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Abstract. We study the frequent connected induced subgraph mining
problem, i.e., the problem of listing all connected graphs that are induced
subgraph isomorphic to a given number of transaction graphs. We first
show that this problem cannot be solved for arbitrary transaction graphs
in output polynomial time (if P �= NP) and then prove that for graphs
of bounded tree-width, frequent connected induced subgraph mining is
possible in incremental polynomial time by levelwise search. Our algo-
rithm is an adaptation of the technique developed for frequent connected
subgraph mining in bounded tree-width graphs. While the adaptation
is relatively natural for many steps of the original algorithm, we need
entirely different combinatorial arguments to show the correctness and
efficiency of the new algorithm. Since induced subgraph isomorphism
between bounded tree-width graphs is NP-complete, the positive result
of this paper provides another example of efficient pattern mining with
respect to computationally intractable pattern matching operators.

1 Introduction

Over the past 15 years substantial research efforts have been devoted toward de-
signing effective frequent graph mining algorithms. Despite the numerous studies
in this field of research, the theoretical aspects of the topic are still not well un-
derstood. The importance of a better understanding of the complexity aspects of
the various graph mining problem settings appears somewhat neglected, which
has as negative side effect that most algorithms are limited to some ten thousands
transaction graphs only. In this work we study the frequent connected induced
subgraph mining (FCISM) problem, which is the problem of listing all pairwise
non-isomorphic connected graphs that are induced subgraph isomorphic to at
least t transaction graphs for some parameter t ∈ N. This problem, as we show,
cannot be solved in output polynomial time for arbitrary transaction graphs.
For forests, however, it can be solved in incremental polynomial time.
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As the main result for this work, we generalize the positive result on forests by
showing that the FCISM problem can be solved in incremental polynomial time
for graphs of bounded tree-width. Regarding the practical aspects of our result, we
mention e.g. the ZINC dataset containing about 16.5 millions molecular graphs:
99.99% of these graphs have tree-width at most 3. Regarding its theoretical
aspects, we note that induced subgraph isomorphism is one of the “persistent”
problems that remain NP-complete even for graphs of tree-width 2 [8]. Thus,
our positive result provides an example of the case that efficient pattern mining
is possible even for computationally intractable pattern matching operators. To
the best of our knowledge, there is only one further such example [5].

Finally, regarding the algorithmic aspects of our result, we note that the
paradigm we followed here, and which is used also in [5] for frequent connected
subgraph mining in graphs of bounded tree-width, appears sufficiently general
for the design of graph mining algorithms for further pattern matching operators.
This paradigm consists of the following main steps: (1) Give a generic levelwise
search algorithm and, in addition to some natural conditions, (2) prove the exis-
tence of an efficiently computable pattern refinement operator that is complete
with respect to the pattern matching operator, and (3) show that the otherwise
exponential-time dynamic-programming algorithm [8] deciding the underlying
pattern matching works in time polynomial in the size of the set of patterns gen-
erated by the algorithm so far. When comparing the (sub)steps of this paradigm
for ordinary subgraph isomorphism [5] and for induced subgraph isomorphism,
on the one hand one can notice a number of steps that are (almost) the same for
the two problems. On the other hand, however, there are some crucial steps that
require entirely different techniques. Thus, for example, the pattern refinement
operator and the combinatorial characterization of the necessary information
needed to calculate by the pattern matching algorithm become much more com-
plicated for induced subgraph isomorphism, as we will show in Section 4.

The rest of the paper is organized as follows. In the next section we collect
all necessary notions. In Section 3 we give a generic levelwise search algorithm
and formulate five conditions for the efficiency of this algorithm. In Section 4 we
prove that all these conditions are fulfilled by the class of bounded tree-width
graphs. Finally, in Section 5 we conclude and mention some problems.

2 Preliminaries

In this section we collect and fix all necessary notions and notations used in the
paper. Most of the definitions and notations are taken from [5].

Graphs. An undirected graph is a pair (V,E), where V is a finite set of vertices
and E ⊆ {e ⊆ V : |e| = 2} is a set of edges. We consider simple graphs, i.e.,
which do not contain loops or parallel edges. A labeled undirected graph is a triple
(V,E, λ), where (V,E) is an undirected graph and λ is the labeling function
λ : V ∪E → N. The set of vertices, the set of edges, and the labeling function of
a graph G are denoted by V (G), E(G), and λG, respectively. Unless otherwise
stated, by graphs in this paper we always mean labeled undirected graphs.
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A subgraph of G is a graph G′ with V (G′) ⊆ V (G), E(G′) ⊆ E(G), and
λG′(x) = λG(x) for all x ∈ V (G′)∪E(G′); G′ is an induced subgraph of G if it is
a subgraph of G satisfying {u, v} ∈ E(G′) iff {u, v} ∈ E(G) for all u, v ∈ V (G′).
For S ⊆ V (G), G[S] denotes the induced subgraph of G with vertex set S. For
v ∈ V (G), G� v denotes G[V (G) \ {v}].

A path connecting two vertices v1, vk of a graph G, denoted by Pv1,vk , is a
sequence {v1, v2}, {v2, v3}, . . . , {vk−1, vk} ∈ E(G) such that the vi’s are pairwise
distinct. A graph is connected if there is a path between any pair of its vertices. A
connected component of a graph G is a maximal subgraph of G that is connected.
The set of all connected components of a graph G is denoted by C(G).
Graph Morphisms. Two graphs G1 and G2 are isomorphic, denoted G1 � G2,
if there is a bijection ϕ : V (G1) → V (G2) satisfying (i) {u, v} ∈ E(G1) iff
{ϕ(u), ϕ(v)} ∈ E(G2) for every u, v ∈ V (G1), (ii) λG1(u) = λG2(ϕ(u)) for every
u ∈ V (G1), and (iii) λG1({u, v}) = λG2({ϕ(u), ϕ(v)}) for every {u, v} ∈ E(G1).
For G1 and G2 we say that G1 is subgraph isomorphic to G2, denoted G1 � G2,
if G1 is isomorphic to a subgraph of G2; it is induced subgraph isomorphic to G2,
denoted G1 �i G2, if it is isomorphic to an induced subgraph of G2. In what
follows, two graphs are regarded the same graph if they are isomorphic.

Tree-Width. A central notion to this work is tree-width, which was reintro-
duced in algorithmic graph theory in [10]. A tree-decomposition of a graph G
is a pair (T,X ), where T is a rooted tree and X = (Xz)z∈V (T ) is a family of
subsets of V (G) satisfying (i) ∪z∈V (T )Xz = V (G), (ii) for every {u, v} ∈ E(G),
there is a z ∈ V (T ) such that u, v ∈ Xz, and (iii) Xz1 ∩ Xz3 ⊆ Xz2 for every
z1, z2, z3 ∈ V (T ) such that z2 is on the path connecting z1 with z3 in T . The
set Xz associated with a node z of T is called the bag of z. The nodes of T
will often be referred to as the nodes of the tree-decomposition. The tree-width
of (T,X ) is maxz∈V (T ) |Xz| − 1, and the tree-width of G, denoted tw(G), is the
minimum tree-width over all tree-decompositions of G. By graphs of bounded
tree-width we mean graphs of tree-width at most k, where k is some constant.
The following notation will be used many times in what follows. Let G be a
graph, (T,X ) be a tree-decomposition of G, and z ∈ V (T ). Then G[z] denotes
the induced subgraph of G defined by the union of the bags of z’s descendants,
where z is considered also as a descendant of itself.

We will use a special kind of tree-decomposition. More precisely, a nice tree-
decomposition of G, denoted NTD(G), is a tree-decomposition (T,X ), where
T is a rooted binary tree composed of three types of nodes: (i) a leaf node has
no children, (ii) a separator node z has a single child z′ with Xz ⊆ Xz′ , and
(iii) a join node z has two children z1 and z2 with Xz = Xz1 ∪ Xz2 . It follows
from [3] that for graphs of tree-width at most k, where k is some constant, a nice
tree-decomposition of tree-width at most k always exists and can be constructed
in linear time.

Tree-width is a useful parameter of graphs in algorithmic graph theory, as
many NP-hard problems can be solved in polynomial time for graphs of bounded
tree-width. However, subgraph isomorphism and induced subgraph isomorphism
remain NP-complete even for graphs of tree-width 2 (see, e.g., [8,11]).
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Listing Algorithms. A common feature of many listing problems is that the
size of the output can be exponential in that of the input. Clearly, for such cases
there exists no algorithm enumerating the output in time polynomial in the
size of the input. Thus, the size of the output must also be taken into account.
The following listing complexity classes are usually distinguished in the literature
(see, e.g., [6]): For some input I, let O be the output set of some finite cardinality
N . Then the elements of O, say o1, . . . , oN , are listed with

polynomial delay if the time before printing o1, the time between printing oi
and oi+1 for every i = 1, . . . , N − 1, and the time between printing oN and
the termination is bounded by a polynomial of the size of I,

incremental polynomial time if o1 is printed with polynomial delay, the time
between printing oi and oi+1 for every i = 1, . . . , N − 1 (resp. the time
between printing oN and the termination) is bounded by a polynomial of
the combined size of I and the set {o1, . . . , oi} (resp. O),

output polynomial time (or polynomial total time) if O is printed in time poly-
nomial in the combined size of I and the entire output O.

Clearly, polynomial delay implies incremental polynomial time, which, in turn,
implies output polynomial time. Furthermore, in contrast to incremental polyno-
mial time, the delay of an output polynomial time algorithm may be exponential
in the size of the input even before printing the first element of the output.

3 Frequent Connected Induced Subgraph Mining

In this section we first define the frequent connected induced subgraph min-
ing problem and show in Theorem 1 that it is computationally intractable. We
then give a generic levelwise search algorithm [7] for mining frequent connected
induced subgraphs and provide sufficient conditions in Theorem 2 for the effi-
ciency of this algorithm. As a corollary of Theorem 2, we get that the frequent
connected induced subgraph mining problem can be solved in incremental poly-
nomial time for forest 1 transaction graphs. In the next section we generalize the
positive result on forests to graphs of bounded tree-width. We start by defining
the pattern mining problem we are interested in.

The Frequent Connected Induced Subgraph Mining (FCISM) Prob-

lem: Given a class G of graphs, a transaction database (i.e., multiset) DB
of graphs from G, and an integer frequency threshold t > 0, list the set O
of all distinct frequent connected induced subgraphs, that is, all connected
graphs that are induced subgraph isomorphic to at least t graphs in DB.

Note that we do not distinguish between isomorphic graphs and hence each
isomorphism type (i.e., equivalence class under isomorphism) of O is a singleton.
The parameter of the above problem is the size of DB. Clearly, the size of O
can be exponential in that of DB. Thus, in general, the set of all frequent

1 In this paper by forest we mean a set of disjoint unrooted trees.
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Algorithm 1. FCISM

Require: transaction database DB of graphs and integer t > 0
Ensure: all frequent connected induced subgraphs

1: let S1 ⊆ G be the set of frequent graphs consisting of a single labeled vertex
2: for (l := 1; Sl �= ∅; l := l + 1) do
3: Cl+1 := Sl+1 := ∅
4: forall P ∈ Sl do
5: forall H ∈ ρ(P ) ∩ G satisfying (i) H �∈ Cl+1 and (ii) ρ−1(H) ⊆ Sl do
6: add H to Cl+1

7: if |{G ∈ DB : H �i G}| ≥ t then
8: print H and add it to Sl+1

connected induced subgraphs cannot be computed in time polynomial only in
the size of DB. The following simple polynomial reduction shows that even
output polynomial time enumeration is unlikely.

Theorem 1. Unless P = NP, the FCISM problem cannot be solved in output
polynomial time.

Proof. We prove the claim by a reduction from the NP-complete k-Clique prob-
lem. For an unlabeled graphG with n vertices, let DB consist of G and the clique
Kn with n vertices. ForDB and t = 2, the number of frequent connected induced
subgraphs is at most n (i.e., all cliques up to size n). Thus, if the FCISM prob-
lem could be solved in output polynomial time, we could decide the k-Clique

problem in polynomial time by listing first the set O of all 2-frequent connected
induced subgraphs and checking then whether |O| ≥ k or not. 
�

3.1 A Generic Levelwise Search Mining Algorithm

Our goal in this paper is to show that the FCISM problem can be solved in
incremental polynomial time for graphs of bounded tree-width. To prove this re-
sult, we start by giving a generic algorithm, called FCISM, that lists frequent
connected induced subgraphs with levelwise search (see Algorithm 1). The algo-
rithm assumes the transaction graphs to be elements of some graph class G that
is closed under taking subgraphs. Thus, as we are interested in mining frequent
connected induced subgraphs, all patterns belong to G as well.

One of the basic features of the levelwise search algorithms is that the un-
derlying pattern language L is associated with some, usually naturally defined
partial order. Following the common pattern mining terminology (see, e.g., [7]),
for a partially ordered pattern language (L,≤) we say that a pattern P1 ∈ L is a
generalization of a pattern P2 ∈ L (or P2 is a specialization of P1) if P1 ≤ P2; P1

is a proper generalization of P2 (or P2 is a proper specialization of P1), denoted
by P1 < P2, if P1 ≤ P2 and P1 
= P2. Furthermore P1 is a direct generalization
of P2 (or P2 is a direct specialization of P1) if P1 < P2 and there is no P3 ∈ L
with P1 < P3 < P2.
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In case of the FCISM problem, the underlying pattern language L is the set of
all finite connected (labeled) graphs of G, associated with the following natural
generalization relation ≤ defined as follows: For any P1, P2 ∈ L, P1 ≤ P2 if and
only if P1 �i P2. The proofs of the two claims in the proposition below are
straightforward.

Proposition 1. Let L and ≤ be as defined above. Then (L,≤) is a partially
ordered set. Furthermore, for any P1, P2 ∈ L it holds that P1 is a direct gener-
alization of P2 iff

P1 < P2 and |V (P1)| = |V (P2)| − 1 . (1)

In the main loop of Algorithm 1 (lines 4–8), the set Sl+1 of frequent connected
induced subgraphs containing l+1 vertices are calculated from those containing l
vertices, in accordance with condition (1). In particular, for each frequent pattern
P ∈ Sl, we first compute a set ρ(P )∩ G of graphs, where ρ(P ) is a subset of the
set of direct specializations of P . Clearly, the graphs in ρ(P ) are all connected
by the choice of L. Notice that we cannot define ρ(P ) as the set of all direct
specializations of P , as this set can be of exponential cardinality. In Theorem 2
below we will provide sufficient conditions for ρ needed for efficient pattern
enumeration.

For each direct specialization H ∈ ρ(P ) ∩ G, we check whether it has already
been generated during the current iteration (see condition (i) in line 5). If not,
we also check for each connected direct generalization of H , denoted by ρ−1(H)
in the algorithm, whether it is frequent (condition (ii) in line 5). Here we utilize
that frequency is an anti-monotonic interestingness predicate for (L,≤). In what
follows, candidate patterns generated by Algorithm 1 that satisfy conditions (i)
and (ii) in line 5 will be referred to as strong candidates. If H is a strong candi-
date, we add it to the set Cl+1 of candidate patterns consisting of l+ 1 vertices
and compute its support count (lines 6–7). If H is frequent, i.e., it is induced
subgraph isomorphic to at least t transaction graphs in DB, we add it to the set
Sl+1 of frequent connected graphs containing l + 1 vertices.

By Theorem 1 above, the FCISM problem cannot be solved in output polyno-
mial time for the general problem setting. If, however, the class G of transaction
graphs and the refinement operator ρ satisfy the conditions of Theorem 2 below,
the FCISM problem can be solved in incremental polynomial time. To state the
theorem, we recall some basic notions for refinement operators (see, e.g., [9]). A
downward refinement operator Ξ for a poset (L,≤) is a function Ξ : L → 2L

with Ξ(P ) ⊆ {P ′ : P ≤ P ′} for all P ∈ L. That is, Ξ(P ) is a subset of the set of
specializations of P . For Ξ, we define the n-th power Ξn : L → 2L recursively
by

Ξn(P ) =

{
Ξ(P ) if n = 1

Ξ(Ξn−1(P )) o/w

for all n ∈ N. Finally, we say that Ξ is complete, if for all P ∈ L, there is some
n ∈ N with P ∈ Ξn(⊥), where ⊥ denotes the empty graph. Using the above
notions, we can formulate the following generic theorem:
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Theorem 2. Let G be a class of the transaction graphs, L be the set of connected
graphs in G, and ρ : L → 2L be a downward refinement operator. If ρ and
G satisfy the conditions below then Algorithm 1 solves the FCISM problem in
incremental polynomial time and in incremental polynomial space.

(i) G is closed under taking subgraphs.
(ii) The membership problem in G can be decided in polynomial time.
(iii) ρ is complete and ρ(P ) can be computed in time polynomial in the combined

size of the input and the set of frequent patterns listed so far by Algorithm 1.
(iv) Isomorphism can be decided in polynomial time for G.
(v) For every H,G ∈ G such that H is connected, it can be decided in time

polynomial in the combined size of the input and the set of frequent patterns
listed so far by Algorithm 1 whether H �i G.

Proof. The proof follows directly from the remarks and concepts above.

The following positive result on forests can immediately be obtained by ap-
plying the theorem above (it follows also e.g. from [5]):

Corollary 1. The FCISM problem can be solved in incremental polynomial time
for forest transaction graphs.

4 Mining Graphs of Bounded Tree-Width

In this section we generalize the positive result of Corollary 1 to graphs of
bounded tree-width and prove the main result of this paper:

Theorem 3. The FCISM problem can be solved in incremental polynomial time
for graphs of bounded tree-width.

Before proving this result, we first note that the class of bounded tree-width
graphs is not only of theoretic interest, but also of practical relevance. As an
example, consider the ZINC dataset2 consisting of more than 16 million chemical
compounds. Regarding the distribution of the molecular graphs with respect to
their tree-width, 99.99% of the 16,501,334 molecular graphs in this dataset have
tree-width at most 3 and 99, 31% only tree-width at most 2.

To prove Theorem 3, it suffices to show that all conditions of Theorem 2 hold
for bounded tree-width graphs. The proof of the claims in the theorem below
is shown in [5] for the positive result on frequent connected subgraph mining
in graphs of bounded tree-width; notice that the conditions considered in the
theorem are all independent of the underlying pattern matching operator.

Theorem 4. Conditions (i), (ii), and (iv) of Theorem 2 hold for the class of
bounded tree-width graphs.

Thus, only conditions (iii) and (v) have to be proven. We first show (iii).

2 We used a commercial version of the ZINC dataset for the tree-width statistics.
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Theorem 5. For the class of bounded tree-width graphs there exists a refinement
operator ρ satisfying condition (iii) of Theorem 2.

Proof. For a connected pattern P with tw(P ) ≤ k, define the refinement ρ(P ) of
P as follows: A connected graph P ′ with tw(P ′) ≤ k is in ρ(P ) iff P ′ has a vertex
v with degree at most k such that P � P ′�v. Notice that this definition is unique,
as isomorphic graphs are not distinguished from each other by definition. Clearly,
ρ(P ) is a subset of the set of direct specializations of P . Utilizing condition (i)
of Theorem 2 and the basic fact that every graph of tree-width at most k has a
vertex of degree at most k,3 the completeness of ρ follows directly by induction
on the number of vertices.

We now turn to the complexity of computing ρ(P ) and show the stronger
property that ρ(P ) can actually be computed in time polynomial in the size of
DB. Since each new vertex v is connected to P by at least one and at most k
vertices, for the cardinality of ρ(P ) we have

|ρ(P )| ≤
k∑

i=1

|Λ|i+1

(
n

i

)
< |Λ|k+1(n+ 1)k ,

where Λ is the set of vertex and edge labels used in DB and n is the number
of vertices of P . Since k is a constant, |ρ(P )| is polynomial in the size of DB,
and hence, as condition (iv) of Theorem 2 holds by Theorem 4, ρ(P ) can be
computed in time polynomial in the size of DB, as claimed. 
�
It remains to show for the proof of Theorem 3 that condition (v) also holds.
In Section 4.1 we first recall from [4] a dynamic programming algorithm decid-
ing induced subgraph isomorphism for a restricted class of bounded tree-width
graphs. Given a connected graph H and a transaction graph G, both of bounded
tree-width, this algorithm decides H �i G by computing recursively a certain
set of tuples representing partial induced subgraph isomorphisms between H and
G. The problem is, however, that for arbitrary graphs of bounded tree-width,
the number of such partial solutions can be exponential in the size of H . Using
the paradigm developed in [5] for frequent connected subgraph mining in graphs
of bounded tree-width, we will show that H �i G can be decided by comput-
ing only a polynomial number of new partial solutions and efficiently recovering
all missing partials solutions from those calculated for the already generated
frequent patterns.

4.1 A Dynamic Programming Algorithm

To make the paper as self-contained as possible, in this section we recall the
dynamic programming algorithm from [4] that decides induced subgraph iso-
morphism for a restricted class of bounded tree-width graphs. The algorithm is

3 This fact holds trivially if the graph has at most k + 1 vertices; o/w it has a tree-
decomposition of tree-width at most k with a leaf z having a parent z′ such that
Xz � Xz′ . But then there is a v ∈ Xz that is not in the bag of any other node in
the tree-decomposition and thus, v can be adjacent only to the vertices in Xz \ {v}.
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based on an efficient algorithm [8] deciding various morphisms between bounded
tree-width and bounded degree graphs, which, in turn, follows a generic dy-
namic programming approach designed in [2]. In order to be consistent with [5]
on frequent connected subgraph mining in graphs of bounded tree-width, we
naturally adapt the notions and notations from Section 4.1 of [5] from subgraph
isomorphism to induced subgraph isomorphism.

In what follows, let H and G denote connected graphs with tw(H), tw(G) ≤ k.
In fact, as one can easily see, the results of this section hold also for the case that
G is not connected. Given H and G, the algorithm in [4] decides whether H �i G
by computing a nice tree-decomposition NTD(G) of G, traversing NTD(G) in
a postorder manner, calculating for each node in the tree-decomposition a set of
tuples, called characteristics, and by testing whether the root of NTD(G) has a
characteristic satisfying a certain condition formulated in Lemma 1 below. More
precisely, an iso-quadruple of H relative to a node z of NTD(G) is a quadruple
(S,D,K, ψ), where (i) S ⊆ V (H) with |S| ≤ k+1, (ii) D ⊆ C(H [V (H)\S]), (iii)
K = H [S ∪ V (D)], and (iv) ψ : S → Xz is an induced subgraph isomorphism
from H [S] to G[Xz ]. Notice that K is redundant; it is used for keeping the
explanation as simple as possible. The set of all iso-quadruples of H relative to
a node z of NTD(G) is denoted by Γ (H, z).

For a node z in NTD(G), an iso-quadruple (S,D,K, ψ) ∈ Γ (H, z) is a z-
characteristic of H if there exists an induced subgraph isomorphism ϕ from K
to G[z] satisfying (i) ϕ(u) = ψ(u) for all u ∈ S and (ii) ϕ(v) 
∈ Xz for all
v ∈ V (D). These conditions imply that ϕ(u) ∈ Xz for all u ∈ S. The set of all
z-characteristics of H relative to z is denoted by Γch(H, z). Clearly, Γch(H, z) ⊆
Γ (H, z). The following lemma from [4] provides a characterization of induced
subgraph isomorphism in terms of r-characteristics for the root r of NTD(G).

Lemma 1. Let r be the root of a nice tree-decomposition NTD(G) of G. Then
H �i G iff there exists (S,D,K, ψ) ∈ Γch(H, r) with K = H.

Thus, by the lemma above, we need to calculate the characteristics of the
root of NTD(G). Lemma 2 below from [4] shows how to compute the set of
characteristics for leafs, and how for internal (i.e., separator or join) nodes from
the sets of characteristics of their children. This enables the computation of the
characteristics for all nodes of NTD(G) by a postorder traversal of NTD(G).

Lemma 2. Let G,H be connected graphs of bounded tree-width and z be a node
in NTD(G). For all (S,D,K, ψ) ∈ Γ (H, z) it holds that (S,D,K, ψ) ∈ Γch(H, z)
iff one of the following conditions holds:

Leaf: z has no children and D = ∅.
Separator: z has a single child z′ and ∃(S′,D′,K ′, ψ′) ∈ Γch(H, z

′) with
(S.a) S = {v ∈ S′ : ψ′(v) ∈ Xz},
(S.b) D′ = {D′ ∈ C(H [V (H) \ S′]) : D′ is a subgraph of some D ∈ D},
(S.c) ψ(v) = ψ′(v) for every v ∈ S.

Join: z has two children z1, z2 and there exist (S1,D1,K1, ψ1) ∈ Γch(H, z1)
and (S2,D2,K2, ψ2) ∈ Γch(H, z2) satisfying
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(J.a) Si = {v ∈ S : ψ(v) ∈ Xzi} for i = 1, 2,
(J.b) D1 and D2 form a binary partition of the connected components of D,
(J.c) ψi(v) = ψ(v) for every v ∈ Si and for i = 1, 2.

As mentioned, Lemma 2 provides a polynomial time algorithm for deciding
induced subgraph isomorphism for restricted subclasses of bounded tree-width
graphs (e.g., when the degree is also bounded [8] or when the graphs have log-
bounded fragmentation [4]). Clearly, the algorithm is exponential for arbitrary
bounded tree-width graphs; this follows directly from the negative result in [8].

It is important to stress that almost the same notions and conditions are used
for the frequent connected subgraph mining (FCSM) problem (cf. Section 4.1 in
[5]), where, in contrast to the FCISM problem, ordinary subgraph isomorphism is
the underlying pattern matching operator. The only difference is in the definition
of iso-quadruples, in particular, in the definition of ψ, in accordance with the
semantic difference between the FCSM and FCISM problems. However, as it
turns out in Section 4.2 below, we need a different combinatorial arguments to
show the positive result for the FCISM problem.

4.2 Feasible Iso-Quadruples

Like in the FCSM problem, the main source of computational intractability
of the algorithm based on Lemma 2 is the possibly exponential number of iso-
quadruples needed to test. Using the paradigm developed for the FCSM problem
[5], in this section we show that for each node of NTD(G), it suffices to check
only a polynomial number of iso-quadruples, as we can utilize the characteristics
of the frequent patterns computed earlier by Algorithm 1. In order to show this
result, we recall some necessary notions from [5]. As for the case of the FCSM
problem, for all transaction graphs we fix a nice tree-decomposition computed
in a preprocessing step for the entire mining process.

Let H1, H2, and G be connected graphs of bounded tree-width, NTD(G) be
some fixed nice tree-decomposition of G, and z be a node in NTD(G). For any
two ξ1 = (S1,D1,K1, ψ1) ∈ Γ (H1, z) and ξ2 = (S2,D2,K2, ψ2) ∈ Γ (H2, z), ξ1 is
equivalent to ξ2, denoted ξ1 ≡ ξ2, if there is an isomorphism π between K1 and
K2 such that π is a bijection between S1 and S2 and ψ1(v) = ψ2(π(v)) for every
v ∈ S1. The lemma below shows that it suffices to store only one representative
z-characteristic for each equivalence class of the set of z-characteristics and that
equivalence between iso-quadruples can be decided in polynomial time. The proof
is similar to that of the corresponding lemma in [5].

Lemma 3. Let G, H1, and H2 be connected graphs of tree-width at most k, z
be a node in NTD(G), and ξi = (Si,Di,Ki, ψi) ∈ Γ (Hi, z) (i = 1, 2). Then

(i) ξ1 ∈ Γch(H1, z) iff ξ2 ∈ Γch(H2, z) whenever ξ1 ≡ ξ2 and
(ii) ξ1 ≡ ξ2 can be decided in time O

(
nk+4.5

)
.

For a strong candidate pattern H generated by Algorithm 1 (i.e., which satis-
fies both conditions in line 5), let FH denote the set of patterns consisting of H
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and all frequent patterns listed before H . For a transaction graph G and node
z of NTD(G), an iso-quadruple ξ ∈ Γ (H, z) of a strong candidate pattern H is
redundant if there are P ∈ FH \ {H} and ξ′ ∈ Γ (P, z) with ξ ≡ ξ′; otherwise,
ξ is non-redundant. Finally, Γnr(H, z) and Γnr,ch(H, z) denote the set of non-
redundant iso-quadruples of H relative to a node z in NTD(G) and the set of
non-redundant z-characteristics of H , respectively.

Proposition 2 below implies that for a strong candidate pattern H and ξ ∈
Γ (H, z), it has to be tested whether ξ is a z-characteristic of NTD(G) only when
ξ is non-redundant; otherwise, it suffices to check whether ξ is equivalent to a
non-redundant z-characteristic for some frequent pattern P ∈ FH \ {H} (the
proof is similar to that of the corresponding claim in [5]).

Proposition 2. Let H be a strong candidate pattern, G be a transaction graph,
both of bounded tree-width, and let ξ ∈ Γ (H, z) for some node z in NTD(G).
Then ξ ∈ Γch(H, z) iff there exists ξ′ ∈ ⋃

P∈FH
Γnr,ch(P, z) with ξ ≡ ξ′.

Thus, induced subgraph isomorphism can be decided by using the non-
redundant z-characteristics of the frequent patterns only. Instead of non-redun-
dant iso-quadruples, as we will show below, we can use an efficiently computable
superset of them, the set of feasible iso-quadruples. We first state a lemma that
provides a necessary condition of non-redundancy.

Lemma 4. Let H, G, and z be as in Proposition 2 and let ξ ∈ Γnr(H, z) with
ξ = (S,D,K, ψ). Then, for all vertices v ∈ V (H) \ V (K) it holds that

(i) the degree of v in H is at least 2 and
(ii) v is a cut vertex in H.

Proof. The proof of (i) applies a similar argument used for ordinary subgraph
isomorphism [5]. In particular, suppose for contradiction that V (H) \ V (K) has
a vertex v with degree 1 in H . Since, by assumption, H contains at least one
edge and is connected, it has no isolated vertices. Let H ′ be the graph obtained
from H by removing v and the (only) edge adjacent to it. Clearly, H ′ is a
connected induced subgraph of H . Since H is a strong candidate pattern, H ′ is a
frequent connected induced subgraph and has therefore already been generated
by Algorithm 1. Furthermore, K is an induced subgraph of H ′ implying ξ ∈
Γ (H ′, z). But ξ is then redundant for H , contradicting the assumption.

To prove (ii), suppose there is a non-cut vertex v ∈ V (H) \ V (K) of H . Let
H ′ = H�v. SinceH is connected and v is a non-cut vertex ofH ,H ′ is connected.
Similarly to the case above, it holds that H ′ contains K as an induced subgraph
because all edges that have been removed are outside of E(K). Thus, Γ (H ′, z)
has an element equivalent to ξ, contradicting that ξ is non-redundant. 
�
We now show that for any S ⊆ V (H) of constant size, only a constant number of
connected components in H [V (H)\S] can fulfill the two conditions of Lemma 4.
Although the statement formulated below is similar to the corresponding claim
stated for the case of ordinary subgraph isomorphism in [5], the arguments used
in the proofs are entirely different, due to the difference between ordinary and
induced subgraph isomorphism.
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Lemma 5. Let H be a strong candidate pattern generated by Algorithm 1, S ⊆
V (H) with |S| ≤ k + 1, and CA be the set of connected components C from
C(H [V (H) \ S]) such that for all v ∈ C, v satisfies both conditions of Lemma 4.
Then

|CA| ≤
(
k + 1

2

)
.

To show the claim above, we first prove two technical lemmas.

Lemma 6. Let H, S, and CA be as defined in Lemma 5. Then for all C ∈ CA,
C is connected to S by at least two edges ending in different vertices in S.

Proof. The claim is straightforward if |V (C)| = 1; H has no parallel edges by
construction and the only vertex of C for this case must be connected to S by
at least two edges, as it is a cut vertex in H .

The proof of the case |V (C)| > 1 utilizes the fact that every connected graph
has at least two non-cut vertices. More precisely, let u be a non-cut vertex of C.
Since u is a cut vertex in H by condition (i) of Lemma 4, it must be the case
that u is connected to at least one vertex in S. Thus, C is connected to S by at
least two edges, as it has at least two non-cut vertices. Suppose that all non-cut
vertices of C are adjacent to the same vertex in S, say w. Let u, v ∈ V (C) be
different non-cut vertices of C. Since, on the one hand, u is a non-cut vertex
of C, and, on the other hand, it is a cut vertex in H by the condition of the
lemma, there are two vertices x, y ∈ V (H) that are disconnected by u (i.e., x
and y belong to different connected components of H � u). Since u is a non-cut
vertex of C, at most one of x and y can belong to C. It can easily be seen for
this case that in fact, exactly one of x and y, say x, belongs to C. Furthermore,
{u,w} must be an edge on the path connecting x and y in H , i.e., x and y are
connected by a path of the form Px,u+ {u,w}+Pw,y, where Px,u is a path in C.
Since C�u remains connected, there is a path Px,v connecting x and v in C�u.
Thus, the path Px,v+{v, w}+Pw,y connects x and y in H�u, contradicting that
u disconnects x and y. Hence, all connected components in CA are connected to
at least two different vertices in S, as stated. 
�
The second lemma states that each connected component of CA “connects” such
two vertices of S that are not “connected” by any other component of CA.
Lemma 7. Let H, S, and CA be as defined in Lemma 5. Then for all connected
components C ∈ CA, there exist u′, v′ ∈ S such that

(i) u′ 
= v′ and {u, u′}, {v, v′} ∈ E(H) for some u, v ∈ V (C), and
(ii) for all C′ ∈ CA \ {C}, at least one of u′ and v′ is not adjacent to C′.

Proof. By Lemma 6, for all C ∈ CA there are u′, v′ ∈ S satisfying (i). Thus, to
show the claim above, suppose for contradiction that there exists a connected
component C ∈ CA with the following property: for all u′, v′ ∈ S satisfying (i)
for C, there is a C′ such that both u′ and v′ are adjacent to C′. Let u be the
only vertex of C if |V (C)| = 1; otherwise let u be a non-cut vertex of C. Since
C ∈ CA, u is a cut vertex in H by condition and hence, there are x, y ∈ V (H)
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such that u disconnects x and y in H . Depending on the number of vertices of
C and on the membership of x and y in C, we distinguish the following cases by
noting that the case x, y ∈ V (C) cannot occur by the choice of u:

Case 1. Suppose |V (C)| = 1. Then x and y must be connected in H by a path
of the form Px,v+{v, u}+{u,w}+Pw,y for some v, w ∈ S with v 
= w, where
the length of Px,v and Pw,y can be zero. By assumption, v and w are adjacent
to some C′ ∈ CA and thus, there is a path Pv,w in H that does not contain
u. But x and y are then connected in H by the path Px,v + Pv,w + Pw,y,
contradicting that u disconnects x and y.

Case 2. Suppose x ∈ V (C). Then x cannot be a non-cut vertex of C, as in this
case x must be adjacent to a vertex x′ ∈ S, which, in turn, is not adjacent
to u. It can be shown in a way similar to the proof of Case 1, that for this
case there is a path in H connecting x and y that does not contain u; a
contradiction. Thus, as C has at least two non-cut vertices if |V (C)| > 1,
there is a non-cut vertex v ∈ V (C) with v 
= u. Since u disconnects x and y
in H , there is a path of the form Px,u + {u, u′}+Pu′,y, where Px,u is a path
in C, {u, u′} is an edge of H with u′ ∈ S, and Pu′,y is a path connecting
u′ and y in H . Let v′ ∈ S be a vertex adjacent to v. Notice that v′ 
= u′,
as otherwise the path Px,v + {v, u′} + Pu′,y connects x and y in H � u,
contradicting that u disconnects x and y; clearly, a path Px,v connecting x
and v in C � u always exists, as u is a non-cut vertex of C. Thus, u′, v′

fulfill condition (i) and hence, u′ and v′ are connected by a path Pu′,v′ via
some connected component C′ ∈ CA by assumption. But then x and y are
connected by the path Px,v+{v, v′}+Pv′,u′ +Pu′,y in H�u, a contradiction.

Case 3. The case of x, y 
∈ V (C) can be shown in a way similar to the cases
above. 
�

The proof of Lemma 5 follows directly from Lemma 7 and from |S| ≤ k + 1.
Following the paradigm designed for the FCSM problem in [5], we define fea-
sible iso-quadruples, a superset of non-redundant iso-quadruples, and formulate
in Theorem 6 the main result of this section, which states that feasible iso-
quadruples can be used correctly to decide induced subgraph isomorphism and
that the number of feasible iso-quadruples of a strong candidate pattern is poly-
nomial in the pattern’s size. More precisely, for a strong candidate pattern H
generated by Algorithm 1 and for a node z in NTD(G) of a transaction graph
of bounded tree-width, an iso-quadruple ξ ∈ Γ (H, z) is called feasible if it satis-
fies the conditions of Lemma 4. The set of feasible iso-quadruples relative to z
and the set of feasible z-characteristics are denoted by Γf(H, z) and Γf,ch(H, z),
respectively.

Theorem 6. Let H be a strong candidate pattern generated by Algorithm 1 and
z be a node of NTD(G) for some transaction graph G with tw(G) ≤ k. Then

(i) Γnr(H, z) ⊆ Γf(H, z),
(ii) for all ξ ∈ Γ (H, z), ξ ∈ Γch(H, z) iff there exist a ξ′ ∈ ⋃

P∈FH
Γf,ch(P, z)

with ξ ≡ ξ′,
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(iii) |Γf(H, z)| = O
(|V (H)|k+1

)
, and

(iv) Γf(H, z) can be computed in time polynomial in the size of H.

Proof. The proof of (i) is immediate from the definitions and from Lemma 4.
Claim (ii) follows from Proposition 2 and from the fact that

⋃
P∈FH

Γnr,ch(P, z)
and

⋃
P∈FH

Γf,ch(P, z) are equal up to equivalence. To show (iii), let S ⊆ V (H)
with |S| ≤ k + 1 and CA be the set of connected components as defined in
Lemma 5. By definition, for every ξ = (S,D,K, ψ) ∈ Γf(H, z), D contains all
connected components in C(H [V (H) \ S]) that are not in CA. For a fixed subset
S ⊆ V (H) with |S| ≤ k + 1 and for a fixed injective function ψ mapping S
to the bag Xz of z, the number of possible feasible quadruples is bounded by

2|CA|, which, in turn, is bounded by 2(
k+1
2 ) by Lemma 5. The number of induced

subgraph isomorphisms from H [S] to G[Xz ] is at most the number of injective
functions from S to the bag Xz of z, which is bounded by (k + 1)!. Since S can
be chosen in at most |V (H)|k+1 different ways, we have

|Γf(H, z)| ≤ 2(
k+1
2 ) · (k + 1)! · |V (H)|k+1 ,

from which we get (iii) by noting that k is a constant. Finally, (iv) holds along
the lines in the proof of (iii) above by noting that all cut vertices of H can
be found in time O (V (H) + E(H)) and it can be decided whether an injective
function ψ : S → Xz is an induced subgraph isomorphism from H [S] to G[Xz ]
in constant time, as |S|, |Xz| ≤ k + 1. 
�

4.3 Deciding Induced Subgraph Isomorphism

In this section we show how to utilize feasible characteristics efficiently for de-
ciding induced subgraph isomorphism. Let H be a strong candidate pattern
generated by Algorithm 1 and G be a transaction graph, both of tree-width at
most k. Furthermore, let NTD(G) be a nice tree-decomposition of G and r the
root of NTD(G). By Lemma 1 and Theorem 6, H �i G iff there is a feasible
r-characteristic (S,D,K, ψ) ∈ Γf,ch(H, r) with K = H . The algorithm deciding
H �i G assumes that all nodes z in NTD(G) is associated with a set containing
all elements of Γf,ch(P, z), for all frequent patterns P ∈ FH \ {H}. It visits the
nodes of NTD(G) in postorder traversal and calculates first Γf(P, z) for all nodes
z visited; this can be done in time polynomial in the size of H by (iv) of Theo-
rem 6. It then computes Γf,ch(P, z) by testing for all ξ = (S,D,K, ψ) ∈ Γf(P, z)
whether ξ is a characteristic. Depending on the type of z, this test can be per-
formed by checking the condition given in the corresponding case below:

Leaf: By case Leaf of Lemma 2, ξ is a characteristic iff D = ∅.
Separator: Let z′ be the child of z in NTD(G) and let S(ξ) be the set of all

iso-quadruples ξ′ ∈ Γ (H, z′) that satisfy conditions (S.a)–(S.c) of Lemma 2.
Using similar arguments as in the proof of Lemma 16 in [5], one can show that
(i) ξ is a characteristic iff Γf,ch(H, z

′) ∩S(ξ) 
= ∅ and (ii) S(ξ) ⊆ Γf(H, z
′)

and thus, it can be computed in time polynomial in the size of H .
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Join: Let z1 and z2 be the two children of z in NTD(G). To give the condition
for this case, we need a definition. Let ξi = (Si,Di,Ki, ψi) ∈ Γ (Pi, zi) for
some Pi ∈ FH \ {H} (i = 1, 2). We assume without loss of generality that
K,K1, andK2 are pairwise vertex disjoint. The join of ξ1 and ξ2 with respect
to ξ, denoted ⊕ξ(ξ1, ξ2), is an iso-quadruple (S′,D1 ∪D2,K

′, ψ′) relative to
z obtained from (S1 ∪ S2,D1 ∪ D2,K1 ∪ K2, ψ1 ∪ ψ2) by (i) replacing u1
and u2 in S1 ∪ S2, K1 ∪K2, and ψ1 ∪ ψ2 with a new vertex u for all vertex
pairs u1 ∈ S1 and u2 ∈ S2 with ψ1(u1) = ψ2(u2) and by (ii) connecting
in K ′ all original vertices u, v ∈ S′ with u ∈ S1 and v ∈ S2 by an edge
labeled by � if the vertices u′, v′ ∈ S with ψ(u′) = ψ1(u) and ψ(v

′) = ψ2(v)
are connected in K by an edge labeled with �. One can check that this
definition is in fact an adaptation of conditions (J.a)–(J.c) of Lemma 2. In
a way similar to the proof of Lemma 17 in [5], one can show that (i) ξ is
a characteristic iff there are ξi = (Si,Di,Ki, ψi) ∈ ⋃

P∈FH
Γf,ch(P, zi) for

i = 1, 2 with ξ ≡ ⊕ξ(ξ1, ξ2) and that (ii) ⊕ξ(ξ1, ξ2) can be computed in time
polynomial in the size of ξ, ξ1, and ξ2 for any ξ1, ξ2, implying that it can be
decided in time polynomial in the size of FH , i.e., in incremental polynomial
time, whether ξ is a characteristic.

Combining the arguments above with Lemma 1, we get Theorem 7 below for
condition (v) of Theorem 2. Together with Theorems 4 and 5, this completes
the proof of our main result stated in Theorem 3.

Theorem 7. Let G be the class of bounded tree-width graphs. For every H,G ∈ G
such that H is a strong candidate pattern generated by Algorithm 1, it can be
decided in time polynomial in the combined size of the input DB and the set of
frequent patterns listed before H whether H �i G.

5 Concluding Remarks

By the main result of this paper, the FCISM problem can be solved in incremen-
tal polynomial time for bounded tree-width graphs. The positive results on the
FCSM problem in [5] and on the FCISM problem in this work suggest the investi-
gation of further, computationally hard pattern matching operators for bounded
tree-width graphs, such as, for example (induced) homeomorphism or (induced)
minor embedding. We suspect that the systematic study of these and other pat-
tern matching operators will result in an efficient parameterized frequent pattern
mining algorithm for graphs of bounded tree-width, with the pattern matching
operator as the parameter. Designing such a generic pattern mining algorithm
is a very challenging project because, as the results in [5] and in this paper
show, different pattern matching operators may require entirely different pat-
tern refinement operators and entirely different combinatorial characterizations
of feasible iso-quadruples.

The results of this paper raise some interesting open problems. For example,
it is an open question whether the positive result formulated in Theorem 3
can further be strengthened. In particular, can the FCISM problem be solved
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with polynomial delay for bounded tree-width graphs? By setting the frequency
threshold t to 1, our main result implies that one can efficiently generate all
distinct connected induced subgraphs of a bounded tree-width graph. Does this
positive result hold for arbitrary graphs as well? Or does the negative result
given in Theorem 1 apply even to the special case that the database contains a
single (arbitrary) graph and the frequency threshold is set to 1?

Finally we note that we are going to design and implement a practically fast
algorithm listing frequent connected induced subgraphs for graphs of tree-width
at most 3. For this graph class, motivated practically e.g. by pharmacological
molecules (see the statistics with the ZINC dataset in Section 4), there are linear
time recognition algorithms [1]. Though the arguments used for join nodes in
Section 4.3 might suggest that we need time quadratic in the size of FH , one
can show that this test can be carried out actually in time only linear in it.

Acknowledgments. Part of this work was supported by the German Sci-
ence Foundation (DFG) under the reference number “GA 1615/1-1”. Keisuke
Otaki is supported by the “Scholarship for Japanese Graduate Students Learn-
ing Abroad” of the KDDI Foundation, Japan. This research was conducted dur-
ing his stay at the University of Bonn and Fraunhofer IAIS in Sankt Augustin,
Germany. Jan Ramon is supported by ERC Starting Grant 240186 “MiGraNT”.

References

1. Arnborg, S., Proskurowski, A.: Characterization and recognition of partial 3-trees.
SIAM Journal Algebraic Discrete Methods 7(2), 305–314 (1986)

2. Arnborg, S., Proskurowski, A.: Linear time algorithms for NP-hard problems on
graphs embedded in k-trees. Discrete Applied Mathematics 23, 11–24 (1989)

3. Bodlaender, H.L.: A partial k-arboretum of graphs with bounded treewidth. The-
oretical Computer Science 209(1-2), 1–45 (1998)

4. Hajiaghayi, M., Nishimura, N.: Subgraph isomorphism, log-bounded fragmenta-
tion, and graphs of (locally) bounded treewidth. Journal of Computer and System
Sciences 73(5), 755–768 (2007)
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