have ∀i, (Ri = Oi). Consequently,
εi = |F−1

y (Oi)− F−1
y (Oi)| = 0. Therefore, SSR =

∑
i ε

2
i /n = 0. ♦

Hence, we propose a framework that improves on the ordering of the predictor
variables to better match the response variable in order to minimize the SSR of
a QM output.

4 Multi-Output Contour Regression Framework(MCR)

Since QM and regression-based approaches have their own distinct advantages
which have been successfully exploited in a hybrid manner by approaches such
as CR, we propose a framework that extends the intuition behind hybrid ap-
proaches that exploits the unique advantages of both QM and regression, to
work in a multi-output setting. The approach uses a position regularized regres-
sion function h(x, Ω̂) that prioritizes matching the positions of output to best
match the positions of the observed response data. This step is followed by cor-
recting the geometric quantiles of the output from the previous step to match
the observed response data using the intuition of QM. This hybrid approach
addresses the limitation of QM regarding the number of predictor variables that
may be used as well as requirement of the predictor variables being highly cor-
related to the response variable. We further enhanced the hybrid approach to
be flexible enough to work in a multi-output setting so as to be able to capture
the multi-output associations that are often ignored.

To prioritize improving the positions of the output, the proposed multi-output
contour regression (MCR) framework learns the regression function h(x, Ω̂). The
regression function h(x, Ω̂) consists of two components. The first component is
similar to conventional regression loss function where the data matrix is made
to regress with respect to the observed response variable. This component em-
phasizes minimizing residual error of the regression function.

The second component of h(x, Ω̂) is the position regularizer that helps improve
rank correlation of h(x, Ω) and y. At a first glance, one would expect the second
term to be regressing on the position of the data points. Instead of regressing
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on the position of the data points, we regress on the geometric quantiles of the
data points obtained by inverse mapping their positions to the output response
space. This is done so that the position regularizer assigns a larger penalty to
those data points whose position when incorrectly estimated, results in a larger
minimum residual errors. To accomplish this, the data matrix is made to regress
on zŶ Y , where,

ẑŶ Y (y) = p−k
Ŷ

(pkY (y)) (3)

is the geometric quantile value in the h(x, Ω̂) regression output space that cor-
responds to the position of the observed response variable y.

The regression function of MCR is shown in Equation (4),

min
Ω

n∑
i=1

(γL(h(xi, Ω),yi) + (1 − γ)L(h(xi, Ω), zŶ Y )) (4)

where 0 ≤ γ ≤ 1 is a user defined parameter that may be used for either
prioritizing fidelity of regression accuracy or its position correlation.

L can be any generic loss function such as ordinary least square (that multiple
linear regression adopts), or quantile mapping (if certain quantiles are to be
prioritized overs others, such as in the case of a heavy tail distribution).For
instance, when the loss function L is ordinary least square, Equation 4 takes the
form

min
Ω

q∑
j=1

n∑
i=1

(γ(xTi Ωj − yi)
2 + (1− γ)(xTi Ωj − zŶ Y )

2)

which corresponds to the following matrix form

Ω̂ = argmin
Ω

tr(γ(XΩ −Y)T (XΩ −Y) + (XΩ − ZŶ Y )
T (XΩ − ZŶ Y ))

The regression parameters Ω̂ is learnt in an iterative manner. At each itera-
tion, the regression output space from the previous iteration is used to compute
zŶ Y in the second component of the regression function h(x, Ω̂). For the very
first iteration, the regression output space is that of regular multiple linear re-
gression.

Once h(x, Ω̂) is learnt, the MCR prediction for a given data point x having
corresponding observed multi-output response y and a regression estimation of
ŷ = h(x, Ω̂) is obtained by inverse geometrically quantile mapping pk

Ŷ
(ŷ) to its

corresponding value in the observed response variable space, to give the MCR
prediction ẑY Ŷ ,

MCR : ẑY Ŷ = p−k
Y (pk

Ŷ
(h(x, Ω̂))) (5)

where, p−k
Y (pk

Ŷ
(ŷ)) maps the stationary geometric quantile position of h(x, Ω̂)

to its corresponding data point in Y.
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To summarize, multi-output contour regression (MCR) performs multi-output
regression of the predictor variables such that the position of its output is highly
correlated with respect to position of the observed response variable, thereby
reducing position errors of the multi-output regression results. This multivariate
regression output is then mapped to its corresponding geometric quantile coun-
terpart in the observed multi-output response space using geometric quantiles.
The rationale behind using the regularized regression results, prior to perform-
ing multi-output geometric quantile mapping in MCR, is to improve on SSR
by increasing the correlation among the multivariate ranks of the predictors and
response variable.

4.1 Estimating Inverse Geometric Quantile Position

The value ẑ(p) that corresponds to a given geometric quantile position p, in a
multivariate distribution FY i.e., pY (p), is empirically computed by minimizing
the generalized multivariate quantile loss function [9]

ẑ(p) = arg min
z∈�q

n∑
i=1

(‖yi − z|+ < p,yi − z >) (6)

where, p ∈ �q and < ., . > denotes the Euclidean inner product. So long all
the values of yi does not fall on the same line, ẑ(p) will be unique for a given
p for q ≥ 2 [9]. Algorithms such as Newton-Raphson’s method can be used to
solve the above loss function geometric quantile ẑ(p) using the following update
ẑ ← ẑ− δ

δ′ where, δ =
∑n
i=1((nκ)p− ‖z− yi‖−1(z− yi))

δ′ =
∑n

i=1 ‖z− yi‖−1(Iq − ‖z− yi‖−2 × (z− yi)(z − yi)
T )

For a univariate distribution, FY , it can be easily shown that equation (6)
boils down to the same loss function used to identify the αth regression quantile
in a linear regression setup for quantile regression [15], where 0 < α < 1 and
p = 2α− 1. i.e,

∑n
1 (|yi − z|+ p(yi − z)) is minimized for z that corresponds to

the αth quantile of Y .

4.2 Alternate Approximation-Based Approach for MCR

If one can make the assumption that given the position (p) of a test data point
(ytest) that belongs to the distribution FY , and ∃yi ∈ Y such that ytest ) yi,
then the search space for ẑ = ytest can be limited to data points in Y.

Given that the search space for ẑ is finite it will not always possible to find
the exact same point in FY using the loss function δ, as it returns a vector.
Alternatively, the following range bound approximation that is equivalent to
Equation 6, can be used to find the best solution [11,9].

argmin
z

n∑
i=1

{‖ yi − z ‖ +
1

κ
(yi − z)Tp} (7)

where κ in the scaling factor chosen in Equation (4).



330 Z. Abraham et al.

As shown in the experiment section, there was only a marginal performance
deterioration in the solution obtained from the above approximation, due to
sufficient amount of training data points. Another approximation approach with
even less tighter bounds than Equation 7, having O(n) time complexity is to use
the following Euclidean approximation.

ẑ = argmin
yi

((p− pY (yi))(p− pY (yi))
T ) (8)

The R-limited approximation approach (Equations 7) as well as the Euclidean
approximation approach (8) show considerable improvement in the computation
time across varying training size (Figure 2.a) and test size (Figure 2.b), with
minimum deterioration in terms of accuracy of the inverse geometric quantile
positions estimated.
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Fig. 2. Relative computation time of the various approximation-based approaches for
estimating inverse geometric quantile positions

5 Experimental Results

The objective of the experiments was to evaluate the ability of MCR in replicat-
ing the associations among multiple climate response variables while minimizing
sum square residuals.

All the algorithms were run using climate data obtained at fourteen weather
stations in Michigan, USA. The response variables used were maximum temper-
ature, minimum temperature, and the total precipitation for each day spanning
twenty years. The predictor variables used in this study are simulated climate
data obtained from Regional Climate models (RCM) that best correspond to
the observed response variables at each of the fourteen weather stations. Three
different RCM data sets for each of the climate stations were obtained from
North American Regional Climate Change Assessment Program (NARCCAP)
[1]. The three RCMs used are the Canadian Regional Climate Model (CRCM),
the Weather Research and Forecasting Model (WRFG) and the Regional Cli-
mate Model Version-3 (RCM3). For the purpose of the experiments, there were
a total of 126 data sets with univariate response variables, 126 data sets with
bivariate responses and 42 data sets with trivariate responses.
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5.1 Experimental Setup

Twenty year of predictor and response data, spanning the years 1980-1999 was
split into two parts for training and testing. For the purpose of the evaluation of
the relative skill in preserving associations among the multi-output responses,
popular regression and quantile mapping approaches such as MLR, Ridge re-
gression (Ridge), QM, EDCDFm, MOR, CR, BQM as well as ad-hoc approaches
that sequently combine regression and quantile mapping approaches were used
as baseline. An example of the ad-hoc baseline approach used is MOR in com-
bination with BQM (RBQM) and MLR and QM (RQM). γ was set to 0.5 for
all experiments. For CR and MCR based experiments, the maximum number of
iterations was set to ten.

After discarding the missing values, each experiments run for each of the sta-
tions, across all the data sets, had a minimum of one thousand training and test
data points. All the results provided in the following section are on test data
(out-of-sample results). Kendall τ rank correlation and Spearman ρ rank corre-
lation were the two rank correlation metrics used for evaluation univariate rank
correlation. In the following experiment section, we included results of only one
of the two rank correlation metrics, when their results were very similar. Root
mean square error (RMSE), was used as a metric to compare the performance
of the various approaches evaluated in terms of its output residual errors. Two
dimensional and three dimensional scatter plots were used to visualize the rel-
ative skill of the various approaches in preserving the associations among the
multi-output responses.

5.2 Results

Univariate MCR. For academic reasons, the rank correlation of the various
response variables were computed in a single output MCR setting using Kendall
τ rank correlation and Spearman ρ rank correlation. It was found that across
all the different data sets and stations and response variables (i.e, 126 datasets),
MCR consistently improved the rank correlation across both rank correlation
metrics. For the purpose of comparing the intra-performance of datasets that
shared similar response variables, the 126 individual data sets that corresponded
to univariate response data were grouped into nine larger data sets.

Figure 3 is a box plot representing the percentage of stations in each of the nine
data sets where the rank correlation regularizer used in Equation 4, improved
rank correlation and reduced residuals when compared to baselines approaches.

The box plot in Figure 4 shows that in spite of MCR’s reported improvement
across majority of stations in terms of τ and RMSE, for both regression and
quantile mapping based approaches, the improvement was not significant when
compared to the regression based approaches. However, the rank correlation
regularizer showed a significant improvement in terms of RMSE at each station
when compared to the corresponding quantile mapping based approaches.
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Fig. 3. Box plot of the percentage stations where MCR showed improvement over
single output baselines, in terms of Kendall τ rank correlation and RMSE, across all
RCM’s and variables
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Fig. 4. Box plot of MCR’s improvement over baseline approaches in terms of Kendall
τ rank correlation and RMSE, across all RCM’s and variables
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Fig. 5. Scatter plot portraying the fidelity of forecast values of various approaches
replicating the observed associations among the bivariate temperature response
variables
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Bivariate MCR. Bivariate modeling for all the combinations of bivariate re-
sponse variables were evaluated. As shown in Figure 5, MCR performed best in
replicating both the bivariate associations and minimizing SSR, although BQM
performed as well in terms of replicating the bivariate associations. Regression
based approaches (both SOR and OMR) fared poorly in preserving associations
in the 2D space, while single output quantile mapping based approaches, were
very sensitive to correlation of the predictor variables with response resulting in
poor bivariate associations in spite of replicating the marginal distributions of
the individual responses very well.

Table 3. Performance of bivariate MCR over baseline approaches

RMSE Kendall τ
Data set % of stations Avg.improvement % of stations Avg.improvement

outperformed across stations outperformed across stations
baseline over baseline baseline over baseline

MOR QM BQM MOR QM BQM MOR QM BQM MOR QM BQM
WRFG1 29 100 100 -0.06 0.18 0.17 64 100 100 0.03 0.40 0.41
WRFG2 07 100 100 -0.08 0.16 0.16 79 100 100 0.04 0.38 0.39
WRFG3 00 100 100 -0.07 0.31 0.30 0 100 100 -0.01 0.75 0.67
CRCM1 93 100 100 0.06 0.25 0.25 100 100 100 0.13 0.52 0.53
CRCM2 71 100 100 0.03 0.23 0.23 100 100 100 0.12 0.49 0.52
CRCM3 07 100 100 -0.02 0.35 0.34 14 100 100 -0.01 0.78 0.73
RCM31 43 100 100 -0.02 0.20 0.20 79 100 100 0.06 0.46 0.46
RCM32 36 100 100 -0.03 0.19 0.18 79 100 100 0.06 0.47 0.45
RCM33 00 100 100 -0.07 0.31 0.30 0 100 100 -0.01 0.81 0.78

In terms of residuals, MCR had considerably lower residuals when compared
of the various quantile mapping baseline approaches as shown in Table 3. But
as expected, MCR showed marginal increase in residuals when compared to the
respective SOR and MOR based approaches.

Trivariate MCR. The performance of modeling the association among three
response variables was also evaluated and is shown in Figure 6. The performance
is compared against single output, and multiple output models. We also use
as a baseline, an trivariate extension of the bivariate BQM approach, as an
additional baseline. Along with MCR, the trivariate extension of BQR fared best
in replicating the observed associations among three variables when compared
to the baseline approaches.

Additionally, MCR was also able to improve upon its BQM counterpart in
terms of reduction of residuals. MCR produced lower RMSE for all the station
across all the tri-variate datasets with an average reduction of RMSE in excess of
10%. The average improvement of the three variables in terms of rank correlation
τ was found to be 0.41.
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Fig. 6. Three dimensional scatter plot of the observed associations among maximum
temperature, minimum temperature and precipitation as well as the respective forecasts
made by the various single output and multiple output approaches

6 Conclusions

We present a multi-output regression framework that preserves the general asso-
ciation patterns among multiple response variables while minimizing the overall
residual errors by coupling regression and geometric quantile mapping. The pa-
per demonstrates the effectiveness of the framework in significantly reducing
residuals while preserving the joint distribution of the multi-output variables,
over the baseline approaches in all the climate stations evaluated.
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Abstract. This paper introduces a special setting of weakly supervised
structured output learning, where the training data is a set of structured
instances and supervision involves candidate labels for some local parts of
the structure. We show that the learning problem with this weak super-
vision setting can be efficiently handled and then propose a large margin
formulation. To solve the non-convex optimization problem, we propose
a proper approximation of the objective to utilize the Constraint Con-
cave Convex Procedure (CCCP). To accelerate each iteration of CCCP,
a 2-slack cutting plane algorithm is proposed. Experiments on some se-
quence labeling tasks show the effectiveness of the proposed method.

Keywords: Structured Output Learning, Weak Supervision, Candidate
Labels, Local Parts.

1 Introduction

Many applications involve predicting structured labels for a set of interdepen-
dent variables. For example, a part-of-speech tagging (POS) model needs to
predict a sequence of POS tags for a sentence, one for each token. This type of
problem is known as structured output learning. In the past decade, some effec-
tive methods have been proposed and widely used, such as Conditional Random
Field (CRF) [21] and Structured SVM (SVMstruct) [33]. However, they are super-
vised methods requiring a large amount of labeled instances for training, which
are expensive due to the natural complexity of the output, e.g., each token of a
sentence needs labeling. Although some semi-supervised [44] and active learning
methods [26,27] are proposed to reduce the number of required labels, they still
require exact labels for the output variables. In reality, while getting exact labels
as supervision is expensive, it is often cheap to get much weak/indirect super-
vision, e.g., some candidate labels for an instance. Thus utilizing weak/indirect
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supervision to train a high quality predictor is very meaningful [3,14,18,35]. In
this paper, we introduce a special setting, called Candidate Labels for Local Parts
(CLLP). In CLLP, for each instance, we only need to provide a set of candidate
labels for each local part of the output variables (e.g., a chunk in a sequence),
among which only one is correct.

The CLLP setting takes root in many real-world scenarios, which roughly
falls into two cases: (1) There is prior knowledge from which we can provide
a candidate labeling set for a local part of output variables. For example, for
POS tagging, by looking up some linguistic dictionaries, we can get the candi-
date POS tags for a word in a sentence [23,28,25,9]. Similar scenarios exist for
other sequence labeling tasks like word sense disambiguation [24], entity recogni-
tion [31], etc.. Another example is caption based image auto tagging. An image
on the web is usually surrounded with tags that provide candidate labels for
objects in the image [1,4,13]. (2) Noisy labels from multiple annotators. When
we collect manual labels for a learning task, a labeling task is often assigned to
multiple annotators, e.g., via a Crowdsourcing system. Due to labeling bias or
irresponsible annotators, different annotators may give different labels for the
same output variable. Thus the annotators collectively provide candidate labels
for an output variable [7].

CLLP also provides a uniform viewpoint for different labeling settings of struc-
tured output learning: (1) If the candidate labeling set for each output variable
is the full label space, i.e., all the possible labels, there is no useful information
provided and hence it degenerates to unsupervised learning. (2) If the candidate
labeling set for each output variable contains only the ground truth label, it de-
generates to fully supervised learning. (3) If for some instances, we provide the
candidate labels as (1) and for other instances we provide the candidate labels as
(2), then it becomes semi-supervised/transductive learning [44]. (4) The general
case is that each local part of the output variables is assigned with a non-trivial
set of candidate labels.

In this paper, we propose a large margin approach to the CLLP setting. We
maximize the margins between candidate labels and non-candidate labels, and
also the margins between the predicted label and other candidate labels. Since
the obtained optimization problem is non-convex, the proper approximations
and Constraint Concave Convex Procedure (CCCP) are used to solve it.

The major contributions of this paper are as follows:

1. We introduce and formalize CLLP, a general type of weakly supervised
setting for structured output learning and propose a large-margin approach. We
find that the CLLP setting can be handled by an efficient algorithm, while some
other forms of weak supervision may cause some parts of the problem to be
NP-hard. We also show that the proposed new objective is closer to the true
objective than a previous state-of-the-art method.

2. We propose a new proper approximation for the objective and propose an
algorithm based on CCCP to solve the approximated problem.

3. We propose a 2-slack cutting plane algorithm to accelerate each iteration of
CCCP, and give an upper bound on the number of iterations before termination.
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2 Related Work

There are several related terminologies on different labeling settings of a learning
task, including semi-supervised learning, multiple instance learning, and candi-
date label learning. Sometimes they are all generally called weakly supervised
learning [18], as distinguished from traditional supervised learning requiring full
and exact labels.

In semi-supervised learning (SSL) [43], a training set contains both labeled
and unlabeled instances. Refs. [12] and [44] propose semi-supervised solutions
for structured output learning, where some instances have exact and full labels
while the remaining instances are unlabeled. Ref. [36] extends the method in [44]
to incorporate domain knowledge as constraints, e.g., in POS tagging, a sentence
should have at least one verb. Ref. [34] even allows a training instance itself to
be partially labeled, e.g., some tokens in a sentence are labeled while the rest are
unlabeled. The major difference between SSL and CLLP is: in SSL an output
variable of an instance is either exactly labeled or unlabeled, while in CLLP the
supervision is a set of candidate labels for each local part of the output variables,
which dose not indicate the exact label but contains more information than when
unlabeled.

Multiple instance learning (MIL) [6,40] is a classical learning problem with
weak supervision. In MIL, instances are grouped into bags, and labels are given
at the bag level. The original MIL only admits a binary label for a bag, and
is extended to admit multiple labels later [42,16]. Some recent MIL methods
consider the dependency among instances and bags, bringing the problem closer
to structured output learning [41,39,5]. The difference between MIL and CLLP
is: in MIL the label itself is accurate, but which instance deserves the label is
ambiguous, while in CLLP the label itself is ambiguous (just a set of candidates)
but which instance carries the label is clear.

Candidate label learning (CLL) [15,11] assumes a set of candidate labels is
given for each instance. It is later extended to the setting of candidate labeling
set (CLS), where instances are grouped into bags, and for each bag a set of
candidate labeling vectors is given [4,14]. Each labeling vector consists of labels
of all the instances in the bag. CLS looks similar with CLLP. However, CLS
directly give candidate labeling vectors and has no constraints on the form of
the candidate labeling set. This label setting may result in inefficiency, as shown
in Theorem 1 of Section 3. We will discuss the relation between our approach
and a state-of-the-art method of CLS [14] in Section 3.5, and make empirical
comparisons under various tasks in Section 5.

We have noticed that in NLP literature, there are some papers on POS tag-
ging with only POS dictionaries rather than concrete token-wise labels in sen-
tences [23,28,8,25,10,9], which is similar to the motivation of CLLP. However,
they focus on the specific domain problem and may be difficult to extend to gen-
eral structured prediction or multiclass classification. In contrast, in this paper
we work on providing a general formulation and an efficient algorithm for this
type of problems. The proposed approach is able to solve all kinds of structured
predictions or multiclass classifications with the CLLP labeling setting.
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3 Learning with Candidate Labels for Local Parts

3.1 General Weak Supervision via Candidate Labeling Set

Let x ∈ X denote an instance and y ⊆ Y denote the true label that is a
structured object such as a sequence, a tree, etc. Y is the full label space for x
without any constraints. Y ⊆ Y is weak supervision for x. Generally Y can be
represented as a set of all the allowed full labels for x, which is named candidate
labeling set (CLS) [4,14]. We make the agnostic assumption that y ∈ Y , then
{y} ⊆ Y ⊆ Y. Given a set of weakly supervised training examples, {(xi, Yi)}Ni=1,
the learning task is to learn a function f : x %→ y. Obviously, the task becomes
supervised learning if Yi = {yi}, ∀i, and degenerates to unsupervised learning
when Yi = Yi, ∀i.

Following the convention of structured output learning, we formulate func-
tion f by maximizing a mediate linear function F (x,y;w) parameterized by w,
namely

f(x;w) = argmax
y∈Y

F (x,y;w) = argmax
y∈Y

〈w, Ψ(x,y)〉, (1)

where Ψ is a joint feature representation of inputs and outputs, which is flexibly
designed to fit various applications.

For simplicity’s sake, we use δΨi(y,y
′) to denote Ψ(xi,y) − Ψ(xi,y

′). The
value of 〈w, δΨi(y,y′)〉 is the cost of predicting y instead of y′ given input xi.

Although there could be various kinds of structures for y with different forms
of Ψ(x,y), for the simplicity of the presentation, we focus on the special case
where y forms a sequence. It is not hard to generalize this special structured
case to other general structured and non-structured cases.

3.2 Candidate Labels for Local Parts (CLLP)

CLS is a general representation for weak supervision that has been used in
previous methods [14,4]. When dealing with structured output learning with the
maximum margin approach, due to the huge number of constraints, the cutting
plane method is usually employed to accelerate training [17]. In the cutting
plane method, there should be an algorithm that is able to efficiently find the
constraint that is most violated by the current solution. However, the following
theorem shows that under the general CLS setting it is not possible to train
efficiently:

Theorem 1. Given a structured instance x and arbitrary candidate labeling set
Y , there is no algorithm that can always find the most possible labels (in Y or
not in Y ) in poly(|x|) time unless P = NP , where |x| is the length of x.

Proof. Please refer to the supplementary material for the proofs.

But if candidate labels are given only for local parts, there exists efficient al-
gorithms that could find the most possible labels for a sequence among its
candidate/non-candidate labeling sets, as stated in the following theorem:
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Theorem 2. If the candidate labels are given marginally by local parts, namely,
each Yi in {xi, Yi}Ni=1 has the form Yi = {Yi1⊗Yi2⊗. . .⊗YiMi} ⊆ Y, where Yij is
the set of candidate labels that xij could possibly take, among which only one is
fully correct; xij is the j-th local part in xi whose size is upper bounded by some
constant; Mi is the number of local parts in xi, then in the sequence structured
learning there is an efficient algorithm (modified Viterbi algorithm) that can find
the most possible labels among candidate and non-candidate labeling sets.

Please note that although this theorem is for the sequence structure, by extend-
ing the Viterbi algorithm to general Belief Propagation, it is straightforward to
get the same conclusion for the general graph with a limited tree width.

3.3 Loss Function

We use a loss function Δ : Y × Y → R to quantify the quality of a predictor,
which has the following properties:

Δ(y,y) = 0 (2)

Δ(y,y′) > 0, ∀y 	= y′ (3)

Δ(y1,y2) +Δ(y2,y3) ≥ Δ(y1,y3), ∀y1,y2,y3 ∈ Y. (Triangle inequality) (4)

Among many loss functions Δ(·, ·) satisfying the above properties, hamming loss
and 0/1 loss are commonly used.

3.4 Large-Margin Formulation

The original structured SVM [32] is formulated as the following problem

min
w

N∑
i=1

C

∣∣∣∣max
y′
i∈Y

[Δ(y∗
i ,y

′
i) + 〈w, δΨi(y′

i,y
∗
i )〉]
∣∣∣∣
+

+
1

2
‖w‖2. (5)

where | · |+ denotes max{·, 0} and y∗
i is the true label of xi. The formulation

encourages a large margin between a true label and the runner up.
In CLLP, we are given candidate labels for each local part, which has two im-

plications: (1) any label in the non-candidate set is not the true label; (2) some
label in the candidate set is true label but we do not know which one. They
imply two different types of discriminative constraints that need consideration.
First, discrimination between the candidates and non-candidates. Second, dis-
crimination between the true label and other candidates. Thus we decompose the
slacks for each instance into two sets, one set for candidate labels and another
for non-candidate labels. Namely, we decompose the objective as

J0(w) =

N∑
i=1

C1

∣∣∣∣ max
y′
i∈Yi

[Δ(y∗
i ,y

′
i) + 〈w, δΨi(y′

i,y
∗
i )〉]
∣∣∣∣
+

+

N∑
i=1

C2

∣∣∣∣ max
y′′
i ∈Y/Yi

[Δ(y∗
i ,y

′′
i ) + 〈w, δΨi(y′′

i ,y
∗
i )〉]
∣∣∣∣
+

+
1

2
‖w‖2. (6)
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However, in contrast to the supervised case, in CLLP the true labels y∗
i ’s are

unknown. We can estimate them to approximate the objective. Thus our opti-
mization problem becomes

min
w,{yi∈Yi}N

i=1

Jc(w, {yi}Ni=1) =

N∑
i=1

C1

∣∣∣∣ max
y′
i∈Yi

[Δ(yi,y
′
i) + 〈w, δΨi(y′

i,yi)〉]
∣∣∣∣
+

+

N∑
i=1

C2

∣∣∣∣ max
y′′
i ∈Y/Yi

[Δ(yi,y
′′
i ) + 〈w, δΨi(y′′

i ,yi)〉]
∣∣∣∣
+

+
1

2
‖w‖2, (7)

where yi is the estimation of the true label y∗
i . The intuition is that we encourage

a large margin between the estimated “true” labels and the runner up in the
candidate labeling set as well as another runner up in the non-candidate set.
And we differentiate these two margins by C1 and C2.

Equation (7) looks similar to the counterparts in the Transductive Struct-
SVMs [44] and the Latent Struct-SVMs [37]. However, there are three key dif-
ferences. First, we do not know any true label y∗

i in Equation (7), while in the
Transductive Struct-SVMs we know the true labels of the labeled set and in the
Latent Struct-SVMs we know the true labels of the observed layer. Second, we
differentiate the two types of large margin constraints. Third, in our problem,
each yi has its own feasible solution space Yi.

3.5 Properties of the Objective

We compare our objective with the true objective and another objective used in
the current state-of-the-art method, the Maximum Margin Set learning (MMS)
[14] designed for the CLS setting.

Lemma 1. ∀w, J0(w) ≥ min{yi∈Yi}N
i=1

Jc(w, {yi}Ni=1). Namely, the objective

Equation (6) upper bounds the objective Equation (7).

Corollary 1. Let J ∗
0 = minw J0(w), and J ∗

c = minw,{yi∈Yi}N
i=1

Jc(w, {yi}Ni=1),

then J ∗
0 ≥ J ∗

c . Namely, the optimal value of the objective Equation (6) upper
bounds that of the objective Equation (7).

On the other hand, in [14], the MMS method is proposed for tackling multi-
class classification with candidate labeling sets. Actually, it can be straightfor-
wardly extended to a structured output case by modifying Δ(·, ·) and Ψ(·, ·).
Then the problem of MMS becomes:

min
w

Jm(w) =
1

2
‖w‖2

+ C2

N∑
i=1

∣∣∣∣ max
y′′
i /∈Yi

[Δmin(y
′′
i ,Y/Yi) + 〈w, Ψ(xi,y′′

i )〉] − max
yi∈Yi

〈w, Ψ(xi,yi)〉
∣∣∣∣
+

(8)

where Δmin(y
′, Y ) = miny∈Y Δ(y′,y). Then we have the following lemma:

Lemma 2. ∀w,min{yi∈Yi}N
i=1

Jc(w, {yi}Ni=1) ≥ Jm(w). Namely, the objective

Equation (7) upper bounds the objective Equation (8).
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Corollary 2. Let J ∗
c =minw,{yi∈Yi}N

i=1
Jc(w, {yi}Ni=1), and J ∗

m = minw Jm(w),

then J ∗
c ≥ J ∗

m. Namely, the optimal value of the objective Equation (7) upper
bounds that of the objective Equation (8).

By combining the above lemmas and corollaries, we obtain the theorem:

Theorem 3. ∀w,J0(w) ≥ min{yi∈Yi}N
i=1

Jc(w, {yi}Ni=1) ≥ Jm(w) and

J ∗
0 ≥ J ∗

c ≥ J ∗
m.

This theorem shows that the value of our objective (Equation (7)) lies between
the value of the true objective (Equation (6)) and the value of the objective
given by MMS (Equation (8)), indicating that our objective is closer to the true
objective compared to MMS.

4 Optimization

4.1 Optimization with CCCP

The optimization problem defined by Equation (7) is non-convex. An effective
approach to solving such a non-convex problem is the Constrained Concave-
Convex Procedure (CCCP) [38,29], which requires the objective to be decom-
posed into a convex part and a concave part. However, the objective of
Equation (7) is hard to decompose. In Equation (7), we maximize the objec-
tive with y′

i while minimizing it with yi. But the term Δ(yi,y
′
i) correlates them

together, obstructing the decomposition. The same problem exists with the term
Δ(yi,y

′′
i ). Therefore, we make an approximation of the objective by decompos-

ing each Δ(a, b) term into (Δ(a, c)+Δ(c, b)), resulting in the following objective:

min
w

∑
i

min
yi∈Yi

{
C1

∣∣∣∣ max
y′
i∈Yi

[Δ(zi,y
′
i) +Δ(zi,yi) + 〈w, δΨi(y

′
i,yi)〉]

∣∣∣∣
+

+

C2

∣∣∣∣ max
y′′
i ∈Y/Yi

[Δ(zi,y
′′
i ) +Δ(zi,yi) + 〈w, δΨi(y

′′
i ,yi)〉]

∣∣∣∣
+

}
+

1

2
‖w‖2 (9)

= min
w

∑
i

{
C1

∣∣∣∣ max
y′
i∈Yi

[Δ(zi,y
′
i) + 〈w, Ψi(xi,y

′
i)〉]− max

yi∈Yi

[〈w, Ψi(xi,yi)〉 −Δ(zi,yi)]

∣∣∣∣
+

+

C2

∣∣∣∣ max
y′′
i ∈Y/Yi

[Δ(zi,y
′′
i ) + 〈w, Ψi(xi,y

′′
i )〉]− max

yi∈Yi

[〈w, Ψi(xi,yi)〉 −Δ(zi,yi)]

∣∣∣∣
+

}
+

1

2
‖w‖2

(10)

where zi’s are labels initialized at the beginning of each CCCP iteration. As
Δ(·, ·) meets the triangle inequality, Equation (10) upper bounds Equation (7).

Now we can construct an upper bound for the concave term. In each CCCP
iteration we substitute the concave term

max
yi∈Yi

[〈w, Ψ(xi,yi)〉 −Δ(zi,yi)] (11)

with term 〈w, Ψ(xi,yi)〉 −Δ(zi,yi),
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Algorithm 1. The CCCP algorithm

1: Input: data with weak supervision {(xi, Yi)}Ni=1}
2: Initialize labels {yi}Ni=1

3: repeat
4: Solve the convex optimization problem given by Equation (15)
5: Set labels {yi}Ni=1 to be the current prediction of structured instances {xi}Ni=1

given by current model
6: until convergence to a local minimum

where

yi = argmax
yi∈Yi

[〈w, Ψ(xi,yi)〉 −Δ(zi,yi)] (12)

At the beginning of each CCCP iteration we initialize

zi = argmax
zi∈Yi

〈w, Ψ(xi, zi)〉 (13)

Then it follows that yi = zi, indicating that we could directly initialize yi’s as

yi = argmax
yi∈Yi

〈w, Ψ(xi,yi)〉. (14)

In this way, we are essentially setting yi to be the predicted labels of struc-
tured instances given by current model. Then the optimization problem in each
iteration of CCCP becomes

min
w

N∑
i=1

[
− (C1 + C2)〈w, Ψ(xi,yi)〉+ C1 · max

y′
i∈Yi

(Δ(yi,y
′
i) + 〈w, Ψ(xi,y′

i)〉)

+ C2 · max
y′′
i ∈Y/Yi∪{yi}

(Δ(yi,y
′′
i ) + 〈w, Ψ(xiy′′

i )〉)
]

(15)

where yi’s are initialized as Equation (14). The CCCP procedure is shown in Al-
gorithm 1.

4.2 Accelerating with 2-Slack Cutting Plane Algorithm

In each iteration the optimization problem of Equation (15) can be solved us-
ing standard quadratic programming. However, the huge number of constraints
prevents us from solving it efficiently. We employ the Cutting Plane (CP) al-
gorithm [19,17] to accelerate training. However, in contrast to the original CP
for structured SVM [17], in this problem we have two sets of constraints (cor-
responding to C1 and C2 respectively) and we want to find the solution that
satisfies them with specified precision separately. Thus we need to maintain two
constraint sets Ω1 and Ω2, and set two precision ε1 and ε2 for them respec-
tively. To find the most violated label setting in candidate labeling sets and
non-candidate labeling sets, we employ a modified Viterbi algorithm, which will
run in polynomial time of |x| for each instance x (For details of the modified
Viterbi algorithm please refer to the supplementary material). The sketch of the
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2-slack cutting plane algorithm is described in Algorithm 1 in the supplementary
material. We also show that the algorithm will converge in at most a non-trivial
fixed number of iterations. For the details please refer to Theorems 4 & 5 in
Section 4 of the supplementary material.

5 Experiments

We performed experiments on three sequence labeling tasks including part-of-
speech tagging (POS), chunking (CHK) and bio-entity recognition (BNE).

5.1 Tasks and Data Sets

POS: This task aims to assign each word of a sentence a unique tag indicating
its linguistic category such as noun, verb, etc. We used the Penn Treebank [22]
corpus with the parts extracted from the Wall Street Joural (WSJ) in 1989.

CHK: This task aims to divide a sentence into constituents that are syntactic
groups such as noun groups, verb groups etc. We use the same data set in the
shared task of Chunking in CoNLL 20001 [30].

BNE:This task aims to identify technical terms and tag them in some predefined
categories. We used the same dataset in the Bio-Entity Recognition Task at
BioNLP/NLPBA 20042 [20].

5.2 Baseline Methods

Our method, denoted by CLLP, was implemented based on the SVMhmm pack-
age3 to fit with sequence labeling tasks. We compared CLLP with the following
methods that are able to handle sequences with candidate labels:

Gold: We trained an SVMhmm predictor with ground truth full labels. The
performance of Gold would be an upper bound of the performance of CLLP.

NAIVE: For each token, we randomly picked one label from its candidate labels
as its true label and trained a SVMhmm predictor.

CL-SVMhmm: We treated all the candidate labels as true labels. Each se-
quence appeared in the training set multiple times with different labels. Then
an SVMhmm predictor was trained on the self-contradictory labeled sequences.
Similar methods have been used as baselines in [2,14].

MMS: This method was originally proposed in [14]. We made modifications as
stated in Section 4 to deal with the sequence data.

All of the above methods were implemented based on the SVMhmm package.
For all the experiments, we selected cost parameters C, C1 and C2 from the grids

1 http://www.clips.ua.ac.be/conll2000/chunking/
2 http://www.nactem.ac.uk/tsujii/GENIA/ERtask/report.html
3 http://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html

http://www.clips.ua.ac.be/conll2000/chunking/
http://www.nactem.ac.uk/tsujii/GENIA/ERtask/report.html
http://www.cs.cornell.edu/people/tj/svm_light/svm_hmm.html
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[500 : 150 : 3200]. In MMS and CLLP, each CCCP iteration was a cutting plane
optimization procedure whose iteration number was controlled by the parameters
ε (for MMS) and ε1 and ε2 (for CLLP). Training too aggressively (with ε’s that
are too small) in the first several CCCP iterations would prevent the algorithm
from recovering from the wrongly initialized labels. Thus we initialized ε (for
MMS) and ε1 and ε2 (for CLLP) to be large at first, and then divided ε’s
by a discounter d in each iteration until they were less than or equal to some
thresholds t, t1 and t2. We set the discounter to be 2 and choose thresholds from
grids [0.5 : 0.5 : 3].

5.3 Experiments on Artificial Candidate Labels

Originally, these three data sets did not contain any candidate labels as super-
vision. We followed [14] to generate artificial candidate labels for them. In this
way we were able to perform controlled experiments and study the impact of
different labeling settings such as the size of the candidate set.

Candidate Label Generation
The following two methods were adopted to generate candidate labels. For
both,we took each individual token as a local part, i.e., we provided candidate
labels for each token, where the number of candidate labels was specified by
the token’s candidate labeling size. The two methods were used to control label
ambiguity at the sequence level and token level respectively.

Random Generation: This method was used to control the label ambiguity at
the sequence level. Each token in the sequence had an initial candidate labeling
size of 1 (which is its true label). We randomly chose n tokens sequentially (not
necessarily non-overlapping) and doubled their candidate labeling size. We then
generated candidate labels for each token according to the label distribution in
the training data, which already contained label bias.

Specified Generation: This method was used to control the label ambiguity at
the token level. For all sequences, we restricted all the candidate labeling sizes
to be a constant m, and randomly generated m different candidate labels for
each token, among which only one was correct.

The NAIVE, MMS and CLLP methods require label initializations. We ran-
domly picked one label from the candidate labels for each token as its initial label.

Results

Data Sets with Random Generation

We varied n from 1 to 16. Performances of various methods on 3 different data
sets were plotted in Figure 1, from which we can make observations:

First, CLLP was more stable against different numbers of candidate labels
compared to NAIVE and CL-SVMhmm. In addition, CL-SVMhmm was not
scalable with a large number of candidate labels. When n exceeds 6, several
days are needed for training.



346 C. Li, J. Zhang, and Z. Chen

4 8 12 16
0.04

0.06

0.08

0.1

0.12

0.14

(a)
n

T
ok

en
 L

ev
el

 E
rr

or
 R

at
e

4 8 12 16

0.04

0.06

0.08

0.1

0.12

0.14

(b)
n

T
ok

en
 L

ev
el

 E
rr

or
 R

at
e

4 8 12 16

0.07

0.08

0.09

0.1

0.11

0.12

0.13

0.14

(c)
n

T
ok

en
 L

ev
el

 E
rr

or
 R

at
e

 

 
CL−SVM

Naive

Gold

MMS

MCL

Fig. 1. The performances of various methods on data sets POS (a), CHK (b) and BNE
(c). We only plotted a few points of CL-SVMhmm because as the number of candidate
label grows, it immediately becomes unfeasible in time.

Second, the gap between CLLP and MMS was small, especially with regards
to CHK. This phenomenon resulted from the small number of candidate labels.
With the random generation of candidate labels, even when n was large, there
were still tokens that had only one candidate label that was exactly its true
label. This fact prevented CLLP from taking advantage of its objective of better
approximation then MMS, and made the gap between them negligible. However,
the gap will be more visible when the number of candidate labels is large, as
shall be seen in Figure 2 of Section 5.3.

Last, the CLLP method beats all the other methods and performed close to
the full supervised SVMhmm. This clearly shows the effectiveness and scalability
of CLLP versus other methods.

Data Sets with Specified Generation

We variedm from 1 to 7 to see how the token-wise candidate labeling size affected
the performance. We report the results on the CHK data set in Figure 2 (a).

The results indicate the gap between MMS and CLLP becomes more visible
as m increases. This phenomenon mainly results from poor approximation of the
objective of MMS.

In the objective 8, MMS considered only the margin between the most possible
candidate labels and the most possible non-candidate labels. When the number
of candidate labels was large, there were fewer non-candidate labels for the MMS
optimizer to choose constraints from. In contrast, CLLP considers constraints
from both the candidate labeling set and the non-candidate labeling set. This
strategy is beneficial when the number of candidate labels is large.

We also observed that CLLP was less sensitive to the initialization error when
compared to other methods, Due to the fact that initialization error increases as
m increases. We conducted an auxiliary experiment at m = 5 to further investi-
gate. We varied the initialization error rate from 0.5 to 0.8. Note that when the
initialization error was 0.8, the initial labels were actually totally random. Under
this setting, the performances of various methods are reported in Figure 2 (b).
Based on the results, the initialization error rate did have a significant impact on
the performances of these models. However, its influence on CLLP was limited
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Fig. 2. Impact of model parameters on the performances of various methods. (a) Im-
pact of m with totally random label initialization. (b) Impact of initialization error
rate with m = 5.
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Fig. 3. The convergence curves of CLLP with different discounters d

compared to other methods, showing the stability of CLLP against the different
initialization error rates.

Impact of Parameter d

We conducted this experiment to verify the impact of the discounter d on the
convergence of CLLP. The experiment was done on the POS data set with ran-
dom generation and n was fixed at 16. We varied the number of iterations from
1 to 10, and set the discounter d to grids [2 : 5] to see the impact.The results
are reported in Figure 3.

The results show the algorithm converged quickly, e.g., in 4 to 5 iterations.
Even if we chose an inappropriate d (say, d = 2), the algorithm still converged in
6 iterations, showing the efficiency and robustness of the algorithm. The speed
of convergence seems to be positively correlated with the value of d. However,
the impact was limited. Actually it made little sense to choose a very large value
for d, since the algorithm would simply do nothing in the first several CCCP
iterations and would set wrong labels for the following training procedure.



348 C. Li, J. Zhang, and Z. Chen

5.4 Real Application: POS Tagging with Dictionaries

We also conducted an experiment on the real application of POS tagging with
dictionaries. Our goal was to train a POS tagger without any labeled sentences
but only require a word dictionary indicating the possible POS tags of each
word, which is easy to obtain from various kinds of linguistic dictionaries. This
problem has been studied before in NLP and some specific methods have been
proposed [23,28,25,9]. We noticed that this is a typical example of structured
output learning with CLLP: by matching the dictionary back to each sentence,
we obtained the candidate POS tags for the matched words. We found that our
general algorithm is competitive with the state-of-the-art methods, i.e., “Min-
Greedy” [25] and its various extensions [9].

Following the settings in previous methods, we used a corpus extracted from
the Wall Street Joural (WSJ) in 1989 in Penn Treebank [22]. Sections 00-07,
with golden labels, were used to construct the tag dictionary. Then the first
48000/96000 words of sections 16-18 without any labels were used as the raw
training set. Sections 19-21 were used as the development set and 22-24 as the
test set.

In standard CLLP, the initial labels are randomly chosen from the candi-
date labels, without any task-specific prior incorporated into the algorithm. In
[9], several ways of label initializations have been proposed. We used some of
these methods to initialize labels for CLLP, noted as “CLLP + auto-supervised”
and “CLLP + auto-supervised + emission initialization.” The best performance
shown in [9] was achieved by MinGreedy with full extensions (method 10 in the
original paper), where a full-supervised HMM was trained using initialized labels
output by MinGreedy. We also used the output of MinGreedy as our initializa-
tion for CLLP, noted as “CLLP + MinGreedy with extensions.” The MinGreedy
code is provided by the authors4. More details on dictionary construction and
label initialization can be found in [25,9].

The results are shown in Tabel 1. CLLP outperformed all the other unitary
methods without the task (POS) specific initializations. With the proper initial-
ization of labels, CLLP is able to further improve the results. Remarkably, by
using the output labels of MinGreedy with full extensions as label initialization,
CLLP is able to outperform all the other methods.

5.5 Real Application: Wiki Entity Type Disambiguation

We conducted another experiment on a real problem of Wiki entity type dis-
ambiguation. This is an example of CLLP degenerating to handle multiclass
classification.

Traditionally, in order to train an NER model, we need sentence-level labels.
Similar to POS tagging with dictionaries, we attempted to train an NER model
without any sentence labels and only requiring an entity dictionary indicating the

4 https://github.com/dhgarrette/type-supervised-tagging-2012emnlp

https://github.com/dhgarrette/type-supervised-tagging-2012emnlp
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Table 1. POS tagging accuracy of different methods

Methods 48000 96000

GOLD 94.40 94.77
NAIVE 65.33 66.79
MMS 67.68 69.51
CLLP 76.74 76.56

MinGreedy [25] 68.86 74.93

MinGreedy + auto-supervised [9] 80.78 80.90
MinGreedy + auto-supervised + emission initialization [9] 80.92 80.70

MinGreedy with extensions [9] 87.95 86.22
CLLP + auto-supervised 82.90 82.22

CLLP + auto-supervised + emission initialization 82.89 82.22
CLLP + MinGreedy with extensions 89.87 88.47

possible types of an entity, which can be easily obtained from many knowledge
bases such as Freebase5.

We conducted the experiments based on Freebase and Wikipedia articles. In
some sentences of a Wikipedia article, there is an anchor link to indicate the
phrase is an entity in Wikipedia and will redirect to the host article page if a
user clicks it. For each entity highlighted by the anchor link, we can find the
corresponding entity types in Freebase. We then obtained a set of multiclass
training instances: an entity in a sentence, and the corresponding candidate
labels. We selected 20 entity types plus an “Other” type. We randomly sampled
500 entities to manually label as the test set, and sampled 9991 entities as the
training set. As each entity was associated with a candidate “Other” label, the
“Other” class dominated other classes. Thus we sampled the “Other” class by
assigning “Other” to an entity with a probability of 0.1. The the classes were
therefore more balanced.

Table 2. Results on Wiki data

F1 Precision Recall

NAIVE 64.83 57.79 73.82
MMS 54.02 47.70 62.30
CLLP 69.69 61.52 80.37

The results are shown in Tabel 2. We found that MMS was even worse than
NAIVE. The main reason for this phenomenon still draws from the objective
that MMS aims to minimize. With the large number of “Others” labels, MMS
either took it as the most possible candidate label, or simply ignored it since
it was not a non-candidate label. Thus it proned to predicting many entities to
“Others.” Things became even worse when we added more “Others” labels to
the training data. When we associated all the instances with an extra “Others”

5 http://www.freebase.com

http://www.freebase.com
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label, MMS simply predicted all the entities were “Others.” In contrast, CLLP
overcame this problem by using two sets of constraints and outperformed the
other two methods.

6 Conclusion

In this paper, we introduced a new weakly supervised setting for structured
output learning, named candidate labels for local parts (CLLP), where a set
of candidate labels is provided for each local part of output variables. We have
shown that training with this type of weak supervision can be efficiently handled.
Then we proposed a large-margin formulation for the learning problem, and used
proper approximations and Constraint Concave-Convex Procedure (CCCP) to
deal with the non-convex optimization problem. A 2-slack cutting plane method
has also been proposed to accelerate the inner loop of CCCP. Experiments on
various tasks have shown the effectiveness and efficiency of the proposed method.
It is interesting that the CLLP setting is rather general, and is able to degenerate
to various weakly supervised setting for both structured output learning and
multiclass classification. Thus the CLLP setting and the proposed large-margin
learning method provide a uniform approach to formulate and solve structured
output learning with different kinds of weak supervision.
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Abstract. Real-world problems usually exhibit dual-heterogeneity, i.e.,
every task in the problem has features from multiple views, and multi-
ple tasks are related with each other through one or more shared views.
To solve these multi-task problems with multiple views, we propose a
shared structure learning framework, which can learn shared predictive
structures on common views from multiple related tasks, and use the con-
sistency among different views to improve the performance. An alternat-
ing optimization algorithm is derived to solve the proposed framework.
Moreover, the computation load can be dealt with locally in each task
during the optimization, through only sharing some statistics, which sig-
nificantly reduces the time complexity and space complexity. Experimen-
tal studies on four real-world data sets demonstrate that our framework
significantly outperforms the state-of-the-art baselines.

Keywords: Multi-task Learning, Multi-view Learning, Alternating
Optimization.

1 Introduction

In many practical situations, people need to solve a number of related tasks,
and multi-task learning (MTL) [5–7, 20] is a good choice for these problems.
It learns multiple related tasks together so as to improve the performance of
each task relative to learning them separately. Besides, many problems contain
different “kinds” of information, that is, they include multi-view data. Multi-view
learning (MVL) [3, 8, 19] can make better use of these different views and get
improved results. However, many real-world problems exhibit dual-heterogeneity
[14]. To be specific, a single learning task might have features in multiple views
(i.e., feature heterogeneity); different learning tasks might be related with each
other through one or more shared views (features) (i.e., task heterogeneity).
One example is the web page classification problem. If people want to identify
whether the web pages from different universities are course home pages, then
classifying each university can be seen as a task. Meanwhile, every web page
has different kinds of features, one kind is the content of the web page, and the
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other kind is the anchor text attached to hyperlinks pointing to this page, from
other pages on the web. Such problem type is Multi-task learning with Multiple
Views (MTMV). However, traditional multi-task learning or multi-view learning
methods are not very suitable as they cannot use all the information contained
in the problem.

In supervised learning, given a labeled training set and hypothesis space H, the
goal of empirical risk minimization (ERM) is to find a predictor f ∈ H that min-
imizes empirical error. The error of the best predictor learned from finite sample
is called the estimation error. The error of using a restricted H is often referred
to as the approximation error, from the structure risk minimization theory [21].
One needs to select the size of H to balance the trade-off between approxima-
tion error and estimation error. This is typically done through model selection,
which learns a set of predictors from a set of candidate hypothesis spaces Hθ,
and then chooses the best one. When multiple related tasks are given, learning
the structure parameter Θ in the predictor space becomes easier [1, 6]. Also,
different tasks can share information through the structure parameter Θ, i.e.,
for each task t, ft ∈ Ht,Θ. MTMV learning methods that can make full use of
information contained in multiple tasks and multiple views are proposed [14, 25].
The transductive algorithm IteM2 [14] can only deal with nonnegative feature
values. regMVMT algorithm [25] shares the label information among different
tasks by minimizing the difference of the prediction models for different tasks.
Without prior knowledge, simply restricting all the tasks are similar seems in-
appropriate. This paper assumes that multiple tasks share a common predictive
structure, and they can do model selection collectively. Compared to other meth-
ods to learn good predictive structures, such as data-manifold methods based
on graph structure, our method can learn some underlying predictive functional
structures in hypothesis space, which can characterize better predictors.

To facilitate information sharing among different tasks on multi-view repre-
sentation, in this paper, we propose an efficient inductive convex shared struc-
ture learning for MTMV problem (CSL-MTMV). Our method learns shared
predictive structures on hypothesis spaces from multiple related tasks that have
common views; consequently, all tasks can share information through the shared
structures. In this way, the strict assumption in the previous MTMV methods
that all the tasks should be similar can be discarded. We assumed that the under-
lying structure is a shared low-dimensional subspace, and a linear form of feature
map is considered for simplicity. Furthermore, it uses the prediction consistency
among different views to improve the performance. Besides, some tasks may not
have all the views in many real applications. To deal with missing views, a direct
extension of our algorithm is provided. Our method is more flexible than pre-
vious inductive MTMV algorithm regMVMT [25]. Specifically, regMVMT can
be seen as a special case of CSL-MTMV, which means our approach is more
generalized and has a potential to get better results. In addition, different from
regMVMT, our method decouples different tasks during the model optimization,
which significantly reduces the time complexity and space complexity. Therefore,
our method is more scalable for problems with large number of tasks.
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The rest of this paper is organized as follows. A brief review of related work
is given in Section 2. The MTMV problem definition and some preliminary
works are presented in Section 3. Our shared structure learning framework for
MTMV problem and a convex relaxation algorithm are described in Section 4.
To demonstrate the effectiveness of our algorithm, some experimental results are
shown in Section 5. Conclusion is provided in Section 6.

2 Related Work

Currently, there are only a few researches on multi-task problem with multi-
view data (MTMV). The traditional multi-task learning and multi-view learning
methods also provide some insights for the MTMV problem. In the following, a
brief description of these methods is given.

Multi-Task Learning (MTL). Multi-task learning conducts multiple related
learning tasks simultaneously so that the label information in one task can be
used for other tasks. The earliest MTL method [5] learns a shared hidden layer
representation for different tasks. Supposing that all the tasks are similar, a
regularization formulation is proposed for MTL [11]. MTL can be modeled by
stochastic process methods, such as [20, 24]. Multi-task feature learning learns
a low-dimensional representation which is shared across a set of multiple related
tasks [2, 15]. To deal with outlier tasks, a robust multi-task learning algorithm
is proposed [7]. The methods to learn predictive structures on hypothesis spaces
from multiple learning tasks are also proposed [1, 6].

Multi-View Learning (MVL). The basic idea of MVL is making use of the
consistency among different views to achieve better performance. One of the
earliest works on multi-view learning is co-training algorithm [3], which uses one
view’s predictor to enlarge the training set for other views. Nigam and Ghani
compared co-training, EM and co-EM methods, and showed that co-EM al-
gorithm is the best among the three approaches [17]. Some improvements of
co-training algorithm are also proposed [16, 23]. Other methods are based on co-
regularization framework. Sindhwani et al. [18] proposed a learning framework
for multi-view regularization. SVM-2K [12] is a method which uses kernels for
two views learning. Sindhwani and Rosenberg [19] constructed a single Reproduc-
ing Kernel Hilbert Spaces (RKHSs) with a data-dependent “co-regularization”
norm that reduces MVL to standard supervised learning. Chen et al. [8] pre-
sented a large-margin learning framework to discover a predictive latent subspace
representation shared by multiple views.

Multi-Task Learning with Multiple Views (MTMV). He and Lawrence
[14] proposed a graph-based framework which takes full advantage of information
among multiple tasks and multiple views, and an iterative algorithm (IteM2) is
proposed to optimize the model. The framework is transductive which cannot
predict the unseen samples. It can only deal with problems with nonnegative
feature values. regMVMT [25] uses co-regularization to obtain functions that
are consistent with each other on the unlabeled samples for different views.
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Across different tasks, additional regularization functions are utilized to ensure
the learned functions are similar. The assumption that all the tasks are sim-
ilar to each other may not be appropriate. Different tasks are coupled in the
computation process of regMVMT algorithm, making the model becoming more
complex and requires more memory to store the data.

3 Preliminaries

3.1 MTMV Problem Definition

Notations. In this paper, [m : n] (n > m) denotes a set of integers in the range
of m to n inclusively. Let S+ be the subset of positive semidefinite matrices.
Denote A * B if and only if B − A is positive semidefinite. Let tr(X) be the
trace of X , and X−1 be the inverse of matrix X . ‖·‖ denotes �2 norm of a vector.
Unless specified otherwise, all vectors are column vectors.

In this part, a formal introduction of MTMV problem is given. The problem
definition is very similar to [14, 25]. Suppose that the problem includes T tasks
and V views in total. Also, N labeled and M unlabeled data samples are given.
Usually, the labeled examples are insufficient while the unlabeled samples are
abundant, i.e. M + N . For each task t ∈ [1 : T ], there are nt and mt labeled
and unlabeled examples, thus we have N =

∑
t nt and M =

∑
tmt. Let dv be

the number of features in the view v ∈ [1 : V ], and denote D =
∑
v dv.

The feature matrix Xv
t ∈ Rnt×dv is used to denote the labeled samples in task

t for view v, the corresponding unlabeled examples is denoted P vt ∈ Rmt×dv . Let
yt ∈ {1,−1}nt×1 be the label vector of the labeled examples in the task t.
Xt = (X1

t , X
2
t , . . . , X

V
t ), and Pt = (P 1

t , P
2
t , . . . , P

V
t ) are concatenated feature

matrices of the labeled and unlabeled examples for task t, respectively. It is
common that in some applications not all tasks have features available from all
the V views, so an indicator matrix Iid ∈ {1, 0}T×V is used to mark which view
is missing from which task, i.e. Iid(t, v) = 0 if the task t does not contain v-th
view, and = 1 otherwise. This notation can only handle “structured” missing
views [25] in the sense that if a view is present in a task, it is present in all
the samples in the task; if a view is missing from a task, it is missing in all the
samples in the task. Throughout the paper we use subscripts to denote tasks
and superscripts to denote views. So the goal of this paper is to leverage the
label information from all the tasks to help classify the unlabeled examples in
each task, as well as use the consistency among different views of a single task
to improve the performance.

3.2 Shared Structure Learning for MTL

Shared structure learning has been successfully used in single view multi-task
learning (MTL) problems [1, 6], that is, V = 1 in the MTMV problem described
in Section 3.1. In MTL, suppose the dimension of the feature space is d, and the
objective is to learn linear predictors ft(x) = u�t x, for t ∈ [1 : T ], where ut is
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the weight vector for the t-th task. For shared structure learning, it is assumed
that the underlying structure is a shared low-dimensional subspace, and a linear
form of feature map is considered for simplicity. The predictors {ft}Tt=1 can
be learned simultaneously by exploiting a shared feature space. Formally, the
prediction function ft can be expressed as:

ft(x) = u�t x = w�
t x+ z�t Θx (1)

where the structure parameter Θ takes the form of an h × d matrix with or-
thonormal rows, i.e., ΘΘ� = I.

In [6], an improved alternating structure optimization (iASO) formulation is
given:

min
{ut,zt},ΘΘ�=I

T∑
t=1

(
1

nt

nt∑
i=1

L (ft(xt,i) , yt,i) + gt(ut, zt, Θ)

)
(2)

where gt(ut, zt, Θ) is the regularization function defined as:

gt(ut, zt, Θ) = α‖ut −Θ�zt‖2 + β‖ut‖2. (3)

The regularization function in Eq.(3) controls the task relatedness (via the first
component) as well as the complexity of the predictor functions (via the sec-
ond component) as commonly used in traditional regularized risk minimization
formulation for supervised learning. α and β are pre-specified coefficients, in-
dicating the importance of the corresponding regularization component. This
formulation provides the foundation for our MTMV learning methods.

4 Shared Structure Learning for MTMV Problem

4.1 Shared Structure Learning Framework for MTMV Problem

A straightforward way to use the single view multi-task learning (MTL) methods
described in Section 3.2 is as follows. First, the prediction model for each view
data is learned individually, so the MTMV problem can be divided into V MTL
problems. Then, a model for each view v in each task t is acquired, represented
by fvt (x

v
t ) with the following formulation:

fvt (x
v
t ) = uvt

�xvt = wvt
�xvt + zvt

�Θvxvt , (4)

where uvt , w
v
t and zvt have similar meanings as in Eq.(1), structure parameter

Θv represents the low-dimensional feature map for view v across different tasks.
The basic assumption underlying multi-view learning for a single task is that the
multiple views are conditionally independent and the predictive model of each
view can be used to make predictions on data examples, then the final models
are obtained according to these models. Without prior knowledge on which view
contributes more to the final models than other views, it is often assumed that
all views contribute equally, as described in [19]. The final model for task t in
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MTMV problem is obtained by averaging the prediction results from all view
functions as follows:

ft(xt) =
1

V

V∑
v=1

fvt (x
v
t ), (5)

where xt = [x1t
�
, x2t

�
, . . . , xVt

�
]� is the concatenated feature vector of the sam-

ples for task t.
However, in MTMV problem, it is worthwhile to make better use of the infor-

mation contained in different views, not just only decompose into separate MTL
problems. The models built on each single view will agree with one another as
much as possible on unlabeled examples. Co-regularization is a technique to en-
force such model agreement on unlabeled examples. Adding this into the model,
we obtain the following formulation :

min
{uv

t ,z
v
t ,Θ

v},Θv(Θv�)=I

T∑
t=1

V∑
v=1

(
1

nt

nt∑
i=1

L
(
fvt (x

v
t,i), yt,i

)
+ gvt (u

v
t , z

v
t , Θ

v)

+γ
1

mt

mt∑
j=1

∑
v′ �=v

(
fv

′

t (pv
′

t,j)− fvt (p
v
t,j)
)2)

(6)

where L is the empirical loss function, xvt,i is the feature representation for the

v-th view of i-th labeled sample in task t, pvt,j ( p
v′

t,j) is the feature representation
for the v-th (v′-th) view of j-th unlabeled sample in task t, gvt (u

v
t , z

v
t , Θ

v) is the
regularization function defined as:

gvt (u
v
t , z

v
t , Θ

v) = α‖uvt −Θv�zvt ‖2 + β‖uvt ‖2, (7)

where the structure parameter Θv is a h×dv matrix. The regularization function
in Eq.(7) controls the task relatedness as well as the complexity of the predictor
models. So, the optimization problem described in Eq.(6) can take advantage of
multiple views and multiple tasks simultaneously.

4.2 A Relaxed Convex Formulation

The problem in Eq.(6) is non-convex and difficult to solve due to its orthonormal
constraints and the regularization in terms of uvt , z

v
t and Θv (suppose L is

convex loss function). Converting it into a convex formulation is desirable. The
optimal {zvt } for the problem in Eq.(6) can be expressed as zvt = Θvuvt . Let
Uv =[uv1, u

v
2, . . . , u

v
T ]∈ Rdv×T and Zv =[zv1 , z

v
2 , . . . , z

v
T ]∈ Rh×T , so Zv = ΘvUv.

Then we denote:

G0(U
v, Θv) = min

Zv

T∑
t=1

gvt (u
v
t , z

v
t , Θ

v) = αtr
(
Uv�((1 + η)I −Θv�Θv)Uv

)
(8)

where η = β/α > 0. Eq.(8) can be reformulated into an equivalent form given
by

G1(U
v, Θv) = αη(1 + η)tr

(
Uv�(ηI +Θv�Θv)−1Uv

)
. (9)



Shared Structure Learning for MTMV Problem 359

The orthonormality constraint on Θv is non-convex, which makes the optimiza-
tion problem non-convex. One method is to relax the feasible domain of it into
a convex set. Let Mv = Θv�Θv, using a similar derivation as in [6], the feasible
domain of the optimization problem can be relaxed into a convex set, and a
convex formulation of the problem in Eq.(6) can be defined as follows:

min
{uv

t ,M
v}

T∑
t=1

V∑
v=1

(
1

nt

nt∑
i=1

L
(
fvt (x

v
t,i), yt,i

)
+ γ

1

mt

mt∑
j=1

∑
v′ �=v

(
fv

′

t (pv
′

t,j)− fvt (p
v
t,j)
)2)

+

V∑
v=1

G2(U
v,Mv), subject to : tr(Mv) = h,Mv * I,Mv ∈ S+, (10)

where G2(U
v,Mv) is defined as:

G2(U
v,Mv) = αη(1 + η)tr

(
Uv�(ηI +Mv)−1Uv

)
. (11)

Note that the problem in Eq.(10) is a convex relaxation of that in Eq.(6). The
optimal Θv to Eq.(6) can be approximated using the top h eigenvectors (corre-
sponding to the largest h eigenvalues) of the optimalMv computed from Eq.(10).

4.3 Convex Shared Structure Learning Algorithm

The optimization problem in Eq.(10) is convex, so the globally optimal solution
can be obtained. In this section, a convex shared structure learning algorithm for
MTMV problem (CSL-MTMV) is presented. In CSL-MTMV algorithm, the two
optimization variables are optimized alternately, that is, one variable is fixed,
while the other one can be optimized according to the fixed one. The methods
are described in the following, and the final algorithm is in Algorithm 1.

Computation of {Uv} for Given {Mv}. In Eq.(10), if {Mv} are given,
it can be easily found that the computation of uvt for different tasks can be
decoupled, that is, different tasks’ weight vectors can be computed separately.
Suppose the least square loss function is used where:

L
(
fvt (x

v
t,i), yt,i

)
= (uvt

�xvt,i − yt,i)
2. (12)

We denote the objective function in Eq.(10) as F , and the derivative regarding
to each uvt is:

∂F

∂uvt
=

2

nt

nt∑
i=1

(uvt
�xvt,i − yt,i)x

v
t,i + γ

2

mt

mt∑
j=1

∑
v′ �=v

(
uvt

�pvt,j − uv
′

t

�
pv

′

t,j

)
pvt,j

+ 2αη(1 + η)(ηI +Mv)−1uvt

(13)
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For convenience, the following notations are given:

Avt =
2

nt
Xv
t
�Xv

t + γ
2

mt
(V − 1)P vt

�P vt + 2αη(1 + η)(ηI +Mv)−1

Bvv
′

t = −γ 2

mt
P vt

�P v
′

t , Cvt =
2

nt
Xv
t
�yt

(14)

where Xv
t , P

v
t and yt are described in Section 3.1. By setting Eq.(13) to zero

and rearranging the terms, the following equation can be obtained:

Avtu
v
t +

∑
v′ �=v

Bvv
′

t uv
′

t = Cvt . (15)

From Eq.(15), uvt is correlated with other uv
′

t for the same task t, i.e., the views
of the same task are correlated. uvt and u

v
t′ from different tasks are not correlated.

Therefore, the uvt of different tasks can be computed separately, while the differ-
ent views for the same task must be solved together. Note that such an equation
can be obtained for each view v in task t. By combining these equations, the
following linear equation system can be obtained for each task t:

LtWt = Rt (16)

where Lt ∈ RD×D is a symmetric block matrix with V × V blocks. The specific
forms of the symbols in Eq.(16) are as follows:

Lt =

⎡⎢⎢⎢⎣
A1
t B12

t · · · B1V
t

B21
t A2

t · · · B2V
t

...
...

. . .
...

BV 1
t BV 2

t · · · AVt

⎤⎥⎥⎥⎦
Wt = Vec

(
[u1t , u

2
t , · · · , uVt ]

)
, Rt = Vec

(
[C1
t , C

2
t , · · · , CVt ]

)
(17)

where Vec() denotes the function stacking the column vectors in a matrix to a
single column vector. For each task t, an equation system described in Eq.(16)
is constructed and solved. The optimal solution of {uvt } can be easily obtained
by left multiplication of the (pseudo-) inverse of matrix Lt.

Computation of {Mv} for Given {Uv}. For given {Uv}, in Eq.(10), differ-
ent Mv are not correlated, they can be computed separately. For each view v,
the following problem can be obtained:

min
Mv

tr
(
Uv�(ηI +Mv)−1Uv

)
, subject to : tr(Mv) = h,Mv * I,Mv ∈ S+ (18)

This problem is a semidefinite program (SDP), where direct optimization is
computationally expensive. An efficient approach to solve it is described in the
following. Let Uv = P1ΣP

�
2 be its singular value decomposition (SVD), where

P1 ∈ Rdv×dv and P2 ∈ RT×T are column-wise orthogonal, and rank(Uv) = q. In
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general, q ≤ T ≤ dv, we also suppose that the dimension h of the shared feature
space for the T tasks satisfies h ≤ q. Then,

Σ = diag(σ1, · · · , σT ) ∈ Rdv×T , σ1 ≥ · · · ≥ σq > 0 = σq+1 = · · · = σT . (19)

Consider the following optimization problem:

min
γi

q∑
i=1

σ2i
η + γi

, subject to :

q∑
i=1

γi = h, 0 ≤ γi ≤ 1, ∀i, (20)

where {σi} are the singular values of Uv defined in Eq.(19), this optimization
problem is convex [4]. The problem in Eq.(20) can be solved via many existing
algorithms such as the projected gradient descent method [4].

Chen et al. [6] show that how to transform the SDP problem in Eq.(18) into
the convex optimization problem in Eq.(20). Specifically, let {γ∗i } be optimal
to Eq.(20) and denote Λ∗ = diag(γ∗1 , · · · , γ∗q , 0)∈ Rdv×dv . Let P1 ∈ Rdv×dv be

orthogonal consisting of the left singular vectors of Uv. Then Mv∗ = P1Λ
∗P�

1 is
an optimal solution to Eq.(18). In addition, by solving the problem in Eq.(20)
we obtain the same optimal solution and objective value as Eq.(18).

Algorithm 1. Convex shared structure learning algorithm for MTMV problem
(CSL-MTMV)

Input:
{yt}Tt=1, {Xt}Tt=1, {Pt}Tt=1, α, β, γ, h

Output:
{Uv}Vv=1, {Zv}Vv=1, {Θv}Vv=1

Method:
1: Initialize {Mv}Vv=1 that satisfy the constraints in Eq.(18);
2: repeat
3: for t = 1 to T do
4: Construct Av

t , B
vv′
t , Cv

t defined in Eq.(14);
5: Construct Lt,Rt defined in Eq.(17);
6: Compute Wt = L−1

t Rt;
7: end for
8: for v = 1 to V do
9: Compute the SVD of Uv = P1ΣP�

2 ;
10: Compute the optimal values of {γ∗

i } for problem in Eq.(20);
11: Denote Λ∗ = diag(γ∗

1 , · · · , γ∗
q , 0), and compute Mv = P1Λ

∗P�
1 ;

12: end for
13: until convergence criterion is satisfied.
14: For each v, construct Θv using the top h eigenvectors of Mv ;
15: Compute Zv = ΘvUv;
16: return {Uv}Vv=1, {Zv}Vv=1, {Θv}Vv=1.
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4.4 Dealing with Missing-View Data

In the previous sections, we only consider the ideal case that all tasks in a
data set have complete data. When incomplete data is involved in the MTMV
learning, the problem becomes more challenging. We aim to handle the case of
“structured” missing views as described in [25]. That is, if a view is missing from
a task, it is missing in all the samples in the task. Of course, partially observed
views (i.e. some views are missing only in a part of samples in a task) are more
difficult to deal with, which is beyond the scope of this paper.

In our MTMV learning framework, it is easy dealing with structured missing
views. Let Vt ≤ V denote the real number of views contained in task t and
Tv ≤ T denote the number of tasks contain view v. When computing {Uv} for
given {Mv}, if view v is missing from task t, the variables related to view v in
Eq.(16) are all useless, including uvt in Wt, C

v
t in Rt, B

vv′

t in Lt, and the v-th
block row and block column in matrix Lt. After removing these variables, and
replace V, T using Vt, Tv in the corresponding equations, a problem with smaller
size can be obtained:

L′
tW ′

t = R′
t (21)

When computing {Mv} for given {Uv}, if view v is missing from task t, then in
Eq.(18), the t-th column of matrix {Uv} (i.e. uvt ) does not exist. After removing
this column and replace V, T using Vt, Tv in the corresponding equations, a
similar optimization problem can be obtained.

Furthermore, if for a view v, Tv = 1, i.e., there is only one task that contains
view v, the algorithm can still be improved. As stated above, the shared structure
among multiple tasks is learned based on the relationships of these tasks, if
only one task exists for a view, then there is no need to learn the shared low
dimensional feature space for this view. Specifically, if only task t contains view
v, then the prediction model for this view is as follows:

f̄vt (x
v
t ) = uvt

�xvt (22)

In the optimization problem in Eq.(6), for this view, the regularization function
gvt (u

v
t , z

v
t , Θ

v) is replaced with ḡvt (u
v
t ) = β‖uvt ‖2. After some direct derivation, it

can be found that the Avt in Eq.(17) should have the new form as:

Āvt =
2

nt
Xv
t
�Xv

t + 2βI (23)

For this view, there is no need to compute Mv or Θv in every iteration.

4.5 Complexity Analysis of the Algorithm

To analyze the complexity of CSL-MTMV algorithm, we consider the worst case
that all the tasks in the problem have features from all the views. In the algo-
rithm, we need to construct Lt,Wt,Rt defined in Eq.(17), compute the inverse
of matrix Lt, and compute {Mv}. It can be found that the speed bottleneck is
computation of T inverse of matrices Lt, where the time complexity is O(TD3).
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The space requirement of the algorithm mainly depends on the size of matrix Lt
with O(D2). The time complexity of regMVMT algorithm [25] is O(T 3D3) and
space complexity is O(TD2 + T (T − 1)D). It can be easily found that through
decoupling different tasks in the computation process, CSL-MTMV can signifi-
cantly reduce the time and space complexity.

4.6 Relationship with regMVMT Algorithm

The regMVMT algorithm [25] can be seen as a special case of our algorithm.

Specifically, in Eq.(6), we set Θv = I, zvt = 1
Tv

∑Tv

i=1 u
v
t , and do not use the

weighting factors 1
mt

and 1
nt

to compensate for the tasks with different sample
numbers. With this setting, our model is transformed into the regMVMT problem
definition in Eq.(5) in [25]. Therefore, the problem formulation in this paper is
more generalized and flexible, which is able to find good solutions with more
chance. In fact, regMVMT requires that the model parameters of all the tasks
are similar, which is too rigorous for problems with outlier tasks. In this paper,
the common structures between different tasks are learned and different tasks
share information using these structures. Compared with other state-of-the-art
methods, such as data-manifold methods based on graph structure, our method
can learn some underlying predictive functional structures in hypothesis space,
which better characterizes a set of good predictors.

5 Experiments

In this section, we conduct the experiments on four real-world data sets to vali-
date the effectiveness of the proposed algorithm CSL-MTMV.

5.1 Data Sets

All the four data sets have multiple tasks with multiple views, and some statistics
of them are summarized in Table 1, where Np and Nn denote the number of
positive and negative samples in each task, respectively. The first two data sets
are with complete views, and the rest two are with missing views.

- The first one is the NUS-WIDE Object web image database [9] where each
image is annotated by objects such as “boat”,“bird”, and etc. We take block-
wise color moments as one view and the rest features as the other one. In this
data set, we remove the images associated with zero or only one object, and
those tasks with too few positive or negative examples. Finally, a two-view
data set with 11 tasks are obtained.

- The second one is the Leaves data set [13]. It includes leaves from one hun-
dred plant species that are divided into 32 different genuses, and 16 samples
of leaves for each plant species are presented. For each sample, a shape de-
scriptor, fine scale margin and texture histogram are given. By selecting one
species from each of the 32 different genuses, 32 tasks with three views are
obtained.
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- The third one is constructed from 20 Newsgroups1, which includes 20 cat-
egories. 200 documents are randomly selected from each category. For each
task, the documents from one category are regarded as positive samples,
and from another different category are negative ones. We take the words
appearing in all 20 tasks as the common view, and the words existing only
in each task as specified view. Finally, we construct 20 tasks with totally 21
views, while each task with 19 views missing. The tf-idf weighting scheme
is adopted, and the principal component analysis [22] is used to reduce the
dimension of features to 300 for each view.

- The last one is NIST Topic Detection and Tracking (TDT2) corpus [10]. In
this data set, only the largest 20 categories are selected, and for the categories
containing more than 200 documents, we randomly selected 200 documents
from each category. The tasks and views are similarly constructed as 20
Newsgroups. We also have 20 tasks with totally 21 views, and each task
with 19 views missing.

Table 1. Description of the data sets

Data set T V Np Nn View Missing?

NUS-WIDE Object 11 2 310 ∼ 1220 2438 ∼ 3348 No
leaves 32 3 16 496 No

20 Newsgroups 20 21 200 200 Yes
TDT2 20 21 98 ∼ 200 200 Yes

5.2 Baselines

We compare CSL-MTMV with the following baselines, which can handle multi-
task problems with multiple views:

• IteM2: IteM2 algorithm [14] is a transductive algorithm, and it can only handle
nonnegative feature values. When applying IteM2 algorithm to some of our data
sets that have negative feature values, we add a positive constant to the feature
values to guarantee its nonnegativity.

• regMVMT: regMVMT algorithm [25] is an inductive algorithm, which as-
sumes all tasks should be similar to achieve good performance.

5.3 Experiment Setting and Evaluation Metric

Experiment Setting. In each data set, we randomly select n labeled samples
and m unlabeled samples for each task as training set. The value of n is set
according to the complexity of the learning problem, and m is generally 2 ∼ 4
times of n. We apply five-fold cross validation on the training set to optimize

1 http://people.csail.mit.edu/jrennie/20Newsgroups/

http://people.csail.mit.edu/jrennie/20Newsgroups/
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the parameters for the algorithms CSL-MTMV (including α, β and γ.) and reg-
MVMT (including λ, μ and γ). The parameters of IteM2 are set the same as
their original paper. For CSL-MTMV, the number of iteration is set to 20, and
number of dimensionality h as ,(T − 1)/5- × 5 in our experiments.

Evaluation Metric. The F1 measure is adopted to evaluate all the algorithms,
since the accuracy measure may be vulnerable to the class unbalance, which just
exists in some of our data sets. Let tp, fp and fn denote the numbers of true
positive samples, false positive samples and false negative samples, respectively,
then Precision = tp/(tp+ fp), Recall = tp/(tp+ fn).

F1 =
2× Precision×Recall

Precision+Recall
. (24)

Each experiment is repeated 10 times, and each time we randomly select n
labeled samples and m unlabeled samples for each task as training set. Finally,
the average value of F1 is recorded.

5.4 Experiment Results

Learning with Complete-View Data. The first two data sets in Table 1 are
with complete views.

For NUS-WIDE Object data set, different number of labeled samples are cho-
sen as training set to test the performance of these algorithms, i.e., the number
of labeled samples are selected in the range [100, 700] with interval of 100. All
the results are shown in Table 2, which can be observed that, the value of F1

increases with the increasing of the number of labeled samples, and CSL-MTMV
achieves the best results under various cases.

For the leaves data set, there are only 16 positive samples for each task, so the
number of labeled samples is fixed as 50, among which the number of positive
samples is set to {1,2,3,4,5,6,7} separately. The experiment results are shown in
Table 3, where the first line gives the numbers of positive samples. Similar results

Table 2. Experimental results on NUS-WIDE Object data set

samples # 100 200 300 400 500 600 700

IteM2 0.1539 0.1529 0.1526 0.1534 0.1546 0.1522 0.1512
regMVMT 0.3695 0.3822 0.3875 0.3918 0.4036 0.4102 0.4159

CSL-MTMV 0.3930 0.4075 0.4104 0.4178 0.4193 0.4211 0.4263

Table 3. Experimental results on leaves data set

positive samples # 1 2 3 4 5 6 7

IteM2 0.0289 0.0341 0.0397 0.0390 0.0373 0.0371 0.0392
regMVMT 0.0598 0.0981 0.1611 0.2637 0.3573 0.4623 0.5644

CSL-MTMV 0.0802 0.1072 0.1905 0.3017 0.4045 0.5229 0.6128
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can be obtained, i.e., CSL-MTMV performs the best under different numbers of
labeled positive samples.

Learning with Missing-View Data. In real-world problems, some tasks may
not share all the views, so the problems with missing views are also considered.
In the experiments, the last two data sets, 20 Newsgroups and TDT2, are with
missing views.

Different number of labeled samples are also selected as training set to test
the performance of these compared algorithms. The number is sampled in the
range [10, 70] with interval of 10, and the results are recorded in Tables 4 and 5.
We can observe the similar results as the first two data sets. Again, CSL-MTMV
gives the best performance.

Table 4. Experimental results on 20 Newsgroups data set

samples # 10 20 30 40 50 60 70

IteM2 0.4880 0.4879 0.4912 0.4776 0.4866 0.5068 0.5247
regMVMT 0.8570 0.9144 0.9330 0.9500 0.9566 0.9629 0.9651

CSL-MTMV 0.8733 0.9256 0.9406 0.9540 0.9597 0.9652 0.9667

Table 5. Experimental results on TDT2 data set

samples # 10 20 30 40 50 60 70

IteM2 0.4922 0.4897 0.5142 0.5101 0.5159 0.5069 0.5160

regMVMT 0.9742 0.9903 0.9930 0.9941 0.9949 0.9947 0.9947

CSL-MTMV 0.9825 0.9936 0.9946 0.9956 0.9957 0.9962 0.9958

It is worth mentioning that, we find IteM2 can not perform well on these four
data sets. We conjecture there may be two reasons, 1) IteM2 can only handle
the data sets with non-negative values of features. 2) IteM2 assumes the test set
should have the same proportion of positive samples as the training set, which
might also degrade classification performance.

6 Conclusions

To deal with the MTMV problems, a shared structure learning framework called
CSL-MTMV is proposed in this paper, in which both the shared predictive struc-
ture among multiple tasks and prediction consistence among different views
within a single task are considered. We also convert the optimization prob-
lem to a convex one, and develop an alternating optimization algorithm to
solve it. The algorithm can decouple different tasks in the computation process,
which significantly reduces the time complexity and space complexity. More-
over, CSL-MTMV is a general framework, since the recently proposed algorithm
regMVMT can be regarded as a special case of ours. The experiments on four
real-world data sets demonstrate the effectiveness of the proposed framework.
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Abstract. This paper introduces two new frameworks, Doubly Supervised La-
tent Dirichlet Allocation (DSLDA) and its non-parametric variation (NP-DSLDA),
that integrate two different types of supervision: topic labels and category labels.
This approach is particularly useful for multitask learning, in which both latent
and supervised topics are shared between multiple categories. Experimental re-
sults on both document and image classification show that both types of supervi-
sion improve the performance of both DSLDA and NP-DSLDA and that sharing
both latent and supervised topics allows for better multitask learning.

1 Introduction

Humans can distinguish as many as 30,000 relevant object classes [7]. Training an iso-
lated object detector for each of these different classes would require millions of train-
ing examples in aggregate. Computer vision researchers have proposed a more efficient
learning mechanism in which object categories are learned via shared attributes, ab-
stract descriptors of object properties such as “striped” or “has four legs” [17,25,24].
The attributes serve as an intermediate layer in a classifier cascade. The classifier in the
first stage is trained to predict the attributes from the raw features and that in the second
stage is trained to predict the categories from the attributes. During testing, only the raw
features are observed and the attributes must be inferred. This approach is inspired by
human perception and learning from high-level object descriptions. For example, from
the phrase “eight-sided red traffic sign with white writing”, humans can detect stop
signs [25]. Similarly, from the description “large gray animals with long trunks”, hu-
man can identify elephants. If the shared attributes transcend object class boundaries,
such a classifier cascade is beneficial for transfer learning [28] where fewer labeled
examples are available for some object categories compared to others [25].

Multitask learning (MTL) is a form of transfer learning in which simultaneously
learning multiple related “tasks” allows each one to benefit from the learning of all of
the others. If the tasks are related, training one task should provide helpful “inductive
bias” for learning the other tasks. To enable the reuse of training information across
multiple related tasks, all tasks might utilize the same latent shared intermediate repre-
sentation – for example, a shared hidden layer in a multi-layer perceptron [11]. In this
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case, the training examples for all tasks provide good estimates of the weights connect-
ing the input layer to the hidden layer, and hence only a small number of examples per
task is sufficient to achieve high accuracy. This approach is in contrast to “isolated”
training of tasks where each task is learned independently using a separate classifier.

In this paper, our objective is to combine these two approaches to build an MTL
framework that can use both attributes and class labels. The multiple tasks here corre-
spond to different object categories (classes), and both observable attributes and latent
properties are shared across the tasks. We want to emphasize that the proposed frame-
works support general MTL; however, the datasets we use happen to be multiclass,
where each class is treated as a separate “task” (as typical in multi-class learning based
on binary classifiers). But, in no way are the frameworks restricted to multiclass MTL.
Since attribute-based learning has been shown to support effective transfer learning in
computer vision, the tasks here naturally correspond to object classes.

The basic building block of the frameworks presented in this paper is Latent Dirich-
let Allocation (LDA) [9]. LDA focuses on unsupervised induction of multiple “topics”
that help characterize a corpus of text documents. LDA has also been applied in com-
puter vision where SIFT features are appropriately quantized to generate a bag of visual
words for representing an image [35]. Since our experiments use both text and image
data, we will overload the word “document” to denote either a text document or an
image represented as a bag of visual words. The LDA approach has also been aug-
mented to include two different types of supervision, document-level labels for either
topics [31] or for an overall category inferred from the topics [43]. This paper intro-
duces two new approaches, Doubly Supervised Latent Dirichlet Allocation (DSLDA)
and its non-parametric variation (NP-DSLDA), that integrate both forms of supervision.
At the topic level, the models assume that supervision is available for some topics dur-
ing training (corresponding to the “attributes” used in computer vision), but that other
topics remain latent (corresponding to the hidden layer in traditional MTL). The ability
to provide supervision for both categories and a subset of topics improves the models’
ability to perform accurate classification. In many applications, a variety of kinds of
supervision may be naturally available from different sources at multiple levels of ab-
straction, such as keywords, topics, and categories for documents, or visual attribute,
object, and scene labels for images. By effectively utilizing such multiple, interacting
levels of supervision, DSLDA is able to learn more accurate predictors. In a supervised
LDA [8,43] setting, forcing multiple tasks to share the same set of latent topics results
in an LDA-based approach to MTL. By allowing supervision to also be provided for a
subset of these shared topics, DSLDA and NP-DSLDA support a particularly effective
form of MTL.

The rest of the paper is organized as follows. We present related literature in Section 2,
followed by the descriptions of DSLDA and NP-DSLDA in Section 3 and Section 4 re-
spectively. Experimental results on both multi-class image and document categorization
are presented in Section 5, demonstrating the value of integrating both supervised and
latent shared topics in diverse applications. Finally, future directions and conclusions are
presented in Section 6.

Note on Notation: Vectors and matrices are denoted by bold-faced lowercase and cap-
ital letters, respectively. Scalar variables are written in italic font, and sets are denoted
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by calligraphic uppercase letters. Dir(), Beta() and multinomial() stand for Dirichlet,
Beta and multinomial distribution respectively.

2 Related Work

2.1 Statistical Topic Models

LDA [9] treats documents as a mixture of topics, which in turn are defined by a distribu-
tion over a set of words. The words in a document are assumed to be sampled from mul-
tiple topics. In its original formulation, LDA can be viewed as a purely-unsupervised
form of dimensionality reduction and clustering of documents in the topic space, al-
though several extensions of LDA have subsequently incorporated some sort of super-
vision. Some approaches provide supervision by labeling each document with its set
of topics [31,32]. In particular, in Labeled LDA (LLDA [31]), the primary objective
is to build a model of the words that indicate the presence of certain topic labels. For
example, when a user explores a webpage based on certain tags, LLDA can be used to
highlight interesting portions of the page or build a summary of the text from multiple
webpages that share the same set of tags. The words in a given training document are
assumed to be sampled only from the supervised topics, which the document has been
labeled as covering.

Some other researchers [8,43,12] assume that supervision is provided for a single
response variable to be predicted for a given document. The response variable might
be real-valued or categorical, and modeled by a normal, Poisson, Bernoulli, multino-
mial or other distribution (see [12] for details). Some examples of documents with
response variables are essays with their grades, movie reviews with their numerical
ratings, web pages with their number of hits over a certain period of time, and docu-
ments with category labels. In Maximum Entropy Discriminative LDA (MedLDA) [43],
the objective is to infer some low-dimensional (topic-based) representation of docu-
ments which is predictive of the response variable. Essentially, MedLDA solves two
problems jointly – dimensionality reduction and max-margin classification using the
features in the dimensionally-reduced space. Compared to earlier versions of super-
vised topic models [8,12], MedLDA has simpler update equations and produces supe-
rior experimental results. Therefore, in the frameworks presented in Sections 3.2 and 4,
the max-margin principle adopted in MedLDA is preferred over other supervised topic
models.

2.2 Transfer and Multitask Learning

Transfer learning allows the learning of some tasks to benefit the learning of others
through either simultaneous [11] or sequential [10] training. In multitask learning (MTL
[11]), a single model is simultaneously trained to perform multiple related tasks. MTL
has emerged as a very promising research direction for various applications including
biomedical informatics [6], marketing [15], natural language processing [2], and com-
puter vision [34].

Many different MTL approaches have been proposed over the past 15 years (e.g.,
see [38,28,29] and references therein). These include different learning methods, such
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as empirical risk minimization using group-sparse regularizers [20,23,21], hierarchical
Bayesian models [41,26] and hidden conditional random fields [30]. Evgeniou et al.
[14] proposed the regularized MTL which constrained the models of all tasks to be
close to each other. The task relatedness in MTL has also been modeled by constrain-
ing multiple tasks to share a common underlying structure [5,3,11]. Ando and Zhang
[1] proposed a structural learning formulation, which assumed multiple predictors for
different tasks shared a common structure on the underlying predictor space.

In all of the MTL formulations mentioned above, the basic assumption is that all
tasks are related. In practical applications, these might not be the case and the tasks
might exhibit a more sophisticated group structure. Such structure is handled using
clustered multi-task learning (CMTL). In [4] CMTL is implemented by considering a
mixture of Gaussians instead of single Gaussian priors. Xue et al. [39] introduced the
Dirichlet process prior that automatically identifies subgroups of related tasks. In [19],
a clustered MTL framework was proposed that simultaneously identified clusters and
performed multi-task inference.

In the models presented in the next two sections, an LDA-based approach to MTL
is easily obtained by maintaining a common set of topics to support the prediction
of multiple response variables. This idea is analogous to implementing MTL using a
common shared underlying structure [5,3,11]. We will also explain how NP-DSLDA is
capable of performing CMTL.

3 Doubly Supervised LDA (DSLDA)

3.1 Task Definition

Assume we are given a training corpus consisting of N documents belonging to Y
different classes (where each document belongs to exactly one class and each class cor-
responds to a different task). Further assume that each of these training documents is
also annotated with a set of K2 different topic “tags” (henceforth referred to as “su-
pervised topics”). For computer vision data, the supervised topics correspond to the
attributes provided by human experts. The objective is to train a model using the words
in a data, as well as the associated supervised topic tags and class labels, and then use
this model to classify completely unlabeled test data for which no topic tags nor class
labels are provided. The human-provided supervised topics are presumed to provide
abstract information that is helpful in predicting the class labels of test documents.

3.2 Generative Model

In order to include both types of supervision (class and topic labels), a combination
of the approaches described in Section 2.1 is proposed. Note that LLDA uses only
supervised topics and does not have any mechanism for generating class labels. On
the other hand, MedLDA has only latent topics but learns a discriminative model for
predicting classes from these topics. To the best of our knowledge, ours is the first LDA
approach to integrate both types of supervision in a single framework. The generative
process of DSLDA is described below.
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For the nth document, sample a topic selection probability vector θn ∼ Dir(αn),
where αn = Λnα and α is the parameter of a Dirichlet distribution of dimension K ,
which is the total number of topics. The topics are assumed to be of two types – latent
and supervised, and there are K1 latent topics and K2 supervised topics. Therefore,
K = K1 +K2. Latent topics are never observed, while supervised topics are observed
in training but not in test data. Henceforth, in each vector or matrix withK components,
it is assumed that the first K1 components correspond to the latent topics and the next
K2 components to the supervised topics. Λn is a diagonal binary matrix of dimension
K × K . The kth diagonal entry is unity if either 1 ≤ k ≤ K1 or K1 < k ≤ K
and the nth document is tagged with the kth topic. Also, α = (α1,α2) where α1 is
a parameter of a Dirichlet distribution of dimension K1 and α2 is a parameter of a
Dirichlet distribution of dimensionK2.

For the mth word in the nth document, sample a topic znm ∼ multinomial(θ′
n),

where θ′
n = (1 − ε){θnk}k1k=1ε{Λn,kkθnk}Kk=1+k1

. This implies that the supervised
topics are weighted by ε and the latent topics are weighted by (1 − ε). Sample the
word wnm ∼ multinomial(βznm

), where βk is a multinomial distribution over the
vocabulary of words corresponding to the kth topic.

For the nth document, generate Yn = argmaxy r
T
y E(z̄n) where Yn is the class label

associated with the nth document, z̄n =

Mn∑
m=1

znm/Mn. Here, znm is an indicator vector

of dimension K . ry is a K-dimensional real vector corresponding to the yth class, and
it is assumed to have a prior distribution N (0, 1/C). Mn is the number of words in the
nth document. The maximization problem to generate Yn (or the classification problem)
is carried out using a max-margin principle.

Note that predicting each class is effectively treated as a separate task, and that the
shared topics are useful for generalizing the performance of the model across classes.
In particular, when all classes have few training examples, knowledge transfer between
classes can occur through the shared topics. So, the mapping from the original feature
space to the topic space is effectively learned using examples from all classes, and a
few examples from each class are sufficient to learn the mapping from the reduced
topic space to the class labels.

3.3 Inference and Learning

Let us denote the hidden variables by Z = {{znm}, {θn}}, the observed variables by
X = {wnm} and the model parameters by κ0. The joint distribution of the hidden and
observed variables is:

p(X,Z|κ0) =
N∏
n=1

p(θn|αn)
Mn∏
m=1

p(znm|θ′
n)p(wnm|βznm

) (1)

To avoid computational intractability, inference and estimation are performed using
Variational EM. The factorized approximation to the posterior distribution on hidden
variables Z is given by:

q(Z |{κn}Nn=1) =

N∏
n=1

q(θn|γn)
Mn∏
m=1

q(znm|φnm), (2)
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where θn ∼ Dir(γn) ∀n ∈ {1, 2, · · · , N}, znm ∼ multinomial(φnm) ∀n ∈ {1, 2, · · · ,
N} and ∀m ∈ {1, 2, · · · ,Mn}, and κn = {γn, {φnm}}, which is the set of varia-
tional parameters corresponding to the nth instance. Further, γn = (γnk)

K
k=1 ∀n, and

φnm = (φnmk)
K
k=1 ∀n,m. With the use of the lower bound obtained by the factor-

ized approximation, followed by Jensen’s inequality, DSLDA reduces to solving the
following optimization problem1:

min
q,κ0,{ξn}

1

2
||r||2 − L(q(Z)) + C

N∑
n=1

ξn,

s.t. ∀n, y 	= Yn : E[rTΔfn(y)] ≥ 1− ξn; ξn ≥ 0. (3)

Here, Δfn(y) = f(Yn, z̄n) − f(y, z̄n) and {ξn}Nn=1 are the slack variables, and
f(y, z̄n) is a feature vector whose components from (y − 1)K + 1 to yK are those
of the vector z̄n and all the others are 0. E[rTΔfn(y)] is the “expected margin” over
which the true label Yn is preferred over a prediction y. From this viewpoint, DSLDA
projects the documents onto a combined topic space and then uses a max-margin ap-
proach to predict the class label. The parameter C penalizes the margin violation of the
training data.

φ∗nmk ∝ Λn,kkexp [ψ(γnk) + log(βkwnm) + log(ε′) (4)

+1/Mn

∑
y �=Yn

μn(y)E[rYnk − ryk]

⎤⎦ ∀n,m, k.

γ∗nk = Λn,kk

[
αk +

Mn∑
m=1

φnmk

]
∀n, vk. (5)

β∗
kv ∝

N∑
n=1

Mn∑
m=1

φnmkI{wnm=v} ∀k, v. (6)

L[α1/α2] =

[
N∑
n=1

log(Γ (
K∑
k=1

αnk))−
N∑
n=1

K∑
k=1

log(Γ (αnk))

]
(7)

+

N∑
n=1

K∑
k=1

[
ψ(γnk)− ψ(

K∑
k=1

γnk)

]
(αnk − 1).

Let Q be the set of all distributions having a fully factorized form as given in (2). Let
the distribution q∗ from the set Q optimize the objective in Eq. (3). The optimal values
of corresponding variational parameters are given in Eqs. (4) and (5). In Eq. (4), ε′ =
(1 − ε) if k ≤ K1 and ε′ = ε otherwise. Since φnm is a multinomial distribution, the
updated values of theK components should be normalized to unity. The optimal values
of φnm depend on γn and vice-versa. Therefore, iterative optimization is adopted to
maximize the lower bound until convergence is achieved.

1 Please see [43] for further details.
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During testing, one does not observe a document’s supervised topics and, in princi-
ple, has to explore 2K2 possible combinations of supervised tags – an expensive process.
A simple approximate solution, as employed in LLDA [31], is to assume the absence of
the variables {Λn} altogether in the test phase, and just treat the problem as inference
in MedLDA with K latent topics. One can then threshold over the last K2 topics if
the tags of a test document need to be inferred. Equivalently, one can also assume Λn

to be an identity matrix of dimension K ×K ∀n. This representation ensures that the
expressions for update equations (4) and (5) do not change in the test phase.

In the M step, the objective in Eq. (3) is maximized w.r.t κ0. The optimal value of
βkv is given in Eq. (6). Since βk is a multinomial distribution, the updated values of the
V components should be normalized. However, numerical methods for optimization are
required to update α1 or α2. The part of the objective function that depends on α1 and
α2 is given in Eq. (7). The update for the parameter r is carried out using a multi-class
SVM solver [16]. With all other model and variational parameters held fixed (i.e. with
L(q)) held constant), the objective in Eq. (3) is optimized w.r.t. r. A reader familiar
with the updates in unsupervised LDA can see the subtle (but non-trivial) changes in
the update equations for DSLDA.

4 Non-parametric DSLDA

We now propose a non-parametric extension of DSLDA (NP-DSLDA) that solves the
model selection problem and automatically determines the best number of latent topics
for modeling the given data. A modified stick breaking construction of Hierarchical
Dirichlet Process (HDP) [33], recently introduced in [36] is used here which makes
variational inference feasible. The idea in such representation is to share the corpus
level atoms across documents by sampling atoms with replacement for each document
and modifying the weights of these samples according to some other GEM distribution
[33] whose parameter does not depend on the weights of the corpus-level atoms.

The combination of an infinite number of latent topics with a finite number of su-
pervised topics in a single framework is not trivial and ours is the first model to ac-
complish this. One simpler solution is to introduce one extra binary hidden variable for
each word in each document which could select either the set of latent topics or the set
of supervised topics. Subsequently, a word in a document can be sampled from either
the supervised or the latent topics based on the value sampled by the hidden “switch-
ing” variable. However, the introduction of such extra hidden variables adversely affects
model performance as explained in [13]. In NP-DSLDA, we are able to avoid such extra
hidden variables by careful modeling of the HDP. This will be evident in the generative
process of NP-DSLDA presented below:

– Sample φk1 ∼ Dir(η1)∀k1 ∈ {1, 2, · · · ,∞} and φk2 ∼ Dir(η2) ∀k2∈ {1, 2, · · · ,
K2}. η1, η2 are the parameters of Dirichlet distribution of dimension V .

– Sample β′
k1

∼ Beta(1, δ0) ∀k1 ∈ {1, 2, · · · ,∞}.

– For the nth document, sample π(2)
n ∼ Dir(Λnα2). α2 is the parameter of Dirichlet

of dimension K2. Λn is a diagonal binary matrix of dimension K2 ×K2. The kth

diagonal entry is unity if the nth word is tagged with the kth supervised topic.
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– ∀n, ∀t ∈ {1, 2, · · · ,∞}, sample π′nt ∼ Beta(1, α0). Assume π
(1)
n = (πnt)t where

πnt = π′nt
∏
l<t(1− π′nl).

– ∀n, ∀t, sample cnt ∼ multinomial(β) where βk1 = β′
k1

∏
l<k1

(1 − β′
l). π

(1)
n rep-

resents the probability of selecting the sampled atoms in cn. Due to sampling with
replacement, cn can contain multiple atoms of the same index from the corpus level
DP.

– For the mth word in the nth document, sample znm ∼ multinomial((1 − ε)π
(1)
n ,

επ
(2)
n ). This implies that w.p. ε, a topic is selected from the set of supervised topics

and w.p. (1− ε), a topic is chosen from the set of (infinite number of) unsupervised
topics. Note that by weighting the π’s appropriately, the need for additional hidden
“switching” variable is avoided.

– Sample wnm from a multinomial given by the following equation:

∞∏
k1=1

V∏
v=1

φ
I{wnm=v}I{cnznm=k1∈{1,··· ,∞}}
k1v

K2∏
k2=1

V∏
v=1

φ
I{wnm=v}I{znm=k2∈{1,··· ,K2}}
k2v

.(8)

The joint distribution of NP-DSLDA is given as follows:

p(X,Z|κ0) =

∞∏
k1=1

p(φk1 |η1)p(β
′
k1 |δ0)

K2∏
k2=1

p(φk2 |η2)

N∏
n=1

p(π(2)
n |α2) (9)

∞∏
t=1

p(π
′(1)
nt |α0)p(cnt|β′)

Mn∏
m=1

p(znm|π(1)
n ,π(2)

n , ε)p(wnm|φ, cnznm , znm).

As an approximation to the posterior distribution over the hidden variables, we use the
following factorized distribution:

q(Z|κ) =
K1∏
k1=1

q(φk1 |λk1)
K2∏
k2=1

q(φk2 |λk2)
K1−1∏
k1=1

q(β′
k1 |uk1 , vk1) (10)

N∏
n=1

q(π(2)
n |γn)

T−1∏
t=1

q(π
′(1)
nt |ant, bnt)

T∏
t=1

q(cnt|ϕnt)
Mn∏
m=1

q(znm|ζnm).

Here, κ0 and κ denote the sets of model and variational parameters, respectively.K1

is the truncation limit of the corpus-level Dirichlet Process and T is the truncation
limit of the document-level Dirichlet Process. {λk} are the parameters of Dirichlet
each of dimension V . {uk1 , vk1} and {ant, bnt} are the parameters of variational Beta
distribution corresponding to corpus level and document level sticks respectively. {ϕnt}
are multinomial parameters of dimensionK1and {ζnm} are multinomials of dimension
(T +K2). {γn}n are parameters of Dirichlet distribution of dimensionK2.

The underlying optimization problem takes the same form as in Eq. (3). The only dif-
ference lies in the calculation ofΔfn(y) = f(Yn, s̄n)−f(y, s̄n). The first set of dimen-
sions of s̄n (corresponding to the unsupervised topics) is given by 1/Mn

∑Mn

m=1 cnznm ,
where cnt is an indicator vector over the set of unsupervised topics. The following K2

dimensions (corresponding to the supervised topics) are given by 1/Mn

∑Mn

m=1 znm.
After the variational approximation withK1number of corpus level sticks, s̄n turns out
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to be of dimension (K1+K2) and the feature vector f(y, s̄n) constitutes Y (K1+K2) el-
ements. The components of f(y, s̄n) from (y−1)(K1+K2)+1 to y(K1+K2) are those
of the vector s̄n and all the others are 0. Essentially, due to the variational approxima-
tion, NP-DSLDA projects each document on to a combined topic space of dimension
(K1+K2) and learns the mapping from this space to the classes.

ζ∗nmt ∝ exp

[
[ψ(ant)− ψ(ant + bnt)]I{t<T} +

t−1∑
t′=1

[ψ(bnt′)− ψ(ant′ + bnt′)](11)

+

K1∑
k1=1

ϕntk1

[
ψ(λk1wnm)− ψ(

V∑
v=1

λk1v)

]

+
∑
y �=Yn

μn(y)

K1∑
k1=1

E[rYnk1 − ryk1 ]ϕntk1

⎤⎥⎦ ∀n,m, t.

ζ∗nm(T+k2)
∝ Λnk2k2exp

[
ψ(γnk2)− ψ(

K2∑
k2=1

γnk2) + ψ(λ
(K1+k2)wnm

) (12)

−ψ(
V∑
v=1

λ
(K1+k2)v

) + 1/Mn

∑
y �=Yn

μn(y)E[r
Yn(K1+k2)

− r
y(K1+k2)

]

⎤⎦ ∀n,m, k2.

ϕ∗
ntk1 ∝ exp

[
[ψ(uk1)− ψ(uk1 + vk1)] I{k1<K1} (13)

+

k1−1∑
k′=1

[ψ(vk′ )− ψ(uk′ + vk′ )] +

Mn∑
m=1

ζnmt

[
ψ(λk1wnm)− ψ(

V∑
v=1

λk1v)

]

+1/Mn

∑
y �=Yn

μn(y)E[rYnk1 − ryk1 ]

(
Mn∑
m=1

ζnmt

)⎤⎦ ∀n, t, k1.

Some of the update equations of NP-DSLDA are given in the above equations, where
{ϕntk1} are the set of variational parameters that characterize the assignment of the
documents to the global set of (K1+ K2) topics. One can see how the effect of the
class labels is included in the update equation of {ϕntk1} via the average value of
the parameters {ζnmt}. This follows intuitively from the generative assumption. update
exists for the model parameters and hence numerical optimization has to be used. Other
updates are either similar to DSLDA or the model in [36] and are omitted due to space
constraints. {ζnm}, corresponding to supervised and unsupervised topics, should be
individually normalized and then scaled by ε and (1 − ε) respectively. Otherwise, the
effect of the Dirichlet prior on supervised topics will get compared to that of the GEM
prior on the unsupervised topics which does not follow the generative assumptions. The
variational parameters {λk} and {ϕnt} are also normalized.
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Note that NP-DSLDA offers some flexibility with respect to the latent topics that
could be dominant for a specific task. One could therefore postulate that NP-DSLDA
can learn the clustering of tasks from the data itself by making a subset of latent topics
to be dominant for a set of tasks. Although do not have supporting experiments, NP-
DSLDA is capable in principle of performing clustered multi-task learning without any
prior assumption on the relatedness of the tasks.

5 Experimental Evaluation

5.1 Data Description

Our evaluation used two datasets, a text corpus and a multi-class image database, as
described below.

aYahoo Data. The first set of experiments was conducted with the aYahoo image
dataset from [17] which has 12 classes – carriage, centaur, bag, building, donkey, goat,
jetski, monkey, mug, statue, wolf, and zebra.2 Each image is annotated with relevant vi-
sual attributes such as “has head”, “has wheel”, “has torso” and 61 others, which we use
as the supervised topics. Using such intermediate “attributes” to aid visual classifica-
tion has become a popular approach in computer vision [25,24]. After extracting SIFT
features [27] from the raw images, quantization into 250 clusters is performed, defining
the vocabulary for the bag of visual words. Images with less than two attributes were
discarded. The resulting dataset of size 2,275 was equally split into training and test
data.

ACM Conference Data. The text corpus consists of conference paper abstracts from
two groups of conferences. The first group has four conferences related to data mining
– WWW, SIGIR, KDD, and ICML, and the second group consists of two VLSI confer-
ences – ISPD and DAC. The classification task is to determine the conference at which
the abstract was published. As supervised topics, we use keywords provided by the au-
thors, which are presumably useful in determining the conference venue. Since authors
usually take great care in choosing keywords so that their paper is retrieved by relevant
searches, we believed that such keywords made a good choice of supervised topics. Part
of the data, crawled from ACM’s website, was used in [37]. A total of 2,300 abstracts
were collected each of which had at least three keywords and an average of 78 (±33.5)
words. After stop-word removal, the vocabulary size for the assembled data is 13,412
words. The final number of supervised topics, after some standard pre-processing of
keywords, is 55. The resulting dataset was equally split into training and test data.

5.2 Methodology

In order to demonstrate the contribution of each aspect of the overall model, DSLDA
and NP-DSLDA are compared against the following simplified models:

2 http://vision.cs.uiuc.edu/attributes/

http://vision.cs.uiuc.edu/attributes/
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– MedLDA with one-vs-all classification (MedLDA-OVA): A separate model is
trained for each class using a one-vs-all approach leaving no possibility of transfer
across classes.

– MedLDA with multitask learning (MedLDA-MTL): A single model is learned for
all classes where the latent topics are shared across classes.

– DSLDA with only shared supervised topics (DSLDA-OSST): A model in which
supervised topics are used and shared across classes but there are no latent topics.

– DSLDA with no shared latent topics (DSLDA-NSLT): A model in which only su-
pervised topics are shared across classes and a separate set of latent topics is main-
tained for each class.

– Majority class method (MCM): A simple baseline which always picks the most
common class in the training data.

These baselines are useful for demonstrating the utility of both supervised and la-
tent shared topics for multitask learning in DSLDA. MedLDA-OVA is a non-transfer
method, where a separate model is learned for each of the classes, i.e. one of the many
classes is considered as the positive class and the union of the remaining ones is treated
as the negative class. Since the models for each class are trained separately, there is
no possibility of sharing inductive information across classes. MedLDA-MTL trains
on examples from all classes simultaneously, and thus allows for sharing of inductive
information only through a common set of latent topics. In DSLDA-OSST, only su-
pervised topics are maintained and knowledge transfer can only take place via these
supervised topics. DSLDA-NSLT uses shared supervised topics but also includes latent
topics which are not shared across classes. This model provides for transfer only through
shared supervised topics but provides extra modeling capacity compared to DSLDA-
OSST through the use of latent topics that are not shared. DSLDA and NP-DSLDA are
MTL frameworks where both supervised and latent topics are shared across all classes.
Note that, all of the baselines can be implemented using DSLDA with a proper choice
of Λ and ε. For example, DSLDA-OSST is just a special case of DSLDA with ε fixed
at 1.

Fig. 1. p1 = 0.5 (aYahoo) Fig. 2. p1 = 0.7 (aYahoo)
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Table 1. Illustration of Latent and Supervised Topics

LT1 function, label, graph, classification, database, propagation, algorithm, accuracy, minimization, transduction
LT2 performance, design, processor, layer, technology, device, bandwidth, architecture, stack, system
CAD design, optimization, mapping, pin, simulation, cache, programming, routing, biochip, electrode
VLSI design, physical, lithography, optimization, interdependence, global, robust, cells, layout, growth

IR algorithm, web, linear, query, precision, document, repair, site, search, semantics
Ranking integration, catalog, hierarchical, dragpushing, structure, source, sequence, alignment, transfer, flattened, speedup
Learning model, information, trajectory, bandit, mixture, autonomous, hierarchical, feedback, supervised, task

In order to explore the effect of different amounts of both types of supervision, we
varied the amount of both topic-level and class-level supervision. Specifically, we pro-
vided topic supervision for a fraction, p1, of the overall training set, and then provided
class supervision for only a further fraction p2 of this data. Therefore, only p1 ∗ p2 of
the overall training data has class supervision. By varying the number of latent topics
from 20 to 200 in steps of 10, we found that K1 = 100 generally worked the best for
all the parametric models. Therefore, we show parametric results for 100 latent topics.
For each combination of (p1, p2), 50 random trials were performed with C = 10. To
maintain equal representational capacity, the total number of topicsK is held the same
across all parametric models (except for DSLDA-OSST where the total number of top-
ics is K2). For NP-DSLDA, following the suggestion of [36], we setK1 = 150 and
T = 40, which produced uniformly good results. When required, ε was chosen using
5-fold internal cross-validation using the training data.

5.3 Results

Figs. 1 and 2 present representative learning curves for the image data, showing how
classification accuracy improves as the amount of class supervision (p2) is increased.
Results are shown for two different amounts of topic supervision (p1 = 0.5 and p1 =
0.7). Figs. 3 and 4 present similar learning curves for the text data. The error bars in the
curves show standard deviations across the 50 trials.

The results demonstrate that DSLDA and NP-DSLDA quite consistently outperform
all of the baselines, clearly demonstrating the advantage of combining both types of

Fig. 3. p1 = 0.5 (Conference) Fig. 4. p1 = 0.7 (Conference)
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topics. NP-DSLDA performs about as well as DSLDA, for which the optimal num-
ber of latent topics has been chosen using an expensive model-selection search. This
demonstrates that NP-DSLDA is doing a good job of automatically selecting an appro-
priate number of latent topics.

Overall, DSLDA-OSST and MedLDA-MTL perform about the same, showing that,
individually, both latent and supervised shared topics each support multitask learning
about equally well when used alone. However, combining both types of topics provides
a clear improvement.

MedLDA-OVA performs quite poorly when there is only a small amount of class
supervision (note that this baseline uses only class labels). However, the performance
approaches the others as the amount of class supervision increases. This is consistent
with the intuition that multitask learning is most beneficial when each task has limited
supervision and therefore has more to gain by sharing information with other tasks.

Shared supervised topics clearly increase classification accuracy when class supervi-
sion is limited (i.e. small values of p2), as shown by the performance of both DSLDA-
NSLT and DSLDA-OSST. When p2 = 1 (equal amounts of topic and class supervision),
DSLDA-OSST, MedLDA-MTL and MedLDA-OVA all perform similarly; however, by
exploiting both types of supervision, DSLDA and NP-DSLDA still maintain a perfor-
mance advantage.

5.4 Topic Illustration

In Table 1, we show the most indicative words for several topics discovered by DSLDA
from the text data (with p1 = 0.8 and p2 = 1). LT1 and LT2 correspond to the most
frequent latent topics assigned to documents in the two broad categories of conferences
(data mining and VLSI, respectively). The other five topics are supervised ones. CAD
and IR stand for Computer Aided Design and Information Retrieval respectively. The
illustrated topics are particularly discriminative when classifying documents.

5.5 Discussion

DSLDA-NSLT only allows sharing of supervised topics and its implementation is not
straightforward. Since MedLDA-OVA, MedLDA-MTL and DSLDA use K topics (la-
tent or a combination of supervised and latent), to make the comparison fair, it is nec-
essary to maintain the same number of topics for DSLDA-NSLT. This ensures that the
models compared have the same representational capacity. Therefore, for each class in
DSLDA-NSLT, k2/Y latent topics are maintained. While training DSLDA-NSLT with
examples from the yth class, only a subset of the first k1 topics (or a subset of the super-
vised ones based on which of them are present in the training documents) and the next( (y−1)k2

Y + 1
)th

to
(
yk2
Y

)th
topics are considered to be “active” among the latent topics.

The other latent topics are assumed to have zero contribution, implying that the param-
eters associated with these topics are not updated based on observations of documents
belonging to class y. During testing, however, one needs to project a document onto the
entireK-dimensional space, and the class label is predicted based on this representation
and the parameters r.
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Overall, the results support the hypothesis that DSLDA’s ability to incorporate both
supervised and latent topics allow it to achieve better predictive performance compared
to baselines that exploit only one, the other, or neither. Furthermore, NP-DSLDA is
able to automate model-selection, performing nearly as well as DSLDA with optimally
chosen parameters.

6 Future Work and Conclusion

This paper has introduced Doubly Supervised LDA (DSLDA) and non-parametric
DSLDA (NP-DSLDA), novel approaches that combine the following – generative and
discriminative models, latent and supervised topics, and class and topic level supervi-
sion, in a principled probabilistic manner. Four ablations of this model are also evalu-
ated in order to understand the individual effects of latent/supervised topics and
multitask learning on the overall model performance. The general idea of “double super-
vision” could be applied to many other models, for example, in multi-layer perceptrons,
latent SVMs [40] or in deep belief networks [18]. In MTL, sharing tasks blindly is not
always a good approach and further extension with clustered MTL [42] is possible.
Based on a very recent study [22], a sampling based algorithm could also be developed
for NP-DSLDA, possibly leading to even better performance.
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Abstract. Hierarchical Multi-Label Classification is a complex classifi-
cation problem where the classes are hierarchically structured. This task
is very common in protein function prediction, where each protein can
have more than one function, which in turn can have more than one
sub-function. In this paper, we propose a novel hierarchical multi-label
classification algorithm for protein function prediction, namely HMC-
PC. It is based on probabilistic clustering, and it makes use of cluster
membership probabilities in order to generate the predicted class vec-
tor. We perform an extensive empirical analysis in which we compare
our new approach to four different hierarchical multi-label classification
algorithms, in protein function datasets structured both as trees and di-
rected acyclic graphs. We show that HMC-PC achieves superior or com-
parable results compared to the state-of-the-art method for hierarchical
multi-label classification.

Keywords: Hierarchical Multi-Label Classification, Protein Function
Prediction, Probabilistic Clustering.

1 Introduction

Classification is the well-known machine learning task whose goal is to assign
instances to predefined categories. Classification algorithms are given as input a
set of N n-dimensional training instances X = {x1,x2, ...,xN}, as well as their
respective set of class labels C = {Cx1 , Cx2 , ..., CxN }, in which Cxi ∈ {C1, ...Ck}
in a k-class problem.

The vast majority of classification problems require the association of each
instance with a single class, which means Cxi is a single categorical value in
{C1, ...Ck}. This particular kind of problem is regarded as flat or non-hierarchical
classification. Notwithstanding, there are problems in which the classes are or-
ganized in a hierarchical structure — a tree or a directed acyclic graph (DAG)
— and each instance may be associated to multiple classes in multiple paths of
this hierarchy. The difference between the tree and DAG hierarchies is that, in a
tree, each class can have only one superclass, which implies there is just one path

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part II, LNAI 8189, pp. 385–400, 2013.
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between the root node and the class node. In a DAG hierarchy, each class can
have more than one superclass at the same time, which means that there can be
multiple paths from the root node to a class node. As an example, consider the
dotted nodes in Fig. 1. While in Fig. 1(a) there is just one possible path between
the root node and the dotted nodes (1/2 and 2/2/1) (tree structure), we can see
that in Fig. 1(b) (DAG structure) we can reach the dotted node at the second
level by two paths (1/2 and 2/2). The same can be observed at the dotted node
located in the third level, which can be reached by two different paths (2/1/1
and 2/2/1).

1 2

1/1 1/2

1/1/1 1/1/2

2/1 2/2

2/2/1 2/2/2

root

1 2

1/1 (1,2)/2

1/1/1 1/1/2

2/1 2/2

(2/1,2/2)/1 2/2/2

root

(a) (b)

Fig. 1. Example of class hierarchy

Either structured as a DAG or tree, this particularly complex problem is
known as hierarchical multi-label classification (HMC), and is the primary sub-
ject of this paper. In a HMC problem, the set of class labels can be represented
as a matrix V = {vx1 ,vx2 , ...,vxN}, in which vxi is the c-dimensional binary
class vector associated with instance xi, in a hierarchy with c nodes (classes).
Each position of the class vector vxi represents a class, and it is set to 1 if xi
belongs to that respective class, or 0 otherwise.

Two important examples of HMC problems are the tasks of text classification
[29,30,25] and protein function prediction [4,6,31]. The latter is an increasingly
important research field by itself, given the recent availability of unknown pro-
teins for analysis and determination of their respective biological functions. Pro-
tein function prediction can be seen as a predictive problem in which each protein
is a dataset instance, whereas different protein features are used as predictive
attributes, and ultimately the goal is to classify these proteins according to differ-
ent functions they can perform. Since a protein can perform multiple functions,
and these functions are usually organized in a hierarchical structure (e.g., the
FunCat [26] and Gene Ontology [3] protein functional-definition schemes), the
protein function prediction can be regarded as a typical HMC problem.

There has been an increasing number of machine learning approaches for hier-
archical multi-label classification of protein functions. Roughly speaking, these
approaches can be divided into local and global approaches. In the local ap-
proach, conventional (flat) classification algorithms such as decision trees or
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support vector machines are trained to produce a hierarchy of classifiers, which
are then executed following a top-down strategy to classify unlabeled instances
[11]. In this approach, local information about the class hierarchy is used during
the training process of each base classifier. Such local information can be used
in different ways, depending on how the local classifiers are induced [28]. Dif-
ferently from the local approach, the global approach induces a single classifier
using all classes of the hierarchy at once. After the training process, the classifi-
cation of a new instance occurs in just one step [31]. As global methods induce
a single classifier to consider the specificities of the classification problem, they
usually do not make use of conventional classification algorithms, unless these
are heavily adapted to consider the hierarchy of classes.

In this paper, we propose a novel global hierarchical multi-label classification
algorithm that is based on probabilistic clustering, namely Hierarchical Multi-
label Classification with Probabilistic Clustering (HMC-PC). HMC-PC works
according to the following assumption: instances that belong to a given cluster
have similar class vectors, and hence the training instances are clustered follow-
ing an expectation-maximization scheme [13], and the average class vector of the
training instances from a given cluster is used to classify new unseen instances as-
sociated to the same cluster. The cluster membership probabilities are also used
to tune the average class vector in each cluster. HMC-PC offers the advantages
of the global methods, namely: (a) reduced time complexity when compared to
the execution of multiple classifiers in the local approach; and (b) it does not
suffer the problem of error propagation across levels, since the classification of a
given hierarchical level is not done separately from the other levels. Finally, we
show that HMC-PC presents competitive results when compared with the state
of the art decision-tree-based method Clus-HMC [31].

This paper is organized as follows. Section 2 discusses related work on machine
learning approaches for protein function prediction. Section 3 details HMC-PC,
our novel global algorithm for hierarchical multi-label classification. Section 4 de-
picts the methodology employed for the experimental analysis of protein function
prediction, which is in turn presented in Section 5. We present our conclusions
and future work opportunities in Section 6.

2 Related Work

One of the first HMC algorithms was proposed by Clare and King [10], namely
HMC4.5, which is a global method based on decision-tree induction algorithms.
It is a variant of C4.5 [24] with modifications in the calculation of class entropy.
The proposed modification uses the sum of the number of bits needed to describe
membership or non-membership of each class, and also the information related
to the size of the tree rooted by a given class. The method was used in tree-
structured hierarchies.

In [18] and [19], the authors proposed a global method for the classifica-
tion of Gene Ontology (GO) [3] genes based on the classification of documents
from the MedLine repository that describe these genes. This method expands
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the sets of classes by including their ancestor classes and then applies the Ad-
aBoost algorithm [27] in the modified dataset. Inconsistent predictions that may
have occurred are corrected.

In [4], the authors proposed a local method that uses a hierarchy of SVM
classifiers for the prediction of gene functions structured according to the GO.
The classifiers are trained separately for each class, and the predictions are then
combined using Bayesian Networks [16], aiming at finding the most probable
consistent set of predictions.

In the work of Vens et al. [31], three methods based on the concept of Predic-
tive Clustering Trees (PCT) were extensively compared. The authors make use
of the global Clus-HMC method [5] that induces a single decision tree to cope
with the entire hierarchical multi-label classification problem. They compared
its performance with two local methods. The first one, Clus-SC, induces an in-
dependent decision tree for each class of the hierarchy, ignoring the relationships
between classes. The second, Clus-HSC, explores the hierarchical relationships
between the classes to induce a decision tree for each class. The authors em-
ployed the above-mentioned methods to hierarchies structured both as trees and
DAGs, and discussed the modifications needed so that the algorithms could cope
with both types of hierarchical structures. While in [31] the authors used the Eu-
clidean distance to calculate the similarities and dissimilarities between instances
in the decision tree, Aleksovski et al. [2] expanded this study by investigating
the use of other distance measures, namely Jaccard, SimGIC, and ImageClef.

In [22], Otero et al. proposed hAnt-Miner, a global method for hierarchical
single-label classification using Ant Colony Optimization (ACO) [15,14]. The
authors later extended this method [23] to allow multi-label classification, con-
sidering both tree- and DAG-structured hierarchies.

Cerri et al. [8] proposed a global method that employs a Genetic Algorithm
(GA) to produce HMC rules. The GA evolves the antecedents of classification
rules, in order to optimize the level of coverage of each antecedent. The employed
fitness (evaluation) function gives a better reward to rules with the antecedents
that cover a higher number of instances. Then, the set of optimized antecedents
is selected to build the corresponding consequent of the rules (set of classes to
be predicted). The method was used in hierarchies structured as trees.

Both in [21] and [1], the authors propose methods that employ clustering as a
substep of classification, though these approaches only deal with flat multi-label
data and not with hierarchical multi-label data.

Finally, Cerri et al. [7,9] proposed a local approach that employs a sequence
of connected artificial neural networks for protein function prediction. Each net-
work is associated to a hierarchical level, and the output of the network in level
l is used as the input of the network in level l + 1. A strategy for avoiding in-
consistent predictions is employed, since a given neural network may predict a
class whose superclass had not been predicted before. The method is tested over
a hierarchy structured as a tree.
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3 HMC-PC

In this paper, we propose Hierarchical Multi-label Classification with Probabilis-
tic Clustering (HMC-PC), which is a novel global HMC algorithm. The general
rationale behind HMC-PC is the assumption that we can discover the most fit-
ting probability distribution for each particular group of training instances, and
that those instances that were generated by the same distribution also share sim-
ilar class vectors. Hence, once we have discovered the set of k distributions from
the training set, a new unseen instance can be easily classified by performing two
procedures: (i) discovering the distribution that most probably has generated it
— i.e., discovering which cluster it belongs to; and (ii) assigning to this new
instance the average class vector of the training instances that were generated
by the same distribution (cluster).

HMC-PC can roughly be divided into three mains steps:(i) cluster generation;
(ii) class vector generation; and (iii) classification.

1. Cluster generation: the training dataset is arranged into different clusters
following a probabilistic expectation-maximization (EM) scheme [13];

2. Class vector generation: for each cluster, the class vectors of the training
instances that surpass a given probability threshold are averaged, and later
used to classify unseen instances;

3. Classification: each test instance is assigned to the cluster it most probably
belongs to. Then, the cluster’s average class vector generated in the previous
step is assigned to the test instance as the final prediction.

3.1 Cluster Generation

The first step of HMC-PC is to generate clusters from the training dataset X,
which is comprised of n attributes and N instances. In this step, the class vector
of each instance xi ∈ X, i = 1...N is not used during cluster generation.

Each cluster in HMC-PC is assumed to be generated by a distinct Gaussian
probability distribution. HMC-PC clustering iterates over the steps of expecta-
tion and maximization, much the same as the well-known EM algorithm [13].
We make the further näıve assumption of attribute independence, which means
we are only interested in the diagonal of the covariance matrix Σi from the ith

Gaussian. This assumption is intended to speed-up the algorithm, avoiding the
cost of computing the inverse of Σi, which is usually O(n3).

In the expectation step, the cluster membership of each instance xi regarding
each Gaussian distribution (cluster) Cj is computed, assuming the parameters
of each of the k distributions are already known:

Pr[Cj |xi] =
Pr[xi|Cj ]× Pr[Cj ]

Pr[xi]
(1)

where Pr[xi|Cj ] = N (xi|μj ,Σj), and Pr[Cj ] is estimated as
∑N
i=1 Pr[Cj |xi]/N .

Note that Pr[xi] can simply be replaced by the sum of Pr[xi|Cj ] × Pr[Cj ] for
the k distributions.
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The maximization step is performed by simply updating the parameters of
the k distributions, taking into account the recently computed values of Pr[C|x]:

Nj =

N∑
i=1

Pr[Cj |xi] (2)

Pr[Cj ] =
Nj
N

(3)

μj =
1

Nj

N∑
i=1

Pr[Cj |xi]× xi (4)

Σj =
1

Nj

N∑
i=1

Pr[Cj |xi]× (xi − μj)(xi − μj)
T (5)

The iteration between the expectation and maximization steps is performed
until one of the two conditions occurs:

– the maximum number of 100 iterations is reached; or

– the difference between the log-likelihood of two consecutive steps is smaller
than 1× 10−6.

The log-likelihood is computed after each expectation step:

LL =

N∑
i=1

ln

⎛⎝ k∑
j=1

Pr[Cj ]× Pr[xi|Cj ]

⎞⎠ (6)

Since we have to assume that either the cluster memberships Pr[Cj |xi] or
the distribution parameters μj ,Σj are informed before the beginning of the
expectation-maximization iterations, HMC-PC executes the well-known k-means
algorithm [20] 10 times varying the random initialization. The partition with the
smallest value of the squared error is employed to initialize the parameters of
the k distributions.

The only problem that remains is the definition of the number of Gaussian
distributions (clusters). In order to avoid the use of a user-defined parameter,
we propose the following methodology for automatically defining the value of k:

1. Set k = 1;

2. Run the expectation-maximization iterations with 10-fold cross-validation
over the training set, i.e., in each run EM is applied to 9 of the 10 training
folds and the log-likelihood is assessed on the hold-out fold, averaging the
results over the 10 runs.

3. If the log-likelihood has increased, increase the value of k by 1 and the
procedure continues in step 2.
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After the algorithm has converged and the final parameters of the k clusters
are known, the N training instances are assigned to their most probable cluster,
i.e.:

Cxi = argmax
Cj

(
Pr[xi|Cj ]× Pr[Gj ]

Pr[xi]

)
(7)

3.2 Class Vector Generation

Once the training instances have been distributed throughout the clusters, HMC-
PC generates one class vector per cluster. The rationale behind this step is that
a future test instance will be assigned to its most probable cluster according to
Eq. (7), and then classified according to the class vector generated from that
cluster. HMC-PC offers two strategies to generate one class vector per cluster:

1. The class vector of cluster Cj is generated as the average class vector of the
training instances that were assigned to cluster Cj , i.e.:

v̄Cj =
1

N

∑
xi∈Cj

vxi (8)

2. The class vector of cluster Cj is generated as the average class vector of
the training instances that were assigned to cluster Cj and whose cluster
membership probability surpass a given previously-defined threshold Δj ,
i.e.:

v̄Cj =
1

N

∑
xi∈Cj∧

Pr[Cj|xi]≥Δj

vxi (9)

Note that strategy 1 is a special case of strategy 2 in which Δ = 0 for all
clusters. The second strategy, on the other hand, makes use of the cluster mem-
berships to define the average class vectors. The disadvantage of the second
strategy is the need of defining threshold values Δ for each cluster. In order
to overcome this problem, we propose an adaptive threshold selection strat-
egy as follows. First, the training set is divided into two subsets: sub-training
and validation. The sub-training set is used as before to generate the clusters,
and its instances are distributed throughout the discovered clusters. Next, we
also distribute the validation instances to their most probable cluster, also ac-
cording to Eq. (7). Then, for each cluster, we evaluate the classification per-
formance of the validation instances with the area under the precision-recall
curve (AUPRC, more details in Section 4) by building the average class vec-
tor following Eq. (9). For that, we have to try different values of Δj , i.e.,
{0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}. The average class vector built accord-
ing to the threshold value that yielded the largest AUPRC value is then chosen
to classify the test instances that are assigned to cluster Cj .

The pseudo-code of HMC-PC with the adaptive threshold selection strategy is
presented in Alg. 1. The main difference between the adaptive threshold strategy
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Algorithm 1. HMC-PC with adaptive threshold selection.

Require: Training dataset X
Require: Threshold set ts = {0, 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9}
1: Divide X in sub-training Xt and validation Xv sets
2: k ← CV (Xt)
3: partition ← EM(Xt, k)
4: for xi ∈ Xt do
5: Cxi ← Eq. (7)
6: end for
7: for xi ∈ Xv do
8: Cxi ← Eq. (7)
9: end for
10: for cluster Cj ∈ partition do
11: bestAUPRC ← 0
12: for Δj ∈ ts do
13: v̄Cj ← Eq. (9)
14: AUPRC ← classify({xv

i|xv
i ∈ Cj}, v̄Cj )

15: if AUPRC ≥ bestAUPRC then
16: bestAUPRC ← AUPRC
17: thresholdsj ← Δj

18: end if
19: end for
20: end for
21: partition ← EM(Xt ∪Xv, k)
22: return thresholds, partition

and the threshold-free strategy is the need for a validation set to automatically
select the value of Δj for cluster Cj . Note that both training and validation data
are distributed throughout the clusters (lines 5 and 8). The main loop in line 10
performs the adaptive threshold selection by evaluating the validation data that
were assigned to a given cluster Cj with regard to the different threshold values.
The algorithm stores in vector thresholds the optimized threshold value per
cluster. These thresholds were the ones that maximized the AUPRC generated
by Eq. (9) (line 13). Therefore, even with the threshold Δ possibly assuming
different values for each cluster, the user is not required to set any ad-hoc pa-
rameter during the whole execution of HMC-PC. Finally, the method performs
the expectation-maximization steps once again (line 21) with the full training
set (sub-training + validation).

3.3 Classification

The last step of HMC-PC is to classify unseen instances. The classification pro-
cess is straightforward: (i) assign each test instance to its most probable cluster
according to Eq. (7); (ii) assuming test instance xi was assigned to cluster Cj ,
make use of class vector v̄Cj computed from the training instances that belong
to cluster Cj and have cluster membership probability greater than thresholdsj
as the class prediction for test instance xi.
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4 Experimental Methodology

4.1 Baseline Algorithms

We employ four of the methods reviewed in Section 2 as the baseline algo-
rithms during the experiments performed in this work. We make use of the
global decision-tree based method Clus-HMC, which is considered the state-of-
the-art method in the literature, since it obtained the best results so far, and we
also make use of its local variants Clus-HSC and Clus-SC. The three methods
are detailed in [31]. We also employ the Ant Colony Optimization-based method
hmAnt-Miner [23], which is a global method that obtained competitive results
when compared to Clus-HMC. We decided to select these algorithms because
they were all applied to the same protein function prediction datasets used in
the experiments (both for tree and DAG structures). In addition, they all pro-
duce the same type of output provided by HMC-PC, and their performance were
analyzed with the same evaluation measure we use in this paper.

We evaluated HMC-PC’s performance with the two alternative class-vector
generation mechanisms presented in Section 3.2. The first version will be re-
garded as HMC-PC whereas the second version will be regarded as HMC-PCΔ.

4.2 Datasets

Ten freely-available numeric datasets1 related to protein function prediction are
used in the experiments, namely: cellcycle, derisi, eisen, gasch1, and gasch2
(FunCat-annotated and Gene Ontology-annotated). The option for all-numeric
datasets is because the current version of HMC-PC can only cope with numeric
attributes. Dealing with nominal attributes is a topic left for future work.

These datasets are related to issues like phenotype data and gene expression
levels. They are organized according to two different class hierarchy structures:
tree structure (FunCat-annotated data sets) and directed acyclic graph structure
(Gene Ontology-annotated data sets).

Table 1 summarizes the main characteristics of the training, validation, and
test datasets employed in the experiments. In the particular case of hmAnt-
Miner and HMC-PC, the training and validation datasets are merged and used
together to generate the predictive models. The PCT-based methods and HMC-
PCΔ make use of the validation datasets to optimize parameters during their
executions.

A detailed description of each dataset can be found in [31]. For executing
HMC-PC in these datasets, all missing values were replaced with the mean value
of the respective attribute.

4.3 Evaluation Measures and Statistical Analysis

Considering that all algorithms tested in this paper output a vector of class
probabilities for each instance being predicted, we make use of the area under
the average PR-curve (AU(PRC)) as the evaluation measure to compare them.

1 http://www.cs.kuleuven.be/~dtai/clus/hmcdatasets.html

http://www.cs.kuleuven.be/~dtai/clus/hmcdatasets.html
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Table 1. Summary of datasets: number of attributes (|A|), number of classes (|C|),
total number of instances (Total) and number of multi-label instances (Multi)

Structure Dataset |A| |C| Training Validation Test
Total Multi Total Multi Total Multi

Tree

Cellcycle 77 499 1628 1323 848 673 1281 1059
Derisi 61 499 1608 1309 842 671 1275 1055
Eisen 79 461 1058 900 529 441 837 719
Gasch1 173 499 1634 1325 846 672 1284 1059
Gasch2 52 499 1639 1328 849 674 1291 1064

DAG

Cellcycle 77 4125 1625 1625 848 848 1278 1278
Derisi 61 4119 1605 1605 842 842 1272 1272
Eisen 79 3573 1055 1055 528 528 835 835
Gasch1 173 4125 1631 1631 846 846 1281 1281
Gasch2 52 4131 1636 1636 849 849 1288 1288

To obtain a PR-curve for a given algorithm, different thresholds ranging within
[0, 1] are applied to the outputs of the methods, and thus different values of pre-
cision and recall are obtained, one for each threshold value. Each threshold value
then represents a point within the PR space. The union of these points forms
a PR-curve. In order to calculate the area below the PR-curve, the PR-points
must be interpolated [12]. This interpolation guarantees that the area below
the curve is not artificially increased, which would happen if the curves were
constructed just connecting the points without interpolation. Given a thresh-
old value, a precision-recall point (Prec,Rec) in the PR-space can be obtained
through Eq. (10) and (11), corresponding to the micro-average of precision and
recall, where i ranges from 1 to c, and TP, FP, and FN stand, respectively, for
the number of true positives, false positives, and false negatives.

Prec =

∑
i TPi∑

i TPi +
∑

i FPi
(10) Rec =

∑
i TPi∑

i TPi +
∑

i FNi
(11)

In order to provide some reassurance about the validity and non-randomness
of the results, we employed the Friedman and Holm statistical tests, recom-
mended for comparisons when a control classifier is compared against other
classifiers [17]. We employed a confidence level of 95% in the statistical tests.

5 Results and Discussion

Table 2 presents the comparison among the two HMC-PC versions and the base-
line methods Clus-HMC, Clus-HSC, Clus-SC, and hmAnt-Miner. Given that
hmAnt-Miner is a non-deterministic method, its results are averages over 15
executions. Both versions of HMC-PC and the PCT-based methods are deter-
ministic algorithms and thus require a single execution. We highlight in bold the
best absolute values for each dataset, and we provide at the end of the table the
average rank of each method, following the Friedman statistical test.

We can observe that both HMC-PC versions are the best-ranked among all
methods. It is interesting to see that the threshold-based version HMC-PCΔ,
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Table 2. AU(PRC) values for the comparison of HMC-PC with hmAnt-Miner, Clus-
HMC, Clus-HSC, Clus-SC

HMC-PC HMC-PCΔ Clus-HMC Clus-HSC Clus-SC hm-Ant-Miner

DAG
Cellcycle 0.368 0.369 0.357 0.371 0.252 0.332
Derisi 0.341 0.344 0.355 0.349 0.218 0.334
Eisen 0.396 0.398 0.380 0.365 0.270 0.376
Gasch1 0.381 0.382 0.371 0.351 0.239 0.356
Gasch2 0.369 0.367 0.365 0.378 0.267 0.344

Tree
Cellcycle 0.200 0.187 0.172 0.111 0.106 0.154
Derisi 0.163 0.163 0.175 0.094 0.089 0.161
Eisen 0.211 0.214 0.204 0.127 0.132 0.180
Gasch1 0.212 0.210 0.205 0.106 0.104 0.175
Gasch2 0.196 0.197 0.195 0.121 0.119 0.152

Average Rank 2.15 1.85 2.80 4.00 5.90 4.30

which takes into consideration the cluster membership probability to build the
average class vectors, is slightly better ranked than HMC-PC. This is coherent
with our initial hypothesis that the cluster membership probabilities can be used
to tune the cluster class vector generation process, improving the prediction of
unseen instances. Indeed, by making use of the cluster memberships, HMC-PCΔ
was capable of detecting the training instances that could bring more precise
information within each cluster.

Regardless of the HMC-PC version employed, we can see that it provides
better results than hm-Ant-Miner for all ten datasets. The same can be said
regarding Clus-SC, which is outperformed by either version of HMC-PC by a
large margin.

In the comparison against Clus-HSC, we can notice that HMC-PC and HMC-
PCΔ outperform it in 7 out of 10 datasets, and they are outperformed by it in
the remaining three. It should be noticed that the performance of Clus-HSC in
the datasets structured as a tree is very poor, which seems to be a problem that
both local PCT-based methods share.

Finally, when comparing HMC-PC and HMC-PCΔ with Clus-HMC, we can
see that both versions outperform Clus-HMC in 8 out of 10 datasets, being
outperformed in only two datasets, which is quite a considerable difference con-
sidering the fact that Clus-HMC is the best-performing method in the literature.

For assessing the statistical significance of the results, we first consider the
p-value provided by the Friedman test: 3.15 × 10−6, which states that the null
hypotheses in which all methods perform similarly should be rejected. Then,
we take the best-ranked method as the control algorithm, and a set of pairwise
adjusted comparisons according to Holm’s procedure are performed.

Table 3 presents the p-values and adjusted α values for the Holm pos-hoc
pairwise comparisons, bearing in mind that HMC-PCΔ is the control algorithm.
The statistical test rejects those hypotheses that have a p-value ≤ 0.025. Note
that HMC-PCΔ outperforms with statistical significance all methods but Clus-
HMC and HMC-PC.



396 R.C. Barros et al.

Table 3. Holm’s procedure for α = 0.05. HMC-PCΔ is the control algorithm

i Algorithm z = (R0 − Ri)/SE p-value Holm’s adjusted α

5 Clus-SC 4.84 1.29 ×10−6 0.0100
4 hm-Ant-Miner 2.93 3.40 ×10−3 0.0125

3 Clus-HSC 2.57 1.02 ×10−2 0.0167

2 Clus-HMC 1.14 2.56 ×10−1 0.0250
1 HMC-PC 0.36 0.72 ×10−1 0.0500

Since Clus-HMC is the best-performing baseline algorithm, we now compare
it with HMC-PCΔ in specific classes of the hierarchy in order to examine their
behavior when predicting classes at different hierarchical levels. For selecting
these specific classes, we used the following methodology: we selected ten classes
from each dataset in which Clus-HMC presented the best per-class AUPRC
values in the training set. We compare the test per-class AUPRC values between
HMC-PCΔ and Clus-HMC in the DAG-structured datasets and in the tree-
structured datasets (Table 4).

By careful inspection of Table 4, we can observe that in the datasets in which
HMC-PCΔ outperformed Clus-HMC in AU(PRC), it also outperformed Clus-
HMC in the majority of the classes regarding the per-class AUPRC. The only
exception was the Gasch2 dataset organized as a DAG, in which Clus-HMC
and HMC-PCΔ tied 5-5 in the 10 selected classes. Overall, HMC-PCΔ’s good
performance is consistent across hierarchical levels.

For exemplifying this scenario, we can notice that HMC-PC outperformed
Clus-HMC in several classes that lie deep in the hierarchy. Recall that these
classes are associated with more specific protein functions, and the more specific
the function, the more useful the information about the protein. Also, recall
that the deeper the class, the fewer the number of instances assigned to it.
As an example, we can cite the case of the GO term (class) GO:0006412 in
datasets Cellcycle, Eisen, Gasch1, and Gasch2 (GO-annotated), in which HMC-
PCΔ consistently outperforms Clus-HMC. Figure 2 shows how deep in the DAG-
structured hierarchy the GO term GO:0006412 lies.

GO:0006412

GO:0044267 GO:0009059

GO:0019538 GO:0044260

GO:0044238 GO:0043170 GO:0044237 GO:0009058

GO:0008152 GO:0009087

GO:0008150

Fig. 2. Hierarchical paths that lead to term GO:0006412
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Table 4. Per-class AUPRC values for 10 specific classes in each dataset. Classes that
start with “GO:” belong to DAG-structured datasets, whereas the remaining belong
to tree-structured datasets.

Dataset Class Clus-HMC HMC-PCΔ Class Clus-HMC HMC-PCΔ

Cellcycle

GO:0044464 0.967 0.961 GO:0044424 0.898 0.921
GO:0009987 0.860 0.876 GO:0008152 0.726 0.767
GO:0003735 0.404 0.649 GO:0044237 0.676 0.699
GO:0044238 0.650 0.677 GO:0044444 0.586 0.624
GO:0043170 0.580 0.632 GO:0006412 0.361 0.599

Eisen

GO:0044464 0.981 0.983 GO:0044424 0.926 0.929
GO:0009987 0.916 0.909 GO:0003735 0.692 0.713
GO:0008152 0.808 0.840 GO:0044445 0.636 0.687
GO:0006412 0.607 0.652 GO:0044237 0.751 0.770
GO:0044238 0.716 0.726 GO:0043170 0.664 0.720

Derisi

GO:0044464 0.965 0.974 GO:0044424 0.888 0.880
GO:0009987 0.849 0.838 GO:0008152 0.736 0.731
GO:0044237 0.674 0.668 GO:0044238 0.643 0.640
GO:0044444 0.582 0.555 GO:0003735 0.462 0.293
GO:0043170 0.585 0.556 GO:0043226 0.525 0.540

Gasch1

GO:0044464 0.963 0.978 GO:0044424 0.912 0.927
GO:0009987 0.855 0.875 GO:0003735 0.659 0.614
GO:0008152 0.733 0.754 GO:0044237 0.674 0.699
GO:0006412 0.574 0.583 GO:0044238 0.660 0.671
GO:0044444 0.647 0.639 GO:0043170 0.616 0.659

Gasch2

GO:0044464 0.966 0.961 GO:0044424 0.910 0.926
GO:0009987 0.863 0.850 GO:0003735 0.622 0.609
GO:0008152 0.741 0.739 GO:0044237 0.696 0.682
GO:0006412 0.521 0.536 GO:0044238 0.667 0.668
GO:0043170 0.655 0.669 GO:0044422 0.601 0.619

Cellcycle

1 0.402 0.432 12.01 0.330 0.425
10 0.335 0.349 12.01.01 0.326 0.351

10.01 0.195 0.200 14 0.303 0.329
11 0.371 0.351 16 0.261 0.276
12 0.304 0.424 20 0.252 0.254

Eisen

1 0.392 0.462 12.01 0.582 0.650
2 0.420 0.301 12.01.01 0.609 0.722
10 0.352 0.364 14 0.396 0.370
11 0.394 0.369 14.13.01 0.177 0.082
12 0.508 0.650 16 0.270 0.250

Derisi

1 0.376 0.400 12.01 0.376 0.235
2 0.238 0.215 12.01.01 0.385 0.234
10 0.240 0.278 14 0.280 0.278
11 0.264 0.337 16 0.237 0.232
12 0.366 0.259 20 0.259 0.248

Gasch1

1 0.444 0.454 12.01 0.635 0.590
2 0.285 0.190 12.01.01 0.660 0.593
10 0.326 0.367 14 0.329 0.362
11 0.363 0.439 16 0.279 0.259
12 0.566 0.587 20 0.300 0.302

Gasch2

1 0.451 0.470 12.01.01 0.627 0.478
10 0.286 0.290 14 0.342 0.352
11 0.409 0.400 16 0.248 0.283
12 0.562 0.546 20 0.253 0.261

12.01 0.634 0.525 42 0.236 0.251
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We conclude by stating that HMC-PC seems to be a good alternative to
Clus-HMC for the following reasons: (i) it performs better in the majority of
the datasets; (ii) it is a parameter-free algorithm; (iii) it provides good AUPRC
values for both shallow and deep classes in the hierarchy; and (iv) its time
complexity is linear in all its input variables.

6 Conclusions

In this paper, we present a novel global hierarchical multi-label classification
algorithm based on probabilistic clustering for the task of protein function pre-
diction. The method is named Hierarchical Multi-Label Classification with Prob-
abilistic Clustering (HMC-PC). We present two different versions of HMC-PC,
namely HMC-PC and HMC-PCΔ.

HMC-PC works by clustering the protein function datasets in k clusters fol-
lowing an expectation-maximization scheme [13]. Then, for each of the k clusters,
the average class vector is generated based on the training instances that were
(hard-)assigned to each cluster. The choice of which instances will be used to
define the per-cluster average class vector is based on the probabilities of cluster
membership. The threshold-free version of HMC-PC assumes all instances that
were assigned to a given cluster should be used for generating the cluster’s av-
erage class vector, whereas HMC-PCΔ employs an adaptive threshold selection
strategy based on validation data to select the best value for Δ in each cluster.

We performed experiments using ten protein function prediction datasets (five
of them structured as trees and five of them structured as DAGs). We compared
HMC-PC versions with four well-known HMC algorithms: two decision tree-
based local methods, namely Clus-HSC and Clus-SC; one decision tree-based
global method, namely Clus-HMC; and one global method based on Ant Colony
Optimization, namely hmAnt-Miner. Among all the methods previously pro-
posed in the literature, Clus-HMC has been considered so far the state-of-the-art
method for hierarchical multi-label classification [31]. We evaluated the methods
using the area under the average PR-curve (AU(PRC)).

The comparison with the baseline methods shows that HMC-PC — particu-
larly its threshold-based version HMC-PCΔ — outperforms them in the major-
ity of the datasets. We also compared HMC-PCΔ and Clus-HMC in individual
hierarchical classes, and showed that HMC-PCΔ often obtained the best perfor-
mance, including in classes that lie deep in the class hierarchy. This is particularly
important, since deep class predictions tend to be more useful to biololgists than
shallow class predictions.

As future work, we intend to extend HMC-PC so it can also deal with cate-
gorical attributes. We also intend to perform a deeper analysis to verify whether
the thresholds in the different clusters are correlated to each other in any sense.
Finally, we plan to investigate the use of the complete covariation matrix, so
we do not have to make the näıve assumption of attribute independence. Never-
theless, such a modification will lead to an increased time complexity, since the
complexity of finding the inverse of a n×n matrix is O(n3), whereas the current
version of HMC-PC is linear in all its input variables.
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Abstract. Many problems in natural language processing and computer vision
can be framed as structured prediction problems. Structural support vector ma-
chines (SVM) is a popular approach for training structured predictors, where
learning is framed as an optimization problem. Most structural SVM solvers al-
ternate between a model update phase and an inference phase (which predicts
structures for all training examples). As structures become more complex, infer-
ence becomes a bottleneck and thus slows down learning considerably. In this
paper, we propose a new learning algorithm for structural SVMs called DEMI-
DCD that extends the dual coordinate descent approach by decoupling the model
update and inference phases into different threads. We take advantage of multi-
core hardware to parallelize learning with minimal synchronization between the
model update and the inference phases. We prove that our algorithm not only con-
verges but also fully utilizes all available processors to speed up learning, and val-
idate our approach on two real-world NLP problems: part-of-speech tagging and
relation extraction. In both cases, we show that our algorithm utilizes all available
processors to speed up learning and achieves competitive performance. For ex-
ample, it achieves a relative duality gap of 1% on a POS tagging problem in 192
seconds using 16 threads, while a standard implementation of a multi-threaded
dual coordinate descent algorithm with the same number of threads requires more
than 600 seconds to reach a solution of the same quality.

1 Introduction

Many prediction problems in natural language processing, computer vision and other
fields are structured prediction problems, where decision making involves assigning
values to interdependent variables. The output structure can represent sequences, clus-
ters, trees or arbitrary graphs over the decision variables. The structural support vector
machine (structural SVM) [23] is a widely used approach for training the parameters
of structured models. However, training a structural SVM is computationally expensive
and this often places limits on the size of the training sets that can be used or limits the
expressivity of the structures considered among the interdependent variables. Designing
efficient learning algorithms for structural prediction models is therefore an important
research question.

Various approaches have been proposed in the literature to learn with the structural
SVM algorithm – both exact [22,12,3,4,13] and approximate [19,8]. However, these
algorithms are inherently single-threaded, and extending them to a multi-core environ-
ment is not trivial. Therefore, these algorithms cannot take advantage of the multiple
cores available in most modern workstations.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part II, LNAI 8189, pp. 401–416, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Existing parallel algorithms for training structural SVMs (such as [3]) use a sequence
of two phases: an inference phase, where loss-augmented inference is performed using
the current model, and a model update phase. Each phase is separated from the other
by a barrier that prevents model update until the inference is complete and vice versa.
A similar barrier exists in map-reduce implementations of the binary SVM [5] and
the Perceptron [17] algorithms. Such barrier-based approaches prevent existing parallel
algorithms from fully utilizing the available processors.

In this paper, we propose the DEMI-DCD algorithm (DEcoupled Model-update and
Inference with Dual Coordinate Descent), a new barrier-free parallel algorithm based
on the dual coordinate descent (DCD) method for the L2-loss structural SVM. DCD has
been shown competitive with other optimization techniques such as the cutting plane
method [23] and the Frank-Wolfe method [13]. DEMI-DCD removes the need for a
barrier between the model update and the inference phases allowing us to distribute
these two steps across multiple cores. We show that our approach has the following
advantages:

1. DEMI-DCD requires little synchronization between threads. Therefore, it fully
utilizes the computational power of multiple cores to reduce training time.

2. As in the standard dual coordinate descent approach, DEMI-DCD can make multi-
ple updates on the structures discovered by the loss-augmented inference, thus fully
utilizing the available information. Furthermore, our approach retains the conver-
gence properties of dual coordinate descent.

We evaluate our method on two NLP applications – part-of-speech tagging and
entity-relation extraction from text. In both cases, we demonstrate that not only does
DEMI-DCD converge faster than existing methods to better performing solutions (ac-
cording to both primal objective value and test set performance), it also fully takes
advantage of all available processors unlike the other methods. For the part-of-speech
tagging task, we show that with 16 threads, our approache reaches a relative duality
gap of 1% in 192 seconds, while a standard multi-threaded implementation of the dual
coordinate descent algorithm with 16 threads takes more than 600 seconds to reach an
equivalent solution. Similarly, for the entity-relations task, our approach reaches within
1% of the optimal within 86 seconds, compared to 275 seconds for the baseline.

The rest of this paper is organized as follows. We review the structural SVM model
and the DCD method in Section 2. The proposed algorithm is described in Section 3. We
survey related methods in Section 4. Empirical results are demonstrated in
Section 5. Section 6 provides concluding remarks and discussion.

2 Background: Structural SVM

We are given a set of training examples D = {xi,yi}li=1, where instances xi ∈ X
are annotated with structures yi ∈ Yi. Here the set Yi is a set of feasible structures for
the ith instance. Training a structural SVMs (SSVM) [23] is framed as the problem of
learning a real-valued weight vector w by solving the following optimization problem:
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min
w,ξ

1

2
wTw + C

∑
i

�(ξi)

s.t. wTΦ(xi,yi)−wTΦ(xi,y) ≥ Δ(yi,y)− ξi, ∀i,y ∈ Yi.
(1)

where Φ(x,y) is the feature vector extracted from input the x and output y and �(ξ) is
the loss that needs to be minimized. The constraints in (1) indicate that for all training
examples and all possible output structures, the score for the correct output structure yi
is greater than the score for other output structures y by at least Δ(yi,y). The slack
variable ξi ≥ 0 penalizes the violation. The loss � is an increasing function of the slack
that is minimized as part of the objective: when �(ξ) = ξ, we refer to (1) as an L1-loss
structural SVM, while when �(ξ) = ξ2, we call it an L2-loss structural SVM.1 For
mathematical simplicity, in this paper, we only consider the linear L2-loss structural
SVM model, although our method can potentially be extended to other variants of the
structural SVM.

Instead of directly solving (1), several optimization algorithms for SSVM consider
its dual form [23,12,4] by introducing dual variables αi,y for each output structure y
and each example xi. If α is the set of all dual variables, the dual problem can be
stated as

min
α>0

D(α), and

D(α) ≡ 1

2

∥∥∥∥∥∥
∑
αi,y

αi,yφ(y,yi,xi)

∥∥∥∥∥∥
2

+
1

4C

∑
i

(∑
y

αi,y

)2

−
∑
i,y

Δ(y,yi)αi,y,

(2)

where φ(y,yi,xi) = φ(yi,xi)− φ(y,xi). The constraint α ≥ 0 restricts all the dual
variables to be non-negative (i.e., αi,y ≥ 0∀i,y).

For the optimal values, the relationship between the primal optimal w∗ (that is, the
solution of (1)), and the dual optimal α∗ (that is, the solution of (2)) is

w∗ =
∑
i,y

α∗
i,yφ(y,yi,xi).

Although this relationship only holds for the solutions, in a linear model, one can main-
tain a temporary vector

w ≡
∑
i,y

αi,yφ(y,yi,xi) (3)

to assist the computations [10].
In practice, for most definitions of structures, the set of feasible structures for a given

instance (that is, Yi) is exponentially large, leading to an exponentially large number of

1 In L2-loss structural SVM formulation, one may replace Δ(yi,y) by
√

Δ(yi,y) to obtain an
upper bound on the empirical risk [23]. However, we keep using Δ(yi, y) for computational
and notational convenience. Thus, Eq. (1) minimizes the mean square loss with a regularization
term.
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dual variables. Therefore, existing dual methods [4,23] maintain an active set of dual
variables A (also called the working set in the literature). During training, only the
dual variables in A are considered for an update and the rest αi,y /∈ A are fixed to 0.
We denote the active set associated with the instance xi as Ai and A =

⋃
iAi. The

following theorem justifies the use of an active set.

Theorem 1. Let α∗ be the optimal solution of (2) and A∗ = {α∗
i,y | α∗

i,y > 0}. Then
any optimal solution of

min
α≥0

D(α) s.t. αi,y = 0, ∀αi,y /∈ A∗ (4)

is an optimal solution of (2).

This suggests that we can reduce the size of the optimization problem by carefully
identifying nonzero α’s. This property of the dual is widely used for training SVMs,
for example, with the cutting-plane method [23,12], with a dual coordinate descent
method [3,4], and has also been used for solving binary SVM [11,10,2].

We observe that across all these methods, in a single-thread implementation, training
consists of two phases:

1. Updating the values αi,y ∈ A (learning step), and
2. Selecting and maintaining the active set A (active set selection step).

The learning step usually updates each dual variable αi,y ∈ A several times until
convergence for the current active set. The active set selection step involves solving the
following loss-augmented inference problem for each example xi:

max
y∈Yi

wTφ(xi,y) +Δ(yi,y) (5)

Solving loss-augmented inference is usually computationally more expensive than the
time for updating the model. In the traditional sequential implementations, these two
steps block each other. Even if inference for each example is performed in parallel on
a multi-core machine, the model update cannot be done until inference is solved for all
training examples. Similarly, inference cannot start until the model update is complete.
Balancing the time spent on these two parts is a crucial aspect of algorithm design. In
the next section, we will show that, on a multi-core machine, we can indeed fully utilize
the available computational power without the barrier between the two training steps.

3 Parallel Strategies for Structured Learning

In this section, we describe the parallel learning algorithm DEMI-DCD which decou-
ples the model update steps from the inference steps during learning, and hence fully
utilizes the computational power of multi-core machines.

Let p be the number of threads allocated for learning. DEMI-DCD first splits the
training data D into p−1 disjoint parts: {Bj}p−1

j=1 with eachBj ⊂ D. Then, it generates
two types of threads, a learning thread and p − 1 active set selection threads. The jth
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active set selection thread is responsible for maintaining an active set Ai for each ex-
ample i in the partBj . It does so by searching for candidate structures for each instance
in Bj using the current model w which is maintained by the learning thread.

The learning thread loops over all the examples and updates the model w using
αi,y ∈ Ai for the ith example. The p − 1 active set selection threads are independent
of each other, and they share Ai and w with the learning thread using shared memory
buffers. We will now discuss our model in detail. The algorithms executing the learning
and the active set selection threads are listed as Algorithm 1 and 2 respectively.

Learning Thread. The learning thread performs a two-level iterative procedure un-
til the stopping conditions are satisfied. It first initializes α0 to a zero vector, then it
generates a sequence of solutions {α0,α1, . . .}. We refer to the step from αt to αt+1

as the outer iteration. Within this iteration, the learning thread sequentially visits each
instance xi in the data set and updates αi,y ∈ Ai while all the other dual variables are
kept fixed. To update αi,y , it solves the following one variable sub-problem that uses
the definition of the dual objective function from Eq. (2):

d̄i,y = arg min
d

D(α+ ei,yd) s.t. dαi,y + d ≥ 0

= arg min
d

1

2
‖w + φ(y,yi,xi)d‖2 +

1

4C

⎛⎝d+ ∑
y∈Ai

αi,y

⎞⎠2

− dΔ(yi,y)

s.t. αi,y + d ≥ 0.

(6)

Here, w is defined in Eq. (3) and ei,y is a vector where only the element corresponding
to (i,y) is one and the rest are zero. Eq. (6) is a quadratic optimization problem with
one variable and has an analytic solution. Therefore, the update rule of αi,y can be
written as:

d̄i,y ←
Δ(y,yi)−wTφ(y,yi,xi)− 1

(2C)

∑
y′ αi,y′

‖φ(y,yi,xi)‖2 + 1
(2C)

,

αi,y ←max(αi,y + d̄i,y, 0).

(7)

To maintain the relation between α and w specified in Eq. (3), w is updated accord-
ingly:

w ← w + di,yφ(y,yi,xi). (8)

We will now discuss two implementation issues to improve DEMI-DCD. First, dur-
ing the learning, w is shared between the learning and the active set selection threads.
Therefore, we would like to maintain w in a shared buffer. However, the update rules
in Steps (7)-(8) can be done in O(n̄), where n̄ is number of average active features
of φ(x,y). Thus, when the number of active features is small, the updates are quick.
Hence, we require to maintain a lock to prevent the active set selection threads from ac-
cessing w when it is being updated. To reduce the cost of synchronization, we maintain
a local copy of w and copy w to a shared buffer (denoted by w̄) after every ρ updates.
This reduces the overhead of synchronization.
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Algorithm 1. Learning Thread

Input: Dataset D and the number of iterations before updating the shared buffer, ρ.
Output: The learned model w
1: w ← 0,α ← 0, #updates ← 0.
2: while stopping conditions are not satisfied do
3: for i = 1 → l (loop over each instance) do
4: for all y in Ai do
5: if Eq. (9) is satisfied then
6: Ai ← Ai \ {αi,y}.
7: else
8: update corresponding αi,y by Eq. (7)-Eq.(8),
9: #updates ← #updates + 1.

10: end if
11: if #updates mod ρ = 0 then
12: Copy w to w̄ in a shared buffer.
13: end if
14: end for
15: end for
16: end while

Second, as the active set selection thread keeps adding dual variables into A, the size
of A grows quickly. To avoid the learning thread from wasting time on the bounded
dual variables, we implement a shrinking strategy inspired by [11]2. Specifically, if
αi,ȳ equals to zero and

−∇(α)i,ȳ = Δ(ȳ,yi)−wTφ(ȳ,yi,xi)−
1

2

∑
y∈Ai

αi,y < δ (9)

then DEMI-DCD removes αi,ȳ from Ai. Notice that the shrinking strategy is more
aggressive if δ is large. For binary classification, a negative δ is usually used. This is
because, in the binary classification case, the size of the data is usually large (typically
millions of examples); therefore incorrectly removing an instance from the active set
requires a lengthy process that iterates over all the examples to add it back. However,
in our case, aggressive shrinking strategy is safe because the active set selection threads
can easily add the candidate structures back. Therefore, in our implementation, we set
δ to 0.01.

Active Set Selection Threads. As mentioned, the jth active set selection thread iter-
ates over all instances xi ∈ Bj and selects candidate active variables based on solving
an augmented inference problem (line 4 in Algorithm 2), that is, eq. (5). Just like the
learning thread, each active set selection thread maintains a local copy of w. This set-
ting aims to prevent w from being changed while the loss augmented inference is being
solved, thus avoiding a possibly suboptimal solution. The local copy of w will be up-
dated from w̄ in the shared buffer after each ρ iterations.

2 This shrinking strategy is also related to the condition used by cutting plane methods for adding
constraints into the working set.
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Algorithm 2. The jth Active Set Selection Thread

Input: Part of dataset for this thread Bj , and the number of iterations before updating the shared
buffer, ρ.

1: w ← 0 (a local copy), #Inference ← 0,
2: while Learning thread is not stopped do
3: for all (xi,yi) ∈ Bj do
4: ȳ ← fAugInf(w,xi,yi).
5: if ȳ /∈ Ai then
6: Ai ← {Ai ∪ ȳ}.
7: end if
8: #Inference ← #Inference + 1
9: if #Inference mod ρ = 0 then

10: Copy from the model w̄ in shared buffer to w.
11: end if
12: end for
13: end while

Synchronization. Our algorithm requires little synchronization between threads. In
fact, only the learning thread can write to w̄ and only the jth active set selection thread
can modify Ai for any i ∈ Bj . It is very unlikely, but possible, that the learning thread
and the inference threads will be reading/writing w̄ or Ai concurrently. To avoid this,
one can use a mutex lock to ensure that the copy operation is atomic. However, in
practice, we found that this synchronization is unnecessary.

3.1 Analysis

In this section, we analyze the proposed multi-core algorithm. We observed that α’s
can be added to the A by the active set selection thread, but might be removed by the
learning thread with the shrinking strategy. Therefore, we define Ā to be a subset of
A that contains αi,y which has been visited by the learning thread at least once and
remains in the A.

Theorem 2. The number of variables which have been added to Ā during the entire
training process is bounded by O(1/δ2).

The proof follows from [4, Theorem 1]. This theorem says that the size of Ā is bounded
as a function of δ.

Theorem 3. If Ā 	= ∅ is not expanded, then the proposed algorithm converges to an
ε-optimal solution of

min
α≥0

D(α) s.t. αi,y = 0, ∀y /∈ Ai (10)

in O(log(1/ε)) steps.

If Ā is fixed, our learning thread performs standard dual coordinate descent, as in [10].
Hence, this theorem follows from the analysis of dual coordinate descent. The global



408 K.-W. Chang, V. Srikumar, and D. Roth

convergence rate of the method can be inferred from [24] which generalizes the proof
in [15].

Theorem 2 shows that the size of Ā will eventually stop growing. Theorem 3 shows
that when Ā is fixed, the weight vector w converges to the optimum of (10). Hence, the
local copies in the learning thread and the active set selection threads can be arbitrary
close. Following the analysis in [4], the convergence of DEMI-DCD then follows.

4 Related Work

Several related works have a resemblance to the method proposed in this paper. In the
following, we briefly review the literature and discuss the connections.

A Parallel Algorithm for Dual Coordinate Descent. The structural SVM package
JLIS [3] implements a parallel algorithm in a Master-Slave architecture to solve Eq.
(2).3, Given p processors, it first splits the training data into p parts. Then the algorithm
maintains a model w, dual variables α, and an active set A and updates these in an
iterative fashion. In each iteration, the master thread sends one part of the data to a
slave thread. For each slave thread, it iterates over each assigned example xi, and picks
the best structures ȳ according to current w. Then (xi, ȳ) is added into the active set A
if the following condition is satisfied:

Δ(ȳ,yi)−wTφ(ȳ,yi,xi)−
1

2

∑
y∈Ai

αi,y > δ. (11)

Only after all the slave threads have finished processing all the examples, the master
thread performs dual coordinate descent updates to solve the following optimization
loosely:

min
α≥0

D(α) s.t. αi,y = 0, ∀y /∈ Ai.

The algorithm stops when a stopping condition is reached. This approach is closely
related to the n-slack cutting plane method for solving structural SVM [23]. However,
[23] assumes that the sub-problem is solved exactly4, while this restriction can be re-
laxed under a dual coordinate descent framework.

We will refer to this approach for parallelizing structural SVM training as MS-DCD
(for Master-Slave dual coordinate descent) and compare it experimentally with DEMI-
DCD in Section 5.

Structured Perceptron and Its Parallel Version. The Structured Perceptron [6] algo-
rithm has been widely used in the literature. At each iteration, it picks an example xi
that is annotated with yi and finds its best structured output ȳ according to the current
model w using an inference algorithm. Then, the model is updated as

w ← w + η(φ(xi,yi)− φ(xi, ȳ)),

3 The implementation of MS-DCD can be downloaded at
http://cogcomp.cs.illinois.edu/page/software_view/JLIS

4 The cutting-plane solver for structural SVM usually sets a tolerance parameter, and stops the
sub-problem solver when the inner stopping criteria is satisfied.

http://cogcomp.cs.illinois.edu/page/software_view/JLIS
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where η is a learning rate. Notice that the Structural Perceptron requires an inference
step before each update. This makes it different from the dual methods for structured
SVMs where the inference step is used to update the active set. One important advantage
of the dual methods is that they can perform multiple updates on the elements in the
active set without doing inference for each update. As we will show in Section 5, this
limits the efficiency of the Perceptron algorithm. Some caching strategies have been
developed for structural Perceptron. For example, [7] introduces a caching technique to
periodically update the model with examples on which the learner had made mistakes
in previous steps. However, this approach is ad-hoc without convergence guarantees.

A parallelization strategy for structured Pereceptron (SP-IPM) has been proposed
[18] using the Map-Reduce framework. It calls for first splitting the training data into
several parts. In the map phase, it distributes data to each mapper and runs a separate
Perceptron learner on each shard in parallel. Then, in the reduce phase, the models
are mixed using a linear combination. The mixed model serves as the initial model
for the next round. In this paper, we implement this map-reduce framework as a multi-
thread program. SP-IPM requires barrier synchronizations between the map and reduce
phases, which limits the computational performance. In addition, in the model mixing
strategy, each local model is updated using exclusive data blocks. Therefore, the map-
pers might make updates that are inconsistent with each other. As a result, it requires
many iterations to converge.

General Parallel Algorithms for Convex Optimization. Some general parallel opti-
mization algorithms have been proposed in the literature. For example, delayed stochas-
tic (sub-)gradient descent methods have been studied with assumptions on smoothness
of the problem [1,14]. However, their applicability to structured SVM has not been
explored.

5 Experiments

In this section, we show the effectiveness of the DEMI-DCD algorithm compared to
other parallel structured learning algorithms.

5.1 Experimental Setup

We evaluate our algorithm on two natural language processing tasks: part-of-speech
tagging (POS-WSJ) and jointly predicting entities and their relations (Entity-Relation).
These tasks, which have very different output structures, are described below.

POS Tagging (POS-WSJ). POS tagging is the task of labeling each word in a sentence
with its part of speech. This task is typically modeled as a sequence labeling task, where
each tag is associated with emission features that capture word-tag association and tran-
sition features that capture sequential tag-tag association. For this setting, inference can
be solved efficiently using the Viterbi algorithm.

We use the standard Penn Treebank Wall Street Journal corpus [16] to train and
evaluate our POS tagger using the standard data split for training (sections 2-22, 39832
sentences) and testing (section 23, 2416 sentences). In our experiments, we use
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indicators for the conjunction between the word and tags as emission features and pairs
of tags as transition features.

Entity and Relation Recognition (Entity-Relation). This is the task of assigning
entity types to spans of text and identifying relations among them [20]. For example,
for the sentence John Smith resides in London, we would predict John Smith to be a
PERSON, LONDON to be a LOCATION and the relation LIVES-IN between them.

As in the original work, we modeled prediction as a 0-1 linear program (ILP) where
binary indicator variables capture all possible entity-label decisions and entity pair label
decisions (that is, relation labels). Linear constraints force exactly one label to be as-
signed with each entity and relation. In addition, the constraints also encode background
knowledge about the types of entities allowed for each relation label. For example, a
LIVES-IN relation can only connect a PERSON to a LOCATION. We refer the reader to
[21] for further details. Unlike the original paper, which studied a decomposed learning
setting, we jointly train the entity-relation model using an ILP for the loss-augmented
inference. We used the state-of-the-art Gurobi ILP solver [9] to solve inference for this
problem both during training and test. We report results using the annotated data from
[21] consisting of 5925 examples with an 80-20 train-test split.

We based our implementation on the publicly available implementation of MS-
DCD, which implements a dual coordinate descent method for solving structural SVM.
DCD [4] has been shown competitive comparing to other L2-loss and L1-loss structural
SVM solvers such as a 1-slack variable cutting-plane method [12] and a Frank-Wolfe
optimization method [13] when using one CPU core.

As described in Section 3, our method is an extension of DCD and further improves
its performance using multiple cores. All the algorithms are implemented in Java. We
conducted our experiments on a 24-core machine with Xeon E5-2440 processors run-
ning 64-bit Scientific Linux. Unless otherwise stated, all results use 16 threads. We set
the value of C to 0.1 for all experiments.

Our experiments compare the following three methods:

1. DEMI-DCD: the proposed algorithm described in Section 3. We use one thread
for learning and the rest for inference (that is, active set selection).

2. MS-DCD: A master-slave style parallel implementation of dual coordinate descent
method from JLIS package [3] described in Section 4.

3. SP-IPM: A parallel structural Perceptron algorithm proposed in [18]. We run 10
epochs of Perceptron updates for each shard at each outer iteration.

Note that the first two methods solve an L2-Structural SVM problem (1) and converge
to the same minimum.

Our experiments answer the following research question: Can DEMI-DCD make
use of the available CPU resources to converge faster to a robust structural prediction
model? To answer this, for both our tasks, we first compare the convergence speed of
DEMI-DCD and MS-DCD. Second, we compare the performance of the three algo-
rithms on the test sets of the two tasks. Third, we show that DEMI-DCD maximally
utilizes all available CPU cores unlike the other two algorithms. Finally, we report the
results of an analysis experiment, where we show the performance of our algorithm
with different number of available threads.
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(a) POS-WSJ (b) Entity-Relation

Fig. 1. Relative primal function value difference to the reference model versus wall clock time.
See the text for more details.

5.2 Empirical Convergence Speed

First, we compare DEMI-DCD to MS-DCD in terms of their speed of convergence in
terms of objective function value. We omit SP-IPM in this comparison because it does
not solve the SVM optimization problem. Figure 1 shows the relative primal objective
function (that is, the value of the objective in Eq. (1)) with respect to a reference model
w∗ as a function of wall-clock training time. In other words, if the objective function is
denoted by f , we plot (f(w)− f(w∗)) /f(w∗) as w varies with training time for each
algorithm. The reference model is the one that achieves the lowest primal value among
the compared models. In the figure, both the training time and the relative difference
are shown in log-scale. From the results, we see that the proposed method is faster than
MS-DCD on both tasks. DEMI-DCD is especially faster than MS-DCD in the early
stage of optimization. This is important because usually we can achieve a model with
reasonable generative performance before solving (1) exactly. Note that the inference in
Entity-Relation is much slower than inference for POS-WSJ. For example, at each iter-
ation on POS-WSJ, MS-DCD takes 0.62 seconds to solve inference on all the training
samples using 16 threads and takes 3.87 seconds to update the model using 1 thread,
while it takes 10.64 seconds to solve the inference and 8.45 seconds to update the model
on Entity-Relation. As a result, the difference between DEMI-DCD and MS-DCD is
much higher on POS-WSJ. We will discuss the reason for this in Section 5.3.

Next, we show that the proposed method can obtain a reasonable and stable solu-
tion in a short time. Figure 2 shows the test set performance of the three algorithms
as training proceeds. For POS-WSJ, we evaluate the model using token-based accu-
racy. For Entity-Relation, we evaluate the entity and relation labels separately and re-
port the micro-averaged F1 over the test set. In all cases, DEMI-DCD is the fastest
one to achieve a converged performance. As mentioned, DEMI-DCD is more efficient
than MS-DCD in the early iterations. As a result, it takes less time to generate a rea-
sonable model. Note that SP-IPM achieves better final performance on the POS-WSJ
task. This is so because SP-IPM converges to a different model from DEMI-DCD and
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(c) Entity-Relation: Relation F1

Fig. 2. Performance of POS-WSJ and Entity-Relation plotted as a function of wall clock training
time. For Entity-Relation, we report the F1 scores of both entity and relation tasks. Note that the
X-axis is in log scale. We see that DEMI-DCD converges faster to better performing models.

MS-DCD. For both entities and relations, SP-IPM converges slowly and, moreover,
its performance is unstable for the relations. We observe that the convergence of SP-
IPM is slow because the Perceptron algorithm needs to solve an inference problem
before each update. When the inference is slow, the number of updates in SP-IPM
is significantly smaller than DEMI-DCD and MS-DCD. For example, in the Entity-
Relation task, DEMI-DCD makes around 55 million updates within 100 seconds, while
SP-IPM only makes 76 thousand updates in total.5 In other words, DEMI-DCD is
faster and better than SP-IPM because it performs many inexpensive updates.

5 SP-IPM has 16 threads running on different shards of data in parallel. We simply sum up all
the updates on different shards.
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(a) POS-WSJ (1,318%, 257%, 1,177%) (b) Entity-Relation (1,462%, 527%, 1248%)

Fig. 3. CPU usage of each method during training. The numbers listed in the caption are the
average CPU usage percentage per second for DEMI-DCD, MS-DCD, SP-IPM, respectively.
We show moving averages of CPU usage with a window of 2 seconds. Note that we allow all
three algorithms to use 16 threads in a 24 core machine. Thus, while all the algorithms can report
upto 1600% CPU usage, only DEMI-DCD consistently reports high CPU usage.

5.3 CPU Utilization

Finally, we investigate the CPU utilization of the three algorithms by plotting the mov-
ing average of CPU usage in Figure 3 during training, as reported by the Unix command
top. Since we provide all algorithms with 16 threads, the maximum CPU utilization
can be 1600%. The results show that DEMI-DCD almost fully utilizes the available
CPU resources.

We see that neither baseline manages to use the available resources consistently.
The average CPU usage for MS-DCD on POS-WSJ is particularly small because the
inference step on this task is relatively easy (i.e. using the Viterbi algorithm). In fact,
MS-DCD spends only around 25% of the time on the inference steps, which is solved
by the slave threads in parallel. Both MS-DCD and SP-IPM require a barrier to ensure
that the subtasks sent to the slave threads are complete. This barrier limits the CPU
utilization and hence slows down the learners. Since inference is more expensive (i.e.
an ILP call) for the Entity-Relation case, more time is spent on inference in the learning
algorithms. Since this step is distributed across the slaves for both MS-DCD and SP-
IPM, we see periods of high CPU activity followed by low activity (when only the
master thread is active).

5.4 Performance with Different Number of Threads

In our final set of experiments, we study the performance of DEMI-DCD for different
number of threads. Figure 4 shows the change in the primal objective function value
difference as a function of training time for different number of threads. Note that the
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Fig. 4. Relative primal function value difference along training time using different number of
threads. We also show a DCD implementation using one CPU core (1-DCD). Both x-axis and
y-axis are in log scale.

training time and the function values are shown in log-scale. For comparison, we also
show the performance of a DCD implementation using only one CPU core (1-DCD).
As can be seen in the figure, the training time is reduced as the number of threads in-
creases. With multiple threads, DEMI-DCD is significantly faster than 1-DCD. How-
ever, when the number of threads is more than 8, the difference is small. That is because
the inference step (i.e, the active set selection step) is no longer the bottleneck.
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6 Discussion and Conclusion

In this paper, we have proposed a new learning algorithm for training structural SVMs,
called DEMI-DCD. This algorithm decouples the model update and inference phases
of learning allowing us to execute them in parallel, thus allowing us taking advantage
of multi-core machines for training. We showed that the DEMI-DCD algorithm con-
verges to the optimum solution of the structural SVM objective. We experimentally
evaluated our algorithm on the structured learning tasks of part-of-speech tagging and
entity-relation extraction and showed that it outperforms existing strategies for training
structured predictors in terms of both convergence time and CPU utilization.

The approach proposed in this paper opens up several directions for future research.
Here, we have considered the case of a single learning thread that updates the models
using the available active sets. A promising direction for future exploration is to explore
the possibility of using multiple learning threads to update the models.

For some structured prediction problems, the output structure may be too complex
for inference to be solved in a tractable fashion. For such cases, learning schemes with
approximate inference have been proposed (e.g., [8,19]). Incorporating approximate
inference into our method is an interesting topic for future study.
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Abstract. Although multi-label classification has become an increas-
ingly important problem in machine learning, current approaches remain
restricted to learning in the original label space (or in a simple linear
projection of the original label space). Instead, we propose to use ker-
nels on output label vectors to significantly expand the forms of label
dependence that can be captured. The main challenge is to reformulate
standard multi-label losses to handle kernels between output vectors. We
first demonstrate how a state-of-the-art large margin loss for multi-label
classification can be reformulated, exactly, to handle output kernels as
well as input kernels. Importantly, the pre-image problem for multi-label
classification can be easily solved at test time, while the training pro-
cedure can still be simply expressed as a quadratic program in a dual
parameter space. We then develop a projected gradient descent training
procedure for this new formulation. Our empirical results demonstrate
the efficacy of the proposed approach on complex image labeling tasks.

1 Introduction

Multi-label classification is a central problem in modern data analysis, where
complex data items, such as documents, images and videos, exhibit multiple
concepts of interest and thus belong to multiple non-overlapping categories. For
example, in text categorization, a news article or web page is often relevant to a
set of topics; similarly, in image labeling, an image can contain multiple objects
and therefore be assigned multiple class labels. Although multi-label classifi-
cation has been well investigated, it continues to receive significant attention.
Initial work considered transforming multi-label classification to a set of indepen-
dent binary classification problems [1], but this approach proved unsatisfactory
as it failed to exploit label interdependence [2]. A key issue has since become
capturing label dependence to improve multi-label classification accuracy. Many
approaches have been developed to exploit label dependence in multi-label learn-
ing, including pairwise dependence methods [3, 4], large-margin methods [5–8],
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ranking based methods [9–12], and probabilistic graphical models [13–15]. Un-
fortunately, these methods work in the original label space, limiting their ability
to capture complex dependence structure in a computationally efficient manner.

There has been recent interest in multi-label methods that work in trans-
formed label spaces [16–21], primarily based on low-dimensional projections of
high dimensional label vectors. For example, random projections [16], maximum
eigenvalue projections [18, 17], and Gaussian random projections [21] provide
techniques for mapping high dimensional label vectors to low dimensional code-
words to improve the efficiency of multi-label learning. Canonical correlation
analysis (CCA) has also been considered for relating inputs to label projections
[20]. However, these projection approaches divide the learning problem into sep-
arate dimensionality reduction and training steps, which does not ensure that
the reduced output representation is amenable to predictor training. Max margin
output coding [19], on the other hand, combines output projection and predic-
tion model learning in a joint optimization, but it must consider every label
combination while ignoring the residual error from the projected representation
back to the original label set. These methods primarily focus on reducing output
dimension to improve efficiency, rather than attempt to explicitly capture richer
label dependence. Moreover, the proposed label vector projections are limited to
linear transformations, which cannot capture nonlinear label dependence.

Instead, in this paper we propose a new multi-label classification approach
that uses output kernels to capture more complex nonlinear dependences be-
tween labels in a flexible yet tractable manner. Such an approach significantly
expands the form of label dependences that can be captured, both at training
and test time. Although kernel methods have been widely used for expanding
input representations, kernels have yet to be used to explicitly capture nonlin-
ear output structure in multi-label classification. We base our formulation on
a recent large margin multi-label approach that minimizes calibrated separation
ranking loss [8]. Such a loss achieves state-of-the-art results in multi-label clas-
sification, but it makes kernelization a challenge because it is different from any
loss formulation that has been previously shown to be kernelizable. Demonstrat-
ing that a tailored multi-label loss can be equivalently re-expressed in terms of
output kernels is one of the key contributions of this paper.

After reviewing related work on learning with output kernels in Section 2,
we introduce the main multi-label classification formulation we use in Section 3.
Our formulation is based on the calibrated separation ranking loss of [8], which
we show can be equivalently re-expressed by an output kernel in Section 4. In
particular, we produce a quadratic program in dual parameter space that encodes
both the outputs and inputs in kernel forms. We also show that the pre-image
problem for multi-label classification can be easily solved at test time. A scalable
projected gradient descent optimization algorithm is then presented in Section 5.
Finally, we conduct experiments on multi-label data in Section 6, and compare
to standard multi-label classification. Our results demonstrate the efficacy of the
proposed approach when the labels demonstrate complex dependence structure.
We conclude the paper with a brief discussion of future work in Section 7.
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2 Related Work: Learning with Output Kernels

Although other losses have been re-expressed in terms of output kernels, cur-
rent formulations have either assumed a least squares loss or a simple 0-1 mis-
classification loss. These standard losses make the extension to output kernels
straightforward, but developing a similar extension for the more complex loss
we consider for multi-label classification is a greater challenge.

To re-express a problem in terms of a kernel over an output space Y, one
assumes there is a feature map ϕ : Y → HY that maps each output label vector
y into a new representation ϕ(y). A kernel between output vectors can then
be defined by an inner product between two output label vectors in the new
representation space (formally, in a reproducing kernel Hilbert space [22, 23]).
Such formulations have already been explored in machine learning, but they
are often hampered by an intractable pre-image problem at test time [24]: for
a given test instance, even though the similarity between any candidate output
and training outputs can be determined easily, the search for the optimal test
output can be a hard computational problem [23]. We will seek to avoid such
intractability in our method.

Previous work on multi-class (not multi-label) classification learning has
demonstrated that training can be equivalently expressed in terms of an out-
put kernel when the classes are disjoint [25–27]. In particular, extensions to
output kernels have been achieved for unsupervised and semi-supervised logistic
regression training with hidden output variables [25], and convex reformulations
of unsupervised and semi-supervised training of support vector machines [26, 27].
It turns out that output kernelization is trivially achieved in this special case
simply by using the linear kernel between class indicator vectors. However, in
these contexts, this extension is only used to achieve convex reformulations of the
training process, not to expand the set of output dependence structures that can
be captured. Moreover, these approaches generally involve learning an output
kernel via expensive semi-definite programming.

Applying kernel methods in the output space has also been exploited in re-
gression methods for structured output learning [28–37]. For example, in [28–30],
regression models are trained by least squares to predict an output kernel matrix
Ky from an input kernel matrix Kx. In [35, 36], similar methods are developed
for transductive link prediction and regression to fixed output kernel values ex-
tracted from given link labels. The methods in [32–34] extend tree-based regres-
sion to kernelized output spaces for structured data, but do not exploit kernels
defined over the input space. A related approach is to adopt a joint kernel over
input/output pairs [38]. Unfortunately, all of these regression based approaches
require the solution of a difficult pre-image problem to recover the predictions
for any test instance. Furthermore, none of these methods directly address multi-
label classification.

Other recent work has proposed to learn a covariance matrix between labels in
a multi-label setting to capture dependence [8, 39–41]. However, these methods
do not produce a kernel representation in the output space; rather, their output
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representations remain restricted to the original label set. Our goal in this paper
is to exploit kernels to capture complex nonlinear dependence between labels
for multi-label classification.

3 Background: Large Margin Multi-label Classification

To address multi-label classification we consider a large margin approach to clas-
sifier training. By optimizing a discriminative objective, large margin methods
have proved successful in practice, achieving both good generalization perfor-
mance and computational efficiency. We will therefore focus on the calibrated
separation ranking loss criterion of [8], which achieves state-of-the-art multi-
label classification results while retaining the simplicity and efficiency of a large
margin approach. This loss expresses the sum of two large margin losses, one
between the prediction value of the least positive label response and the value
of a dummy threshold class, and the other between the prediction value of the
least negative label response and the value of the dummy threshold class. Such
an approach allows the predictions to be coordinated across different labels sim-
ply by using a shared adaptive threshold, rather than suffering the intractability
of considering all label subsets [42] or even the cost of considering all label pairs
(followed by a difficult labeling problem at test time) [9].

Definitions and Notation: To formulate the approach, we introduce some def-
initions and notation. X and Y denote the input and output spaces respectively.
Below we will use capital letters to denote matrices, bold lower-case letters to
denote column vectors, and regular lower-case letters to denote scalars, unless
special declaration is given. Given a vector x, ‖x‖2 denotes its Euclidean norm.
Given a matrix X , ‖X‖2F denotes its Frobenius norm. We use Xi: to denote the
ith row of a matrix X , use X:j to denote the jth column of X , and use Xij to
denote the entry at the ith row and jth column of X . For matrices, we use ‖X‖
to refer to a generic norm on X , and use tr to denote trace. We use Id to denote
a d× d identity matrix; and use 1 to denote a column vector with all 1 entries,
generally assuming its length can be inferred from context. Inequalities ≥,≤ are
applied entrywise. For a boolean label matrix Y we let Ȳ denote its complement
Ȳ = 11� − Y . Finally, we use ◦ to denote Hadamard (componentwise) product.

To introduce the underlying approach, assume one is given an input data
matrix X ∈ Rt×d and label indicator matrix Y ∈ {0, 1}t×L, where L denotes the
number of classes. For convenience, we assume a feature function φ : X → HX
is provided that maps each input vector x into a new representation φ(x) in
the Hilbert space HX . Therefore the input data X can be putatively converted
(row-wise) into a feature matrix Φ := φ(X). Given an input instance x, an L
dimensional response vector s(x) := φ(x)�W can be recovered using parameter
matrix W , giving a “score” for each label. These scores can then be compared
to a threshold value s0(x) := φ(x)�u, using a parameter vector u, to determine
which labels are to be ‘on’ and ‘off’ respectively. In particular, the classification
of a test example x is determined by
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y∗l = arg max
yl∈{0,1}

yl(sl(x)− s0(x)), (1)

for each candidate label l ∈ {1, ..., L}.
To learn the parameters, W and u, of this score based multi-label classifier,

we consider the calibrated separation ranking loss of [8], given by:

max
l∈Yi:

(1 + s0(Xi:)− sl(Xi:))+ +max
l̄∈Ȳi:

(1 + sl̄(Xi:)− s0(Xi:))+. (2)

Intuitively, this training loss encourages the model to produce scores a minimum
margin above the threshold value for ‘on’ labels, and a minimum margin below
the threshold value for ‘off’ labels. In previous work, [8] demonstrates that this
loss achieves state-of-the-art generalization performance across a range of multi-
label data sets while retaining efficient training and test procedures.

To allow efficient optimization, training with the calibrated separation ranking
loss under standard Euclidean regularization of the parameters can be formu-
lated as a convex quadratic program (where we have rewritten the formulation
given in [8] in a more compact matrix form):

min
W,u,ξ,η

α

2
(‖W‖2F + ‖u‖22) + 1�ξ + 1�η (3)

s.t. ξ ≥ 0, ξ1� ≥ Y ◦ (11� + Φ(u1� −W )),

η ≥ 0, η1� ≥ Ȳ ◦ (11� − Φ(u1� −W )).

Training with respect to a kernel over the input space can then be easily achieved
by considering the dual of this quadratic program [8], given by:

max
M,N

1�(M +N)1− 1
2α tr((M −N)�K(M −N)(I + 11�)) (4)

s.t. M ≥ 0, M1 ≤ 1, M ◦ Ȳ = 0,

N ≥ 0, N1 ≤ 1, N ◦ Y = 0,

where K = ΦΦ�, M and N are both t × L dual parameter matrices. Here the
primal solution is related to the dual solution by:

W = 1
αX

�(M −N), u =
1

α
X�(N −M)1. (5)

Thus, one reaches the conclusion that the original training problem can be ex-
pressed in terms of a kernel on the input space. However, the target output labels
appear linearly in the constraints in both the primal and dual formulations. It
is not obvious how these constraints can be equivalently re-expressed in terms
of a kernel between output vectors.

4 Multi-label Classification with Output Kernels

A main contribution of this paper is to derive an equivalent formulation to (4)
that is expressed entirely in terms of a kernel between output vectors. Such a
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formulation allows one to express multi-label classification in a manner that can
flexibly capture nonlinear dependence between output labels.

We start by making the assumption that L < t; that is, there are more training
examples than labels, which is a natural assumption in many applications. First
observe that, since M ≥ 0 and Ȳ ≥ 0 in (4), the constraint M ◦ Ȳ = 0 can be
equivalently re-expressed as tr(M�Ȳ ) = 0; similarly, the constraint N ◦ Y = 0
can be equivalently re-expressed as tr(N�Y ) = 0. This allows the quadratic
program (4) to be simplified somewhat to:

max
M,N

1�(M +N)1− 1
2α tr((M −N)�K(M −N)(I + 11�) (6)

s.t. M ≥ 0, M1 ≤ 1, tr(M�Ȳ ) = 0,

N ≥ 0, N1 ≤ 1, tr(N�Y ) = 0.

Unfortunately it is still not obvious that (6) can be converted to a form that
involves only inner products between label vectors. However, we will see now
that this can be achieved in two steps.

The first key step is to consider an expanded set of inner products; that is,
consider the set of inner products not just between label vectors in Y but also
between complements of these label vectors (i.e. in Ȳ ) and the canonical set of
single class indicator vectors (i.e. in IL). In particular, consider the expanded
(L+ 2t)× L label matrix S = [I;Y ; Ȳ ] (i.e., stacked vertically) from which one
can form the augmented inner product matrix

Q = SS� =

⎡⎣ I Y � Ȳ �

Y Y Y � Y Ȳ �

Ȳ Ȳ Y � Ȳ Ȳ �

⎤⎦ . (7)

This augmented kernel matrix embodies useful information for reformulating the
training problem (6). For example, one important property it satisfies is:

Q1=

⎡⎣1+ (Y + Ȳ )�1
Y 1+ Y (Y + Ȳ )�1
Ȳ 1+ Ȳ (Y + Ȳ )�1

⎤⎦=
⎡⎣1+ 11�1
Y 1+ Y 11�1
Ȳ 1+ Ȳ 11�1

⎤⎦=(t+1)

⎡⎣1Y 1
Ȳ 1

⎤⎦=(t+1)S1, (8)

which will be helpful below.
The second key step is to apply a change of variables by the following lemma.

Lemma 1. For any S defined as above, and for any M ≥ 0 and N ≥ 0, there
must exist two real value matrices Ω ≥ 0 and Γ ≥ 0 of size t× (L+2t) such that

M = ΩS and N = ΓS. (9)

Proof. First observe that M = ΩS defines a system of t linear equations where
the ith equation is given by Mi: = Ωi:S. By Farkas’ Lemma, given Mi: ∈ RL

and S ∈ R(L+2t)×L, exactly one of the following two statements must be true:

1. There exists an ω ∈ R(L+2t) such that Mi: = ω�S and ω ≥ 0.
2. There exists a z ∈ RL such that Sz ≥ 0 and Mi:z < 0.
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Assume that there exists a z ∈ RL such that Mi:z < 0. Then, since Mi: ≥ 0, z
must have at least one negative entry; i.e., zj < 0 for some j. However, since S
has an identity submatrix, we conclude that the jth entry of Szmust be negative.
Therefore the second statement of Farkas’ lemma cannot hold. According to the
first statement, we therefore know that for the given S and Mi: ≥ 0, there
must exist an ω ≥ 0 such that Mi: = ω�S. Finally, by taking all of the linear
systems into consideration, we conclude that for any M ≥ 0 there must exist an
Ω ∈ Rt×(L+2t), Ω ≥ 0 that satisfies (9). An identical argument can be used to
establish the condition between the N ≥ 0 and Γ ≥ 0 matrices. �
Next, by introducing the expanded label kernel matrix Q and by making the
variable substitution suggested by Lemma 1, the main result can be established:
the original training problem (6) can be re-expressed in terms of inner products
between output vectors from the augmented set of label vectors S.

Proposition 1. By applying the variable substitution justified by Lemma 1 and
using (7) and (8), the quadratic program (6) can be equivalently re-expressed as:

max
Ω,Γ

1�(Ω+Γ )Q1− 1
2α tr((Ω−Γ )�K(Ω−Γ )((t+1)Q+ 1

t+1Q1(Q1)
�)) (10)

s.t. Ω ≥ 0, ΩQ1 ≤ (t+ 1)1, tr(ΩQB) = 0,

Γ ≥ 0, ΓQ1 ≤ (t+ 1)1, tr(ΓQA) = 0;

where A = [OL,t; It;Ot], B = [OL,t;Ot; It], It is a t× t identity matrix, Ot is a
t× t matrix with all 0 values, and OL,t is a L× t matrix with all 0 values.

Proof. Using the substitution (9), the objective in (6) can be rewritten as:

(6) = 1�(Ω + Γ )S1− 1
2α tr((Ω − Γ )�K(Ω − Γ )(SS� + S1(S1)�)). (11)

Next, observe that using Q = SS� and S1 = 1
t+1Q1, the objective (11) can be

further rewritten as:

(11) = 1
t+11

�(Ω+Γ )Q1− 1
2α tr((Ω−Γ )�K(Ω−Γ )(Q+ 1

(t+1)2Q1(Q1)
�)),(12)

which, multiplying by t+ 1, leads to the form stated in the proposition.
Finally, we consider the constraints in (6). For the equality constraints, using

the non-negativity of the matrices involved and applying the previous substitu-
tions one obtains:

tr(M�Ȳ ) = tr(ΩSȲ �) = tr(Ω[Ȳ �;Y Ȳ �; Ȳ Ȳ �]) = tr(ΩQB) = 0, (13)

tr(N�Y ) = tr(ΓSY �) = tr(Γ [Y �;Y Y �; Ȳ Y �]) = tr(ΓQA) = 0. (14)

For the middle inequality constraints, applying the same substitution (9) yields:

M1 = ΩS1 = 1
t+1ΩQ1 ≤ 1, (15)

N1 = ΓS1 = 1
t+1ΓQ1 ≤ 1. (16)

Finally, for the non-negativity constraints M ≥ 0 and N ≥ 0, Lemma 1 shows
that these can be equivalently enforced by asserting Ω ≥ 0 and Γ ≥ 0.

Combining the above set of derivations establishes the proposition. �
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4.1 Extension to Output Kernels for Multi-label Classification

Since Proposition 1 shows that minimizing the regularized calibrated separation
ranking loss can be expressed in terms of inner products between label vectors,
an extension to output kernels can be achieved in the obvious way. As before,
one assumes a feature map ϕ : Y → HY that transforms each label vector y
into a new representation ϕ(y) in the Hilbert space HY , hence a kernel between
output vectors can be defined by an inner product between two output label
vectors in the new representation space (an RKHS). In practice, one chooses a
positive semidefinite kernel function κy(·, ·) such that conceptually κy(y, ỹ) =
ϕ(y)�ϕ(ỹ) (where we are assuming this denotes inner product in the implied
reproducing kernel Hilbert space). In this way, the matrix Q can be constructed
as Q = κy(S, S), where conceptually κy(S, S) = ϕ(S)ϕ(S)�.

However, there is an important catch: in this case it turns out that, unlike in-
put kernelization (or output kernelization for least squares regression), not every
valid kernel is suitable as an output representation for multi-label classification.
Specifically, the optimization formulation above is only well posed for a subset
of possible output kernel functions (although any input kernel can still be used).

To preserve equivalence between the output kernelized form (10) and the dual
form (4) established in Proposition 1, we at least require that the kernel matrix
Q be doubly non-negative; i.e., Q 1 0, and Q ≥ 0 entrywise. Furthermore, to
preserve Lemma 1, Q must also preserve orthogonality; that is, if Yi:Y

�
j: = 0 then

Qij = 0. Therefore, overall, for any output kernel function κy that one would
wish to use for multi-label classification training the following set of constraints
must be satisfied: positive semi-definiteness, κy(S, S) 1 0 for any finite S; non-
negativity, κy(y, ỹ) ≥ 0 for all y ∈ {0, 1}L and ỹ ∈ {0, 1}L; and orthogonality,
y�ỹ = 0 must imply κy(y, ỹ) = 0.

These properties are obviously satisfied by the linear kernel used to derive
Proposition 1. However, in addition to the linear kernel, other kernels common
in document and language modeling are appropriate for this setting [43]. One
particularly useful family of kernels that satisfy these properties are the homo-
geneous polynomial kernels:

Kpoly(y, ỹ) =
k∑
i=1

wi(y
�ỹ)i, (17)

where w ≥ 0 is a vector of non-negative weights. Unfortunately, many standard
kernels, such as the Gaussian (RBF) kernel are not suitable, since by violating the
constraints it blocks all nonzero solutions to (10). Below we find that the simple
weighted polynomial kernels allow sufficient flexibility in capturing nonlinear
dependence to achieve positive results in some real world multi-label data sets.

4.2 Classification of Test Instances

Although Proposition 1 shows that training for multi-label classification can
be formulated in terms of a kernel between label vectors, this does not imply
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that classifying new instances x at test time will be necessarily easy. In fact,
for regression formulations, test prediction generally involves solving a hard pre-
image problem [23, 24]. Fortunately, the pre-image problem can be efficiently
solved for multi-label classification, even when there are an exponential (2L)
number of label vectors to consider.

After solving the training problem (10) one obtains the global solution (Ω,Γ ),
which can be used to efficiently classify a new test instance as follows. Let κx
and κy denote the input and output kernels respectively. Conceptually, we can
think of these as evaluating an inner product between feature representations
of the inputs and outputs as κx(x, x̃) = φ(x)�φ(x̃) and κy(y, ỹ) = ϕ(y)�ϕ(ỹ)
respectively. Then from the optimal parameters, we can conceptually recover the
solution (M,N) to the original dual problem (4) via

M = Ωϕ(S) and N = Γϕ(S). (18)

Using (1), the optimal parameters (W,u) for the original problem (3) are:

W = 1
αφ(X)�(Ω − Γ )ϕ(S), (19)

u = 1
αφ(X)�(Γ −Ω)ϕ(S)1 = 1

α(t+1)φ(X)�(Γ −Ω)Q1. (20)

Finally, recall the classification rule used for multi-label assignment (1). Given
a new test instance x ∈ Rd, we will determine its labels by computing the score
function values s(x) = [s1(x), · · · , sL(x)] and s0(x); that is, the label vector y
for x is then given by a L × 1 indicator vector where yl = 1 if sl(x) ≥ s0(x),
yl = 0 otherwise. Fortunately, these score values can be efficiently computed
directly from the recovered (Ω,Γ ) parameters via:

s0(x) = φ(x)u = 1
α(t+1)κx(x, X)(Γ −Ω)Q1, (21)

sl(x) = φ(x)Wϕ(1l) =
1
ακx(x, X)(Ω − Γ )κy(S,1l), ∀l = 1, · · · , L; (22)

where 1l denotes a vector with 1 as its lth entry and 0 elsewhere. Thus, the
multi-label assignment to test instance x can be efficiently computed.

5 A Scalable Training Method

One of the main challenges with this formulation is that the quadratic program-
ming problem (10) is defined over (L+2t)× t matrix variables, which makes the
training problem challenging for standard solvers. Instead, we develop a row-wise
projected gradient method to achieve a more scalable approach.

First note that the optimization problem (10) can be written in a more com-
pact form. Replace Ω and Γ with Λ = [Ω,Γ ]. Let C = [IL+2t;OL+2t] and
D = [OL+2t; IL+2t], such that Ω = ΛC and Γ = ΛD. Furthermore, let P =
1
α (C−D)((t+1)Q+ 1

t+1Q1(Q1)
�))(C−D)�; E = ((C+D)Q11�)�; a = 1

t+1CQ1;

b = 1
t+1DQ1; G = (CQB)� and F = (DQA)�. Then (10) can be rewritten

more succinctly as:



426 Y. Guo and D. Schuurmans

min
Λ

1
2 tr(Λ

�KΛP )− tr(ΛE�) (23)

s.t. Λ ≥ 0, Λa ≤ 1, tr(ΛG�) = 0, Λb ≤ 1, tr(−ΛF�) = 0.

The key property of this quadratic program is that the constraints decom-
pose row-wise. This allows us to use a row-wise coordinate descent procedure to
achieve scalability. Consider the ith row of Λ, assuming all other rows are fixed.
An update to row Λi: can be expressed as Λ = Λ+1i(z

�−Λi:), where 1i is a col-
umn vector of zeros with a single 1 in the ith position. Let Λī: := Λ−1iΛi:. The
objective function f(Λ) := 1

2 tr(Λ
�KΛP ) − tr(ΛE�) of the quadratic program

can be re-expressed as a function g over the single row update z such that:

g(z) = f(Λ+ 1i(z
� − Λi:)) = f(Λī: + 1iz

�)
= 1

2Kii(z
�Pz) + (Ki:Λī:P − Ei:)z+ const

= 1
2Kii(z

�Pz) + (Ki:ΛP −KiiΛi:P − Ei:)z+ const (24)

which yields the row optimization problem:

min
z

g(z) s.t. z ≥ 0, z�a ≤ 1, Gi:z = 0, z�b ≤ 1, Fi:z = 0. (25)

The update of the ith row only affects other rows through the Ki:ΛP term.
Therefore, we maintain a matrix U = KΛP that can be updated locally after
an update to Λi:, by U = U +K:i(z

� −Λi:)P . To ensure that progress is always
made, while maintaining scalability, we use a row-wise steepest descent method.
For the objective function g(z), its gradient vector is given by:

g =
dg(z)

dz
= KiiPz+ (Ki:ΛP −KiiΛi:P − Ei:)

�, (26)

which can be efficiently computed. Since the constraints on z are simple, this
gradient vector can be efficiently projected to a feasible direction d. Because the
objective f has a simple quadratic form, the optimal step size in the feasible
direction d can be computed in closed form. Thus, optimal updates can be made
by locally operating on each row of Λ in succession. We have found this approach
to be reasonably effective in our experiments below.

6 Experiments

To evaluate the proposed approach, we conducted experiments on a multi-label
classification image set, scene, and a set of multi-label classification tasks con-
structed from a real-world image data set,MIRFlickr. We compared the proposed
output kernel approach to a number of large margin multi-label classification
methods, and to an output-kernel based least square regression method.
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Table 1. Properties of the multi-label data sets used in the experiments

Data set #classes #instances #features label-card.

Scene-6 6 2407 294 1.1

MIRFlickr-10 10 1484 1000 2.4

MIRFlickr-15 15 1929 1000 2.5

MIRFlickr-20 20 2902 1000 2.6

MIRFlickr-25 25 3414 1000 2.7

MIRFlickr-30 30 4057 1000 2.7

6.1 Experimental Setting

Data Sets. We focused on image data sets for these experiments, since image
data usually exhibits highly nonlinear semantic dependence between labels. The
scene [44] data set has 2407 images and only 6 classes, whereas theMIRFlickr [45]
data set contains 25,000 images and 457 classes. Although MIRFlickr has a very
large number of classes, the labels appear in a very sparse manner. One key prop-
erty of multi-label data sets is their label cardinality [42]; the average number of
labels assigned to each instance. If the label cardinality of a data set is close to 1,
the task reduces to a standard single label classification task, and there will not
be any significant label dependence to capture. The effectiveness of multi-label
learning can therefore primarily be demonstrated on data sets whose label cardi-
nality is reasonably large and complex. We thus constructed a set of multi-label
classification tasks from the MIRFlickr image data set that maintained reason-
able label cardinalities while ranging across a set of different numbers of classes.
Specifically, we constructed five multi-label subsets, MIRFlickr-10, MIRFlickr-
15, MIRFlickr-20, MIRFlickr-25, and MIRFlickr-30, by randomly selecting L
classes, for L ∈ {10, 15, 20, 25, 30} respectively, to achieve a reasonable level of
label cardinality in each case; see Table 1 for a summary.

Approaches. Our proposed approach (LM-K) is based on using output kernels
to capture nonlinear label dependence during training. In these experiments, we
employed the homogeneous polynomial kernels as defined in (17). With k ≥ 2,
these polynomial kernels can automatically encode pairwise and higher-order
label dependence structures in an expanded output space.

We compare the proposed approach to a number of state-of-the-art multi-label
classification methods to investigate the consequences of using nonlinear output
kernels. These competitors were: (1) the large margin method based on the
calibrated separation ranking loss (CSRL) [8]; (2) the pairwise ranking loss SVM
(Rank) proposed in [9], which first trains a large margin ranking model and then
learns the threshold of the multi-label predications using a least-square method;
and (3) the max-margin multi-label classification method (M3L) proposed in [7],
which takes prior knowledge about the label correlations into account. None of
these methods use output kernels. Therefore, we also compare the proposed
method with a least squares regression method that uses output kernels (LS-K),
thresholding its predictions for multi-label classification.
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Table 2. Summary of the performance (%) for the compared methods in terms of
micro-F1 (top section) and macro-F1 (bottom section)

Data set Rank M3L CSRL LS-K LM-K

Scene-6 58.8±0.5 52.7±0.7 52.8±0.7 46.0±0.7 60.6±0.4

MIRFlickr-10 32.9±0.5 37.6±0.7 41.0±0.9 36.8±0.5 44.4±0.2

MIRFlickr-15 26.9±0.5 26.9±0.9 33.1±0.3 28.0±0.2 34.3±0.1

MIRFlickr-20 17.9±0.6 19.2±0.9 26.0±0.5 22.1±0.2 27.9±0.1

MIRFlickr-25 16.0±0.4 17.2±0.7 22.4±0.5 18.6±0.2 24.4±0.1

MIRFlickr-30 13.8±0.3 14.6±0.6 18.7±0.6 15.8±0.2 21.8±0.1

Scene-6 60.0±0.5 52.0±0.9 51.8±0.9 45.3±0.7 60.3±0.6

MIRFlickr-10 30.9±0.4 32.2±0.6 38.1±1.0 34.7±0.4 42.6±0.2

MIRFlickr-15 20.7±0.4 22.0±0.4 28.8±0.4 24.7±0.2 32.5±0.2

MIRFlickr-20 14.0±0.4 15.2±0.7 22.8±0.5 19.5±0.2 26.8±0.1

MIRFlickr-25 12.8±0.3 12.5±0.4 19.1±0.5 16.0±0.2 23.2±0.1

MIRFlickr-30 10.7±0.4 10.1±0.4 15.6±0.5 13.3±0.2 20.9±0.1

6.2 Experimental Results

Classification Results. We first conducted a set of experiments on the six
multi-label data sets by randomly sampling 300 labeled images as training data
and holding out the remaining as test data. The intent is to investigate how
well each approach can exploit label dependence when there are limited training
instances available. In the experiments, we set the trade-off parameter α = 0.1
for the proposed approach and CSRL, and set the trade-off parameters for Rank
and M3L correspondingly with C = 10. We used the linear input kernel for all
methods. For LS-K and LM-K, we used the polynomial output kernel given in
(17) with maximum degree k = 2, with weights w1 = w2 = 1. This polynomial
kernel automatically encodes all pairwise label dependency structures within
the induced high dimensional output space. We repeated each experiment 10
times and report the average multi-label classification performance in terms of
micro-F1 and macro-F1 in Table 2.

From Table 2, one can observe that the difficulty of the learning problem
increases with label set size, causing degradation in the performance of all meth-
ods. However, with a nonlinear output kernel, the proposed approach LM-K
consistently outperforms the three state-of-the-art large margin multi-label clas-
sification methods, Rank, M3L and CSRL, across all the data sets with differ-
ent numbers of classes. It also significantly outperforms least-squares regression
method with the same output kernel, LS-K. These results suggest that a nonlin-
ear output kernel is indeed useful for improving multi-label classification models
in a setting with interesting label dependencies. Here the proposed approach ap-
pears to provide an effective method for exploiting nonlinear dependence struc-
ture through the use of a polynomial output kernel.

Polynomial Kernels. Based on the definition of homogeneous polynomial ker-
nels given in (17), one can produce many different kernels with different weights
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Fig. 1. Comparison of different polynomial output kernels on the MIRFlickr data sets

{wi} and different maximum degree k. We next investigated the influence of
alternative output kernels on multi-label classification. We considered three dif-
ferent polynomial kernels by varying the degree number and the weights: (1)
Poly-kernel(3,1) uses degree up to k = 3 and weights w1 = w2 = w3 = 1;
(2) Poly-kernel(2,1) uses degree up to k = 2 and weights w1 = w2 = 1; and
(3) Poly-kernel(2,0.1) uses degree up to k = 2 but with weights w1 = 1 and
w2 = 0.1. Evidently the first polynomial kernel with maximum degree 3 consid-
ers triplet-wise label dependencies, whereas the other two kernels only consider
pairwise label dependence. Moreover, the last kernel put relatively less weight
on the higher order dependence features.

We conducted experiments on three MIRFlickr data sets, MIRFlickr-10,
MIRFlickr-20, and MIRFlickr-30, using the same setting as above. The results
are reported in Figure 1, in terms of micro-F1 measure and macro-F1 measure.
From these results one can see that even though it embodies more complex la-
bel features, Poly-kernel(3,1) demonstrates inferior performance when the class
number increases, compared to the less complex Poly-kernel(2,1). This suggests
that Poly-kernel(3,1) can over-fit when the classification problem gets more com-
plex given limited training data. On the other hand, Poly-kernel(2,0.1) further
suppresses the influence of the higher order label features, and demonstrates
inferior performance compared to Poly-kernel(3,1) when there are fewer labels.
The intermediate Poly-kernel(2,1) demonstrates good performance on all three
data sets. These results suggest selecting output kernels with the right complex-
ity is important, and pairwise label features are very useful for encoding label
dependence structure, somewhat vindicating an original intuition about multi-
label classification [9]. A proper output kernel should give proper consideration
over the pairwise feature expansions, and the complexity of the problem.

Performance vs. Training Size. With a modest training size, we have
demonstrated that the proposed approach can effectively improvemulti-label clas-
sification performance by exploiting the label dependence information and struc-
ture through the nonlinear output kernel. There remains a question of how the
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Fig. 2. Performance vs training size

behavior of the various methods would change with increasing sample size. To an-
swer this question, we conducted experiments with a number of different training
sizes, t ∈ [100, 200, 300, 400]on two of the data sets,MIRFlickr-10 andMIRFlickr-
20. We otherwise used the same experimental setting as above. The average results
and standard deviations in terms of micro-F1 and macro-F1measure on these two
data sets are plotted in Figure 2. Here, one can see that with increasing training
size, the performance of all methods generally improves. However, the proposed
approachwith polynomial output kernel consistently outperforms the other meth-
ods across all training sizes, evaluation measures, and data sets. These results
again demonstrate the efficacy of the proposed approach for using nonlinear out-
put kernel to capture label dependency of multi-label learning.

7 Conclusion

We have introduced a new form of multi-label classification learning that uses
an output kernel between multi-label output vectors to capture a rich set of non-
linear dependences between output labels, while retaining a tractable equivalent
formulation as a quadratic program. Although the resulting quadratic programs
are expanded, a scalable training algorithm can be based on example-wise pro-
jected gradient descent. The resulting method demonstrates advantages in multi-
label image classification experiments over standard linear-output approaches.
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In addition to investigating the benefits of alternative output kernels and
alternative scaling strategies, an important direction for future research is to
investigate other important loss formulations in machine learning, to determine
whether they too might be amenable to an equivalent kernelized approach.
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Abstract. To cope with machine learning problems where the learner
receives data from different source and target distributions, a new learn-
ing framework named domain adaptation (DA) has emerged, opening
the door for designing theoretically well-founded algorithms. In this pa-
per, we present SLDAB, a self-labeling DA algorithm, which takes its
origin from both the theory of boosting and the theory of DA. SLDAB

works in the difficult unsupervised DA setting where source and target
training data are available, but only the former are labeled. To deal with
the absence of labeled target information, SLDAB jointly minimizes the
classification error over the source domain and the proportion of margin
violations over the target domain. To prevent the algorithm from induc-
ing degenerate models, we introduce a measure of divergence whose goal
is to penalize hypotheses that are not able to decrease the discrepancy
between the two domains. We present a theoretical analysis of our al-
gorithm and show practical evidences of its efficiency compared to two
widely used DA approaches.

1 Introduction

In many learning algorithms, it is usually required to assume that the training
and test data are drawn from the same distribution. However, this assumption
does not hold in many real applications challenging common learning theories
such as the PACmodel [20]. To cope with such situations, a new machine learning
framework has been recently studied leading to the emergence of the theory of
domain adaptation (DA) [1,14]. A standard DA problem can be defined as a
situation where the learner receives labeled data drawn from a source domain
(or even from several sources [13]) and very few or no labeled points from the
target distribution. DA arises in a large spectrum of applications, such as in
computer vision [16], speech processing [11,18], natural language processing [3,5],
etc. During the past few years, new fundamental results opened the door for the
design of theoretically well-founded DA-algorithms. In this paper, we focus on
the scenario where the training set is made of labeled source data and unlabeled
target instances. To deal with this more complex situation, several solutions have
been presented in the literature (see, e.g., surveys [15,17]). Among them, instance
weighting-based methods are used to deal with covariate shift where the labeling
functions are supposed to remain unchanged between the two domains. On the

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part II, LNAI 8189, pp. 433–448, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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(a) h- 1 (b) h2-

Fig. 1. Underlying principle of DASVM. (a): black examples are labeled source data
(circle or triangle). Squares are unlabeled target data. A first SVM classifier h1 is
learned from the labeled source data. Then, DASVM iteratively changes some source
data by semi-labeled target examples selected in a margin band (black source instances
in a dashed circle and target squares in a circle). (b): new hypothesis h2 learned using
the newly semi-labeled data. h2 works well on the source and satisfies some margin
constraints on the target.

other hand, feature representation approaches aim at seeking a domain invariant
feature space by either generating latent variables or selecting a relevant subset of
the original features. In this paper, we focus on a third class of approaches, called
iterative self-labeling methods. For example, in DASVM [4], a SVM classifier is
learned from the labeled source examples. Then, some of them are replaced by
target data selected within a margin band (to allow slight modifications of the
current classifier) but at a reasonable enough distance from the hyperplane (to
have a sufficient confidence in those unlabeled examples). A new classifier is then
learned using these newly semi-labeled target data (see Figures 1(a) and 1(b)).
The process is repeated until having only semi-labeled data in the training set.

In the context of self-labeling DA, DASVM has become during the past few
years a reference method. However, beyond algorithmic constraints due to the
resolution of many non trivial optimization problems, it faces an important lim-
itation: it is based on the strong assumption that, if a classifier h works well on
the source data, the higher the distance from h, the higher the probability for
an unlabeled sample to be correctly classified. It is worth noting that such an
assumption holds only if the underlying DA problem does not require to sub-
stantially move closer the source and target distributions. As suggested by the
theoretical frameworks presented in [1,14], a DA algorithm may have not only
to induce a classifier that works well on the source but also to reduce the di-
vergence between the two distributions. This latter condition essentially enables
us to have confidence in the ability of the hypothesis learned from the source
to correctly classify target data. It is important to note that DASVM has not
been designed for such a discrepancy reduction. In this paper, our objective is
to fill the gap between the iterative self-labeling strategy and these theoreti-
cal recommendations. We present a novel DA algorithm which takes its origin
from both the theory of boosting [7] and the theory of DA. Let us remind that
boosting (via its well known AdaBoost algorithm) iteratively builds a com-
bination of weak classifiers. At each step, AdaBoost makes use of an update
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rule which increases (resp. decreases) the weight of those instances misclassified
(resp. correctly classified) by previous classifiers. It is worth noting that boosting
has already been exploited in DA methods but mainly in supervised situations
where the learner receives some labeled target instances. In [6], TrAdaBoost

uses the standard weighting scheme of AdaBoost on the target data, while the
weights of the source instances are monotonically decreased according to their
margin. A generalization of TrAdaBoost to multiple sources is presented in
[21]. On the other hand, some boosting-based approaches relax the constraint
of having labeled target examples. However, they are proposed in the context of
semi-supervised ensemble methods, i.e. assuming that the source and the target
domains are (sufficiently) similar [2,12].

In this paper, we present SLDAB, a boosting-like DA algorithm which both
optimizes the source classification error and margin constraints over the unla-
beled target instances. However, unlike state of the art self-labeling DA methods,
SLDAB aims at also reducing the divergence between the two distributions in
the space of the learned hypotheses. In this context, we introduce the notion of
weak DA assumption which takes into account a measure of divergence. This
classifier-induced measure is exploited in the update rule so as to penalize hy-
potheses inducing a large discrepancy. This strategy tends to prevent the algo-
rithm from building degenerate models which would, e.g., perfectly classify the
source data while moving the target examples far away from the learned hy-
perplane (and thus satisfying any margin constraint). We present a theoretical
analysis of SLDAB and derive several theoretical results that, in addition to
good experimental results, support our claims.

The rest of this paper is organized as follows: notations and definitions are
given in Section 2; SLDAB is presented in Section 3 and theoretically analyzed
in Section 4; We discuss the way to compute the divergence between the source
and target domains in Section 5; Finally, we conduct two series of experiments
and show practical evidences of the efficiency of SLDAB in Section 6.

2 Definitions and Notations

Let S be a set of labeled data (x′, y′) drawn from a source distribution S over
X × {−1,+1}, where X is the instance space and {−1,+1} is the set of labels.
Let T be a set of unlabeled examples x drawn from a target distribution T over
X . Let H be a class of hypotheses and hn ∈ H : X → [−1,+1] a hypothesis
learned from S and T and their associated empirical distribution DS

n and DT
n .

We denote by gn ∈ [0, 1] a measure of divergence induced by hn between S and
T . Our objective is to take into account gn in our new boosting scheme so as to
penalize hypotheses that do not allow the reduction of the divergence between S
and T . To do so, we consider the function fDA : [−1,+1] → [−1,+1] such that
fDA(hn(x)) = |hn(x)| − λgn, where λ ∈ [0, 1]. fDA(hn(x)) expresses the ability
of hn to not only induce large margins (a large value for |hn(x)|), but also to
reduce the divergence between S and T (a small value for gn). λ plays the role of
a trade-off parameter tuning the importance of the margin and the divergence.
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Let T−
n = {x ∈ T |fDA(hn(x)) ≤ γ}. If x ∈ T−

n ⇔ |hn(x)| ≤ γ + λgn.
Therefore, T−

n corresponds to the set of target points that either violate the
margin condition (indeed, if |hn(x)| ≤ γ ⇒ |hn(x)| ≤ γ + λgn) or do not satisfy
sufficiently that margin to compensate a large divergence between S and T (i.e.
|hn(x)| > γ but |hn(x)| ≤ γ + λgn). In the same way, we define T+

n = {x ∈
T |fDA(hn(x)) > γ} such that T = T−

n ∪T+
n . Finally, from T−

n and T+
n , we define

W+
n =

∑
x∈T+

n

DT
n (x) and W

−
n =

∑
x∈T−

n

DT
n (x) such that W+

n +W−
n = 1.

Let us remind that the weak assumption presented in [7] states that a classifier
hn is a weak hypothesis over S if it performs at least a little bit better than
random guessing, that is ε̂n <

1
2 , where ε̂n is the empirical error of hn over S

w.r.t. DS
n . In this paper, we extend this weak assumption to the DA setting.

Definition 1 (Weak DA Learner). A classifier hn learned at iteration n from
a labeled source set S drawn from S and an unlabeled target set T drawn from
T is a weak DA learner for T if ∀γ ≤ 1:

1. hn is a weak learner for S, i.e. ε̂n <
1
2 .

2. L̂n = Ex∼DT
n
[|fDA(hn(x))| ≤ γ] =W−

n < γ
γ+max(γ,λgn)

.

Condition 1 means that to adapt from S to T using a boosting scheme, hn
must learn something new at each iteration about the source labeling function.
Condition 2 takes into account not only the ability of hn to satisfy the margin γ
but also its capacity to reduce the divergence between S and T . From Def.(1),
it turns out that:

1. if max(γ, λgn) = γ, then γ
γ+max(γ,λgn)

= 1
2 and Condition 2 looks like the

weak assumption over the source, except the fact that L̂n <
1
2 expresses a

margin condition while ε̂n <
1
2 considers a classification constraint. Note that

if this is true for any hypothesis hn, it means that the divergence between
the source and target distributions is rather small, and thus the underlying
task looks more like a semi-supervised problem.

2. ifmax(γ, λgn) = λgn, then the constraint imposed by Condition 2 is stronger
(that is L̂n <

γ
γ+max(γ,λgn)

< 1
2 ) in order to compensate a large divergence

between S and T . In this case, the underlying task requires a domain adap-
tation process in the weighting scheme.

In the following, we make use of this weak DA assumption to design a new
boosting-based DA algorithm, called SLDAB.

3 SLDAB Algorithm

The pseudo-code of SLDAB is presented in Algorithm 1. Starting from uniform
distributions over S and T , it iteratively learns a new hypothesis hn that veri-
fies the weak DA assumption of Def.(1). This task is not trivial. Indeed, while
learning a stump (i.e. a one-level decision tree) is sufficient to satisfy the weak
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Algorithm 1. SLDAB

Input: a set S of labeled data and T of unlabeled data, a number of iterations N ,
a margin γ ∈ [0, 1], a trade-off parameter λ ∈ [0, 1], l = |S|, m = |T |.
Output: two source and target classifiers HS

N and HT
N .

Initialization: ∀(x′, y′) ∈ S,DS
1 (x

′) = 1
l
, ∀x ∈ T,DT

1 (x) =
1
m
.

for n = 1 to N do
Learn a weak DA hypothesis hn by solving Problem (1).
Compute the divergence value gn (see Section 5 for details).

αn = 1
2
ln 1−ε̂n

ε̂n
and βn = 1

γ+max(γ,λgn)
ln

γW+
n

max(γ,λgn)W−
n

∀(x′, y′) ∈ S, DS
n+1(x

′) = DS
n(x

′). e
−αnsgn(hn(x′)).y′

Z′
n

.

∀x ∈ T , DT
n+1(x) = DT

n (x).
e−βnfDA(hn(x)).yn

Zn
,

where yn = sgn(fDA(hn(x))) if |fDA(hn(x))| > γ,
yn = −sgn(fDA(hn(x))) otherwise,
and Z′

n and Zn are normalization coefficients.
end for

∀(x′, y′) ∈ S, FS
N (x′) =

N∑
n=1

αnsgn(hn(x
′)),

∀x ∈ T, F T
N (x) =

N∑
n=1

βnsgn(hn(x)).

Final source and target classifiers: HS
N(x′) = sgn(FS

N(x′)) and HT
N(x) = sgn(F T

N (x)).

assumption of AdaBoost, finding an hypothesis fulfilling Condition 1 on the
source and Condition 2 on the target is more complicated. To overcome this
problem, we present in the following a simple strategy which tends to induce
hypotheses that satisfy the weak DA assumption.

First, we generate k
2 stumps that satisfy Condition 1 over the source and

k
2 that fulfill Condition 2 over the target. Then, we seek a convex combination

hn =
∑
k

κkh
k
n of the k stumps that satisfies simultaneously the two conditions of

Def.(1). To do so, we propose to solve the following convex optimization problem:

argmin
κ

∑
(x′,y′)∈S

DS
n(x′)

[
−y′

∑
k

κksgn(h
k
n(x

′))

]
+

+
∑
x∈T

DT
n (x)

[
1−

(∑
k

κkmarg(fDA(hk
n(x)))

)]
+

(1)

where [1−x]+ = max(0, 1−x) is the hinge loss, and marg(fDA(hkn(x))) returns
−1 if fDA(h

k
n(x)) is lower than γ (i.e. hn does not achieve a sufficient margin

w.r.t. gn) and +1 otherwise. Solving this optimization problem tends to fulfill
Def.(1). Indeed, minimizing the first term of Eq.(1) tends to reduce the empirical
risk over the source data, while minimizing the second term tends to decrease
the number of margin violations over the target data.

Note that in order to generate a simple weak DA learner, we start the process
with k = 2. If the weak DA assumption is not satisfied, we increase the dimension
of the induced hypothesis hn. Moreover, if the optimized combination does not
satisfy the weak DA assumption, we draw a new set of k stumps.
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Once hn has been learned, the weights of the labeled and unlabeled data are
modified according to two different update rules. Those of source examples are
updated using the same strategy as that of AdaBoost. Regarding the target
examples, their weights are changed according to their location in the space. If a
target example x does not satisfy the condition fDA(hn(x)) > γ, a pseudo-class
yn = −sgn(fDA(hn(x))) is assigned to x that simulates a misclassification. Note
that such a decision has a geometrical interpretation: it means that we exponen-
tially increase the weights of the points located in an extended margin band of
width γ + λgn. If x is outside this band, a pseudo-class yn = sgn(fDA(hn(x)))
is assigned leading to an exponential decrease of DT

n (x) at the next iteration.

4 Theoretical Analysis

In this section, we present a theoretical analysis of SLDAB. Recall that the good-
ness of a hypothesis hn is measured by its ability to not only correctly classify
the source examples but also to classify the unlabeled target data with a large
margin w.r.t. the classifier-induced divergence gn. Provided that the weak DA
constraints of Def.(1) are satisfied, the standard results of AdaBoost directly
hold on S. In the following, we show that the loss L̂HT

N
, which represents after

N iterations the proportion of margin violations over T (w.r.t. the successive
divergences gn), also decreases with N .

4.1 Upper Bound on the Empirical Loss

Theorem 1. Let L̂HT
N

be the proportion of target examples of T with a margin

smaller than γ w.r.t. the divergences gn (n = 1 . . .N) after N iterations of
SLDAB:

L̂HT
N
= Ex∼T [yFT

N(x) < 0] ≤ 1

|T |
∑
x∼T

e−yFT
N(x) =

N∏
n=1

Zn, (2)

where y = (y1, . . . , yn, . . . , yN ) is the vector of pseudo-classes and FT
N(x) =

(β1fDA(h1(x)), . . . , βnfDA(hn(x)), . . . , βNfDA(hN (x))).

Proof. The proof is the same as that of [7] except that y is the vector of pseudo-
classes (which depend on λgn and γ) rather than the vector of true labels. �

4.2 Optimal Confidence Values

Theorem 1 suggests the minimization of each Zn to reduce the empirical loss
L̂HT

N
over T . To do this, let us rewrite Zn as follows:

Zn =
∑
x∈T−

n

DT
n (x)e

−βnfDA(hn(x))y
n

+
∑
x∈T+

n

DT
n (x)e

−βnfDA(hn(x))y
n

. (3)

The two terms of the right-hand side of Eq.(3) can be upper bounded as follows:
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Fig. 2. Upper bounds of the components of Zn for an arbitrary value γ = 0.5. When
x ∈ T+

n , the upper bound is obtained with |fDA| = γ (see the plateau fmin
DA ). When

x ∈ T−
n , we get the upper bound with max (γ, λgn), that is either γ when λgn ≤ γ (see

fmax1
DA ) or λgn otherwise (see fmax2

DA ).

– ∀x ∈ T+
n , DT

n (x)e
−βnfDA(hn(x))y

n ≤ DT
n (x)e

−βnγ .
– ∀x ∈ T−

n , DT
n (x)e

−βnfDA(hn(x))y
n ≤ DT

n (x)e
βnmax(γ,λgn).

Figure 2 gives a geometrical explanation of these upper bounds. When x ∈ T+
n ,

the weights are decreased. We get an upper bound by taking the smallest drop,
that is fDA(hn(x))y

n = |fDA| = γ (see fminDA in Figure 2). On the other hand, if
x ∈ T−

n , we get an upper bound by taking the maximum value of fDA (i.e. the
largest increase). We differentiate two cases: (i) when λgn ≤ γ, the maximum
is γ (see fmax1

DA ), (ii) when λgn > γ, Figure 2 shows that one can always find a
configuration where γ < fDA ≤ λgn. In this case, fmax2

DA = λgn, and we get the
upper bound with |fDA| = max (γ, λgn).

Plugging the previous upper bounds in Eq.(3), we get:

Zn ≤W+
n e

−βnγ +W−
n e

βn max (γ,λgn) = Z̃n. (4)

Deriving the previous convex combination w.r.t. βn and equating to zero, we get
the optimal values for βn in Eq.(3)1:

∂Z̃n
βn

= 0 ⇒ max (γ, λgn)W
−
n e

βn max (γ,λgn) = γW+
n e

−βnγ

⇒ βn =
1

γ +max (γ, λgn)
ln

γW+
n

max (γ, λgn)W
−
n
. (5)

It is important to note that βn is computable if

γW+
n

max (γ, λgn)W
−
n

≥1 ⇔ γ(1−W−
n )≥max (γ, λgn)W

−
n ⇔W−

n <
γ

γ +max(γ, λgn)
,

1 Note that the approximation Z̃n used in Eq.(4) is essentially a linear upper bound
of Eq.(3) on the range [−1; +1]. Clearly, other upper bounds which give a tighter
approximation could be used instead (see [19] for more details).
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that is always true because hn is a weak DA hypothesis and satisfies Condition
2 of Def.(1). Moreover, from Eq.(5), it is worth noting that βn gets smaller as
the divergence gets larger. In other words, a hypothesis hn of weights W+

n and
W−
n (which depend on the divergence gn) will have a greater confidence than a

hypothesis hn′ of same weights W+
n′ =W+

n and W−
n′ =W−

n if gn < gn′ .
Let max (γ, λgn) = cn × γ, where cn ≥ 1. We can rewrite Eq.(5) as follows:

βn =
1

γ(1 + cn)
ln

W+
n

cnW
−
n
, (6)

and Condition 2 of Def.(1) becomes W−
n < 1

1+cn
.

4.3 Convergence of the Empirical Loss

The following theorem shows that, provided the weak DA constraint on T is
fulfilled (that is, W−

n < 1
1+cn

), Zn is always smaller than 1 that leads (from

Theorem 1) to a decrease of the empirical loss L̂HT
N
with the number of iterations.

Theorem 2. If HT
N is the linear combination produced by SLDAB from N weak

DA hypotheses, then lim
N→∞

L̂HT
N
= 0.

Proof. Plugging Eq.(6) into Eq.(4) we get:

Zn ≤W+
n

(
cnW

−
n

W+
n

) 1
(1+cn)

+W−
n

(
W+
n

cnW
−
n

) cn
(1+cn)

(7)

=
(
W+
n

) cn
(1+cn)

(
W−
n

) 1
(1+cn)

(
c

1
(1+cn)
n + c

− cn
(1+cn)

n

)
=
(
W+
n

) cn
(1+cn)

(
W−
n

) 1
(1+cn)

(
cn + 1

c
cn

(1+cn)
n

)
= un × vn × wn, (8)

where un = (W+
n )

cn
(1+cn) , vn = (W−

n )
1

(1+cn) and wn =

(
cn+1

c

cn
(1+cn)
n

)
. Computing the

derivative of un, vn and wn w.r.t. cn, we get

∂un
∂cn

=
lnW+

n

(cn + 1)2
(
W+
n

) cn
(1+cn) ,

∂vn
∂cn

= − lnW−
n

(cn + 1)2
(
W−
n

) 1
(1+cn) ,

∂wn
∂cn

= − ln cn
(cn + 1)2

cn + 1

c
cn

(1+cn)
n

.

We deduce that

∂Zn
∂cn

= (
∂un
∂cn

× vn +
∂vn
∂cn

× un)× wn +
∂wn
∂cn

× un × vn
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=
(
W+
n

) cn
(1+cn) ×

(
W−
n

) 1
(1+cn) ×

(
cn + 1

c
cn

(1+cn)
n

)
× 1

(cn + 1)2
×
(
lnW+

n − lnW−
n − ln cn

)
=
(
W+
n

) cn
(1+cn) ×

(
W−
n

) 1
(1+cn) × c

−cn
(1+cn)
n

cn + 1
×
(
lnW+

n − lnW−
n − ln cn

)
.

The first three terms of the previous equation are positive. Therefore,

∂Zn

∂cn
> 0 ⇔ lnW+

n − lnW−
n − ln cn > 0 ⇔W−

n <
1

cn + 1
,

that is always true because of the weak DA assumption. Therefore, Zn(cn) is a

monotonic increasing function over [1,
W+

n

W−
n
[, with:

– Zn < 2
√
W+
n W

−
n (standard result of AdaBoost) when cn = 1,

– and lim
cn→W

+
n

W
−
n

Zn = 1.

Therefore, ∀n, Zn < 1 ⇔ lim
N→∞

L̂HT
N
< lim
N→∞

N∏
n=1

Zn = 0. �

Let us now give some insight about the nature of the convergence of L̂HT
N
. A

hypothesis hn is DA weak if W−
n < 1

1+cn
⇔ cn <

W+
n

W−
n

⇔ cn = τn
W+

n

W−
n

with

τn ∈]W
−
n

W+
n
; 1[. τn measures how close is hn to the weak assumption requirement.

Note that βn gets larger as τn gets smaller. From Eq.(8) and cn = τn
W+

n

W−
n

(that

is W−
n = τn

τn+cn
), we get (see Appendix 1 for more details):

Zn ≤
(
W+
n

) cn
(1+cn)

(
W−
n

) 1
(1+cn)

(
cn + 1

c
cn

(1+cn)
n

)
=

⎛⎝ τ
1

1+cn
n

τn + cn

⎞⎠ (cn + 1).

We deduce that

N∏
n=1

Zn = exp

N∑
n=1

lnZn ≤ exp

N∑
n=1

⎛⎝ln

⎛⎝⎛⎝ τ
1

1+cn
n

τn + cn

⎞⎠ (cn + 1)

⎞⎠⎞⎠
= exp

N∑
n=1

(
1

1 + cn
ln τn + ln(

cn + 1

τn + cn
)

)
.

Theorem 2 tells us that the term between brackets is negative (that is lnZn <
0, ∀Zn). Therefore, the empirical loss decreases exponentially fast towards 0
with the number of iterations N . Moreover, let us study the behaviour of lnZn
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Fig. 3. Evolution of lnZn w.r.t. τn

w.r.t. τn. Since Zn is a monotonic increasing function of cn over [1,
W+

n

W−
n
[, it is also

a monotonic increasing function of τn over [
W−

n

W+
n
; 1[. In other words, the smaller

τn the faster the convergence of the empirical loss L̂HT
N
. Figure 3 illustrates this

claim for an arbitrarily selected configuration of W+
n and W−

n . It shows that
lnZn, and thus L̂HT

N
, decreases exponentially fast with τn.

5 Measure of Divergence

From DA frameworks [1,14], a good adaptation is possible when the mismatch
between the two distributions is small while maintaining a good accuracy on the
source. In our algorithm, the latter condition is satisfied via the use of a standard
boosting scheme. Concerning the mismatch, we inserted in our framework a
measure of divergence gn, induced by hn. An important issue of SLDAB is the
definition of this measure. A solution is to compute a divergence with respect
to the considered class of hypotheses, like the well-known H-divergence2 [1]. We
claim that such a divergence is not suited to our framework because SLDAB

rather aims at evaluating the discrepancy induced by a specific classifier hn. We
propose to consider a divergence gn able to both evaluate the mismatch between
the source and target data and avoid degenerate hypotheses.

For the first objective, we use the recent Perturbed Variation measure [8]
that evaluates the discrepancy between two distributions while allowing small
permitted variations assessed by a parameter ε > 0 and a distance d:

Definition 2 ([8]). Let P and Q two marginal distributions over X, letM(P,Q)
be the set of all joint distributions over X×X with P and Q. The perturbed vari-
ation w.r.t. a distance d : X × X → R and ε > 0 is defined by

PV (P,Q) = inf
μ∈M(P,Q)

Probaμ[d(P
′, Q′) > ε]

2 The H-divergence is defined with respect to the hypothesis class H by:
suph,h′∈H |Ex∼T [h(x) �= h′(x)]− Ex′∼S [h(x

′) �= h′(x′)]|, it can be empirically esti-
mated by learning a classifier able to discriminate source and target instances [1].
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Algorithm 2. Computation of P̂ V (S, T ) [8].

Input: S = {x′
1, . . . , x

′
n}, T = {x1, . . . , xm}, ε > 0 and a distance d

1. Define the graph Ĝ = (V̂ = (Â, B̂), Ê) where Â = {x′
i ∈ S} and B̂ = {xj ∈ T},

Connect an edge eij ∈ Ê if d(x′
i, xj) ≤ ε

2. Compute the maximum matching on Ĝ
3. Su and Tu are the number of unmatched vertices in S and T respectively
4. Output ˆPV (S, T ) = 1

2
(Su

n
+ Tu

m
) ∈ [0, 1]

over all pairs (P ′, Q′) ∼ μ s.t. the marginal of P ′ (resp. Q′) is P (resp. Q).

Intuitively two samples are similar if every target instance is close to a source
one w.r.t. d. This measure is consistent and the empirical estimate ˆPV (S, T )
from two samples S ∼ P and T ∼ Q can be efficiently computed by a maximum
graph matching procedure summarized in Algorithm 2. In our context, we apply
this empirical measure on the classifier outputs: Shn = {hn(x′1), . . . , hn(x′|S|)},
Thn = {hn(x1), . . . , hn(x|T |)} with the L1 distance as d and use 1−P̂ V (Shn , Thn).

For the second point, we take the following entropy-based measure:

ENT (hn) = 4× pn × (1 − pn)

where pn
3 is the proportion of target instances classified as positive by hn:

pn =
∑|T |

i=1[hn(xi)≥0]

|T | . For the degenerate cases where all the target instances have

the same class, the value of ENT (hn) is 0, otherwise if the labels are equally
distributed this measure is close to 1.

Finally, gn is defined by 1 minus the product of the two previous similarity
measures allowing us to have a divergence of 1 if one of the similarities is null.

gn = 1− (1− ˆPV (Shn , Thn))× ENT (hn).

6 Experiments

To assess the practical efficiency of SLDAB and support our claim of Section 2,
we perform two kinds of experiments, respectively in the DA and semi-supervised
settings. We use two different databases. The first one, Moons [4], corresponds
to two inter-twinning moons in a 2-dimensional space where the data follow a
uniform distribution in each moon representing one class. The second one is the
UCI Spam database4, containing 4601 e-mails (2788 considered as “non-spams”
and 1813 as “spams”) in a 57-dimensional space.

6.1 Domain Adaptation

Moons Database. In this series of experiments, the target domain is obtained
by rotating anticlockwise the source domain, corresponding to the original data.

3 True labels are assumed well balanced, if not pn has to be reweighted accordingly.
4 http://archive.ics.uci.edu/ml/datasets/Spambase

http://archive.ics.uci.edu/ml/datasets/Spambase
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Table 1. On the left: error rates (in%) on moons, the Average column reports the rate
averages along with average standard deviations. On the right: error rates on spams.

Angle 20◦ 30◦ 40◦ 50◦ 60◦ 70◦ 80◦ 90◦ Average

SVM 10.3 24 32.2 40 43.3 55.2 67.7 80.7 44.2 ± 0.9
AdaBoost 20.9 32.1 44.3 53.7 61.2 69.7 77.9 83.4 55.4 ± 0.4
DASVM 0.0 21.6 28.4 33.4 38.4 74.7 78.9 81.9 44.6 ± 3.2
SVM-W 6.8 12.9 9.5 26.9 48.2 59.7 66.6 67.8 37.3 ± 5.3
SLDAB-H 6.9 11.3 18.1 32.8 37.5 45.1 55.2 59.7 33.3 ± 2.1
SLDAB-gn 1.2 3.6 7.9 10.8 17.2 39.7 47.1 45.5 21.6 ± 1.2

Algorithm Error rate (in%)

SVM 38
AdaBoost 59.4
DASVM 37.5
SVM-W 37.9
SLDAB-H 37.1
SLDAB-gn 35.8

We consider 8 increasingly difficult problems according to 8 rotation angles from
20 degrees to 90 degrees. For each domain, we generate 300 instances (150 of each
class). To estimate the generalization error, we make use of an independent test
set of 1000 points drawn from the target domain. Each adaptation problem is
repeated 10 times and we report the average results obtained on the test sample
without the best and the worst draws.

We compare our approach with two non DA baselines: the standard Ad-

aBoost, using decision stumps, and a SVM classifier (with a Gaussian kernel)
learned only from the source. We also compare SLDAB with DASVM (based on
a LibSVM implementation) and with a reweighting approach for the co-variate
shift problem presented in [9]. This unsupervised method (referred to as SVM-

W) reweights the source examples by matching source and target distributions
by a kernel mean matching process, then a SVM classifier is inferred from the
reweighted source sample. Note that all the hyperparameters are tuned by cross-
validation. Finally, to confirm the relevance of our divergence measure gn, we run
SLDAB with two different divergences: SLDAB-gn uses our novel measure gn
introduced in the previous section and SLDAB-H is based on the H-divergence.
We tune the parameters of SLDAB by selecting, threw a grid search, those able
to fulfill Def.( 1) and leading to the smallest divergence over the final combina-
tion FTN . As expected, the optimal λ grows with the difficulty of the problem.

Results obtained on the different adaptation problems are reported in Table 1.
We can see that, except for 20 degrees (for which DASVM is slightly better),
SLDAB-gn achieves a significantly better performance, especially on important
rotation angles. DASVM that is not able to work with large distribution shifts
diverges completely. This behaviour shows that our approach is more robust
to difficult DA problems. Finally, despite good results compared to other algo-
rithms, SLDAB-H does not perform as well as the version using our divergence
gn, showing that gn is indeed more adapted to our approach.

Figure 4(a) illustrates the behaviour of our algorithm on a 20 degrees rotation
problem. First, as expected by Theorem 2, the empirical target loss converges
very quickly towards 0. Because of the constraints imposed on the target data,
the source error ε̂HS

N
requires more iterations to converge than a classical Ad-

aBoost procedure. Moreover, the target error εHT
N

decreases with N and keeps
dropping even when the two empirical losses have converged to zero. This con-
firms the benefit of having a low source error with large target margins.
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Fig. 4. (a): loss functions on a 20◦ task. (b): evolution of the global divergence.

Figure 4(b) shows the evolution throughout the iterations of the divergence

gn of the combination HT
n =

n∑
k=1

βkhk(x). We can see that our boosting scheme

allows us to reduce the divergence between the source and the target data.

Spams Database. To design a DA problem from this UCI database, we first
split the original data in three different sets of equivalent size. We use the first
one as the learning set, representing the source distribution. In the two other
samples, we add a gaussian noise to simulate a different distribution. As all
the features are normalized in the [0,1] interval, we use, for each feature n, a
random real value in [-0.15,0.15] as expected value μn and a random real value in
[0,0.5] as standard deviation σn. We then generate noise according to a normal
distribution N (μn, σn). After having modified these two samples jointly with the
same procedure, we keep one as the target learning set, the other as the test set.

This operation is repeated 5 times. The average results of the different al-
gorithms are reported in Table 1. As for the moons problem, we compare our
approach with the standard AdaBoost and a SVM classifier learned only from
the source. We also compare it withDASVM and SVM-W. We see that SLDAB

is able to obtain better results than all the other algorithms on this real database.
Moreover, SLDAB used with our divergence gn leads again to the best result.

6.2 Semi-supervised Setting

Our divergence criterion allows us to quantify the distance between the two
domains. If its value is low all along the process, this means that we are facing
a problem that looks more like a semi-supervised task. In a semi-supervised
setting, the learner receives few labeled and many unlabeled data generated from
the same distribution. In this series of experiments, we study our algorithm on
two semi-supervised variants of the Moons and Spams databases.
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Fig. 5. (a): error rate of different algorithms on the moons semi-supervised problem
according to the size of the training set. (b): error rate of different algorithms on the
spam recognition semi-supervised problem according to the size of the training set.

Moons Database. We generate randomly a learning set of 300 examples and
an independent test set of 1000 examples from the same distribution. We then
draw n labeled examples from the learning set, from n = 10 to 50 such that
exactly half of the examples are positives, and keep the remaining data for the
unlabeled sample. The methods are evaluated by computing the error rate on the
test set. For this experiment, we compare SLDAB-gn with AdaBoost, SVM

and the transductive SVM T-SVM introduced in [10] which is a semi-supervised
method using the information given by unlabeled data to train a SVM classifier.
We repeat each experiment 5 times and show the average results in Figure 5(a).

Our algorithm performs better than the other methods on small training sets
and is competitive to SVM for larger sizes. We can also remark that AdaBoost

using only the source examples is not able to perform well. This can be explained
by an overfitting phenomenon on the small labeled sample leading to poor gen-
eralization performances. Surprisingly, T-SVM performs quite poorly too. This
is probably due to the fact that the unlabeled data are incorrectly exploited,
with respect to the small labeled sample, producing wrong hypotheses.

Spams Database. We use here the same set up as in the semi-supervised
setting for Moons. We take the 4601 original instances issued from the same
distribution and split them into two sets: one third for the training sample and
the remaining for the test set used to compute the error rate. From the training
set, n labeled instances are drawn as labeled data, n varying from 150 to 300,
the remaining part is used as unlabeled data as in the previous experiment. This
procedure is repeated 5 times for each n and the average results are provided in
Figure 5(b).

All the approaches are able to decrease their error rate according to the size
of the labeled data (even if it is not significant for SVM and T-SVM), which
is an expected behaviour. SVM and even more AdaBoost (that do not use
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unlabeled data), achieve a large error rate after 300 learning examples. T-SVM

is able to take advantage of the unlabeled examples, with a significant gain
compared to SVM. Finally, SLDAB outperforms the other algorithms by at
least 10 percentage points. This confirms that SLDAB is also able to perform
well in a semi-supervised learning setting. This feature makes our approach very
general and relevant for a large class of problems.

7 Conclusion

In this paper, we have presented a new boosting-based DA algorithm called
SLDAB. This algorithm, working in the difficult unsupervised DA setting, itera-
tively builds a combination of weak DA learners able to minimize both the source
classification error and margin violations on the unlabeled target instances. The
originality of this approach is to introduce the use of a new distribution di-
vergence during the iterative process for avoiding bad adaptation due to the
production of degenerate hypotheses. This divergence gives more importance to
classifiers able to move closer source and target distributions with respect to
the outputs of the classifiers. In this context, we have theoretically proved that
our approach converges exponentially fast with the number of iterations. Our
experiments have shown that SLDAB performs well in a DA setting both on
synthetic and real data. Moreover, SLDAB is also general enough to work well
in a semi-supervised case, making our approach widely applicable.

Even if our experiments have shown good results, we did not prove yet that the
generalization error decreases. Such a result deserves further investigation but we
conjecture that this is true for SLDAB. Indeed, the minimization of the margin
violations on the target instances implies a minimization of our divergence in
the space induced by the classifiers βnhn. Classical DA frameworks indicate
that good generalization capabilities arise when a DA algorithm is able both to
ensure a good performance on the source domain and to decrease the distribution
mismatch, which is what SLDAB does. A perspective is then to show that the
specific divergence we propose is able to ensure good generalization guarantees
up to the ε used in the perturbed variation measure. Another one is to extend
our approach to allow the use of a small labeled target sample.
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Abstract. Existing reinforcement learning approaches are often ham-
pered by learning tabula rasa. Transfer for reinforcement learning tack-
les this problem by enabling the reuse of previously learned results, but
may require an inter-task mapping to encode how the previously learned
task and the new task are related. This paper presents an autonomous
framework for learning inter-task mappings based on an adaptation of
restricted Boltzmann machines. Both a full model and a computation-
ally efficient factored model are introduced and shown to be effective in
multiple transfer learning scenarios.
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1 Introduction

Reinforcement learning (RL) has become a popular framework for autonomous
behavior generation from limited feedback [4,13], but RL methods typically learn
tabula rasa. Transfer learning [17] (TL) aims to significantly improve learning
by providing informative knowledge from a previous (source) task to a learning
agent in a novel (target) task. If the agent is to be fully autonomous, it must:
(1) automatically select a source task, (2) learn how the source task and target
tasks are related, and (3) effectively use transferred knowledge when in the target
task. While fully autonomous transfer is not yet possible, this paper advances
the state of the art by focusing on (2) above. In particular, this work proposes
methods to automatically learn the relationships between pairs of tasks and then
use this learned relationship to transfer effective knowledge.

In TL for RL, the source task and target task may differ in their formulations.
In particular, when the source task and target task have different state and/or
action spaces, an inter-task mapping [18] that describes the relationship between
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the two tasks is needed. While there have been attempts to discover this mapping
automatically, finding an optimal way to construct this mapping is still an open
question. Existing technique either rely on restrictive assumptions made about
the relationship between the source and target tasks, or adopt heuristics that
work only in specific cases.

This paper introduces an autonomous framework for learning inter-task map-
pings based on restricted Boltzmann machines [1] (RBMs). RBMs provide a
powerful but general framework that can be used to describe an abstract com-
mon space for different tasks. This common space is then used to represent the
inter-task mapping between two tasks and can successfully transfer knowledge
about transition dynamics between the two tasks.

The contributions of this paper are summarized as follows. First, a novel
RBM is proposed that uses a three-way weight tensor (i.e., TrRBM). Since this
machine has a computational complexity of O(N3), a factored version (i.e., FTr-
RBM) is then derived that reduces the complexity to O(N2). Experiments then
transfer samples between pairs of tasks, showing that the proposed method is ca-
pable of successfully learning a useful inter-task mapping. Specifically, the results
demonstrate that FTrRBM is capable of:

1. Automatically learning an inter-task mapping between different MDPs.
2. Transferring informative samples that reduce the computational complexity

of a sample-based RL algorithm.
3. Transferring informative instances which reduce the time needed for a

sample-based RL algorithm to converge to a near-optimal behavior.

2 Preliminaries

This section provides a brief summary of background knowledge needed to un-
derstand the remaining of the paper.

2.1 Reinforcement Learning

In an RL problem, an agent must decide how to sequentially select actions
to maximize its expected return. Such problems are typically formalized as a
Markov decision process (MDP), defined by 〈S,A, P,R, γ〉. S is the (potentially
infinite) set of states, A is the set possible actions that the agent may execute,
P : S×A×S → [0, 1] is a state transition probability function, describing the task
dynamics, R : S×A×S → R is the reward function measuring the performance
of the agent, and γ ∈ [0, 1) is the discount factor. A policy π : S × A → [0, 1]
is defined as a probability distribution over state action pairs, where π(s, a)
represents the probability of selecting action a in state s. The goal of an RL
agent is to find a policy π� which maximizes the cumulative future rewards. It
can be attained by taking greedy actions according to the optimal Q-function
Q�(s, a) = maxπ Eπ [

∑∞
t=0 γ

tR(st, at)|s = s0, a = a0]. In tasks with continuous
state and/or action spaces, Q and π cannot be represented in a table format,
typically requiring sampling and function approximation techniques. This paper
uses one such common technique, Least Squares Policy Iteration [4] (LSPI).
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2.2 Transfer Learning for Reinforcement Learning

Transfer learning (TL) aims to improve learning times and/or behavior of
an agent by re-using knowledge from a solved task. Most often, TL uses a
single source task, T1, and a single target task, T2. Each task is described
by MDPs, which may differ significantly. Specifically, task T1 is described by
〈S1, A1, P1, R1, γ1〉 and T2 by 〈S2, A2, P2, R2, γ2〉. To enable transfer between
tasks with different state and/or action spaces, an inter-task mapping χ is re-
quired, so that information from a source task is applicable to the target task.
Typically, χ is divided into two mappings: (1) an inter-state mapping χS , and
(2) an inter-action mapping χA. The first relates states from the source task
to the target task, while the second maps actions from the source task to the
target task. This paper learns such mappings for samples in a pair of tasks.
We define the inter-task mapping to relate source and target transitions (i.e.,
χ : S1×A1×S1 → S2×A2×S2). This allows the algorithm to discover dynamical
similarities between tasks and construct the an inter-task mapping accordingly,
enabling the transfer of near-optimal1 transitions.

2.3 Restricted Boltzmann Machines

Restricted Boltzmann machines (RBMs) are energy-based models for unsuper-
vised learning. They use a generative model of the distribution of the data for
prediction. These models are stochastic with stochastic nodes and layers, making
them less vulnerable to local minima [15]. Further, due to multiple layers and the
neural configurations, RBMs possess excellent generalization abilities. For exam-
ple, they have successfully discovered informative hidden features in unlabeled
data [2]. Formally, an RBM consists of two binary layers: one visible and one
hidden. The visible layer represents the data and the hidden layer increases the
learning capacity by enlarging the class of distributions that can be represented
to an arbitrary complexity [15]. This paper follows standard notation where i
represents the indices of the visible layer, j those of the hidden layer, and wi,j
denotes the weight connection between the ith visible and jth hidden unit. We
further use vi and hj to denote the state of the ith visible and jth hidden unit,
respectively. According to the above definitions, the energy function is given by:

E(v, h) = −
∑
i,j

vihjwij −
∑
i

vibi −
∑
j

hjbj (1)

where bi and bj represent the biases. The first term,
∑
i,j vihjwij , represents the

energy between the hidden and visible units with their associated weights. The
second,

∑
i vibi, represents the energy in the visible layer, while the third term

represents the energy in the hidden layers. The joint probability of a state of the
hidden and visible layers is defined as:

P (v, h) ∝ exp (−E(v, h))
1 When using function approximation techniques, RL algorithms typically learn near-
optimal behaviors.
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To determine the probability of a data point represented by a state v, the
marginal probability is used, summing out the state of the hidden layer:

p(v) =
∑
h

P (v, h) ∝
∑
h

⎛⎝exp

⎛⎝−
∑
i,j

vihjwij −
∑
i

vibi −
∑
j

hjbj

⎞⎠⎞⎠ (2)

The above equations can be used for any given input to calculate the probability
of either the visible or the hidden configuration to be activated. The calculated
probabilities can then be used to perform inference to determine the conditional
probabilities in the model.

To maximize the likelihood of the model, the gradient of the log-likelihood
with respect to the weights from the previous equation must be calculated. The
gradient of the first term, after some algebraic manipulations, can be written as:

∂ log (
∑
h exp (−E(v, h)))
∂wij

= vi · P (hj = 1|v)

However, computing the gradient of the second term (i.e.,
∂ log(

∑
x,y exp(−E(x,y)))
∂wij

= P (vi = 1, hj = 1)) is intractable.

2.4 Contrastive Divergence Learning

Because of the difficulty of computing the derivative of the log-likelihood gra-
dients, Hinton proposed an approximation method called contrastive diver-
gence (CD) [6]. In maximum likelihood, the learning phase actually mini-
mizes the Kullback-Leiber (KL) measure between the input data distribution
and the approximate model. In CD, learning follows the gradient of CDn =
DKL(p0(x)||p∞(x)) − DKL(pn(x)||p∞(x)) where pn(.) is the distribution of a
Markov chain starting from n = 0 and running for a small number of n steps.
To derive the update rules of wij for the RBM, the energy function is re-written

in a matrix form as E(v,h;W) = −hTWv. v = [v1, . . . , vnv ], where vi is the
value of the ith visible neuron and nv is the index of the last visible neuron.
h = [h1, . . . , hnh

], where hj is the value of the jth hidden neuron and nh is
the index of the last hidden neuron. W ∈ Rnh×nv is the matrix of all weights.
Since the visible units are conditionally independent given the hidden units and
vice versa, learning in such an RBM is easy. One step of Gibbs sampling can be
carried in two half-steps: (1) update all the hidden units, and (2) update all the
visible units. Thus, in CDn the weight updates are done as follows:

wτ+1
ij = wτij + α

(〈
〈hjvi〉p(h|v;W)

〉
0
− 〈hjvi〉n

)
where τ is the iteration, α is the learning rate,

〈
〈hjvi〉p(h|v;W)

〉
0

=
1
N

∑N
n=1 v

(n)
i P (h

(n)
i = 1|h;W), and 〈hjvi〉n = 1

N

∑N
n=1 v

(n)Gl

i P (h
(n)Gl

j |h(n)Gl ;
W) with N the total number of input instances and Gl indicating that the
states are obtained after l iterations of Gibbs sampling from the Markov chain
starting at p0(.). In this work, a variant of the CD algorithm is used to better
learn the neural configuration of the proposed FTrRBM model and is explained
in Section 3.2.
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Fig. 1. This picture diagrams the overall structure of the proposed full model. The
three-way weight tensor is shown in the middle with its connections to the visible
source layer, visible target layer, and hidden layer.

3 RBMs for Transfer Learning

The core hypothesis of this paper is that RBMs can automatically build an inter-
task mapping using source task and target task samples, because an RBM can
discover the latent similarities between the tasks, implicitly encoding an inter-
task mapping. To construct an algorithm to test this hypothesis, the TrRBM
framework consists of three layers as shown in Figure 1. The first is the source
task visible layer (describing source samples), the second is the target task visible
layer (describing target samples), and the third is the hidden layer that encodes
similarities between the two tasks. This hidden layer therefore encodes a type of
inter-task mapping, which will be used to transfer samples from the source to
the target.

The next section presents a derivation of the full model. However, this model
is computationally expensive, and a factored version of the model is developed
in Section 3.2.

3.1 Transfer Restricted Boltzmann Machine

TrRBM is used to automatically learn the inter-task mapping between source
and target tasks. TrRBM consists of three layers: (1) a visible source task task
layer, (2) a visible target task layer, and (3) a hidden layer. The number of
units in the visible layers is equal to dimensionality of each of the source and
target task transitions (i.e., 〈sit, ait, si′t 〉) for i ∈ {1, 2}, respectively. Since the
inputs might be of continuous nature, the units in the visible units are set to be
Gaussians with means, which are learned as described later in this section. These
three layers are connected with a three-way weight tensor. Formally, the visible
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source layer is VS = [v
(1)
S , . . . , v

(VS)
S ], where v

(i)
S is a Gaussian N (μ

(i)
S , σ

(i)2
S ), with

a mean μ
(i)
S and a variance σ

(i)2
S . The visible target layer VT = [v

(1)
T , . . . , v

(VT )
T ],

where v
(k)
T is a Gaussian N (μ

(j)
T , σ

(j)2
T ), with a mean μ

(j)
T and a variance σ

(j)2
T ,

and the hidden layer H = [h(1), . . . , h(H)] consists of sigmoidal activations.
Next, the mathematical formalizations of TrRBM are represented.2

Energy of the Full Model. The energy function, analogous to Equation 1,
that is needed to determine the update rules is as:

E1(VS ,VT ,H) = −(vS,α − aα)Σ
αα
S (vαS − aα)− bβh

β

− (vT,γ − cγ)Σ
γγ
T (vγT − cγ)−WαβγΣ

γγ
T vγTh

βΣαα
S vαS

where v.,α is the covector of v.αs , aα is the covector of the visible layer biases
aα, bβ is the covector of the hidden layer biases bβ , and cγ is the covector of the
visible layer biases cγ . Σαα

. is a second order diagonal tensor representing the
variances of the different layers, and Wαβγ is the third order tensor representing
the weight connections.

Inference in the Full Model. Because there are no connection between the
units in each of the three layers, inference is conducted in parallel. Formally,

μα::S =Wα::
βγ v

γ
Th

β + aα::

μ::γT =W ::γ
αβh

βvαS + b::γ

s:β: =W :β:
αγ v

α
T v

α
S + c:β:

where α :: are slices in the tensor field in the α direction, : β : are slices in the
tensor field in the β direction, and :: γ are these in the γ direction. Therefore,

p(VS |VT ,H) = ×α N (μα::S , Σ:αα)

p(VT |VS ,H) = ×γ N (μ::γT , Σ
:γγ)

p(H|VT ,VS) = ×β sigmoid(s:β:)

where ×. are tensor products in the corresponding · fields.

Update Rules of the Full Model. In this section, the update rules to learn
the weights and the biases of TrRBM are described. These rules are attained by
deriving the energy function of Equation 1 with respect to weight tensor yielding
the following:

2 A word on notation: Because of space concerns, we resorted to Einstein’s 1916
tensor index notation and conventions [5] for the mathematical details. As we real-
ize this is not standard in ML literature, a more expansive derivation using more
standard notation can be found in the expanded version of this paper.
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∇Wαβγ
=
〈
vαThβvS,α

〉
0
−
〈
vαThβvS,α

〉
λ

Δaα ∝ 〈vαS 〉0 − 〈vαS〉λ
Δbβ ∝ 〈hβ〉0 − 〈hβ〉λ
Δcγ ∝ 〈vγT 〉0 − 〈vγT 〉λ

where 〈.〉0 is the expectation over the original data distribution and 〈.〉λ is the
expected reconstruction determined by a Markov Chain of length λ, attained
through Gibbs sampling that started at the original data distribution.

3.2 Factored Transfer Restricted Boltzmann Machine

TrRBM, as proposed in the previous section, is computationally expensive. Be-
cause TL is a speedup technique, any TL method must be efficient or it will not
be useful in practice. This section presents a factored version of the algorithm,
FTrRBM. In particular, the three-way weight tensor is factored into sums of
products through a factoring function, thus reducing the computational com-
plexity from O(N3) for TrRBM to O(N2) for FTrRBM.

Energy of the Factored Model. As mentioned previously, the three-way
weight tensor among the different layers is now factored. Therefore, the energy
function is now defined as:

E(VS ,VT ,H) = −(vS,α − aα)Σ
αα
S (vαS − aα)− bβh

β

− (vT,γ − cγ)Σ
γγ
T (vγT − cγ)− w

(VS)
fα Σαα

S vαSw
(h)
fβ w

(VT )
fγ Σγγ

T vγT

where f is the number of factors used to decompose the weight tensor.

Inference in the Factored Model. Inference in the factored version is done
in a similar manner to that of the full model with different inputs for the nodes.
In particular, because there are no connections between the units in the same
layer, inference is done in parallel for each of the nodes. Mathematically these
are derived as:

μ:αS = w
(VS):α
f w

(h)
fβ h

βw
(VT )
fγ vγT + a:α

μ:γT = w
(VT ):γ
f w

(h)
fβ h

βw
(VS)
fα vαS + b:γ

s:β = w
(h):β
f w

(VS)
fα vαSw

(VT )
fγ vγT + c:β

Update Rules for the Factored Model. Learning in the factored model is
done using a modified version of Contrastive Divergence. The derivatives of the
energy function are computed again, this time yielding:
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Δw
(VS)
:fα ∝

〈
Σα:
S v

α:
S w

(h)
:fβh

βw
(VT )
:fγ Σγγ

T vγT

〉
0

−
〈
Σα:
S v

α:
S w

(h)
:fβh

βw
(VT )
:fγ Σγγ

T vγT

〉
λ

Δw
(VT )
:fγ ∝

〈
Σγ:
S v

γ:
T w

(h)
:fβh

βw
(VS)
:fα Σ

αα
S vαS

〉
0

−
〈
Σγ:
S v

γ:
T w

(h)
:fβh

βw
(VS)
:fα Σ

αα
S vαS

〉
λ

Δw
(h)
:fβ ∝

〈
h:βw

(VT )
:fγ Σγγ

T vγTw
(VS)
:fα Σ

αα
S vαS

〉
0

−
〈
h:βw

(VT )
:fγ Σγγ

T vγTw
(VS)
:fα Σ

αα
S vαS

〉
λ

where f is the index running over the number of factors, 〈.〉0 is the expectation
from the initial probability distribution (i.e., data), and 〈.〉λ is the expectation
of the Markov chain, starting at the initial probability distribution, and sampled
λ steps using a Gibbs sampler. The update rules for the biases are the same as
for the full model.

Unfortunately, learning in this model cannot be done with normal CD. The
main reason is that if CD divergence was used as is, FTrRBM will learn to
correlate random samples from the source task to random samples in the target.
To tackle this problem, as well as ensure computational efficiency, a modified
version of CD is proposed. In Parallel Contrastive Divergence (PCD), the data
sets are first split into batches of samples. Parallel Markov chains run to a
certain number of steps on each batch. At each step of the chain, the values of
the derivatives are calculated and averaged to perform a learning step. This runs
for a certain number of epochs. At the second iteration the same procedure is
followed but with randomized samples in each of the batches. Please note that
randomizing the batches is important to avoid fallacious matchings between
source and target triplets.

4 Using the Inter-task Mapping

Using FTrRBMs for transfer in RL is done using two phases. First, the inter-task
mapping is learned through source and target task samples. Second, samples are
transferred from the source to the target, to be used as starting samples for a
sample-based RL algorithm (which proceeds normally from this point onward).
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Algorithm 1. Overall Transfer Framework

1: Input: Random source task samples DS = {〈s(i)S , a
(i)
S , s

′(i)
s 〉}mi=1, random target

task samples DT = {〈s(j)T , a
(j)
T , s

′(j)
T 〉}nj=1, optimal source task policy π�

S

2: Use DS and DT to learn the intertask mapping using FTrRBM.
3: Sample source task according to π�

S to attain D�
S .

4: Use the learned RBM to transfer D�
S and thus attain D0

T .
5: Use D0

T to learn using a sample-based RL algorithm.
6: Return: Optimal target task policy π�

T .

4.1 Learning Phase

When FTrRBM learns, weights and biases are tuned to ensure a low reconstruc-
tion error between the original samples and the predicted ones from the model.
The RBM is initially provided with random samples from both the source and

the target tasks. Triplets from the source task (i.e., {〈s(i)1 , a
(i)
1 , s

′(i)
1 〉}mi=1) and

target task (i.e., {〈s(j)2 , a
(j)
2 , s

′(j)
2 〉}nj=1) are inputs to the two visible layers of the

RBM. These are then used to learn good hidden and visible layer feature rep-
resentations. Note that these triplets should come from random sampling—the
RBM is attempting to learn an inter-task mapping that covers large ranges in
both the source and target tasks’ state and actions spaces. If only “good” sam-
ples were used the mapping will be relevant in only certain narrow areas of both
source and target spaces.

4.2 Transfer Phase

After learning, the FTrRBM encodes an inter-task mapping from the source to
the target task. This encoding is then used to transfer (near-)optimal sample
transitions from the source task, forming sample transitions in the target task.
Given a (near-)optimal source task policy, π�S , the source task is sampled greedily
according to π�S to acquire optimal state transitions. The triplets are passed
through the visible source layer of FTrRBM and are used to reconstruct initial
target task samples at the visible target layer, effectively transferring samples
from one task to another. If the source and target task are close enough3, then
the transferred transitions are expected to aid the target agent in learning an
(near-)optimal behavior. They are then used in a sample based RL algorithm,
such as LSPI to learn an optimal behavior in the target task (i.e., π�T ). The
overall process of the two phases is summarized in Algorithm 1.

(a) Inverted Pendulum (b) Cart Pole (c) Mountain Car

Fig. 2. Experimental domains

3 Note that defining a similarity metric between tasks is currently an open problem
and beyond the scope of this paper.
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5 Experiments and Results

To asses the efficiency of the proposed framework, experiments on different RL
benchmarks were performed. Two different transfer experiments were conducted
using the tasks shown in Figure 24.

5.1 Inverted Pendulum to Cart-Pole Transfer

To test the transfer capabilities of FTrRBMs, transfer was conducted from the
Inverted Pendulum (IP) (i.e., Figure 2(a)) to the (CP) (i.e., Figure 2(b)).

Source Task. The state variables of the pendulum are 〈θ, θ̇〉. The action space
is a set of two torques {−10, 10} in Newton meters. The goal of the agent is
again to balance the pole in an upright position with 〈θ = 0, θ̇ = 0〉. A reward
of +1 is given to the agent when the pole’s angle is in − π

12 < θ < π
12 and −1

otherwise.

Target Task. The target task was a CP with, l = 0.5. The target action space,
transition probability and reward functions are different from the source task.
The action space of the target agent was changed to AT = {−10, 0, 10} and the
reward function was changed to cos(θ), giving the agent a maximum value of +1
when the pole is the upright position.

Experiment. 3000 random source task samples and 2000 target task samples
were used to learn the inter-task mapping. The RBM contained 80 hidden units
and 25 factors. Learning was performed as before, with FTrRBM converging
in about 3.5 minutes. Transfer was accomplished and tested similarly to the
previous experiment. The results are reported in Figure 3. It is again clear that
transfer helps the target agent in his learning task. LSPI again converged with
fewer iterations when using transfer. LSPI convergence time also decreased on
different transferred samples. For example, LSPI converged with only 9 iterations
on 5000 transferred samples compared to 12 using random ones and with 17
compared to 19 on 8000 transferred and random samples, respectively. The time
needed to reach near optimal behavior was reduced from 22 to 17 minutes by
using a transferred policy to initialize LSPI. Therefore,

ConclusionI: FTrRBM is capable of learning a relevant inter-task mapping
between a pair of dissimilar tasks.

5.2 Mountain Car to Cart-Pole Transfer

A second experiment shows the transfer performance of FTrRBMs between pairs
even less similar tasks than in the previous section. The target task remained the

4 The samples required for learning the inter-task mapping were not measured as extra
samples for the random learner in the target. Please note, that even if these were
included the results as seen from the graphs will still be in favor of the proposed
methods.
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Fig. 3. Transfer versus no transfer comparison on different tasks

same cart-pole as before, while the source task was chosen to be the Mountain-
Car (MC) problem. Although very different, successful transfer results between
these tasks had previously been shown in our previous work [3].

Source Task. The system is described with two state variable 〈x, ẋ〉. The agent
can choose between two actions {−1, 1}. The goal of the agent is to drive the car
up the hill to the end position. The car’s motor is not sufficient to drive the car
directly to its goal state — the car has to oscillate in order to acquire enough
momentum to drive to the goal state. The reward of the agent is −1 for each
step the car did not reach the end position. If the car reaches the goal state, the
agent receives a positive reward of +1 and the episode terminates. Learning in
the source task was performed using SARSA.

Experiment. 4000 random source task samples and 2000 target task samples
were used to lean the inter-task mapping as before. The RBM contained 120
hidden units and 33 factors and converged in about 3.5 minutes to the lowest
reconstruction error. The results of transfer (performed as before) are reported in
Figure 4. It is clear that transfer helps even when tasks are highly dissimilar. As
before, LSPI converged with fewer iterations when using transfer than without
using transfer. For example, LSPI converged with only 10 iterations on 5000
transferred samples compared to 12 using random ones. LSPI converged to an
optimal behavior in about 18 minutes compared to 22 minutes for the non-
transfer case. Therefore,

ConclusionII: FTrRBM is capable of learning a relevant inter-task mapping
between a pair of highly dissimilar tasks.
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Fig. 4. Transfer versus no transfer comparison on highly dissimilar tasks

5.3 FTrRBM Robustness

To provide a comprehensive comparison between FTrRBM and the work in [3],
two additional experiments were conducted. The source task was either the IP or
the MC, while the target task was the CP system. 1000 and 500 target samples
were used to learn an intertask mapping using either FTrRBM or a method
from our previous [3]. Having these intertask mappings, (near-)optimal source
task samples5 were then transferred to provide an initial batch for the target RL
agent to learn on. Performance, measured by the number of successful control
steps in the target, was then reported in Figures 5 and 6.

Figure 5 shows two comparison graphs. The left graph reports the performance
when using 1000 target samples to learn the intertask mapping. These clearly
demonstrate that FTrRBM performs better than sparse coded intertask map-
pings, where for example, FTrRBM attains about 570 control steps compared
to 400 in the sparse coded case at 5000 transferred samples. As the number of
control steps increases, the performance of both methods also increases, to reach
around 1300 control steps for FTrRBM compared to 1080 in the sparse coded
case at 10000 transferred samples. The right graph shows the results of the same
experiments, however, when using only 500 target samples to learn the intertask
mapping. Again these results show that apart from the first two points, FTrRBM
outperforms the Sparse coded intertask mapping.

In Figure 6 the results of the same experiments on highly dissimilar tasks are
shown. In the left graph, 1000 target samples were used to learn an intertask
mapping using either FTrRBM or the approach of [3]. The results clearly mani-
fest the superiority of FTrRBM compared to the sparse coded approach, where
at 5000 transferred samples FTrRBM attains 600 control steps, with 410 steps
for the sparse coded intertask mapping. This performance increases to reach

5 The optimal policy in the source was again attained using SARSA.
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Fig. 5. These graphs compare the performance of transfer from IP to CP using FTr-
RBM or Sparse Coded inter-task mappings [3]. The left graph shows the results of
transfer when using 1000 target samples to learn the intertask mapping, while the
right presents the results when using 500 samples to learn such a mapping.

about 1300 control steps for FTrRBM with 1050 for the sparse coded approach
on 10000 transferred samples. In the right graph the same experiments were
repeated by using 500 samples to learn the intertask mapping. It is again clear
that FTrRBM outperforms the approach of [3].

6 Related Work

Learning an inter-task mapping has been of major interest in the transfer learn-
ing community [17] because of its promise of a fully autonomous speed-up
method for lifelong learning. However, the majority of existing work assumes
that 1) the source task and target task are similar enough that no mapping is
needed, or 2) an inter-task mapping is provided to the agent.

For example, many authors have considered transfer between two agents which
are similar enough that learned knowledge in the source task can be directly
used in the target task. For instance, the source and target task could have
different reward functions (e.g., compositional learning [12]) or have different
transition functions (e.g., changing the length of a pole over time in the cart
pole task [11]). More difficult are cases in which the source task and target
task agents have different state descriptions or actions. Some researchers have
attempted to allow transfer between such agents without using an inter-task
mapping. For example, a shared agent space [7] may allow transfer between such
pairs of agents, but requires the agents to share the same set of actions and
an agent-centric mapping. The primary contrast between these methods and
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Fig. 6. These graphs compare the performance of transfer from MC to CP using FTr-
RBM or Sparse Coded inter-task mappings [3]. The left graph shows the results of
transfer when using 1000 target samples to learn the intertask mapping, while the
right presents the results when using 500 samples to learn such a mapping. It is clear
that FTrRBM transfer outperforms that described in [3].

the current work is that this paper is interested in learning a mapping between
states and actions in pairs of tasks, rather than assuming that it is provided, or
rendered unnecessary because of similarities between source task and target task
agents, a requirement for fully autonomous transfer. There has been some recent
work on learning such mappings. For example, semantic knowledge about state
features between two tasks may be used [8,10], background knowledge about the
range or type of state variables can be used [14,19], or transition models for each
possible mapping could be generated and tested [16].

There are currently no general methods to learn an inter-task mapping
without requiring 1) background knowledge that is not typically present in RL
settings, or 2) an expensive analysis of an exponential number (in the size of
the action and state variable sets) of inter-task mappings. This paper overcomes
these problems by automatically discovering high-level features and using them
to transfer knowledge between agents without suffering from an exponential
explosion. The closest work to the proposed method is that of our previous
work [3]. This method is based on sparse coding, sparse projection, and sparse
Gaussian processes to learn an inter-task mapping between MDPs with arbitrary
variations. However, the we relied on a Euclidean distance correlation between
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source task and target task triplets, which may fail in highly dissimilar tasks.
The work in the current paper overcomes these problems by adopting a more
robust feature extraction technique and by avoiding the need for such a distance
correlation as shown in the experiments of Section 5.3.

Others have focused on transferring samples between tasks. For instance,
Lazaric et al. [9] transfers samples in batch reinforcement learning using a com-
pliance measure. The main difference to this work is that we neither assume
any similarities between the transition probabilities, nor restrict the framework
to similar state and/or action feature representations. In contrast to all exist-
ing methods (to the best of our knowledge), this paper allows for differences
between all variables describing Markov Decision Processes for the source and
target tasks and robustly learns an inter-task mapping, rather than a mapping
based on state features.

7 Discussion and Conclusions

This paper introduces a theoretically grounded method for learning an inter-task
mapping based on RBMs. The approach was validated through experimental ev-
idence. The proposed technique successfully learned a useful inter-task mapping
between highly dissimilar pairs of tasks. Furthermore, a comparison between the
proposed technique and our earlier work [3] showed that FTrRBM outperforms
sparse coded inter-task mappings when fewer samples are available.

Although successful, the approach is not guaranteed to provide useful trans-
fer. To clarify, the reward was not included in the definition of the inter-task
mapping, but when transferring near-optimal behaviors sampled according to
near-optimal policies such rewards are implicitly taken into account and thus,
attaining successful transfer results.

Despite that these experiments showed transfer between tasks with different
reward functions, negative transfer may occur if the rewards of the source task
and target tasks were highly dissimilar. Such a mismatch may lead to an incor-
rect mapping because the reward is not considered in the presented method. A
solution to this potential problem is left for future work, but will likely require
incorporating the sampled reward into the current approach.

A second potential problem may occur during the learning phase of FTrRBM,
which could be traced back to quality of the random samples. If the number of
provided samples is low and very sparse6, the learned mapping may be uninfor-
mative. This problem is also left for future work, but could possibly be tackled
by using a deep belief network to increase the level of abstraction.

Acknowledgments. This work was supported in part by NSF IIS-1149917.

6 Sparse in this context means that the samples arrive from very different locations in
the state-space and areas of the state space are not sufficiently visited.
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Abstract. We address the problem of hierarchical segmentation of se-
quential grouped data, such as a collection of textual documents, and
propose a Bayesian nonparametric approach for this problem. Existing
Bayesian nonparametric models such as the sticky HDP-HMM are suit-
able only for single-layer segmentation. We propose the Layered Dirichlet
Process (LaDP), where each layer has a countable set of Dirichlet Pro-
cesses, draws from which define a distribution over the countable set
of Dirichlet Processes at the next layer. Each data item gets assigned
to a distribution (index) from each layer of the hierarchy, leading to
hierarchical segmentation of the sequence. The complexity of inference
depends upon the exchangeability assumptions for the measures at dif-
ferent layers. We propose a new notion of exchangeability called Block
Exchangeability, which lies between Markov Exchangeability (used in
HDP-HMM) and Complete Group Exchangeability (used in HDP), and
allows for faster inference than Markov Exchangeability. Using experi-
ments on a news transcript dataset and a product review dataset, we
show that LaDP generalizes better than existing non-parametric models
for sequential data, and by simultaneously segmenting at multiple levels,
outperforms existing models in terms of single-layer segmentation. We
also show empirically that using Block Exchangeability greatly speeds
up inference and allows trading off accuracy for execution time.

1 Introduction

We address the problem of hierarchical segmentation of sequential grouped data.
For example, consider transcripts of news broadcast on television or radio. Here,
each transcript represents a group of data points, which are the words in this
case. The words in each transcript or group form a sequence that needs to be
segmented. The segmentation needs to be at two layers — news categories, such
as politics, sports, etc, and individual stories within a category. There are ben-
efits to segmenting transcripts simultaneously, instead of individually. Stories
are typically shared across transcripts, and transition patterns between stories
(more important stories often come earlier) and categories (e.g. sports rarely
comes before other categories) may also be shared across transcripts. Also, there
are benefits to simultaneous segmentation into stories and categories. Inferring
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a story strongly suggests a category, while inferring a category increases the
posterior probability for certain stories. Finally, while the number of categories
may often be known or guessed, this is not true for the number of stories. In this
paper, we propose a Bayesian approach for this problem, which is both hierar-
chical and non-parametric. For the news example, each story can be modeled
as a distribution over words, and each category as a distribution over stories.
The same stories and categories are shared between all news transcripts. Being
non-parametric, the model does not require the number of stories to be specified.

The Dirichlet Process[1] is a measure over measures and is useful as a prior
in Bayesian nonparametric mixture models, where the number of mixture com-
ponents is not specified a-priori, and is allowed to grow with the number of data
points. The Hierarchical Dirichlet Process(HDP)[5] hierarchically extends DP
for grouped data, such as words partitioned into documents, so that mixture
components are shared between groups. The DP is a completely exchangeable
model (probability of the data is invariant to permutations in the sequence),
while the HDP is completely exchangeable within each group (Group Exchange-
able). As a result, these are not suitable as statistical models for segmentation.
HDP variants such as the HDP-HMM [5] and sticky HDP-HMM [6], which sat-
isfy Markov exchangeability, are more suitable for segmentation. However, these
perform segmentation at a single layer and not at several layers simultaneously.

We propose the Layered Dirichlet Process, where each layer has a countable
set of DP-distributed measures over integers. The integers at each layer serve as
indices for the measures at the next layer. Each data item filters down this lay-
ered structure, where a measure at each layer assigns it to a measure at the next
layer. Such assignments for each data item in the sequence results in a hierarchi-
cal segmentation of the sequence. The assignment of a measure to each data item
at each layer depends on the exchangeability assumption at that layer. For Com-
plete Group Exchangeability, it depends only on its assignment at the previous
layer. For other partial Group Exchangeabilities, it additionally depends on the
assignments of other data items at that layer. We perform inference for LaDP
using collapsed Gibbs sampling. Since the assignments are coupled across lay-
ers, inference is naturally complex. We propose a new notion of exchangeability
called Block Exchangeability. We show that this relaxes Complete Exchangeabil-
ity to capture sequential patterns, but is stricter than Markov Exchangeability
with significantly lower inference complexity.

Using experiments on multiple real datasets, we show that by modeling group-
ing at multiple layers simultaneously, LaDP is able to generalize better that
state-of-the-art non-parametric models. We also show that simultaneous seg-
mentation at multiple layers improves segmentation accuracy over single layer
segmentation. Additionally, using Block Exchangeability leads to significantly
faster inference compared to Markov Exchangeability, while incurring negligi-
ble increase in segmentation error and perplexity in some cases, and actually
improving performance in some others. Interestingly, Block Exchangeability has
the novel ability of trading off efficiency for accuracy.
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2 Background and Related Work

In this section we briefly review some existing nonparametric models used as
priors for infinite mixture models, and existing notions of exchangeability.

DP Mixture Model and Complete Exchangeability: A random measure G on Θ is
said to be distributed according to a Dirichlet Process (DP) [1] (G ∼ DP (α,H))
with base distribution H and concentration parameter α if, for every finite parti-
tion {Θ1, Θ2, . . . , Θk} ofΘ, (G(Θ1), G(Θ2), . . . , G(Θk)) ∼ Dir(αH(Θ1), αH(Θ2),
. . . , αH(Θk)). The stick-breaking representation shows the discreteness of draws
G from a DP:

θk ∼ H ; βk = β̂k

k−1∏
i=1

(1− β̂i); β̂i ∼ Beta(1, α); G �
∑
k

βkδθk

We write βk ∼ GEM(α). Given n independent draws {θi}ni=1 from G as above,
the predictive distribution of the next draw, on integrating out G, is given by
p(θn+1|θ1 . . . θn) ∝

∑K
k=1 nkδφk

+ αH , where {φk}Kk=1 be the K unique values
taken by {θi}ni=1 with corresponding counts {nk}Kk=1. This shows the clustering
nature of the DP. Using the DP as a prior results in an ‘infinite mixture model’
for data {wi}ni=1 with the following generative process:

G ∼ DP (α,H); θi
iid∼ G; wi

iid∼ F (θi), i = 1 . . . n

where F is a measure defined over Θ. This is called the DP mixture model [1].
This can alternatively be represented using the stick-breaking construction and
integer latent variables zi as follows:

β ∼ GEM(α); θk ∼ H, k = 1 . . .∞ ; zi ∼ β; wi ∼ F (θzi), i = 1 . . . n

An important notion for hierarchical Bayesian modeling is that of exchange-
ability [11,2]. Given any assignment {z̄1, z̄2, . . . , z̄n} to a sequence of random
variables {zn} ∈ S, where S is a space of sequences, exchangeability (under
joint distribution P on S) defines which permutations {z̄π(1), z̄π(2), . . . , z̄π(N)}
of the assignment have the same probability (under P ). In general, any notion
of exchangeability E is defined using a statistic, which we call Exchangeabil-
ity Statistic SE(z). A model, defining a joint distribution P , is said to satisfy
exchangeability E if SE(z1) = SE(z2) implies P (z1) = P (z2), for all z1, z2 ∈ S.

Given a sequence z ∈ S, define SC(z) = {ni}Ki=1 as the vector of counts of the
K unique values occurring in it, where ni is the count of the ith unique value.
Using SC(z) as the exchangeability statistic leads to the definition of Complete
Exchangeability (CE), under which all permutations are equiprobable.

De Finetti’s Theorem [3] shows that if an infinite sequence of random vari-
ables z is infinitely exchangeable (meaning that every finite subset is completely
exchangeable) under a joint distribution P (z), then the joint distribution can be
equivalently represented as a Bayesian hierarchy: P (z) =

∫
θ
P (θ)

∏
i P (zi|θ)dθ.

It can be shown that a sequence drawn from a DP mixture model, using a similar
hierarchical generation process, satisfies Complete Exchangeability.
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HDP Mixture Model and Group Exchangeability: Now consider grouped data
of the form {wi, gi}ni=1, where gi ∈ {1, G} indicates the group to which wi
belongs. The Hierarchical Dirichlet Process (HDP) [5] allows sharing of mixture
components {φk} across groups using two levels of DPs:

φk ∼ H, k = 1 . . .∞; β ∼ GEM(γ), πj ∼ DP (α, β), j = 1 . . .G

zi ∼ πgi ; wi ∼ F (φzi), i = 1 . . . n (1)

This generative procedure for the data is called the HDP mixture model. We
have modified the representation to make the group variable explicit, which
we can build upon for our work. Note that the HDP can also be represented
directly using measures instead of indices. The HDP mixture model can be
shown to satisfy a notion of partial exchangeability called Group Exchangeabil-
ity. For grouped data of the form {zi, gi}ni=1, where the zi and gi variables take
K and G unique values respectively, define SG(z, g) = {{nj,k}Kk=1}Gj=1, where

nj,k =
∑n

i=1 δ(zi, k)δ(gi, j). Group Exchangeability (GE) is characterized by the
exchangeability statistic SG(z, g). For GE models, all intra-group permutations
are equiprobable, but probability changes with exchange of values across groups.

Other Group Exchangeable Nonparametric Models: For grouped data {wi, gi}ni=1,
the Nested Dirichlet Process (NDP) [7] proposes the following generative model
with two layers of latent variables (z2, z1) for each data item:

φk,l ∼ H, k, l = 1 . . .∞;β1
k ∼ GEM(β), k = 1 . . .∞;β2 ∼ GEM(α);

z2g ∼ β2, g = 1 . . .G; z1i ∼ β1
z2gi

;wi ∼ φz2gi ,z
1
i
, i = 1 . . . n

Unlike the HDP, only some groups share mixture components. Additionally,
unlike the HDP they also share distributions over these components.

The MLC-HDP [9] models data of the form {wi, g1i , g2i , g3i }ni=1, which is grouped
at 3 different levels, and proposes the following generative process:

φk ∼ H, k = 1 . . .∞;β3 ∼ GEM(γ3), β2 ∼ GEM(γ2), β1 ∼ GEM(γ1);

π3 ∼ DP (α3, β3), π2k ∼ DP (α2, β2), π1l ∼ DP (α1, β1), k, l = 1 . . .∞;

z3a ∼ π3 ∀a; z2ab ∼ π2z3a
∀a∀b; z1abc ∼ π1

z2
ab
∀a∀b∀c; wi ∼ φz1

g3
i
,g2

i
,g1

i

, i = 1 . . . n

Here the mixture components can be shared by all groups, and two groups can
have identical distributions over these components with non-zero probability.

Segmentation, HDP-HMM and Markov Exchangeability: Now we come to the
segmentation problem for a sequence {wi, zi} where the the variables wi are ob-
served while zi ∈ {1, 2 . . .} are latent, with distribution P (w, z) = P (z)P (w|z).
Given any assignment to the {zi} variables, segments are defined as maximal
sub-sequences (s, e) such that ze = zs = zi for s ≤ i ≤ e. Since {zi} variables
are random, a natural definition for the segmentation problem is to first perform
inference to find the optimal assignment to {zi} according to the posterior dis-
tribution P (z|w), and then identifying segments for this assignment. Instances
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of this problem include segmentation according to topics for textual documents,
and according to speaker in conversational audio. Naturally, distinguishing be-
tween different permutations is critical for segmentation of grouped (un-grouped)
data, and GE (CE) assumptions for P (z) are not appropriate, since all permu-
tations are equiprobable. Therefore, HDP (DP) mixture models are not suitable
for such segmentation tasks. These call for more discerning models that satisfy
other notions of exchangeability that distinguish between different segmentations
of {wi, zi} represented by different assignments to {zi}.

To model (ungrouped) data {wi} with such properties, the HDP-HMM [6]
considers the mixture components zi as states of an HMM with infinite state-
space. This is done by identifying the groups as well as the mixture components
in the HDP with the HMM states. Now πj ∼ DP (α, β) is considered as transition
distribution for the jth state, and is used to generate the next state:

πj ∼ DP (α, β), j = 1 . . .∞; zi ∼ πzi−1 ; wi ∼ F (θzi), i = 1 . . . n (2)

A special case of this is the Sticky HDP-HMM (sHDP-HMM) [6], which increases

the probability of self-transition as πj ∼ DP (α+κ,
αβ+κδj
α+κ ), to enforce sequential

continuity of mixture components which occur naturally in speech (where a
mixture component represents a speaker) and text (where a mixture component
represents a topic). Though originally developed for single sequences, the HDP-
HMM and sHDP-HMM models can also be extended for grouped data.

Consider the following statistic: SM (z) = ({nij}K,Ki=1,j=1, s), where nij is the

number of transitions from the ith unique value to the jth unique value in the
sequence z, and z1 = s. Using SM as the exchangeability statistic leads to
the definition of Markov Exchangeability (ME) [2]. Intuitively, this means that
two different sequences are equiprobable under the joint distribution, if they be-
gin with the same value and preserve the transition counts between unique val-
ues. Representation theorems, similar to De Finetti’s theorem, exist for Markov
Exchangeability as well [2]. It can be shown that the HDP-HMM and sticky
HDP-HMM mixture models satisfy Markov Exchangeability.

3 Hierarchical Segmentation and LaDP

We now discuss hierarchical segmentation of grouped data and propose Bayesian
nonparametric models for it, using existing notions of partial exchangeability.

Hierarchical Segmentation: Consider grouped data of the form {wi, gi}, where
gi ∈ {1 . . .G} indicates the group to which each data point wi belongs. The
data {wi : gi = g} in each of the G groups forms a sequence. In the news
transcript example, each group corresponds to one transcript, and the words in
each transcript form a sequence. We call such data sequential grouped data.

Our task is to segment the sequential data in each of the groups at multiple
layers. We define an L-layer segmentation of the data as follows. Instead of a
single latent variable zi as before, we associate L latent variables {zli}Ll=1, each
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taking integer values, with the ith data point. We call zli the group for the ith

data point at layer l. We will assume that the grouped structure of the input data
provides the grouping at the highest layer, i.e. zL+1

i = gi. Given any assignment
to these n sets of group variables, the hierarchical segmentation at any layer l
(1 ≤ l ≤ L) is defined using {{zl′i }l′≥l}ni=1, which are all the group variables at
layer l or higher. Two data points at positions i and j (i < j) belong to the same
hierarchical segment at layer l if the group variables of intermediate data points
k are identical at layers l and above: zl

′

i = zl
′

k = zl
′

j , ∀k, i ≤ k ≤ j, l ≤ l′ ≤ L+1.
This may also be defined recursively. Two data points belong to the same segment
at layer l if they belong to the same segment at layer l+1, and all intermediate
group variables zlk have the same value at layer l. In the case of news transcripts,
the group variables zL+1

i at the highest layer indicate which transcript the ith

data point (word) belongs to, which is provided as input. Imagine the next layers
to correspond to categories (layer 2) and stories (layer 1). Then, two words would
belong to the same category segment (layer 2), if they are in the same transcript
and share the same category label with all intermediate words. Similarly, two
words belong to the same story segment (layer 1) if they belong to the same
category segment and have the same story labels as all intermediate words. The
problem is to find the L-layer hierarchical segmentation at layer 1.

Completely Exchangeable Layered Dirichlet Process: We define a joint prob-
ability distribution over the n sets of group variables {{zli}Ll=1}ni=1 and the n
data points {wi}ni=1 using a hierarchical Bayesian approach. For each layer l,
1 ≤ l ≤ L, we have a countable set of measures {πlg}∞g=1 defined over positive

integers. The group variables {zli}ni=1 at layer l serve as indexes for these mea-
sures. Using this countable property, the atoms of all of these measures at layer
l, which are integers, correspond one-to-one with the measures at the next layer
l − 1. This gives us a hierarchy of measures, in the sense that each πlg forms a

measure over the measures {πl−1
g′ }∞g′=1 at the next layer. Finally, at the lowest

layer, each F (φk) is a measure over the space W of the observations {wi}. For
discrete text data, these are multinomial distributions over the vocabulary.

Next we need to define the measures {πlg}∞g=1 and the exchangeability
properties at each layer l. In LaDP, we define each of these distributions to
be DP-distributed. We begin with the simplest case, which assumes complete
exchangeability at every layer. The generative process looks as follows:

φk ∼ H, k = 1 . . .∞
βlg ∼ GEM(γl); πlg ∼ DP (αl, βlg), g = 1 . . .∞, l = L . . . 1

zli ∼ πl
zl+1
i

, l = L . . . 1, wi ∼ F (φz1i ), i = 1 . . . n (3)

In each layer, a countable set of measures is first constructed by drawing from a
DP with a distribution over integers as a base distribution. These measures as a
result also have support over integers, which serve as indexes to the measures at
the next lower layer, which also form a countable set. Once we have this hierarchy
of measures, the group variable zli for each data point at each layer l is sampled
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from the measure indexed by the group zl+1
i assigned at the previous (higher)

layer. The measures at the lowest layer (layer 1) are sampled from a suitable base
distribution H . H could be Dirichlet when each φg is a multinomial parameter.
It is easy to verify that the above process satisfies Complete Exchangeability
(CE). As such, we call this model the CE-LaDP.

Layered Dirichlet Process for Segmentation: Since CE models are not useful for
segmentation, we next incorporate Markov Exchangeability within LaDP. The
key to incorporating ME is to relax the iid assumption for the group variables,
within a layer as in the HDP-HMM, and additionally across layers, and generate
zli conditioned on some of the previously sampled groups {zl′j : j < i, l′ > l}. The
HDP-HMM identifies groups with states and makes the Markovian independence
assumption that P (zi|z<i) = P (zi|zi−1). Accordingly, it defines transition dis-
tribution πg over next states for each group (state) g. In our case, we make the
following independence assumption: P (zli|z>l, zl<i) = P (zli|zl+1

i , zlp(i,l)), where

z>l ≡ {zl′i : l′ > l}, zl<i ≡ {zli′ : i′ < i}, and p(i, l) ≡ {j : zl+1
j = zl+1

i , j <

i, zl+1
k 	= zl+1

i , j < k < i} is the previous datapoint having the same group as i
at layer l + 1. This means that the group assignment to data point i at layer l
depends on its group at the layer l+1 (like in CE-LaDP), and also on the group
assignment at layer l of its parent datapoint p(i, l). (We later overload the nota-
tion p(i, l) for brevity to refer to the group value zlp(i,l) as well. We accordingly

define transition distribution πlg,g′ over next groups from each parent group g′

at layer l, in each assigned group g in layer (l + 1). The generative process for
layer l (L ≥ l ≥ 1) is defined as:

βlg ∼ GEM(γl), πlg,g′ ∼ DP (αl, βlg), g, g
′ = 1 . . .∞,

zli ∼ πl
zl+1
i ,p(i,l)

, i = 1 . . . n

Part of the graphical model is shown in Fig. 1.
For the first data point in any group in layer (l + 1), p(i, l) is undefined, and

zli is sampled from βl
zl+1
i

. It can be shown that this generative process satisfies

ME within each group at layer l. When this process is used at all layers, we call
the model ME-LaDP. As in sticky HDP-HMM, we may add more probability

κl for self-transitions: πlg,g′ ∼ DP (αl + κl,
αlβl

g+κ
lδg′

αl+κl ), where κl is a continuity
parameter. This is done to encourage the same mixture component for adjacent
data points. This captures the temporally smooth nature of most real-world
data, and also encourages segmentations (based on group index assignments).

Layer-Specific Exchangeability: We have defined CE-LaDP as using CE at all
layers, and ME-LaDP as using ME at all layers. However, each of the processes
can be defined specific to a single layer, and it is possible to use layer-specific
exchangeability assumptions, as demanded by particular applications. Indeed,
we use such mixed exchangeability models in our experiments. As example, the
generative process of such a model is described in the Appendix [13].
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Fig. 1. Graphical model of LaDP focused on the ith data point in two adjacent layers

Incorporation of Domain Knowledge: The {βlg} variables at each layer l in Eqns.
3 and 4 are group-specific distributions over indexes (and measures) at the next
layer l− 1. These are useful for incorporating domain knowledge such as distri-
bution over categories for specific news transcripts. For example, we can indicate
that the jth transcript is dominated by category index k by setting distribution
βLj over category indexes at the appropriate layer (L = 2) to

∑∞
c=1 δk(c).

In some cases, one may also wish to bias the φ-distributions using domain
knowledge. One option is to directly specify these φk. For weaker supervision,
we may introduce an additional layer l = 0:

β0
g ∼ GEM(γ0); π0g ∼ DP (α0, β0

g), g = 1 . . .∞
z0i ∼ π0z1i

; wi = Wz0i
, i = 1 . . . n (4)

Now, on specifying some of the {β0
g} distributions, the corresponding distribu-

tions {π0g} will be similar to these, depending on the concentration parameter
α0, and the words will be drawn from these {π0g} distributions. Observe that we
use complete (group) exchangeability at layer l = 0.

Relation with Other Models: Observe the relation between the CE-LaDP (Eqn. 3)
and the HDP mixture model (Eqn. 1). Recall that the group at the highest layer
zL+1
i is the input group label gi. For L = 1, this is exactly the HDP mixture
model. However, by separating the group index in the HDP generative model,
and identifying the zi variable as the random group variable leading to the next
layer, the CE-LaDP naturally extends the HDP generative process to generate
layered grouping. A similar relation holds between the ME-LaDP with L = 1
and the HDP-HMM. The MLC-HDP [9] extends HDP to 3 layers, with each
data point wi having input group indices g3i , g

2
i , g

3
i . When the group indices z3

are observed (rather than sampled from π3, as in [9]) and are identified with
the indices gi for LaDP, and additionally the input group indices g3i = i, g2i = 1
and g1i = 1 are shared by data points wi, we get back the CE-LaDP with L = 2.
Thus the LaDP framework can be used to generalize existing models to any num-
ber of layers. Secondly, the LaDP enables incorporation of domain knowledge in
all layers. Among existing models, only the recently-proposed DP-MRM [10] is
equipped to incorporate such domain knowledge, though only for a single layer.
Finally, while all existing methods only use a single exchangeability property
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(CE or ME), LaDP has the attractive property that different layers can have
different exchangeability properties. In the next section, we define a new notion
of exchangeability, and show how it can be incorporated in any layer of LaDP.

4 Block-Exchangeability and BE-LaDP

The models that we have introduced for segmentation satisfy ME. However, as
we analyze later, there is a significant price to be paid in terms of complexity of
inference as we move from CE and GE to ME. This is particularly severe for us,
since we need to segment simultaneously at multiple layers. In this section, we
explore an alternative notion of exchangeability, called Block Exchangeability
(BE), that allows segmentation, but is less expensive than ME for inference.

Block Exchangeability. Consider the following statistic for a sequence z (with
k unique values in it): SB(z) = ({ni,i, ni,−i}ki=1, e), where ni,i is the number
of transitions from the i-th unique value of z to itself, ni,−i is the number of
transitions from the i-th unique value to all other values and e is the value
at the last position. Using SB(z) as the exchangeability statistic defines Block
Exchangeability (BE) for a sequence z with distribution P (z), or for a model that
defines P (z). First we observe some properties of a block exchangeable model.

Theorem 1. If a model defining a joint distribution P is Completely Exchange-
able then it is necessarily Block Exchangeable, but not the converse.

Theorem 2. If a model defining a joint distribution P is Block Exchangeable
then it is necessarily Markov Exchangeable, but not the converse.

BE-DP Mixture Model: Consider grouped data of the form {wi, zi, gi}ni=1, where
gi ∈ {1 . . .G} indicates the pre-assigned group corresponding to the ith data
point, and zi ∈ {1 . . .∞} is the (latent) index of the mixture component corre-
sponding to wi. We now define a DP-based non-parametric mixture model for
sequential grouped data that satisfies Block Exchangeability, as follows:

φk ∼ H, k = 1 . . .∞; πg ∼ DP (α, βg), g = 1 . . .G

qgk ∼ Beta(1, κ); π̂gk = qgkπg + (1− qgk)δk, g = 1 . . .G, k = 1 . . .∞
zi ∼ π̂gi,p(i); wi ∼ F (φzi), i = 1 . . . n (5)

The first two lines describe the BE-DP prior, and the last line shows data gen-
eration using the mixture indices zi. p(i) is the group assignment to the data
point just before i in group gi. For the first data point in any group, zi ∼ πgi .

Theorem 3. The BE-DP prior distribution and the corresponding mixture
model satisfy Block Exchangeability.

The proofs of the theorems are available in our supplementary material [13].
We now provide an alternative representation of the BE-DP equivalent to that

in Eqn. 5, but which provides a justification for its nomenclature by capturing the
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structure of equi-probable permutations of any sequence. Consider the sequence
{wi, zi, ci, gi}ni=1, where the variables wi, zi and gi are as before, and we have
added a binary variable ci ∈ {0, 1} for each data point. We change the generative
process in Eqn. 5 to include the ci variables as follows.

ci ∼ Ber(qgi,p(i)); zi = p(i), if ci = 0; zi ∼ πgi , else, i = 1 . . . n (6)

Clearly, this version is equivalent to the generative process in Eqn. 5, in the
sense that the marginal P (w, z,g) obtained by summing out c from P (w, z, c,g)
is identical to that obtained from Eqn. 5. But this version has the advantage that
the introduction of the auxiliary variables makes inference more tractable, as we
will see in Section 5.

Separately, introduction of the the c variables provides some new insights
into Block Exchangeability. Observe that as long as ci remains 0, zi retains
the value p(i) of the previous mixture index in its group gi. When ci takes
value 1, zi takes a new random value based on a group-specific distribution over
mixtures πgi , that does not depend on the previous mixture index p(i). Thus ci
acts as a change-point indicator variable. The distribution of ci, and therefore
the continuity of the the current mixture component, depends on the group
and also the mixture component. Thus mixture components are characterized
by how long they persist, but not by what follows them in the sequence. We
use the term block to refer to a sub-sequence {s, s + 1, . . . , s + m} such that
p(i + 1) = p(i), ∀i ∈ [s + 1, s + m], cs = 1 and cs+k = 0 ∀k ∈ [1,m]. Note
that this implies zs = zs+1 = · · · = zs+m. For a block exchangeable sequence,
permutations of blocks as a whole does not change probability of the sequence.
Consider two different assignments x and y to {ci, zi}ni=1. We say that a block of
x corresponds to another block of y if they are of same length, and have the same
value of {zi} for the data points within them. Then, if there exists a bijection
between the blocks of x and those of y, then they should have same probability
for a BE model.

BE-LaDP: We now show that BE can be incorporated into any layer l of the
LaDP instead of CE or ME. Consider the generative process in Eqn. 3 or in Eqn.
4. We modify the random variables for layer l as follows:

βlg ∼ GEM(γl), πlg ∼ DP (αl, βlg), g = 1 . . .∞
qlg,g′ ∼ Beta(1, κ); πlg,g′ = qlg,g′π

l
g + (1− qlg,g′ )δg′ , g, g

′ = 1 . . .∞
zli ∼ πl

zl+1
i ,p(i,l)

i = 1 . . . n (7)

where p(i, l) is now the layer specific parent group. Note that κ again plays the
role of a continuity parameter as for the ME-LaDP. When BE is used in every
layer of LaDP as in Eqn. 7 we call the model BE-LaDP.

5 Inference Using LaDP

The inference problem in LaDP, given observations {wi}, is to find posterior
distributions over the group variables {zli} at all layers l for each data point.



A Layered Dirichlet Process for Hierarchical Segmentation 475

As for models such as HDP, HDP-HMM and sHDP-HMM, exactly computing
this posterior distribution is not tractable, and we resort to Gibbs Sampling
for approximate inference as for the other models. One possibility is to perform
collapsed Gibbs Sampling using only the group variables after integrating out
all the parameter variables such as πlg and βlg. When the βlg variable takes the
same value across groups in any layer l, the distribution of the variables at that
layer is identical to the HDP. The predictive distribution of the zli in that case is
given by the CRF equations as for the HDP [5]. However, in cases where some of
the βlg distributions are specified through domain knowledge, we integrate out

only the πlg distributions.

Predictive Distributions: For the different LaDP models, we first derive
the predictive distributions for zli, the i

th group variable in the lth layer, given
the assignments to all group variables in the layers above (denoted z>l), and the
first i− 1 group variables in layer l (denoted zl<i), after integrating out the πlg,g′
distributions from which they are drawn.

If the lth layer uses CE (Eq. 3), the predictive distribution is given by

p(zli = a|zl<i, zl+1) ∝ nl
zl+1
i ,i,a

+ αlβl
zl+1
i

(a)

where nlj,i,a = |{t : zlt = a, zl+1
t = j, t ∈ [1, i − 1]}|. This is the number of data

points before datapoint i in group j of layer l + 1 were assigned to group a in
layer l. If the lth layer uses ME (Eq. 4), the predictive distribution becomes

p(zli = a|zl<i, zl+1) ∝ nl
zl+1
i ,i,p(i,l),a

+ κδ(p(i, l), a) + αlβl
zl+1
i

(a)

where nlj,i,b,a = |{t : zlt = a, p(t, l) = b, zl+1
t = j, t ∈ [1, i − 1]}| is the number of

times successive data points before datapoint i in group j of layer l+1 assigned
to groups b and a respectively in layer l. For BE at layer l, we consider joint
predictive distribution of zli and the change-point indicator cli at layer l. The
conditional probabilities are as follows:

P (cli = 0, zli = p(i, l)|cl<i, zl<i, zl+1) ∝ al
zl+1
i ,i,0,p(i,l)

+ κ

P (cli = 1, zli = k|cl<i, zl<i, zl+1) ∝ (al
zl+1
i ,i,1,p(i,l)

+ 1)(vl
zl+1
i ,i,1,k

+ κβl
zl+1
i

(k))

where alj,i,c,p ≡ |{t : clt = c, p(t, l) = p, zl+1
t = j, t ∈ [1, i − 1]}| is the number

of times data points before datapoint i in group j of layer l + 1 were assigned
to group p in layer l, and the adjacent change-point value in group j is c; and
vlj,i,c,a = |{t : clt = c, zlt = a, zl+1

t = j, t ∈ [1, i− 1]}| is the number of times data
points before datapoint i in group j of layer l + 1 were assigned to group a in
layer l, and the change-point value at the same position is c.

Inference Using Gibbs Sampling: We sample each of the zli variables condi-
tioned on all the others sequentially in each iteration until convergence. In each
iteration we traverse all group variables for one data point before moving to
the next data point, and for a specific data point we traverse layers top down.
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The conditional distribution is given by p(zli|zl−i, zl−1, zl+1) ∝ p(zli|zl−i, zl+1)
p(zl−1|zl). The second term can be computed using the chain rule and the predic-
tive distributions described above: p(zl−1|zl) = p(zl−1

1 |zl1)
∏n
i=2 p(z

l−1
i |zl−1

<i , z
l
i).

At layer l = 1 this is the likelihood of the data, conditioned on the table as-
signments of layer 1. The form of the first term depends on the exchangeability
assumption.

If layer l uses CE the ith variable can be swapped with the last to get

p(zli = a|zl−i, zl+1) ∝ nl−i,zl+1
i ,a

+ αlβl
zl+1
i

(a)

where nl−i,j,a = |{t 	= i : zlt = a, zl+1
t = j}|. Swapping is possible by CE property.

If layer l uses ME with sticky transitions, we make use of the conditional
distribution for the sHDP-HMM [6] to get:

p(zli = a|zl−i, z
l+1) = (αlβl

j(a) + s(p(i, l), a) + κδ(p(i, l), a))×
αlβl

j(c(i, l)) + s(a, c(i, l)) + κδ(c(i, l), a) + δ(c(i, l), a)δ(p(i, l), a)

αl + s(a, .) + κ+ δ(p(i, l), a)

where j = dl+1
i , s(a, b) = |{t : zlt = a, c(t, l) = b}|. p(i, l) is as defined before Eqn.

4, and c(i, l) is defined analogously with i+ 1 ≤ j ≤ n instead of 1 ≤ j ≤ i− 1.
Recall the p(i, l) and c(i, l) notations defined for the zli variables. To define

the conditionals for BE, we need to extend these to have equivalent notations for
the cli variables. So, we will use p

z(i, l) and cz(i, l) for the earlier definitions, and
pc(i, l) and cc(i, l) for equivalent definitions using cli instead of zli. Then the joint
conditional p(cli, z

l
i|cl−i, zl−i, zl+1) has the following cases (omitting conditioning

variables for notational brevity): For cc(i, l) = 0

p(cli = 1, zli = cz(i, l)|.) = 1 if pz(i, l) 	= cz(i, l)

p(cli = 0, zli = pz(i, l)|.) ∝ (κ+ nz,c2 (pz(i, l), 0)) if pz(i, l) = cz(i, l)

p(cli = 1, zli = pz(i, l)|.) ∝ (nz,c
1 (pz(i,l),1)+αl

jβ
l
j(p

z(i,l)))

(nc
1(1)+δ)

×(1 + nz,c2 (pz(i, l), 1))

For (cc(i, l) = 1)

p(cli = 0, zli = pz(i, l)|.) ∝ (κ+ nz,c2 (pz(i, l), 0))

(1 + κ+ nz,c2 (pz(i, l), .))

p(cli = 1, zli = b|.) ∝
(nz,c1 (b, 1) + αljβ

l
j(b))

(nc1(1) + αlj)

(1 + nz,c2 (b, 1))

(1 + κ+ nz,c2 (b, .))

where nc1(1) is the count for clt = 1 where t 	= i, nz,c1 (u, k) for zlt = u and clt = k,
for all t(	= i) satisfying zl+1

t = zl+1
i , nz,c2 (u, k) for pz(t, l) = u and clt = k, for all

t(	= i) satisfying zl+1
t = zl+1

i . The equations are modified appropriately for the
first and last data points of each group.
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Complexity of Inference: ME vs. BE: Consider the conditional distribu-
tions at any layer l. For ME, for each data point, we need to sample from a k
dimensional multinomial, where k is the current number of unique group values
at layer l. This leads to a complexity of O(nk). In case of BE, the variable cli
determines whether the ith data point continues with the value of p(i, l). When
cli = 1, we need to sample a new value of zli from a k-dimensional multinomial.
Hence, the complexity of each iteration of inference in BE is O(n + bk), where
b is the number of data-points with cli = 1. This can be significantly less than
O(nk), particularly for high values of k. The value of b depends on κ in Eqn. 7.

Discussion: The number of unobserved variables in the model grows linearly
with the number of layers, and dependencies also become more complex, leading
to slower mixing of the Gibbs sampler. Our hypothesis is that the order in which
the variables are sampled in each iteration of Gibbs sampling influences the rate
of convergence. Specifically, updating directly dependent variables immediately
after updating any variable may lead to faster convergence. Note that there are
two kinds of the dependencies in the model. There are ‘vertical dependencies’
between group variables for the same data point across layers, and ‘horizontal
dependencies’ between group variables of data points and their parents within
a layer. Currently, our inference algorithm orders variable updates only based
on vertical dependencies — we sample all the {zli}Ll=1 variables corresponding
to the data point i, before moving to the next data point. Future work would
include investigating other possibilities.

In hierarchical Bayesian non-parametric models, the conditional distributions
of latent variables, given assignments to earlier ones are typically associated with
restaurant analogies. For the LaDP, we may consider a hypothetical restaurant
that has layers consisting of infinite number of tables, each layer possibly corre-
sponding to one course in the menu. Each customer, unlike in a formal dinner,
has to move from one layer to the next after each course. The restaurant has
multiple entrances, corresponding to each input group, and in the first layer,
each customer randomly chooses a table based on table assignments of previous
customers who came in through the same entrance. After completing the ith

course, each customer randomly chooses a table for the next (i + 1)th course
based on tables assigned to previous customers who shared his table in the ith

course. Clearly, the dependencies are more complex for ME and BE.

6 Experiments

In this section, we empirically evaluate our proposed models on two datasets
for the tasks of document modeling and segmentation. We first check if learn-
ing multiple layers of grouping leads to better fit on held-out data, and also if
the resultant simultaneous segmentation at multiple layers is better than single
layer segmentation performed by models such as the sticky HDP-HMM. We also
compare the performance using the proposed notion of BE and that using ME
in terms of generalization ability, segmentation quality and execution time.
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Datasets: Our first dataset is a set of semi-synthetic News transcripts. We
crawled archived pages from 5 news websites (Yahoo! News, The Hindu, The
Times of India, Deccan Herald, The Telegraph) for a 30 day period (April 1-30,
2012), where news articles for each day were arranged in sequence like news
transcripts. We selected stories from 5 categories — politics, national affairs,
international affairs, business and sports, to create one transcript for each day
for each news source. This produced a dataset of 150(30× 5) virtual news tran-
scripts, consisting of 2600 individual news articles, spread over the 5 categories.
From these, 60 transcripts were used for training and the rest for testing. After
eliminating stop-words and rare words, we had a vocabulary of size 7204, with
a total of 0.4 million tokens in the complete dataset. Our second dataset is on
customer-generated laptop Reviews from Amazon.com. Here each document is
a single review, consisting of parts discussing different product facets, like ap-
pearance, weight, screen size, image clarity, connectivity etc. The vocabulary size
was 7147 and there were 1.5 million tokens in the entire dataset. We used 11510
documents for training, and 1000 for testing. In 100 of the test documents, we
annotated the facet segments manually for use as gold standard segmentation
for evaluation.1

Weak Supervision: Our models can accept weak supervision through the
group-specific βlg base distributions at any layer l. In the news dataset we have
gold-standard on the category labels. In the topmost layer L of any LaDP model,
the groups correspond to news documents, each belonging to one of the 5 cat-
egories. For some of the models (as discussed later) the training documents j
were provided supervision by setting βLj to a δ-distribution peaked at the label
of the category. We do not have such unique labels for stories. Separately, we
ran HDP in advance on the entire set of news articles (considering each article
as a document) and manually selected 136 meaningful topics, which we used as
β0
g (for g = 1 . . . 136), which serve as base distributions for the stories. (Eqn. 4).

Evaluated Models: We evaluate models with different number of layers, dif-
ferent exchangeability properties at each layer, and with and without supervision
at specific layers. We choose a naming convention that clearly identifies these
choices. For example, the name MErs -BE-CEs-LaDP indicates that the model
has 2 layers, with ME used at layer 2, BE at layer 1 and CE at layer 0 for words.
The s subscripts indicate that supervision is used at layers 2 and 0. The r su-
perscript indicates that the number of mixture components is restricted at layer
2, instead of an infinite mixture. All of our models use complete exchangeability
at the layer of words, but we still include it in the name of the model, since we
have the option of using supervision at that layer. In our experiments, we use 2
and 1 layer models (i.e. with L = 2 and L = 1). Note that CE-CE-LaDP is the
same as HDP [5], ME-CE-LaDP as sHDP-HMM [6], and CE-CE-CE-LaDP as
MLC-HDP [9].

1 The data is available at
http://clweb.csa.iisc.ernet.in/adway/ladp/data.tar.gz

http://clweb.csa.iisc.ernet.in/adway/ladp/data.tar.gz
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Performance Measures: We aim to evaluate generalization ability and seg-
mentation of the models. To evaluate generalization ability, we measure per-

plexity(PP ) [11] on test data: exp(−
∑

d log p(Wd)∑
dNd

), where Wd are the words, and

Nd the number of words in the dth test document. A lower value of perplex-
ity indicates better performance. For evaluating segmentation, we use the Pk
measure [12], which is the probability that two tokens, k positions apart in the
same document, are reported to be in different segments despite being in same
gold-standard segment, or the other way round. Since different models perform
well for different ranges of k, we report the average over three different values
of k (short, medium and long), which we denote as S2 for layer 2 and S1 for
layer 1. The performance of the proposed models involving ME or BE depends
critically on the parameter κ (Eqns. 4 and 7). We tune these parameters for all
models using a validation set of 5 transcripts to optimize performance.

Experiments on News: For the news dataset, we have gold standard seg-
mentation at the level of categories as well as at the level of stories. We evaluate
five versions of 2-layered LaDP (L = 2), considering layer 2 as categories and
layer 1 as stories. The first four use combinations of BE and ME for layers 2 and
1, with the number of components restricted to 5 at l = 2. We test a version
that uses CE at both layers, (MLC-HDP [9] model restricted at layer 2). For
models with L = 1, we consider l = 1 to correspond to stories, leading to the
models ME-CE-LaDP (sHDP-HMM) and BE-CE-LaDP, which can be evaluated
for story segmentation (S1) and perplexity (PP ). These models do not have a
layer corresponding to categories. Alternatively, we could consider l = 1 to cor-
respond to categories, with no layer for stories, leading to MEr-CE-LaDP and
BEr-CE-LaDP , and evaluate for category segmentation (S2). For S2 we use k
values of 700(long), 200(medium), and 50(short), while for S1 we use 160(long),
50(medium) and 20(short), based on the typical lengths of category and story
segments in the gold-standard. The results are shown in Table 1. We separately
evaluate all these models with weak supervision at layers l = 2 and l = 0 as
discussed. The results are shown in Table 2.

Table 1. Perplexity and Segmentation Er-
ror for News without supervision

Model PP S2 S1

CE-CE 5245 - 0.60
CEr − CE 5969 0.69 -
ME-CE 3751 - 0.59

MEr − CE 7204 0.33 -
BE-CE 3371 - 0.61

BEr − CE 3975 0.69 -
CEr-CE-CE 3656 0.68 0.61
MEr-ME-CE 3326 0.45 0.53
MEr-BE-CE 3856 0.68 0.61
BEr-ME-CE 4475 0.49 0.42
BEr-BE-CE 3713 0.45 0.37

Table 2. Perplexity and Segmentation
Error for News with supervision

Model PP S2 S1

CE-CEs 5309 - 0.60
CEr − CEs 6248 0.69 -
ME-CEs 2763 - 0.59

MEr
s − CEs 7204 0.45 -

BE-CEs 2173 - 0.59
BEr

s − CEs 2830 0.44 -
CEr

s -CE-CEs 3632 0.68 0.61
MEr

s -ME-CEs 2546 0.33 0.42
MEr

s -BE-CEs 2830 0.46 0.49
BEr

s -ME-CEs 3000 0.49 0.42
BEr

s -BE-CEs 3184 0.28 0.44
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From the Tables 1 and 2, we first observe that supervision significantly im-
proves performance of the models in terms of PP , and also often in terms of S2
or S1. Also, low perplexity and high segmentation errors for CEr-CE-CE and
CErs -CE-CEs confirm that capturing the sequential nature of the data is essen-
tial. More importantly, we can see that, in general, joint segmentation at two
layers improves performance over independent segmentation at each layer. Only
MEr-CE in the unsupervised case for category segmentation performs better
than two-layer models. Two-layer models are also better in general in terms of
perplexity. Only BE-CEs in the supervised case achieves better perplexity than
two-layer models. Secondly, comparing BE and ME models, we see that the best
perplexity is achieved by BE-CEs, while BE

r-BE-CE has the best S1 among
unsupervised models. Among supervised models, BErs -BE-CEs has the best S2,
while BErs -ME-CEs (jointly) has the best S1. This improved performance using
BE can be attributed to the fact that its Exchangeability Statistic SB is simpler
than that of ME (SM ), and so it has to learn fewer parameters.

Table 3. Perplexity and Segmentation Er-
ror for Reviews

Model PP S2 S1

CE-CE 703 - 0.49
ME-CE 399 - 0.46
BE-CE 258 - 0.4

CE-CE-CE 1786 0.50 0.50
ME-ME-CE 1549 0.49 0.38
ME-BE-CE 1136 0.41 0.44
BE-ME-CE 1058 0.46 0.43
BE-BE-CE 477 0.43 0.46
ME-CE-CE 742 0.37 0.50
BE-CE-CE 184 0.41 0.50
CE-ME-CE 1913 0.48 0.48
CE-BE-CE 1787 0.49 0.42

Table 4. BE-ME comparison results

Review News

Model IT S1 PP IT S1 PP

ME 53 0.46 399 4 0.59 2763
BE4 5.8 0.43 245 1.0 0.59 2173
BE3 5.2 0.40 258 0.7 0.56 2996
BE2 3.1 0.39 431 0.2 0.32 8650
BE1 0.6 0.48 614 0.1 0.39 13839

Experiments on Reviews: Recall that documents in this dataset only require
a single layer of segmentation. However, it is still meaningful to use 2-layer
models, and then use either the first or the second layer segmentation. The
corresponding measures of segmentation error are S1 and S2. We also evaluate
single-layer models, with S1 being the segmentation error. For both S1 and S2,
we consider k values 4 (short), 8 (medium) and 16 (long), again based on the
typical lengths of segments (by facet) in the gold-standard. Since we did not
have product facet labels for this dataset, we did not provide any supervision.
As before, we used CE at layer 0 (words). Since segmentation is needed at only
one layer in this case, we considered all combinations of ME, BE and CE at
layers 2 and 1, leading to 3 1-layer models, and 9 2-layer models.

The results are shown in Table 3. We note that the baselines models HDP
(CE-CE), sHDP-HMM (ME-CE) and MLC-HDP (CE-CE-CE) are outperformed
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on all measures. More interestingly, though the data has segment information
only at one layer, the best performance in terms of both PP and S1 is obtained
by 2-layer models. Finally, BE performs well in terms of PP . Though BE does
not outperform ME in terms of segmentation accuracy for this experiment, its
usefulness becomes apparent in our next experiment.

Execution Time: Finally, we evaluate the effect of the continuity parameter κ
(Eqn. 7) on the execution time and accuracy of Block Exchangeability. We com-
pare the single-layer models BE-CE-LaDP and ME-CE-LaDP (sHMM-HDP) on
News and Reviews in terms of inference time (per-iteration) (IT ) (measured in
seconds) during training, segmentation error S1 and perplexity PP using differ-
ent values of κ. We consider 4 representative parameter settings for BE, denoted
by BE1, BE2, BE3 and BE4 with κ values of 100000, 5000, 1000, 10 for news
and 4000, 1500, 500, 300 for reviews. The results are shown in Table 4. To begin
with, BE4 matches ME in segmentation and does better on perplexity while
taking significantly less time (53 secs vs 5.8 secs for Reviews, 4 secs vs 1 sec for
News). On decreasing κ, inference time reduces further with gradual degradation
of perplexity, while average segmentation error decreases much below that of ME
(for BE2) and then increases again. This happens because segmentation error
for short k decreases monotonically with increase in block length i.e, decrease in
κ, while that for long k increases monotonically. This demonstrates that using
block exchangeability it is possible to trade off inference time for segmentation
and modeling accuracy, unlike any existing exchangeability notion.

7 Conclusion

In this paper, we have addressed the problem of hierarchical segmentation of a
collection of sequences, and proposed a Bayesian nonparametric model named
the Layered Dirichlet Process, where data points filter down a layered structure
of Dirichlet Processes, and get assigned to a group at every layer, depending
on the exchangeability properties at that layer, leading to a hierarchical seg-
mentation. We propose a new notion of exchangeability, that allows for more
efficient inference compared to Markov exchangeability while enabling segmen-
tation unlike complete exchangeability. We have demonstrated experimentally
that using the proposed models joint segmentation at multiple layers is bet-
ter than independent single-layer segmentation, and we are additionally able
to trade off execution time for modeling and segmentation accuracy unlike any
existing model.

References

1. Ferguson, T.: Bayesian analysis of some nonparametric problems. Annals of Statis-
tics 1(2), 209–230 (1973)

2. Diaconis, P., Freedman, D.: De Finetti’s generalizations of exchangeability. Studies
in Inductive Logic and Probability 2, 233–249 (1980)

3. de Finetti, B.: Theory of probability, vol. 1-2 (1975)



482 A. Mitra, B.N. Ranganath, and I. Bhattacharya

4. Sethuraman, J.: A constructive definition of Dirichlet priors. Stat. Sinica 4, 639–650
(1994)

5. Teh, Y.W., Jordan, M.I., Beal, M.J., Blei, D.: Hierarchical Dirichlet Processes.
Journal of American Statistics Association 101(476) (2006)

6. Fox, E.B., Sudderth, E.B., Jordan, M.I., Willsky, A.S.: An HDP-HMM for Systems
with State Persistence. In: Intl. Conf. on Machine Learning, pp. 312–319 (2008)

7. Rodriguez, A., Dunson, D.B., Gelfand, A.E.: The nested Dirichlet process. Journal
of the American Statistical Association 103(483), 1131–1154 (2008)

8. Blei, D.M., Griffiths, T.L., Jordan, M., Tanenbaum, J.B.: The Nested Chinese
Restaurant Process and Bayesian Nonparametric Inference of Topic Hierarchies.
Journal of the ACM 57(2) (2010)

9. Wulsin, D., Jensen, S., Litt, B.: A Hierarchical Dirichlet Process Model with Mul-
tiple Levels of Clustering for Human EEG Seizure Modeling. In: Intl. Conf. on
Machine Learning (2012)

10. Kim, D., Kim, S., Oh, A.: Dirichlet Process with Mixed Random Measures: A
Nonparametric Topic Model for Labeled Data. In: Intl. Conf. on Machine Learning
(2012)

11. Blei, D.M., Ng, A.Y., Jordan, M.: Latent Dirichlet Allocation. Journal of Machine
Learning Research 3, 993–1022 (2003)

12. Beeferman, D., Berger, A., Lafferty, J.: Statistical models for text segmentation.
Machine Learning 34(1-3) (1999)

13. http://clweb.csa.iisc.ernet.in/adway/ladp/appendix.pdf

http://clweb.csa.iisc.ernet.in/adway/ladp/appendix.pdf


A Bayesian Classifier for Learning

from Tensorial Data

Wei Liu1,2,�, Jeffrey Chan1, James Bailey1,2, Christopher Leckie1,2,
Fang Chen2, and Kotagiri Ramamohanarao1,2

1 Department of Computing and Information Systems, The University of Melbourne
{jeffrey.chan,baileyj,caleckie,kotagiri}@unimelb.edu.au

2 ATP and Victoria Research Laboratory, National ICT Australia
{wei.liu,fang.chen}@nicta.com.au

Abstract. Traditional machine learning methods characterize data ob-
servations by feature vectors, where an entry of a vector denotes a scalar
feature value of a data instance. While this data representation facil-
itates the application of conventional machine learning algorithms, in
many cases it is not the best way of extracting all useful information
from the data observations. In this paper we relax the (often unstated)
assumption of vectorizing features of data instances, and allow a more
natural representation of the data in a tensor format. Tensors are multi-
mode (aka multi-way) arrays, of whom vectors (i.e., one-mode tensors)
and matrices (i.e., two-mode tensors) are special cases. We show that the
tensor representation captures useful information that is difficult to pro-
vide in the conventional vector format. More importantly, to effectively
utilize the rich information contained in tensors, we propose a novel
semi-naive Bayesian tensor classification method (which we call Bat)
that builds predictive models directly on data in tensor form (instead of
on their vectorizations). We apply Bat to supervised learning problems,
and perform comprehensive experiments on classifying text documents
and graphs, which demonstrate (1) the advantage of the tensor rep-
resentation over conventional feature-vectorization approaches, and (2)
the superiority of the proposed Bat tensor classifier over other existing
learners.

1 Introduction

A major challenge in machine learning is finding an appropriate representation
to characterize observed data. Given a set of data observations (instances), tra-
ditional feature extraction methods seek to enumerate a list of features that
are associated with an instance, and thus interpret an instance by a vector of
feature values. This feature formulation strategy is a common, though often un-
stated, presumption of many supervised and unsupervised learning algorithms
that build machine learning models on feature vectors [1].

In this paper, we relax the assumption that features of data observations are
linearized into vectors. Instead, we allow a more natural representation of a data
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instance in the form of a tensor. Tensors are multi-mode (also known as multi-
way) arrays, whose one-mode special cases are vectors and two-mode cases are
matrices.

Motivation: A major motivation for using tensors to represent instances is that
they capture the “interactions” among features in different modes of the tensorial
format, which are normally hard to capture using feature vectors. Although there
is a rich literature in computer vision and other related fields on the study of data
observations that are originally represented by tensors, such as two-mode images
and three-mode videos, the more general scenarios where data observations are
usually represented by vectors (such as text documents by frequent words, and
graphs by frequent subgraphs) have been less well studied. To clearly motivate
the use of using tensor representations, in the following we give examples to
illustrate how we use tensors of features to describe data instances, and their
advantages compared to using vectors of features.

In the following three motivating examples, we first explain that the tensor
formulation can be applied to any conventional data set, and then introduce
some examples on document and graph retrieval problems. In Examples 2 and
3, the tensor representation is capturing new information that is not explicit in
the original representation, whereas in Example 1 it is capturing information
that is explicit in the original representation. The different nature of the three
examples is a reflection on the ability of tensor representations in addressing a
diverse range of domain problems.

Example 1 (Data representation of a data set from an arbitrary domain). For
an arbitrary standard data set, one can first discover a set of closed frequent
patterns from the data’s categorical features (or discretized continuous features)
as shown in Fig. 1(b). Then for each instance one can construct a tensor that
uses the frequent patterns as its dimensions in each mode (shown in Fig. 1(c)). In
this way, an entry in this tensor indicates whether two closed frequent patterns
(if the tensor is of two modes) co-occur in the same instance. This formulation
can also be generalized to construct tensors of n modes, where an entry tells
whether n distinct patterns co-occur in the same instances.

A special case of the formulation in Example 1 is that one can ignore the step
of discovering frequent patterns, but use each unique value of each feature as a
dimension in a mode. However, in this case the number of dimensions in each
mode could be extremely large even for data sets of small sizes (i.e., when the
total number of all features’ unique values is very large), which is impractical for
use in real domains. Hence we make use of the frequent pattern discovery step,
which reduces the number of dimensions in each mode and also keeps the main
variance of the original data.

Example 2 (Data representation in document classification problems). While a
document is conventionally represented by a vector of frequent words (denoted by
“Fw”), a tensor representation can capture more information than a vector. As
shown in Fig. 2, a two-mode tensor contains in its diagonal entries the frequency
of each Fw in the document, while its off-diagonal entries record the numbers of
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(a) An arbitrary standard data instance characterized by a list of four binary 
features (f).

(c) The data instance in (a) characterized by a two-mode tensor  of five 
frequent patterns.

f1 f2 f3 f4
1 1 0 1

Fp1 = {f1=1,f3=0,f4=1},   Fp2 = {f1=0,f2=0},   Fp3 = {f2=1,f3=0}
Fp4 = {f2=1,f4=1},   Fp5 = {f3=1,f4=0}

(b) Five frequent patterns (Fp) discovered from the overall training data.

Fp1 Fp2 Fp3 Fp4 Fp5
Fp1
Fp2
Fp3
Fp4
Fp5

1 1 1

1 1 1
1 1 1

Fig. 1. Vector and (two-mode) tensor representations of a data instance from an arbi-
trary domain. We assume binary feature values in this example.

“pairs” of features that co-occur in the same paragraph. For example, Fw1 and
Fw2 co-occur twice (in paragraph 1 and 3) so the entries at locations (Fw1, Fw2)
and (Fw2, Fw1) are 2. In the document representation, we use paragraphs to
capture the relations among words, since paragraphs are natural segmentations
of the original documents. We note that both local and global weighting methods,
including tf-idf (term frequency-inverse document frequency), can be applied to
the entries of tensors in the same manner to entries of Fw vectors. We also
note that it is straightforward to generalize the representation of the two-mode
tensor to a n-mode tensor that describes co-occurrences of n frequent words in
paragraphs.

Example 3 (Data representation in graph classification problems). Given a graph
database, it is common for a data miner to first discover closed frequent sub-
graphs, and then use these to describe each graph instance [2, 3]. The example
shown in Fig. 3 is a graph that contains six closed frequent subgraphs (denoted
by “Sg”). Based on the graph’s layout (Fig. 3(a)), conventional graph-based ma-
chine learning methods (e.g., [2–6]) construct a graph instance by defining the
six subgraphs as features and the frequency of each subgraph found in the orig-
inal graph as feature values (Fig. 3(b)). While this feature vector can provide
information on the components of a graph, it does not capture relations among
the components that could potentially be very useful for machine learning tasks.
In this regard, we use the representation of tensors to capture both the occur-
rences of subgraphs and their hidden internal relations. As shown in Fig. 3(c),
for the same graph instance, we can use a two-mode tensor to first capture in
its diagonal entries all information stored in the instance’s feature vector, and
then record in the tensor’s off-diagonal entries the relations/interactions among
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(Paragraph 1) , Fw1, , Fw2, , Fw3, .

(Paragraph 2) ,Fw4, , Fw1, , Fw5, , 
Fw6, .

(Paragraph 3) , Fw2, , Fw6, , Fw1, .

(a) The original layout of a text document, showing only frequent words (Fw).

Fw1 Fw2 Fw3 Fw4 Fw5 Fw6
3 2 1 1 1 2

Fw1 Fw2 Fw3 Fw4 Fw5 Fw6
Fw1
Fw2
Fw3
Fw4
Fw5
Fw6

3 2 1 1 1 1
2 2 1 1
1 1 1
1 1 1 1
1 1 1 1
1 1 1 1 2

(b) The text document in (a) characterized by a vector of frequent words.

(c) The text document In (a) characterized by a two-mode tensor (a matrix).

Fig. 2. Vector and (two-mode) tensor representations of a text document

different features. Note that to enclose more information from the original graph,
we give an asymmetric design to the tensor: the upper-diagonal entries indicate
how many “column-wise features” are connected to “row-wise features” and the
lower-diagonal entries tell how the number of “row-wise features” that are con-
nected to “column-wise features”. For example, there are two “Sg2” connected
to one “Sg1”, so the upper-diagonal entry in location (Sg1,Sg2) is 2, and the
lower-diagonal entry in location (Sg2,Sg1) is 1. Besides the two-mode tensor
representation shown in Fig. 3(c), we note that by using the same formulation
one can have a generalized n-mode tensor to describe a graph instance (e.g., a
three-mode tensor can capture the triad connection among Sg1, Sg2, and Sg3 in
Fig. 3(a)).

Having obtained the tensor representation of data observations, a challenge
one faces is how to build machine learning models that can discover knowledge
from data in the tensor format, so that one can fully utilize the rich information
contained in tensors. This is a non-trivial challenge since most standard learning
algorithms assume data instances are feature vectors, and it is not straightfor-
ward to apply these algorithms on tensorial data. A simple solution is to linearize
the tensors into new vectors, and use the new vectors in a conventional learn-
ing algorithm. However, such tensor linearizations will break the relations among



A Bayesian Classifier for Learning from Tensorial Data 487

Sg1 Sg2 Sg3 Sg4 Sg5 Sg6
1 2 2 1 1 1

Sg1 Sg2 Sg3 Sg4 Sg5 Sg6
Sg1
Sg2
Sg3
Sg4
Sg5
Sg6

1 2 1
1 2 1 1
1 1 2 1

1 1 1
2 1 1 1

1 1

(a) The original structure of a graph instance, represented by closed 
frequent subgraphs (Sg).

(b) The graph instance in (a) characterized by a vector of subgraphs.

(c) The graph instance in (a) characterized by a two-mode tensor (a matrix).

Sg1

Sg2

Sg3

Sg2

Sg4

Sg5

Sg6

Sg3

Fig. 3. Vector and (two-mode) tensor representations of a graph instance

features in different modes, which is equivalent to assuming independence among
entries of tensors1.

To tackle this tensor learning challenge, in this paper we proposed a generative
semi-naive Bayesian classifier, which can be trained directly on data in tensor
formats with respect to relations among features in different modes. The semi-
naive property of our method enables the learning of inter-mode relations in an
effective manner. We analyse why the assumption made in simple naive Bayes
classifiers is not ideal for learning tensorial representations, and also why other
existing semi-naive Bayesian classifiers are not suitable for capturing the pre-
cise information represented in tensors. These shortcomings of existing Bayesian
classifiers motivate us to design a novel type of learning algorithm that can make
the best use of tensorial representations.

In brief, the contributions we make in this research are as follows:

1. We propose to characterize data instances by using tensors of features, which
contain much richer information than using feature vectors.

1 This is because the ordering of entries in the linearization is not used by a classifier,
but the ordering of entries in the original tensor can potentially play an important
role in disclosing the relations among features in different modes.
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2. We introduce a semi-naive Bayesian tensor (Bat) learning method, which
builds classifiers by making use of the relations among features in different
modes of a tensor. The Bat method can be applied directly to data in tensor
format without tensor vectorization.

3. We apply the tensor representations and the Bat method to graph and docu-
ment classification problems, and comprehensively evaluate our method with
comparison to existing naive and semi-naive Bayesian methods.

The rest of the paper is organized as follows. We review related work in
Section 2. Section 3 introduces our Bat method and discusses the differences
between Bat and other existing Bayesian learners. Experimental results are pre-
sented in Section 4. We conclude in Section 5.

2 Related Work

Existing methods on tensor analysis mostly focus on decomposing tensors into
factor matrices [7–9], whereas the problem of how to build classifiers directly on
tensor data has not been well studied.

Tao et al. [10] proposed supervised tensor learning (STL) as a generalization
of support vector machines, where the authors learn weight vectors separately
from each mode of a data tensor. However, there is no theoretical guarantee
that the weight vector learned on separate modes will provide global optima of
training bias minimization. In the recent Bayesian learning literature, averaged
one-dependence estimators (AODE) [11] have been introduced as a special form
of the one dependence estimator (ODE), which relaxes the naive Bayes’ indepen-
dence assumption by making each feature a parent of other features. This method
is improved by weightily averaged one-dependence estimators (WAODE) [12],
which give different levels of importance to parent features by examining the
mutual information between those features and the class variable. Since making
each feature a parent of other features incurs very high computational costs, sub-
sumption resolution of AODE (AODEsr) has been proposed to speed up AODE’s
learning process by eliminating features that are generalizations or specializa-
tions of another feature. Another way of building dependencies among features
is to look at the hidden relationship between pairs of features, which gives the
proposal of hidden naive Bayes (HNB) [13]. Bayesian networks are also popular
ways to discover the dependencies among features, among which K2 [14] and
TAN [15] have been two of the most popular methods.

3 Bayesian Tensor Classification

The strong feature-independence assumption used in NB ignores possible corre-
lations among features. Hence when the data has multiple modes, the potentially
useful interactions among features will not be taken into the classification rule of
NB, which could degrade the classification performance. To address this problem,
in the following we introduce a method that is specifically designed to tackle data



A Bayesian Classifier for Learning from Tensorial Data 489

with multiple modes. Our proposed method belongs to the taxonomy of semi-
naive Bayesian learning models [16], since it enhances the conditional probability
estimation of naive Bayes by relaxing its attribute independence assumption.

In contrast to using a vector of features (e.g., x) to represent a data obser-
vation, we describe an instance by using a n-mode tensor of features, denoted
as X ∈ Rm×m...×m. Vectors (Rm) and matrices (Rm×m) are specifications of
(1-mode and 2-mode) tensors. Without loss of generality, we present our learn-
ing method by using tensors of two modes (i.e., X ∈ Rm×m). Then each entry
of X can be viewed as a new feature value (denoted by Xi,j which represents
the relations between features i and j), and the tensor X represents a set of m2

features. To relax the assumption of conditional independence made in NB, we
assign a “parent” feature to other features that share the same dimension with
the parent feature. The scenario when entries share the “same dimension” of a
tensor is analogical to when entries are in the “same row” or “same column” of
a matrix. All entries are in the same dimension in a one-mode tensor (a vector).

The notion of the “parent” feature is the same as the concept of a parent
node/vertex used in graphical models such as Bayesian networks, where features
that are not connected represent variables that are conditionally independent of
each other. In other words, the features that are independent in NB conditioned
on the class variable will only be independent in our model given both the class
and the parent. Therefore, instead of computing P (y,x) by P (y)P (x|y) as in
NB, we estimate P (y,x) by

PXp1,p2
(y,x) = P (y,Xp1,p2)P (x|y,Xp1,p2) = P (y,Xp1,p2)

m∏
i,j=1

P (Xi,j |y,Xp1,p2) (1)

where the first step assigns a parent feature Xp1,p2 ∈ X , while the second step
utilizes conditional feature-independence (given the class and the parent fea-
ture), where p1 and p2 are respectively the row and column indices. For ease of
interpretation, in Eq. 1 we use

∏m
i,j=1 to represent the operation

∏m
i=1

∏m
j=1.

Since we assume the relation among features exists only if they share the same
dimension in the tensor, for a given parent feature Xp1,p2 , the actual conditional
probabilities we use are:

PXp1,p2
(y,x)

= P (y,Xp1,p2)
m∏
i=1

P (Xi,p2 |y,Xp1,p2)
m∏

j=1

P (Xp1,j |y,Xp1,p2)P (y)
∏

i=p1,j =p2

P (Xi,j |y)

(2)

where the first two products ensure Xp1,p2 is a parent feature of Xi,p2 and Xp1,j
only when they are from the same row or column of a two-mode tensor. And
the last product means when they are not from the same row or column, we
use standard NB (the naive feature-independence assumption) to compute the
posterior probabilities.

To make an unbiased selection of parent features, we make each element in
tensor X a parent at a time, and use the average of the probabilities conditioned
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on each parent as the final classification rule. It is reported in [12] that the per-
formance of semi-naive Bayesian models can be improved by taking into account
the mutual information between the parent feature and the class variable. By
using the definition from information theory, the mutual information Ii,j (i.e.,
assume a two-mode tensor) between a feature Xi,j and the class variable y is

Ii,j =
∑
Xi,j

P (Xi,j , y) log
P (Xi,j, y)

P (Xi,j)P (y)
(3)

where the summation is on all unique values in feature Xi,j . After applying this
mutual information, the label of an instance X is determined by our Bat method
using:

label = argmax
y

P (y|x) ∝ argmax
y

∑m
p1,p2=1 Ip1,p2PXp1,p2

(y,x)∑m
p1,p2=1 Ip1,p2

(4)

where PXp1,p2
(y,x) is defined in Eq. 2. Eq. 4 is the final classification rule of our

Bayesian tensor classifier Bat.
For tensorial training data with two modes, the time complexity of estimating

Eq. 4 is O(2mt), where t is the number of training instances, and its space
complexity is O(k(mv)2), where k is the number of classes and v is the average
number of values in each feature.

3.1 Advantages of Bat

Similar to NB, Bat only needs to update the conditional probabilities when a
new training instance becomes available, hence one advantage of Bat is that it
is capable of incremental learning.

AODE [11] is a special case of Bat when each training instance is of one mode
(i.e., a feature vector). However, when training instances are of more than one
mode, AODE does not provide a way to handle the data. If we linearize the data
tensor into a vector (like what we do to make tensor data learnable to other
classifiers), AODE will have to enumerate each entry in the vector (linearized
tensor) to be a parent of other entries that are in the same dimension of a tensor.
This will lead to a training time complexity of O(tm2). However in Bat, tensor
linearization is not needed, and an entry will be a parent of another entry if
only they share the same row index or column index. Therefore, besides the
specific focus on inter-relations of features, another advantage of Bat is that its
training time complexity (i.e., O(2mt)) is an order of magnitude lower than that
of AODE (i.e., O(tm2)).

Fig. 4. An illustrative example
to explain the differences among
NB, AODE, and Bat (see Exam-
ple 4 at Sec 3.1).
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Example 4 (Differences among NB, AODE, and Bat). Suppose we have a data
set associated with a class variable y and a 3 × 3 two-mode tensor (9 fea-
tures). As shown in Fig. 4, the 9 features are indexed as X1,1, X1,2, ..., X3,3.
Then taking feature X2,2 as an example, NB estimates the joint likelihood (from
the Bayesian rule) of this feature and class variable simply by P (y)P (X2,2|y),
which means X2,2 is (conditionally) independent of other features. AODE es-

timates this joint likelihood by
∏3
i,j=1 P (y,Xi,j)P (X2,2|y,Xi,j), which means

AODE has to enumerate other features to be parent features of X2,2. This
is a reflection of the fact that AODE cannot distinguish data of vector fea-
tures from tensor features. In contrast, Bat estimates the joint likelihood by
P (y,X1,2)P (X2,2|y,X1,2)P (y,X2,1)P (X2,2|y,X2,1)P (y,X2,3)P (X2,2|y,X2,3)
P (y,X3,2)P (X2,2|y,X3,2), which means Bat only uses the features that are at the
same column or row of the target feature (i.e., X2,2) to be parent features (i.e.,
X1,2, X2,1, X2,3, and X3,2). This design of Bat gives it the advantage of learning
the specific structures of tensors.

Bat has a lower risk of overfitting the training data compared to AODE, since
Bat still assumes conditional independence between features that are not in the
same rows or columns (just like NB in this case), while AODE would have to
assume none of the features are conditionally independent from each other given
only the class variable.

The AODEsr method [17] is also closely related to Bat. However, different
to our method, it infers the interdependence relationship by inspecting gener-
alization/specialization or duplications among features. For example, given two
features Gender and Pregnant, the feature value “Gender=female” is a general-
ization of “Pregnant=yes”. Such types of so-called subsumption resolutions are
used by AODEsr to discover highly correlated features.

Relation to Bayesian Networks: Bat can be viewed as a special case of
Bayesian networks, where the network structure is pre-defined in order to learn
the underlying knowledge hidden behind the correlation among features. Such
a pre-defined structure specialised by Bat captures the dependence among vari-
ables in a common dimension of a tensor, which is generally not captured by
a vectorized format. It is possible that Bayesian networks can also learn some
network structures to approximate the feature dependencies, but this would in-
volve manual tuning on the selection of structure search algorithms. The final
structure of a Bayesian network could also be too complicated to capture all
useful tensorial information, which makes it infeasible in practice.

While classification error is commonly used to estimate the performance of
classifiers, two other factors, namely bias and variance, can be decomposed from
classification results that contribute to the error. The bias of a classifier is the
difference between the expected value (i.e., the central tendency) of the class
variable returned by the classifier and the true values of the labels. The variance
of a classifier is the portion of the total error that is due to deviations from the
expected value (i.e., the central tendency) of the classifier [18]. An ideal classifier
is the one that has both low bias and low variance.
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Why Is Bat Conjectured to Outperform Other Methods? One reason
that Bat is conjectured to outperform alternative methods is that Bat makes
weaker conditional independence assumptions than NB, hence the bias of Bat is
expected to be lower2 than that of NB. Since Bat considers dependencies among
features from different modes, the bias of AODE is conjectured to be higher than
that of Bat. Furthermore, because AODE assumes parent-child relationships
among all features, its variance is conjectured to be higher than that of Bat.
These comparisons of bias, variance, and errors are what we use to evaluate Bat
against other classifiers in the experiment section.

Another reason that puts Bat at an advantage in learning tensorial data is that
Bat uses a representation that we believe is more likely to capture dependencies
between features and allows this dependency information to be used explicitly
as part of the training process. Bayesian networks also could potentially learn
this feature dependence, but it would require complicated structure search which
could be infeasible in practice.

3.2 Limitations of Bat

Bat can only be trained on tensorial data with a given number of modes. The
number of modes needed in a tensor to best describe the original data can be
domain specific, so the proposed Bat is not designed with a mechanism that can
automatically find the best number of modes. Another limitation is that Bat can
only learn from categorical features values. However we note that this is also the
case for all NB type classifiers, and is not a problem specific to Bat. Numerical
feature values can be applied to Bat after they are discretized.

4 Evaluation

The objectives of our experiments are to evaluate (1) the effectiveness of the
tensor formulations compared to traditional feature vectors, and (2) the classi-
fication performance of Bat compared to naive and other semi-naive Bayesian
learners. We implement Bat in Weka [19], and evaluate our method with compar-
isons to NB, AODE [11], AODEsr [17], HNB [13], K2 [14], TAN [15], STL [10],
logistic regression, SVMs with RBF/Sigmoid/Soft margin kernels, and decision
trees. All the methods in our comparison are from Weka (version 3.6.7) and we
use their default parameter settings (e.g., 10 single trees for a random forest,
γ = 0.01 for SVM with RBF kernels etc. ). The results are obtained from 5-
fold cross validation with 10 repeated runs. We use the same bias and variance
estimation method as was used in [18].

4.1 Data Sets

We use two types of data sets in our experiments: graphs and text documents.
Instances in all of the data sets are transformed into tensors of two modes. We
2 However, because the classification rule of Bat is derived from higher dimensions
than that of NB, its variance might be larger than NB.
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Table 1. Statistics of graph (chemical compound) data sets. “#Inst” represents the
number of instances in each data set.

Name #Inst #Classes Sources
AID1481 217968 2 ATPase Inhibition
AID83 27784 2 Breast Cancer
AID81 40700 2 Colon Cancer
AID1446 217968 2 Janus Kinase
AID123 40152 2 Leukemia
AID1 40460 2 Lung Cancer
AID1531 289475 2 Mek Inhibitors
AID33 40209 2 Melanoma
AID47 40447 2 Nerve Cancer
AID109 40691 2 Ovarian Cancer
PTC-M 336 5 Mice Toxic
PTC-R 349 5 Rats Toxic

Table 2. Statistics of document data sets. “#Fw” represents the number of frequent
words extracted from each data set.

Name #Fw #Classes Sources
oh0 3183 10 OHSUMED collection
oh5 3013 10 OHSUMED collection
oh10 3239 10 OHSUMED collection
oh15 3101 10 OHSUMED collection
re0 2887 13 Reuters-21578
re1 3759 25 Reuters-21578
tr11 6430 9 TREC
tr12 5805 8 TREC
tr23 5833 6 TREC

note that the ways to model the relationship between subgraphs or between
words are the same as the ones we demonstrated in Examples 2 and 3.

We use chemical compounds as graphs where atoms in compounds are treated
as nodes of graphs, and bonds that connect atoms are treated as edges of graphs.
The labels of the chemical compounds are obtained from two sources: (1) Bioas-
says of anti-cancer activity and kinase inhibition (AID)3: the task is to predict
whether a compound is positive or negative in anti-cancer activities or in kinase
inhibition activities. The original data sets contain a large number of compounds
(shown in Table 1). We randomly sample 1000 compounds from each data set for
evaluation. (2) Toxicology prediction (PTC)4: the task is to predict the carcino-
genicity of compounds on mice and rats. Each chemical compound is associated
with a carcinogenicity class from {CE, SE, P, E, EE, IS, NE, N}. Following the
settings of [2], we use {CE, SE, P} as positive classes, {NE, N} as negative ones,
and discard other neutral classes.

The text document data sets are obtained from various sources, including the
OHSUMED collection [20], the Reuters-21578 text collection5, and the TREC

3 http://pubchem.ncbi.nlm.nih.gov
4 http://www.predictive-toxicology.org/ptc/
5 http://www.daviddlewis.com/resources/testcollections/reuters21578/
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Table 3. Performance of each classifier on data sets in vector and tensor formats

Data sets
Average of AUC-PR on all class labels

NB AODE AODEsr HNB WAODE K2
VectorTensor∗VectorTensor∗VectorTensor∗VectorTensor∗VectorTensor∗VectorTensor∗

ATPase .9347 .9708 .9572 .9696 .9383 .9758 .9614 .9789 .8998 .9758 .9533 .9752
Breast .9292 .9480 .8599 .9554 .9061 .9622 .9304 .9715 .9304 .9715 .8956 .9597
Colon .8525 .8964 .8853 .9007 .9003 .9236 .9081 .9168 .9182 .9266 .8315 .9081
Jak2 .8981 .9296 .9278 .9309 .9171 .9446 .8875 .9440 .9212 .9465 .9066 .9390
Leuk. .8694 .9608 .9134 .9677 .9196 .9801 .9316 .9776 .9681 .9832 .8939 .9695
Lung .8459 .9317 .8540 .9366 .9339 .9594 .8874 .9538 .9324 .9594 .8768 .9403
Mek .9674 .9725 .9063 .9713 .8941 .9744 .9080 .9763 .9333 .9763 .9731 .9738
Mela. .8679 .9370 .9222 .9401 .8639 .9580 .8974 .9586 .9081 .9586 .8876 .9444
Nerve .8602 .8840 .8543 .8870 .8423 .9086 .8964 .8994 .8665 .9080 .8628 .8975
Ovar. .8924 .9318 .8931 .9362 .9225 .9554 .9371 .9436 .8752 .9591 .8600 .9467
Mice .8897 .9413 .8545 .9475 .9102 .9666 .9262 .9567 .9189 .9691 .9566 .9567
Rats .8499 .9383 .9255 .9402 .9465 .9568 .9037 .9544 .8677 .9581 .9038 .9476
oh0 .3860 .4028 .6213 .6795 .7158 .7871 .6727 .7198 .7150 .7637 .1246 .1301
oh5 .3182 .3529 .5534 .5915 .6642 .7282 .6223 .6487 .6230 .6890 .1242 .1302
oh10 .4106 .4233 .6507 .6762 .6734 .7333 .6596 .7186 .7101 .7276 .1248 .1352
oh15 .3402 .3658 .6054 .6172 .6891 .7076 .6079 .6550 .6480 .6950 .1235 .1276
re0 .4763 .5103 .6447 .6735 .6616 .7035 .6092 .6745 .6815 .7018 .2071 .2247
re1 .3785 .4001 .5414 .5688 .6392 .6406 .5726 .6047 .5911 .6337 .1616 .1696
tr11 .3404 .3659 .7350 .7440 .7505 .7838 .7069 .7307 .7293 .7838 .1697 .1703
tr12 .3280 .3514 .5743 .6102 .7211 .7444 .6433 .6502 .6759 .6805 .0832 .0847
tr23 .3105 .3162 .6252 .6397 .6848 .6961 .6374 .6789 .6783 .6961 .2411 .2598
Win 16 19 17 19 18 20
Tie 5 2 4 2 3 1
Loss 0 0 0 0 0 0

t-test 2×10−6 5×10−6 2×10−7 3×10−8 1×10−7 1×10−4

∗: The “tensor” data are linearized, since existing classifiers can only handle feature vectors.

Table 4. Bias of each classifier. “F. test” represents the Friedman significance test,
which compares classifiers by their rankings.

Data sets
Bias of each learner’s classification performance

Bat NB AODE AODEsr HNB WAODE K2 TAN STL
Win 124 27 40 104 95 112 25 35 37
Tie 40 13 18 50 39 43 39 35 37
Loss 4 128 110 14 34 13 104 98 94

F. test Base4×10−64×10−6 0.016 2×10−4 2×10−4 3×10−54×10−64×10−6

repository6. We use the frequent words that are originally extracted by Han
et al. [21] to construct tensors. Details of the document data sets are listed in
Table 2.

4.2 Effectiveness of Tensor Formulation

We first test the effectiveness of using tensors to represent data instances, with
comparisons to the traditional way of using feature vectors. To inspect the in-
fluence of tensors, we compare the classification accuracy of different represen-
tations using the same classifier on the same data set. Since most of the existing
classifiers can only handle data instances by using feature vectors, the data in
tensor formats are linearized into one mode before building classifiers on them.

6 http://trec.nist.gov
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Table 5. Variance of each classifier

Data sets
Variance of each learner’s classification performance

Bat NB AODEAODEsrHNBWAODE K2 TAN STL
Win 83 61 80 108 71 112 43 10 29
Tie 42 30 46 33 39 35 43 12 38
Loss 43 77 42 27 58 21 82 146 101

F. test Base 0.002 1 0.016 0.827 0.049 0.0165×10−52×10−4

Table 6. Average AUC-PR of each classifier

Data sets
AUC-PR of each learner’s classification performance

Bat NB AODE AODEsr HNB WAODE K2 TAN STL
Win 148 27 49 125 101 129 39 38 46
Tie 9 8 10 20 13 14 11 11 12
Loss 11 133 109 23 54 25 118 119 110

F. test Base4×10−64×10−6 0.016 2×10−4 0.016 4×10−64×10−62.1×10−4

Table 7. Comparisons between Bat and other classifiers that are either not Bayesian
based or not generative learners. “LogReg” is short for logistic regression.

Data sets
AUC-PR of each learner’s classification performance
Bat LogReg RBF Sigmoid Soft C4.5 Forest

Win 124 53 5 30 68 24 85
Tie 1 25 6 19 23 12 16
Loss 1 48 115 77 35 90 25

F. test Base 8×10−41×10−85×10−56×10−41×10−6 0.016

As some of the data sets (i.e., the document data) have multiple labels, we use
average precision (AvgPrec) as the evaluation metric for a class variable. Avg-
Prec evaluates the ranking performance of queried objects, which is also geomet-
rically referred to as the area under the precision-recall curve (AUC-PR) [22].
Since AvgPrec only evaluates the performance of rankings of one class label, we
use the mean of the AvgPrec of all class labels to examine the performance of
a classifier, which is equivalent to the mean of AUC-PR of all class labels. For
clarity, in the remainder of the paper we use AUC-PR to denote the mean of the
AvgPrec of all class labels in the classification tasks.

The classifiers’ performance on data in vector formats and tensor formats are
shown in Table 3. For each classifier, we compare the list of AUC-PR values
on all data sets between their feature vector representations and their tensor
representations. Demšar et al. [23] have reported that t -tests are appropriate
to compare pairs of classifiers. Hence we perform t -tests between vector and
tensor data formats on each classifier, under the null hypothesis that the AUC-
PR on vector and tensor formats are not significantly different. As shown in
the bottom of Table 3, the p-values are all extremely small for each classifier.
This suggests that the rich information contained in the tensorial format has
significantly improved the performance of all classifiers.
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4.3 Effectiveness of Bat Tensor Learning

In the evaluation of our Bat method, besides AUC-PR values of each classifier
we also look at the biases and variances7 that contribute to the errors of clas-
sification on each data set. Comparisons between Bat and other classifiers, in
terms of bias, variance and accuracy, are respectively shown in Tables 4, 5 and
6. Classifiers that have to take data instances by their feature vectors are trained
on linearized tensors. Due to page limits, we only present statistics concluded
from the comparisons in Tables 4 to 7.

In contrast to previous subsections where pairs of classifiers (i.e., trained on
data of vector and tensor formats respectively) are compared, in this experi-
ment we compare multiple classifiers all together with multiple data sets. In
such multiple classifier comparisons, Demšar et al. [23] have reported that the
most appropriate measure is to perform Friedman tests on the rankings of the
classifiers. So we rank the classifiers on each data set by their bias, variance
and AUC-PR values, and conduct Friedman tests under the null hypothesis that
their rankings are not significantly different. p-values from these tests that are
lower than 0.05 reject the null hypothesis with 95% confidence. In addition, we
also perform t -tests in each data set separately to summarize the number of
wins, ties, and losses of each classifier, under the 95% significance level.

As we can observe from Tables 4 and 5, the bias of Bat is almost always the
lowest among all classifiers, while its variance is slightly higher than those of
AODEsr and WAODE. This phenomenon confirms our preceding analysis that
Bat reduces the bias by taking into account the interactions among features of
different dimensions. It also shows that the introduction of feature interactions
increases the dimensionality of the learner, which usually comes at the cost of
increased variance. However as shown in the bottom of Table 5, the increased
variance of Bat is not significantly different to that of AODE and HNB. Note
that in these tables, the comparisons are performed for multiple classifiers on
21 datasets. So when we have 8 alternative classifiers in the evaluation, each
classifier will need to be compared 21 × 8 times (and hence the total count of
win/tie/loss is 21 × 8). In other words, the win/tie/loss states how often the
classifier in that column scores better/neutral/worse than classifiers in any other
columns.

The figures in Table 6 show that the overall errors of Bat, which are affected
by both its bias and variance, are significantly better than all other methods
in the comparison. We can also see that NB generates the worst results, which
indicates that the naive conditional independence assumption made in NB is
detrimental to the learning process when the data contains richer information
in tensor formats than vector formats. It is also noticeable that AODEsr and
HNB both perform better than AODE, K2 and TAN, which suggests that the
“feature elimination” strategy used in AODEsr and the “hidden variable” used
in HNB are more beneficial to tensorial data than using averaged dependence
estimators or using Bayesian networks. However, the constraint that AODEsr

7 We use the same bias and variance estimation method as in [18].
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and HNB require feature vectors as learning inputs ignores the relations among
different modes of features, and hence limits their performance in tensorial data.

In addition, to validate the advantages of Bat in learning from tensorial data,
we also conduct comparisons with other classifiers that are not dependent on
the Bayesian setting, or are not generative classifiers. These comparisons include
logistic regression, SVMs with the radial basis function kernel (RBF), Sigmoid
kernel, as well as the linear soft margin kernel. We also include decision tree
based methods, such as C4.5 [24] and random forests. It is important to note
that, like other existing classifiers, these non-generative or non-Bayesian models
can only handle vector features (instead of tensors) and hence the experiments
on these models are done on linearized tensors. The comparison results are shown
in Fig. 7. It is easy to see that Bat is able to statistically outperform all of the
other methods in the comparisons.

5 Conclusion and Future Work

In this research we propose to formulate data observations by using tensorial
formats, which capture more information than traditional feature vector rep-
resentations. To effectively learn from the tensorial data, we designed a novel
semi-naive Bayesian tensor learner Bat, which builds classifiers directly on data
of tensors without linearizing them into vectors. Bat uses feature dependence by
learning the interactions of features among different modes of the training data.
This gives it the advantage that it can fully utilize the rich information contained
in tensorial data, which leads to much higher classification accuracy compared to
existing Bayesian methods. We evaluate Bat using data of text documents and
chemical compound graphs, whose classification results confirm the advantage
of using tensor formats to represent observations and the superiority of Bat in
learning tensorial data.

In the future, we plan to apply Bat to other domains such as image classi-
fication and video semantic analysis. It is also interesting to examine the per-
formance of Bat when data are represented by tensors in three or even higher
modes.
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Abstract. With recent developments in machine learning technology,
the resulting predictions can now have a significant impact on the lives
and activities of individuals. In some cases, predictions made by
machine learning can result unexpectedly in unfair treatments to in-
dividuals. For example, if the results are highly dependent on personal
attributes, such as gender or ethnicity, hiring decisions might be deemed
discriminatory. This paper investigates the neutralization of a probabilis-
tic model with respect to another probabilistic model, referred to as a
viewpoint. We present a novel definition of neutrality for probabilistic
models, η-neutrality, and introduce a systematic method that uses the
maximum likelihood estimation to enforce the neutrality of a prediction
model. Our method can be applied to various machine learning algo-
rithms, as demonstrated by η-neutral logistic regression and η-neutral
linear regression.

Keywords: neutrality, fairness, discrimination, logistic regression,
linear regression, classification, regression, social responsibility.

1 Introduction

With recent developments in machine learning technology, the resulting predic-
tions can now have a significant impact on the lives and activities of individuals.
In some cases, there are safeguards in place so that the predictions do not cause
unfair treatment, discrimination, or biased views of individuals [1]. The following
two examples describe situations in which predictions made by machine learning
can cause unfair treatments.

Example 1 (hiring decision). A company collects personal information from
employees and job applicants; this information includes age, gender, race or
ethnicity, place of residence, and work experience. The company uses machine
learning to predict the work performance of the applicants, using information
collected from employees. The hiring decision is then based on this prediction.

Example 2 (personalized advertisement and recommendation). A com-
pany that provides web services records user behavior, including usage history
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Table 1. Summary of learning algorithms with neutrality guarantee

method neutrality domain domain model of
guarantee of target of viewpoint viewpoint

elimination
of viewpoint variable no guarantee any any ×

CV2NB [2] CV Score multiple multiple ×
PR [8] mutual information any multiple ×

Lipschitz property [4] statistical parity multiple multiple ×
η-neutral

logistic regression (proposal) η-neutrality multiple multiple
√

η-neutral

linear regression (proposal) η-neutrality continuous continuous
√

and search logs, and uses machine learning to predict user attributes and prefer-
ences. The advertisements or recommendations displayed on web pages are thus
personalized so that they match the predicted user attributes and preferences.

In the hiring-decision example, if the results are highly dependent on per-
sonal attributes, such as gender or ethnicity, hiring decisions might be deemed
discriminatory. In the second example, when recommendations are accurately
pinpointed to sensitive issues, such as political or religious affiliation, the result
may be increasingly biased views. This is known as the problem of the filter
bubble [10]. For example, suppose supporters of the Democratic Party wish to
read news articles related to politics. If the recommended articles are all related
to their party and are absent of criticism, they may develop a biased view of the
political situation. In the web-service example, showing advertisements that suit
the user’s attributes, such as gender or age, would improve the service for some
users. Other users, however, may object to advertisements that are apparently
based on their race, ethnicity, or gender. Thus, it is difficult to clearly distinguish
personalization from discrimination.

We now introduce some terms that will be useful in the following discussion.
The input and output of a prediction model are referred to as input variables
(e.g., race, ethnicity, or web-usage history) and target variables (hiring decisions
or website recommendations). Factors that might result in discrimination or bias
are referred to as viewpoint variables (e.g., race, ethnicity, or political affiliation).

The objective of machine learning is to learn prediction functions that predict
target variables from given examples. In the example above, if the viewpoint
variables (e.g., race or ethnicity) are dependent on the predicted target variables
(e.g., hiring decisions), the prediction function cause unfair treatment. In this
paper, we introduce a systematic way to remove this dependency from prediction
models and neutralize them with respect to a given viewpoint.

1.1 Related Works

Several techniques that take account of fairness or discrimination have recently
received attention [4][6][12]. One of the easiest ways to suppress unfair treatment
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is to remove the values of the viewpoint from the input values before the learning
process with the prediction model. If there is no correlation between the input
and viewpoint variables, no discrimination or bias will appear after elimination.
However, if another input variable is dependent on the viewpoint variable, then
even after the viewpoint values are eliminated, the target variable will retain
dependency on the viewpoint variable (Table 1, line 1). For example, assume
that the race or ethnicity attribute is eliminated in Example 1. Even so, hiring
decisions may be dependent on race or ethnicity if there is a correlation between
individuals’ addresses and their race or ethnicity; this is known as the redlining
effect [2][11].

Calders et al. presented the Calders–Verwer 2 Naive Bayes method (CV2NB),
which proactively removes the redlining effect [2]. Let y ∈ {y+, y−} be the binary
target variable, and let v ∈ {v+, v−} be the binary viewpoint variable. Then, the
Calders–Verwer (CV) score is defined by CV(D) = p(y+|v+) − p(y+|v−). The
CV2NB modifies the naive Bayes classifier in such a way that the CV score
becomes zero with respect to the given examples D. The CV2NB guarantees
the elimination of discrimination in terms of the CV score. The limitation of
the CV2NB is that it cannot be used when the target or viewpoint variables
are continuous. Related to the CV2NB, it has been shown [14] that positive
CV scores do not necessarily cause discrimination in some situations. There is
also a method [9] that uses the kth-nearest neighbor to test for the existence of
discrimination. Both these methods are based on the CV2NB, so they share its
limitations.

Kamishima et al. have introduced the prejudice remover regularizer (PR) for
fairness-aware classification [8]. The PR regularizer penalizes the loss function if
there is a high correlation between the target variable and the viewpoint variable.
The penalty is evaluated based on the information that is shared by the target
variable y and the viewpoint variable v. This penalty function can work with a
continuous target variable if it is approximated by a histogram, as demonstrated
by Kamishima et al. [7]. Continuous viewpoint variables, however, cannot be
treated by the PR method.

Dwork et al. have presented a classification method that uses a fairness-aware
framework, in which statistical parity is used as the measure of fairness [4]. Intu-
itively, statistical parity occurs when the demographics of those receiving positive
(or negative) classifications are identical to the demographics of the population
as a whole. In their fairness-aware framework, the classification is made to be
fair by minimizing the empirical risk while satisfying certain constraints that
are called the Lipschitz property. As is the case with the CV2NB and PR meth-
ods, this framework assumes that the viewpoint variables are binary or multiple;
continuous viewpoint variables are not considered.

1.2 Our Contribution

Modeling Viewpoint Variables. In this manuscript, we provide a method to
neutralize the target prediction model with respect to a probabilistic model of
a given viewpoint. Existing methods assume the viewpoint is observed and is
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explicitly provided in the input, but this is not always the case. For instance,
consider the recommendation of articles neutralized with respect to political
affiliation, as in Example 2. Political affiliation is not explicitly included in the
input, but given as input the logs of keyword searches or subscribed news articles,
modern machine learning techniques can easily predict party affiliation. In such
a case, our method neutralizes the target prediction model with respect to the
probability model of such a “hidden viewpoint”.

In order to neutralize a model with respect to a viewpoint, we represent the
viewpoint as a probabilistic model and define η-neutrality (Section 2), which is
a measure of the dependency of the target prediction model on the viewpoint
prediction model. With η-neutrality, we can check the neutrality of a target
prediction model with respect to any hidden viewpoint, as long as we have a
probabilistic model of the viewpoint variable (Table 1, the rightmost column).
Furthermore, since η-neutrality is measured with respect to probabilistic mod-
els, the neutrality of the prediction model with respect to unseen examples is
expected to be effectively guaranteed, and this is demonstrated by experiments
(Section 5).

Maximum Likelihood Estimation with η-Neutrality. Following the defini-
tion of η-neutrality, we introduce a systematic method that removes this depen-
dency from the prediction model obtained by the maximum likelihood estimation
(Section 2). Our methods can treat target and viewpoint variables that are ei-
ther discrete (Table 1, line 5) or continuous (Table 1, line 6), as demonstrated by
η-neutrality with logistic regression (Section 3) and linear regression (Section 4).
The effectiveness of our methods is examined by both artificial and real datasets
in Section 5.

2 η-Neutrality

We propose a novel definition of neutrality, η-neutrality. We then present a gen-
eral maximum likelihood estimation method that has a guarantee of neutrality.

Let D = {(xi, yi) ∈ X ×Y}Ni=1 be a set of training examples that are assumed
to be i.i.d. samples drawn from a probability distribution Pr(X,Y ). The random
variables X and Y are referred to as the input and target, respectively. In the
following discussion, the prediction function of the target variable is represented
as a probabilistic model f(Y |X ; θ) = Pr(Y |X), parametrized by θ. The target
prediction model can be obtained by minimization of the negative log-likelihood
with respect to the parameter θ:

θ∗ = argminθ∈ΘL(θ),

where
L(θ) = −

∑
(xi,yi)∈D

ln f(yi|xi; θ). (1)
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2.1 Definition of η-Neutrality

In addition to the input random variable X and the target random variable Y ,
we now introduce the viewpoint random variable V . Let V be the domain of V .
The realized values of the variables are denoted by the corresponding lowercase
letters. Thus, the random variable X can take the value x. In the following
discussion, we assume the input random variable X is continuous. We can treat
a discrete X by replacing the integral with a sum. For Y and V , the discussion
below is valid for both discrete and continuous variables.

As we did for the target random variable, we assume that the prediction model
of the viewpoint variable is represented as a conditional probability Pr(V |X).
Noting that the values of the target and the viewpoint variables are predicted
independently, the joint probability is

Pr(X,Y, V ) = Pr(X)Pr(Y |X)Pr(V |X).

With this assumption, we consider the dependency of the target random vari-
able Y and the viewpoint random variable V . When V and Y are statisti-
cally independent, for any y ∈ Y and v ∈ V , Pr(v, y)/Pr(v)Pr(y) = 1. When
Pr(v, y)/Pr(v)Pr(y) > 1, v and y are more dependent than independent. Hence,
our neutrality definition is defined as the ratio of the marginal probabilities, as
follows.

Definition 1 (η-neutrality). Let X and Y be the input and target random
variables, respectively. Let V denote the viewpoint random variable. Given η ≥ 0,
the probability distribution Pr(X,Y, V ) is η-neutral if

∀v ∈ V , y ∈ Y, Pr(v, y)

Pr(v)Pr(y)
≤ 1 + η. (2)

Noting
∑

y∈Y,v∈V Pr(y, v) = 1 holds, the dependency represented by
Pr(v, y)/Pr(v)Pr(y) < 1 is no need to consider.

Next, given the probabilistic models of Pr(Y |X) and Pr(V |X), we derive con-
ditions that the model of the joint probability distribution satisfies η-neutrality.
The target and the viewpoint prediction models are described by the probabil-
ity distributions f(Y |X ; θ) = Pr(Y |X) and g(V |X ;φ) = Pr(V |X), respectively,
where θ and φ are the model parameters.

Thus, given the target prediction model f(Y |X ; θ) and the viewpoint predic-
tion model g(V |X ;φ), the probabilistic model of Pr(X,Y, V ) becomes

M(X,Y, V ; θ, φ) = Pr(X)f(Y |X ; θ)g(V |X ;φ). (3)

In what follows, we assume the viewpoint prediction model is fixed, and so
the model parameter φ is omitted and g is described by g(V |X). The following
theorem shows the condition that the model of Eq. 3 is empirically η-neutral.

Theorem 1. Suppose the joint probability distribution of input X, target Y , and
viewpoint V follows the model M(X,Y, V ; θ) = Pr(X)f(Y |X ; θ)g(V |X). Then
M is η-neutral if ∀v ∈ V , y ∈ Y,
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∫
x

Pr(x)f(y|x; θ) [g(v|x) − (1 + η)ḡ(v)] dx ≤ 0, (4)

where ḡ(v) =
∫
x Pr(x)g(v|x)dx.

Proof. By the marginalization of Pr(y, v) ,Pr(y), and Pr(v), we have

Pr(y, v) =

∫
x

Pr(x, y, v)dx =

∫
x

Pr(x)f(y|x; θ)g(v|x)dx,

Pr(y) =

∫
x

∫
v

Pr(x, y, v)dvdx =

∫
x

Pr(x)f(y|x; θ)dx,

Pr(v) =

∫
x

∫
y

Pr(x, y, v)dydx =

∫
x

Pr(x)g(v|x)dx = ḡ(v).

By substituting the above equations into Eq. 2, we have

∀v, y,
∫
x

Pr(x)f(y|x; θ)g(v|x)dx − (1 + η)ḡ(v)

∫
x

Pr(x)f(y|x; θ)dx ≤ 0,

∀v, y,
∫
x

Pr(x)f(y|x; θ) [g(v|x)− (1 + η)ḡ(v)] dx ≤ 0.

Thus, M is η-neutral if Eq. 4 holds.

2.2 Approximation of η-Neutrality

When Pr(x) cannot be obtained, η-neutrality can be empirically evaluated with
respect to the frequency distribution P̃r(x) of the examples D. The neutrality
condition with respect to this frequency distribution is derived in a similar man-
ner, as follows. Given examples D, we approximate η-neutrality with respect to
the frequency distribution

P̃r(X = x) =
1

N

N∑
i=1

I(xi = x),

where I(·) denotes the indicator function. From this, we have

P̃r(X,Y, V ) = P̃r(X)Pr(Y |X)Pr(V |X),

and an approximation of η-neutrality is defined by this P̃r(X,Y, V ).

Definition 2 (Empirical η-neutrality). Let X and Y be the input and target
random variables, respectively. Let V denote the viewpoint random variable. Let
P̃r(X) be the frequency distribution of X obtained from D. Given η ≥ 0, if
P̃r(X,Y, V ) is η-neutral, Pr(X,Y, V ) is said to be empirically η-neutral with
respect to the dataset D.

The following theorem shows the condition that the model of Eq. 3 is η-neutral
with respect to the given examples.
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Theorem 2. Suppose the joint probability distribution of the input X, target
Y , and viewpoint V follows the model M(X,Y, V ; θ) = Pr(X)f(Y |X ; θ)g(V |X).
Then, given D = {(xi, yi)}Ni=1, M is empirically η-neutral if

∀y, v,
N∑
i=1

f(y|xi; θ) [g(v|xi)− (1 + η)g̃(v)] ≤ 0, (5)

where g̃(v) = 1
N

∑N
i=1 g(v|xi).

Proof. Theorem 1 states that Pr(X,Y, V ) is η-neutral if Eq. 4 holds. By substi-
tuting P̃r(X) into Eq. 4, the neutrality condition is rewritten as

∀y, v, 1
N

N∑
i=1

f(y|xi) [g(v|xi)− (1 + η)g̃(v)] ≤ 0.

Thus, M is empirically η-neutral if Eq. 5 holds.

For convenience in the following discussion, the neutrality condition is
notated as

N(y, v) =

N∑
i=1

f(y|xi) [g(v|xi)− (1 + η)g̃(v)] ≤ 0. (6)

2.3 Maximum Likelihood Estimation with η-Neutrality

Given examples and a viewpoint prediction model, we performed maximum like-
lihood estimations with the guarantee of η-neutrality. We wanted a target predic-
tion model that would achieve the maximum log-likelihood with respect to the
given data. At the same time, we wanted a target prediction function that would
make Pr(X,Y, V ) empirically η-neutral with respect to the given data and view-
point prediction model. This problem is the following constrained optimization
problem:

minimize L(θ) subject toN(y, v; θ) ≤ 0, ∀y, v.

Existing neutrality indexes measure neutrality with certain statistics, such as
differences in the conditional probabilities [2] or mutual information [8]. If such
measures are used to guarantee neutrality, the neutrality of the model is statis-
tically guaranteed for the set of given examples. In principle, it is desirable to
guarantee neutrality with respect to each individual contained in the given ex-
amples. However, such prediction functions tend to overfit to the given examples
and do not provide neutrality of unseen examples.

Assuming the model of the viewpoint correctly represents the true distri-
bution, a model that satisfies our η-neutrality condition guarantees statistical
independency between every combination of target value y and viewpoint value
v. Note that η-neutrality can be realized even when the viewpoint values are not
contained in the given examples because the neutrality is evaluated with respect
to each combination of possible target value y and viewpoint value v.
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2.4 Prediction Model for Viewpoints

In principle, we assume g(V |X) accurately represents the true probabilistic dis-
tribution Pr(V |X), but in reality, this does not always hold. In this subsection,
we consider three types of possible viewpoint models.

The first case assumes an extreme example; model g(V |X) is the probabilistic
model that outputs random or constant values independent of input x. If we have
no knowledge of the viewpoint, we have no choice other than this. Since g(V |X)
takes a constant value independent of X , η-neutrality is guaranteed for any
f(Y |X ; θ) in this model; however, such neutralization is meaningless.

The second case assumes that model g(V |X) is taken as the empirical distri-
bution of the training examples. Existing methods, including CV2NB, statistical
parity, and PR, achieve neutralization with respect to this empirical distribution.
This model realizes neutralization with respect to the given training examples,
but neutralization with respect to unseen examples is not guaranteed.

The third case considers the situation that is our focus; model g(V |X) is
given as a parametrized probabilistic model. In this case, if g(V |X) accurately
represent the true distribution without overfitting, the output of the target pre-
diction model is expected to be neutralized with respect not only to the training
examples, but also to the unseen examples; this is demonstrated in the following
sections by experiments.

The definition of η-neutrality contains all of the above cases, but we specifi-
cally consider only the third case, the parametric model.

2.5 Equivalence of η-Neutrality and Statistical Parity

In this subsection, in order to discuss the equivalence of η-neutrality and the
statistical parity[4], we assume examples D contains the viewpoint values. The
statistical parity defines the neutrality considering the difference of two proba-
bilistic distribution of target y, P (y) and Q(y),

Dtv(P,Q) =
1

2

∑
y∈Y

|P (y)−Q(y)|.

Given ε ≥ 0 as a neutrality parameter, the statistical parity is defined by

Dtv(Pr(Y |v+),Pr(Y |v−)) ≤ ε,

where Pr(Y |V ) is empirically evaluated with the given example set D.
If the empirical distribution of the example set D is used as the model of the

viewpoint in the empirical η-neutrality, and letting the distance function of the
statistical parity

Dη(P,Q) = max
y∈Y

max{P (y), Q(y)}
P̃r(v+)P (y) + P̃r(v−)Q(y)

,

the statistical parity with parameter η is equivalent to the η-neutrality. The proof
of the equivalence will be presented in the journal version of this manuscript.
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In the following two sections, we demonstrate two applications of maximum
likelihood estimation with a guarantee of empirical η-neutrality: η-neutral logis-
tic regression and η-neutral linear regression.

3 η-Neutral Logistic Regression

In this section, we incorporate our neutrality definition into logistic regression.
In logistic regression, the domain of the input variable is X = Rd, and the
domain of the target variable is binary, Y = {0, 1}. Letting θ ∈ Rd be the model
parameter, the target prediction model for logistic regression is

f(y|x; θ) = σ(θTx)y(1 − σ(θTx))1−y, (7)

where σ(a) is the logistic sigmoid function.
Letting Eq. 7 be the target prediction model, the log-likelihood is given by

Eq. 1, and then the problem of η-neutral logistic regression is

minimize L(θ) subject toN(y, v; θ) ≤ 0, ∀v, y.

Note that the viewpoint prediction model g(v|x) can be any probabilistic model.
We consider the optimization of η-neutral logistic regression. The gradient

and Hessian matrix of L(θ) with respect to θ are, respectively,

∇L(θ) =
N∑
i=1

(
σ(θTxi)− yi

)
xi,

∇2L(θ) =
N∑
i=1

σ(θTxi)(1− σ(θTxi))xix
T
i .

Due to the nature of the logistic sigmoid function, the Hessian matrix is positive
semidefinite. Hence, the log-likelihood function is convex.

Next, we examine the convexity of the constraints associated with the η-
neutrality condition. Since N(y, v; θ) is a linear combination of f , the convexity
of f is investigated. The gradient of f with respect to the parameter θ is

∇f(y,x; θ) =∇ exp (ln f(y|x; θ)) =
(
y − σ(θTx)

)
f(y|x; θ)x.

The Hessian is similarly obtained as

∇2f(y|x; θ) = α(x, y, θ)f(y|x; θ)xxT ,

where α(x, y, θ) = 2σ(θTx)2 + y2 − (2y + 1)σ(θTx).
Since α(x, y, θ) ∈ R can be negative, the Hessian is not positive definite, and

f is nonconvex with respect to θ. Thus, unfortunately, the neutrality condition
in logistic regression is nonconvex, regardless of the choice of g(v|x).
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In our experiments with η-neutral logistic regression, we used Shor’s r-
algorithm based on adaptive space dilation [13]. Shor’s r-algorithm can be ini-
tialized with any solution. We set the initial solution to the result of the logistic
regression without the neutrality constraint. Although the constraint is noncon-
vex, in Section 5 we show by experiment η-neutrality can be achieved without
sacrificing too much of the accuracy of the prediction. This nonconvexity arises
in part from the nonconvexity of the probability distribution. Further research
on convexifying the neutrality constraint is left as an area of future work.

4 η-Neutral Linear Regression

We now consider η-neutral linear regression and demonstrate that maximum
likelihood estimation with η-neutrality can work with continuous viewpoint vari-
ables. In linear regression, the domain of the target variable is Y = R, and the
input domain is X = Rd. The target prediction function is given by

f(y|x;w, β) =
√

β
2π exp

[
−β(wTx−y)2

2

]
.

The linear regression problem is solved by the minimization of the negative log-
likelihood, as given by Eq. 1.

The domain of the viewpoint is V = R. Similarly, we assume the viewpoint
prediction model is

g(v|x;wv, βv) =
√

βv

2π exp
[
−β(wT

v x−v)2
2

]
.

Predictions of the target random variable Y and the viewpoint random vari-
able V are obtained, respectively, by

ŷ = argmax
y

f(y|x;w, β), v̂ = argmax
v

g(v|x;wv, βv).

Then, η-neutral linear regression is formulated as an optimization problem
with the same constraints as in Eq. 6:

minimize
1

2
wTXTXw − yTXw subject to max

x∈D
{N(wTx,wT

v x;w, β)} ≤ 0,

where X = (xT1 ,x
T
2 , ...,x

T
N )T is the matrix of input vectors and y =

(y1, y2, ..., yN )T is the vector of target values.
As in the case with η-neutral logistic regression, we investigate the convexity

of the neutrality constraint given models f and g by investigating the convexity
of f . The gradient and Hessian matrix of f are, respectively,

∇wf(y|x;w, β) =∇w exp(− ln f(y|x;w, β)) = −β(wTx− y)f(y|x;w, β)x,
∇2

wf(y|x;w, β) =α(x, y,w, β)βf(y|x;w, β)xxT ,

where α(x, y,w, β) = β(wTx− y)2 − 1.
Since, depending on w, f(y|x;w, β) ≥ 0 and α(x, y,w, β) ∈ R can take

negative values, the Hessian is not positive definite. Hence, unfortunately, f is
not convex with respect to w. For this nonlinear constraint optimization, we
again use Shor’s r-algorithms for the experiments.
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5 Experiments

5.1 Classification

Settings. In order to examine and compare the classification performance and
the neutralization effect of the η-neutral logistic regression with other methods,
we performed experiments on two real data sets, Adult [5] and the Dutch Census
[3]. Table 2 summarizes the specifications of each dataset. In both datasets, the
target and viewpoint variables are set to “income (large/small)” and “gender
(male/female)”, respectively. Our method does not necessarily require that the
viewpoint value (gender, in this case) be explicitly provided in the given dataset,
but for comparison with other methods, it was chosen from the input variable
of the dataset.

We compared the following methods: logistic regression (LR, no neutrality
guarantee), logistic regression that learns without using the values of viewpoint
(LRns), the Naive Bayes classifier (NB, no neutrality guarantee), the Naive Bayes
classifier that learns without the values of viewpoint (NBns), CV2NB [2], logistic
regression that uses the PR [7], and η-neutral logistic regression with viewpoint
neutrality (VN, proposal).

In the PR method, the regularizer parameter λ, which balances the loss min-
imization and neutralization, was varied as λ ∈ {0, 5, 10, 15, 20, 30}. The neu-
trality parameter η, which determines the degree of neutrality, was varied as
η ∈ {0.00, 0.01, ..., 0.40}

As neutrality indices of prediction models, the normalized prejudice index
(NPI) and η̂ are introduced. NPI is defined as the normalized mutual informa-
tion of the target random variable Y and the viewpoint random variable V ,
normalized by the entropy of Y and V [8]:

NPI =
I(X ;Y )√
H(Y )H(V )

,

where I(X ;Y ) is the mutual information of target Y and viewpoint V ,
I(X ;Y )/H(Y ) is the ratio of information of V used for predicting Y , and
I(X ;Y )/H(V ) is the ratio of information that is exposed if a value of Y is
known. Thus NPI can be interpreted as the geometrical mean of these two ra-
tios. The range of this NPI is [0, 1].

The neutrality measure η̂ is defined as

η̂ = max
y∈Y,v∈V

P̃r(v, y)

P̃r(v)P̃r(y)
− 1,

where η̂ can be interpreted as the degree of the dependency of y and v with which
the largest dependency occurs. If Y and V are mutually independent, η̂ = 0. If
the neutrality measure with respect to a target prediction model is η̂, it means
the model of Eq. 3 is empirically η̂-neutral with respect to the given examples.

We compared the three measures: the accuracy, the normalized prejudice in-
dex (NPI), and the η̂ of η-neutrality. These indices was evaluated with five-fold
cross validation.
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Table 2. Specification of datasets. #y+ and #v+ represent the number of positive
target and viewpoint values, respectively. The prediction accuracy (logistic regression)
of the target (Acc(y) w.r.t. income) and viewpoint (Acc(v) w.r.t. gender) variables are
also shown.

dataset Adult Dutch Census

#Instances 16281 60420
#Attributes 13 10
#y+ 3846(23.6%) 31657(52.4%)
#v+ 10860(66.7%) 30273(50.1%)
Acc(y) 0.851 0.835
Acc(v) 0.842 0.665

The values used for the learning of f(y|x), the guarantee of neutrality, and
the measurement of neutrality are summarized in Table 3. For the guarantee of
neutrality, we consider the following two cases.

Case 1 assumes that the values of the viewpoint random variable are provided
in examples. In this case, our method performs neutralization with respect to
the model of the viewpoint learned from the examples, whereas other methods
perform neutralization with respect to the actual viewpoint values provided.

Case 2 assumes that the values of the viewpoint are not provided. Instead, the
model of the viewpoint variable, g(v|x), is provided. In this case, our method
again learns the model of the target without using values of the viewpoint and
performs neutralization with respect to the given model g. Other methods need
the values of the viewpoint, so these are estimated as v̂ = argmaxvg(v|x). Other
methods then learn the model of the target with (x, v̂), and neutralization is
performed with respect to v̂.

As a measurement of neutrality, all methods used the true viewpoint value v
in both cases.

Results. Figure 1 shows the experimental results. In the graphs, the best result
is at the left top. Comparing the results of NB and NBns in Case 1, we can see
that the improvement of neutrality by elimination of the viewpoint variable is
limited. The same applies to LR and LRns.

In Case 1, CV2NB achieves a neutrality of nearly 0 in terms of both NPI and η̂
in both datasets. In addition, the decrease in the accuracy of the prediction is less
than 1% in the Adult dataset and 5% in the Dutch Census. Thus, neutralization
by CV2NB works successfully in Case 1. On the other hand, neutralization by
CV2NB does not work well in Case 2; the neutralization level is almost the
same as it is for NBns. CV2NB modifies the target prediction model so that
the CV score with respect to the given examples becomes zero. This can cause
the prediction model to overfit the given examples. Hence, the NPI and η̂ of
CV2NB with respect to the unseen values of the viewpoint are large, as seen in
the results of Case 2.

In Case 1, PR successfully balances the NPI and the accuracy for the Adult
dataset, but it fails to balance the accuracy and η̂. This is because NPI evaluates
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Table 3. Summary of the treatment of the viewpoint random variables in two settings

case method learning neutrality neutrality
of f(y|x) guarantee measure

Case 1
others x, v v ŷ, v
ours x, v g(v|x) ŷ, v

Case 2
others x, v̂ v̂ ŷ, v
ours x g(v|x) ŷ, v

neutrality with respect to the average of the given examples, while η̂ evaluates
the lowest neutrality for all values of y and v as the worst case. This result
indicates that the dependency of the predictions of target Y to the predictions
of viewpoint V can be strong for some y and v, even when the NPI is kept small.
In Case 2, neutralization with PR did not work well in either dataset. This was
again due to overfitting; this can be confirmed by the fact that the NPI of v and
y is large in Case 2 even when the NPI of v̂ and y is kept small (these results
are omitted due to space limitations).

In both cases, our proposal, VN, successfully balances neutralization and accu-
racy of the predication by changing η. Furthermore, the decrease in the accuracy
of the prediction was at most 5%, even after strong neutralization with small η.
In some cases, the accuracy of VN becomes unstable with small η. The reason is
thought to be the nonconvexity of the neutrality constraint. VN always guaran-
tees neutrality of the prediction model, but the accuracy of the prediction can
suddenly drop if the solution is captured by a local optimum.

5.2 Regression

Settings. In order to investigate the behaviors of neutralization in linear regres-
sion, we performed experiments of η-neutral linear regression with the Housing
dataset [5]. This dataset contains 506 examples with 14 attributes; the MEDV
(median value of owner-occupied homes, in $1000s) and the LSTAT (% lower
status of the population ) were used as the target and viewpoint values, respec-
tively. Letting the regression parameters of the target f and viewpoint g be w
and wv, respectively, the predicted values were ŷ = wTx and v̂ = wT

v x. The ac-
curacy of the prediction was measured by the root-mean-square error (RMSE),
and η̂ was used as the measure of neutrality.

Results. Figure 2 shows the scatter plots of (ŷ, y) (the top row) and (ŷ, v̂)
(the bottom row). From left to right, the neutrality parameter η was varied as
η ∈ {1.0, 3.0, 10.0}. The (ŷ, v̂) plot represents the prediction accuracy of the
regression model. When the model achieves a better RMSE, the points in the
(ŷ, y) plot concentrate more along the diagonal line. At the same time, the (ŷ, v̂)
plot represents neutrality. If the neutrality is low, any correlation between ŷ and
v̂ appears in the (ŷ, v̂) plot.

In Figure 2 (h), a strong negative correlation between ŷ and v̂ can be found.
Thus, this regression model has a low neutrality if no neutralization is performed.
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Fig. 1. Accuracy vs. neutrality measure

In Figure 2, the level of neutralization increases from right to left. The plots show
that the dependency of ŷ on v̂ becomes weaker as η decreases. This result indicates
that our method can use η to successfully control the neutralization level of the
regression model. The RMSE increases as η is decreases. In Figure 2 (e), we can
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(a) RMSE=8.49 (b) RMSE=7.54 (c) RMSE=6.26 (d) RMSE=5.25

(e) η = 1.0 (f) η = 3.0 (g) η = 10.0 (h) no neutralization

Fig. 2. Top row: scatter plots of target prediction value ŷ and true target value y.
Bottom row: scatter plots of target prediction value ŷ and viewpoint prediction value
v̂. Correlation in the ŷ − v̂ plots means that the neutralization level of the regression
model is low.

see that the regression model of the target value that has high neutrality outputs
almost constant values; such regression is useless even if the model is well neutral-
ized. Thus, tuning of η is important to obtain a neutralized regression model with
high accuracy.

6 Conclusion

In this paper, we proposed a framework in which to use a maximum likelihood
estimation for learning probabilistic models with neutralization. There are two
key points in which our proposal is different from existing methods.

First, our method guarantees neutrality of the target prediction model with
respect to a given viewpoint prediction model. Due to this model-based neu-
tralization, our method allows neutralization of target prediction models with
respect to viewpoints arbitrarily defined by users, as long as the viewpoint pre-
diction model is provided in the form of a probabilistic distribution.

Second, our neutrality measure, η-neutrality, is based on the principle that the
model should guarantee neutrality with respect to every combination of target
and viewpoint value that appears in the dataset.

Experimental results show that our method with model-based neutralization
achieves neutralization even when only a model of the viewpoint is provided.
In addition, it balances the accuracy of the target prediction with the neutral-
ity. As discussed in Section 3 and Section 4, likelihood maximization with the
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η-neutrality constraint is nonconvex optimization; this is due the nonconvexity
of the constraint function. As an area of future work, we intend to find a way to
convexify the constraints induced by the neutrality condition.

Acknowledgments. The work is supported by FIRST program “Development
of the Fastest Database Engine for the Era of Very Large Database and Exper-
iment and Evaluation of Strategic Social Services Enabled by the Database En-
gine” and is partially supported by JSPS KAKENHI, Grant Number 24500194,
25540094.

References

1. Boyd, D.: Privacy and publicity in the context of big data. In: Keynote Talk of the
19th Int. Conf. on World Wide Web (2010)

2. Calders, T., Verwer, S.: Three naive bayes approaches for discrimination-free clas-
sification. Data Mining and Knowledge Discovery 21(2), 277–292 (2010)

3. Dutch Central Bureau for Statistics: ”Volkstelling” (2001)
4. Dwork, C., Hardt, M., Pitassi, T., Reingold, O., Zemel, R.: Fairness through aware-

ness. In: Proceedings of the 3rd Innovations in Theoretical Computer Science Con-
ference, pp. 214–226. ACM (2012)

5. Frank, A., Asuncion, A.: UCI machine learning repository (2010),
http://archive.ics.uci.edu/ml

6. Kamiran, F., Calders, T., Pechenizkiy, M.: Discrimination aware decision tree learn-
ing. In: 2010 IEEE 10th International Conference on Data Mining (ICDM), pp.
869–874. IEEE (2010)

7. Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Enhancement of the neutrality in
recommendation. In: Proceedings of the 2nd Workshop on Human Decision Making
in Recommender Systems (Decisions@RecSys), pp. 8–14 (2012)

8. Kamishima, T., Akaho, S., Asoh, H., Sakuma, J.: Fairness-aware classifier with
prejudice remover regularizer. In: Flach, P.A., De Bie, T., Cristianini, N. (eds.)
ECML PKDD 2012, Part II. LNCS, vol. 7524, pp. 35–50. Springer, Heidelberg
(2012)

9. Luong, B.T., Ruggieri, S., Turini, F.: k-nn as an implementation of situation test-
ing for discrimination discovery and prevention. In: Proceedings of the 17th ACM
SIGKDD International Conference on Knowledge Discovery and Data Mining,
KDD 2011, pp. 502–510. ACM, New York (2011)

10. Pariser, E.: The Filter Bubble: What The Internet Is Hiding From You. Viking,
London (2011)

11. Pedreshi, D., Ruggieri, S., Turini, F.: Discrimination-aware data mining. In: Pro-
ceeding of the 14th ACM SIGKDD International Conference on Knowledge Dis-
covery and Data Mining, pp. 560–568. ACM (2008)

12. Ruggieri, S., Pedreschi, D., Turini, F.: Dcube: Discrimination discovery in
databases. In: Proceedings of the 2010 International Conference on Management
of Data, pp. 1127–1130. ACM (2010)

13. Shor, N.Z., Kiwiel, K.C., Ruszcayǹski, A.: Minimization methods for non-
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Abstract. We propose a decision-theoretic sparsification method for
Gaussian process preference learning. This method overcomes the loss-
insensitive nature of popular sparsification approaches such as the Infor-
mative Vector Machine (IVM). Instead of selecting a subset of users and
items as inducing points based on uncertainty-reduction principles, our
sparsification approach is underpinned by decision theory and directly
incorporates the loss function inherent to the underlying preference learn-
ing problem. We show that by selecting different specifications of the loss
function, the IVM’s differential entropy criterion, a value of information
criterion, and an upper confidence bound (UCB) criterion used in the
bandit setting can all be recovered from our decision-theoretic frame-
work. We refer to our method as the Valuable Vector Machine (VVM)
as it selects the most useful items during sparsification to minimize the
corresponding loss. We evaluate our approach on one synthetic and two
real-world preference datasets, including one generated via Amazon Me-
chanical Turk and another collected from Facebook. Experiments show
that variants of the VVM significantly outperform the IVM on all
datasets under similar computational constraints.

1 Introduction

Preference learning has become an important subfield in machine learning tran-
scending multiple disciplines such as economics, operations research and social
sciences. A wide range of applications in areas such as recommender systems,
autonomous agents, human-computer interaction and e-commerce has moti-
vated machine learning researchers to investigate flexible and effective ways to
construct predictive preference models from preference observations. This is a
challenging problem since complex relations between users and their preferred
products (items) must be uncovered. Furthermore, flexible and principled ways
to handle uncertainty over the users’ preferences are required in order to balance
what the system knows. To address these challenges, non-parametric Bayesian
approaches based on Gaussian processes (GPs) have shown to be effective in
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real applications [1,2,3,4]. However, one of the major limitations of preference
learning approaches based on GPs is their poor scalability when dealing with a
large number of users and items.

Scalability issues in GPs are not exclusive to preference learning and they are
common in other settings such as regression and classification. It is customary
in these settings to adopt sparsification approaches, where a subset of training
examples is selected as inducing points, considerably reducing the time com-
plexity of posterior approximation and prediction [5,6,7]. A popular approach to
GP sparsification is the Informative Vector Machine [8], where inducing points
are selected according to an information-theoretic criterion. A key characteristic
of the IVM is that it can be embedded naturally in sequential algorithms such
as Assumed Density Filtering [9] or Expectation Propagation [10]. These algo-
rithms provide efficient computation of the quantities of interest (i.e., posterior
variances) to be used by the IVM’s sparsification criterion.

Nevertheless, the IVM’s purely entropic sparsification criterion fails at ad-
dressing the varying loss functions that may be of interest to the final decision-
theoretic task— especially those tasks that naturally arise in preference learning.
For example, we might be interested in (a) optimizing the utility of the best rec-
ommendation, (b) giving a ranking of all items (or a subset), or (c) correctly
classifying all pairwise preferences. In each case we seek to optimize a loss for a
different decision-theoretic task and when we need to approximate in a Bayesian
setting, it is important that our approximation is loss-calibrated [11]. We note
that the uncertainty reduction principle inherent to the IVM approximation is
not loss-calibrated for all tasks (a)–(c).

In this paper, we continue to bridge the gap between decision theory and
approximate Bayesian inference [11] in a direction that leverages the efficiency
of the IVM approach for GP sparsification, while overcoming its loss-insensitive
approximation. We show that the IVM’s differential entropy criterion, a value
of information criterion, and an upper confidence bound [12] criterion can all be
recovered in our framework by specifying the appropriate loss.

An additional important aspect of the preference learning problem that dis-
tinguishes it from standard machine learning settings is that the complexity of
making predictions does not directly depend upon the number of observations
(i.e. preference relations), but rather the number of users and items. Our method
takes this into consideration and adopts an item-driven sparsification strategy
that retains the items that best encode the users’ preferences. Our experiments
show that this is an effective way of reducing the complexity of inference in
preference learning with GPs while addressing the objective function of interest
directly. We refer to our generic method as the Valuable Vector Machine (VVM)
since it incorporates the loss function directly into its sparsification mechanism.

The rest of this paper is organized as follows: we outline the use of GPs for
multi-user preference learning and prediction in Section 2 followed by our our
proposed VVM sparsification framework in Section 3 and empirical evaluation
in Section 4. We differentiate our approach from related work in Section 5 and
conclude in Section 6.
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2 GPs for Preference Learning

In this section, we define a general approximation framework for Bayesian pref-
erence learning via Gaussian Processes that we will adapt to the loss-calibrated
setting in the next section.

Let U = {u1,u2, . . . ,un} be a set of n users and let X = {x1,x2, . . . ,xm}
be a set of m items and denote the set of observed preferences of each user
u ∈ U with Du = {xi � xj} where 1 ≤ i ≤ m and 1 ≤ j ≤ m. Given the
preferences Du for u, satisfaction of the von Neumann-Morgenstern axioms [13]
justify the existence of utilities fui ∈ R for each item xi ∈ X s.t. xi � xj ∈ Du

iff fui > fuj . In order to model the distribution over these utilities, we build upon
the model proposed by [2]. We denote a latent utility vector f for all users and
items with f = [fu1

1 , fu1
2 , . . . , fun

m ]T . Then, we can define the likelihood over all
the preferences given the latent functions as:

p(D|f) =
∏
u∈U

∏
xi�xj∈Du

p(xi � xj |fu
i , f

u
j ) (1)

with p(xi � xj |fu
i , f

u
j ) = Φ

(
fu
i − fu

j

α

)
, (2)

where Φ(x) =
∫ x
−∞ N (y)dy and N (y) is a zero-mean Gaussian distribution with

unit variance. In this model, p(f) is the prior over the latent utilities f and
is defined via a GP with zero-mean function and a covariance function that
factorizes over users and items [2]. Therefore:

p(f) = N (f ;0,K), K = Ku ⊗Kx, (3)

where K is the kernel matrix composed of the Kronecker product of the kernel
matrix over the users Ku and the kernel matrix over the items Kx. One inter-
esting feature of this model is the inherent transfer of preferences across users
through the correlated prior, which will subsequently help the prediction on
those users for which there are not many preferences recorded. Additionally, as
we shall see later, having a fully factorized likelihood across users and items will
facilitate the application of sequential approximate posterior inference methods
such as Expectation Propagation (EP) [10].

The posterior of the latent functions f given all the preferences is:

p(f |D) =
1

Z
p(f)p(D|f), (4)

with Z being the normalizer. This posterior is analytically intractable due to the
non-Gaussian nature of the likelihood. Therefore, we need to resort to approxi-
mations. Here we use EP which approximates the posterior p(f |D) by a tractable
distribution q(f). EP assumes that each likelihood term p(xi � xj |fui , fuj ) can be
approximated by a distribution q(fui , f

u
j ) such that the approximated posterior

q(f) factorizes over q(fui , f
u
j ). Then EP iteratively approximates each q(fui , f

u
j )

in turn by dividing it out from the approximated posterior q(f) (obtaining the
cavity distribution), multiplying in the true likelihood p(xi � xj |fui , fuj ), and
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projecting the result back to its factorized form by matching its moments to an
updated q(fui , f

u
j ). This overall procedure is motivated by the aim to minimize

the KL−divergence between the true posterior p(f |D) and its approximation
q(f).

In the preference learning case we detailed earlier, we can approximate the
posterior with a Gaussian:

q(f) =
1

Z̃
p(f)

∏
u∈U

∏
{{i,j}|xi�xj∈Du}

q(fui , f
u
j ) = N (f ;μ,Σ). (5)

We are interested in locally approximating each likelihood term in Equation
1 as:

p(xi � xj |fui , fuj ) ≈ q(fui , f
u
j ) (6)

= Z̃u
i,jN (fui , f

u
j ; μ̃u,[i,j], Σ̃u,[i,j]),

where N (fui , f
u
j ; μ̃u,[i,j], Σ̃u,[i,j]) denotes the local two-dimensional Gaussian

over [fui , f
u
j ]
T with mean μ̃u,[i,j] and covariance Σ̃u,[i,j] corresponding to items

i and j.
Hence we can approximate the posterior as:

q(f) =
1

Z̃
p(f)

∏
u∈U

∏
{i,j}∈D

q(fui , f
u
j ) = N (f ;μ,Σ), (7)

where μu,[i,j] = Σu,[i,j]Σ̃
−1

u,[i,j]μ̃u,[i,j] (8)

Σ−1
u,[i,j] = (K−1

u,[i,j] + Σ̃
−1

u,[i,j]). (9)

This means that in order to determine the parameters of our approximate pos-
terior, we need to compute estimates of the local parameters μ̃ and Σ̃. To show
these updates, we need to define additional distributions: (a) the cavity distribu-
tion which we will denote with the backslash symbol “\” and (b) the unnormalized
marginal posterior, which we will denote with the hat symbol “ ˆ ”.

Here we only show how to compute the parameters necessary to estimate the
posterior1. We iterate through the following steps:

1. Update the Cavity Distribution: The cavity distribution q\(fui , f
u
j )

results from multiplying the prior by all the local approximate likelihood terms
except q(fui , f

u
j ) and marginalizing all latent dimensions except fui and fuj . This

is done in practice simply by removing the current approximate likelihood term
from the approximate posterior. Hence we obtain:

q\(fui , f
u
j ) = N (fui , f

u
j ;μ\u,[i,j],Σ\u,[i,j]) (10)

μ\u,[i,j] = Σ\u,[i,j](Σu,[i,j]
−1μu,[i,j] − Σ̃

−1

u,[i,j]μ̃u,[i,j]) (11)

Σ\u,[i,j] = (Σ−1
u,[i,j] − Σ̃

−1

u,[i,j])
−1. (12)

1 Similar updates for the single user case are given in [1].
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2. Update the Unnormalized Marginal Posterior : This results from find-
ing the unnormalized Gaussian that best approximates the product of the cavity
distribution and the exact likelihood:

q̂(fu
i , f

u
j ) ≈ p(xi � xj |fu

i , f
u
j )q\(f

u
i , f

u
j ) (13)

q̂(fu
i , f

u
j ) = Ẑ−1N (fu

i , f
u
j ; μ̂u,[i,j], Σ̂u,[i,j]) with (14)

Ẑ = Φ(ri,j) (15)

μ̂u,[i,j] = μ\u,[i,j] +Σ\u,[i,j]wu,[i,j] (16)

Σ̂u,[i,j] = Σ\u,[i,j] (17)

−Σ\u,[i,j](wu,[i,j]w
�
u,[i,j]r̂i,jwu,[i,j]11

�)Σ\u,[i,j],

where

wu,[i,j] =
N (ri,j)

Φ(ri,j)(α2 + tr(Σ\u,[i,j]12))
11,

ri,j =
μ\u,[i,j]11

α2 + tr(Σ\u,[i,j]12)
, r̂i,j =

ri,j
α2 + tr(Σ\u,[i,j]12)

and 11 =

[
1
−1

]
, 12 =

[
1 −1
−1 1

]
. (18)

3. Update the Local Factor Approximation: by performing moment match-
ing, we can calculate the corresponding parameters in q(fui , f

u
j ) as:

μ̃u,[i,j] = Σ̃u,[i,j](Σ̂
−1

u,[i,j]μ̂u,[i,j] −Σ−1
\u,[i,j]μ\u,[i,j])

Σ̃u,[i,j] = (Σ̂
−1

u,[i,j] −Σ−1
\u,[i,j])

−1. (19)

At each iteration once we have local factor parameters μ̃ and Σ̃ , we can compute
the parameters of the full posterior approximation using 7. We iterate through
all the factors and update the local approximations sequentially.

2.1 Prediction

Given a pair of items x∗
1,x

∗
2 for a particular user, we will be able to determine

the predictive distribution over the latent utility functions as:

p(f∗1 , f
∗
2 |D) =

∫ ∞

−∞
p(f∗1 , f

∗
2 |f)p(f |D)df=N (μ∗,C∗) (20)

with μ∗ = K∗(K+ Σ̃)−1μ (21)

C∗ = Σ∗ −K∗�(K+ Σ̃)−1K∗, (22)

where Σ∗ is the 2× 2 kernel matrix built from the item pair x∗
1 and x∗

2; K
∗ =

K∗
u⊗K∗

x that represents the kernel matrix of the test user and items with all the
users and items in the training set; K∗

u is the 1× n kernel matrix of the queried
user with other users; and K∗

x is the 2×m kernel matrix of the queried pair of
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items with other items. Subsequently, their preference for a user is determined
by integrating out the latent utility functions:

p(x∗
1 � x∗

2|D) =

∫ ∫
p(x∗

1 � x∗
2|f∗

1 , f
∗
2 ,D)p(f∗

1 , f
∗
2 |D)df∗

1 df
∗
2

= Φ

(
μ∗

1 − μ∗
2

α2 +C∗
1,1 +C∗

2,2 − 2C∗
1,2

)
. (23)

We see that the mean and covariance of the predictive distribution require the in-
version of a (possibly) very large matrix. This matrix is, in general, of dimensions
nm×nm. Even though the inverse matrix can be reused for multiple query points,
this is intractable for any real application. Hence, we will focus on how to spar-
sify this matrix by selecting a subset of inducing items. Note the main difference
with other machine learning settings where there is a one-to-one correspondence
between the number of observations and the dimensionality of the corresponding
matrix. In our case, the observations (preference relations) affect the dimension-
ality of this matrix only indirectly and we are more concerned with the number of
users and items. More importantly, as we shall see in the following section, we will
make use of decision theory for sparsification. Our method, which we will refer to
as the Valuable Vector Machine (VVM), selects the most useful items during spar-
sification so as to minimize the loss inherent to the preference learning problem.
Therefore, the prediction time which is cubic in the number of items is improved
in VVM over the case where all items are used.

Since our focus is on improving prediction time and this scales cubically with
the number of items we need to obtain a risk-sensitive posterior approximation.
EP is well-suited for this case because it considers all data efficiently and locally.

2.2 Optimizing the Kernel Hyper-parameters

One of the inherent advantages of GPs over other non-Bayesian kernel methods
is its capability of optimizing the hyper-parameters. This can be easily done
by maximizing the marginal likelihood in a gradient descent algorithm. The
marginal likelihood can be obtained from the normalizer Z̃ in Equation 5 as:

Z̃ =

∫
p(f)

∏
u∈U

∏
{i,j}∈D

q(fui , f
u
j )df (24)

where both p(f) and q(fui , f
u
j ) are Gaussian distributions and their product

produces an unnormalized Gaussian distribution. Therefore, the log likelihood
is:

log(Z̃) =− 1

2
μ̃�(K+ Σ̃)−1μ̃− 1

2
log det(K+ Σ̃)− n

2
log 2π (25)

The derivative of the marginal likelihood with respect to the kernel hyper-
parameters can be used in a gradient descent algorithm to optimize the kernel.
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Table 1. Loss and corresponding risk to minimize for VVM variants. Let q(f) := qS′′(f)
and a ∈ {xu

i }.

Algorithm IVM (item) VVM-VOI VVM-UCB

Loss Type Log loss Regret Risk-seeking

L(f ,a,u) − log(q(fu
i )) −I[fu

i >f
u,∗](fu

i −fu,∗) − exp(βfu
i ), β > 0

RiskL(S
′,xi,u) H(q(fu

i )) σ(u,xi) [cΦ(c) +N (c)] 1 + βμ(u,xi) +
β2

2
σ̄2(u,xi)

Selection Time O(1) O(n log n) O(1)

3 Decision-Theoretic Sparsification

To recap, our multi-user preference learning objective is to approximate a pos-
terior q(f) = N (f ;μ,Σ) over latent utilities f = [fu1

1 , fu1
2 , . . . , fun

m ]T for users
u ∈ U and items xi ∈ X . In the previous section, we showed how to learn q(f)
from preference data by EP; in this section due to computational considera-
tions, we wish to sparsify this Gaussian posterior in a loss-calibrated manner.
We note that in the special case of GP-based preference learning, there are at
least two different ways one might approach sparsification: observation-driven
sparsification and item-driven sparsification.

3.1 Sparsification

Observation-Driven Sparsification. In this approach, we incrementally se-
lect a subset of observations (in this case preferences) in order to approximate
the posterior q(f) . More formally, recall that Du = {xi � xj} and let D′ ⊆ D be
a subset of selected preferences. Observation-driven sparsification simply chooses
the data subset D′ according to some criterion to obtain a posterior approxima-
tion qD′(f) ≈ p(f |D′) (e.g., via EP as outlined in the last section).

As a concrete example, the original Informative Vector Machine [8] initializes
D′ to a small random subset and then incrementally builds D′ := D′ ∪ {d∗} for
the d∗ that maximizes information gain

d∗ = argmax
d∈D\D′

H(qD′∪{d}(f))−H(qD′(f)), (26)

where qD′(f) ≈ p(f |D′) and qD′∪{d}(f) ≈ p(f |D′ ∪ {d}). This repeats until
the desired level of observation sparsity has been reached. Since D′ is fixed
at each iteration and thus H(qD′(f)) is a constant, each incremental selec-
tion in the IVM is equivalent to choosing the d∗ that maximizes entropy, i.e.,
d∗ = argmaxd∈D\D′ H(qD′∪{d}(f)).

Item-Driven Sparsification: Valuable Vector Machine. Inclusion of a
preference observation entails a 2-dimensional update to our GP posterior; how-
ever, since preferences may overlap, there is not a direct relationship between
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the number of included preferences and the dimensionality of the posterior and
hence the computational complexity of prediction described in section 2.1. A
more direct way to control the sparsity level of our Gaussian posterior is to
simply retain the items for users (equivalently dimensions fui of our Gaussian
posterior) that minimizes some criterion.

This item-driven approach underlies the Valuable Vector Machine (VVM)
that we propose in this paper for different decision-theoretic settings. First we
introduce some notation. Let S′ ⊆ S = {(xi,u)} be a selected subset of user-item
pairs corresponding to latent utility dimensions fui of f with cardinality |S′|. Let
q(f[S′]) = N (f[S′];μ[S′],Σ[S′,S′]) where f[S′] and μ[S′] respectively represent the
subvectors of f and μ for selected dimensions S′ (i.e. selected users and items
in set S′) and Σ[S′,S′] the corresponding submatrix of Σ. Motivated by the
observation-driven IVM, after running EP, let us incrementally select dimensions
s∗ ∈ S of our Gaussian posterior to retain so that initializing S′ = ∅, at each
iteration we update S′ := S′ ∪ {s∗} to obtain an improved posterior qS′(f) until
some dimensionality limit has been reached.

In decision theory, our objective is to select an action a∗ ∈ A from a possible
space of actions A so as to minimize the expectation of some loss L(a) w.r.t.
uncertainty (in this case utility uncertainty over f), i.e. a∗ = argmina EfL(f , a).
Our specific task at each iteration of the VVM is to propose an item-user di-
mension xu

i for inclusion in the posterior — hence the action space A = {xi} —
and to select the item s∗ that minimizes expected loss (risk)

s∗ = argmin
(xi,u)∈S\S′

RiskL(S′,xi,u);

where RiskL(S′,xi,u) := Ef∼qS′′ [L(f ,xi,u)] , (27)

and S′′ = S′ ∪ {xu
i }. In the following, we will detail choices of loss functions

and their respective RiskL(S′,xi,u) yielding the VVM variants as summarized
in Table 1 and its corresponding method in Algorithm 1.

In each iteration, VVM selects the action (i.e. item) that minimizes the ex-
pected loss for each user until desired predefined dimensionality is reached. Our
experiments with a variable number of items per user led to worse performance
since it often overemphasizes item selection for the noisiest users. Hence, we
found that a constant number of items enforces fairness of GP modeling effort
per user.

It should also be noted that the greedy selection here is fairly general and
in special cases such as submodular losses, one can prove further convergence
guarantees [14].

3.2 Loss Functions and Risk

Log Loss and IVM. Log-loss is appropriate when we want to maximize the
log posterior over all preferences. Here we see that we can actually recover an
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Algorithm 1. Valuable Vector Machine

input: X,U,D, r // r is the percentage of items selected for each user
while not converged do

for xi � xj ∈ D do
1. Update the cavity distribution μ\u,[i,j], Σ\u,[i,j] from Equation 11 and 12.

2. Update the unnormalized marginal posterior μ̂,Σ̂ from Equation 16 and 17.
3. Update the local factor approximation μ̃, Σ̃ from Equation 19.
5. Update μ and Σ from Equation 7.

end for
end while
for each u ∈ U // Selection of best items for each user do

S′u = {} //The user u’s subset
while |S′u| < r do

x∗
i =argminxi∈X,xi /∈S′u RiskL(S

′,xi,u)// Table 1
S′u = S′u ∪ {x∗

i }
end while
S = S ∪ S′u

end for
return μ[S],Σ[S,S] // Subset of posterior parameters

item-based variant of the IVM when using log-loss. Specifically, letting q(fui )
refer to the marginal of q(f) over fui then

RiskL(S′,xi,u)=
∫ ∞

−∞
−qS′′(fui )[log qS′′(fui )]df

u
i

= H(qS′′(fui )), (28)

which corresponds to the entropic criterion used by the IVM. Recall that the sec-
ond entropy term in the standard IVM information gain calculation is constant
and can be omitted as noted for (26).

Valuable Vector Machine – Value Of Information (VVM-VOI). In the
case that our end objective is to predict or recommend the best item xi for user
u, the loss we might consider minimizing is the regret, I[fui −fu,∗ > 0](fui −fu,∗)
where we could define fu,∗ = argmaxi f

u
i ; in words, we want to minimize how

much utility we lose for recommending a suboptimal item. In expectation, we
might simply fix fu,∗ = maxi EqS′′ [f

u
i ] (the best current item in expectation)

where expected loss minimization leads us to the following risk:

RiskL(S′,xi,u) =
∫ ∞

−∞
I[fui > fu,∗](fui − fu,∗)qS′′(fui )df

u
i

= σ(u,x) [cΦ(c) +N (c)]︸ ︷︷ ︸
VOI

(29)

where qS′′(fui ) = N (fui ;μ(u,x), σ
2(u,x)) and c = μ(u,x)−f̂u

σ(u,x) . This is precisely

the statement of Value of Information (VOI) [15] under a Gaussian assumption
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fu,∗

fui − fu,∗
qS ′′(fu2 )

qS ′′(fu1 )

Fig. 1. Illustration of Value of Information: it is the product of the shaded area under
the normal curve when the utility is higher than the optimal value and the linear
function of their difference. This value corresponds to the expectation of the difference
of the utility of the item and the optimal under the shaded mass. As it is observed, fu

1

has negligible mass above fu,∗ point, therefore the item corresponding to fu
2 is selected.

of uncertainty — quite simply, the more probability mass an item utility has in
its tail above the best item in expectation, the higher its chance of being the
best item — hence the higher VOI associated with selecting this item in S′′.

Valuable Vector Machine – Upper Confidence Bound (VVM-UCB).
It is well-known that a concave or convex valuation of underlying utility respec-
tively encourages risk-averse or risk-seeking behavior w.r.t. utility uncertainty.
Risk-seeking behavior from a convex utility function will encourage including
“potentially optimal” items according to how uncertain we are regarding their
utility function value. A natural convex utility transformation is exp(βfux ), which
leads to the following risk

RiskL(S
′,xi,u) = −

∫ ∞

−∞
qS′′(fu

i ) exp(βf
u
i )df

u
i

= −
∫ ∞

−∞
qS′′(fu

i )

(
1 + βfu

i +
β2

2
fu
i

2 + . . .

)
dfu

i

≈ 1 + β ·UCB(u,xi)

where UCB(u,xi) = μ(u,xi) +
β

2
σ̄2(u,xi). (30)

where σ̄2(u,xi) = EqS′′ [f
u
i
2]. Here, we first replaced exp(βfui ) with its Taylor

expansion and approximated it by truncating third-order terms and above.When
doing this, we see that the dimension xui selected by the VVM will be the one
with the greatest Upper Confidence Bound (UCB) [16] used in bandit problems,
where larger β > 0 encourages more risk-seeking behavior.

4 Empirical Evaluation

In this section we evaluate the performance of our algorithms (VVM-VOI and
VVM-UCB) compared to the IVM and the full GP, i.e. a GP-preference model
that does not use sparsification, in terms of two losses: the 0/1 loss and
recommendation loss. The 0/1 loss is the percentage of incorrectly predicted
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preferences and the recommendation loss is the proportion of items that are in-
correctly predicted as the best for recommendation. In other words, if the set
of items that a user considers to be the best (as induced by her preferences) is
denoted by T and the predicted set of best items is T ∗, the recommendation loss

is |T̄ |
m ×100, wherem is the number of items and T̄ = {x ∈ T ∗|x /∈ T }. We report

the results as a function of the proportion of items selected for sparsification.
Our experimental rationale is to exhibit how different risk-sensitive sparsifica-

tions perform across two different important losses related to preference learning
compared to IVM. As such, we use IVM in its original form that works with ADF
since it was argued by [17] that it performs better than running full EP, which we
observed as well. Hence we chose the IVM variant that offered best performance
and compared it against VVM.

We consider three datasets: a synthetic dataset and two real-world datasets.
The synthetic experiment assesses the effectiveness of our approach in a con-
trolled setting and the real-world datasets include users’ preferences over cars
that we have collected using Amazon Mechanical Turk and a Facebook dataset
that we have obtained via an in-house application that collects user preferences
over web links.

In all these datasets we are given a set of users and items and their corre-
sponding features along with each user’s preferences over item pairs. For each
user and item we augment their feature vectors with their ID index (this is a
common practice in collaborative filtering) and transform their categorical fea-
tures into binary variables. We split each user’s set of preferences into 60% for
training and 40% for testing.

We use the squared exponential covariance kernel with automatic relevance
determination (ARD) (see [18], Page 106) for both users and items and optimize
the hyper-parameters by maximizing the marginal likelihood under the EP ap-
proximation as detailed in section 2.2. Finally, we have set α = 3 (see Equation
(2)) and β = 1 (see Equation (30)) for all experiments on all datasets.

4.1 Datasets

Synthetic Dataset: In this experiment we created a synthetic dataset where the
utility function value for each item is known beforehand and is subsequently used
to generate users’ preferences. A set of hypothetical users and items are created
and identified by their IDs. For each user, items are randomly split into two sets
to indicate the ones that are liked (with a constant utility value of 10) and disliked
(with a constant utility value of 5). From these utility functions we generate full
sets of preferences for 10 items and 50 users. Consequently, for each user, 5 items
have higher utility value and are naturally preferred to the other half.

Facebook Data: This dataset has been created using a Facebook App that
recommends web links to users every day. The users may give their feedback
on the links indicating whether they liked/disliked them. At its peak usage, 111
users had elected to install the Facebook app developed for this project. We also
collected user information consisting of ID, age and gender and the link features
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including count of link’s total “likes”, count of link’s “shares” and count of total
link comments. The Facebook App recommended three links per day to avoid
position bias and information overload. The preference set is built such that the
links that are liked are considered preferred to the ones disliked in the batch of
three recommended each day. We used 20% of users with the highest number of
preferences over 50 links commonly recommended to all users.

Car Preference Dataset Using Amazon Mechanical Turk: We set up
an experiment using Amazon Mechanical Turk2 (AMT) to collect real pair-wise
preferences over users. In this experiment users are presented with a choice of
a car over another based on their attributes. The car attributes used are (1)
body type: sedan, SUV, hatchback, (2) engine capacity: 2.5L, 3.5L, 4.5L, etc,
(3) transmission: manual, automatic, (4) fuel consumption: hybrid, non-hybrid,
and (5) engine/transmission layout: all-wheel-drive (AWD), forward-wheel-drive
(FWD). The dataset has been collected so that 20 unique cars (items) are con-
sidered but users are required to answer only 20% of all 190 possible pair-wise
preferences. We targeted US users mainly to have a localized preference dataset.
For all 60 unique users that participated in this experiment, a set of attributes
in terms of general questions (age range, education level, residential region and
gender) has been collected as user features.

4.2 Results

We evaluate our algorithms in a cross-validation setting using 60% of preferences
for training and 40% for testing and repeated each experiment 40 times. Results
are averaged over the number of test users. We analyze the performance of the
algorithms as a function of the level of sparsification, as given by the percentage
of items selected for inference. The larger the percentage of items selected, the
smaller level of sparsification and the closer the algorithms are to the Full-GP
method. The performances of the different algorithms on all datasets using the
recommendation loss and the 0/1 loss are shown in Figure 2.

Figures 2(a) and 2(b) show the results on the synthetic dataset. Because of the
clear distinction between the items that are preferred for each user, all algorithms
perform very well when using at least 40% of the items. While IVM and VVM-
VOI have very similar performance, VVM-UCB’s performance is outstanding,
requiring only a very small number of items to achieve perfect prediction.

As seen in Figures 2(c) and 2(d), on the Facebook dataset both VVM-VOI
and VVM-UCB outperform (or have equal performance to) IVM when using at
least 30% of the items.

It is interesting to note here that the risk-seeking behavior of VVM-UCB
leads to a better approximation of the Full-GP which is particularly visible
in the Facebook dataset where the number of items are larger. We conjecture
that the excellent performance of VVM-UVB with this larger number of items is
because it manages to quickly find and refine the set of highest value items, more
effectively than even VVM-VOI. This simultaneously lowers recommendation

2 http://mturk.com

http://mturk.com
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(a) Synthetic dataset
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(b) Synthetic dataset
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(c) Facebook dataset
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(e) AMT Car dataset
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(f) AMT Car dataset

Fig. 2. Performance of the sparsification methods in terms of the recommendation
loss (the proportion of items that are incorrectly predicted as the best item for rec-
ommendation) in the first column and the 0/1 loss (percentage of wrongly predicted
preferences) in the second, as a function of the proportion of items selected for spar-
sification. The larger the number of items the lower the level of sparsification and the
closer the algorithms are to the Full-GP method.

loss by finding a near-optimal item and 0/1 loss since the best items can then
be identified with certainty in most pairwise comparisons.

Figures 2(e) and 2(f) show the results on the AMT Car dataset. In this
dataset, where true preferences have been collected, VVM-VOI and VVM-UCB
consistently outperform IVM. Similar to the Facebook results, we conjecture that
VVM-VOI’s and VVM-UCB’s better performance than the IVM (most notably
on 0/1 loss where all preferences matter) stems from the fact that they both
select the potentially best items first and this helps identify the dominant item
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in all pairwise preferences. However it seems that identifying the single best item
among the potentially best items is difficult in this particular dataset, requiring
a large proportion of data to identify the best item with high accuracy.

It is interesting to mention that while VVM-VOI and VVM-UCB outperform
IVM in most cases when using the recommendation loss, a similar trend is seen
when using the 0/1 loss. Although this result may look unexpected, it is impor-
tant to emphasize that neither the VVM or the IVM are designed to optimize
the 0/1 loss. In fact, the risk-seeking nature of the VVM-UCB loss, as a conse-
quence of the exponential transformation of the utility functions, may be better
aligned with the 0/1 loss than the entropic criterion used by the IVM.

Another issue worth mentioning is the computational cost of running the differ-
ent approximation algorithms. As a reference of the time spent by our algorithms
compared to the Full-GP (where no sparsification is done), Figure 3 shows the pre-
diction time for an indicative experiment. We see that – while IVM and VVM-
UCBmay enjoy very similar prediction time and similar structure in the posterior
– sparsification improves prediction time significantly and that all approximation
algorithms have roughly the same computational cost. Small variations as that ob-
servedwhen using 80% of the items can be explained by the different sparsity prop-
erties of the posterior covariance obtainedwhen selecting a distinct subset of items.

20 30 40 50 60

50

60

70

80

90

Percentage of items selected

T
im

e
(s
)

 

 

Full GP
IVM
VVM−VOI
VVM−UCB

Fig. 3. Average prediction time for inference with 200 users and 10 items. The number
calculated as the time consumed to make a series of predictions on the preferences of
the test set.

5 Related Work

Probabilistic models for utility functions in preference learning and elicitation
have previously been proposed in the machine learning community (e.g. [19,20]).
Extensions to non-parametric models have also been developed. In particular,
[21] proposed a preference learning framework based on Gaussian processes and
[22] used this framework for active learning with discrete choice data. Multi-
user GP-based preference models have been given by [23] and [2]. Our method
builds upon the model proposed by [2], where the Laplace method was used to
approximate the posterior.

In standard machine learning settings, low-rank approximations to the Gram
matrix are commonly used by practitioners and researchers (see e.g. Chapter 8
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of [18]) to deal with large datasets. A unifying framework in which most of these
approximations can be formulated has been given by [24]. This framework in-
cludes the fully independent training conditional (FITC) approximation, which
makes better use of all the data and can be combined with our approach to
approximate the covariance at a higher cost. The work proposed in [7] consid-
ers sparsification approaches where the inducing points are latent variables and
their values are optimized within a consistent probabilistic latent variable model.
However, none of these algorithms addresses the sparsification problem from a
decision-theoretic perspective.

Our approach is analogous to the IVM in that we borrow ideas from active
learning in order to carry out sparsification during approximate inference. For
example, upper confidence bounds (UCB) are used in [12] for GP optimization
within the bandit setting. We note that, unlike this latter experimental design
scenario, in our sparsification framework we see the data beforehand and decide
to include it in our approximation afterwards.

An information theoretic active learning algorithm for classification and pref-
erence learning is proposed in [25]. In the preference learning case, this method
exploits the reduction of the preference learning problem to a classification set-
ting [26]. This work is complementary to ours in that we can use it along with the
FITC approximation in order to devise more effective decision-theoretic sparsi-
fication methods for multi-user preference learning. We leave the study of such
an approach for future work.

The most relevant work to ours has been proposed in [11] where the use of loss
functions in Bayesian methods is considered by formulating an EM algorithm
that alternates between variational inference and risk minimization. We take
the idea of bridging the gap between decision theory and approximate Bayesian
inference [11] in a direction that leverages the efficiency of the IVM approach
for GP sparsification, while overcoming its loss-insensitive approximation.

6 Conclusion

We proposed a decision-theoretic sparsificationmethod for Gaussian process pref-
erence learning.We referred to our method as the valuable vector machine (VVM)
to emphasize the importance of considering a loss-sensitive sparsificationapproach.
We show that the IVM’s differential entropy criterion, a value of information crite-
rion, and an upper confidence bound (UCB) criterion can all be recovered in a gen-
eralized decision-theoretic framework by specifying the appropriate loss. Overall,
our approach contributes to the goal of bridging the gap between decision theory
and approximate Bayesian inference in the context of loss-sensitive sparsification
approaches for efficient Gaussian Process preference learning.
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Abstract. Hidden Conditional Random Fields (HCRFs) are discrimi-
native latent variable models which have been shown to successfully learn
the hidden structure of a given classification problem. An infinite HCRF
is an HCRF with a countably infinite number of hidden states, which
rids us not only of the necessity to specify a priori a fixed number of
hidden states available but also of the problem of overfitting. Markov
chain Monte Carlo (MCMC) sampling algorithms are often employed
for inference in such models. However, convergence of such algorithms
is rather difficult to verify, and as the complexity of the task at hand
increases, the computational cost of such algorithms often becomes pro-
hibitive. These limitations can be overcome by variational techniques.
In this paper, we present a generalized framework for infinite HCRF
models, and a novel variational inference approach on a model based on
coupled Dirichlet Process Mixtures, the HCRF–DPM. We show that the
variational HCRF–DPM is able to converge to a correct number of repre-
sented hidden states, and performs as well as the best parametric HCRFs
—chosen via cross–validation— for the difficult tasks of recognizing in-
stances of agreement, disagreement, and pain in audiovisual sequences.

Keywords: nonparametric models, discriminative models, hidden con-
ditional random fields, dirichlet processes, variational inference.

1 Introduction

Over the past decade, nonparametric methods have been successfully applied
to many existing graphical models, allowing them to grow the number of latent
states as necessary to fit the data [1–6]. Infinite HCRFs were first presented
in [7] and since exact inference for such models with an infinite number of pa-
rameters is intractable, inference was based on a Markov chain Monte Carlo
(MCMC) sampling algorithm. Although MCMC algorithms have been success-
fully applied on numerous applications, they have some significant drawbacks:
they are notoriously slow to converge, it is hard to verify their convergence,
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and they often don’t scale well to larger datasets and higher model complexity.
Moreover, the model presented in [7] is not readily able to handle continuous
input features.

In this work, we consider a deterministic alternative to MCMC sampling for
infinite HCRFs with a variational inference [8] approach. Variational inference
will allow us to converge faster, verify convergence and scale without a prohibitive
computational cost. The model we present in this paper allows a countably
infinite number of shared, among labels, hidden states via the use of multiple
Dirichlet Process Mixtures (DPMs). Specifically, we present a novel mean field
variational approach that uses DPM constructions in the model potentials to
allow for the representation of a potentially infinite number of hidden states.
Furthermore, we show that our model, the HCRF–DPM, is a generalization of
the model presented in [7] and is able to handle continuous features naturally.

In the following section, we consicely present the theoretical background nec-
essary to understand this paper. We present in Section 3 our variational HCRF–
DPM model. Finally, we evaluate our model in Section 4.2, and conclude in
Section 5.

2 Theoretical Background

The HCRF–DPM, like many other infinite models, relies on DPMs. We present
in this section a brief introduction to Dirichlet Processes and Hidden Conditional
Random Fields.

2.1 Dirichlet Processes

A Dirichlet Process (DP) is a distribution of distributions, parameterized by
a scaling parameter α and a probability measure Ξ. The latter is the basis
around which the distributions G ∼ DP(α,Ξ) are drawn, with variability gov-
erned by the α parameter. [9] presented the so–called “stick–breaking” construc-
tion for DPs, which is based on random variables (β′

k)
∞
k=1 and (hk)

∞
k=1, where

β′
k|α,Ξ ∼ Beta(1, α) and hk|α,Ξ ∼ Ξ:

βk = β′
k

k−1∏
l=1

(1 − β′
l) G =

∞∑
k=1

βkδhk
, (1)

where δ is the Dirac delta function. By letting β = (βk)
∞
k=1 we abbreviate this

construction as β|α ∼ GEM(α). A Dirichlet Process Mixture (DPM) model is
a hierarchical Bayesian model that uses a DP as a nonparametric prior:

G|α,Ξ ∼ DP(α,Ξ), ct | G ∼ G, st ∼ p(st|ct) , (2)

where (st)
T
t=1 is a dataset of size T , governed by a distribution conditioned on

(ct)
T
t=1, auxiliary index variables that get assigned each to one of the clusters

(hk)
∞
k=1. As new datapoints are drawn, the number of components in this mixture

model grows. In the model we present in this paper, as we explain later, we
employ a number of DP priors coupled together at the data generation level, i.e.
st above is a function of auxiliary index variables drawn from all different DPs.
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2.2 Finite Hidden Conditional Random Fields

HCRFs —discriminative undirected models that contain hidden states— were
first presented in [10] and used to capture temporal dependencies across frames
and recognize different gesture classes. They did so successfully by learning a
state distribution among the different gesture classes in a discriminative manner,
allowing them to not only uncover the distinctive configurations that uniquely
identify each class, but also to learn a shared common structure among the
classes. Conditional Random Fields and HCRFs can be defined in arbitrary
graph structures but in our paper, driven by our application field, we assume
data to be sequences that correspond to undirected chains. Our work, however,
can be readily applied to tree–structured models.

We represent T observations as X = [x1,x2, . . . ,xT ]. Each observation at
time t ∈ {1, . . . , T } is represented by a feature vector ft ∈ �d, where d is the
number of features, that can include any features of the observation sequence. We
wish to learn a mapping between observation sequence X and class label y ∈ Y,
where Y is the set of available labels. The HCRF does so by estimating the condi-
tional joint distribution over a sequence of latent variables s = [s1, s2, . . . , sT ],
each of which is assigned to a hidden state hk ∈ H, and a label y, given X.
One of the main representational power of HCRFs is that the latent variables
can depend on arbitrary features of the observation sequence. This allows us to
model long–range contextual dependencies: st, the latent variable at time t, can
depend on observations that happened earlier or later than t. An HCRF models
the conditional probability of a class label given an observation sequence by:

p(y | X, θ) =
∑
s

p(y, s | X, θ) =
∑

s F(y, s,X, θ)∑
y′∈Y,s F(y′, s,X, θ)

. (3)

The potential function F(y, s,X, θ) ∈ � is parameterized by θ, which measures
the compatibility between a label y, a sequence of observations X and a config-
uration of the latent variables s. The model is discriminative because it doesn’t
model a joint distribution that includes input X, but it only models the distri-
bution of a label y conditioned on X. The graph of a linear–chain HCRF is a
chain where each node corresponds to a latent variable st at time t. For such a
model, the potential function is usually defined as:

F(y, s,X, θ) = exp

{
T∑
t=1

d∑
i=1

θx(st, i)ft(i) + θy(st, y) +

T∑
t=2

θe(st, st−1, y)

}
(4)

In this paper, we use the notation θx(hk, i) to refer to the weight that measures
the compatibility between the feature indexed by i and state hk ∈ H. Similarly,
θy(hk, y) stand for weights that correspond to class y and state hk, whereas
θe(hk, h

′, y) measure the compatibility of y with a transition from h′ to hk.
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Fig. 1. Factor graph representation of our HCRF–DPM

3 Hidden Conditional Random Fields with Coupled
Dirichlet Process Mixtures

For an infinite HCRF we allow an unbounded number of potential hidden states
in H. This becomes possible, by introducing random variables {πx(hk|i)}∞k=1,

{πy(hk|y)}∞k=1, {πe(hk, y|ha)}
∞,|Y|
k=1,y=1 for an observation feature indexed by i,

label y, and an assignment st−1 = ha. These new random variables are drawn
by distinct processes that are able to model such quantities and are subsequently
incorporated in the node and edge potentials of our HCRF. We present in this
paper the HCRF–DPM, a model that uses DPMs to define these random quanti-
ties (see its factor graph representation in Fig. 1). These variables, even though
drawn by distinct processes, are coupled together by a common latent variable
assignment in our graphical model. We redefine our potential function F from
(4) as follows:

F(y, s,X, θ) = exp

{
T∑
t=1

d∑
i=1

θx(st, i)ft(i) log πx(st|i) + θy(st, y) log πy(st|y)+

T∑
t=2

θe(st, st−1, y) log πe(st, y|st−1)

}
. (5)

We assume that random variables {πx(hk|i)}∞k=1, {πy(hk|y)}∞k=1,

{πe(hk, y|ha)}∞,|Y|
k=1,y=1 are between 0 and 1. These are in effect the quan-

tities that will allow the model to ‘select’ an appropriate number of useful
hidden states for a given classification task. ft are nonnegative features extracted
from the observation sequence X and, as before, they can include arbitrary
features of the input. We assume that θ are nonnegative parameters and, as
in (4), they model the relationships between hidden states and features (θx),
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labels (θy) and transitions (θe). These nonnegativity constraints for θ and f are
essential in this model, since the π-quantities are random variables and influence
the probabilities of the hidden states: a negative parameter or feature would
make an otherwise improbable state very likely to be chosen. Moreover, these
constraints ensure compliance with the positivity constraints of our variational
parameter updates (25)-(30), as we shall see later in this section. Finally, it is
important to note that the positivity of θ is not theoretically restrictive for our
model due to the HCRF normalization factor 1

Z(X) in (3) where

Z(X) =
∑
y′∈Y,s

F(y′, s,X, θ) . (6)

The HCRF–DPM model is an infinite HCRF where the quantities

{πx(hk|i)}∞k=1, {πy(hk|y)}∞k=1, {πe(hk, y|ha)}
∞,|Y|
k=1,y=1 in (5) are driven by cou-

pled DPMs. It is important to understand that for the DPMs driving the πe
quantities in the edge features, hk and y are treated as a single random variable
–their product– ωμ = {hk, y} that effectively has a state–space of size |Y| × |H|,
still an infinite number. According to the stick–breaking properties of DPs,
we construct π = {πx,πy,πe} conditioned on a new set of random variables
π′ = {π′

x,π
′
y,π

′
e} that follow Beta distributions:

π′x(hk|i) ∼ Beta(1, αx), πx(hk|i) = π′x(hk|i)
k−1∏
j=1

(1− π′x(hj |i)) (7)

π′y(hk|y) ∼ Beta(1, αy), πy(hk|y) = π′y(hk|y)
k−1∏
j=1

(
1− π′y(hj |y)

)
(8)

π′e(ωμ|ha) ∼ Beta(1, αe), πe(ωμ|ha) = π′e(ωμ|ha)
μ−1∏
j=1

(1− π′e(ωμ|ha)) (9)

This process can be made clearer by examining Fig. 2, where we visualize the
stick breaking construction of an HCRF–DPM model with 2 observation fea-
tures, 3 labels, and 10 ‘important’ hidden states. The πe-sticks have an impor-
tant —for the implementation of our model— difference to the πx and πy–sticks
in that the hidden states are intertwined with the labels, with each stick piece
representing an ω–state. This means there are |Y| such states corresponding to
one h–state. This becomes particularly important later on when we calculate our
variational updates.

By using (5) the sequence of latent variables s = {s1, ...sT } can then be
generated by the following process:

1. Draw π′x|αx ∼ Beta(1, αx), π
′
y|αy ∼ Beta(1, αy), π

′
e|αe ∼ Beta(1, αe)

2. Calculate π from (7)-(9). Note that this will only need to be calculated for
a finite number of hidden states, due to our variational approximation.

3. For the tth latent variable, using (5) we draw
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Fig. 2. Visualization of the π-‘sticks’ used to construct the infinite states in our HCRF–
DPM. The fictitious model presented here has 2 observation features f(1), f(2), 3 labels
y1, y2, y3 and fewer than 10 important hidden states h1, h2, h3 . . . . Each ‘stick’ sums
up to 1, and the last piece always represents the sum of the lengths that correspond
to all hidden states after the 10th state. Notice that for the πe-‘sticks’ this corresponds
to 30 ω–states. For example πe(h1, y3|h2) controls the probability of transitioning from
h2 to h1 in a sequence with label y3. See text for more details.
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st|{π′
x,π

′
y,π

′
e, st−1, y,X} ∼Mult

(
exp
{ d∑
i=1

θx(st, i)ft(i) log πx(st|i)+

θy(st, y) log πy(st|y)+

θe(st, st−1, y) logπe({st, y}|st−1)
})
(10)

Rather than expressing the model in terms of π, we use π′ = {π′
x,π

′
y,π

′
e}

resulting in the folowing joint distribution that describes the HCRF–DPM:

p(y, s,π′,X, θ) = p(y, s | π′,X, θ)p(π′
x)p(π

′
y)p(π

′
e) (11)

with

p(y, s | π′,X, θ) =
1

Z(X)
F(y, s,π′,X, θ) (12)

where Z(X) =
∑
y′∈Y,s F(y′, s,π′,X, θ). We assume independence of all π′ vari-

ables above, so for example p(π′
x) =

∏∞
k=1

∏d
i=1 π

′
x(hk|i).

Comparison with Previous Work. It is important at this stage to compare
our model described by (5) with the MCMC model (IHCRF–MCMC) presented
in [7]. The latter work defined potentials for each of the relationships between
hidden states and features, labels and transitions and the potential function F
as their product along the model chain:

F(y, s,X) = Fx(s,X)Fy(y, s)Fe(y, s) (13)

Fx(s,X) =

T∏
t=1

d∏
i=1

πx(st|i)ft(i) (14)

Fy(y, s) =
T∏
t=1

πy(st|y) (15)

Fe(y, s) =
T∏
t=2

πe(y, st|st−1) (16)

The quantities πx,πy,πe above are conceptually the same as in our model,
except for the fact that in [7] they have Hierarchical Dirichlet Process (HDP)
priors instead of DP priors, as we do in this paper.1

1 Using HDP priors allows separate DPMs to be linked together via an identical base
probabilistic measure, which is itself a DP. It would be interesting to use such priors
for our model, but we were able to obtain satisfactory results without introducing
higher complexity and additional hyperparameters into the variational model we ex-
perimented with. Notice that our model allows for such flexibility: using HDP priors
would simply change the updates for our variational coordinate descent algorithm.
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The potential function (13) above can be rewritten as follows:

F(y, s,X) = exp

{
T∑

t=1

d∑
i=1

ft(i) log πx(st|i) + log πy(st|y) +
T∑

t=2

log πe(st, y|st−1)

}
(17)

A comparison between (17) and (5) makes it clear that our model is a generaliza-
tion of the model presented in [7], which assumes, according to our framework,
that θ-parameters are set to 1. The introduction of these parameters is not re-
dundant, but allows for a more powerful and flexible models. Also, when dealing
with classification problems involving continuous observation features using (5)
for the potential function of an infinite HCRF is more suitable than (17), as we
show in the experimental section. In those cases it is known that θ–parameters
are of particular importance as they are able to capture the scaling of each in-
put feature. The former model is not guaranteed to perform well unless some
non–trivial normalization is applied on the observation features.

3.1 Variational Inference for the HCRF–DPM

Since inference on our model (11) is intractable, we need to approximate the
marginal probabilities along the chain of our graphical model, and the π–
quantities in (5). We shall do so with a mean–field variational inference approach.
We use the following approximation for the joint distribution of our model:

q(y, s,π′,X) = q(y, s|X)q(π′
x)q(π

′
y)q(π

′
e) (18)

where,

q(y, s|X) = q(y, s1|X)

T∏
t=2

q(y, st|st−1,X)

=

d∏
i=1

q(s1|i)q(s1|y)
T∏
t=2

d∏
i=1

q(st|i)q(st|y)q(st, y|st−1) . (19)

Each individual approximate q(π′x), q(π′y), q(π′e) follows a Beta distribution with
variational parameters τx, τ y, τ e respectively. Explicitly, for features indexed by
i, labels indexed by y, and hidden states indexed by k, k′:

q(π′x(hk|i)) = Beta (τx,1(k, i), τx,2(k, i)) (20)

q(π′y(hk|y)) = Beta (τy,1(k, y), τy,2(k, y)) (21)

q(π′e(y, hk|hk′)) = Beta (τe,1(y, k, k
′), τe,2(y, k, k′)) (22)

We approximate all π variables by employing a truncated stick–breaking rep-
resentation which approximates the infinite number of hidden states with a finite
number L [11]. This is the crux of our variational approach, and it effectively
means that we set a truncation threshold L, above which the above quantities
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are set to 0: ∀k > L, q(π′x(hk|i)) = 0, q(π′y(hk|y)) = 0, q(π′e(y, hk|hk′)) = 0. Note
that using this approximation is statistically rather different from using a finite
model: an HCRF–DPM simply approximates the infinite number of states and
will still reduce the number of useful hidden states to something smaller than
L. It is finally important to stress that by constraining our θ–parameters and
observation features to be positive, we effectively make the number of the θ–
parameters that matter finite: changing a θ–parameter associated with a hidden
state k > L will not change our model.

3.2 Model Training

A trained variational HCRF–DPM model is defined as the set of optimal param-
eters θ∗ and optimal variational parameters τ ∗. In this work we obtain these
with a training algorithm that can be divided in two distinct phases: (i) the
optimization of our variational paramaters through a coordinate descent algo-
rithm using the updates derived below and (ii) the optimization of parameters θ
through a gradient descent method. Although it would be possible to have a fully
Bayesian model with θ being random variables in our model, inference would
become more difficult. Moreover, having a single value for our θ parameters is
good for model interpretability and makes the application of a trained model to
test data much easier.

Phase 1: Optimization of Variational Parameters τ . Now that we have
defined an approximate model distribution in (18), we can approximate the
necessary quantities for our inference. These approximations, as one can see later
in this section, depend solely on our variational parameters τ . We calculate those
by minimizing the Kullback-Liebler divergence (KL) between approximate and
actual joint distributions of our model, (11) and (18), using a coordinate descent
algorithm:

KL[q||p] = logZ(X)− 〈logF(y,x,π′,X)p(π′)〉q(y,s,π′|X)

+ 〈log q(y, s|X)q(π′)〉q(y,s,π′|X) (23)

where 〈·〉q is the expectation of · with respect to q. Thus, the energy of the
configuration of our random variables y, s, and π′ is logF(y,x,π′,X)p(π′) and
the free energy of the variational distribution:

L(q) = −〈logF(y,x,π′,X)p(π′)〉q(y,s,π′|X) + 〈log q(y, s|X)q(π′)〉q(y,s,π′|X)

(24)
Since logZ(X) is constant for a given observation sequence, minimizing the free
energy L(q) minimizes the KL divergence.

We will obtain the variational updates for the two groups of latent variables
q(y, s|X) and q(π′) by setting the partial derivative with respect to each group
of L(q) to 0 and solving for the approximate distribution of each group of latent
variables. The updates for the Beta parameters of q(π′) from (20)-(22) are:
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τx,1(k, i) =
∑
t

ft[i]θx(k, i)q(st = hk|i) + 1 (25)

τx,2(k, i) =
∑
t

ft[i]θx(k, i)q(st > hk|i) + αx (26)

τy,1(y, i) =
∑
t

θy(k, y)q(st = hk|y) + 1 (27)

τy,2(y, i) =
∑
t

θy(k, i)q(st > hk|y) + αy (28)

τe,1(y, k, k
′) =

∑
t

θe(k, k
′, y)q(st = hk, y, st−1 = hk′ ) + 1 (29)

τe,2(y, k, k
′) =

∑
t

θe(k, k
′, y)q(st > hk, y, st−1 = hk′ ) + αe (30)

Quantities q(st = hk|i), q(st = hk|y), and q(st = hk, y, st−1 = hk′) can be ob-
tained by the forward–backward algorithm. The latter requires only conditional
approximate likelihoods q(st = hk|i, y, hk′), which can be also be calculated by
setting the derivative of L(q) to zero:

q(st = hk|i, y, hk′) ∝ exp

{

ft(i)θx(k, i)

⎛⎝〈log π′x(st = hk|i)〉q(π′) +

L∑
j=k+1

〈log(1− π′x(st = hj |i))〉q(π′)

⎞⎠
θy(k, y)

⎛⎝〈log π′y(st = hk|y)
〉
q(π′)

+

L∑
j=k+1

〈
log(1− π′y(st = hj |y))

〉
q(π′)

⎞⎠
θe(k, k

′, y)

(
〈log π′e(st = hk, y|st−1 = hk′)〉q(π′) +

L∑
j=k+1

〈log(1− π′e(st = hj , y|st−1 = hk′))〉q(π′)

)}
(31)

Since all π′ follow a Beta distribution, the expectations above are known.

Phase 2: Optimization of Parameters θ. We find our optimal parameters
θ∗ = argmax log p(y|X, θ) based on a training set by using a common HCRF
quasi–Newton gradient descent method (LBFGS), which requires the gradient
of the log–likelihood with respect to each parameter. These gradients for our
model are:
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∂ log p(y|X, θ)
∂θx(k, i)

=
∑
t

p(st = hk|y,X, θ)ft(i) log πx(hk|i)−∑
y′∈Y,t

p(st = hk, y
′|X, θ)ft(i) log πx(hk|i) (32)

∂ log p(y|X, θ)
∂θy(k, y)

=
∑
t

p(st = hk|y,X, θ) log πy(hk|y)−∑
y′∈Y,t

p(st = hk, y
′|X, θ) log πy(hk|y) (33)

∂ log p(y|X, θ)
∂θe(k, k′, y)

=
∑
t

p(st = hk, st−1 = hk′ |y,X, θ) log πe(hk, y|hk′)

−
∑
y′∈Y,t

p(st = hk, st−1 = hk′ , y
′|X, θ) log πe(hk, y|hk′) (34)

We make this gradient descent tractable by using the variational approximations
for the intractable quantities in the above equations. However, there is a signif-
icant difference with other CRF and HCRF models that use such techniques to
find optimal parameters: we are constrained to only positive θ-parameters Since
we are using a quasi–Newton method with Armijo backtracking line search, we
can use the gradient projection method of [12, 13] to enforce this constrain. Fi-
nally, it is important to stress here that, although our model includes parameters
that are not treated probabilistically, we have not seen signs of overfitting in our
experiments (see Fig. 4).

4 Experimental Results

4.1 Performance on a Synthetic Dataset with Continuous Features

In an effort to demonstrate the ability of our HCRF–DPM to model sequences
with continuous features correctly, we created a synthetic dataset, on which we
compared its performance to that of the IHCRF–MCMC model [7]. The simple
dataset was generated by two HMMs, with 4 Gaussian hidden states each. Two
of the states were shared between the two HMMs, resulting in a total of 6 unique
hidden states, out of a total of 8 for the two labels.

We trained 10 randomly initialized models of the finite HCRF, IHCRF–
MCMC and HCRF–DPM on 100 training sequences and chose in each case
the best one based on their performance on an evaluation set of 100 different se-
quences. The performance of the models was finally evaluated by comparing the
F1 measure achieved on a test set of 100 other sequences. All sets had an equal
number of samples from each label. The IHCRF–MCMC model was unable to
solve this simple two–label sequence classfication problem with continuous-only
input features: it consistently selected Label 1. On the other hand, the finite
HCRF and the new HCRF–DPM model were successful in achieving a perfect
F1 score of 100% on the test set (see Table 1).
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4.2 Application to the Audiovisual Analysis of Human Behavior

The problem of automatically classifying episodes of high–level emotional states,
such as pain, agreement and disagreement, based on nonverbal cues in audiovi-
sual sequences of spontaneous human behavior is rather complex [14]. Although
humans are particularly good at interpreting such states, automated systems
perform rather poorly. Infinite models are particularly attractive for modeling
human behavior as we usually cannot have a solid intuition regarding the num-
ber of hidden states in such applications. Furthermore, it opens up the way of
analyzing the hidden states these models converge to, which might provide social
scientists with valuable information regarding the temporal interaction of groups
of behavioral cues that are different or shared in these behaviors. We therefore
decided to evaluate our novel approach on behavior analysis and specifically the
recognition of agreement, disagreement and pain in recordings of spontaneous
human behavior. We expected that our HCRF–DPM models would find a good
number of shared hidden states and perform at least as well as the best cross–
validated finite HCRF and IHCRF–MCMC models.

In this work we used an audiovisual dataset of spontaneous agreement and
disagreement and a visual dataset of pain to evaluate the performance of the
proposed model on four classification problems: (1) ADA2, agreement and dis-
agreement recognition with two labels (agreement vs. disagreement); (2) ADA3,
agreement and disagreement recognition with three labels (agreement vs. dis-
agreement vs. neutral); (3) PAIN2, pain recognition with two labels (strong pain
vs. no pain); and (4) PAIN3, pain recognition with three labels (strong pain vs.
moderate pain vs. no pain). We show that (1) our model is capable of finding
a good number of useful states; and (2) HCRF–DPMs perform better than the
best performing finite HCRF and IHCRF–MCMC models in all of these prob-
lems with the exception of ADA3, where the performance of the HCRF–DPM
is similar to that of the finite model.

The dataset of agreement and disagreement comprises 53 episodes of agree-
ment, 94 episodes of disagreement, and 130 neutral episodes of neither agreement
or disagreement. These feature 28 participants and they occur over 11 political
debates. We used automatically extracted prosodic features (continuous), and
manually annotated hand and head gestures (binary). We compared the finite
HCRF and the IHCRF–MCMC to our HCRF–DPM based on the F1 measure
they achieved. In each case, we evaluated their performance on a test set consist-
ing of sequences from 3 debates. We ran all models with 60 random initializations,
selecting the best trained model each time by examining the F1 achieved on a
validation set consisting of sequences from 3 debates. It is important to stress
that each sequence belonged uniquely to either the training, the validation, or
the testing set.

The database of pain we used includes 25 subjects expressing various levels of
pain in 200 video sequences. Our features were based on the presence (binary)
of each of the 45 observable facial muscle movements–Action Units (AUs) [15].
For our experiments, we compared the finite HCRF and the IHCRF–MCMC
to our HCRF–DPM based on the F1 measure they achieved. We evaluated the
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performance of the models on 25 different folds (leave–7–subjects–out for test-
ing). In each case we concatenated the predictions for every test sequence of
each fold and calculated the F1 measure for each label. The measure we used
was the average F1 over all labels. We ran all experiments with 10 random ini-
tializations, selecting the best model each time by examining the F1 achieved
on a validation set consisting of the sequences from 7 subjects. In every fold our
training, validation and testing sets comprised not only of unique sequences but
also of unique subjects.
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Fig. 3. Hinton Diagrams of π-quantities in node and edge features of variational HCRF-
DPM models with truncation level L = 10 for ADA2. The first column presents the π-
quantities for node features: πx for observation features in green, πy for labels in black.
The second and third columns present the πe-quantities for labels 1 and 2 respectively.
See text for additional details.

For all four tasks, in addition to the random initializations the best HCRF
model was also selected by experimenting with different number of hidden
states and different values for the HCRF L2 regularization coefficient. Specif-
ically, for each random initialization we considered models with 2, 3, 4, and 5
hidden states and an L2 coefficient of 1, 10, and 100. This set of values for
the hidden states was selected after preliminary results deemed a larger number
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of hidden states only resulted in severe overfitting for all problems. We did not
use regularization for our HCRF-DPM models and all of them had their trun-
cation level set to L = 10 and their hyperparameters to s1 = 1000 and s2 = 10.
Finally, our finite HCRF models were trained with a maximum of 300 iterations
for the gradient ascent method used [10], whereas our HCRF-DPM models were
trained with a maximum of 1200 variational coordinate descent iterations and
a maximum of 600 iterations of gradient descent. All IHCRF–MCMC models
were trained according to the experimental protocol of [7]. They had their ini-
tial number of represented hidden states set to K = 10, they were trained with
100 sampling iterations, and were tested by considering 100 samples.
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Fig. 4. HCRF–DPM F1 measure (higher F1 means higher perfomance) achieved on the
validation set of ADA2. Our model does not show signs of overfitting: the F1 achieved
on the validation set does not decrease as the truncation level L, and thus the number
of θ–parameters, increases.

In Fig. 3 we show the learned nonparametric π parts of the features of the
best HCRF–DPM ADA2 model, based on F1 achieved on our validation set, for
truncation level L = 10. Each row is a separate DPM; with the DPMs for the
edge potentials spanning across labels. Recall from Fig. 2 that these quantities
have to sum to 1 across each row. As one can see in these figures, setting the
truncation level L = 10 was a reasonable choice. Paying particular attention to
the first column (node features), it seems that HCRF–DPMs converge to a small
number of utilized hidden states —the equivalent table for a finite HCRF would
be dense with each state being used. One can see unique and shared states, a
feature of HCRFs that makes them particularly appealing for classification tasks.
Fig. 3a clearly shows that the model uses only two states, one of them (state
1) being shared among both labels –features 12 and 13 in this Hinton diagram–
and another (state 5) being used only by label 2.

Since we have introduced parameters θ it is sensible to test our methodology
for signs of overfitting. The only value linked with the number of our parameters
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is our truncation level L: their number increases as we increase L. In Fig. 4 we
show the F1 measure achieved on the validation set of ADA2 for HCRF–DPMs
with L=10, 20, 30, 40. This graph is a strong indication that HCRF–DPMs do
not show signs of overfitting. We would see such signs if by increasing L the
performance (F1 measure) for our validation set would decrease. However, as
we see here, performance on the validation sets remains roughly the same as we
increase L.

Table 1. F1 measure achieved by our HCRF-DPM vs. the best, in each fold of each
problem, finite HCRF and IHCRF-MCMC. Synthetic: Two–label classification for
an HMM–generated dataset with continuous–only features ADA2: Two–label classi-
fication for the Canal9 Dataset of agreement and disagreement; ADA3: Three-label
classification for the Canal9 Dataset; PAIN2: Two–label classification for the UNBC
dataset of shoulder pain; PAIN3: Three–label classification for the UNBC dataset

Dataset Finite HCRF IHCRF–MCMC Our HCRF–DPMs

Synthetic 100.0% 33.3% 100.0%

ADA2 58.4% 61.2% 76.1%
ADA3 50.7% 60.3% 49.8%

PAIN2 83.9% 88.4% 89.2%
PAIN3 53.9% 57.7% 59.0%

Table 1 shows the average over all labels of the F1 measure on the test sets for
all our problems. Since the nonparametric model structure is not specified a priori
but is instead determined from our data, the HCRF–DPM model is more flexible
than the finite HCRF and is able to achieve better performance in all cases,
with the exception of 3-label classification problem of agreement/disagreement
(ADA3), where the HCRF–DPM seems to perform almost equally well with the
finite model. The HCRF–DPM perfomed better than the IHCRF–MCMC in all
problems with the exception of ADA3. An analysis of a IHCRF–MCMC model
trained for ADA3 shows that the model ignored the two continuous dimensions
and used only the binary features to model the dataset, which evidently resulted
in slightly better performance.

5 Conclusion

In this paper we have presented a novel variational approach to learning an
infinite Hidden Conditional Random Field, the HCRF–DPM, a discriminative
nonparametric sequential model with latent variables. This deterministic ap-
proach overcomes the limitations of sampling techniques, like the one presented
in [7]. We have also shown that our model is in fact a generalization of the
IHCRF–MCMC presented in [7] and is able to handle sequence classification
problems with continuous features naturally. In support of the latter claim, we
conducted an experiment with a Gaussian HMM–generated synthetic dataset of
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continuous–only features which showed that HCRF–DPMs are able to perform
well on classification problems where the IHCRF–MCMC fails. Furthermore, we
conducted experiments with four challenging tasks of classification of naturalis-
tic human behavior. HCRF–DPMs were able to find a good number of shared
hidden states, and to perform well in all problems, without showing signs of
overfitting.
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Abstract. Blind source separation algorithms are based on various sep-
aration criteria. Differences in convolution kernels of the sources are com-
mon assumptions in audio and image processing. Since it is still an ill
posed problem, any additional information is beneficial. In this contri-
bution, we investigate the use of sparsity criteria for both the source
signal and the convolution kernels. A probabilistic model of the problem
is introduced and its Variational Bayesian solution derived. The sparsity
of the solution is achieved by introduction of unknown variance of the
prior on all elements of the convolution kernels and the mixing matrix.
Properties of the model are analyzed on simulated data and compared
with state of the art methods. Performance of the algorithm is demon-
strated on the problem of decomposition of a sequence of medical data.
Specifically, the assumption of sparseness is shown to suppress artifacts
of unconstrained separation method.

1 Introduction

The aim of blind source separation is to recover the original form of signals
that can be observed only via their superposition. A classical example of such a
situation is the cocktail party problem [9], where multiple speakers are recorded
by multiple microphones. The aim is to separate audio signal of the individual
speakers. This requires specification of the separability criteria. One such criteria
is the assumption of temporal properties of the source, expressed via different
convolution kernels [15]. Since the convolution kernels are also unknown, the
problem is that of blind deconvolution within blind separation. Algorithms for
this problem include optimization of information theoretic measures [4] and the
EM algorithm [2]. In the image processing literature, the problem is closely
related to the multi-channel blind deconvolution [18].

The presented algorithm was primarily motivated by application in medi-
cal image analysis which has the following specific issues: (i) the sources are
physiological organs which will be further analyzed by medical experts for final
diagnosis, and (ii) poor signal to noise conditions, where a weak signal is hard to
separate from the noise. The medical experts expect that the results will respect
physiological nature which is very hard to formalize mathematically. The model
of source activity by convolution of common input function is one of a few math-
ematical models that is generally accepted. The assumption of sparsity is also

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part II, LNAI 8189, pp. 548–563, 2013.
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natural in this application. However, such assumptions are not unique to med-
ical imaging and the resulting algorithm may be used in any other application
domain.

The poor signal-to-noise conditions of the domain motivated our choice of
the Bayesian approach. It has been successfully applied in situations when the
number of the sources is lower than the number of the channels, [13]. The ability
to marginalize provides an automatic Occam’s razor that suppresses the spuri-
ous sources and thus provides automatic denoising. Since exact marginalization
may not be always possible, approximate methods of Bayesian calculus has been
developed. One such formalism is the Variational Bayes method [5,16]. Its use
for selection of the number of principal components has been demonstrated in
[5], via the use of priors with unknown variance. In connection with the Varia-
tional Bayes approximation it favors sparse solutions. Since its introduction, this
mechanism has been used in image deconvolution [19], or sparse blind source sep-
aration [17]. We introduce this modeling assumption on the convolution kernel
and the mixing matrix.

The resulting algorithm is applied to the problem of image sequence decom-
position. This problem has been studied independently for many years [3,6],
however, it has been recognized as a special case of the blind source separation
problem [13,16]. The specific nature of this problem is in interpretation of the
resulting components which are further used for medical diagnosis. Even a small
improvement in the estimation may have significant impact on the diagnostic
quality of the results.

2 Sparsity in Bayesian Analysis

The Bayesian inference is concerned with evaluation of the full posterior density
of the parameters θ from the observed data D. It requires a parametric prob-
abilistic model of the data in the form of a probability distribution, p (D|θ),
conditioned by knowledge of the parameters, θ. The prior state of knowledge of
θ is quantified by the prior distribution, p(θ). Our state of knowledge of θ after
observing D is quantified by the posterior distribution, p(θ|D). These functions
are related via Bayes’ rule:

p (θ|D) = p (θ, D)
p (D)

= p (D|θ) p (θ)
∫

p (D|θ) p (θ) dθ
, (1)

where integration in the denominator of (1) is over the whole support of the
involved distributions. We will refer to p (θ, D) as the joint distribution of pa-
rameters and data, or, more concisely, as the joint distribution.

2.1 The Variational Bayes Approximation

The Variational Bayes (VB) approximation is a deterministic technique for ap-
proximation of the Bayes rule (1), in the sense of the following theorem [16].
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Theorem 1. Let p (θ|D) be the posterior distribution of multivariate parameter,
θ = [θ′

1, θ′
2]′, and p∗ (θ|D) be an approximate distribution restricted to the set of

conditionally independent distributions:

p∗ (θ|D) = p∗ (θ1, θ2|D) = p∗ (θ1|D) p∗ (θ2|D) . (2)

Any minimum of the Kullback-Leibler divergence from p∗ (·) to p (·)

KL(p∗ (θ|D) ||p (θ|D)) =
∫

p∗ (θ|D) ln p (θ|D)
p∗ (θ|D)

dθ, (3)

is achieved when p∗ (·) = p̃ where

p̃(θi) ∝ exp
(

Ep̃(θ/i) (ln (p (θ, D)))
)

, i = 1, 2. (4)

Here, θ/i denotes the complement of θi in θ and Ep(θ)(g(θ)) denotes expected
value of function g(θ) with respect to distribution p(θ).

Theorem 1 is also known as mean-field approximation [14] and provides a pow-
erful tool for approximation of joint pdfs in separable form [16]:

ln p (θ1, θ2, D) = g (θ1, D)′
h (θ2, D) . (5)

Here, g (θ1, D) and h (θ2, D) are finite-dimensional vectors. Using (5) in (4),

p̃ ∝ exp
(

g (θ1, D)′ ̂h(θ2, D)
)

, (6)

where ĥ(·) = Ep̃(θ2|D)(h (·)) are the moments of θ2, and similarly for θ1. In cases,
where (6) are from exponential family, h(·) form its sufficient statistics [8]. An
iterative moment-swapping algorithm is implied [16].

2.2 Automatic Relevance Determination

The mechanism of automatic relevance determination (ARD) is based on joint
estimation of the parameters of the prior (hyper-parameters) with the data [5].
Specifically, the prior of an unknown vector parameter θ that is assumed to have
elements redundant for the observed data is chosen as

p(θ|ω) = N (0, diag(ω)), p(ωi) = G(α0, β0), ∀i, (7)

where ω is the vector of unknown precisions (inverse variances) of the prior
on the parameter θ and it is assumed to have conjugate Gamma prior with
scalar parameters α0, β0. The Bayes rule is then used to estimate both θ and ω.
When the parameter is redundant, the expected value of the prior variance ψ ap-
proaches zero. This effect is known as the ARD principle and it is demonstrated
on the following example.
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Example 1 (Multiplicative scalar decomposition). Consider the following model
of scalar measurement d being explained as a product of two unknown parameter,
a and x:

d = ax + e, e ∼ N (0, re). (8)

where variance re is assumed to be known. The likelihood function of the model
parameters is

p(d|a, x) = N (ax, re), (9)

and has maximum anywhere on the manifold defined by the signal estimate:

âx = d. (10)

Separation of the signal from the noise is possible only with additional as-
sumptions. One such assumption is the choice of prior on the x variable as
p(x) = N (0, rx), with a chosen variance rx. Maximum of the marginal p(a|d) =∫

p(d|a, x, re)p(x)dx is then

âmarg =

⎧
⎨

⎩

√
d2−re√

rx
if d >

√
re,

0 otherwise.
(11)

Note the inference bound on the signal, d >
√

re, i.e. the signal should be higher
than the standard deviation of the noise. This bound enforces sparsity of the
solution since estimates of the parameters for a weak signal are zeros.

The ARD is based on introduction of the hyper-parameters (7) on any vari-
able, a or x, or both. For example, a fixed prior on a, p(a) = N (0, σa), and the
ARD prior on x, i.e. p(x|ωx) = N (0, ω−1

x ), with unknown precision ωx with prior
p(ωx) = G(α0, β0), yields the variational posteriors of the form

p̃(x|d) = N (x̂, σx), p̃(ωx|d) = G(3
2

, γx), p̃(a|d) = N (â, σa) (12)

with shaping parameters satisfying the following set of implicit equations:

x̂ = σx

re
dâ, σx = ((â2 + σa)r−1

e + 3
2γx

)−1,

â = σa

re
dx̂, γx = σx + x̂2. (13)

Numerical solution of this set is achieved by the iterative algorithm [1]. We
choose an initial value of σ

(0)
x and â(0) and then iteratively evaluate equations

(13) in the order: x̂, γx, σx, â.
We note the following:

– The choice of σa fixes the value of â at a constant for all significant values
of d, and the free parameter that grows with d is the x̂.
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Fig. 1. Product of expected values â and x̂ of variational posteriors from (12) for two
initial conditions of σ

(0)
x . The dashed line denotes maximum likelihood solution (10).

– The product of the âx̂ is displayed in Fig. 1 for a range of values d. Note
the presence of the inference bound similar to (11). In this case, the esti-
mates are zeros for d < 2√

re, i.e. the ARD property of the VB inference
enforces sparse estimates more aggressively than the marginalization. We
conjecture that this is a consequence of the variance underestimation of the
VB approximation [12].

– The converged results are insensitive to the choice of the â(0) parameter,
and to some extent even to the σ

(0)
x parameter. The hyper-parameters α, β

of both variables were set to zero to yield the Jeffreys’ prior. For σ
(0)
x > 1 the

results correspond to those of σ
(0)
x = 1e4 in Fig. 1. However, the converged

values differ for σ
(0)
x ≤ 1, Fig. 1, which illustrates the existence of local

minima in the VB procedure [16].
– The Variational PCA [5] is a multivariate extension of this model with ARD

applied on the columns of the mixing matrix.

Remark 1 (Symmetric ARD). It is possible to introduce ARD on both variables
a and x. However, reliable estimation is achieved only with enforced positivity
of a and x via truncated Normal prior. In this case, the estimation results are
closely similar to those in Fig. 1.

3 Blind Source Separation and Deconvolution

The task of blind source separation arise when the observed signal is assumed
to be a superposition of the source signal. In this Section we assume that the
source signals are generated via convolution of the common input function with
source-specific kernels.

3.1 Signal Superposition and Convolution

The basic formulation of the blind source separation assumes that the vector of
observations at time t, dt is a linear superposition of all source signals at the
same time, xt:
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dt = Axt, (14)

where A is the mixing matrix, xt = [xt,1, . . . , xt,r], and r is the number of sources.
The number of observations is p and the length of the source signal is n. The
full observed sequence can be written in matrix notation as:

D = AX
′
, (15)

where D = [d1, . . . , dn], and the columns of matrix X are the source signals
X = [x1, . . . , xr ] (xt are the rows of matrix X). In this case, we assume the
number of sources r to be unknown with conditions r < n, r < p.

The kth source is assumed to be the result of convolution of the common
input function b, and source-specific convolution kernels uk:

xk = b ∗ uk = Buk, (16)

where matrix B is defined as follows:

B =

⎛

⎜
⎜
⎜
⎝

b1 0 0 0
b2 b1 0 0
. . . b2 b1 0
bn . . . b2 b1

⎞

⎟
⎟
⎟
⎠

. (17)

The full model of the data is thus

D = AX ′ = AU ′B′, (18)

where U = [u1, . . . , uk] and all parameters A, U, B are unknown. In the sequel,
we will assume that all these parameters are positive. This is motivated by the
application area in image analysis.

3.2 Probabilistic Model

The deterministic assumptions in the previous Section are valid only approxi-
mately. For example, the data vectors dt are subject to the observation noise.
The observed data dt are thus modeled as random realizations from the probabil-
ity density function. For Gaussian distributed noise, the matrix of observations
is assumed to be distributed as

p(D|A, B, U, ω) = N (AU ′B′, ω−1Ip ⊗ In) =
n∏

t=1
N (Axt, ω−1Ip), (19)

where Ip denotes identity matrix of size p × p, N (., .) of matrix argument de-
notes the matrix normal distribution [16] and symbol ⊗ denotes the Kronecker
product. Prior distributions for all unknown parameters A, B, U, ω need to be
specified.
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Fig. 2. Graphical model of the scalar multiplicative decomposition from Remark 1
(left) and the proposed sparse blind source separation and deconvolution (right)

The parameter ω is a precision parameter of a Gaussian density and thus it
has a conjugate prior in the form of Gamma density

p(ω) = G(ϑ0, ρ0),

with chosen constants ϑ0, ρ0. These may be chosen to approach ϑ0 → 0, ρ0 →
0 yielding an uninformative Jeffrey’s prior on the scale parameter [10]. The
input function b is assumed to have all positive elements. This assumption
is modeled by Normal distributed prior with its support truncated to positive
values (Appendix B.1), the truncated normal distribution is denoted tN () with
the same arguments the Normal distribution since the truncation interval is
always 〈0, ∞〉. The precision of the prior is also unknown:

p(b|ς) =tN (0, ς−1In), p(ς) =G(ζ0, η0). (20)

The only assumption on the mixing matrix and the convolution kernels is
sparsity. In both cases it will be achieved by the ARD property (Section 2.2).
Specifically, the ARD prior (7) is used for all elements of matrices A and U . In
vector notation, the ARD corresponds to a variance with unknown diagonal:

p(uk|υk) =tN (0n,1, diag(υk)−1), (21)
p(υj,k) =G(αjk,0, βjk,0), j = 1, . . . , n. (22)

Here, diag(.) denotes a matrix with the argument vector in its diagonal and
zeros otherwise, and υj,k are elements of υk. For notational convenience, we
define prior on the rows of matrix A, ai, i = 1, . . . p.

p(ai|ξi) =tN (01,r, diag(ξi)−1), p(ξi) =
r∏

k=1
G(φik,0, ψik,0). (23)
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The joint distribution of the data is then

p(D, A, b, U, ω) = p(D|A, b, U, ω)
p∏

i=1
[p(ai|ξi)p(ξi)]

r∏

k=1
[p(uk|υk)p(υk)] p(b|ς)p(ς)p(ω). (24)

Graphical model of (24) is displayed in Fig. 2. The model differs from the Varia-
tional PCA [5] and its positive version [13] in the form where the ARD is applied.
While one ARD parameter is common to the whole column of matrix A in the
former, every element of the matrices A and U has its own relevance determi-
nation parameter in our model. The model has thus much more parameters to
estimate from the data.

3.3 The Variational Bayes Posterior

We seek the variational solution in the same form as in (24). The variational
posterior distributions (4) for model (24) are found to have functional form:

p̃(uk|D, r) =tN (μuk
, Σuk

) , p̃(υk|D, r) =
n∏

j=1
G(αjk, βjk), (25)

p̃(b|D, r) =tN (μb, Σb) , p̃(ς|D, r) =G(ζ, η), (26)

p̃(ai|D, r) =tN (μai , Σai) , p̃(ξi|D, r) =
r∏

k=1
G(φik, ψik), (27)

p̃(ω|D, r) =G(ϑ, ρ). (28)

The shaping parameters of the posterior distributions are given in Appendix
Appendix A:. Together with moments of distributions (25)–(28) they form a set
of implicit equations that needs to be solved.

3.4 Iterative Solution

Solution of the implicit set of equations in Appendix A is found using the varia-
tion iterative algorithm [1,16]. The algorithm is based on sequential evaluation of
the shaping parameters in Appendix A in the following order: 1) image sources
ai, ξi, 2) convolution kernels uk, υk, 3) input function b, ς, 4) noise precision ω.
This order was found to yield the fastest convergence.

Since the Variational Bayes approximation contains local minima, initializa-
tion of the iterative algorithm is critical. Similarly to the scalar decomposition ex-
ample, we set values of all Gamma hyper-parameters, φ0, ψ0, α0, β0, ζ0, η0, ϑ0, ρ0,
to 10−10 to yield uninformative prior. The most sensitive parameter to initial-
ization is the input function b. We propose to initialize the iterative algorithm
at b(0) = [1, 0, . . . , 0], for which the matrix B is the identity matrix and the
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convolution kernels have the role of the sources. This point is known to be an
important local extrema in the image deconvolution problems. The convolution
kernels uk were initialized randomly.

Care is needed with numerical implementation of the iterative algorithm.
Specifically, when eigenvalues of the inverted matrices in (29) and (31) are al-
most equal, the resulting estimates of the convolution kernels contain artifacts
(jagged curves). This have been prevented by the use of pseudo-inverse with re-
moval of the smallest eigenvalues. The jagging effect is also suppressed by using
(41) to estimate the second moment of p(U).

The resulting algorithm will be denoted as Sparse Blind Source Separation and
DeConvolution (S-BSS-DC). It is implemented in matlab and can be downloaded
from: http://www.utia.cas.cz/AS/softwaretools/image_sequences

4 Results

In this Section, we study properties of the proposed algorithm on a simulated
data and demonstrate its practical use on the data from dynamic medical imag-
ing. In both cases, we use a non-standard interpretation of blind source separa-
tion which is now briefly introduced.

4.1 Image Sequence Decomposition

The blind source separation model (14) has been used in image sequence analysis
for a long time, usually as a model of principal components [3]. The interpretation
of the model parameters is slightly different from the cocktail party problem. The
observation dt is a vector of pixels of the image observed at time t, where the
pixels are stored column-wise. The columns of matrix A are images of activity
(e.g. measured by PET, SPECT or fMRI) of the underlying biological organs
stored in the same form as pixels of dt. The elements of xt are activities of the
underlying images at time t. The columns ak of the matrix A and the source
vectors xk are thus considered to belong to each other, where the ak is the
image of the biological organ and xk its activity in time. These will be denoted
as source images and source curves, respectively.

This problem has been addressed by the Variational Bayes approach e.g. in
[13,16]. The Variational Bayes method of image decomposition with positivity
constraints and ARD on image sources was proposed in [13] and will be used
for comparison under label BSS+. Sparsity of the image has been modeled by
mixture priors, where the parameters of the mixture had to be selected [13], or
discrete hidden variable [17].

In medical applications, the sources x correspond to the flow of biological
fluids in the organism. This flow can be modeled by a compartment model, which
yields model of the source as convolution of the activity of the blood stream and
the tissues specific kernels [11,7]. However, the parametric convolution kernels are
typically used [21,7]. Parameters of the convolution kernels are very important
for estimation of diagnostic coefficients [11]. We will study the use of general
convolution kernels with the ARD prior.

http://www.utia.cas.cz/AS/softwaretools/image_sequences
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4.2 Phantom Study

A synthetic phantom study for the sparse blind source separation and decon-
volution was proposed in [7]. The data are generated using three sources with
parametric convolution kernel in the parametric form assumed in [7], so that
their CAM-CM algorithm can be used to estimate them. The original phantom
data are displayed in Fig. 3, top right. Each source curve generated as a con-
volution between a common input function b = exp(− t

3 ) and source-specific
convolution kernels, u1 = exp(− t

10 ), u2 = 100 exp(−4t), and u3 = 1
2 exp( t

100 ).
Each source image has resolution 50 × 50 pixels, i.e. p = 2500, and the sequence
contains 50 images, i.e. n = 50.

The generated data intentionally contain many overlapping regions. The com-
mon assumption in many image decomposition techniques is that there is at least
one pixel in each image that do not overlap with others [7]. Many decomposition
techniques thus separate the unique areas well, but struggle with assignment of
the overlaps.

The results of the proposed algorithm are displayed in Fig. 3, bottom, via the
estimated variances of each pixel, ξ̂i,k displayed in the same order of pixels as
in the estimated image, image estimates âk, source estimates x̂k = B̂ûk, and
estimated convolution kernels ûk, respectively. Note that the first convolution
kernel is a pulse, hence the corresponding source curve is the estimated input
function. Both the CAM-CM solution and the estimated pixel variances ξ̂i,k

(ARD on elements of A), Fig 3. bottom left, tend to select the areas where
the images are unique. However, the resulting estimates of the images âk of the
S-BSS-DC have correctly assigned the overlapping parts.

The default starting points of the iterative algorithm (Section 3.4) were used
in analysis of the sequence with the following observations of sensitivity:

– Initialization of the input function by the impulse is not a local minima
due to the sparsity prior on the convolution kernels. The ARD prior favors
sparse kernels and thus the impulse function is typically recovered in one
of the convolution kernels. However, initialization of the input function by
random values is unreliable and often converges to a local minima.

– Initialization of the convolution kernels by random starts is rather reliable
and no local minima were observed.

– The initial estimate of the precision of the observation noise was selected
using the mean of the eigenvalues of matrix D′D, see [16] for justification.
The same results were obtained even with minimum and maximum of the
eigenvalues. Local minima were observed only with extreme values of ω̂(0).

– The results are sensitive to the selected maximum number of sources r. When
the number of sources is greater than the simulated, the strongest source is
split into two factors with complementary convolution kernel.

4.3 Real Data Experiment

Validity of the model assumptions is now tested on real clinical data from renal
scintigraphy. The tested dataset is a selection of dataset 28 from [20] where
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Fig. 3. Generated synthetic dataset using model [7]. Top left: simulated source images
and curves. Top middle: decomposition of the data using the CAM-CM algorithm
[7]. Top right: decomposition of the data using the BSS+ algorithm [13] Bottom:
decomposition using the proposed S-BSS-DC algorithm.
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a rectangular region of left part of the body and 99 time steps were selected.
The images are obtained by counting radioactive particles, hence the observation
noise is assumed to be Poisson-distributed. Therefore, we use the correspondence
analysis which was found to be optimal conversion of this kind of noise to the
homogeneous Gaussian noise [16]. In this application, we have good knowledge
of the typical shapes of the input function and the convolution kernels. Thus, we
initialize the iterative algorithm by the expected convolution kernels of a typical
healthy patient. The convergence of the algorithm is thus significantly faster.
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Fig. 4. Results of the proposed algorithm on a real dataset from renal scintigraphy.
The columns of the S-BSS-DC algorithm are: the estimate of the variance of the image
source prior, the estimate of the source image, the source curve, and its convolution
kernel, respectively. The columns of the common BSS+ method are the estimates of
the source images and the source curves respectively.
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The results of the proposed S-BSS-DC algorithm on this data set are displayed
in Fig. 4, via the estimated source pixel variance ξ̂i,k, image estimates âk, source
estimates x̂k = B̂ûk, and estimated convolution kernels ûk, respectively. Once
again, the first convolution kernel was estimated to be a pulse, hence the first
estimated source curve is equal to the estimated input function. For compari-
son, the results of blind source separation with positivity constraints (BSS+)are
displayed in Fig. 4, right. Comparison with CAM-CM is omitted since its para-
metric form of the convolution kernels does not correspond to the data.

Note that S-BSS-DC decomposed the observed sequence to 5 sources, the
BSS+ method found only 3 meaningful sources (the remaining were removed by
the ARD property). All sources recovered by S-BSS-DC has very good medical
interpretation as follows: 1) vascular structure, 2) parenchyma, 3) pelvis, 4)
liver, 5) unspecific movement. The results of BSS+ can be interpreted as being
superposition of sources discover by S-BSS-DC, namely: 1+4), 2+3) and 3+5),
respectively. The results of BSS+ are not diagnostically relevant, due to their
inability to separate pelvis and parenchyma.

An undesired artifact of the S-BSS-DC algorithm is its tendency to estimate
non-smooth convolution kernel, see Fig. 4 right. This tendency is increasing with
decreasing signal-to-noise ratio. More detailed modeling of the structure of the
convolution kernels (e.g. via two unknown diagonals of the precision matrix in
(21)) is required to allow reliable performance in these conditions.

5 Discussion and Conclusion

The problem of blind source separation and deconvolution is in general ill-posed
and needs to be regularized by additional assumptions. In this paper, we pro-
posed to use a hierarchical probabilistic model with unknown variance of all
elements of the mixing matrix, and the convolution kernels. In effect, this prior
promotes sparse estimates of these parameters. Since the proposed model does
not allow for analytical solution, we applied the Variational Bayes method to
find approximate solution. All other hyper-parameters are chosen to yield unin-
formative prior, hence the only additional parameter that needs to be chosen is
the number of sources to recover. However, the number of sources needs to be
chosen carefully, since the algorithm does not posses the ability to recover their
number correctly.

Since the Variational Bayes is known to suffer from local minima, we proposed
a general-purpose initialization of the implied iterative algorithm. The algorithm
was tested in simulation and the proposed initialization was found to be robust
and reliable. In specific applications, more appropriate choices can be made to
speed up convergence of the algorithm.

The algorithm was also applied to the problem of decomposition of sequence
of medical images. The proposed algorithm was able to identify diagnostically
relevant sources better than conventional blind source separation methods.
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Appendix A: Shaping Parameters of Posterior
Distributions

The shaping parameters of posterior distributions (25) - (28) are as follows:

Σuk
=

((
ω̂B̂′B(â′

kak)
)

+ diag(υ̂k)
)−1

, (29)

μuk
=Σuk

( ⎛

⎝−ω̂

r∑

l=1,l �=k

B̂′Bûl(â′
kal)

⎞

⎠ + ω̂B̂′D′âk

)

, (30)

Σb =

⎛

⎝ς̂In + ω̂

r∑

i,j=1
(â′

iaj)

⎛

⎝
n−1∑

k,l=0
Δ′

kΔl( ̂uk+1,jul+1,i)

⎞

⎠

⎞

⎠

−1

, (31)

μb =Σbω̂
r∑

k=1

⎛

⎝
n−1∑

j=0
Δjûj+1,k

⎞

⎠

′

D′âk, (32)

αk =αk,0 + 1
2

1n,1, βk =βk,0 + 1
2

diag
(

ûku′
k

)
, (33)

ζ =ζ0 + n

2
, η =η0 + 1

2
tr

(
b̂′b

)
, (34)

ϑ =ϑ0 +
pn

2 , ρ =ρ0 +
1
2tr

(
DD′ − 2ÂX̂ ′D′

)
+

1
2tr

(
Â′AX̂ ′X

)
, (35)

Σai =

⎛

⎝ω̂

n∑

j=1
(x̂′

jxj) + diag(ξ̂i)

⎞

⎠

−1

, μai =

⎛

⎝Σai

⎛

⎝ω̂

n∑

j=1
(x̂jdi,j)′

⎞

⎠

⎞

⎠

′

, (36)

φi =φi,0 + 1
2

· 1r,1, ψi =ψi,0 + 1
2

diag
(

â′
iai

)
. (37)

The auxiliary matrix Δk ∈ Rn×n is defined as

(Δk)i,j =

{
1, if i − j = k,

0, otherwise.

http://www.dynamicrenalstudy.org
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The moments of variables are computed using expectations of their probability
density function, Appendix B.1.

Appendix B: Required Probability Distributions

B.1 Truncated Normal Distribution

Truncated normal distribution is defined for scalar random variable x = Nx(μ, σ)
on interval a < x ≤ b as follows:

x ∼ tN (μ, σ, a, b) =
√

2 exp((x − μ)2)√
πσ(erf(β) − erf(α))

χ(a;b](x), (38)

where α = a−μ√
2σ

, β = b−μ√
2σ

, χ(a,b](x) is a characteristic function of interval (a, b]

defined as χ(a,b](x) =

{
1 x ∈ (a, b]
0 x /∈ (a, b]

, and erf(t) = 2√
π

∫ t

0 e−u2ddu.

Moments of the truncated normal distribution are given as

x̂ = μ − √
σ

√
2[exp(−β2) − exp(−α2)]√

π(erf(β) − erf(α))
, (39)

x̂2 = σ + μx̂ − √
σ

√
2[b exp(−β2) − a exp(−α2)]√

π(erf(β) − erf(α))
. (40)

B.2 Multivariate Truncated Normal Distribution

Truncation of the multivariate Normal distribution x ∼ N (μ, Σ) is formally
simple, however, its moments can not be expressed analytically. Therefore, we
approximate the moments of x of the truncated Normal distribution by the
moments of

x̃ ∼ tN (μ, diag(σ)),

where σ is a vector of diagonal elements of Σ. This corresponds to approximation
of the posterior by a product of marginals (38) with mean value x̂ with elements
given by (39) and x̂xT = x̂x̂T + diag(σ̂), where σ̂i = x̂2

i − x̂ix̂i. However, it
may be too coarse approximation since it ignores covariance of the elements. An
alternative is to approximate

x̂xT = x̂x̂T + diag(o)Σdiag(o), (41)

where o is a vector of elements oi = σ̂
1/2
i σ

−1/2
i . Heuristics (41) is motivated

by the observation that for a Normal distribution with the main mass far from
the truncation lines, oi → 1 and (41) becomes equivalent to the moment of the
non-truncated Normal distribution.
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Abstract. The Hierarchical Dirichlet Process (HDP) is a Bayesian non-
parametric prior for grouped data, such as collections of documents,
where each group is a mixture of a set of shared mixture densities, or
topics, where the number of topics is not fixed, but grows with data
size. The Nested Dirichlet Process (NDP) builds on the HDP to cluster
the documents, but allowing them to choose only from a set of specific
topic mixtures. In many applications, such a set of topic mixtures may
be identified with the set of entities for the collection. However, in many
applications, multiple entities are associated with documents, and often
the set of entities may also not be known completely in advance. In this
paper, we address this problem using a nested HDP (nHDP), where the
base distribution of an outer HDP is itself an HDP. The inner HDP cre-
ates a countably infinite set of topic mixtures and associates them with
entities, while the outer HDP associates documents with these entities
or topic mixtures. Making use of a nested Chinese Restaurant Franchise
(nCRF) representation for the nested HDP, we propose a collapsed Gibbs
sampling based inference algorithm for the model. Because of couplings
between two HDP levels, scaling up is naturally a challenge for the in-
ference algorithm. We propose an inference algorithm by extending the
direct sampling scheme of the HDP to two levels. In our experiments on
two real world research corpora, we show that, even when large fractions
of author entities are hidden, the nHDP is able to generalize signifi-
cantly better than existing models. More importantly, we are able to
detect missing authors at a reasonable level of accuracy.

1 Introduction

Dirichlet Process mixture models [1] allow for nonparametric or infinite mixture
modeling, where the number of densities or mixture components is not fixed
ahead of time, but grows (slowly) with the number of data items. They do so
by using as a prior the Dirichlet Process (DP), which is a distribution over
distributions, and has the additional property that draws from it are discrete
(w.p. 1) with infinite support [1,6]. However, many applications require joint
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analysis of groups of data, such as a collection of text documents, where the
mixture components, or topics (as they are called for text data), are shared
across the documents. This calls for a coupling of multiple DPs, one for each
document, where the base distribution is discrete, and shared. The hierarchical
Dirichlet Process (HDP) [16] does so by placing a DP prior on a shared base
distribution, so that the model now has two levels of DPs. The HDP has since
been used extensively as a prior for non-parametric modeling of text collections.
The popular LDA model [3] may be considered as a parametric restriction of the
HDP mixture model.

The HDP mixture model (and LDA) belongs to the family of admixture mod-
els [5], where each composite data item or group gets assigned to a mixture over
the mixture components or topics. While this adds more flexibility to the groups
of data items, the ability to cluster groups is lost, since each group now has a
distinct mixture of topics associated with it. This additional capability is desired
in many applications, such as analysis of patient profiles in hospitals [13], where
the hospitals need to be clustered in addition to shared grouping of patients
in individual hospitals. Alternatively, imagine a corpus containing descriptions
related to entities, such as a shared set of researchers who have authored a large
body of scientific literature, or a shared set of personalities discussed across news
articles, such that each entity can be represented as a mixture of topics. Here,
topic mixtures, corresponding to entities, are required to be shared across data
groups or documents, in addition to the topics themselves. This can be captured
using the nested DP (nDP) [13], which has a DP corresponding to each group,
which are coupled through the same base distribution, which is a DP itself, un-
like being DP distributed, as in the HDP. This results in a distribution over
distributions over distributions, unlike the HDP and the DP, which are distri-
butions over distributions. The nDP can be imagined as first creating a discrete
set of mixtures over topics, each mixture representing an entity, and then choos-
ing exactly one of these entities for each document. In this sense, the nDP is a
mixture of admixtures.

One major shortcoming of the nDP for entity analysis is the restrictive as-
sumption of a single entity being associated with a document. In research papers,
multiple authors are associated with any document, and any news article typi-
cally discusses multiple people, organizations etc. This requires each document
to have a distribution over entities. In other words, we need a model that is an
admixture of admixtures. The Author-Topic Model (ATM) [14], which models
authors associated with documents, belongs to this class, but is restrictive in
that it requires the authors to be observed for documents, and also assumes the
number of topics to be known.

In this paper, we address the problem of nonparametric modeling of entities
and topics, where the number of topics is not known in advance, and additionally
the set of entities for each document is either partly or completely unknown. For
this, we propose the nested HDP (nHDP), where the base distribution of an HDP
is itself an HDP. This belongs to the same class as the nDP, since it specifies
a distribution over distributions (entities) over distributions (topics). However,
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unlike the nDP, it first creates a discrete set of entities, and models each group
as a mixture over these entities. To the best of our knowledge, ours is the first
entity-topic model that is nonparametric in both entities and topics. The Author
Topic Model falls out as a parametric version of this model, when the entity set
is observed for each document, and the number of topics is fixed.

For inference using the nHDP, we propose the nested CRF (nCRF), which
extends the Chinese Restaurant Franchise (CRF) analogy of the HDP to two
levels by integrating out the two levels of HDPs. However, due to strong cou-
pling between the CRF layers, inference using the nCRF poses computational
challenges. We use a direct sampling scheme, based on that for the HDP, where
the entity and topic indexes are directly sampled, based on the counts of ta-
ble assignments and stick-breaking weights at the two levels. Using experiments
over publication datasets involving author entities from NIPS and DBLP, we
show that the nHDP generalizes better under different levels of available author
information. More interestingly, the model is able to detect authors completely
hidden in the entire corpus with reasonable accuracy.

2 Related Work

In this section, we review existing literature on Bayesian nonparametric modeling
and entity-topic analysis.

Bayesian Nonparametric Models: We review the Dirichlet Process (DP) [6],
the Hierarchical Dirichlet Process (HDP) [16] and the nested Dirichlet Process
(nDP) [13] in detail in the Sec. 3.

The MLC-HDP[17] is a 3-layer model proposed for human brain seizures data.
The 2-level truncation of the model is closely related to the HDP and the nDP.
Like the HDP, it shares mixture components across groups (documents) and
assigns individual data points to the same set of mixtures, and like the nDP it
clusters each of the groups or documents using a higher level mixture. In other
words, this is a nonparametric mixture of admixtures, while our proposed nested
HDP is a nonparametric admixture of admixtures.

The nested Chinese Restaurant Process (nCRP) [2] extends the Chinese
Restaurant Process analogy of the Dirichlet Process to an infinitely-branched
tree structure over restaurants to define a distribution over finite length paths
of trees. This can be used as a prior to learn hierarchical topics from documents,
where each topic corresponds to a node of this tree, and each document is gener-
ated by a random path over these topics. An extension to this model, also called
the nested HDP, has recently been proposed on Arvix [11]. In the spirit of the
HDP, which has a top level DP and providing base distributions for document
specific DPs, this model has a top level nCRP, which becomes the base distri-
bution for document specific nCRPs. In contrast, our model has nested HDPs,
in the sense that one HDP directly serves as the base distribution for another
HDP, like in the nested DP [13], where one DP serves as the base distribution
for another DP. This parallel with the nested DP motivates the nomenclature of
our model as the nested HDP.
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Entity-Topic Models: Next, we briefly review prior work on simultaneously
modeling of entities and topics in documents. The literature mostly contains
parametric models, where the number of topics and entities are known ahead of
time. The LDA model [3] is the most popular parametric topic model, and has a
distribution θd over T topics for each document, and the topic label zdi for each
word in the document is sampled iid from θd. The author-topic model (ATM)[14]
extends the LDA to capture known authors Ad of each document. Each author
now has his own distribution πa over topics K, and the words are generated by
first sampling one of the known authors uniformly, followed by sampling a topic
from the topic distribution of that author:

φk ∼ Dir(β), k = 1 . . . T ; πa ∼ Dir(α), a = 1 . . . A

adi ∼ πd ≡ U(Ad); zdi ∼ θadi ; wdi ∼ Mult(φzdi) (1)

The Author Recipient Topic model[9] distinguishes between sender and recipient
entities and learns the topics and topic distributions of sender-recipient pairs.
Newman et. al[10] analyze entity-topic relationships from textual data contain-
ing entity words and topic words, which are pre-annotated. The Entity Topic
Model[8] proposes a generative model which is parametric in both entities and
topics and assumes observed entities for each document.

There has been very little work on nonparametric entity-topic modeling, which
would enable discovery of entities in settings where entities are partially or com-
pletely unobserved in documents. The Author Disambiguation Model[4] is a non-
parametric model for the author entities along with topics. Primarily focusing
on author disambiguation from noisy mentions of author names in documents,
this model treats entities and topics symmetrically, generating entity-topic pairs
from a DP prior. Contrary to this approach, our model treats the entity as a dis-
tribution over topics, thus explicitly modeling the fact that authors of documents
have preferences over specific topics.

3 Background

Consider a setting where observations are organized in groups. Let xji denote
the ith observation in jth group. For a corpus of documents, xji is the ith word
occurrence in the jth document. In the context of this paper, we will use group
synonymously with document, data item with word in a document. We assume
that each xji is independently drawn from a mixture model and has a mixture
component parameterized by a factor, say θji, representing a topic, associated
with it. For each group j, let the associated factors θj = (θj1, θj2, . . .) have a
prior distribution Gj . Finally, let F (θji) denote the distribution of xji given
factor θji. Therefore, the generative model is given by

θji|Gj ∼ Gj ; xji|θji ∼ F (θji), ∀j, i (2)

The central question in analyzing a corpus of documents is the parametrization
of the Gj distributions — what parameters to share and what priors to place
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on them. We start with the Dirichlet Process that considers each of the Gj
distributions in isolation, then the Hierarchical Dirichlet Process that ensures
sharing of atoms among the different Gjs, and finally the nested Dirichlet Process
that additionally clusters the groups by ensuring that all the Gjs are not distinct.

Dirichlet Process: Let (Θ, B) be a measurable space. A Dirichlet Process
(DP) [6,1] is a measure over measures G on that space. Let G0 be a finite
measure on the space. Let α0 be a positive real number. We say that G is DP
distributed with concentration parameter α and base distribution G0, written
G ∼DP(α0, G0), if for any finite measurable partition (A1, . . . , Ar) of Θ, we have

(G(A1), . . . G(Ar)) ∼ Dir(α0G0(A1), . . . , α0G0(Ar)).

The stick-breaking representation provides a constructive definition for sam-
ples drawn from a DP. It can be shown [15] that draw G from DP (α0, G0) can
be written as

φk
iid∼ G0, k = 1 . . .∞; wi ∼ Beta(1, α0); βi = wi

∏i−1
j=1(1− wj)

G =
∑∞
k=1 βkδφk

, (3)

where the atoms φk are drawn independently from G0 and the corresponding
weights {βk} follow a stick breaking construction. This is also called the GEM
distribution: (βk)

∞
k=1 ∼ GEM(α0). The stick breaking construction shows that

draws from the DP are necessarily discrete, with infinite support, and the DP
therefore is suitable as a prior distribution on mixture components for ‘infinite’
mixture models. Subsequently, {θji} are drawn from each Gj . When drawing of
{θji} is followed by draws {xji} according to Eqn. 2, the model is known as the
Dirichlet Process mixture model [6].

Another commonly used perspective of the DP is the Chinese Restaurant
Process (CRP) [12], which shows that DP tends to clusters the observations. Let
{θi} denote the sequence of draws from G, and let {φk} be the atoms of G. The
CRP considers the predictive distribution of the ith draw θi given the first i− 1
draws θ1 . . . θi−1 after integrating out G:

θi|θ1, . . . , θi−1, α0, G0 ∼
K∑
k=1

mk

i− 1 + α0
δφk

+
α0

i− 1 + α0
G0

where mk =
∑i−1
i′=1 δ(θi′ , φk). The above conditional may be understood in terms

of the following restaurant analogy. Consider an initially empty ‘restaurant’ that
can accommodate an infinite number of ‘tables’. The ith ‘customer’ entering the
restaurant chooses a table θi for himself, conditioned on the seating arrangement
of all previous customers. He chooses the k-th table with probability proportional
to mk, the number of people already seated at the table, and with probability
proportional to α0, he chooses a new (currently unoccupied) table. Whenever a
new table is chosen, a new ‘dish’ φk is drawn (φk ∼ G0) and associated with
the table. The CRP readily lends itself to sampling-based inference strategies
for the DP.
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Hierarchical Dirichlet Process: Now reconsider our grouped data setting.
If each Gj is drawn independently from a DP, then w.p. 1 the atoms {φjk}∞k=1

for each Gj are distinct. This would mean that there is no shared topic across
documents, which is undesirable. The Hierarchical Dirichlet Process (HDP) [16]
addresses this problem by modeling the base distribution G0 of the DP prior in
turn as DP distributed. Since draws from a DP are discrete, this ensures that the
same atoms {φk} are shared across all the Gjs. Specifically, given a distribution
H on the space (Θ, B) and positive real numbers (αj)

M
j=1 and γ, we denote as

HDP(α, γ,H) the following generative process:

G0|γ,H ∼ DP (γ,H)

Gj |αj , G0 ∼ DP (αj , G0) ∀j. (4)

When this is followed by generation of {θji} and {xji} as in Eqn. 2, we get the
HDP mixture model.

Using the stick-breaking construction, the global measure G0 distributed as
Dirichlet process can be expressed as G0 =

∑∞
k=1 βkδφk

, where the topics φk are
drawn from H independently (φk ∼ H) and {βk} ∼ GEM(γ) represent ‘global’
popularities of these topics. Since G0 has as its support the topics {φk}, each
group-specific distribution Gj necessarily has support at these topics, and can
be written as follows:

Gj =

∞∑
k=1

πjkδφk
; (πjk)

∞
k=1 ∼ DP(αj ,β) (5)

where πj = (πjk)
∞
k=1 denotes the topic popularities for the jth group.

Analogous to the CRP for the DP, the Chinese Restaurant Franchise provides
an interpretation of predictive distribution for the next draw from an HDP after
integrating out the Gjs and G0. Let {θji} denote the sequence of draws from
each Gj , {ψjt} the sequence of draws from G0, and {φk} the sequence of K
draws from H . Then the conditional distribution of θji given θj1, . . . , θj,i−1 and
G0, after integrating out Gj is as follows:

θji|θj1, . . . , θj,i−1, α0, G0 ∼
mj·∑
t=1

njt·
i− 1 + α0

δψjt +
α0

i− 1 + α0
G0 (6)

where njtk =
∑i−1

i′=1 δ(θji′ , ψjt)δ(ψjt, φk), mjk =
∑

t δ(ψjt, φk) and dots indicate
marginal counts. As G0 is also distributed according to a Dirichlet Process, we
can integrate it out similarly to get the conditional distribution of ψjt:

ψjt|ψ11, ψ12, . . . , ψ21, . . . ,ψjt−1, γ,H ∼
K∑
k=1

m·k
m·· + γ

δφk
+

γ

m·· + γ
H (7)

These equations may be interpreted using a two-level restaurant analogy. Con-
sider a set of restaurants, one corresponding to each group. Customers entering
each of the restaurants select a table θji according a group specific CRP (Eqn
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6). The restaurants share a common menu of dishes {φk}. Dishes are assigned
to the tables of each restaurant according to another CRP (Eqn 7). Let tji be
the (table) index of the element of {ψjt} associated with θji, and let kjt be the
(dish) index of the element of {φk} associated with ψjt. Then the two conditional
distributions above can also be written in terms of the indexes {tji} and {kjt}
instead of referring to the distributions directly. If we draw ψjt by choosing a
summation term, we set ψjt = φk and let kjt = k for the chosen k. If the second
term is chosen, we increment K by 1 and draw φK ∼ H and set ψjt = φK and
kjt = K. This CRF analogy leads to efficient Gibbs sampling-based inference
strategies for the HDP mixture model [16].

Nested Dirichlet Process: In other applications of grouped data, we may
additionally be interested in clustering the data groups themselves. For example,
when analyzing patient records in hospitals, we may want to cluster the hospitals
as well in terms of the profiles of patients coming there. The HDP cannot do this,
since each group specific mixture Gj is distinct. This problem is addressed by the
nested Dirichlet Process [13], which first defines a set {G′

k}∞k=1 of distributions
over an infinite support:

G′
k =

∞∑
l=1

wlkδθ′lk , θ′lk ∼ H, {wlk}∞l=1 ∼ GEM(γ) (8)

and then draws the group specific distributions Gj from a mixture over these:

Gj ∼ G0 ≡
∞∑
k=1

πkδG′
k
, {πk} ∼ GEM(α)

We denote the generation process as {Gj} ∼ nDP (α, β,H). The process en-
sures non-zero probability of different groups selecting the same G′

k, leading to
clustering of the groups. Using Eqn. 3, the draws {Gj} can be characterized as:

Gj ∼ G0, G0 ∼ DP (α,DP (γ,H)) (9)

where the base distribution of the outer DP is in turn another DP, unlike the
HDP where it is DP distributed. Thus the nDP can be viewed as a distribution
on the space of distributions on distributions.

Given this characterization of the nDP, it appears to be useful for restricted
entity-topic analysis, where we additionally want to label each document with a
single entity from a countable set, with each entity associated with a distribution
over topics. However, note that the support {θ′lk} of each G′

k in Eqn 8 is distinct,
which implies that different entities do not share any topics. Further, we would
like to associate a distribution over entities for each document. This makes the
nDP unsuitable even for such restricted entity-topic analysis.

4 Nonparametric Entity-Topic Analysis

We now present our nested Hierarchical Dirichlet Process (nHDP) model for
nonparametric entity-topic analysis. We first present the model where each group
or document is associated with a single entity, then extend it for multiple entities.
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Single-Entity Documents: Recall that the nDP is unsuitable for entity-topic
analysis, since the entity distributions do not share topic atoms. This can be
modified by first creating a set of entity distributions {Gk′}∞k′=1 such that they
share atoms. One way to do this is to follow the HDP construction:

Gk′ ∼ HDP ({αk′}, γ,H) (10)

This can be followed by drawing each group specific distribution from a mixture
over the Gk′s:

G′
j ∼ G′

0 ≡
∞∑
k′=1

β′
k′δGk′ , β′ ∼ GEM(γ′) (11)

Using Eqn. 3, we observe that G′
0 ∼ DP (γ′, HDP ( {αk′}, γ,H)). Observe the

relationship with the nDP (Eqn. 9). Like the nDP, this also defines a distribu-
tion over the space of distributions on distributions. But, instead of a DP base
distribution for the outer DP, we have achieved sharing of atoms using a HDP
base distribution. We will write G′

j ∼ DP-HDP(γ′, {αk′}, γ,H).

Sampling G′
j may be imagined as choosing the entity for the jth document.

As before, G′
j can now be used as prior for sampling topics {θji} for individual

words in document j, followed by sampling of the words themselves, using Eqn
2. We will call this the DP-HDP mixture model.

Nested HDP for Multi-Entity Documents: The DP-HDP model above
associates a single distribution over topics G′

j with the jth document, and the
topic θji for each word xji in the document is drawn from G′

j . In the context
of entity-topic analysis, this means that a single entity is associated with a
document, and words are drawn from the preferred topics of this entity. However,
many applications, such as analyzing entities in news articles and authors from
scientific literature, require associating multiple entities with each document,
and each word in the document is drawn from a preferred topic of one of these
entities. In this section, we extend the earlier model for multi-entity documents.

As before, we first create a set of distributions {Gk′}∞k′=1 over the same set
of (topic) distributions {φk}∞k=1 (φk ∼ H) by drawing independently from an
HDP, and creating a global mixture over them:

Gk′ ∼ HDP ({αk′}, γ,H); β′ ∼ GEM(γ′); G′
0 ≡

∞∑
k′=1

β′
k′δGk′

This may be interpreted as creating a countable set of entities by defining topic
preferences (distributions over topics) for each of them, and then defining a
‘global popularity’ of the entities. Earlier, for single entity documents, the only
entity was sampled from this global popularity. Now, we define a document-
specific local popularity for entities, derived from this global popularity:

G′
j ≡

∞∑
k′=1

π′
jk′δGk′ , {π′

jk′} ∼ DP (α′
j , β

′) (12)
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Now, sampling each factor θji in document j is preceded by choosing an entity
θ′ji ∼ G′

j by sampling according to local entity popularity. Note that P (θ′ji =
Gk′) = π′

jk′ .
Using the stick breaking definition of the HDP in Eqn. 5, we can see that G′

j is
drawn from a HDP. The base distribution of that HDP has to be the distribution
from which the atoms {Gk′} are drawn, which is again an HDP. Therefore, we
can write:

θ′ji ∼ G′
j ∼ HDP({α′

j}, γ′,HDP({αk′}, γ,H)) (13)

We refer to the two relevant HDPs as the inner and outer HDPs. Observing the
parallel with the nDP definition in Eqn. 9, we call this the nested HDP (nHDP),
and write θ′ji ∼ nHDP ({α′

j}, γ′, {αk′}, γ,H). Similar to the nDP, and the DP-
HDP (Eqn. 11), this again defines a distribution over the space of distributions
over distributions. The complete nHDP mixture model is defined by subsequently
sampling θji ∼ θ′ji, followed by xji ∼ F (θji).

An alternative characterization of the nHDP mixture model is using the topic
index zji and entity index z′ji corresponding to xji:

β ∼ GEM(γ); πk′ ∼ DP (α, β); φk ∼ H, k, k′ = 1 . . .∞
β′ ∼ GEM(γ′) ;π′

j ∼ DP (α, β′), j = 1 . . .M

z′ji ∼ π′
j ; zji ∼ πz′ji ; xji ∼ F (φzji ), i = 1 . . . nj (14)

This may be understood as first creating entity-specific distributions πk′ over
topics using global topic popularities β, followed by creation of document-specific
distributions π′

j over entities using global entity popularities β′. Using these

parameters, the content of the jth document is generated by sampling repeatedly
in iid fashion an entity index z′ji using π′

j , a topic index zji using πz′ji and finally

a word using F (φzji).
Observe the connection with the ATM in Eqn. 1. The main difference is the

the set of entities and topics is infinite. Additionally, each document now has a
distinct non-uniform distribution π′

j over entities.
Also, observe that we have preserved the HDP notation to the extent possi-

ble, to facilitate understanding. To distinguish between variables corresponding
to the two HDPs in the model, we use dashes (′) as superscripts on symbols
corresponding to the outer HDP. Going forward, we follow the same convention
for naming variables in the nested CRF.

Nested Chinese Restaurant Franchise: In this section, we derive the pre-
dictive distribution for the next draw θ′ji from the nHDP given previous draws,
after integrating out {G′

j} and G′
0, and then the predictive distribution for the

draw θji after integrating out {θ′ji} and G0. We also provide an interpretation
for these using two nested CRFs, corresponding to the inner and outer HDPs.
These will be useful for the inference algorithm that we describe in Section 5.

Let {θ′ji} denote the sequence of draws from G′
j , and {ψ′

jt′}t′=1 denote the
sequence of draws from G′

0. Then the conditional distribution of θ′ji given all
previous draws after integrating out G′

j looks as follows:
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θ′ji|θ′j1:i−1, α
′
j , G

′
0 ∼

m′
j·∑

t′=1

n′
jt′·

i− 1 + α′
j

δψ′
jt′

+
α′
j

i− 1 + α′
j

G′
0

(15)

where n′
jt′k′ =

∑
i′ δ(θ

′
ji′ , ψ

′
jt′ )δ(ψ

′
jt′ , Gk′), m′

jk′ =
∑

t′ δ(ψ
′
jt′ , Gk′ ). Next, we

integrate out G′
0, which is also distributed according to Dirichlet process:

ψ′
jt′ |ψ′

11,ψ
′
12, . . . , ψ

′
21, . . . , ψ

′
j,t′−1, γ

′,HDP(α, γ,H) ∼
K′∑
k′=1

m′
·j

m′·· + γ′ δGk′ +
γ′

m′·· + γ′HDP(α, γ,H)
(16)

Observe that each θ′ji variable gets assigned to one of the Gk′ variables. Let
{θji} denote the sequence of draws from respective {θ′ji} (i.e. from the corre-
sponding Gk′), {ψk′t} the sequence of draws from G0, and {φk}∞k=1 the sequence
of draws from H . Let θk′:ji denote the set of θ variables already drawn from Gk′

before sampling θji, i.e. θk′:ji ≡ {θj′i′ : θ′j′i′ = G′
k, ∀i′, j′ ≤ j, and i′ < i, j′ =

j}. Then, the conditional distribution of θji given θk′:ji and G0, after integrating
out Gk′ (corresponding to θ′ji) is as follows:

θji|θk′:ji, α0, G0 ∼
mk′·∑
t=1

nk′t·
i− 1 + α0

δψk′t +
α0

nk′·· + α0
G0 (17)

where nk′tk =
∑

i δ(θk′i,ψk′t)δ(ψk′t, φk), mk′k =
∑

t δ(ψk′t, φk) and dots indicate
marginal counts. As G0 is also distributed according to a Dirichlet Process, we
can integrate it out similarly and write the conditional distribution of ψk′t as
follows:

ψk′t|ψ11, ψ12, . . . , ψ21, . . . ,ψk′t−1, γ,H ∼
K∑
k=1

m·k
m·· + γ

δφk
+

γ

m·· + γ
H (18)

Note that both conditional distributions for θ′ji and θji are similar to that for
CRF (Eqns. 6 and 7). We interpret these two distributions as a nested Chinese
Restaurant Franchise, involving one inner CRF and one outer CRF.

Consider a set of outer restaurants, one corresponding to each group. Cus-
tomers entering each of these restaurants select a table θ′ji according a group
specific CRP (Eqn 15). The restaurants share a common set of inner restaurants
{Gk′}. Inner restaurants are assigned to the tables of each outer restaurant ac-
cording to another CRP (Eqn 16). Next, the customers go to the inner restaurant
assigned to them (by some outer restaurant) and select a table θji according to
the inner restaurant specific CRP (Eqn 17). These inner restaurants share a
common menu of dishes {φk}. Dishes are assigned to the tables of each inner
restaurant according to another CRP (Eqn 18).

Let t′ji be the (outer table) index of the ψ′
jt′ associated with θ′ji, and let k′jt be

the (inner restaurant) index of the Gk′ associated with ψ′
jt′ . Let tji be the (inner

table) index of the ψk′t associated with θji, and let kk′t be the (dish) index of the
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φk associated with ψk′t. Then the two conditional distributions above can also be
written in terms of the indexes {t′ji}, {k′jt′}, {tji} and {kk′t} instead of referring

to the distributions directly. For the jth outer restaurant and its ith customer, we
draw θ′ji using Eqn. 15. If the first summation is chosen, we set θ′ji = ψ′

jt′ and let
t′ji = t′ for the chosen t′. If the second term is chosen, then we increment m′

j· by
one, draw ψ′

jm′
j·

∼ G′
0 using (Eqn 16) and set θ′ji = ψ′

jm′
j·
and t′ji = m′

j·. If we
draw ψ′

jt′ via choosing a summation term, we set ψ′
jt′ = Gk′ and let k′jt′ = k′ for

the chosen k′. If the second term is chosen, then we increment the current distinct
entity count M by one, draw GM ∼ HDP(α, γ,H) and set ψ′

jt′ = GM and k′jt′ =
M . Next, we similarly draw samples of θji for each j and i using Eqn. 17. If new
sample from G0 is needed, we use Eqn. 18 to obtain a new sample ψk′t.

5 Inference for Nested HDP

We use Gibbs sampling for approximate inference, as exact inference is in-
tractable for this problem. The conditional distributions for the nCRF scheme
lend themselves to an inference algorithm where we sample t′ji, tji, k

′
jt′ and kk′t.

The conditionals for these variables are similar to those in equations 15, 17, 18
and 16 respectively. However, in such an approach, there exists a tight coupling
between the variables t′ji, tji and k′jt′ , which would call for computationally
expensive joint sampling of variables.

Instead, we adopt a technique similar to the direct sampling scheme in
HDP[16], where variables G0 and G′

0 are explicitly sampled instead of being
integrated out, by sampling the stick breaking weights β and β′ respectively.
Further, we directly sample zji (the topic) and z′ji (the author) for each word in

the jth document avoiding explicit table assignments to the t′ji and tji variables.
However, in order to sample β and β′, the table information is maintained in the
form of the number of tables in each outer and inner restaurant, m′

jk′ and mk′k

respectively. Thus the latent variables that need to be sampled in our Gibbs
sampling scheme are zji, z

′
ji, β, β

′, mjk′ and mk′k.
We introduce the following notation for the rest of this section. Let x = {xji :

all j, i}, x−ji = {xj′i′ : j′ 	= j, i′ 	= i}, m = {mk′k : all k′, k}, m′ = {m′
jk′ :

all j, k′}, z = {zji : all j, i}, z′ = {z′ji : all j, i}, z−ji = {zj′i′ : j′ 	= j, i′ 	= i},
z′−ji = {z′j′i′ : j′ 	= j, i′ 	= i}, βnew =

∑∞
k=K+1 βk and β′

new =
∑∞
k′=K′+1 β

′
k′

Sampling zji: The conditional distribution for topic index zji is

p(zji=z|z−ji, z
′
−ji, z

′
ji=z′,m,m′, β, β′,x) ∝ p(zji =z|z−ji, z

′
ji = z′)p(xji|zji = z,x−ji)

For existing topics, p(zji = z|z−ji, z
′
ji = z′) can be split into two terms, one

from picking any of the existing tables from entity (inner restaurant) z′ with
topic z and the other from creating a new table for entity z′ and assigning the
topic z to it. For a new topic, a new table is always created for entity z′. Hence,

p(zji = z|z−ji, z
′
ji = z′) ∝

{
nk′.k+αβk

nk′.+α
Existing z

αβnew

nk′..+α
New topic z

(19)
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The other term p(xji|zji = z,x−ji) is the conditional density of xji under
topic z given all data items except xji. Assuming each topic is sampled from a V
dimensional symmetric Dirichlet prior over the vocabulary with parameter η, i.e
φk ∼ Dir(η), the above probability can be simplified to the following expression,
by integrating out φ:

p(xji = w|zji = z,x−ji) ∝
nzw + η

nz.+ V η

where nzw is the number of occurrences of topic z with word w in the vocabulary.

Sampling z′ji: The conditional distribution for the entity index z′ji is

p(z′ji = z′|z′−ji, z−ji, zji = z,m,m′, β, β′,x) ∝ p(z′ji = z|z′−ji)p(zji = z|z−ji, z
′
ji = z′)

Again, p(zji = z|z−ji, z
′
ji = z′) can be split into two terms, one from picking

an existing outer table with entity z′ and the other from creating a new outer
table and assigning the entity z′ to it. Further, creation of a new entity always
involves the creation of a new outer table. Hence,

p(z′ji = z′|z′−ji) ∝

⎧⎨⎩
n′
j.k′+α

′β′
k′

n′
j..+α

′ Existing z′

α′β′
new

n′
j..+α

′ New z′

p(zji = z|z−ji, z
′
ji = z′) follows from Eqn. 19.

Sampling β and β′: The posterior of G0, conditioned on samples ψk′t from
it, is also distributed as a DP due to Dirichlet-Multinomial conjugacy, and the
stick breaking weights of G0 can be sampled as follows: (β1, β2 . . . βK , βnew) ∼
Dir(m.1,m.2 . . .m.K , γ) Similarly, the stick breaking weights β′ can be sampled
from the posterior distribution of G′

0 conditioned on samples from G′
0 in the

form of m′
jk′ as follows: (β

′
1, β

′
2 . . . β

′
K , β′

new) ∼ Dir(m′
.1,m

′
.2 . . .m

′
.K′ , γ′)

Sampling m and m′: mk′k is the number of inner tables generated as nk′.k
samples are drawn from G′

k corresponding to a particular topic k. This is the
number of partitions generated as samples are drawn from a Dirichlet Process
with concentration parameter αβk and is distributed according to a closed form
expression [1]. We adopt a different method [7] for sampling mk′k by drawing a
total of nk′.k samples with topic k, and incrementing the count mk′k whenever
a new inner table is created with topic assignment k. Similarly, m′

jk′ is sampled
by drawing a total of n′

j.k′ samples with entity k’ and incrementing the count
m′
jk′ whenever a new outer table is created with entity assignment k′.

Sampling Concentration Parameters: We place a vague gamma prior on the
concentration parameters α, γ, α′, γ′ with hyper parameters (αa, αb), (γa, γb),
(α′
a, α

′
b) and (γ′

a, γ
′
b) respectively. We use Gibbs sampling scheme for sampling

the concentration parameters using the technique outlined in HDP[16].
We use the conditional distributions above to perform inference under three

different settings. In the “no observed entities” setting, the conditional distri-
butions above are repeatedly sampled from until convergence. For initialization,
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we first initialize the topic variables zji using an online scheme, and then initial-
ize the entities z′ji using the topics. In the “completely observed entities”
setting, the set of entities Aj is given for every document j. Since no other
entities are deemed possible for the jth document, p(z′ji = z′|z′−ji, z−ji, zji =
z,m,m′, β, β′,x) is set to 0 for new entities and for all z′ /∈ Aj . In the “par-
tially observed entities” setting, a partial list of known entities Aj is available
for document j, but other entities are also considered possible. We perform an
initialization step, similar to that in the completely observed setting, using the
known entities Aj . No new authors are added in this initial step. During later
iterations, we allow all assignments z′ji = z — one of the known entities from
Aj , entities of other documents j′, and new entities. However, we introduce a
bias towards the known authors z′ ∈ Aj using an additional small positive term
to their probability mass.

6 Experiments

In this section, we experimentally evaluate the proposed nHDP model for the
task of modeling author entities who have collaboratively written research pa-
pers, and compare its performance against available baselines. Specifically, we
evaluate two different aspects: (1) how well the model is able to learn from the
training samples and fit held-out data, first (1a) when all the authors are ob-
served in training and test documents, and secondly (1b) when some or all of
the authors are unobserved in training and test documents, (2) how accurately
the model discovers hidden authors, who are not mentioned at all in the corpus.

We consider the following models for the experiments: (i) The author-topic
model (ATM) (Eqn. 1) where the number of topics is pre-specified, and all au-
thors are observed for all documents. This is used as a baseline for (1a) above.
(ii) The Hierarchical Dirichlet Process (HDP) (Eqn. 4) using the direct as-
signment inference scheme for fair comparison. We use our own implementation
for this. Recall that the HDP infers the number of topics, and does not use
author information. (iii) nHDP with completely observed entities (nHDP-co),
which assumes complete entity information to be available for all documents,
but learns topics in a nonparametric fashion. This can be imagined as an im-
provement over ATM where the number of topics does not need to be specified.
(iv) nHDP with partially observed entities (nHDP-po), which makes use of
available entity information, but admits the possibility of entities being hidden
globally from the corpus, or locally from individual documents. (v) nHDP with
no observed entities (nHDP-no), which does not make use of any entity infor-
mation and assumes all entities to be globally hidden in the corpus. For task
(1a) above, the applicable models are the ATM, HDP (which ignores the entity
information) and nHDP-co. For task (1b), the ATM does not apply. We evaluate
HDP, nHDP-po and nHDP-no. It is important to point out that there are no
available baselines for task (2) above.
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Table 1. Perplexity of ATM, HDP and nHDP-co for NIPS

Model ATM HDP nHDP-co

Perplexity 2783 1775 1247

We use the following publicly available publication datasets for our exper-
imental analysis. The NIPS dataset1 is a collection of papers from Neural
Information Processing Systems (NIPS) conference proceedings (volume 0-12).
This collection contains 1,740 documents contributed by a total of 2,037 authors,
with total 2,301,375 word tokens resulting in a vocabulary of 13,649 words. A
subset of theDBLP Abstracts dataset2 containing 12,000 documents by 15,252
authors collected from 20 conferences records on the Digital Bibliography and
Library Project (DBLP). Each document is represented as a bag of words present
in abstract and title of the corresponding paper, resulting in a vocabulary size
of 11,771 words.

1. Generalization Ability: We now come to our first experiment, where we
evaluate the ability of the models, whose parameters are learnt from a training
set, to predict words in new unseen documents in a held-out test set. We evaluate
performance of a model M on a test collection D using the standard notion of
perplexity [3]: exp(−

∑
d∈D p(wd)|M).

In experiment (1a), all authors are observed in training and test documents.
To favor the ATM, which cannot handle new authors in test document, we create
test-train splits ensuring that each author in the test collection occurs in at least
one training document.

Perplexity results are shown in Table 1. Recall that HDP and nHDP find the
best number of topics, while for ATM we have recorded its best performance
across different value of K. The results show that while knowledge of authors is
useful, the ability of non-parametric topic models to infer the number of topics
clearly leads to better generalization.

Next, in experiment (1b), we first create training-test distributions with rea-
sonable author overlap by letting each author vote with probability 0.7 whether
to send a document to train or test, and majority decision is taken for each
document. Next, authors are partially hidden from both the test and the train
documents as follows. We iterate over the global list of authors and remove each
author from all training and test documents with probability pg. We then iterate
over each training and test document, and remove each remaining author of that
document with probability pl. We experiment with different values of pg and pl
to simulate different extents of missing information on authors.

The results are shown in Table 2. We can see that when more information
is available about the authors, the ability to fit held-out data improves. More
interestingly, even when no / very little author information is available, just the
assumption about the existence of authors, or a discrete set of topic mixtures,

1 http://www.arbylon.net/resources.html
2 http://www.cs.uiuc.edu/~hbdeng/data/kdd2011.htm

http://www.arbylon.net/resources.html
http://www.cs.uiuc.edu/~hbdeng/data/kdd2011.htm
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Table 2. Perplexity for HDP and nHDP with varying percentage of hidden authors

Model HDP nHDP-no nHDP-po nHDP-po nHDP-po nHDP-co

pg,pl 1,1 1,1 0.6,0.6 0.4,0.4 0.2,0.2 0,0
Perplexity NIPS 2572 1882 1434 1266 1109 987
Perplexity DBLP 1027 997 935 869 676 394

leads to better generalization ability, as can be seen from the relative performance
of HDP and nHDP-no.

2. Discovering Missing Authors: Beyond data fitting, the most significant
ability of the nHDP mixture model is to discover entities which are relevant for
documents in the corpus, but are never mentioned. We perform a case study
with the top 6 most prolific authors in NIPS, by removing them completely
from the corpus, and then checking the ability of the model to discover them in
a completely unsupervised fashion. While it is possible to define as a classification
problem the task of detecting of locally missing authors in individual documents
when the author is observed in other documents, we reiterate that there is no
existing baseline when an author is globally hidden.

We evaluate the accuracy of discovering hidden author as follows. For each
hidden author h ∈ {1 . . .H}, we create am-dimensional vector ch, wherem is the
corpus size, with ch[j] indicating his authorship in the jth document. We explored
two possibilities for this ‘true’ indicator vector: (a) binary indicators using the
gold-standard author names for documents, and (b) the number of words written
by that author in the document according to nHDP with completely observed
authors (nHDP-co). Similarly, we create an m-dimensional vector for each new
author n ∈ {1 . . .N} discovered by the nHDP-po, with cn[j] indicating his contri-
bution (no. of authored words) in the jth document. We now check how well the
vectors {cn} correspond to the ‘true’ vectors {ch}. This is done by defining two
variables Cn and Ch, taking values 1 . . .H and 1 . . .N respectively, and defining
a joint distribution over them as P (h, n) = 1

Z sim(ch, cn), where Z is a normal-
ization constant. For sim(ch, cn), we use cosine similarity between normalized

versions of ch and cn. Mutual information I(Ch, Cn) =
∑
h,n p(h, n) log

p(h,n)
p(h)p(n)

measures the information that Ch and Cy share. We used its normalized variant

NMI(Ch, Cn) =
I(Ch,Cn)

|H(Ch)+H(Cn)|/2 (H(X) indicating entropy of X) which takes

values between 0 and 1, higher values indicating more shared information.
First, we note that the best NMI achievable for this task, by replacing the

true vectors {ch} for the discovered vectors {cn}, is 0.86 for case (a) and 0.98
for case (b) above. In comparison, using nHDP-po, we achieve NMI scores of
0.59 for case (a) and 0.72 for case (b). This indicates that the actual author
distributions that the model discovers not only help in fitting the data, but also
have reasonable correspondence with the true hidden authors. We believe that
this is a promising initial step in addressing this difficult problem.
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7 Conclusions

In this paper, we have addressed the problem of entity-topic analysis from doc-
ument corpora, where the set of document entities are either completely or par-
tially hidden. For such problems, we have proposed as a prior distribution the
nested Hierarchical Dirichlet Process, which consists of two levels of Hierarchi-
cal Dirichlet Processes, where one is the base distribution of the other. Using a
direct sampling scheme for inference, we have shown that the nHDP is able to
generalize better than existing models under varying available knowledge about
authors in research publications, and is additionally able to discover completely
hidden authors in the corpus.
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Abstract. In Bayesian networks, prior knowledge has been used in the
form of causal independencies between random variables or as quali-
tative constraints such as monotonicities. In this work, we extend and
combine the two different ways of providing domain knowledge. We de-
rive an algorithm based on gradient descent for estimating the param-
eters of a Bayesian network in the presence of causal independencies in
the form of Noisy-Or and qualitative constraints such as monotonicities
and synergies. Noisy-Or structure can decrease the data requirements
by separating the influence of each parent thereby reducing greatly the
number of parameters. Qualitative constraints on the other hand, allow
for imposing constraints on the parameter space making it possible to
learn more accurate parameters from a very small number of data points.
Our exhaustive empirical validation conclusively proves that the synergy
constrained Noisy-OR leads to more accurate models in the presence of
smaller amount of data.

1 Introduction

Human advice or input is generally provided in learning Bayesian networks using
the structure of the Bayesian network [1]. Given this network structure, most
methods use some form of optimization to learn the parameters of the models.
Initially, advice giving methods simply served to constrain the structure of the
network. While the use of prior structure does reduce the number of examples
required to learn a reasonable network, learning parameters can still require cer-
tain amount of examples to converge to a reasonable estimate. However many
domains, such as medicine, can be data poor (for example, number of positive
examples of a disease can possibly be quite low) but knowledge rich due to sev-
eral decades of research. This domain knowledge is mostly about the influential
relationships between the random variables of interest in the domain.

One of the most prominent methods of providing domain knowledge to a prob-
abilistic learner is to provide the set of causal independencies that exist in the
domain [2]. Also called as Independence of Causal Influences (ICI) [3–6], this
form of knowledge identifies sets of parents that are independent of each other

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part II, LNAI 8189, pp. 580–595, 2013.
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when affecting the target random variable. The effects of these sets of random
variables can typically then be combined using a function such as Noisy-Or. The
key advantage of such knowledge is that these lead to a drastic reduction in the
number of parameters associated with the conditional distributions (from expo-
nential in the total number of parents to exponential in the size of these sets).
This reduction can greatly affect the number of examples required for training
an accurate model. While this is very attractive, ICI can be very restrictive and
easily violated in many domains.

An equally alternative and more recent method of providing advice to learners
is based on qualitative influences [7–11]. Qualitative influence (QI) statements
essentially outline how the change of one variable affects the change of another
variable. A classic example of such QI statements is monotonicity [7, 8, 12]
where an increase in value of one random variable (say cholesterol) increases the
probability that another variable (say risk of heart attack) takes a higher value.
Another direction has been in combining context-specific independencies [13]
with QI statements [9] and showing that learning with such constraints is a
special case of isotonic regression [14].

In this work, we extend and combine these different methods of specifying
domain knowledge. More precisely, we extend the research in two directions –
First, current methods for QI can handle monotonicity statements while we ex-
tend these directions by allowing for synergistic interactions [7] between random
variables. While monotonicities model the qualitative dependency between two
random variables, synergistic interactions allow for richer influence relationships.
For instance, with synergies, it is possible to specify statements such as “Increase
in blood sugar level increases the risk of heart attack in high cholesterol level
patients more than it does in low cholesterol level patients”. This statement
explains how sugar level and cholesterol level interact when influencing heart at-
tack. Second, we use such synergistic and monotonicity statements and combine
them with the concept of ICI i.e., we treat each “set” of monotonicity and syner-
gistic interaction as independent of each other and their influences are combined
with a combining rule. In this work we employ Noisy-Or [5] for combining the
independent influences. While previous work has used context-specific indepen-
dences, we generalize them to using ICI.

Following prior work [8], we convert the monotonicity and synergy statements
to constraints on the parameter space of the conditional distributions. We then
combine the different conditional distributions using Noisy-Or and derive the
overall objective function. We adopt a gradient descent algorithm with exterior
penalty method to optimize the objective function and outline the algorithm for
learning in the presence of qualitative and conditional influences.

To summarize, we make the following contributions: first, we extend the qual-
itative influences to include synergies. Second, we combine these qualitative in-
fluences with the independence of causal influence (ICI) such as Noisy-Or and
derive a new objective function that includes these influences as constraints on
the parameter space. Third, we derive an algorithm for parameter learning in
the presence of sparse data by exploiting these influences. Finally, we perform
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an exhaustive evaluation in 11 different standard domains to understand the
impacts and influences of the different types of influence statements. Our results
show clearly that the use of such influences helps the learning algorithm improve
its performance in the presence of sparse data.

2 Background

We provide a brief background on qualitative and conditional influences. First, we
introduce some basic notations used throughout the paper. In a Bayesian network
with n discrete valued nodes, we denote the parameters by θijk (i ∈ {1, 2, ..., n}, j ∈
{1, 2, ..., vi}, k ∈ {1, 2, ..., ri}) which means the conditional probability ofXi to be
its k-th value given the j-th configuration of its parents (i.e. P (Xk

i |pa
j
i )). ri denotes

the number of states of the discrete variable Xi; Pai represents the parent set of
node Xi; the number of configurations of Pai is vi =

∏
Xt∈Pai rt; j is the index of

a particular configuration of node Xi’s parents pa
j
i .

2.1 Qualitative Influences – Monotonic Constraints

Qualitative influence, specifically monotonicity has been explored extensively in
previous work [7–9]. Specifically, Altendorf et al. [8] used monotonicities in the
context of learning Bayesian networks. Monotonic influence means that stochas-
tically, higher values of a random variable, say X result in higher (or lower)
values of another variable Y , and is denoted as XM+

� Y (or XM−
� Y ). The in-

terpretation is that increasing values of X shifts the cumulative distribution
function of Y to the right (i.e., higher values of Y are more likely). This means
that P (Y ≤ y|X = x1) ≤ P (Y ≤ y|X = x2) (where x1 ≥ x2). Note that the
same definition can be extended in the presence of multiple parents by fixing the
values of the other parents. If one ofXi’s parents (denoted by Xc) has monotonic
constraint on Xi, this relationship still stands given the same configuration of
other parents, the general form of monotonic constraints of Xc on Xi is

P (Xi � kc|Xm
c , Cni ) � P (Xi � kc|Xm+1

c , Cni ) (1)

where kc ∈ {1, 2, ..., ri− 1},m ∈ {1, 2, ..., rc− 1}, Xm
c � Xm+1

c , Cni represents all
possible configurations of Xi’s parents other than Xc, n is the index.

Altendorf et al. [8] used these qualitative constraints to learn the parameters
of a Bayes net by introducing a penalty to the objective function when the con-
straints are violated. Assume there is a monotonic constraint: P (Xi ≤ kc|paj2i ) ≤
P (Xi ≤ kc|paj1i ). The constraint function δ with margin ε is defined as:

δ = P (Xi ≤ kc|paj2i )− P (Xi ≤ kc|paj1i ) + ε (2)

The corresponding penalty function is P i,kcj1,j2
= I(δ>0)δ

2 (where I=1 when δ > 0
and I=0 when δ � 0). In order to rule out the need for the simplex constraints
(
∑ri

k=1 θijk = 1), Altendorf et al. defined μijk such that

θijk =
exp(μijk)∑ri

k′=1 exp(μijk′ )
(3)
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They then derived the gradient of the objective function wrt μ and used exterior
penalty method to learn from data. We refer to their work for more details. Tong
et al. [11] and de Campos et al. [10], considered the problem of facial recognition
from images and applied qualitative constraints to learning for recognizing these
faces. They took an EM approach for learning the parameters of these qualitative
constraints (that possibly could include synergy). We on the other hand, take a
gradient descent approach that allows for including conditional influences such
as Noisy-Or.

2.2 Noisy-Or

The term independence of causal influence was first used by Heckerman and
Breese [3] to model the situation where there are several variables that influence
a random variable independently but their collective influence can be computed
using some deterministic or stochastic combination function. Typical examples
of ICI include Noisy-Or, Noisy-And, Noisy-Min, Noisy-Max, Noisy-Add etc. Rep-
resenting and learning with such ICI relationships have long been explored in
the context of Bayes nets [3–6]. In this work, we consider a particular type of
ICI, the most popular one – Noisy-Or. Simply put, if there are n independent
causes {X1, ..., Xn} for a random variable Y and assuming for simplicity that
Y is binary, then the target distribution P (Y = 1|X1 = x1, ..., Xn = xn) is
given by

P (Y = 1|X1 = x1, ..., Xn = xn) = 1−
∏
i

P (Y = 0|Xi = xi) (4)

The interpretation is that if any parent, say Xi takes value xi, Y will take the
value 1, unless there is an effect of inhibition. This inhibition has a probability of
P (Y = 0|Xi = xi) [6] and these inhibitory effects are assumed to be independent
(1− qi for i

thparent).

3 Qualitative Constraints – Synergies

In this section, we extend the previous work on montonicities [8] by allowing for
synergistic interactions. After presenting the definition of synergies, we derive
the gradient for learning with such knowledge from data.

In the presence of a small amount of training data, the parameters in condi-
tional probability tables (CPT) estimated only based on the data are most likely
inaccurate, and in some cases can result in even uniform distributions due to the
lack of data about certain configurations of the parents. Fortunately, in many of
the real world problems, domain experts can provide sufficient prior knowledge
about the influences that exist in the domain. We consider a particular type of
the domain knowledge namely, qualitative influence statements that allow us to
apply some constraints on the CPTs. These constraints aid in obtaining more
accurate estimates of the parameters of the CPTs. More specifically, we propose
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to exploit the monotonicity and synergy constraints and combine them with a
rule such as Noisy-Or when learning the parameters.

When multiple parents influence the resultant independently, we can simply
employ monotonicities as presented in the previous section. Synergies on the
other hand, allow for richer interactions between the parents where the set of
parents can influence the resultant variable dependently. We use Wellman’s def-
inition on qualitative synergy [7]. Assume that two variables X1 and X2 affect a
third variable Y synergistically (where each of them has the XM+

1 � Y and XM+
2 � Y

relationship with the target). This is denoted as X1, X
S+
2 �Y (sub-synergy is de-

noted as S-)1. In simple terms, this means that increasing X1 has a greater
(lesser for sub-synergy) effect on Y for high values of X2 than low values of X2;
likewise for increasing X2 with fixed X1. Note that two causes having the same
monotonic influence is the premise of their synergistic interaction, which means
by our definition, there cannot be a synergy or sub-synergy relation between
X1 and X2 if XM+

1 � Y while XM−
2 � Y i.e., the parents in the synergy relationship

cannot have different types of monotonic influences to the target.
Consider for example a medical diagnosis problem and assume that the target

of interest is heart attack. An example of a synergistic statement in the domain
is, cholesterol and blood pressure interact synergistically when influencing heart
attack. In simpler terms, the above statement simply means that hypertension
increases the risk of heart attack in high cholesterol level patients more than
it does in low cholesterol level patients. This defines how the two risk factors
(cholesterol and blood pressure) interact with heart attack. Note that each of
the cholesterol level and blood pressure has a monotonic relationship with heart
attack when considered individually (i.e. ChlM+

� HA and BPM+
� HA). A classic

example of a sub-synergy in medical research is that coronary heart disease
(CHD) is markedly more common in men than in women; CHD risk increases
with age in both sexes, but the increase is sharper in women [15]. Hence gender
and age interact sub-synergistically when influencing CHD.

Formally, based on the definition above, assume xji � xj+1
i where xji is the j

th

value of variable Xi. Since P (Y ≤ kc|X i
1, X

j
2) � P (Y ≤ kc|X i+1

1 , Xj
2) (implied

by XM+
1 � Y ), X1’s effect on Y at low level of X2 is

P (Y ≤ kc|X i
1, X

j
2)− P (Y ≤ kc|X i+1

1 , Xj
2)

and similarly, at high level of X2 is

P (Y ≤ kc|X i
1, X

j+1
2 )− P (Y ≤ kc|X i+1

1 , Xj+1
2 )

The synergistic constraint on conditional probability distribution can be math-
ematically represented as:

P (Y ≤ kc|X i
1, X

j
2)− P (Y ≤ kc|X i+1

1 , Xj
2) ≤

P (Y ≤ kc|X i
1, X

j+1
2 )− P (Y ≤ kc|X i+1

1 , Xj+1
2 )

1 Note that what we use the terminology of sub-synergy due to Wellman. This same
concept is also called as anti-synergy in the literature.
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where i ∈ {1, 2, ..., r1 − 1} and j ∈ {1, 2, ..., r2 − 1}. Note the above inequation
is essentially X1’s effect on Y with fixed X2. Similarly the synergistic constraint
of X2 on Y with fixed X1is

P (Y ≤ kc|X i
1, X

j
2)− P (Y ≤ kc|X i

1, X
j+1
2 ) ≤

P (Y ≤ kc|X i+1
1 , Xj

2)− P (Y ≤ kc|X i+1
1 , Xj+1

2 )

Note that by definition, both of the above inequations need to be satisfied to
make X1 and X2 a synergistic pair. We can generalize the above two inequalities
into one inequality constraint by simply moving the subtractors to the other side
of the inequality, which is the general form of synergy that we consider.

P (Y ≤ kc|X i
1, X

j
2) + P (Y ≤ kc|X i+1

1 , Xj+1
2 ) ≤

P (Y ≤ kc|X i+1
1 , Xj

2) + P (Y ≤ kc|X i
1, X

j+1
2 ) (5)

Assume Y is binary,X1 andX2 are both ternary. Now, the synergy constraints
between X1 and X2 that affect Y are as presented in Table 1.

Table 1. Synergy constraints

Synergy Constraints of X1 and X2 on CPT of Y

P (Y = 0|x1
1, x

1
2) + P (Y = 0|x2

1, x
2
2) � P (Y = 0|x1

1, x
2
2) + P (Y = 0|x2

1, x
1
2)

P (Y = 0|x1
1, x

2
2) + P (Y = 0|x2

1, x
3
2) � P (Y = 0|x1

1, x
3
2) + P (Y = 0|x2

1, x
2
2)

P (Y = 0|x2
1, x

1
2) + P (Y = 0|x3

1, x
2
2) � P (Y = 0|x2

1, x
2
2) + P (Y = 0|x3

1, x
1
2)

P (Y = 0|x2
1, x

2
2) + P (Y = 0|x3

1, x
3
2) � P (Y = 0|x2

1, x
3
2) + P (Y = 0|x3

1, x
2
2)

The key difference to monotonicity is that the constraints are on a set of
parents (two in our example) rather than a single parent.

3.1 Derivation of the Gradient for the Synergy Qualitative
Influence

We now derive the gradients by extending the prior work [8]. Let us redefine the
parameters of the conditional distributions as shown in Equation 3. This allows
us to define a constraint function δ for the synergistic constraints:

P (Xi ≤ kc|paj1i ) + P (Xi ≤ kc|paj4i ) ≤ P (Xi ≤ kc|paj2i ) + P (Xi ≤ kc|paj3i )

The constraint function for the above definition is:

δ = P (Xi ≤ kc|paj1i )+P (Xi ≤ kc|paj4i )−P (Xi ≤ kc|paj2i )−P (Xi ≤ kc|paj3i )+ ε
(6)

The above definition is similar to the monotonicity case. Then the gradient of
the penalty function can be computed as:
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∂

∂μijk
P i,kcj1,j2,j3,j4

=
∂

∂μijk
I(δ≥0)δ

2

= 2I(δ≥0)δ(
∂

∂μijk

Zij1kc
Zij1

+
∂

∂μijk

Zij4kc
Zij4

− ∂

∂μijk

Zij2kc
Zij2

− ∂

∂μijk

Zij3kc
Zij3

+
∂

∂μijk
ε)

= 2I(δ≥0)δ[
Zij1I(j=j1∧k≤kc)exp(μijk)− Zij1kcI(j=j1)exp(μijk)

(Zij1)
2

+
Zij4I(j=j4∧k≤kc)exp(μijk)− Zij4kcI(j=j4)exp(μijk)

(Zij4)
2

−
Zij2I(j=j2∧k≤kc)exp(μijk)− Zij2kcI(j=j2)exp(μijk)

(Zij2)
2

−
Zij3I(j=j3∧k≤kc)exp(μijk)− Zij3kcI(j=j3)exp(μijk)

(Zij3)
2

]

= 2I(δ≥0)δ exp(μijk)(I(j=j1) + I(j=j4) − I(j=j2) − I(j=j3))
I(k≤kc)Z

i
j − Zijkc

(Zij)
2

(7)

where I is the indicator function, Zijkc =
∑kc
k=1 exp(μijk), and Zij = Zijri . This

gradient is very similar to the one obtained by Altendorf et al. [8]. The key
difference is that in their formalism, every constraint inequality applied to two
parameters, but our constraint inequality is applied to four parameters (assuming
two parents of a random variable and all the variables are binary valued). This
is due to the fact that monotonicities are associated with a single parent but
synergies exist in a set of parents where each of the parents has a monotonic
relationship with the target. Note that while we define these gradients with only
two parents for brevity, they can be easily extended to sets of variables.

It should be mentioned that the definition of synergy we focus in this paper
is different from the definition of Xiang and Jia [16]. It can be easily proved that
the reinforcement in their work is equivalent with the positive monotonicity we
defined in our paper and as defined by Altendorf et al. [8]. We clearly show this
relationship in the appendix A. While their work focuses on the representation
of monotonicities using ICI, we go further and combine synergies with Noisy-
Or. In addition, we also derive the gradient for this combination and develop a
learning algorithm in the next section.

4 Learning Parameters in Presence of Qualitative
and Independence Knowledge

In the previous section, we presented the idea of using monotonicities and syn-
ergies as domain knowledge that makes it possible to learn from sparse data.
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Fig. 1. Noisy-Or Bayesian network with qualitative constraints

However, it is a tedious work to list all constraints inequalities when there are a
large number of parents and unnecessary when the qualitative constraint sets are
independent with each other. If there are totally n parents and one of them (say
Xc) has monotonic constraints on the resultant CPT, then the number of the
constraints inequalities is proportional to

∏
Xj∈Pai\Xc

rj , which is exponential
in the number of total parents. The Noisy-Or structure, however, can make the
number of constraints linear in the number of parent sets. In this work, we pro-
pose to use Noisy-Or to separate the influence of the different sets of qualitative
constraints. So the inherent assumption is that the different sets of influences
are independent of each other and the final structure is simply a Noisy-Or of
the resulting distributions. It can be shown that introducing an extra layer of
hidden nodes can still preserve the qualitative constraints of the features on the
output, which exist between them in the original BN (see appendix B).

An example scenario is presented in Figure 1 where xji represents the j
th nodes

in ith constraint set. As can be seen the sets of parents can have a synergistic
effect (S+), sub-synergistic effect (S-), monotonic (M+) or anti-monotonic (M-)
effect. Each of these parent sets yields a distribution over the target (which is
essentially a hidden node Yi that is not observed in the data). These different
distributions are then combined using the Noisy-Or combining rule where each
of these can have an inhibition probability (1 − qi). In this work, we learn the
parameters of the conditional distributions and the inhibition parameters.

Algorithm 1 presents the process of learning the parameters of conditional
distributions and inhibitions given these qualitative statements and conditional
influences (where α and β indicate the descent step size of CPT parameter
and Noisy-Or parameter). The qualitative constraints are only applied on the
CPTs of hidden node. So, the objective function of Noisy-Or parameters qi is
the log-likelihood function while the objective function J of CPT parameters is
log-likelihood function minus the sum of all involved penalty functions times a
penalty weight ω. It is an iterative procedure where we first learn the inhibition
probabilities of the different combinations. Then using these estimated probabil-
ities, we estimate the parameters of the conditional distributions subjected to
the appropriate qualitative influences. This procedure is continued till conver-
gence. It is possible that the algorithm sometimes may not converge to a feasible
solution that satisfies all the constraints. In such cases, we increase the weight of
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Algorithm 1. Parameter Learning in Noisy-Or BN Combining Qualitative Con-
straints
1. Initialize the parameters μijk and qi randomly
2. Repeat untill convergence:

for i = 1 → rl do
Noisy-Or Parameter Gradient Step:

Compute the gradient of Noisy-Or parameters
∂LL

∂qi
for all the qi.

Noisy-Or Parameter Update Step:

Update each qi by qi = qi + β
∂LL

∂qi
for j = 1 → vi do

CPT Parameter Gradient Step:
Compute the gradient of CPT parameters

∂J

∂μijk
=

∂LL

∂μijk
− ω
∑ ∂P i,kc

j

∂μijk

for each hidden node Yi given every possible configuration of its parents
CPT Parameter Update Step:

Update each μijk by μijk = μijk + α
∂J

∂μijk

end for
end for

3. If outside the feasible region, increase the penalty weight ω and repeat step 2

the penalty so that the solution does not go outside the feasible region. It must
be mentioned that we are not learning the qualitative relationships but assume
that these are given.

We use el to indicate the lth training example, rl to denote the number of
qualitative constraints sets the lth instance have, Xl,i to represent the input vec-
tor of ith constraints set in lth training example, qi as the conditional probability
P (Y = 1|Yi = 1). The loglikelihood function in Noisy-Or BN combining multiple
constraints sets is given by LL =

∑
l log(P (yl|el)) where P (y = 1|el) is

P (y = 1|el) = 1−
rl∏
i=1

[Pi(y = 0|Xl,i) + (1 − qi)Pi(y = 1|Xl,i)]

= 1−
rl∏
i=1

[Pi(y = 0|Xl,i) + (1− qi)(1− Pi(y = 0|Xl,i))]

= 1−
rl∏
i=1

[1− qi + qiPi(y = 0|Xl,i)] (8)

Substitute Equation 3, we get:

P (y = 1|el) = 1−
rl∏
i=1

[1− qi + qi
exp(μij0)

exp(μij0) + exp(μij1)
] (9)
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Taking the derivative of the loglikelihood function with respect to μijk , we
get

∂LL

∂μijk
=
∑
l

1

P (yl|el)
∂P (yl|el)
∂μijk

=
∑
l

[
1

P (yl|el)
(−1)y(−1)kϕ(el)] (10)

Where,

ϕ(el) = qi[
∂

∂μij0
(

exp(μij0)

exp(μij0) + exp(μij1)
)]
∏
i′ �=i

[1− qi′ + qi′Pi′(y = 0|Xl,i′)]

= qi[
exp(μij0)exp(μij1)

(exp(μij0) + exp(μij1))2
]
∏
i′ �=i

[1− qi′ + qi′Pi′(y = 0|Xl,i′)] (11)

The gradient of loglikelihood function with respect to qi is given by:

∂LL

∂qi
=
∑
l

1

P (yl|el)
∂P (yl|el)

∂qi
=
∑
l

[
1

P (yl|el)
(−1)yφ(el)] (12)

φ(el) = (Pi(y = 0|Xl,i)− 1)
∏
i′ �=i

[1− qi′ + qi′Pi′(y = 0|Xl,i′)] (13)

Once this gradient is obtained, we perform the iterative update of the Noisy-
Or parameters and the CPT parameters as shown in Algorithm 1.

The natural question to ask is, where does the knowledge come from? We be-
lieve that, in many domains such as medicine, obtaining this knowledge is natural
– for instance, there exists published research in understanding interactions of
risk factors when predicting a disease, say heart attack. From this perspective,
our proposed work here can be considered as enabling domain experts to provide
more information to guide the algorithms in their search through the space of
parameters. In addition, our algorithms can provide a method to evaluate the
extent to which the domain knowledge is correct – it can determine the violations
of the constraints in the training data. So we provide a method by which the
domain experts can include some knowledge that is fully satisfied by the data
and their best guesses at other relationships. Our algorithms can naturally fit the
true knowledge and determine how much of the guesses are true. As we show in
our experiments, there are some cases, where the independence between the sets
of relationships may not be always true and in some cases, the monotonicities
are as valuable as synergies. We aim to understand the interplay between the
qualitative constraints and Noisy-Or and aim to determine if the combination is
indeed a powerful method to exploit prior knowledge.

5 Experimental Evaluation

In this section, we present the results of evaluating our algorithm on 11 different
standard machine learning domains from the UCI repository. The key questions
that we seek to ask in our experiments are:
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Q1: How does the use of qualitative constraints compared to not using any
influence statements?

Q2: How valid is the independence assumption (i.e., how good is only using
Noisy-Or)?

Q3: How does synergy compare to monotonicity?

Q4: How does the addition of the conditional influences with qualitative
constraints help?

For each dataset, we learn the parameters by implementing six algorithms:
(i) learning merely from data, (ii) with monotonic constraints, (iii) with synergy
constraints, (iv) learning with Noisy-Or structure, (v) monotonic constraints
plus Noisy-Or and (vi) synergy constraints plus Noisy-Or. All used features are
discretized into two states under the following rules: i) nominal variables such
as sex, race are assigned a class based on their qualitative relationships with
their children nodes; ii) ordinal variables (e.g. {small, med, big}) are divided
into two classes based on their distributions; iii) continuous values such as blood
pressure, thyroxine are discretized according to practical thresholds in corre-
sponding domains. The AUC-ROC and P values are calculated to compare their
performances. We perform 10-fold cross-validation on all the domains for param-
eter selection and present the results on test set.

Table 2. Details of the experimental domains

Domain Target Attribute
Num of Num of
Parents Samples

Heart Disease Diagnosis of HD 5 297

Breast Cancer BC recurrence 5 286

Credit Approval Card Approval 5 300

Car Evaluation Acceptable or not 6 300

Pima Indian Diabetes Diabetes status 4 300

Census Income > 50K or � 50K 7 300

Iris Versicolour or Virginica 4 100

Glass Identification float or non float(Building windows) 5 146

Ecoli Protein localization 5 284

Thyroid Disease TD status 5 185

Hepatitis Death of hepatitis 5 144

Table 2 presents the target attribute of interest in each domain in the sec-
ond column. The third column lists the number of parents and the final column
presents the number of all instances (sum of training set and test set whose pro-
portion is about 10:1 in every domain). For the different domains, we provide
prior knowledge– synergies and monotonicities whenever applicable. An example
of such a network is presented in Figure 2. As can be seen, this is in the breast
cancer domain where the goal is to predict recurrence of breast cancer based
on 5 different attributes {age, menopause, tumor-size, deg-malig, irradiation}.
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Fig. 2. An example domain without (left) and with (right) qualitative influences and
Noisy-Or

In its Noisy-Or model, irradiation has a negative monotonic effect on the prob-
ability of recurrence and the others have positive monotonic effects. Parent set
{age, menopause} has a synergistic interaction while {tumor-size, deg-malig} is
sub-synergistic.

The results of using the different algorithms are presented in Figure 3 where
the consolidated AUC-ROC over all the domains is presented. The first bar graph
of every domain is a simple inverted naive Bayesian network where every feature
is considered to be a parent of the target and the parameters are learned. The
subsequent ones are (in that order) – Noisy-Or, monotonicity constraints [8],
synergies, monotonicity with Noisy-Or and synergy with Noisy-Or. Hence, the
last three bar graphs are the algorithms presented in this work. As can be seen,
very clearly, in all the domains, the use of qualitative constraints and qualitative
constraints with Noisy-Or outperform simply learning the conditional distribu-
tions from data. Hence Q1 can be answered affirmatively.

The interesting observation is that Noisy-Or assumption seems to be a strong
one in several domains. In many domains, the use of Noisy-Or is better than
assuming no knowledge in almost all the domains. But the use of only qualitative
statements such as monotonicity and synergy yield significantly better results
in 9 domains when compared to only using Noisy-Or. Hence, it is clear that
the answer to Q2 is that only using Noisy-Or is not sufficient for a majority

Fig. 3. Performance of the different algorithmic settings in several domains. Best
viewed in color.
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Fig. 4. Learning Curve in two domains with no knowledge, Noisy-Or and qualitative
influences + Noisy-Or

of domains. Comparing monotonicity and synergies, it is clear that there is not
much difference in several domains – except for breast cancer domain where
synergy seems to be significantly worse than monotonicity and Noisy-Or. Hence,
in answer to Q3, there is no significant difference between using monotonicity
and synergy constraints. It remains interesting to understand the situations in
which the use of synergy is more useful than the monotonicities.

Finally, the combination of qualitative and conditional influences seems to
perform the best in most of the domains. The results are comparable to or bet-
ter than simple qualitative constraints in all the domains. In 7 domains, the
use of conditional influences seems to improve upon the use of only qualitative
constraints. While in 3 others, there is no significant change in performance by
adding conditional influences. Only in one domain (Breast Cancer), there is a
very small dip (that is not statistically significant) in the AUC-ROC values.
Hence, to answer Q4, we can affirmatively state that the use of conditional
influences improves the performance of qualitative influence relationships in a
majority of domains. Interestingly, the use of Noisy-Or with synergies improves
upon Noisy-Or with monotonicity in three domains while in other domains the
results are comparable. This is very similar to the observation about Q3 where
synergies and monotonicities exhibit comparable performance in most domains.
All the significance results reported here are the results of using t-test with
p-values < 0.05. Figure 4 presents the learning curves comparing the use of
qualitative influence plus Noisy-Or against simple Noisy-Or and using no knowl-
edge in two sample domains. The performance using prior knowledge has a jump
start and faster convergence in both the domains, justifying the use of qualitative
and conditional influence statements in these domains.

6 Conclusion

We presented a framework for combining qualitative and conditional influence
statements when biasing probabilistic learners. We formalized the notion of syn-
ergistic interactions and derived the gradients for learning in the presence of
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such statements. We then extended our model to include conditional influences
such as Noisy-Or and derived an algorithm for learning in presence of these two
types of constraints. We evaluated our algorithms on 11 different domains and
the results conclusively proved that the use of qualitative influences when com-
bined with conditional influences yields a better performance in a majority of
the domains. Our goal is to next understand the different types of conditional
influences and their interactions with qualitative constraints. Exploring the use
of such constraints in learning the structure of a full Bayesian network remains
a very interesting direction for the future research.
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Appendix A: Equivalence of Reinforcement to Positive
Monotonicity

If variable Y is resulted from a set of causes X, the causes in X are said
to reinforce each other if for any subset X’ ⊂ X the following holds [16]:
P (Y is true|X’ is true) � P (Y is true|X is true)

Proof. Assume variable Y has three parents {x1, x2, x3} all of which have pos-
itive monotonic influence on Y (xM+

1� Y , xM+
2� Y , xM+

3� Y )and all variables are

binary. The monotonic constraints of xM+
1� Y at the context of C=({x2 = 1, x3 =

1}, {x2 = 1, x3 = 0}, {x2 = 0, x3 = 1}) is
P (Y = 1|x1

1, x
1
2, x

1
3) � P (Y = 1|x0

1, x
1
2, x

1
3) (14)

P (Y = 1|x1
1, x

1
2, x

0
3) � P (Y = 1|x0

1, x
1
2, x

0
3) (15)

P (Y = 1|x1
1, x

0
2, x

1
3) � P (Y = 1|x0

1, x
0
2, x

1
3) (16)

xM+
2� Y at the context of C=({x1 = 1, x3 = 1}, {x1 = 1, x3 = 0}) is

P (Y = 1|x1
1, x

1
2, x

1
3) � P (Y = 1|x1

1, x
0
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1
3) (17)

P (Y = 1|x1
1, x

1
2, x

0
3) � P (Y = 1|x1

1, x
0
2, x

0
3) (18)

xM+
3� Y at the context of C = ({x1 = 1, x2 = 1}) is

P (Y = 1|x1
1, x

1
2, x

1
3) � P (Y = 1|x1

1, x
1
2, x

0
3) (19)

Inequ.18 and Inequ.19 ⇒ P (Y = 1|x1
1, x

1
2, x

1
3) � P (Y = 1|x1

1, x
0
2, x

0
3)

Inequ.15 and Inequ.19 ⇒ P (Y = 1|x1
1, x

1
2, x

1
3) � P (Y = 1|x0

1, x
1
2, x

0
3)

Inequ.16 and Inequ.17⇒ P (Y = 1|x1
1, x

1
2, x

1
3) � P (Y = 1|x0

1, x
0
2, x

1
3)

The inequalities above can be presented as the probability of Y is true given all
the causes {x1, x2, x3}are activated is no less than that of only part of the causes
({x1}, {x2}, {x3}, {x2, x3}, {x1, x3}, {x1, x2}) is activated, which is the definition
of reinforce.

Appendix B: Sub-synergy and Synergy Constraints Can
Be Preserved in Noisy-Or Structure.

Assume variable Y has four parents {x1, x2, x3, x4}, all the variables are binary
and xM+

1� Y , xM+
2� Y sub-synergistically (as shown in Figure 5). Sub-synergy con-

straints of x1 and x2 on variable Y given the context {xi3, x
j
4} is given by:

P (Y = 0|x1
1, x

1
2, x

i
3, x

j
4) + P (Y = 0|x0

1, x
0
2, x

i
3, x

j
4) �

P (Y = 0|x1
1, x

0
2, x

i
3, x

j
4) + P (Y = 0|x0

1, x
1
2, x

i
3, x

j
4) (20)
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In the Noisy-Or structure, we can introduce two hidden nodes Y1 and Y2 the
sub-synergy constraint of x1 and x2 on hidden node Y1 is given by:

P (Y1 = 0|x1
1, x

1
2)+P (Y1 = 0|x0

1, x
0
2) � P (Y1 = 0|x1

1, x
0
2)+P (Y1 = 0|x0

1, x
1
2) (21)

Based on Equation 8, we have

P (Y = 0|x1
1, x

1
2, x

i
3, x

j
4) = [1− q1 + q1P (Y1 = 0|x1

1, x
1
2)]× [1− q2 + q2P (Y2 = 0|xi

3, x
j
4)]

P (Y = 0|x0
1, x

0
2, x

i
3, x

j
4) = [1− q1 + q1P (Y1 = 0|x0

1, x
0
2)]× [1− q2 + q2P (Y2 = 0|xi

3, x
j
4)]

P (Y = 0|x1
1, x

0
2, x

i
3, x

j
4) = [1− q1 + q1P (Y1 = 0|x1

1, x
0
2)]× [1− q2 + q2P (Y2 = 0|xi

3, x
j
4)]

P (Y = 0|x0
1, x

1
2, x

i
3, x

j
4) = [1− q1 + q1P (Y1 = 0|x0

1, x
1
2)]× [1− q2 + q2P (Y2 = 0|xi

3, x
j
4)]

Since q1 is a probability which is no less than zero, multiply q1 to Inequality 21
we get

q1P (Y1= 0|x1
1, x

1
2)+q1P (Y1= 0|x0

1, x
0
2) � q1P (Y1 = 0|x1

1, x
0
2)+q1P (Y1 = 0|x0

1, x
1
2)

Add (1− q1) to every item,

[1− q1 + q1P (Y1 = 0|x1
1, x

1
2)] + [1− q1 + q1P (Y1 = 0|x0

1, x
0
2)] �

[1− q1 + q1P (Y1 = 0|x1
1, x

0
2)] + [1− q1 + q1P (Y1 = 0|x0

1, x
1
2)]

Since 1− q2+ q2P (Y2 = 0|xi3, x
j
4) = 1− q2P (Y2 = 1|xi3, x

j
4), which is no less than

zero, multiply it with the above inequality,

[1− q1 + q1P (Y1 = 0|x1
1, x

1
2)][1− q2 + q2P (Y2 = 0|xi3, x

j
4)]

+ [1− q1 + q1P (Y1 = 0|x0
1, x

0
2)][1 − q2 + q2P (Y2 = 0|xi3, x

j
4)] �

[1− q1 + q1P (Y1 = 0|x1
1, x

0
2)][1− q2 + q2P (Y2 = 0|xi3, x

j
4)]

+ [1− q1 + q1P (Y1 = 0|x0
1, x

1
2)][1 − q2 + q2P (Y2 = 0|xi3, x

j
4)]

which is equivalent with Inequality 20.
It is easy to prove the transitivity of monotonic constraints in the proposed

model. The process is similar as this one, which will not be shown here.

Fig. 5. Sub-synergy in one layer BN (left) and Noisy-Or BN (right)
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Abstract. We propose a new method for detecting changes in Markov
network structure between two sets of samples. Instead of naively fitting
two Markov network models separately to the two data sets and figuring
out their difference, we directly learn the network structure change by
estimating the ratio of Markov network models. This density-ratio formu-
lation naturally allows us to introduce sparsity in the network structure
change, which highly contributes to enhancing interpretability. Further-
more, computation of the normalization term, which is a critical compu-
tational bottleneck of the naive approach, can be remarkably mitigated.
Through experiments on gene expression and Twitter data analysis, we
demonstrate the usefulness of our method.

1 Introduction

Changes in the structure of interactions between random variables are interesting
in many real-world phenomena. For example, genes may interact with each other
in different ways when external stimuli change, co-occurrence between words may
disappear/appear when the domains of text corpora shift, and correlation among
pixels may change when a surveillance camera captures anomalous activities.
Discovering such changes in interactions is a task of great interest in machine
learning and data mining, because it provides useful insights into underlying
mechanisms in many real-world applications.

In this paper, we consider the problem of detecting changes in conditional in-
dependence among random variables between two sets of data. Such conditional
independence structure can be expressed as an undirected graphical model called
a Markov network (MN) [1,2,3], where nodes and edges represent variables and
their conditional dependency. As a simple and widely applicable case, the 2nd-
order pairwise MN model has been thoroughly studied recently [4,5]. Following
this line, we also focus on the pairwise MN model as a representative example.

A naive approach to change detection in MNs is the two-step procedure of
first estimating two MNs separately from two sets of data by maximum likelihood
estimation (MLE), and then comparing the structure of learned MNs. However,

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part II, LNAI 8189, pp. 596–611, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Knowing Separate
Markov Networks

Knowing Difference between
Markov Networks

Fig. 1. The rationale of direct structural change learning

MLE is often computationally expensive due to the normalization factor included
in the density model. There are estimation methods which do not rely on knowing
the normalization factor [6], but Gaussianity is often assumed for computing
the normalization factor analytically [7]. However, this Gaussian assumption is
highly restrictive in practice.

Another conceptual weakness of the above two-step procedure is that struc-
ture change is not directly learned. This indirect nature causes a problem, for
example, if we want to learn a sparse structure change. For learning sparse
changes, we may utilize �1-regularized MLE [8,9,5], which produces sparse MNs
and thus the change between MNs also becomes sparse. However, this approach
does not work if MNs are rather dense but change is sparse.

To mitigate this indirect nature, the fused lasso [10] is useful, where two MNs
are simultaneously learned with a sparsity-inducing penalty on the difference
between two MN parameters [11]. Although this fused-lasso approach allows us
to learn sparse structure change naturally, the restrictive Gaussian assumption
is still necessary to obtain the solution in a computationally efficient way.

A nonparanormal assumption [12,13] is a useful generalization of the Gaussian
assumption. A nonparanormal distribution is a semi-parametric Gaussian copula
where each Gaussian variable is transformed by a non-linear function. Nonpara-
normal distributions are much more flexible than Gaussian distributions thanks
to the feature-wise non-linear transformation, while the normalization factors
can still be computed analytically.

Thus, the fused-lasso method combined with nonparanormal models would be
the state-of-the-art approach to change detection in MNs. However, the fused-
lasso method is still based on separate modeling of two MNs, and its computation
for more general non-Gaussian distributions is challenging.

In this paper, we propose a more direct approach to structural change learning
in MNs based on density ratio estimation (DRE) [14]. Our method does not
separately model two MNs, but directly models the change in two MNs. This
idea follows Vapnik’s principle [15]:

If you possess a restricted amount of information for solving some prob-
lem, try to solve the problem directly and never solve a more general
problem as an intermediate step. It is possible that the available infor-
mation is sufficient for a direct solution but is insufficient for solving a
more general intermediate problem.

This principle was used in the development of support vector machines (SVMs):
Rather than modeling two classes of samples, SVM directly learns a decision
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boundary that is sufficient for performing pattern recognition. In the current
context, estimating two MNs is more general than detecting changes in MNs
(Figure 1). This direct approach means that we halve the number of parameters,
from two MNs to one MN-difference.

Furthermore, the normalization factor in our DRE-based method can be ap-
proximated efficiently, because the normalization term in a density ratio func-
tion takes the form of an expectation and thus it can be simply approximated
by sample averages without sampling.

The remainder of this paper is structured as follows. In Section 2, we formulate
the problem of detecting structural changes and review currently available ap-
proaches. We then propose our DRE-based structural change detection method
in Section 3. Results of illustrative and real-world experiments are reported in
Section 4 and Section 5, respectively. Finally, we conclude our work and show
future directions in Section 6.

2 Problem Formulation and Related Methods

In this section, we formulate the problem of change detection in Markov network
structure and review existing approaches.

2.1 Problem Formulation

Consider two sets of samples drawn separately from two probability distributions
P and Q on Rd:

{xPi }nP

i=1
iid∼ p(x) and {xQi }

nQ

i=1
iid∼ q(x).

We assume that p and q belong to the family of Markov networks (MNs) con-
sisting of univariate and bivariate factors:

p(x;α) =
1

Z(α)
exp

⎛⎝ d∑
i=1

α�
i gi(xi) +

d∑
i,j=1,i>j

α�
i,jgi,j(xi, xj)

⎞⎠ , (1)

where x = (x1, . . . , xd)
�, αi,αi,j are parameters, gi, gi,j are univariate and

bivariate vector-valued basis functions, and Z(α) is the normalization factor.
q(x;α) is defined in the same way.

For notational simplicity, we unify both univariate and bivariate factors as

p(x; θ) =
1

Z(θ)
exp

(∑
t

θ�
t f t(x)

)
, where Z(θ) =

∫
exp

(∑
t

θ�
t f t(x)

)
dx.

q(x; θ) is also simplified in the same way.
Our goal is to detect the change in conditional independence between random

variables between P to Q.
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2.2 Sparse MLE and Graphical Lasso

Maximum likelihood estimation (MLE) with group �1-regularization has been
widely used for estimating the sparse structure of MNs [16,4,5]:

max
θ

n∑
i=1

log p(xPi ; θ)− λ
∑
t

‖θt‖, (2)

where ‖ · ‖ denotes the �2-norm. As λ increases, θt for pairwise factors may drop
to 0. Thus, this method favors an MN that encodes more conditional indepen-
dencies among variables. For computing the normalization term Z(θ) in Eq.(1),
sampling techniques such as Markov-chain Monte-Carlo (MCMC) and impor-
tance sampling are usually employed. However, obtaining a reasonable value
by these methods becomes computationally more expensive as the dimension d
grows.

To avoid this computational problem, the Gaussian assumption is often im-
posed [9,17]. If we consider a zero-mean Gaussian distribution, the following
p(x;Θ) can be used to replace the density model in Eq.(2):

p(x;Θ) =
det(Θ)1/2

(2π)d/2
exp

(
−1

2
x�Θx

)
,

where Θ is the inverse covariance matrix (a.k.a. the precision matrix) and det(·)
denotes the determinant. Then Θ is learned by

max
Θ

log det(Θ)− tr(ΘSP )− λ‖Θ‖1,

where SP is the sample covariance matrix of {xPi }ni=1. ‖Θ‖1 is the �1-norm
of Θ, i.e., the absolute sum of all elements. This formulation has been studied
intensively in [8], and a computationally efficient solution called the graphical
lasso [9] has been proposed.

Sparse changes in conditional independence structure between P and Q can
be detected by comparing two MNs separately estimated using sparse MLE.
However, this approach implicitly assumes that two MNs are sparse, which is
not necessarily true even if the change is sparse.

2.3 Fused-Lasso Method

To more naturally handle sparse changes in conditional independence structure
between P and Q, a method based on fused lasso [10] has been developed [11].
This method jointly maximizes the conditional likelihood in a feature-wise man-
ner for P and Q with a sparsity penalty on the difference between parameters.
More specifically, for each element xs (s = 1, . . . , d) of x,

max
θP
s ,θ

Q
s

�Ps (θ
P
s ) + �Qs (θ

Q
s )− λ1(‖θPs ‖1 + ‖θQs ‖1)− λ2‖θPs − θQs ‖1,
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where �Ps (θ) is the log conditional likelihood for the s-th element xs ∈ R given
the rest x−s ∈ Rd−1:

�Ps (θ) =

nP∑
i=1

log p(xPi,s|xPi,−s; θ).

�Qs (θ) is defined in the same way as �Ps (θ). In this fused-lasso method, Gaus-
sianity is usually assumed to cope with the normalization issue described in
Section 2.2.

2.4 Nonparanormal Extensions

In the above methods, Gaussianity is required in practice to compute the nor-
malization factor efficiently, which is a highly restrictive assumption.

To overcome this restriction, it has become popular to perform structure learn-
ing under the nonparanormal settings [12,13], where the Gaussian distribution
is replaced by a semi-parametric Gaussian copula. x = (x1, . . . , xd)

� is said to
follow a nonparanormal distribution, if there exists a set of monotone and differ-
entiable functions, {hi(x)}di=1, such that h(x) = (h1(x

(1)), . . . , hd(x
(d)))� follows

the Gaussian distribution. Nonparanormal distributions are much more flexible
than Gaussian distributions thanks to the non-linear transformation {hi(x)}di=1,
while the normalization factors can still be computed in an analytical way.

3 Direct Learning of Structural Changes via Density
Ratio Estimation

The fused-lasso method can more naturally handle sparse changes in MNs than
separate sparse MLE, and its nonparanormal extension is more flexible than the
Gaussian counterpart. However, the fused-lasso method is still based on sepa-
rate modeling of two MNs, and its computation for more general non-Gaussian
distributions is challenging.

In this section, we propose to directly learn structural changes based on den-
sity ratio estimation [14], which does not involve separate modeling of each MN
and which allows us to approximate the normalization term efficiently.

3.1 Density Ratio Formulation for Structural Change Detection

Our key idea is to consider the ratio of p and q:

p(x; θP )

q(x; θQ)
∝ exp

(∑
t

(θPt − θQt )
�f t(x)

)
.

Here θPt −θQt encodes the difference between P and Q for factor f t, i.e., θ
P
t −θQt

is zero if there is no change in the t-th factor.
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Once we consider the ratio of p and q, we actually do not have to estimate
θPt and θQt ; instead an estimate of their difference θt = θPt − θQt is sufficient for
change detection:

r(x; θ)=
1

N(θ)
exp

(∑
t

θ�
t ft(x)

)
, where N(θ)=

∫
q(x) exp

(∑
t

θ�
t ft(x)

)
dx.

(3)

The normalization term N(θ) guarantees1
∫
q(x)r(x; θ) dx = 1. Thus, in this

density ratio formulation, we are no longer modeling each p and q separately,
but we model the change from p to q directly. This direct nature would be
more suitable for change detection purposes according to Vapnik’s principle that
encourages avoidance of solving more general problems as an intermediate step
[15]. This direct formulation also allows us to halve the number of parameters
from both θP and θQ to only θ.

Furthermore, the normalization factor N(θ) in the density ratio formulation

can be easily approximated by sample average over {xQi }
nQ

i=1
iid∼ q(x), because

N(θ) is the expectation over q(x):

N(θ) ≈ 1

nQ

nQ∑
i=1

exp

(∑
t

θ�
t ft(x

Q
i )

)
.

3.2 Direct Density-Ratio Estimation

Density ratio estimation (DRE) methods have been recently introduced to the
machine learning community [14] and are proven to be useful in a wide range of
applications. Here, we concentrate on a DRE method called the Kullback-Leibler
importance estimation procedure (KLIEP) for a log-linear model [18,19].

For a density ratio model r(x; θ), the KLIEP method minimizes the Kullback-
Leibler divergence from p(x) to p̂(x) = q(x)r(x; θ):

KL[p‖p̂] =
∫

p(x) log
p(x)

q(x)r(x; θ)
dx = Const.−

∫
p(x) log r(x; θ) dx. (4)

Note that our density-ratio model (3) automatically satisfies the non-negativity
and normalization constraints:

r(x; θ) ≥ 0 and

∫
q(x)r(x; θ) dx = 1.

1 An alternative normalization term N ′(θ,θQ) =
∫
q(x;θQ)r(x;θ)dx may also be

considered. However, the expectation with respect to a model distribution can be
computationally expensive as in the case of MLE, and this alternative form requires
an extra parameter θQ which is not our main interest. It is noteworthy that the
use of N(θ) as a normalization factor guarantees the consistency of density ratio
estimation [18].
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In practice, we maximize the empirical approximation of the second term in the
right-hand side of Eq.(4):

�KLIEP(θ) =
1

nP

nP∑
i=1

log r(xPi ; θ)

=
1

nP

nP∑
i=1

∑
t

θ�
t f t(x

P
i )− log

1

nQ

nQ∑
i=1

exp

(∑
t

θ�
t f t(x

Q
i )

)
.

Because �KLIEP(θ) is concave with respect to θ, its global maximizer can be
numerically found by standard optimization techniques such as gradient ascent
or quasi-Newton methods: The gradient of �KLIEP with respect to θt is given by

∇θt
�KLIEP(θ) =

1

nP

nP∑
i=1

f t(x
P
i )−

1
nQ

∑nQ

i=1 exp
(∑

t θ
�
t f t(x

Q
i )
)
f t(x

Q
i )

1
nQ

∑nQ

j=1 exp
(∑

t θ
�
t ft(x

Q
j )
) .

3.3 Sparsity-Inducing Norm

To find a sparse change in P and Q, we may regularize our KLIEP solution with
a sparsity-inducing norm

∑
t ‖θt‖. Note that the motivation for introducing

sparsity in KLIEP is different from MLE. In the case of MLE, both θP and θQ

are sparsified and then consequently the difference θP − θQ is also sparsified.
On the other hand, in our case, only the difference θP − θQ is sparsified; thus
our method can still work well even if θP and θQ are dense.

In practice, we may use the following elastic-net penalty [20] to better control
overfitting to noisy data:

max
θ

[
�KLIEP(θ)− λ1‖θ‖2 − λ2

∑
t

‖θt‖
]
,

where ‖θ‖2 penalizes the magnitude of the entire parameter vector.

4 Numerical Experiments

In this section, we compare the proposed KLIEP-based method with the Fused-
lasso (Flasso) method [11] and the Graphical-lasso (Glasso) method [9]. Results
are reported on datasets with three different underlying distributions: multivari-
ate Gaussian, nonparanormal, and a non-Gaussian “diamond” distribution.

4.1 Setup

Performance Metrics: by taking the advantage of knowing the ground truth
of structural changes in artificial experiments, we measure the performance of
change detection methods using the precision-recall (P-R) curve. For KLIEP and
Flasso, a precision and recall curve can be plotted by varying the group-sparsity
control parameter λ2; we fix λ1 = 0 because the artificial datasets are noise-free.
For Glasso, we vary the sparsity control parameters as λ = λP = λQ.
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Model Selection: for KLIEP, we use the log-likelihood of an estimated density
ratio on a hold-out dataset, which we refer to as hold-out log-likelihood (HOLL).

More precisely, given two sets of hold-out data {x̃Pi }ñP

i=1
iid∼ P , {x̃Qi }

ñQ

i=1
iid∼ Q for

ñP = ñQ = 3000, we use the following quantity:

�HOLL =
1

ñP

ñP∑
i=1

log
exp
(∑

t θ̂
�
t ft(x̃

P
i )
)

1
ñQ

∑ñQ

j=1 exp
(∑

t θ̂
�
t ft(x̃

Q
j )
) .

In case such a hold-out dataset is not available, the cross-validated log-
likelihood (CVLL) may be used instead.

For the Glasso and Flasso methods, we perform model selection by adding
the hold-out/cross-validated likelihoods on p(x; θ) and q(x; θ) together:

1

ñP

ñP∑
i=1

log p(x̃Pi ; θ̂
P
) +

1

ñQ

ñQ∑
i=1

log q(x̃Qi ; θ̂
Q
).

Basis Function: we consider two types of ft: a power nonparanormal fnpn and
a polynomial transform fpoly.

The pairwise nonparanormal transform with power k is defined as

fnpn(xi, xj) := [sign(xi)x
k
i sign(xj)x

k
j , 1].

This transforms the original data by the power of k, so that the transformed data
are jointly Gaussian (see Section 4.3). The univariate nonparanormal transform
is defined as fnpn(xi) := fnpn(xi, xi).

The polynomial transform up to degree of k is defined as:

fpoly(xi, xj) := [xki , x
k
j , xix

k−1
j , . . . , xk−1

i xj , x
k−1
i , xk−1

j , . . . , xi, xj , 1].

The univariate polynomial transform is defined as fpoly(xi) := fpoly(xi, 0).

4.2 Multivariate Gaussian

First, we investigate the performance of each learning method under Gaussianity.
Consider a 40-node sparse Gaussian MN, where its graphical structure is

characterized by precision matrix ΘP with diagonal elements equal to 2. The
off-diagonal elements are randomly chosen2 and set to 0.2, so that the overall
sparsity of ΘP is 25%. We then introduce changes by randomly picking 15 edges
and reducing the corresponding elements in the precision matrix by 0.1. The
resulting precision matrices ΘP and ΘQ are used for drawing samples as

{xPi }ni=1
iid∼ N (0, (ΘP )−1) and {xQi }ni=1

iid∼ N (0, (ΘQ)−1).

Datasets of size n = 50 and n = 100 are tested.

2 We set Θi,j = Θj,i for not breaking the symmetry of the precision matrix.
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Fig. 2. Experimental results on the multivariate Gaussian dataset

We repeat the experiments 20 times with randomly generated datasets and
report the results in Figure 2. The top 6 graphs are examples of regularization
paths (black and red color represents the ground truth) and the bottom 3 graphs
are the data generating distribution and averaged P-R curves with standard
error. The top row is for n = 100 while the middle row is for n = 50. The
regularization parameters picked by the model selection procedures described in
Section 4.1 are marked with blue vertical lines. In this experiment, the Gaussian
model (the nonparanormal basis function with power k = 1) is used for KLIEP.
Because the Gaussian model is also used in Flasso and Glasso, the difference in
performance is caused only by the difference of estimation methods.

When n = 100, KLIEP and Flasso clearly distinguish changed (black) and
unchanged (red) edges in terms of parameter magnitude. However, when the
sample size is halved, the separation is visually rather unclear in the case of
Flasso. In contrast, the paths of changed and unchanged edges are still almost
disjoint in the case of KLIEP. The Glasso method performs rather poorly in
both cases. A similar tendency can be observed also in the averaged P-R curve.
When the sample size is 100, KLIEP and Flasso work equally well, but KLIEP
gains its lead when the sample size is reduced. Glasso does not perform well in
both cases.
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4.3 Nonparanormal

We post-process the dataset used in Section 4.2 to construct nonparanormal
samples: simply, we apply the power function

h−1
i (x) = sign(x)|x| 12

to each dimension of xP and xQ, so that h(xP ) ∼ N (0, (ΘP )−1) and h(xQ) ∼
N (0, (ΘQ)−1).

In order to cope with the non-linearity, we apply the nonparanormal basis
function with power 2, 3 and 4 in KLIEP and choose the one that maximizes
the peak HOLL value. For Flasso and Glasso, we apply the nonparanormal
transform described in [12] before the structural change is learned.

The experiments are conducted on 20 randomly generated datasets with
n = 50 and 100, respectively. The regularization paths, data generating dis-
tribution, and averaged P-R curves are plotted in Figure 3. The results show
that Flasso clearly suffers from the performance degradation compared with the
Gaussian case, perhaps because the number of samples is too small for the com-
plicated nonparanormal distribution. Due to the two-step estimation scheme,
the performance of Glasso is poor. In contrast, KLIEP separates changed and
unchanged edges still clearly for both n = 50 and n = 100. The P-R curves also
show the same tendency.

4.4 “Diamond” Distribution with No Pearson Correlation

In the previous experiment, though samples are non-Gaussian, the Pearson cor-
relation is not zero. Therefore, methods assuming Gaussianity can still capture
the linear correlation between random variables. In this experiment, we consider
a more challenging case with a diamond-shaped distribution within the expo-
nential family that has zero Pearson correlation coefficient between dependent
variables. Thus, the methods assuming Gaussianity (i.e., Glasso and Flasso) can
not extract any information in principle from this dataset.

The probability density function of the diamond distribution is defined as
follows (Figure 4(a)):

p(x) ∝ exp

⎛⎝−
∑
i

2x2
i −

∑
(i,j):Ai,j �=0

20x2
ix

2
j

⎞⎠ , (5)

where the adjacency matrix A describes an MN structure. Note that this distri-
bution can not be transformed into a Gaussian distribution by any nonparanor-
mal transformations. Samples from the above distribution are drawn by using
a slice sampling method [21]. However, since generating samples from a high-
dimensional distribution is non-trivial and time-consuming, we focus on a rel-
atively low-dimensional case to avoid sampling errors which may mislead the
experimental evaluation.
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(f) Glasso, n = 50
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Fig. 3. Experimental results on the nonparanormal dataset

We set d = 9 and nP = nQ = 5000. AP is randomly generated with 35%

sparsity, while AQ is created by randomly removing edges in AP so that the
sparsity level is dropped to 15%.

In this experiment, we compare the performance of all three methods with
their available transforms: KLIEP (fpoly, k = 2, 3, 4), KLIEP (fnpn, k = 2, 3, 4),
KLIEP (fnpn, k = 1; same as the Gaussian model), Flasso (nonparanormal),
Flasso (Gaussian), Glasso (nonparanormal) and Glasso (Gaussian). The aver-
aged P-R curves are shown in Figure 4(c). As expected, except KLIEP (fpoly),
all other methods do not work properly. This means that the polynomial kernel
is indeed very helpful in handling completely non-Gaussian data. However, as
discussed in Section 2.2, it is difficult to use such a kernel in the MLE-based ap-
proaches (Glasso and Flasso) because computationally demanding sampling is
involved in evaluating the normalization term. The regularization path of KLIEP
(fpoly) illustrated in Figure 4(b) shows the usefulness of the proposed method
in change detection under non-Gaussianity.
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Fig. 4. Experimental results on the diamond dataset. “NPN” and “POLY” denote the
nonparanormal and polynomial models, respectively. Note that the precision rate of
100% recall for a random guess is approximately 20%.

5 Applications

In this section, experiments are conducted on a synthetic gene expression dataset
and on a Twitter dataset, respectively. We consider only the KLIEP and Flasso
methods here. For KLIEP, the polynomial transform function with k ∈ {2, 3, 4}
is used. The parameter λ1 in KLIEP and Flasso is tested with choices λ1 ∈
{0.1, 1, 10}. The performance reported for the experiments in Section 5.1 and
5.2 are obtained using the models selected by HOLL and 5-fold CVLL (see
Section 4.1), respectively.

5.1 Synthetic Gene Expression Dataset

A gene regulatory network encodes interactions between DNA segments. How-
ever, the way genes interact may change due to environmental or biological
stimuli. In this experiment, we focus on detecting such changes. We use Syn-
TReN, which is a generator of gene regulatory networks used as the benchmark
validation of bioinformatics algorithms [22].

To test the applicability of the proposed method, we first choose a sub-network
containing 13 nodes from an existing signalling network in Saccharomyces cere-
visiae (shown in Figure 5(a)). Three types of interactions are modelled: activa-
tion (ac), deactivation (re), and dual (du). 50 samples are generated in the first
stage, after which we change the types of interactions in 6 edges, and generate
50 samples again. Four types of changes are considered in such case: ac → re, re
→ ac, du → ac, and du → re.

The regularization paths for KLIEP and Flasso are plotted in Figures 5(b)
and 5(d). Averaged precision-recall curves over 20 simulation runs are shown
in Figure 5(c). Clearly from the example of KLIEP regularization paths shown
in Figure 5(d), the magnitude of estimated parameters on the changed pairwise
interactions is much higher than that of the unchanged ones, and hits zero only at
the final stage. On the other hand, Flasso gives many false alarms by assigning
non-zero parameters to the unchanged interactions, even after some changed
ones hit zeros. Reflecting a similar pattern, the P-R curves plot in Figure 5(c)
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Fig. 5. Experiments on synthetic gene expression datasets

show that the proposed KLIEP method achieves significant improvement over
the Flasso method.

5.2 Twitter Story Telling

In this experiment, we use KLIEP and Flasso as event detectors from Twitter.
More specifically, we choose the Deepwater Horizon oil spill3 as the target event,
and we hope that our method can recover some story lines from Twitter as the
news event develops. Counting the frequencies of 10 keywords (BP, oil, spill,
Mexico, gulf, coast, Hayward, Halliburton, Transocean, and Obama), we obtain
a dataset by sampling 1061 times (4 per day), from February 1st, 2010 to October
15th, 2010.

To conduct our experiments, we segment the data into two parts. The first
300 samples collected before the day of oil spill (April 20th, 2010) are regarded
as conforming to a 10-dimensional joint distribution Q, while the second set of
samples that are drawn in an arbitrary 50-day window approximately after the
event happened is regarded as following distribution P .

The MN of Q encodes the original conditional independence of frequencies
between 10 keywords, and the underlying MN of P has changed since an event
occurred. Thus, unveiling a change in MNs between P andQmay recover popular
topic trends on Twitter in terms of the dependency among keywords.

3 http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill

http://en.wikipedia.org/wiki/Deepwater_Horizon_oil_spill
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Fig. 6. Change graphs captured by the proposed KLIEP method (top) and the Flasso
method (bottom). The date range beneath each figure indicates when P was sampled,
while Q is fixed to dates from February 1st to April 17th. Notable structures shared by
the graph of both methods are surrounded by the green dashed lines. Unique structures
that only appear in the graph of the proposed KLIEP method are surrounded by the
red dashed lines.

The detected change graphs (i.e. the graphs with only detected changing
edges) on 10 keywords are illustrated in Figure 6. The edges are selected at
a certain value of λ2 indicated by the maximal CVLL. Since the edge set that
is picked by CVLL may not be sparse in general, we sparsify the graph based
on the permutation test as follows: we randomly shuffle the samples between P
and Q and repeatedly run change detection algorithms for 100 times; then we
observe detected edges by CVLL. Finally, we select the edges that are detected
using the original non-shuffled dataset and remove those that were detected in
the shuffled datasets for more than 5 times. In Figure 6, we plot detected change
graphs which are generated using samples of P starting from April 17th, July
6th, and July 26th.

The initial explosion happened on April 20th, 2010. Both methods discover de-
pendency changes between keywords. Generally speaking, KLIEP captures more
conditional independence changes between keywords than the Flasso method,
especially when comparing Figure 6(c) and Figure 6(f). At the first two stages
(Figures 6(a), 6(b), 6(d) and 6(e)), the keyword “Obama” is very well connected
with other keywords in the results given by both methods. Indeed, at the early
development of this event, he lies in the center of the news stories, and his media
exposure peaks after his visit to the Louisiana coast (May 2nd, May 28nd, and
June 5th) and his meeting with BP CEO Tony Hayward on June 16th. Notably,
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both methods highlight the “gulf-obama-coast” triangle in Figures 6(a) and 6(d)
and the “bp-obama-hayward” chain in Figures 6(b) and 6(e).

However, there are some important differences worth mentioning. First, the
Flasso method misses the “transocean-hayward-obama” triangle in Figures 6(d)
and 6(e). Transocean is the contracted operator in the Deepwater Horizon
platform, where the initial explosion happened. On Figure 6(c), The chain “bp-
spill-oil” may indicate that the phrase “bp spill” or “oil spill” has been publicly
recognized by the Twitter community since then, while the “hayward-bp-mexico”
triangle, although relatively weak, may link to the event that Hayward steped
down from the CEO position on July 27th.

6 Conclusion and Future Work

In this paper, we proposed a direct approach to learning sparse changes in MNs
by density ratio estimation. Rather than fitting two MNs separately to data and
comparing them to detect a change, we estimated the ratio of two MNs where
changes can be naturally encoded as sparsity patterns in estimated parameters.
Through experiments on artificial and real-world datasets, we demonstrated the
usefulness of the proposed method.

Compared with the conventional two-stage MLE approach, a notable advan-
tage of our method is that the normalization term in the density ratio model
can be approximated by a sample average without sampling. This considerably
loosens the restriction on applicable distributions. Moreover, thanks to its direct
modeling nature with density ratios, the number of parameters is halved.

We only considered MNs with pairwise factors in this paper. However, such
a model may be misspecified when higher order interactions exist. For example,
combination with the idea hierarchical log-linear model presented in [16] may
lead to a promising solution to this problem, which will be investigated in our
future work.
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Abstract. Sum-product networks allow to model complex variable in-
teractions while still granting efficient inference. However, most learn-
ing algorithms proposed so far are explicitly or implicitly restricted to
the image domain, either by assuming variable neighborhood or by as-
suming that dependent variables are related by their magnitudes over
the training set. In this paper, we introduce a novel algorithm, learn-
ing the structure and parameters of sum-product networks in a greedy
bottom-up manner. Our algorithm iteratively merges probabilistic mod-
els of small variable scope to larger and more complex models. These
merges are guided by statistical dependence test, and parameters are
learned using a maximum mutual information principle. In experiments
our method competes well with the existing learning algorithms for sum-
product networks on the task of reconstructing covered image regions,
and outperforms these when neither neighborhood nor correlations by
magnitude can be assumed.

1 Introduction

Recently, a new type of probabilistic graphical models called sum-product net-
work (SPN) was proposed [1]. Motivated by arithmetic circuits [2, 3] and aiming
at expressive models, still allowing efficient inference, they represent the net-
work polynomial of a Bayesian network [2] with a deep network architecture
containing sum and product nodes. In that way, SPNs combine the domains of
deep learning and probabilistic graphical models. On the one hand, SPNs can
be interpreted as deep neural networks with sum and product nodes as neurons,
where the sum nodes compute a weighted sum (with non-negative weights) of its
inputs. Besides the network structure, the weights determine the network input-
output function, i.e. they represent the parameters of the network. In order to
allow efficient inference, the SPN should fulfill certain constraints on the network
structure, namely completeness and consistency or decomposability [1]. On the
other hand, SPNs represent Bayesian networks (BNs) with rich latent structure
– since sum nodes can be interpreted as hidden variables being summed out –
with a high degree of context-specific independence among the hidden variables.
The observable variables are placed as leaves of the BN, interacting with each
other only via their latent parents. The BN interpretation opens the door for
learning techniques from probabilistic graphical models, such as EM.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part II, LNAI 8189, pp. 612–627, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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In [1], a learning algorithm tailored for image processing was proposed. This
algorithm recursively divides an image into pairs of smaller rectangles, and learns
the weights of the allotted sum nodes using a kind of hard EM, penalizing the
evocation of non-zero weights1. This algorithm relies on locality of image re-
gions to define the basic SPN structure, and cannot be easily applied to domains
without notions of locality. In [5], a hard gradient descent method optimizing
the conditional likelihood was proposed, showing convincing results on image
classification tasks. The used structure is a 4-layered network on top of a image-
feature generation process proposed in [6]. Therefore, also this algorithm is re-
stricted to the image domain. Dennis and Ventura [7] use the same algorithm
as in [1] for learning the SPN parameters, but propose an algorithm for finding
the basic structure automatically. Their algorithm recursively splits so-called
regions, i.e. sets of observable random variables, into pairs of smaller regions,
using a heuristic application of k-means. This approach clusters variables to-
gether which have similar magnitude trends over the dataset. Therefore, also
this approach is primarily useful for the image domain, and the prior knowledge
about locality is implicitly given by the fact that neighboring pixels typically
have similar color values. Furthermore, as the authors note, the application of
k-means in this manner is rather unusual and lacks justification. Recently, after
we had submitted the first version of this paper, Gens and Domingos [8] pro-
posed a structure learning framework which is applicable to general domains:
they recursively apply splits on training instances (clustering) – leading to sum
nodes, and splits on variables – leading to product nodes. Further related work,
which proposes to learn a tractable Markov network by using a representation
as arithmetic circuit, can be found in [9].

In this paper, we propose a novel algorithm for learning SPNs, where our struc-
ture learning mechanism is well justified and can be applied to discrete random
variables, continuous random variables, and mixtures thereof. Our method does
not rely on explicit or implicit locality assumptions, but learns the SPN structure
guided by independence tests and a maximum mutual information principle. It
constructs SPNs starting from simple models over small variable scopes, and
grows models over larger and larger variable scopes, building successively more
expressive models (bottom-up approach). This gives an alternative to the top-
down approaches proposed in [1, 7, 8], which determine the SPN structure by
recursive splits of variable scopes. Therefore, our method is closer in spirit to
training of deep belief networks [10–12], which also aim to extract successively
more abstract features in a bottom-up manner.

The paper is organized as follows: In section 2, we introduce our notation and
formally review SPNs. In section 3, we introduce our approach for learning SPNs
in a bottom-up manner. In section 4, we experimentally show that our method
competes well with the existing approaches in the task of image completion, and
outperforms them when their underlying assumptions are not met. Section 5
concludes the paper, and gives possible directions for future work.

1 The claimed �0-norm penalization in [1] is not truly implemented in the provided
software [4], since already evoked non-zero weights are not penalized any more.
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2 Background and Notation

Assume a set of random variables (RVs) X = {X1, . . . , XD}, where each Xd can
take values out of the set val(Xd) ⊆ R. When val(Xd) is finite, we say that Xd

is discrete. In this case, inputs concerning Xd are represented using |val(Xd)|
binary indicator nodes. When val(Xd) is infinite, inputs can be represented by
distribution nodes (e.g. Gaussian). For the moment, let us assume that all RVs
are discrete. Let xjd ∈ val(Xd) be the j

th state ofXd, and Ijd be the corresponding
indicator node, which can assume values out of {0, 1}.

An SPN structure [1] is a connected acyclic directed graph, whose leaves are
the indicator nodes for RVs X, and all non-leaves are either sum or product
nodes. A product node calculates the product of its child nodes. A sum node
calculates a weighted sum of its child nodes, where the weights are non-negative
parameters. We assume SPNs organized in layers, where sum and product layers
alternate when proceeding to higher layers. The first layer is an input layer, the
second is a product layer and the last (output) layer is a sum layer. All nodes
are allowed to receive input only from a strictly lower layer. We call these SPNs
(organized in layers and feed-forward) layered SPNs. In a layered SPN, we have
L sum and L product layers, such that in total the SPN contains 2L+ 1 layers,
where the first layer, the input layer, contains the indicator (or distribution)
nodes. Let P l be the lth product layer (i.e. the (2 l)th layer in the SPN), and
Sl the lth sum layer (i.e. the (2 l + 1)th layer in the SPN). Let Slk be the kth

sum node in the lth sum layer, and like-wise P lk for product layers. In graphical
representations of SPN structures, we assume that nodes within one layer are
numerated from left to right. The parents of some node N are denoted as pa(N),
and the children are denoted as ch(N). Let the scope sc(N) of a node be a sub-
set of the index set {1, . . . , D} of the RVs X. For an indicator node Ijd , the scope

is defined as sc(Ijd) = {d}. For sum and product nodes, the scope is recursively
defined as sc(N) =

⋃
C∈ch(N) sc(C). Let Xsc(N) be the sub-set of X which is

indexed by sc(N). A root is a node R with pa(R) = ∅. In [1, 7], only SPNs with
a single root R were considered, and where sc(R) = {1, . . . , D}. In this paper,
we also strive for SPNs with a single root, representing the full variable scope;
however, as intermediate step, we also consider SPNs with multiple roots, and
roots whose scope is a strict sub-set of {1, . . . , D} (see section 3). For now, let us
assume SPNs with a single root R. A sub-SPN induced by some node N is the
SPN defined by the sub-graph induced by N and all its descendants, including
the corresponding parameters. N is the (single) root of its induced sub-SPN.

Let e =
(
e11, . . . , e

|val(X1)|
1 , . . . , e1D, . . . e

|val(XD)|
D

)
denote some input to the

SPN, i.e. a binary pattern for the indicator nodes. Let N(e) denote the value
of node N for input e. For indicator nodes, Ijd(e) = ejd. To input complete evi-
dence, i.e. a variable assignment x = (x1, . . . , xD), the value indicator node are
set ejd = 1 if xd = xjd, and ejd = 0 otherwise. When e encodes some complete
evidence x, we write e ∼ x, and also use N(x) for N(e). The values for sum and
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product nodes are determined by an upward pass in the network. The root-value
R(x) is the output of an SPN for assignment x. An SPN defines the probability
distribution

P (x) :=
R(x)∑

x′∈val(X)R(x′)
. (1)

While (1) can also be defined for standard neural networks with non-negative
outputs, SPNs become truly powerful when they are valid [1], which means that
for all state collections ξd ⊆ val(Xd), d ∈ {1, . . . , D}, it holds that∑

x1∈ξ1

· · ·
∑

xD∈ξD

P (x1, . . . , xD) =
R(e)∑

x′∈val(X)R(x′)
, (2)

where here ejd = 1 if xjd ∈ ξd, and otherwise ejd = 0. In words, a valid SPN allows
to efficiently marginalize over partial evidence by a single upward pass. The
efficient marginalization in SPNs stems from a compact representation of the
network polynomial of an underlying Bayesian network [1, 2]. Poon and Domin-
gos [1] give sufficient conditions for the validity of an SPN, namely completeness
and consistency:

Definition 1. An SPN is complete, if for each sum node S all children of S
have the same scope.

Definition 2. An SPN is consistent, if for each product node P and each two
of its children C,C′ ∈ ch(P ), C 	= C′, it holds that when an indicator Ijd is a

descendant of C, no indicator Ij
′

d , j 	= j′, is a descendant of C′.

Completeness and consistency are sufficient, but not necessary for validity; how-
ever, these conditions are necessary when also every sub-SPN rooted at some
node N should be valid [1]. Definition 2 is somewhat cumbersome, and it is
also questionable how consistency should be interpreted in the case of continu-
ous RVs. Therefore, Poon and Domingos provide a simpler and more restrictive
condition, which implies consistency, namely decomposability:

Definition 3. An SPN is decomposable, if for each product node P and each
two of its children C,C′ ∈ ch(P ), C 	= C′, it holds that sc(C) ∩ sc(C′) = ∅.

To end this section, we illustrate how continuous data can be modeled using
SPNs. Following [1], one can simply use distribution nodes (instead of indicator
nodes) for continuous RVs, e.g. with nodes returning the value of a Gaussian
PDF (Gaussian nodes) as output. A simple example, showing a 4-component
GMM with diagonal covariance matrix, is shown in Fig. 1. The parameters of
the Gaussians, mean and variance, are considered as parameters of the Gaussian
nodes in the input layer and are not shown in the figure.
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            ︸ ︷︷ ︸
X1

︸ ︷︷ ︸
X2

︸ ︷︷ ︸
X3

w1 w2 w3 w4

Fig. 1. SPN representing a Gaussian mixture model over three variables X1, X2, X3

with 4 components and diagonal covariance matrix. The component priors (sum
weights) are w1, w2, w3, w4, satisfying w1 +w2 + w3 +w4 = 1, w1, w2, w3, w4 ≥ 0.

3 Greedy Part-Wise Learning of SPNs

In this section, we present our approach for part-wise learning of SPNs, where
we restrict ourselves to complete and decomposable SPNs. We start with some
observations serving as guidelines for our approach. First of all, an SPN with
a single root R defines a probability distribution over Xsc(R) according to (1).
Consequently, an SPN with multiple roots R1, . . . , Rr defines multiple probabil-
ity distributions over Xsc(R1), . . . ,Xsc(Rr), respectively, where in general scopes
sc(Ri) and sc(Rj), i 	= j, can differ from each other. The representations of these
distributions potentially share computational results and parameters. For exam-
ple, the SPN in Fig. 2 has 4 roots, where the roots S2

1 and S2
2 represent two (in

general distinct) distributions over the whole scope {X1, X2, X3}, and roots S1
3

and S1
4 represent distributions over scope {X2, X3}. Furthermore, we see that

each sub-SPN is again an SPN over the scope sc(N), where in the simplest case
an SPN consists of a single node in the input layer. We call these single-node
SPNs atomic SPNs. In Fig. 2, all atomic SPNs are indicator nodes2. However,
as already noted in section 2, atomic SPNs are not restricted to be indicator
nodes, but can also be distribution nodes. Even further, atomic SPNs can be
probability models with arbitrarily large scopes, not only modeling single vari-
ables – they are merely not represented as SPNs in this framework, but represent
some external “input”-probabilistic models. Product nodes represent distribu-
tions which assume independence between the variable sets indexed by their
child nodes. Sum nodes represent mixtures of distributions represented by prod-
uct nodes. We recognize that larger SPNs are simply composite smaller SPNs,
where the basis of this inductive principle are atomic SPNs. This recursive view
of SPNs is also followed in the recent paper of Gens and Domingos [8].

2 An indicator node Ijd is an SPN, which represents the distribution assigning all
probability mass to the event Xd = xj

d.
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Fig. 2. Example of a multi-root SPN over variables X1, X2, X3 with 3, 2 and 4 states,
respectively. Nodes with ◦ denote indicator nodes. Weights of sum nodes are omitted.

         

︸ ︷︷ ︸
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︸ ︷︷ ︸
X2

︸ ︷︷ ︸
X3

Fig. 3. Trivial multi-root SPN variables X1, X2, X3 with 3, 2 and 4 states, respectively

Using this interpretation of multi-root SPNs, we can define the trivial multi-
root SPN which merely contains atomic nodes. Fig. 3 shows the trivial SPN for
the same RVs as in Fig. 2. This SPN consists merely of the indicator nodes of
X1, X2, X3, which are at the same time roots and atomic distributions. The
key idea of our approach is to start from the trivial SPN containing only atomic
distributions, and generate larger and larger SPNs with successively increasing
scope, until we eventually obtain an SPN whose root has a scope over all RVs
X we aim to model. In this paper, the final model will have a single root, where
as intermediate step a series of multi-root SPNs is generated.

To make our approach precise, we adopt the notion of regions, partitions, and
region graphs [7], which represents SPNs on a larger scale. The notion of a region
is inspired by image modeling, i.e. when RVs X represent pixels of an image.
However, the approach developed here is not necessarily restricted to the image
domain.

Definition 4. Given a layered, complete and decomposable SPN, the region R
with scope sc(R) ⊆ {1, . . . , D} is the set of atomic or sum nodes, which have
all the same scope sc(R). Regions containing only atomic nodes (e.g. indicator
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or distribution nodes) are called atomic regions. Regions containing only sum
nodes are called composite regions.

In this paper, we assume for simplicity that regions are either atomic or compos-
ite, i.e. they do not contain atomic nodes and sum nodes simultaneously. This
restriction, however, is not essential, since we could model a region both with
“external” atomic models and with composite SPNs. For some scope s, we define
R(s) as the region with this scope, i.e. sc(R(s)) = s. While two SPN nodes can
have the same scope, regions per definition have a unique scope. Regions can be
interpreted as dictionaries of distributions over the same scope sc(R). In Fig. 2
and Fig. 3, regions are depicted as boxes with rounded corners. We now define
partitions [7], which describe the decomposition of regions into smaller disjoint
regions.

Definition 5. Given a layered, complete and decomposable SPN, let Rp be a
region and Rc be a set of disjoint regions, with sc(Rp) =

⋃
R∈Rc

sc(R). The
partition P(Rp,Rc) is the set of product nodes whose parent nodes are all con-
tained in Rp, and which have exactly one child in each R ∈ Rc. The scope of a
partition sc(P(Rp,Rc)) is defined as sc(Rp).

Note that since we only consider layered, complete and decomposable SPNs,
each product node has to be contained in exactly one partition. Partitions do
not have a unique scope, since each parent regionRp can be composed by several
different partitions. We define the set of product nodes P(Rp) :=

⋃
P(Rp, ·),

which contains all product nodes with same scope. In Fig. 2 and Fig. 3, partitions
are depicted as boxes with edged corners. A region graph is defined as follows.

Definition 6. Given a layered, complete and decomposable SPN, the region
graph G of this SPN is a bipartite directed acyclic graph, with two distinct set of
nodes R and P, where R are all non-empty regions and P are all non-empty
partitions of the SPN. Region nodes are connected only with partition nodes,
and vice versa. R ∈ R is a parent region of P(Rp,Rc) if and only if R = Rp.
R ∈ R is a child region of P(Rp,Rc) if and only if R ∈ Rc.

Using the notion of a region graph, we can define the parts of a region.

Definition 7. Let G be the region graph of a layered, complete and decomposable
SPN. The parts of a region R ∈ G is the set of regions

parts(R) := {R′|∃P(R,Rc) ∈ G : R′ ∈ Rc}. (3)

We are now ready to sketch our general approach, which is shown in Algo-
rithm 1. We start with the trivial multi-root SPN containing only atomic regions.
In each iteration, some disjoint regions Rc are selected and merged into a parent
region Rp, generating a new partition P(Rp,Rc). Note that while in each itera-
tion a partition P(Rp,Rc) is newly generated, i.e. it was not in the region graph
before, the region Rp might already have been generated by an earlier merge.
A collection of sum nodes, one from each child region, is combined by prod-
uct nodes. Here, a particular selection of child region nodes is called a feature
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Algorithm 1. General Merge Learning

1: Initialization: Make trivial SPN and corresponding region graph G.
2: while stopping criterion not met do
3: Select Merge Candidates: Select set of A ≥ 2 disjoint regions Rc =

{Rc,1, . . . ,Rc,A}, with ∀a Rc,a ∈ G and P(Rp,Rc) /∈ G, where Rp =
R(
⋃A

a=1 sc(Rc,a)).
4: if Rp = ∅ then
5: Insert K sum nodes in Rp.
6: end if
7: Select Set of Features F ⊆ Rc,1 × · · · × Rc,A.
8: for f = (N1, . . . , NA) ∈ F do
9: Generate product node Pf .
10: Connect Pf as parent of Na, a = 1, . . . , A.
11: Connect Pf as child of all sum nodes in Rp.
12: end for
13: Learn parameters of sum nodes in Rp and its ancestor regions.
14: Update region graph G.
15: end while

(cf. step 4), where each feature corresponds to a product node. The number of
generated sum nodes K will be typically K � |F|, i.e. the sum nodes represent
a compression of the generated features.

Algorithm 1 describes a general scheme for greedy part-wise learning of SPNs.
Depending on the strategy of selecting the merge candidates, of selecting fea-
tures, and of learning parameters, we obtain different learning algorithms. Fur-
ther questions are to selectK and the stopping criterion.We treat these questions
in the following sub-sections, where our approach is guided by the concept of
winner variables.

3.1 Winner Variables

For each region R in the region graph of some intermediate multi-root SPN, we
define a winner variable

WR := argmax
i:Ni∈R

Ni(X), (4)

where we assume some arbitrary ordering of the nodes in R. As already noted, a
region can be interpreted as dictionary of distributions Ni over the same scope.
WR(x) is the indicator of the distribution in R which describes Xsc(R) best
for sample x, since the corresponding node represents the model with highest-
likelihood. With respect to some multi-root SPN, each variable WR represents
some abstract information of variables Xsc(R). The goal in our approach is to
preserve and to abstract this information, when proceeding to higher SPN levels.
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3.2 Selecting Merge Candidates

Similar as in [1, 7] we set A = 2, i.e. we consider decompositions of a parent-
region into two sub-regions. The target for selecting merge candidates is twofold:
(i) we aim to find merge candidates which are “advantageous”, and (ii) we want
to pursue a merging strategy which yields quickly an SPN with complete scope
{1, . . . , D}, i.e. which models all variables in X. When we neglect the latter
point, our algorithm will proceed slowly, exhaust memory and overfit the SPN.
To decide when a merge is advantageous, we use independence tests, motivated
by BN structure learning [13]. In BNs, an edge between two variables should be
present when they are statistically dependent. The major criticism about this
method is the unreliability of statistical (in)dependence tests, which either causes
unreliable models, or models with high inference cost. In SPNs, the variables to
be modeled are not directly connected by edges, but their interaction happens
over latent parents. Here the unreliability of statistical dependence tests does not
harm as much as in BNs, since introducing a new, possibly spurious partition,
does increase the inference cost only marginally.

In this paper, we use the Bayesian-Dirichlet independence test proposed in
[14], for two winner variables WR′ and WR′′ :

BD(WR′ ,WR′′ ) =

⎡⎣1 + Γ (γ)
Γ (γ+M)

∏|R|
k=1

∏|R′|
l=1

Γ (γk,l+ck,l)
Γ (γk,l)(

Γ (α)
Γ (α+M)

∏|R|
k=1

Γ (αk+ak)
Γ (αk)

)(
Γ (β)

Γ (β+M)

∏|R′|
l=1

Γ (βl+bl)
Γ (βl)

)
⎤⎦−1

(5)
Here ak, bl are the number of times, counted over all training samples, where
WR′ and WR′′ are in their kth and lth states, respectively. ck,l is the number of
times where WR′ and WR′′ are jointly in their kth and lth states. αk, βl, and γk,l
are Dirichlet priors, set uniformly to 1, and α =

∑
k αk, β =

∑
l βl, γ =

∑
k,l γk,l.

M is the number of samples in the training set. The lower BD(WR′ ,WR′′), the
more the winner variables WR′ , WR′′ are dependent, and the more R′ and R′′

“prefer” to merge.
To encourage a quick growing of the SPN regions, we use the scheme shown

in Algorithm 2. This method maintains a set of merging candidates M, which
is initialized with the disjoint atomic regions. In each iteration of the overall
Algorithm 1, the two most dependent regions are selected from M and merged
to a parent region. The two selected regions are excluded from the merging

Algorithm 2. Select Regions

1: if Select Regions is called the first time or |M| = 1 then
2: M ← set of all atomic regions.
3: end if
4: Select Rc = {R′,R′′} ∈ M which minimize BD(WR′ ,WR′′), s.t. P(Rp,Rc) /∈ G.
5: M ← M\Rc

6: M ← M∪R(sc(R′) ∪ sc(R′′))
7: Return Rc = {R′,R′′}.
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candidatesM and the parent region is inserted. In this way, the generated region
graph is grown to a binary tree. When M = 1, i.e. when the root region has
been reached, we start the process again, i.e. M is reset to the set of all atomic
regions. Then a parallel, interleaved binary tree is grown, where the constraint
P(Rp,Rc) /∈ G guarantees that this tree is different from the first tree. This
process, growing interleaved binary trees, is repeated for several iterations (tree-
growing iterations), where the maximal number of iterations is used as a stopping
criterion for Algorithm 1. Note that due to the constraint P(Rp,Rc) /∈ G it can
happen that in later iterations no more merging candidates can be found in step
4 of Algorithm 2. In this case, we also stop Algorithm 1.

3.3 Selecting Features and Learning Parameters

We now turn to the problem of selecting features and learning parameters. The
most general approach for selecting features F is to take the Cartesian product
of the node sets {Rc,a}a=1,...,A, which for A = 2 grows quadratically in the
number of nodes in the child regions. We reduce this number and use F =
{f = (Nk, Nl)|ck,l > 0}, where ck,l is defined in (5). In words, we select those
features, whose corresponding product node wins at least once against all other
potential product nodes. The sum nodes in Rp can be regarded as a compression
of the product nodes P(Rp) corresponding to the features F . A natural way to
perform this compression is the information bottleneck method [15]. Recalling
Definition 7, the aim is to maximize the mutual information between the winner
variable of Rp and the winner variables of parts(Rp) := {R′

1, . . . ,R′
|parts(Rp)|},

maximize
{wkf}

I(WR′
1
, . . . ,WR′

|parts(Rp)|
;WRp) (6)

where {wkf} are the weights of all sum nodes Sk ∈ Rp, i.e.

Sk(e) =
∑

f :Pf∈P(Rp)

wkfPf (e), (7)

where
∑
f wkf = 1, wkf ≥ 0. Since this problem can be expected to be NP-

hard3, we restrict ourselves to a greedy solution, outlined in Algorithm 3 and
illustrated in Fig. 4. Our method starts with a number of sum nodes identical
to the number of product nodes P(Rp), where each product node is the child
of exactly one sum node. Then we iteratively combine a pair of sum nodes to a
single sum node, such that the mutual information is reduced as little as possible
in each iteration. The weights of the new sum node are updated according to
the maximum likelihood estimate

wkf =

∑M
m=1 Pf (x

m)∑
f ′:Pf′∈ch(Sk)

∑M
m=1 Pf ′(xm)

, (8)

3 In general, the information bottleneck method is NP-hard.
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where xm denotes the mth sample. Note that by this approach each product
node becomes the child of exactly one sum node, i.e. the sum nodes have non-
overlapping child sets.

Algorithm 3. Information Bottleneck Parameter Learning

1: Delete any sum nodes in Rp.
2: For each product node Pi in P(Rp) generate a sum node Si.
3: Connect Pi as a child of Si, set wii = 1.
4: while number of sum nodes > K do
5: Ibest ← −∞
6: for all pairs Si, Sj do
7: Generate tentative sum node Stmp.
8: Connect ch(Si), ch(Sj) as children of Stmp.
9: Set weights of Stmp according to (8).
10: Rtmp ← Stmp ∪Rp \ {Si, Sj}.
11: if I(WR′

1
, . . . ,WR′

|parts(Rp)|
;WRtmp) > Ibest then

12: Ibest = I(WR′
1
, . . . ,WR′

|parts(Rp)|
;WRtmp)

13: Rbest = Rtmp

14: end if
15: end for
16: Rp ← Rbest

17: end while

...

Rp

P(Rp)

Rp

P(Rp)

Rp

P(Rp)

Fig. 4. Illustration of Information Bottleneck parameter learning (K = 2) for the first
region merge in the trivial multi-root SPN (Fig. 3)

When we want to obtain a single-root SPN, we insert only a single sum node
in the root region. We do not need to perform Algorithm 3 in this case, but
merely apply (8). For non-root regions, we set K to a fixed value. However, [16]
suggests a method to set K in data-driven way: Each merge will inevitably lead
to a loss of information4 w.r.t. the relevant variables WR′

1
, . . . ,WR′

|parts(Rp)|
– if

for a specific number of sum nodes a merge causes a loss which is high compared
to the previous merges, this suggests that a meaningful representation has been
achieved.

4 This rather informal formulation about information loss can be made rigorous: see
[17] for a recent effort.
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4 Experiments

Poon and Domingos [1] demonstrated that SPNs achieve convincing results on
the ill-posed problem of image completion, i.e. reconstructing occluded parts of
face images. To this end, they trained SPNs on the ORL face image data set [18]
and used MPE-inference (most probable explanation) to recover missing pixel
values, i.e. they inferred the most likely states of the occluded pixels and the
states of the latent variables associated with the sum nodes. MPE-inference is
efficient in SPNs and serves as an approximation for MAP-inference, which ac-
tually is appropriate for this task. We conjecture that, although marginalization
and MPE-inference is easy in SPNs, the exact MAP-problem is still intractable,
since MAP is inherently harder than MPE [19]. However, proving or disproving
this conjecture is future work and out of the scope of this paper.

We trained SPNs with the method of Poon and Domingos (PD) [1], the
method of Dennis and Ventura (DV) [7], and our method (Merge). As in PD
and DV, we model single pixels with several Gaussian nodes, where the means
are set by the averages of histogram quantiles, and the standard deviation is
uniformly set to 1. Using the notions introduced in this paper, this means that
single pixels are used as atomic regions, containing a set of Gaussian nodes.

The ORL faces contain 64× 64-pixels, which yields more than 8 million eval-
uations of the BD score (5) in the first iteration of Merge. Although we cache
evaluations of the BD score, the computational effort is still large. Therefore,
although we emphasize in this paper that our algorithm does not need prior
knowledge of the problem domain, we use a similar approach as the PD algo-
rithm, and introduce a “coarser“ resolution level. We show the advantage of our
algorithm, when no prior knowledge can be assumed, in the experiment following
below.

Fig. 5. Result of unsupervised segmentation of ORL faces using affinity propagation
on the absolute value of correlation coefficients between pixels

To find the coarse resolution level, we apply affinity propagation [20] on the
absolute value of the correlation coefficient matrix of the pixels, calculated on
the training set. This process performs an unsupervised segmentation into image
patches, which is shown in Fig. 5. For each image segment, we train a multi-root
SPN with 20 roots using our Merge algorithm. These 20 roots serve in turn as
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atomic distributions for learning the SPN over the whole image. Within each
image segment, pixels are treated as atomic regions. For each application of
Merge learning, we used a single tree-growing iteration, i.e. the overall regions
graph is constructed as a binary tree. In this experiment, we arbitrarily set
the number of Gaussians G = 10 for all three algorithms. As in [1, 7] we use
K = 20 sum nodes per composite region for all algorithms. Fig. 6 shows results
on the face image completion task for PD, DV, and Merge. All three algorithms
show convincing results but differ in the artifacts they produce. In Table 1 we
summarize objective evaluation measures for this learning task; the signal-to-
noise ratios show that Merge competes well with PD and DV, although no clear
preference can be shown. However, we see that while Merge achieves the lowest
training likelihood, it achieves the highest likelihood on the test set, stating that
Merge generalized best in this task.

Fig. 6. Examples of face image reconstructions using MPE-inference. Rows from top
to bottom: original image, covered image, PD [1], DV [7], Merge learning (this paper).

Table 1. Evaluation measures on ORL data. Left: reconstruction SNRs for the top,
bottom, left, and right halves of face images covered. Right: Log-likelihoods on training
and test set, normalized by number of samples.

top bottom left right

PD 12.34 10.18 11.58 11.72
DV 11.69 9.29 10.43 10.83
Merge 12.43 9.83 10.96 11.78

Train Test

PD -4287.82 -5068.97
DV -4356.41 -4673.73
Merge -4493.46 -4667.04
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In this first experiment we used prior knowledge about the problem domain,
by using AP for segmenting the image into atomic regions. To demonstrate that
our method does not rely on the incorporation of prior knowledge, we generated
an artificial modification of the ORL data set; First, we rescale the ORL images
to size 16 × 16, yielding 256 variables. As in [7], we permute all pixels, i.e. we
destroy the neighborhood information. Next, we discretized all pixels into 10
histogram bins and permute these randomly, i.e. we destroy the relation of the
RVs by their magnitude. Then we again performed the same experiment as with
the large ORL data, where for each method we again used 10 Gaussian nodes
per pixel, setting their means on the discretized values of bins 1−10, and setting
the standard deviation uniformly to 1. Table 2 shows the result for the modified
ORL data. We now see a clear trend: PD, relying on locality shows consistently
the worst SNRs in the image reconstruction task. DV, not relying on locality, but
on similar value trends, is consistently better than PD. Merge shows consistently
the best SNRs. Similarly, looking at the log-likelihoods, we see that Merge shows
the best test likelihood, i.e. it generalizes best in this task.

Table 2. Evaluation measures on down-scaled and permuted ORL data. Left: recon-
struction SNRs for the top, bottom, left, and right halves of face images covered. Right:
Log-likelihoods on training and test set, normalized by number of samples.

top bottom left right

PD 15.16 8.49 12.11 10.37
DV 15.32 9.24 12.62 10.55
Merge 17.95 10.53 13.22 12.48

Train Test

PD -442.76 -893.18
DV -506.81 -623.05
Merge -551.97 -595.66

5 Conclusion

In this paper, we introduced a method to learn SPNs in a greedy bottom-up man-
ner, giving an alternative to the top-down approaches proposed so far. The main
principle we follow is that SPNs simply build composite and complex models out
of simple and small models in a recursive manner. The basis of this recursive
principle is given by what we call atomic or input distributions. We adopted
the notion of regions and interpret them as dictionaries of distributions over the
same scope. Product nodes or partitions serve as cross-overs of dictionaries with
non-overlapping scope, corresponding to the notion of decomposability. These
cross-overs yield a quickly growing number of new features or product nodes.
Sum nodes of the newly created region serve as compression of these newly
created features. This process can be seen as abstracting information, when pro-
ceeding to higher levels, which motivates the use of the information bottleneck
method for learning sum nodes.

We showed that our method competes well with existing generative approaches
to train SPNs. Furthermore, we demonstrated that our method does not rely on
assumptions of the image domain, and shows the best overall performance when



626 R. Peharz, B.C. Geiger, and F. Pernkopf

these are not fulfilled. In future work, we want to explore potential engineer-
ing applications for our approach, such as signal, speech and audio processing.
Furthermore, we consider the discriminative paradigm, e.g. applying maximum
margin methods for classification. Finally, we want to investigate different struc-
ture and parameter learning techniques within our learning framework.
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Abstract. We present methods to introduce different forms of supervision into
mixed-membership latent variable models. Firstly, we introduce a technique to
bias the models to exploit topic-indicative features, i.e. features which are apri-
ori known to be good indicators of the latent topics that generated them. Next, we
present methods to modify the Gibbs sampler used for approximate inference in
such models to permit injection of stronger forms of supervision in the form of
labels for features and documents, along with a description of the corresponding
change in the underlying generative process. This ability allows us to span the
range from unsupervised topic models to semi-supervised learning in the same
mixed membership model. Experimental results from an entity-clustering task
demonstrate that the biasing technique and the introduction of feature and docu-
ment labels provide a significant increase in clustering performance over baseline
mixed-membership methods.

1 Introduction

Topic modeling based on Latent Dirichlet Allocation (LDA) [6] has become a popu-
lar tool for data exploration, dimensionality reduction and for facilitating myriad other
tasks [2,1,12]. As a fully unsupervised technique, however, topic models are unequipped
to utilize limited supervisory information, e.g. feature labels and document cluster
membership. In this paper, we introduce methods to incorporate progressively stronger
forms of weak supervision to influence the formation of topics that respect information
that we might have about the latent structure.

First, we present a method to bias mixed-membership models (such as topic models)
to better exploit known topic-indicative features. Unsupervised topic models do not
necessarily optimally utilize topic-indicative features, i.e. features that are known to be
strongly indicative of the latent topics of the documents. The biasing towards topic-
indicative features serves to control the latent role distribution of the features, i.e., the
degree of polysemy, and its strength can be adjusted to control the degree of polysemy
permitted.

The flexibility of the biased models is examined by using it to cluster entities found
in HTML pages [9]. While our model can be used for a variety of tasks, we focus on the
HTML entities clustering tasks since it requires the use of several kinds of features (ob-
tained from semi-structured data from the tables) and permits us to demonstrate ways
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in which intuition and limited supervision about different kinds of features can be in-
corporated. In this task, potentially useful features of an entity includes features like
the headers of columns (e.g. the entity apple might be found under the headers com-
pany or fruit) and domains (e.g. food.com, finance.com, etc.). The biasing technique
presented could be used to capture domain knowledge that features of a certain type are
more topic-indicative than other features. When the bias term is set high, the features to
which it is applied are deemed to be more strongly indicative of topic and are strongly
discouraged from assuming multiple latent roles in the mixed membership model. The
bias is accomplished using a regularization term in the model which represents a noisy
copy of the entropy of the latent role distribution of the word. The polysemy is reduced
by pushing the entropy towards a pre-specified desired value that is a hyperparameter
to the model.

Next, we show that stronger forms of supervision to the model in the form of feature
and document labels can be injected into the model to achieve modeling flexibility
to obtain models that range from fully unsupervised topic models to semi-supervised
models. This form of light supervision can be in the form of known latent roles for
certain subsets of features or known latent roles for documents which exhibit very slight
mixed-membership characteristics. The supervision is incorporated into the model by
modifying the Gibbs sampling procedure used for approximate inference.

The rest of the paper is organized as follows. Section 2 describes the mixed-
membership latent variable model based approach to the entity clustering task. Next,
we describe the biasing technique to exploit topic-indicative features in Section 3 and
the approach to incorporate feature and document labels in Section 4. Experimental re-
sults are presented in Section 5. Finally, we present a short survey of related work in
Section 6, followed by the conclusion.

2 Entity Clustering

Latent-variable mixed-membership models based on LDA have been used for a variety
of tasks in NLP. Here, we use it for the task of clustering entities that are extracted from
tables in HTML documents crawled from the web. Dalvi et al. [9] describe the task in
detail.

In this task, the dataset consists of tables of entities extracted from HTML pages. For
instance, it could contain a table of companies, tables of American football teams, etc.
The goal of the task is to cluster entities of the same semantic class together. Therefore,
if the dataset includes a table of fruits with apples, grapes and oranges, and another
table with oranges, peaches and bananas, the goal of the task is to recover a cluster of
fruits which includes apples, grapes, oranges, peaches and bananas.

Surface terms in such HTML tables frequently have multiple senses. For example,
consider the term apple, which is found in tables of companies and fruits among oth-
ers. Therefore we require a model that is capable of distinguishing the sense of the
term to prevent companies and fruits from being collapsed into one cluster based on the
term apple co-occurring with both companies and fruits. Mixed-membership models
can account for the multiple-sense problem by assigning partial membership in both
clusters to the entity. Typically, entity clustering has been based on distributional simi-
larity based approaches or by using Hearst patterns [13]. In this task however, since we
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Fig. 1. Biased Link-LDA model to Exploit Topic Indicative Features

are dealing with entities in HTML tables as opposed to entity mentions in free text, we
use a different set of features to assist in the clustering, namely:

a) co-occurring entities,
b) co-occuring entity pairs that the entity is observed with,
c) the tableid-columnid combinations under which the entity was observed,
d) web domains in which the entity was observed,
e) the hyponyms that are associated with an entity (extracted using Hearst patterns).

This task can therefore be seen as distributional clustering with a different set of
contextual features than the free text features usually used. For every unique entry found
in the collection of tables in a dataset, we construct a “document” in the LDA sense with
the above five kinds of “words”. The document is represented by a set of bags of words,
one for each kind of feature used. A document for the entity apple, for example might
consists of the following bags -

a) co-occurring entities {orange, apple, microsoft, . . . },
b) entity pairs {orange:apple, google:apple . . . },
c) column ids {tab:326::colid::1 . . .},
d) domains {business.com, produce.com . . .},
e) hyponyms {stocks, juice, tech companies . . .}.
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These different classes of features are modeled using the Link-LDA model [10]. Fig-
ure 1 shows the plate diagram of the graphical model. The variables that are under the
yellow shaded rectangle provide the bias that is introduced in later sections, and are
not part of the regular Link-LDA model. In the generative story for the model, a docu-
ment has T kinds of “words”. For instance, in a corpus of academic papers, the kinds
of words could be author names, words in the abstract, words in the body, references
to other papers etc. For every document in the corpus of size M , a distribution over K
topics θ is first drawn. Then the words of all T kinds are drawn by first sampling a topic
indicator k for the word from θ and then drawing the word from the per-type topic word
distributions βt,k. Since exact inference is intractable for the model, we use a collapsed
Gibbs sampler [19] for approximate inference. θ, the document topic distribution ob-
tained after inference provides an estimate for the predicted cluster membership of an
entity document.

The predicted clusters are evaluated using Normalized Mutual Information (NMI).
This information theory based score measures the amount of information about the true
clusters that is encoded by the predicted topic/cluster distributions. NMI can be used in
mixed-membership scenarios since the true cluster distribution and predicted topic dis-
tribution can have probability mass in more than one cluster. Additionally, the number
of true clusters and topics do not have to be the same and therefore no mapping from
topics to clusters is required. To compute NMI between the true cluster label distribu-
tion and predicted distributions for the test entity set, we first compute Ω the predicted

distribution of topics which is equal to
∑

e∈test set θe
|test set| . Let C be the distribution over true

cluster labels, then NMI is defined as I(Ω;C)
(H(Ω)+H(C))/2 , where I indicates mutual infor-

mation. It should be noted that while the model returns mixed-membership assignments
for entities, the human labeling scheme that was used provides only one true cluster as-
signment for an entity. We however present a qualitative analysis of the advantages of
mixed-membership modeling in Section 5.

Entity clustering experiments were performed using the WebSets datasets [9], namely
— the Asia NELL, Clueweb Sports, CSEAL Useful, Delicious Music, Delicious Sports
and Toy Apple datasets. The Asia NELL dataset was collected using the ASIA system
[24] using hypernyms of NELL [7] entities as queries. The Clueweb Sports dataset con-
sists of tables extracted from Sports related pages in the Clueweb dataset. The Delicious
music and sports datasets consist of tables from subsets of the DAI-Labor [25] Deli-
cious corpus that were tagged as music and sports respectively. The Toy Apple dataset
is a small toy dataset constructed using the SEAL [8] system to create set-expansion
lists using the query “Apple”, which is a typical example of a multi-sense entity (as a
fruit and as a company). It is used primarily to illustrate the effects of clustering mixed
membership entities. Statistics about the datasets are shown in Table 1.

In the WebSets approach by Dalvi et al., triplets of entities from HTML tables are
extracted and then clustered. Their approach also proposes a method to propose labels
for the clusters. It should be noted that their approach clusters triples of entities rather
than individual entities which makes it hard to directly compare performance with the
method proposed in this paper.
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Table 1. Dataset Statistics

Size of vocabulary
Dataset entities co-occurring entities entity pairs column ids domains hyponyms
Asia NELL 33455 18309 141352 9477 3207 31833
Clueweb Sports 29113 28891 354614 59117 8088 28618
CSEAL Useful 34565 24340 217328 7337 2118 28381
Delicious Music 18074 9748 106401 7564 1633 24934
Delicious Sports 6786 3183 24147 2050 509 16380
Toy Apple 2411 423 4737 109 53 2826

3 Biasing Topic Indicative Features Using Entropic Regularization

One of the attractive attributes of topic models is that they require no supervision in
terms of data annotation. However, in many situations, limited amounts of labeled data
may be available. We present an approach to bias topic models to utilize weak knowl-
edge about features. Specifically, we aim to make the model exploit topic indicative
features, which are a subset of features that are known beforehand to be strongly in-
dicative of topic. For instance in the toy apple example, co-occurring entities of the
ambiguous entity apple are topic indicative. Co-occurring entities such as Google and
Microsoft are indicative of the company topic where as co-occurring entities like grape
and banana indicate the fruit topic. The bias is introduced into the model via a regular-
ization term that constrains the freedom of specific features to take on multiple latent
roles.

The LDA model and its extensions allow the same word to belong to different topics
when they are instantiated multiple times in the corpus. This freedom is essential in
modeling polysemy. While this freedom is useful, we aim to control this freedom for
features that are topic-indicative. Following the idea illustrated in Figure 1, we present a
entropy based regularization technique based on pseudo-observed variables [4], which
directly controls the freedom of words to take on different latent topics, by penalizing
high entropies in their topic distributions. It should be noted that sparsity in a docu-
ment’s topic membership vector can be achieved using sparse priors, but sparsity in a
words’ latent role distribution cannot be similarly obtained since these distributions are
not explicitly sampled in a topic model. The addition of the regularization term however
allows us to impose such preferences by relaxing the conditional independence between
topic multinomials in LDA-like models.

Let ntkw be the number of times a word w of type t was observed with latent role k.
The topic distribution of a word w of kind t in a topic model can be defined as q(k)t,w =

ntkw∑
k
′ ntk′w

, k ∈ 1, . . . ,K . qt,w therefore shows the degree of polysemy exhibited by a

word in the model. The Shannon entropy of this distribution is denoted by H(qt,w).
We now introduce word topic distribution entropy regularization by adding pseudo-

observed variables, lt,w (Figure 1), one for each word of every kind t in the vocabulary
Vt, which are noisy copies of H(qt,w). These noisy copies are drawn from a one-sided
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truncated Gaussian, whose mass lies only on values between 0 and log2K , with mean
H(qt,w) and variance σ2

lt,w
, which is a hyperparameter to the model. The density func-

tion is given by

p(lt,w|h, σ2
lt,w ) =

⎧⎨⎩ 1
C exp

(
−(h−lt,w)2

2σ2
lt,w

)
for 0 ≤ lt,w ≤ log2K

0, otherwise.

C =
∫ log2K

h′=0
exp

(
−(h

′−lt,w)2

2σ2
lt,w

)
dh.

The joint distribution of the model with regularization is defined as:

L(β, θ, z,w|α, γ, lt,w, σ2
lt,w) =

M∏
d=1

Dir(θd|α)⎛⎝ T∏
t=1

⎛⎝Nt,d∏
i=1

θ
zt,i
d β

(wt,i)
t,zt,i

⎞⎠⎞⎠∏
t

∏
k

Dir(βt,k|γ)
∏
t

∏
w∈Vt

exp
− (lt,w −H(qt,w))

2

2σ2
lt,w

/C

(1)

Approximate inference in the model is performed using a collapsed Gibbs sampler.
Let ndk be the number of words in document d that were assigned to topic k. The
equation to sample a topic indicator for a word wt,i i.e. the i-th word of type t in d, is
given by

p(zt,i = k|lt,w, wt,i, z¬t,i,w¬t,i, α, γ, σ2
lt,w) ∝

(n¬t,i
dk + α)

n¬t,i
tkwt,i

+ γ∑
w′ n¬i

tkw′ + |Vt|γ
× exp

(
−(H(qt,wt,i)− lt,wt,i)

2

2σ2
t,lt,w

)
(2)

During the Gibbs sampling process, the inference procedure tends to push the mean
of the Gaussians i.e. H(qt,w) close to the preset lt,w values. For topic-indicative fea-
tures, we set lt,w to 0 which penalizes large entropies in the topic distributions of such
features, therefore driving the inference procedure to return low entropy models. σ2

lw
dictates the strictness of the penalty.

It should be noted that an alternate method to achieve sparsity is to modify the priors.
Replacing the Dirichlet priors to obtain preferences in word distribution characteristics
however requires complicated priors that are capable of producing topic distributions
that are not iid. The new prior will now need to generate a set of topics, which will no
longer be independent of each other, instead of the Dirichlet prior from which multiple
topics can be drawn in an iid manner.

When such priors are employed, they are no longer conjugate with the multino-
mial topic distributions necessitating sampling using computationally expensive meth-
ods like Metropolis-Hastings. The regularization technique described achieves a similar
effect while requiring minimal additions to the existing Gibbs sampling inference
procedure.
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4 Injecting Labeled Features and Documents

In this section, we study how stronger prior knowledge in the form of labeled features
and labeled documents can be incorporated into mixed-membership models by modify-
ing the Gibbs sampling inference procedure. Topic tables are a commonly used method
to display latent topics that are uncovered using models such as LDA. These tables
depict topics using the top words of multinomials recovered after inference. Here, we
use labeled features to indicate the topic a feature belongs to as a way to influence
the formation of the topic tables. This is done by giving the inference procedure hints
about the latent topic tables that we expect to see for the labeled features. Document la-
bels, similarly bring the model closer to semi-supervised learning where a subset of the
training data has known labels by providing apriori information about the latent topic
assignment during inference.

Firstly, we look at a method to use labeled features by modifying the Gibbs sam-
pler. As a concrete example, let us return to the task of clustering entities drawn from
web tables. We might have domain knowledge that certain entities do not have multi-
ple senses and should be assigned to a single pre-known latent cluster. An example is
Google which in the context of our task is known to always be generated by the com-
pany topic. In general, we have pre-known latent cluster assignments for a small set of
features which are strongly topic-indicative.

Let L be a set of pairs 〈w, kw〉 where w is a feature i.e. w ∈ Vt, t ∈ 1 . . . T and
kw ∈ 1, . . . ,K . Each such pair indicates that the latent topic that generates an instance
of w in the corpus is almost certainly kw. Note that we do not have information about
the nature of topic kw at this stage before inference. We simply use the topic ids in L
to separate and funnel features of different known clusters to different topics. During
Gibbs sampling, when the topic indicator for a word is inferred, the procedure is modi-
fied to include a check to see if the word in question is present in L. If yes, then instead
of sampling a topic indicator for the word, the latent topic indicator is set to kw with a
probability of γf , where γf is a constant close to 1.

In terms of the generative story underlying LDA derived models, using labeled fea-
tures implies that the topic multinomials βt,k are no longer drawn from the same sym-
metric Dirichlet priors parameterized by γ. Instead, the method implies that we use
different asymmetric Dirichlet priors for each topic. For instance if w ∈ Vt has a label
kw, then the prior for topic kw is an asymmetric Dirichlet with parameters γ for all
words other than w and a larger value γ∗ for the word w. For all the other topics, the
asymmetric Dirichlet has a lower value γ

′
for w to enforce our prior belief that w is

more likely to be generated by topic kw than any other topic.
Next, we examine how labeled data in the form of a-priori information about entity

cluster membership that can be integrated into the inference procedure. While the moti-
vation in using a LDA-derived approach for the entity clustering task lies in its ability to
model mixed-membership, in the task of clustering entities, there are many entities that
belong to only one cluster. In such a context, it would be useful to allow the inference
procedure to use known cluster assignments for a small number of documents to influ-
ence the latent cluster formation. For instance, in the entity clustering task using the
Toy Apple dataset, we might wish to use domain knowledge to say that “persimmon”
belongs exclusively to the “fruit” cluster.
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Let d be a document that is known to belong to cluster cd. During inference using
Gibbs sampling, for all words in the document, the cluster cd is assigned with probabil-
ity γd (≈ 1.0), and the usual Gibbs sampling procedure is used to determine the latent
topic assignment with probability 1− γd.

Similar to the generative story underlying labeled features, the use of labeled docu-
ments implies a generative process where labeled documents’ topic distributions i.e θ
are drawn from asymmetric Dirichlet priors with higher parameter values for their topic
labels instead of the symmetric Dirichlet priors that are usually used.

5 Experimental Results

First, we study the effect of biasing the model to better exploit topic-indicative features.
Figure 2 shows the co-occurring entities perplexity of the biased Link-LDA model for
the different datasets for different values of the variance parameter in the bias term. The
reported values are averaged over 10 trials. For each trial, the Gibbs sampler ran for 100
iterations. The number of topics is set to 40 based on visual inspection of the clusters
that were formed. The effect of regularization described below is however similar, when
the number of topics is changed. It can be seen that the best perplexity is seen across
all datasets when the variance is set to 0.2. We use this variance when using feature
regularization (i.e. biasing) for the rest of the paper. When biasing is used, it is applied to
the column id and entity-pair features: a column in a table is unlikely to contain entities
from multiple clusters and is therefore strongly indicative of the topic; similarly, while
an entity can belong to multiple topics, an entity-pair such as “apple:peach” is strongly
indicative of a single topic.

Table 2 shows the difference in performance between the biased and baseline unbi-
ased models as measured by NMI between predicted cluster distributions and known
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Fig. 2. Studying perplexity with feature regularization
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Table 2. Feature regularization: Effect on NMI

Dataset Regularization Change
No Yes

Asia-NELL 0.586 0.637 +8.70%
Clueweb-Sports 0.567 0.624 +10.05%
CSEAL-Useful 0.533 0.588 +10.31%
Delicious-Music 0.548 0.621 +13.32%
Delicious-Sports 0.609 0.615 +0.98%
Toy Apple 0.771 0.781 +1.29%

true cluster labels of labeled documents. For all the datasets, the biased models show a
significant improvement over the unbiased variant. We note here that we cannot directly
compare the entity clustering results from these experiments to the results from prior
work in HTML table based entity clustering by Dalvi et al. [9] because the approach in
that work clusters triplets of entities extracted from tables rather than individual entities.
The biasing technique presented here is a general one and can be applied to any task
that mixed-membership models are used for, whereas the WebSets approach specif-
ically addresses the entity clustering task. For rough comparison however, the NMI
value of clustering entities from the Delicious-Sports dataset is reported at 0.64 using
the WebSets[9] approach whereas Table 2 indicates that the regularized model returns
a NMI of 0.615 for the same dataset. It is worth re-emphasizing again that the results
are not directly comparable.

Next, we study the effects of feature and document labeling in Figures 3 and 4.
Feature and document labels are provided to the model for a subset of co-occurring
entity features and entities. Labels for entities were obtained using Amazon’s Mechani-
cal Turk and were used to label entity documents and also co-occurring entity features.
Although entities in general may have multiple senses, we only obtained labels for enti-
ties that have a single dominant sense. Table 3 shows the number of labeled features and
documents for each dataset. In these figures, models are trained with increasing amount
of supervision in the form of feature and document labels and the NMI between the
true cluster labels of labeled documents and their inferred topic distributions for differ-
ent model variants are plotted. It can be seen that as expected, increasing the amount of
labeled data provided to the model results in higher NMI values for all model variants.

In figure 3, the red dashed line shows the performance of a mixture of multinomi-
als (MoM) model1 which allows each entity to belong to exactly one cluster. It can
be seen that disallowing mixed-membership results in lower performance as compared
to even the plain vanilla LDA model. The plot also indicates that the adding feature
regularization (Link-LDA+FR) i.e. biased features consistently shows higher NMI val-
ues than the unbiased Link-LDA model and that adding all available document labels
(Link-LDA+FR+DL) in addition to the different amounts of feature labels to the bi-
ased Link-LDA model yields the best NMI. It is interesting to note that adding feature

1 While EM can be used for inference in the MoM model, we use Gibbs sampling for these
experiments.



From Topic Models to Semi-supervised Learning 637

asia_nell clueweb_sports

cseal_useful delicious_music

delicious_sports toy_apple

0.4

0.5

0.6

0.50

0.55

0.60

0.45

0.50

0.55

0.60

0.45

0.50

0.55

0.60

0.50

0.55

0.60

0.65

0.65

0.70

0.75

0.80

29 114 228 342 456 571 18 71 142 223 284 355

19 74 148 222 296 371 9 35 70 105 140 175

12 50 100 150 200 250 8 34 68 102 136 169

Number of Labeled Features provided

N
M

I

Link−LDA Link−LDA + FR Link−LDA + FR + DL MoM

Fig. 3. Effect of injecting Feature Labels

labeling to the mixture of multinomials model, i.e., the points on the MoM line towards
the right of the plot, describes a setting that is similar to DUALIST [21].

The entropy of θ can be subject to the same kind of regularization as the word topic
distribution used in feature regularization, enabling us to restrict the degree to which
entities are allowed to exhibit mixed-membership. In figure 4, it can be seen that adding
such document regularization (+ DR), shows better performance than the regular Link-
LDA model. Adding feature biasing (+ FR) and all available feature labels (+ FL), along

Table 3. Feature and Document Label statistics

Dataset Co-occurring entities
vocabulary size

#Labeled
features

#Labeled
documents

Asia-NELL 18309 571 411
Clueweb-Sports 28891 355 302
CSEAL-Useful 24240 371 600
Delicious-Music 9748 175 254
Delicious-Sports 3183 249 206
Toy Apple 423 169 177
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with different degrees of document labels, shows progressively higher NMI across all
datasets especially as the number of labeled documents provided is higher. The red
dashed line in the plot representing the performance of the MoM model shows the per-
formance of a single cluster membership model as we move from a fully unsupervised
model to a semi-supervised model.

The above experiments show that introducing labeled documents and features con-
sistently improves performance. While document labels have more impact, the labeling
scheme used restricts us to only provide labels for entities with a single sense. We also
see that for a fixed number of feature or document labels, adding feature regularization
(i.e. biasing) and document regularization consistently improves the NMI scores.

In Table 4, we see illustrative examples of the advantage of the mixed-membership
approach. For the ambiguous entities shown, the top two topics to which they are
deemed to belong are shown using the top entries from the entity-pair multinomials.
The results are from a biased Link-LDA model with no labeled features or documents.
The topic titles in bold were added after inference by looking at the top entries for the
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Table 4. Mixed-membership clustering results of ambiguous entities

Dataset: asia nell, Entity: franklin
Names: (0.24) armstrong:brown, jennifer:jessica, chloe:gucci, brandon:joseph, ben-
jamin:matthew, donald:edward, russell:stanley, benjamin:ethan, greg:gregg, angel:jose
Places: (0.21) montana:nebraska, dakotas:north carolina, rock island:san francisco,
atlanta:long island, delaware:montana, montana:new york, cen-
tral california:san clemente island, clearwater:cocoa beach, sutter:tehama, okla-
homa city:salt lake city

Dataset:toy apple, Entity: apple
Food: (0.61) peaches:pears, cocoa:coconut oil, apricots:avocados,
sodium carbonate:sodium chloride, lactic acid:lauric acid, sugar alcohols:sugars,
coconut oil:coffee, caffeine:calcium carbonate, xanthan gum:yeast,
sodium citrate:sodium hydroxide, pears:pineapple
Companies: (0.16) nec:palmone, blackberry:google, sony:tomtom, asus:palm,
philips:samsung, dell:ericsson, sagem:sharp, orange:philips, asus:google, sagem:samsung,
asus:bosch

Dataset:delicious sports, Entity: giants
NFL teams: (0.26) chiefs:redskins, browns:raiders, cardinals:redskins, rams:saints,
cowboys:redskins, cowboys:jaguars, bengals:eagles, bengals:patriots, falcons:patriots,
saints:falcons, eagles:panthers
MLB teams: (0.21) arizona diamondbacks:cincinnati reds, pitts-
burgh pirates:texas rangers, cleveland indians:minnesota twins, mil-
waukee brewers:san diego padres, boston red sox:los angeles dodgers,
cincinnati reds:new york yankees, minnesota twins:pittsburgh pirates,
florida marlins:houston astros, chicago cubs:los angeles dodgers, balti-
more orioles:montreal expos, houston astros:philadelphia phillies

topic. The value in parentheses show the degree of membership that the entity has for
the topic. It can be seen that the mixed-membership latent variable model approach
is able to detect the multiple senses of ambiguous entities. The first entity in the table
Franklin is ambiguous because it has multiple senses — as a common first or last name
and as a name of a city in the state of Nebraska in the US, among others. The second
example apple as discussed earlier could either refer to the fruit or the company. The
top two topics returned for this entity denotes exactly these two concepts. The third ex-
ample giants is from the sports domain and could refer to either the New York Giants
who play in the National Football League (American Football) or the San Francisco
Giants who play in Major League Baseball (MLB). The top two topics indicate these
two concepts.

6 Related Work

Ganchev et al. [11] proposed Posterior Regularization (PR), a method to incorporate
indirect supervision via constraints on posterior distributions of probabilistic models
with latent variables. They demonstrate the use of the technique in models for several
tasks such as POS induction, word alignment, etc. While the approach proposed in this
paper is similar in spirit to PR in that both approaches provide a method for preferences
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for the posteriors of latent variables to be specified, there are significant differences. The
PR framework is used in applications where exact inference is possible and the authors
present a modified EM procedure to learn parameters for the model and incorporate
constraints in an interleaved manner. In the approach introduced in this paper to bias
the model, we focus on incorporating constraints on latent role distributions in models
where exact inference is intractable by incorporating the constraints into the model
instead of imposing them in a separate distinct step during inference.

Mann and McCallum [14] also proposed a general framework to introduce prefer-
ences in model expectations by adding terms called generalized expectation (GE) cri-
teria to the objective function. Examples of such criteria were explored in the domain
of log linear models. The approach in this paper is similar to the GE framework in that
the regularization operates on entropies of distributions of inferred latent variables. The
manner in which deviations from expectations are penalized, however differs from the
criteria used by Mann and McCallum; the method introduced in this paper proposes
that a desired value is drawn from a distribution parameterized by the inferred latent
variables’ values. The GE framework has not been applied to latent variable mixed-
membership models as far as we know.

Newman et al. [16] presented a method to regularize topic models to produce coher-
ent topics. In this approach, a pre-computed matrix of word-similarities from external
data (Wikipedia) is used to construct a prior for the topic distributions. This regular-
ization approach differs from the framework used in this paper in that it is aimed at
producing topics that respect external word similarities. This is in contrast to our ap-
proach that is designed to control the latent structure properties without using external
data.

Incorporating document labels into classifiers to obtain semi-supervised models is
a well established technique in machine learning [17]. In the context of topic models,
Labeled-LDA [20] uses tags attached to documents to limit the membership of the doc-
uments to specified topics. The labeled document injection technique discussed in this
paper is closely related to Labeled-LDA. Supervised LDA [5] is a related model where
supervision in the form of categorical or real-valued attributes of documents is pro-
vided. These attributes are derived from the topic distributions using regression models,
which differs from the approach in this paper where the document labels directly indi-
cate topic membership. Mimno et al. [15] propose a model where the Dirichlet prior for
document topic proportion distribution is replaced with a log-linear prior that permits
the distribution to be directly influenced by metadata. This work can be interpreted as
a method to use metadata to tailor the latent structure formation. Settles [21] used la-
beled features for multinomial Naive Bayes classifiers. A similar approach was used by
Attenberg et al. [3] in the context of active learning.

Steyvers et al. [22] present a related approach where they “pre-construct” some top-
ics based on concepts obtained from Cambridge Advance Learner’s Dictionary (CALD).
This approach is similar to the labeled features idea presented in this paper. A concept
topic as defined by this approach can be seen as a set of labeled words with the same
topic indicator.

Entity clustering from semi-structured data has been addressed previously [18,23,9].
These approaches however do not address the issue of mixed-membership.
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7 Conclusion

We presented a novel technique to bias latent variable mixed-membership models to ex-
ploit topic-indicative features and used the biased model for the task of clustering semi-
structured data in the form of entities extracted from HTML tables. Our experiments
show that the biased models outperform the baseline models in the cluster recovery task
as measured by NMI. We then presented a method to allow for stronger supervision in
the form of feature and document labels to move further along the spectrum toward
semi-supervised learning from totally unsupervised learning. Results indicate that the
stronger forms of supervision result in better cluster recovery. To summarize, we pre-
sented a framework in which mixed-membership models can be successfully used in a
semi-supervised fashion to incorporate inexpensive weak prior domain knowledge.
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Abstract. The emergence of hubs in k-nearest neighbor (kNN) topologies of
intrinsically high dimensional data has recently been shown to be quite detri-
mental to many standard machine learning tasks, including classification. Robust
hubness-aware learning methods are required in order to overcome the impact of
the highly uneven distribution of influence. In this paper, we have adapted the
Hidden Naive Bayes (HNB) model to the problem of modeling neighbor occur-
rences and co-occurrences in high-dimensional data. Hidden nodes are used to
aggregate all pairwise occurrence dependencies. The result is a novel kNN clas-
sification method tailored specifically for intrinsically high-dimensional data, the
Augmented Naive Hubness Bayesian k nearest Neighbor (ANHBNN). Neighbor
co-occurrence information forms an important part of the model and our analysis
reveals some surprising results regarding the influence of hubness on the shape of
the co-occurrence distribution in high-dimensional data. The proposed approach
was tested in the context of object recognition from images in class imbalanced
data and the results show that it offers clear benefits when compared to the other
hubness-aware kNN baselines.

Keywords: hubs, k-nearest neighbor, classification, curse of dimensionality,
Bayesian, co-occurrences.

1 Introduction

The basic k-nearest neighbor classification rule [1] is fairly simple, though often sur-
prisingly effective, as it exhibits some favorable asymptotic properties [2]. Many ex-
tensions of the basic method have been proposed over the years. It is possible to use
kNN in conjunction with kernels [3], perform large margin learning [4], multi-label
classification [5], adaptively determine the neighborhood size [6], etc.

Even though kNN has mostly been replaced in general-purpose classification sys-
tems by support vector machines and some other modern classifiers [7], it is still very
useful and quite effective in several important domains. Unlike many other methods,
kNN has a relatively low generality bias and a rather high specificity bias. This makes
it ideal for classification under class imbalance [8][9]. Many real-world class distribu-
tions are known to be very imbalanced and many examples can be found in medical
diagnostic systems, spam filters, intrusion detection, etc. Nearest neighbor methods are
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also currently considered as the state-of-the-art in time series classification when used
in conjunction with the dynamic time-warping distance (DTW) [10]. Some recent ex-
periments suggest that the kNN might also be quite appropriate for object recognition
in images [11].

The curse of dimensionality [12] is an umbrella-term referring to many difficul-
ties that are known to arise when dealing with high-dimensional feature representa-
tions. Many k-nearest neighbor methods are negatively affected by various aspects of
the dimensionality curse. Most standard distance measures concentrate [13] and the
overall contrast is reduced, which makes distinguishing between close/relevant and dis-
tant/irrelevant points difficult for any given query. The very concept of what consti-
tutes nearest neighbors in high-dimensional data has rightfully been questioned in the
past [14].

Hubness is a recently described consequence of high intrinsic dimensionality that
is related specifically to k-nearest neighbor methods [15]. It was first noticed in mu-
sic retrieval and recommendation systems [16], where some songs were appearing in
the result sets of a surprisingly large proportion of queries [17]. Their occurrence fre-
quency could not be explained by the semantics of the data alone and their apparent
similarity to other songs was shown to be quite counter-intuitive. The initial thought
was that this might be an artefact of the metric or the feature representation, though it
was later shown [15][18] that hubness emerges naturally in most types of intrinsically
high-dimensional data. Hubs become the centers of influence and the occurrence dis-
tribution asymptotically approaches a power law as the dimensionality increases. An
illustrative example of the change in the distribution shape is shown in Figure 1. The
almost scale-free topology of the k-nearest neighbor graph [18] and the skewed distri-
bution of influence have profound implications for kNN learning under the assumption
of hubness in high-dimensional data.

The hubness among neighbor occurrences was previously unknown and is not even
implicitly taken into account in most standard kNN classifiers. This can lead to some

Fig. 1. The shape of the neighbor occurrence frequency distribution changes as the intrinsic di-
mensionality of the data increases. The example shows the distribution of 10-occurrences (N10)
of i.i.d. Gaussian data in case of 2, 10 and 100 dimensions.
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problems in applying the standard methods for high-dimensional data analysis. Patho-
logical cases have even been shown to exist [19][20] where the influence of hubs re-
duces the overall kNN performance below that of zero-rule. Such cases are rare, but
warn of the danger that lurks in ignoring the underlying occurrence distribution.

The presence of hubs could in principle be beneficial in that it reduces the overall
impact of noise, but the network of influence also becomes more vulnerable to any
inaccuracies that are contained in hubs themselves, when errors can propagate much
more easily. Therefore, the overall stability of the learning process is compromised. As
hubness is a geometric property that results by an interplay of representational features
and metrics, it does not necessarily reflect the underlying semantics well. Many hub
points are in fact known to induce severe misclassification [18]. Consequently, there
is a rising awareness of a need for novel approaches to algorithm design for properly
handling high-dimensional data in k-nearest neighbor methods.

Recent research has shown that learning from past occurrences and hub pro-
filing can be successfully employed for improving the overall kNN classifier per-
formance [21][22][23][24][25]. Hubness-aware metric learning also seems to be
helpful [26][27][20]. The consequences of data hubness have recently been examined
in the unsupervised context as well [28][29].

The Naive Bayesian interpretation of the observed k-neighbor occurrences
(NHBNN) [23] was shown to be quite promising in high-dimensional data classifica-
tion, especially in the context of learning from class imbalanced data [20]. Yet, NHBNN
naively assumes independence between neighbor occurrences in the same k-neighbor
set, an assumption that is clearly severely violated in most cases, as close points tend to
co-occur as neighbors.

1.1 Goal and Contributions

Our goal was to extend and augment the existing naive NHBNN approach by
including the co-occurrence dependencies between the observed neighbors in the un-
derlying Bayesian model. This was done by introducing hidden nodes in the aug-
mented topology, as in the recently proposed Hidden Naive Bayes method [30]. This
work represents the first attempt to exploit the neighbor co-occurrence dependencies
in high-dimensional neighbor occurrence models and we propose a novel classifica-
tion algorithm named the Augmented Naive Hubness-Bayesian k-nearest Neighbor
(ANHBNN).

Additionally, we justify our approach by examining how the increase in the intrinsic
dimensionality of the data affects the distribution of neighbor co-occurrences. Our tests
on synthetic Gaussian data reveal some surprising results. We have shown that the dis-
tribution of the number of distinct co-occurring neighbor points becomes multi-modal
with modes located approximately around the multiples of (k−1). We have also shown
that the tail of the distribution of neighbor pair occurrence frequencies becomes thicker
with increasing dimensionality, which indicates hub linkage, as some hub points tend
to co-occur frequently. Also, the number of distinct pairs of co-occurring neighbors in-
creases. These phenomena seem beneficial for co-occurrence modeling and they explain
why the proposed ANHBNN classifier works well in intrinsically high-dimensional
data.
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2 Related Work

As the emergence of hubs was shown to be potentially highly detrimental, hubness-
aware classification of high-dimensional data has recently drawn some attention and
several novel kNN classification methods have been proposed. The simplest approach
(hw-kNN) was to include instance-specific weights that would reflect the nature of
hubness of individual neighbor points [21]. This was later improved upon by includ-
ing class-conditional occurrence profiles, as in [22][23][25]. In h-FNN [22], the oc-
currence profiles were used for forming fuzzy votes within the FNN [31] framework.
HIKNN [25] was based on the information-theoretic re-interpretation of h-FNN, as
less frequently occurring neighbors were judged to be more locally relevant and as-
signed higher weights, based on their occurrence self-information. On the other hand,
the Naive Hubness Bayesian k-nearest Neighbor (NHBNN) [23] was based on a slightly
different idea - interpreting the individual occurrences as random events and applying
the Naive Bayes rule in order to perform classification. Prior tests have shown this to be
a promising idea, so extending this basic approach will be the focus of this paper.

2.1 Naive Hubness-Bayesian kNN

In order to explain in detail the idea behind the Naive Hubness-Bayesian kNN
(NHBNN) [23], it is necessary to introduce some formal notation.

Neighbor k-occurrence Models: Let D = {(x1, y1), (x2, y2) . . . (xn, yn)} be the
data set, where xi-s are the feature vectors and yi ∈ {1 . . .C} the class labels. Also, let
Dk(x) be the set of k-nearest neighbors of x. The neighbor k-occurrence frequency of
x will be denoted by Nk(x) = |xi : x ∈ Dk(xi)| and will also sometimes be referred
to as point hubness. The total hubness of a dataset D is defined as the third standard
moment (skewness) of the neighbor occurrence degree distribution and will be denoted

by SNk =
1
n

∑n
i=1(Nk(xi)−k)3

( 1
n

∑
n
i=1(Nk(xi)−k)2)3/2 . High skewness indicates the long-tailed distribution

where most k-neighbor sets are dominated by occurrences of a limited number of highly
frequent neighbors, while most other points occur very rarely or not at all. The very
frequently occurring points are called hubs, the infrequently occurring points anti-hubs
and the points that never occur as neighbors orphans.

The total occurrence frequency is often decomposed into either good and bad
hubness or alternatively class-conditional hubness in the following way: Nk(x) =
GNk(x)+BNk(x) =

∑
c∈C Nk,c(x). Good hubness is defined as the number of neigh-

bor occurrences where neighbors share the same class label and bad hubness the number
of occurrences where there is label mismatch, i.e. GNk(x) = |xi : x ∈ Dk(xi) ∧ y =
yi| and BNk(x) = |xi : x ∈ Dk(xi) ∧ y 	= yi|. Similarly, class-conditional hub-
ness measures the occurrence frequency within the neighbor sets of a specific class:
Nk,c(x) = |xi : x ∈ Dk(xi) ∧ yi = c|. These quantities are used to form an occur-
rence model from the training set that includes a neighbor occurrence profile for each
neighbor point.
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Naive Bayesian Interpretation of kNN: In the NHBNN method [23], the neighbor
occurrences are interpreted as random events that can be used to deduce the class label
in the point of interest. Equation 1 shows how the Naive Bayes rule [7] is used to
deduce the class assignment probabilities for X based on its k-nearest neighbors from
the training set. The label y = argmaxc∈{1...C}p(c|Dk(x)) is assigned to x by this rule.

p(Y |Dk(X)) ∝ p(Y )

k∏
t=1

p(Xt ∈ Dk(X)|Y ) (1)

The order of neighbors is ignored in order to get better probability estimates in the
model, so p(Xt ∈ Dk(X)|Y ) can be easily estimated from the class-specific hubness
Nk,c scores and the total class occurrences. Each point is trivially considered to be its
own 0th nearest neighbor, for practical reasons.

p(Xt ∈ Dk(X)|Y ) ≈ Nk,Y (Xt) + λ

nY · (k + 1) + λ|D| (2)

The actual algorithm is a bit more complex than this, mostly because there are points
for which the p(Xt ∈ Dk(X)|Y ) can not be reliably estimated from the previous oc-
currences, orphans and anti-hubs. They need to be treated separately, as a special case.
In analogy with the Naive Bayes classifier, it would be as if a completely new feature
value was first encountered on the test data.

The obvious problem with this approach is that the Naive Bayes rule assumes in-
dependence between the random variables and this does not hold true among the k-
neighbor occurrences, where close neighbors tend to co-occur together and there are
clear dependencies between individual neighbor occurrences.

Naive Bayes sometimes works well even when the independence assumption does
not hold [32] and the initial evaluation of the Naive Hubness-Bayesian k-nearest neigh-
bor has shown it to be quite a promising approach to high-dimensional kNN classi-
fication. However, it was later observed that its performance quickly drops when the
neighborhood size is increased and that it performs rather poorly for larger k val-
ues. It was hypothesized that this was a consequence of the independence assumption
violation.

In order to test this hypothesis, we decided to proceed by including some sort of co-
occurrence dependencies in the model, with the intent of increasing its robustness and
overall performance. The extended algorithm was supposed be able to properly handle
larger neighborhood sizes.

3 The Proposed Approach: Including the Co-occurrence
Dependencies

Naive Bayes is the simplest among the Bayesian network models. The conditional inde-
pendence assumption is often violated in practice, though its use can still be justified in
some cases [32]. Learning the optimal Bayesian network from the data can sometimes
be intractable, as it was shown to be an NP-complete problem [33]. As the structure



648 N. Tomašev and D. Mladenić

(a) The basic Naive Bayes model. All oc-
currences are conditioned only on the class
label Y.

(b) The Hidden Naive Bayes model. An ad-
ditional hidden node is introduced for each
neighbor variable, modeling the dependen-
cies on all other nodes.

Fig. 2. A comparison between the basic Naive Bayes and the Hidden Naive Bayes [30] models

learning is the most time consuming step, assuming a certain type of underlying struc-
ture is common. We base our extension of the hubness-aware NHBNN classifier on the
Hidden Naive Bayes model [30], shown in Figure 3. A hidden node is introduced for
each variable that accounts for the influence from all other variables. In our case, the
variables are the occurrences of points as neighbors in k-neighbor sets.

Hidden nodes help model the dependencies between neighbor co-occurrences.
Let Nk,c(xi, xj) be the number of co-occurrences of xi and xj in neighborhoods of

elements from c, i.e. Nk,c(xi, xj) = |x : y = c ∧ xi ∈ Dk(x) ∧ xj ∈ Dk(x)|. Calcu-
lating all the Nk,c(xi, xj) paired class-conditional co-occurrence frequencies is possi-
ble in O(nk2), as this is the time required to consider and count all co-occurrences
within the k-neighbor sets. In order to avoid the O(Cn2) memory complexity for
storing all the co-occurrence counts, C hash tables can be used to store only the non-
negative co-occurrence counts. Many Nk,c(xi, xj) do equal zero, so this saves consid-
erable memory space.

Classification in the extended Bayesian neighbor occurrence model is performed
based on the class probability estimate shown in Equation 3 and it forms a similar
expression as in NHBNN (Equation 1). The difference is that the probability of Xt ∈
Dk(X) is now also conditioned on the hidden variable Ht(X,Y ).

p(Y |Dk(X)) ∝ p(Y )

k∏
t=1

p(Xt ∈ Dk(X)|Y,Ht(X,Y )) (3)

We will call the proposed algorithm that performs the k-nearest neighbor classifica-
tion based on Equation 3 the Augmented Naive Hubness-Bayesian k-nearest Neighbor
(ANHBNN).
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3.1 Modeling the Influence of Hubs and Regular Points

In order to infer reliable probability estimates, a certain number of observed occurrences
is required. We will first derive the estimates for frequent neighbor points and then focus
on approximations for anti-hubs and orphans.

Assuming Nk(Xt) > 0, the conditional probabilities are expressed as a weighted
sum of separate one-dependence estimators, as shown is Equation 4. This is a stan-
dard approach to modeling the influence of the hidden nodes within the HNB frame-
work [30].

p(Xt ∈ Dk(X)|Y,Ht(X,Y )) =

k∑
i=1,i�=t

wYit · p(Xt ∈ Dk(X)|Xi ∈ Dk(X), Y )

p(Xt ∈ Dk(X)|Xi ∈ Dk(X), Y ) ≈
{
Nk,Y (Xt,Xi)
Nk,Y (Xi)

, if Nk,Y (Xi) > 0,

0, if Nk,Y (Xi) = 0.

(4)

The weights in Equation 4 sum up to one and correspond to the strengths of indi-
vidual influences. It is possible to try optimizing the weights via cross-validation, but
it is overly time-consuming and is usually avoided. We propose to extend the origi-
nal idea [30] of expressing the weights by normalized mutual information by including
the class-conditional occurrence self-information Ik,Y (Xi) (Equation 5) and the occur-
rence profile non-homogeneity (Equation 6) which is expressed as the reverse neighbor
set entropy. These quantities are supposed to account for differences in hubness between
different points.

The class-conditional occurrence self-information measures how unexpected it is to
observe Xi in neighborhoods of class Y . Including the self-information in the denomi-
nator in Equation 8 allows us to increase the influence of very frequent neighbors. This
is beneficial, as there is more past occurrence data for these points and the probability
estimates are thus somewhat more reliable. On the other hand, neighbor points with
less homogenous occurrence profiles often act as bad hubs and exhibit a detrimental
influence, so favoring neighbors with homogenous profiles tends to improve the overall
performance.

Ik,Y (Xi) = log
nY

Nk,Y (Xi)
(5)

Hk(Xi) =
∑
c∈C

Nk,c(Xi)

nc
log

nc
Nk,c(Xi)

(6)

The class-conditional mutual information IP (Xj , Xt|Y ) between two neighbor oc-
currences Xj and Xt is estimated based on the previously observed occurrence profiles
on the training data as outlined in Equation 7. The four factors in the outer sum corre-
spond to the two neighbor points occurring together or separately or not at all.



650 N. Tomašev and D. Mladenić

IP (Xj , Xt|Y ) =
C∑

c=1

⎛
⎝Nk,c(Xj , Xt)

n
· log

Nk,c(Xj ,Xt)

nc

Nk,c(Xj)

nc
· Nk,c(Xt)

nc

⎞
⎠+

+
C∑

c=1

⎛
⎝Nk,c(Xj) −Nk,c(Xj ,Xt)

n
· log

Nk,c(Xj)−Nk,c(Xj ,Xt)

nc

Nk,c(Xj)

nc
· (1− Nk,c(Xt)

nc
)

⎞
⎠+

+
C∑

c=1

⎛
⎝Nk,c(Xt) −Nk,c(Xj ,Xt)

n
· log

Nk,c(Xt)−Nk,c(Xj ,Xt)

nc

(1− Nk,c(Xj)

nc
) · Nk,c(Xt)

nc

⎞
⎠+

+
C∑

c=1

⎛
⎝nc −Nk,c(Xj)−Nk,c(Xt) +Nk,c(Xj , Xt)

n
· log

nc−Nk,c(Xj)−Nk,c(Xt)+Nk,c(Xj,Xt)

nc

(1− Nk,c(Xj)

nc
) · (1− Nk,c(Xt)

nc
)

⎞
⎠

(7)

Finally, the co-dependency weights from Equation 4 are obtained from the class-
conditional occurrence self-information, homogeneity and class-conditional neighbor
mutual information as shown in Equation 8. Unlike in the original Hidden Naive
Bayes [30] model, the weights here are also conditioned on the class, because of the
class-conditional self-information. Some smoothing is needed in order to avoid zero
divisions in cases when the denominator goes to zero.

wYit =

IP (Xi,Xt|Y )
Ik,Y (Xi)·Hk(Xi)∑k

j=1,j �=t
IP (Xj ,Xt|Y )

Ik,Y (Xj)·Hk(Xi)

(8)

The proposed extension of NHBNN embodied in the Augmented Naive Hubness-
Bayesian k-nearest Neighbor (ANHBNN) does not have a significant impact on the
overall computational complexity, as both algorithms are of the O(n2) complexity with
respect to data size. Approximate k-neighbor set computations are possible and usually
allow for considerable practical speed-ups in hubness-aware classifiers without sacri-
ficing too much accuracy [25].

3.2 Dealing with Anti-hubs and Orphans

For infrequently occurring points Xt, the p(Xt ∈ Dk(X)|Y,Ht(X,Y )) can not be
estimated from their past occurrences properly. In principle, it would be possible to
model their conditioned influence by the average conditioned influence exhibited by
other points from their class, as in Equation 9.

p(Xt ∈ Dk(X)|Y,Ht(X,Y )) ≈
∑

Xi:Yi=Yt∧Nk(Xi)>0 p(Xi ∈ Dk(X)|Y,Hi(X,Y ))

|Xi : Yi = Yt ∧Nk(Xi) > 0|
(9)

However, the exact p(Xi ∈ Dk(X)|Y,Hi(X,Y )) are not by default calculated dur-
ing training, as they depend on the particular k-neighbor set and are inferred later from
the pre-calculated one dependence estimators, mutual information and self-information.
Therefore, approximating the influence of anti-hubs this way would require an addi-
tional time-consuming pass through the training data, as well as some initialization of
p(Xt ∈ Dk(X)|Y,Hi(X,Y )) for anti-hubs anyway.
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Luckily, points that never occur as neighbors on the training data very rarely occur as
neighbors on the test data as well, so it is possible to employ very simple replacements
in place of the actual conditional estimates, as it is not possible to arrive at a reliable
proper estimate anyway [22][23][25]. As hubs account for most occurrences, this does
not have a significant influence on the algorithm performance. Therefore, we propose
to use the hidden nodes only for regular points and hubs and approximate the influence
of anti-hubs and orphans by the average class-to-class occurrence probabilities as in
Equation 10. Here Nk,Y (Yt) denotes the total number of occurrences of elements from
class Yt in neighborhoods of elements from Y . A similar global anti-hub modeling
approach was previously shown to be acceptable in NHBNN [23].

Nk(Xt) = 0 : p(Xt ∈ Dk(X)|Y,Ht(X,Y )) ≈

p(Xt ∈ Dk(X)|Y ) ≈ AVGYi=Ytp(Xi ∈ Dk(X)|Y ) =
Nk,Y (Yt)

k · nY · nYt

(10)

4 Neighbor Co-occurrences in High-Dimensional Data

We hypothesized that the emergence of hubs in the kNN topologies of intrinsically
high-dimensional data might have some influence on the distribution of neighbor co-
occurrences. As our proposed hubness-aware classifier learns from the observed co-
occurrences, we have run extensive tests in order to establish whether the hypothesis
holds.

To our knowledge, no previous research has been done on the impact of high intrinsic
dimensionality on the neighbor co-occurrence distribution and its connection to the
hubness phenomenon. Therefore, we hope that the results presented here might shed
some light on the more subtle consequences of the curse of dimensionality.

We have run the tests for three different dimensionalities: 2, 10 and 100. For
each number of dimensions, a series of 200 randomly generated hyper-spherical zero-
centered Gaussian distributions was generated and 1000 points were randomly drawn
from each distribution as sample data. We have run tests for several different neighbor-
hood sizes and we give the results for k = 5 and k = 10 here for comparison.

Figure 3 shows how the number of distinct neighbors that points co-occur with
changes with increasing dimensionality. For d = 2, the distribution of the number of
distinct co-occurring neighbors has a single mode. However, surprisingly, when the
number of dimensions is increased, multiple modes appear and are centered approxi-
mately around the multiples of (k − 1). We believe that this is a direct consequence of
hubness, as there are many points in intrinsically high-dimensional data that occur in
k-neighbor sets very rarely. When these points do occur as neighbors, it is possible that
most of their (k − 1) co-neighbors co-occur with the anti-hub point for the first time,
hence the observed distribution modes.

The emergence of hubs (and anti-hubs) also influences the distribution of the
co-occurrence frequency of pairs of neighbor points, as shown in Figure 4. The number
of very rarely co-occurring pairs increases significantly with increasing dimensionality,
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(a) k=5 (b) k=10

Fig. 3. The influence of increasing dimensionality on the distribution of number of different
neighbors that points co-occur with. The distribution shape changes from a single modal to a
multi-modal shape that has modes around multiples of (k − 1).

due to a large number of rarely occurring neighbor points. On the other hand, the distri-
bution tail also becomes thicker, as the number of pairs of points that co-occur very fre-
quently increases with increasing dimensionality. These very frequently co-occurring
pairs emerge as a consequence of what we will denote as hub linkage, pairs of hub
points that co-occur together in many k-neighbor sets. The linked hub pairs enable the
proposed ANHBNN classifier to infer more reliable class-conditional co-occurrence
estimates, which is an essential part of the model.

(a) Rarely co-occurring pairs (b) Frequently co-occurring pairs

Fig. 4. The influence of increasing dimensionality on the distribution of co-occurrence frequency
of pairs of neighbor points. The high-dimensional case shows two extremes: more very rarely
co-occurring pairs and also more very frequently co-occurring pairs in the distribution tail. The
results are given for k = 10.

The overall number of distinct co-occurring pairs of neighbor points increases with
increasing dimensionality, as shown in Figure 5. From the perspective of co-occurrence
modeling, this is a good thing. It is therefore expected that there would be more pairs of
neighbor points for which we would be able to derive some estimates of co-occurrence
dependencies in intrinsically high-dimensional data.
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(a) k = 5 (b) k = 10

Fig. 5. Increasing the intrinsic dimensionality of the data increases the number of distinct co-
occurring neighbor pairs

5 Experimental Evaluation

In order to evaluate whether the proposed approach offers any benefits, we have com-
pared it with the other hubness-aware classifiers, namely NHBNN [23], hw-kNN [21],
h-FNN [22] and HIKNN [25], as well as with the baseline kNN. Comparisons were
performed on a series of intrinsically high-dimensional datasets that have been shown
to exhibit very high hubness.

5.1 Data

In experimental evaluation, we have focused on the task of object recognition from im-
ages. Image data is high-dimensional and known to exhibit significant hubness [19].
The basic properties of the datasets are outlined in Table 1. Some of the data is imbal-
anced and the class imbalance is measured by the relative imbalance factor RImb =√
(
∑

c∈C (p(c)− 1/C)2)/((C − 1)/C), which is merely the normalized standard de-
viation of the class probabilities from the absolutely homogenous mean value of 1/c.

Datasets iNet3-iNet7 and iNet3Imb-iNet7Imb represent different subsets of the pub-
lic ImageNet repository (http://www.image-net.org/). These particular subsets have pre-
viously been used in several hubness-aware classification benchmarks [22][19][24][20],
so they have been selected here for easier comparisons. Images were processed as
quantized SIFT [34] bag-of-visual-words representations, extended by binned color his-
togram information, normalized to the [0, 1] range. This sort of feature representation is
known to be quite prone to hubness [19].

Datasets WiM1-WiM5 represent five non-trivial imbalanced binary classification
problems defined on top of the WIKImage data [35], a set of publicly available im-
ages crawled from Wikipedia (http://www.wikipedia.org/). These images are available
along with the associated text and their labels. We present the results on the textual
data obtained from the labels, represented in a standard bag-of-words format, weighted
by TF-IDF. The five selected datasets correspond to the presence/absence of following
types of objects in the images: buildings and constructions, documents and maps, logos
and flags, nature and scenic, sports.
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Table 1. The summary of high-hubness datasets. Each dataset is described both by a set of basic
properties (size, number of features, number of classes) and some hubness-related quantities for
two different neighborhood sizes, namely: the skewness of the k-occurrence distribution (SNk ),
the percentage of bad k-occurrences (BNk), the degree of the largest hub-point (maxNk). Also,
the relative imbalance of the label distribution is given [20], as well as the size of the majority
class (expressed as a percentage of the total)

Data set size d C SN15 BN15 maxN15 RImb p(cM )

iNet3 2731 416 3 9.27 29.7% 901 0.40 50.2%
iNet4 6054 416 4 8.99 48.9% 968 0.14 35.1%
iNet5 6555 416 5 12.10 57.2% 1888 0.20 32.4%
iNet6 6010 416 6 14.26 44.4% 1901 0.26 30.9%
iNet7 10544 416 7 12.29 59.2% 1741 0.09 19.2%

iNet3Imb 1681 416 3 2.22 18.8% 136 0.72 81.5%
iNet4Imb 3927 416 4 5.44 40.5% 374 0.39 54.1%
iNet5Imb 3619 416 5 7.35 44.4% 513 0.48 58.7%
iNet6Imb 3442 416 6 3.93 44.2% 268 0.46 54.0%
iNet7Imb 2671 416 7 4.35 45.6% 301 0.46 52.1%

WiM1 1007 3182 2 12.31 36.9% 997 0.26 62.8%
WiM2 1007 3182 2 12.31 7.0% 997 0.84 92.1%
WiM3 1007 3182 2 12.31 37.3% 997 0.91 95.7%
WiM4 1007 3182 2 12.31 22.4% 997 0.60 79.9%
WiM5 1007 3182 2 12.31 4% 997 0.93 96.9%

AVG 3484.6 1338 4 9.45 36.03% 931.73 0.48 59.70%

The quantities shown in Table 1 illustrate the consequences of high dimensionality
and the hubness phenomenon. Neighbor k-occurrence distribution skewness is consid-
erable, as anything above SNk = 1 is usually considered high-hubness data [18]. The
most frequently occurring hub points dominate and appear in unexpectedly many k-
neighbor sets. For instance, the major hub on iNet3 data appears in about 30% of all
neighbor sets for k = 15, while the major hub in WiM1 appears in nearly all neighbor
sets, 997 out of 1007 for k = 15. The situation is somewhat more bearable for smaller
neighborhood sizes in a sense that the major hubs cover fewer neighbor sets, but the
overall occurrence skewness is usually higher.

Removal of such frequently occurring hub-points is possible, but their positions in
the k-neighbor sets are taken by other points and this often leads to emergence of new
hubs and they exhibit their own detrimental influence on data analysis. Reducing the
hubness of the data is, in general, a difficult task, though certain feature types, metrics
and normalization methods are known to be somewhat less prone to the dimensionality
curse [19]. As there is no guarantee that the preprocessing would significantly reduce the
overall hubness of the data, robust hubness-aware learning methods are to be preferred.

5.2 Classification Experiments

All experiments and classifier comparisons were run as 10-times 10-fold cross-
validation. Corrected re-sampled t-test was used to determine statistical significance.
The L1 Manhattan distance was used to measure the dissimilarity between quantized
image pairs and cosine similarity to determine the distance between textual feature
vectors.
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All algorithms were run with standard parameter configurations, as given in the
respective papers. As some datasets exhibit class imbalance, the macro-averaged F1

score, denoted by FM1 , was used to measure classifier performance [7]. The summary
of results for neighborhood size k = 15 is given in Table 2. In principle, ANHBNN
requires slightly larger neighborhood sizes, as it provides it with more co-occurrence
information. Trivially, for k = 1, there would be no co-occurrences at all. The algorithm
also performs rather poorly for k = 2 or k = 3, which is understandable. However, as
the results show, it achieves very good results for larger k values.

Table 2. An overview of algorithm performance for k = 15. The macro-averaged F-score FM
1

percentage is given for Augmented Naive hubness-Bayesian kNN (ANHBNN), Naive hubness-
Bayesian kNN (NHBNN), kNN, hubness-weighted kNN (hw-kNN), hubness-based fuzzy near-
est neighbor (h-FNN) and hubness information k-nearest neighbor (HIKNN). The symbols •/◦
denote statistically significant worse/better performance (p < 0.05) compared to ANHBNN. The
best result in each line is in bold.

Data set ANHBNN NHBNN kNN hw-kNN h-FNN HIKNN
iNet3 81.1 ± 1.1 77.3 ± 1.6 • 74.7 ± 1.7 • 78.3 ± 2.4 • 78.4 ± 1.7 • 80.3 ± 1.3 •
iNet4 65.9 ± 1.3 63.3 ± 1.4 • 62.4 ± 1.5 • 65.5 ± 1.7 63.4 ± 1.5 • 66.9 ± 1.4 ◦
iNet5 62.8 ± 1.2 59.8 ± 1.3 • 47.5 ± 1.3 • 56.1 ± 2.5 • 53.7 ± 1.6 • 59.3 ± 1.3 •
iNet6 56.1 ± 1.3 57.0 ± 1.4 ◦ 56.2 ± 1.2 56.4 ± 1.3 51.3 ± 1.5 • 56.2 ± 1.2
iNet7 59.9 ± 1.3 56.3 ± 0.9 • 45.3 ± 1.0 • 55.5 ± 2.8 • 56.9 ± 1.0 • 59.1 ± 0.8 •
iNet3Imb 71.9 ± 1.4 67.6 ± 2.1 • 65.9 ± 2.0 • 65.3 ± 1.4 • 55.0 ± 1.6 • 64.7 ± 1.3 •
iNet4Imb 67.1 ± 1.6 60.1 ± 1.5 • 56.7 ± 1.4 • 57.9 ± 1.6 • 45.2 ± 1.5 • 54.6 ± 1.5 •
iNet5Imb 56.8 ± 1.6 52.7 ± 1.8 • 35.3 ± 1.9 • 43.2 ± 1.9 • 31.1 ± 1.6 • 38.1 ± 1.6 •
iNet6Imb 52.8 ± 1.3 52.4 ± 1.5 49.2 ± 1.6 • 52.7 ± 1.6 50.5 ± 1.7 • 54.1 ± 1.4 ◦
iNet7Imb 47.8 ± 1.3 46.1 ± 1.2 • 33.3 ± 1.9 • 44.0 ± 2.1 • 35.7 ± 2.1 • 42.4 ± 2.2 •
WiM1 69.1 ± 2.8 64.4 ± 2.7 • 66.4 ± 2.2 • 53.9 ± 3.5 • 46.0 ± 3.1 • 54.3 ± 2.8 •
WiM2 75.2 ± 1.2 75.7 ± 1.1 58.1 ± 1.3 • 72.7 ± 1.2 • 69.1 ± 1.1 • 68.5 ± 1.2 •
WiM3 72.1 ± 1.4 72.0 ± 1.5 59.5 ± 1.3 • 67.6 ± 1.7 • 69.9 ± 1.3 • 72.1 ± 1.4
WiM4 71.8 ± 3.0 70.0 ± 2.8 • 69.8 ± 2.7 • 62.7 ± 2.9 • 54.1 ± 3.1 • 56.8 ± 2.6 •
WiM5 54.2 ± 2.9 49.9 ± 2.7 • 49.2 ± 2.7 • 49.2 ± 2.7 • 49.2 ± 2.7 • 49.2 ± 2.7 •
AVG 64.30 61.64 55.30 58.73 53.96 58.26

This is not the case with NHBNN, as it was already noticed that its performance
drops significantly with increasing neighborhood size, as the independence assumption
between different neighbor occurrences becomes more severely violated. As this is what
ANHBNN aims at improving, the neighborhood size of k = 15 was used in most
experiment runs. A more detailed comparison of algorithm performance under varying
neighborhood size is shown in Figure 6, demonstrating that the performance of the
proposed approach is not very sensitive to the choice of k, once it exceeds some lower
threshold value. Its performance remains stable when k is increased, suggesting that it
succeeds in modeling the hub co-occurrence dependencies.

The results in Table 2 suggest that the proposed ANHBNN does indeed outperform
NHBNN in the evaluated context. Furthermore, it achieves the best overallFM1 score on
the examined data. Table 3 provides a summary of pairwise classifier comparisons by
showing the number of wins and statistically significant wins in each individual com-
parison. The proposed approach achieves the highest number of wins against any given
baseline, as well as the highest total number of wins (67) and statistically significant
wins (63).
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Table 3. Pairwise comparison of classifiers on the examined data: number of wins (with the
statistically significant ones in parenthesis)

ANHBNN NHBNN kNN hw-kNN h-FNN HIKNN Total Wins

ANHBNN – 13 (11) 14 (14) 14 (12) 15 (15) 11 (11) 67 (63)
NHBNN 2 (1) – 14 (10) 12 (9) 12 (11) 10 (7) 50 (38)
kNN 1 (0) 1 (1) – 3 (2) 6 (6) 4 (4) 15 (13)
hw-kNN 1 (0) 3 (1) 11 (9) – 11 (11) 8 (5) 34 (26)
h-FNN 0 (0) 3 (1) 8 (7) 3 (2) – 1 (0) 15 (10)
HIKNN 3 (2) 5 (4) 9 (9) 6 (5) 13 (11) – 36 (31)

(a) iNet3 (b) iNet3Imb

Fig. 6. The influence of increasing the neighborhood size k. Neighbor occurrence dependencies
induce a drop in NHBNN performance, while the ANHBNN performance slowly increases with
additional neighbor occurrence and co-occurrence information.

Even though these results seem quite encouraging, some caution is still required
when comparing different approaches. Namely, both NHBNN and ANHBNN assume
high underlying hubness of the data and are not well suited for applications on datasets
that exhibit low hubness or no hubness at all. In that sense, they are not general-purpose
classification algorithms. Instead, they are tailored specifically for classifying intrinsi-
cally high-dimensional data. This is not the case with h-FNN, hw-kNN or HIKNN. Even
though these remaining three methods are hubness-aware, they perform rather well even
when the data exhibits only low to moderate k-occurrence distribution skewness [25].
In our initial experiments, we have determined that HIKNN is to be preferred in such
cases, as for example on UCI datasets (http://archive.ics.uci.edu/ml/datasets.html).

In order to examine the nature of the observed differences in performance on the
test data, we have analyzed the precision that the algorithms achieve on certain types
of points. Not all points are equally hard to classify by k-nearest neighbor methods
and a point characterization scheme based on the proportion of label mismatches in
k-neighbor sets was recently proposed [36]. Four different point types were observed:
safe points, borderline points, rare points and outliers, the latter being much more dif-
ficult to handle. A comparison between kNN, NHBNN and ANHBNN on two different
datasets is shown in Figure 7. The proposed approach clearly outperforms NHBNN in
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(a) iNet3 (b) iNet3Imb

Fig. 7. Precision achieved by the classification algorithms on specific types of points: safe points,
borderline points, rare points and outliers

terms of rare point and outlier classification precision and also achieves a slightly higher
precision when classifying borderline points. In other words, ANHBNN achieves its im-
provements by being able to better handle very difficult points that lie far away from
class interiors. This is a highly desired property.

6 Conclusions and Future Work

Hubness is an important aspect of the dimensionality curse that affects most k-nearest
neighbor methods in severely negative ways, as hub points tend to dominate the k-
neighbor sets and induce many label mismatches. Hubness-aware classification meth-
ods are required in order to properly deal with the emerging hubs.

We have proposed an extension of one such hubness-aware kNN classifier and have
named it the Augmented Naive Hubness-Bayesian k-nearest neighbor (ANHBNN). The
previous approach (NHBNN) failed to take the neighbor co-occurrences into account,
which led to poor performance for larger neighborhood sizes. Our proposed approach
(ANHBNN) overcomes this issue by adapting the Hidden Naive Bayes model to the
problem of modeling neighbor k-occurrences. We have also proposed a novel set of
hubness-aware weights for combining the one-dimensional estimators in the model.

We have performed an analysis of the high-dimensional neighbor co-occurrence dis-
tributions for Gaussian mixture data. The analysis has revealed several surprising facts.
The distribution of the number of distinct co-occurring neighbor points becomes multi-
modal with modes located approximately around the multiples of (k − 1). Addition-
ally, there seems to be a phenomenon of hub linkage, as the tail of the co-occurrence
frequency distribution becomes thicker with increasing dimensionality, indicating that
some pairs of hub points co-occur frequently. The overall number of distinct co-
occurring pairs also increases, which allows us to estimate more pairwise dependencies
in high-dimensional data.

Our evaluation in the context of object recognition from images shows that the
proposed approach clearly outperforms the compared baselines and offers additional
benefits in achieving higher precision when classifying points that lie far from class
interiors and are otherwise difficult to handle. Unlike NHBNN, the performance of the
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proposed ANHBNN classifier does not decrease when the neighborhood size k is in-
creased, which was the main issue with the previous approach.

As many of the co-occurrence dependencies are somewhat difficult to estimate di-
rectly from the occurrence data, in our future work we intend to explore the possibilities
for using the Poisson processes for neighbor occurrence modeling, in order to try and
achieve a more robust k-occurrence model.
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Abstract. The k nearest neighbors (kNN) graph, perhaps the most
popular graph in machine learning, plays an essential role for graph-
based learning methods. Despite its many elegant properties, the brute
force kNN graph construction method has computational complexity
of O(n2), which is prohibitive for large scale data sets. In this paper,
based on the divide-and-conquer strategy, we propose an efficient algo-
rithm for approximating kNN graphs, which has the time complexity of
O(l(d + log n)n) only (d is the dimensionality and l is usually a small
number). This is much faster than most existing fast methods. Specifi-
cally, we engage the locality sensitive hashing technique to divide items
into small subsets with equal size, and then build one kNN graph on
each subset using the brute force method. To enhance the approxima-
tion quality, we repeat this procedure for several times to generate multi-
ple basic approximate graphs, and combine them to yield a high quality
graph. Compared with existing methods, the proposed approach has fea-
tures that are: (1) much more efficient in speed (2) applicable to generic
similarity measures; (3) easy to parallelize. Finally, on three benchmark
large-scale data sets, our method beats existing fast methods with obvi-
ous advantages.

Keywords: graph construction, locality sensitive hashing, graph-based
machine learning.

1 Introduction

Graph-based learning methods present an important category of machine learn-
ing methods, and have been widely used in areas like image processing, computer
vision, and data mining. These methods first represent the data set by a similar-
ity graph, and then perform on this graph the traditional learning tasks, such as
clustering [25], dimensionality reduction [1], and classification [34]. As observed
by many researchers [28,33], the graph construction step plays an extremely im-
portant role to this kind of methods, and has attracted much attention recently.
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Although various graph construction methods have been proposed to better
describing the data set [19,9,7], the kNN graph still presents the most popular
one in practice due to its robust performance. Given a data set, the kNN graph
is constructed by connecting each item to k items which are the most similar to
it under a given similarity measure. Despite its simplicity in concept, a direct
implementation suffers from high computational cost. Since finding the kNN for
each item needs n − 1 comparisons, it takes O(n2) time to construct the kNN
graph. Obviously, it is too slow for large scale problems. In fact, after the recent
development of fast graph-based learning methods [17,32], the speed of the graph
construction method is becoming the bottleneck of graph-based methods.

To alleviate this problem, substantial efforts have been made to reduce the
complexity of kNN graph construction. Early works [3,27] focused on construct-
ing exact kNN graph. However, their complexity scales exponentially with data
dimensionality. Recently, researchers switched their attention to construct ap-
proximate kNN graph and obtained encouraging results. These methods adopted
techniques such as space partition tree [6,30], and local search [12]. A brief in-
troduction to these methods can be seen in the next section.

Following the research direction, in this work, we propose a novel approximate
kNN graph construction method which leads to significantly fast speed with high
accuracy. Its basic idea is to divide the whole data set into small groups, and
finds each item’s kNN within the group it belongs to. Since the size of a group
is much smaller than the size of the whole data set, the cost for finding the
approximate kNN is much lower. To make this method work well, the key is
to divide the data set in such a way that: (1) The pairwise similarity between
items should be preserved such that similar items remain in the same group;
(2) The group size should be kept as small as possible. We propose to group
similar items by adopting locality sensitive hashing (LSH) [13], which enjoys a
rigorous theoretical performance guarantee even in the worst case [18]. Further,
we design a simple method to take control of the group size. As groups have no
overlapping, the constructed graph is a union of multiple isolated small graphs.
To improve the approximation quality, we repeat the division for several times to
generate multiple basic approximate graphs. Finally, we combine them to yield
a graph with high accuracy.

Compared with existing methods, we emphasize that the proposed method
enjoys the following appealing advantages:

1. Fast and accurate. Our method has the time complexity of O(l(d+logn)n) (d
is the dimensionality and l is usually a small number). This is much faster
than most existing fast methods [12,6] (see the next section for details).
Moreover, as shown by experiments, our method can generate good approx-
imate kNN graphs by scanning a small proportion of pairwise distances. On
several benchmarks, our method beats existing fast methods with obvious
advantages.

2. Applicable to generic similarity measure. Thanks to the development of LSH,
hash functions have been designed for different similarity measures, such as
lp [10], Mahalanobis distance [22], kernel similarity [21], and χ2 distance [14].
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Thus, we can conveniently use them to group data items according to the
problem at hand; this presents one of the biggest advantages over the other
methods such as [6] and [30], which can only be applied in Euclidean space.

3. Easy to parallelize. Since the construction of multiple basic approximate
graphs are independent of each other, we can further speedup our method
by constructing these basic graphs simultaneously.

The rest of this paper is organized as follows: the next section briefly reviews
the existing approximation graph construction methods. Section 3 gives an in-
troduction to the LSH technique, which provides the basic tools for our method.
After that, section 4 presents a detailed description and complexity analysis of
our method, while Section 5 gives comparison experimental results to validate
the advantages of our method. Finally, we set out the conclusion in Section 7.

2 Related Work

The fast construction for kNN graph have been studied for a long time, and a
comprehensive introduction to the graph construction methods can be found in
[6]. In this section, we will briefly review several existing methods for approxi-
mate kNN graph construction, and a closely-related but different problem: the
kNN search.

Chen, Fang, and Saad [6] proposed a divide-and-conquer style algorithm for
constructing approximate kNN graph. The method recursively divides the data
points into subsets with overlapping, then constructs one kNN graph on each
small subset. The final graph is constructed by merging all the small graphs
together using overlapping parts. Empirically, the authors reported their method
had complexity ofO(dn1.22). Recently, Wang et al. [30] proposed another efficient
algorithm using a similar idea. But data sets are recursively divided without
overlapping. To increase the kNN recall, it constructs multiple basic graphs by
repeating the division procedure for several times. To make good division, both
methods use principle direction to partition data set. Thus, they need to compute
O(n) principle directions, one for each internal node. Although sub-sampling and
Lanczos algorithm are adopted, it is still costly. Also, these methods can only
be applied in Euclidean space.

Dong, Moses, and Li [12] proposed a fast kNN graph construction method
based on local search. Its motivation lies in that a neighbor of a neighbor is
also likely to be a neighbor. Initializing each node with a random set of neigh-
bors, the method iteratively improves each node’s neighborhood by exploring its
neighbors’ neighborhoods. Although the paper reported that its empirical cost
was O(n1.14), there is no formal guarantee on the algorithm complexity.

kNN search is a close-related but different problem which is extensively used
in areas like information retrieval, pattern recognition. Given a query q, kNN
search aims to find out the k most similar objects in the database. Thus, the
construction of a kNN graph can be viewed as a kNN search problem where
each data point itself is a query. Although many excellent works, such as space
partition tree [2,26] and locality sensitive hashing (LSH) [13,10], have been done
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for performing efficient kNN search, the direct use of kNN search approach for
the graph construction results in unfavorable results [12,30]. The differences
between the two problems lie in two aspects:

1. Since the prime concern of kNN search is to reduce the query time, these
methods typically build elaborate indexing structure in the training step.
However, there is no separated training phase for the graph construction
problem, and we can not afford the high cost for building complex indexing
structure.

2. kNN search is an inductive problem, which means we can not acquire query
points in the training phase. However, kNN graph construction is a trans-
ductive problem in which all query points are at hand. Thus, kNN graph
construction is easier in general, and we could take advantages of its char-
acteristic to design more efficient algorithm.

Recently, Goyal, Daumé and Guerra [15] proposed an approximate graph con-
struction method for natural language processing problem by adopting LSH
technique. Basically, it applies the method of [5] which returns k approximate
neighbors for each query in constant time by using two hash tables.

3 Locality Sensitive Hashing

Locality sensitive hashing (LSH) is an efficient technique for approximate kNN
search problem. Because it serves as a foundation to the proposed method, we
briefly introduce it as follows.

The core idea of LSH is to hash items in a similarity preserving way, i.e., it
tries to store similar items in the same buckets, while keeping dissimilar items
in different buckets. In general, LSH method for kNN search has two steps:
training and querying. In the training step, LSH first learns a hash function
h(x) = {h1(x), h2(x), . . . , hm(x) : hi(x) ∈ Z} where m is the code length. For
example, in the binary coding using linear projection, LSH adopts the hash
function of form hi(x) = sgn(wTi x + bi) ∈ {−1, 1}, where {wi, bi}i=1,...,m are
parameters to be learned. Then, LSH represents each item in the database as a
hash code by the hash mapping h(x), and constructs a hash table by hashing
each item into the bucket indexed by its code. In the querying step, LSH first
converts the query into a hash code, and then finds its approximate kNN in the
bucket indexed by the code. One attractive feature of the LSH method is that it
enjoys a rigorous theoretical performance guarantee even in the worst case [18].
In practice, it can provide constant or sub-linear search time.

Although the classic LSH method builds hashing codes by random projection,
recent works focus on learning data-dependent hash functions so as to generate
more accurate and compact hash codes to accelerate the query. As many ma-
chine learning techniques, such LSH methods can be divided into three main
categories: supervised methods [24,4], semi-supervised methods [29] and unsu-
pervised methods [31,23,20].
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Most of LSH methods described before only work for l2 similarity measure. To
apply LSH for different similarity measure, researchers have designed different
hash functions, such as lp [10], Mahalanobis distance [22], kernel similarity [21],
and χ2 distance [14]. This provides another motivation of our method: according
to the problem at hand, we can conveniently choose from these methods to group
data items.

4 kNN Graph Construction with LSH

4.1 Problem Definition

Given a set of n items S = {x1, x2, . . . , xn} and a similarity measurement
ρ(xi, xj), the kNN graph for S is a directed graph that there is an edge from
node i to j if and only if xj is among xi’s k most similar items in S under ρ.
Here, ρ could be any similarity measurement defined on domain S. For example,
it can be cosine similarity, kernel similarity, Mahalanobis distance etc.

4.2 Algorithm

The key idea of our method is to divide the whole data set into small groups,
then find each item’s kNN within the group it belongs to. Since it is very hard to
ensure that each item and its real kNN are located in the same group, the method
only provides an approximate result. From the perspective of graph construction,
it is equivalent to say the method constructs one kNN graph on each group, and
then takes the union of all these small kNN graphs as the approximation kNN
graph.

Since the kNN search is performed within a small subset, finding one item’s
kNN needs only block-sz comparisons, where block-sz is the size of the group
it locates in. Assuming all groups are of equal size, the method’s complexity is
O(block-sz× n) instead of O(n2) for the brute-force manner.

To make the strategy work well, two conditions should be satisfied:

1. Similar items should be grouped together, which implies most of the real
kNN of an item can be found in its group. Therefore, one can expect the
resulting graph is a good approximation to the true kNN graph.

2. Since the complexity of the method is O(block-sz× n), to make the method
efficient, each group should be as small as possible (block-sz � n).

Obviously, there is a contradiction between the two conditions: to make Condi-
tion 1 valid, we tend to use groups of big size which will violate Condition 2.
Thus, a balance should be made by choosing a feasible block-sz.

In this work, we explore LSH to divide the data set with the hope that similar
items will be grouped together. A straightforward way is to use LSH to hash all
items into a hash table, then construct a kNN graph for each bucket. However,
typical LSH methods yield highly un-even hash table which means some buckets
contain a large number of items and some contain few items as shown in Fig. 1.
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Fig. 1. Distribution of the number of items in buckets. Experiments are performed
on Caltech256 and NUS-WIDE data sets. We use the function h(x) = {sgn(wT

i x +
bi)}i=1,...,8 to hash all items into a hash table, where {wi} are sampled from a Gaussian
distribution N(0, I) and {bi} are the median values of the projections. Since m = 8,
the hash table has 512 buckets.

The problems brought by this phenomenon are: (a) the kNN graph constructed
on a small bucket will fail the Condition 1, and suffer a poor precision; (b)
Constructing a kNN graph on a large bucket will fail the Condition 2, and suffer
a high cost because of the complexity O(block-sz2). Actually, the direct use of
LSH has been observed to result in unsatisfying performance[12,30], which is
also verified by our experiments.

We propose an efficient way to overcome the problem and obtain equal size
groups. Given the data set’s hash code matrix Y ∈ {0, 1}n×m where the ith
row yi ∈ {0, 1}m is the hash code of xi, we first project items’ hash codes onto
a random direction w ∈ �m, and get p = Y w. Then we sort items by their
projection values to get the sequence {xπ1 , xπ2 , . . . , xπn} with {pπ1 ≤ pπ2 . . . ≤
pπn}. Finally, we obtain n/block-sz groups {Si} with equal size of block-sz by
defining Si = {xπ(i−1)×block−sz+1

, . . . , xπi×block−sz
}. Because items in the same

bucket will have same projection values, they will remain in the same group with
high probability. We summarize the procedure described above in Algorithm 1.

Algorithm 1 generates a basic approximation to the kNN graph. However, it
is just an union of n/block-sz isolated small graphs, and may suffer from a low
accuracy. To improve it, we repeat Algorithm 1 using different hash functions for
multiple times and then combine the resulting graphs. Denoting the approximate
kNN of x found in the i-th iteration by Ni(x), we can obtain at most k × l NN
different candidates as {Ni(x)}i=1,...,l after l iterations. Obviously, by increasing
l, it will cover more and more true kNN of x. The final graph is achieved by
connecting each x to k items in {Ni(x)}i=1,...,l which are the nearest to it.

To further boost our method, we use a one-step neighbor propagation proce-
dure which is widely used in efficient kNN graph construction methods [6,12,30].
It is based on the following observation: if x is similar to y and y is similar to
z, then it is likely that x is similar to z. It implies that we could improve an
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Function: basic ann by lsh(X, k, m, block-sz)
begin

Y = LSH(X,m)
Project Y onto a random direction w, p = Y w
Sort items by p values, and get {xπ1 , xπ2 , . . . , xπn}
for i = 1, . . . , n/block-sz do

Si = {xπ(i−1)×block−sz+1
, . . . , xπi×block−sz} gi = brute force kNN(Si, k)

return: G =
⋃
{gi}

Algorithm 1. Basic kNN Graph Construction with LSH

Algorithm: Approximate kNN Graph Construction with LSH
Input: X, k, l, m, block-sz
begin

for i = 1, . . . , l do
Gi = basic ann by lsh(X, k, m, block-sz)

Combine {G1, G2, . . . , Gl} to get G
Refine G by one step neighbor propagation
return: G

Algorithm 2. Main Algorithm

item’s approximate kNN by selecting from its neighbors and the neighbors of its
neighbors. Formally, denoting the approximate kNN of x found by now as N(x),
we update it by reselecting x’s kNN from the set N(x) ∪ {∪v∈N(x)N(v)}. As we
will see in the next section, this simple local search procedure is a good com-
plementary strategy with LSH, and gives significant improvement to the final
results. The whole method is summarized in Algorithm 2.

In the proceeding of multiple basic graph constructions and neighbor propaga-
tion, some pairwise distances could be computed for many times. Thus, another
technique to speedup the method is to store all the pairwise distances that have
been computed so far in a hash table. When requiring the distance between two
items, we first check the hash table if it has been evaluated before. However, we do
not actually adopt this technique as the hash table may be too large to store. For
example, assuming n = 1, 000, 000 and 10% of all the n2 pairwise distances have
been computed, the hash table needs about 8 GB memory to store these values.

4.3 Complexity Analysis

We briefly analyze the complexity of the proposed method as follows.

1. Complexity for computing LSH(S,k), projecting and sorting are O(nmd),
O(nm) and O(n log n) respectively. Complexity for the construction of all gi
(1 ≤ i ≤ n/block-sz) is O(ndblock-sz). Thus, the complexity of Algorithm 1
is O(n(md +m+ dblock-sz) + n logn).
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2. Combining l graphs needs O(lnk) operations.
3. Each item has at most k2 + k candidate neighbors (k neighbors and k2

neighbors of neighbor), and needs O(dk2) operations to find out the k near-
est neighbors. Thus, the complexity of neighborhood propagation step is
O(ndk2)

Summarizing the above analysis, the complexity of our algorithm is O(ln(md+
dblock-sz+ logn+ k)+ndk2). Since k, m and block-sz are small in practice, the
actual complexity is O(ln(d + logn)).

5 Experiments

To empirically validate the effectiveness of the proposed approximate kNN graph
construction method, we provide results on several data sets. The primary goal
is to verify: (1) The proposed method is much faster than existing ones; (2) Our
method can generate good approximate graph by scanning only a small part of
the total pairwise distances; (3) For many classification tasks, an approximate
graph is enough to achieve good classification accuracy.

5.1 Experimental Setting

Data Set. We use 3 popular image data sets to evaluate the proposed method:
Caltech256, Imagenet and NUS-WIDE. Caltech256 [16] is a benchmark for ob-
ject classification, while Imagenet [11] and NUS-WIDE [8] are two real-world
web image databases. Features are extracted by the bag-of-word (BOW) model
based on SIFT descriptions. For Caltech256, we perform k-means clustering of
SIFT descriptors to form a visual vocabulary of 1024 visual words. Then, SIFT
descriptors are quantized into visual words using the nearest cluster center. BOW
features for Imagenet and NUS-WIDE are directly downloaded from websites1,2.
For the Imagenet database, we only adopt the first 100 categories of the training
set. We summarize the size and dimensionality of the data sets in Table 1.

Table 1. Data sets description

Caltech256 Imagenet NUS-WIDE

Size 30607 120955 269643
Dimensionality 1024 1000 500

Comparison Methods.We compare our method, denoted by LSH, with 3 pop-
ular approximate kNN graph construction methods: OverTree [6], MultiTree [30]
and NN-Descent [12]. We employ the direct use of LSH to construct approximate

1 http://www.image-net.org/challenges/LSVRC/2010/download-public
2 http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm

http://www.image-net.org/challenges/LSVRC/2010/download-public
http://lms.comp.nus.edu.sg/research/NUS-WIDE.htm
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kNN graph as the baseline method 3, denoted by DirectLSH. To examine the
effect of the one-step neighbor propagation, we will also report the results of our
algorithm without the neighbor propagation procedure, denoted by LSH–. The
setting for different methods is given as follows.

1. For LSH, LSH– and DirectLSH, we adopt a LSH coding method proposed
in [23] to divide data points. It is a nonlinear method based on spectral
decomposition of a low-rank graph matrix. To efficiently generate different
hash tables, we randomly sample 20 items as the anchor points for each
iteration. The length of the hash code is set to m = 2log2(n/block-sz)3+ 1.
For LSH and LSH–, block-sz (the maximum set size for performing brutal
force kNN) is set to 100.

2. For OverTree, the specific algorithm we use is kNN-glue, and the codes are
provided by authors 4. block-sz is set to 100.

3. For MultiTree, we randomly sample 20 points on each internal node, compute
the principal direction on the sampled set by Lanczos algorithm, then use it
to perform the projection. block-sz is set to 100.

4. For NN-Descent, there is no hyperparameter to set, and the codes of NN-
Descent are provided by authors 5.

Evaluation Criterion. To evaluate the quality of an approximate kNN graph

G′, we define the following accuracy measurement acc(G′) = |E(G′)∩E(G)|
|E(G)| , where

G is the exact kNN graph, E(·) denotes the set of the directed edges in the graph
and | · | denotes the cardinality of the set. The exact kNN graph is computed by
the brute-force method, and the time for constructing 10NN graph is shown in
Table 2.

Table 2. 10NN graph construction time for the brute-force method

Caltech256 Imagenet NUS-WIDE

Time (sec.) 1108 17991 43696

Experiment Environment. All experiments are run on a Linux server with
two 8-core 2.66GHz CPUs and 128G RAM. Parallelization is disabled for all
method, and each method is restricted on one thread.

5.2 Experimental Results

Time versus Approximate Accuracy. We test various methods by com-
paring their time for constructing graphs with different accuracies. To generate

3 In each iteration, we use LSH to group data, then construct one kNN graph for each
bucket.

4 http://www.mcs.anl.gov/~jiechen/software.html#knn
5 http://code.google.com/p/nndes/

http://www.mcs.anl.gov/~jiechen/software.html#knn
http://code.google.com/p/nndes/
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Fig. 2. Graph accuracy versus construction time for different methods on 3 data sets.
The 3 columns correspond to the results of building approximate 1NN, 10NN and 20NN
graphs respectively.

different accuracy graphs, (1) For LSH, LSH–, DirectLSH and MultiTree, we use
different times of divisions (parameter l). (2) For OverTree, we vary the over-
lapping factor from [0.1 0.5]. (3) For NN-Descent, we use different sample rates.
The performance comparison is shown in Fig 2. The horizontal axis represents
the time (in seconds) consumed for graph construction, and the vertical axis
represents the graph accuracy defined above. Each row of the figure corresponds
to one data set, and each column corresponds to a choice of k value. As the
NN-Descend method fails for small k, its performance curve is not shown for
k = 1.

From Fig. 2, we can clearly see the superiority of our method. For k = 10
and k = 20, LSH is consistently better than LSH–, and has similar performance
for k = 1, which shows the effectiveness of the neighbor propagation procedure.
On the other hand, the performance of LSH– is always better than DirectLSH,
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Fig. 3. Scan rate of the proposed method with respect to different graph accuracy on
3 data sets(k = 10)

which shows the effectiveness of the equal size splitting. In fact, the accuracy of
one basic isolated graph produced by DirectLSH is higher than that of LSH–,
but it takes DirectLSH about 2 - 3 time than LSH–. Thus, in the same time our
method builds more basic graphs than DirectLSH, and obtains higher accuracies.

Our method is at least 4 times faster than OverTree and NN-Descent meth-
ods on all data sets. MultiTree exhibits similar performance on Caltech256 and
Imagenet, but is dramatically slower than the proposed method on NUS-WIDE.
Furthermore, MultiTree and OverTree are only applicable for Euclidean space
with l2 norm. Compared with the brute force method, our approach generates
graphs with accuracies of 90% using at most 5% time of the brute force method
on Caltech256 and Imagenet, and using less than 10% time of the brute force
method on NUS-WIDE.

Approximate Accuracy vs. Scan Rate. Because the dominant cost of kNN
graph construction is the pairwise distance calculation, we evaluate our method
by reporting the ratio of the number of actual distances calculated to the to-
tal number of pairwise distances n(n − 1)/2. The values for graphs of different
accuracies under different data sets are shown in Fig. 3. We can observe that:
(1) Our method generates good approximate kNN graphs by scanning only a
small proportion of the distances, but to generate graphs with high accuracy,
the method still has to scan a large number of distances. This is because: neigh-
bors of some items are far away, and locality-sensitive hashing in nature is not
good at searching for such points. (2) Different data sets have very different
properties. For example, constructing approximate kNN graphs for Imagenet is
much easier than for NUS-WIDE.

In experiments, we found the scan rate of MultiTree is even lower than ours.
However, because of computing principle directions, in constructing a basic ap-
proximate graph, it takes about 3 times of the running time of Algorithm 1.
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Fig. 4. Variance of classification accuracy with respect to graph accuracy

Thus, its overall speed is slow. Actually, by increasing the number of anchor
points and using kmeans to choose anchor points (see experimental setting for
LSH), our method can also achieve better scan rate. But this will make the cost
of learning the hash coding much higher, and decrease the overall performance.
Therefore, instead of pursuing the accurate but complex indexing structure as
in kNN search, a trade-off must be made between the speed and accuracy in
building the indexing structure for the graph construction problem.

Approximate Accuracy vs. Classification Accuracy. As we shown in the
previous experiments, it is relatively easy to yield a good approximate graph,
but hard to obtain graph with very high accuracy. The progress towards the real
kNN graph becomes slow when l is large. Actually, this is a common problem
shared by all approximate kNN graph construction methods. But fortunately for
machine learning tasks, like classification, what we really care is not graph accu-
racy, but the classification accuracy. As long as edges found by our method are
locally enough, we can expect the approximate graph leads to good description
to the data set, and therefore yields similar results as the true kNN graph.

In this experiment, we examine the variance of classification accuracy with
respect to the graph accuracy. First, approximate 20NN graphs with different
accuracies are generated by our method on Caltech256 and MNIST(a popular
handwritten digit data set with n = 70000, d = 784). We randomly sample
15420 nodes for Caltech256 and 700 nodes for MNIST as labeled data, and
use Gaussian random fields [33] to classify the rest nodes. The classification
accuracies are reported in Fig. 4.

As observed from the results, the classification accuracy is very robust with
the graph accuracy. Actually, on Caltech256, the classification accuracy is 22.0%
on graph of accuracy 80%, while is 23.4% on exact 20NN graph; on MNIST, the
classification accuracy is 93.8% on graph of accuracy 80%, while is 93.9% on
exact 20NN graph. This implies that for many applications, it is sufficient to
construct a graph with a reasonable accuracy.



672 Y.-M. Zhang et al.

0 20 40 60 80 100 120 140

0.4

0.5

0.6

0.7

0.8

0.9

1

l

gr
ap

h 
ac

cu
ra

cy

k=1
k=10
k=20

0 30 60 90 120 150 180 210

0.4

0.5

0.6

0.7

0.8

0.9

1

l

gr
ap

h 
ac

cu
ra

cy

k=1
k=10
k=20

100 200 300 400 500 600 700 800 900 1000
0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

l

gr
ap

h 
ac

cu
ra

cy

k=1
k=10
k=20

Fig. 5. Variance of classification accuracy with respect to the parameter l for building
approximate 10NN graphs on Caltech256, Imagenet and NUS-WIDE respectively
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Fig. 6. Effect of the size of block for building approximate 10NN graphs on Caltech256,
Imagenet and NUS-WIDE respectively

Approximate Accuracy vs. The Number of Divisions. In the proposed
method, we use the number of divisions l to control the speed and accuracy of
graphs. In this experiment, we examine how the graph accuracy varies with the
number of divisions. For each data set, we construct k = {1, 10, 20} NN graphs
with different l, and report the accuracy of resulting graphs. The results are
shown in Fig. 5.

Effect of the Size of Block. From the analysis in Section 4.2, we should choose
a feasible block size to make a balance between the accuracy and the cost of basic
graph. In this experiment, we examine how the block size affects the performance
of our method. We construct approximate 10NN graphs on Caltech256, Imagenet
and NUS-WIDE data sets with block-sz ∈ {50, 100, 200, 400}. For each data set,
we build graphs with different accuracies by using different number of divisions,
and report the building time and accuracies in Fig 6. As we can see, block-sz ∈
{100, 200} are consistently better than {50, 400} for all data sets. This is because
block-sz= 50 is too small to generate a good basic graph while the cost for
building basic graph with block-sz= 400 is too high. Actually, for all the previous
experiments, we have fixed block-sz to 100.

6 Conclusion

In this paper, we have proposed a fast approximate kNN graph construction
method for generic similarity measures. It engages the LSH technique to
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efficiently partition items into small groups, and then constructs kNN graph on
each group. As shown by the experiments, our method can efficiently generate
graphs with good accuracies by just computing a small proportion of distances,
which is sufficient for many learning tasks. In addition to its high efficiency, the
proposed algorithm is ready to be applied under many similarity measures, and
is also natural to be parallelized.
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Abstract. The accuracy of the k-nearest neighbor algorithm depends
on the distance function used to measure similarity between instances.
Methods have been proposed in the literature to learn a good distance
function from a labelled training set. One such method is the large margin
nearest neighbor classifier that learns a global Mahalanobis distance. We
propose a mixture of such classifiers where a gating function divides
the input space into regions and a separate distance function is learned
in each region in a lower dimensional manifold. We show that such an
extension improves accuracy and allows visualization.

Keywords: Nearest Neighbor Classifier, Margin Loss, Distance
Learning.

1 Introduction

Nonparametric, memory-based methods, such as the k-nearest neighbor clas-
sifier, interpolates from past similar cases. This requires a good distance (or
inversely, similarity) measure to determine the relevant subset of the training
set. Given two d-dimensional instances xi, xj ∈ �d, the Euclidean distance, or
its square, is the best known:

DE(xi, xj) = ‖xi − xj‖22 = (xi − xj)�(xi − xj)

The Euclidean distance assumes that all features have the same variance and
that they are uncorrelated. If this is not the case and there is a covariance
structure as given by a covariance matrix S, one should use the Mahalanobis
distance:

DM = (xi − xj)�M(xi − xj)

where M ≡ S−1. The Euclidean distance is a special case where M = S = I, the
identity matrix.

M is a d× d symmetric, positive semi-definite matrix and when d is large,
not all features may be informative and/or there may be strong correlations
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between features, and one may want to do dimensionality reduction by a low-
rank approximation. Any symmetric Mahalanobis matrix can be factorized as
M = L�L, where L is an e× d projection matrix and e ≤ d:

DM(xi, xj) = (xi − xj)�M(xi − xj) = (xi − xj)�L�L(xi − xj)
= (L(xi − xj))�L(xi − xj) = (Lxi − Lxj)�(Lxi − Lxj)
= ‖zi − zj‖22 = DE(zi, zj)
= DL(xi, xj) (1)

That is, using such a low-rank (e < d) approximation is equivalent to pro-
jecting the data to this new e-dimensional space as, zi = Lxi, zi ∈ �e and using
Euclidean distance there.

In a high dimensional problem, different regions of the input space may exhibit
different dependencies and variances and hence, instead of a single, global metric,
it may be more appropriate to use different metrics in different regions. Besides,
because regions have local structures, dimensionality can be further decreased.
In this study, we propose a framework where the input space is partitioned into
regions and different projection matrices are learnt in different regions.

The rest of this paper is organized as follows: We give a brief literature survey
of related work in Section 2, and among these, the closest to our work are
the Large Margin Nearest Neighbor (LMNN) algorithm—that learns M—and
Large Margin Component Analysis (LMCA) algorithm—that learns L—which
are discussed in more detail Section 3. Our proposed extension of mixtures of
LMNN—that learns multiple Mm or Lm in different parts of the input space—is
given in Section 4 which are discussed in more detail in Section 3. We discuss
our experimental results in Section 5 and conclude in Section 6.

2 Related Work

In the literature, many methods have been proposed to train a Mahalanobis
matrix M or a projection matrix L. Some methods train multiple Mahalanobis
or projection matrices, which can be per-class or per-exemplar. Below, chrono-
logically we give a brief summary of some methods.

One of the first distance metric learning algorithm is given by Xing et al.
in [1] who define a convex optimization problem to find a Mahalanobis matrix.
The instances in the data set form two disjoint subsets of similar and dissimilar
pairs and a Mahalanobis matrix is trained such that the distance between similar
points is minimized while the dissimilar points are at least 1 unit way from each
other.

Neighborhood Components Analysis (NCA) is a stochastic gradient-based
algorithm to find a linear projection matrix that minimizes the leave-one-out
classification error of the nearest neighbor classifier in the new space (see [2]). A
differentiable objective function is defined on the soft neighbor assignments in
the linearly projected space. The projection matrix can be also used for dimen-
sionality reduction. Slakhutdinov and Hinton extend NCA to embed a nonlinear
projection in [3], where a multilayer neural network is trained for this purpose.
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Frome et al. in [4] propose a method to train a weight vector for each image
to calculate the global distance between images using the feature vector which
is a concatenation of local patch distances between the images. A large margin
classifier is trained over the local distance feature vectors in a convex program-
ming problem. Since the trained distances are not guaranteed to be compatible,
a logistic model is trained over them to estimate posterior probabilities. They
are ranked and the query image is assigned to the class of the image with the
highest rank. In [5], they improve the algorithm by training a globally consis-
tent local distance functions such that no second-level classifier is required to
be trained. They redefine the problem using a convex optimization formulation.
Since all the weight vectors are trained together, the final distance estimates are
compatible with each other.

Chang and Yeung in [6] train an affine function per instance that provides
smooth transitions between instances. A variant of regularized moving least
squares is applied in a semi-supervised setting. Although the objective func-
tion has a closed-form solution, it becomes intractable for data sets with many
instances and an approximation algorithm is given.

Davis et al. in [7] study metric learning from an information-theoretic point
of view. They define the optimal Gaussian distribution whose covariance ma-
trix satisfies the distance constraints defined on the instance pairs; the distance
between instance pairs belonging to the same class must be smaller than a pre-
determined threshold and the instance pairs from different classes must be away
from each other by at least a specified distance. Then, the problem is converted
into a LogDet (logarithm of determinant) optimization problem that is convex.

The Large Margin Nearest Neighbor algorithm (LMNN) (see [8] and [9]) de-
fines a semi-definite programming problem over the squared Mahalanobis dis-
tances of target and impostor sets—the impostors are the closest instances with
different class labels and targets are the closest instances with the same label.
Distances to the target neighbors are minimized while the distances to impostors
are penalized if they are within a margin, which is a safe distance away from
the furthest target neighbor. This is a convex programming instance and hence
has a unique solution. A multiple metrics version of LMNN where a metric is
trained for each class is also studied in [9].

Large Margin Component Analysis (LMCA) in [10] is a variant of LMNN and
finds a lower dimensional rectangular projection matrix L instead of a square
Mahalanobis matrix M (see Equation 1). Both methods share the same objective
function but since LMCA defines the squared distance in terms of the projection
matrix, this is no longer a convex optimization problem and LMCA converges to
a local optimum. Our proposed method is an extension of LMNN and LMCA,
and these methods will be discussed in more detail in Section 3, before we discuss
our method in Section 4.

Malisiewicz and Efros in [11] focus on training per-exemplar metric for image
retrieval. They also work on the concatenated vector of segment distances. Their
algorithm consists of two parts. Sequentially, they train metrics per-exemplar
given the nearest neighbors and then they re-assign the nearest neighbors given
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the trained metrics. They specify a margin on the trained distance function val-
ues as used in Support Vector Machines (SVM). The neighbors that are away
less than one unit distance are called the support set and the precision of clas-
sification result is determined by this support set.

Zhan et al. in [12] propose to learn instance-specific distances by using metric
propagation. A smooth function (such as a Gaussian kernel) is propagated be-
tween the labelled and unlabelled instances. A regularized loss function is defined
such that the distances between instances of the same label are minimized with
respect to the given neighborhood relationships; the distance function trained
using labeled instances can then be used for unlabeled instances. The proposed
framework is formulated as a convex problem.

Chen and Sun in [13] propose a hierarchical LMNN algorithm. Overlapping
ratio is defined to measure the confusion between classes and if this ratio is
above a threshold, overlapping classes are grouped in the same cluster. The
hierarchy describes how to map a test instance to a cluster. A Mahalanobis
matrix is trained for each cluster and a given test instance is classified by using
its cluster’s metric matrix.

Noh et al. in [14], aim reducing the expectation error that the nearest neighbor
has a different label. They show that if the distributions of the two classes
are known, the difference between the empirical nearest neighbor error and the
optimal nearest neighbor error based on asymptotic Bayes error is caused by
finite sampling. They propose Generative Local Metric Learning which defines
a convex problem if the divergence function used is also convex.

Chang in [15] proposes an iterative metric boosting method. An upper bound
function on the leave-one-out error for the nearest neighbor classification is de-
fined and is minimized. The misclassified instances are weighted and the Maha-
lanobis matrix is optimized with respect to these weights. An eigenvalue problem
is solved to find the Mahalanobis matrix.

Bunte et al. in [16] propose Limited Rank Matrix Learning which is a recent
algorithm that extends Learning Vector Quantization. It learns class prototypes
and a low-rank projection matrix at the same time, iteratively. The projection
matrix is trained to be discriminative by optimizing a cost function that maps
instances close to their class prototypes and away from the other class prototypes,
using a criterion similar to that of Linear Discriminant Analysis.

Wang et al., in [17], propose to combine multiple metric matrices to form
per-exemplar local metrics. The algorithm consists of two steps. First, a weight
matrix is trained such that each data point can be expressed as a linear combina-
tion of pre-defined anchor points. The cluster means are defined as the anchors
and any clustering algorithm can be used for defining the anchors, i.e., k-means.
Then, a metric learning algorithm, a modified version of Multiple-metric LMNN,
is used to train a metric for each anchor point. The per-exemplar local metrics
are combinations of these anchor metrics whose weights are determined by the
weight matrix.



Mixtures of Large Margin Nearest Neighbor Classifiers 679

Table 1. The overall summary of distance metric learning methods

Method Convexity Type of Metric Distance

Xing et al. [1] Yes Single Mahalanobis
Golberger et al. [2] No Single Projection
Salakhutdinov and Hinton [3] No Single Nonlinear Projection
Frome et al. [4] Partial Per-Exemplar Weight Vector
Frome et al. [5] Yes Per-Exemplar Weight Vector
Chang and Yeung [6] Yes Per-Exemplar Mahalanobis
Davis et al. [7] Yes Single Mahalanobis
Weinberger and Saul [8] Yes Single Mahalanobis
Weinberger and Saul [9] Yes Per-Class Mahalanobis
Torresani and Lee [10] No Single Projection
Malisiewicz and Efros [11] Partial Per-Exemplar Weight Vector
Zhan et al. [12] Yes Per-Exemplar Weight Vector
Chen and Sun [13] Partial Per-Cluster Mahalanobis
Noh et al. [14] Yes Single Mahalanobis
Chang [15] Partial Single Mahalanobis

Bunte et al. [16] No Per-Class Vector
Single Projection

Wang et al. [17] Partial Multiple Mahalanobis
Wu et al. [18] Yes Per-Exemplar Mahalanobis

The Bregman distance functions are trained in a SVM-like manner in [18].
Since the general Bregman distances are not metrics, the authors work with a
particular set of convex Bregman functions to ensure that they train a metric.
Kernelizing the Bregman distances, they solve a quadratic problem.

The methods are summarized in Table 1. Note that partial convexity means
that the algorithm consists of some sub-problems or steps and that not all of
them are convex.

3 Large Margin Nearest Neighbor (LMNN) and Large
Margin Component Analysis (LMCA) Algorithms

The Large Margin Nearest Neighbor (LMNN) trains a global Mahalanobis ma-
trix that evaluates distances discriminatively (see [9] and [8]). Let us define our
data set as pairs (xi, yi), where xi is the input instance vector and yi is the corre-
sponding label. The notation j � i (j leads to i) means xj is a target neighbor of
xi. A target is a neighbor with the same (correct) class label whereas an impostor
is a neighbor with different (wrong) class label. For accurate nearest neighbor
classification, targets must be closer than the impostors.
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Using the label information, a Mahalanobis matrix M can be trained to

minimize (1− μ)
∑
i,j�i

(xi − xj)�M(xi − xj) + μ
∑
i,j�i,l

(1− yil)ξijl

subject to (xi − xl)�M(xi − xl)− (xi − xj)�M(xi − xj) ≥ 1− ξijl

ξijl ≥ 0

M 1 0 (2)

where yil = 1 if yi = yl, which are the labels of xi and xl, and yil = 0 otherwise.
The first term is the sum of distances of each instance to its target neighbors
which we want to be minimum and the second term penalizes close impostors:
For any instance i where l is an impostor and j is a target, we would like the
distance to the impostor be at least one unit more than the distance to a target.
If this is not satisfied, there is a slack and we minimize the sum of such slacks.

Equation 2 defines a positive semi-definite programming problem and
there is a unique minimum. After some manipulations, the loss function can be
rewritten as:

E = (1 − μ)
∑
i,j�i

trace(MCij)

+μ
∑
i,j�i,l

(1− yil) [1 + trace(MCij)− trace(MCil)]+ (3)

where [a]+ is the hinge loss which is a when a > 0 and is 0 otherwise. The
difference matrix, Cij , is defined as Cij = (xi − xj)(xi − xj)�. Though other
solving methods such as alternating projection algorithms can also be used here,
using iterative gradient descent is simple and the global solution can still be
reached [8]. The gradient is:

∂E

∂M
= (1− μ)

∑
i,j�i

Cij + μ
∑
(i,j,l)

(Cij − Cil) (4)

where (i, j, l) means active triples (that activate the hinge loss) in the current
gradient update (the impostors can vary in each update).

As we discussed in Equation 1, the metric matrix learned can be factorized
as M = L�L, where L is the projection matrix. Large Margin Component
Analysis (LMCA) in [10] is a variant of LMNN which uses this idea. It focuses on
finding a lower dimensional rectangular projection matrix instead of a full square
Mahalanobis matrix. LMCA also minimizes Equation 3, but when defined in
terms of L, this is no longer a convex optimization problem and gradient-descent
is used. At each iteration, the projection matrix is updated in the negative
direction of the gradient:

∂E

∂L
= 2(1− μ)L

∑
i,j�i

Cij + 2μL
∑
(i,j,l)

(Cij − Cil) (5)
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4 Mixtures of Large Margin Nearest Neighbor Classifiers

LMNN uses the a single, global M and LMCA uses a single, global L over the
whole input space. It may be the case that a data set has multiple locally varying
distributions—features may have different variances and different correlations in
different parts of the input space, defining multiple local manifolds. Our idea
is to divide up the input space into local regions using a gating function and
learn different metrics in different regions; we hence define a mixture of LMNNs.
In doing this, we are inspired by the Mixture of Experts neural network model
of Jacobs et al. in [19]. Previously, Gönen and Alpaydın in [20] used the same
idea in multiple kernel learning where they write a kernel as a weighted sum of
localized kernels.

The gating function that defines the region of expertise of a local metric can
be cooperative or competitive, which is implemented respectively by the sigmoid
or softmax function (P is the number of regions):

Cooperative: ηm(xi|wm) =
1

1 + exp(−w�
mxi − wm0)

(6)

Competitive: ηm(xi|wm) =
exp(w�

mxi + wm0)∑P
h=1 exp(w�

h xi + wh0)
(7)

Local model m becomes active if ηm(xi) > 0 and we say that xi belongs to
region m. The softmax function is competitive because it enforces a soft winner-
take-all mechanism and for any input, we expect a single active local metric and
the gating model works as a selector (

∑
m ηm(xi) = 1). The sigmoid function

is cooperative because there can be more than one active local metric and the
model takes a weighted sum (

∑
m ηm(xi) need not be 1).

In each local region, using a full M may lead to overfitting and to regularize,
we learn a local lower rank L in each: When x chooses local model m, Lm is the
local projection used. The localized projection of xi into region m is

zim = ηm(xi|wm)Lmxi

The total distance between a pair (xi, xj) is calculated as the sum of the local
distances:

Dtotal(xi, xj) =
P∑

m=1

DLm(xi, xj)

where DLm(xi, xj) is the local distance in region m:

DLm(xi, xj) =‖zim − zj,m‖22
=‖ηm(xi|wm)Lmxi − ηm(xj |wm)Lmxj‖22
=‖Lm(ηm(xi|wm)xi − ηm(xj |wm)xj)‖22
= [ηm(xi|wm)xi − ηm(xj |wm)xj ]

�
L�
m

Lm [ηm(xi|wm)xi − ηm(xj |wm)xj ] (8)
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Hence, the total distance is a weighted combination of local distances and the
contribution of local projections are determined by ηm(xi). Thus, it is possible
that multiple metrics are active, particularly in the cooperative setting.

The model parameters are the localized projection matrices Lm and the gating
parameters wm. We use the same formulation of LMNN in Equation 2 by using
Dtotal instead of the Mahalanobis distance (xi − xj)�M(xi − xj):

minimize (1− μ)
∑
i,j�i

Dtotal(xi, xj) + μ
∑
i,j�i,l

(1− yil)ξijl

subject to Dtotal(xi, xl)−Dtotal(xi, xj) ≥ 1− ξijl

ξijl ≥ 0 (9)

Let us rewrite the loss function:

E(η) = (1− μ)
∑
i,j�i

P∑
m=1

trace(L�
mLmC

(m)
ij (η)) + μ

∑
i,j�i,l

(1− yil) [1 + ζijl]+

(10)

where

ζijl =

P∑
m=1

(
trace(L�

mLmC
(m)
ij (η))− trace(L�

mLmC
(m)
il (η))

)
We can use the same trick and rewrite the gated loss function in terms of

difference matrices. C(m)
ij (η) is defined over the gated projections of xi and xj

in region m:

C
(m)
ij (η) = [ηm(xi|wm)xi − ηm(xj |wm)xj] [ηm(xi|wm)xi − ηm(xj |wm)xj ]

�

When we use a gating function, the problem is not convex anymore and we
use gradient descent. The derivative of the loss function with respect to the local
projection matrix Lm can then be derived:

∂E(η)

∂Lm
= 2(1− μ)Lm

∑
i,j�i

C
(m)
ij (η) + 2μLm

∑
(i,j,l)

(C
(m)
ij (η)−C

(m)
il (η)) (11)

The derivative of objective function with respect to the gating parameters
depends on the function used:

∂E(η)

∂whk
= 2(1− μ)

∑
i,j�i

∂Dtotal(xi, xj)
∂whk

+μ
∑
(i,j,l)

(1 − yil)

(
∂Dtotal(xi, xj)

∂whk
− ∂Dtotal(xi, xl)

∂whk

)
(12)
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Algorithm 1. Training a Mixture of Large Margin Nearest Neighbor Classifiers
1: Initialize wmk and wm0 to small random numbers.
2: Initialize Lm matrices to the PCA projection matrix of the whole data.
3: repeat
4: repeat
5: Calculate D(xi,xj) and find target neighbors and impostors.
6: w

(t+1)
mk ← w

(t)
mk − γ(t) ∂E(η)

∂wmk

7: until convergence of gating parameters
8: repeat
9: Calculate D(xi,xj) and find target neighbors and impostors.

10: L
(t+1)
m ← L

(t)
m − γ(t) ∂E(η)

∂Lm

11: until convergence of local projections
12: until convergence

We can apply the chain rule to get the derivative of the total distance:

∂Dtotal(xi, xj)
∂whk

=

P∑
m=1

2

[
xi

∂ηm(xi|wm)

∂whk
− xj

∂ηm(xj |wm)

∂whk

]�
L�
mLm [ηm(xi|wm)xi − ηm(xj |wm)xj ] (13)

If the sigmoid gating is used, the derivatives are (xi0 ≡ 1):

∂ηm(xi|wm)

∂whk
= δmh (1− ηm(xi|wm)) ηm(xi|wm)xik , k = 0, 1, . . . , d (14)

For the softmax gating, we have (xi,0 ≡ 1):

∂ηm(xi|wm)

∂whk
= (δmh − ηh(xi|wh)) ηm(xi|wm)xik, k = 0, 1, . . . , d (15)

where δmh, is 1 if m = h and it is 0 otherwise.
The pseudo-code for the Mixture of LMNN (MoLMNN) is given in Algorithm

1. To have a meaningful starting projection direction we initialize the local pro-
jections Lm by using Principal Components Analysis (PCA) on the training
data. At each iteration, we first apply gradient-descent to update the gating
parameters, and then, using the trained gating model, the local projection ma-
trices are updated. We apply these steps, until both the gating model and the
projection matrices converge or the classification result does not improve any
further. The learning rate, γ, is determined using linear search at each iteration.

5 Experiments and Results

We compare sigmoid and softmax-gated MoLMNN with LMNN and LMCA on
21 data sets, that are publicly available in [20, 21, 22, 23]. In Yeast, Faults and
Segment data sets, two classes are used (nuc vs cyt, k_stratch vs bumps, and
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sky vs windows, respectively). In Musk data set, only the real valued features
are used. The input data is z-normalized.

Our experimental methodology is as follows: Each data set is split into two
subsets as one-third test data and two-thirds training and validation data. The
two-thirds part is used to create ten training and validation folds using 5 × 2
cross-validation. The number of reduced dimensions, namely e, is chosen among
the number of features that explain 90, 95 and 98 per cent of the variance;
LMNN, LMCA and MoLMNNs models with P = 1 up to 10 regions are trained
for k = 3, 5, 7 and 9 neighbors . We also try and choose the best of sigmoid
and softmax gating. We do such a four-dimensional, (k, e, P, sigmoid/softmax)
grid search and choose the combination that has the highest average validation
accuracy—the other models are similarly trained and the best configuration is
chosen for their parameter set. For the best setting, the corresponding model
is trained on the ten different training folds and tested on the same left-out
one-third test set. These ten test results are reported and compared with the
parametric 5 × 2 cross-validation paired F test [24]. Table 2 shows the mean
and standard deviation of the test results for each data set and the results of
significance tests.

We see that on most data sets, a few regions (P ≤ 4) is enough. The number
of regions correspond to the modalities of data with different input distributions.
Increasing the number of regions does not improve accuracy beyond a certain
value. Note that even with a single region, MoLMNN may be more accurate
because it reassigns impostors and targets at each iteration while the other
algorithms fix them at initialization.

We also find that MoLMNN uses more neighbors when compared with other
algorithms. We believe this to be an indicator that MoLMNN trains a more
suitable distance function which places more of the target neighbors nearby.
Other algorithms use fewer nearest neighbors because due to inaccurate distance
approximation, their performance degrade if more neighbors are used. In terms
of sigmoid vs softmax gating, we do not notice one being always superior to the
other—each has its use.

MoLMNN significantly outperforms both LMCA and LMNN on Arabidopsis,
Musk, Yeast and Sonar. It outperforms LMCA on Splice and LMNN on Yale.
LMCA gives higher accuracy results on Yale and Ionosphere data sets. Except
Yeast, these data sets have more than 60 dimensions, which shows that MoLMNN
can capture local information to improve performance.

On Arabidopsis data set, we can visualize the data by reducing dimensionality
to two; this is a bioinformatics data set with 1, 000 dimensions. In Fig. 1(a), we
see the plot using PCA; there we see that the data has significant structure but
that PCA cannot capture the difference between the two classes. In Fig. 1(b),
we see the plot using LMCA and the learned discriminant using k = 3. In Fig.
2, we see results with MoLMNN with two regions. Each data point is plotted
in the region where its gating value is higher and the discriminants are plotted
separately in each region with k = 3. We see that we get better discrimination
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Table 2. The mean and standard deviation of test set accuracies of MoLMNN, LMCA
and LMNN. The parameters of the best configuration are given in parantheses, where
So is softmax and Si is sigmoid. Boldface indicates that the method is significantly
better than the other two. In terms of pairwise comparisons (shown by ‘*’), on Splice,
MoLMNN is more accurate than LMCA and on Ionosophere, LMCA is more accurate
than MoLMNN.

Data set MoLMNN (k,e,P,g) LMCA (k,e) LMNN (k,d)

Abalone 77.86 ± 1.01 (9,3,1,So) 78.21 ± 1.97 (9,3) 78.03 ± 1.33 (9,7)
Arabidopsis 81.89 ± 0.97 (9,473,1,Si) 77.21 ± 1.92 (5,390) 69.24 ± 2.17 (3,1000)
Australian 86.17 ± 1.42 (9,14,7,So) 85.83 ± 2.15 (5,14) 86.43 ± 1.08 (9,14)
Bupa 61.65 ± 4.27 (5,6,4,Si) 58.61 ± 2.79 (9,5) 59.57 ± 3.13 (9,6)
Ctg 89.73 ± 0.80 (9,16,2,So) 89.96 ± 0.62 (5,11) 89.83 ± 0.71 (5,21)
Faults 98.52 ± 0.58 (9,14,4,Si) 98.48 ± 0.25 (9,14) 98.56 ± 0.16 (9,27)
German Numeric 70.21 ± 2.27 (9,20,1,Si) 72.10 ± 2.84 (9,18) 72.01 ± 1.95 (9,24)
Heart 83.89 ± 4.10 (5,3,5,Si) 82.44 ± 4.38 (5,4) 85.22 ± 3.10 (7,13)
Ionosphere 81.54 ± 2.36 (9,17,3,Si) 83.25 ± 2.65* (3,27) 82.91 ± 2.88 (3,34)
Mg 83.58 ± 0.79 (9,5,1,So) 82.34 ± 0.61 (3,6) 82.34 ± 0.61 (3,6)
Musk 86.01 ± 2.66 (7,17,4,So) 80.82 ± 2.88 (5,28) 79.62 ± 4.00 (5,166)
Optdigits 96.98 ± 0.31 (9,51,3,Si) 97.26 ± 0.35 (3,41) 97.33 ± 0.35 (3,64)
Pendigits 97.33 ± 0.31 (5,11,2,So) 97.49 ± 0.15 (3,11) 97.31 ± 0.23 (5,16)
Pima 72.93 ± 0.96 (9,8,2,So) 73.32 ± 1.90 (9,8) 73.32 ± 1.90 (9,8)
Segment 99.95 ± 0.14 (7,8,9,Si) 100.00 ± 0.00 (7,8) 100.00 ± 0.00 (7,19)
Sonar 76.52 ± 3.60 (7,36,10,Si) 71.16 ± 3.01 (3,28) 68.55 ± 5.11 (3,60)
Splice 89.03 ± 0.71* (9,50,1,Si) 84.97 ± 0.83 (5,58) 85.81 ± 0.76 (9,60)
Transfusion 78.67 ± 1.13 (9,3,2,Si) 79.40 ± 1.34 (9,3) 79.36 ± 1.37 (9,5)
Wdbc 94.97 ± 1.35 (9,14,4,So) 94.02 ± 2.23 (7,10) 94.29 ± 1.94 (3,30)
Yeast 60.57 ± 2.58 (9,6,6,Si) 59.39 ± 2.38 (5,6) 59.33 ± 2.52 (5,8)
Yale 93.51 ± 0.77 (3,196,3,Si) 94.90 ± 0.50 (3,88) 92.77 ± 0.56 (7,896)
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Fig. 1. The 2d mappings of Arabidopsis data set with (a) PCA and (b) LMCA
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between the classes this way. Though we have not checked for this application,
where the gating boundary lies and the dimensions in each region could also
carry information.

We also check the relationship between the number of regions and the number
of reduced dimensions. Figure 3 shows how test accuracy changes as we vary the
number of dimensions and the number of regions. This is for k = 9, but we see
similar behavior for other k. We see that it is more the number of regions that
affect accuracy rather than the local dimensionality; we also see that sigmoid
gating leads to more fluctuating performance—regions may overlap and hence
may interfere more.
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Fig. 2. The 2d mappings of Arabidopsis data set with MoLMNN (softmax) with two
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6 Conclusions

In this study, we propose the Mixture of LMNN (MoLMNN) method which
softly partitions the input space and trains a separate projection matrix in each
region to best discriminate the data. The partitioning of the space and the
training of the projection matrices are coupled. Our experiments on real data
sets show that compared with LMNN and LMCA proper, the mixture approach
frequently performs better. Localization of the data and reducing dimensionality
to two allows visualization. The boundary of the gating model and the projected
dimensions could carry information which may help understand the data.
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Knoll, Alois I-49
Kober, Jens III-627
Koller, Torsten I-49
Kong, Deguang II-177
Kong, Shu III-240
Kontonasios, Kleanthis-Nikolaos II-256
Kopp, Christine III-370
Korpela, Jussi I-337
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