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Preface

These are the proceedings of the 2013 edition of the European Conference
on Machine Learning and Principles and Practice of Knowledge Discovery in
Databases, or ECML PKDD for short. This conference series has grown out of
the former ECML and PKDD conferences, which were Europe’s premier confer-
ences on, respectively, Machine Learning and Knowledge Discovery in Databases.
Organized jointly for the first time in 2001, these conferences have become in-
creasingly integrated, and became one in 2008. Today, ECML PKDD is a world–
leading conference in these areas, well–known in particular for having a highly
diverse program that aims at exploiting the synergies between these two differ-
ent, yet related, scientific fields.

ECML PKDD 2013 was held in Prague, Czech Republic, during September
23–27. Continuing the series’ tradition, the conference combined an extensive
technical program with a variety of workshops and tutorials, a demo track for
system demonstrations, an industrial track, a nectar track focusing on particu-
larly interesting results from neighboring areas, a discovery challenge, two poster
sessions, and a rich social program.

The main technical program included five plenary talks by invited speak-
ers (Rayid Ghani, Thorsten Joachims, Ulrike von Luxburg, Christopher Re and
John Shawe-Taylor) and a record–breaking 138 technical talks, for which further
discussion opportunities were provided during two poster sessions. The indus-
trial track had four invited speakers: Andreas Antrup (Zalando), Ralf Herbrich
(Amazon Berlin), Jean-Paul Schmetz (Hubert BurdaMedia), and Hugo Zaragoza
(Websays). The demo track featured 11 software demonstrations, and the nectar
track 5 talks. The discovery challenge, this year, focused on the task of rec-
ommending given names for children to soon–to–be–parents. Twelve workshops
were held: Scalable Decision Making; Music and Machine Learning; Reinforce-
ment Learning with Generalized Feedback; Languages for Data Mining and Ma-
chine Learning; Data Mining on Linked Data; Mining Ubiquitous and Social
Environments; Tensor Methods in Machine Learning; Solving Complex Machine
Learning Problems with Ensemble Methods; Sports Analytics; New Frontiers
in Mining Complex Pattern; Data Analytics for Renewable Energy Integration;
and Real–World Challenges for Data Stream Mining. Eight tutorials completed
the program: Multi–Agent Reinforcement Learning; Second Order Learning;
Algorithmic Techniques for Modeling and Mining Large Graphs; Web Scale
Information Extraction; Mining and Learning with Network–Structured Data;
Performance Evaluation of Machine Learning Algorithms; Discovering Roles and
Anomalies in Graphs: Theory and Applications; and Statistically Sound Pattern
Discovery.

The conference offered awards for distinguished papers, for the paper from
ECML / PKDD 2003 with the highest impact after a decade, and for the best
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demonstration. In addition, there was the novel Open Science Award. This award
was installed in order to promote reusability of software, data, and experimental
setups, with the aim of improving reproducibility of research and facilitating
research that builds on other authors’ work.

For the first time, the conference used a mixed submission model: work could
be submitted as a journal article to Machine Learning or Data Mining and
Knowledge Discovery, or it could be submitted for publication in the conference
proceedings. A total of 182 original manuscripts were submitted to the journal
track, and 447 to the proceedings track. Of the journal submissions, 14 have
been published in the journal, as part of a special issue on ECML PKDD 2013,
and 14 have been redirected to the proceedings track. Among the latter, 13
were accepted for publication in the proceedings. Finally, of the 447 submissions
to the proceedings track, 111 have been accepted. Overall, this gives a record
number of 629 submissions, of which 138 have been scheduled for presentation
at the conference, making the overall acceptance rate 21.9%.

The mixed submission model was introduced in an attempt to improve the
efficiency and reliability of the reviewing process. Reacting to criticism on the
conference–based publication model that is so typical for computer science,
several conferences have started experimenting with multiple reviewing rounds,
continuous submission, and publishing contributions in a journal instead of the
conference proceedings. The ECML PKDD model has been designed to maxi-
mally exploit the already existing infrastructure for journal reviewing. For an
overview of the motivation and expected benefits of this new model, we refer to
A Revised Publication Model for ECML PKDD, available at arXiv:1207.6324.

These proceedings of the 2013 European Conference on Machine Learning
and Principles and Practice of Knowledge Discovery in Databases contain full
papers of work presented at the main technical track, abstracts of the jour-
nal articles and invited talks presented there, and short papers describing the
demonstrations and nectar papers. We thank the chairs of the demo track (An-
dreas Hotho and Joaquin Vanschoren), the nectar track (Rosa Meo and Michèle
Sebag), and the industrial track (Ulf Brefeld), as well as the proceedings chairs
Yamuna Krishnamurthy and Nico Piatkowski, for their help with putting these
proceedings together. Most importantly, of course, we thank the authors for their
contributions, and the area chairs and reviewers for their substantial efforts to
guarantee and sometimes even improve the quality of these proceedings. We wish
the reader an enjoyable experience exploring the many exciting research results
presented here.

July 2013 Hendrik Blockeel
Kristian Kersting
Siegfried Nijssen

Filip Železný

http://arxiv.org/abs/1207.6324
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Janez Demšar University of Ljubljana, Slovenia
Luc De Raedt KU Leuven, Belgium



X Organization

Pierre Dupont UC Louvain, Belgium
Charles Elkan University of California, San Diego, USA
Alan Fern Oregon State University, USA
Johannes Fürnkranz TU Darmstadt, Germany
Joao Gama University of Porto, Portugal
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Using Machine Learning Powers for Good

Rayid Ghani

The past few years have seen increasing demand for machine learning and data
mining—both for tools as well as experts. This has been mostly motivated by a
variety of factors including better and cheaper data collection, realization that
using data is a good thing, and the ability for a lot of organizations to take
action based on data analysis. Despite this flood of demand, most applications
we hear about in machine learning involve search, advertising, and financial
areas. This talk will talk about examples on how the same approaches can be
used to help governments and non-prpofits make social impact. I’ll talk about
a summer fellowship program we ran at University of Chicago on social good
and show examples from projects in areas such as education, healthcare, energy,
transportation and public safety done in conjunction with governments and non-
profits.

Biography

Rayid Ghani was the Chief Scientist at the Obama for America 2012 campaign
focusing on analytics, technology, and data. His work focused on improving dif-
ferent functions of the campaign including fundraising, volunteer, and voter mo-
bilization using analytics, social media, and machine learning; his innovative use
of machine learning and data mining in Obama’s reelection campaign received
broad attention in the media such as the New York Times, CNN, and others.
Before joining the campaign, Rayid was a Senior Research Scientist and Direc-
tor of Analytics research at Accenture Labs where he led a technology research
team focused on applied R&D in analytics, machine learning, and data min-
ing for large-scale & emerging business problems in various industries including
healthcare, retail & CPG, manufacturing, intelligence, and financial services.
In addition, Rayid serves as an adviser to several start-ups in Analytics, is an
active organizer of and participant in academic and industry analytics confer-
ences, and publishes regularly in machine learning and data mining conferences
and journals.



Learning with Humans in the Loop

Thorsten Joachims

Machine Learning is increasingly becoming a technology that directly interacts
with human users. Search engines, recommender systems, and electronic com-
merce already heavily rely on adapting the user experience through machine
learning, and other applications are likely to follow in the near future (e.g., au-
tonomous robotics, smart homes, gaming). In this talk, I argue that learning
with humans in the loop requires learning algorithms that explicitly account for
human behavior, their motivations, and their judgment of performance. Towards
this goal, the talk explores how integrating microeconomic models of human be-
havior into the learning process leads to new learning models that no longer
reduce the user to a “labeling subroutine”. This motivates an interesting area
for theoretical, algorithmic, and applied machine learning research with connec-
tions to rational choice theory, econometrics, and behavioral economics.

Biography

Thorsten Joachims is a Professor of Computer Science at Cornell University. His
research interests center on a synthesis of theory and system building in ma-
chine learning, with applications in language technology, information retrieval,
and recommendation. His past research focused on support vector machines,
text classification, structured output prediction, convex optimization, learning
to rank, learning with preferences, and learning from implicit feedback. In 2001,
he finished his dissertation advised by Prof. Katharina Morik at the University
of Dortmund. From there he also received his Diplom in Computer Science in
1997. Between 2000 and 2001 he worked as a PostDoc at the GMD Institute for
Autonomous Intelligent Systems. From 1994 to 1996 he was a visiting scholar
with Prof. Tom Mitchell at Carnegie Mellon University.



Unsupervised Learning with Graphs:

A Theoretical Perspective

Ulrike von Luxburg

Applying a graph–based learning algorithm usually requires a large amount of
data preprocessing. As always, such preprocessing can be harmful or helpful. In
my talk I am going to discuss statistical and theoretical properties of various
preprocessing steps. We consider questions such as: Given data that does not
have the form of a graph yet, what do we loose when transforming it to a graph?
Given a graph, what might be a meaningful distance function? We will also see
that graph–based techniques can lead to surprising solutions to preprocessing
problems that a priori don’t involve graphs at all.

Biography

Ulrike von Luxburg is a professor for computer science/machine learning at
the University of Hamburg. Her research focus is the theoretical analysis of
machine learning algorithms, in particular for unsupervised learning and graph
algorithms. She is (co)–winner of several best student paper awards (NIPS 2004
and 2008, COLT 2003, 2005 and 2006, ALT 2007). She did her PhD in the Max
Planck Institute for Biological Cybernetics in 2004, then moved to Fraunhofer
IPSI in Darmstadt, before returning to the Max Planck Institute in 2007 as
a research group leader for learning theory. Since 2012 she is a professor for
computer science at the University of Hamburg.



Making Systems That Use Statistical Reasoning

Easier to Build and Maintain over Time

Christopher Re

The question driving my work is, how should one deploy statistical data–analysis
tools to enhance data–driven systems? Even partial answers to this question may
have a large impact on science, government, and industry—each of whom are
increasingly turning to statistical techniques to get value from their data.

To understand this question, my group has built or contributed to a diverse
set of data–processing systems: a system, called GeoDeepDive, that reads and
helps answer questions about the geology literature; a muon filter that is used
in the IceCube neutrino telescope to process over 250 million events each day in
the hunt for the origins of the universe; and enterprise applications with Oracle
and Pivotal. This talk will give an overview of the lessons that we learned in
these systems, will argue that data systems research may play a larger role in
the next generation of these systems, and will speculate on the future challenges
that such systems may face.

Biography

Christopher Re is an assistant professor in the department of Computer Sciences
at the University of Wisconsin-Madison. The goal of his work is to enable users
and developers to build applications that more deeply understand and exploit
data. Chris received his PhD from the University of Washington, Seattle under
the supervision of Dan Suciu. For his PhD work in the area of probabilistic data
management, Chris received the SIGMOD 2010 Jim Gray Dissertation Award.
Chris’s papers have received four best papers or best–of–conference citations
(best paper in PODS 2012 and best–of–conference in PODS 2010, twice, and
one in ICDE 2009). Chris received an NSF CAREER Award in 2011.



Deep–er Kernels

John Shawe-Taylor

Kernels can be viewed as shallow in that learning is only applied in a single (out-
put) layer. Recent successes with deep learning highlight the need to consider
learning richer function classes. The talk will review and discuss methods that
have been developed to enable richer kernel classes to be learned. While some
of these methods rely on greedy procedures many are supported by statistical
learning analyses and/or convergence bounds. The talk will highlight the trade–
offs involved and the potential for further research on this topic.

Biography

John Shawe-Taylor obtained a PhD in Mathematics at Royal Holloway, Uni-
versity of London in 1986 and joined the Department of Computer Science in
the same year. He was promoted to Professor of Computing Science in 1996.
He moved to the University of Southampton in 2003 to lead the ISIS research
group. He was Director of the Centre for Computational Statistics and Ma-
chine Learning at University College, London between July 2006 and September
2010. He has coordinated a number of European wide projects investigating the
theory and practice of Machine Learning, including the PASCAL projects. He
has published over 300 research papers with more than 25000 citations. He has
co-authored with Nello Cristianini two books on kernel approaches to machine
learning: “An Introduction to Support Vector Machines” and “Kernel Methods
for Pattern Analysis”.
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ML and Business: A Love–Hate Relationship

Andreas Antrup

Based on real world examples. the talk explores common gaps in the mutual
understanding of the business and the analytical side; particular focus shall be
on misconceptions of the needs and expectations of business people and the re-
sulting problems. It also touches on some approaches to bridge these gaps and
build trust. At the end we shall discuss possibly under–researched areas that
may open the doors to a yet wider usage of ML principles and thus unlock more
of its value and beauty.

Bayesian Learning in Online Service:

Statistics Meets Systems

Ralf Herbrich

Over the past few years, we have entered the world of big and structured data—
a trend largely driven by the exponential growth of Internet–based online ser-
vices such as Search, eCommerce and Social Networking as well as the ubiquity
of smart devices with sensors in everyday life. This poses new challenges for
statistical inference and decision–making as some of the basic assumptions are
shifting:

– The ability to optimize both the likelihood and loss functions
– The ability to store the parameters of (data) models
– The level of granularity and ’building blocks’ in the data modeling phase
– The interplay of computation, storage, communication and inference and

decision–making techniques

In this talk, I will discuss the implications of big and structured data for Statistics
and the convergence of statistical model and distributed systems. I will present
one of the most versatile modeling techniques that combines systems and sta-
tistical properties—factor graphs—and review a series of approximate inference
techniques such as distributed message passing. The talk will be concluded with
an overview of real–world problems at Amazon.



Machine Learning in a Large

diversified Internet Group

Jean-Paul Schmetz

I will present a wide survey of the use of machine learning techniques across a
large number of subsidiaries (40+) of an Internet group (Burda Digital) with
special attention to issues regarding (1) personnel training in state of the art
techniques, (2) management buy–in of complex non interpretable results and
(3) practical and measurable bottom line results/solutions.

Some of the Problems and
Applications of Opinion Analysis

Hugo Zaragoza

Websays strives to provide the best possible analysis of online conversation to
marketing and social media analysts. One of the obsessions of Websays is to
provide “near–man–made” data quality at marginal costs. I will discuss how we
approach this problem using innovative machine learning and UI approaches.
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The full articles have been published in Machine Learning or Data Mining and
Knowledge Discovery.

Fast sequence segmentation using log–linear models
Nikolaj Tatti
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-012-0301-y

Sequence segmentation is a well–studied problem, where given a sequence of
elements, an integer K, and some measure of homogeneity, the task is to split
the sequence into K contiguous segments that are maximally homogeneous. A
classic approach to find the optimal solution is by using a dynamic program.
Unfortunately, the execution time of this program is quadratic with respect to
the length of the input sequence. This makes the algorithm slow for a sequence
of non–trivial length. In this paper we study segmentations whose measure of
goodness is based on log–linear models, a rich family that contains many of the
standard distributions. We present a theoretical result allowing us to prune many
suboptimal segmentations. Using this result, we modify the standard dynamic
program for 1D log–linear models, and by doing so reduce the computational
time. We demonstrate empirically, that this approach can significantly reduce
the computational burden of finding the optimal segmentation.

ROC curves in cost space
Cesar Ferri, Jose Hernandez-Orallo and Peter Flach
Machine Learning
DOI 10.1007/s10994-013-5328-9

ROC curves and cost curves are two popular ways of visualising classifier per-
formance, finding appropriate thresholds according to the operating condition,
and deriving useful aggregated measures such as the area under the ROC curve
(AUC) or the area under the optimal cost curve. In this paper we present new
findings and connections between ROC space and cost space. In particular, we
show that ROC curves can be transferred to cost space by means of a very nat-
ural threshold choice method, which sets the decision threshold such that the
proportion of positive predictions equals the operating condition. We call these
new curves rate–driven curves, and we demonstrate that the expected loss as
measured by the area under these curves is linearly related to AUC. We show
that the rate–driven curves are the genuine equivalent of ROC curves in cost
space, establishing a point–point rather than a point–line correspondence. Fur-
thermore, a decomposition of the rate–driven curves is introduced which sepa-
rates the loss due to the threshold choice method from the ranking loss (Kendall

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-012-0301-y
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5328-9
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τ distance). We also derive the corresponding curve to the ROC convex hull in
cost space: this curve is different from the lower envelope of the cost lines, as the
latter assumes only optimal thresholds are chosen.

A framework for semi–supervised and unsupervised optimal
extraction of clusters from hierarchies
Ricardo J.G.B. Campello, Davoud Moulavi, Arthur Zimek and Jörg Sander
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-013-0311-4

We introduce a framework for the optimal extraction of flat clusterings from local
cuts through cluster hierarchies. The extraction of a flat clustering from a cluster
tree is formulated as an optimization problem and a linear complexity algorithm
is presented that provides the globally optimal solution to this problem in semi–
supervised as well as in unsupervised scenarios. A collection of experiments is
presented involving clustering hierarchies of different natures, a variety of real
data sets, and comparisons with specialized methods from the literature.

Pairwise meta–rules for better meta–learning–based algorithm
ranking
Quan Sun and Bernhard Pfahringer
Machine Learning
DOI 10.1007/s10994-013-5387-y

In this paper, we present a novel meta–feature generation method in the con-
text of meta–learning, which is based on rules that compare the performance
of individual base learners in a one–against–one manner. In addition to these
new meta–features, we also introduce a new meta–learner called Approximate
Ranking Tree Forests (ART Forests) that performs very competitively when
compared with several state–of–the–art meta–learners. Our experimental re-
sults are based on a large collection of datasets and show that the proposed
new techniques can improve the overall performance of meta–learning for al-
gorithm ranking significantly. A key point in our approach is that each per-
formance figure of any base learner for any specific dataset is generated by
optimising the parameters of the base learner separately for each dataset.

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-013-0311-4
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5387-y
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Block coordinate descent algorithms for large–scale sparse multiclass
classification
Mathieu Blondel, Kazuhiro Seki and Kuniaki Uehara
Machine Learning
DOI 10.1007/s10994-013-5367-2

Over the past decade, �1 regularization has emerged as a powerful way to learn
classifiers with implicit feature selection. More recently, mixed–norm (e.g., �1/�2)
regularization has been utilized as a way to select entire groups of features. In
this paper, we propose a novel direct multiclass formulation specifically designed
for large–scale and high–dimensional problems such as document classification.
Based on a multiclass extension of the squared hinge loss, our formulation em-
ploys �1/�2 regularization so as to force weights corresponding to the same fea-
tures to be zero across all classes, resulting in compact and fast–to–evaluate
multiclass models. For optimization, we employ two globally–convergent vari-
ants of block coordinate descent, one with line search (Tseng and Yun in Math.
Program. 117:387423, 2009) and the other without (Richtrik and Tak in Math.
Program. 138, 2012a, Tech. Rep. arXiv:1212.0873, 2012b). We present the two
variants in a unified manner and develop the core components needed to ef-
ficiently solve our formulation. The end result is a couple of block coordinate
descent algorithms specifically tailored to our multiclass formulation. Experi-
mentally, we show that block coordinate descent performs favorably compared
to other solvers such as FOBOS, FISTA and SpaRSA. Furthermore, we show
that our formulation obtains very compact multiclass models and outperforms
�1/�2–regularized multiclass logistic regression in terms of training speed, while
achieving comparable test accuracy.

A comparative evaluation of stochastic–based inference methods for
Gaussian process models
Maurizio Filippone, Mingjun Zhong and Mark Girolami
Machine Learning
DOI 10.1007/s10994-013-5388-x

Gaussian process (GP) models are extensively used in data analysis given their
flexible modeling capabilities and interpretability. The fully Bayesian treatment
of GP models is analytically intractable, and therefore it is necessary to re-
sort to either deterministic or stochastic approximations. This paper focuses on
stochastic–based inference techniques. After discussing the challenges associated
with the fully Bayesian treatment of GP models, a number of inference strategies
based on Markov chain Monte Carlo methods are presented and rigorously as-
sessed. In particular, strategies based on efficient parameterizations and efficient
proposal mechanisms are extensively compared on simulated and real data on
the basis of convergence speed, sampling efficiency, and computational cost.

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5367-2
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5388-x
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Probabilistic topic models for sequence data
Nicola Barbieri, Antonio Bevacqua, Marco Carnuccio, Giuseppe Manco and
Ettore Ritacco
Machine Learning
DOI 10.1007/s10994-013-5391-2

Probabilistic topic models are widely used in different contexts to uncover the
hidden structure in large text corpora. One of the main (and perhaps strong) as-
sumptions of these models is that the generative process follows a bag–of–words
assumption, i.e. each token is independent from the previous one. We extend the
popular Latent Dirichlet Allocation model by exploiting three different condi-
tional Markovian assumptions: (i) the token generation depends on the current
topic and on the previous token; (ii) the topic associated with each observation
depends on topic associated with the previous one; (iii) the token generation de-
pends on the current and previous topic. For each of these modeling assumptions
we present a Gibbs Sampling procedure for parameter estimation. Experimental
evaluation over real–word data shows the performance advantages, in terms of
recall and precision, of the sequence–modeling approaches.

The flip–the–state transition operator for restricted Boltzmann
machines
Kai Brügge, Asja Fischer and Christian Igel
Machine Learning
DOI 10.1007/s10994-013-5390-3

Most learning and sampling algorithms for restricted Boltzmann machines
(RBMs) rely on Markov chain Monte Carlo (MCMC) methods using Gibbs
sampling. The most prominent examples are Contrastive Divergence learning
(CD) and its variants as well as Parallel Tempering (PT). The performance of
these methods strongly depends on the mixing properties of the Gibbs chain.
We propose a Metropolis–type MCMC algorithm relying on a transition opera-
tor maximizing the probability of state changes. It is shown that the operator
induces an irreducible, aperiodic, and hence properly converging Markov chain,
also for the typically used periodic update schemes. The transition operator can
replace Gibbs sampling in RBM learning algorithms without producing compu-
tational overhead. It is shown empirically that this leads to faster mixing and in
turn to more accurate learning.

Differential privacy based on importance weighting
Zhanglong Ji and Charles Elkan
Machine Learning
DOI 10.1007/s10994-013-5396-x

This paper analyzes a novel method for publishing data while still protecting pri-
vacy. The method is based on computing weights that make an existing dataset,

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5391-2
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5390-3
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5396-x
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for which there are no confidentiality issues, analogous to the dataset that must
be kept private. The existing dataset may be genuine but public already, or it
may be synthetic. The weights are importance sampling weights, but to protect
privacy, they are regularized and have noise added. The weights allow statistical
queries to be answered approximately while provably guaranteeing differential
privacy. We derive an expression for the asymptotic variance of the approximate
answers. Experiments show that the new mechanism performs well even when
the privacy budget is small, and when the public and private datasets are drawn
from different populations.

Activity preserving graph simplification
Francesco Bonchi, Gianmarco De Francisci Morales, Aristides Gionis and
Antti Ukkonen
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-013-0328-8

We study the problem of simplifying a given directed graph by keeping a small
subset of its arcs. Our goal is to maintain the connectivity required to explain
a set of observed traces of information propagation across the graph. Unlike
previous work, we do not make any assumption about an underlying model
of information propagation. Instead, we approach the task as a combinatorial
problem.
We prove that the resulting optimization problem is NP–hard. We show that a
standard greedy algorithm performs very well in practice, even though it does not
have theoretical guarantees. Additionally, if the activity traces have a tree struc-
ture, we show that the objective function is supermodular, and experimentally
verify that the approach for size–constrained submodular minimization recently
proposed by Nagano et al (2011) produces very good results. Moreover, when
applied to the task of reconstructing an unobserved graph, our methods perform
comparably to a state–of–the–art algorithm devised specifically for this task.

ABACUS: frequent pattern mining based community discovery in
multidimensional networks
Michele Berlingerio, Fabio Pinelli and Francesco Calabrese
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-013-0331-0

Community Discovery in complex networks is the problem of detecting, for each
node of the network, its membership to one of more groups of nodes, the com-
munities, that are densely connected, or highly interactive, or, more in general,
similar, according to a similarity function. So far, the problem has been widely
studied in monodimensional networks, i.e. networks where only one connection
between two entities may exist. However, real networks are often multidimen-
sional, i.e., multiple connections between any two nodes may exist, either re-
flecting different kinds of relationships, or representing different values of the

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-013-0328-8
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-013-0331-0
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same type of tie. In this context, the problem of Community Discovery has to
be redefined, taking into account multidimensional structure of the graph. We
define a new concept of community that groups together nodes sharing member-
ships to the same monodimensional communities in the different single dimen-
sions. As we show, such communities are meaningful and able to group nodes
even if they might not be connected in any of the monodimensional networks.
We devise ABACUS (frequent pAttern mining–BAsed Community discoverer
in mUltidimensional networkS), an algorithm that is able to extract multidi-
mensional communities based on the extraction of frequent closed itemsets from
monodimensional community memberships. Experiments on two different real
multidimensional networks confirm the meaningfulness of the introduced con-
cepts, and open the way for a new class of algorithms for community discovery
that do not rely on the dense connections among nodes.

Growing a list
Benjamin Letham, Cynthia Rudin and Katherine A. Heller
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-013-0329-7

It is easy to find expert knowledge on the Internet on almost any topic, but
obtaining a complete overview of a given topic is not always easy: Information
can be scattered across many sources and must be aggregated to be useful. We
introduce a method for intelligently growing a list of relevant items, starting from
a small seed of examples. Our algorithm takes advantage of the wisdom of the
crowd, in the sense that there are many experts who post lists of things on the
Internet. We use a collection of simple machine learning components to find these
experts and aggregate their lists to produce a single complete and meaningful list.
We use experiments with gold standards and open–ended experiments without
gold standards to show that our method significantly outperforms the state of
the art. Our method uses the ranking algorithm Bayesian Sets even when its
underlying independence assumption is violated, and we provide a theoretical
generalization bound to motivate its use.

What distinguish one from its peers in social networks?
Yi-Chen Lo, Jhao-Yin Li, Mi-Yen Yeh, Shou-De Lin and Jian Pei
Data Mining and Knowledge Discovery
DOI 10.1007/s10618-013-0330-1

Being able to discover the uniqueness of an individual is a meaningful task in
social network analysis. This paper proposes two novel problems in social net-
work analysis: how to identify the uniqueness of a given query vertex, and how
to identify a group of vertices that can mutually identify each other. We further
propose intuitive yet effective methods to identify the uniqueness identification
sets and the mutual identification groups of different properties. We further con-

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-013-0329-7
http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10618-013-0330-1
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duct an extensive experiment on both real and synthetic datasets to demonstrate
the effectiveness of our model.

Spatio–temporal random fields: compressible representation and
distributed estimation
Nico Piatkowski, Sangkyun Lee and Katharina Morik
Machine Learning
DOI 10.1007/s10994-013-5399-7

Modern sensing technology allows us enhanced monitoring of dynamic activities
in business, traffic, and home, just to name a few. The increasing amount of sen-
sor measurements, however, brings us the challenge for efficient data analysis.
This is especially true when sensing targets can interoperate—in such cases we
need learning models that can capture the relations of sensors, possibly with-
out collecting or exchanging all data. Generative graphical models namely the
Markov random fields (MRF) fit this purpose, which can represent complex spa-
tial and temporal relations among sensors, producing interpretable answers in
terms of probability. The only drawback will be the cost for inference, storing
and optimizing a very large number of parameters—not uncommon when we
apply them for real–world applications.
In this paper, we investigate how we can make discrete probabilistic graphical
models practical for predicting sensor states in a spatio–temporal setting. A set
of new ideas allows keeping the advantages of such models while achieving scal-
ability. We first introduce a novel alternative to represent model parameters,
which enables us to compress the parameter storage by removing uninformative
parameters in a systematic way. For finding the best parameters via maximum
likelihood estimation, we provide a separable optimization algorithm that can
be performed independently in parallel in each graph node. We illustrate that
the prediction quality of our suggested method is comparable to those of the
standard MRF and a spatio–temporal k–nearest neighbor method, while using
much less computational resources.

http://springerlink.bibliotecabuap.elogim.com/article/10.1007/s10994-013-5399-7
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Jean-François Boulicaut

Sparse Relational Topic Models for Document Networks . . . . . . . . . . . . . . 670
Aonan Zhang, Jun Zhu, and Bo Zhang

Author Index . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 687



Table of Contents – Part II

Social Network Analysis

Incremental Local Evolutionary Outlier Detection for Dynamic Social
Networks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

Tengfei Ji, Dongqing Yang, and Jun Gao

How Long Will She Call Me? Distribution, Social Theory and Duration
Prediction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Yuxiao Dong, Jie Tang, Tiancheng Lou, Bin Wu, and
Nitesh V. Chawla

Discovering Nested Communities . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
Nikolaj Tatti and Aristides Gionis

CSI: Community-Level Social Influence Analysis . . . . . . . . . . . . . . . . . . . . . 48
Yasir Mehmood, Nicola Barbieri, Francesco Bonchi, and
Antti Ukkonen

Natural Language Processing and Information
Extraction

Supervised Learning of Syntactic Contexts for Uncovering Definitions
and Extracting Hypernym Relations in Text Databases . . . . . . . . . . . . . . . 64

Guido Boella and Luigi Di Caro

Error Prediction with Partial Feedback . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
William Darling, Cédric Archambeau, Shachar Mirkin, and
Guillaume Bouchard

Boot-Strapping Language Identifiers for Short Colloquial Postings . . . . . . 95
Moises Goldszmidt, Marc Najork, and Stelios Paparizos

Ranking and Recommender Systems

A Pairwise Label Ranking Method with Imprecise Scores and Partial
Predictions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 112

Sebastien Destercke

Learning Socially Optimal Information Systems from Egoistic Users . . . . 128
Karthik Raman and Thorsten Joachims

Socially Enabled Preference Learning from Implicit Feedback Data . . . . . 145
Julien Delporte, Alexandros Karatzoglou, Tomasz Matuszczyk, and
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Abstract. This paper considers the Inverse Reinforcement Learning
(IRL) problem, that is inferring a reward function for which a demon-
strated expert policy is optimal. We propose to break the IRL problem
down into two generic Supervised Learning steps: this is the Cascaded
Supervised IRL (CSI) approach. A classification step that defines a score
function is followed by a regression step providing a reward function. A
theoretical analysis shows that the demonstrated expert policy is near-
optimal for the computed reward function. Not needing to repeatedly
solve a Markov Decision Process (MDP) and the ability to leverage
existing techniques for classification and regression are two important
advantages of the CSI approach. It is furthermore empirically demon-
strated to compare positively to state-of-the-art approaches when using
only transitions sampled according to the expert policy, up to the use
of some heuristics. This is exemplified on two classical benchmarks (the
mountain car problem and a highway driving simulator).

1 Introduction

Sequential decision making consists in choosing the appropriate action given the
available data in order to maximize a certain criterion. When framed in a Markov
Decision Process (MDP) (see Sec. 2), (Approximate) Dynamic programming
((A)DP) or Reinforcement Learning (RL) are often used to solve the problem by
maximizing the expected sum of discounted rewards. The Inverse Reinforcement
Learning (IRL) [15] problem, which is addressed here, aims at inferring a reward
function for which a demonstrated expert policy is optimal.

IRL is one of many ways to perform Apprenticeship Learning (AL): imitating a
demonstrated expert policy, without necessarily explicitly looking for the reward
function. The reward function nevertheless is of interest in its own right. As
mentioned in [15], its semantics can be analyzed in biology or econometrics for
instance. Practically, the reward can be seen as a succinct description of a task.
Discovering it removes the coupling that exists in AL between understanding

∗ The research leading to these results has received funding from the European Union
Seventh Framework Programme (FP7/2007-2013) under grant agreement n°270780.
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the task and learning how to fulfill it. IRL allows the use of (A)DP or RL
techniques to learn how to do the task from the computed reward function.
A very straightforward non-IRL way to do AL is for example to use a multi-
class classifier to directly learn the expert policy. We provide in the experiments
(Sec. 6) a comparison between AL and IRL algorithms by using IRL as a way
to do AL.

A lot of existing approaches in either IRL or IRL-based AL need to repeatedly
solve the underlying MDP to find the optimal policies of intermediate reward
functions. Thus, their performance depends strongly on the quality of the associ-
ated subroutine. Consequently, they suffer from the same challenges of scalability,
data scarcity, etc., as RL and (A)DP. In order to avoid repeatedly solving such
problems, we adopt a different point of view.

Having in mind that there is a one to one relation between a reward function
and its associated optimal action-value function (via the Bellman equation, see
Eq. (1)), it is worth thinking of a method able to output an action-value function
for which the greedy policy is the demonstrated expert policy. Thus, the demon-
strated expert policy will be optimal for the corresponding reward function. We
propose to use a score function-based multi-class classification step (see Sec. 3) to
infer a score function. Besides, in order to retrieve via the Bellman equation the
reward associated with the score function computed by the classification step,
we introduce a regression step (see Sec. 3). That is why the method is called
the Cascaded Supervised Inverse reinforcement learning (CSI). This method is
analyzed in Sec. 4, where it is shown that the demonstrated expert policy is
near-optimal for the reward the regression step outputs.

This algorithm does not need to iteratively solve an MDP and requires only
sampled transitions from expert and non-expert policies as inputs. Moreover, up
to the use of some heuristics (see Sec. 6.1), the algorithm is able to be trained
only with transitions sampled from the demonstrated expert policy. A specific
instantiation of CSI (proposed in Sec. 6.1) is tested on the mountain car problem
(Sec. 6.2) and on a highway driving simulator (Sec. 6.3) where we compare it with
a pure classification algorithm [20] and with two recent successful IRL methods
[5] as well as with a random baseline. Differences and similarities with existing
AL or IRL approaches are succinctly discussed in Sec. 5.

2 Background and Notation

First, we introduce some general notation. Let E and F be two non-empty sets,
EF is the set of functions from F to E. We note ΔX the set of distributions
over X . Let α ∈ RX and β ∈ RX : α ≥ β ⇔ ∀x ∈ X,α(x) ≥ β(x). We will often
slightly abuse the notation and consider (where applicable) most objects as if
they were matrices and vectors indexed by the set they operate upon.

We work with finite MDPs [10], that is tuples {S,A, P,R, γ}. The state space
is noted S, A is a finite action space, R ∈ RS×A is a reward-function, γ ∈ (0, 1)
is a discount factor and P ∈ ΔS×A

S is the Markovian dynamics of the MDP.
Thus, for each (s, a) ∈ S × A, P (.|s, a) is a distribution over S and P (s′|s, a)
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is the probability to reach s′ by choosing action a in state s. At each time
step t, the agent uses the information encoded in the state st ∈ S in order
to choose an action at ∈ A according to a (deterministic1) policy π ∈ AS .
The agent then steps to a new state st+1 ∈ S according to the Markovian
transition probabilities P (st+1|st, at). Given that Pπ = (P (s′|s, π(s)))s,s′∈S is
the transition probability matrix, the stationary distribution over the states ρπ
induced by a policy π satisfies ρTπPπ = ρTπ , with XT being the transpose of X .
The stationary distribution relative to the expert policy πE is ρE .

The reward function R is a local measure of the quality of the control. The
global quality of the control induced by a policy π, with respect to a reward R,
is assessed by the value function V π

R ∈ RS which associates to each state the
expected discounted cumulative reward for following policy π from this state:
V π
R (s) = E[

∑
t≥0 γ

tR(st, π(st))|s0 = s, π]. This long-term criterion is what is
being optimized when solving an MDP. Therefore, an optimal policy π∗R is a
policy whose value function (the optimal value function V ∗R) is greater than that
of any other policy, for all states: ∀π, V ∗R ≥ V π

R .
The Bellman evaluation operator T π

R : RS → RS is defined by T π
RV = Rπ +

γPπV where Rπ = (R(s, π(s)))s∈S . The Bellman optimality operator follows
naturally: T ∗RV = maxπ T

π
RV . Both operators are contractions. The fixed point

of the Bellman evaluation operator T π
R is the value function of π with respect to

reward R: V π
R = T π

RV
π
R ⇔ V π

R = Rπ + γPπV
π
R . The Bellman optimality operator

T ∗R also admits a fixed point, the optimal value function V ∗R with respect to
reward R.

Another object of interest is the action-value function Qπ
R ∈ RS×A that adds a

degree of freedom on the choice of the first action, formally defined by Qπ
R(s, a) =

T a
RV

π
R (s), with a the policy that always returns action a (T a

RV = Ra+γPaV with
Pa = (P (s′|s, a))s,s′∈S and Ra = (R(s, a))s∈S). The value function V π

R and the
action-value function Qπ

R are quite directly related: ∀s ∈ S, V π
R (s) = Qπ

R(s, π(s)).
The Bellman evaluation equation for Qπ

R is therefore:

Qπ
R(s, a) = R(s, a) + γ

∑
s′∈S

P (s′|s, a)Q(s′, π(s′)). (1)

An optimal policy follows a greedy mechanism with respect to its optimal
action-value function Q∗R:

π∗R(s) ∈ argmax
a

Q∗R(s, a). (2)

When the state space is too large to allow matrix representations or when the
transition probabilities or even the reward function are unknown except through
observations gained by interacting with the system, RL or ADP may be used to
approximate the optimal control policy [16].

We recall that solving the MDP is the direct problem. This contribution aims
at solving the inverse one. We observe trajectories drawn from an expert’s de-
terministic1 policy πE , assuming that there exists some unknown reward RE

1 We restrict ourselves here to deterministic policies, but the loss of generality is
minimal as there exists at least one optimal deterministic policy.
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for which the expert is optimal. The suboptimality of the expert is an interest-
ing setting that has been discussed for example in [7,19], but that we are not
addressing here. We do not try to find this unknown reward RE but rather a
non trivial reward R for which the expert is at least near-optimal. The trivial
reward 0 is a solution to this ill-posed problem (no reward means that every
behavior is optimal). Because of its ill-posed nature, this expression of Inverse
Reinforcement Learning (IRL) still has to find a satisfactory solution although
a lot of progress has been made, see Sec. 5.

3 The Cascading Algorithm

Our first step towards a reward function solving the IRL problem is a classifica-
tion step using a score function-based multi-class classifier (SFMC2 for short).
This classifier learns a score function q ∈ RS×A that rates the association of a
given action2 a ∈ A with a certain input s ∈ S. The classification rule πC ∈ AS

simply selects (one of) the action(s) that achieves the highest score for the given
inputs:

πC(s) ∈ argmax
a

q(s, a). (3)

For example, Multi-class Support Vector Machines [4] can be seen as SFMC2

algorithms, the same can be said of the structured margin approach [20] both
of which we consider in the experimental setting. Other algorithms may be en-
visioned (see Sec. 6.1).

Given a dataset DC = {(si, ai = πE(si))i} of actions ai (deterministically)
chosen by the expert on states si, we train such a classifier. The classification
policy πC is not the end product we are looking for (that would be mere super-
vised imitation of the expert, not IRL). What is of particular interest to us is
the score function q itself. One can easily notice the similarity between Eq. (3)
and Eq. (2) that describes the relation between the optimal policy in an MDP
and its optimal action-value function. The score function q of the classifier can
thus be viewed as some kind of optimal action-value function for the classifier
policy πC . By inversing the Bellman equation (1) with q in lieu of Qπ

R, one gets
RC , the reward function relative to our score/action-value function q:

RC(s, a) = q(s, a)− γ
∑
s′

P (s′|s, a)q(s′, πC(s′)). (4)

As we wish to approximately solve the general IRL problem where the transition
probabilities P are unknown, our reward function RC will be approximated with
the help of information gathered by interacting with the system. We assume that
another dataset DR = {(sj , aj , s′j)j} is available where s′j is the state an agent
taking action aj in state sj transitioned to. Action aj need not be chosen by any

2 Here, actions play the role of what is known as labels or categories when talking
about classifiers.
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particular policy. The dataset DR brings us information about the dynamics of
the system. From it, we construct datapoints

{r̂j = q(sj , aj)− γq(s′j , πC(s
′
j))}j . (5)

As s′j is sampled according to P (·|sj , aj) the constructed datapoints help building
a good approximation of RC(sj , aj). A regressor (a simple least-square approxi-
mator can do but other solutions could also be envisioned, see Sec. 6.1) is then
fed the datapoints ((sj , ai), r̂j) to obtain R̂C , a generalization of {((sj , aj), r̂j)j}
over the whole state-action space. The complete algorithm is given in Alg. 1.

There is no particular constraint on DC and DR. Clearly, there is a direct link
between various qualities of those two sets (amount of data, statistical represen-
tativity, etc.) and the classification and regression errors. The exact nature of the
relationship between these quantities depends on which classifier and regressor
are chosen. The theoretical analysis of Sec. 4 abstracts itself from the choice of a
regressor and a classifier and from the composition of DC and DR by reasoning
with the classification and regression errors. In Sec. 6, the use of a single dataset
to create both DC and DR is thoroughly explored.

Algorithm 1. CSI algorithm
Given a training set DC = {(si, ai = πE(si))}1≤i≤D and another training set DR =
{(sj , aj , s

′
j)}1≤j≤D′

Train a score function-based classifier on DC , obtaining decision rule πC and score
function q : S × A → R
Learn a reward function R̂C from the dataset {((sj , aj), r̂j)}1≤j≤D′ , ∀(sj , aj , s

′
j) ∈

DR, r̂j = q(sj , aj)− γq(s′j , πC(s
′
j))

Output the reward function R̂C

Cascading two supervised approaches like we do is a way to inject the MDP
structure into the resolution of the problem. Indeed, mere classification only takes
into account information from the expert (i.e., which action goes with which
state) whereas using the Bellman equation in the expression of r̂j makes use of
the information lying in the transitions (sj , aj , s

′
j), namely information about

the transition probabilities P . The final regression step is a way to generalize
this information about P to the whole state-action space in order to have a
well-behaved reward function. Being able to alleviate the ill effects of scalability
or data scarcity by leveraging the wide range of techniques developed for the
classification and regression problems is a strong advantage of the CSI approach.

4 Analysis

In this section, we prove that the deterministic expert policy πE is near optimal
for the reward R̂C the regression step outputs. More formally, recalling from
Sec. 2 that ρE is the stationary distribution of the expert policy, we prove that
Es∼ρE [V

∗
R̂C

(s)− V πE

R̂C
(s)] is bounded by a term that depends on:
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– the classification error defined as εC = Es∼ρE [1{πC(s) �=πE(s)}];
– the regression error defined as εR = maxπ∈AS ‖εRπ ‖1,ρE , with:

• the subscript notation already used for Rπ and Pπ in Sec. 2 meaning that,
given an X ∈ RS×A, π ∈ AS , and a ∈ A, Xπ ∈ RS and Xa ∈ RS are
respectively such that: ∀s ∈ S,Xπ(s) = X(s, π(s)) and ∀s ∈ S,Xa(s) =
X(s, a) ;

• εRπ = RC
π − R̂C

π ;
• ‖.‖1,μ the μ-weighted L1 norm: ‖f‖1,μ = Ex∼μ[|f(x)|];

– the concentration coefficient C∗ = Cπ̂C with:
• Cπ = (1− γ)

∑
t≥0 γ

tcπ(t), with cπ(t) = maxs∈S
(ρT

EP t
π)(s)

ρE(s) ;
• π̂C , the optimal policy for the reward R̂C output by the algorithm ;

The constant C∗ can be estimated a posteriori (after R̂C is computed). A
priori, C∗ can be upper-bounded by a more usual and general concentration
coefficient but C∗ gives a tighter final result: one can informally see C∗ as a
measure of the similarity between the distributions induced by π̂C and πE
(roughly, if π̂C ≈ πE then C∗ ≈ 1).

– Δq = maxs∈S(maxa∈A q(s, a) − mina∈A q(s, a)) = maxs∈S(q(s, πC(s)) −
mina∈A q(s, a)), which could be normalized to 1 without loss of generality.
The range of variation of q is tied to the one of RC , R̂C and V πC

R̂C
. What

matters with these objects is the relative values for different state action
couples, not the objective range. They can be shifted and positively scaled
without consequence.

Theorem 1. Let πE be the deterministic expert policy, ρE its stationary distri-
bution and R̂C the reward the cascading algorithm outputs. We have:

0 ≤ Es∼ρE [V
∗
R̂C (s)− V πE

R̂C
(s)] ≤ 1

1− γ
(εCΔq + εR(1 + C∗)) .

Proof. First let’s recall some notation, q ∈ RS×A is the score function output
by the classification step, πC is a deterministic classifier policy so that ∀s ∈
S, πC(s) ∈ argmaxa∈A q(s, a), RC ∈ RS×A is so that ∀(s, a) ∈ S ×A,RC(s, a) =

q(s, a)− γ
∑

s′∈S P (s′|s, a)q(s′, πC(s′)), and R̂C ∈ RS×A is the reward function
output by the regression step.

The difference between RC and R̂C is noted εR = RC − R̂C ∈ RS×A. We also
introduce the reward function RE ∈ RS×A which will be useful in our proof, not
to be confused with RE the unknown reward function the expert optimizes:

∀(s, a) ∈ S ×A,RE(s, a) = q(s, a)− γ
∑
s′∈S

P (s′|s, a)q(s′, πE(s′)).

We now have the following vectorial equalities RC
a = qa − γPaqπC ;R

E
a =

qa − γPaqπE ; ε
R
a = RC

a − R̂C
a . Now, we are going to upper bound the term:

Es∼ρE [V
∗
R̂C

− V πE

R̂C
] ≥ 0 (the lower bound is obvious as V ∗ is optimal). Recall

that π̂C is a deterministic optimal policy of the reward R̂C . First, the term
V ∗
R̂C

− V πE

R̂C
is decomposed:

V ∗
R̂C − V πE

R̂C
= (V π̂C

R̂C
− V π̂C

RC ) + (V π̂C

RC − V πE

RC ) + (V πE

RC − V πE

R̂C
).
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We are going to bound each of these three terms. First, let π be a given determin-
istic policy. We have, using εR = RC − R̂C : V π

RC − V π
R̂C

= V π
εR = (I − γPπ)

−1εRπ .
If π = πE , we have, thanks to the power series expression of (I − γPπE )

−1, the
definition of ρE and the definition of the μ-weighted L1 norm, one property of
which is that ∀X,μTX ≤ ‖X‖1,μ:

ρTE(V
π
RC − V π

R̂C ) = ρTE(I − γPπE )
−1εRπE

=
1

1− γ
ρTEε

R
πE

≤ 1

1− γ
‖εRπE

‖1,ρE .

If π 
= πE , we use the concentration coefficient Cπ . We have then:

ρTE(V
π
RC − V π

R̂C ) ≤
Cπ

1− γ
ρTEε

R
π ≤ Cπ

1− γ
‖εRπ ‖1,ρE .

So, using the notation introduced before we stated the theorem, we are able
to give an upper bound to the first and third terms (recall also the notation
Cπ̂C = C∗): ρTE((V

πE

RC − V πE

R̂C
) + (V π̂C

R̂C
− V π̂C

RC )) ≤ 1+C∗
1−γ εR. Now, there is still

an upper bound to find for the second term. It is possible to decompose it as
follows:

V π̂C

RC − V πE

RC = (V π̂C

RC − V πC

RC ) + (V πC

RC − V πE

RE ) + (V πE

RE − V πE

RC ).

By construction, πC is optimal for RC , so V π̂C

RC − V πC

RC ≤ 0 which implies:

V π̂C

RC − V πE

RC ≤ (V πC

RC − V πE

RE ) + (V πE

RE − V πE

RC ).

By construction, we have V πC

RC = qπC and V πE

RE = qπE , thus:

ρTE(V
πC

RC − V πE

RE ) = ρTE(qπC − qπE )

=
∑
s∈S

ρE(s)(q(s, πC(s))− q(s, πE(s)))[1{πC (s) �=πE(s)}].

Using Δq, we have: ρTE(V
πC

RC − V πE

RE ) ≤ Δq
∑

s∈S ρE(s)[1{πC(s) �=πE(s)}] = ΔqεC .
Finally, we also have:

ρTE(V
πE

RE − V πE

RC ) = ρTE(I − γPπE )
−1(RE

πE
−RC

πE
) = ρTE(I − γPπE )

−1γPπE (qπC − qπE ),

=
γ

1− γ
ρTE(qπC − qπE ) ≤

γ

1− γ
ΔqεC .

So the upper bound for the second term is: ρTE(V
π̂C

RC −V πE

RC ) ≤ (Δq+ γ
1−γΔq)εC =

Δq
1−γ εC . If we combine all of the results, we obtain the final bound as stated in
the theorem. ��

Readers familiar with the work presented in [5] will see some similarities between
the theoretical analyses of SCIRL and CSI as both study error propagation in
IRL algorithms. Another shared feature is the use of the score function q of the
classifier as a proxy for the action-value function of the expert QπE

RE
.
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The attentive reader, however, will perceive that similarities stop there. The
error terms occurring in the two bounds are not related to one another. As CSI
makes no use of the feature expectation of the expert, what is known as ε̄Q in
[5] does not appear in this analysis. Likewise, the regression error εR of this
paper does not appear in the analysis of SCIRL, which does not use a regressor.
Perhaps more subtly, the classification error and classification policy known in
both papers as εC and πC are not the same. The classification policy of SCIRL
is not tantamount to what is called πC here. For SCIRL, πC is the greedy policy
for an approximation of the value function of the expert with respect to the
reward output by the algorithm. For CSI, πC is the decision rule of the classifier,
an object that is not aware of the structure of the MDP. We shall also mention
that the error terms appearing in the CSI bound are more standard than the
ones of SCIRL (e.g., regression error vs feature expectation estimation error)
thus they may be easier to control. A direct corollary of this theorem is that,
given perfect classifier and regressor, CSI produces a reward function for which
πE is the unique optimal policy.

Corollary 1. Assume that ρE > 0 and that the classifier and the regressor are
perfect (εC = 0 and εR = 0). Then πE is the unique optimal policy for R̂C.

Proof. The function q is the optimal action-value function for πC with respect
to the reward RC , by definition (see Eq. (4)). As εC = 0, we have πC = πE . This
means that ∀s, πE(s) is the only element of the set argmaxa∈A q(s, a). Therefore,
πC = πE is the unique optimal policy for RC . As εR = 0, we have R̂C = RC ,
hence the result.

This corollary hints at the fact that we found a non-trivial reward (we recall that
the null reward admits every policy as optimal). Therefore, obtaining R̂C = 0
(for which the bound is obviously true: the bounded term is 0, the bounding
term is positive) is unlikely as long as the classifier and the regressor exhibit
decent performance.

The only constraints the bound of Th. 1 implies on datasets DR and DC is
that they provide enough information to the supervised algorithms to keep both
error terms εC and εR low. In Sec. 6 we deal with a lack of data in dataset DR.
We address the problem with the use of heuristics (Sec. 6.1) in order to show
the behavior of the CSI algorithm in somewhat more realistic (but difficult)
conditions.

More generally, the error terms εC and εR can be reduced by a wise choice
for the classification and regression algorithms. The literature is wide enough
for methods accommodating most of use cases (lack of data, fast computation,
bias/variance trade-off, etc.) to be found. Being able to leverage such common
algorithms as multi-class classifiers and regressors is a big advantage of our
cascading approach over existing IRL algorithms.

Other differences between existing IRL or apprenticeship learning approaches
and the proposed cascading algorithm are further examined in Sec. 5.
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5 Related Work

IRL was first introduced in [15] and then formalized in [9]. Approaches summa-
rized in [8] can be seen as iteratively constructing a reward function, solving an
MDP at each iteration. Some of these algorithms are IRL algorithms while others
fall in the Apprenticeship Learning (AL) category, as for example the projection
version of the algorithm in [1]. In both cases the need to solve an MDP at each
step may be very demanding, both sample-wise and computationally. CSI being
able to output a reward function without having to solve the MDP is thus a
significant improvement.

AL via classification has been proposed for example in [12], with the help of a
structured margin method. Using the non-trivial notion of metric in an MDP, the
authors of [6] build a kernel which is used in a classification algorithm, showing
improvements compared to a non-structured kernel.

Classification and IRL have met in the past in [13], but the labels were com-
plete optimal policies rather than actions and the inputs were MDPs, which had
to be solved. It may be unclear how SCIRL [5] relates to the proposed approach of
his paper. Both algorithms use the score function of a classifier as a proxy to the
action-value function of the expert with respect to the (unknown) true reward:
QπE

R . The way this proxy is constructed and used, however, fundamentally dif-
fers in the two algorithms. This difference will cause the theoretical analysis of
both approaches (see Sec. 4) to be distinct. In SCIRL, the score function of the
classifier is approximated via a linear parametrization that relies on the feature
expectation of the expert μE(s) = E[

∑
t≥0 γ

tφ(st)|s0 = s, πE ]. This entails the
use of a specific kind of classifier (namely linearly-parametrized-score-function-
based classifiers) and of a method of approximation of μE . By contrast, almost
any off-the-shelf classifier can be used in the first step of the cascading approach
of this paper. The classification step of CSI is unaware of the structure of the MDP
whereas SCIRL knows about it thanks to the use of μE . In CSI, the structure of
the MDP is injected by reversing the Bellman equation prior to the regression step
(Eq. 4 and (5)), a step that does not exist in SCIRL as SCIRL directly outputs the
parameter vector found by its linearly-parametrized-score-function-based classi-
fier. The regressor of CSI can be chosen off-the-shelf. One can argue that this and
not having to approximate μE increases the ease-of-use of CSI over SCIRL and
makes for a more versatile algorithm. In practice, as seen in Sec. 6, performance
of SCIRL and CSI are very close to one another thus CSI may be a better choice
as it is easier to deploy. Neither approach is a generalization of the other.

Few IRL or AL algorithms do not require solving an MDP. The approach
of [17] requires knowing the transition probabilities of the MDP (which CSI
does not need) and outputs a policy (and not a reward). The algorithm in [3]
only applies to linearly-solvable MDPs whereas our approach does not place such
restrictions. Closer to our use-case is the idea presented in [2] to use a subgradient
ascent of a utility function based on the notion of relative entropy. Importance
sampling is suggested as a way to avoid solving the MDP. This requires sampling
trajectories according to a non-expert policy and the direct problem remains at
the core of the approach (even if solving it is avoided).
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6 Experiments

In this section, we empirically demonstrate the behavior of our approach. We
begin by providing information pertaining to both benchmarks. An explanation
about the amount and source of the available data, the rationale behind the
heuristics we use to compensate for the dire data scarcity and a quick word
about the contenders CSI is compared to are given Sec. 6.1. We supply quanti-
tative results and comparisons of CSI with state-of-the art approaches on first a
classical RL benchmark (the mountain car) in Sec. 6.2 and then on a highway
driving simulator (Sec. 6.3).

6.1 Generalities

Data Scarcity. The CSI algorithm was designed to avoid repeatedly solving
the RL problem. This feature makes it particularly well-suited to environments
where sampling the MDP is difficult or costly. In the experiments, CSI is fed only
with data sampled according to the expert policy. This corresponds for example
to a situation where a costly system can only be controlled by a trained operator
as a bad control sequence could lead to a system breakdown.

More precisely, the expert controls the system for M runs of lengths
{Li}1≤i≤M , giving samples {(sk, ak = πE(ak), s

′
k)k} = DE . The dataset DC

fed to the classifier is straightforwardly constructed from DE by dropping the
s′k terms: DC = {(si = sk, ai = ak)i}.

Heuristics. It is not reasonable to construct the dataset DR = {((sk, ak =
πE(sk)), r̂k)k} only from expert transitions and expect a small regression error
term εR. Indeed, the dataset DE only samples the dynamics induced by the
expert’s policy and not the whole dynamics of the MDP. This means that for a
certain state sk we only know the corresponding expert action ak = πE(sk) and
the following state s′k sampled according to the MDP dynamics : s′k ∼ P (·|sk, ak).
For the regression to be meaningful, we need samples associating the same state
sk and a different action a 
= ak with a datapoint r̂ 
= r̂k.
Recall that r̂j = q(sj , aj) − γq(s′j , πC(s

′
j)) (Eq. (5)); without knowing s′k ∼

P (·|sk, a 
= ak), we cannot provide the regressor with a datapoint to asso-
ciate with (sk, a 
= ak). We artificially augment the dataset DR with samples
((sj = sk, a), rmin)j;∀a �=πE(sj)=ak

where rmin = mink r̂k − 1. This heuristics in-
structs the regressor to associate a state-action tuple disagreeing with the expert
(i.e., (sk, a 
= ak)) with a reward strictly inferior to any of those associated with
expert state action tuples (i.e., (sk, ak = πE(sk))). Semantically, we are assert-
ing that disagreeing with the expert in states the expert visited is a bad idea.
This heuristics says nothing about states absent from the expert dataset. For
such states the generalization capabilities of the regressor and, later on, the ex-
ploration of the MDP by an agent optimizing the reward will solve the problem.
Although this heuristics was not analyzed in Sec. 4 (where the availability of
a more complete dataset DR was assumed), the results shown in the next two
subsections demonstrate its soundness.
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Comparison with State-of-the-Art Approaches. The similar looking yet
fundamentally different algorithm SCIRL [5] is an obvious choice as a contender
to CSI as it advertises the same ability to work with very little data, without
repeatedly solving the RL problem. In both experiments we give the exact same
data to CSI and SCIRL.

The algorithm of [3] also advertises not having to solve the RL problem, but
needs to deal with linearly solvable MDPs, therefore we do not include it in our
tests. The Relative Entropy (RE) method of [2] has no such need, so we included
it in our benchmarks. It could not, however, work with the small amount of data
we provided SCIRL and CSI with, and so to allow for importance sampling, we
created another dataset Drandom that was used by RE but not by SCIRL nor
CSI.

Finally, the classification policy πC output by the classification step of CSI was
evaluated as well. Comparing classification and IRL algorithms makes no sense
if the object of interest is the reward itself as can be envisioned in a biological or
economical context. It is however sound to do so in an imitation context where
what matters is the performance of the agent with respect to some objective
criterion. Both experiments use such a criterion. Classification algorithms don’t
have to optimize any reward since the classification policy can directly be used in
the environment. IRL algorithms on the other hand output a reward that must
then be plugged in an RL or DP algorithm to get a policy. In each benchmark
we used the same (benchmark-dependent) algorithm to get a policy from each
of the three rewards output by SCIRL, CSI and RE. It is these policies whose
performance we show. Finding a policy from a reward is of course a non-trivial
problem that should not be swept under the rug; nevertheless we choose not
to concern ourselves with it here as we wish to focus on IRL algorithms, not
RL or DP algorithms. In this regard, using a classifier that directly outputs a
policy may seem a much simpler solution, but we hope that the reader will be
convinced that the gap in performance between classification and IRL is worth
the trouble of solving the RL problem (once and for all, and not repeatedly as a
subroutine like some other IRL algorithms).

We do not compare CSI to other IRL algorithms requiring repeatedly solving
the MDP. As we would need to provide them with enough data to do so, the
comparison makes little sense.

Supervised Steps. The cascading algorithm can be instantiated with some
standard classification algorithms and any regression algorithm. The choice of
such subroutines may be dictated by the kind and amount of available data, by
ease of use or by computational complexity, for example.

We referred in Sec.3 to score-function based multi-class classifiers and ex-
plained how the classification rule is similar to the greedy mechanism that exists
between an optimal action-value function and an optimal policy in an MDP.
Most classifications algorithms can be seen as such a classifier. In a simple k-
nearest neighbor approach, for example, the score function q(s, a) is the number
of elements of class a among the k-nearest neighbors of s. The generic M-SVM
model makes the score function explicit (see [4]) (we use a SVM in the mountain
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car experiment Sec. 6.2). In the highway experiment, we choose to use a struc-
tured margin classification approach [20]. We chose a SVR as a regressor in the
mountain car experiment and a simple least-square regressor on the highway.

It is possible to get imaginative in the last step. For example, using a Gaus-
sian process regressor [11] that outputs both expectation and variance can enable
(notwithstanding a nontrivial amount of work) the use of reward-uncertain re-
inforcement learning [14]. Our complete instantiation of CSI is summed up in
Alg. 2.

Algorithm 2. A CSI instantiation with heuristics
Given a dataset DE = (sk, ak = πE(ak), s

′
k)k

Construct the dataset DC = {(si = sk, ai = πE(si)) = ak}
Train a score function-based classifier on DC , obtaining decision rule πC and score
function q : S × A → R
Construct the dataset {((sj = sk, aj = ak), r̂j)j} with r̂j = q(sj , aj) − γq(s′j =
s′k, πC(s

′
j = s′k))

Set rmin = minj r̂j − 1.
Construct the training set DR = {((sj = sk, aj = ak), r̂j)j} ∪ {((sj =
sk, a), rmin)j;∀a �=πE(sj)=ak

}
Learn a reward function R̂C from the training set DR

Output the reward function R̂C : (s, a) �→ ωTφ(s, a)

6.2 Mountain Car

The mountain car is a classical toy problem in RL: an underpowered car is tasked
with climbing a steep hill. In order to do so, it has to first move away from the
target and climb the slope on its left, and then it moves right, gaining enough
momentum to climb the hill on the right on top of which lies the target. We
used standard parameters for this problem, as can for example be found in [16].
When training an RL agent, the reward is, for example, 1 if the car’s position is
greater than 0.5 and 0 anywhere else. The expert policy was a very simple hand
crafted policy that uses the power of the car to go in the direction it already
moves (i.e., go left when the speed is negative, right when it is positive).

The initial position of the car was uniformly randomly picked in [−1.2;−0.9]
and its speed uniformly randomly picked in [−0.07; 0]. From this position, the
hand-crafted policy was left to play until the car reached the objective (i.e., a
position greater than 0.5) at which point the episode ended. Enough episodes
were played (and the last one was truncated) so that the dataset DE contained
exactly n samples, with n successively equal to 10, 30, 100 and 300. With these
parameters, the expert is always able to reach the top on the first time it tries
to climb the hill on the right. Therefore, a whole part of the state space (when
the position is on the hill on the right and the speed is negative) is not visited
by the expert. This hole about the state space in the data will be dealt with
differently by the classifier and the IRL algorithms. The classifier will use its
generalization power to find a default action in this part of the state space,
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while the IRL algorithms will devise a default reward; a (potentially untrained)
RL agent finding itself in this part of the state space will use the reward signal
to decide what to do, making use of new data available at that time.

In order to get a policy from the rewards given by SCIRL, CSI and RE, the
RL problem was solved by LSPI fed with a dataset Drandom of 1000 episodes of
length 5 with a starting point uniformly and randomly chosen in the whole state
space and actions picked at random. This dataset was also used by RE (and not
by SCIRL nor CSI).

The classifier for CSI was an off-the-shelf SVM3 which also was the classifier
we evaluate, the regressor of CSI was an off-the-shelf SVR4. RE and SCIRL need
features over the state space, we used the same evenly-spaced hand-tuned 7× 7
RBF network for both algorithms.

The objective criterion for success is the number of steps needed to attain the
goal when starting from a state picked at random ; the lesser the better. We can
see Fig. 1 that the optimal policies for the rewards found by SCIRL and CSI
very rapidly attain expert-level performance and outperform the optimal policy
for the reward of RE and the classification policy. When very few samples are
available, CSI does better than SCIRL (with such a low p-value for n = 10, see
Tab. 1a, the hypothesis that the mean performance is equal can be rejected);
SCIRL catches up when more samples are available. Furthermore, CSI required
very little engineering as we cascaded two off-the-shelf implementations whereas
SCIRL used hand-tuned features and a custom classifier.

Table 1. Student or Welch test of mean equality (depending on whether a Bartlett
test of variance equality succeeds) p-values for CSI and SCIRL on the mountain car
(1a) and the highway driving simulator (1b). High values (> 1.0 × 10−02) means that
the hypothesis that the means are equal cannot be rejected.

(a) Mountain Car

Number of expert samples p-value

10 1.5e− 12
30 3.8e − 01
100 1.3e − 02
300 7.4e − 01

(b) Highway Driving

Number of expert samples p-value

9 3.0e − 01
49 8.9e − 03
100 1.8e − 03
225 2.4e − 05
400 2.0e − 50

6.3 Highway Driving Simulator

The setting of the experiment is a driving simulator inspired from a benchmark
already used in [17,18]. The agent controls a car that can switch between the
three lanes of the road, go off-road on either side and modulate between three
speed levels. At all timesteps, there will be one car in one of the three lanes.
3 http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
4 http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html

http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVC.html
http://scikit-learn.org/stable/modules/generated/sklearn.svm.SVR.html
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Fig. 1. Performance of various policies on the mountain car problem. This is the mean
over 100 runs.
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(a) Mean performance over 100 runs on
the Highway driving problem.
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(b) Zoom of Fig 2a showing the ranking
of the three IRL algorithms.

Fig. 2. Results on the highway driving problem

Even at the lowest speed, the player’s car moves faster than the others. When
the other car disappears at the bottom of the screen, another one appears at
the top in a randomly chosen lane. It takes two transitions to completely change
lanes, as the player can move left or right for half a lane’s length at a time.
At the highest speed setting, if the other car appears in the lane the player
is in, it is not possible to avoid the collision. The main difference between the
original benchmark [17,18] and ours is that we made the problem more ergodic
by allowing the player to change speed whenever he wishes so, not just during
the first transition. If anything, by adding two actions, we enlarged the state-
action space and thus made the problem tougher. The reward function RE the
expert is trained by a DP algorithm on makes it go as fast as possible (high
reward) while avoiding collisions (harshly penalized) and avoiding going off-road
(moderately penalised). Any other situation receives a null reward.



Cascading Approach to IRL 15

The performance criterion for a policy π is the mean (over the uniform distri-
bution) value function with respect to RE : Es∼U [V

π
RE

(s)]. Expert performance
averages to 7.74 ; we also show the natural random baseline that consists in
drawing a random reward vector (with a uniform law) and training an agent
on it. The reward functions found by SCIRL, CSI and RE are then optimized
using a DP algorithm. The dataset Drandom needed by RE (and neither by CSI
nor SCIRL) is made of 100 episodes of length 10 starting randomly in the state
space and following a random policy. the dataset DE is made of n episodes of
length n, with n ∈ {3, 7, 10, 15, 20}.

Results are shown Fig. 2. We give the values of Es∼U [V
π
RE

(s)] with π being in
turn the optimal policy for the rewards given by SCIRL, CSI and RE, the policy
πC of the classifier (the very one the classification step of CSI outputs), and the
optimal policy for a randomly drawn reward. Performance for CSI is slightly but
definitively higher than for SCIRL (see the p-values for the mean equality test in
Tab. 1b, from 49 samples on), slightly below the performance of the expert itself.
Very few samples (100) are needed to reliably achieve expert-level performance.

It is very interesting to compare our algorithm to the behavior of a classifier
alone (respectively red and green plots on Fig. 2a). With the exact same data,
albeit the use of a very simple heuristics, the cascading approach demonstrates
far better performance from the start. This is a clear illustration of the fact
that using the Bellman equation to construct the data fed to the regressor and
outputting not a policy, but a reward function that can be optimized on the
MDP truly makes use of the information that the transitions (s, a, s′) bear (we
recall that the classifier only uses (s, a) couples). Furthermore, the classifier
whose results are displayed here is the output of the first step of the algorithm.
The classification performance is obviously not that good, which points to the
fact that our algorithm may be empirically more forgiving of classification errors
than our theoretical bound lets us expect.

7 Conclusion

We have introduced a new way to perform IRL by cascading two supervised
approaches. The expert is theoretically shown to be near-optimal for the reward
function the proposed algorithm outputs, given small classification and regres-
sion errors. Practical examples of classifiers and regressors have been given, and
two combinations have been empirically (on two classic benchmarks) shown to
be very resilient to dire lack of data on the input (only data from the expert
was used to retrieve the reward function), with the help of simple heuristics. On
both benchmarks, our algorithm is shown to outperform other state-of-the-art
approaches although SCIRL catches up on the mountain car. We plan on deep-
ening the analysis of the theoretical properties of our approach and on applying
it to real world robotics problems.
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Abstract. This paper provides a comparative study between Inverse
Reinforcement Learning (IRL) and Apprenticeship Learning (AL). IRL
and AL are two frameworks, using Markov Decision Processes (MDP),
which are used for the imitation learning problem where an agent tries
to learn from demonstrations of an expert. In the AL framework, the
agent tries to learn the expert policy whereas in the IRL framework,
the agent tries to learn a reward which can explain the behavior of the
expert. This reward is then optimized to imitate the expert. One can
wonder if it is worth estimating such a reward, or if estimating a policy
is sufficient. This quite natural question has not really been addressed
in the literature right now. We provide partial answers, both from a
theoretical and empirical point of view.

1 Introduction

This paper provides a comparative study between two methods, using the
Markov Decision Process (MDP) paradigm, that attempt to solve the imita-
tion learning problem where an agent (called the apprentice) tries to learn from
demonstrations of an expert. These two methods are Apprenticeship Learning
(AL) [1] and Inverse Reinforcement Learning (IRL) [8]. In the AL framework,
the agent tries to learn the expert policy or at least a policy which is as good
as the expert policy (according to an unknown reward function). In the IRL
framework, the agent tries to learn a reward which can explain the behavior of
the expert and which is optimized to imitate it. AL can be reduced to classifica-
tion [7,3,6,11] where the agent tries to mimic the expert policy via a Supervised
Learning (SL) method such as classification. There exist also several AL algo-
rithms inspired by IRL such as [1,10] but they need to solve recursively MDPs
which is a difficult problem when the state space is large and the dynamics of
the MDP is unknown.

The key idea behind IRL is that the reward is the most succinct representation
of the task. However, as the outputs of IRL algorithms are rewards, it is still
required to solve an MDP to obtain an optimal policy with respect to this
reward. With AL algorithms, the output is a policy which can be directly used.
However, this policy is fixed and cannot adapt to a perturbation of dynamics
which could be done if one knew the true reward, as it is a representation of the
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© Springer-Verlag Berlin Heidelberg 2013
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task possibly independent of the dynamics. Thus, a natural question arises: in
which circumstances is it interesting to use an IRL algorithm, knowing that it
still needs to solve an MDP in order to obtain a policy?

First, we analyse the difference of value functions between the apprentice and
the expert policies when a classifier is used as AL method (in the infinite horizon
case). When compared to the sole (as far as we know) related result in IRL,
quantifying the quality of an apprentice trained with the recently introduced
SCIRL (Structured Classification based IRL) algorithm [5], this analysis tells
us that estimating a reward only adds errors. Then, we perform an empirical
study on the generic Garnet framework [2] to see if this first partial answer
is confirmed. It turns out that it actually strongly depends on the (unknown)
reward optimized by the expert: roughly, the less informative the reward is, the
more IRL provides gains compared to AL. Finally, we push this empirical study
even further by perturbing the dynamics of the MDP, which goes beyond the
studied theory. In this case, the advantage of IRL is even clearer.

2 Background and Notations

2.1 General Notations

Let X = (xi){1≤i≤NX} be a finite set and f ∈ RX a function, f is identified to
a column vector and fT is the transposition of f . The powerset of X is noted
P(X). The set of probability distributions over X is noted ΔX . Let Y be a
finite set, ΔYX is the set of functions from Y to ΔX . Let ζ ∈ ΔYX and y ∈ Y,
ζ(y) ∈ ΔX , which can be seen as the conditional distribution probability knowing
y, is also noted ζ(.|y) and ∀x ∈ X , ζ(x|y) = [ζ(y)](x). Besides, let A ∈ P(X ),
then χA ∈ RX is the indicator function on the subset A ⊂ X . The support of f
is noted Supp(f). Moreover, let μ ∈ ΔX , Eμ[f ] is the expectation of the function
f with respect to the probability μ. Let x ∈ X , x ∼ μ means that x is sampled
according to μ. Finally, we define also for p ∈ N∗, the Lp-norm of the function
f : ‖f‖p = (

∑
x∈X (f(x)

p))
1
p , and ‖f‖∞ = maxx∈X f(x).

2.2 Markov Decision Process

A finite Markov Decision Process (MDP) is a tuple M = {S,A,P ,R, γ} where
S = (si){1≤i≤NS} is the finite state space, A = (ai){1≤i≤NA} is the finite action
space, P ∈ ΔS×AS is the Markovian dynamics of the MDP, R ∈ RS×A is the
reward function and γ is the discount factor. A stationary and Markovian policy
π ∈ ΔSA represents the behavior of an agent acting in the MDP M. The set of
all Markovian and stationary policies is noted ΠMS = ΔSA. When the policy π is
deterministic, it can also be seen as an element of AS and π(s) is the action cho-
sen by the policy π in state s. The quality of this behavior in the infinite horizon
framework is quantified by the value function vπR ∈ RS which maps to each state
the expected and discounted cumulative reward for starting in this state and fol-
lowing the policy π afterwards: ∀s ∈ S, vπR(s) = E[

∑
t≥0 γ

tR(st, at)|s0 = s, π].
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A policy π∗R (according to the reward R) is said optimal if its value function v∗R
satisfies v∗R ≥ vπR for any policy π and component wise.

Let Pπ be the stochastic matrix Pπ = (
∑

a∈A π(a|s)P(s′|s, a)){(s,s′)∈S2} and
Rπ ∈ RS the function such that: ∀s ∈ S,Rπ(s) =

∑
a∈A π(a|s)R(s, a). With a

slight abuse of notation, we may write a the policy which associates the action
a to each state s. The Bellman evaluation (resp. optimality) operators T π

R (resp.
T ∗R) : RS → RS are defined as T π

Rv = Rπ + γPπv and T ∗Rv = maxπ T
π
Rv.

These operators are contractions and vπR and v∗R are their respective fixed-points:
vπR = T π

Rv
π
R and v∗R = T ∗Rv

∗
R. The action-value function Qπ

R ∈ S × A adds a
degree of freedom on the choice of the first action, it is formally defined as
Qπ
R(s, a) = [T a

Rv
π
R](s). We also write, when it exists, ρπ ∈ RS the stationary

distribution of the policy π (satisfying ρTπPπ = ρTπ ). The existence and uniqueness
of ρπ is guaranteed when the Markov chain induced by the matrix of finite size
Pπ is irreducible which will be supposed true in the remaining of the paper.

2.3 AL and IRL

AL and IRL are two methods that attempt to solve the imitation problem using
the MDP paradigm. More precisely, in the AL framework, the apprentice, given
some observations of the expert policy πE , tries to learn a policy πA which is as
good as the expert policy according to the unknown reward R that the expert is
trying to optimize (often the expert is considered optimal: vπE

R = v∗R). This can
be expressed numerically: the apprentice tries to find a policy πA such that the
quantity: Eν [v

πE

R − vπA

R ] is the lowest possible, where ν ∈ ΔS . In general ν = ρ
where ρ is the uniform distribution or ν = ρπE (ρπE is also noted ρE). In the IRL
framework, the apprentice is trying to learn a reward R̂ which could explain the
expert behavior. More precisely, given some observations of the expert policy πE ,
the apprentice is trying to learn R̂ such that πE ≈ π∗R̂. This can be expressed
numerically, the apprentice is trying to learn a reward R̂ such that the quantities
Eν [v

π∗
R̂
R̂ − vπE

R̂ ] or Eν [v
πE

R − v
π∗
R̂
R ] are the lowest possible.

3 Theoretical Study

This section gives some theoretical insights into the question: Is it worth estimat-
ing a reward. First, we present a theoretical result for AL reduced to classification
for the infinite horizon case. A proof of this result is given on the appendix 6. The
result is an upper bound on the difference of the value functions of the expert
and apprentice policies. As a previous bound for AL reduced to classification in
the finite horizon case had been proposed in [11], we give an informal compar-
ison of the two results. Besides, there is also a performance bound for an IRL
algorithm [5] (SCIRL) which allows us to compare IRL and AL performances
from a theoretical point of view. We choose to compare those bounds because
the classification and the SCIRL algorithms does not need to resolve iteratively
MDPs. Thus, there is no Approximate Dynamic programming error to deal with
and to propagate to obtain the performance of the algorithm.
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3.1 AL Reduced to Classification for the Infinite Horizon Case

A simple way to realize an AL method is by pure mimicry via an SL method such
as classification. More precisely, we assume that some demonstrations examples
DE = (si, ai){1≤i≤N} where ai ∼ πE(.|si) are available. Without loss of gener-
ality, we assume that the states si are sampled according to some probability
distribution ν ∈ ΔS . So, the data (si, ai) are sampled according to the distribu-
tion μE such that: μE(s, a) = ν(s)πE(a|s). Then, a classifier is learnt based on
these examples (with discrete actions, it is a multi-class classification problem)
thanks to an SL algorithm. This outputs a policy πC ∈ AS , which associates to
each state an action. The quality of the classifier is quantified by the classifica-
tion error: εC = EμE [χ{(s,a)∈S×A,πC(s) �=a}] =

∑
s∈S

∑
a∈A,a �=πC(s) ν(s)πE(a|s).

The quality of the expert (respectively to the unknown reward function R) may
be quantified with vπE

R . Usually, it is assumed that the expert is optimal (that
is, vπE

R = v∗R), but it is not necessary for the following analysis (the expert may
be sub-optimal respectively to R). The quality of the policy πC can also be
quantified by its value function vπC

R . In the following, we bound Eν [v
πE

R − vπC

R ]
which represents the difference between the quality of the expert and the clas-
sifier policy. If this quantity is negative, that is fine, because (in mean), πC is
better than πE . So, only an upper bound is computed. This upper-bound shows
the soundness of the AL through classification method for the infinite horizon
case.

Let define the following concentration coefficient: Cν = (1 − γ)
∑

t≥0 γ
tcν(t)

where ∀t ∈ N, cν(t) = maxs∈S
(νTP t

πE
)(s)

ν(s) . Notice that if ν = ρE , which is a quite
reasonable assumption, then Cν = CρE = 1.

Theorem 1. Let πC be the classifier policy (trained on the data set DE to im-
itate the expert policy πE). Let also εC be the classification error and Cν the
above defined concentration coefficient. Then ∀R ∈ RS×A:

Eν [v
πE

R − vπC

R ] ≤ 2Cν‖R‖∞
(1− γ)2

εC .

The proof of Th. 1 is given on the appendix 6 and is based on the propagation
of the classification error. In [11], the authors have established similar bounds in
the finite horizon case. However, as most of AL and IRL algorithms considered
so far the infinite horizon framework, we think that our result has its interest.

3.2 The Bound on the Finite-Horizon Case

In this section, we introduce specific notations to the finite horizon case and we
interpret the results from [11]. Let consider a finite MDP M = {S,A,P ,R}
with horizon H and without discount factor γ. A Markovian and non-stationary
policy is an element of the set ΠH

MS ; if π is non-stationary, then πt refers to
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the stationary policy that is equal to the tth component of π. Similarly to the
infinite horizon case, we define the value function of the policy π at time t:

∀s ∈ S, vπt,R(s) = E[
H∑

t′=t

R(st′ , at′)|st = s, π].

Let Dt
π be the distribution on state-action pairs at time t under policy π. In

other words, a sample (s, a) is drawn from Dt
π by first drawing s1 ∼ ν ∈ ΔS ,

then following policy π for time steps 1 through t, which generates a trajectory
(s1, a1, . . . , st, at), and then letting (s, a) = (st, at). More formally, we have:

∀1 ≤ t ≤ H, ∀(s, a) ∈ S × A, Dt
π,ν(s, a) = (νT (Pπ1 × · · · × Pπt−1 ))(s)πt(a|s).

In [11], the authors suppose the availability of the set of trajectories DE =
(ωi){1≤i≤N} where ωi = (si1, a

i
1, . . . , s

i
H , aiH) with si1 ∼ ν ∈ ΔS and (sit, a

i
t) ∼

Dt
πE

where 1 ≤ t ≤ H and πE is the non-stationary and Markovian expert
policy. In the finite horizon case, Apprenticeship Learning through classification
will consists in learning an apprentice policy πC = (πt

C){1≤t≤H} thanks to H
classifiers trained on the sets Dt

E = (sit, a
i
t){1≤i≤N}. Thus, for each set Dt

E =
(sit, a

i
t){1≤i≤N}, we train a multi-class classifier and learn a deterministic policy

πt
C with classification error:

εtC = EDt
E
[χ{(s,a)∈S×A,πt

C(s) �=a}].

We note εC = max1≤t≤H εtC . Then we have the following theorem:

Theorem 2. Let πE be the expert non-stationary and Markovian expert policy,
DE a set of N trajectories with si1 ∼ ν ∈ ΔS and πC the policy learnt by the H
classifiers, then:

Eν [v
πE

1,R − vπC

1,R] ≤ min(2
√
εCH

2, 4εCH
3 + δπE )‖R‖∞,

where δπE =
Eν [v

∗
1,R−v

πE
1,R]

‖R‖∞ represents the sub-optimality of the expert.

It is possible to compare these results with our bound, even if one deals with
the infinite horizon case and the other with the finite horizon case, by informally
noticing that the introduction of the discount factor γ in the infinite horizon
corresponds to an horizon of length 1

1−γ :
∑

t≥0 γ
t = 1

1−γ . By replacing H by
1

1−γ in the the precedent bound, we obtain:

Eν [v
πE

1,R − vπC

1,R] ≤ min(
2
√
εC

(1− γ)2
,

4εC
(1− γ)3

+ δπE )‖R‖∞.

So, if we informally identify the classification errors and the horizon H to 1
1−γ ,

our bound is slightly better either by
√
εC or by 2

1−γ . Moreover, as our bound
is specific to the infinite horizon, it is more adapted to AL and IRL algorithms
as most of them consider the infinite horizon case.
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3.3 SCIRL and Its Performance Bound

[5] assume that the unknown reward is linearly parameterized by some feature
vector. More precisely, let φ(s, a) = (φ1(s, a), . . . , φp(s, a))

T be a feature vector
composed of p ∈ N∗ basis functions φi ∈ RS×A, the parameterized reward
function is Rθ(s, a) = θTφ(s, a) =

∑
1≤i≤p θiφi(s, a). Searching a good reward

thus reduces to searching a good parameter vector θ ∈ Rp. The choice of features
is done by the user. Moreover, SCRIL needs the estimation of the expert feature
expectation ωπE [5] which is the expected discounted cumulative feature vector
for starting in a given state, applying a given action and following the expert
policy:

ωπE (s, a) = E[
∑
t≥0

γtφ(st, at)|s0 = s, a0 = a, πE ].

It can be seen that: QπE

Rθ
(s, a) = θTωπE (s, a). An estimation of the feature expec-

tation ω̂πE is done via the expert data set: DE . The problem of estimating the
expert feature is a policy evaluation problem. Then, SCIRL uses the estimation
of the expert feature expectation ω̂πE as the basis function of a linearly param-
eterized score-based multi-class classifier fed by the set DE . The classification
error is εC = EμE [χ{(s,a)∈S×A,πC(s) �=a}] with πC(s) = argmaxa∈A θTC ω̂πE(s, a)
and θC the output of the score-based classifier. The reward outputted by the
SCIRL algorithm is RC = θTCφ. Then, the performance bound for this algorithm
is:

0 ≤ EρE [v
∗
RC

− vπE

RC
] ≤ Cf

(1− γ)

(
2‖RC‖∞εC

1− γ
+ εQ

)
,

With Cf = (1 − γ)
∑

t≥0 γ
tcf (t) where ∀t ∈ N, cf (t) = maxs∈S

(ρT
EP t

π∗RC

)(s)

ρE(s) .
Moreover, εQ = EρE [maxa∈A εQ(., a) − mina∈A εQ(., a)], where εQ(s, a) =
θTC(ω̂πE (s, a) − ωπE(s, a)), is a measure of the error estimation of the feature
expectation. This bound is specific to the reward RC and the constant Cf is
not equal to 1 when ν = ρE , which makes this bound possibly quite worst than
the pure classification bound, even when the expert feature expectation is per-
fectly estimated (εQ = 0). This seems to indicate that this IRL algorithm is less
interesting than a simple classification algorithm in theory. However, in prac-
tice, we will see that for specific unknown rewards SCIRL can have much better
performance than a classification algorithm (see Sec. 4).

4 Empirical Study

This section shows through experiments that the previous theoretical bounds
does not tell everything about AL methods and IRL methods. Here, several ex-
periments are conducted and show the interest of finding a reward thanks to
a general framework of experiments called the Garnet framework. We choose
a particular framework where all the problems are finite MDPs with a tabular
representation. Even if those problems are not challenging, they allow compar-
ing fairly the different approaches without the problem of bias induced by the
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choice of representation. The comparison is done between a pure classification
algorithm and two recently published IRL algorithms which are SCIRL and Rel-
ative Entropy IRL (RE) [4], for which there is no known error analysis. The pure
classification algorithm was chosen as a benchmark for the AL approach because
it has a theoretical performance guarantee and does not need to resolve itera-
tively MDPs unlike most of the other algorithms. SCIRL and RE were chosen
as benchmarks for the IRL approach because they also do not need to resolve
iteratively MDPs which reduces the impact of Approximate Dynamic Program-
ming (ADP) in the interpretation even if the outputted reward is optimized via
the policy iteration algorithm. These experiments show that the choice of the
underlying unknown reward, which is used in order to create the expert policy
thanks to the policy iteration algorithm, is crucial. Indeed when the unknown
reward is normally distributed on each state-action-couple the classification has
quite good performance whereas it has quite low performance when the reward is
sparse or state-only-dependent. The intuitive idea behind those results is: when
the reward is too informative, the impact of the optimization horizon is reduced,
which favors the classification approach.

4.1 AL and IRL Algorithms

The first algorithm is a pure classification algorithm. More precisely, it is multi-
class classification algorithm fed by the set DE using a structured large-margin
approach [12] which consists in minimizing the following criterion with respect
to Q ∈ RS×A:

L0(Q) =
1

N

N∑
i=1

max
a∈A

[Q(si, a) + l(si, a)]−Q(si, ai) + λ‖Q‖22,

where l(s, a) = 0 when ∃1 ≤ i ≤ N, (s, a) = (si, ai) and l(s, a) = 1 otherwise. The
minimization is realized via a sub-gradient descent [9]. Then the policy obtained
by the algorithm is a deterministic policy such that πC(s) ∈ argmaxa∈AQ∗(s, a)
where Q∗ is the output of the minimisation of the criterion L0 via the
sub-gradient descent. The two other algorithms are IRL algorithms. SCIRL (pre-
sented in Sec. 3.3) needs only the set DE to be implemented and outputs a reward
RC . The instantiation of SCIRL, in our experiments, is the one described in the
original paper. In order to obtain a policy πC , this reward is optimized by the
policy iteration algorithm with respect to the reward RC . The policy iteration
algorithm needs the knowledge of the whole dynamics of the MDP to be im-
plemented but allows a comparison which does not depend on the choice of an
ADP algorithm (we need solving an MDP to measure the efficiency of the esti-
mate, but not to obtain the estimate). Like SCIRL, the RE algorithm supposes
a linear parametrization of the reward. The principle of the Relative Entropy
method is based on minimizing the relative entropy (KL divergence) between
the empirical distribution of the state-action trajectories under a random policy
and the distribution of the trajectories under a policy that matches the expert
feature expectation [4]. The RE algorithm used in this paper is the one described
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in the original paper. It needs the set DE and also requires a set DP of sampled
trajectories according to a non-expert policy. In the experiments, the random
policy will be chosen in order to generate the set DP (see Sec. 4.3). The output
of the algorithm is a reward RC and a policy iteration algorithm is also used to
obtain the policy πC relative to the outputted reward.

4.2 The Garnet Framework

The Garnet problems are a class of randomly constructed finite MDPs meant
to be totally abstract while remaining representative of the kind of finite MDPs
that might be encountered in practice [2]). The routine to create an instance
of a stationary Garnet problem is characterized by 3 parameters and written
as Garnet(NS , NA, NB). The parameters NS and NA are the number of states
and actions respectively, and NB is a branching factor specifying the number
of next states for each state action pair. The next states are chosen at random
from the state set without replacement. The probability of going to each next
state is generated by partitioning the unit interval at NB − 1 cut points selected
randomly. The reward R(s, a) will be chosen depending on the experiments. For
each Garnet problem, it is possible to compute an expert policy πE thanks to
the reward R via the policy iteration algorithm. Finally, the discount factor is
fixed to 0.99.

4.3 Pure Classification Versus SCRIL and RE

The idea, in order to obtain a general result, is to run the same experiment on
hundreds of MDPs and regroup the results at the end. All the algorithms are
fed with data sets of the the following type: DE = (si, ai){1≤i≤N} where ai ∼
πE(.|si). More particularly, DE = (ωj){1≤i≤KE} where ωj = (si,j , ai,j){1≤i≤HE}
is a trajectory obtained by starting from a random state s1,j (chosen uni-
formly) and applying the policy πE HE times (si+1,j ∼ P (.|si,j , ai,j)). So, DE

is composed by KE trajectories of πE of length HE and we have KEHE = N .
We also fed the RE algorithms with a data set of sampled transitions DP =
(si, ai, s

′
i){1≤i≤N ′} where ai ∼ πR(.|si) with πR the random policy (uniform dis-

tribution over the actions for each state) and where s′i ∼ P (.|si, ai). Actually, DP

has the particular form DP = (τj){1≤j≤KP } where τj = (si,j , ai,j , s
′
i,j){1≤i≤HP }

is a trajectory obtained by starting from a random state s1,j (chosen uniformly)
and applying the policy πR HP times (s′i,j = si+1,j ∼ P (.|si,j , ai,j)). So, DP is
composed by KP trajectories of πR of length HP and we have KPHP = N ′.
Therefore, if we have for a given Garnet problem πE and πR, the set of param-
eters (KE , HE ,KP , HP ) is sufficient to instantiate sets of types DE and DP .

Our first experiment shows the performance of the algorithms when HE is in-
creasing and when the reward for each Garnet is chosen normally distributed for
each state-action couple. The reward R(s, a) is selected randomly according to
a normal distribution with mean 0 and with standard deviation 1. It consists in
generating 100 Garnet problems of the type Garnet(NS , NA, NB), where NS is
uniformly chosen between 50 and 100,NA uniformly chosen between 5 and 10 and
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NB uniformly chosen between 2 and 5 . This gives us the set of Garnet problems
G = (Gp){1≤p≤100}. On each problem p of the set G, we compute πp

E and πp
R. The

parameter HE takes its values in the set (Hk
E){1≤k≤11} = (50, 100, 150, .., 500),

KE = 1, HP = 10, KP = 50. Then, for each set of parameters (KE, H
k
E ,KP , HP )

and each Gp, we compute 100 expert policy sets (Di,p,k
E ){1≤i≤100} and 100 ran-

dom policy sets (Di,p,k
P ){1≤i≤100}. Our criteria of performance for each cou-

ple (Di,p,k
E , Di,p,k

P ) is the following: T i,p,k =
Eρ[v

π
p
E

R −v
π
i,p,k
C

R ]

Eρ[v
π
p
E

R ]
, where πp

E is the

expert policy, πi,p,k
C is the policy induced by the algorithm fed by the cou-

ple (Di,p,k
E , Di,p,k

P ) and ρ is the uniform distribution over the state space S.
For the pure classifier, we have πi,p,k

C (s) ∈ argmaxa∈A Q̂∗(s, a) where Q̂∗ is
the minimizer of L0. For the SCIRL and RE algorithms, πi,p,k

C is the pol-
icy obtained by optimizing the reward RC outputted by the algorithm via
the policy iteration algorithm. Our mean criterion of performance for each
set of parameters (KE , H

k
E ,KP , HP ) is: T k = 1

10000

∑
1≤p≤100,1≤i≤100 T

i,p,k.
For each algorithm we plot (Hk

E , T
k){1≤k≤15}. Another criterion is also use-

ful in order to interpret the results. For each Garnet problem and each set
of parameters, we calculate the standard deviation stdp,k for each algorithm:

stdp,k =
{

1
100

∑
1≤i≤100[T

i,p,k −
∑

1≤j≤100 T
j,p,k]2

} 1
2

. Then we compute the
mean standard deviation over the 100 Garnet problems for each set of parame-
ters: stdk = 1

100

∑
1≤p≤100 std

p,k. For each algorithm we plot (Hk
E , std

k){1≤k≤15}.
Results are reported on Fig. 1. Here, we see that the pure classification algorithm
has a better performance over the IRL algorithms when the number of data is
increasing. This can be explained by the particular shape of the reward which is
particularly suited to make the pure classification algorithm work well and IRL
algorithms work bad. Indeed, as there are rewards for each state-action couples
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Fig. 1. Garnets experiment: normally distributed reward
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Fig. 2. Garnets experiment: sparse reward

which are normally chosen, doing a misclassification is not so important as there
will be rewards with the same form in the next states. However, as there are
a lot of rewards everywhere, a lot of data is needed for an IRL algorithm to
be able to estimate a meaningful reward. Another possible but complementary
interpretation of those results is: as the reward is very informative, the choice of
the action does not depend too much on the future states and the impact of the
optimization horizon is strongly reduced.

The second experiment is exactly the same as the first one, except that the
reward is no longer normally distributed. For each Garnet, we generate a reward
with a small support: Supp(R) ≤ NSNA

50 by randomly choosing between 1 and
NSNA

50 couples (s, a) such that R(s, a) 
= 0 (reward randomly chosen between 0
and 1). For the other couples (s, a), R(s, a) = 0. Results are reported on Fig. 2.
Here, we see that the IRL algorithms work better than previously and the pure
classification algorithms has its performance deteriorated a little bit compared
to the previous experiment. This can be explained by the shape of the unknown
reward. As the unknown reward is sparse, doing a misclassification on a state
where the expert choose the action that gives a reward is important as there
are only few state-action couples with rewards. Thus, the pure classification
algorithm may have some problems with few data which is what we observe
on Fig. 2(a). Moreover, the IRL algorithms have a better performance, maybe
because the unknown reward has a simpler structure to learn. Again as the
reward is less informative, the impact of the optimization horizon may be more
important than for the previous reward which deteriorates the performance of
the classification.

The third experiment is exactly the same as the first one, except that the
reward is state-only-dependent. To construct a state-only-dependent reward, it
is sufficient for each s ∈ S to select randomly a value R(s) according to a normal
distribution with mean 0 and with standard deviation 1 and then ∀(s, a) ∈
S × A = R(s, a) = R(s). Results are reported on Fig 3. Here, the performance
of the IRL algorithms is better than the second experiment and than the pure
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Fig. 3. Garnets experiment: state-only-dependent reward

classification. This can be explained by the fact that the structure of the reward is
even simpler. The pure classification see its performance deteriorated compared
to the second experiment. As the unknown reward depends only on the state and
not on the action, it is very important to follow the path of the expert to obtain
a good performance. Thus, a misclassification on a given state which leads to a
bad path can be very damageable and lead to bad performance.

5 Dynamics Perturbations

In this section, we want to show that it can be interesting to retrieve the reward
in order to be more stable to dynamics perturbations. As the reward is seen as
the most succinct hypothesis explaining the behavior of the expert, we can expect
that the reward outputted by the IRL algorithms is such that its optimization
will lead to a near-optimal behavior even if there is a dynamics perturbation.
The dynamics perturbations considered are the ones which keep identical the
structure of the MDP. The structure of the MDP is for a given state-action couple
(s, a) the different states that could be reached by choosing the action a in state s,
that is Supp(Ps,a). The structure of the MDP is the set (Supp(Ps,a)){(s,a)∈S×A}.
Therefore a dynamic perturbation is the choice of a dynamics P̃ different from
P such that: (Supp(Ps,a)){(s,a)∈S×A} = (Supp(P̃s,a)){(s,a)∈S×A}.

The first experiment consists in in generating 100 Garnet problems of the
type Garnet(NS , NA, NB), where NS is chosen randomly between 50 and 100,
NA randomly chosen between 5 and 10 and NB chosen randomly between 2 and 5
. This gives us the set of Garnet problems G = (Gp){1≤p≤100}. Here, The reward
R(s, a) is selected randomly according to a normal distribution with mean 0 and
with standard deviation 1. Then for each Gp, we realize 50 dynamics perturba-
tion and we obtain the set of Garnets problems G̃ = (Gp,q){1≤p≤100,1≤q≤50}. On
each problem p, q of the set G̃, we compute πp,q

E and πp,q
R and on each problem p

of the set G, we compute πp
E and πp

R. The parameter HE takes its values in the
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set (Hk
E){1≤k≤15} = (50, 100, 150, .., 500),KE = 1, HP = 10, KP = 50. Then, for

each set of parameters (KE, H
k
E ,KP , HP ) and each Gp, we compute 100 expert

policy sets (Di,p,k
E ){1≤i≤100} and 100 random policy sets (Di,p,k

P ){1≤i≤100}. Our
criteria of performance for each couple (Di,p,k

E , Di,p,k
P ) on each Gp,q problem is

the following: T i,p,q,k =
Eρ[v

π
p,q
E

R −v
π
i,p,k
C

R ]

Eρ[v
π
p,q
E

R ]
, where πp,q

E is the expert policy on the

problem Gp,q, πi,p,k
C is the policy induced by the algorithm fed by the couple

(Di,p,k
E , Di,p,k

P ) and ρ is the uniform distribution over the state space S. For the
pure classifier, we have πi,p,k

C (s) ∈ argmaxa∈A Q̂∗(s, a) where Q̂∗ is the output.
For the SCIRL and RE algorithms, πi,p,k

C is the policy obtained by optimizing the
reward R outputted by the algorithm via the policy iteration algorithm. More-
over, when πi,p,k

C = πp
E , then T i,p,q,k represents the best performance possible to

achieve by an AL algorithm: this curve will be noted AL in our figures. Finally,
when πi,p,k

C = πp
R, then T i,p,q,k represents the performance of the random policy

and this curve will be noted Rand in our figures.
Our mean criterion of performance for each set of parameters

(KE , H
k
E ,KP , HP ) is: T k = 1

500000

∑
1≤p≤100,1≤q≤50,1≤i≤100 T

i,p,q,k. For each al-
gorithm we plot (Hk

E , T
k){1≤k≤15}. Another criterion is also useful in order to

interpret the results. For each Garnet problem Gp and each set of parameters,
we calculate the standard deviation stdp,k for each algorithm:

p,k

std =

⎧⎨⎩ 1

5000

1≤q≤50∑
1≤i≤100

[T i,p,q,k −
1≤q′≤50∑
1≤j≤100

T j,p,q′,k]2

⎫⎬⎭
1
2

.

Then we compute the mean standard deviation over the 100 Garnet problems for
each set of parameters: stdk = 1

100

∑
1≤p≤100 std

p,k. For each algorithm we plot
(Hk

E , std
k){1≤k≤15}. Results are reported on Fig. 4. Here, the reward is normally
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Fig. 4. Perturbed dynamics: normally distributed reward
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Fig. 5. Perturbed dynamics: sparse reward
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Fig. 6. Perturbed dynamics: state-only-dependent reward

distributed so a dynamic perturbation may not deteriorate too much the expert
policy. Indeed, as the reward is very informative, the impact of the optimization
horizon must be very small and the perturbation of dynamics will not change
too much the optimal policy. We can observe this on Fig. 4(a), where we see that
the yellow curve noted AL is not so far away from 0. With this shape of reward,
it is better to use a pure classification algorithm to have this stability property.

The second experiment is exactly the same as the previous one, except that
the reward is sparse. Results are reported on Fig. 5. As the reward is sparse,
we can expect that a dynamic perturbation leads to an important deterioration
of the performance of the expert policy. Here, we see that IRL algorithms are
under the yellow curve when the number of data is increasing, which means that
no AL algorithms will be able to reach that level of stability. Thus, it seems
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that estimating a reward function in that case can be very useful because it
guarantees a level of stability that no AL algorithms is able to provide.

The third experiment is exactly the same as the previous one, except that the
reward is state-only-dependent. Results are reported on Fig. 6. Here the shape
of reward is even simpler that the previous experiment. It seems that the IRL
algorithms are even more stable with less data. Again, as the impact of the opti-
mization horizon becomes important, the performance of the pure classification
and the one of the best possible AL algorithm are really deteriorated.

6 Conclusion and Perspectives

In this paper, we tried to give some theoretical and empirical insights into the
following question: is it worth estimating a reward function? First, we upper-
bounded the difference between the value function of the expert and the value
function of the apprentice policy, for AL reduced to classification in the infinite
horizon case. This result gives a better bound than the theoretical performance
bound of the SCIRL algorithm and is informally better than the bound in the
finite horizon case proved in [11]. Thus, in theory, there are no specific reason to
use an IRL algorithm which still needs to solve an MDP in order to obtain an
optimal policy according to the reward found by the algorithm.

However, in practice, the experiments conducted in this paper on a generic
task (Garnet problems) show that for specific shapes of the unknown reward
function, IRL algorithms have better performance than the pure classification
algorithms and possess a stability property that no AL algorithm will be able to
achieve. Besides, it seems that the reward functions that favor the IRL algorithms
are the less informative ones. We think that the less informative the reward
is, the bigger the impact of the optimization horizon is. This is an obvious
disadvantage for the pure classification method which doest not take into account
this optimization horizon.

However, there is no theoretical proof explaining why IRL algorithms work
better with specific forms of reward functions. This can be an interesting perspec-
tive to give more soundness to the experiments leaded in this paper. Moreover,
it would be interesting to create an algorithm able to use data coming from dif-
ferent perturbed dynamics of the same MDP in order to learn a reward function
which will be even less sensible to perturbed dynamics. This can be useful with
applications where human are involved: in those kind of real-life applications,
each human can be seen as a perturbed version of an MDP.
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2013) under grant agreement n°270780.
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Appendix: Proof of Th.1

We have:

vπE

R − vπC

R
(a)
= T πE

R vπE

R − T πE

R vπC

R + T πE

R vπC

R − vπC

R
(b)
= γPπE (v

πE

R − vπC

R ) + T πE

R vπC

R − vπC

R ,

(c)
= (I − γPπE )

−1(T πE

R vπC

R − vπC

R ),

Equality (a) holds because T πE

R vπE = vπE

R , Equality (b) is obtained by definition
of T πE

R and Equality (c) is true by invertibility of I − γPπE where I ∈ RS×S is
the identity matrix. The next step is to work on the term T πE

R vπC

R − vπC

R . For
any function v ∈ RS , by definition of T πE

R : T πE

R v = RπE +γPπEv. Noticing that:

T πE

R vπC

R (s)− vπC

R (s) =
∑
s′∈S

∑
a∈A

πE(s, a)[R(s, a)+γP(s′|s, a)vπC

R (s′)]− vπC

R (s),
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and by definition of QπC

R (s, a), we have:

∀s ∈ S, T πE

R vπC

R (s)− vπC

R (s) =
∑
a∈A

πE(s, a)QπC

R (s, a)− vπC

R (s),

=
∑

a∈A,a �=πC(s)

πE(a|s)[QπC

R (s, a)− vπC

R (s)].

So:

νT (vπE

R − vπC

R ) = νT (I − γPπE )
−1[T πE

R vπC

R − vπC

R ],

=
∑
s∈S

∑
t≥0

γt (ν
TP t

πE
)(s)

ν(s)
ν(s)[T πE

R vπC

R (s)− vπC

R (s)],

=
∑
s∈S

∑
t≥0

γt (ν
TP t

πE
)(s)

ν(s)
ν(s)

∑
a �=πC(s)

πE(a|s)[QπC

R (s, a)− vπC

R (s)].

Thus by definition of Cν :

νT (vπE

R − vπC

R ) ≤ Cν

1− γ

∑
s∈S

∑
a∈A,a �=πC(s)

ν(s)πE(a|s)|QπC

R (s, a)− vπC

R (s)|,

(d)

≤ Cν

1− γ

2‖R‖∞
1− γ

∑
s∈S

∑
a∈A,a �=πC(s)

ν(s)πE(a|s),

(e)
=

2‖R‖∞CνεC
(1− γ)2

.

Inequality (d) is true because |QπC

R (s, a)− vπC

R (s)| ≤ 2‖R‖∞
1−γ and Equality (e) is

true by definition of εC . This ends the proof.
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Abstract. We study the use of inverse reinforcement learning (IRL) as
a tool for recognition of agents on the basis of observation of their se-
quential decision behavior. We model the problem faced by the agents
as a Markov decision process (MDP) and model the observed behavior
of an agent in terms of forward planning for the MDP. The reality of the
agent’s decision problem and process may not be expressed by the MDP
and its policy, but we interpret the observation as optimal actions in the
MDP. We use IRL to learn reward functions for the MDP and then use
these reward functions as the basis for clustering or classification mod-
els. Experimental studies with GridWorld, a navigation problem, and
the secretary problem, an optimal stopping problem, show algorithms’
performance in different learning scenarios for agent recognition where
the agents’ underlying decision strategy may be expressed by the MDP
policy or not. Empirical comparisons of our method with several exist-
ing IRL algorithms and with direct methods that use feature statistics
observed in state-action space suggest it may be superior for agent recog-
nition problems, particularly when the state space is large but the length
of the observed decision trajectory is small.

1 Introduction

The availability of sensing technologies, such as digital cameras, global position
system, infrared sensors, web technology and others, makes the computer easily
access varieties of data recording the interaction between agents and the envi-
ronment. As summarized in Figure 1, research in learning from the observed
behavior has seen the development of approaches to activity recognition (It may
be referred as different terms within the published literature, including plan
recognition and goal recognition) and learning from demonstrations (It may be
referred as imitation learning in other fields):

– Activity recognition: an activity can be described as a specific event or a
combination of events, e.g. ”go to bed”, ”cook a breakfast”, ”read a book”
for the study of human activity recognition. The goal in activity recognition
is a special event so that some optimal plan for a goal is compatible with the
observations. A plan represents a mapping between state of a decision prob-
lem and action of an agent. The goal may change or it may consist of several

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 33–48, 2013.
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Fig. 1. Overview and Categorization of problems of learning from observation of
decision-making behavior, including the widely studied problems that infer the goals
of an agent and that learn how to make decisions, as well as our proposed new problem
of recognizing agents based on their decision behavior

sub-activities or sub-goals. One may recognize an activity by applying clas-
sification/clustering algorithms directly to the feature vectors constructed
from the observation data [22]. Alternatively, given a plan library or a set of
goals as a prior, the entire trace of actions can be recognized and matched
against a plan library or a set of possible goals [16]. Despite of the success of
these methods, they assume that the plan library, a set of possible goals or
some behavior model are known beforehand and provided as an input. Goal
information is often completely unknown in practice, however, and so it is
difficult to model the goal precisely.

– Learning from demonstrations: Much of work is focused on approximating
the function mapping from observed experts’ states to actions [2]. Alterna-
tively, one may use demonstration data to inverse a decision model and a
policy is then derived using this model, e.g. apprenticeship learning [4].

However, in practical applications we may not only be interested in reverse
engineering of a decision-making process or imitating a behavior (identification),
but also in determining whether two agents correspond to the same behavior pat-
tern (clustering), or which decision-making pattern is being observed in an agent
(classification). In this paper, we propose a new problem, termed Behavior-based
Agent Recognition(BAR), that involves recognizing agents based on observation
of their sequential behavior, instead of recognizing activities or actions.

This new problem is also motivated by varieties of applications in the real-
world. E.g., we may find a way to train drivers by classifying the observed
drivers into defensive driving and aggressive driving, even those drivers may have
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similar activities or goals, such as avoid driving over curbs or a collision. In the
e-commerce market, if the web site can automatically categorize users based on
observation of their on-line behavior, such as which buttons have been clicked
by an user on which web page with what advertisements, a similar marketing
strategy may work successfully on people in the same group. Another motiva-
tion comes from domains like high frequency trading of stocks and commodities,
where there is considerable interest in identifying new market players and algo-
rithms based on observations of trading actions, but little hope in learning the
precise strategies employed by these agents [24][14].

A direct approach to BAR problem is to program some heuristic rules to
recognize agents by decomposing complex behavior into a series of simple events
and then evaluating them to reach a conclusion. However, programming the rules
is hard. Alternatively, we can construct a feature vector to characterize agents
based on the observed behavior, and then categorize the agents using these
feature vectors. Consider image recognition as an illustration of this method. A
computer learns to categorize images by representing every image as a multi-
dimensional feature vector that consists of the components such as RGB color,
texture, or other metrics. Here, an agent is an object like an image, and the
feature vector needs to be constructed from the observed behavior. The key
point in this process is how to find a high-level vector that can represent the
underlying decision-making process. If the decision problem can be cast in the
MDP framework, we propose to represent the agents with the reward functions
of MDP models because they effectively influence the forward planning process.

IRL [13] addresses the task of finding a reward function that explains the
observed behavior via the forward planning of a MDP. The observed behavior
is assumed to maximize the long-term accumulative reward for that MDP. Most
of recent work in IRL is focused on apprenticeship learning (AL), in which IRL
is used as the core method for finding decision policies consistent with observed
behavior [1] [21]. A number of IRL algorithms, being designed for apprentice-
ship learning or imitation learning, includes Max-margin planning [17], gradient
tuning methods [12], linear solvable MDP [10], bootstrap learning [5], Gaussian
process IRL [15] and Bayesian inference [6].

Our main contribution is to propose a new problem called BAR, and present
a method based on IRL that models the problem faced by the agents as a MDP
and assumes the reward function of the MDP model as a high-level abstraction of
the decision behavior. The motivation is that even when the agent’s behavior is
not rational and we hardly learn the precise goals/plans, we still may categorize
agents by using reward functions learned from the observed behavior.

On two well-known sequential decision-making problems, we compare our
method with several existing IRL algorithms and with direct methods that
use feature statistics observed in state-action space. The results show that our
method using reward functions provides a formal way to solve the agent recog-
nition problem and performs superior to other methods.



36 Q. Qiao and P.A. Beling

2 Preliminaries

We define the input of BAR problem as a tuple B = (D1, D2, . . . DN ), where
Dn, n ∈ {1, 2, . . . , N} is the observation of the n-th agent. For a classification
problem, Dn = (On, yn), where On is a set of observed decision trajectories
and yn is the class label for the n-th agent. The agents, who have the same
decision-making pattern, are given the same class label. Similarly, for a clustering
problem, Dn only consists of the observed decision trajectories On.

We define the set of decision trajectories On = {hj
n}, j = 1, 2, . . . , |On|, where

each trajectory hj
n is defined as a series of state and action pairs: {(s, a)tn}, t =

1, 2, . . . , |hj
n|. Here, the s denotes the state for the decision problem and the a

means the action selected by the agent at state s. Below are two definitions
about the agent recognition problem.

Definition 1. In general, an classification problem is: given a decision problem
where the observed behavior On comes from, a universe F where the examples
come from(the observed behavior is expressed in this space), a fixed set of classes
Y, and a training set X of labeled agents whose element x ∈ F × Y, we use a
learning algorithm to find a function g : F → Y.

Definition 2. Given the observed behavior {On}Nn=1, a universe F where the
examples come from, and a training set X = {f1, f2, . . . , fN}, where fn ∈ F , n ∈
{1, . . . , N}, the clustering of N agents is the partitioning of X into K clusters
{C1, C2, . . . , CK} that satisfies (1) ∪K

k=1Ck = X; (2) Ck 
= φ, k = 1, 2, . . . ,K;
(3) Ck ∩Ck′ = φ, ∀k 
= k′ and k, k′ ∈ {1, 2, . . . ,K}.

Next, we present the approaches to BAR problem in Section 3 and Section 4,
and review the related IRL algorithms that have been used within our model in
Section 5.

3 Two Direct Agent Recognition Models

In this section, we describe two approaches to agent recognition problem that
construct feature vectors directly with the raw observation data.

The first method is called feature trajectory (FT ). Consider a decision tra-
jectory hj

n. The vector to characterize the behavior in j-th decision trajectory is
written as follows.

f(hj
n) = [s1, a1, s2, a2, . . . , s|hj

n|, a|hj
n|],

where si, i ∈ {1, 2, . . . , |hj
n|} is a discrete random variable meaning the state

index at i-th decision stage, and ai represents the action selected at state si.
E.g., we have a problem that can be defined by 3 states and 2 actions. Then
si ∈ {1, 2, 3} and ai ∈ {1, 2}. In the observation, every trajectory starts from
the same initial state. Given the observation set On for n-th agent, the feature

vector fn is obtained by computing this equation: fn = 1
|On|

∑|On|
j=1 f(hj

n), where

the vector f(hj
n) is preprocessed by scale-normalization before averaging.
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Then, the n-th agent is represented by a feature vector fn. Consider a super-
vised learning problem. Given a real valued input vector fn ∈ F and a category
label yn ∈ Y, we aim to learn a function g : F → Y.

The second method is called feature expectation (FE ), which has been widely
used by apprenticeship learning as a representation of the averaged long-term
performance. Assume a basis function φ : S → [0, 1]d, where S denotes the state

space. The feature expectation fn = 1
|On|

∑|On|
j=1

∑
st∈hj

n
γtφ(st), where γ ∈ (0, 1)

is a discount factor. The associated apprenticeship learning algorithms aim to
find a policy that performs as well as demonstrations by minimizing the distance
between their feature expectations. Here, we only use the observed state sequence
to compute the feature expectation vector for an agent, where the γ is manually
defined constant, e.g. 0.95. Then, the n-th agent can be represented by the vector
fn that is built on On.

4 A Behavior-Based Agent Recognition Model

First, we briefly review some background about MDP necessary for the next
proposed method.

A finite MDP model M = (S,A, R, γ,P) where S is the set of states, A
is the set of actions, R is the reward function, γ is the discount factor, and
P = {Pa}a∈A is a set of transition probability matrices. The entries of Pa,
written as Pa(s, s

′), give the probability of transitioning to state s′ ∈ S from
state s ∈ S given the action is a. The rows of Pa, denoted Pa(s, :), give a
probability vector of transitioning from state s to all the states in S. In a finite
state space the reward function R may be considered as a vector, r, whose
elements give the reward in each state.

In the MDP, a stationary policy is a function π : S → A. The value function for
a policy π is V π(s0) = E[

∑∞
t=0 γ

tR(st)|p(s0), π] where p(s0) is the distribution
of the initial state and the action at state st is determined by policy π. Similarly,
the Q function is defined as Q(s, a) = R(s) + γ

∑
s′∈S Pa(s, s

′)V π(s′). At state
s, an optimal action is selected by a∗ = maxa∈AQ(s, a).

Then, an instance of the IRL problem is written as a triplet B = (M \
r, p(r),O), where M \ r is a MDP model without the reward function and p(r) is
prior knowledge on the reward. The vector p(r) can be a non-informative prior
if we have no knowledge about the reward, or a Gaussian or other distribution
if we model the reward as a specific stochastic process. Later in Section 5, we
present the details for Bayesian IRL that has been used in our experiments.

Our behavior-based agent recognition method proceeds as follows.

1. Given the BAR problem with inputB, we use the set {On}, n ∈ {1, 2, . . . , N}
to construct the state space S and action space A for the decision-making
problem. The P can be modelled using prior knowledge of the problem or
estimated from the observed decision trajectories.

2. For every agent, we construct a MDP model, no matter whether the optimal
policy of this MDP can match the observed behavior.
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3. Apply IRL algorithms to learn the reward vector rn for n-th agent.
4. Given the training set {r1, r2, . . .}, where rn ∈ F and the corresponding

category label yn ∈ Y, we aim to train a classifier g : F → Y.
5. Given a new agent, we repeat step 1-3 to get the reward vector for the agent

and then predict the label for the behavior pattern using function g : F → Y.

We use a MDP to model the decision problem faced by an agent under obser-
vation. The reality of the agent’s decision problem and process may differ from
the MDP model, but we interpret every observed decision of the agent as the
choice of an action in the MDP. The dynamics of the environment in the MDP
are described by the transition probabilities P . These probabilities may be inter-
preted as being a prior, if known in advance, or as an estimation of the agent’s
beliefs of the dynamics. Next, we will show how to learn the reward functions
by employing some exiting IRL algorithms.

5 Bayesian Framework for IRL

Most existing IRL algorithms have some assumption about the form of the re-
ward function. Prominent examples include the model in [13], which we term
linear IRL (LIRL) because of its linear nature, WMAL in [21], and PROJ in [1].
In these algorithms, the reward function is written linearly in terms of features as
R(s) =

∑d
i=1 ωiφi(s) = ωTφ(s), where φ : S → [0, 1]d and ωT = [ω1, ω2, · · · , ωd].

Our computational framework uses Bayesian IRL to estimate the reward vec-
tors in a MDP, which was initially proposed in [8]. The posterior over reward
function for n-th agent is written as

p(rn|On) = p(On|rn)p(rn) ∝
|On|∏
j=1

∏
(s,a)∈hj

n

p(a|s, rn).

Then, the IRL problem is written as maxrn log p(On|rn) + log p(rn). For many
problems, however, the computation of p(rn|On) may be complicated and some
algorithms use Markov chain Monte Carlo (MCMC) to sample the posterior
probability. Considering the computation complexity to deal with a large number
of IRL problems, we choose two IRL algorithms that have well defined likelihood
function to reduce the computation cost, which are shown in the following sub-
sections. The first algorithm in Section 5.1 has two assumptions on the reward
functions: (1) it can be written linearly in terms of the state features; (2) it
only depends on state. The second algorithm in Section 5.2 doesn’t have these
restrictions, and it not only can model the reward functions in nonlinear form
but also consider the reward affected by both state and action.

5.1 IRL with Boltzmann Distribution

The IRL algorithm in [3], which we call maximum likelihood IRL (MLIRL),
uses Boltzmann distribution to model likelihood function using p(a|s, rn) =

eβQ(s,a)∑
a∈A eβQ(s,a) , where β denotes the degree of decision-making confidence.
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The likelihood function is optimized via gradient ascent method as follows.

1. Initialize: Choose random set of reward weights ω1.
2. Iterate for t = 1 to M do: Compute Q(s, a) and p(a|s, rn) using ωt; L =∑|On|

j=1

∑
(s,a)∈hj

n
log p(a|s, rn); ωt+1 ← ωt + αt �ω L.

3. Output reward rn = ωT
Mφ(s) for n-th agent.

The parameters β and M need to be defined as constants.

5.2 IRL with Gaussian Process

IRL algorithm, which is called GPIRL in [15], uses preference relations to model
the likelihood function P (On|rn) and assumes the rn is generated by Gaussian
process for n-th observed agent.

Given a state, we assume an optimal action is selected according to Bellman
optimality. At state s, ∀â, ǎ ∈ A, we define the action preference relation as:

– Action â is weakly preferred to ǎ, denoted as â �s ǎ, if Q(s, â) ≥ Q(s, ǎ);
– Action â is strictly preferred to ǎ, denoted as â �s ǎ, if Q(s, â) > Q(s, ǎ);
– Action â is equivalent to ǎ, denoted as â ∼s ǎ, if and only if â �s ǎ and

ǎ �s â.

Given the observation set On, we have a group of preference relations at each
state s, which is written as

E ≡
{
(â �s ǎ), â ∈ Â, ǎ ∈ A \ Â

}
∪
{
(â ∼s â

′), â, â′ ∈ Â
}
,

where Â is the action subspace from observation On.
Then, the likelihood function p(On|rn) =

∏
p(â �s ǎ)

∏
p(â ∼s â′). The

models of p(â �s ǎ) and p(â ∼s â
′) are defined in [15].

Let r be the vector of rn containing the reward for M = |A| possible actions
at T observed states. We have

r = (r1(s1), ..., r1(sT )︸ ︷︷ ︸, . . . , rM (s1), . . . , rM (sT )︸ ︷︷ ︸)
= ( r1, · · · , rM ),

where T = |S| and rm, ∀m ∈ {1, 2, . . . ,M}, denotes the reward for action am.
Consider rm as a Gaussian process. We denote by km(si, sj) the function

generating the value of entry (i, j) for covariance matrix Km, which leads to
rm ∼ N(0,Km). Then the joint prior probability of the reward is a product

of multivariate Gaussian, namely p(r|S) =
∏M

m=1 p(rm|S) and r ∼ N(0,K).
Note that r is completely specified by the positive definite covariance matrix K,
which is block diagonal in the covariance matrices {K1,K2...,KM} based on the
assumption that the reward latent processes are uncorrelated . In practice, we
use a squared exponential kernel function, written as:

km(si, sj) = e
1
2 (si−sj)Mm(si−sj) + σ2

mδ(si, sj),
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where Mm = κmI and I is an identity matrix. The function δ(si, sj) = 1, when
si = sj ; otherwise δ(si, sj) = 0. Under this definition the covariance is almost
unity between variables whose inputs are very close in the Euclidean space, and
decreases as their distance increases.

Then, the GPIRL algorithm estimates the reward function by iteratively con-
ducting the following two main steps:

1. Get estimation of rMAP by maximizing the posterior p(rn|On), which is
equal to minimize − log p(On|rn) − log p(rn|θ), where θ = (κm, σm)Mm=1 is
the hyper-parameter controlling the Gaussian process. Above optimization
problem has been proved to be convex programming in [15].

2. Optimize the hyper-parameters by using gradient decent method to maxi-
mize log p(On|θ, rMAP ), which is the Laplace approximation of p(θ|On).

6 Experimentation

Our experiments simulate agent recognition problems and compare several IRL
algorithms against the methods that construct feature vectors from raw observa-
tion data. We study two problems, GridWorld and the secretary problem. Grid-
World sheds light on the task of recognizing agents whose underlying decision
strategy can be matched by a policy of the MDP model. The secretary problem
provides a more practical environment in which agents’ true decision strategy
may not be explained or expressed by any policy of the MDP that is used to
model the decision-making problem. Agents in the secretary problem employ
heuristic decision rules derived from experimental study of human behavior in
psychology and economics.

To evaluate the recognition performance, we use the following algorithms:
(1) Clustering: Kmeans [9]; (2) Classification: Support vector machine (SVM),
K-nearest neighbours (KNN), Fisher discriminant analysis (FDA) and logistic
regression (LR) [9]. We use clustering accuracy [23] and Normalized Mutual
Information (NMI) [20] to compare clustering results.

6.1 GridWorld Problem

In the GridWorld problem, which is used as a benchmark experiment by Ng
and Russell in [13], an agent starts from a given square and moves towards a
destination square. The agent has five actions to take: moving in the four cardinal
directions or staying put. With probability 0.65 the agent moves to its chosen
location, with probability 0.15 it stays in the same location regardless of chosen
action, and with probability 0.2 it moves in a random cardinal direction.

The small GridWorld has been widely used as a test domain by most of IRL
algorithms. The observation data is collected when an agent is moving in the grid
world. From the observation, the reward is learned to make the optimal policy
of a MDP match the observed behavior. We investigate the agent recognition
problem in terms of clustering and classification on a 10×10GridWorld problem.
Experiments are conducted according to the steps in Algorithm 1.
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Algorithm 1. GridWorld experimentation steps

1: Input the variables S ,A,P , and two policies π1 and π2.
2: for i = 1→ 2 do
3: for j = 1→ 200 do
4: Model an agent’s action selection using πi + random Gaussian noise. With

probability 0.65 the agent executes the selected action.
5: Sample decision trajectories Oij , and make the ground truth label yij = 0, if

i = 1; yij = 1, if i = 2.
6: IRL has access to the problem B = (S ,A,P , γ,Oij) for this agent, and then

infers the reward rij .
7: end for
8: end for
9: Recognize these agents based on the reward rij .
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(c) Policy π2 for Class 2

Fig. 2. The (a) shows an observed decision trajectory. The (b) and (c) illustrate un-
derlying decision policy for two classes of agents. Colored arrow denotes the observed
action.

For the input of the experimentation, we simulate two groups of agents, and
make each group have 200 agents who adopt similar decision strategy moving in
the grid world. Figure 2 (b) and (c) display the underlying policy used by two
groups. Each policy represents a decision-making pattern, e.g. a group of agents
may prefer the routes close to the border where the scenery is more attractive,
while the other group may like passing by the center to avoid traffic. In each
group, an agent’s decision is simulated by adding Gaussian noise to his/her
group’s underlying policy. Here, agents may have multiple destinations to visit.
Though these agents may have the same goal such as arriving at the destination
in the shortest time, their decision patterns can still be different.

In the experiments, we find that a small number of short decision trajectories
tends to present challenges to action feature methods, which is an observation of
particular interest. Additionally, the length of trajectories may have a substantial
impact on performance. If the length is so long that the observed agent reaches
the destination in every trajectory, the problem can be easily solved based on
observations. Thus, we evaluate and compare performance by making the length
of decision trajectory small.
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Table 1. NMI scores

|On| FE FT PROJ GPIRL

4 0.0077 0.0012 0.0068 0.0078
8 0.0114 0.0016 0.0130 0.0932
16 0.0177 0.0014 0.0165 0.7751
20 0.0340 0.0573 0.0243 0.8113
30 0.0321 0.0273 0.0365 0.8119
40 0.0361 0.0459 0.0389 0.8123
60 0.0387 0.0467 0.0388 0.8149
80 0.0441 0.1079 0.0421 0.8095
100 0.0434 0.1277 0.0478 0.8149
200 0.0502 0.1649 0.0498 0.8149
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Fig. 3. Clustering accuracy

Table 6.1 displays NMI scores and Fig.3 shows clustering accuracy. The length
of the trajectory is limited to six steps, as we assume the observation is in-
complete and the learner does not have sufficient information to differentiate
behavior directly. Results are averaged over 100 replications. Clustering perfor-
mance improves with increasing number of observations. When the number of
observations is small, GPIRL method achieves high clustering accuracy and NMI
scores due to the advantage of finding more accurate reward functions that can
well characterize the decision behavior. The IRL algorithms based on feature
expectation vectors, such as PROJ, are not effective in this problem because
the length of the observed decision trajectory is too small to accumulate enough
observations that correctly approximate the long-term goal.

Considering the utilization of feature learning algorithms to improve the sim-
ple feature representations, we also run experiments with PCA-based features
where the projection sub-space is spanned by those eigenvectors that correspond
to the principal components c = 10, 20, . . . , 90 for FE and c = 2, 4, 6, 8, 10 for
FT. No significant changes in the clustering NMI scores and accuracy scores are
observed. Therefore, we do not show the performance of PCA-based features in
Table 6.1and Figure 3.

Fig.4 displays classification accuracy for a binary classification problem in
which there are four hundred agents coming from two groups of decision strate-
gies. The results are averaged over 100 replications with tenfold cross-validations.
Four popular classifiers (SVM, KNN, FDA and LR) are employed to evaluate
the classification performance. Results suggest that the classifiers based on IRL
perform better than the simple methods, such as FT and FE, particularly when
the number of observed trajectories and the length of the trajectory are small.
The results support our hypothesis that recovered reward functions constitute an
effective and robust feature space for clustering or classifying the agents abased
on observation of their decision behavior.
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Fig. 4. Classification results with respect to different classifier

6.2 Secretary Problem

The secretary problem is a sequential decision-making problem in which the
binary decision to either stop or continue a search is made on the basis of ob-
jects already seen. As suggested by the name, the problem is usually cast in the
context of interviewing applicants for a secretarial position. The decision maker
interviews a randomly-ordered sequence of applicants one at a time. The appli-
cant pool is such that the interviewer can unambiguously rank each applicant in
terms of quality relative to the others seen up to that point. After each interview,
the decision maker chooses either to move on to the next applicant, forgoing any
opportunity to hire the current applicant, or to hire the current applicant, which
terminates the process. If the process goes as far as the final applicant, he or
she must be hired. Thus the decision maker chooses one and only one applicant.
The objective is to maximize the probability that the accepted applicant is, in
fact, the best in the pool.

To test our hypotheses on BAR, an ideal experiment would involve recog-
nizing individual human decision makers on the basis of observations of hiring
decisions that they make in secretary problem simulations. Experiments with
human decision making for the secretary problem are reported on in [19][18],
but raw data consisting of decision maker action trajectories is not available.
However, a major conclusion of these studies is that the decisions made by the
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Algorithm 2. Experimentation with Secretary Problem

1: Given a heuristic rule with a parameter h, k or 
.
2: Add random Gaussian noise to the parameter, which is written as p̂.
3: Generate new secretary problem with N applications and let n − th agent solve
these problems using this heuristic rule with its own parameter p̂. Save the observed
decision trajectories into On.

4: Model the secretary problem in terms of an MDP consisting of the following com-
ponents:

1. State space S = {1, 2, . . . , N}, where s ∈ S means that at time s the current
applicant is a candidate.

2. Action space A consisting of two actions: reject and accept.
3. Transition probability P , computed as follows: given the reject action, the
probability of transitioning from state si to sj , p(sj |si), is si

sj(sj−1)
if sj ≥ si,

and 0 otherwise; given the accept action, the probability of transitioning from
state si to sj , p(sj|si), is 1 if si = sj , and 0 otherwise.

4. The discount factor γ is a selected constant.
5. The reward function is unknown.

5: Infer the reward function by solving an IRL problem B = (S ,A,P , γ,On).

humans largely can be explained in terms of three decision strategies, each of
which uses the concept of a candidate. An applicant is said to a candidate he or
she is the best applicant seen so far. The decision strategies of interest are the:

1. Cutoff rule (CR) with cutoff value h, in which the agent will reject the first
h− 1 applicants and accept the next candidate;

2. Successive non-candidate counting rule (SNCCR) with parameter value k,
in which the agent will accept the first candidate who follows k successive
non-candidate applicants since the last candidate; and

3. Candidate counting rule (CCR) with parameter value �, in which the agent
selects the next candidate once � candidates have been seen.

The optimal decision strategy for the secretary problem is to use CR with
a parameter that can be computed using dynamic programming for any value
of N , the number of secretaries. As N grows, the optimal parameter converges
to N/e and yields a probability of successfully choosing the best applicant that
converges to 1/e. Thus only one of the three decision strategies enumerated above
can be viewed as optimal, and that only for a single parameter value out of the
continuum of possible values. Human actions are usually suboptimal and tend
to look like mixtures of CR (with a non-optimal parameter), SNCCR, and CCR
[19]. As a surrogate for the action trajectories of humans, we use agents that we
generate action trajectories for randomly sampled secretary problems using CR,
SNCCR, and CCR. For a given decision rule (CR, SNCCR, CCR), we simulate
a group of agents that adopt this rule, differentiating individuals in a group
by adding Gaussian noise to the rule’s parameter. The details of the process are
given in Algorithm 2. We use IRL and observed actions to learn reward functions
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Fig. 5. Each circle denotes the feature vector for an agent, which is projected into 2D
space by using PCA. The feature vectors provided by FE method are shown on the
left. The reward vectors estimated by IRL are shown on the right.

for the MDP model given in Algorithm 2. It is critical to understand that the
state space for this MDP model captures nothing of the history of candidates,
and as a consequence is wholly inadequate for the purposes of modeling SNCCR
and CCR. In other words, for general parameters, neither SNCCR nor CCR can
be expressed as a policy for the MDP in Algorithm 2. (There does exist an MDP
in which all three of the decision rules can be expressed as policies, but the state
space for this model is exponentially larger.) Hence, for two of the rules, the
processes that we use to generate data and the processes we use to learn are
distinct.

As an initial set of experiments, we generated an equal number of agents
from each rule. All the heuristic rules use the same parameter value. We have
compared the method using statistical feature representations obtained from the
raw decision trajectories and our IRL model-based method. We employ 10 fold
cross-validation to obtain the average accuracy, and it is always 100% .

Table 2. NMI score for Secretary Problem

H
CR SNCCR CCR

Action BayesIRL Action BayesIRL Action BayesIRL
1 0.0557 0.5497 0.0551 0.1325 0.0229 0.2081
11 0.3852 0.6893 0.2916 0.7190 0.1844 0.4974
21 0.6017 0.7898 0.4305 0.8179 0.2806 0.5181
31 0.7654 0.8483 0.5504 0.8641 0.4053 0.6171
41 0.8356 0.9676 0.5682 0.9218 0.4524 0.6533
51 0.8781 0.9739 0.5894 0.9423 0.5464 0.6507
61 0.9102 0.9913 0.5984 0.9518 0.5492 0.6513
71 0.9115 0.9915 0.6460 0.9639 0.6024 0.6512
81 0.9532 1.0000 0.6541 0.9721 0.6708 0.6563
91 0.9707 1.0000 0.6494 0.9864 0.6884 0.6544
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DM using Random

Fig. 6. Visualization of a binary classification problem for subjects using cutoff rule
and random rules. The reward vectors are projected into 2(left)/3(right) dimensional
subspace, which are spanned by the first 2/3 principal components.

Given that perfect classification performance was achieved by all algorithms,
the problem of recognizing across decision rules appears to be quite easy. A more
challenging problem is to recognize variations in strategy within a single decision
rule. For each rule, we conducted recognition experiments in which 300 agents
were simulated, 100 each for three distinct values of the rule parameter. Indi-
viduals were differentiated by adding random noise to the parameter. Here, we
show the comparison of the clustering performance between the simple method
called FE and our MDP model-based method. In Fig.5, the left figure displays
an area marked “uncertainty” for the method called FE, while the right figure
shows that the reward vectors have lower variance in the same group and higher
variance between different groups.Fig.5 intuitively demonstrates that when the
agents’ behavior is represented in the reward space, the recognition problem
becomes easier to solve.

Table 2 summarizes the NMI scores for using K-means clustering algorithm
to recognize variations in strategy within one heuristic decision rule. We conduct
experiments on three rules separately. The column called H in Table 2 records
the number of decision trajectories that have been sampled for training. Table
2 indicates that the feature representation in reward space is almost always
better than the representation with statistical features computed from the raw
observation data. Moreover, the reward space can particularly better characterize
the behavior when the scale of the observation data is small. Note that although
none of the MDP policies can match the SNCCR and CCR rules, the reward
vectors, which are recovered by IRL for the MDP model, still make the clustering
problem easier to solve.

Fig.6 shows a binary classification result of using PROJ algorithm to learn
the reward functions for the agents in Secretary problem and then categorize
the agents into two groups. In this classification experiment, the users’ ground
truth label is either cutoff decision rule or random strategy that makes random
decisions.
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7 Conclusions

We have proposed the use of IRL to solve the agent recognition problem. The
observed agent is not required to be rational in the decision-making process.
However, we model the agent’s behavior in an MDP environment and estimate
the reward function by making the MDP policy match the observed behav-
ior. Numerical experiments on GridWorld and the secretary problem suggest
that the advantage that IRL enjoys over simple methods is more pronounced
when observations are limited and incomplete. We also note that there seems to
be a positive correlation between the success of IRL algorithms in apprentice-
ship learning (cf. [15]) and their success in the agent recognition problem. To
some degree, this relationship parallels results from [11] [7], where apprenticeship
learning benefits from a learning structure that based on sophisticated methods
for task decomposition or hierarchical identification of skill trees. Exploration of
IRL algorithms that consider subgoals and which of the algorithmic choices can
help agent recognition is an avenue of future work.

Validation of the ideas proposed here can come only through experimenta-
tion with more difficult problems. Of particular importance would be problems
involving human decision makers or other real-world scenarios, such as periodic
investment, gambling, or stock trading.
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Abstract. The throttle valve is a technical device used for regulating a
fluid or a gas flow. Throttle valve control is a challenging task, due to its
complex dynamics and demanding constraints for the controller. Using
state-of-the-art throttle valve control, such as model-free PID controllers,
time-consuming and manual adjusting of the controller is necessary. In
this paper, we investigate how reinforcement learning (RL) can help to
alleviate the effort of manual controller design by automatically learning
a control policy from experiences. In order to obtain a valid control
policy for the throttle valve, several constraints need to be addressed,
such as no-overshoot. Furthermore, the learned controller must be able
to follow given desired trajectories, while moving the valve from any
start to any goal position and, thus, multi-targets policy learning needs
to be considered for RL. In this study, we employ a policy search RL
approach, Pilco [2], to learn a throttle valve control policy. We adapt the
Pilco algorithm, while taking into account the practical requirements and
constraints for the controller. For evaluation, we employ the resulting
algorithm to solve several control tasks in simulation, as well as on a
physical throttle valve system. The results show that policy search RL is
able to learn a consistent control policy for complex, real-world systems.

1 Introduction

The throttle valve, as shown in Figure 1, is an important and widely-used techni-
cal device for many industrial and automotive applications, such as for pressure
control in gasoline combustion engines and flow regulation in air conditioning
and heat pumps. Usually, the throttle valve system consists of a valve and an
actuator, e.g. a DC-motor. The throttle valve control task is to move the valve
from arbitrary positions to given desired positions by regulating the actuator
inputs.

Controlling the throttle valve is a challenging task. Due to the spring-damper
design of the valve system, we have a highly dynamic behavior. As many un-
known nonlinearities are involved, such as complex friction, accurate physical
models of the valve dynamics are hard to obtain. In practice, the valve needs to be

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 49–64, 2013.
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controlled at a very high rate, e.g. 200Hz, and desired valve positions need to be
reached as fast as possible. While requiring a fast control performance, no over-
shoot is allowed here, i.e. the valve position must not exceed the desired position.

Fig. 1. Example of a throttle valve
used in combustion engines for au-
tomotive applications

This requirement is essential for pressure con-
trol in gasoline combustion engines for auto-
motive application, as addressed in this paper.
Here, an open valve corresponds to a car ac-
celeration and, thus, an overshoot during the
valve control would result in undesirable jerks
of engine torque. These constraints, e.g. un-
known nonlinearities and fast control without
overshoot, make the throttle valve controller
design difficult in practice.

In the literature, several approaches are dis-
cussed to tackle challenges of throttle valve
control based on methods of classical control
theory [12–14]. These approaches usually in-
volve tedious, manual tunning of controller
parameters. Furthermore, profound knowl-
edge of the physical system is required in order to obtain a good parametrization
of the controller in this case. These limitations motivate the approach used in
this study. We investigate how machine learning techniques, especially, Rein-
forcement Learning (RL), can be employed to successfully learn a control policy
from experience, while incorporating required practical constraints. Beside the
mentioned challenges, several RL problems need to be tackled, such as learning
multi-targets and handling large data during the learning process. In this paper,
we employ a probabilistic, model-based RL approach, e.g. the probabilistic infer-
ence for control algorithm (Pilco) [2], for learning the control policy. We modify
Pilco taking in account the discussed requirements. The method is implemented
and evaluated in simulation, as well as on a real throttle valve system. The eval-
uation shows the feasibility of the presented RL approach and, thus, indicates
the suitability of RL for real-world, industrial applications.

The remainder of the paper is organized as follows: in the next section, we
introduce the throttle valve system and motivate the use of RL. In Section 3,
we briefly review the basic idea behind RL and introduce Pilco. Section 4 shows
how probabilistic RL, especially, Pilco, can be modified to match the required
constraints. Evaluation of our method in simulation, as well as on a real throttle
valve, is provided in Section 5. Finally, a conclusion is given in Section 6.

2 The Throttle Valve System

Throttle valve systems are widely used in many industrial applications, ranging
from semi-conductor manufacturing to cooling systems for nuclear power plants.
However, one of the most important applications can be found in automotive
control, where throttle valves are employed to regulate the flow of air entering a
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combustion engine. As shown in Figure 1, the valve system basically consists of a
DC-motor, a spring and a flap with position sensors. Depending on the position
of the flap, the gasoline-to-air ratio in the combustion chamber is adjusted and,
subsequently, influences the torque generated by the engine. The dynamics of
the throttle valve system can be simplified by the model [10] to be[

α̇(t)
ω̇(t)

]
=

[
0 1

−Ks −Kd

] [
α(t)
ω(t)

]
+

[
0

Cs −Kf sgn(ω(t))

]
+

[
0

T (t)

]
, (1)

where α and ω are the flap angle and corresponding angular velocity, T is the ac-
tuator input. The parameters Ks, Kd, Kf and Cs are dynamics parameters and
need to be identified for a given system [18]. Model-based valve controllers rely
on this model [5] and, thus, identification of dynamics parameters is necessary.
However, parameter identification using sampled data can be time-consuming
and difficult. It it hard to create sufficiently rich data in order to obtain plau-
sible dynamics parameters. Furthermore, the parameters that optimally fit a
data set, are often not physically consistent and, hence, physical consistency
constraints have to be imposed on the identification problem [17]. Using data-
based nonparametric models for RL — as employed in this paper — for learning
optimal control policies can help to overcome these limitations.

2.1 Requirements for Throttle Valve Control

As the throttle valve is a real-time system, precise and fast control is crucial
to provide optimal performance. In order to obtain fast control, we employ a
fixed radial-basis function structure as parametrization of the controller, which
can be evaluated in real-time. As shown in Section 5, the learned controller
can be evaluated at a frequency of about 200Hz. Furthermore, for learning the
dynamics used for model-based RL we employ a NARX-structure [9] to represent
the system dynamics, as described in Section 4.1. A well-approximated dynamics
model is prerequisite for learning a good control policy with model-based RL.

Typical RL problems are goal oriented [1], i.e. RL is formulated for reaching
single, desired goal positions. However, when employing throttle valve control,
trajectory tracking is inevitable. The learned policy needs to be able to follow
desired trajectory and, thus, multi-target RL as described in Section 4.2 is re-
quired here. It is shown in the evaluation that the learned policy can generalize
well for unknown goals and trajectories.

In addition to the fast control requirement, no overshoot of the trajectory is
essential. As an overshoot corresponds to undesirable jerks in engine torque, the
valve trajectory must not go beyond the desired valve position. On the other
hand, it is required that the valve moves to the desired position as close and
fast as possible. Taking in account these requirements, we design an appropriate
cost function in Section 4.3. The cost is defined such that the requirements are
accomplished and the resulting RL formulation remains solvable in closed form.
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3 A Brief Review on RL

In this section, we provide a short review on the basic concepts of RL [1, 3].
Subsequently, we proceed to discuss the probabilistic policy search approach
Pilco [2].

3.1 General Setting

In RL, we consider an agent and its interactions with the environment. The state
of the learning agent is defined by s ∈ S. The agent can apply actions a ∈ A
and, subsequently, moves to a new state s′ with probability given as p(s′|s, a).
The controller π : S → A determines in every state the action which should be
used. If the controller is applied for T timesteps, we get a state-action sequence
{s0, a0}, {s1, a1}, . . . , {sT−1, aT−1}, sT , which we call rollout of the controller.
In case of uncertainty and noise, multiple rollouts will not be identical and the
rollout must be described by probability distributions. The environment rates
states si with a cost function c : S → R (and, thus, gives a rating for the
controller). The goal of the learning algorithm is to find a controller, which
minimizes the expected sum J(π) of collected cost, i.e.

min
π

J(π), J(π) =
T∑

t=0

Est(c(st)), (2)

where p(s0), . . . , p(sT ) are the resulting state distributions on application of the
controller π. The cost function c must be set according to the learning goal. The
tuples si, ai, si+1 are saved as experience and are used to optimize the controller.
RL algorithms differ in the way they use this experience to learn a new, improved
controller π. Two important properties that characterize RL techniques, are
model-free and model-based, as well as Policy Search and Value-function. Next
we will shortly describe the approaches and examine their suitability for throttle
valve control.

3.2 Approaches in Reinforcement Learning

Model-based RL describes algorithms, where the experience samples si, ai, si+1

are used to learn a dynamics model f : S × A → S and the controller π is
optimized using the dynamics model as internal simulation. Model-free RL al-
gorithms, on the other hand, directly optimizes the controller π without usage
of a dynamics model. In the last decades, model-free RL got much attention
mainly because for discrete state and action sets, convergence guarantees can
be given. However, often many trials are necessary to obtain a good controller.
Model-based RL methods potentially use the data more efficient, but it is well
known that model bias can strongly degrade the learning performance [4]. Here,
a controller might succeed in simulation but fails when applied to the real sys-
tem, if the model does not describe the complete system dynamics. To address
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this problem, it is important to incorporate uncertainty — which can result
from a lack of experience or due to stochasticity in the system — and to employ
probabilistic dynamics models.

Besides model-free and model-based, RL methods can be divided into policy
search algorithms and value-function approaches. Policy search methods directly
operate on the parameters θ of a controller πθ to optimize the sum of expected
cost given in Equation (2). Therefore, a parametrized control structure has to be
defined by the user. This allows to include prior knowledge about good control
strategies, but the structure also limits the set of strategies that can be learned.
In contrast to policy search, value-function approaches try to estimate a long-
term cost for each state.

3.3 Pilco: A Model-Based Probabilistic Policy Search

For the throttle valve control task — as for many physical systems — it is
not possible to perform several thousands of experiments on the real system
until the learning process converges. Thus, it is important to reduce interactions
with the system. This favours model-based RL approaches. Furthermore, the
throttle valve has high requirements on the control frequency due to the fast
system dynamics. For example, evaluation of the controller given the current
system state must take at most 5ms. Therefore, policy search RL, with a control
structure that can be evaluated fast, seems to be an appropriate approach.

Pilco1 is a model-based RL algorithm, which uses Gaussian processes (GP) for
modeling the system dynamics [2]. Based on this probabilistic dynamics model, a
control policy can be inferred. The controller can, for example, be parametrized
as a radial basis function network (RBF) with Gaussian shaped basis function.
Thus, the controller is given by

π(s) =

N∑
i=0

wiφi(s),

with φi(s) = σ2
f exp(− 1

2 (s − si)
TΛ(s − si)), S = [s0, s1, . . . , sN ]T the set of

support points and w representing the weight vector. The hyperparameters
of the controller are given by Λ = diag(l21, . . . l

2
D)−1 and σf . The number N

of support points is a free parameter that needs to be adjusted. The support
points, the weight vector and the hyperparameters build the set θ of control
parameters that need to be optimized during learning.

For learning the controller, we start with a Gaussian state distribution p(s0).
The RBF network controller returns an action for every state, therefore we get a
distribution p(at) =

∫
p(at|st)p(st)dst. This distribution is analytically approx-

imated to a Gaussian. Given the state distribution p(st) and the approximated
Gaussian action distribution p(at), the joint distribution p(st, at) is approxi-
mated. The dynamics model takes this distribution as input and returns the dis-
tribution p(st+1) for the next state. The expected cost J(θ) =

∑T
t=0Est(c(st))

1 We thank Marc Deisenroth for providing us the Pilco code.



54 B. Bischoff et al.

Algorithm 1. Pilco: model-based policy search

1: D :=Dinit, θ := random � initialize dynamics data set D and control parameters θ
2: for e := 1 to Episodes do
3: Learn dynamics model GPdynamics : S ×A → S
4: Improve policy:
5: Estimate rollout p(s0), p(s1), . . . , p(sT ) of πθ using GPdynamics

6: Rate policy-parameters J(θ) =
∑T

t=0 Est(c(st))
7: Adapt policy-parameters θ = θ +∇J(θ)
8: Apply controller πθ on system, D := D ∪ {s0, πθ(s0) = a0, s1, . . .}
9: end for

can subsequently be computed from these rollout results. Based on generated
cost values, the controller can now be optimized. The optimization step can
be performed using gradient descend procedure, where analytical gradients are
computed on the hyperparameters. The resulting algorithm [2] is summarized in
Algorithm 1.

4 Learning Throttle Valve Control with RL

In Section 2, we described the throttle valve system and the task specific require-
ments for throttle valve control. In this section, we adapt the Pilco algorithm
described in the previous section taking into account the desired requirements.
First, we show how the system dynamics can be modeled using Gaussian pro-
cesses while employing a NARX-structure with state and action feedback. Addi-
tionally, to handle the large amount of dynamics data occurring during learning,
an information gain criterion is used for selecting informative data points. As
the learned controller must be able to follow arbitrary trajectories, we describe
the setting for multiple start and goal states. Finally, we define a cost function
addressing the no-overshoot restriction, while the integrals involved in the Pilco
learning process can still be solved analytically. The analytical gradients, which
are essential for policy optimizing, will be provided.

4.1 Modeling Throttle Valve Dynamics

A dynamics model describes the behavior of a system, i.e. the probability p(s′|s, a)
that the system state changes to s′ when action a is applied in state s. Here,
the actions a correspond to the input voltage u of the DC-motor. The open-
ing angle α of the valve changes dynamically depending on the input voltage.
As shown in Equation (1), the dynamics of the valve can be approximated
by a second-order system. Due to this insight, the RL state st is defined as
st = [αt, αt−1, αt−2, ut−1, ut−2]. Thus, the resulting state st has the well-known
Nonlinear Autoregressive Exogenous (NARX) structure [9], as shown in Figure
2. For modeling the dynamics, nonparametric Gaussian process regression is
employed to predict αt+1 given a state st and the current action ut.
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Fig. 2. NARX-structure with state and action feedback to model the throttle valve
dynamics. The current valve opening αt, as well as past valve openings αt−1, αt−2 and
input voltage ut−1, ut−2 are jointly used to predict αt+1. For modeling the dynamics,
GP regression is employed.

A further challenge in modeling the throttle valve dynamics is the amount of
data generated by the system. Dynamics data is sampled at a high frequency,
e.g. 200 samples per second, leading to massive data sets. Here, we employ an
information gain criterion [8] to reduce the sampled data while retaining relevant
dynamics information. This significantly reduces the overall learning time as well
as the memory requirements. A GP is employed for modeling the dynamics, the
information gain criterion can be computed analytically and efficiently. See [8]
by Seeger et. al. for more details.

4.2 Multiple Start and Goal States

For throttle valve control, it is important that the learned controller can follow
arbitrary trajectories. Thus, the controller must be able to move the valve from
any given start position to any goal position. One approach would be to learn
seperate controllers for a set of goal states and combine these controllers for
arbitrary goal positions. However, this is complex for non-linear systems and
may not be optimal globally. Instead, we include the goal position g as input to
the controller, i.e. u = πθ(s, g), as described in [11]. Now, one joint controller
is learned for all goal positions. This formulation allows to set the goal state
dynamically on controller application.

In the standard Pilco framework, the control parameters θ are optimized with
respect to the sum of expected cost, J(θ) =

∑T
t=0E(c(st)), where st ∼ N (μ,Σ)

is a Gaussian distribution. For multiple start states sit and goal states gi, the
objective function can be modified (see [11]) to

J(θ) =

|Z|∑
i=0

T∑
t=0

E(c(sit, g
i)) , (3)
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Fig. 3. The upper left figure shows the Gaussian process dynamics model for a fixed
action. The lower picture shows two state distributions. The right upper plot shows the
corresponding next state distributions, after mapping the state distributions through
the dynamics GP. When the start distribution is too broad, the state distribution after
mapping is too complicated to approximate by a Gaussian as performed in Pilco.

where Z represents pairs of start and goal states, e.g. Z =
{
(s00, g

0), (s10, g
1), . . .

}
.

The start distributions given by si0 ∈ Z and σ0 as well as the goal states gi in Z
are determined such that they cover the relevant state space parts. The variance
of the start distributions si0 ∈ Z needs to be chosen appropriately. Given a
very broad start distribution s0, the next state distribution — after mapping it
through the dynamics GP model — can be difficult and, thus, more complicated
when approximated by a Gaussian as done by Pilco. However, when the start
variance is small, performance might me suboptimal for some start states not
covered by the start distributions. Figure 3 illustrates the effects when mapping
different state distributions through the GP dynamics model.

4.3 Cost Function for Learning Throttle Valve Control

In this section, we define an appropriate cost function for policy optimization.
The saturated immediate cost [2] given by cd(s, g) = 1− exp(−‖s− g‖2 /(2d2))
with goal state g is a general, task unspecific cost function. Here, the hyper-
parameter d describes the width of the cost. However, this cost function is not
appropriate for learning throttle valve control, as it does not avoid valve trajec-
tory overshoot. Taking in account the no-overshoot restriction, we introduce an
asymmetric saturating cost function

c(s, g) =

{
cd1(s, g), if s ≤ g

cd2(s, g), otherwise
, (4)

where cdi is the saturating cost with width di and g is the goal state. This
continuous, smooth function can be described as a saturating cost function with
variable steepness on both sides of the goal depending on the parameters d1, d2.
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Fig. 4. The left figure shows the symmetric saturating cost over states given on the x-
axis. The goal state is indicated by the red vertical line. The right figure shows the asym-
metric saturating cost with variable steepness on both sides. Overshooting the goal state
(here, states right of the goal state) implies high costs, while approaching the goal from
a state left of the goal leads to decreasing cost.

In contrast to the usual symmetric saturating cost, this allows us to assign a
decreasing cost when the state converges to the goal state while overshoot is
punished, see Figure 4.

To estimate the cost for a given set of parameters in the probabilistics model-
based RL framework, the expected cost E(c(s, g)) is required for a Gaussian state
distribution s ∼ N (μs, Σs). For the asymmetric saturating cost in Equation (4),
E(c(s, g)) is given as

E(c(s, g)) =

∫ g

−∞
cd1(s, g)p(s)ds+

∫ ∞

g

cd2(s, g)p(s)ds

=
1√
2πσ2

[∫ g

−∞
e
1ds+

∫ ∞

g

e
2ds

]
=

1√
2πσ2

[
w1

v1
r1 +

w2

v2
r2

]
with

�i = −
(
1/d2i + 1/σ2

) [
s−

(
gσ2 + μd2i

σ2d2i

)]2
− (g − μ)2

d2i + σ2
, wi = e

(
−(g−μ)2

d2
i
+σ2

)

vi =

√
1

d2i
+

1

σ2
, ui =

gσ2 + μd2i
σ2 + d2i

, r1 =

∫ v1(g−u1)

−∞
e−q2dq, r2 =

∫ ∞

v2(g−u2)

e−q2dq

Using the error function
∫ b

−∞ e−q2dq =
√
π
2 (erf(b) + 1), we have

r1 =

√
π

2
(erf(v1 (g − u1)) + 1) , r2 =

√
π

2
(1− erf(v2 (g − u2)))

Given E(c(s, g)), the gradients for the policy optimization can be given as
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δE(c(s, g))

δμ
=

1

2
√
2πσ2

2∑
i=1

wi

vi

1

d2i + σ2

[
2ri(g − μ) + (−1)ivie

−(vi(g−ui))
2
]
,

δE(c(s, g))

δσ2
=

−1

2σ2
E(c(s)) +

2∑
i=1

wi

vi

[
ri

2σ4v2i
+

ri(g − μ)2

(σ2 + d2i )
2

+(−1)ie−(vi(g−ui)
2)

√
2

π
(δvi(g − ui)− δuivi)

]
where

δui =
d2i (g − μ)

(σ2 + d2i )
2
, δvi =

1

2
v−1
i σ−4 , δwi = e

(
−(g−μ)2

σ2+d2
i

)
(g − μ)

2

(σ + d2i )
2 .

5 Evaluations

In this section, we evaluate the presented RL approach on a throttle valve sim-
ulation, as well as on a physical throttle valve system. The experiment setting
and learning process are described in detail.

5.1 Simulation Results

First, learning is performed on a throttle valve simulator. We employed the Pilco
algorithm as given in Algorithm 1 with an RBF control structure using 40 base
functions. The controller can be evaluated in approximately 1ms, which allows
for a control frequency of at most 1000Hz. In all experiments, a control frequency
of 200Hz was used.

As a first step, we learn a controller for a single start and target state, i.e. a
trajectory starting from α0 = 70◦ with desired valve opening g = 10◦. To obtain
initial dynamics data Dinit, random actions are applied twice for 0.16 seconds
leading to two trajectories starting in α0. A NARX-structure is established for
modeling the dynamics (see Section 4.1). Optimization is performed with re-
spect to the asymmetric saturating cost with width d1 = 0.5, d2 = 3.5. Figure 5
shows the learning process over several episodes. It can be seen that the learning
converges to a near optimal solution after 4 Episodes. Next, we compare the
learning result for the symmetric saturating cost with the asymmetric cost func-
tion introduced in Section 4.3. It can be seen in Figure 6 that the asymmetric
cost function significantly reduces the overshoot (on the right) compared to the
standard symmetric saturating cost (on the left).

So far, the learned controller was optimized for a single trajectory from a
single start angle to a single goal angle. We now employ multiple start and goal
states as described in Section 4.2. Here, we choose 10 different combinations of
start positions and goal positions covering the state space equally, e.g.

Z̃ =
{
(α0

0, g
0), (α1

0, g
1), . . .

}
= {(30, 40), (30, 45), (30, 60), (40, 55), (45, 55),
(45, 60), (55, 40), (60, 30), (60, 45), (60, 50)} .
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Fig. 5. The figure shows the learning process for the start angle α0 = 70 with goal angle
g = 10. The left-most plot shows the two random trajectories used as initial dynamics
data set. After 2 episodes, the learned controller gets close to the learning goal, but still
overshoots and does not reach the goal angle accurately. After 4 episodes, the learning
has converged and the resulting control policy shows a near optimal behavior.
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Fig. 6. On the left, the learning result for the symmetric saturating cost function is
shown, the result for the asymmetric saturating cost is shown on the right. While the
symmetric cost leads to significant overshoot, the behavior for the asymmetric cost is
near optimal.
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Fig. 7. The figure shows the cost
over episodes of 4 independent learn-
ing attempts in simulation. In 3
of 4 cases, the learning converges
to a near optimal solution after 3
episodes.
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Fig. 8. The controller is applied to
move the valve from 22 degree valve
opening to 50 degree on the throttle
valve simulator. At times 0.03, 0.13
and 0.23 torque disturbances are in-
troduced. The controller handles the
disturbance well and returns to the
goal angle quickly.



60 B. Bischoff et al.

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
20

25

30

35

40

45

50

Time (sec)

A
n

g
le

 (
d

e
g

re
e

)

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
−15

−10

−5

0

5

10

15

Time (sec)

A
p

p
li
e
d

 T
e
n

s
io

n
 (

v
o

lt
)

Fig. 9. The learned controller (blue) is applied on the simulated throttle valve with
a step trajectory (red) as desired goal trajectory. The left plot shows the valve angle
over time, while the right plot shows the applied voltage. The results show, that the
learned controller successfully matches the desired trajectory.

The standard deviation of the Gaussian start state distributions was set to
σ0 = 3◦. We repeated 4 independent runs. The cost over episodes for the runs
are shown in Figure 7. In 3 out of 4 cases, the optimal solution was already found
after 3 episodes. Next, the learned controller of a successful run is evaluated with
respect to its robustness towards torque disturbances. Figure 8 shows a trajec-
tory, where three disturbances are applied, the learned controller returns the
valve to the desired angle in a robust manner as expected. Finally, we apply the
learned controller to follow an arbitrary step trajectory. The resulting trajectory
as well as the voltage applied by the controller is shown in Figure 9.

5.2 Real Throttle Valve Results

In this section, the RL controller is learned on a real throttle valve system. The
performance of the RL controller is tested on different control tasks.

For learning on the real system, we use the same setting as described for
simulation in the previous section. Again, an RBF control structure using 40
basis functions is employed, data is sampled at a rate of 200Hz. Here, we directly
handle the case of multiple start and goal states on the real system. As in
simulation, the controller is optimized with respect to 10 combinations of start
states and goal states. In each episode, additional dynamics data is sampled
by application of the controller for 1.2 seconds. In this 1.2s timeslot, a step
trajectory consisting of the 10 start/goal combinations is employed as desired
trajectory. The information gain criterion significantly reduces the overall size of
the dynamics data set, e.g. the 1200 dynamics samples gathered after 4 episodes
are reduced to a training set of only 300 elements.

Figure 10 shows the cost of controller application after each episode. The
learning was stopped after 4 episodes, since the controller already reached near
optimal performance. The controller learned after 4 episodes is evaluated on
various desired trajectories. In Figure 11, the performance of two of the 10
learned trajectories is illustrated. Figure 12 shows the application of the learned
controller on a more complex trajectory with arbitrary steps. Further, we used a
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Fig. 10. In the learning process a rollout is performed after each learning episode. The
figure shows the accumulated cost (see Equation (3)) for each episode rollout for the
asymmetric saturating cost function and d1 = 2, d2 = 0.5.
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Fig. 11. The learned controller (blue) is applied on the physical throttle valve system
with a step trajectory (red) as desired trajectory. While the left figure shows the valve
angle over time, the voltage over time is shown on the right. As can be seen, the learned
controller performs well and is able to follow the desired trajecotry in a robust manner.
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Fig. 12. As a next test case, we used a more complex step trajectory (red). The learned
controller (blue) is able to follow the step trajectory, while the accurarcy varies with
the goal angle in a range of approximately 1 degree.
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Fig. 13. The figure on the left shows the learned controller (blue) following a desired
sine trajectory (red) on the physical valve. The resulting trajectory is shifted by a small
amount of time, because of the time required to reach a new desired goal angle. On
the right, the controller follows a ramp trajectory of varying steepness and amplitude.

sine as well as variable ramps as desired trajectories, see Figure 13. In all cases,
the learned controller was able to follow the desired trajectories in an accurate
and robust manner without significant overshoot.

Finally, we compare the learned controller to a classical PID controller with
manually tuned parameters. Furthermore, we test the robustness of both con-
trollers towards torque disturbances. The discrete time PID structure is give as

ut = KP et +KI

t∑
i=0

eidt+KD
et − et−1

dt
, (5)

where T is the current time index, error et = αt − g, 1/dt equals the control
frequency. The gains KP ,KI ,KD are free parameters and need to be adjusted.
This tuning involves several trade-offs, such as accuracy versus no overshoot. It
must be kept in mind that inappropriate parameters lead to unstable control
behavior that potentially damages the system. For the subsequent experiments,
we use the parameters obtained after extensive tuning with help of a system
expert.

Figure 14 shows the learned controller compared to PID control. While both
controllers are able to follow the desired trajectory, the learned controller outper-
forms the PID control in terms of accuracy. Next, we examine both controllers
with respect to disturbances. Figure 15 illustrates the behavior when a constant
disturbance is introduced for a small amount of time. Compared to the learned
controller, the impact of the disturbance is significantly higher for the PID con-
trol. This results from a slightly longer time period until the PID controller
counteracts the disturbance. Furthermore, the accuracy of the PID control is
significantly reduced after the disturbance due to the integration element I (see
Equation (5)). More advanced methods of control theory help to improve the
results compared to the standard PID control. However, this often increases the
number of free parameters that need to be tuned.
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Fig. 14. The figure shows applica-
tion of the learned controller (blue)
and the PID controller (green) on
the physical throttle valve. Both
controller are able to follow the de-
sired step trajectory (red), the accu-
racy of the learned controller exceeds
the PID performance.
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Fig. 15. At timestep 1s, a torque
disturbance is introduced to the sys-
tem until timestep 2.2s. The learned
controller (blue) handles the dis-
turbance well, while the PID con-
trol (green) shows a stronger impact
of the disturbance and deteriorated
performance afterwards.

A video was created to illustrate the learning process described in chapter 3,
algorithm 1. A controller is learned over the course of 4 episodes and the learning
progress is shown through rollouts on the throttle valve system on each episode:
www.youtube.com/watch?v=-HpzKsxios4.

6 Conclusion

In this study, we investigate how throttle valve control can be learned from expe-
rience, while showing a practical application of probabilistics RL on a real-world
problem. A throttle valve is an important industrial device to regulate flows of
gas or fluids and has various application, e.g. pressure regulation in combustion
engines. As analytical models are hard to obtain due to complex dynamics and
unknown nonlinearities, model-based position control of the throttle valve is a
challenging problem. In this paper, we modify the probabilistic inference for con-
trol algorithm (Pilco) to match the requirements of throttle valve control, such
as no-overshoot restriction. We evaluated the approach in simulation, as well as
on a real throttle valve system. The results show that policy search RL is able
to learn a consistent control policy for complex, real-world systems.

References

1. Sutton, R.S., Barto, A.G.: Reinforcement Learning: An Introduction (Adaptive
Computation and Machine Learning). The MIT Press (1998)

2. Deisenroth, P.M., Rasmussen, C.E.: PILCO: A Model-Based and Data-Efficient
Approach to Policy Search. In: ICML, pp. 465–472 (2011)

www.youtube.com/watch?v=-HpzKsxios4


64 B. Bischoff et al.

3. Wiering, M., van Otterlo, M.: Reinforcement Learning: State-of-the-Art. Adapta-
tion, Learning, and Optimization. Springer (2012)

4. Deisenroth, M.P.: Efficient Reinforcement Learning using Gaussian Processes. PhD
Thesis, Karlsruhe (2010)

5. Yuan, X., Wang, Y., Wu, L.: SVM-Based Approximate Model Control for Elec-
tronic Throttle Valve. Transactions on Vehicular Technology 57(5) (2008)

6. Nentwig, M., Mercorelli, P.: Throttle valve control using an inverse local linear
model tree based on a fuzzy neural network. In: 7th International Conference on
Cybernetic Intelligent Systems (2008)

7. Yuan, X., Wang, Y., Lianghong, W., Xizheng, X., Sun, W.: Neural Network Based
Self-Learning Control Strategy for Electronic Throttle Valve. Transactions on Ve-
hicular Technology 59(8) (2010)

8. Seeger, M., Williams, C.K.I., Lawrence, N.D.: Fast Forward Selection to Speed Up
Sparse Gaussian Process Regression. In: 9th International Workshop on Artificial
Intelligence and Statistics (2003)

9. Leontaritis, I.J., Billings, S.A.: Input-output Parametric Models for Nonlinear Sys-
tems. International Journal of Control 41, 303–344 (1985)

10. Griffiths, P.G.: Embedded Software Control Design for an Electronic Throttle
Body. Master’s Thesis, Berkeley, California (2000)

11. Deisenroth, M.P., Fox, D.: Multiple-Target Reinforcement Learning with a Single
Policy. In: ICML Workshop on Planning and Acting with Uncertain Models (2011)

12. Nakamura, H., Masashi, M.: Thottle valve positioning control apparatus. United
States Patent 5, 852, 996 (1998)

13. Al-samarraie, S.A., Abbas, Y.K.: Design of Electronic Throttle Valve Position Con-
trol System using Nonlinear PID Controller. International Journal of Computer
Applications 59, 27–34 (2012)

14. Wang, H., Yuan, X., Wang, Y., Yang, Y.: Harmony search algorithm-based fuzzy-
PID controller for electronic throttle valve. Neural Computing and Applications 22,
329–336 (2013)

15. Deisenroth, M.P., Rasmussen, C.E., Fox, D.: Learning to Control a Low-Cost Ma-
nipulator using Data-Efficient Reinforcement Learning. RSS (2011)

16. Fisher Controls International LLC: Control Valve Handbook, 4th edn. (2005)
17. Ting, J., D’Souza, A., Schaal, S.: A Bayesian Approach to Nonlinear Parameter

Identification for Rigid-Body Dynamics. Neural Networks (2009)
18. Garcia, C.: Comparison of Friction Models Applied to a Control Valve. Control

Eng. Pract. 16(10), 1231–1243 (2008)



Model-Selection for Non-parametric Function
Approximation in Continuous Control Problems:

A Case Study in a Smart Energy System

Daniel Urieli and Peter Stone

Dept. of Computer Science,
The University of Texas at Austin,

Austin, TX, 78712 USA
{urieli,pstone}@cs.utexas.edu

Abstract. This paper investigates the application of value-function-based rein-
forcement learning to a smart energy control system, specifically the task of con-
trolling an HVAC system to minimize energy while satisfying residents’ comfort
requirements. In theory, value-function-based reinforcement learning methods
can solve control problems such as this one optimally. However, since choos-
ing an appropriate parametric representation of the value function turns out to be
difficult, we develop an alternative method, which results in a practical algorithm
for value function approximation in continuous state-spaces. To avoid the need
to carefully design a parametric representation for the value function, we use
a smooth non-parametric function approximator, specifically Locally Weighted
Linear Regression (LWR). LWR is used within Fitted Value Iteration (FVI), which
has met with several practical successes. However, for efficiency reasons, LWR is
used with a limited sample-size, which leads to poor performance without careful
tuning of LWR’s parameters. We therefore develop an efficient meta-learning pro-
cedure that performs online model-selection and tunes LWR’s parameters based
on the Bellman error. Our algorithm is fully implemented and tested in a realistic
simulation of the HVAC control domain, and results in significant energy savings.

1 Introduction

This paper is motivated by a real-world discrete-time continuous control problem in
which the state space is continuous and the action space is discrete. Specifically, we
focus on the task of controlling an HVAC system’s thermostat1 in a house with ‘heat’,
‘cool’, ‘auxiliary-heat’ or ‘off’ actions, with the goal of reducing yearly energy con-
sumption while satisfying temperature comfort requirements for the occupants. Such
discrete-time continuous control problems commonly arise when a digital controller
controls a physical system, and when the possible control actions constitute either a fi-
nite set, or a low dimensional space that can be discretized without losing much control
capability. Other examples of this class of problems are robot control, autonomous he-
licopter control, and autonomous car control. When the controlled system’s dynamics
is unknown in advance, model-based Reinforcement Learning can be used to efficiently

1 HVAC: Heating, Ventilation, and Air-conditioning.
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learn the dynamics first, and then solve the control problem, possibly by computing or
approximating a value function[13].

When using such a method to learn fine-grained control actions, one of the most
crucial choices is how to represent the value function. One reason that this choice is
so crucial is that the cycle time between consecutive control actions is typically short,
compared to the time-range, or the horizon, over which the overall system behavior is
optimized. Therefore, a single action often has a relatively minor effect on both the state
of the system and on the immediate cost/reward, so that the overall performance is a sum
of large number of minor contributions. Consequently, the value of a state that results
from a suboptimal action is typically close to the value of the state that results from
an optimal action. To induce the optimal policy, a value function approximator must
be able to capture these fine differences between state values. Note that taking a sub-
optimal action may not seem like a problem when action effects are minor. However,
since the problem’s horizon can be orders of magnitude longer than the length of an
action, the number of actions taken within the horizon is typically large, and repeatedly
choosing suboptimal actions can accumulate to large losses.

Value function approximation is an active area of research: it is often unclear how to
approximate the value function well enough so as to distinguish an optimal action from
a suboptimal action. The three most common methods to approximate a value-function
are lookup-tables, parametric methods, and non-parametric methods [16]. Lookup ta-
bles often suffer from Bellman’s curse of dimensionality at the resolution levels that are
required for continuous control problems. Parametric methods are typically computa-
tionally efficient, but assume that the value function takes some global, parametric form.
Non-parametric methods make much weaker assumptions about the value-function’s
form, and therefore can, in principle, approximate any function. However, they typi-
cally require more data and computation than parametric methods.

One way to avoid the difficulties in approximating a value function in continuous
spaces, is to use direct policy search methods, which directly optimize the parame-
ters of some parametrized policy. Policy search methods have recently achieved sev-
eral notable successes, e.g. [13,9,3], and have been gaining increased popularity for
real-world control problems, perhaps due to the difficulties in approximating the value
function in continuous spaces. However, if we could address the challenge of approxi-
mating the optimal value function well enough, we could gain some of the advantages
of value-function-based methods over direct policy search methods, for instance aiming
for global rather than local optimum, and requiring less interactions with the real-world
due to bootstraping.

To address our HVAC control problem, we develop a general, practical, algorithm
for approximating the value function in continuous state spaces. To avoid the need to
carefully design a parametric representation for the value function, we use a smooth
non-parametric function approximator, specifically Locally Weighted Linear Regres-
sion (LWR) (e.g. [2]). To compute the value function we use LWR within Fitted Value
Iteration (FVI), an algorithm that has proven convergence properties and often performs
well in practice [6,12]. However, being limited by a small sample size due to a run-
time efficiency requirement on the system, we must tune LWR’s parameters carefully,
otherwise the system performs poorly. We therefore develop an efficient meta-learning
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procedure that performs online model-selection and tunes LWR’s parameters. The model
selection procedure is based on two main ideas, substantiated empirically through a
large number of simulations. The first idea is that minimizing the empirical L1 or L∞
Bellman error of the approximate value function is correlated with optimizing perfor-
mance on our task. It is shown that the same statement is not true for the L2 Bellman
error. The second idea is that minimizing the Bellman error by tuning LWR’s parame-
ters can be done efficiently. We note that while the Bellman error was used as a criterion
for optimization by algorithms implementing generalized policy iteration using a fixed
representation for the value function, and for tuning and generating basis functions in
linear architectures, to the best of our knowledge it has not been used as an optimization
criterion for tuning a non-parametric representation (see Sec. 6).

We apply our algorithm to the realistic control task of controlling a thermostat to
optimize energy consumption while satisfying comfort requirements in a realistically
simulated home. We build a complete Reinforcement Learning agent that uses our algo-
rithm and show that (1) our agent outperforms the thermostat strategy that is deployed in
practice, (2) our function approximation scheme leads to better performance than when
using popular methods of value function discretization, linear function approximation
with reasonable features, and non-parametric function approximation using equivalent
computation with a much denser sample and without model-selection; and (3) our on-
line model selection leads to performance that is close to that of an empirical upper-
bound achieved using a state-of-the-art optimization method (CMA-ES [7]) combined
with a clairvoyant model evaluator that returns the actual future performance of a model.
The result is an adaptive value-function approximation algorithm for continuous state-
spaces, which uses a non-parametric representation to minimize the assumptions about
representation, and tunes it online to the specific environment in which it is deployed.

2 Preliminaries

2.1 Reinforcement Learning

In this paper we focus on solving control problems through Reinforcement Learning
(RL) [19]. Reinforcement learning problems are often modeled as Markov Decision
Processes (MDPs). An (episodic) Markov Decision Process (MDP) [18] is a tuple
(S,A, P,R, T ), where S is the set of states; A is a set of actions; P : S×A×S → [0, 1]
is a state transition probability function where P (s, a, s′) denotes the probability of
transitioning to state s′ when taking action a from state s; R : S × A → R is a reward
function; and T ∈ S is a set of terminal states, where entering one of which terminates
an episode. In the context of MDPs, the goal of RL is to learn an optimal policy, when
the model (namely P and/or R) is initially unknown. A policy is a mapping π : S → A
from states to actions. A policy π induces a value for each state s ∈ S, denoted as
V π(s), defined as the expected sum of rewards obtained by the agent when starting

in state s and following policy π: V π(s) = E
[∑N

t=0R(st, at)|s0 = s, sN ∈ T, π
]
.

V π(s) : S → R is called a value function. For a given MDP, there exists an optimal
policy π∗ such that V π∗

(s) ≥ V π(s) for every s.
While V π∗

(s) is induced by the policy π∗, it also induces π∗. It can be shown that
π∗(s) = argmaxa∈A

∑
s′∈S R(s, a) + P (s, a, s′) · V π∗

(s′). Therefore, given V π∗
(s)
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(andR, P ), an agent can act optimally using a one-step look-ahead from any given state.
This is the premise of value function based RL. For a finite S, there are algorithms that
provably find V π∗

(s) and therefore the optimal policy. When S is infinite, in general
we can only compute an approximation V̂ π∗

(s) of the optimal value function, and the
best methodology to do so is still an open research problem. As RL does not need to
know the system dynamics (model) in advance, it is an appropriate approach to control
problems when the system dynamics are either unknown or partially known, and when
a system is controlled in an uncertain environment to which it needs to adapt.

2.2 The Challenge of Function Approximation

The choice of function approximator can be crucial to determining an RL algorithm’s
performance in control problems of the type we consider. We start by defining a suf-
ficient condition for a function approximator to induce the optimal policy. Denote
E[s′|sa][V

π∗
(s′)] :=

∑
s′∈S P (s, a, s′)·V π∗

(s′). In a given state s, let εs be the smallest
absolute difference between the expected values of states resulting from two different
actions taken from s, where one action is optimal and the other is sub-optimal:

εs := min
a∗,a∈A

a∗=π∗(s) is optimal
a is sub-optimal

{|E[s′|sa∗][V
π∗
(s′)]− E[s′|sa][V

π∗
(s′)]|} (1)

Suppose that the system is in state s0 and an action needs to be chosen.2 In general, if
the function approximator is able to approximate V π∗

(s) to within
εs0
2 , meaning

max
s∈S

|V̂ π∗
(s)− V π∗

(s)| < εs0
2

(2)

then greedy action selection based on V̂ π∗
(s) is guaranteed to induce the optimal ac-

tion from s0, since:3 E[s′|sa∗][V̂
π∗
(s′)]−E[s′|sa][V̂

π∗
(s′)] > E[s′|sa∗][V

π∗
(s′)− εs0

2 ]−
E[s′|sa][V

π∗
(s′) +

εs0
2 ] ≥ εs0 − εs0

2 − εs0
2 = 0. When condition 2 holds for every state

s0 ∈ S, the function approximator induces the optimal action in every state, and there-
fore the optimal policy. When it does not hold in every state, the function approximator
may not induce the optimal policy.

Clearly, the smaller εs is, the harder it is to achieve the desired εs
2 function approxi-

mation accuracy. Unfortunately, for the type of problems this paper is concerned with,
namely real-world, discrete-time continuous control problems, εs can in fact be small
for many states. This happens when the following two properties hold (for S := Rn):

– Actions have “small” effect: there exists some (relatively small) δ such that for
every s′, s′′ ∈ S that can result from taking actions at some state s ∈ S, it holds
that ||s′ − s′′|| < δ. This can happen, for instance, when the cycle time between
subsequent control actions is short compared to the problem’s horizon.

2 Note that we assume the existence of a sub-optimal action, since otherwise there is no decision
of any consequence to be made, as all actions are optimal. Therefore εs > 0.

3 For simplicity of presentation, we neglect the 1-step reward, which could be incorporated into
Equation (1) in a straightforward way.
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– The optimal value function is Lipschitz continuous: there exists some K > 0 such
that ∀s1, s2 ∈ S : ||V (s1)−V (s2)|| < K||s1−s2||. This holds, for instance, when
the reward and the transition functions are Lipschitz continuous.

Combining the two conditions, we get that ∀s ∈ S : εs < ||E[V (s′)]−E[V (s′′)]|| ≤
E[||V (s′)−V (s′′)||] < E[K||s′−s′′||] < Kδ, so that the smaller the action effect δ, the
smaller εs is for any state s, and so the harder it is to achieve the desired approximation
accuracy. In the results section we demonstrate how this results in repeated suboptimal
actions, degrading performance on our thermostat control task.

3 Approximating the Value Function

RL algorithms that are based on value function approximation can roughly be divided
into model-free algorithms, which are usually more computationally efficient, and
model-based algorithms, which are usually more data efficient. As we are motivated by
real-world problems, where gathering experience is often an expensive operation, we
focus here on model-based RL. In model-based RL, an RL agent first explores the en-
vironment and learns an approximate model of it (namely P and R). Using this model,
the agent simulates experiences and computes V̂ π∗

(s). Since in this paper we focus on
value-function approximation, we assume that an approximate model is either given, or
was already learned by the agent. For instance, in the results section, our RL agent first
learns an approximate model, and then uses it to compute V̂ π∗

(s).

3.1 Approximate Dynamic Programming

For computing V̂ π∗
(s), we start by using sampling-based Fitted Value Iteration (FVI) [6]

(a detailed overview of its roots can be found at [12]). FVI is an approximate dynamic
programming algorithm that computes V̂ π∗

(s) by repeatedly scanning a finite sample
of states SFV I := s(1), s(2), . . . , s(m), applying the following two steps:

∀i ∈ 1, . . . ,m (3)

y(i) := maxa

(
R(s(i), a) + γE[s′|s(i)a][V̂

π∗
(s′)]

)
V̂ π∗

(s) := SL
(
{〈s(i), y(i)〉|i ∈ 1, . . . ,m}

)
(4)

where V̂ π∗
(s(i)) is initialized arbitrarily; the expectation over the resulting state is ap-

proximated by Monte-Carlo sampling; and after each update scan, a supervised learning
algorithm SL is used as a function approximator that approximates the value function
over the complete state-space, based on the “labeled” examples 〈s(i), y(i)〉. While FVI
is not guaranteed to converge to V π∗

(s), it often performs well in practice, and is theo-
retically well-behaved [12]. In addition, FVI is an off-policy algorithm, which means it
can approximate an optimal policy before ever executing it.
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3.2 Function Approximator

Inside FVI, the function approximator we use as SL is Locally Weighted Linear Re-
gression (LWR). LWR is a non-parametric, smooth function approximator that uses
only minimal representation assumptions, and that has been used successfully to model
complex real-world dynamics [13]. Given a set of m labeled examples (x(i), y(i)) and
a query point x for which we want to predict a value, our version of LWR does the
following:

1. w(i) := exp
(
− (x(i)−x)2

2τ

)
for i = 1, . . . ,m [compute a weight for each training example]

2. Fit θ that minimizes
∑m

i=1 w
(i)(y(i) − θTx(i))2 [use weights for weighted regression]

3. Output θTx

Here τ is a “bandwidth” parameter that determines how quickly the weights decay.
Small weights are typically truncated for computational efficiency reasons. Since the
weights w(i) depend on the specific query point, LWR builds a local model around the
query for every prediction it makes. Note that when used with FVI, x(i) := s(i), where
s(i) ∈ SFV I . In general, LWR results in smoother function approximation than sim-
pler non-parametric methods such as nearest-neighbors, which is a desirable property
for continuous control tasks. However, in general, LWR can extrapolate, and this can
prevent FVI from converging [6], so to ensure convergence we trim LWR’s predicted
value to be within the range defined by its neighbors values.

4 Efficient Model Selection

Like most learning algorithms, LWR usually needs to be tuned to work well for a par-
ticular problem. LWR is typically tuned by adjusting the values of the bandwidth pa-
rameter τ and of distance-metric-related parameters c1, . . . , cn, where ci is a scalar that
scales si, the i’th state attribute in a state s. Adjusting the values of c1, . . . , cn effec-
tively changes the distance metric based on the relative importance of state attributes.
While it is possible to make ci a general function ci : S → R rather than a scalar, we
take an approach of global tuning [2], in which ci is a scalar. This keeps the number
of LWR parameters at a total of n+ 1, so that tuning is more computationally efficient
and less susceptible to overfitting. A given set of parameter values is said to define a
model to be used by the LWR function approximator, and the process of tuning these
parameters is a form of model selection.4 The goal of our model-selection process is
to find a set of parameters, that when used by LWR inside FVI, results in a function
approximation that is close to the optimal value function.

When model-selection is done in a supervised learning setup, each candidate model
is typically evaluated using cross-validation. In our setup, using cross-validation by
holding out subsets of SFV I is problematic since (1) we don’t have the actual values
of states s ∈ SFV I as we have in supervised learning, but only the values that FVI
converges to, and (2) as SFV I is typically sparse (to keep the run-time of FVI accept-
able), having a good cross-validation accuracy on SFV I does not necessarily imply

4 Note that LWR’s model is different than, and should not be confused with, the MDP model.
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good prediction accuracy over the rest of the state space S \ SFV I . Therefore, we seek
an alternative model evaluation measure. The ideal way of evaluating a model is by
measuring the agent’s performance when acting based on a value function that uses this
model. However, evaluating the agent in the real-world with different models is often
prohibitively time-consuming and expensive. Therefore, we only use it as an empirical
upper-bound in our simulated domain.

Instead, we use a theoretically-founded model evaluation measure that is efficiently
computed in practice: the value-function’s empirical max Bellman error. In a given state
s, the absolute Bellman (optimality) error of a function V̂ : S → R is defined as:

BEV̂ (s) := |V̂ (s)−maxa(R(s, a) + γE[s′|sa][V̂ (s′)])|

Next, for a function V̂ : S → R the following holds:

V̂ ≡ V π∗
⇐⇒ ∀s ∈ S : BEV̂ (s) = 0 (5)

Furthermore, [21] (resp. [12]) establishes that for a full (resp. sample) Bellman backup:

|V π∗
(s)− V̂ (s)| ∝ BEV̂ (s) (6)

Equations (5), (6) imply that ideally the Bellman error would be 0, or as close as possi-
ble to 0, for every state. Note that while the convergence of FVI means that ∀s ∈ SFV I :
BEV̂ (s) ≈ 0, the Bellman error might still be large for states s ∈ S \SFV I . In order to

address that, we create a random sample of test states T := {t(1), ..., t(m′)}, and define
a vector of Bellman errors (overloading notation):

BEV̂ (T ) := (BEV̂ (t
(1)), . . . , BEV̂ t

(m′)) (7)

Motivated by Equations (5) (6), we use the max Bellman error ||BEV̂ (T )||∞ as a
model-evaluation measure when tuning LWR’s parameters. This model evaluation mea-
sure is computed solely based on a value function computed by FVI, without needing
more data or interactions with the environment. Our model selection process then be-
comes a continuous optimization problem of finding a set of LWR parameters ψ ∈
Rn+1 that minimizes ||BEV̂ (T )||∞ where V̂ is the resulting value function after run-
ning FVI with LWR using ψ. Ideally, the max Bellman error should be computed over
all states in the state space, however since the state-space in non-enumerable, we take a
practical approach and set T to be a (as dense as computationally possible) random
sample of states. In the results section we show that (a) minimizing ||BEV̂ (T )||∞
is correlated with good actual performance, and that (b) minimizing it can be done
efficiently.

Putting all of these components together, the main general contribution of the paper
beyond the domain-specific results is the MSNP algorithm (Model Selection for Non-
Parametric function approximation). As summarized in Algorithm 1, it executes the
following steps. The algorithm’s input is a learned MDP model, and an iterative contin-
uous optimization algorithm, that finds a minimum of a function F : Rn+1 → R. Since
we generally do not have the gradient of the Bellman error as a function of the LWR
parameter set, we use gradient free optimization algorithms in our experiments. An in-
teresting future extension would be comparing them with subgradient methods. MSNP
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starts by generating a sample S of states for FVI (step 1) and a sample of test states T
over which it would compute the max Bellman Error (step 2). It then initializes a vector
v of Bellman Errors (step 3) and a vector of LWR parameters ψ (step 5). In the main
loop, it repeatedly runs the following steps until the max Bellman Error converges: run
FVI (step 8), compute the resulting max Bellman Error (step 9-11), send it back to the
optimization algorithm as the evaluation of the current parameter set (step 15), and get
from the optimization algorithm a new set of LWR parameters to evaluate (steps 16-17).

Algorithm 1. MSNP(MDP-Model, OptimizationAlgorithm)

1: S ← {s(1), s(2), . . . , s(m)} the set of points used by FittedValueIteration

2: T ← {t(1), s(2), . . . , t(m′)} test points sampled within the boundaries of S
3: v ← {∞, . . . ,∞} ∈ Rm′

4: PreviousError ← ∞
5: ψ ← OptimizationAlgorithm.initializeParameters()
6: done ← False
7: while not done do
8: V̂ ← FittedV alueIteration(MDP-Model,S , ψ) // approximate value function
9: for i = 1→ m′ do

10: vi ← BEV̂ (t
(i)) // the Bellman error in t(i)

11: end for
12: MaxBellmanError ← ||v||∞
13: if |MaxBellmanError - PreviousError| < ε then
14: done ← True
15: else
16: OptimizationAlgorithm.observe(MaxBellmanError)
17: Δψ ← OptimizationAlgorithm.step()
18: ψ ← ψ +Δψ
19: PreviousError ← MaxBellmanError
20: end if
21: end while

MSNP is an efficient algorithm for approximating the value function in continuous
state spaces, that uses our model-selection procedure for tuning a Fitted Value Iteration
with Locally Weighted Linear Regression, and which has the following properties:

1. General: It uses only minimal assumptions about a value function’s representation,
by using an non-parametric function approximator (LWR).

2. Practical: It tunes the representation of the LWR function approximator without
the need to evaluate the agent in the environment but rather based on an internal
property of the value function, namely the Max Bellman Error. In that sense, it is
data efficient.

3. Adaptive: It tunes online the function approximator’s representation to the environ-
ment it is deployed in.

4. Effectively use computation: Its model selection procedure achieves better perfor-
mance than when using the same amount of computation on a larger SFV I sample
without any model-selection.
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5 Results

In this section we investigate the application of MSNP to the task of controlling an
HVAC’s thermostat in a realistically simulated home.

5.1 Experimental Setup

Our experiments are run using GridLAB-D5, an open-source smart-grid simulator that
was developed for the U.S. Dept. of Energy. It models a residential home, including
heat gains and losses and the effects of thermal mass, as a function of weather (tem-
perature and solar radiation), occupant behavior (thermostat settings and internal heat
gains from appliances), and heating/cooling system efficiencies. It uses meteorological
data collected by the National Renewable Energy Laboratory6 in cities across the USA.
In our experiments, GridLAB-D simulates a residential home with a heat-pump based
HVAC system, which is widely used due to its high efficiency.

Fig. 1. Temperature Requirements Specification

We assume that occupants are at home between 6pm and 7am of the next day, and
that the house is empty between 7am and 6pm (referred to as the don’t-care period). Our
goal is to (1) minimize the energy consumed by the HVAC system, while (2) keeping a
desired temperature range of 69-75◦(F ) when the occupants are at home, and being in-
different to temperature otherwise (Figure 1). Due to uncertainty in future weather and
in the house’s environment, simple strategies fail to satisfy at least one of the require-
ments. For instance, turning the system off at 7am and turning it back on at a fixed time,
such as 6pm, or even earlier, can fail to satisfy both requirements in cold winter days,
since the temperature gets significantly out of range at 6pm and restoring it might take
several hours, during which comfort is violated. Moreover, while doing so, an energy
expensive auxiliary heater is used (since the heat-pump becomes inefficient), and the
resulting energy is higher than when just keeping the temperature between 69-75◦(F )
throughout the day. We model the problem as an episodic MDP7, as follows:

5 http://www.gridlabd.org
6 http://www.nrel.gov
7 An action is taken every 2 minutes, as the simulator models a realistic lockout of the system.

http://www.gridlabd.org
http://www.nrel.gov
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– S: {〈Tin, Tout, T ime〉| Tin and Tout are the indoor and outdoor air temperatures
(in Fahrenheit), and T ime is a 24-hour clock time (in minutes).}

– A: {COOL, OFF, HEAT, AUX}. Namely, there are four possible actions for cooling,
off, (heat-pump-)heating and auxiliary heating, respectively.

– P: computed by the GridLAB-D simulator and is initially unknown to the agent.
– R: −(the energy consumed by the last action) −C6pm. Here, C6pm is a quadratic

cost applied when missing the temperature spec at 6pm.
– T: {s ∈ S|s.time == 23:59pm}

For testing the MSNP algorithm, we build a full RL agent that controls the thermostat.
Since our focus is on value function approximation, we leave the problem of sample-
efficient exploration and model-learning outside the scope of this work. Instead, to cover
diverse weather conditions, the agent explores during don’t-care periods of one simu-
lated year, where the OFF action is chosen with probability of (1 − currentT ime−7am

6pm−7am ).
Otherwise, cooling or heating is chosen, depending on whether the indoor temperature
high or low, respectively. If heating is chosen, then HEAT or AUX are chosen with prob-
abilities 0.9 and 0.1 respectively. While exploring, the agent collects tuples of the form
〈s, a, r, s′〉, which are the current state, action, reward, and next state. The agent uses
these tuples as labeled examples 〈s, a〉 → r and 〈s, a〉 → s′ for fitting the functions
R and P with linear regression using state features and their squares, where s is rep-
resented as 〈1, Tin, Tout, T ime, Tin

2, Tout
2, T ime2〉. This representation was chosen

based on a small amount of trial and error. Adding the squares was intuitively aimed
at addressing non-linearity in the transition, to some extent. Using P and R, the agent
runs MSNP and acts greedily based on V̂ π∗

for an additional year.8 Inside MSNP, FVI
uses a state sample SFV I arranged as a grid inside the three-dimensional state space,
of size 20x10x20=4000. For running LWR inside FVI we use the 15-nearest neighbors,
and the grid structure allows us to find them in constant time.

5.2 Sensitivity to Errors in Function Approximation

Figure 2 demonstrates the difficulty of value function approximation in continuous do-
mains with short actions, using the thermostat control task. The x-axis is the 24-hour
time of day and the y-axis is the indoor temperature controlled by the actions of the
agent, who acts greedily based on an approximate value function. The agent turns the
system off during the don’t-care period, letting the temperature rise, and eventually
cools in advance to return the temperature back to range by 6pm. However before start-
ing to cool, there are several heating actions that are physically wrong, chosen due to
small approximation errors in the value function, in this case due to using LWR without
tuning its parameters. Each suboptimal 2-minute action increases the daily consump-
tion by only about 0.1%, but repeatedly taking them can increase consumption by 10%

8 In practice, Gridlab-D only has one year of ”average” weather data. We therefore used 9 of
every 10 days during the training year, and the remaining days during the testing year so as
to have separate training and testing data. Our reported results reflect the average of repeating
this experiment 10 times with each different possible subset of ”held-out” days.
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Fig. 2. Suboptimal policy due to func. approximation errors

and more. These suboptimalities and more severe ones happened when using discretized
representations as well as linear value-function representations with reasonable features.

5.3 Using the Max Bellman Error for Model-Selection

Next, we investigate using the Bellman error as a criterion for model-selection of our
LWR function approximator. The plots in Figure 3 show the correlation between empir-
ical Bellman error in the approximate value function V̂ π∗

and the agent’s performance
when acting based on V̂ π∗

. The plots summarize 10,000 experiments, each represented
as a point. Each experiment tests a set of n+1 LWR parameters, which defines a model
used by LWR, as was discussed in Section 4. In the thermostat domain there are three
state attributes, and therefore four model parameters. We sweep the parameter space by
setting each parameter to one of 10 possible values, and this gives 10× 10× 10× 10 =
10,000 possible parameter sets. The empirical Bellman errors were measured as the L1,
L2 or L∞ norms of the vector of Bellman errors in V̂ π∗

over a uniformly random sam-
ple of |T | = 256, 000 states. It can be seen that when the L1 and L∞ errors are smallest,
performance is expected to be close to the best possible (lowest energy consumption).
The same does not hold for the L2 error, as minimizing the L2 error results in con-
suming 4% more energy than the best result. Note that in general these plots clearly
highlight the need for model-parameters tuning, as untuned parameters can consume
about 25% more energy than the best possible parameters.

5.4 Efficiently Optimizing the Bellman Error

The previous section tested the first of two steps for creating an efficient model-selection
algorithm. We saw that model-selection, or representation tuning, of the LWR function
approximator can be done without the need to evaluate an agent in the environment, but
rather based on an internal property of the value function, namely theL∞ or L1 Bellman
errors, so in that sense it is data efficient. Next, we show that tuning the model param-
eters based on the max Bellman error can be done computationally efficiently. Note
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Fig. 3. Bellman errors (x-axes) vs. actual performance (y-axes, lower is better). Top row: full
plots. Bottom row: zoom into the bottom-left corner (best performance) of each top row plot.

that once using the Bellman error for model evaluation, our model-selection problem
becomes minimizing an objective function that maps an LWR parameter set to the max
Bellman error in V̂ π∗

computed using this parameter set by FVI with LWR. We com-
pare several efficient local-search derivative-free algorithms for finding the minimum of
a continuous function.9 The algorithms we compare are Powell’s method, Nelder–Mead
method, also known as Amoeba, and a coordinate-descent algorithm in which we hold
all parameters fixed and optimize one parameter at a time using Brent’s method, using
implementations from [17]. Results are shown in Figure 4. The horizontal gray line in
the figure is the best max Bellman error that was achieved when using an offline, state-
of-the-art, parallel optimization algorithm CMA-ES [7], when running it with 10,000
function evaluations (100 generations with a population-size of 100). It can be seen that
after about 30 function evaluations all three methods get close to CMA-ES’s value, and
that the Brent’s method-based coordinate-descent reaches there after about 15 function
evaluations. Our FVI implementation converges in less than 2-minutes on a standard
desktop machine, so that 15-30 function evaluations takes 30-60 minutes.

How robust is running local optimization for finding a global minimum of the max
Bellman Error? To try to answer this question, we fixed the parameter values at c1 =
c2 = c3 = 0.5, τ = 0.0005, and then changed one parameter at a time across its range
(ci ∈ [0.05, 1], τ ∈ [0.00005, 0.0010]) measuring the max Bellman error as a function
of this parameter, where as usual, the max Bellman error was computed over the value
function computed using FVI with LWR. Results are in Figure 5, and show that while
the max Bellman error is not a convex function of representation parameters, it still has
a relatively large basin of convergence.

9 In general we do not have derivative information for the optimized function.
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Fig. 4. Comparing different optimization algorithms on the task of finding a parameter set that
minimizes the max Bellman error
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Fig. 5. Bellman Error basin of convergence: Bellman Error (y-axis) as a function of each LWR pa-
rameter, holding all the other parameters fixed. The x-axes from left to right: τ, cTin , cTout , cTime

5.5 Performance of MSNP

Finally, Table 1 demonstrates the advantage of using MSNP, by testing it on our ther-
mostat control problem. In these experiments, we use our RL agent, changing only the
way the value function is approximated. The table shows the energy consumed by the
HVAC system over one simulated year, in which the agent acts greedily based on each
of the different approximate value functions. Simulations were run using real weather
files from three different cities in the US. As a reference, the “Default” column shows
the results of using a default heat-pump thermostat strategy that is used in real-world
deployments, which just keeps the temperature between 69-75◦(F ) throughout the day.
This strategy does not shut down the system during the don’t-care period, since do-
ing so without knowing how long in advance to turn the system back on can result
in violating either or both requirements (1) and (2), as discussed above. The “Large-
Sample” column was generated when using FVI with LWR to approximate the value
function, but instead of using the model-selection like MSNP does, the agent spends the
same amount of computation on just running FVI with LWR on a larger state sample
SFV I of 160x80x160=2048000 states without any model selection, and using default
values for the LWR parameters, similar to the values used in Section 5.4: ci = 0.5 for
i = 1, ..., n and τ = 0.0005.10 MSNP was run using a state sample SFV I of 20x10x20
states and used |T | = 256, 000 states for computing the Bellman error, so that its

10 The “LargeSample” results are actually slightly better than they should be because they did

not use the 9 days of 10 methodology referenced in footnote8. It was trained on the full year
of data.
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Table 1. Performance of an agent using MSNP

City Default (kWh) LargeSample (kWh) MSNP (kWh) CMA-ES (kWh) % Energy-Savings

New York City 11084.8 10923.5 9859.3 9816.3 11.0%
Boston 12277.1 12480.7 11433.6 11052.8 6.9%
Chicago 15172.5 14778.2 14186 13778.4 6.5%

Fig. 6. Our agent controlling the temperature in a house in New York City area, in mild and hot
summer days (top-left and top right, respectively), and mild and extreme winter days (bottom-left
and bottom-right, respectively)

computation time, dominated by the number of LWR predictions was no larger than
that of LargeSample’s. The “CMA-ES” column serves as an empirical upper-bound on
performance in our simulated domain. It was generated by running the state-of-the-art
CMA-ES optimization method to perform model selection on top of FVI with LWR,
using (1) 10,000 model evaluations (100 generations, each with a population size of
100), and (2) a clairvoyant model-evaluator that returns the agent’s actual future per-
formance using a given model, by running a one-year simulation using this model. It
can be seen that MSNP performs better than “LargeSample”, which demonstrates that
online model-selection has an advantage over just increasing the density of the sample
size. MSNP’s performance is close to that of CMA-ES’s, despite the fact that it uses only
40 function evaluations (instead of 10,000) and doesn’t have access to the “real” model
evaluation measure of the unknown future performance, that CMA-ES has. Note that
while the MSNP and CMA-ES agents satisfied the temperature comfort requirements,
the LargeSample agent frequently did not satisfy them. In Figure 6 we demonstrate
how the RL agent controls the temperature in mild and extreme winter/summer days.
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6 Related Work

RL has been applied to realistic control tasks, however recent successes frequently used
policy search methods, rather than value-function-based methods(e.g. [13,9,3]). Value
function based RL has had success on some robotic tasks [15], but there the assumption
was that the value function can be represented as a predetermined set of basis functions,
an assumption that does not necessarily hold in the general case. Non-parametric value
function approximation methods have been suggested, e.g. in [4]. The idea of using the
Bellman error as a criterion for optimization has been used by algorithms implement-
ing generalized policy iteration, e.g. in [10,1]. The Bellman error has also been used for
tuning and generating basis functions adaptation in linear function approximation ar-
chitectures [11,8,14], while here we use it to tune a non-parametric representation. The
model selection proposed here is different then the model selection done by [13]. There,
the setup was offline, supervised learning for learning the transition function, while ours
is an online reinforcement learning setup, for approximating the value function, where
there are no labels over the data, but only the values to which FVI converge to, which
could be different then the real state values. A paper that is closely related to ours is [5],
which designs an abstract model-selection algorithm and proves theoretical guarantees
about it. Similarly to here, they consider batch RL, in which a data set D of sampled
transitions from the MDP is given, and is used for selecting a candidate value function
by minimizing a Bellman error. In their case they abstract the way value function can-
didates are generated and assume they are independent of D, while here we actually
use D to approximate the model and generate candidates using MSNP. Their theoretical
guarantees are proved under a slightly different setup, and it would be interesting to
explore whether they can be extended to our setup. The problem of thermostat control
was addressed in [20], but there the focus was on solving the complete RL problem,
including exploration, model learning and planning, and no value function approxima-
tion was used, while here the focus is on investigating the application of value-function
based RL to the continuous, realistic domain of HVAC thermostat control.

7 Conclusion

This paper presents the application of value-function-based RL to the real-world smart-
energy application of controlling an HVAC thermostat to minimize energy consumption
while satisfying temperature comfort requirements, along with detailed empirical re-
sults and analysis. In addition, the paper introduces MSNP, which is a general, practical
algorithm for approximating the value function for continuous control problems, using
an efficient model-selection procedure based on the Bellman error.

This paper opens up several interesting directions for future work. For example, it is
worth investigating the Bellman error’s basin of convergence as a function of the model-
parameters. Another interesting direction is exploring the use of subgradient methods
for minimizing the Bellman error, and comparing them with the gradient-free methods
we used. Finally, an important future direction is to expand MSNP’s empirical analy-
sis by including more domains and competing methods, and to evaluate it in higher-
dimensional state spaces.
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Abstract. Graph-based domain representations have been used in discrete rein-
forcement learning domains as basis for, e.g., autonomous skill discovery and
representation learning. These abilities are also highly relevant for learning in
domains which have structured, continuous state spaces as they allow to de-
compose complex problems into simpler ones and reduce the burden of hand-
engineering features. However, since graphs are inherently discrete structures,
the extension of these approaches to continuous domains is not straight-forward.
We argue that graphs should be seen as discrete, generative models of continu-
ous domains. Based on this intuition, we define the likelihood of a graph for a
given set of observed state transitions and derive a heuristic method entitled FIGE

that allows to learn graph-based representations of continuous domains with large
likelihood. Based on FIGE, we present a new skill discovery approach for contin-
uous domains. Furthermore, we show that the learning of representations can be
considerably improved by using FIGE.

1 Introduction

Reinforcement Learning (RL) allows autonomous agents to learn to improve their per-
formance with experience in an unknown environment. However, typically represen-
tations for policies and value functions need to be carefully hand-engineered for the
specific domain and learned knowledge is not efficiently reused in situations when an
agent has to solve several different but related tasks. Representation learning for RL [7]
and hierarchical RL [1] are approaches to alleviate these drawbacks.

Graph-based representations of the domain have been used as basis for both repre-
sentation learning and hierarchical RL. For instance, Mahadevan and Maggioni [7] have
learned useful internal representations called proto-value functions based on a graph
representation of the domain. Such graphs have also been used to identify bottleneck
states of the environment [8, 10, 13] which are a common basis for skill discovery in
hierarchical RL. While these graph-based approaches have shown promising results in
domains with discrete state and action spaces, extending them to continuous domains is
not straight-forward. This is mainly due to the fact that graphs are intrinsically discrete
structures and thus cannot directly model a continuous environment.

Previous work on graph-based approaches in continuous domains has thus either
discretized the domain, i.e., placed graph nodes at a regular grid over the state space

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 81–96, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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[8], or placed graph nodes at a subset of the observed states [7]. While the former suf-
fers from the curse-of-dimensionality, the later allows to exploit situations where the
effective dimensionality of the state space is smaller. However, both approaches focus
purely on covering the state space as uniformly as possible and neglect the dynamics
of the environment. We argue that graph representations should take the dynamics into
account since they can be seen as a model of the environment. That is, typical transi-
tions encountered in the domain should be representable by the graph. The hypothesis
evaluated in this paper is that a graph, which models the dynamics of its (continuous)
environment well, will yield superior results with regard to representation learning and
bottleneck identification. We propose a new heuristic called FIGE which allows to learn
graph representations that explicitly aim at modeling the environment’s dynamics.

The outline of the paper is as follows: In Section 2, we review graph-based RL meth-
ods and discuss how graph representations have been generated in these methods. In
Section 3, we define the likelihood of a graph for a given set of transitions sampled
according to the domain’s dynamics. Thereupon, we propose the FIGE heuristic for
learning graph representations of continuous environments, which is derived from the
maximum graph likelihood formulation under simplifying assumptions. Furthermore,
we compare FIGE with other graph learning heuristics empirically with regard to the
graph likelihood. In Section 4, we propose and evaluate a new graph-based skill dis-
covery method for continuous domains, which is based on the FIGE heuristic. Similarly,
in Section 5, we present empirical evidence that Representation Policy Iteration [7] can
benefit from using FIGE for graph generation in continuous domains. We summarize the
results of this paper and provide an outlook in Section 6.

2 Graph-Based Reinforcement Learning

A Markov decision process (MDP) M can be formalized as a 4-tuple M=(S,A,Pa
ss′ ,R

a
ss′)

where S is a set of states, A is a set of actions, Pa
ss′ = P(st+1 = s′|st = s,at = a) is

the 1-step state transition probability also referred to as the “dynamics”, and Ra
ss′ =

E{rt+1|st = s,at = a,st+1 = s′} is the expected reward. In RL, these quantities are usu-
ally unknown to the agent but can be estimated based on samples collected during ex-
ploration. If both S and A are finite, we call M a discrete MDP, otherwise we call it a
continuous MDP. If for all s ∈ S,a ∈ A there exists one s′ ∈ S with Pa

ss′ = 1, the MDP is
called deterministic otherwise it is a stochastic MDP. The goal of RL is to learn without
explicit knowledge of M a policy π∗ such that some measure of the long-term reward is
maximized. Learning is often based on approximating the optimal action-value function
Q∗(s,a) = ∑s′ P

a
ss′ [R

a
ss′ + γ maxa′ Q

∗(s′,a′)], where γ ∈ [0,1] is a discount factor.
One way of representing a (finite) MDP is using a weighted labeled multigraph

G= (V,E,w). Assuming knowledge of M, we would set V = S and E = {(s,s′)a|∀s,s′ ∈
S,a ∈ A : Pa

ss′ > 0}. In a state transition graph [7, 10], edge weights encode transition
probabilities between nodes. If we set the weight of edge (s,s′)a to wa

ss′ = Pa
ss′ , a state

transition graph is just an other way of representing the domain’s dynamics. However,
the graph-based view of the MDP is particularly suited for representation learning [7]
and for identifying bottlenecks of the MDP [8–10, 12, 13], which is a common prerequi-
site for skill discovery in hierarchical RL. In small and discrete domains, learning state
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transition graphs from experience for unknown MDPs is straightforward: one graph
node is created for each observed domain state and an edge is created for any pair of
states between which a direct transition has been observed. For domains with continu-
ous state spaces S ⊂Rd , the situation is more complicated because graphs are inherently
discrete structures and thus, there cannot be a 1-to-1 correspondence between states and
graph nodes since there exists an infinite number of states. Thus, several states need to
be aggregated into one node, i.e., V � S. Accordingly, one has to choose how many
nodes there should be and where in the state space these nodes should be placed.

Prior work on choosing the positions of the graph nodes has mainly focused on cov-
ering the state space uniformly with nodes and neglected the domain’s dynamics Pa

ss′ .
Among these approaches are: (a) a heuristic which forms a uniform grid of vnum nodes
over the state space with a grid resolution of � d

√
vnum per dimensions. This approach

has been used in the context of graph-based skill discovery, e.g., by Mannor et al. [8].
An obvious disadvantage is that the approach will not scale to domains with many di-
mensions. (b) The on-policy sampling heuristic (also denoted as “random subsampling”
by Mahadevan and Maggioni [7]), which samples vnum graph nodes uniform randomly
from the set of states S′ encountered during exploration. The heuristic is on-policy, i.e.,
regions of the state space that are often visited by the sampling policy are represented
by more graph nodes. (c) The ε-net heuristic, also denoted as “trajectory-based subsam-
pling” [7], which aims at covering the “effective state space” as uniformly as possible.
It follows a greedy strategy for finding a locally maximal set of graph nodes V ⊂ S′ with
pairwise distance at least ε . The advantage of this approach compared to the on-policy
sampling method is that the effective state space is covered more uniformly. In order
to parametrize the heuristic by vnum instead of ε , one can perform binary search for a
value of ε that yields a set of graph nodes with cardinality vnum.

3 FIGE: Force-Based Iterative Graph Estimation

While the heuristics discussed in Section 2 focus on covering the state space uniformly,
they do not take the domain’s dynamics into account. Thus, for many valid state tran-
sitions s → s′ of the domain, there may not be any pair of graph nodes v1,v2 ∈ V such
that v1 → v2 is a good representation of s → s′. Accordingly, the graph may not be able
to capture the domain’s dynamics Pa

ss′ accurately. In this section, we propose a genera-
tive process which defines how probable a set of observed transition has been generated
from a transition graph. We then propose the heuristic FIGE which is derived from this
generative process as maximum likelihood solution under simplifying assumptions.

3.1 Likelihood of Transition Graph

We propose to consider a graph as a generative model for transitions and to choose
graph node positions such that the likelihood p(T |G) of the resulting graph G for a set
of observed transitions T = {(si,ai,s′i)}n

i=1 becomes maximal. We consider transitions
to have been sampled from the graph using the following generative process: (1) Sample
a graph node v ∈ V uniform randomly, i.e., p(v) = 1/|V |. (2) Sample a state s for a
given node v according to p(s|v) = Nb exp(− 1

b2 ‖s− v‖2
2) where b controls how closely
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centered p(s|v) is on v and Nb is a normalization constant, which only depends on
b. (3) Sample an action a uniformly from the action space A, i.e, p(a|s) = p(a) =
1/|A|. (4) Sample the “successor node” v′ according to the graph’s edge weights, i.e.,
p(v′|v,a) = wa

vv′ . (5) Finally, sample the successor state s′ according to the distribution
p(s′|v′,v,s) = Nb exp(− 1

b2 ‖s′ − (v′ − v+ s)‖2
2) with the same b and Nb as before. This

distribution encourages that the state transition s → s′ is close to parallel to the given
node transition v → v′. This 5-step generative process can be derived as follows:

p(T |G) =
n

∏
i=1

p((si,ai,s
′
i)|G) =

n

∏
i=1

pG(si)p(ai|si)pG(s
′
i|si,ai)

Under the independence assumptions I = {v ⊥ a|s;v′ ⊥ s|v,a;s′ ⊥ a|v′,v′,s}, we have

pG(s
′|s,a) = ∑

v
pG(v,s

′|s,a) =∑
v

pG(v|s,a)pG(s
′|v,s,a)

= ∑
v

pG(v|s,a)∑
v′

pG(v
′,s′|v,s,a) =∑

v
pG(v|s,a)∑

v′
pG(v

′|v,s,a)pG(s
′|v′,v,s,a)

I
= ∑

v
pG(v|s)∑

v′
p(v′|v,a)pG(s

′|v′,v,s)

Inserting this in p(T |G) and using Bayes rule pG(v|s) = p(s|v)p(v)/pG(s) yields

p(T |G) =
n

∏
i=1

pG(si)p(ai|si)

[
∑
v∈V

p(si|v)p(v)
pG(si)

∑
v′∈V

p(v′|v,a)p(s′i|v′,v,si)

]

=
n

∏
i=1

p(ai|si)
(3)

[
∑
v∈V

p(v)
(1)

p(si|v)
(2)

∑
v′∈V

p(v′|v,a)
(4)

p(s′i|v′,v,si)
(5)

]
.

3.2 Method

Given the generative process discussed in the previous section, the optimal state tran-
sition graph for a given set of transitions T would be G∗ = argmaxG p(T |G). Unfor-
tunately, solving this problem directly is hard; we propose the FIGE heuristic, which
aims at finding close-to-optimal transition graphs iteratively and is computationally
tractable. FIGE’s update equations are derived from the maximum likelihood objective
G∗ = argmaxG p(T |G) using two simplifying assumptions (see Appendix A): (A1) For
each transition (s,a,s′)∈ T , assume p(v′|v,a) = 1 if v= NNV (s)∧v′ = NNV (s′) else 0,
where NNV (s) = argminv∈V ||s− v||2. This assumption implies that whenever action a
is executed in any state of the Voronoi cell Vo(v) = {s ∈ S|NNV (s) = v} the succes-
sor state will be with probability 1 in Vo(v′). (A2) Assume p(T |V ) = ∏v p(T |v). This
assumption implies that the choice of the positions of the graph nodes v ∈ V can be
made independently. Both assumptions are typically oversimplifying; A1 is more over-
simplifying for domains whose dynamics are less locally smooth. A2 on the other hand
is more simplifying in strongly connected domains where many transitions from the
Voronoi cell of one node to the Voronoi cell of another node occur. To account for some
of the errors made because of the oversimplifications of A1 and A2, FIGE iteratively re-
fines the graph node positions by applying the derived update equations several times.
Note that FIGE is a heuristic and no guarantee for converging to G∗ is given.
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Algorithm 1. Force-based Iterative Graph Estimation (FIGE)
1: Input: Transitions T = {(si,ai,s′i)}n

i=1, parameters vnum, K
2: # Choose initial node positions V from states in T s.t. distance of closest pair is maximized
3: V = INITIALIZE(T,vnum)
4: for i = 0 to K −1 do
5: for all v ∈V do
6: SV [v] = {s | ∃(s,a,s′) ∈ T : NNV (s) = v} # Observed states in Voronoi cell Vo(v)
7: FS[v] = MEAN(SV [v])−v # Sample representation force
8: T→(v) = {NNV (s′)− s′ + s | ∃(s,a,s′) ∈ T : NNV (s) = v} # Transitions starting in Vo(v)
9: T←(v) = {NNV (s)− s+ s′ | ∃(s,a,s′) ∈ T : NNV (s′) = v} # Transitions ending in Vo(v)

10: FG[v] = 0.5 · [MEAN(T→(v))+MEAN(T←(v))]−v # Graph consistency force

11: V =V +αi ·0.5(FS[V ]+FG[V ]) # Update node positions (vector notation)

12: # Count transitions from Voronoi cell Vo(v) to Voronoi cell Vo(v′) under action a
13: Na

vv′ = |{(s,s′) | ∃ (s,a,s′) ∈ T : NNV (s) = v∧NNV (s′) = v′}|
14: E =

{
(v,v′)a | v,v′ ∈ V a ∈ A : Na

vv′ > 0
}

# Edge between v and v′ labeled with action a
15: wa

vv′ = Na
vv′/∑ṽ Na

vṽ # Edge weights are empirical transition probabilities on graph
16: return (V,E,w)

FIGE is summarized in Algorithm 1: The set of graph nodes V is initialized such that
it covers the set of states contained in T uniformly by, e.g., maximizing the distance of
the closest pair of graph nodes (line 3). Afterwards, for K iterations, the graph nodes are
moved according to two kind of “forces” that act on them: The “sample representation”
force (line 6-7) pulls each graph node v to the mean of all states Sv for which it is
responsible, i.e., the states s for which it is the nearest neighbor NNV (s) in V . Thus,
this force encourages node positions that capture the on-policy state distribution well
and corresponds to an intrinsic k-means clustering. The “graph consistency” force (line
8-10) pulls each graph node v to a position where for all (s,a,s′) ∈ T with NNV (s) = v
there is a vertex v′ such that v′ − v is similar to s′ − s, i.e., both vectors are close to
parallel. Thus, this force encourages node positions which can represent the domain’s
dynamics well. The nodes are then moved according to the two forces (line 11), where
the parameter αi ∈ (0,1] controls how greedily the node is moved to the position where
the forces would become minimal. In order to ensure convergence of the graph nodes,
αi should go to 0 for i approaching K. If not explicitly stated, we use αi = #i/5$−1

and K = 15. An edge labeled with action a is added between two nodes v and v′ if
there exists at least one transition (s,a,s′) ∈ T with s being in the Voronoi cell of Vo(v)
and s in Vo(v′) (line 14). Furthermore, the edge weights are chosen as the empirical
transition probabilities P̂a

vv′ from node v to v′ under action a (line 15). It has recently
been shown that this choice of edge weights is most robust under varying degrees of
domain stochasticity and different exploration strategies of the agent [11].

3.3 Evaluation: Graph Likelihood

In this section, we present an empirical comparison of the different heuristics with re-
gard to the obtained likelihood of the generated graphs in the mountain car domain
(compare Chapter 8.4 of Sutton and Barto [15]). In the left graph of Figure 1, the graph
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Fig. 1. Left graph: Graph Log Likelihood-Ratio relative to grid heuristic in deterministic moun-
tain car for different values for the number of graph nodes. Right graph: Graph Log Likelihood-
Ratio relative to grid heuristic in the stochastic mountain car domain for varying stochasticity σt

and vnum = 200. Shown are mean and standard error of mean over 20 repetitions.

likelihood with b = 0.02 is evaluated for different heuristics and different number of
graph nodes vnum. Since the likelihood depends on vnum, we plot the log of the ratio
of the method’s likelihood relative to the likelihood obtained by the data-independent
grid heuristic. Note that the graph likelihood has been evaluated on test transitions Ttest

which were different from the training transitions Ttrain that were used for the optimiza-
tion of graph node positions (|Ttrain|= 5000, and |Ttest |= 105).

Regardless of vnum, the largest graph likelihood is achieved by FIGE and the smallest
by the grid heuristic (for vnum > 75). The on-policy sampling heuristic performs slightly
better than ε-net for vnum < 150 while both perform similarly for larger vnum. A possi-
ble explanation for the stronger deterioration of ε-net is that for small vnum, the minimal
node distance ε gets larger than the typical distance of states and their successors and
thus, Pa

ss′ cannot be represented in any part of the state space. In contrast, on-policy sam-
pling allocates more graph nodes in densely sampled parts of the state space and thus
allows to model at least these parts of the state space. FIGE can achieve a considerably
larger graph likelihood than both by taking the domain’s dynamics into account as well.

In a second experiment, we evaluate how robust the different heuristics are with
regard to increasing stochasticity in the domain’s state transition probability Pa

ss′ . For
this, we modify any transition from state s to s′ governed by the domain’s determin-
istic dynamics such that the i-the dimension of the actual successor state becomes
s′i ← s′i + σi(s′i − si) with σi sampled uniformly from [−σt ,σt ]. Note that this is not
purely observation noise since the actual internal state of the environment is altered.
σt controls how “strong” the stochasticity of the domain is, with σt = 0 corresponding
to the deterministic domain. The same amount of transition noise was also used for
generating the test transitions Ttest . The results are shown in the right graph in Figure
1. As expected, the grid-based heuristic deteriorates less with increasing stochasticity
as it does not take the observed transitions into account. Nevertheless, the other data-
dependent heuristics achieve better graph likelihood for σt < 0.8 with FIGE remaining
the best heuristic for the whole investigated range of σt ∈ [0,1]. This shows that FIGE is
also suited for stochastic domains.
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4 Graph-Based Skill Discovery

Next to continuous action spaces, scaling RL to real-world problems with large or con-
tinuous state spaces remains a challenge since the amount of experience the agent can
collect is limited. One approach to alleviate this problem is hierarchical RL [1], which
aims at dividing a problem into simpler subproblems, learning solutions for these sub-
problems, and encapsulate the acquired knowledge into so-called skills that can poten-
tially be reused later on in the learning process. It has been shown that skills can help
an agent to adapt to non-stationarity of the environment and to transfer knowledge be-
tween different but related tasks [3] and can increase the representability of the value
function in continuous domains [5]. A major challenge in hierarchical RL is to iden-
tify what might constitute a useful skill, i.e., how the problem should be decomposed.
Skills should be reusable, distinct, and easy to learn. The task of identifying such skills
is called skill discovery [2, 4].

Most prior work on autonomous skill discovery is based on the concept of bottle-
neck areas in the state space. Informally, bottleneck areas have been described as the
border states of densely connected areas in the state space [10] or as states that allow
transitions to a different part of the environment [12]. Several heuristics have been pro-
posed to identify bottlenecks. One class of heuristics are frequency-based approaches
that compute local statistics of states like diverse density [9] and relative novelty [12].
An other class of heuristics that is typically more sample-efficient are graph-based ap-
proaches which are based on estimates of the domain’s state transition graph (see Sec-
tion 2). Graph-based approaches to skill discovery aim at partitioning this graph into
subgraphs which are densely connected internally but only weakly connected with each
other. Menache et al. [10] propose a top-down approach for partitioning the global
transition graph based on the max-flow/min-cut heuristic. Şimşek et al. [13] follow a
similar approach but partition local estimates of the global transition graph using a
spectral clustering algorithm and use repeated sampling for identifying globally con-
sistent bottlenecks. Mannor et al. [8] propose a bottom-up approach that partitions the
global transition graph using agglomerative hierarchical clustering.

Relatively few works on autonomous skill discovery in domains with continuous
state spaces exist. Mannor et al. [8] have evaluated their approach in the mountain car
domain by uniformly discretizing the state space. However, such a uniform discretiza-
tion is suboptimal since it does not scale well to higher dimensional state spaces. One
skill discovery method that has been designed for continuous domains is “skill chain-
ing” [5]. Skill chaining produces chains (or more general: trees) of skills such that each
skill allows to reach a specific region of the state space, such as a terminal region or a
region where an other skill can be invoked. Skill chaining requires to specify an area of
interest (typically the terminal region of the state space) which is used as target for the
skill at the root of the tree. For multi-task domains with several goal regions, it is unclear
how the root of the skill tree should be chosen. In the next section, we present a generic
algorithm for graph-based skill discovery in MDPs with continuous state spaces.

4.1 Approach: Skill Discovery by Clustering of Transition Graph

We adopt the options framework [14] for Hierarchical RL, in which skills are formalized
as options: An option o consists of three components: the option’s initiation set Io ⊂ S
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that defines the states in which the option may be invoked, the option’s termination
condition βo : S → [0,1] which specifies the probability of option execution terminating
in a given state, and the option’s policy πo which defines the probability of executing
an action in a state under option o. In the options framework, the agent’s policy π may
in any state s decide not solely to execute a primitive action but also to call any of the
options for which s ∈ Io. If an option is invoked, the option’s policy πo is followed for
several time steps until the option terminates according to βo. The option’s policy πo is
defined relative to an option-specific reward function Ro that may differ from the global
external reward function. Skill discovery thus requires to choose Io, βo, and Ro.

For a given set of observed transitions T that have been sampled from the MDP, we
can generate the state transition graph using any of the approaches discussed in this
paper. Based on the generated transition graph, any of the graph-based skill discovery
approaches for discrete MDPs could be used to identify skills. We adopt the concept
of identifying densely connected subgraphs of the transition graph, which correspond
to densely connected regions in the state space. In order to quantify to what extent the
edges connecting two disjoint subgraphs form a bottleneck, a so-called linkage crite-
rion is used. A linkage criterion is a function mapping two disjoint subgraphs A,B ⊂ G
onto a scalar, which is the larger the “stronger” the bottleneck between A and B in G
is. In this paper, we adopt the off-policy N̂cut linkage criterion that was proposed by
Metzen [11]. The N̂cut criterion is an approximation of the sum of probabilities that
the agent transitions in one time step from a state in subgraph A to a state in sub-
graph B or vice versa. For identifying densely connected subgraphs of a graph G, we
aim to determine a partition C∗ of minimal cardinality of the graph nodes into dis-
joint sets ci such that each induced subgraph does not contain a bottleneck. Formally:
C∗ = arg min

C∈C (V )

|C| s.t. max
ci∈C,di⊂ci

N̂cut(ci \di,di)≤ ψ , with C (V ) being the set of all possi-

ble partitions of V and ψ a parameter controlling the granularity of the clustering. Note
that the maximization goes over all possible ways of splitting ci into two parts di and
ci \ di and the constraint guarantees that there is no bottleneck with N̂cut > ψ in any of
the ci. Since finding the optimal solution for this problem is NP-hard, we use an ap-
proximate approach that is based on agglomerative hierarchical clustering and similar
to the one proposed by Mannor et al. [8]. This algorithm starts by assigning each node
into a separate cluster and afterwards merges greedily the pair of clusters with minimal
linkage until no pair remains with a linkage below ψ . As proposed by Mannor et al.,
only clusters which are connected in G can be merged.

For learning an option o based on a newly discovered skill, we need to choose ap-
propriate Io, βo, and Ro based on the identified partitioning CG of the transition graph.
For this, the partition CG of the transition graph is generalized to a partition of the en-
tire state space CS by a nearest-neighbor based approach, i.e., for all clusters ci ∈ CG:
CS(ci) = {s ∈ S | NNV (s) ∈ ci}. For each cluster A, one skill is generated for each adja-
cent cluster B, where A and B are adjacent if there exists va ∈ A,vb ∈ B and action a such
that (va,vb)a ∈ E . The corresponding skill prototype (IA→B,βA→B,RA→B) is defined as:

IA→B =CS(A) βA→B(s) = 0 if s ∈ IA→B else 1

RA→B((s,a,r,s
′)) =−1 if s′ ∈ (CS(A)∪CS(B)) else rp,
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where rp is a parameter of the algorithm that determines the penalty for failing to ful-
fill a skill’s objective. Additionally, for each cluster that contains nodes in which an
episode has terminated, a special skill is created that can be invoked in any state of
the cluster, terminates successfully when the episode terminates, and terminates unsuc-
cessfully (i.e., obtains the penalty reward) if the clusters is left. Note that in contrast
to Mannor et al. [8], the generalization of the graph partition to the entire state space
allows to perform the learning of skills and higher-level policies in the original MDP
and not in a discretized version of it.

4.2 Evaluation

In this section, we present an empirical evaluation of the proposed skill discovery
approach in the 2D Multi-Valley environment, which is an extension of the basic moun-
tain car domain. The car the agent controls is not restrained to a one-dimensional
surface, however, but to a two-dimensional surface. This two-dimensional surface con-
sists of 2 × 2 = 4 valleys, whose borders are at (π/6 ± π/3,π/6± π/3). The agent
observes four continuous state variables: the positions in the two dimensions (x and
y) and the two corresponding velocities (vx and vy). The agent can choose among
the four discrete actions northwest, northeast, southwest, southeast which add
(±0.001,±0.001) to (vx,vy). In each time step, due to gravity 0.004cos(3x) is added
to vx and 0.004cos(3y) to vy. The maximal absolute velocity in each dimension is re-
strained to 0.07. The agent is faced with a multi-task scenario: in each episode, the agent
has to solve one out of twelve tasks. Each task is associated with a combination of two
distinct valleys; e.g., in task (0,1) the agent starts in the floor1 of valley 0 and has to
navigate to the floor of valley 1 and reduce its velocity such that

∣∣∣∣(vx,vy)
∣∣∣∣

2 ≤ 0.03.
In each time step, the agent receives a reward of r = −1. Once a task is solved, the
next episode starts with the car remaining at its current position and one of the tasks
that starts in this valley is drawn at random. The current task is communicated as an
additional state space dimension to the agent; the agent uses it for learning the top-level
policy but ignores it during graph generation, graph clustering, and skill learning such
that skills are reusable in different tasks.

We present an empirical comparison of the learning performance of the entire hier-
archical RL architecture with different graph node selection heuristics as base for skill
discovery. We compare the performance to two baselines: (i) a monolithic approach
which learns a flat policy for every task without using skills, and (ii) the same hierar-
chical RL framework but with predefined skills prototype (Io, βo, Ro). These prototypes
have been generated in the same way as those discovered using graph clustering but
are based on the ground-truth partition of the domain into the 4 valleys. Thus, baseline
(ii) presents probably an upper boundary for the performance that any skill discovery
method can achieve within the given hierarchical RL architecture.

Skill discovery has been performed after n = 105 state transitions have been ob-
served in the environment and graphs with vnum ∈ {50,100,150,500} nodes have been
generated. These have been clustered with the approach presented in Section 4.1 for
ψ = −0.03. Each option’s value function has been represented by an CMAC function

1 The floor of valley 0 corresponds to the region ((−1/6±2/15)π,(−1/6±2/15)π).
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Fig. 2. Accumulated reward in the 2D Multi-Valley domain during 2400 episodes of learning for
different graph generation heuristics and graph sizes. Baselines show performance of a monolithic
learner and for the optimal predefined skill prototypes. Shown are mean and standard error of
mean over 10 repetitions.

approximator consisting of 10 independent tilings with 72 · 52 tiles, where the higher
resolutions have been used for the x and y dimensions. The penalty reward of an unsuc-
cessful option has been set to rp =−1000 and the value functions have been initialized
to −100. For learning the compositional option π , a lower resolution of 52 ·32 tiles has
been used and the value functions have been initialized to −1000. The discounting fac-
tor has been set to γ = 1 and all policies have been ε-greedy with ε = 0.01. The value
functions were learned using Q-Learning and updated only for currently active options
with a learning rate of 1. Episodes have been interrupted after 104 steps without solving
the task and a new task was chosen at random. All parameters have been chosen based
on preliminary investigations.

Figure 2 shows the accumulated reward obtained during the first 2400 learning
episodes (the phase of learning during which the explorative bias provided by skills
has the strongest impact) for different graph node selection heuristics and different
number of graph nodes vnum. For too small vnum, e.g., vnum = 50, all graph node se-
lection heuristic perform worse than learning a flat policy. Furthermore, one can see
that the grid-based heuristic obtains poor results for any choice of vnum. When using
many graph nodes (vnum = 500), no considerable differences between the other heuris-
tics exist and the performance is considerably better than when learning a flat policy
and only slightly worse than for predefined skills. However, for intermediate values of
vnum, e.g., vnum ∈ {100,150}, FIGE obtains significantly better results than the ε-net and
the on-policy sampling heuristic (p < 0.001, Mann-Whitney U-test). Furthermore, the
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accumulated reward obtained by FIGE for vnum = 150 is considerably larger than when
learning a flat policy, which is not the case for the other heuristics. In summary, FIGE

allows to create skills that can provide a useful explorative bias during learning based
on smaller graphs than other heuristics which allows to reduce computation time during
graph clustering and learning.

5 Representation Learning

Representation Policy Iteration (RPI) is an approach proposed by Mahadevan and Mag-
gioni [7] that aims at solving MDPs by jointly learning representations and optimal
policies. In contrast to most other RL algorithms, RPI does not require an a-priori spec-
ification of basis functions. The main idea for learning basis functions is to first learn
a state transition graph of the domain and to construct a symmetric diffusion opera-
tor on this graph. The normalized graph Laplacian L = D−1/2(D −W )D−1/2 and the
combinatorial Laplacian L = D−W are examples for such diffusion operators—with
W being the graph’s symmetrized weight matrix and D being a diagonal matrix whose
entries are the row sums of W . The smoothest eigenvectors of these operators, the so-
called proto-value functions, are used as basis functions for representing value func-
tions. Least-squares policy iteration (LSPI) as proposed by Lagoudakis and Parr [6] is
used for control learning, i.e., for learning the parameters wπ of the action value func-
tion Qπ =wπ Φ of an ε-optimal policy π within the linear span of the basis functions Φ .
In the original paper, at the end of each episode an additional set of samples is collected
either on- or off-policy. We skip this additional sampling and use the samples collected
during control learning also for representation learning to show that some graph node
selection heuristics can deal with this better than others. In order to initialize representa-
tion and control learning, the agent explored the environment uniform randomly during
the first 10 episodes. Thereupon, RPI was performed at the end of each episode and the
policy obtained was followed ε-greedily.

RPI can also be used in MDPs with continuous state space. In such continuous do-
mains, one challenge is to select the graph node position (“to subsample a set of states”
in the terminology of Mahadevan and Maggioni). The authors discuss the usage of the
on-policy subsampling and the ε-net heuristics; however we will show that considerable
better results can be achieved by using FIGE. In RPI, each graph node is connected to
its k nearest neighbor nodes in the euclidean space and the edge weight between nodes
xi and x j is W (i, j) = τ(i)exp(−||xi−x j ||22/κ) where τ(i) and κ are parameters to be spec-
ified. Note that this way of connecting graph nodes has the potential disadvantage that
proximity of nodes in the euclidean space does not necessarily imply that a transition
between these nodes is possible, e.g., if an obstacle lies between those states. Choosing
graph edges based on observed transitions between states (compare Section 2) lessens
this issue and seems thus preferable. However, for consistency with the original ap-
proach of Mahadevan and Maggioni [7], we adhere the “euclidean” connectivity.

5.1 Evaluation: Mountain Car

In a first experiment, we evaluate the performance of RPI for different graph node se-
lection heuristics and different degrees of transition noise σt in mountain car (compare
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Fig. 3. Accumulated reward obtained by RPI in mountain car for different graph node selection
heuristics. Left plot: learning curves in the deterministic domain. Right plot: reward accumulated
after 100 episodes for different degrees of transition noise σT . Shown are mean and standard error
of mean over 10 repetitions.

Section 3.3) for vnum = 50. For all node selection heuristics, we obtained the best results
when setting the number of proto value-functions equal to the number of graph nodes,
i.e., pnum = vnum. Furthermore, in accordance with Mahadevan and Maggioni [7] we set
the discount factor γ to 0.99 and the exploration rate to ε = 0.01. We used the normal-
ized Laplacian L as graph operator. The results are shown in Figure 3. The left plot
shows learning curves of RPI in the deterministic mountain car domain: RPI performs
best when combined with FIGE and worst when combined with the grid heuristic while
on-policy sampling and ε-net achieve approximately the same results (no significant
differences). This can be attributed to the fact that due to the randomly chosen start
states of episodes, the on-policy state distribution (over several episodes) does not vary
too strongly over the effective state space. Thus, sampling from the on-policy distri-
bution yields in this domain graph nodes that cover the effective state space close to
uniform. The worse results of the grid heuristic show that even for low-dimensional
domains, a uniform discretization can be detrimental. The right plot shows how the re-
ward accumulated after 100 episodes changes for different degrees of stochasticity of
the domain. In general, increasing transition noise seems to make the task easier as the
performance increase for all heuristics; probably because the value function becomes
smoother and thus better representable. However, the relative order of different methods
remains the same. This reinforces that FIGE can be used in stochastic domains as well.

5.2 Evaluation: Octopus Arm

In a second experiment, we investigate the performance of RPI using FIGE for graph
node selection in the octopus arm domain [16]. The specific task is depicted in the left
plot of Figure 4: the agent has to control the octopus arm such that it moves two food
items (small yellow circles) into its mouth (large red circle). The base of the arm is
restricted and cannot be actuated directly. The agent may control the arm in the follow-
ing way: elongating or contracting the entire arm, bending the first half of the arm in
either of the two directions, and bending the second half of the arm in either of the two
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Fig. 4. Left plot: Visualization of the octopus arm task. Right plot: Accumulated reward obtained
by LSPI and RPI using FIGE for graph node selection in the octopus arm domain. Shown are
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directions. In each time step, the agent can control the elongation, the first half, and the
second half of the arm independently, resulting in 8 discrete actions. The agent observes
the positions xi, yi and velocities ẋi, ẏi of the food items and of 24 selected parts of its
arm (denoted by small black dots in Figure 4) and the angle and angular velocity of the
arm’s base. Thus, the state space is continuous and consists of 106 dimensions. Each
dimension is normalized such that its values fall into [0,1]. The agent obtains a reward
of −0.01 per time step, a reward of 5 for moving the left food item into its mouth, and
a reward of 7 for the right food item. The episode ends after 100 time steps or once
both food items have been eaten. Because of the high-dimensional state space and the
complex dynamics of the domain, the octopus arm problem is a challenging task.

We compare RPI combined with FIGE for vnum = 75 and pnum = 5 to LSPI using 75
radial basis functions (RBFs) as features (γ = 0.99, ε = 0.01). In the first 10 episodes,
pure exploration without learning was conducted. The RBF centers ci have been set to
observed states such that the pairwise distance of the centers becomes maximal; the
feature activation of center ci for state s is computed as φi(s) = exp(10||ci − s||22). The
right plot of Figure 4 summarizes the results: using FIGE-based proto-value functions
performs considerably better than standard RBF features; in particular, the agent learns
in each run to move at least one food item into its mouth, which is not the case for
LSPI. The main difference between the two approaches is that RBFs are local while
proto-value functions can also capture more global properties. We suppose that since
FIGE allows to capture the dynamics of a domain well, it allows to learn non-local proto-
value functions that provide a useful bias to LSPI. In summary, the results suggest that
FIGE can also support learning in high-dimensional problems.

6 Summary and Outlook

We have presented a new view on graph-based RL in continuous domains. Based on
interpreting state transition graphs as generative models of the domain’s dynamics, we
have proposed a formulation for the likelihood of a graph for a given set of transitions.
We have derived the new heuristic FIGE from the maximum likelihood objective under
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simplifying assumptions. FIGE allows to generate transition graphs that capture the do-
main’s dynamics better than other heuristics. This is also reflected in the performance
of representation learning and skill discovery methods that are built upon transition
graphs: in both kind of methods and across different domains, FIGE has achieved su-
perior and more robust results than prior heuristics for transition graph generation. In
general, our empirical results show that it makes a considerable difference how tran-
sition graphs are generated; for instance, using a grid-based discretization often had a
catastrophic effect on the performance, even for low-dimensional domains.

FIGE is an offline, batch algorithm that requires considerable amounts of computa-
tion. This is less critical when it is combined with other offline approaches like RPI,
LSPI, and non-incremental skill discovery based on graph-clustering, which are even
more expensive in terms of computation. However, for making use of transition graphs
in online methods like, e.g., OGAHC [11] for skill discovery, it would be highly desir-
able to develop an online method for graph generation that aims at similar objectives as
FIGE. A further direction for future research would be to extend FIGE to domains with
continuous action spaces and to use it for learning a policy representation that can be
used within direct policy search approaches.
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A Appendix: Derivation of FIGE’s Update Equations

Let T = {(si,ais′i)}n
i=1 be a set of n transitions. We aim at finding a state transition graph

G∗ with vnum nodes such that G∗ = argmaxG p(T |G). We derive the FIGE update equa-
tions as maximum likelihood solutions for p(T |G) under two simplifying assumptions.

(A1) For (s,a,s′) ∈ T , assume p(v′|v,a) = 1 if v = NNV (s)∧ v′ = NNV (s′) else 0.

Assumption A1 allows to effectively decouple the likelihood p(T |G) from the graph’s
edges and their weights wa

vv′ such that it depends solely on the graph node positions and
can thus be written as p(T |V ). By using assumption A1, we obtain:

log p(T |G) = log
1

|A|n|V |n
n

∏
i=1

[
∑
v∈V

p(si|v) ∑
v′∈V

p(v′|v,a)p(s′|v′,v,si)

]
A1
= log

1
|A|n|V |n

n

∏
i=1

p(si|NNV (si))p(s′i|NNV (s
′
i),NNV (si),si)=̂ log p(T |V )

log p(T |V ) = −n log |A‖V |+
n

∑
i=1

[
log p(si|NNV (si))+ log p(s′i|NNV (s

′
i),NNV (si),si)

]
= −n log |A‖V |+ n logNb −

1
b2 D

with D =
n
∑

i=1

[
‖si − NNV (si)‖2

2 + ‖(NNV (s′i)− NNV (si))− (s′i − si)‖2
2

]
. For given V we

create 2 partitions of T into vnum sets: T→(v) = {(s,s′)|∃(s,a,s′) ∈ T : NNV (s) = v}
and T←(v) = {(s,s′)|∃(s,a,s′) ∈ T : NNV (s′) = v}. Furthermore, we create vnum sets
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SV (v) = {s | ∃(s,a,s′) ∈ T : NNV (s) = v}. For |V | = vnum = const, we can now maxi-
mize the log-likelihood log p(T |V ) by minimizing D:

D =
n

∑
i=1

[
‖si − NNV (si)‖2

2 + 2
1
2
‖(NNV (s

′
i)− NNV (si))− (s′i − si)‖2

2

]
= ∑

v

[
∑

s∈SV (v)

‖s− v‖2
2+

1
2 ∑

s,s′∈T→(v)

‖NNV (s
′)− v− s′+ s‖2

2

+
1
2 ∑

s,s′∈T←(v)

‖v− NNV (s)− s′+ s)‖2
2

]
Each term of the outer sum corresponds to the contribution of node v’s position to D;
however, the terms cannot be minimized separately since they are coupled via NNV (s)
and NNV (s′). Minimizing them jointly is difficult because of the discontinuities of the
nearest-neighbor terms. Thus, FIGE makes the following simplifying assumption:

(A2) Assume p(T |V ) = ∏v p(T |v)

This assumption implies that the couplings between the terms of D can be ignored
and each v can be set greedily to the position where the respective term in the outer
sum would become minimal as if all other ṽ ∈ V would remain unchanged. Finally, the
greedy FIGE update equation which moves a node from position vold to position vnew is

vnew = argmin
v

[
∑

s∈SV (vold)

‖s− v‖2
2 +

1
2 ∑

s,s′∈T→(vold)

‖(NNV (s
′)− s′+ s)− v‖2

2

+
1
2 ∑

s,s′∈T←(vold)

‖v− (NNV (s)− s+ s′)‖2
2

]
In this, the first sum is minimized by choosing vnew = va = MEANs∈SV (vold)

(s), the
second sum by choosing vnew = vb = MEANs,s′∈T→(vold)(NNV (s′)− s′ + s), and the
third by vnew = vc = MEANs,s′∈T←(vold)(NNV (s)− s+ s′). By using forces that pull
vnew to va, vb, and vc with the respective weights, we obtain the FIGE update rule

vnew = vold +α
[

1
2
(va − vold)+

1
4
(vb − vold)+

1
4
(vc − vold)

]
.

Since A2 is oversimplifying, one sweep of the FIGE update equations will typically not
find the maximum likelihood solution. Thus, FIGE performs several update iterations to
account for couplings between nodes.
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Abstract. In some reinforcement learning problems an agent may be
provided with a set of input policies, perhaps learned from prior ex-
perience or provided by advisors. We present a reinforcement learning
with policy advice (RLPA) algorithm which leverages this input set and
learns to use the best policy in the set for the reinforcement learning
task at hand. We prove that RLPA has a sub-linear regret of Õ(

√
T )

relative to the best input policy, and that both this regret and its com-
putational complexity are independent of the size of the state and action
space. Our empirical simulations support our theoretical analysis. This
suggests RLPA may offer significant advantages in large domains where
some prior good policies are provided.

1 Introduction

In reinforcement learning an agent seeks to learn a high-reward policy for select-
ing actions in a stochastic world without prior knowledge of the world dynamics
model and/or reward function. In this paper we consider when the agent is pro-
vided with an input set of potential policies, and the agent’s objective is to
perform as close as possible to the (unknown) best policy in the set. This sce-
nario could arise when the general domain involves a finite set of types of RL
tasks (such as different user models), each with known best policies, and the
agent is now in one of the task types but doesn’t know which one. Note that
this situation could occur both in discrete state and action spaces, and in con-
tinuous state and/or action spaces: a robot may be traversing one of a finite set
of different terrain types, but its sensors don’t allow it to identify the terrain
type prior to acting. Another example is when the agent is provided with a set
of domain expert defined policies, such as stock market trading strategies. Since
the agent has no prior information about which policy might perform best in its
current environment, this remains a challenging RL problem.

Prior research has considered the related case when an agent is provided with
a fixed set of input (transition and reward) models, and the current domain is an
(initially unknown) member of this set [5,4,2]. This actually provides the agent
with more information than the scenario we consider (given a model we can
extract a policy, but the reverse is not generally true), but more significantly, we
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find substantial theoretical and computational advantages from taking a model-
free approach. Our work is also closely related to the idea of policy reuse [6],
where an agent tries to leverage prior policies it found for past tasks to improve
performance on a new task; however, despite encouraging empirical performance,
this work does not provide any formal guarantees. Most similar to our work is
Talvitie and Singh’s [14] AtEase algorithm which also learns to select among an
input set of policies; however, in addition to algorithmic differences, we provide
a much more rigorous theoretical analysis that holds for a more general setting.

We contribute a reinforcement learning with policy advice (RLPA) algorithm.
RLPA is a model-free algorithm that, given an input set of policies, takes an
optimism-under-uncertainty approach of adaptively selecting the policy that may
have the highest reward for the current task. We prove the regret of our algorithm
relative to the (unknown) best in the set policy scales with the square root of the
time horizon, linearly with the size of the provided policy set, and is independent
of the size of the state and action space. The computational complexity of our
algorithm is also independent of the number of states and actions. This suggests
our approach may have significant benefits in large domains over alternative
approaches that typically scale with the size of the state and action space, and
our preliminary simulation experiments provide empirical support of this impact.

2 Preliminaries

A Markov decision process (MDP) M is defined as a tuple 〈S,A, P, r〉 where
S is the set of states, A is the set of actions, P : S × A → P(S) is the tran-
sition kernel mapping each state-action pair to a distribution over states, and
r : S × A → P([0, 1]) is the stochastic reward function mapping state-action
pairs to a distribution over rewards bounded in the [0, 1] interval.1 A policy π is
a mapping from states to actions. Two states si and sj communicate with each
other under policy π if the probability of transitioning between si and sj under
π is greater than zero. A state s is recurrent under policy π if the probability
of reentering state s under π is 1. A recurrent class is a set of recurrent states
that all communicate with each other and no other states. Finally, a Markov
process is unichain if its transition matrix consists of a single recurrent class
with (possibly) some transient states [12, Chap. 8].

We define the performance of π in a state s as its expected average reward

μπ(s) = lim
T→∞

1

T
E

[∑T

t=1
r(st, π(st))

∣∣∣∣s0 = s

]
, (1)

where T is the number of time steps and the expectation is taken over the
stochastic transitions and rewards. If π induces a unichain Markov process on
M , then μπ(s) is constant over all the states s ∈ S, and we can define the bias
function λπ such that

λπ(s) + μπ = E
[
r(s, π(s)) + λπ(s′)

]
. (2)

1 The extension to larger bounded regions [0, d] is trivial and just introduces an addi-
tional d multiplier to the resulting regret bounds.
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Its corresponding span is sp(λπ) = maxs λ
π(s)−mins λ

π(s). The bias λπ(s) can
be seen as the total difference between the reward of state s and average reward.

In reinforcement learning [13] an agent does not know the transition P and/or
reward r model in advance. Its goal is typically to find a policy π that maximizes
its obtained reward. In this paper, we consider reinforcement learning in an MDP
M where the learning algorithm is provided with an input set of m deterministic
policies Π = {π1, . . . , πm}. Such an input set of policies could arise in multiple
situations, including: the policies may represent near-optimal policies for a set
of m MDPs {M1, . . . ,Mm} which may be related to the current MDP M ; the
policies may be the result of different approximation schemes (i.e., approximate
policy iteration with different approximation spaces); or they may be provided
by m advisors. Our objective is to perform almost as well as the best policy in
the input set Π on the new MDP M (with unknown P and/or r).

Our results require the following mild assumption:

Assumption 1. There exists a policy π+ ∈ Π, which induces a unichain Markov
process on the MDP M , such that the average reward μ+ = μπ+ ≥ μπ(s) for any

state s ∈ S and any policy π ∈ Π. We also assume that sp(λπ+

) ≤ H, where H
is a finite constant.2

This assumption trivially holds when the optimal policy π∗ is in the set Π . Also,
in those cases that all the policies in Π induce some unichain Markov processes
the existence of π+ is guaranteed.3

A popular measure of the performance of a reinforcement learning algorithm
over T steps is its regret relative to executing the optimal policy π∗ in M . We
evaluate the regret relative to the best policy π+ in the input set Π ,

Δ(s) = Tμ+ −
∑T

t=1
rt, (3)

where rt ∼ r(·|st, at) and s0 = s. We notice that this definition of regret differs
from the standard definition of regret by an (approximation) error T (μ∗ − μ+)
due to the possible sub-optimality of the policies in Π relative to the optimal
policy for MDP M . Further discussion on this definition is provided in Sec. 8.

3 Algorithm

In this section we introduce the Reinforcement Learning with Policy Advice
(RLPA) algorithm (Alg. 1). Intuitively, the algorithm seeks to identify and use
the policy in the input set Π that yields the highest average reward on the
current MDP M . As the average reward of each π ∈ Π on M , μπ, is initially

2 One can easily prove that the upper bound H always exists for any unichain Markov
reward process (see [12, Chap. 8]).

3 Note that Assumption 1 in general is a weaker assumption than assuming MDP M
is ergodic or unichain, which would require that the induced Markov chains under all
policies be recurrent or unichain, respectively: we only require that the best policy
in the input set must induce a unichain Markov process.
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Algorithm 1. Reinforcement Learning with Policy Advice (RLPA)

Require: Set of policies Π , confidence δ, span function f
1: Initialize t = 0, i = 0
2: Initialize n(π) = 1, μ̂(π) = 0, R(π) = 0 and K(π) = 1 for all π ∈ Π
3: while t ≤ T do
4: Initialize ti = 0, Ti = 2

i, Πi = Π, Ĥ = f(Ti)
5: i = i+ 1
6: while ti ≤ Ti & Πi �= ∅ do (run trial)

7: c(π) = (Ĥ + 1)
√
48 log(2t/δ)

n(π)
+ Ĥ K(π)

n(π)

8: B(π) = μ̂(π) + c(π)
9: π̃ = argmaxπ B(π)
10: v(π̃) = 1
11: while ti ≤ Ti & v(π̃)<n(π̃) &

12: μ̂(π̃)− R(π̃)
n(π̃)+v(π̃)

≤c(π̃)+(Ĥ+1)
√
48 log(2t/δ)

n(π̃)+v(π̃)
+ Ĥ K(π̃)

n(π̃)+v(π̃)
do

13: (run episode)
14: t = t+ 1, ti = ti + 1
15: Take action π̃(st), observe st+1 and rt+1

16: v(π̃) = v(π̃) + 1 , R(π̃) = R(π̃) + rt+1

17: end while
18: K(π̃) = K(π̃) + 1

19: if μ̂(π̃)− R(π̃)
n(π̃)+v(π̃)

> c(π̃) + (Ĥ+1)
√
48 log(2t/δ)

n(π̃)+v(π̃)
+ Ĥ K(π̃)

n(π̃)+v(π̃)
then

20: Πi = Πi − {π̃}
21: end if
22: n(π̃) = n(π̃) + v(π̃) , μ̂(π̃) = R(π̃)

n(π̃)

23: end while
24: end while

unknown, the algorithm proceeds by estimating these quantities by executing
the different π on the current MDP. More concretely, RLPA executes a series of
trials, and within each trial is a series of episodes. Within each trial the algorithm
selects the policies in Π with the objective of effectively balancing between the
exploration of all the policies in Π and the exploitation of the most promising
ones. Our procedure for doing this falls within the popular class of “optimism in
face uncertainty” methods. To do this, at the start of each episode, we define an
upper bound on the possible average reward of each policy (Line 8): this average
reward is computed as a combination of the average reward observed so far for
this policy μ̂(π), the number of time steps this policy has been executed n(π) and

Ĥ , which represents a guess of the span of the best policy, H+. We then select
the policy with the maximum upper bound π̃ (Line 9) to run for this episode.
Unlike in multi-armed bandit settings where a selected arm is pulled for only one
step, here the MDP policy is run for up to n(π) steps, i.e., until its total number

of execution steps is at most doubled. If Ĥ ≥ H+ then the confidence bounds
computed (Line 8) are valid confidence intervals for the true best policy π+;

however, they may fail to hold for any other policy π whose span sp(λπ) ≥ Ĥ .
Therefore, we can cut off execution of an episode when these confidence bounds
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fail to hold (the condition specified on Line 12), since the policy may not be an

optimal one for the current MDP, if Ĥ ≥ H+.4 In this case, we can eliminate
the current policy π̃ from the set of policies considered in this trial (see Line 20).
After an episode terminates, the parameters of the current policy π̃ (the number
of steps n(π) and average reward μ̂(π)) are updated, new upper bounds on the
policies are computed, and the next episode proceeds. As the average reward
estimates converge, the better policies will be chosen more.

Note that since we do not know H+ in advance, we must estimate it online:
otherwise, if Ĥ is not a valid upper bound for the span H+ (see Assumption 1),
a trial might eliminate the best policy π+, thus incurring a significant regret.
We address this by successively doubling the amount of time Ti each trial is run,
and defining a Ĥ that is a function f of the current trial length. See Sec. 4.1
for a more detailed discussion on the choice of f . This procedure guarantees
the algorithm will eventually find an upper bound on the span H+ and perform
trials with very small regret in high probability. Finally, RLPA is an anytime
algorithm since it does not need to know the time horizon T in advance.

4 Regret Analysis

In this section we derive a regret analysis of RLPA and we compare its perfor-
mance to existing RL regret minimization algorithms. We first derive preliminary
results used in the proofs of the two main theorems.

We begin by proving a general high-probability bound on the difference be-
tween average reward μπ and its empirical estimate μ̂(π) of a policy π (through-
out this discussion we mean the average reward of a policy π on a new MDP
M). Let K(π) be the number of episodes π has been run, each of them of length
vk(π) (k = 1, . . . ,K(π)). The empirical average μ̂(π) is defined as

μ̂(π) =
1

n(π)

∑K(π)

k=1

∑vk(π)

t=1
rkt , (4)

where rkt ∼ r(·|skt , π(skt )) is a random sample of the reward observed by taking
the action suggested by π and n(π) =

∑
k vk(π) is the total count of samples.

Notice that in each episode k, the first state sk1 does not necessarily correspond
to the next state of the last step vk−1(π) of the previous episode.

Lemma 1. Assume that a policy π induces on the MDP M a single recurrent
class with some additional transient states, i.e., μπ(s) = μπ for all s ∈ S. Then
the difference between the average reward and its empirical estimate (Eq. 4) is

|μ̂(π)− μπ| ≤ 2(Hπ + 1)

√
2 log(2/δ)

n(π)
+HπK(π)

n(π)
,

with probability ≥ 1− δ, where Hπ = sp(λπ) (see Eq. 2).

4 See Sec. 4.1 for further discussion on the necessity of the condition on Line 12.
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Proof. Let rπ(s
k
t ) = E(rkt |skt , π(skt )), εr(t, k) = rkt − rπ(s

k
t ), and P π be the state-

transition kernel under policy π (i.e. for finite state and action spaces, P π is the |S|×|S|
matrix where the ij-th entry is p(sj|si, π(si))). Then we have

μ̂(π)− μπ =
1

n(π)

(K(π)∑
k=1

vk(π)∑
t=1

(rkt − μπ)

)
=

1

n(π)

(K(π)∑
k=1

vk(π)∑
t=1

(εr(t, k) + rπ(s
k
t )− μπ)

)

=
1

n(π)

(K(π)∑
k=1

vk(π)∑
t=1

(εr(t, k) + λπ(skt )− P πλπ(skt ))

)
,

where the second line follows from Eq. 2. Let ελ(t, k) = λπ(skt+1)−P πλπ(skt ). Then we
have

μ̂(π)− μπ =
1

n(π)

(K(π)∑
k=1

vk(π)∑
t=1

(εr(t, k) + λπ(skt+1)− λπ(skt+1) + λπ(skt )− P πλπ(skt ))

)

≤ 1

n(π)

(K(π)∑
k=1

(Hπ +

vk(π)∑
t=1

εr(t, k) +

vk(π)−1∑
t=1

ελ(t, k))

)
,

where we bounded the telescoping sequence
∑

t(λ
π
skt

− λπ(skt+1)) ≤ sp(λπ) = Hπ. The

sequences of random variables {εr} and {ελ}, as well as their sums, are martingale
difference sequences. Therefore we can apply Azuma’s inequality and obtain the bound

μ̂(π)− μπ ≤ K(π)Hπ + 2
√
2n(π) log(1/δ) + 2Hπ

√
2(n(π)−K(π)) log(1/δ)

n(π)

≤ HπK(π)

n(π)
+ 2(Hπ + 1)

√
2 log(1/δ)

n(π)
,

with probability ≥ 1− δ, where in the first inequality we bounded the error terms εr,
each of which is bounded in [−1, 1], and ελ, bounded in [−Hπ,Hπ]. The other side of
the inequality follows exactly the same steps. ��

In the algorithm Hπ is not known and at each trial i the confidence bounds are
built using the guess on the span Ĥ = f(Ti), where f is an increasing function.
For the algorithm to perform well, it needs to not discard the best policy π+

(Line 20). The following lemma guarantees that after a certain number of steps,
with high probability the policy π+ is not discarded in any trial.

Lemma 2. For any trial started after T ≥ T+ = f−1(H+), the probability of
policy π+ to be excluded from ΠA at anytime is less than (δ/T )6.

Proof. Let i be the first trial such that Ti ≥ f−1(H+), which implies that Ĥ = f(Ti) ≥
H+. The corresponding step T is at most the sum of the length of all the trials before
i, i.e., T ≤

∑i−1
j=1 2

j ≤ 2i, thus leading to the condition T ≥ T+ = f−1(H+). After

T ≥ T+ the conditions in Lem. 1 (with Assumption 1) are satisfied for π+. Therefore
the confidence intervals hold with probability at least 1− δ and we have for μ̂(π+)

μ̂(π+)− μ+ ≤ 2(H+ + 1)

√
2 log(1/δ)

n(π+)
+H+K(π+)

n(π+)

≤ 2(Ĥ + 1)

√
2 log(1/δ)

n(π+)
+ Ĥ

K(π+)

n(π+)
,
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where n(π+) is number of steps when policy π+ has been selected until T . Using a
similar argument as in the proof of Lem. 1, we can derive

μ+ − R(π+)

n(π+) + v(π+)
≤ 2(Ĥ + 1)

√
2 log(1/δ)

n(π+) + v(π+)
+ Ĥ

K(π+)

n(π+) + v(π+)
,

with probability at least 1−δ. Bringing together these two conditions, and applying the
union bound, we have that the condition on Line12 holds with at least probability 1−2δ
and thus π+ is never discarded. More precisely Algo. 1 uses slightly larger confidence
intervals (notably

√
48 log(2t/δ) instead of 2

√
2 log(1/δ)), which guarantees that π+

is discarded with at most a probability of (δ/T )6. ��

We also need the B-values (line 9) to be valid upper confidence bounds on the
average reward of the best policy μ+.

Lemma 3. For any trial started after T ≥ T+ = f−1(H+), the B-value of π̃ is
an upper bound on μ+with probability ≥ 1− (δ/T )6.

Proof. Lem. 2 guarantees that the policy π+ is in ΠA w.p. (δ/T )
6. This combined with

Lem. 1 and the fact that f(T ) > H+ implies that the B-value B(π+) = μ̂(π+)+ c(π+)
is a high-probability upper bound on μ+ and, since π̃ is the policy with the maximum
B-value, the result follows. ��

Finally, we bound the total number of episodes a policy could be selected.

Lemma 4. After T ≥ T+ = f−1(H+) steps of Algo. 1, let K(π) be the total
number of episodes π has been selected and n(π) the corresponding total number
of samples, then

K(π) ≤ log2(f
−1(H+)) + log2(T ) + log2(n(π)),

with probability ≥ 1− (δ/T )6.

Proof. Let nk(π) be the total number of samples at the beginning of episode k (i.e.,
nk(π) =

∑k−1
k′=1 vk′(π)). In each trial of Algo. 1, an episode is terminated when the

number of samples is doubled (i.e., nk+1(π) = 2nk(π)), or when the consistency con-
dition (last condition on Line12) is violated and the policy is discarded or the trial
is terminated (i.e., nk+1 ≥ nk(π)). We denote by K(π) the total number of episodes

truncated before the number of samples is doubled, then n(π) ≥ 2K(π)−K(π). Since the
episode is terminated before the number of samples is doubled only when either the trial
terminates or the policy is discarded, in each trial this can only happen once per policy.
Thus we can bound K(π) by the number of trials. A trial can either terminate because
its maximum length Ti is reached or when all the polices are discarded (line 6). From
Lem. 2, we have that after T ≥ f−1(H+), π+ is never discarded w.h.p. and a trial only
terminates when ti > Ti. Since Ti = 2

i, it follows that the number of trials is bounded

by K(π) ≤ log2(f
−1(H+)) + log2(T ). So, we have n(π) ≥ 2K(π)−log2(f

−1(H+))−log2(T ),
which implies the statement of the lemma. ��

Notice that if we plug this result in the statement of Lem. 1, we have that
the second term converges to zero faster than the first term which decreases as
O(1/

√
n(π)), thus in principle it could be possible to use alternative episode

stopping criteria, such as v(π) ≤
√
n(π). But while this would not significantly

affect the convergence rate of μ̂(π), it may worsen the global regret performance
in Thm. 1.
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4.1 Gap-Independent Bound

We are now ready to derive the first regret bound for RLPA.

Theorem 1. Under Assumption 1 for any T ≥ T+ = f−1(H+) the regret of
Algo. 1 is bounded as

Δ(s) ≤ 24(f(T ) + 1)
√
3Tm(log(T/δ)) +

√
T + 6f(T )m(log2(T

+) + 2 log2(T )),

with probability at least 1− δ for any initial state s ∈ S.

Proof. We begin by bounding the regret from executing each policy π. We consider
the k(π)-th episode when policy π has been selected (i.e., π is the optimistic policy
π̃) and we study its corresponding total regret Δπ. We denote by nk(π) the number
of steps of policy π at the beginning of episode k and vk(π) the number of steps in
episode k. Also at time step T , let the total number of episodes, vk(π) and nk, for each
policy π be denoted as K(π), v(π) and n(π) respectively. We also let π ∈ Π , B(π),
c(π), R(π) and μ̂(π) be the latest values of these variables at time step T for each
policy π. Let E = {∀t = f−1(H+), . . . , T, π+ ∈ ΠA & π̃ ≥ μ+} be the event under
which π+ is never removed from the set of policies ΠA, and where the upper bound of
the optimistic policy π̃, B(π̃), is always as large as the true average reward of the best
policy μ+. On the event E , Δπ can be bounded as

Δπ =

K(π)∑
k=1

vk(π)∑
t=1

(μ+ − rt)
(1)

≤
K(π)∑
k=1

vk(π)∑
t=1

(B(π)− rt) ≤ (n(π) + v(π))(μ̂(π) + c(π))−R(π)

(2)

≤ (n(π) + v(π))

(
3(f(T ) + 1)

√
48
log(T/δ)

n(π)
+ 3f(T )

K(π)

n(π)

)
(3)

≤ 24(f(T ) + 1)
√
3n(π) log(T/δ) + 6f(T )K(π),

where in (1) we rely on the fact that π is only executed when it is the optimistic policy,
and B(π) is optimistic with respect to μ+ according to Lem. 3. (2) immediately follows
from the stopping condition at Line 12 and the definition of c(π). (3) follows from the
condition on doubling the samples (Line 12) which guarantees v(π) ≤ n(π).
We now bound the total regret Δ by summing over all the policies.

Δ =
∑
π∈Π

24(f(T ) + 1)
√
3n(π) log(T/δ) + 6f(T )

∑
π∈Π

K(π)

(1)

≤ 24(f(T ) + 1)

√
3m
∑
π∈Π

n(π) log(T/δ) + 6f(T )
∑
π∈Π

K(π)

(2)

≤ 24(f(T ) + 1)
√
3mT log(T/δ) + 6f(T )m(log2(f

−1(H+)) + 2 log2(T )),

where in (1) we use Cauchy-Schwarz inequality and (2) follows from
∑

π n(π) ≤ T ,
Lem. 4, and log2(n(π)) ≤ log2(T ).
Since T is an unknown time horizon, we need to provide a bound which holds with

high probability uniformly over all the possible values of T . Thus we need to deal with
the case when E does not hold. Based on Lem. 1 and by following similar lines to [7],
we can prove that the total regret of the episodes in which the true model is discarded
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is bounded by
√
T with probability at least 1− δ/(12T 5/4). Due to space limitations,

we omit the details, but we can then prove the final result by combining the regret in
both cases (when E holds or does not hold) and taking union bound on all possible
values of T . ��

A significant advantage of RLPA over generic RL algorithms (such as UCRL2)
is that the regret of RLPA is independent of the size of the state and action
spaces: in contrast, the regret of UCRL2 scales as O(S

√
AT ). This advantage

is obtained by exploiting the prior information that Π contains good policies,
which allows the algorithm to focus on testing their performance to identify the
best, instead of building an estimate of the current MDP over the whole state-
action space as in UCRL2. It is also informative to compare this result to other
methods using some form of prior knowledge. In [8] the objective is to learn
the optimal policy along with a state representation which satisfies the Markov
property. The algorithm receives as input a set of possible state representation
models and under the assumption that one of them is Markovian, the algorithm
is shown to have a sub-linear regret. Nonetheless, the algorithm inherits the
regret of UCRL itself and still displays a O(S

√
A) dependency on states and

actions. In [5] the Parameter Elimination (PEL) algorithm is provided with a
set of MDPs. The algorithm is analyzed in the PAC-MDP framework and under
the assumption that the true model actually belongs to the set of MDPs, it is
shown to have a performance which does not depend on the size of the state-
action space and it only has a O(

√
m) a dependency on the number of MDPs

m.5 In our setting, although no model is provided and no assumption on the
optimality of π∗ is made, RLPA achieves the same dependency on m.

The span sp(λπ) of a policy is known to be a critical parameter determining
how well and fast the average reward of a policy can be estimated using samples
(see e.g., [1]). In Thm. 1 we show that only the span H+ of the best policy
π+ affects the performance of RLPA even when other policies have much larger
spans. Although this result may seem surprising (the algorithm estimates the
average reward for all the policies), it follows from the use of the third condition
on Line12 where an episode is terminated, and a policy is discarded, whenever
the empirical estimates are not consistent with the guessed confidence interval.
Let us consider the case when Ĥ > H+ but Ĥ < sp(λπ) for a policy which is
selected as the optimistic policy π̃. Since the confidence intervals built for π are
not correct (see Lem. 1), π̃ could be selected for a long while before selecting
a different policy. On the other hand, the condition on the consistency of the
observed rewards would discard π (with high probability), thus increasing the
chances of the best policy (whose confidence intervals are correct) to be selected.
We also note thatH+ appears as a constant in the regret through log2(f

−1(H+))
and this suggests that the optimal choice of f is f(T ) = log(T ), which would

lead to a bound of order (up to constants and logarithmic terms) Õ(
√
Tm+m).

5 Notice that PAC bounds are always squared w.r.t. regret bounds, thus the original
m dependency in [5] becomes O(

√
m) when compared to a regret bound.
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4.2 Gap-Dependent Bound

Similar to [7], we can derive an alternative bound for RLPA where the depen-
dency on T becomes logarithmic and the gap between the average of the best
and second best policies appears. We first need to introduce two assumptions.

Assumption 2 (Average Reward). Each policy π ∈ Π induces on the MDP
M a single recurrent class with some additional transient states, i.e., μπ(s) = μπ

for all s ∈ S. This implies that Hπ = sp(λπ) < +∞.

Assumption 3 (Minimum Gap). Define the gap between the average reward
of the best policy π+ and the average reward of any other policy as Γ (π, s) =
μ+ −μπ(s) for all s ∈ S. We then assume that for all π ∈ Π −{π+} and s ∈ S,
Γ (π, s) is uniformly bounded from below by a positive constant Γmin > 0.

Theorem 2 (Gap Dependent Bounds). Let Assumptions 2 and 3 hold. Run
Algo. 1 with the choice of δ = 3

√
1/T (the stopping time T is assumed to be known

here). Assume that for all π ∈ Π we have that Hπ ≤ Hmax. Then the expected
regret of Algo. 1, after T ≥ T+ = f−1(H+) steps, is bounded as

E(Δ(s)) = O

(
m
(f(T ) +Hmax)(log2(mT ) + log2(T

+))

Γmin

)
, (5)

for any initial state s ∈ S.

Proof. (sketch) Unlike for the proof of Thm. 1, here we need a more refined control
on the number of steps of each policy as a function of the gaps Γ (π, s). We first
notice that Assumption 2 allows us to define Γ (π) = Γ (π, s) = μ+ − μπ for any state
s ∈ S and any policy π ∈ Π . We consider the high-probability event E = {∀t =
f−1(H+), . . . , T, π+ ∈ ΠA} (see Lem. 2) where for all the trials run after f−1(H+)
steps never discard policy π+. We focus on the episode at time t, when an optimistic
policy π̃ �= π+ is selected for the k(π)-th time, and we denote by nk(π̃) the number
of steps of π̃ before episode k and vk(π) the number of steps during episode k(π).
The cumulative reward during episode k is Rk(π̃) obtained as the sum of μ̂k(π̃)nk(π̃)
(the previous cumulative reward) and the sum of vk(π̃) rewards received since the
beginning of the episode. Let E = {∀t = f−1(H+), . . . , T, π+ ∈ ΠA & π̃ ≥ μ+} be
the event under which π+ is never removed from the set of policies ΠA, and where the
upper bound of the optimistic policy μ̃, B(π̃), is always as large as the true average
reward of the best policy μ+. On event E we have

3(Ĥ + 1)

√
48
log(t/δ)

nk(π̃)
+ 3

k(π)

nk(π̃)

(1)

≥ B(π̃)− Rk(π̃)

nk(π̃) + vk(π̃)

(2)

≥μ+ − Rk(π̃)

nk(π̃) + vk(π̃)
≥ μ+ − μπ̃ +

1

nk(π̃) + vk(π̃)

nk(π̃)+vk(π̃)∑
t=1

(μπ̃ − rt)

(3)

≥Γmin +
1

nk(π̃) + vk(π̃)

nk(π̃)+vk(π̃)∑
t=1

(μπ̃ − rt)
(4)

≥ Γmin −H π̃

√
48
log(t/δ)

nk(π̃)
−H π̃ K(π̃)

nk(π̃)
,
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with probability 1 − (δ/t)6. Inequality (1) is enforced by the episode stopping condi-
tion on Line12 and the definition of B(π), (2) is guaranteed by Lem. 3, (3) relies on
the definition of gap and Assumption 3, while (4) is a direct application of Lem. 1.
Rearranging the terms, and applying Lem. 4, we obtain

nk(π̃)Γmin ≤ (3Ĥ + 3 +H π̃)
√

n(π̃)
√
48 log(t/δ) + 4H π̃(2 log2(t) + log2(f

−1(H+))).

By solving the inequality w.r.t. nk(π̃) we obtain

√
n(π̃) ≤ (3Ĥ + 3 +H π̃)

√
48 log(t/δ) + 2

√
H π̃Γmin(2 log2(t) + log2(f

−1(H+))

Γmin
, (6)

w.p. 1− (δ/t)6. This implies that on the event E , after t steps, RLPA acted according
to a suboptimal policy π for no more than O(log(t)/Γ 2

min) steps. The rest of the proof
follows similar steps as in Thm. 1 to bound the regret of all the suboptimal policies in
high probability. The expected regret of π+ is bounded by H+ and standard arguments
similar to [7] are used to move from high-probability to expectation bounds. ��

Note that although the bound in Thm. 1 is stated in high-probability, it is easy
to turn it into a bound in expectation with almost identical dependencies on the
main characteristics of the problem and compare it to the bound of Thm. 2. The
major difference is that the bound in Eq. 5 shows a O(log(T )/Γmin) dependency
on T instead ofO(

√
T ). This suggests that whenever there is a big margin between

the best policy and the other policies in Π , the algorithm is able to accordingly
reduce the number of times suboptimal policies are selected, thus achieving a bet-
ter dependency on T . On the other hand, the bound also shows that whenever the
policies in Π are very similar, it might take a long time to the algorithm before
finding the best policy, although the regret cannot be larger thanO(

√
T ) as shown

in Thm. 1.
We also note that while Assumption 3 is needed to allow the algorithm to

“discard” suboptimal policies with only a logarithmic number of steps, Assump-
tion 2 is more technical and can be relaxed. It is possible to instead only require
that each policy π ∈ Π has a bounded span, Hπ < ∞, which is a milder con-
dition than requiring a constant average reward over states (i.e., μπ(s) = μπ).

5 Computational Complexity

As shown in Algo. 1, RLPA runs over multiple trials and episodes where policies
are selected and run. The largest computational cost in RLPA is at the start of
each episode computing the B-values for all the policies currently active in ΠA

and then selecting the most optimistic one. This is an O(m) operation. The total
number of episodes can be upper bounded by 2 log2(T ) + log2(f

−1(H+)) (see
Lem. 4). This means the overall computational of RLPA is of O(m(log2(T ) +
log2(f

−1(H+)))). Note there is no explicit dependence on the size of the state
and action space. In contrast, UCRL2 has a similar number of trials, but re-
quires solving extended value iteration to compute the optimistic MDP policy.
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Extended value iteration requires O(|S|2|A| log(|S|)) computation per iteration:
if D are the number of iterations required to complete extended value iteration,
then the resulting cost would be O(D|S|2|A| log(|S|). Therefore UCRL2, like
many generic RL approaches, will suffer a computational complexity that scales
quadratically with the number of states, in contrast to RLPA, which depends
linearly on the number of input policies and is independent of the size of the
state and action space.

6 Experiments

In this section we provide some preliminary empirical evidence of the benefit of
our proposed approach. We compare our approach with two other baselines. As
mentioned previously, UCRL2 [7] is a well known algorithm for generic RL prob-
lems that enjoys strong theoretical guarantees in terms of high probability regret
bounds with the optimal rate of O(

√
T ). Unlike our approach, UCRL2 does not

make use of any policy advice, and its regret scales with the number of states
and actions as O(|S|

√
|A|). To provide a more fair comparison, we also introduce

a natural variant of UCRL2, Upper Confidence with Models (UCWM), which
takes as input a set of MDP models M which is assumed to contain the actual
model M . Like UCRL2, UCWM computes confidence intervals over the task’s
model parameters, but then selects the optimistic policy among the optimal poli-
cies for the subset of models in M consistent with the confidence interval. This
may result in significantly tighter upper-bound on the optimal value function
compared to UCRL2, and may also accelerate the learning process. If the size
of possible models shrinks to one, then UCWM will seamlessly transition to fol-
lowing the optimal policy for the identified model. UCWM requires as input a
set of MDP models, whereas our RLPA approach requires only input policies.

We consider a square grid world with 4 actions: up (a1), down (a2), right
(a3) and left (a4) for every state. A good action succeeds with the probability
0.85, and goes in one of the other directions with probability 0.05 (unless that
would cause it to go into a wall) and a bad action stays in the same place with
probability 0.85 and goes in one of the 4 other directions with probability 0.0375.
We construct four variants of this grid world M = {M1,M2,M3,M4}. In model
1 (M1) good actions are 1 and 4, in model 2 (M2) good actions are 1 and 2, in
model 3 good actions are 2 and 3, and in model 4 good actions are 3 and 4. All
other actions in each MDP are bad actions. The reward in all MDPs is the same
and is −1 for all states except for the four corners which are: 0.7 (upper left), 0.8
(upper right), 0.9 (lower left) and 0.99 (lower right). UCWM receives as input
the MDP models and RLPA receives as input the optimal policies of M.

We evaluate the performances of each algorithm in terms of the per-step
regret, Δ̂ = Δ/T (see Eq. 3). Each run is T = 100000 steps and we average the
performance on 100 runs. The agent is randomly placed at one of the states of
the grid at the beginning of each round. We assume that the true MDP model
is M4. Notice that in this case π∗ ∈ Π , thus μ+ = μ∗ and the regret compares
to the optimal average reward. The identity of the true MDP is not known by
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(b) Running time versus |S|.

Fig. 2. Transient behavior and run time

the agent. For RLPA we set f(t) = log(t).6 We construct grid worlds of various
sizes and compare the resulting performance of the three algorithms.

Fig. 1 shows per-step regret of the algorithms as the function of the num-
ber of states. As predicted by the theoretical bounds, the per-step regret Δ̂ of
UCRL2 significantly increases as the number of states increases, whereas the
average regret of our RLPA is essentially independent of the state space size7.
Although UCWM has a lower regret than RLPA for a small number of states,
it quickly loses its advantage as the number of states grows. UCRL2’s per-step
regret plateaus after a small number of states since it is effectively reaching the
maximum possible regret given the available time horizon.

To demonstrate the performance of each approach for a single task, Fig. 2(a)
shows how the per-step regret changes with different time horizons for a grid-
world with 64 states. RLPA demonstrates a superior regret throughout the run

6 See Sec. 4.1 for the rational behind this choice.
7 The RLPA regret bounds depend on the bias of the optimal policy which may be
indirectly a function of the structure and size of the domain.
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with a decrease that is faster than both UCRL and UCWM. The slight periodic
increases in regret of RLPA are when a new trial is started, and all policies
are again considered. We also note that the slow rate of decrease for all three
algorithms is due to confidence intervals dimensioned according to the theoretical
results which are often over-conservative, since they are designed to hold in the
worst-case scenarios. Finally, Fig. 2(b) shows the average running time of one
trial of the algorithm as a function of the number of states. As expected, RLPA’s
running time is independent of the size of the state space, whereas the running
time of the other algorithms increases.

Though a simple domain, these empirical results support our earlier analysis,
demonstrating RLPA exhibits a regret and computational performance that is
essentially independent of the size of the domain state space. This is a signifi-
cant advantage over UCRL2, as we might expect because RLPA can efficiently
leverage input policy advice. Interestingly, we obtain a significant improvement
also over the more competitive baseline UCWM.

7 Related Work

The setting we consider relates to the multi-armed bandit literature, where an
agent seeks to optimize its reward by uncovering the arm with the best expected
reward. More specifically, our setting relates to restless [9] and rested [15] bandits,
where each arm’s distribution is generated by a an (unknown) Markov chain that
either transitions at every step, or only when the arm is pulled, respectively.
Unlike either restless or rested bandits, in our case each “arm” is itself a MDP
policy, where different actions may be chosen. However, the most significant
distinction may be that in our setting there is a independent state that couples
the rewards obtained across the policies (the selected action depends on both
the policy/arm selected, and the state), in contrast to the rested and restless
bandits where the Markov chains of each arm evolve independently.

Prior research has demonstrated a significant improvement in learning in a
discrete state and action RL task whose Markov decision process model parame-
ters are constrained to lie in a finite set. In this case, an objective of maximizing
the expected sum of rewards can be framed as planning in a finite-state par-
tially observable Markov decision process [10]: if the parameter set is not too
large, off-the-shelf POMDP planners can be used to yield significant perfor-
mance improvements over state-of-the-art RL approaches [2]. Other work [5] on
this setting has proved that the sample complexity of learning to act well scales
independently of the size of the state and action space, and linearly with the size
of the parameter set. These approaches focus on leveraging information about
the model space in the context of Bayesian RL or PAC-style RL, in contrast to
our model-free approach that focuses on regret.

There also exists a wealth of literature on learning with expert advice (e.g. [3]).
The majority of this work lies in supervised learning. Prior work by Diuk et al. [4]
leverages a set of experts where each expert predicts a probabilistic concept (such
as a state transition) to provide particularly efficient KWIK RL. In contrast,
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our approach leverages input policies, rather than models. Probabilistic policy
reuse [6] also adaptively selects among a prior set of provided policies, but may
also choose to create and follow a new policy. The authors present promising
empirical results but no theoretical guarantees are provided. However, we will
further discuss this interesting issue more in the future work section.

The most closely related work is by Talvitie and Singh [14], who also consider
identifying the best policy from a set of input provided policies. Talvitie and
Singh’s approach is a special case of a more general framework for leveraging
experts in sequential decision making environments where the outcomes can
depend on the full history of states and actions [11]: however, this more general
setting provides bounds in terms of an abstract quantity, whereas Talvitie and
Singh provide bounds in terms of the bounds on mixing times of a MDP. There
are several similarities between our algorithm and the work of Talvitie and Singh,
though in contrast to their approach we take an optimism under uncertainty
approach, leveraging confidence bounds over the potential average reward of
each policy in the current task. However, the provided bound in their paper is
not a regret bound and no precise expression on the bound is stated, rendering
it infeasible to do a careful comparison of the theoretical bounds. In contrast, we
provide a much more rigorous theoretical analysis, and do so for a more general
setting (for example, our results do not require the MDP to be ergodic). Their
algorithm also involves several parameters whose values must be correctly set
for the bounds to hold, but precise expressions for these parameters were not
provided, making it hard to perform an empirical comparison.

8 Future Work and Conclusion

In defining RLPA we preferred to provide a simple algorithm which allowed
us to provide a rigorous theoretical analysis. Nonetheless, we expect the cur-
rent version of the algorithm can be easily improved over multiple dimensions.
The immediate possibility is to perform off-policy learning across the policies:
whenever a reward information is received for a particular state and action, this
could be used to update the average reward estimate μ̂(π) for all policies that
would have suggested the same action for the given state. As it has been shown
in other scenarios, we expect this could improve the empirical performance of
RLPA. However, the implications for the theoretical results are less clear. In-
deed, updating the estimate μ̂(π) of a policy π whenever a “compatible” reward
is observed would correspond to a significant increase in the number of episodes
K(π) (see Eq. 4). As a result, the convergence rate of μ̂(π) might get worse and
could potentially degrade up to the point when μ̂(π) does not even converge to
the actual average reward μπ . (see Lem. 1 when K(π) & n(π)). We intend to
further investigate this in the future.

Another very interesting direction of future work is to extend RLPA to lever-
age policy advice when useful, but still maintain generic RL guarantees if the
input policy space is a poor fit to the current problem. More concretely, currently
if π+ is not the actual optimal policy of the MDP, RLPA suffers an additional
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linear regret to the optimal policy of order T (μ∗−μ+). If T is very large and π+

is highly suboptimal, the total regret of RLPA may be worse than UCRL, which
always eventually learns the optimal policy. This opens the question whether it
is possible to design an algorithm able to take advantage of the small regret-to-
best of RLPA when T is small and π+ is nearly optimal and the guarantees of
UCRL for the regret-to-optimal.

To conclude, we have presented RLPA, a new RL algorithm that leverages an
input set of policies. We prove the regret of RLPA relative to the best policy
scales sub-linearly with the time horizon, and that both this regret and the
computational complexity of RLPA are independent of the size of the state and
action space. This suggests that RLPA may offer significant advantages in large
domains where some prior good policies are available.
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Abstract. Approximate value iteration methods for reinforcement
learning (RL) generalize experience from limited samples across large
state-action spaces. The function approximators used in such methods
typically introduce errors in value estimation which can harm the qual-
ity of the learned value functions. We present a new batch-mode, off-
policy, approximate value iteration algorithm called Trajectory Fitted
Q-Iteration (TFQI). This approach uses the sequential relationship be-
tween samples within a trajectory, a set of samples gathered sequentially
from the problem domain, to lessen the adverse influence of approxi-
mation errors while deriving long-term value. We provide a detailed de-
scription of the TFQI approach and an empirical study that analyzes
the impact of our method on two well-known RL benchmarks. Our ex-
periments demonstrate this approach has significant benefits including:
better learned policy performance, improved convergence, and some de-
creased sensitivity to the choice of function approximation.

1 Introduction

Temporal Difference (TD) based value iteration methods solve reinforcement
learning problems by estimating the optimal value function over the problem
space [14]. This function describes the maximal expected long-term value of tak-
ing actions in any given state of the domain and can be used to extract an opti-
mal policy. Representing value functions exactly is infeasible in all but the most
trivial domains giving rise to Approximate Value Iteration (AVI) algorithms [8].
Function approximation provides a mechanism for efficiently representing value
functions, however, by their very nature they introduce generalization errors.
Typical AVI methods are dependent on the approximation model to derive and
propagate the long-term value of a state through the function space. The gen-
eralization error introduced by function approximation adversely impacts the
derivation of long-term values and as a consequence the policy described by the
learned function.

Reinforcement Learning (RL) problems are multi-step and as such the data
used by value iteration methods typically comes in the form of sequential sets
of experience samples known as trajectories. Trajectories are actual observed
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paths through the problem space that describe how value is propagated through
the state space without the error induced by function approximation. Despite
the availability of this information, AVI based methods commonly ignore the
sequential relationship between samples while deriving the value of a state and
rely instead on the approximation model.

Figure 1 provides an illustration of the AVI generalization problem alluded to
above. There are four sampled states, represented by the circles, that are part
of two separate trajectories that were generated by arbitrary policies. In this
example, assume that the immediate rewards for the transitions shown are zero
and we are given the true optimal long-term values, V , for the transitions that go
beyond states B and D, 4 and 2 respectively. The function approximation model
here is a tiling abstraction represented by the rectangle, S̄, that combines the
value of states B and D to predict a generalized value, x where 2 < x < 4, for any
other state S̄ contains. The value x may be a reasonable approximation of the
value of unobserved states within S̄, however it produces generalization errors for
the values of B and D. With function approximation, standard AVI approaches
will only use x to determine the long-term value for states A and C instead
of the long-term values for the states that follow in their sampled trajectories,
again 4 and 2 respectively. From the trajectories we can see that the value for
state A in this example should be greater than that of state C’s. But, due to
the generalization error, value iteration will derive a value for those states based
upon x that is an underestimate of the value of state A and, potentially, an
overestimate of the value of state C.

Unfortunately this error will not just impact the derivation of the long-term
value for the sampled states A and C. AVI methods calculate long-term value by
back-propagating rewards along approximated transition paths. This error will
therefore adversely affect the derivation of long-term value for all other sampled
states that can reach states B and D. Errors such as this will propagate and
reoccur through the function space and can reduce the quality of the learned
policy. This form of generalization error is common among statistical function
approximation, and is not limited to tiling abstractions.

The trajectory AB can be used to correct for the underestimation of the
sampled value of A. Trajectory AB demonstrates that following some unknown
policy from the sampled state B a value of at least 4 is attainable. Given this
information, while updating the long-term value for the sampled state A we
should use the long-term value implied by the trajectory, 4, rather than x be-
cause we know it is an underestimate. Unfortunately we cannot apply the same
reasoning to correct for the potential overestimation in the sampled value of C.
The trajectory CD does not provide definitive evidence that from state D a value
greater than x is not achievable. Instead, the value of x should still be used while
updating the long-term value estimate of C.

In this paper we present a new algorithm we call Trajectory Fitted Q-iteration
(TFQI) that utilizes trajectory information in this way to reduce the impact of
generalization error. It is a batch mode, model-free, off-policy RL algorithm
based upon the Fitted Q-Iteration (FQI) framework [4]. FQI is a well-known
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C D

S̄ V = 4

V = 2

V = x

2 < x < 4

V = x

V = x

Fig. 1. A simple 4 state example scenario where AVI can produce misleading long-term
value estimates. A, B, C, and D are states that have been sampled belonging to two
sample trajectories AB and CD. S̄ is a state abstraction that generalizes the value of
the states it contains, B and D. The V ’s indicate the value derived for each state by
standard AVI.

value iteration algorithm that has demonstrated great empirical performance on
RL benchmarks [11]. In addition we provide an empirical analysis of this new
approach that demonstrates TFQI learns policies that are superior to that of FQI
using the same data and function approximation architecture with no significant
additional computational costs beyond the original FQI formulation. TFQI not
only demonstrates the ability to learn better policies, but also shows dramatically
improved convergence and some decrease in the sensitivity to approximation
model settings. The only additional assumption TFQI makes beyond FQI, and
other off-policy TD methods, is the availability of trajectory based data which,
as stated above, is the norm rather than the exception.

The remainder of the paper is structured as follows: Section 2 provides back-
ground and notation and a detailed description of FQI. Section 3 introduces
TFQI and elaborates upon the ideas behind the new approach. In Section 4 we
provide details for the setup of our empirical analysis. Section 5 presents the
results as well as a discussion of their significance. Section 6 provides a brief
overview of related work. Finally, in Section 7 we conclude and identify future
directions for this research.

2 Background

Reinforcement learning is commonly discussed within the framework of Markov
Decision Processes (MDP) [10]. An MDP, M , is a 5-tuple, M = 〈S,A, P,R, γ〉,
where S is a set of states of the world, A is the set of actions, P is the state
transition model such that P (s, a, s′) ∈ [0, 1] describes the probability of transi-
tioning to state s′ after taking action a in state s, R is the reward function such
that R(s, a) ∈ R describes the immediate reward received for taking action a in
state s, and γ is the discount factor on future rewards bound by [0, 1).

The goal of RL is to derive an optimal policy, π∗, over M that maximizes the
discounted long-term aggregate value that can be obtained starting from any
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given state. A policy, π, is a mapping from the state space to the action space,
π = S '→ A. π∗ can be extracted from the optimal Q-function, Q∗(s, a), defined
by the solution to the Bellman equation:

Q∗(s, a) = R(s, a) + γP (s, a, s′)max
a′∈A

Q∗(s′, a′) (1)

π∗(s) = max
a∈A

Q∗(s, a) (2)

If the functions P and R are known then Q∗ and π∗ can be derived in a
straightforward fashion using dynamic programming. However, in the model-
free RL context P and R are unknown and Q∗ must instead be estimated from
samples. Samples describe single-step observations of transitions taken in the
domain. They are represented by tuples, (s, a, s′, r), consisting of a state s, and
action a, the state s′ transitioned to by taking a in s, and r, the immediate
reward for that transition. Samples are collected through interactions with the
domain by the agent itself, a third party, or by a generative model when available.

Value iteration combined with Temporal Difference (TD) [14] provides a
model-free way to estimate Q∗(s, a) directly from samples. Given a set of sam-
ples to learn from, value iteration can learn estimates of the Q-values for each
sample by iteratively applying the Bellman update rule to each sample:

Qn(s, a) ← r + γmax
a′∈A

Qn−1(s
′, a′) (3)

Update rule (3) states that the Q-value for a state-action pair at iteration n is
equal to the expected value of immediate reward plus the discounted long-term
value. Long-term value here is estimated by the current maximum Q-value for
the successor state. Each iteration of the approach refines the long-term value
estimate for the state-action pair by back propagating value from subsequent
transitions that receive rewards. Through successive iterations this approach
is guaranteed to converge toward Q∗ in small domains, where states can be
represented exactly, and with infinite sampling guarantees.

Non-trivial problems, however, have state and action spaces that are too large
to define the Q-function explicitly, so we must use function approximation to
represent an approximate Q-function, Q̂. Linear function approximation is com-
monly used in practice and is the type of approximation we utilize in this paper.
In a linear function approximation scheme the value-function or Q-function is
represented by a weighted, w, linear combination of k features, φ, defined over
the state-action space:

Q̂(s, a) =
k∑

i←1

wiφi(s, a) (4)

The types of features and their number is domain dependent and crucial to
the success of the approach. Typically those parameters are chosen a priori by
a domain expert. The Q-function is approximated by deriving an appropriate
weight vector through linear regression.
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Algorithm 1. FQI(D, γ,N)

Require: D: set of samples, γ: discount factor, N : number of iterations to complete
1: Q̂0 ← 0 //Initialize Q-function to zero everywhere
2: for n = 1 to N do
3: for all sample ∈ D do
4: //sample = (st, at, rt, st+1)
5: Inputsample ← (st, at)
6: Targetsample ← rt + γmax

a∈A
Q̂n−1(st+1, a)

7: end for
8: Q̂n ← Regression(Input,Target)
9: end for
10: Return Q̂N

Representing the Q-function this way is much more efficient and the choice of
representation (features) provides valuable generalization. Generalization allows
for effective learning in complex domains even under limited sampling conditions.
However, while generalization is a useful benefit of approximation, it is limited by
errors that can produce misleading value estimates as was shown in the example
given in Section 1.

2.1 Fitted Q-Iteration

Fitted Q-Iteration (FQI) is a general AVI framework for solving RL problems.
It derives Q̂ through a sequence of standard supervised learning regression prob-
lems that iteratively converge upon the fixed point solution of the Bellman equa-
tion, equation 1. Algorithm 1 provides a detailed outline of the FQI framework.
First, the algorithm begins with a Q-function initialized to zero, Q̂0 = 0, and a
set of provided samples, D. At each iteration FQI solves a regression problem
that produces a more accurate Q-function model to be used in subsequent it-
erations. The regression problem is defined by using the state and action pairs,
(s, a), from the samples in D as the input patterns and the current approxi-
mated Q-value of the pair, Q̂n(s, a), as the regression target. After performing
regression, the updated Q-function model, Q̂n−1, combined with the Bellman
update rule (3) is used to generate the next iterations regression targets (see
line 6 of Algorithm 1). Given an appropriate choice in approximation model,
through successive iterations this process converges and produces a model that
approximates Q∗.

FQI has several desirable traits that have made it a widely used algorithm
among the RL community. First, it is an off-policy algorithm which enables
FQI to effectively utilize samples collected by any means. This is an important
feature when samples are difficult to obtain or cannot be simulated. FQI is a
batch-mode algorithm which gives it favorable sample efficiency when compared
to single sample update approaches. Because of the generality of the approach,
it can be paired with a variety of regression models, and allows for the approach
to be adapted to any given problem domain. Additionally, it has demonstrated
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competitive learning performance compared to that of other state-of-the-art RL
algorithms [11].

However, FQI like other AVI methods suffers from the generalization problem
discussed in Section 1. FQI’s use of the Bellman update, shown on line 6 of
Algorithm 1, explains why it is susceptible to this issue. The long-term value
component of the update is based upon the maximal value that can be obtained
from the successor state of the sample according to the function approximation
model, Q̂n−1. It is not a strong assumption that the approximation model will
contain generalization error, and as a result the derived long-term value of state-
action pairs will be adversely impacted.

3 Trajectory Fitted Q-Iteration

AVI methods like FQI are sensitive to the generalization errors of an approx-
imation because they assume that there is no other mechanism to propagate
long-term reward through the function space than via the model. In most RL
scenarios, however, this assumption is not true. Samples for RL are generally
collected as part of a larger sequence known as a trajectory. These trajectories
describe observed paths through the domain’s state-action space that can also
be used to propagate long-term reward without the generalization error of an
approximation. In this section we present our approach, Trajectory Fitted Q-
Iteration (TFQI) a new batch-mode, off-policy, AVI learning algorithm based on
FQI that exploits trajectory data to improve the derivation of long-term value.

TFQI makes one additional assumption that other AVI approaches do not;
the sample data to be learned over has been collected as sets of trajectories. A
trajectory is a finite ordered sequence of samples that describe a series of succes-
sive transitions through the problem space. More formally, an n-step trajectory
is comprised of the following ordered set of samples:

{(st0 , at0 , rt0 , st1)1, (st1 , at1 , rt1 , st2)2, . . . , (stn−1 , atn−1 , rtn−1 , stn)n} (5)

Trajectories are collected through episodic multi-step interactions with the prob-
lem domain performed either by the agent itself or by a third-party. TFQI is an
off-policy approach in that it makes no assumptions on the quality of the policy
used to generate the trajectories or that they were all produced by the same
policy. Additionally, the provided set of trajectories can consist of trajectories
of varied length and my not end with transitions to terminal states.

The key insight behind TFQI is that the long-term value for any sample, as
part of a trajectory, can be estimated as either the discounted value predicted
by the approximation model given the successor state or by the value of the
successor sample from the trajectory. The later option is more resilient to gen-
eralization errors of the approximation scheme because it is derived from the
real value relationship between successive samples and not the approximation.
However, the value derived for the successor sample is based on the action taken
by the successor, which is not assumed to be the optimal action for the successor
state, and therefore can be an underestimate of the optimal value for the sample.
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Algorithm 2. TFQI(Traj, γ,N)

Require: Traj: a set of trajectories, γ: discount factor, N : number of iterations
1: Q̂0 ← 0
2: for n = 1 to N do
3: for all trajectory ∈ Traj do
4: for i = |trajectory| downto 1 do
5: //samplei = (st, at, rt, st+1)i ∈ trajectory
6: Inputsamplei ← (st, at)
7: Targetsamplei ← rt + γmax(max

a∈A
Q̂n−1(st+1, a), T argetsamplei+1)

8: end for
9: end for
10: Q̂n ← Regression(Input,Target)
11: end for
12: Return Q̂N

As such, TFQI uses the maximal value of the two values as the estimate for the
long-term reward while performing updates.

Algorithm 2 provides a detailed outline of the TFQI algorithm. Structurally
TFQI is very similar to the FQI algorithm. The differences are: TFQI accepts a
set of trajectories, Traj, as opposed to a general set of samples. TFQI iterates
through the samples of each trajectory in reverse sequential order while com-
puting the regression targets. This is necessary to obtain an updated estimate of
the successor sample’s value, Targetsamplei+1 . Finally, the update rule (line 7)
has been expanded to utilize the maximum of either the approximation model
or successor sample value to estimate the long-term value of a sample. 1

These modifications to the original FQI formulation enables TFQI to har-
ness trajectory data more effectively. The enhanced update rule is the most
meaningful of the changes. It provides a mechanism for long-term value to prop-
agate backward through trajectories. This one function has two beneficial con-
sequences. First, it reduces the impact of generalization errors by correcting
underestimates of long-term value for sampled states, as shown in the exam-
ple given in Section 1. This ability can lead to more accurate Q̂-functions and
hopefully improved policies. And second, it propagates long-term value through
entire trajectories at each iteration. This effect can speed how long-term value
is learned throughout the function space and improve convergence especially in
reward sparse domains.

TFQI retains the desirable traits (batch-mode and off-policy) of FQI with
negligible additional computational costs and no additional overhead. Per iter-
ation, TFQI only adds |D| more comparisons, where D is the set of samples,

1 One or both of the long-term value estimates will be undefined for the last sample
of each trajectory. If the sample transitions to an absorbing state, rt is taken as the
value for that sample. If the sample does not transition to an absorbing state, the
value predicted by the approximation model is used.
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than that of FQI. In the subsequent section we provide an empirical analysis
comparing FQI and TFQI to explore the potential benefits of this approach.

4 Experimental Setup

We performed an empirical comparison of TFQI and FQI over several experi-
ments to assess the impact of the enhanced use of trajectory information for AVI.
Our analysis, provided in the subsequent Section 5, evaluates both approaches
based on final learned policy performance, convergence speed, and sensitivity
to the function approximation model. This section provides the details for the
setup of this comparison.

4.1 Domains

Mountain Car [4] (MC) and the Acrobot (ACRO) Swing-Up [6] problems are
the two well-known RL domains that we chose to use in our analysis. For our
experiments we used implementations of both domains provided by RL-Glue [15].
In MC the learner is tasked with learning a policy for driving an underpowered
car from the bottom of a deep valley to the top of the forward hill. The ACRO
problem challenges the learner to derive a policy for an underpowered robot,
simulating a gymnast on a high-bar, that starting from a still straight position
below the bar rotates the leg of the robot, at the hip, in such a way that the
robot gathers enough momentum to swing and raise the end of its leg above the
high bar position.

The objective for both problems is to reach a goal state in as few steps as
possible. As such, the rewards for all transitions in both problems is -1, except for
transitions to the goal state which have 0 rewards. While evaluating the learned
policies we limit the number of steps a policy has to achieve the objective to
300 steps for MC and 1000 steps for ACRO. Policies that take longer than those
limits are considered unsuccessful policies for the purpose of our evaluation.

Both problems require function approximation because of their continuous
state-spaces. MC has a 2-dimensional state-space and ACRO has a 4 dimensional
state-space. The two domains each have 2 discrete actions: apply forward or
reverse throttle for MC and apply forward or reverse torque at the robot’s hip
for ACRO.

4.2 Function Approximation Models

We use two forms of linear function approximation in our experiments for repre-
senting Q̂ that differ in the types of features. The first is Radial Basis Functions
(RBF) which overlays several Gaussian curves uniformly over the state space
and uses their activation as features. It is a common choice for RL and has good
localized generalization properties [6]. The other is based on Fourier basis func-
tions. Fourier basis functions have greater global generalization properties and
have only recently been explored in an RL context [6].
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Ridge regression is used for both variants to train the weight vectors of the
models. It applies l2 regularization on the objective function to prevent over-
fitting. The amount of regularization is controlled by the shrinkage parameter,
λ, that we manually set but can be tuned automatically using cross-validation.
This form of function approximation paired with FQI is known to exhibit di-
vergence behavior because errors in the approximation of value are potentially
unbounded [4]. We are able to circumvent this issue for these specific problem
domains by limiting the predicted value response of the model to be non-positive.
Both domains have strictly non-positive rewards making it impossible for state-
action pairs to have positive value.

4.3 Trajectory Generation

The NEAT [13] algorithm was used to generate large diverse sets of trajectories
necessary for our analysis. NEAT solves RL problems via genetic algorithm that
performs policy search. Each member of a NEAT population represents a po-
tentially different policy. Trajectories were recorded by observing an evaluation
of each policy on the problem domain. If more than one policy achieved the
same aggregate value only one of the trajectories was recorded per NEAT run
to maintain diversity. Several runs with varying random seeds for both problem
domains generated the trajectory sets for our analysis. The recorded trajectories
are all “complete” trajectories generated from successful policies. The trajecto-
ries are “complete” in that they all start from the same initial state and end with
a transition to the goal state after some number of intermediate transitions.

There are roughly 1500 trajectories in the MC and 6000 trajectories in the
ACRO data sets. The un-discounted aggregate values achieved by the trajectories
in the sets ranges uniformly from -105 to -299 for MC and -70 to -999 for ACRO.
In our experiments, for each run an identical set of trajectories is provided to both
approaches. The trajectory sets vary from run to run and consist of randomly
selected trajectories from the full generated sets.

4.4 Experiment Parameters

Unless stated otherwise, the learning parameters for all experiments are consis-
tent for each domain. In our MC experiments RBF is used, and it is comprised of
25 features (k=25), λ = 1.0, and γ = 0.9999. For ACRO the Fourier basis func-
tions are used, k = 81, λ = 1.0, and γ = 0.9999. These parameter settings were
manually selected and were chosen because they produced the best observed
overall learning performance for both methods across multiple experiments.

The reported results for all experiments are the average of 200 runs after 300
iterations (N=300). Additionally, we performed a paired t-test on the results
from each approach to determine if differences in the results are statistically
significant. We report the difference as being significant if the p-value < 0.05.
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Fig. 2. Average converged policy performance for FQI and TFQI using increasing
numbers of complete trajectories

5 Results and Discussion

5.1 Learned Policy Performance

The primary goal of RL is to learn effective policies, therefore the most direct way
of evaluating both FQI and TFQI is to compare them based upon their learned
policy performance over the same sets of samples. Here we report the results from
two sets of experiments that measure average un-discounted aggregate reward
achieved by the learned policies after N iterations for both approaches. The
experiment sets differ in the type of sample trajectories that are provided.

Our first set of experiments provides both approaches with increasing numbers
of complete trajectories. This scenario is arguably the most realistic for an off-
policy batch-mode algorithm. The learner is presented with some number of
trajectories that demonstrate how to achieve a goal to varying degrees of success
and the learner must derive the most effective policy from these samples. We
show experiments increasing the number of provided trajectories from 1 to 10.

From the results given in Figure 2, it can be seen the enhanced use of trajec-
tory data gives TFQI an advantage in learned policy performance. TFQI learns
better policies on average than FQI in all of these experiments using the same
data. The performance differences are significant in all cases except for the MC 10
trajectories experiment where both methods performed similarly. TFQI’s advan-
tage is most distinct in the ACRO problem where its average policy performance
can be more than twice as good as that of FQI.

The second set of experiments evaluates policy performance when the methods
are provided with fragments of complete trajectories. Although full trajectories
may be more common, neither approach is dependent on the availability of such
data. This set of experiments is designed to demonstrate whether or not TFQI
can effectively exploit this more general form of trajectory data. The trajec-
tory sets in these experiments were generated by randomly selecting trajectory
fragments of random length from the repository. Fragments are added until the
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Fig. 3. Average converged policy performance for FQI and TFQI using increasing
numbers of samples from trajectory fragments

aggregate number of samples reaches a desired threshold. Additionally, we guar-
antee that there are at least 3 fragments containing transitions to the goal state
in each run. For this series of experiments we increased the aggregate size of the
trajectory data incrementally from 100 to 5000 samples.

As shown in Figure 3 TFQI again demonstrates better learning performance
than FQI on this more general form of trajectory data. All performance gaps
shown in Figure 3b for the ACRO problem are significant as well as the 500,
1000, and 2000 sample runs for the MC problem. While the differences between
the two approaches in these experiments are not quite as great as in the previous
experiment there is still an improvement to be gained from utilizing this data
and it can be significant.

Based on the results from these two experiments, when trajectory based data
is available TFQI is clearly the preferable approach. The enhanced update al-
lows TFQI to learn policies that are significantly better than FQI’s on average.
Improvements in performance are most pronounced when there are fewer sam-
ples, 2-5 trajectories or 500-1000 samples. Though we provide no theoretical
bounds on sample efficiency of TFQI, these results suggest that our method can
be more efficient than FQI in practice; a desirable trait when samples are costly
to acquire.

5.2 Convergence

In addition to policy performance we compare FQI and TFQI on their conver-
gence speed. Both methods iteratively refine Q̂ by learning new sets of regression
targets that estimate Q-values for the available samples. Through successive it-
erations, the difference in the regression targets from one iteration to the next,
Q̂n− Q̂n−1, should approach zero and lead to a stable policy. Convergence speed
is measured by the rate at which the difference approaches zero.

Figure 4 provides two sets of graphs for this analysis that show convergence
of the Q̂-function, Figures 4a and 4c, and average policy performance, Figure
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Fig. 4. Convergence, (a) and (c), and policy, (b) and (d), performance graphs for two
experiments comparing FQI and TFQI in both domains. For the convergence graphs,
lower values approaching zero indicate improved performance. Alternatively, higher
values in the policy score graphs are better.

4b and 4d. The graphs report the results of two experiments where TFQI and
FQI were given 10 complete trajectories for each domain. For Figures 4a and
4c, Q̂n − Q̂n−1 is measured by the mean squared difference of the regression
targets from one iteration to the next. In both experiments the convergence
graphs show that TFQI appears to converge nearly 100 iterations earlier than
FQI, demonstrating a significant speedup. This result can be attributed to the
way TFQI is able to propagate long-term value through an entire trajectory
within a single iteration. FQI, alternatively, must wait for value to propagate one
transition step at a time per iteration. Figure 4b shows the learning performance
of the methods from the same 10 trajectory experiment reported in Figure 2a.
Interestingly, despite not deriving a significantly better policy on average, TFQI
is able to derive a similar policy in far fewer iterations. For the ACRO domain
this result is even more impressive. TFQI is able to learn a far better policy in
fewer iterations using the same exact set of sample trajectories. In Figure 4c
TFQI’s convergence does exhibit some oscillations, however they do not have a
significant impact on the quality of the policy as seen in Figure 4d.
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5.3 Model Parameter Sensitivity

The success of any machine learning approach depends on the selection of an
appropriate model for a given domain. RL is certainly no exception to this state-
ment. Selecting an appropriate representation is critical and is the subject of in-
tense research to find automatic methods [7]. Determining the most appropriate
settings for any given model is difficult because there are often many different
interrelated parameters that must be tuned. Our approach, while still very much
dependent on model selection, utilizes trajectory data to calculate value in a way
that is partially independent of the approximation model. It is plausible then
that this approach may exhibit some degree of insensitivity to model choice.

In this section we provide a preliminary non-exhaustive set of experiments
that compare the sensitivity of FQI and TFQI to the settings of various model
parameters. The parameters that we change are the type of feature, φ, the num-
ber of features, k, and the shrinkage parameter for ridge regression, λ. For both
domains we use the best performing settings on 10 complete trajectories as a
baseline. We then deviate one of the parameters from the baseline settings in
each experiment and measure the difference in the average policy performance,
Δ, to determine sensitivity.

Table 1. Approximation model parameter sensitivity experiment results for Mountain
Car. The first entry shows the baseline settings and performance for both methods.
Subsequent entries show the policy performance and deviation from the baseline per-
formance for varying model parameters for both methods. Significant results are bold.

φ k λ FQI FQI Δ TFQI TFQI Δ

RBF 25 1.0 -130.700 NA -128.320 NA
RBF 25 0.1 -156.250 -25.550 -146.460 -18.140
RBF 25 10.0 -297.264 -166.564 -238.044 -109.724
RBF 16 1.0 -286.519 -155.819 -200.724 -72.404
RBF 36 1.0 -143.370 -12.670 -134.870 -6.550
Fourier 25 1.0 -194.260 -63.560 -178.455 -50.135

Table 1 provides the complete results for these experiments on the MC do-
main. In general TFQI exhibits less of a degradation in policy performance than
FQI, supporting our hypothesis. The difference in degradation is most significant
when the model parameters are changed to increase the generality of the model.
Generalization is increased here when the number of features is decreased to
16 and when the λ parameter is increased to 10. This observation is somewhat
expected given that the use of trajectory data by the TFQI approach reduces
the impact of generalization error.

The results for the ACRO problem can be seen in Table 2. They are not as
conclusive as the ones reported for MC. FQI actually shows a performance im-
provement when λ is reduced to 0.1 while learning over 10 complete trajectories.
λ = 1.0 was found to be a good for learning over other amounts of trajectories
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and this result re-emphasises the difficulty in finding the best parameter set-
tings. Still, even at this setting FQI does not match the performance of TFQI.
Again, we can see that increasing the generalization of the model has signifi-
cantly less of an impact on TFQI. When the number of features is increased to
256 both perform comparably. Given the relative number of features and sam-
ples (about 5000) this experiment might be suffering from model over-fitting.
Both approaches struggle to find a successful policy when RBFs are used. Recall
we limit the number of steps a policy has to achieve the goal to 1000. FQI is
completely incapable of deriving a successful policy at these settings over 200
runs, whereas TFQI occasionally learned a competent policy. This last result
provides further evidence of our hypothesis and shows that TFQI can learn in
some scenarios where FQI cannot.

6 Related Work

Our approach is similar to learning from demonstration [2,12] methods in that
they also exploit trajectories. Learning from demonstration is a form of RL
that takes examples, trajectories, demonstrated by known optimal or “good”
behavior as input and attempts to use this data to derive policies that duplicate
that behavior. While our approach could certainly take advantage of such data,
it differentiates itself from most learning from demonstration work because no
assumptions are made upon the quality of the policies used to generate the
trajectories or that only a single policy was used to generate the trajectories.

The central idea behind our approach of using trajectory data to improve long-
term value estimation is most similar to the idea of augmented Bellman backups
described in [9]. In that work the authors define an update rule that uses either
model induced value or value derived by a demonstration while performing a
Bellman update of the value function. Our approach is a generalization of this
idea and seamlessly intermixes the use of trajectory or value function model
induced value in its update function. The intention of the augmented Bellman
backup is to use demonstrations to accelerate the process of learning, whereas our
intention is to improve the overall quality of learning. Like other learning from

Table 2. Approximation model parameter sensitivity experiment results for Acrobot.
The first entry shows the baseline settings and performance for both methods. Subse-
quent entries show the policy performance and deviation from the baseline performance
for varying model parameters for both methods. Significant results are bold.

φ k λ FQI FQI Δ TFQI TFQI Δ

Fourier 81 1.0 -331.455 NA -149.690 NA
Fourier 81 0.1 -274.495 56.960 -254.660 -104.970
Fourier 81 10.0 -951.565 -620.110 -390.295 -240.605
Fourier 256 1.0 -389.345 -57.890 -396.943 -247.253
RBF 81 1.0 -999.000 -667.545 -967.535 -817.845
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demonstration methods this approach assumes the availability of high quality
demonstrations, unlike our approach.

Eligibility traces [14] are also similar in that they accelerate learning by apply-
ing TD updates to multiple samples along a trajectory. The idea was developed
within an on-line on-policy context but it has been successfully ported to off-line
off-policy algorithms. Nevertheless, the long-term values calculated by eligibility
traces are derived exclusively from the approximated values of successor transi-
tions, which makes them more susceptible to generalization error.

TFQI is not the first enhancement that has been made to the Fitted Q-
Iteration framework since it was introduced in [4]. In [11] a multi-layer feed
forward neural network architecture was substituted as the regression function,
instead of the regression tree methods described in the original work, with im-
proved empirical performance in standard RL benchmarks. More recently FQI
was extended to work in continuous action space domains [1]. The extension pro-
posed in this work is distinctly different and complimentary to these methods.

Finally, we must note that there are well known and explored theoretical is-
sues when combing off-policy TD methods, such as FQI and TFQI, with function
approximation. Off-policy TD methods are known to exhibit divergent behavior
when paired with function approximators that do not provide bounds on ap-
proximation error [3]. Additionally, even when convergence can be ensured there
are no known guaranteed bounds on the quality of the learned value function[5].
While the approach described in this paper does demonstrate empirical im-
provements, we do not claim to make a theoretical advancement regarding those
issues.

7 Conclusion and Future Work

We have introduced TFQI and shown how its novel utilization of trajectory based
data can reduce the impact of generalization error on the derivation of the value
function. Our empirical analysis demonstrates how this generally available data
can be further exploited to provide significant performance enhancements in the
form of improved policies and quicker convergence. TFQI approach accomplishes
all this while incurring no significant additional computational or memory costs
over the standard FQI approach. One direction for future work is to explore the
theoretical impact of this use of trajectory data.

Further, our empirical study found some evidence that trajectory based value
updates provide some robustness to approximation model parameter settings.
The value propagation information inherent in trajectories might then enable
better modeling choices to be made a priori. We are additionally interested in
investigating if trajectory data can similarly be harnessed to enhance automatic
feature and model selection approaches.
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Abstract. Planning for multiple agents under uncertainty is often based
on decentralized partially observable Markov decision processes (Dec-
POMDPs), but current methods must de-emphasize long-term effects of
actions by a discount factor. In tasks like wireless networking, agents
are evaluated by average performance over time, both short and long-
term effects of actions are crucial, and discounting based solutions can
perform poorly. We show that under a common set of conditions expec-
tation maximization (EM) for average reward Dec-POMDPs is stuck in
a local optimum. We introduce a new average reward EM method; it
outperforms a state of the art discounted-reward Dec-POMDP method
in experiments.

Keywords: Dec-POMDP, average reward, expectation maximization,
planning under uncertainty.

1 Introduction

Optimizing the behavior of several agents like robots [25,22] or wireless devices
[7,18] is a crucial and hard problem, especially hard in an uncertain world where
agents act using only noisy observations about the world and other agents. A de-
centralized partially observable Markov decision process (Dec-POMDP) can de-
scribe the optimal solution. Each agent gets observations on its own and decides
its next action to optimize a shared goal. To plan actions, an agent must consider
possible action-observation sequences of all agents, thus Dec-POMDP planning
is computationally hard: finite-horizon Dec-POMDPs are NEXP-complete (dou-
bly exponential), infinite-horizon Dec-POMDPs are undecidable [6].

In a Dec-POMDP, agents get a joint reward at each time step based on their
actions and the world state. Finite-horizon Dec-POMDPs [22,14,23] maximize
the sum of rewards over a fixed number of time steps and discounted infinite-
horizon Dec-POMDPs [2,10,17] maximize the sum of discounted rewards over an
infinite horizon; these objectives emphasize rewards closer to the first time steps,
i.e., short-term effects of actions. However, in many Dec-POMDP problems it is
natural to maximize average reward over an infinite horizon. In wireless networks
[7] usual objectives are average throughput (average amount of transmitted data,

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 129–144, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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infinitely far into the future) or average delay (average time a data packet must
wait). Such objectives emphasize short and long-term effects of actions equally.
Usefulness of average rewards has been shown in robotics [25] and reinforcement
learning [13]. Moreover, in finite-horizon and discounted reward methods the
solution may depend heavily on the distribution for the first time step (initial
belief), which may need to be designed by a domain expert. In many infinite-
horizon problems a good initial belief depends on the optimal policy and vice
versa (in wireless networks the amount of data in transmit buffers of devices
depends on policy efficiency). In contrast, in an average-reward Dec-POMDP
the solution does not depend on the initial belief, under certain conditions (see
Section 3.1).

Optimizing average reward has been used in partially observable Markov
decision processes (POMDPs) for one agent, and for special-case multiple agent
problems, but solutions for generic multiple agent problems have not been given.
Interaction of agents is essential e.g. in wireless network channel access [18]. We
introduce a solution for multiple agents with partial observability: a
Dec-POMDP method that optimizes average reward by a modified expectation-
maximization (EM) algorithm. To our knowledge this is the first general Dec-
POMDP method for optimizing average reward.

2 Related Work

We discuss related work on average reward Markov decision processes (MDPs),
partially observable MDPs (POMDPs), and decentralized MDPs (Dec-MDPs).
A fully observable POMDP or a single agent Dec-MDP is an MDP, a single agent
Dec-POMDP is a POMDP, and a jointly fully observable Dec-POMDP is a Dec-
MDP. The Dec-POMDP is the most general of these models. We know of previ-
ous work on average reward MDPs [13,21], average reward POMDPs [1,29,12],
discounted reward POMDPs [20,8,2,17], transition and observation indepen-
dent average reward Dec-MDPs [19], finite-horizon Dec-POMDPs [22,14,23], and
discounted-reward Dec-POMDPs [24,5,4,3,2,10,17], but not on general average
reward Dec-POMDPs. For average reward MDPs, policy iteration, value iter-
ation, linear programming [21] and model-free methods [13] exist. Mahadevan
et al. [13] showed average reward outperformed discounted reward in MDPs
where an agent chose small short-term or large long-term rewards. Methods ex-
ist for average reward POMDPs : Li et al. [12] find memoryless policies, Yu et al.
[29] use lower bound approximations, and Aberdeen [1] improves a finite state
controller by gradient methods. For decentralized problems, Petrik et al. [19]
show transition&observation independent average reward Dec-MDPs are NP-
complete, and use bi-linear programming. Yagan et al. [28] minimize average
cost in a transition&observation independent special-case Dec-POMDP where
agents don’t affect or sense the world state seen by other agents. In general
Dec-POMDPs agents affect each other in complex ways. To our knowledge there
is no research on general average reward Dec-POMDPs, but research on finite-
horizon [22,14,23] and discounted reward Dec-POMDPs [24,5,4,3,2,10,17] exists.
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Kakade et al. [9] showed MDP average reward could be approximated by dis-
counting with large discount factor, but in our experiments real average reward
optimization outperformed discounting.

3 Dec-POMDP

A Dec-POMDP is a solution to multi-agent planning under uncertainty about
the world and other agents. It is defined by a set of N agents, the set of actions
A, the set of states S, the set of observations O, the observation probability
P (o|s′,a), the state transition probability P (s′|s,a), and real valued immediate
reward function R(s,a). Here o denotes the observations o1, . . . , oN and a the
actions a1, . . . , aN of all agents. In each time step, the world starts from state s,
each agent i takes action ai, and the world transitions to the next state s′ with
probability P (s′|s,a). Agents then make their observations o with probability
P (o|s′,a) and the action-observation cycle begins again. An agent does not sense
actions, states or observations of other agents, so computational complexity of
planning is high. In each time step the agents get immediate reward R(s,a)
depending on their actions a and the world state s. The finite-horizon objective
is to maximize reward E[

∑T
t=0 Rt(s,a)|π] where T is the horizon, π is the policy

(consisting of the individual policies of all agents), and Rt(s,a)|π is the reward
at time step t following π. In the discounted reward case, expected discounted
reward over an infinite-horizonE[

∑∞
t=0 γ

tRt(s,a)|π] is maximized, with discount
factor 0 < γ < 1. With discounting, reward decreases geometrically with the
horizon. Both finite-horizon and discounted reward objectives need an initial
state probability distribution b0(s) called the initial belief.

Finite state controllers (FSCs) have been used as policy in POMDP [20,8,2,17]
and infinite-horizon discounted reward Dec-POMDP [24,5,4,3,2,10,17] methods.
The FSC of agent i consists of a set {qi} of FSC states qi, an action probability
distribution P (ai|qi), and FSC state transition probability P (q′i|qi, oi). For sim-
plicity, similar to the approach in [2], an agent starts in state qi = 1. In each

time step, agent i in state qi takes action ai with probability P
(i)
aq = P (ai|qi).

The world transitions to a new world state, the agent gets observation oi about

the world, and moves to a new FSC state q′i with probability P
(i)
q′qo = P (q′i|qi, oi).

3.1 Average Reward Dec-POMDP

Intuitively average reward Dec-POMDPs optimize the policy to maximize aver-
age reward over an infinite horizon. Formally, they must maximize Raverage =

E
[
limT→∞

1
T

∑T−1
t=0 Rt(s,a)|π

]
. Unlike finite-horizon and discounted reward ob-

jectives, Raverage does not need a parameter controlling effective planning hori-
zon and depending on the underlying Markov chain does not need an initial
belief. In Dec-POMDPs, an agent needs the full observation history to make
optimal decisions [6]. As average reward Dec-POMDPs run the policy for arbi-
trarily long times, we use FSCs as policies taking a fixed amount of memory.
For a set of FSCs (one per agent), the world state s and the FSC states qi
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together form a state of a Markov chain as follows: given the current state
(s, q), where q = q1, . . . , qN , the probability for the next time step state

(s′, q′) is Ps′q′sq = P (s′, q′|s, q) =
∑

a,o P (o|s′,a)P (s′|s,a)
∏

i

(
P

(i)
aq P

(i)
q′qo

)
.

With initial belief b0(s) the initial probability distribution over (s, q) is
P0(s, q) = b0(s)

∏
i P (qi) and Pt(s, q) is the initial distribution projected t

time steps into the future. The expected immediate reward for Pt(s, q) is∑
s,q,a Pt(s, q)R(s,a)

∏
i P

(i)
aq . The optimization objective is then RFSCs =

limT→∞
1
T

∑T−1
t=0

∑
s,q,a

(
Pt(s, q)R(s,a)

∏
i P

(i)
aq

)
. Average reward Dec-POMDP

problems can be grouped by properties of the above-described Markov chain. We
consider fully stochastic policies, like FSCs with nonzero action and transition
probabilities; the properties below don’t depend on the policy as long as it is
fully stochastic. Useful Markov chain classes (similar to [21]) are Recurrent - all
states reachable from all states; Periodic - the greatest common divisor of the
return time of one or more states is greater than one; Aperiodic - no state is pe-
riodic; Unichain - one set of recurrent states and a set of zero or more transient
states; and Multichain - two or more closed irreducible sets of recurrent states
and zero or more transient states. We focus on aperiodic problems. When the
Markov chain is aperiodic, Pt(s, q) converges to a stationary limiting distribution
P∗(s, q) = limt→∞ Pt(s, q). Since rewards are bounded, RFSCs becomes

RFSCs,aperiodic =
∑
s,q,a

P∗(s, q)R(s,a)
∏
i

P (i)
aq . (1)

For multichain Markov chains, the limiting distribution depends on initial belief:
if e.g. a robot can enter one of two hallways but cannot switch later, its start
position affects the limiting distribution. For unichain Markov chains the limiting
distribution does not depend on initial belief. Average reward unichain models
are of practical interest: in a wireless network case, agents’ transmission buffer
sizes are the world state and transmission policies must be optimized to keep
buffers as empty as possible; the reward is the negative sum of buffer sizes and the
initial belief is the distribution over buffer sizes. Generally initial belief influences
the best achieved policy so the belief should be optimized with the policy, but
for unichain Markov chains we need not optimize initial belief since the optimal
policy always yields the optimal limiting distribution.

4 Expectation-Maximization Planning

Expectation-maximization (EM) has been used to optimize finite state con-
trollers (FSCs) for discounted reward in MDPs and POMDPs [27], Dec-POMDPs
[10,17], and factored Dec-POMDPs [16]. In EM the idea is to scale rewards into
probabilities and, by inference, find FSC parameters maximizing the reward like-
lihood. EM has been extended to problems with huge [16] and continuous [27]
state spaces.We now introduce an average reward EM method for aperi-
odic Dec-POMDPs. (For experiments, we introduce a nonlinear programming
based alternative in the Appendix.) We first use a traditional EM approach and
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show the result is stuck in a local optimum under certain conditions (see Section
4.1 for more details); we then use it as a foundation for a modified approach and
introduce a practical EM method that yields good results.

An EM approach scales the real valued reward function into a binary reward
variable r. Denote with R̂sa = R̂(r = 1|s,a) the conditional probability for
r to be one given actions a and state s. R̂sa is computed by scaling the real
valued reward function using the minimum Rmin and maximum Rmax rewards:
R̂sa = (R(s,a)−Rmin)/(Rmax −Rmin). In average reward Dec-POMDPs, FSC
parameters θ are optimized to maximize average reward over time, scaled as
above into a likelihood of a binary reward:

P (r = 1|θ) = lim
TM→∞

TM−1∑
T=0

1

TM

∑
s,q,a

R̂saPT (s, q)
∏
i

P (i)
aq , (2)

where the horizon TM is taken to the limit. It can be shown (2) corresponds
to the original average reward objective (1); moreover the continuous expected
average reward R(θ) can be extracted from the likelihood of the binary reward
as R(θ) = P (r = 1|θ)(Rmax − Rmin) + Rmin. Each EM iteration consists of
an E- and M-step: the E-step computes alpha and beta messages with old FSC
parameters to compute the log likelihood function, and the M-step finds new
FSC parameters that maximize the log likelihood.

E-step. Based on the current policy parameters θ, the E-step computes alpha
αsq
t and beta βsq

t messages:

αsq
0 = P0(s, q) , αs′q′

t =
∑
s,q

Ps′q′sqα
sq
t−1 , (3)

βs,q
0 =

∑
a

R̂sa

∏
i

P (i)
aq , βsq

t+1 =
∑
s′,q′

Ps′q′sqβ
s′q′
t . (4)

M-step. Let Lt denote a sequence of world states and FSC state, observation,
and action variables of all agents from time t = 0 to T , so that

LT = {(st, q1,t, . . . , qN,t, o1,t, . . . , oN,t, a1,t, . . . , aN,t)}Tt=0 . Moreover, use P
(t)
os′sa

to denote P (ot+1, st+1|st,at) and R̂
(t)
sa to denote R̂(rt = 1|st,at), and for agent

i denote P (ai,t|qi,t) with P
(i,t)
aq and P (qi,t+1|qi,t, oi,t+1) with P

(i,t)
q′qo . Denote the

set of current FSC parameters (action and transition probabilities) by θ and

the set of new parameters by θ́. In the M-step, EM maximizes the expected log
likelihood Q(θ, θ́) denoted here with Q with respect to the new FSC parameters

θ́:

Q = lim
TM→∞

TM−1∑
T=0

∑
LT

P r,LT ,T
θ,TM

logP r,LT ,T

θ́,TM
, (5)
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where

logP r,LT ,T

θ́,TM
= logP (r = 1, LT , T |θ́, TM ) = log R̂(T )

sa + logP (s0, q0)

+

T∑
t=1

logP
(t−1)
os′sa +

∑
i

(

T∑
t=0

log Ṕ (i,t)
aq +

T∑
t=1

log Ṕ
(i,t−1)
q′qo )− logTM (6)

is the log-probability to receive binary reward r = 1 after the latent sequence
of actions and states LT . (6) shows that the new FSC probabilities of agent i

(action probability Ṕ
(i,t)
aq and FSC transition probability Ṕ

(i,t−1)
q′qo ) do not depend

on the new distributions of other agents. For brevity, denote sets of sum indices
as V�=i = {s, qj �=i, aj �=i} and W�=i = {s, qj �=i, aj �=i, s

′,o, q′}.
We now construct Q̃i, the part of Q affecting the new action probability Ṕ

(i)
aq

for agent i. We use Ṕ
(i,t)
aq to denote Ṕ

(i)
aq at time step t and use

P (r = 1, ai,t = ai, qi,t = qi|T, θ) =
∑

W�=i
αsq
t Pos′saP

(i)
q′qo

∏
j �=i P

(j)
aq P

(j)
q′qoβ

s′q′
T−t−1

to denote the probability of a binary reward r = 1 at time T , when at t ≤ T agent

i takes action ai and the FSC state is qi. Since
∑

LT
P r,LT ,T
θ,TM

∑T
t=0 log Ṕ

(i,t)
aq =∑T

t=0

∑
ai,qi

P (r = 1, ai,t = ai, qi,t = qi|T, θ) log Ṕ (i)
aq , inserting (6) into (5) yields

Q̃i = lim
TM→∞

TM−1∑
T=0

T∑
t=0

∑
W�=i

αsq
t

TM
Pos′saP

(i)
q′qo

(∏
j �=i

P (j)
aq P

(j)
q′qo

)
βs′q′
T−t−1 log Ṕ

(i)
aq . (7)

In (7), breaking the sum over t into t = T and t = 0, . . . , T − 1 yields

Q̃i =
∑

ai,qi
P

(i)
aq log Ṕ

(i)
aq limTM→∞

∑TM−1
T=0

[∑
V�=i

R̂sa

TM

(∏
j �=i P

(j)
aq

)
αsq
T +∑T−1

t=0

∑
W�=i

αsq
t

TM
Pos′saP

(i)
q′qo

(∏
j �=i P

(j)
aq P

(j)
q′qo

)
βs′q′
T−t−1

]
.

Because Ṕ
(i)
aq is normalized over ai, maximizing Q̃i with respect to Ṕ

(i)
aq yields

Ṕ
(i)
aq = P

(i)
aq limTM→∞

1
Cqi

∑TM−1
T=0

[∑
V�=i

R̂sa

∏
j �=i P

(j)
aq αsq

T

+
∑T−1

t=0

∑
W�=i

αsq
t Pos′saP

(i)
q′qo

∏
j �=i P

(j)
aq P

(j)
q′qoβ

s′q′
T−t−1

]
,

where Cqi is a normalizing constant.
Similarly to [26,10], we separate sums over alpha and beta messages using

limTM→∞
∑TM−1

T=0

∑T−1
t=0

αsq
t βs′q′

T−t−1

TM
= limTM→∞

∑TM−1
t=0 αsq

t

∑TM−1
τ=0

βs′q′
τ

TM
, where

τ = T − t− 1. The action probability update becomes

Ṕ (i)
aq = P (i)

aq lim
Tα,Tβ→∞

1

Cqi

[∑
V�=i

R̂sa

(∏
j �=i

P (j)
aq

) Tα−1∑
T=0

αsq
T +

∑
W�=i

Tα−1∑
t=0

αsq
t Pos′saP

(i)
q′qo

(∏
j �=i

P (j)
aq P

(j)
q′qo

) Tβ−1∑
τ=0

βs′q′
τ

]
, (8)

where we have used alpha and beta horizons, Tα and Tβ, in place of TM , to be
used in later discussions.
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4.1 Analysis: Stuck in a Local Optimum

We now prove that the action probability update of the traditional EM approach
is stuck in a local optimum under certain conditions. The proof that the FSC
transition probability updates are stuck is similar and is omitted.

The proof requires stochastic FSCs and that each closed irreducible state set
has at least one state with a non-zero reward probability. These conditions are
common. Firstly, the policy is usually stochastic, because a deterministic pol-
icy is always stuck, even in discounted POMDPs/Dec-POMDPs, because of the
multiplicative nature of EM parameter updates. Secondly, the reward probability
condition is common. If all sets of irreducible states have zero reward probabil-
ity, then only transient states have non-zero reward probability. Therefore, the
reward probability approaches zero at distant time steps and the need for taking
long-term effects of actions into account, the motivation behind average reward,
disappears. There may be multichain problems where some of the irreducible
closed state sets have, and others do not have, non-zero reward probabilities.
We are not aware of such problems, but this may need further investigation.

Note that the proof applies also to average reward POMDPs. The proof for
POMDPs is obtained by just setting the number of agents to one. We do not
claim the proof to hold in problems without stochastic controllers (e.g. it is
possible to use EM in MDPs so that the action probability depends directly on
the world state). In particular, we assume in the proof that

∑
s α

sq
∗ > 0 for all

q, which is true for stochastic controllers.

Preliminary. Recall that αt = {αsq
t } is a projection of the initial belief for t

steps following the current policy. To measure difference between a probability
distribution and the limiting distribution, we use the total variation distance
DTV [11], defined as the largest absolute difference of the probability of the
same state in two distributions. The distance between distribution αt at time
step t and the limiting distribution α∗ is DTV (αt, α∗) = maxs,q |αsq

t − αsq
∗ |. In

aperiodic Markov chains, total variation distance decreases exponentially1 with
time t:

DTV (αt, α∗) ≤ Cεε
t; 0 < ε < 1 , (9)

where Cε > 0 and ε are constants. In unichains the limiting distribution is
unique, but in multichains it depends on the starting distribution. We will not
denote the dependence on the starting distribution explicitly but we refer to it
when necessary.

Theorem 1. In unichain and multichain aperiodic Dec-POMDPs, the EM ac-
tion probability update never changes finite state controller (FSC) parameter
values, when each closed irreducible state set has at least one state for which a
non-zero reward probability exists, and when the FSC policy is fully stochastic.

1 Theorem 4.9 in [11] shows this for aperiodic irreducible Markov chains. It is straight-
forward to modify the proof of the theorem to also apply to aperiodic unichains and
multichains, which may have transient states in addition to irreducible communi-
cating classes of states: the equilibrium distribution π in [11] is just replaced with a
limiting distribution, which has a zero probability for each transient state.



136 J. Pajarinen and J. Peltonen

Proof. We write (8) as Ṕ
(i)
aq = P

(i)
aq

[
H

(i)
aq +J

(i)
aq

]
, whereH

(i)
aq is the expected sum of

reward probabilities gained over all time in situations where agent i was in state

qi and took action ai, scaled by a normalization term, and J
(i)
aq is the expected

sum of reward probabilities over the future from such situations, again scaled

by the normalization term. We have H
(i)
aq = limTα,Tβ→∞

1
Cqi

H̃
(i)
aq and J

(i)
aq =

limTα,Tβ→∞
1

Cqi
J̃
(i)
aq where Cqi =

∑
ai
P

(i)
aq (H̃

(i)
aq + J̃

(i)
aq ) is the normalization

term, and we denoted H̃
(i)
aq =

∑
V�=i

R̂sa

∏
j �=i P

(j)
aq

∑Tα−1
T=0 αsq

T and also denoted

J̃
(i)
aq =

∑
qj �=i,aj �=i,s,s′,q′

∑Tα−1
t=0 αsq

t P
(i)
s′q′aisq

∑Tβ−1
τ=0 βs′q′

τ . The term P
(i)
s′q′sqai

=∑
o,aj �=i

Pos′saP
(i)
q′qo

∏
j �=i P

(j)
aq P

(j)
q′qo is the probability that the world and agents

will transition to states (s′, q′) given their current states (s, qj �=i) and a specific

action ai and controller state qi of the ith agent. For convenience, define Ĵ
(i)
aq as

Ĵ (i)
aq = lim

Tα,Tβ→∞

TαTβ

Ĉqi

∑
sτ ,aτ ,qτ

R̂sτaτα
sτ ,qτ
∗

∏
j

P (j)
aτ qτ = lim

Tα,Tβ→∞

TαTβ

Ĉqi

· const ,

here Ĉqi =
∑

ai
TαTβ

∑
sτ ,aτ ,qτ

R̂sτaτα
sτ ,qτ
∗

∏
j P

(j)
aτ qτ is another normalizing

term. We now prove that J
(i)
aq = Ĵ

(i)
aq and H

(i)
aq = 0. We will then show Ĵ

(i)
aq

converges to a constant and that the action update is thus stuck.

To prove J
(i)
aq = Ĵ

(i)
aq we show that |J (i)

aq − Ĵ
(i)
aq | = 0. Expand the recursive form

of beta messages as

βs,q
τ =

∑
sτ ,qτ ,aτ

P (sτ , qτ |s0 = s, q0 = q)R̂sτaτ

∏
j

P (j)
aτ qτ ,

where P sτ ,qτ
s,q = P (sτ , qτ |s0 = s, q0 = q) is the probability to arrive at world

and controller states sτ , qτ in τ steps when starting from s, q. Use the expanded

form to compute an upper bound on |J (i)
aq − Ĵ

(i)
aq |:

∣∣∣ lim
Tα,Tβ→∞

[ 1

Cqi

∑
qj �=i,aj �=i

s,s′,q′

Tα−1∑
t=0

αsq
t P

(i)
s′q′aisq

Tβ−1∑
τ=0

βs′q′
τ − TαTβ

Ĉqi

∑
sτ ,aτ ,qτ

(

R̂sτaτα
sτ ,qτ
∗

∏
j

P (j)
aτ qτ

)]∣∣∣ ≤ ∣∣∣ lim
Tα,Tβ→∞

Tα

[ 1

Cqi

∑
qj �=i,aj �=i

s,s′,q′

αsq
∗ P

(i)
s′q′aisq

Tβ−1∑
τ=0

∑
sτ ,qτ ,aτ

P sτ ,qτ

s′,q′ R̂sτaτ

∏
j

P (j)
aτqτ − 1

Ĉqi

Tβ−1∑
τ=0

∑
sτ ,aτ ,qτ

R̂sτaτα
sτ ,qτ
∗

∏
j

P (j)
aτqτ

]∣∣∣
≤ lim

Tα,Tβ→∞

[ Tβ−1∑
τ=0

∑
sτ ,aτ

R̂sτaτP
(i)
aτ qτTα

min(Cqi , Ĉqi)

∣∣∣ ∑
qj �=i,aj �=i

s,s′,q′

αsq
∗ P

(i)
s′q′aisq

P sτ ,qτ

s′,q′ − αsτqτ
∗

∣∣∣]

≤ lim
Tα,Tβ→∞

Tα

min(Cqi , Ĉqi)

Tβ−1∑
τ=0

Cεε
τ = lim

Tα,Tβ→∞

Tα

min(Cqi , Ĉqi)

Cε

1− ε
= 0 . (10)
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The last equality follows because min(Cqi , Ĉqi) approaches infinity quadrati-
cally: omitting all nonessential notation, Cqi contains a double sum over terms

αsq
t βs′q′

τ , from t = 0 to Tα−1 and from τ = 0 to Tβ−1. Since the FSCs are fully
stochastic, for each q the marginal limit probability is nonzero and thus one state
(s, q) must have nonzero limit probability αsq

∗ (and probability close to the limit
for an infinite number of terms), i.e. it is a recurrent state. By assumption (see
theorem) one recurrent state must have nonzero reward; such states are visited
an infinite number of times, thus the double sum grows faster than TαTβ · const
for some constant. Ĉqi has similar terms and also grows quadratically.

The first inequality in (10) comes from exponential decrease of DTV (αt, α∗)
2.

In the second inequality we bounded terms P
(j)
aτ qτ by 1 for j 
= i. The third in-

equality follows from using (9) to upper bound the term∣∣∣∑qj �=i,aj �=i,s,s′,q′ α
sq
∗ P

(i)
s′q′aisq

P (sτ , qτ |s0 = s′, q0 = q′) − αsτqτ
∗

∣∣∣. To apply (9),

αsq
∗ P

(i)
s′q′aisq

P (sτ , qτ |s0 = s′, q0 = q′) must converge in the limit τ → ∞
to αsτqτ

∗ , we show this. Define P0(s
′, q′|ai, qi) =

∑
qj �=i,aj �=i,s

αsq
∗ P

(i)
s′q′aisq

and

Pτ (sτ , qτ |ai, qi) =
∑

s′,q′ P (sτ , qτ |s0 = s′, q0 = q′)P0(s
′, q′|ai, qi).

In a unichain, the starting distribution does not affect the limiting distri-
bution. Hence, limτ→∞ Pτ (sτ , qτ |ai, qi) = αsτqτ

∗ . In a multichain the limiting
distribution depends on the starting distribution, however, in αsq

∗ and thus in
P0(s

′, q′|ai, qi), all transient Markov chain states have zero probability (easy to
verify from the definition of a transient state) and the probability mass is dis-
tributed among closed irreducible classes in the exactly same proportion as in
αsτqτ
∗ . Further forward projection of the Markov chain does not change this prob-

ability mass distribution (as the irreducible classes are closed), thus, similarly
to the unichain case, the Markov chain starting from P0(s

′, q′|ai, qi) converges

to αsτqτ
∗ . Next, we show that H

(i)
aq is zero.

We have H
(i)
aq = limTα,Tβ→∞

Tα

Cqi

∑
V�=i

R̂sa

∏
j �=i P

(j)
aq

1
Tα

∑Tα−1
T=0 αsq

T =

limTα,Tβ→∞
1

Cqi
Tα

∑
V�=i

R̂sa

∏
j �=i P

(j)
aq α

s,q
∗ , because limTα→∞

1
Tα

∑Tα−1
T=0 αsq

T =

limTα→∞
1
Tα

Tαα
sq
∗ = αsq

∗ . Because Tα

Cqi
becomes zero in the limit, by the same

argument as Tα

min(Cqi
,Ĉqi

)
becomes zero in (10), and because other terms are finite

in the limit, H
(i)
aq is zero. Since H

(i)
aq is zero and J

(i)
aq converges to a constant, the

probability update multiplies all action probabilities by the same constant; this

concludes the proof and Ṕ
(i)
aq = P

(i)
aq · const .

Theorem 1 may be surprising as the discounted reward EM methods [26,10,16]
improve the policy in each EM iteration so that the discounted reward never
decreases. Getting stuck is a consequence of the average reward setting, where
the entire future must be fully taken into account. We next give a practical EM
approach for average reward Dec-POMDPs that allows policy improvement.

2 See http://users.ics.aalto.fi/jpajarin/avgrew/supplement.pdf for details.

http://users.ics.aalto.fi/jpajarin/avgrew/supplement.pdf
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4.2 A Practical EM Method

The average reward EM described above is always stuck in a local optimum.
To force a change to FSC parameters in the M-step, one could try to use fixed
instead of infinite horizons. Fixing a horizon induces an approximation error to
parameter updates that decreases with a larger horizon. Discounted reward EM
methods effectively fix both Tα and Tβ to the same horizon by using discounted
rewards. This has at least three drawbacks in average reward problems: 1) an
initial belief is needed in optimization, 2) discounting rewards increases approxi-
mation error compared to uniform rewards, 3) limiting both Tα and Tβ increases
approximation error more than limiting only one of them.

We now give update rules with an infinite Tα, and propose to set only Tβ

to a fixed value which is doubled during optimization whenever the current
policy value would decrease. This has several advantages. By not limiting Tα

we do not need an initial belief in unichain problems and can compute the
sum of alpha messages efficiently as detailed later in this Section. Furthermore,
the approach allows to reduce the approximation error in parameter updates
until the policy value increases. The adaptation of Tβ is necessary not only
because we know a priori that a too low Tβ may not always yield increased
value, but also because the approximation error that a specific Tβ causes is
problem dependent: the mixing rate of the Dec-POMDP determines how fast a
distribution converges to the stationary distribution and this in turn determines
how high the approximation error for a certain Tβ is. In short, this kind of
approach is necessary to adapt Tβ to the specific Dec-POMDP problem.

Since limTα→∞
1
Tα

∑Tα−1
t=0 αsq

t = limTα→∞ αsq
Tα

= αsq
∗ , the action probabil-

ity update is derived from (8) and becomes Ṕ
(i)
aq =

P
(i)
aq

Cqi

∑
s,qj �=i

αsq
∗
∑
aj �=i

[
R̂sa

∏
j �=i

P (j)
aq +

∑
s′,o,q′

Pos′saP
(i)
q′qo

(∏
j �=i

P (j)
aq P

(j)
q′qo

) Tβ∑
τ=0

βs′q′
τ

]
.

(11)
The transition probability update is derived similarly to the action prob-

ability update resulting in

Ṕ
(i)
q′qo =

P
(i)
q′qo

C
(i)
oq

∑
s,qj �=i,a,s′,oj �=i,q′j �=i

[
αsq
∗ Pos′saP

(i)
aq

∏
j �=i

(
P (j)
aq P

(j)
q′qo

) Tβ∑
τ=0

βs′q′
τ

]
. (12)

We propose the practical EM algorithm as follows: set Tβ to an initial value
(we use 32), then apply E- and M-steps in turn until the policy value does not
increase or until any other stopping criterion is satisfied.

In the E-step the algorithm computes beta messages up to the horizon Tβ

using (4) and the limiting distribution αsq
∗ for alpha messages either projecting

until convergence using (3) or by solving a system of linear equations. Because the
EM algorithm gradually improves the policy, the limiting distribution from the
previous EM iteration is likely close to the new limiting distribution. An efficient
unichain implementation thus starts projecting from the limiting distribution of



Expectation Maximization for Average Reward Decentralized POMDPs 139

the previous EM iteration (in multichain problems projecting must start from
the initial belief). This saves much computation: for example, in the “long fire
fighting” experiment, iteration 1 needed 5000 projections, next iterations only
3-100 projections.

In the M-step the algorithm computes new FSC action and transition prob-
abilities by (11) and (12). After the M-step the algorithm checks whether the
value of a policy decreased: if it did, the algorithm multiplies Tβ by 2 and recom-
putes the beta messages and performs the M-step again, until the value does not
decrease (for Tβ → ∞ this would yield the original EM we derived; we limit Tβ

to a maximum of 32768). In the experiments, Tβ needed duplication only rarely.
Our practical EM is better than naive bounding/discounting both alpha and

beta. We efficiently compute exact infinite-horizon alphas, using the limiting
distribution from the previous iteration as the start of propagation, whereas
discounted EM would need to choose a discount factor and propagate alpha to
large horizons. Our EM is intuitive and easy to implement.

5 Experiments

We evaluate the average reward on two different sets of benchmark problems.
The first set consists of benchmark problems, used previously for evaluating
discounted reward Dec-POMDP methods [10,3,2,16]. The second set consists of
two new average reward benchmark problems, which emphasize long-term effects
of actions.

For all problems, we compare the new expectation maximization (EM) aver-
age reward DEC-POMDP method (denoted “AvgEM”) of Section 4.2, against
a baseline and loose upper bounds of performance. We use a uniformly random
policy as baseline. For (loose) upper bounds we compute the optimal solution to
the average reward MDP underlying the DEC-POMDP with linear programming
[21]; this upper bound corresponds to agents that have full knowledge of the en-
vironment and each other. We also show AvgEM outperforms an alternative new
non-linear programming approach (denoted “AvgNLP”) which we introduce in
the Appendix. We compare AvgEM with a state of the art discounted reward
EM (denoted “DiscEM”) method [10] on different discount factors 0.9, 0.99, and
0.999; we show that AvgEM outperforms DiscEM in average reward problems
and has equal or better performance in benchmark problems from the discounted
reward literature. Optimization of a controller using the EM methods, optimiza-
tion of the random baseline, and optimization of the MDP upper bound were
run in Matlab on a single processor core. Methods were stopped if the change in
the policy value between iterations was under a small threshold. EM methods
had a time limit of one hour. Non-linear programs were solved with the SNOPT
solver on the publicly available NEOS server.

Benchmark problems from the discounted reward literature. The first six prob-
lems in Table 1 (denoted “Disc. Prob.“) have been used to evaluate discounted
reward methods [17], but as we evaluate methods by average reward, the earlier
evaluations based on discounted reward are not directly comparable. The prob-
lems are: DecTiger (2,3,2), Recycling robots (4,3,2), 2x2 Grid meeting (16,5,2),
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Wireless network (64,2,6), Box pushing (100,4,5), and Mars rovers (256,6,8),
where for each problem we list (number of states, number of actions, number
of observations). For each problem AvgEM, AvgNLP, and DiscEM optimized
different size FSCs in parallel over 10 random FSC initializations. Table 1 shows
also the average reward for the random policy and for the MDP upper bound.
AvgEM performs well, in “recycling robots” it is even close to the full-knowledge
upper bound. AvgEM outperforms AvgNLP and performs as well as “DiscEM
0.9”. “DiscEM 0.9” outperforms “DiscEM 0.99” and “DiscEM 0.999” demon-
strating that, in these problems, good results are already obtained with a small
discount factor. Next, we will discuss two new average reward problems with
long-term effects of actions.

Wireless network with overhead (|S| = 64, |Ai| = 2, |Oi| = 6). In the wireless
networking problem, [16] two wireless agents try to keep their transmit buffers,
modeled with four states, as empty as possible. Each buffer gets data from a two-
state source model. Buffer fullness is modeled as few states at rough intervals;
insertions/transmissions have a probability to change the buffer state. If both
agents transmit simultaneously both transmissions fail and data is not removed
from the buffers. The world state is the cross product of the transmit buffers and
source models, in total 64 states. In [16] the objective corresponded to minimizing
delay. In the new problem, successful transmissions are rewarded, corresponding
to maximizing throughput. In real wireless networks, decisions are made at 10
microsecond intervals; to reflect this, we multiplied the probability to transition
from one buffer state to another and the probability to insert data into a buffer
with 0.01. As overhead from packet headers etc. is proportionally smaller for
larger packets, the new wireless problem allows transmission of more data, when
the buffer is fuller: for buffer size x, y = 2x/(x + 1) data units are transmitted
(probability to change buffer state is proportional to y).

Long fire fight (|S| = 27, |Ai| = 2, |Oi| = 2). In the fire fighting problem
[15] two robots try to extinguish three houses and receive negative reward for
higher house fire levels (see [15] for details). In the new long fire fighting ver-
sion a house can also start burning on its own with probability 0.1. To make a
single Dec-POMDP time step correspond to a shorter time in the real applica-
tion, we multiplied all transition probabilities between fire levels with 0.01. In
this version a fire takes longer to put out, and it takes longer for fire levels to
increase.

Table 1 shows results for the wireless network with overhead (denoted “Long
Wirel.“) and the long fire fight (denoted “Long FF”) problems (FSC size was
fixed to 3). In both problems AvgEM converged rapidly and got highest average
reward. Figure 1 shows convergence of the EM methods. Results for the dis-
counted method DiscEM agree with the observations in Section 4.2 about the
negative effect of discounting alpha and beta messages. DiscEM converges with a
low discount factor 0.9 to suboptimal solutions and with a large 0.999 factor too
slowly. Interestingly, in fire fighting “DiscEM 0.9” convergences to a bad local
optimum where both agents only try to extinguish the middle house, showing
the necessity of adapting optimization parameters to the specific Dec-POMDP
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Table 1. Expected average reward of a uniformly random policy (“Random”), a MDP
based upper bound (“MDP”), the average reward nonlinear programming method
(“AvgNLP”), the discounted expectation maximization method (“DiscEM”) for dis-
count factors 0.9, 0.99, and 0.999, and the average reward expectation maximiza-
tion method (“AvgEM”) in benchmark problems used in discounted method research
[10,3,2,16] (“Disc. Prob.”) and in new average reward benchmarks (“Avg. Prob.”). A
result is bolded, when the 95% confidence interval of the best result contains the result
or vice versa. AvgEM outperforms AvgNLP, performs as well or better as DiscEM in
discounted reward problems, and outperforms DiscEM in the average reward problems.

Disc. Prob. Random MDP AvgNLP DiscEM 0.9 DiscEM 0.99 DiscEM 0.999 AvgEM

DecTiger −46.22 20.00 −2.00 −1.375 −1.80 −2.19 −1.79

Rec. robots 0.45 3.27 1.24 3.08 3.08 2.59 3.08

2x2 Grid 0.25 1.00 0.28 0.80 0.83 0.56 0.75

Wireless −3.04 −1.46 −3.00 −1.96 −2.07 −2.86 −2.05
Box pushing −1.37 20.35 −0.19 3.69 3.45 0.28 3.75

Mars rovers −1.21 2.88 1.05 1.77 0.80 −0.315 1.55

Avg. Prob. Random MDP AvgNLP DiscEM 0.9 DiscEM 0.99 DiscEM 0.999 AvgEM

Long Wirel. 0.0063 0.0099 0.0089 0.0081 0.0085 0.0066 0.0093

Long FF −1.85 −0.20 −3.00 −4.00 −1.095 −1.44 −0.91
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Fig. 1. Expected average reward of discounted reward EM (DiscEM) with 3 discount
factors and our average reward EM method (AvgEM), for “wireless network with over-
head” (left) and “long fire fighting” (right). Error bars are 95% confidence intervals
from bootstrapping.

problem. In fact, for most EM iterations AvgEM held parameter Tβ (see Section
4.2) between 32 and 512 in “wireless network with overhead” and at 32 in “long
fire fight”.

6 Conclusions

Average reward is a useful criterion for planning under uncertainty with multi-
ple agents; it has real-life importance in wireless networks and other domains.



142 J. Pajarinen and J. Peltonen

We showed that traditional expectation maximization is stuck in average re-
ward Dec-POMDPs (and POMDPs) under certain conditions and provided a
new EM based method for average reward Dec-POMDPs. Our new EM method
yields good performance, outperforming a state of the art discounted reward
EM method in average reward problems. We also introduced two average re-
ward benchmark problems, long fire fighting and wireless network with overhead.
To our knowledge this is the first general Dec-POMDP method for
optimizing average reward.
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Appendix: Non-linear Programming for Average Reward
Dec-POMDPs

A non-linear programming (NLP) approach has been used in recent discounted
reward POMDP and Dec-POMDP research [2]. To study whether a NLP ap-
proach is suitable for average reward cases, we introduce a new NLP based
method as an alternative to the expectation-maximization approach that we
recommend. We do not claim that the method below is the only possible NLP
approach to average reward Dec-POMDPs, but to our knowledge no other NLP
methods for average reward Dec-POMDPs have been presented so far, therefore
we use our method below as a first proxy.

Motivated by the linear programming solution for average reward MDPs [21]
we use the same basic idea that the limiting distribution remains the same over
successive time steps. Note that the discounted reward NLP approach in [2] uses
the Bellman equation to recursively define the optimal value function over world
and FSC states, but the approach requires a discount factor and is not directly
applicable to average reward problems. Instead we use the limiting distribution
as the basis for optimization.

Table 2. Non-linear program for an aperiodic unichain average reward Dec-POMDP.
The program maximizes the immediate reward of the limiting distribution P∗(s, q),
which corresponds to maximizing the average reward. The program solves for the FSC
parameters P

(i)
q′qo and P

(i)
aq of each agent i.

Variables: P∗(s,q) and for each agent i: P
(i)

q′qo, P
(i)
aq

Optimization goal: Maximize
∑

s,a Rsa

∑
q P∗(s,q)

∏
i P

(i)
aq

Subject to the following constraints:

P∗(s
′, q′)−

∑
s,q Ps′q′sqP∗(s, q) = 0 ,

∑
s,q P∗(s, q) = 1 , P∗(s, q) ≥ 0 ∀s ∀q∑

ai
P

(i)
aq = 1 ∀qi , P (i)

aq ≥ 0 ∀qi ∀ai ,
∑

qi
′ P

(i)
q′qo = 1 ∀qi ∀oi, P

(i)
q′qo ≥ 0 ∀qi ∀oi ∀q′i

Table 2 shows the non-linear program for solving aperiodic unichain aver-
age reward Dec-POMDPs. In Table 2 we have kept the notation for probability
distributions used throughout the paper, one may use functions instead of dis-
tributions for notational purposes. We now discuss the program from top to
bottom. Variables: The limiting distribution P∗(s, q) and the FSC parameters

of each agent i, P
(i)
q′qo and P

(i)
aq , are the variables to solve for. Optimization

goal: The optimization goal of the non-linear program is to maximize the aver-

age reward
∑

s,aRsa

∑
q P∗(s, q)

∏
i P

(i)
aq . First constraint: The first constraint

P∗(s
′, q′)−

∑
s,q Ps′q′sqP∗(s, q) = 0 forces P∗(s, q) to be a limiting distribution.

Other constraints: The remaining constraints force the probability distribu-
tions to be positive and to sum to one. In the experiments non-linear programs
were solved with the SNOPT solver on the publicly available NEOS server.
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Abstract. We introduce Action-Constrained Partially Observable Markov Deci-
sion Process (AC-POMDP), which arose from studying critical robotic applica-
tions with damaging actions. AC-POMDPs restrict the optimized policy to only
apply feasible actions: each action is feasible in a subset of the state space,
and the agent can observe the set of applicable actions in the current hidden
state, in addition to standard observations. We present optimality equations for
AC-POMDPs, which imply to operate on α-vectors defined over many differ-
ent belief subspaces. We propose an algorithm named PreCondition Value Itera-
tion (PCVI), which fully exploits this specific property of AC-POMDPs about
α-vectors. We also designed a relaxed version of PCVI whose complexity is
exponentially smaller than PCVI. Experimental results on POMDP robotic bench-
marks with action feasibility constraints exhibit the benefits of explicitly exploit-
ing the semantic richness of action-feasibility observations in AC-POMDPs over
equivalent but unstructured POMDPs.

Keywords: sequential decision-making, partially observable Markov decision
processes, safe robotics, action feasibility constraints, action preconditions.

1 Introduction

In automated planning, dealing with action preconditions – those feasibility constraints
modeling the set of states where a given action is applicable – is an usual standard
[1–4]. They allow planning problems’ designers to explicitly express properties about
feasible actions as logic formulas, which is of first importance in real-life systems or
robots. Feasible actions are defined as [5]: neither physically impossible (e.g. flying to
Prague from a city without airport), nor forbidden for safety reasons (taking off without
sufficient fuel), nor suboptimal and thus useless (flying from Toulouse to Prague via
São Borja).

When constructing a solution plan, deciding whether an action is feasible in the
current state of the system is obvious if states are fully observable, by testing if the
current state is in the set of states where the action is feasible. However, if the agent
cannot know its current state with perfect precision, it must rather reason about its
belief state, that encodes all the different possible states in which the agent can be [6–
8]. Thus, solution strategies are defined over belief states but not states, whereas action
feasibility constraints are still defined over states. Therefore, additional information
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from the environment is required to disambiguate the belief state insomuch the set of
feasible actions to insert in the plan can be deduced [9].

For example, consider an autonomous coast guard robot navigating along a cliff with
abysses, as shown in Figure 1(a). This example is a slight variation of the Hallway prob-
lem [10], where surrounding walls are replaced by cliffs from which the robot may fall
down. The goal is to reach the star while being certain (i.e. with probability 1) not to
fall down a cliff: in the states near abysses, actions that might make the robot fall down
have to be prohibited because they are unsafe. Imagine that the belief state of the robot
includes states 1, 2, 3 depicted in Figure 1(a). Without sensing the configuration of sur-
rounding abysses, i.e. the feasible actions in the current hidden state, there is no way
for the robot to go south in order to sense the presence of the goal. The modeling so-
lution that guarantees to reach the goal while applying only safe actions is well-known
by researchers on planning under partial observability: it consists in adding informa-
tion about applicable actions in the agent’s observations, and in assigning near-infinite
costs to infeasible state-action pairs. Doing this, we are guaranteed that the maximum-
reward policy will: (i) sufficiently disambiguate the belief state in order to reach high
interesting rewards ; (ii) only apply feasible actions.

Despite the existence of well-known modeling principles to deal with action feasi-
bility constraints in partially observable planning, there is place for improvements by
noting that the set of observations has a specific structure in many real-life or robotic
applications: namely, the set of observations is factored in the form of Ω = O × Θ,
where, in the current hidden state, the agent can receive “standard” observations ran-
domly from O, and “feasibility” observations deterministically from Θ. For instance in
the coast guard problem, a laser or camera sensor will imperfectly locate the agent in
the grid, but provide a unique deterministic configuration of surrounding abysses, i.e.
set of feasible actions. Thus, this paper aims at benefiting from the specific structure of
the observation set to significantly reduce the complexity of finding an optimal policy.
We conduct this study with probabilistic settings, in the context of Partially Observable
Markov Decision Processes (POMDPs) [6, 7]. Our proposal is oriented towards the ex-
ploitation of the specific structure of the problem, whereas standard algorithms can still
solve the problem without using this information but far less efficiently.

1 2 3

a b c �

(a) coastal environment

a b c

�

(b) observations of abyss configurations; arrows
represent feasible actions in each configuration

Fig. 1. Coast guard robotic problem
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The remainder of the paper is organized as follows. First, we make explicit and for-
malize action feasibility constraints in a new model named Action-Constrained
POMDPs (AC-POMDPs), which is a subset of POMDPs. This richer model provides
structured observation sets and functions, as well as a sound optimization criterion,
which properly selects only policies whose actions are feasible in the current hid-
den state of the system. Most importantly, this criterion reveals that optimizing AC-
POMDPs can be reduced to handleα-vectors that are defined over many different small
belief subspaces, thus significantly reducing computations. Then, we present a point-
based algorithm named PreCondition Value Iteration (PCVI), which takes advantage of
the specific structure of AC-POMDPs by implementing α-vector procedures that oper-
ate over different small belief subspaces. In comparison, standard algorithms like PBVI
- Point Based Value Iteration - [11] operate on the full belief space. Finally, we propose
a relaxed version of PCVI, which computes a lower bound on the value function that
totally removes the set of action feasibility observations from computations, yielding
additional exponential-time speedups. Our experimental results on many benchmarks
and on a real aerial robotic problem, where action feasibility constraints are essential
for safety reasons, highlight the computational benefits of explicitly dealing with action
feasibility semantics in POMDPs.

1.1 Related Work

Recently, researchers proposed a structured POMDP model, named Mixed-Observable
Markov Decision Processes (MOMDPs, see [12, 13]), which divides the observation
space Ω in visible and hidden parts: Ω = Ωv × Ωh. MOMDPs exploit the specific
structure of the observation set to reduce the dimension of the belief space, resulting in
significant computation gains. However, in our approach, the semantics of observation
variables are totally different: we assume Ω = O ×Θ, with Θ ⊆ 2A being a set of ap-
plicable actions from the set A of actions. Among algorithmic differences, MOMDPs’
α-vectors are all defined on the same subspace, whereas AC-POMDPs’ α-vectors are
each defined on different subspaces (see later). This noticeable difference suggests that
AC-POMDPs can not be simply viewed as MOMDPs for which visible observations
would be sets of feasible actions. Further work is needed to explicitly exploit the spe-
cific semantics of action-feasibility observations, as actually proposed in this paper.

Our work is also related to POMDP models that incorporate constraints on states or
on execution paths. Goal POMDPs [14] require the optimized policy to reach a set of
goal states from a given initial state. Constrained POMDPs [15] search for a policy max-
imizing the value function for a given reward function subject to inequality constraints
on value functions for different reward functions, which can be often interpreted as
constraining the optimized policy to some areas of the belief space. Thus, these models
put state-based constraints on the optimized policy, which are not directly related to
properties of feasible actions. On the contrary, our AC-POMDP model forces the op-
timized policy to apply only actions that are feasible in a given belief state, knowing
constraints on feasible state-action pairs. Our action-feasibility constraints are weaker
than Constrained POMDPs’ ones, which allows us to use a modified dynamic program-
ming schema that does not include the cumulative cost in the state space, contrary to
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Constrained POMDPs. As a result, the complexity of solving Constrained POMDPs is
much higher than in AC-POMDPs.

2 Theoretical Backgrounds

Our work is built upon Partially Observable Markov Decision Processes (POMDPs),
which offer a sound mathematical model for sequential decision-making under proba-
bilistic partial observability. A POMDP [6, 7] is a tuple 〈S,A, Ω, T,O,R, b0〉, where: S
is the set of states; A is the set of actions; Ω is the set of observations; T : S×A×S →
[0, 1] is the transition function, such that: T (s, a, s′) = p(st+1 = s′|st = s, at = a);
O : Ω × A × S → [0, 1] is the observation function such that: O(o, a, s′) = p(ot+1 =
o|st+1 = s′, at = a); R : S × A × S → R is the reward function associated with
transitions; b0 is the initial probability distribution over states. We denote Δ ⊂ [0; 1]|S|

the (continuous) set of probability distributions over states, named belief space. Figure
2(a) depicts the dynamic influence diagram of a POMDP.

At each time step, the agent updates its current belief b according to the performed
action and the received observation, using Bayes’ rule :

boa(s
′) =

O(o, a, s′)
∑

s∈S T (s, a, s
′)b(s)∑

s∈S
∑

s′′∈S O(o, a, s′′)T (s, a, s′′)b(s)
(1)

Solving a POMDP consists in finding a policy function π : Δ → A that maximizes a
performance criterion. The expected discounted reward from any initial belief V π(b) =
Eπ [

∑∞
t=0 γ

tr(bt, π(bt)) | b0 = b] is usually optimized. The value of an optimal policy
π∗ is defined by the optimal value function V ∗ that satisfies the Bellman optimality
equation:

V ∗(b) = max
a∈A

[
r(b, a) + γ

∑
o∈Ω

p(o|a, b)V ∗(boa)
]

(2)

where r(b, a) =
∑

s∈S b(s)
∑

s′∈S T (s, a, s
′)R(s, a, s′). This value function is proven

to be piecewise linear and convex over the belief space [6], so that at nth optimization
stage, the value function Vn can be parametrized as a set of hyperplanes over Δ named
α-vectors. An α-vector and the associated action a(αi

n) define a region of the belief
space for which this vector maximizes Vn. Thus, the value of a belief b can be defined
as: Vn(b) = maxαi

n∈Vn
b · αi

n. The optimal policy at this step is then: πn(b) = a(αb
n).

3 Action-Constrained POMDPs

In this section, we propose a more expressive POMDP model, named
Action-Constrained POMDP (AC-POMDP), which makes explicit the semantics of fea-
sible actions in the model. Namely, as common in robotic applications, it assumes that
observation symbols are factored in 2 parts: probabilistic observations informing about
the hidden state, and deterministic observations informing about the set of actions that
are feasible in the current hidden state. We will see that the second part implies to maxi-
mize the value function over different belief subspaces, yielding computational savings
over traditional POMDP solvers.
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3.1 AC-POMDPs: Model and Optimization Criterion

An Action-Constrained POMDP is defined as a tuple〈S, (As)s∈S ,Ω, T,O,I, R, b0, Θ0〉,
where, in contrast to POMDPs: (As)s∈S is the set of applicable action sets, such that
As is the set of actions that are feasible in a given state s; Ω = O × Θ is the set of
observations, such that Θ ⊆ 2A; observations in O and in Θ are independent given any
next state and applied action ; O : O × A × S → [0, 1] is the observation function
such that: O(o, a, s′) = p(ot+1 = o|st+1 = s′, at = a); I : Θ × S → {0, 1} is the
feasibility function: I(θ, s′) = p(θt+1 = θ | st+1 = s′) = 1 if θ = As′ , otherwise 0 ;
Θ0 is the initial set of applicable actions, observed before applying the first action. Like
similar approaches in non-deterministic settings [9], Θ0 is required to safely apply the
first action. For convenience, we also define the action feasibility function F such that
F(a, s) = 1 if and only if a ∈ As.

Figure 2(b) represents an AC-POMDP as a controlled stochastic process. The action
at executed at time t is constrained to belong to the observed set of feasible actions θt.
The next observed set θt+1 is equal to the set of actions Ast+1 that are feasible in the
hidden state st+1, which stochastically results from applying action at in state st. The
other part of observations (ot and ot+1) are stochastically received in the same way as
in POMDPs.

Contrary to POMDPs, policies of AC-POMDPs are constrained to only execute
actions that are feasible in the current hidden state. Given the history ht = (ω0 =
(o0, θ0), · · · , ωt = (ot, θt)) of observations up to time t, we define the set of feasible
policies as:

Πht = {π ∈ AΔ : ∀ 0 � i � t, π(bi(o0, · · · , oi)) ∈ θi}

where bi(o0, · · · , oi) is the belief state resulting from observing (o0, · · · , oi). Thus,
solving an AC-POMDP consists in finding a policy π∗ such that, for all b ∈ Δ and
θ ∈ Θ0:

π∗(b, θ) ∈ argmax
π∈Π

h∞
E

[
+∞∑
t=0

γtr(bt, π(bt) | b0 = b, θ0 = θ

]
(3)

st st+1

p(st+1|st, at)

ot ot+1

p(
o t

+
1
|s t

+
1
, a

t
)

at

r(st, at, st+1)

(a) The POMDP model
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Fig. 2. Dynamic influence diagrams of POMDPs and AC-POMDPs
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3.2 Belief State Update

As in POMDPs, we should compute the new belief state of the agent, noted bωa , after
applying an action a in belief state b and receiving an observation ω = (o, θ).

Theorem 1. Let b be the belief state at a given time step, a the action applied by the
agent at this time step, and ω = (o, θ) the pair of observations immediately received.
The next belief state, for all possible next state s′, is:

b(o,θ)a (s′) =
I(θ, s′)boa(s

′)∑
s′′∈S I(θ, s

′′)boa(s
′′)

(4)

with boa equal to the expression given in eq. 1.

Proof.

b(o,θ)a (s′) = Pr(st+1 = s′|ot+1 = o, θt+1 = θ, bt = b, at = a)

=
Pr(st+1 = s′, ot+1 = o, θt+1 = θ|bt = b, at = a)

Pr(ot+1 = o, θt+1 = θ|bt = b, at = a)

=
U(s′, o, θ|b, a)∑

s′′∈S U(s′′, o, θ|b, a) (5)

with U(s, o, θ|b, a) = Pr(st+1 = s, ot+1 = o, θt+1 = θ|bt = b, at = a). As observa-
tion symbols o and θ are assumed to be independent given any next state and applied
action a, we can factorize U in the form of:

U(s, o, θ|b, a)× 1

Pr(ot+1 = o|bt = b, at = a)
=

Pr(θt+1 = θ|st+1 = s, bt = b, at = a)︸ ︷︷ ︸
I(θ,s)

×

Pr(ot+1 = o|st+1 = s, bt = b, at = a)× Pr(st+1 = s|bt = b, at = a)

Pr(ot+1 = o|bt = b, at = a)︸ ︷︷ ︸
boa(s)

Finally, by replacing s by s′ and s′′ in resp. the numerator and the denominator of eq.
5, and by multiplying both of them by Pr(ot+1 = o|bt = b, at = a), which is assumed
to be non-zero exactly as in the standard POMDP theory, we get the intended result.

The previous theorem highlights two important properties. First, Equation 4 clearly
shows that the observation of the set of feasible actions in the current hidden state, due
to its deterministic nature, acts like a binary mask on the belief state. Intuitively, we can
benefit of this property to significantly speedup computations in comparison with a flat
observation model (ie. standard POMDPs), by optimizing the value function only over
the relevant belief subspace. To this purpose, we will actually present later algorithms
that manipulate α-vectors over many different belief subspaces.
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Second, following from eq. 4, we will prove that at any given time step, all states
s′ whose belief is non-zero have the same set of feasible actions. This property shows
that executing policies in AC-POMDPs is coherent with the proposed framework. Most
importantly, at optimization time, we can deduce without ambiguity the set of ac-
tions over which we maximize the value function for the current belief state. Note
that this primordial property would not be true if the agent would not observe the set
of feasible actions, which gives a theoretical justification of observing them in real
robotic applications. More formally, let us define the support of the belief state as:
σ(b

(o,θ)
a ) = {s′ ∈ S : b

(o,θ)
a (s′) > 0}, used in the following theorem.

Theorem 2. Let b(o,θ)a be the belief at a given time step. For any two states s′1 and s′2
in σ(b

(o,θ)
a ), we have: As′1 = As′2 .

Proof. Suppose that As′1 
= As′2 . Thus, by definition, I(θ, s′1) 
= I(θ, s′2). If I(θ, s′1) =

0, then b
(o,θ)
a (s′1) = 0 according to eq. 4, which contradicts s′1 ∈ σ(b

(o,θ)
a ). Thus,

I(θ, s′1) = 1, but then I(θ, s′2) = 0, so that b(o,θ)a (s′2) = 0: again, this is a contradiction

with s′2 ∈ σ(b
(o,θ)
a ).

3.3 Optimality Equation

Theorem 2 allows us to adapt dynamic programming equations of POMDPs to AC-
POMDPs, by “just” maximizing the value function over the set of feasible actions in
the current belief state, instead of considering all actions. This adaptation may seem
very simplistic in appearance, but it is absolutely not if we consider that it would defi-
nitely not be possible without Theorem 2, ie., by deduction, without observing the set
of feasible actions at any decision epoch. Specifically, since all states in the support of
the belief state have the same set of feasible actions, we can deduce the set of feasible
actions from a given belief state b, noted Ab without ambiguity: ∀ s ∈ σ(b),Ab = As.
Therefore, AC-POMDP policies defined in eq. 3 can be functions of only b by abusing
the notation: π(b) = π(b,Ab).

Theorem 3.

V ∗(b) = max
a∈Ab

⎡⎢⎣r(b, a) + γ
∑
o∈O
θ∈Θ

p(o, θ | a, b)V ∗
(
b(o,θ)a

)⎤⎥⎦ (6)

with b
(o,θ)
a given in eq. 4 and:

p(o, θ | a, b) =
∑
s′∈S

I(θ, s′)O(o, a, s′)
∑
s∈S

T (s, a, s′)b(s) (7)

Proof. According to Theorem 2, the set of applicable actions observed just before
computing b, i.e. θt−1, can be deduced from b without ambiguity from the support
of b: θt−1 = Ab = As for any s ∈ σ(b). Since optimal policies are constrained to
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apply only applicable actions (see eq. 3), the candidate greedy actions that maximize
the value function must be chosen in Ab. Then, eq. 6 can be obtained in a similar way
to POMDPs, considering (o, θ) as a joint observation. Eq. 7 is proven using a similar
reasoning to the proof of Theorem 1:

p(o, θ|a, b) = Pr(θ|a, b)Pr(o|a, b) =
∑

s′∈S Pr(θ|s′)Pr(s′|o, a, b)Pr(o|a, b)
=
∑

s′∈S Pr(θ|s′)Pr(s′, o|a, b) =
∑

s′∈S Pr(θ|s′)Pr(o|s′, a)Pr(s′|a, b)
=
∑

s′∈S I(θ, s
′)O(o, a, s′)

∑
s∈S T (s, a, s

′)b(s)

4 PreCondition Value Iteration

We implemented a point-based algorithm to solve AC-POMDPs, which can be viewed
as an adaptation of PBVI [11] to the update equations of Theorem 3. The ideas behind
this adaptation are yet independent from PBVI, and could have been applied to gener-
alize any modern α-vector-based POMDP planner, like Perseus [16], HSVI2 [17], or
SARSOP [18]. The pseudo-code is given in Algorithm 1.

The expansion of B is performed in a way similar to PBVI (see Line 9 of the Al-
gorithm 1). First, for each point b ∈ B, a state s is drawn from the belief distribution
b. Second, for each action a in Ab := As, ∀s ∈ σ(b), a successor state s′ is drawn
from the transition model T (s, a, s), and a pair of observations (θ, o) is drawn using
I(θ, s′), p(o|s′, a) and p(s′|s, a). Knowing (b, a, θ, o), we can calculate the new belief
set {ba0 , ..., baj}. Finally, the farthest point from all points already in B is chosen and
integrated into B.

Apart from the fact that observations are structured in the form of pairs of “standard”
observations o and “feasible action set” observations θ, and that the expansion of B is

Algorithm 1. PreCondition Value Iteration (PCVI)

1 k ← 0; Initialize Vk=0 ← ∅; Initialize B with b0;
2 repeat
3 k ← k + 1; Vk ← ∅;
4 for a ∈ (Ab)b∈B and (o, θ) ∈ O ×Θ do

5 Γ a,(o,θ) ← α
a,(o,θ)
i (s) =

γF(a, s)
∑

s′:I(θ,s′) �=0
T (s, a, s′)O(o, a, s′)α′

i(s
′),∀α′

i ∈ Vk−1, aαi ∈ θ ;

6 for b ∈ B, a ∈ Ab do
7 Γ a

b ← Γ a,∗ +
∑
o∈O
θ∈Θ

argmax
α∈Γa,(o,θ)

(α · b),∀a ∈ Ab ;

8 Vk ← argmax
αa
b
∈Γa

b
,∀a∈Ab

(αa
b · b),∀b ∈ B ;

9 Expand B as in PBVI [11] ;

10 until

∥∥∥∥ maxαk∈Vk

αk · b− max
αk−1∈Vk−1

αk−1 · b
∥∥∥∥
b∈B

< ε;
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performed mostly as in PBVI, there are mainly two differences between our PCVI algo-
rithm and standard point-based algorithms. First, the projections Γ a,(o,θ) are computed
only for actions in Ab, ∀b ∈ B, which can save many projections compared with PBVI
that generates them for all a ∈ ∪s∈SAs. In the same vein, the backup value function
Vk for a given belief b ∈ B, is computed only for actions in Ab (see Line 8), contrary
to PBVI that uses all actions of the problem. Remember that, according to Theorem
2, Ab is computed at optimization time by choosing any state s ∈ σ(b) and assigning
Ab = As.

The second difference to standard approaches is much more significant in terms of
complexity improvements, and is the biggest benefit of reasoning with explicit action
feasibility constraints. By explicitly exploiting the semantics of the AC-POMDP model,
PCVI is able to operate α-vectors defined on many different reduced belief subspaces.
Namely, since a given action a is defined only over a subset of states Sa = {s ∈ S :
F(a, s) = 1}, its corresponding α-vectors αa,(o,θ) are defined only over a reduced
belief subspace Δa ⊂ [0; 1]Sa ⊂ [0; 1]S (see Figure 3(b)). In comparison, PBVI (or
any other algorithm for solving POMDPs) works with α-vectors that are defined over
the full belief space Δ ⊂ [0; 1]S (see Figure 3(a)). To this respect, the recent MOMDP
model by [12] can be considered as a simpler algorithmic subclass of AC-POMDPs, be-
cause MOMDPs deal with α-vectors that are all defined over the same belief subspace,
whereas AC-POMDPs’ α-vectors operate over different belief subspaces.

More precisely, the set Γ a,(o,θ) of α-vectors of a given action a and observation
(o, θ), knowing the previously computed value function Vk−1, is defined as:

Γ a,(o,θ) ← α
a,(o,θ)
i (s) = γF(a, s)

∑
s′:I(θ,s′) �=0

T (s, a, s′)×

O(o, a, s′)α′i(s
′), ∀α′i ∈ Vk−1, aαi ∈ θ (8)

This equation fundamentally differs from standard POMDP algorithms. Action feasi-
bility constraints allow us to apply binary masks on the value function, in order to en-
sure that values of α-vectors are computed only for the states where the corresponding

s4

s1

s3

s2

αa1

αa2

αa3

(a) POMDPs: α-vectors are all defined
over the entire belief space.

s4

s1

s3

s2

αa1

αa2

αa3

(b) AC-POMDPs: α-vectors are defined
over different belief subspaces: a1 fea-
sible in all states; a2 feasible only in s2
and s3; a3 feasible only in s2.

Fig. 3. Domain of definition of α-vectors in POMDPs versus AC-POMDPs
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actions are defined. Equation 8 shows that two masks are applied: (1) the mask I(θ, s′)
restricts the sum over next states s′ to the states where the action aα′

i
is feasible (the

agent observes the set θ of feasible actions, thus necessarily aα′
i
∈ θ) ; (2) the mask

F(a, s) guarantees to compute the values of αa,(o,θ)
i only for the states s where it is

defined, i.e. where a is feasible.
Note that this masking mechanism is very different from the masks used in HSVI2

[17]. In HSVI2, so-called masked α-vectors are just sparse vectors that compute and
record only the entries of α-vectors corresponding to non-zeros of b. In our case, we
explicitly mask (not by just using sparse representations of vectors) the irrelevant en-
tries of α-vectors that correspond to infeasible state-action pairs. In AC-POMDPs, the
entries of an α-vector, where the corresponding action is not feasible, are not simply
equal to zero but can have arbitrary irrelevant values that must be explicitly pruned by
the F(a, s) masking function. In fact, HSVI2’s masking mechanism and ours can be
independently applied together.

More precisely, HSVI2’s masks automatically prune zero rewards using sparse vec-
tors. Yet, note that modeling infeasible actions in standard POMDP semantics requires
to assign near-infinite costs to infeasible actions. Thus, HSVI2 would still have to eval-
uate these near-infinite costs, which are non-zero and not pruned by its masking mech-
anism. On the contrary, PCVI’s masks automatically prune infeasible actions’ costs,
which are irrelevant in AC-POMDP semantics, via the function F(a, s). As a result,
masks of HSVI2 and PCVI are totally different, in such a way that infeasible actions’
costs are automatically discarded by PCVI but not by HSVI2.

4.1 Relaxed Lower Bound Computation

By studying eq. 6 more in depth, we are able to further benefit from the specific struc-
ture of AC-POMDPs’ observation model in order to provide a computationally efficient
lower bound on the value function. This lower bound, proposed in the following theo-
rem, depends only on the observation set O, instead of the full observation set O×Θ. As
a result, the computational gains are potentially exponential in the number of actions,
since Θ ⊆ 2A. The idea consists in swapping the max operator over α-vectors and
the sum over action-feasibility observations θ. This is related to – but different from –
the fast informed bound method proposed by Hauskrecht [19], which consists in swap-
ping the same max operator for the sum over states s in standard POMDPs, yielding an
upper bound on the value function but not a lower bound (since Hauskrecht’s swap is
reversed in comparison with ours). Note that Hauskrecht’s swap was designed for stan-
dard POMDPs, so that it does not reduce the complexity induced by action-feasibility
observations, contrary to our swap.

Theorem 4. Given the value function Vn, we have:

Vn+1(b) � max
a∈Ab

⎡⎢⎢⎣r(b, a) + γ
∑
o∈O

max
αn∈Vn

∑
s∈S
s′∈S

b(s)O(o, a, s′)T (s, a, s′)αn(s
′)

⎤⎥⎥⎦ (9)
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Proof.

Vn+1(b) = max
a∈Ab

⎡⎢⎣r(b, a) +∑
o∈O
θ∈Θ

p(o, θ|a, b)Vn

(
b(o,θ)a

)⎤⎥⎦

= max
a∈Ab

⎡⎢⎣r(b, a) +∑
o∈O
θ∈Θ

p(o, θ|a, b) max
αn∈Vn

∑
s′∈S

b(o,θ)a (s′)αn(s
′)

⎤⎥⎦

� max
a∈Ab

⎡⎢⎢⎢⎢⎣r(b, a) +
∑
o∈O

max
αn∈Vn

∑
s′∈S
s∈S

O(o, a, s′)T (s, a, s′)b(s)αn(s
′)
∑
θ∈Θ

I(θ, s′)︸ ︷︷ ︸
=1

⎤⎥⎥⎥⎥⎦
The computation of this lower bound is equivalent to ignoring projections on observa-
tions θ of feasible actions in Lines 5 and 7 of Algorithm 1, as if feasible actions were not
observed by the agent. In this way, projections are only computed for the observation
set O, instead of the full observation set O×Θ, which potentially yields an exponential
gain. Note that α-vectors are still defined only for the states where the corresponding
actions are defined, so that the relaxed PCVI algorithm is yet not equivalent to the stan-
dard PBVI algorithm. To emphasize this point, we give below the update equation of
the α-vectors that make up the lower bound value function. The set of α-vectors Γ a,o

only depends on o, but each α-vector αa,o of the set is computed by using the feasibility
function F(a, s):

Γ a,o ← αa,o(s) = γ
∑
s′∈S

T (s, a, s′)F(a, s)O(o, a, s′)α′i(s
′), ∀αn ∈ Vn (10)

The lower bound relaxation of PCVI uses Eq. 10 in place of Eq. 8 in Line 5 of Alg. 1.
Line 7 is replaced with the following update: Γ a

b ← Γ a,∗ +
∑

o∈O argmaxα∈Γa,o(α ·
b), ∀a ∈ Ab. The resulting algorithm has the same complexity as standard POMDPs,
while guaranteeing that α-vectors and the optimized policy use only feasible actions.

5 Experimental Evaluations

We tested various robotic-like planning problems with action feasibility constraints,
which we modeled as AC-POMDPs and solved using our PCVI algorithm. In the subse-
quent figures, the unrelaxed and relaxed versions of PCVI are respectively noted PCVI1
and PCVI2. We compared our approach with equivalent standard POMDP models, as
defined by practitioners to deal with action feasibility constraints: observations of fea-
sible actions are incorporated in the set of observations, but the resulting observation
set is treated as an unstructured flat observation set; near-infinite costs are assigned to
infeasible state-action pairs in order to prevent the optimized policy from containing
illegal actions. Otherwise, there are no guarantees that the optimized policies of stan-
dard POMDP models do not apply infeasible actions. Standard POMDP models are
solved by PBVI [11] or HSVI2 [17]. We first prove that this translation is sound, before
presenting the actual experimental comparisons. We studied four performance criteria
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depending on benchmarks: 1) the size of value function in terms of the number of α-
vectors it contains; 2) the evolution of Bellman error during computation of an optimal
policy; 3) the planning time up to convergence at ε = 0.5; 4) the statistical expected
accumulated rewards from the initial belief state by running 1000 simulations of the
optimized policy.

5.1 Translating AC-POMDPs into Equivalent POMDPs

Let M = 〈S, (As)s∈S , Ω = O ×Θ, T,O, I, R, b0, Θ0〉 be a given AC-POMDP. Con-

sider POMDP M̃ = 〈S, Ã, Ω = O ×Θ, T, Õ, R̃, b0, Θ0〉 = Ψ(M) where:

– Ã =
⋃

s∈S As;
– Õ : (O × Θ) × Ã × S → [0; 1] is the aggregated observation function, such that
Õ((o, θ), a, s′) = O(o, a, s′)I(θ, s′);

– R̃ : S × Ã × S → R is the modified reward function, such that R̃(s, a, s′) =

R(s, a, s′) if a ∈ As, otherwise R̃(s, a, s′) = −∞.

Then, based on POMDPs’ and AC-POMDPs’ optimality equations , we can easily prove
that any optimal policy for POMDP M̃ is optimal for the original AC-POMDP M.

Theorem 5. Let M be an AC-POMDP and M̃ = Ψ(M) its POMDP translation. Then
any optimal policy for M̃ is optimal for M.

Proof. Let π∗ be an optimal policy for M. According to Bellman eq. 2, we have:

π∗(b) ∈ argmax
a∈Ã

⎧⎪⎨⎪⎩r̃(b, a) + γ
∑
o∈O
θ∈Θ

p̃((o, θ) | a, b)V π∗
(b(o,θ)a )

⎫⎪⎬⎪⎭
with r̃(b, a) =

∑
s∈S b(s)

∑
s′∈S T (s, a, s

′)R̃(s, a, s′) and:

p̃((o, θ) | a, b) =
∑
s′∈S

Õ((o, θ), a, s′)
∑
s∈S

T (s, a, s′)b(s)

=
∑
s′∈S

O(o, a, s′)I(θ, s′)
∑
s∈S

T (s, a, s′)b(s)

= p(o, θ | a, b)

as defined in eq. 7.
Moreover, for a 
∈ Ab, r̃(b, a) = −∞: indeed, by definition of Ab, it means that there is
a state s ∈ σ(b), i.e. b(s) > 0, such that a 
∈ As and thus R̃(s, a, s′) = −∞ for all next
state s′. Consequently, the maximum value of the above max operator is necessarily
obtained for an action a∗ ∈ Ab. Finally, for all a ∈ Ab and states s ∈ σ(b) and s′ ∈ S,
R̃(s, a, s′) = R(s, a, s′), so that r̃(b, a) = r(b, a). Putting it all together, we have:

π∗(b) ∈ argmax
a∈Ab

⎧⎪⎨⎪⎩r(b, a) + γ
∑
o∈O
θ∈Θ

p((o, θ) | a, b)V π∗
(b(o,θ)a )

⎫⎪⎬⎪⎭
which means that V π∗

is solution of the optimality equation of AC-POMDPs (eq. 6).
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Fig. 4. Multi-target detection, identification & inspection

5.2 Multi-target Detection, Identification and Inspection

We first present a real robotic mission, which we solved and actually achieved with
real aerial robots. This mission, sketched in Figure 4, is especially interesting because
robot’s actions are feasible only on a subset of states for safety reasons (accident risk,
regulations specific to the test terrain). An autonomous helicopter has to detect, identify
then inspect a specific car in an environment composed of different zones, which can
possibly contain cars of different models (see Figure 4(a)). The helicopter can receive
“standard” observations from an image processing algorithm [20] (see Figure 4(b)):
no car detected, car detected but not identified, car identified as another model. Four
different actions can be performed: go to a given zone, feasible only at altitude 40
meters; land, feasible only at altitude 30 meters and requiring that the helicopter can
land in the zone over which it flies; increase the view angle of the observed car by 45
degrees, feasible only at altitude 30 meters; change altitude, without constraints. The
action feasibility constraints only depend on the helicopter’s altitude and on the fact that
the zone below the helicopter is safe for landing (no obstacles). Thus, the helicopter is
equipped of a laser that gives the current altitude, which is directly interpreted as a set
of applicable actions for this altitude. Similarly, a simple image processing algorithm
based on texture analysis allows the helicopter to known whether the landing action is
feasible or not. Note that these “feasibility” observations are totally independent from
the ones that give information about cars’ detection and identification.
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We ran PBVI and PCVI on the scenario of Figure 4(a), which actually contains
the target car, parked in zone z2. Figure 4(c) shows that PBVI’s value function grows
faster than PCVI’s one, especially PCVI2. The latter ignores observations of feasible
actions during optimization, thus producing much less α-vectors than PCVI1 or PBVI.
Concerning planning time up to convergence, Figure 4(d) shows that PBVI’s rate of
convergence is lower than PCVI’s ones. This is due to the fact that PCVI backups the
value function using a smaller number of α-vectors, and uses masks to restrict α-vectors
to be defined only over their relevant belief subspaces.

5.3 Classical Benchmarks: Hallway and Maze

We modified classical benchmarks from the literature that have a similar structure to
our coast guard benchmark (see Figure 1(a)), namely hallway and the 2-floor “4x5x2”
maze [21], where we forbade the robot to hit walls in order to prevent damages. These
problems have identical actions and observations, but differ in the number of states.
Actions consist in going either north, south, east or west. Each observation is composed
of 2 symbols: the first one, which is noisy, indicates if the robot is at the goal state;
the second is perfectly sensed and informs the robot of the topology of walls around
it, which is totally equivalent to informing the robot of the set of feasible actions in its
current hidden state, as represented in Figure 1(b).

Results are presented in Figures 5 and 6. On the maze domain, the value function’s
sizes of PCVI1 and PCVI2 are nearly the same, yet much less than PBVI (see Fig-
ure 5(a)). Since PCVI2 ignores observations of feasible actions when operating on α-
vectors, this result suggests that there are a few number of such possible observations
in this domain. However, Figure 5(b) shows that PCVI2 converges significantly faster
than PCVI1, which is itself more efficient than PBVI. Remember that PCVI1 solves
the exact same problem as PBVI, yet by explicitly exploiting the semantics of feasi-
ble actions, whereas PCVI2 solves a relaxed simpler problem. PBVI can not reason
about action feasibility constraints, which are lost in the equivalent but flat unstructured
POMDP model.

Concerning the hallway domain, PCVI2 outperforms PCVI1, which is itself better
than PBVI, both in terms of value function size and convergence rates. In comparison
with the maze domain, PCVI2 is now able to generate significantly less α-vectors than
PCVI1, because the number of different possible sets of feasible observations that can
be observed (and ignored by PCVI2) is quite large.

5.4 Larger Navigation Problems

Finally, we tested random navigation problems whose domain is identical to hallway
and maze, except that many cells are obstacles that can damage the robot. The prob-
lems have also many more states. The robot can observe obstacles around it, using for
instance a circular laser sensor. This time, we compared PCVI with HSVI2 [17], which
is a heuristic point-based planner that proved to be very efficient in many domains of the
literature. As PCVI is adapted from PBVI, which is generally outperformed by HSVI2,
we could expect that PVCI would perform poorly in comparison with HSVI2. But Fig-
ure 7(a) shows that PCVI2’s planning time is actually comparable to HSVI2 for the
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Fig. 5. The maze domain
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largest problems, and is even 10 times faster on 2 problems (logarithmic scale). More-
over, HSVI2’s policies are very poor on many problems (see Figure 7(b)), especially
for the “25x30” problem for which PCVI gets a similar planning time.

Most interestingly, PCVI1 and PCVI2 get similar expected cumulated rewards, as
shown in Figure 7(b). Thus, in grid-like problems, on which many robotic applications
are based, ignoring the observation of feasible actions at optimization time has no im-
pact on the quality of the optimized policy. Note that PCVI2’s solution policy is still
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guaranteed to contain only feasible actions in each possible belief state: independently
from the relaxed lower bound used in place of the optimal value function, PCVI2’s
α-vectors are anyway defined only over the belief subspace where the corresponding
action is feasible. Thus, it can never be the case that the policy is deduced from inco-
herent α-vectors.

6 Conclusion

We studied a subclass of probabilistic sequential decision-making problems under par-
tial observability, for which the agent’s observations contain symbols that represent the
set of applicable actions in the current hidden state. This class of problems appears to
be very useful at least in autonomous robotics, where such observation symbols are typ-
ically obtained from specific or dedicated sensors. Knowing whether action feasibility
constraints are only convenient modeling or algorithmic means, is an open question.
However, it has been shown in a multi-agent context, that action feasibility constraints
can not be equivalently modeled using additional observation symbols and near-infinite
costs on infeasible state-action pairs [5]. In any case, exploiting the knowledge of action
preconditions can bring a lot, especially in partially observable domains.
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Abstract. In this paper, we present a method to iteratively refine the parameters
of a Markov Decision Process by leveraging constraints implied from an expert’s
review of the policy. We impose a constraint on the parameters of the model for
every case where the expert’s recommendation differs from the recommendation
of the policy. We demonstrate that consistency with an expert’s feedback leads
to non-convex constraints on the model parameters. We refine the parameters of
the model, under these constraints, by partitioning the parameter space and iter-
atively applying alternating optimization. We demonstrate how the approach can
be applied to both flat and factored MDPs and present results based on diagnostic
sessions from a manufacturing scenario.

1 Introduction

Markov decision processes (MDPs) provide a natural and principled framework for se-
quential decision making under uncertainty. They are used in a multitude of domains
from robotic control to recommender systems. A frequent bottleneck for the deploy-
ment of systems based on MDPs is the acquisition of the model i.e., the transition and
reward functions. To that effect, reinforcement learning provides numerous approaches
to optimize a policy from data (sequences of state-action-reward triples). However, de-
pending on the application, data may be difficult to obtain. For instance, consider the
class of recommender systems where the actions recommended by a system are to be
executed by a user. Whenever humans are involved in the execution of actions, it is
challenging to obtain a significant amount of data because users may be difficult to
recruit and each trial can take a while (users may need anywhere from a few seconds
to months to execute an action). Furthermore, some application domains such as fault
detection/diagnostics offer few cases to collect data since faults are rare events to start
with. In other domains, it is also desirable to obtain a good policy before deployment to
ensure good performance, but this restricts the amount of data available for training.

In this paper we consider the problem of refining the transition function of a Markov
decision process based on user feedback. Such feedback may be implicit by noting
the actions followed by an expert during a trial or explicit when an expert directly
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confirms or corrects the actions to be executed in some states by inspecting a policy.
Such feedback provides valuable information to adjust the transition model of an MDP
that may be imprecise due to a lack of data. We formulate the refinement of a transition
function as an optimization problem and incorporate expert feedback as constraints.
We also show how to exploit certain properties of recommender systems to partition
the variables and optimize them in alternation. We demonstrate the approach with a
diagnostic scenario in manufacturing.

The paper is structured as follows. Section 2 reviews Markov decision processes and
some important properties of recommender systems. Section 3 explains how this work
relates to other work. Section 4 describes our approach to refine a transition function
based on expert feedback. We first explain how to do this with flat MDPs and then
factored MDPs. Section 5 demonstrates the approach for recommender applications
with a real-world diagnostic scenario in manufacturing. Finally, Section 6 concludes
and suggests some future work.

2 Background

2.1 Markov Decision Processes

A Markov Decision Process (MDP) is defined by the tuple M = 〈S,A, T,R, γ〉 where
S is the set of states s, A is the set of actions a, T : S × S × A → R is the tran-
sition function which indicates the probability Pr(s′|s, a) of reaching s′ by execut-
ing a in s, R : S × S × A → R is the reward function which indicates the reward
R(s′, s, a) of executing a in s and reaching s′, γ is the discount factor (value be-
tween 0 and 1, with a lower value indicating a greater preference for an immediate
reward). Note that we can rewrite the reward function as R : S × A → R, where
R(s, a) =

∑
s′∈S R(s′, s, a) Pr(s′|s, a). We shall use these equivalent notations for

the reward function inter-changeably. A policy π : S → A for an MDP provides a
mapping from states to actions. Techniques such as value iteration can then be used to
compute optimal policies for MDPs in which the Bellman’s optimality equation (Eq 1)
is used as an update rule and is applied iteratively.

V π∗
(s) = max

a

[
R(s, a) + γ

∑
s′

Pr(s′|s, a)V π∗
(s′)

]
(1)

V π∗
(s) denotes the value of executing the optimal policy π∗ when starting in state

s and is equal to the expected discounted sum of all rewards accumulated by execut-
ing it when starting in state s. For a policy to be considered optimal, it means that
V π∗

(s) ≥ V π(s)∀s, π. The notation Qπ(s, a) is used to represent the value of execut-
ing a, starting in s and following the policy π from thereon. This can be considered a
function that assigns a value to every state-action pair and can be computed using Eq. 2.

Qπ(s, a) = R(s, a) + γ
∑
s′∈S

Pr(s′|s, a)V π(s′) (2)
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In practice, the state space of many MDPs is defined by the cross product of the
domain of several variables (or features). Such MDPs are often referred to as fac-
tored MDPs since the transition function is the product of several factors, each cor-
responding to the conditional distribution of a variable given its parents. Optimizing
the policy of a factored MDP is notoriously difficult due to the exponential number
of states corresponding to all possible joint assignments of the state variables. In this
work, we will adapt the Monte-Carlo Value Iteration algorithm [5] (originally devel-
oped for POMDPs) to factored MDPs. The key idea in this work is the observation that
value iteration implicitly builds a policy graph. Hence, instead of representing the value
function over exponentially many states, a policy graph is incrementally constructed.
The value function of a policy graph can be approximately evaluated at a given state by
Monte Carlo sampling. Hence, approximate value iteration is performed by incremen-
tally constructing a policy graph that provides a sufficient and compact representation
from which the value function can be reconstructed.1

2.2 MDPs for Recommender Systems

In this work, we focus on recommender systems where an MDP recommends an action
to a user at each step. Examples of recommender MDPs include diagnostics, course
advising, and so on. Recommender systems lend themselves naturally to a factored
representation. The state contains one variable for each of the possible actions to record
the value, i.e., tests and grades in courses. The actions are recommendations for the next
diagnostic test or the next course to register. Furthermore, we assume that repeating an
action does not change the result.

Figure 1 presents the flat representation of a toy diagnostic MDP with three state
variables and four actions. Each node represents a state, each arc represents a transition
from one state to another via an action corresponding to the label of the arc. In this
example, there are two test variables with domain {T, F, } and one cause variable with
domain {C1, C2, } where the value indicates that the variable has not been observed
yet. The cause variable records the cause identified by the decision maker (if any) in-
stead of the true underlying cause. We do not use any variable to encode the underlying
cause since the test variables already encode all the information that would normally
be used to express a distribution over the underlying cause. The actions consist of per-
forming one of the tests or identifying a cause. More generally, recommender MDPs
can be structured in a similar way with variables that can take n values corresponding
to n− 1 observations or the null value .

The states can be organized in levels, where each level groups all the states with the
same number of variables instantiated. For instance, at level 0, no variable has been
observed and only state is part of this level. All actions are available at this level. At
level 1, each state has one variable observed, so the number of actions available at level
1 is two since the action corresponding to the observed variable is no longer available.
Similarly, at level 3, three variables have been observed and no further actions are avail-
able with all variables already observed. We shall use the concept of levels to enforce

1 Although the algorithm builds a policy graph, it is not a policy iteration algorithm, but defi-
nitely an approximate form of value iteration since the policy graph only serves as a compact
representation from which the value function can be evaluated.
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Fig. 1. Sample Flat Recommender MDP

a partial ordering on the states such that all states in level 0 are ordered lower than all
states in level 1, and all states in level 1 are ordered lower than all states in level 2, and
so on. This ordering also makes it clear that states are never visited more than once.

2.3 Problem Statement

The expert designs the MDP by defining the state variables, the actions, and then esti-
mating/specifying transition and reward functions, as well as a discount factor. In this
paper, we assume the reward function R and the discount factor γ are specified accu-
rately, while the transition function is imprecise. Let us denote the imprecise transition
function as T̃ and the resulting imprecise MDP as M̃ = 〈S,A, T̃ , R, γ〉. Let the true un-
derlying MDP be denoted asM = 〈S,A, T,R, γ〉, where T is the actual transition func-
tion. Since T̃ is imprecise, the optimal policy for M̃ , π̃∗, may also not be truly optimal,
i.e., we are not guaranteed that π̃∗ = π∗. As the expert reviews the policy for M̃ , she can
point out non-optimal actions and specify true optimal actions for those states, which
would reflect π∗. These observations from experts can be treated as constraints, where
each constraint is represented as a state-action pair, 〈s, a〉, which indicates the true op-
timal action for that state. Our objective in refining the transition function is to modify
T̃ to T̂ such that the optimal policy π̂∗ for this new MDP M̂ = 〈S,A, T̂ , R, γ〉 obeys
all constraints and matches the true optimal policy for these states, i.e., π̂∗(s) = π∗(s).

3 Related Work

The idea of learning and refining an MDP model or a policy based on expert feedback
or demonstration has been widely used, but the focus has mostly been to learn reward
function or otherwise learn the optimal policy without learning the reward function.
Inverse reinforcement learning deals with recovering a reward function using a known
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policy and transition function [9]. In imitation learning [11], the goal is to learn a pol-
icy as good as demonstrated by the expert. In apprenticeship learning [1], the expert
demonstrations are considered as parts of the optimal policy that would be obtained
using the unknown true reward function. Imitation learning has also been posed as a
maximum margin planning problem such that the margin between the value of the ex-
pert’s policy and other alternate policies is increased [12]. Other approaches based on
the preference elicitation framework have also been proposed to compute policies that
are robust to the uncertainty in the reward function of an MDP [13].

The above approaches exploit additional information from the expert while assum-
ing a known transition function and unknown reward function. The problem of learning
a reward function when the transition function is fixed can be posed as a linear opti-
mization problem. Our objective is to learn the transition function while assuming a
known reward function and expert feedback. Estimating the transition function based
on constraints implied by user feedback leads to a non-linear non-convex optimiza-
tion problem. There has been prior work on learning Bayes’ nets when using addi-
tional knowledge in the form of constraints that are linear [10], convex [6], and non-
convex [8]. However, in Bayes’ nets the constraints only provide information about the
immediate action whereas in MDPs, the policies are sequential in nature and need to ac-
count for possible future plans. Constrained reinforcement learning [7] and constrained
MDPs [4] have been proposed to handle multi-objective scenarios, but the constraints
in these cases are often of the form which limit the value of a policy. In our case, the
constraints that arise from expert feedback are imposed on the Q function instead of the
policy which makes the problem non-convex and harder to solve. Abbeel and Ng [2]
present a technique to learn the dynamics of a system after observing multiple expert
trajectories. Their technique involves running several trials using the expert’s policy
and then using a maximum likelihood technique on these state-action trajectories to
estimate the transition function. Such approaches assume the availability of significant
feedback from experts which may be fine for control problems in robotics but not for
cases where feedback from expert is very limited (such as diagnostics).

4 Model Refinement

Let Γ be the set of constraints obtained from expert feedback of the form 〈s, a∗〉, which
means that executing a∗ should have a value at least as high as any other action in s.

Qπ̂∗
(s, a∗) ≥ Qπ̂∗

(s, a) ∀a
We explain how to refine the transition model based on such constraints for ”flat”

MDPs (Section 4.1) and then for ”factored” MDPs (Section 4.2).

4.1 Flat Model Refinement

We can setup an optimization problem to find a refined transition model T̂ that maxi-
mizes the gap δ between optimal and non-optimal Q-values as specified by the expert’s
constraints.

max
T̂ ,δ

δ s.t. Qπ̂(s, a∗) ≥ Qπ̂(s, a) + δ ∀〈s, a∗〉 ∈ Γ, ∀a (3)
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When δ is non-negative, the refined model satisfies the expert’s constraints. If the user’s
constraints are inconsistent, we will simply find a model that minimizes the degree of
violation for all constraints. For problems with a finite horizon h, we can rewrite the Q
function as a sum of expected rewards

Qπ(s0, a0) = R(s0, a0) +

h∑
t=1

γt
∑
st

Pr(st|s0, a0, π)R(st, π(st)) (4)

where the probability Pr(st|s0, a0) is obtained by a product of transition probabilities.

Pr(st|s0, a0, π) =
∑

s1..t−1

Pr(s1|s0, a0)
t∏

i=2

Pr(si|si−1, π(si−1)) (5)

In a flat MDP, the transition probabilities are the transition parameters. Hence, we will
denote by θ the vector of transition parameters θs′|s,a = Pr(s′|s, a). We can then
rewrite the optimization problem (3) in terms of θ by substituting Equations 4 and 5:

max
θ̂,δ

δ s.t.
∑
s′

θ̂s′|s,a = 1 ∀s, a θ̂s′|s,a ≥ 0 ∀s, a, s′ (6)

R(s, a∗) +
h∑

t=1

γt
∑
s1..t

Pr(s1|s, a∗)
t∏

i=2

θsi|si−1,π(si−1)R(st, at) ≥

R(s, a) +

h∑
t=1

γt
∑
s1..t

Pr(s1|s, a)
t∏

i=2

θsi|si−1,π(si−1)R(s, a) + δ ∀〈s, a∗〉 ∈ Γ, ∀a

The optimization problem is non-linear (and in fact non-convex) due to the product of
θ’s in the last constraint.

We propose to tackle the problem by alternating optimization where we iteratively
optimize a subset of the parameters while keeping the remaining parameters fixed. We
take advantage of the fact that states are organized in levels to do this. As explained
earlier, states are never visited twice since at each step one more test variable is ob-
served. Since each transition parameter θs′|s,a is associated with a state s, the transition
parameters can also be partitioned into levels and the same transition parameter won’t
occur more than once in any state trajectory. Hence, if we vary only the parameters in
level l while keeping the other parameters fixed, we can write the Q function of the
state-action pair of any constraint before level l as a linear function of the θ’s in level l.

Q(s, a∗) = c(nil) +
∑

sl,al,sl+1

c(sl, al, sl+1)θsl+1|sl,al

Here, c(sl, al, sl+1) is the coefficient of θsl+1|sl,al
and c(nil) is a constant. Algorithm 1

describes how to compute the coefficients of the parameters at level l for the Q function
at level j ≤ l. First, the value function at level l+1 is computed by value iteration, then
the coefficients for the Q function at level l are initialized and finally the coefficients of
the Q functions at previous levels are computed by dynamic programming.
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Algorithm 1. Linear dependence of the Q function at level j on the θ’s at level l

LEVELLINEARDEPENDENCE(j, l, π)

Compute V π(sl+1) ∀sl+1

1 V π(sh) = R(sh, π(sh)) ∀sh
2 for t = h− 1 down to l + 1
3 V π(st)← R(st, π(st)) + γ

∑
st+1

θst+1|st,π(st)V
π(st+1) ∀st

Initialize the coefficients for the Q function at level l
4 for each sl, al

5 csl,al(nil)← R(sl, al)
6 csl,al(sl, al, sl+1)← γV (sl+1) ∀sl+1

7 csl,al(s, a, s
′)← 0 ∀〈s, a〉 �= 〈sl, al〉,∀s′

Compute the coefficients for the Q function at levels before l
8 for t = l − 1 down to j
9 for each st, at

10 cst,at(nil)← R(st, π(st)) + γ
∑

st+1
θst+1|st,π(st)cst+1,π(st+1)(nil)

11 cst,at(sl, al, sl+1)←γ
∑

st+1
θst+1|st,π(st)cst+1,π(st+1)(sl, al, sl+1) ∀sl, al, sl+1

12 return c

If we restrict the optimization problem (6) to the parameters at level l, we obtain a
linear program (7) since the last constraint expresses an inequality between pairs of Q
functions that are linear combinations of the coefficients at level l.

max
θ̂,δ

δ s.t.
∑
s′

θ̂sl+1|sl,al
= 1 ∀s, a θ̂sl+1|sl,al

≥ 0 ∀sl, al, sl+1 (7)

cs,a∗(nil) +
∑

sl,al,sl+1

cs,a∗(sl, al, sl+1)θ̂sl+1|sl,al
≥

cs,a(nil) +
∑

sl,al,sl+1

cs,a(sl, al, sl+1)θ̂sl+1|sl,al
+ δ ∀〈s, a∗〉 ∈ Γ

To summarize, instead of directly solving the non-linear optimization problem (6),
we propose an alternating optimization technique (Algorithm 2) that solves a sequence
of linear programs (7) that varies only the parameters at one level. The algorithm con-
tinues until the gap δ is non-negative or until convergence. There is no guarantee that a
feasible solution will be found, but each iteration ensures that δ will increase or remain
constant, meaning that the degree of inconsistency is monotonically reduced. Given the
non-convex nature of the optimization, random restarts are employed to increase the
chances of finding a model that is as consistent as possible with the expert’s constraints.

4.2 Factored Model Refinement

The approach described in the previous section assumes that we flatten the Markov
decision process. This will only scale for small problems with a few test variables since
the number of states grows exponentially with the number of tests. We now consider
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Algorithm 2. Alternating optimization to reduce the degree of inconsistency of the
transition model with the expert’s constraints in flat MDPs

ALTERNATINGOPT

1 repeat
2 Initialize θ randomly
3 repeat
4 for l = 1 to h
5 Compute coefficients for level l according to Algorithm 1
6 δ, {θsl+1|al,sl} ← solve LP (7) for level l
7 until convergence
8 until δ ≥ 0
9 return θ

a variant for problems with a large number of tests that avoids flattening by working
directly with a factored model. We assume that the transition function is factored into a
product of conditional distributions for each variable X ′

i given its parents par(X ′
i).

Pr(s′|s, a) =
∏
i

Pr(X ′
i |par(X ′

i))

Furthermore, we assume that the parents of each variable are a small subset of all the
variables. For instance, in a course advising domain, the grade of a course may depend
only on the grades of the pre-requisites. As a result, the total number of parameters
for the transition function shall be polynomial in the number of variables even though
the number of states is exponential. We denote by θX′

i|par(Xi) the family of parameters
defining the conditional distribution Pr(X ′

i|par(Xi)).
We need to deal with two issues in factored domains. First, we cannot perform dy-

namic programming to compute the Q-values at each state in polynomial time. We will
use Monte Carlo Value Iteration [5] to approximate Q-values at a sample of reachable
states. Second, even though the same state is not revisited in any trajectory, the same
transition parameters will be used at each stage of the process. So instead of partitioning
the parameters by levels, we will partition them by families corresponding to different
conditional distributions. This will allow us to alternate between a sequence of linear
programs as before.

We first explain how to do approximate dynamic programming by adapting the
Monte Carlo Value Iteration technique [5] (originally designed for continuous POMDPs)
to factored discrete MDPs. Instead of storing an exponentially large Q-function at each
stage, we store a policy graph G = 〈N,E〉. The nodes n ∈ N of policy graphs are
labeled with actions, and the edges e ∈ E are labeled with observations (i.e., values for
the test corresponding to the previous action). A policy graph G = 〈φ, ψ〉 is parameter-
ized by a mapping φ : N → A from nodes to actions and a mapping ψ : E → N from
edges to next nodes. Since each edge is rooted at a node and labeled with an observa-
tion, we will also refer to ψ as a mapping from node-observation pairs to next nodes
(i.e. ψ : N ×O → N ). Here an observation is the result of a test. A useful operation on
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Algorithm 3. Evaluate G at s

EVALGRAPH(G, s)

1 Let N be the set of nodes for G = 〈φ, ψ〉
2 for each n ∈ N
3 V (n)← 0
4 repeat k times
5 V (n)← V (n) + EVALTRAJECTORY(G, s, n)/k
6 n∗ ← argmaxn∈NV (n)
7 return V (n∗) and n∗

EVALTRAJECTORY(G, s, n)
8 Let G = 〈φ, ψ〉
9 if n does not have any edge

10 return R(s, φ(n))
11 else
12 Sample o ∼ Pr(o|s, φ(n))
13 Let s′ be the state reached when observing o after executing φ(n) in s
14 return R(s, φ(n)) + γ EVALTRAJECTORY(G, s′, ψ(n, o))

policy graphs will be to determine the best value that can be achieved at a given state
by starting in any node. Algorithm 3 describes how to compute this by Monte Carlo
sampling. k trajectories are sampled starting in each node. The node with the highest
value is returned along with its value.

The main purpose of the policy graph is to provide a succinct and implicit represen-
tation of a value function. More precisely, we can estimate the value of a state by calling
EVALGRAPH(G, s). While we could also use the policy graph as a controller, we will
do a one step look ahead to infer the best action to execute at each step in the same way
that it would be done if we had an explicit value function and we wanted to extract a
policy. In other words, if we have a value function V , we can extract the best action a∗

for any state s by computing

a∗ = argmax
a

R(s, a) + γ
∑
s′

Pr(s′|s, a)V (s′)

Similarly, we will extract the best action to execute at each time step when in state s
based on policy graph G by computing

a∗ = argmax
a

R(s, a) + γ
∑
s′

Pr(s′|s, a)EVALGRAPH(G, s′)

Algorithm 4 describes how to construct a policy graph G by approximate value it-
eration. Here, value iteration is performed by approximate backups that compute and
store a policy graph instead of a value function at each step. Figures 2, 3, and 4 present
a sample trace of how the policy graph may appear after each iteration of the for loop
in Algorithm 4 on line 2. Initially, all actions are present as disconnected nodes. As
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Algorithm 4. Monte Carlo Value Iteration

MCVI(setOfStates, horizon)

1 Initialize G with no edge and |A| nodes such that φ maps each node to a different action
2 for t = 1 to horizon
3 for each s ∈ setOfStates
4 for each a ∈ A
5 Q(s, a)← R(s, a)
6 for each o observable from s after executing a
7 Let s′ be the state reached when observing o after executing a in s
8 [V (s′), na,o]← EVALGRAPH(G, s′)
9 Q(s, a)← Q(s, a) + γPr(o|s, a)V (s′)

10 a∗ ← argmaxaQ(s, a)
11 Add new node n to G such that φ(n) = a∗ and ψ(n, o) = na∗,o
12 return G

Fig. 2. Sample Policy Graph
after 1 iteration of Algo-
rithm 4

Fig. 3. Sample Policy Graph
after 2 iterations of Algo-
rithm 4

Fig. 4. Sample Policy Graph
after 3 iterations of Algo-
rithm 4

more iterations are completed, more nodes are added to the graph. Each node repre-
sents an action and each arrow represents the observation obtained after executing that
action. The arrow links to another node that indicates the next action to execute after an
observation for a given action.

Point-based backups are performed only at a set of states setOfStates. This set of
states can be obtained in several ways. It should be representative of the reachable
states and allow for the construction of a good set of conditional plans. As we will see
later, it is desirable to include in setOfStates all the states s′ that are reachable from the
states s for which we have constraints 〈s, a∗〉. At each iteration, a new node is added
to the policy graph for each state in setOfStates. Although not shown in Algorithm 4,
redundant nodes could be pruned from the policy graph to improve efficiency.

Similar to flat MDPs, we would like to optimize the parameters of the conditional
distributions to satisfy the expert’s constraints. We can approximate the Q-values on
which we have constraints by the EVALGRAPH procedure.

QG(s, a) = R(s, a) + γ
∑
s′

Pr(s′|s, a)EVALGRAPH(G,S’)
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Algorithm 5. Linear dependency of QG(s, a) on parameters of Pr(X ′
i|par(Xi)) when

executing a in s and following G thereon. This function returns the coefficients c of
Pr(X ′

i|par(Xi)) based on k sampled trajectories of G.

LINEARDEPENDENCE(G, s, a, i)

1 c(nil)← R(s, a) and c(o, x)← 0 ∀o ∈ dom(X ′
i), v ∈ dom(par(Xi))

2 repeat k times
3 Sample s′ from Pr(s′|s, a)
4 Let n′ be the node created in G for s′ ∈ setOfStates
5 c ← c+ γLINEARDEPENDENCERECURSIVE(G, s′, n′, i)/k
6 return c

LINEARDEPENDENCERECURSIVE(G, s, n, i)
7 if n does not have any edge
8 c(nil) ← R(s, φ(n))
9 c(o, x)← 0 ∀o ∈ dom(V ′

i ), v ∈ dom(par(V ′
i ))

10 else if φ(n) = ai and φ(n) is executed for the first time
11 c(nil) ← 0
12 Let x be the part of s referring to par(Xi)
13 c(o, x′)← 0 ∀o ∈ dom(Xi), x

′ �= x
14 for each o observable when executing φ(n) in s
15 Let s′ be the state reached when observing o after executing φ(n) in s
16 c(o, x) = EVALTRAJECTORY(G, s′, ψ(n, o))
17 else
18 Sample o ∼ Pr(o|s, φ(n))
19 Let s′ be the state reached when observing o after executing φ(n) in s
20 c ← γ LINEARDEPENDENCERECURSIVE(G, s′, ψ(n, o), i)
21 c(nil) ← R(s, φ(n)) + c(nil)
22 return c

Since the Q-function has a non-linear dependence on the transition parameters, we par-
tition the parameters in families θX′

i|par(Xi) corresponding to conditional distributions
Pr(X ′

i|par(Xi)) for each test variable Xi with the corresponding action ai that selects
to observe Xi. Alternating between the optimization of different families of parame-
ters ensures that the optimization is linear. In any trajectory, a variable Xi is observed
at most once and therefore at most one transition parameter for the observation of Xi

participates in the product of probabilities of the entire state trajectory. Hence, we can
write the Q function as a linear combination of the parameters of a given family

Q(s, a) = c(nil) +
∑
o,x

c(o, x) Pr(X ′
i = o|par(Xi) = x) (8)

where c(nil) denotes a constant and c(o, x) is the coefficient of the probability of ob-
serving outcome o for X ′

i given that the joint value of the parent variables of X ′
i is

x. Algorithm 5 shows how to compute the linear dependency on the parameters of
Pr(X ′

i|par(Xi)). More precisely, it computes a vector c of coefficients by sampling k
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trajectories in G and averaging the linear coefficients of those trajectories. In each tra-
jectory, a recursive procedure computes the coefficients based on three cases: i) when
n is a leaf node (i.e., no edges), it returns the reward as a constant in c(nil); ii) when a
is executed for the first time, it returns the value of each o in c(o, x); iii) otherwise, it
recursively calls itself and adds the reward in c(nil).

Similar to the linear program (7) for flat MDPs, we can define a linear program to
optimize the transition parameters of a single family subject to linear constraints on
Q-values as defined in Equation 8. We can also alternate between the optimization of
different families similar to Algorithm 2, but for factored MDPs.

5 Evaluation and Experiments

5.1 Evaluation Criteria

Formally, for M , the true MDP that we aim to learn, the optimal policy π∗ determines
the choice of best next test as the one with the highest value function. If the correct
choice for the next test is known (such as demonstrated by an expert), we can use this
information to include a constraint on the model. We denote by Γ+ the set of observed
constraints and by Γ∗ the set of all possible constraints that hold for M . Having only
observed Γ+, our technique will consider any M+ ∈ M+ as a possible true model,
where M+ is the set of all models that obey Γ+. We denote by M the set of all models
that are constraint equivalent to M (i.e., obey Γ∗), by M̃ the initial model that we start
with, and by M̂Γ+ the particular model obtained by iterative model refinement based
on the constraints Γ+.

Ideally we would like to find the true underlying model M , hence we will report
the KL-divergence(M, M̂Γ+). However, other constraint equivalent models may rec-
ommend the same actions as M and thus have similar constraints, so we also report
test consistency with M (i.e., # of states in which optimal actions are the same) and the
simulated value of the policy of M̂Γ+ with respect to the true transition function T .

Given a consistent set of constraints Γ and sufficient time (for random restarts), our
technique for model refinement will choose a model M̂Γ ∈ M by construction. If
the constraints specified by the expert are inconsistent (i.e., do not correspond to any
possible model), our approach minimizes the violation of the constraints as much as
possible through alternating optimization combined with random restarts. We report
the best solution found after exhausting the time quota to perform refinement.

5.2 Experimental Results on Synthetic Problems

We start by presenting our results on a 4-test recommender system. We want to discover
the transition model of some model M ∈ M. We select M by randomly sampling its
transition and reward functions. Given this modelM , we sample a set of constraints Γ+

and use our technique to find M̂Γ+ . To evaluate M̂Γ+ , we first compute the constraints
Γ∗ for M and estimate the set of constraint-equivalent models M by sampling 100
models from M. We then compare these constraint equivalent models with M̂Γ+ .

We compute the KL-divergence between each constraint-equivalent model and the
refined model KL-DIV(Mi, M̂Γ+), and take its ratio with the KL-divergence between
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Fig. 5. Ratio of KL-
divergence – Synthetic
Problem

Fig. 6. Ratio of Policy Value
– Synthetic Problem

Fig. 7. Policy Consistency of
Refined Model – Synthetic
Problem

Fig. 8. Ratio of KL-
divergence – Diagnostic
Problem

Fig. 9. Ratio of Policy Value
– Diagnostic Problem

Fig. 10. Policy Consistency
of Refined Model – Diagnos-
tic Problem

the constraint equivalent model and the initial model KL-DIV(Mi, M̃) as shown in
Figure 5. A lower value of this ratio indicates that the refined model M̂Γ+ is closer
to the true model M than the initial model M̃ . We can also see that the mean KL-
divergence decreases as the number of constraints in Γ+ increases since the feasible
region becomes smaller. Figures 6 and 7 show similar trends for test consistency and
simulated value of the policy. We observed similar trends for KL-divergence, test con-
sistency and simulated value of policy when increasing the number of variables.

5.3 Experimental Results on Diagnostic Problems

We also evaluate our technique on diagnostic MDPs. To construct such MDPs, we
choose the number of tests and causes. The total number of actions in the MDP is
the sum of the tests and causes with an action either being the option to execute a test
and observe its value or make a diagnostic prediction regarding the cause. Executing a
test has a small negative reward. The diagnostic prediction has a high positive reward
if the correct cause is diagnosed and a high negative reward for an incorrect diagnosis.
No discount factor is used as it is a finite horizon problem.

Diagnostic MDPs are better represented as factored MDPs as executing a test only
affects a part of the state space. While diagnostic MDPs can be encoded with a flat rep-
resentation, a factored representation allows a more succinct representation with fewer
parameters to be learned for the transition function.
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We present the results of model refinement on the same diagnostic MDP represented
as a flat MDP, a factored MDP with exact value iteration and a factored MDP with
Monte Carlo Value Iteration (MCVI) in Figures 8, 9, and 10. These results are shown
for a 4-cause and 4-test network. We see that the factored representation yields better
results than the flat representation. This is because the factored representation exploits
the inherent structure of the diagnostic MDP, whereas the flat representation is unable
to preserve this structure after refinement. This is clearly evident in the case of KL-
divergence where the resulting model does obey the constraints, but is in fact farther
away from the true model than the starting model. We also see that considering a sub-
set of states for setOfStates in MCVI (states reachable from constraints with 50% of
remaining states), the results for KL-divergence, test consistency and value of policy
deteriorate in comparison to the exact factored case. In separate experiments, we ob-
served that increasing the size of setOfStates results in improved refined models and
decreasing them results in refined models that are not as good. For the purpose of this
work, we are using MCVI as a method to solve factored MDPs and demonstrate our
technique for refinement on a large problem. We leave the question of determining an
optimal setOfStates for MCVI as future work, though we note that this question has
been extensively studied in point-based value iteration algorithms for POMDPs [14].

5.4 Experimental Results on Large Scale Diagnostic Problems

We evaluate our technique on a real-world diagnostic network collected and reported by
Agosta et al. [3], where the authors collected detailed session logs over a period of seven
weeks in which the entire diagnostic sequence was recorded. The sequences intermingle
model building and querying phases. The model network structure was inferred from an
expert’s sequence of positing causes and tests. Test-ranking constraints were deduced
from the expert’s test query sequences once the network structure is established.

The logs captured 157 sessions over seven weeks that resulted in a model with 115
tests and 82 root causes. The network consists of several disconnected sub-networks,
each identified with a symptom represented by the first test in the sequence, and all
subsequent tests applied within the same subnet. There were 20 sessions in which more
than two tests were executed, resulting in a total of 32 test constraints. We pruned our
diagnostic network to remove the sub-networks with no constraints to get 54 tests and
30 causes, divided in 7 sub-networks.We apply our model refinement technique to learn
the parameters for each sub-network separately. The largest sub-network has 15 tests
and 10 causes resulting in 25 actions and more than 14 million states. We use MCVI
for these larger networks as it would not be possible to solve them exactly otherwise.

We use the 32 constraints extracted from the session logs to represent a feasible
region from which we sample 100 true models. We sample 1000 states in addition to
the states reachable by the constraints to form the setOfStates used by MCVI. The
approximation in MCVI often results in situations where no feasible model is available
during refinement. In such a case, we stop the experiments after an allocated amount of
time and report the model that violates the constraints the least among those computed
so far. For the experiments in this section, the refinement process was terminated after
10 random restarts of the alternating optimization problem, i.e., randomly perturbing
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Fig. 11. Ratio of KL-
divergence – Large Scale
Diagnostic Problem

Fig. 12. Ratio of Policy Value
– Large Scale Diagnostic Prob-
lem

Fig. 13. Policy Consistency of
Refined Model – Large Scale
Diagnostic Problem

the parameters 10 times after the solution had locally converged before choosing the
best solution available till that time.

Figures 11, 12, and 13 show the results for KL-divergence, simulated value of policy
and policy consistency respectively for the real world diagnostic network provided by
our industrial partner. Since the total number of constraints is exponential, we randomly
sampled a subset of constraints and show the results using these subsets instead of a
percentage of all possible constraints. Similarly, the policy consistency is also computed
by randomly sampling 100 states and then comparing optimal actions in those states.
We can see that using a small subset of constraints and a small number of states as input
to MCVI yields benefits in moving closer to the original model.

6 Conclusion and Future Work

In summary, we presented an approach to refine the transition function of an MDP
based on feedback from an expert. While several approaches address the problem of
learning the reward function based on expert knowledge, this paper makes a novel con-
tribution by tackling the problem of refining transition functions. This is particularly
useful in scenarios where the amount of data (state-action-state triples) is limited. Our
work makes three important contributions. First, we demonstrate how to use feedback
from an expert to define constraints on the parameters of the transition function. This
feedback may be implicit when obtained from logs of diagnostic sessions performed by
a domain expert. Second, we design an approach to handle non-convex constraints that
arise when expert feedback on optimal actions for different states is available. Third,
our approach is easily applicable for flat and factored MDPs, and we demonstrate that
it can be used in conjunction with approximate Monte Carlo techniques that are neces-
sary to solve large real-world MDPs. We present results of refined models for synthetic
recommender systems and a real-world diagnostic scenario from the manufacturing do-
main. We show that our technique not only helps in getting closer to the true transition
function, but also improves policy consistency and the value of the policy.

In the future, it would be interesting to generalize this work to Partially Observable
MDPs and see if the transition and observation functions can be refined simultaneously.
Another possibility is to estimate transition functions from both Q-value constraints
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implied by user feedback and observed state transitions (i.e., state-action-state triples)
by combining this work with model-based reinforcement learning approaches.
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Abstract. We formalize a simple but natural subclass of service domains for re-
lational planning problems with object-centered, independent exogenous events
and additive rewards capturing, for example, problems in inventory control. Fo-
cusing on this subclass, we present a new symbolic planning algorithm which is
the first algorithm that has explicit performance guarantees for relational MDPs
with exogenous events. In particular, under some technical conditions, our plan-
ning algorithm provides a monotonic lower bound on the optimal value function.
To support this algorithm we present novel evaluation and reduction techniques
for generalized first order decision diagrams, a knowledge representation for real-
valued functions over relational world states. Our planning algorithm uses a set
of focus states, which serves as a training set, to simplify and approximate the
symbolic solution, and can thus be seen to perform learning for planning. A pre-
liminary experimental evaluation demonstrates the validity of our approach.

1 Introduction

Relational Markov Decision Processes (RMDPs) offer an attractive formalism to study
both reinforcement learning and probabilistic planning in relational domains. However,
most work on RMDPs has focused on planning and learning when the only transitions
in the world are a result of the agent’s actions. We are interested in a class of problems
modeled as service domains, where the world is affected by exogenous service requests
in addition to the agent’s actions. In this paper we use the inventory control (IC) do-
main as a motivating running example and for experimental validation. The domain
models a retail company faced with the task of maintaining the inventory in its shops to
meet consumer demand. Exogenous events (service requests) correspond to arrival of
customers at shops and, at any point in time, any number of service requests can occur
independently of each other and independently of the agent’s action. Although we focus
on IC, independent exogenous service requests are common in many other problems,
for example, in fire and emergency response, air traffic control, and service centers such
as taxicab companies, hospitals, and restaurants. Exogenous events present a challenge
for planning and reinforcement learning algorithms because the number of possible next
states, the “stochastic branching factor”, grows exponentially in the number of possible
simultaneous service requests.

In this paper we consider symbolic dynamic programming (SDP) to solve RMDPs,
as it allows to reason more abstractly than what is typical in forward planning and re-
inforcement learning. The SDP solutions for propositional MDPs can be adapted to
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RMDPs by grounding the RMDP for each size to get a propositional encoding, and
then using a “factored approach” to solve the resulting planning problem, e.g., using
algebraic decision diagrams (ADDs) [5] or linear function approximation [4]. This ap-
proach can easily model exogenous events [2] but it plans for a fixed domain size and
requires increased time and space due to the grounding. The relational (first order logic)
SDP approach [3] provides a solution which is independent of the domain size, i.e., it
holds for any problem instance. On the other hand, exogenous events make the first
order formulation much more complex. To our knowledge, the only work to have ap-
proached this is [17,15]. While Sanner’s work is very ambitious in that it attempted to
solve a very general class of problems, the solution used linear function approximation,
approximate policy iteration, and some heuristic logical simplification steps to demon-
strate that some problems can be solved and it is not clear when the combination of
ideas in that work is applicable, both in terms of the algorithmic approximations and in
terms of the symbolic simplification algorithms.

In this paper we make a different compromise by constraining the class of problems
and aiming for a complete symbolic solution. In particular, we introduce the class of ser-
vice domains, that have a simple form of independent object-focused exogenous events,
so that the transition in each step can be modeled as first taking the agent’s action, and
then following a sequence of “exogenous actions” in any order. We then investigate a
relational SDP approach to solve such problems. The main contribution of this paper
is a new symbolic algorithm that is proved to provide a lower bound approximation
on the true value function for service domains under certain technical assumptions.
While the assumptions are somewhat strong, they allow us to provide the first complete
analysis of relational SDP with exogenous events which is important for understanding
such problems. In addition, while the assumptions are needed for the analysis, they are
not needed for the algorithm that can be applied in more general settings. Our second
main contribution provides algorithmic support to implement this algorithm using the
GFODD representation of [8]. GFODDs provide a scheme for capturing and manipu-
lating functions over relational structures. Previous work has analyzed some theoretical
properties of this representation but did not provide practical algorithms. In this paper
we develop a model evaluation algorithm for GFODDs inspired by variable elimination
(VE), and a model checking reduction for GFODDs. These are crucial for efficient real-
ization of the new approximate SDP algorithm. We illustrate the new algorithm in two
variants of the IC domain, where one satisfies our assumptions and the other does not.
Our results demonstrate that the new algorithm can be implemented efficiently, that its
size-independent solution scales much better than propositional approaches [5,19], and
that it produces high quality policies.

2 Preliminaries: Relational Symbolic Dynamic Programming

We assume familiarity with basic notions of Markov Decision Processes (MDPs) and
First Order Logic [14,13]. Briefly, a MDP is given by a set of states S, actions A, tran-
sition function Pr(s′|s, a), immediate reward function R(s) and discount factor γ < 1.
The solution of a MDP is a policy that maximizes the expected discounted total reward
obtained by following that policy starting from any state. The Value Iteration algorithm
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(VI), calculates the optimal value function V ∗ by iteratively performing Bellman back-
ups Vi+1 = T [Vi] defined for each state s as,

Vi+1(s) ← max
a

{R(s) + γ
∑
s′

Pr(s′|s, a)Vi(s
′)}. (1)

Relational MDPs: Relational MDPs are simply MDPs where the states and actions are
described in a function-free first order logical language. In particular, the language al-
lows a set of logical constants, a set of logical variables, a set of predicates (each with
its associated arity), but no functions of arity greater than 0. A state corresponds to an
interpretation in first order logic (we focus on finite interpretations) which specifies (1)
a finite set of n domain elements also known as objects, (2) a mapping of constants to
domain elements, and (3) the truth values of all the predicates over tuples of domain
elements of appropriate size (to match the arity of the predicate). Atoms are predicates
applied to appropriate tuples of arguments. An atom is said to be ground when all its ar-
guments are constants or domain elements. For example, using this notation empty(x1)
is an atom and empty(shop23) is a ground atom involving the predicate empty and ob-
ject shop23 (expressing that the shop shop23 is empty in the IC domain). Our notation
does not distinguish constants and variables as this will be clear from the context. One
of the advantages of relational SDP algorithms, including the one in this paper, is that
the number of objects n is not known or used at planning time and the resulting policies
generalize across domain sizes.

The state transitions induced by agent actions are modeled exactly as in previous
SDP work [3]. The agent has a set of action types {A} each parametrized with a tuple
of objects to yield an action template A(x) and a concrete ground action A(o) (e.g.
template unload(t, s) and concrete action unload(truck1, shop2)). To simplify nota-
tion, we use x to refer to a single variable or a tuple of variables of the appropriate arity.
Each agent action has a finite number of action variants Aj(x) (e.g., action success vs.
action failure), and when the user performs A(x) in state s one of the variants is chosen
randomly using the state-dependent action choice distribution Pr(Aj(x)|A(x)).

Similar to previous work we model the reward as some additive function over the
domain. To avoid some technical complications, we use average instead of sum in the
reward function; this yields the same result up to a multiplicative factor.

Relational Expressions and GFODDs: To implement planning algorithms for re-
lational MDPs we require a symbolic representation of functions to compactly de-
scribe the rewards, transitions, and eventually value functions. In this paper we use
the GFODD representation of [8] but the same ideas work for any representation that
can express open-expressions and closed expressions over interpretations (states). An
expression represents a function mapping interpretations to real values. An open ex-
pression f(x), similar to an open formula in first order logic, can be evaluated in in-
terpretation I once we substitute the variables x with concrete objects in I . A closed
expression (aggregatexf(x)), much like a closed first order logic formula, aggregates
the value of f(x) over all possible substitutions of x to objects in I . First order logic
limits f(x) to have values in {0, 1} (i.e., evaluate to false or true) and provides the
aggregation max (corresponding to existential quantification) and min (correspond-
ing to universal quantification) that can be used individually on each variable in x.
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Expressions are more general allowing for additional aggregation functions (for exam-
ple, average) so that aggregation generalizes quantification in logic, and allowing f(x)
to take numerical values. On the other hand, our expressions require aggregation op-
erators to be at the front of the formulas and thus correspond to logical expressions
in prenex normal form. This enables us to treat the aggregation portion and formula
portion separately in our algorithms. In this paper we focus on average and max aggre-
gation. For example, in the IC domain we might use the expression: “maxt, avgs, (if
¬empty(s) then 1, else if tin(t, s) then 0.1, else 0)”. Intuitively, this awards a 1 for any
non-empty shop and at most one shop is awarded a 0.1 if there is a truck at that shop.
The value of this expression is given by picking one t which maximizes the average
over s.

GFODDs provide a graphical representation and associated algorithms to represent
open and closed expressions. A GFODD is given by an aggregation function, exactly
as in the expressions, and a labeled directed acyclic graph that represents the open for-
mula portion of the expression. Each leaf in the GFODD is labeled with a non-negative
numerical value, and each internal node is labeled with a first-order atom (allowing for
equality atoms) where we allow atoms to use constants or variables as arguments. As
in propositional diagrams [1], for efficiency reasons, the order over nodes in the dia-
gram must conform to a fixed ordering over node labels, which are first order atoms in
our case. Figure 1(a) shows an example GFODD capturing the expression given in the
previous paragraph.

Given a diagram B = (aggregatexf(x)), an interpretation I , and a substitution of
variables in x to objects in I , one can traverse a path to a leaf which gives the value for
that substitution. The values of all substitutions are aggregated exactly as in expressions.
In particular, let the variables as ordered in the aggregation function be x1, . . . , xn.
To calculate the final value, mapB(I), the semantics prescribes that we enumerate all
substitutions of variables {xi} to objects in I and then perform the aggregation over
the variables, going from xn to x1. We can therefore think of the aggregation as if it
organizes the substitutions into blocks (with fixed value to the first k − 1 variables and
all values for the k’th variable), and then aggregates the value of each block separately,
repeating this from xn to x1. We call the algorithm that follows this definition directly
brute force evaluation. A detailed example is shown in Figure 3(a). To evaluate the
diagram in Figure 3(a) on the interpretation shown there we enumerate all 33 = 27
substitutions of 3 objects to 3 variables, obtain a value for each, and then aggregate the
values. In the block where x1 = a, x2 = b, and x3 varies over a, b, c we get the values
3, 2, 2 and an aggregated value of 7/3. This can be done for every block, and then we
can aggregate over substitutions of x2 and x1. The final value in this case is 7/3.

Any binary operation op over real values can be generalized to open and closed ex-
pressions in a natural way. If f1 and f2 are two closed expressions, f1 op f2 represents
the function which maps each interpretation w to f1(w) op f2(w). We follow the gen-
eral convention of using ⊕ and ⊗ to denote + and × respectively when they are applied
to expressions. This provides a definition but not an implementation of binary opera-
tions over expressions. The work in [8] showed that if the binary operation is safe, i.e., it
distributes with respect to all aggregation operators, then there is a simple algorithm (the
Apply procedure) implementing the binary operation over expressions. For example ⊕
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Fig. 1. IC Dynamics and Regression (a) An example GFODD. (b) TVD for empty(s) under the
deterministic action unload(t∗, s∗). (c) Regressing the GFODD of (a) over unload(t∗, s∗). (d)
Object Maximization. In these diagrams and throughout the paper, left-going edges represent the
true branch out of the node and right-going edges represent the false branch.

is safe w.r.t. max aggregation, and it is easy to see that (maxx f(x)) ⊕ (maxx g(x)) =
maxx maxy f(x) + g(y), and the open formula portion (diagram portion) of the result
can be calculated directly from the open expressions f(x) and g(y). The Apply pro-
cedure [20,8] calculates a diagram representing f(x) + g(y) using operations over the
graphs representing f(x) and g(y). Note that we need to standardize apart, as in the
renaming of g(x) to g(y) for such operations.

SDP for Relational MDPs: SDP provides a symbolic implementation of the value it-
eration update of Eq (1) that avoids state enumeration implicit in that equation. The
SDP algorithm of [8] generalizing [3] calculates one iteration of value iteration as fol-
lows. As input we get (as GFODDs) closed expressions Vn, R (we use Figure 1(a) as
the reward in the example below), and open expressions for the probabilistic choice of
actions Pr(Aj(x)|A(x)) and for the dynamics of deterministic action variants.

The action dynamics are specified by providing a diagram (called truth value dia-
gram or TVD) for each variant Aj(x) and predicate template p(y). The corresponding
TVD, T (Aj(x), p(y)), is an open expression that specifies the truth value of p(y) in the
next state when Aj(x) has been executed in the current state. Figure 1(b) shows the
TVD of unload(t∗, s∗) for predicates empty(s). Note that in contrast to other repre-
sentations of planning operators (but similar to the successor state axioms of [3]) TVDs
specify the truth value after the action and not the change in truth value. Since unload is
deterministic we have only one variant and Pr(Aj(x)|A(x)) = 1. We illustrate prob-
abilistic actions in the next section. Following [20,8] we require that Pr(Aj(x)|A(x))
and T (Aj(x), p(y)) have no aggregations and cannot introduce new variables, that is,
the first refers to x only and the second to x and y but no other variables. This im-
plies that the regression and product terms in the algorithm below do not change the
aggregation function and therefore enables the analysis of the algorithm.
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The SDP algorithm of [8] implements Eq (1) using the following 4 steps. We denote
this as Vi+1 = SDP 1(Vi).

1. Regression: The n step-to-go value function Vn is regressed over every determin-
istic variant Aj(x) of every action A(x) to produce Regr(Vn, Aj(x)). Regression
is conceptually similar to goal regression in deterministic planning but it needs to
be done for all (potentially exponential number of) paths in the diagram, each of
which can be thought of as a goal in the planning context. This can be done effi-
ciently by replacing every atom in the open formula portion of Vn (a node in the
GFODD representation) by its corresponding TVD without changing the aggrega-
tion function.

Figure 1(c) illustrates the process of block replacement for the diagram of part
(a). Note that tin() is not affected by the action. Therefore its TVDs simply repeats
the predicate value, and the corresponding node is unchanged by block replace-
ment. Therefore, in this example, we are effectively replacing only one node with
its TVD. The TVD leaf valued 1 is connected to the left child (true branch) of the
node and the 0 leaf is connected to the right child (false branch). To maintain the
diagrams sorted we must in fact use a different implementation than block replace-
ment; the implementation does not affect the constructions or proofs in the paper
and we therefore refer the reader to [20] for the details.

2. Add Action Variants: The Q-function Q
A(x)
Vn

= R ⊕ [γ ⊗ ⊕j(Pr(Aj(x)) ⊗
Regr(Vn, Aj(x)))] for each action A(x) is generated by combining regressed dia-
grams using the binary operations ⊕ and ⊗ over expressions.
Recall that probability diagrams do not refer to additional variables. The multipli-
cation can therefore be done directly on the open formulas without changing the
aggregation function. As argued by [20], to guarantee correctness, both summation
steps (⊕j and R⊕ steps) must standardize apart the functions before adding them.

3. Object Maximization: Maximize over the action parameters Q
A(x)
Vn

to produce
QA

Vn
for each action A(x), thus obtaining the value achievable by the best ground

instantiation of A(x) in each state. This step is implemented by converting action

parameters x in Q
A(x)
Vn

to variables, each associated with the max aggregation op-
erator, and appending these operators to the head of the aggregation function.

For example, if object maximization were applied to the diagram of Figure 1(c)
(we skipped some intermediate steps) then t∗, s∗ would be replaced with variables
and given max aggregation so that the aggregation is as shown in part (d) of the
figure. Therefore, in step 2, t∗, s∗ are constants (temporarily added to the logical
language) referring to concrete objects in the world, and in step 3 we turn them into
variables and specify the aggregation function for them.

4. Maximize over Actions: The n+1 step-to-go value function Vn+1 = maxAQA
Vn

,
is generated by combining the diagrams using the binary operation max over ex-
pressions.

The main advantage of this approach is that the regression operation, and the binary
operations over expressions⊕, ⊗,max can be performed symbolically and therefore the
final value function output by the algorithm is a closed expression in the same language.
We therefore get a completely symbolic form of value iteration. Several instantiations
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of this idea have been implemented [11,6,18,20]. Except for the work of [8,18] previous
work has handled only max aggregation. Previous work [8] relies on the fact that the
binary operations ⊕, ⊗, and max are safe with respect to max,min aggregation to
provide a GFODD based SDP algorithm for problems where the reward function has
max and min aggregations . In this paper we use reward functions with max and avg
aggregation. The binary operations ⊕ and ⊗ are safe with respect to avg but the binary
operation max is not. For example 2 + avg{1, 2, 3} = avg{2 + 1, 2 + 2, 2 + 3} but
max{2, avg{1, 2, 3}} 
= avg{max{2, 1},max{2, 2},max{2, 3}}. To address this issue
we introduce a new implementation for this case in the next section.

3 Model and Algorithms for Service Domains

We now proceed to describe our extensions to SDP to handle exogenous events. Exoge-
nous events refer to spontaneous changes to the state without agent action. Our main
modeling assumption, denoted A1, is that we have object-centered exogenous actions
that are automatically taken in every time step. In particular, for every object i in the do-
main we have action E(i) that acts on object i and the conditions and effects of {E(i)}
are such that they are mutually non-interfering: given any state s, all the actions {E(i)}
are applied simultaneously, and this is equivalent to their sequential application in any
order. We use the same GFODD action representation described in the previous section
to capture the dynamics of E(i).

Example: IC Domain. We use a simple version of the inventory control domain (IC)
as a running example, and for some of the experimental results. In IC the objects are a
depot, a truck and a number of shops. A shop can be empty or full, i.e., the inventory has
only two levels and the truck can either be at the depot or at a shop. The reward is the
fraction (average) of non-empty shops. Agent actions are deterministic and they capture
stock replacement. In particular, a shop can be filled by unloading inventory from the
truck in one step. The truck can be loaded in a depot and driven from any location (shop
or depot) to any location in one step. The exogenous action E(i) has two variants; the
success variant Esucc(i) (customer arrives at shop i, and if non-empty the inventory
becomes empty) occurs with probability 0.4 and the fail variant Efail(i) (no customer,
no changes to state) occurs with probability 0.6. Figure 2 parts (a)-(d) illustrate the
model for IC and its GFODD representation. In order to facilitate the presentation of
algorithmic steps, Figure 2(e) shows a slightly different reward function (continuing
previous examples) that is used as the reward in our running example.

For our analysis we make two further modeling assumptions. A2: we assume that
exogenous action E(i) can only affect unary properties of the object i. To simplify
the presentation we consider a single such predicate sp(i) that may be affected, but any
number of such predicates can be handled. In IC, the special predicate sp(i) is empty(i)
specifying whether the shop is empty. A3: we assume that sp() does not appear in the
precondition of any agent action. It follows that E(i) only affects sp(i) and that sp(i)
can appear in the precondition of E(i) but cannot appear in the precondition of any
other action.
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Fig. 2. Representation and template method for IC. (a) TVD for empty(j) under action variant
Esucc(i). (b) TVD for empty(j) under action variant Efail(i). (c) A specialized form of (a)
under i = j. This is simply the value 1 and is therefore a GFODD given by a single leaf node. (d)
Pr(Esucc(i)|E(i))which is simply the value 0.4. (e) A simple reward function. (f) Grounding (e)
using Skolem constant a. (g) Regressing (f) over Esucc(a) and multiplying with the probability
diagram in (d). (h) Regressing (f) over Efail(a) and multiplying by its probability diagram. (i)
Adding (g) and (h) without standardizing apart. (j) Reintroducing the Avg aggregation.

3.1 The Template Method

Extending SDP to handle exogenous events is complicated because the events depend
on the objects in the domain and on their number and exact solutions can result in
complex expressions that require counting formulas over the domain [17,15]. A possible
simple approach would explicitly calculate the composition of the agent’s actions with
all the exogenous events. But this assumes that we know the number of objects n (and
thus does not generalize) and results in an exponential number of action variants, which
makes it infeasible. A second simple approach would be to directly modify the SDP
algorithm so that it sequentially regresses the value function over each of the ground
exogenous actions before performing the regression over the agent actions, which is
correct by our assumptions. However, this approach, too, requires us to know n and
because it effectively grounds the solution it suffers in terms of generality.

We next describe the template method, one of our main contributions, which pro-
vides a completely abstract approximate SDP solution for the exogenous event model.
We make our final assumption, A4, that the reward function (and inductively Vi) is a
closed expression of the form maxx avgyV (x, y) where x is a (potentially empty) set
of variables and y is a single variable, and in V (x, y) the predicate sp() appears instan-
tiated only as sp(y). The IC domain as described above satisfies all our assumptions.
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The template method first runs the following 4 steps, denoted SDP 2(Vi), and then
follows with the 4 steps of SDP as given above for user actions. The final output of our
approximate Bellman backup, T ′, is Vi+1 = T ′(Vi) = SDP 1(SDP 2(Vi)).
1. Grounding: Let a be a Skolem constant not in Vi. Partially ground V to get V =
maxx V (x, a)
2. Regression: The function V is regressed over every deterministic variant Ej(a) of
the exogenous action centered at a to produce Regr(V,Ej(a)).
3. Add Action Variants: The value function V = ⊕j(Pr(Ej(a)) ⊗ Regr(V,Ej(a)))
is updated. As in SDP 1, multiplication is done directly on the open formulas without
changing the aggregation function. Importantly, in contrast with SDP 1, here we do not
standardize apart the functions when performing ⊕j . This leads to an approximation.
4. Lifting: Let the output of the previous step be V = maxxW (x, a). Return V =
maxx avgyW (x, y).

Thus, the algorithm grounds V using a generic object for exogenous actions, it then
performs regression for a single generic exogenous action, and then reintroduces the
aggregation. Figure 2 parts (e)-(j) illustrate this process.

We now show that our algorithm provides a monotonic lower bound on the value
function. The crucial step is the analysis of SDP 2(Vi). We have:

Lemma 1. Under assumptions A1, A2, A4 the value function calculated by SDP 2(Vi)
is a lower bound on the value of regression of Vi through all exogenous actions.

Due to space constraints the complete proof is omitted and we only provide a sketch.
This proof and other omitted details can be found in the full version of this paper [10].

Proof. (sketch) The main idea in the proof is to show that, under our assumptions, the
result of our algorithm is equivalent to sequential regression of all exogenous actions,
where in each step the action variants are not standardized apart.

Recall that the input value function Vi has the form V = maxx avgyV (x, y) =

maxx
1
n [V (x, 1)+V (x, 2)+ . . .+V (x, n)]. To establish this relationship we show that

after the sequential algorithm regresses E(1), . . . , E(k) the intermediate value function
has the formmaxx

1
n [W (x, 1)+W (x, 2)+. . .+W (x, k)+V (x, k+1)+. . .+V (x, n)].

That is, the first k portions change in the same structural manner into a diagram W and
the remaining portions retain their original form V . In addition, W (x, �) is the result
of regressing V (x, �) through E(�) which is the same form as calculated by step 3
of the template method. Therefore, when all E(�) have been regressed, the result is
V = maxx avgyW (x, y) which is the same as the result of the template method.

The sequential algorithm is correct by definition when standardizing apart but yields
a lower bound when not standardizing apart. This is true because for any functions f1

and f2 we have [maxx1 avgy1
f1(x1, y1)] + [maxx2 avgy2

f2(x2, y2)] ≥ maxx[avgy1

f1(x, y1)+avgy2
f2(x, y2)] = maxx avgy[(f

1(x, y)+f2(x, y))] where the last equality
holds because y1 and y2 range over the same set of objects. Therefore, if f1 and f2

are the results of regression for different variants from step 2, adding them without
standardizing apart as in the last equation yields a lower bound. ��

The lemma requires that Vi used as input satisfies A4. If this holds for the reward
function, and if SDP 1 maintains this property then A4 holds inductively for all Vi.
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Put together this implies that the template method provides a lower bound on the true
Bellman backup. It therefore remains to show how SDP 1 can be implemented for
maxx avgy aggregation and that it maintains the form A4.

First consider regression. If assumption A3 holds, then our algorithm using regres-
sion through TVDs does not introduce new occurrences of sp() into V . Regression also
does not change the aggregation function. Similarly, the probability diagrams do not
introduce sp() and do not change the aggregation function. Therefore A4 is maintained
by these steps. For the other steps we need to discuss the binary operations ⊕ and max.

For ⊕, using the same argument as above, we see that [maxx1 avgy1
f1(x1, y1)] +

[maxx2 avgy2
f2(x2, y2)] = maxx1 maxx2 [avgy f

1(x1, y)+ f2(x2, y)] and therefore it
suffices to standardize apart the x portion but y can be left intact and A4 is maintained.

Finally, recall that we need a new implementation for the binary operation max
with avg aggregation. This can be done as follows: to perform max{[maxx1 avgy1

f1(x1, y1)], [maxx2 avgy2
f2(x2, y2)]} we can introduce two new variables z1, z2 and

write the expression: “maxz1,z2 maxx1 maxx2 avgy1
avgy2

(if z1 = z2 then f1(x1, y1)

else f2(x2, y2))”. This is clearly correct whenever the interpretation has at least two ob-
jects because z1, z2 are unconstrained. Now, because the branches of the if statement are
mutually exclusive, this expression can be further simplified to “maxz1,z2 maxx avgy
(if z1 = z2 then f1(x, y) else f2(x, y))”. The implementation uses an equality node
at the root with label z1 = z2, and hangs f1 and f2 at the true and false branches.
Crucially it does not need to standardize apart the representation of f1 and f2 and thus
A4 is maintained. This establishes that the approximation returned by our algorithm,
T ′[Vi], is a lower bound of the true Bellman backup T [Vi].

An additional argument (details available in [10]) shows that this is a monotonic
lower bound, that is, for all i we have T [Vi] ≥ Vi where T [V ] is the true Bellman
backup. It is well known (e.g., [12]) that if this holds then the value of the greedy
policy w.r.t. Vi is at least Vi (this follows from the monotonicity of the policy update
operator Tπ). The significance is, therefore, that Vi provides an immediate certificate on
the quality of the resulting greedy policy. Recall that T ′[V ] is our approximate backup,
V0 = R and Vi+1 = T ′[Vi]. We have:

Theorem 1. When assumptions A1, A2, A3, A4 hold and the reward function is non-
negative we have for all i: Vi ≤ Vi+1 = T ′[Vi] ≤ T [Vi] ≤ V ∗.

As mentioned above, although the assumptions are required for our analysis, the
algorithm can be applied more widely. Assumptions A1 and A4 provide our basic mod-
eling assumption per object centered exogenous events and additive rewards. It is easy
to generalize the algorithm to have events and rewards based on object tuples instead
of single objects. Similarly, while the proof fails when A2 (exogenous events only af-
fect special unary predicates) is violated the algorithm can be applied directly without
modification. When A3 does not hold, sp() can appear with multiple arguments and the
algorithm needs to be modified. Our implementation introduces an additional approx-
imation and at iteration boundary we unify all the arguments of sp() with the average
variable y. In this way the algorithm can be applied inductively for all i. These exten-
sions of the algorithm are demonstrated in our experiments.
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Relation to Straight Line Plans: The template method provides symbolic way to cal-
culate a lower bound on the value function. It is interesting to consider what kind of
lower bound this provides. Recall that the straight line plan approximation (see e.g.,
discussion in [2]) does not calculate a policy and instead at any state it seeks the best
linear plan with highest expected reward. As the next observation argues (proof avail-
able in [10]) the template method provides a related approximation. We note, however,
that unlike previous work on straight line plans our computation is done symbolically
and calculates the approximation for all start states simultaneously.

Observation 1. The template method provides an approximation that is related to the
value of the best straight line plan. When there is only one deterministic agent action
template we get exactly the value of the straight line plan. Otherwise, the approximation
is bounded between the value of the straight line plan and the optimal value.

4 Evaluation and Reduction of GFODDs

The symbolic operations in the SDP algorithm yield diagrams that are redundant in the
sense that portions of them can be removed without changing the values they compute.
Recently, [8,7] introduced the idea of model checking reductions to compress such dia-
grams. The basic idea is simple. Given a set of “focus states” S, we evaluate the diagram
on every interpretation in S. Any portion of the diagram that does not “contribute” to
the final value in any of the interpretations is removed. The result is a diagram which is
exact on the focus states, but may be approximate on other states. We refer the reader to
[8,7] for further motivation and justification. In that work, several variants of this idea
have been analyzed formally (for max and min aggregation), have been shown to per-
form well empirically (for max aggregation), and methods for generating S via random
walks have been developed. In this section we develop the second contribution of the
paper, providing an efficient realization of this idea for maxx avgy aggregation.

The basic reduction algorithm, which we refer to below as brute force model check-
ing for GFODDs, is: (1) Evaluate the diagram on each example in our focus set S
marking all edges that actively participate in generating the final value returned for that
example. Because we have maxx avgy this value is given by the “winner” of max ag-
gregation. This is a block of substitutions that includes one assignment to x and all
possible assignments to y. For each such block collect the set of edges traversed by any
of the substitutions in the block. When picking the max block, also collect the edges
traversed by that block, breaking ties by lexicographic ordering over edge sets. (2) Take
the union of marked edges over all examples, connecting any edge not in this set to 0.

Consider again the example of evaluation in Figure 3(a), where we assigned node
identifiers 1,2,3. We identify edges by their parent node and its branch so that the left-
going edge from the root is edge 1t. In this case the final value 7/3 is achieved by
multiple blocks of substitutions, and two distinct sets of edges 1t2f3t3f and 1f3t3f .
Assuming 1<2<3 and f<t, 1f3t3f is lexicographically smaller and is chosen as the
marked set. This process is illustrated in the tables of Figure 3(a). Referring to the
reduction procedure, if our focus set S includes only this interpretation, then the edges
1t, 2t, 2f will be redirected to the value 0.
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Fig. 3. GFODD Evaluation (a) Brute Force method. (b) Variable Elimination Method.

Efficient Model Evaluation and Reduction: We now show that the same process of
evaluation and reduction can be implemented more efficiently. The idea, taking inspi-
ration from variable elimination, is that we can aggregate some values early while
calculating the tables. However, our problem is more complex than standard variable
elimination and we require a recursive computation over the diagram.

For every node n let n.lit = p(x) be the literal at the node and let n↓f and n↓t be its
false and true branches respectively. Define above(n) to be the set of variables appear-
ing above n and self(n) to be the variables in x. Let maxabove(n) and maxself(n)
be the variables of largest index in above(n) and self(n) respectively. Finally let
maxvar(n) be the maximum between maxabove(n) and maxself(n). Figure 3(b)
shows maxvar(n) and maxabove(n) for our example diagram. Given interpretation
I , let bln↓t(I) be the set of bindings a of objects from I to variables in x such that
p(a) ∈ I . Similarly bln↓f (I) is the set of bindings a such that ¬p(a) ∈ I . The two sets
are obviously disjoint and together cover all bindings for x. For example, for the root
node in the diagram of Figure 3(b), bln↓t(I) is a table mapping x2 to a, b and bln↓f (I)
is a table mapping x2 to c. The evaluation procedure, Eval(n), is as follows:

1. If n is a leaf:
(1) Build a “table” with all variables implicit, and with the value of n.
(2) Aggregate over all variables from the last variable down to maxabove(n) + 1.
(3) Return the resulting table.

2. Otherwise n is an internal node:
(1) Let M↓t(I) = bln↓t(I) × Eval(n↓t), where × is the join of the tables.
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(2) Aggregate over all the variables in M↓t(I) from the last variable not yet aggre-
gated down to maxvar(n) + 1.
(3) Let M↓f (I) = bln↓f (I) × Eval(n↓f )
(4) Aggregate over all the variables in M↓f (I) from the last variable not yet aggre-
gated down to maxvar(n) + 1.
(5) Let M = M↓t(I) ∪M↓f (I).
(6) Aggregate over all the variables in M from the last variable not yet aggregated
down to maxabove(n) + 1.
(7) Return node table M .

We note several improvements for this algorithm and its application for reductions,
all of which are applicable and used in our experiments. (I1) We implement the above
recursive code using dynamic programming to avoid redundant calls. (I2) When an
aggregation operator is idempotent, i.e., op{a, . . . , a} = a, aggregation over implicit
variables does not change the table, and the implementation is simplified. This holds for
max and avg aggregation. (I3) In the case of maxx avgy aggregation the procedure is
made more efficient (and closer to variable elimination where variable order is flexible)
by noting that, within the set of variables x, aggregation can be done in any order.
Therefore, once y has been aggregated, any variable that does not appear above node n
can be aggregated at n. (I4) The recursive algorithm can be extended to collect edge sets
for winning blocks by associating them with table entries. Leaf nodes have empty edge
sets. The join step at each node adds the corresponding edge (for true or false child) for
each entry. Finally, when aggregating an average variable we take the union of edges,
and when aggregating a max variable we take the edges corresponding to the winning
value, breaking ties in favor of the lexicographically smaller set of edges.

A detailed example of the algorithm is given in Figure 3(b) where the evaluation is on
the same interpretation as in part (a). We see that node 3 first collects a table over x2, x3
and that, because x3 is not used above, it already aggregates x3. The join step for node
2 uses entries (b, a) and (c, a) for (x1, x2) from the left child and other entries from
the right child. Node 2 collects the entries and (using I3) aggregates x1 even though x2
appears above. Node 1 then similarly collects and combines the tables and aggregates
x2. The next theorem is proved by induction over the structure of the GFODD (details
available in [10]).

Theorem 2. The value and max block returned by the modified Eval procedure are
identical to the ones returned by the brute force method.

5 Experimental Validation

In this section we present an empirical demonstration of our algorithms. To that end we
implemented our algorithms in Prolog as an extension of the FODD-PLANNER [9], and
compared it to SPUDD [5] and MADCAP [19] that take advantage of propositionally
factored state spaces, and implement VI using propositional algebraic decision diagrams
(ADD) and affine ADDs respectively. For SPUDD and MADCAP, the domains were
specified in the Relational Domain Description Language (RDDL) and translated into
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Fig. 4. Experimental Results

propositional descriptions using software provided for the IPPC 2011 planning compe-
tition [16]. All experiments were run on an Intel Core 2 Quad CPU @ 2.83GHz. Our
system was given 3.5Gb of memory and SPUDD and MADCAP were given 4Gb.

We tested all three systems on the IC domain as described above where shops and
trucks have binary inventory levels (empty or full). We present results for the IC domain,
because it satisfies all our assumptions and because the propositional systems fare better
in this case. We also present results for a more complex IC domain (advanced IC or
AIC below) where the inventory can be in one of 3 levels 0,1 and 2 and a shop can
have one of 2 consumption rates 0.3 and 0.4. AIC does not satisfy assumption A3.
As the experiments show, even with this small extension, the combinatorics render the
propositional approach infeasible. In both cases, we constructed the set of focus states
to include all possible states over 2 shops. This provides exact reduction for states with
2 shops but the reduction is approximate for larger states as in our experiments.

Figure 4 summarizes our results, which we discuss from left to right and top to
bottom. The top left plot shows runtime as a function of iterations for AIC and illustrates
that the variable elimination method is significantly faster than brute force evaluation
and that it enables us to run many more iterations. The top right plot shows the total
time (translation from RDDL to a propositional description and off-line planning for 10
iterations of VI) for the 3 systems for one problem instance per size for AIC. SPUDD
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runs out of memory and fails on more than 4 shops and MADCAP can handle at most 5
shops. Our planning time (being domain size agnostic) is constant. Runtime plots for IC
are omitted but they show a similar qualitative picture, where the propositional systems
fail with more than 8 shops for SPUDD and 9 shops for MADCAP.

The middle two plots show the cost of using the policies, that is, the on-line execution
time as a function of increasing domain size in test instances. To control run time for our
policies we show the time for the GFODD policy produced after 4 iterations, which is
sufficient to solve any problem in IC and AIC.1 On-line time for propositional systems
is fast for the domain sizes they solve, but our system can solve problems of much
larger size (recall that the state space grows exponentially with the number of shops).
The bottom two plots show the total discounted reward accumulated by each system (as
well as a random policy) on 15 randomly generated problem instances averaged over
30 runs. In both cases all algorithms are significantly better than the random policy. In
IC our approximate policy is not distinguishable from the optimal (SPUDD). In AIC
the propositional policies are slightly better (differences are statistically significant).
In summary, our system provides a non-trivial approximate policy but is sub-optimal
in some cases, especially in AIC where A3 is violated. On the other hand its offline
planning time is independent of domain size, and it can solve instances that cannot be
solved by the propositional systems.

6 Conclusions

The paper presents service domains as an abstraction of planning problems with ad-
ditive rewards and with multiple simultaneous but independent exogenous events. We
provide a new relational SDP algorithm and the first complete analysis of such an al-
gorithm with provable guarantees. In particular our algorithm, the template method, is
guaranteed to provide a monotonic lower bound on the true value function under some
technical conditions. We have also shown that this lower bound lies between the value
of straight line plans and the true value function. As a second contribution we intro-
duce new evaluation and reduction algorithms for the GFODD representation, that in
turn facilitate efficient implementation of the SDP algorithm. Preliminary experiments
demonstrate the viability of our approach and that our algorithm can be applied even in
situations that violate some of the assumptions used in the analysis. The paper provides
a first step toward analysis and solutions of general problems with exogenous events by
focusing on a well defined subset of such models. Identifying more general conditions
for existence of compact solutions, representations for such solutions, and associated al-
gorithms is an important challenge for future work. In addition, the problems involved
in evaluation and application of diagrams are computationally demanding. Techniques
to speed up these computations are an important challenge for future work.

Acknowledgements. This work was partly supported by NSF under grants IIS-0964457
and IIS-0964705 and the CI fellows award for Saket Joshi. Most of this work was done
when Saket Joshi was at Oregon State University.

1 Our system does not achieve structural convergence because the reductions are not compre-
hensive. We give results at 4 iterations as this is sufficient for solving all problems in this
domain. With more iterations, our policies are larger and their execution is slower.
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David Auger1, Adrien Couëtoux2, and Olivier Teytaud2

1 AlCAAP, Laboratoire PRiSM, Bât. Descartes,
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Abstract. Upper Confidence Trees (UCT) are now a well known algo-
rithm for sequential decision making; it is a provably consistent variant
of Monte-Carlo Tree Search. However, the consistency is only proved in
a the case where the action space is finite. We here propose a proof in
the case of fully observable Markov Decision Processes with bounded
horizon, possibly including infinitely many states, infinite action space
and arbitrary stochastic transition kernels. We illustrate the consistency
on two benchmark problems, one being a legacy toy problem, the other
a more challenging one, the famous energy unit commitment problem.

Keywords: Upper Confidence Trees, Consistency Proof, Infinite
Markov Decision Process, Unit commitment.

1 State of the Art and Outline of the Paper

It is known that partially observable Markov Decision Processes are undecid-
able, even with finite state space (see [15]). With full observation, they become
decidable; Monte-Carlo Tree Search (MCTS, [9]) is a recent well known solver
for this case, with impressive results in many cases, in particular the game of
Go [14]. Its most famous variant, Upper Confidence Trees [13] provides provably
consistent solvers in the finite case. We here show that Upper Confidence Tree
can be slightly adapted to become consistent in the more general finite horizon
case, even with infinite state space and infinite action space.

Recent impressive results in the field of planning with MCTS variants in
continuous MDP have been published; most of them, as far as we know, rely on
a discretization of the action space. This the case of HOOT [16] and HOLOP
[17] that both rely on the HOO algorithm, introduced in [5]. HOO is a bandit
algorithm that deals with continuous arms by using a tree of coverings of the
action space. Other notable contributions using a discretization of the action
space are [12] and [1]. What these methods have in common is the assumption
that the action space is continuous, but that we have enough knowledge about
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it to divide it in a certain number of equally spaced actions. Or, in the case of
HOO, it is required to have a compact action space with known bounds. In toy
benchmark problems like inverted pendulum, this is straightforward. However,
in more realistic applications, this can be difficult. This is the case of the unit
commitment problem, as described in [3] , where the agent needs to decide at
each time step how to use a wide array of energy production facilities: water
stocks, thermal plants, nuclear plants, etc. This problem has an action space
that cannot be easily discretized. First, it has both discrete and continuous
components (some power plants having a minimal energy output). Second, there
are many operational constraints, making the action space non convex, and the
bounds hard to find. In practice, finding feasible actions can come down to adding
noise to the objective function of a simplified version of the problem, applying
a Linear Programming method on said simplified problem, and using the result
as a feasible action. There are many other options to sample a feasible action,
but raw discretization is not one of them.

In this work, we investigate the consistency of a method that does not require
any knowledge about the action space itself. The only assumption made is that
we have access to a black box action sampler. Further details on the assumptions
made are found below.

Section 2 introduces notations and specifies the setting of the Markov Decision
Processes that we consider. In Section 3, we define our PUCT (Polynomial Upper
Confidence Trees) algorithm. Section 4 gives the main consistency result, with
convergence rate. The proof of this result is divided in three parts, which are
Sections 5, 6 and 7. Section 8 presents experimental results. Section 9 concludes.

2 Specification of the Makov Decision Tree Setting

We use the classical terminology of Markov Decision Processes. In this frame-
work, a player has to make sequential decisions until the process stops: he is
then given a reward. As usual, the goal of the player is to maximize the ex-
pected reward. This paper considers the general case where the process, also
called transition, is a fully observable MDP, with finite horizon, and no cycles.
In this setting, the only things available to the agent are a simulator, or transition
function, and an action sampler.

As per usual in this setting, there is a state space and an action space. To
build a tree in the stochastic setting, we choose to build it with two distinct and
alternated types of nodes:

– decision nodes, where a decision needs to be made, are generally noted z.
The intuition is that they correspond to a certain state where the agent
might be.

– random nodes, where the transition can be called, are noted w = (z, a). They
correspond to the case where the agent was in state z and decided to take
action a (sometimes called post-decision state).

The tree will have a unique root decision node r, the initial state where the
agent starts. We define the depth of a node as half the distance from this node to
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the root in the tree. Hence decision nodes have integer depth while random nodes
have semi-integer depth, e.g. to access a node of depth 2 we have the sequence
of nodes root=decision(depth 0) - random (0.5) - decision (1) - random (1.5)
- decision (2). Leaves are assumed to all have the same integer depth, denoted
dmax, and bear some deterministic reward r(z).

It is well known [2] that for each node z, there exists a value V ∗(z), termed
optimal Bellman value, frequently used as a criterion to select the best action in
sequential decision making problems. In this paper, we will use this value as a
measure of optimality for actions. Given our distinction between decision nodes
and random nodes, we use a natural notation for optimal Bellman values for
both categories of nodes.

Let w = (z, a) be a random node, and P (z′|z, a) be the probability of being
in node z′ after taking action a in node z. Then, its optimal value is:

V ∗(z, a) =

∫
z′
dP (z′|z, a)V ∗(z′) (1)

Let z be a decision node. Then, its optimal value is defined as follows:

V ∗(z) =

{
supaV

∗(z, a) if z is not a leaf,

r(z) if z is a leaf
(2)

In particular, we formally define optimality of actions as follows:

Definition 1. Let z be a non-leaf decision node, w = (z, a) be a child of z, and
ε > 0. We say that the action a, i.e. the selection of node w, is optimal with
precision ε if and only if V (w) ≥ V ∗(z)− ε.

There may be no optimal action since the number of children is infinite.

Regularity Hypothesis for Decision Nodes. This is the assumption that
for any Δ > 0, there is a non zero probability to sample an action that is optimal
with precision Δ. More precisely, there is a θ > 0 and a p > 1 (which remain the
same during the whole simulation) such that for all Δ > 0,

V (w = (z, a)) ≥ V ∗(z)−Δ with probability at least min(1, θΔp). (3)

3 Specification of the Polynomial Upper Confidence Tree
Algorithm

We refer to [13] for the detailed specification of Upper Confidence Tree; we here
define our variant PUCT (Polynomial Upper Confidence Trees).

In PUCT, we sequentially repeat episodes of the MDP and use information
from previous episodes in order to explore and find optimal actions in the sub-
sequent episodes. We denote by n(z), for any decision node z, the total number

of times that node z has been visited after the nth episode. Hence a node z has
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been encountered at episode n if n(z) ≥ 1, and we always have n = n(r). The
notation is identical for random nodes.

We denote by V̂ (z) the empirical average of a decision node z and V̂ (z, a)
the empirical average of a random node w = (z, a). Note that if PUCT works
properly, V̂ (z) should converge to V ∗(z) when n(z) goes to infinity.

How we select and construct children of a given node depends on two sequences
of coefficients: αd, the progressive widening coefficient, defined for all integer and
semi-integer depths d, and ed, the exploration coefficient, defined only for integer
depths (i.e. decision nodes). These coefficients are defined according to Table 1.
We sometimes indicate, as on Table 1, by a small “R” or “D” if a coefficient
corresponds to a random or decision node, but otherwise it should be clear from
the context.

PUCT algorithm
Input: a root node r, a transition function, an action sampler, a time budget, a
depth dmax, parameters α and e for each layer
Output: an action a
while time budget not exhausted do

while current node is not final do
if current node is a decision node z then

if �n(z)α� > �(n(z)− 1)α� then
we call the action sampler and add a child w = (z, a) to z

else
we choose as an action among the already visited children (z, a) of z,
the one that maximizes its score, defined by:

V̂ (z, a) +

√
n(z)e(d)

n(z, a)
. (4)

end if
else

if �n(w)α� = �(n(w)− 1)α� then
we select the child of z that was least visited during the simulation

else
we construct a new child (i.e. we call the transition function with ar-
gument w)

end if
end if

end while
we reached a final node z with reward r(z); we back propagate all the infor-
mation in the constructed nodes, and we go back to the root node r.

end while
Return the most simulated child of r.

With this algorithm, we see that if a decision node z at depth d has been

visited n times, then we have visited during the simulation exactly �nαD
d  of its

children, a number which depends on the progressive widening constant αD
d .

This is the so-called progressive widening trick [10].
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For a random node z, we actually have the same property, depending on the
double progressive widening constant αR

d : this is the so-called double progressive
widening trick ([7]; see also [11]).

4 Main Result

Definition 2 (Exponentially Sure in n). We say that some property (P )
depending on an integer n is exponentially sure in n (denoted e.s.) if there exists
positive constants C, h, η such that the probability that (P ) holds is at least

1− C exp(−hnη).

Theorem 1. Define all exploration coefficients ed and all progressive widening
coefficients αd as in Table 1. There is a constant C > 0, only depending on dmax,
such that after n episodes of PUCT, for every node z at depth d we have

|V̂ (z)− V ∗(z)| ≤ C

n(z)γd
e.s. in n(z) (5)

Additionally, for every node w = (z, a) at depth d+ 1
2 we have

|V̂ (w) − V ∗(w)| ≤ C

n(w)
γ
d+1

2

e.s. in n(w) (6)

Corollary 1. After n episodes, let wn(r) be the most simulated child node of r.
Then,

wn(r) is optimal with precision O
(
n−

1
10dmax

)
e.s. in n (7)

Table 1. Definition of coefficients and convergence rates

Decision Node (d integer) Random Node (d semi-integer)

α
D
d :=

1

10(dmax − d)− 3
for d ≤ dmax − 1

ed :=
1

2p

(
1−

3

10(dmax − d)

)
for d ≤ dmax − 1

αR
d :=

⎧⎨
⎩

3
10(dmax−d)−3

for d ≤ dmax − 3
2

1 for d = dmax − 1
2

γD
d :=

1

10(dmax − d)
for d ≤ dmax − 1

γR
d :=

1

10(dmax − d)− 2
for d ≤ dmax −

1

2

The proof is based on an induction on the following property and is detailed
in the following three sections. Let us define this property.

Definition 3 (Induction Property Cons(γd, d))
There is a Cd > 0 such that for all nodes at integer depth d,

|V̂ (z)− V ∗(z)| ≤ Cdn(z)
−γd e.s. in n(z)

and for all nodes w at semi integer depths d+ 1
2 ,

|V̂ (w) − V ∗(w)| ≤ Cd+ 1
2
n(w)

−γ
d+1

2 e.s. in n(w)
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In Section 5, we show that if Cons(γd, d) holds for d ≥ 1, i.e. for decision
nodes in one given layer, then Cons(γd− 1

2
, d− 1

2 ) holds, i.e. holds for the random

nodes in the above layer. In Section 6, we show that if Cons(γd+ 1
2
, d+ 1

2 ) holds

for d ≥ 0, i.e. for random nodes in one given layer, then Cons(γd, d) holds, i.e.
holds for the decision nodes in the above layer. Finally, we establish in Section
7 that Cons(γ, d) holds for maximal depth dmax, which will settle the proof of
Theorem 5.

5 From Decision Nodes to Random Nodes

In this section we consider a random node w with semi-integer depth d− 1
2 ≥ 0.

We suppose that there exist a γD
d > 0 such that Cons(γD

d , d) holds for any

child node z of w. Recall that all nodes at this depth have �n
αR

d− 1
2  constructed

children when they have been visited n times. We will show that we can define
αR
d− 1

2

so that Cons(γR
d− 1

2

, d− 1
2 ) holds. For convenience, if w is a random node,

we will refer to the ith child zi of w by its index i directly. Then, the number
of visits in zi after the n

th iteration of PUCT will be simply called n(i) instead
of n(zi). Similarly, the empirical value of this node will be noted V̂ (i) instead of
V̂ (zi).

5.1 Children of Random Nodes Are Selected almost the Same
Number of Times

With our politics for dealing with random nodes, described in section 3, the kth

child of a random node w is constructed at episode #k 1
α $. We now show that all

constructed children of w but the last one are visited almost the same number
of times.

Lemma 1. Let w be a random node with progressive widening coefficient α ∈
]0; 1[. Then after the nth visit of w in the simulation, all children zi, zj of w with
1 ≤ i, j < �nα satisfy

|n(i)− n(j)| ≤ 1. (8)

In fact, in the next section, we will only use the following consequence of Lemma
1.

Corollary 2. When a random node z is visited for the nth time, all children of
z have been selected at most n

�nα�−1 times, and all children of z but the last one

have been selected at least n
�nα� − 1 times.

Proof. For length reasons, we only provide the following sketch of the proof:

Let us write k the kth child of w for all k ≥ 1, and nk = #k 1
α $ the number of

visits in w when child k was introduced. Remark the statement of Lemma 1 is
equivalent to:

(8) is satisfied for all children of z at every time step nk − 1 for k ≥ 2 .
Then, prove the above statement by induction, by proving the following
equivalent formulation: nk+1 − nk ≥ �nk−1

k−1 − 1 .
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5.2 Consistency of Random Nodes

Lemma 2 (Random Nodes are Consistent). If there is a 1 ≥ γd > 0 such
that for any child z of the random node w we have Cons(γd, d), then we have
Cons(γd− 1

2
, d − 1

2 ), with γd− 1
2
= γd

1+3γd
if we define the progressive widening

coefficient αR
d− 1

2

by αR
d− 1

2

= 3γd

1+3γd
.

Proof. From now on, w is fixed in order to simplify notation; therefore, we simply
denote αR

d− 1
2

by α, and n(w) by n.

Fix n such that nα ≥ 3. Define i0 = �nα as the last constructed child of node
w, and r = �nα − 1 = i0 − 1. To prove the result, we need to prove an upper
bound on the following quantity, that holds exponentially surely in n:

|V̂ (w) − V ∗(w)| = |

⎛⎝ ∑
1≤i<i0

n(i)

n
V̂ (i) +

n(i0)

n
V̂ (i0)

⎞⎠− V ∗(w)|

Decompose this as

|V̂ (w) − V ∗(w)| ≤ |
∑

1≤i<i0

(
n(i)

n
− 1

r

)
V̂ (i)| (9)

+ |
∑

1≤i<i0

1

r

(
V̂ (i)− V ∗(i)

)
| (10)

+ |
∑

1≤i<i0

1

r
(V ∗(i)− V ∗(w)) | (11)

+ |n(i0)
n

V̂ (i0)| (12)

First consider (9). By Lemma 1, there is a integer p such that all children
i = 1, · · · , i0 − 1 have been selected p or p+ 1 times, with p = O

(
n1−α

)
. So, we

have for all i = 1, 2, · · · , i0 − 1,

|n(i)
n

− 1

�nα − 1
| ≤ | p

n
− 1

�nα − 1
|+ 1

n

The definition of p gives (i0 − 1)p ≤ n ≤ i0(p+ 1), so that

| p
n

− 1

i0 − 1
| ≤ i0 + p

(i0 − 1)n
= O

(
1

n
+

1

n2α

)
so that in the end for (9) we have

|
∑

1≤i<i0

(
n(i)

n
− 1

r

)
V̂ (i)| = O

(
nα

(
1

n
+

1

n2α
+

1

n

))
= O

(
1

n1−α
+

1

nα

)
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Consider now (10). Cons(γd, d) holds, so for each child i = 1, 2, · · · , �nα − 1
of w, Lemma 1 leads to:

|V̂ (i)− V (i)| ≤ Cdp
−γd ≤ Cd

1

�n1−α γd
e.s. in n1−α

Finally for (10) it is exponentially sure in n that

|
∑

0≤i<i0

1

�nα − 1

(
V̂ (i)− V ∗(i)

)
| = O

(
1

n(1−α)γd

)
. (13)

Now we turn to (11). Since w is a random node, the value V ∗(i) of each new
child i of w constructed by the algorithm is given by a random law whose mean
is V ∗(w). Thus we can apply Hoeffding’s inequality to the sum in (11) and we
obtain that for t > 0,

|
∑

0≤i<i0

1

�nα − 1
(V ∗(i)− V ∗(w)) | ≤ t (14)

with probability at least 1− 2 exp
(
−2t2 (�nα − 1)

)
= 1− 2 exp(−Cn

γd
1+3γd )

with t := n
− γ′

1+3γd , α = 3γd

1+3γd
, and C > 0. This proves that (14) is e.s. in n.

Finally consider (12): since the last child of w has been selected at most p
times, we have ∣∣∣∣n(i0)n

V̂ (i0)

∣∣∣∣ = 1

n
×O

( n

nα

)
= O

(
1

nα

)
.

All in all, we have have shown that it is exponentially sure in n = n(w) that

|V̂ (w) − V ∗(w)| = O

⎛⎜⎜⎜⎜⎝ 1

n1−α
+

1

nα︸ ︷︷ ︸
(9)

+
1

n(1−α)γd︸ ︷︷ ︸
(10)

+
1

n
γd

1+3γd︸ ︷︷ ︸
(11)

+
1

nα︸︷︷︸
(12)

⎞⎟⎟⎟⎟⎠ . (15)

With α = 3γd

1+3γd
and γd ≤ 1, it is straightforward to check that the

smallest exponent is γd

1+3γd
, so that Cons(γd− 1

2
, d − 1

2 ) is true with γd− 1
2

=
γd

1+3γd

6 From Random Nodes to Decision Nodes

Let z be a non leaf decision node at depth d. In this section, we will show that
if the induction property holds for all random nodes at depth d+ 1

2 , it will hold
for z.



202 D. Auger, A. Couëtoux, and O. Teytaud

Lemma 3 (Children of Decision Nodes are Selected Infinitely Often).
Let f be a non-decreasing map from N to N. Consider a stochastic bandit setting
with a countable set of children, progressive widening coefficient α and explo-
ration function f , i.e. the score at time n of a child i is computed by

scn(i) = V̂n(i) +

√
f(n)

n(i)
.

Then if i denotes the ith constructed child, for all n ≥ i
1

α(1−α) we have

n(i) ≥ 1

4
min(f(n1−α), n1−α).

In particular, all constructed children are selected infinitely often provided that
lim+∞ f = +∞.

Proof. Fix n and consider the child i0 maximizing n(i0), i.e. the most selected
child at time n. Let n′ be the last time i0 has been selected. Since there are at
most nα children at time n we have

n′(i0) = n(i0) ≥
n

nα
= n1−α (16)

where (i) n′(i0) is the number of times i0 has been drawn before time n′; (ii)
n(i0) is the number of times i0 has been drawn before time n. Thus we also have

n′ ≥ n′(i0) ≥ n1−α. (17)

Consider now any child i already constructed at time n′. Since i0 was selected
at time n′ we must have√

f(n′)

n′(i)
≤ scn′(i) ≤ scn′(i0) ≤ 1 +

√
f(n′)

n′(i0)
. (18)

Rewriting 18 and using 16 leads to

1√
n′(i)

≤ 1√
n1−α

+
1√
f(n′)

≤ 2√
min(f(n′), n1−α)

(19)

so that for all children i at time n existing at time n′ we have

n(i) ≥ n′(i) ≥ 1

4
min

(
f(n1−α), n1−α

)
as announced. Finally, note that a child i existed at time n′ if i ≤ (n1−α)α ≤ n′α,
which leads to the prescribed condition.

Corollary 3. For the exploration function f(n) = ne with 0 < e < 1 we obtain

n(i) ≥ 1

4
ne(1−α) if i ≤ nα(1−α).
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Lemma 4 (Decision Nodes are Consistent). If there is a 1
2 > γd+ 1

2
> 0

such that for any child w of the decision node z we have Cons(γd+ 1
2
, d+ 1

2 ), then

we have Cons(γd, d) with γd =
γ
d+1

2

1+7γ
d+1

2

if we define the progressive widening

coefficient αD
d by αD

d =
γ
d+1

2

1+4γ
d+1

2

.

Proof. Let z be a decision node at depth d ≥ 0. For simplicity, we note αd = α
and ed = e. Suppose that there is a 1

2 > γd+ 1
2
> 0 such that for all random

nodes w at depth d+ 1
2 , Cons(γd+ 1

2
, d+ 1

2 ) is true. To show Cons(γd, d), we will

proceed in two steps: first we establish an upper bound on V̂ (z) − V ∗(z), and
then a lower bound.

Upper Bound. First we obtain an upper bound on V̂ (z)−V ∗(z). Let ε < 1−α
to be fixed later. We partition the children of z in two classes:

– class I : children i such that n(i) ≤ n(z)1−α−ε ;
– class II : other children;

V̂ (z)− V ∗(z) =
∑

i in class I

n(i)

n(z)
( ˆV (i)− V ∗(z))+

∑
i in class II

n(i)

n(z)
( ˆV (i)−V ∗(z))

≤
∑

i in class I

n(i)

n(z)
+

∑
i in class II

n(i)

n(z)
(V̂ (i)− V ∗(i))

≤ nα × n1−α−ε

n
+ Cd+ 1

2
(n)

−γ
d+1

2
(1−α−ε)

e.s. in n
−γ

d+1
2
(1−α−ε)

by induction

≤ n−ε +Cd+ 1
2
n
−γ

d+1
2
(1−α−ε)

.

We now choose ε =
γ
d+1

2
(1−α)

1+γ
d+1

2

and obtain

V̂ (z)− V (z) ≤ (1 + Cd+ 1
2
)n
−γ

d+1
2

1−α
1+γ

d+1
2 e.s. in n (20)

Lower Bound
We assumed that there exists a constant θ such that when we pick a new child
for z, it has a value satisfying V (i) ≥ V ∗(z) − Δ with probability at least
min(1, θΔp).

The induction hypothesis on the next level gives us a fixed coefficient γd+ 1
2
∈

]0; 0.5[ such that all children w of z verify e.s. in n(w):∣∣∣V ∗(w) − V̂ (w)
∣∣∣ ≤ Cd+ 1

2
n(w)

−γ
d+ 1

2 .

The parameters to be fixed on this level are

– the progressive widening coefficient α :=
γ
d+1

2

1+4γ
d+1

2

;
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– the exploration coefficient e := 1
1+4γ

d+1
2

− 1
γ
d+1

2

(1− 1
2p )α = 1

2p(1+4γ
d+1

2
) .

To these coefficients we add a parameter ξ which we define by

ξ :=
1

1 + eγd+ 1
2
(1− α)

(21)

and let Δ :=

(
1

4
nξe(1−α)

)−γ
d+1

2

. (22)

First step : exponentially surely in n there exists at time #nξ(1−α)$
a child i0 of z such that

V (i0) ≥ V (z)−Δ and i0 ≤ nξ(1−α)α. (23)

At time step #nξ(1−α)$, the number of children of z is a at least �nξ(1−α)α .
The (true hidden optimal) values of these children being given randomly and
independently, the probability there is not a single child i0 with V (i0) ≥ V ∗(z)−
Δ at time #nξ(1−α)$ is at most

pn := (1− θΔp)�n
ξ(1−α)α�

log pn ∼n nξ(1−α)α log(1− θΔp)

∼n −nξ(1−α)αθ

(
1

4
nξe(1−α)

)−γ
d+1

2
p

∼n −4
γ
d+1

2
p
θn

ξ(1−α)(α−eγ
d+1

2
p)

∼n −4
γ
d+1

2
p
θnξ(1−α)0.5α.

The exponent of n in this quantity being positive, we deduce that the existence
of i0 is exponentially sure in n.

Second step: e.s. in n, all children selected at a time n′ between nξ

and n have a high score.

Let n′ be such that nξ ≤ n′ ≤ n. Then n′
α(1−α) ≥ nξ(1−α)α ≥ i0. And, by

Corollary 3,

n′(i0) ≥
1

4
n′

e(1−α) ≥ 1

4
nξe(1−α).

Hence there exists a C′ > 0 by the induction hypothesis such that we have,
as long as nξ ≤ n′ ≤ n,

V̂ (i0) ≥ V ∗(i0)− C′
(
1

4
nξe(1−α)

)−γ
d+1

2

e.s. in n′

≥ V ∗(z)− (1 + C′)Δ e.s. in n′.

Consider any child i1 chosen by the algorithm at a time n′ ≥ nξ, i.e. the one
which has the greatest score at time n′. All values being considered at time n′,
we have
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V̂ (i1) +

√
n′e

n′(i1)
≥ V̂ (i0) +

√
n′e

n′(i0)
,

hence V̂ (i1) +

√
ne

n′(i1)
≥ V ∗(z)− (1 + C′)Δ e.s. in n′. (24)

To conclude this part, all we have to do is to show that some property expo-
nentially sure in n′ is also exponentially sure in n. This easily follows from the
fact that n′ ≥ nξ and that ξ, is bounded below by some constant. One can easily
check from the definition of ξ that ξ ≥ 2

3 , since e ≤ 1
2 .

Third step : lower bound on V̂ (z).
Consider a child i1 selected after nξ. By the previous step, exponentially surely

in n, this child must either satisfy√
ne

n(i1)
≥ Δ (25)

or V̂ (i1) ≥ V (z)− (2 + C′)Δ. (26)

Under this hypothesis we can split the children of z in three categories:

1. children i1 visited only before time nξ ;
2. children i1 visited after nξ satisfying (25) ;
3. children i1 visited after nξ satisfying (26) .

Let us use this decomposition to lower bound the sum

V̂ (z)− V ∗(z) =
∑

i=1···�nα�

n(i)

n
(V̂ (i)− V ∗(z)).

For the children in the first category, we have∣∣∣∣∣ ∑
i1in cat.1

n(i1)

n
(V̂ (i1)− V ∗(z))

∣∣∣∣∣ ≤
∑

i1in cat.1 n(i1)

n
≤ nξ

n
.

For children in the second category, since there are at most nα of these chil-
dren, we have∣∣∣∣∣ ∑

i1in cat.2

n(i1)

n
(V̂ (i1)− V ∗(z))

∣∣∣∣∣ ≤
∑

i1in cat.2 n(i1)

n
≤ nα

n

ne

Δ2
=

nα+e−1

Δ2
.

Finally, using (26) for the third category of children, we see that

V̂ (z)− V ∗(z) ≥ −(2 + C′)Δ(1 − nξ−1)− nξ−1 − nα+e−1

Δ2
.
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Now we compare the three terms

Δ,nξ−1 and
nα+e−1

Δ2
. (27)

By (21) we have ξ − 1 = −ξeγd+ 1
2
(1− α), thus by (22), nξ−1 = 4

−γ
d+1

2 Δ ≤ Δ.

This implies that the term nξ−1 in the three terms (Eq. 27) is O(Δ). We now
compare the two other terms; from the definition of Δ, we see that we must

compare nα+e−1 and Δ3 = 4
3γ

d+1
2 n
−3ξe(1−α)γ

d+1
2 . Using the definitions of ξ, e

and α, one can check that:

1− e− α ≥
3γd+ 1

2
+ 1

2

1 + 4γd+ 1
2

≥ 1

2

and, using ξ ≤ 1, (1− α) ≤ 1, eγd+ 1
2
=

γ
d+1

2

2(1+4γ
d+1

2
) ≤ 1

8 ,

3ξe(1− α)γd+ 1
2
≤ 3

8

ne+α−1 ≤ n
−3ξe(1−α)γ

d+1
2 = 4

−3γ
d+1

2 Δ3 ≤ Δ3

so that V̂ (z)−V (z) ≥ −(5+C ′)Δ. Finally, one can check that ξe(1− a)γd+ 1
2
≥

γ
d+1

2

1+7γ
d+1

2

so that V̂ (z) − V ∗(z) ≥ −(5 + C′)4
γ
d+1

2 n

γ
d+1

2
1+7γ

d+1
2 which can now be

written V̂ (z)−V ∗(z) ≥ −Cn−γ with C := (5+C′)4
γ
d+1

2 and γ =
γ
d+1

2

1+7γ
d+1

2

.

7 Base Step, Initialization and Conclusion of the Proof

Let w be a random node of depth dmax − 1
2 . Its children are leaf nodes, and all

have a fixed reward in [0; 1]. These children form a ensemble of independent and
identically distributed variables, all following the random distribution associated
with w, of mean V ∗(w). Hoeffding’s inequality gives, for t > 0,

P

⎛⎝| 1
n

∑
zichildofw

V ∗(zi)− V ∗(w)| ≥ t

⎞⎠ ≤ 2 exp(−2t2n).

Setting the exploration coefficient αdmax− 1
2
to 1 (since there is no point in

selecting again children with a constant reward) and t to n−
1
3 , we obtain

P
(
| ˆV (w) − V ∗(w)| ≥ n−

1
3

)
≤ 2 exp(−2n

1
3 )

so that | ˆV (w)−V ∗(w)| ≤ n−
1
3 is exponentially sure in n, i.e. Cons(13 , dmax − 1

2 )
holds. Of course one can consider a coefficient different from 1

3 for t, as long as
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it is less than 1
2 – we just aim so as to simplify the definition of coefficients. This

gives a singular value of αR
dmax− 1

2

= 1 and an initialization of the convergence

rate as γR
dmax− 1

2

= 1
3 . It is now elementary to check this value of 1

3 for γ at depth

dmax − 1
2 , together with recursive definitions of coefficients derived in Lemmas 2

and 4, yield the values given on Table 1. This concludes the proof of Theorem 5.

8 Experimental Validation

In this section, we show some experimental results, by implementing PUCT on
two tests problems. We used fixed parameters α and e, quickly tuned by hand. We
added a custom default policy, as seen in [6] and [8], that is computed offline using
Direct Policy Search (DPS), once per problem instance. We also gave heavier
weights to the decisions with high average value when computing the empirical
value of a state, as it showed increased performances in practice. There are many
ways to finely tune PUCT that we did not explore. Our goal was simply to check
that our PUCT has a satisfying behaviour, to verify our theoretical results. We
acknowledge that depending on implementation subtleties, results can vary. Our
source code is available upon request.

Cart Pole. We used the well known benchmark of cart pole, and more precisely
the version presented in [17]. As our code uses time budget, and not a limit in
the number of iterations, we only approximated their limit of 200 roll outs (on
our machine, 0.001 second per action. We took HOLOP as a baseline, that yields
an average reward of −47.45[17]. Our results are shown in Table 2. Though cart
pole is not as challenging as real world applications, these results are encouraging
and supporting our theoretical results of consistency.

Unit Commitment. We used a unit commitment problem, inspired by ongoing
work with an industrial partner. The agent owns 2 water reservoirs and 5 power
plants. Each reservoir is a free but limited source of energy. Each power plant has
a fixed capacity, has a fixed cost to be turned on, as well as quadratic running
costs that change over time. The time horizon was fixed to 6 time steps. At
each time step, the agent decides how to produce energy in order to satisfy a
varying demand, and the water reservoirs receive a random inflow. Failure to
satisfy the demand incurs a prohibitive cost. This problem is challenging for
many reasons, including: the action space is non convex, the objective function
is non linear and discontinuous, there are binary and continuous variables, and
finally, the action space can be subject to operational constraints that make a
discretization by hand very tedious. The purpose of PUCT in this application is
not to solve all of it, but rather to improve existing solvers. This is an especially
promising method, with the many powerful heuristics available for this problem.
The results are shown in Table 2. PUCT manages to reliably improve the actions
suggested by DPS, and its performances increase with the time budget it is given.
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Table 2. Left: Cart Pole results; episodes are 200 time steps long. Right: Unit Com-
mitment results, with 2 stocks, 5 plants, and 6 time steps.

Budget (s) 0.001 0.004

HOLOP -47.45 ± . .
DPS -838.7 ± 78.0 -511.0 ± 100.0

PUCT+DPS -13.84 ± 0.80 -11.11 ± 0.95

Budget (s) 0.04 0.16 0.64

DPS -8.02 ± 0.98 -7.06 ± 0.024 -6.98 ± 0.03
PUCT+DPS -7.23 ± 0.45 -6.69± 0.03 6.57 ± 0.02

9 Conclusion

[13] have shown the consistency of the UCT approach for finite Markov Decision
Processes. We have shown the consistency of our modified version, with polyno-
mial exploration and double progressive widening, for a more general case. [7]
have shown that the classical UCT is not consistent in this case and already
proposed double progressive widening; we here give a proof of the consistency
of this approach, when we use polynomial exploration; [7] was using logarithmic
exploration.

Some extensions of our work are straightforward. We considered trees, but
the extension to MDP with possibly two distinct paths leading to the same node
is straightforward. Also, we assumed, only for simplifying notation, that the
probability that a random node leads twice to the same decision node (when
drawn independently with the probability distribution of the random node) is
zero, but the extension is possible. On the other hand, we point out two deeper
limitations of our work: (i) We do not know if similar results can be derived
without switching to polynomial exploration. (ii) The general case of a possibly
cyclic MDP with unbounded horizon is not covered by our result.

We have shown consistency in the sense that Bellman values are properly
estimated. This does not explain which decision should be actually made when
PUCT has been performed for generating episodes and estimating V values.
Our result implies that choosing the action by empirical distribution of play (i.e.
randomly draw a decision with probability equal to the frequency at which it
was simulated during episodes; see discussion in [4]) is asymptotically consistent.
Also, choosing the most simulated child is consistent (this is a classical method
in UCT), as well as selecting the child with best V̂ among child nodes of the
root of class II; our results do not show the superiority of one or another of these
recommendation methodologies.

Our experimental results on the classical Cart pole problem show that PUCT
outperforms HOLOP; PUCT also outperformed a specialized DPS on a unit
commitment problem. This last empirical result is especially interesting because
unit commitment problems are, in practice, highly non Markovian. And, even
though we worked in the framework of MDP to relate to its abundant literature,
our algorithm does not actually need the random process to be Markovian, as
the history is naturally embedded in the tree structure. Hence, PUCT could be a
way to approach difficult and more general non Markovian continuous sequential
decision making problems.
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Abstract. The problem of optimizing unknown costly-to-evaluate func-
tions has been studied extensively in the context of Bayesian optimiza-
tion. Algorithms in this field aim to find the optimizer of the function
by requesting only a few function evaluations at carefully selected lo-
cations. An ideal algorithm should maintain a perfect balance between
exploration (probing unexplored areas) and exploitation (focusing on
promising areas) within the given evaluation budget. In this paper, we
assume the unknown function is Lipschitz continuous. Leveraging the
Lipschitz property, we propose an algorithm with a distinct exploration
phase followed by an exploitation phase. The exploration phase aims to
select samples that shrink the search space as much as possible, while
the exploitation phase focuses on the reduced search space and selects
samples closest to the optimizer. We empirically show that the proposed
algorithm significantly outperforms the baseline algorithms.

Keywords: Bayesian Optimization, Exploration, Exploitation, Lipschitz
Continuity.

1 Introduction

In many applications, we would like to optimize an unknown function f(·) that
is costly to evaluate over a compact input space. Classic optimization methods,
such as gradient descent, cannot be applied to this type of problems since they
need to evaluate the function frequently. In contrast, Bayesian Optimization
(BO) [1,2] algorithms try to solve this problem with a small number of function
evaluations. Bayesian optimization algorithms, generally, have two key compo-
nents: 1) A posterior model to predict the output value of the function at any
arbitrary input point, and 2) A selection criterion to determine which point to
be evaluated next.

The first step of a BO algorithm is to learn a posterior probabilistic model
over unobserved points of the function. Gaussian processes (GP) [3] have been
used in the literature of Bayesian optimization as the probabilistic posterior
model. GP models the function output for any unobserved point in the input
space as a normal random variable, whose mean and variance depend on the
location of the point in relation to a set of given observed samples. Based on
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the learned posterior model, a selection criterion is then used to choose the
next sample to be evaluated. A number of selection criteria have been proposed
in the literature of Bayesian optimization. They typically work by selecting an
example that optimizes some objective function designed to balance between
exploring unobserved area and exploiting areas that are promising based on
existing observations. Maximum probability of improvement [4,5] and maximum
expected improvement (EI) [6] are two successful examples.

In this paper, we focus on the design of the selection criterion for Bayesian
optimization. In particular, we study BO in a sequential setting [1,7], where
the samples are chosen sequentially and a selection is made only after the func-
tion evaluations of the previous samples are revealed. We make a mild assump-
tion that the unknown function is Lipschitz-continuous. Leveraging the Lipschitz
property, we design a selection algorithm that operates in two distinct phases:
the exploration phase and the exploitation phase. In general, in the context of
Bayesian optimization [1] and bandit problems [8], the exploration phase selects
sample from unexplored area while the exploitation focuses on promising area.
In this paper, we introduce a new interpretation of exploration and exploitation.

The exploration phase of the proposed algorithm, at each step, selects a sample
that eliminates the largest possible portion of the input space while guaranteeing,
with high probability, that the eliminated part does not include the maximizer
of the function. Hence, the exploration stage of the algorithm tries to shrink the
search space of the function as much as possible. In contrast, the exploitation
phase of our algorithm selects the point which is believed to be the closest sample
to the optimal point with high probability.

Experimental results over 8 real and synthetic benchmarks indicate that the
proposed approach is able to outperform the Expected Improvement (EI) cri-
terion, one of the current state-of-the-art BO selection methods. In particular,
we show that our algorithm is better than EI both in terms of the mean and
variance of the performance. We also investigate whether combining our explo-
ration stage with EI can boost the performance of EI. However, the results were
negative. Sometimes it helps and sometimes it hurts and on average we observe
little to no improvement to EI. This is possibly because our exploration method
actively aims to eliminate regions from the input space and the EI criterion does
not take that into consideration when selecting samples.

The remainder of the paper is organized as follows. In Section 2, we motivate
the use of exploration-exploitation Bayesian optimization by analyzing the be-
havior of EI. Section 3 introduces our algorithm and provides insights into both
theoretical and practical aspects of the algorithm. Experimental evaluation of our
algorithm is shown in Section 4. Finally, the paper is concluded in Section 5.

2 Motivating Observation

In this section, we motivate our approach by revealing a key observation about
the well known Expected Improvement (EI) algorithm [6]. The original EI is
defined as

EI(x) = E
[
(f(x)− ymax) I{f(x)−ymax>0}

]
, (1)
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where I{·} is the indicator function. Hence, it measures the expected improve-
ment of the choice of x over the current maximum function evaluations ymax

over observed samples.Using Gaussian Process (GP) [3] as the posterior model
of the unknown function, the EI objective can be represented by

EI(x|O) = (μx|O − ymax)Φ

(
μx|O − ymax

σx|O

)
+ σx|O φ

(
μx|O − ymax

σx|O

)
, (2)

where, μx|O and σx|O are the mean and standard deviation associated with
the point x by GP, and, Φ(·) and φ(·) are standard Gaussian CDF and PDF,
respectively. Here, O = {(xi, f(xi))}ni=1 is the set of n observed samples xO with
their function evaluations f(xO) and define ymax = maxxi∈xO f(xi). Further,
the means and variances are defined as follows:

μx|O = k(x, xO) k(xO, xO)
−1 f(xO)

σ2
x|O = k(x, x) − k(x, xO) k(xO, xO)

−1 k(xO, x),

where k(·, ·) is some kernel function. In this paper, we consider Gaussian kernel
k(x1, x2) = exp(− 1


‖x1 − x2‖22).

EI has been widely used and studied; however, there has been always a concern
about balancing the exploration and exploitation of EI. The main reason for
this concern is that even though the asymptotic convergence of EI is guaranteed
under certain conditions [9], EI tries to exploit the information and potentially
can request a lot of samples if it hits a local optimum region, while we have a
limited number of experiments. There has been some attempts in the literature
to address this concern with varying degrees of success, which we briefly discuss
here.

(a) Considering the original definition of EI, researchers have proposed to replace
ymax with a smaller value to make EI more exploitative and with a larger
value to make it more explorative. In particular, [10] suggested ymax+ ξ and
[11] suggested (1 + ξ)ymax to replace ymax. However, this approach has not
seen much empirical success. [10] showed that starting with large values of
ξ (to be explorative in the beginning) and cooling it down (to make it more
and more exploitative) makes little or no difference in the performance of EI.

(b) On a separate line of work, [12] proposed to consider a surrogate function

EIξ(x) = E
[
(f(x) − ymax)

ξ I{f(x)−ymax>0}
]
.

For ξ = 1, this objective tries to improve over ymax (exploiting mode) and if
we decrease ξ it starts to explore uncertain areas (exploration mode). This
method is very sensitive to small changes in ξ and except for very specific
setup like the one used in [13], there is no systematic way to choose ξ. This
makes it nearly impossible to use this method.
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Fig. 1. Plot of regret versus the number of random exploration for EI algorithm. For a
fixed budget nb, we run a number of experiments as follows: first we consider the case
where there are 1 random samples followed by nb − 1 EI samples, next we consider
the case where there are 2 random samples followed by nb − 2 EI samples and so on.
For 2D and 3D functions, we let nb = 15 and for high-dimensional functions, we let
nb = 35. This result shows that the best EI performance is when we do not do random
exploration.

(c) The third proposal is to have a “random” exploration phase proceeding EI.
In this approach, we take a number of random samples before switching
to EI. We analyzed this method in Fig. 1. For a fixed budget nb, we run
nb experiments as follows: first we consider the case where there is 1 ran-
dom sample followed by nb − 1 samples selected by the EI criterion, next
we consider the case where there are 2 random samples followed by nb − 2
EI samples and so on. The purpose of this investigation is to understand
whether exploring with random samples prior to selecting with EI can im-
prove the performance of EI, and if so how much exploring is necessary.
We run this experiments on a number of different functions introduced in
Section 4. These experiments reveal that “random” exploration never helps
EI, since the regret monotonically increases as we increase the number of
random samples from 1 to nb. One possible explanation for this behavior
is that the values of the function are highly correlated and hence, uniform
sampling does not efficiently represent the skewness of the data points.

Based on the existing literature as well as our empirical investigation of EI
discussed above, we would like to know whether or not it is possible to design
an algorithm that operates in two naturally defined phases of exploration and
exploitation and achieves consistently better performance than EI. We devote
the next section to answer this question and introduce our proposed algorithm.
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Algorithm 1. Next Best exploRative Sample (NBRS)

Input: Maximum M , Lipschitz Constant L and Set of observed samples
{(x1, f(x1)), . . . , (xt, f(xt))}
Output: Next best explorative sample x

Dt = D−
t⋃

i=1

S(xi, rxi)

x ←− argmax
x∈Dt

Vol

(
Dt∩S

(
x,

∣∣M − μx|O
∣∣− 1.5σx|O

L

))

3 Finite Horizon Bayesian Optimization

Not being able to balance the exploration-exploitation, EI might have poor per-
formance especially when the query budget is small. In this section, we propose
a two-phase exploration/exploitation algorithm that outperforms EI with its
smart exploration and exploitation.

3.1 Exploration

Generally, a good exploration algorithm should be able to shrink the search
space, so that we are left with a small region to focus on during the exploit stage.
Let D =

⊗
[ai, bi] ∈ Rd be the Cartesian product of intervals [ai, bi] for some

ai < bi and i ∈ {1, 2, . . . , d}. Suppose the unknown function f : D '→ [m,M ]
(with f(x∗) = M) is a Lipschitz function over D with constant L, that is for all
x1, x2 ∈ D, we have

|f(x1)− f(x2)| ≤ L‖x1 − x2‖2.

Notice that if the function is not Lipschitz, then there is no hope that we can find
the global optimum of f(·) even with infinitely countable evaluations. Thus, the
Lipschitz continuity assumption is not a strong assumption. Moreover, functions
with larger L are harder to optimize since they change more abruptly over the
space.

For any point x ∈ D, let rx = M−f(x)
L be the associated radius to the point x.

By Lipschitz continuity assumption, we know that x∗ /∈ S(x, rx), where, S(x, rx)
is the set of all points inside the sphere (or circle) with radius rx centered at x
(and single point x if rx ≤ 0); otherwise, the Lipschitz assumption is violated.
This means if we have a sample at point x, then we do not need any more
samples inside S(x, rx).

The expected value of rx satisfies E[rx] =
|M−μx|

L . Since f(x) is a normal
random variable N (μx, σ

2
x), using Hoeffding inequality for all ε > 0, we have

P

[
rx <

|M − μx|
L

− ε

]
≤ exp

(
−2ε2L2

σ2
x

)
.
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Replacing ε with 1.5σx

L , the above inequality entails that with high probability

( 99%), rx ≥ |M−μx|−1.5σx

L . Hence, a “good” algorithm for exploration should
try to find x that maximizes the lower bound on rx. This choice of x will remove
a large volume of points from the search space. Note, however, if x is close to
the boundaries of D, then it might be the case that most of the volume of the
sphere lies outside D. Also, the sphere associated with x might have significant
overlap with spheres of other points that are already selected. To fix this issue,
we pick the point whose sphere has the largest intersection with unexplored
search space in terms of its volume. The pseudo code of this method is described
in Algorithm 1, which we refer to as the Next Best exploRative Sample (NBRS)
algorithm. NBRS achieves the optimal exploration in the sense that it maximizes
the expected explored volume.

The value of |M − μx| − 1.5σx might be negative, especially for large values
of σx. This artifact happens at points x that are “far” from previously observed
samples. To prevent/minimize this, we need to make sure that the observed
samples affect the mean and variance of all points in the space. For example, if
we use the Gaussian kernel k(x1, x2) = exp(− 1


r
‖x1−x2‖22) for exploration, then

we need to choose �r large enough to make sure each observed sample affects all
the points in the space, e.g., �r ≥

∑d
i=1(bi − ai)

2. If we pick small �r, then the
exploration algorithm starts exploring around the previous samples and extend
the explored area gradually to reach to the other side of the search space. This
strategy is not optimal if we have limited samples for exploration.

To implement NBRS, we need to maximize the volume

g(x) = Vol

(
Dt ∩ S

(
x,

∣∣M − μx|O
∣∣− 1.5σx|O
L

))
where Dt represents the current unexplored input space. To evaluate g(x), we

take a large number of points N inside the sphere S(x,
|M−μx|O|−1.5σx|O

L ) uni-
formly at random. Then, for each point, we check if it crosses the borders [ai, bi]
or falls into the spheres of previously observed samples. If not, we count that
point as a newly explored point. Finally, if there are n newly explored points,

then we set g(x) ≈ n
N

(
|M−μx|O|−1.5σx|O

L

)d
.

To optimize g(x), one can use deterministic and derivative free optimizers like
DIRECT [14]. The problem is that DIRECT only optimizes Lipschitz continuous
functions; however, g(x) is not necessarily Lipschitz continuous. In our imple-
mentation, we take a large number of points inside Dt and evaluate g(·) at those
points and pick the maximum. This method might be slower than DIRECT,
but avoids inaccurate results of DIRECT especially when Dt describes a small
region.

3.2 Exploitation

In the exploitation phase of the algorithm, we would like to use the information
gained in the exploration phase to find the optimal point of f(·). Suppose we
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Algorithm 2. Next Best exploItive Sample (NBIS)

Input: Maximum M , Lipschitz Constant L and Set of observed samples
{(x1, f(x1)), . . . , (xq, f(xq))}
Output: Next best exploitive sample x

Dq = D−
q⋃

i=1

S(xi, rxi)

x ←− argmin
x∈Dq

Vol

(
S

(
x,

∣∣M − μx|O
∣∣+ 1.5σx|O

L

))

have explored the search space with t samples and we want to find x∗ ∈ Dt. In
order to exploit, we would like to find points x whose sphere is small. The reason

is that if rx = M−f(x)
L ≤ γ is small enough, then by local strong convexity of

f(·) around x∗, for some constant κ we have

κ

2
‖x− x∗‖22 ≤ M − f(x) ≤ Lγ.

Following the argument in Section 3.1, we estimate rx by its mean E[rx] =
|M−μx|

L . By Hoeffding inequality, for all ε > 0, we have

P

[
rx >

|M − μx|
L

+ ε

]
≤ exp

(
−2ε2L2

σ2
x

)
.

Similarly, replacing ε with 1.5σx

L , the above inequality entails that with high

probability ( 99%), rx ≤ |M−μx|+1.5σx

L . Hence, a “good” algorithm for exploita-
tion should try to find the point x that minimizes the upper bound on rx. This
choice of x introduces the expected closest point to x∗. We present the pseudo
code of this method in Algorithm 2.

The optimization in Algorithm 2 is nothing but minimizing

h(x) =

∣∣M − μx|O
∣∣+ 1.5σx|O
L

.

To optimize h(x), again we take a large number of points in Dq (the current
unexplored space) uniformly at random and evaluate h(·) on those and pick the
minimum.

3.3 Exploration-Exploitation Trade-Off

The main algorithm consists of an initial exploration phase followed by exploita-
tion. Notice that we are using GP as an estimate of the unknown function and
our method, like EI, highly relies on the quality of this estimation. On a high
level, if the function is very complex, i.e., has large Lipschitz constant L, then
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Table 1. Benchmark Functions

Cosines(2)
1− (u2+ v2− 0.3 cos(3πu)− 0.3 cos(3πv))

Rosenbrock(2) 10−100(y− x2)2−(1− x)2
u = 1.6x − 0.5, v = 1.6y − 0.5

Hartman(3,6)

∑4
i=1 Ωi exp

(
−
∑d

j=1 Aij(xj − Pij)
2
)

Michalewicz(5) −
∑5

i=1 sin(xi) sin
(

i x2
i

π

)20
Ω1×4, A4×d, P4×d are constants

Shekel(4)
∑10

i=1
1

ωi+Σ4
j=1(xj−Bji)

2 ω1×10, B4a×10 are constants

we need more exploration to fit better with GP. Small values of L correspond
to flatter functions that are easier to optimize. Thus, in general, we expect the
number of exploration steps to scale up with L. As a rule of thumb, functions we
normally deal with satisfy 2 < L < 20, for which we spend 20% of our budget
in exploration and the rest in exploitation.

We use different kernel widths for the exploration and exploitation phases. In
the case of exploration for complex functions, if we have enough budget (and
hence, enough explorative samples), the kernel width can be set to a small value
to fit a better local GP model. However, if we do not have enough budget, we
need to take the kernel width to be large. In the case of exploitation, we pick
the kernel width under which EI achieves its best performance.

Note that the choice of M and L plays a crucial role in this algorithm. If we
pick L larger than the true Lipschitz function, then the radius of our spheres
shrink and hence we might need more budget to achieve a certain performance.
Choosing L smaller than the true Lipschitz is dangerous since it makes the
spheres large and increases the chance of including the optimal point in a sphere
and hence removing it. Thus, it is better to choose L slightly larger than our
estimate of the true Lipschitz to be on the safe side.

The method is less sensitive to the choice of M , since the derivative of the
radius with respect to M is proportional to 1

L . Thus, as long as we do not over
estimate M significantly, the 1

L factor prevents the spheres to become very large
(and include/remove the optimal point). Small values of M , make the spheres
smaller and hence, if we underestimateM , we would need more budget to achieve
certain performance. However, if M is significantly (proportional to L) smaller
than the true maximum of the function, then the algorithm will look for the
point that achieves M and hence will perform poorly.

4 Experimental Results

In this section, we compare our algorithm with EI under different scenarios for
different functions. We consider six well-known synthetic benchmark functions:

(1,2) Cosines [15] and Rosenbrock [16] over [0, 1]2

(3,4) Hartman(3,6) [17] over [0, 1]3,6

(5) Shekel [17] over [3, 6]4

(6) Michalewicz [18] over [0, π]5
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Fuel Cell Hydrogen

Cosines Rosenbrock

Fig. 2. The contour plots for the four 2−dimension proposed benchmarks

The mathematical expression of these functions are shown in Table 1. Moreover,
we use two benchmarks derived from real-world applications:

(1) Hydrogen [19] over [0, 1]2

(2) Fuel Cell [20] over [0, 1]2

The contour plots of these two benchmarks along with the Cosines and Rosen-
brock benchmarks are shown in Fig 2. The Fuel Cell benchmark is based on opti-
mizing electricity output of microbial fuel cell by modifying some nano structure
properties of the anodes. In particular, the inputs that we try to adjust are the
average area and average circularity of the nano tube and the output that we try
to maximize is the power output of the fuel cell. We fit a regression model on a
set of observed samples to simulate the underlying function f(·) for evaluation.
The Hydrogen benchmark is based on maximizing the Hydrogen production of a
particular bacteria by varying the PH and Nitrogen levels of its growth medium.
A GP is fitted to a set of observed samples to simulate the underlying function
f(·). We consider a Lipschitz constant L ≈ 3 for all of the benchmarks, except
for Cosines and Michalewicz with L ≈ 6 and Rosenbrock with L ≈ 45. For the
sake of comparison, we consider the normalized versions of all these functions
and hence M = 1 in all cases. As mentioned previously, we spend 20% of the
budget on exploration and 80% on exploitation.

4.1 Comparison to EI

In the first set of experiments, we would like to compare our algorithm with the
best possible performance of EI. For each benchmark, we search over different
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Table 2. Comparison of the best results of EI, NBRS+EI and NBRS+NBIS. This
result shows that our algorithm outperforms the other two counterparts significantly
in most cases both in terms of the mean and variance of the performance.

EI EIM NBRS+EI NBRS+NBIS

Cosines .0736 ± .016 .2938 ± .020 .1057 ± .029 .0270± .009

Fuel Cell .1366 ± .006 .2232 ± .007 .1357 ± .004 .0965± .004

Hydrogen .0902 ± .004 .1689 ± .012 .1149 ± .004 .0475± .006

Rosen .0134 ± .001 .0153 ± .003 .0163 ± .001 .0034± .000

Hart(3) .0618 ± .006 .0837 ± .001 .0450 ± .003 .0384± .003

Shekel .3102 ± .017 .4104 ± .021 .3011± .018 .3240 ± .030

Michal .5173 ± .010 .5210 ± .008 .5011 ± .010 .4554± .019

Hart(6) .1212 ± .002 .2207 ± .006 .1235 ± .002 .1020± .003

values of the kernel width and find the one that optimizes EI’s performance.
Fig. 1 is plotted using these optimal kernel widths and shows that the best
performance of EI happens when we take only one random sample from a given
budget. This performance is then used as the baseline for comparison in Table
2. In addition to EI, we introduced a new version of EI, called EIM . Instead
of taking the expectation of improvement I from 0 to infinity, (equation 2), we
calculate the expectation of improvement from 0 to M − ymax assuming M is
given. This simple change decreases the level of exploration of EI and changes
its behavior to be more exploitative than explorative. Using GP as our posterior
model, the following lemma represents the EIM . The proof is in supplementary
document.

Lemma 1. Let u1 = ymax−μx

σx
and u2 = M−μx

σx
, then

EIM (x) = E
[
(f(x) − ymax) I{0≤f(x)−ymax≤M−ymax}

]
= σ(x)

(
− u1Φ(u2) + u1Φ(u1) + φ(u1)

)
.

(3)

In light of the results of Fig. 1, we are also interested in whether our explo-
ration algorithm can be used to improve the performance of EI. To this end,
we replace the proposed exploitation algorithm with EI to examine if our explo-
ration strategy helps EI. We refer to this setting as NBRS+EI.

Table 2 summarizes the mean and variance of the performance, measured as
the “Regret”= M − max f(xO), for different benchmarks estimated over 1000
random runs. Interestingly, EI can consistently outperform the EIM in all bench-
marks. This shows that decreasing the exploration rate of EI could degrade the
performance.

It is easy to see that in all benchmarks, our algorithm (NBRS+NBIS) outper-
forms EI consistently except for the Shekel benchmark where EI and NBRS+EI
have slightly better performances. We suspect this is due to the fact that we have
not optimized our kernel widths, where as the EI kernel width is optimized.
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Fig. 3. Plot of regret versus the number of explorations for NBIS algorithm. For a
fixed budget nb, we run a number of experiments as follows: first we consider the case
where there are 1 explorative sample (either random or NBRS) followed by nb − 1
EI samples, next we consider the case where where there are 2 explorative samples
followed by nb − 2 EI samples and so on. For 2D and 3D functions, we let nb = 15 and
for high-dimensional functions, we let nb = 35. This result shows that in most cases,
our exploration is a) better than random, and b) necessary, since the regret achieves
its minimum somewhere apart from zero. On average, we need to explore 20% of our
budget, however, this portion can be optimized if we consider any specific function.
The error bar here is the variance of the regret over different runs. This shows that our
regret variance is smaller.

We also note that NBRS+EI does not lead to any consistent improvement
over EI. This is possibly due to the fact that EI does not take advantage of the
reduced search space produced by NBRS during selection.

4.2 Exploration Analysis

In the second set of experiments, we would like to compare our exploration
algorithm NBRS with random exploration when using NBIS for exploitation.
As discussed previously, both random exploration and NBRS fail to produce
better performance when used with EI. Thus, it is interesting to see whether
they can help NBIS in terms of the overall regret, and if so which one is more
effective. Figure 3 summarizes this result for all benchmarks. For a fixed budget
nb, we start with 1 explorative sample (either using NBRS or random) followed
by nb − 1 NBIS samples; next, we start with 2 explorative samples followed by
nb − 2 NBIS samples and so on. In each case, we average the regret over 1000
runs. The black line corresponds to the NBRS exploration and the green line
corresponds to the random exploration. We will discuss each function in more
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details later, but in general, this result shows that our exploration algorithm is
a) better than random exploration and b) necessary. To see why it is necessary,
notice that the minimum regret on all curves is achieved for a non-zero number
of NBRS samples. This means unlike EI, our exploitation algorithm benefits
from NBRS.

Looking closer into the results, we see that NBRS always lead to a smaller
regret comparing to the random exploration. On the Shekel benchmark, we see
that random exploration has better performance if we spend majority of the
budget to explore. However, for a reasonable amount of exploration that leads
to the minimum regret (5 to 10 experiments), random exploration and NBRS
achieve similar performance.

On our 6-dimensional benchmark Hartman(6), we notice that random explo-
ration and NBRS behave very similarly. This shows that the input space is so
large that no matter how clever you explore, you will not likely to improve the
performance for the limited budget of 35.

NBRS starts from an initial point and explores the input space step by step.
Imagine you are in a dark room with a torch in your hand and you want to explore
the room. You start from an initial point and little by little walk through the
space until you explore the whole space. This is exactly how NBRS does the
exploration. Roughly speaking, NBRS minimizes μx|O + 1.5σx|O and hence, if
a point is far from previous observations, i.e., σx|O is large, it is unlikely to be
chosen. We see this effect in all functions, but most clearly in the Michalewicz
benchmark. When the number of explorative samples is smaller than 10, the step-
by-step explore procedure cannot explore the whole space and the exploitation
can be trapped in local minima. For 10 − 15 explorative samples, NBRS can
walk through the entire space fairly well and hence we get a minimum regret.
For more than 15 explorative samples, since the space is well explored, we are
wasting the samples that could be potentially used to improve our exploitation
and hence, the performance becomes worse.

Finally, this investigation suggests that the result in Table 2 can be further
improved by taking different number of explorative samples for different func-
tions. To minimize parameter tuning, we chose to explore 20% of our budget.
In general, this ratio can be adjusted according to the property of the function
(e.g., the Lipschitz constant).

5 Conclusion

In this paper, we consider the problem of maximizing an unknown costly-to-
evaluate function when we have a small evaluation budget. Using the Bayesian
optimization framework, we proposed a two-phase exploration-exploitation algo-
rithm that finds the maximizer of the function with few function evaluations by
leveraging the Lipschitz property of the unknown function. In the exploration
phase, our algorithm tries to remove as many points as possible from the search
space and hence shrinks the search space. In the exploitation phase, the algo-
rithm tries to find the point that is closest to the optimal. Our empirical results
show that our algorithm outperforms EI (even in its best condition).
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Appendix: Proof of Lemma 1

Let f(x) be our function prediction at any point x distributed as a normal ran-
dom variable with mean μx and variance σ2

x; i.e f(x) ∼ N (μ(x, σ2
x)) where μx

and σ2
x obtained from Gaussian process. Suppose ymaxis the best current obser-

vation, the probability of improvement of I ∈ [0,M − ymax] can be calculated
as p(f(x) = ymax + I):

p
(
f(x) = ymax + I

)
=

1√
2πσx

exp

(
− (ymax + I − μx)

2

2σ2
x

)
. (4)

Therefore we define EIM (x) as is simply the expectation of likelihood over I ∈
[0,M ] at any given point x:

EIM(x) =

∫ I=M−ymax

I=0

I

{
1√
2πσx

exp

(
− (ymax + I − μx)

2

2σ2
x

)}
dI

=
1√
2πσx

exp

(
− (ymax − μx)

2

2σ2
x

)∫ M−ymax

0

I exp

(
−2I(ymax − μx) + I2

2σ2
x

)
dI.

(5)
Let define

T = exp

(
−2I(ymax − μx) + I2

2σ2
x

)
∂T

∂I
= − 1

σ2
x

(IT + (ymax − μxT )) ,

(6)

therefore we can get

IT = −(ymax − μx)T − ∂T

∂I
σ2
x. (7)

Using equations 7,6,5 we can get

EIM (x) =
1√
2πσx

exp

(
− (ymax − μx)

2

2σ2
x

)∫ M−ymax

0

IT dI

= σxφ

(
ymax − μx

σx

)
− (ymax − μx)

∫ M−ymax

0

1√
2πσx

exp

(
−1

2

(
ymax + I − μx

σx

)2
)

dI.

(8)
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Let

I∗ =
ymax + I − μx

σx
, then dI∗ =

dI

σx
, (9)

then the equation 8 can be written as

EIM (x) = σxφ

(
ymax − μx

σx

)
− (ymax − μx)

∫ M−μx
σx

ymax−μx
σx

1√
2π
exp

(
−1
2
I∗2
)

dI∗

= σxφ

(
ymax − μx

σx

)
−
[
(ymax − μx)

(
Φ

(
M − μx

σx

)
− Φ

(
ymax − μx

σx

))]
.

(10)
Let

u1 =
ymax − μx

σx
, u2 =

M − μx

σx
,

then we can finally drive the maximum expected improvement at any given point
x as

MEI(x) = σx
(
− u1Φ(u2) + u1Φ(u1) + φ(u1)

)
, (11)

where Φ(·) is the normal cumulative distribution function and φ(·) is the standard
nomal distribution.
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Abstract. In this paper, we consider the challenge of maximizing an
unknown function f for which evaluations are noisy and are acquired
with high cost. An iterative procedure uses the previous measures to ac-
tively select the next estimation of f which is predicted to be the most
useful. We focus on the case where the function can be evaluated in par-
allel with batches of fixed size and analyze the benefit compared to the
purely sequential procedure in terms of cumulative regret. We introduce
the Gaussian Process Upper Confidence Bound and Pure Exploration
algorithm (GP-UCB-PE) which combines the UCB strategy and Pure Ex-
ploration in the same batch of evaluations along the parallel iterations.
We prove theoretical upper bounds on the regret with batches of size K
for this procedure which show the improvement of the order of

�
K for

fixed iteration cost over purely sequential versions. Moreover, the mul-
tiplicative constants involved have the property of being dimension-free.
We also confirm empirically the efficiency of GP-UCB-PE on real and
synthetic problems compared to state-of-the-art competitors.

1 Introduction

Finding the maximum of a non-convex function by means of sequential noisy
observations is a common task in numerous real world applications. The con-
text of a high dimensional input space with expensive evaluation cost offers new
challenges in order to come up with efficient and valid procedures. This problem
of sequential global optimization arises for example in industrial system design
and monitoring to choose the location of a sensor to find out the maximum re-
sponse, or when determining the parameters of a heavy numerical code designed
to maximize the output. The standard objective in this setting is to minimize
the cumulative regret RT , defined as the sum

�T
t�1

�
f�xÆ�� f�xt�

�
of the differ-

ences between the values of f at the points queried xt and the true optimum of f
noted xÆ. For a fixed horizon T , we refer to [1]. In the context where the horizon
T is unknown, the query selection has to deal with the exploration/exploitation
tradeoff. Successful algorithms have been developed in different settings to ad-
dress this problem such as experimental design [2], Bayesian optimization [3–8],
active learning [9, 10], multiarmed bandit [11–17] and in particular Hierarchi-
cal Optimistic Optimization algorithm, HOO [18] for bandits in a generic space,

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 225–240, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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namely X -Armed bandits. In some cases, it is possible to evaluate the function
in parallel with batches of K queries with no increase in cost. This is typically
the case in the sensors location problem if K sensors are available at each itera-
tion, or in the numerical optimization problem on a cluster of K cores. Parallel
strategies have been developed recently in [19, 20]. In the present paper, we
propose to explore further the potential of parallel strategies for noisy function
optimization with unknown horizon aiming simultaneously at practical efficiency
and plausible theoretical results. We introduce a novel algorithm called GP-UCB-
PE based on the Gaussian process approach which combines the benefits of the
UCB policy with Pure Exploration queries in the same batch of K evaluations
of f . The Pure Exploration component helps to reduce the uncertainty about
f in order to support the UCB policy in finding the location of the maximum,
and therefore in increasing the decay of the regret Rt at every timestep t. In
comparison to other algorithms based on Gaussian processes and UCB such as
GP-BUCB [19], the new algorithm discards the need for the initialization phase
and offers a tighter control on the uncertainty parameter which monitors over-
confidence. As a result, the derived regret bounds do not suffer from the curse
of dimensionality since the multiplicative constants obtained are dimension free
in contrast with the doubly exponential dependence observed in previous work.
We also mention that Monte-Carlo simulations can be proposed as an alterna-
tive and this idea has been implemented in the Simulation Matching with UCB
policy (SM-UCB) algorithm [20] which we also consider for comparison in the
present paper. Unlike GP-BUCB, no theoretical guarantees for the SM-UCB algo-
rithm are known for the bounds on the number of iterations needed to get close
enough to the maximum, therefore the discussion will be reduced to empirical
comparisons over several benchmark problems. The remainder of the paper is
organized as follows. We state the background and our notations in Section 2.
We formalize the Gaussian Process assumptions on f , and give the definition
of regret in the parallel setting. We then describe the GP-UCB-PE algorithm
and the main concepts in Section 3. We provide theoretical guarantees through
upper bounds for the cumulative regret of GP-UCB-PE in Section 4. We finally
show comparisons of our method and the related algorithms through a series of
numerical experiments on real and synthetic functions in Section 5.1

2 Problem Statement and Background

2.1 Sequential Batch Optimization

We address the problem of finding in the lowest possible number of iterations
the maximum of an unknown function f : X � R where X � Rd, denoted by :

f�xÆ� � max
x�X

f�x� .

1 The documented source codes and the assessment data sets are available online at
http://econtal.perso.math.cnrs.fr/software/

http://econtal.perso.math.cnrs.fr/software/
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The arbitrary choice of formulating the optimization problem as a maximization
is without loss of generality, as we can obviously take the opposite of f if the
problem is a minimization one. At each iteration t, we choose a batch ofK points
in X called the queries �xkt �0�k�K , and then observe simultaneously the noisy
values taken by f at these points,

ykt � f�xkt � 	 εkt ,

where the εkt are independent Gaussian noise N �0, σ2�.

2.2 Objective

Assuming that the horizon T is unknown, a strategy has to be good at any

iteration. We denote by r
�k�
t the difference between the optimum of f and the

point queried xkt ,

r
�k�
t � f�xÆ� � f�xkt � .

We aim to minimize the batch cumulative regret,

RK
T �

�
t�T

rKt ,

which is the standard objective with these formulations of the problem [21]. We
focus on the case where the cost for a batch of evaluations of f is fixed. The loss
rKt incurred at iteration t is then the simple regret for the batch [22], defined as

rKt � min
k�K

r
�k�
t .

An upper bound on RK
T gives an upper bound of

RK
T

T on the minimum gap
between the best point found so far and the true maximum. We also provide
bounds on the full cumulative regret,

RTK �
�
t�T

�
k�K

r
�k�
t ,

which model the case where all the queries in a batch should have a low regret.

2.3 Gaussian Processes

In order to analyze the efficiency of a strategy, we have to make some assumptions
on f . We want extreme variations of the function to have low probability.

Modeling f as a sample of a Gaussian Process (GP) is a natural way to
formalize the intuition that nearby location are highly correlated. It can be seen
as a continuous extension of multidimensional Gaussian distributions. We say
that a random process f is Gaussian with mean function m and non-negative
definite covariance function (kernel) k written :

f 
 GP �m, k� ,
where m : X � R

and k : X � X � R� ,
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�1 �0.5 0 0.5 1

�2

�1

0

Fig. 1. Gaussian Process inference of the posterior mean �μ (blue line) and deviation �σ
based on four realizations (blue crosses). The high confidence region (area in grey) is

delimited by �f� and �f�.

when for any finite subset of locations the values of the random function form a
multivariate Gaussian random variable of mean vector μ and covariance matrix
C given by the mean m and the kernel k of the GP. That is, for all finite n and
x1, . . . , xn � X ,

�f�x1�, . . . , f�xn�� 
 N �μ,C� ,
with μxi� � m�xi�

and Cxi, xj� � k�xi, xj� .
If we have the prior knowledge that f is drawn from a GP with zero mean2 and
known kernel, we can use Bayesian inference conditioned on the observations
after T iterations to get the closed formulae for computing the posterior [23],
which is a GP of mean and variance given at each location x � X by :

�μT�1�x� � kT �x��C	1
T YT (1)

and �σ2
T�1�x� � k�x, x� � kT �x��C	1

T kT �x� , (2)

XT � �xkt �t�T,k�K is the set of queried locations, YT � ykt �xk
t �XT

is the vector

of noisy observations, kT �x� � k�xkt , x��xk
t �XT

is the vector of covariances be-

tween x and the queried points, and CT �KT 	σ2I with KT � k�x, x
��x,x��XT

the kernel matrix and I stands for the identity matrix.
The three most common kernel functions are:

– the polynomial kernels of degree α � N, k�x1, x2� � �x�1 x2 	 c�α , c � R,
– the (Gaussian) Radial Basis Function kernel (RBF or Squared Exponential)

with length-scale l � 0, k�x1, x2� � exp
�
� ‖x1,x2‖2

2l2

�
,

– the Matérn kernel, of length-scale l and parameter ν,

k�x1, x2� � 21	ν

Γ �ν�
��

2ν ‖x1, x2‖
l

	ν

Kν

��2ν ‖x1, x2‖
l

�
, (3)

where Kν is the modified Bessel function of the second kind and order ν.

2 This is without loss of generality as the kernel k can completely define the GP [23].
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The Bayesian inference is represented on Figure 1 in a sample problem in di-
mension 1. The posteriors are based on four observations of a Gaussian Process.
The vertical height of the grey area is proportional to the posterior deviation at
each point.

3 Parallel Optimization Procedure

3.1 Confidence Region

A key property from the GP framework is that the posterior distribution at
a location x has a normal distribution N ��μT �x�, �σ2

T �x��. We can then define a

upper confidence bound �f� and a lower confidence bound �f	, such that f is
included in the interval with high probability,

�f�T �x� � �μT �x� 	


βT �σT �x� (4)

and �f	T �x� � �μT �x� �


βT �σT �x� , (5)

with βT � O�log T � defined in Section 4.�f� and �f	 are illustrated on Figure 1 respectively by the upper and lower
envelope of the grey area. The region delimited in that way, the high confidence
region, contains the unknown f with high probability. This statement will be a
main element in the theoretical analysis of the algorithm in Section 4.

3.2 Relevant Region

We define the relevant region Rt being the region which contains xÆ with high
probability. Let y�t be our lower confidence bound on the maximum,

y�t � �f	t �x�t �, where x�t � argmax
x�X

�f	t �x� .
y�t is represented by the horizontal dotted green line on Figure 2. Rt is defined
as :

Rt �
�
x � X � �f�t �x� � y�t

�
.

Rt discard the locations where xÆ does not belong with high probability. It is
represented in green on Figure 2. We refer to [24] for related work in the special
case of deterministic Gaussian Process Bandits.

In the sequel, we will use a modified version of the relevant region which also
contains argmaxx�X �f�t�1�x� with high probability. The novel relevant region is
formally defined by :

R�
t �

�
x � X � �μt�x� 	 2



βt�1�σt�x� � y�t

�
. (6)

Using R�
t instead of Rt guarantees that the queries at iteration t will leave an

impact on the future choices at iteration t	 1.
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Algorithm 1: GP-UCB-PE

for t � 0, . . . , T do
Compute �μt and �σt with Eq.1 and Eq.2

x0
t � argmaxx�X

�f�t �x�
Compute R�

t with Eq.6
for k � 1, . . . ,K � 1 do

Compute �σ�k�t with Eq.2

xk
t � argmax

x�R�t
�σ�k�t �x�

Query �xk
t �k�K

3.3 GP-UCB-PE

We present here the Gaussian Process Upper Confidence Bound with Pure Ex-
ploration algorithm, GP-UCB-PE, a novel algorithm combining two strategies to
determine the queries �xkt �k�K for batches of size K. The first location is chosen
according to the GP-UCB rule,

x0t � argmax
x�X

�f�t �x� . (7)

This single rule is enough to tackle the exploration/exploitation tradeoff. The
value of βt balances between exploring uncertain regions (high posterior variance�σ2
t �x�) and focusing on the supposed location of the maximum (high posterior

mean �μt�x�). This policy is illustrated with the point x0 on Figure 2.
The K � 1 remaining locations are selected via Pure Exploration restricted

to the region R�
t . We aim to maximize It�XK	1

t �, the information gain about
f by the locations XK	1

t � �xkt �1�k�K [25]. Formally, It�X� is the reduction of
entropy when knowing the values of the observations Y at X, conditioned on
Xt the observations we have seen so far,

It�X� � H�Y� �H�Y � Xt� . (8)

Finding the K�1 points that maximize It for any integer K is known to be NP-
complete [26]. However, due to the submodularity of It [4], it can be efficiently
approximated by the greedy procedure which selects the points one by one and
never backtracks. For a Gaussian distribution, H�N �μ,C�� � 1

2 log det�2πeC�.
We thus have It�X� � O�log detΣ�, where Σ is the covariance matrix of X. For
GP, the location of the single point that maximizes the information gain is easily
computed by maximizing the posterior variance. For all 1 � k � K our greedy
strategy selects the following points one by one,

xkt � argmax
x�R�

t

�σ�k�t �x� , (9)

where �σ�k�t is the updated variance after choosing �xk�t �k��k. We use here the fact
that the posterior variance does not depend on the values ykt of the observations,
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´1 ´0.5 0 0.5 1

´2

´1

0

1

x0

x1

Fig. 2. Two queries of GP-UCB-PE on the previous example. The lower confidence
bound on the maximum is represented by the horizontal dotted green line at y�t . The
relevant region R is shown in light green (without edges). The first query x0 is the

maximizer of �f�. We show in dashed line the upper and lower bounds with the update
of �σ after having selected x0. The second query x1 is the one maximizing the uncertainty
inside R�, an extension of R which is not illustrated here.

but only on their position xkt . One such point is illustrated with x1 on Figure 2.
These K � 1 locations reduce the uncertainty about f , improving the guesses of
the UCB procedure by x0t . The overall procedure is shown in Algorithm 1.

3.4 Numerical Complexity

Even if the numerical cost of GP-UCB-PE is insignificant in practice compared
to the cost of the evaluation of f , the complexity of the exact computations of
the variances (Eq.2) is in O�n3� and might by prohibitive for large n � tK.
One can reduce drastically the computation time by means of Lazy Variance
Calculation [19], built on the fact that �σt�x� always decreases when t increases for
all x � X . We further mention that efficient approximated inference algorithms
such as the EP approximation and MCMC sampling [27] can be used in order
to face the challenge of large n.

4 Regret Bounds

4.1 Main Result

The main theoretical result of this article is the upper bound on the regret
formulated in Theorem 1. We need to adjust the parameter βt such that f�x�
is contained by the high confidence region for all iterations t with probability at
least 1� δ for a fixed 0 � δ � 1.
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– If X is finite, then we choose βt � 2 log�|X | πt

δ � where πt � 0 such that��
t�0 π

	1
t � 1. We set for example βt � 2 log

�
|X | t2 π2

6δ

�
.

– If X � 0, r�d is compact and convex, we need the following bounds on the
derivatives of f ,

�a, b � 0, �j � d, Pr

�
sup
x�X

∣∣∣∣ �f�xj
∣∣∣∣ � L

	
� ae	

L2

b2 .

Then, we can set the parameter βt to :

βt � 2 log

�
t2
2π2

3δ

	
	 2d log


t2dbr

�
log
�4da

δ

��
.

The regret bound are expressed in term of γTK , the maximum information
gain (Eq. 8) obtainable by a sequence of TK queries,

γt � max
XX ,|X|�t

I0�X� .

Under these assumptions, we obtain the following result.

Theorem 1. Fix 0 � δ � 1 and consider the calibration of βt defined as
above, assuming f 
 GP �0, k� with bounded variance, �x � X , k�x, x� � 1,
then the batch cumulative regret incurred by GP-UCB-PE on f is bounded by

O
��

T
K βTγTK

�
whp, More precisely, with C1 � 4

log�1�σ�2� , and C2 � π�
6
, �T,

Pr


RK

T �
�
C1

T

K
βTγTK 	 C2

�
� 1� δ .

For the full cumulative regret RTK we obtain similar bounds with C1 � 36
log�1�σ�2�

Pr
�
RTK �



C1TKβTγTK 	 C2

�
� 1� δ .

4.2 Discussion

When K � T , the upper bound for RK
T is better than the one of sequential

GP-UCB by an order of
�
K, and equivalent for RTK , when the regrets for all

the points in the batch matter. Compared to [19], we remove the need of the
initialization phase. GP-UCB-PE does not need either to multiply the uncertainty
parameter βt by exp�γinit

TK� where γinit
TK is equal to the maximum information

gain obtainable by a sequence of TK queries after the initialization phase. The
improvement can be doubly exponential in the dimension d in the case of RBF
Kernels. To the best of our knowledge, no regret bounds have been proven for
the Simulation Matching algorithm.

The values of γTK for different common kernel are reported in Table 1, where

d is the dimension of the space considered and α � d�d�1�
2ν�d�d�1� � 1, ν being

the Matérn parameter. We also compare on Table 1 the general forms of the
bounds for the regret obtained by GP-UCB-PE and GP-BUCB up to constant
terms. The cumulative regret we obtained with RBF Kernel is of the form

Õ
��

T
K �logTK�d

�
against Õ

�
exp�� 2de �d�

�
T
K �logTK�d

�
for GP-BUCB.
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Table 1. General Forms of Regret Bounds for GP-UCB-PE and GP-BUCB

GP-UCB-PE GP-BUCB

RK
T

�
T logT

K
γTK C

�
T log TK

K
γTK

Kernel Linear RBF Matérn

γTK d log TK �log TK�d�1 �TK�α log TK
C exp� 2

e
� exp�� 2d

e
�d� e

4.3 Proofs of the Main Result

In this section, we analyze theoretically the regret bounds for the GP-UCB-PE
algorithm. We provide here the main steps for the proof of Theorem 1. On one
side the UCB rule of the algorithm provides a regret bounded by the information
we have on f conditioned on the values observed so far. On the other side, the
Pure Exploration part gathers information and therefore accelerates the decrease
in uncertainty. We refer to [19] for the proofs of the bounds for GP-BUCB.

For the sake of concision, we introduce the notations σk
t for �σ�k�t �xkt � and σ0

t

for �σt�x0t �. We simply bound rKt the regret for the batch at iteration t by the

simple regret r
�0�
t for the single query chosen via the UCB rule. We then give

a bound for r
�0�
t which is proportional to the posterior deviations σ0

t . Knowing
that the sum of all �σk

t �2 is not greater than C1γTK , we want to prove that the
sum of the �σ0

t �2 is less than this bound divided by K. The arguments are based
on the fact that the posterior for f�x� is Gaussian, allowing us to choose βt such
that :

�x � X ,�t � T, f�x� �  �f	t �x�, �f�t �x��
holds with high probability. Here and in the following, “with high probability”
or whp means “with probability at least 1� δ” for any 0 � δ � 1, the definition
of βt being dependent of δ.

Lemma 1. For finite X , we have rKt � r
�0�
t � 2

�
βtσ

0
t , and for compact and

convex X following the assumptions of Theorem 1, rKt � r
�0�
t � 2

�
βtσ

0
t 	 1

t2 ,
holds with probability at least 1� δ.

We refer to [6] (Lemmas 5.2, 5.8) for the detailed proof of the bound for r
�0�
t .

Now we show an intermediate result bounding the deviations at the points
x0t�1 by the one at the points xK	1

t .

Lemma 2. The deviation of the point selected by the UCB policy is bounded by
the one for the last point selected by the PE policy at the previous iteration, whp,
�t � T, σ0

t�1 � σK	1
t
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Proof. By the definitions of x0t�1 (Eq.7), we have �f�t�1�x0t�1� � �f�t�1�x�t �. Then,
we know with high probability that �x � X ,�t � T, �f�t�1�x� � �f	t �x�. We can

therefore claim whp �f�t�1�x0t�1� � y�t , and thus that x0t�1 � R�
t whp.

We have as a result by the definition of xk	1
t (Eq.9) that �σ�k	1�

t �x0t�1� ��σ�k	1�
t �xk	1

t � whp. Using the “Information never hurts” principle [28], we know
that the entropy of f�x� for all location x decreases while we observe points xt.
For GP, the entropy is also a non-decreasing function of the variance, so that :

�x � X , �σ�0�t�1�x� � �σ�k	1�
t �x� .

We thus prove σ0
t�1 � σk	1

t .

Lemma 3. The sum of the deviations of the points selected by the UCB policy
are bounded by the one for all the selected points divided by K, whp,

T	1�
t�0

σ0
t �

1

K

T	1�
t�0

K	1�
k�0

σk
t .

Proof. Using Lemma 2 and the definitions of the xkt , we have that σ
0
t�1 � σk

t for

all k � 1. Summing over k, we get for all t � 0, σ0
t 	 �K � 1�σ0

t�1 �
�K	1

k�0 σk
t .

Now, summing over t and with σ0
0 � 0 and σ0

T � 0, we obtain the desired result.

Next, we can bound the sum of all posterior variances �σk
t �2 via the maximum

information gain for a sequence of TK locations.

Lemma 4. The sum of the variances of the selected points are bounded by a
constant factor times γTK , �C 


1 � R,
�

t�T

�
k�K�σk

t �2 � C 

1γTK where γTK

is the maximum information gain obtainable by a sequential procedure of length
TK.

Proof. We know that the information gain for a sequence of T locations xt can
be expressed in terms of the posterior variances ��σt	1�xt��2. The deviations
σk
t being independent of the observations ykt , the same equality holds for the

posterior variances ��σ�k�t �xkt ��2. See Lemmas 5.3 and 5.4 in [6] for the detailed
proof, giving C 


1 � 2
log�1�σ�2� .

Lemma 5. The cumulative regret can be bound in terms of the maximum in-
formation gain, whp, �C1, C2 � R,

�
t�T

rKt �
�

T

K
C1βT γTK 	 C2 .
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Proof. Using the previous lemmas and the fact that βt � βT for all t � T , we
have in the case of finite X , whp,�

t�T

rKt �
�
t�T

2


βtσ

0
t , by Lemma 1

� 2


βT

1

K

�
t�T

�
k�K

σk
t , by Lemma 3

� 2


βT

1

K

�
TK

�
t�T

�
k�K

�σk
t �2 , by Cauchy-Schwarz

� 2


βT

1

K



TKC 


1γTK , by Lemma 4

�
�

T

K
C1βTγTK with C1 � 4

log�1	 σ	2� .

For compact and convex X , a similar reasoning gives :

RK
T �

�
T

K
C1βTγTK 	 C2 with C2 � π�

6
� 2 .

Lemma 5 conclude the proof of Theorem 1 for the regret RK
T . The analysis

for RTK is simpler, using the Lemma 6 which bounds the regret for the Pure
Exploration queries, leading to C1 � 36

log�1�σ�2� .

Lemma 6. The regret for the queries xkt selected by Pure Exploration in R�
t

are bounded whp by, 6
�
βtσ

k
t .

Proof. As in Lemma 1, we have whp, for all t � T and k � 1,

r
�k�
t � �μt�xÆ� 	



βt �σt�xÆ� � �μt�xkt � 	



βtσ

k
t

� �f	t �x�t � 	 2
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To conclude the analysis of RTK and prove Theorem 1, it suffices to use then
the last three steps of Lemma 5.

5 Experiments

5.1 Protocol

We compare the empirical performances of our algorithm against the state of
the art of global optimization by batches, GP-BUCB [19] and SM-UCB [20]. The
tasks used for assessment come from three real applications and two synthetic
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(a) Himmelblau (b) Gaussian mixture

Fig. 3. Visualization of the synthetic functions used for assessment

problems described here. The results are shown in Figure 4. For all datasets
and algorithms, the size of the batches K was set to 10 and the learners were
initialized with a random subset of 20 observations �xi, yi�. The curves on Figure
4 show the evolution of the regret RK

t in term of iteration t. We report the
average value with the confidence interval over 64 experiments. The parameters
for the prior distribution, like the bandwidth of the RBF Kernel, were chosen
by maximization of the marginal likelihood.

5.2 Description of Data Sets

Generated GP. The Generated GP functions are random GPs drawn from a
Matérn kernel (Eq. 3) in dimension 2, with the kernel bandwidth set to 1

4 , the
Matérn parameter ν � 3 and noise variance σ2 set to 1.

Gaussian Mixture. This synthetic function comes from the addition of three 2-D
Gaussian functions. at �0.2, 0.5�, �0.9, 0.9�, and the maximum at �0.6, 0.1�. We
then perturb these Gaussian functions with smooth variations generated from a
Gaussian Process with Matérn Kernel and very few noise. It is shown on Figure
3(b). The highest peak being thin, the sequential search for the maximum of this
function is quite challenging.

Himmelblau Function. The Himmelblau task is another synthetic function in
dimension 2. We compute a slightly tilted version of the Himmelblau’s function,
and take the opposite to match the challenge of finding its maximum. This
function presents four peaks but only one global maximum. It gives a practical
way to test the ability of a strategy to manage exploration/exploitation tradeoffs.
It is represented in Figure 3(a).

Mackey-Glass Function. The Mackey-Glass delay-differential equation3 is a
chaotic system in dimension 6, but without noise. It models real feedback systems

3 http://www.scholarpedia.org/article/Mackey-Glass_equation

http://www.scholarpedia.org/article/Mackey-Glass_equation
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Fig. 4. Experiments on several real and synthetics tasks. The curves show the decay of
the mean of the simple regret rKt with respect to the iteration t, over 64 experiments.
We show with the translucent area the confidence intervals.

and is used in physiological domains such as hematology, cardiology, neurology,
and psychiatry. The highly chaotic behavior of this function makes it an ex-
ceptionally difficult optimization problem. It has been used as a benchmark for
example by [29].

Tsunamis. Recent post-tsunami survey data as well as the numerical simula-
tions of [30] have shown that in some cases the run-up, which is the maximum
vertical extent of wave climbing on a beach, in areas which were supposed to be
protected by small islands in the vicinity of coast, was significantly higher than
in neighboring locations. Motivated by these observations [31] investigated this
phenomenon by employing numerical simulations using the VOLNA code [32]
with the simplified geometry of a conical island sitting on a flat surface in front
of a sloping beach. Their setup was controlled by five physical parameters and
their aim was to find with confidence and with the least number of simulations
the maximum run-up amplification on the beach directly behind the island, com-
pared with the run-up on a lateral location, not influenced by the presence of
the island. Since this problem is too complex to treat analytically, the authors
had to solve numerically the Nonlinear Shallow Water Equations.

Abalone. The challenge of the Abalone dataset is to predict the age of a specie of
sea snails from physical measurements. It comes from the study by [33] and it is
provided by the UCI Machine Learning Repository.4 We use it as a maximization
problem in dimension 8.

4 http://archive.ics.uci.edu/ml/datasets/Abalone

http://archive.ics.uci.edu/ml/datasets/Abalone
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5.3 Comparison of Algorithms

The algorithm SM —Simulation Matching— described in [20], with UCB base
policy, has shown similar results to GP-UCB-PE on synthetic functions (Figures
4(a), 4(b), 4(c)) and even better results on chaotic problem without noise (Figure
4(d)), but performs worse on real noisy data (Figures 4(e), 4(f)). On the contrary,
the initialization phase of GP-BUCB leads to good regret on difficult real tasks
(Figure 4(e)), but looses time on synthetic Gaussian or polynomial ones (Figures
4(a), 4(b), 4(c)). The number of dimensions of the Abalone task is already a
limitation for GP-BUCB with the RBF kernel, making the initialization phase
time-consuming. The mean regret for GP-BUCB converges to zero abruptly after
the initialization phase at iteration 55, and is therefore not visible on Figure
4(f), as for 4(c) where its regret decays at iteration 34.

GP-UCB-PE achieves good performances on both sides. We obtained better
regret on synthetic data as well as on real problems from the domains of physics
and biology. Moreover, the computation time of SM was two order of magnitude
longer than the others.

6 Conclusion

We have presented the GP-UCB-PE algorithm which addresses the problem of
finding in few iterations the maximum of an unknown arbitrary function ob-
served via batches of K noisy evaluations. We have provided theoretical bounds
for the cumulative regret obtained by GP-UCB-PE in the Gaussian Process set-
tings. Through parallelization, these bounds improve the ones for the state-of-
the-art of sequential GP optimization by a ratio of

�
K, and are strictly better

than the ones for GP-BUCB, a concurrent algorithm for parallel GP optimiza-
tion. We have compared experimentally our method to GP-BUCB and SM-UCB,
another approach for parallel GP optimization lacking of theoretical guarantees.
These empirical results have confirmed the effectiveness of GP-UCB-PE on several
applications.

The strategy of combining in the same batch some queries selected via Pure
Exploration is an intuitive idea that can be applied in many other methods.
We expect for example to obtain similar results with the Maximum Expected
Improvement policy (MEI). Any proof of regret bound that relies on the fact
that the uncertainty decreases with the exploration should be easily adapted to
a paralleled extension with Pure Exploration.

On the other hand, we have observed in practice that the strategies which
focus more on exploitation often lead to faster decrease of the regret, for example
the strategy that uses K times the GP-UCB criterion with updated variance.
We conjecture that the regret for this strategy is unbounded for general GPs,
justifying the need for the initialization phase of GP-BUCB. However, it would
be relevant to specify formally the assumptions needed by this greedy strategy
to guarantee good performances.
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Abstract. We address the practical problem of maximizing the number
of high-confidence results produced among multiple experiments shar-
ing an exhaustible pool of resources. We formalize this problem in the
framework of bandit optimization as follows: given a set of multiple
multi-armed bandits and a budget on the total number of trials allocated
among them, select the top-m arms (with high confidence) for as many
of the bandits as possible. To solve this problem, which we call greedy
confidence pursuit, we develop a method based on posterior sampling.
We show empirically that our method outperforms existing methods for
top-m selection in single bandits, which has been studied previously,
and improves on baseline methods for the full greedy confidence pursuit
problem, which has not been studied previously.

1 Introduction

Clinical and scientific teams often pursue multiple research objectives on a fixed
budget. To obtain as many significant results as possible, they must intelligently
allocate their limited resources among one or more concurrent experiments. The
machine learning community has developed ways to formulate and address varia-
tions on this problem. For example, budgeted learning [12] and subsequent work
considers the problem of active learning when a fixed budget is given for probing
which model among a collection of models is best for a given task.

In this paper, we adopt the framework provided by bandit problems [3] to
address resource allocation among multiple concurrent tasks. Bandits offer a
simple way of formalizing many decision problems, e.g. deciding which among a
set of drugs most effectively treats a particular disease. In the standard formu-
lation a bandit has multiple arms with unknown expected payoffs and one must
probingly pull the arms in order to find the best one. Most bandit optimization
problems focus on regret minimization, i.e. minimizing some measure of loss
incurred over the course of an experiment. The goal in practical experimental
settings, e.g. clinical trials, is often different: one typically has a fixed budget for
acquiring patients to be treated, and the goal is to identify the best treatment
option at the end of the experiment. Hence, payoffs during the experiment are
not counted, in contrast to regret minimization, and the objective is solely to
maximize the (statistical) confidence with which the best action can be selected
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after the experiment is over. In a recent series of papers, this idea has been
developed under the label “pure exploration” in multi-armed bandits [4, 2, 8].

The problem of selecting the best arm with high confidence using a minimum
number of trials has also been tackled by [13] and [7]. In [9], the authors extended
the approach of [7] to the case in which one wants to select not just the best
arm, but the m arms with highest payoffs. In recent work [10], the same authors
provided an alternative algorithm with stronger PAC guarantees. Note that best-
arm selection is the special case of top-m selection where m = 1.

In the clinical trial setting, significant interest is currently directed towards
personalized medicine based on treatments which only work for specific sub-
populations. For example, it is understood that diseases like cancer may evolve
differently based on certain genetic mutations, and thus any treatment for such
a disease may only benefit certain types of patients. In such cases, no budgeted
clinical trial can hope to show that a treatment is universally effective; instead,
one should try to identify sub-populations within which the treatment works with
high confidence. One can naturally describe this problem using multiple bandits
(i.e. sub-populations) each comprising multiple arms (i.e. available treatments).
Typically, a fixed total number of patients can be enrolled (corresponding to a
fixed total number of trials). Hence, patients should be recruited and allocated
among the sub-populations and treatments to maximize the number of sub-
populations for which an effective treatment is confidently identified.

We formalize this problem as multi-bandit top-m selection: given a set of n
multi-armed bandits, a trial budget T , and a target confidence τ , maximize the
number of top-m groups identified with confidence ρ > τ after performing T
trials. We refer to this general problem as greedy confidence pursuit, as it prefer-
entially directs resources (i.e. trials) towards experiments (i.e. bandits) in which
confident results are easiest to achieve. Work in [8] addresses a related problem
which focuses, roughly speaking, on minimizing the probability of incorrectly
identifying any top-m group. We will discuss the relation between [8] and our
own work in detail. Similarly, work in [6] considers a multi-bandit objective which
focuses on minimizing the maximum uncertainty among the estimated per-arm
returns. In contrast, we propose the more pragmatic objective of maximizing the
number of confident results achieved on a fixed budget1.

In Section 2 of this paper, we define greedy confidence pursuit and contrast it
with objectives previously considered in the multi-bandit setting. In Section 3 we
develop an algorithm for intra-bandit top-m selection in bandits with Bernoulli-
distributed returns. In Section 5 we develop an algorithm for inter-bandit trial
allocation which completes our approach to greedy confidence pursuit. In Sec-
tions 4 and 6, we compare the performance of our algorithms with existing
algorithms across a range of problems, illustrating the power of our approach
and highlighting the differences between greedy confidence pursuit and other

1 Our objective is pragmatic as many practical scenarios (e.g. scientific publication)
require surpassing some confidence threshold for capturing any value, with extra
confidence beyond the threshold providing rapidly diminishing additional value.
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objectives previously considered in the multi-bandit setting. We conclude the
paper and discuss future work in Section 7.

2 Motivating and Formulating Our Objective

Consider a pharmaceutical developer evaluating a new drug for potential use in
multiple sub-populations of patients. Given a fixed budget for processing trial
patients, the developer may seek to maximize the number of sub-populations
for which their proposed drug is identified as significantly better than existing
treatments2. We can formalize this problem as follows:

– Each sub-population is represented by a bandit bi.
– Each bandit has a set of n arms Ai = {ai1, ..., ain}, with arm ai1 representing

the new drug and the rest representing existing treatments.
– The random variables Ri = {ri1, ..., rin} give the per-trial outcomes for bi.
– The objective is to maximize the number of bandits bi for which we find

E[ri1] > maxj �=1 E[rij ] with confidence ρi > τ .

In the above scenario, only confident results involving a particular target arm
(i.e. the pharmaceutical developer’s proposed drug) are considered worth pursu-
ing. This represents a variant of the general greedy confidence pursuit problem,
in which confident results involving any best arm are pursued equally.

We approach greedy confidence pursuit by decomposing trial allocation into
three stages: bandit selection, arm selection, and belief updates based on the
trial outcome. Methods for these stages can be combined “a la carte”, which
facilitates algorithm development and eases comparison with existing work.

In previous work [8], given a set of N bandits B = {b1, ...bN}, Gabillon et. al
proposed the following objective for multi-bandit subset selection:

maximize EH [ min
i

ρi ] , (1)

where ρi measures the confidence that the top-m group selected for bandit bi is
correct. In contrast, our objective can be written as follows:

maximize EH [
∑
i

I{ρi > τ} ] , (2)

where ρi is as above, τ is a confidence threshold and I is the indicator function.
The expectations are over histories (i.e. sequences of observed trial outcomes).
Intuitively, (1) maximizes a lower bound on the per-bandit confidences and (2)
maximizes the number of bandits for which the top-m group can be selected
with high confidence. The precise confidence measure we use is given in (3).

For both objectives (1) and (2), the trials allocated to bandit bi should be
distributed among its arms to maximize ρi. Hence, good arm selection for (1) will

2 While human drug trials are slow to adopt novel experimental designs, one could
analogously consider trials of a new consumer product across multiple potential
target demographics, or exploratory drug trials in non-human model systems.
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also be good for (2). However, methods for optimizing these objectives will select
bandits quite differently. Intuitively, methods optimizing (1) will tend to allocate
trials to bandits with relatively low confidence, while methods optimizing (2) will
tend to allocate trials to bandits with relatively low expected completion cost
(out of the bandits bi for which ρi ≤ τ). The practical differences between (1) and
(2) are most striking when some bandit bi is effectively intractable with respect
to the operative confidence measure and trial budget; an algorithm optimizing
(1) will still sink its budget into (hopelessly) pursuing improvements in ρi, while
algorithms optimizing (2) will ignore bi in favor of lower-hanging fruit.

The completion cost is a critical concept when working with (2), which we
define as follows: a bandit bi has completion cost ci if efficiently allocating ci
trials among the arms of bi is expected to push ρi above τ . Note that if each
ci were deterministic and known a priori, an optimal trial allocation policy for
(2) would be to sort the bandits such that c1 ≤ c2 ≤ ... ≤ cN , then allocate
c1 trials to b1, c2 trials to b2 etc., until budget exhaustion. This greedy policy
maximizes the number of tasks completed on a fixed budget when each task has
a known cost. The difficulty in our case is that each ci is neither known a priori
nor deterministic. Thus, a balance between exploring (to better estimate each
ci) and exploiting (to push each ρi past τ) must be struck.

In Section 5 we describe an estimator for the completion costs ci and discuss
how to use these estimates for inter-bandit trial allocation during greedy confi-
dence pursuit. Next, we present our method for intra-bandit top-m selection.

3 Bayesian Top-m Selection

Our intra-bandit subset selection algorithm uses Bayesian estimates of the per-
arm returns and follows a general approach called posterior sampling, of which
Thompson sampling [16] is perhaps the best-known example. The notation in-
troduced in this section will be reused throughout the remainder of this paper.

3.1 Definitions and Notation

For a setB ofN bandits, where each bi ∈ B has a set Ai of n arms with Bernoulli-
distributed returns, our algorithm maintains its beliefs about the return of each
arm aij ∈ Ai using a beta distribution Bij = B(αij , βij), where αij and βij
count the observed successes and failures for arm aij , respectively. We set priors
over the returns by initializing all parameters αij and βij to a common value
(e.g. we set them to 1 in all of our tests). The belief for arm aij is updated by
incrementing αij or βij following each trial allocated to aij . The MAP estimate
of the return of aij is given by αij(αij + βij)

−1.
For a bandit bi with current MAP return estimates R̄i = {r̄i1, ..., r̄in}, we

define its current MAP gap location γ̄i as 1
2 (r̄im + r̄i(m+1)), in which r̄im and

r̄i(m+1) refer to themth and (m+1)th largest MAP return estimates respectively.
Given γ̄i, we define the current MAP per-arm gaps Γ̄i = {γ̄i1, ...γ̄in} such that
γ̄ij = |r̄ij − γ̄i|. We also refer to a bandit’s true returns and gaps (Ri, Γi) as its
parameters θ ∈ Θ, where Θ spans all bandits permitted by the prior.
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We associate each bandit bi with a confidence ρi, which should give the prob-
ability that its current top-m group (based on the MAP return estimates) is
correct. Since this is impractical to compute exactly, we use a lower bound3. For
a bandit bi with current MAP return estimates R̄i = {r̄i1, ..., r̄in}, we compute
this bound as follows:

ρ̄i = 1−
n∑

j=1

1− Φ

(√
tij |r̄ij − γ̄i|

σ̄ij

)
, (3)

where σ̄ij =
√
r̄ij(1− r̄ij) is the current MAP estimate of the standard deviation

of the return for arm aij , tij is the number of trials previously allocated to arm
aij , γ̄i is the MAP gap location derived from R̄i, and Φ is the CDF for a standard
normal distribution. This bound uses a normal approximation to the posterior
distribution of the return estimate for each arm and computes a union bound
on the probability that all MAP return estimates are on the same side of γ̄i as
their true values. When (3) is negative, we define ρ̄i = 0.

The algorithms presented in this paper all sample from the current posterior
over a bandit’s returns and gaps (i.e. its parameters θ ∈ Θ) as follows: sample a
return for each arm from its current Beta distribution, compute the gap location
implied by the sampled returns, and compute the per-arm gaps using the sampled
returns and the computed gap location.

3.2 Posterior Sampling and Its Merits

Posterior sampling, or randomized probability matching, is a flexible approach to
sequential optimization problems drawing increasing interest from the theoretical
and applied sides of machine learning [1, 11, 15, 5]. For bandit problems, posterior
sampling policies πp select arms as follows:

πp(aij |H) ∝ p

(
aij = argmax

akl

fH
θ (akl)

∣∣∣∣ H)
, (4)

in which πp(aij |H) is the probability of πp selecting aij given H , the trial history
H records the outcomes of all previous trials, θ ∈ Θ is an unobserved parameter
specifying the distribution of the bandit’s returns, and fH

θ is any determinis-
tic function with bounded range. The remaining component of any posterior
sampling policy πp is the conditional distribution p(θ|H), which describes the
posterior over θ ∈ Θ after observing the trials recorded in H . Alg. (1) gives the
general form followed by posterior sampling algorithms.

While the fH
θ used in (4) must be deterministic given particular values for θ

and H , its use in posterior sampling induces a stochastic policy by virtue of our
imperfect knowledge of θ, which we observe only through the trials recorded in

3 The true (Bayesian) confidence for a bandit can be computed to arbitrary precision
by repeatedly sampling from the joint posterior over its per-arm returns and ob-
serving the frequency with which its MAP top-m group appears as the top-m group
among the sampled sets of returns.
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H . Thus, while fH
θ must be deterministic, its value for a particular arm aij given

a particular history H is stochastic, with stochasticity provided by entropy in
the posterior p(θ|H).

Algorithm 1. PostSample( fH
θ , p(θ|H), H , T )

1: for 1 ≤ t ≤ T :
3: Sample θ̂ ∈ Θ from the posterior given by p(θ̂|H)
4: Let â∗

ij = argmaxakl
fH
θ̂
(akl)

5: Pull arm â∗
ij and update H based on the outcome

6: end for

The performance of a posterior sampling policy πp is most naturally measured
by its Bayes risk with respect to fH

θ , which can be written as follows:

Eθ

T∑
t=1

[
fH
θ (a∗ij)− fH

θ (πp
t )
]
, (5)

in which πp
t indicates an arm selected according to the probabilities given by

πp(aij |H) and a∗ij is an arm which maximizes fH
θ . The Bayes risk describes the

sub-optimality of πp with respect to an optimal policy π∗ that always knows
a∗ij , with respect to a prior over Θ chosen a priori. Based on work in [14], we
decompose the Bayes risk for posterior sampling policies as follows:

(5) = EHEθ

T∑
t=1

[
fH
θ (a∗ij)− fH

θ (πp
t )
]

= EHEθ

T∑
t=1

[
fH
θ (a∗ij)− UH

t (πp
t ) + UH

t (πp
t )− fH

θ (πp
t )
]

= EHEθ

T∑
t=1

[
fH
θ (a∗ij)− UH

t (a∗ij) + UH
t (πp

t )− fH
θ (πp

t )
]

= Eθ

T∑
t=1

[
fH
θ (a∗ij)− UH

t (a∗ij)
]
+ Eθ

T∑
t=1

[
UH
t (πp

t )− fH
θ (πp

t )
]

in which UH
t is any function that is deterministic and bounded given H . The

key step in this decomposition relies on the property that Eθ|H [UH
t (a∗ij)] =

Eθ|H [UH
t (πp

t )], which results from the posterior sampling construction of πp ac-
cording to (4), which makes the distributions πp(aij |H) and p(aij = a∗ij |H)
identical. We emphasize that this decomposition is valid for any πp based on
posterior sampling for any fH

θ and UH
t meeting the stated contraints.

Analyses of the Bayes risk for UCB policies follow a decomposition parallel
to that for posterior sampling, with a final step that results in:

Eθ

T∑
t=1

[
fH
θ (a∗ij)− UH

t (a∗ij)
]
+ Eθ

T∑
t=1

[
UH
t (πu

t )− fH
θ (πu

t )
]
,
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in which UH
t meets the same constraints as for posterior sampling and πu

t is
the arm selected by a UCB policy πu based on UH

t , i.e. one where πu
t =

argmaxaij
UH
t (aij). The key step in the Bayes risk decomposition for UCB

policies relies on the fact that UH
t (πu

t ) ≥ UH
t (a∗ij) for all t, due to the UCB

construction of πu.
The parallel decompositions of the Bayes risks for posterior sampling and

UCB algorithms show that, if for some fH
θ there exists an upper bound UH

t which
produces a UCB policy πu with provably good Bayes risk, then substituting that
UH
t into the decomposed Bayes risk for the policy πp which performs posterior

sampling with respect to fH
θ proves an equivalent Bayes risk for πp. Thus, the

Bayes risk of posterior sampling with respect to any fH
θ is upper-bounded by the

lowest Bayes risk upper bound for any πu constructed from any upper bound
UH
t on fH

θ . For detailed coverage of this result and its implications, see [14].

3.3 Top-m Selection via Posterior Sampling

Motivated by the preceding result, we derive a function fH
θ for which good Bayes

risk ensures good subset selection performance. We begin by restating an efficient
static allocation policy πs for subset selection described in detail by [8]:

πs
θ(aij) =

Tb2

γ2
ij

∑
kl

b2

γ2
kl

, (6)

in which πs
θ(aij) gives the number of trials to allocate to aij assuming the gaps

γij are known a priori (the gaps are determined by the bandit parameters θ), T
gives the total number of trials to allocate, and b is a bound on the range of the
returns (e.g., b = 1 for Bernoulli bandits). The policy induced by (6) is optimal
with respect to a lower bound on selection confidence analogous to that in (3).
Next, for any trial history H , define H(aij) as the number of trials recorded
for aij in H4. Finally, for history H and bandit parameters θ, define the log
misallocation ratio as:

fH
θ (aij) = log

(
πs
θ(aij)

H(aij)

)
. (7)

Note that this fH
θ implicitly depends on the desired subset size m through the

definition of the per-arm gaps used in computing πs
θ(aij) for each arm and that

it is bounded by ± log(T ). This fH
θ provides a particularly interesting target

for posterior sampling because we only ever observe it indirectly, through the
information recorded in H over the course of an experiment.

Intuitively, posterior sampling with respect to (7) will select arms in propor-
tion to their posterior probability of being most under-sampled relative to their
sample density in the optimal static policy πs

θ . Any policy whose Bayes risk with
respect to (7) grows sublinearly in T has performance asymptotically equivalent

4 Without loss of generality, we assume all arms have at least one trial in H .
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to that of πs
θ for the true θ as T → ∞. And, from the earlier result, the existence

of any UCB policy with good Bayes risk with respect to (7) suggests good Bayes
risk for posterior sampling with respect to (7).

We perform intra-bandit top-m selection by posterior sampling with respect
to the value in (7). Alg. (2) describes how our algorithm allocates trials at
each round. While our full approach to greedy confidence pursuit calls Alg. (2)
one round at a time, it can also be iterated following the form of Alg. (1) for
application to single bandit subset selection problems.

Algorithm 2. SelectArm( bandit bi, trial history H )

1: Sample θ̂i = (R̂i, Γ̂i) according to p(θ̂i|H).
2: Compute πs

θ̂i
(aij) for each aij ∈ Ai according to (6).

3: Compute â∗
ij = argmaxaij

fH
θ̂i
(aij), with fH

θ̂i
as in (7).

4: Return â∗
ij .

As further justification for our algorithm, consider the relation:

argmax
aij

log

(
πs
θ(aij)

H(aij)

)
= argmin

aij

√
H(aij)γij

b
, (8)

which follows from a straightforward derivation. If one were to model all arms
using the same bound b on their standard deviation, then the values in the
argmin above are equivalent to the values passed to Φ in (3) when computing
the contribution of each arm to a bandit’s confidence ρi. Thus, by posterior sam-
pling with respect to (7), our algorithm selects arms according to their posterior
probability of having the lowest confidence in (3). This can be interpreted as
stochastic greedy maximization of the following lower bound on ρi:

ρi ≥ 1− n

(
1−min

j

[
Φ

(√
tij |r̄ij − γ̄i|

σ̄ij

)])
. (9)

4 Testing Top-m Selection

This section empirically compares our subset selection algorithm with two ex-
isting methods. The first one [10] offers a standard PAC guarantee on sample
complexity and success probability that matches a theoretical lower bound on the
optimal samples/accuracy tradeoff (up to constant factors). The second method
is based on the optimally efficient (up to constant factors) method for best arm
selection presented in [8], which we adapt for use in subset selection. We refer to
our arm selection method as Bayes and the respective baseline methods as PAC
and UCB. We now describe the PAC and UCB methods as used in our tests.

Using the notation from the previous section, both the PAC and UCB methods
rely primarily on the current MAP estimates of the gaps (i.e. {γ̄i1, ..., γ̄in}) for
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Fig. 1. These plots show average confidence lower bounds as a function of trials allo-
cated for three different arm selection methods and two subset sizes at each of three
arm counts. To generate each line, confidence lower bounds were averaged over 100
tests using bandits generated as described in the main text. Methods are indicated by
line style. In each subfigure, the darker lines correspond to selecting the best arm and
the lighter lines correspond to selecting the top half of the arms.

each of the arms in bandit bi. Both methods allocate the next trial to an arm
aij such that −γ̄ij + βij = maxk[−γ̄ik + βik], in which the negative gap −γ̄ij
encourages a focus on arms near the boundary and the term βij encourages
exploration to improve the per-arm gap estimates. The PAC and UCB methods
differ only in their computation of the βij term.

The PAC method, referred to in [10] as LUCB1, computes βij as follows:

βij =

√
1

2tij
ln

(
5nt4

4δ

)
, (10)

in which tij gives the number of trials previously allocated to aij , t gives the
total number of trials previously allocated, n is the number of bandit arms, and
(1 − δ) is the desired probability of correct subset selection (we set δ = 0.05 in
our tests). UCB computes βij as follows:

βij =

√
2κiσ̄2

ij

tij
+

7κiνi
3(tij − 1)

, (11)

in which σ̄2
ij is the current empirical (i.e. MAP) estimate of the variance of the re-

turn of aij , tij is as in (10), and κi/νi are constants computed from continuously
updated empirical estimates of the complexity of bandit bi. A full description of
the κi/νi computations is beyond the scope of this paper and appears in [8]5.

All tests underlying Figures 1 and 2 used bandits with return distributions
generated by the same process. Four parameters determined the return distri-
bution of each bandit used in these tests: the minimum allowed gap γmin, the

5 For those familiar with the source material, we have implemented AGapE-V with
the per-arm gaps Δmk redefined to permit top-m selection. This redefinition of the
gaps permits simpler notation, while effecting only a constant shift in all gap values,
thus leaving the selection process unchanged when m = 1.
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(a) Instant (b) Delayed

Fig. 2. This plot compares best arm selection performance of the Bayes, PAC, and UCB
algorithms. The lines show the median completion times achieved by each method over
100 tests at each arm count in {5, 10, 20, 50, 100}, with bandits generated as described
in the text. Tests were considered complete when a confidence ≥ 0.98 was maintained
for at least 100 rounds. Feedback in (a) was instant, while feedback in (b) was delayed
100 trials.

maximum allowed gap γmax, the number of arms n, and the number of top arms
to select m. Without loss of generality, we assume that the arms are sorted in
order of descending returns. We generated a random set of returns meeting the
constraints imposed by these parameters by generating sets of n returns uni-
formly distributed over [0.1...0.9] until the gap between the mth and (m + 1)th

largest returns was in the range [γmin...γmax]. For the tests in this section, and
those in the remaining sections, for a given set of per-arm returns (i.e. a bandit),
we presented each algorithm with matching sequences of trial outcomes. This
allowed us to expose all methods tested to problems of equivalent difficulty. For
tests in this section we set γmin = 0.05 and γmax = 0.15.

In Figure 1 we show the results of running the Bayes, PAC, and UCB methods
on bandits with various arm counts when selecting either the best arm or the top
half of the arms. We plot the average learning curves over 100 bandits for each
arm count/subset size pair. The confidence values plotted in these curves were
computed according to (3). Confidence curves for all other tests in this paper
were computed similarly. The tests in Figure 1 show our method consistently
outperforming existing methods over all arm counts and subset sizes.

Figure 2 compares Bayes, PAC, and UCB methods across a larger range of
arm counts, in the context of best arm selection. For these tests, we compute
completion time as the first round at which the confidence bound ρ̄i was at least
0.98 for the previous 100 trials. Our method clearly has a large advantage as the
number of arms increases. While the absolute advantage at arm counts ≤ 10 is
smaller, it still represents a 10%− 20% reduction in completion time.

5 Bayesian Greedy Confidence Pursuit

Recall that, if the completion cost ci for each bandit bi were deterministic and
known a priori, an optimal policy for greedy confidence pursuit would be to com-
plete bandits in order of increasing completion costs, until budget exhaustion.
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To compensate for the uncertain completion costs encountered in practical sce-
narios, we address greedy confidence pursuit by posterior sampling with respect
to an approximate per-bandit completion cost.

For use in greedy confidence pursuit, an approximate completion cost need
only predict the relative ranking of a set of bandits in terms of their true com-
pletion costs, as this permits mimicking the optimal greedy policy for known
completion costs, which depends only on the cost-induced bandit order. For a
bandit bi with true returns Ri and gaps Γi, we use the following cost estimate:

ĉi =

n∑
j=1

(
σij +

√
σ2
ij + (16/3)γij

)2

γ2
ij

, (12)

in which σij is the standard deviation associated with the return rij . The value in
(12) comes from a bandit complexity measure described in [8]. Figure 3 supports
the predictiveness of (12) with respect to relative empirical costs.

Note that, if one assumes the same target confidence τ for all bandits bi ∈ B,
then accounting for τ in ĉi would not affect the ordering of bandits according to
ĉi, as an “easier” bandit according to (12) would also have a smaller expected
completion cost for any value of τ . By using (12), we also ignore the effort
previously expended on a given bandit. While considering the number of trials
already spent on a bandit could improve on the performance of (12), it would
require steps to avoid the “sunk-cost” fallacy of economics, as manifested by
premature commitment to bandits wrongly identified as “easy”.

We perform bandit selection for greedy confidence pursuit by (minimum) pos-
terior sampling with respect to fH

θ (bi) = ĉi. The resulting algorithm is given in
Alg. (3). Note that (12) captures dependence on the subset size m through its
use of Γi and that ĉi becomes stochastic when sampled with respect to the
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Fig. 3. This figure examines the predictive power of the completion cost in (12). From
darkest to lightest the points represent selecting the top 1, 3, and 5 arms of a 10-armed
bandit. Points correspond to particular bandits for which 20 runs of our Bayesian subset
selection were performed, using independently generated trial outcomes for each run.
The x coordinate of each point is the value of (12) for the true returns and gaps
underlying its runs, while the y coordinate is the mean completion time for its runs.
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per-bandit posteriors over returns and gaps. A theoretical analysis of our allo-
cation process is beyond the scope of this paper, but the properties of posterior
sampling described in Section 3 suggest it will efficiently direct trials towards
the bandits with minimal ĉi. Section 6 empirically supports the design of this
approach.

Algorithm 3. SelectBandit( bandit set B, trial history H )

1: for each bi ∈ B:
2: Sample θ̂i = (R̂i, Γ̂i) according to p(θ̂i|H).
3: Compute ĉi according to (12) using R̂i and Γ̂i.
4: end for
5: Let b∗i = argminbi: ρi<τ ĉi.
6: Return bi∗ .

5.1 Greedy Confidence Pursuit for “Targeted” Tasks

Now, consider the following problem:

– Given a finite trial budget T and N bandits bi with returns Ri = {ri1, ...rin}
– Maximize the number of bandits bi for which we can say with confidence ρi

greater than τ that (without loss of generality) ri1 > maxj �=1 rij ,

which reformulates the example scenario from Section 2. The twist in this sce-
nario is that we only care about bandits for which a specific arm is best.

We address this problem by extending our algorithm for bandit selection in
general greedy confidence pursuit. Intuitively, we sample bandits in proportion
to their probability of having the lowest completion cost among bandits in which
the targeted arm is best. Alg. (4) describes our extension of Alg. (3).

Algorithm 4. TargetedBanditSelection( bandit set B, trial history H )

01: ∀i, set ĉi =∞.
02: while (mini ĉi ==∞)
03: for each bi ∈ B:
04: Sample θ̂i = (R̂i, Γ̂i) according to p(θ̂i|H).
05: Compute ĉi according to (12) using R̂i and Γ̂i.
06: If r̂i1 < maxj �=1 r̂ij , set ĉi =∞
08: end for
09: end while
10: Let b∗i = argminbi: ρi<τ ĉi.
11: Return bi∗ .

In the next section, we empirically support the value of Alg. (4) in situations
where one is focused on maximizing “positive” results involving specific arms. For
practical reasons, we upper bound the number of runs through the “resampling”
loop of lines 02− 09. If, prior to reaching the upper bound, no bandit has been
found for which r̂i1 > maxj �=1 r̂ij , we select a bandit according to Alg. (3).
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6 Testing Greedy Confidence Pursuit

We begin our empirical examination of greedy confidence pursuit with tests
supporting (12) as an approximate completion cost. These tests were based on
selecting the top 1, 3, and 5 arms of 10-armed bandits, with returns distributed
as in Section 4. For each test, we generated a bandit, computed its cost according
to (12) using the true returns, and then ran our Bayes arm selection 20 times
on the bandit, using independently simulated trials for each run. Each point
in Figure 3 corresponds to the analytically computed cost and the empirical
expected cost for a particular bandit, with empirical completion costs measured
as for Figure 2. These tests show that the cost estimates given by (12) are highly
predictive with respect to the behavior of our algorithm.

(a) One easy group (b) Graded complexities

Fig. 4. This figure examines the performance of our method for greedy confidence
pursuit, when selecting best arms. Curves in (a) were computed over 100 tests, each
of which used 20 10-armed bandits, with the gap for one bandit set to 0.1 and the
remaining gaps set to 0.01. Curves in (b) were computed over 100 tests, each of which
used 15 10-armed bandits, with the gaps for the bandits evenly spaced on a log scale
from 0.01 to 0.1. Bandit generation for the tests in (a) and (b) is described in the text.
The curves in (a) and (b) show the number of bandits confidently completed prior to a
given trial, aggregated across the relevant tests, with completion defined as for Fig. 2.

For the tests underlying Figures 4 and 5, the per-bandit objective was best
arm selection. These tests compared our method for greedy confidence pursuit
(tag: GCP-Bayes), comprising the bandit selection described in Section 5 and
the arm selection described in Section 3, to three baseline methods. The first
baseline was Uni-UCB, which uniformly selected bandits and then applied the
UCB arm selection described in Section 4. The second baseline was Gab-UCB,
which used UCB arm selection applied jointly over the bandits as described for
GapE-V in [8]6. The final baseline was provided by MAP-UCB, which selected
bandits stochastically in inverse proportion to estimates of their completion costs
computed by plugging MAP estimates of the relevant values into (12), and then
used UCB for intra-bandit arm selection.
6 Note that Gab-UCB is designed to optimize (1) rather than (2). By selecting jointly
over all arms/bandits, our Bayesian approach to top-m selection can also be applied
towards (1).
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Figure 4 examines whether our approach to greedy confidence pursuit can
improve the rate at which confident results are achieved. In each test underlying
(a), 20 bandits were generated such that one had gap 0.1 and the rest had gap
0.01. For each test underlying (b), 15 bandits were generated to have gaps evenly
spaced on a logarithmic scale over [0.01...0.10]. Given the desired gap size γ for
each bandit, the best arm was set to return 0.5 + γ, and the remaining returns
were set uniformly at random in [0.0...0.5] and then uniformly shifted such that
the second best arm had return 0.5. The curves in Figure 4 show the cumulative
confident results achieved by each method prior to a given trial, computed based
on 100 independently generated sets of test bandits for both (a) and (b).

Overall, Figure 4 shows that, in comparison to Uni-UCB and Gab-UCB, our
method significantly accelerates the achievement of confident results. The tests in
(a) show that Gab-UCB, which optimizes the objective described in (1), performs
poorly with respect to the rate at which confident results are achieved when the
bandits under consideration span a wide range of costs. The tests in (b) show
that GCP-Bayes and MAP-UCB both maintain a large performance advantage
over Uni-UCB even when the difference between easy and hard bandits is less
pronounced than for the tests in (a). Note that MAP-UCB is a novel algorithm
which we have introduced to provide non-trivial competition for GCP-Bayes.

6.1 Testing “Targeted” Greedy Confidence Pursuit

Figure 5 examines the performance of our approach to group selection for greedy
confidence pursuit in the context of the targeted scenario from Section 2. In
each test underlying the plots, 20 10-armed bandits were generated with gaps
distributed uniformly at random over [0.01...0.10]. In each test, 5 bandits had
their target arm best and the other 15 bandits had some other arm best. Given
the gap size and best arm index for each bandit, the per-arm returns were set
as for the tests underlying Figure 4.

(a) First arm groups (b) Any arm groups

Fig. 5. This figure gives two views of the cumulative number of best arms confidently
selected prior to a given trial, similar to Figure 4. Each of the 100 tests on which these
plots are based used 20 10-armed bandits, of which 5 had the target arm best while
the remaining 15 had some other arm best. Gaps for all bandits were set uniformly at
random in [0.01...0.10]. Bandit generation for these tests is described in the text. Plot
(a) shows the cumulative number of bandits completed among those whose target arm
was best, while (b) shows cumulative completions among all bandits.
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The curves in Figure 5 show the rate at which each considered method
achieved confident results, as measured by the number of bandits confidently
completed prior to a given round, aggregated over 100 independently generated
sets of bandits. For (a), only completed bandits among those with their tar-
get arm best were considered when computing the plotted curves. For (b), all
completed bandits were considered when computing the plotted curves.

The curves in (a) show that, in comparison to both Uni-UCB and MAP-UCB,
the targeted version of GCP-Bayes from Section 5.1 dramatically increases the
rate at which confident results are achieved among bandits with their target arm
best. The curves in (b) show that the increased focus of this version of GCP-
Bayes on a particular subset of the bandits also modestly increases the initial
rate at which confident results are achieved among all bandits, but that this early
advantage fades as easy target-arm-best results are exhausted. After completing
the easiest target-arm-best results, GCP-Bayes falls behind MAP-UCB, which
greedily and impartially pursues all easy results.

7 Conclusion and Future Work

We presented a new multi-bandit optimization objective, called greedy confi-
dence pursuit, which captures the general problem of maximizing the number
of significant results achieved among a set of experiments sharing a finite pool
of fungible resources. We derived algorithms for optimizing this objective in
the context of top-m arm identification, both for single and multiple bandits.
Our methods compare favorably to existing UCB-style algorithms in terms of
empirical performance. In particular, for subset selection, our method scales
much better with increasing arm counts than existing algorithms, which sug-
gests its applicability in domains frequently involving numerous actions, such as
online advertising and Monte-Carlo tree search for games with high branching
factors.

While we used Bernoulli bandits in this paper, our methods directly extend
to other return types e.g. normally-distributed continuous returns, through a
simple change of priors. Structured priors, e.g. Gaussian processes, can also be
used to capture both inter-bandit and intra-bandit relationships between re-
turns. We used bandits with homogenous arm counts, but our methods handle
heterogenous arm counts with no changes. With minor modifications, our meth-
ods can be used with bandits that share arms and for tasks other than subset
selection, e.g. estimating quantiles or rank-ordering all returns. For practical
applications, it may also be useful to account for variability in the value of com-
pleting each bandit. Such extensions are beyond the scope of the current paper,
but provide rich material for future work. We gave one brief illustration of the
flexibility granted by our use of posterior sampling by transforming Alg. (3) into
Alg. (4), for application to problems in which only specific confident results are
pursued.
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lems. In: Gavaldà, R., Lugosi, G., Zeugmann, T., Zilles, S. (eds.) ALT 2009. LNCS,
vol. 5809, pp. 23–37. Springer, Heidelberg (2009)

[5] Chappelle, O., Li, L.: An empirical evaluation of thompson sampling. In: Advances
in Neural Information Processing Systems (2011)

[6] Deng, K., Pineau, J., Murphy, S.: Active learning for personalizing treatment.
In: IEEE Symposium on Adaptive Dynamic Programming and Reinforcement
Learning (2011)

[7] Even-Dar, E., Mannor, S., Mansour, Y.: Action elimination and stopping condi-
tions for the multi-armed bandit and reinforcement learning problems. Journal of
Machine Learning Research 7, 1079–1105 (2006)

[8] Gabillon, V., Ghavamzadeh, M., Lazaric, A., Bubeck, S.: Multi-bandit best arm
identification. In: Advances in Neural Information Processing Systems (2011)

[9] Kalyanakrishnan, S., Stone, P.: Efficient selection of multiple bandit arms: Theory
and practice. In: International Conference on Machine Learning (2010)

[10] Kalyanakrishnan, S., Tewari, A., Auer, P., Stone, P.: Pac subset selection in
stochastic multi-armed bandits. In: International Conference on Machine Learning
(2012)

[11] Li, L., Chappelle, O.: Open problem: Regret bounds for thompson sampling. In:
COLT (2012)

[12] Madani, O., Lizotte, D.J., Greiner, R.: The budgeted multi-armed bandit problem.
In: COLT (2004)

[13] Mannor, S., Tsitsiklis, J.N.: The sample complexity of exploration in the multi-
armed bandit problem. Journal of Machine Learning Research 5, 623–648 (2004)

[14] Russo, D., Van Roy, B.: Learning to optimize via posterior sampling.
arXiv:1301.2609v1 [cs.LG] (2013)

[15] Scott, S.L.: A modern bayesian look at the multi-armed bandit. Applied Stochastic
Models in Business and Industry 26, 639–658 (2010)

[16] Thompson, W.R.: On the likelihood that one unknown probability exceeds another
in view of the evidence of two samples. Biometrika 25(3-4), 285–294 (1933)



A Time and Space Efficient Algorithm
for Contextual Linear Bandits

José Bento1, Stratis Ioannidis2, S. Muthukrishnan3, and Jinyun Yan3

1 Stanford University
jbento@stanford.edu

2 Technicolor
stratis.ioannidis@technicolor.com

3 Rutgers University
{muthu,jinyuny}@cs.rutgers.edu

Abstract. We consider a multi-armed bandit problem where payoffs are a lin-
ear function of an observed stochastic contextual variable. In the scenario where
there exists a gap between optimal and suboptimal rewards, several algorithms
have been proposed that achieve O(log T ) regret after T time steps. However,
proposed methods either have a computation complexity per iteration that scales
linearly with T or achieve regrets that grow linearly with the number of contexts
|X |. We propose an ε-greedy type of algorithm that solves both limitations. In
particular, when contexts are variables in �d, we prove that our algorithm has a
constant computation complexity per iteration of O(poly(d)) and can achieve a
regret of O(poly(d) log T ) even when |X | = Ω(2d). In addition, unlike previous
algorithms, its space complexity scales like O(Kd2) and does not grow with T .

Keywords: Contextual Linear Bandits, Space and Time Efficiency.

1 Introduction

The contextual multi-armed bandit problem is a sequential learning problem [17,13]. At
each time step, a learner has to chose among a set of possible actions/arms A. Prior to
making its decision, the learner observes some additional side information x ∈ X over
which he has no influence. This is commonly referred to as the context. In general, the
reward of a particular arm a ∈ A under context x ∈ X follows some unknown distri-
bution. The goal of the learner is to select arms so that it minimizes its expected regret,
i.e., the expected difference between its cumulative reward and the reward accrued by
an optimal policy, that knows the reward distributions.

Langford and Zhang [17] propose an algorithm called epoch-Greedy for general con-
textual bandits. Their algorithm achieves an O(log T ) regret in the number of timesteps
T in the stochastic setting, in which contexts are sampled from an unknown distribu-
tion in an i.i.d. fashion. Unfortunately, the proposed algorithm and subsequent improve-
ments [13] have high computational complexity. Selecting an arm at time step t requires
making a number of calls to a so-called optimization oracle that grows polynomially in
T . In addition, the cost of an implementation of this optimization oracle can grow lin-
early in |X | in the worst case; this is prohibitive in many interesting cases, including
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the case where |X | is exponential in the dimension of the context. In addition, both al-
gorithms proposed in [17] and [13] require keeping a history of observed contexts and
arms chosen at every time instant. Hence, their space complexity grows linearly in T .

In this paper, we show that the challenges above can be addressed when rewards are
linear. In the above contextual bandit set up, this means that X is a subset of �d, and
the expected reward of an arm a ∈ A is an unknown linear function of the context x,
i.e., it has the form x†θa, for some unknown vector θa. This is a case of great interest,
arising naturally when, conditioned on x, rewards from different arms are uncorrelated:

Example 1. (Processor Scheduling) A simple example is assigning incoming jobs to a
set of processors A, whose processing capabilities are not known a priori. This could
be the case if, e.g., the processors are machines in the cloud or, alternatively, humans
offering their services through, e.g., Mechanical Turk. Each arriving job is described by
a set of attributes x ∈ �d, each capturing the work load of different types of sub-tasks
this job entails, e.g., computation, I/O, network communication, etc. Each processor’s
unknown feature vector θa describes its processing capacity, i.e., the time to complete a
sub-task unit, in expectation. The expected time to complete a task x is given by x†θa;
the goal of minimizing the delay (or, equivalently, maximizing its negation) brings us
in the contextual bandit setting with linear rewards. �

Example 2. (Display Ad Placement) In the online ad placement problem, online users
are visiting a website, which must decide which ad to show them selected from a set
A. Each online user visiting the website is described by a set of attributes x ∈ �

d

capturing, e.g., its geo-location, its previous viewing history, or any information avail-
able through a tracking service like BlueKai. Each ad a ∈ A has a probability of being
clicked that is of the form x†θa, where θa ∈ �

d an unknown vector describing each
ad. The system objective is to maximize the number of clicks, falling again under the
above contextual bandit setting. �

Example 3. (Group Activity Selection) Another motivating example is maximizing
group satisfaction, observed as the outcome of a secret ballot election. In this setup,
a subset of d users congregate to perform a joint activity, such as, e.g., dining, rock
climbing, watching a movie, etc. The group is dynamic and, at each time step, the vec-
tor x ∈ {0, 1}d, is an indicator of present participants. An arm (i.e., a joint activity) is
selected; at the end of the activity, each user votes whether they liked the activity or not
in a secret ballot, and the final tally is disclosed. In this scenario, the unknown vectors
θa ∈ �d indicate the probability a given participant will enjoy activity a, and the goal is
to select activities that maximize the aggregate satisfaction among participants present
at the given time step. �

Our contributions are as follows.

– We isolate and focus on linear payoff case of stochastic multi-armed bandit prob-
lems, and design a simple arm selection policy which does not recourse to sophis-
ticated oracles inherent in prior work.

– We prove that our policy achieves an O(log T ) regret after T steps in the stochastic
setting, when the expected rewards of each arm are well separated. This meets the
regret bound of best known algorithms for contextual multi-armed bandit problems.
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In addition, for many natural scenarios, it scales as O(poly(d) log T ), which we
believe we are the first to prove under arm separation and for an efficient algorithm.

– We show that our algorithm has O(|A|d2) computational complexity per step and
its expected space complexity scales like O(|A|d2). For algorithms that achieve
similar regrets, this is a significant improvement over known contextual multi-
armed bandit problems, as well as for bandits specialized for linear payoffs.

Our algorithm is inspired by the work of [3] on the ε-greedy algorithm and the use
of linear regression to estimate the parameters θa. The main technical innovation is the
use of matrix concentration bounds to control the error of the estimates of θa in the
stochastic setting. We believe that this is a powerful realization and may ultimately help
us analyze richer classes of payoff functions.

The remainder of this paper is organized as follows: in Section 2 we compare our
results with existing literature. In Section 3 we describe the set up of our problem in
more detail. In Section 4 we state our main results and prove them in Section 5. Section
6 is devoted to exemplifying the performance and limitations of our algorithm by means
of simple numerical simulations. We discuss challenges in dealing with an adversarial
setting in Section 7 and draw our conclusions in Section 8.

2 Related Work

The original paper by Langford and Zhang [17] assumes that the context x ∈ X is sam-
pled from a probability distribution p(x) and that, given an arm a ∈ A, and conditioned
on the context x, rewards r are sampled from a probability distribution pa(r | x). As is
common in bandit problems, there is a tradeoff between exploration, i.e., selecting arms
to sample rewards from the distributions {pa(r | x)}a∈A and learn about them, and ex-
ploitation, whereby knowledge of these distributions based on the samples is used to
select an arm that yields a high payoff.

In this setup, a significant challenge is that, though contexts x are sampled indepen-
dently, they are not independent conditioned on the arm played: an arm will tend to be
selected more often in contexts in which it performs well. Hence, learning the distribu-
tions {pa(r | x)}a∈A from such samples is difficult. The epoch-Greedy algorithm [17]
deals with this by separating the exploration and exploitation phase, effectively select-
ing an arm uniformly at random at certain time slots (the exploration “epochs”), and
using samples collected only during these epochs to estimate the payoff of each arm in
the remaining time slots (for exploitation). Our algorithm uses the same separation in
“epochs”. Langford and Zhang [17] establish an O(T 2/3(ln |X |)1/3) bound on the re-
gret for epoch-Greedy in their stochastic setting. They further improve this to O(log T )
when a lower bound on the gap between optimal and suboptimal arms in each context
exists, i.e., under arm separation.

Unfortunately, the price of the generality of the framework in [17] is the high com-
putational complexity when selecting an arm during an exploitation phase. In a recent
improvement [13], this computation requires a poly(T ) number of calls to an optimiza-
tion oracle. Most importantly, even in the linear case we study here, there is no clear
way to implement this oracle in sub-exponential time in d, the dimension of the context.
As Dudik et al. [13] point out, the optimization oracle solves a so-called cost-sensitive
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classification problem. In the particular case of linear bandits, the oracle thus reduces
to finding the “least-costly” linear classifier. This is hard, even in the case of only two
arms: finding the linear classifier with the minimal number of errors is NP-hard [15],
and remains NP hard even if an approximate solution is required [7]. As such, a different
approach is warranted under linear rewards.

Contextual bandits with linear rewards is a special case of the classic linear bandit
setup [4,9,18,19]. In this setup, the arms themselves are represented as vectors, i.e.,
A ⊂ �

d, and, in addition, the set A can change from one time slot to the next. The
expected payoff of an arm a with vector xa is given by x†aθ, for some unknown vector
θ ∈ �d, common among all arms.

There are several different variants of the above linear model. Auer [4], Li et al. [18],
and Chu et al. [9], and Li a study this problem in the adversarial setting, assuming a
finite number of arms |A|. In the adversarial setting, contexts are not sampled i.i.d. from
a distribution but can be an arbitrary sequence, for example, chosen by an adversary that
has knowledge of the algorithm and its state variables.Both algorithms studied, LinRel
and LinUCB, are similar to ours in that they use an upper confidence bound and both
estimate the unknown parameters for the linear model using a least-square-error type
method. In addition, both methods apply some sort of regularization. LinRel does it by
truncating the eigenvalues of a certain matrix and LinUCB by using ridge regression.
In the adversarial setting, and with no arm separation, the regret bounds obtained of the
form O(

√
Tpolylog(T )).

Dani et al. [12], Rusmevichientong and Tsitsiklis [19], and Abbasi-Yadkori et al. [1]
study contextual linear bandits in the stochastic setting, in the case where A is a fixed
but possibly uncountable bounded subset of �d. Dani et al. [12] obtain regret bounds
of O(

√
T ) for an infinite number of arms; under arm separation, by introducing a gap

constant Δ, their bound is O(d2(log T )3). Rusmevichientong and Tsitsiklis [19] also
study the regret under arm separation and obtain a O(log(T )) bound that depends ex-
ponentially on d. Finally, Abbasi-Yadkori et al. [1] obtain a O(poly(d) log2(T )) bound
under arm separation.

Our problem can be expressed as a special case of the linear bandits setup by taking
θ = [θ1; . . . ; θK ] ∈ �

Kd, where K = |A|, and, given context x, associating the i-
th arm with an appropriate vector of the form xai = [0 . . . x . . . 0]. As such, all of
the bounds described above [4,18,9,12,19,1] can be applied to our setup. However, in
our setting, arms are uncorrelated; the above algorithms do not exploit this fact. Our
algorithm indeed exploits this to obtain a logarithmic regret, while also scaling well in
terms of the dimension d.

Several papers study contextual linear bandits under different notions of regret. For
example, Dani et al. [11] define regret based on the worst sequence of loss vectors. In
our setup, this corresponds to the rewards coming from an arbitrary temporal sequence
and not from adding noise to x†θa, resembling the ‘worst-case’ regret definition of [5].
Abernethy et al. [2] assume a notion of regret with respect to a best choice fixed in time
that the player can make from a fixed set of choices. However, in our case, the best
choice changes with time t via the current context. This different setup yields worse
bounds than the ones we seek: for both stochastic and adversarial setting the regret is
O(

√
Tpolylog(T )).
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Recent studies on multi-class prediction using bandits [16,14,10] have some con-
nections to our work. In this setting, every context x has an associated label y that a
learner tries to predict using a linear classifier of the type ŷ = argmaxa θ

†
ax. Among

algorithms proposed, the closest to ours is by Crammer and Gentile [10], which uses an
estimator for {θa} that is related to LinUCB, LinRel and our algorithm. However, the
multi-class prediction problem differs in many ways from our setting. To learn the vec-
tors θa, the learner receives a one-bit feedback indicating whether the label predicted is
correct (i.e., the arm was maximal) or not. In contrast, in our setting, the learner directly
observes θ†ax, possibly perturbed by noise, without learning if it is maximal.

Finally, bandit algorithms relying on experts such as EXP4 [6] and EXP4.P [8] can
also be applied to our setting. These algorithms require a set of policies (experts) against
which the regret is measured. Regret bounds grow as logC N , where N is the number
of experts and C a constant. The trivial reduction of our problem to EXP4(.P) assigns
an expert to each possible context-to-arm mapping. The 2d contexts in our case lead to
K2d experts, an undesirable exponential growth of regret in d; a better choice of experts
is a new problem in itself.

3 Model

In this section, we give a precise definition of our linear contextual bandit problem.

Contexts. At every time instant t ∈ {1, 2, ...}, a context xt ∈ X ⊂ �
d, is observed

by the learner. We assume that ‖x‖2 ≤ 1; as the expected reward is linear in x, this
assumption is without loss of generality (w.l.o.g.). We prove our main result (Theorem
2) in the stochastic setting where xt are drawn i.i.d. from an unknown multivariate
probability distribution D. In addition, we require that the set of contexts is finite i.e.,
|X | < ∞. We define Σmin > 0 to be the smallest non-zero eigenvalue of the covariance
matrix Σ ≡ E{x1x†1}.

Arms and Actions. At time t, after observing the context xt, the learner decides to play
an arm a ∈ A, where K ≡ |A| is finite. We denote the arm played at this time by at.
We study adaptive arm selection policies, whereby the selection of at depends only on
the current context xt, and on all past contexts, actions and rewards. In other words,
at = at

(
xt, {xτ , aτ , rτ}t−1

τ=1

)
.

Payoff. After observing a context xt and selecting an arm at, the learner receives a
payoff rat,xt which is drawn from a distribution pat,xt independently of all past con-
texts, actions or payoffs. We assume that the expected payoff is a linear function of the
context. In other words,

rat,xt = x†tθa + εa,t (1)

where {εa,t}a∈A,t≥1 are a set of independent random variables with zero mean and
{θa}a∈A are unknown parameters in �d. Note that, w.l.o.g, we can assume that Q =
maxa∈A ‖θa‖2 ≤ 1. This is because if Q > 1 , as payoffs are linear, we can divide all
payoffs by Q; the resulting payoff is still a linear model, and our results stated below
apply. Recall that Z is a sub-gaussian random variable with constant L if E{eγZ} ≤
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eγ
2L2

. In particular, sub-gaussianity implies E{Z} = 0. We make the following tech-
nical assumption.

Assumption 1. The random variables {εa,t}a∈A,t≥1 are sub-gaussian random vari-
ables with constant L > 0.

Regret. Given a context x, the optimal arm is a∗x = argmaxa∈A x†θa. The expected
cumulative regret the learner experiences over T steps is defined by

R(T ) = E
{ T∑

t=1

x†t (θa∗
xt

− θat)
}
. (2)

The expectation above is taken over the contexts xt. The objective of the learner is to
design a policy at = at

(
xt, {xτ , aτ , rτ}t−1

τ=1

)
that achieves as low expected cumulative

regret as possible. In this paper we are also interested in arm selection policies having a
low computational complexity. We define Δmax ≡ maxa,b∈A ||θa − θb||2, and Δmin ≡
infx∈X ,a:x†θa<x†θa∗

x
x†(θa∗

x
− θa) > 0. Observe that, by the finiteness of X and A, the

defined infimum is attained (i.e., it is a minimum) and is indeed positive.

4 Main Results

We now present a simple and efficient on-line algorithm that, under the above as-
sumptions, has expected logarithmic regret. Specifically, its computational complex-
ity, at each time instant, is O(Kd2) and the expected memory requirement scales like
O(Kd2). As far as we know, our analysis is the first to show that a simple and efficient
algorithm for the problem of linearly parametrized bandits can, under reward separation
and i.i.d. contexts, achieve logarithmic expected cumulative regret that simultaneously
can scale like polylog(|X |) for natural scenarios.

Before we present our algorithm in full detail, let us give some intuition about it. Part
of the job of the learner is to estimate the unknown parameters θa based on past actions,
contexts and rewards. We denote the estimate of θa at time t by θ̂a. If θa ≈ θ̂a then,
given an observed context, the learner will more accurately know which arm to play to
incur in small regret. The estimates θ̂a can be constructed based on a history of past
rewards, contexts and arms played. Since observing a reward r for arm a under context
x does not give information about the magnitude of θa along directions orthogonal to
x, it is important that, for each arm, rewards are observed and recorded for a rich class
of contexts. This gives rise to the following challenge: If the learner tries to build this
history while trying to minimize the regret, the distribution of contexts observed when
playing a certain arm a will be biased and potentially not rich enough. In particular,
when trying to achieve a small regret, conditioned on at = a, it is more likely that xt is
a context for which a is optimal.

We address this challenge using the following idea, also appearing in the epoch-
Greedy algorithm of [17]. We partition time slots into exploration and exploitation
epochs. In exploration epochs, the learner plays arms uniformly at random, indepen-
dently of the context, and records the observed rewards. This guarantees that in the
history of past events, each arm has been played along with a sufficiently rich set of
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Algorithm 1. Contextual ε -greedy
For all a ∈ A, set Aa ← 0d×d ;na ← 0; ba ← 0d
for t = 1 to p do

a ← 1 + (t mod K); Play arm a
na ← na + 1; ba ← ba + rtxt; Aa ← Aa + xtx

†
t

end for
for t = p+ 1 to T do

e ← Bernoulli(p/t)
if e = 1 then

a ← Uniform(1/K) ; Play arm a
na ← na + 1; ba ← ba + rtxt; Aa ← Aa + xtx

†
t

else
for a ∈ A do

Get θ̂a as the solution to the linear system:
(
λnaI +

1
na

Aa

)
θ̂a =

1
na

ba

end for
Play arm at = argmaxa∈A x†

t θ̂a
end if

end for

contexts. In exploitation epochs, the learner makes use of the history of events stored
during exploration to estimate the parameters θa and determine which arm to play given
a current observed context. The rewards observed during exploitation are not recorded.

More specifically, when exploiting, the learner performs two operations. In the first
operation, for each arm a ∈ A, an estimate θ̂a of θa is constructed from a simple �2-
regularized regression, as in in [4] and [9]. In the second operation, the learner plays the
arm a that maximizes x†t θ̂a. Crucially, in the first operation, only information collected
during exploration epochs is used. In particular, let Ta,t−1 be the set of exploration
epochs up to and including time t − 1 (i.e., the times that the learner played an arm a
uniformly at random (u.a.r.)). Moreover, for any T ⊂ �, denote by rT ∈ �n the vector
of observed rewards for all time instances t ∈ T , and XT ∈ �

n×d is a matrix of T
rows, each containing one of the observed contexts at time t ∈ T . Then, at time t the
estimator θ̂a is the solution of the following convex optimization problem.

min
θ∈�d

1

2n
‖rT −XT θ‖22 +

λn

2
‖θ‖22. (3)

where T = Ta,t−1, n = |Ta,t−1|, λn = 1/
√
n. In other words, the estimator θ̂a is

a (regularized) estimate of θa, based only on observations made during exploration

epochs. Note that the solution to (3) is given by θ̂a =
(
λnI +

1
nX

†
TXT

)−1
1
nX

†
T rT .

An important design choice is the above process selection of the time slots at which
the algorithm explores, rather than exploits. Following the ideas of [20], we select
the exploration epochs so that they occur approximately Θ(log t) times after t slots.
This guarantees that, at each time step, there is enough information in our history of
past events to determine the parameters accurately while only incurring in a regret of
O(log t). There are several ways of achieving this; our algorithm explores at each time
step with probability Θ(t−1).
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The above steps are summarized in pseudocode by Algorithm 1. Note that the algo-
rithm contains a scaling parameter p, which is specified below, in Theorem 2. Because
there are K arms and for each arm (xt, ra,t) ∈ �d+1, the expected memory required by
the algorithm scales like O(Kd2). In addition, both the matrix X†

TXT and the vector
X†
T rT can be computed in an online fashion in O(d2) time: X†

TXT ← X†
TXT + xtx

†
t

and X†
T rT ← X†

T rT + rtxt. Finally, the estimate of θ̂a does not require full matrix in-
version but only solving a linear system (see Algorithm 1), which can be done in O(d2)
time. The above is summarized in the following theorem.

Theorem 1. Algorithm 1 has computational complexity of O(Kd2) per iteration and
its expected space complexity scales like O(Kd2).

We now state our main theorem that shows that Algorithm 1 achieves R(T ) =
O(log T ).

Theorem 2. Under Assumptions 1, the expected cumulative regret of algorithm 1 sat-
isfies,

R(T ) ≤ pΔmax

√
d+ 14Δmax

√
dKeQ/4 + pΔmax

√
d logT.

for any

p ≥ CKL′2

(Δ′min)
2(Σ′min)

2
. (4)

Above, C is a universal constant, Δ′min = min{1, Δmin}, Σ′min = min{1, Σmin} and
L′ = max{1, L}.

Algorithm 1 requires the specification of the constant p. In Section 4.2, we give
two examples of how to efficiently choose a p that satisfies (4). In Theorem 2, the
bound on the regret depends on p - small p is preferred - and hence it is important to
understand how the right hand side (r.h.s.) of (4) might scale when K and d grow. In
Section 4.1, we show that, for a concrete distribution of contexts and choice of expected
rewards θa, and assuming (4) holds, p = O(K3d5) 1 . There is nothing special about
the concrete details of how contexts and θa’s are chosen and, although not included
in this paper, for many other distributions, one also obtains p = O(poly(d)). We can
certainly construct pathological cases where, for example, p grows exponentially with
d. However, we do not find these intuitive. Specially when interpreting these having in
mind real applications as the ones introduced in Examples 1- 3.

4.1 Example of Scaling of p with d and K

Assume that contexts are obtained by normalizing a d-dimensional vector with i.i.d.
entries as Bernoulli random variables with parameter w. Assume in addition that every
θa is obtained i.i.d. from the following prior distribution: every entry of θa is drawn
i.i.d. from a uniform distribution and then θa is normalized. Finally, assume that the
payoffs are given by ra,t = x†tΘa, where Θa ∈ �d are random variables that fluctuate
around θa = E{Θa} with each entry fluctuating by at most F .

Under these assumptions the following is true:

1 This bound holds with probability converging to 1 as K and d get large.
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– Σmin = Ω(d−1). In fact, the same result holds asymptotically independently of
w = w(d) if, for example, we assume that on average groups are roughly of the
same size, M , with w = M/d;

– L = O(
√
d). This holds because εa,t = ra,t−E{ra,t} = x†t (Θa−θa) are bounded

random variables with zero mean and ‖x†t (Θa − θa)}‖∞ = O(
√
d).

– Δmin = Ω(1/(Kd
√
w) with high-probability (for large K and d). This can be see

as follows, if Δmin = x†(θa − θb) for some x, a and b, then it must be true that θa
and θb differ in a component for which x is non-zero. The minimum difference be-
tween components among all pairs of θa and θb is lower bounded by Ω(1/(K

√
d))

with high probability (for large K and d). Taking into account that each entry of x
is O(1/

√
dw) with high-probability, the bound on Δmin follows.

If we want to apply Theorem 2 then (4) must hold and hence putting all the above
calculations together we conclude that p = O(K3d5) with high probability for large K
and p.

4.2 Computing p in Practice

If we have knowledge of an a priori distribution for the contexts, for the expected pay-
offs and for the variance of the rewards then we can quickly compute the value of Σmin,
L and a typical value forΔmin. An example of this was done above (Section 4.1). There,
the values were presented only in order notation but exact values are not hard to obtain
for that and other distributions. Since a suitable p only needs to be larger then the r.h.s.
of (4), by introducing an appropriate multiplicative constant, we can produce a p that
satisfied (4) with high probability.

If we have no knowledge of any model for the contexts or expected payoffs, it is still
possible to find p by estimating Δmin, Σmin and L from data gathered while running
Algorithm 1. Notice again that, since all that is required for our theorem to hold is
that p is greater then a certain function of these quantities, an exact estimation is not
necessary. This is important because, for example, accurately estimating Σmin is hard
when matrix E{x1x†1} has a large condition number.

Not being too concerned about accuracy, Σmin can be estimated from E{x1x†1},
which can be estimated from the sequence of observed xt. Δmin can be estimated from
Algorithm 1 by keeping track of the smallest difference observed until time t between
maxb x

†θ̂b and the second largest value of the function being maximized. Finally, the
constant L can be estimated from the variance of the observed rewards for the same
(or similar) contexts. Together, these estimations do not incur in any significant loss in
computational performance of our algorithm.

5 Proof of Theorem 2

The general structure of the proof of our main result follows that of [3]. The main
technical innovation is the realization that, in the setting when the contexts are drawn
i.i.d. from some distribution, a standard matrix concentration bound allows us to treat
λnI + n−1(X†

TXT ) in Algorithm 1 as a deterministic positive-definite symmetric
matrix, even as λn → 0.
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Let ET denote the time instances for t > p and until time T in which the algorithm
took an exploitation decision. Recall that, by Cauchy-Schwarz inequality, x†t (θa∗

xt
−

θa) ≤ ‖xt‖1‖(θa∗
xt

− θa)‖∞ ≤
√
d‖xt‖2‖(θa∗

xt
− θa)‖∞ ≤

√
dΔmax. In addition,

recall that
∑T

t=2 1/t ≤ logT . For R(T ) the cumulative regret until time T , we can
write

R(T )=E
{ T∑

t=1

x†t (θa∗
xt
−θa)

}
≤ pΔmax

√
d+Δmax

√
dE

{ T∑
t=p+1

�{x†tθa < x†tθa∗
xt
}
}

≤ pΔmax

√
d+Δmax

√
dE{|ET |}+Δmax

√
dE

{ ∑
t∈ET

�{x†tθa < x†tθa∗
xt
}
}

≤ pΔmax

√
d+ pΔmax

√
d logT +Δmax

√
dE

{ ∑
t∈ET

�{x†tθa < x†tθa∗
xt
}
}

≤ pΔmax

√
d+ pΔmax

√
d logT +Δmax

√
dE

{ ∑
t∈ET

∑
a∈A

�{x†t θ̂a > x†t θ̂a∗
xt
}
}
.

In the last line we used the fact that when exploiting, if we do not exploit the optimal
arm a∗xt

, then it must be the case that the estimated reward for some arm a, x†t θ̂a, must

exceed that of the optimal arm, x†t θ̂a∗
xt

, for the current context xt.
We can continue the chain of inequalities and write,

R(T ) ≤ pΔmax

√
d+ pΔmax

√
d logT +Δmax

√
dK

T∑
t=1

P{x†t θ̂a > x†t θ̂a∗
xt
}.

The above expression depends on the value of the estimators for time instances that
might or might not be exploitation times. For each arm, these are computed just like in
Algorithm 1, using the most recent history available. The above probability depends on
the randomness of xt and on the randomness of recorded history for each arm.

Since x†t (θa∗
xt

− θa) ≥ Δmin we can write

P{x†t θ̂a > x†t θ̂a∗
xt
} ≤ P

{
x†t θ̂a ≥ x†tθa +

Δmin

2

}
+ P

{
x†t θ̂a∗

xt
≤ x†tθa∗

xt
− Δmin

2

}
.

We now bound each of these probabilities separately. Since their bound is the same,
we focus only on the first probability.

Substituting the definition of ra(t) = x†tθa + εa,t into the expression for θ̂a one
readily obtains,

(θ̂a − θa) =

(
λnI +

1

n
X†
TXT

)−1
(
1

n

∑
τ∈T

xτ εa,τ − λnθa

)
.

We are using again the notation T = Ta,t−1 and n = |T |. From this expression, an
application of Cauchy-Schwarz’s inequality and the triangular inequality leads to,
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|x†t (θ̂a − θa)| =
∣∣∣x†t (λnI +

1

n
X†
TXT

)−1
(
1

n

∑
τ∈T

xτ εa,τ − λnθa

) ∣∣∣
≤

√
x†t

(
λnI +

1

n
X†
TXT

)−2

xt

(∣∣∣ 1
n

∑
τ∈T

x†txτ εa,τ

∣∣∣+ λn|x†tθa|
)
.

We introduce the following notation

ca,t ≡

√
x†t

(
λnI +

1

n
X†
TXT

)−2

xt. (5)

Note that, given a and t both n and T are well specified.
We can now write,

P
{
x†t θ̂a ≥ x†tθa +

Δmin

2

}
≤ P

{∣∣∣ 1
n

∑
τ∈T

x†txτ εa,τ

∣∣∣ ≥ Δmin

2ca,t
− λn|x†tθa|

}
≤ P

{∣∣∣ 1
n

∑
τ∈T

x†txτ εa,τ

∣∣∣ ≥ Δmin

2ca,t
− λnQ

}
.

Since εa,τ are sub-gaussian random variables with sub-gaussian constant upper bounded
by L and since |x†txτ | ≤ 1, conditioned on xt, T and {xτ}τ∈T , each x†txτ εa,τ is a sub-
gaussian random variable and together they form a set of i.i.d. sub-gaussian random
variables. One can thus apply standard concentration inequality and obtain,

P
{∣∣∣ 1

n

∑
τ∈T

x†txτ εa,τ

∣∣∣ ≥ Δmin

2ca,t
− λnQ

}
≤ E

{
2e
− n

2L2

(
Δmin
2ca,t

−λnQ
)+2}

. (6)

where both n and ca,t are random quantities and z+ = z if z ≥ 0 and zero otherwise.
We now upper bound ca,t using the following fact about the eigenvalues of any two

real-symmetric matrices M1 and M2: λmax(M
−1
1 ) = 1/λmin(M1) and λmin(M1 +

M2) ≥ λmin(M1)− λmax(M2) = λmin(M1)− ‖M2‖.

ca,t ≤
(
λn + λ+

min(E{x
†
1x1})−

∥∥∥ 1
n
X†
TXT − E{x†1x1}

∥∥∥+)−1

.

Both the eigenvalue and the norm above only need to be computed over the subspace
spanned by the vectors xt that occur with non-zero probability. We use the symbol +

to denote the restriction to this subspace. Now notice that ‖.‖+ ≤ ‖.‖ and, since we
defined Σmin ≡ mini:λi>0 λi(E{X1X

†
1}), we have that λ+

min(E{X1X
†
1}) ≥ Σmin.

Using the following definition, ΔΣn ≡ n−1X†
TX

†
T − E{X1X

†
1}, this leads to, ca,t ≤

(λn +Σmin − ‖ΔΣn‖)−1 ≤ (Σmin − ‖ΔΣn‖)−1.
We now need the following Lemma.

Lemma 1. Let {Xi}ni=1 be a sequence of i.i.d. random vectors of 2-norm bounded by
1. Define Σ̂ = 1

n

∑n
i=1 XiX

†
i and Σ = E{X1X

†
1}. If ε ∈ (0, 1) then,

P(| Σ̂ −Σ‖ > ε‖Σ‖) ≤ 2e−Cε2n,

where C < 1 is an absolute constant.
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For a proof see [21] (Corollary 50).
We want to apply this lemma to produce a useful bound on the r.h.s. of (6). First

notice that, conditioning on n, the expression inside the expectation in (6) depends
through ca,t on n i.i.d. contexts that are distributed according to the original distribution.
Because of this, we can write,

P
{∣∣∣ 1

n

∑
τ∈T

x†txτ εa,τ

∣∣∣ ≥ Δmin

2ca,t
− λnQ

}
≤ E

{
2e
− n

2L2

(
Δmin
2ca,t

−λnQ
)+2}

≤
t∑

n=1

(
P{|Ta,t−1| = n} × E

{
2e
− n

2L2

(
Δmin
2ca,t

−λnQ
)+2∣∣∣|Ta,t−1| = n

})
.

Using the following algebraic relation: if z, w > 0 then (z − w)+
2 ≥ z2 − 2zw, we

can now write,

E
{
e
− n

2L2

(
Δmin
2ca,t

−λnQ
)+2 ∣∣∣|Ta,t−1| = n

}
≤ P{|ΔΣn| > Σmin/2| |Ta,t−1| = n}+ e

− n
2L2

(
ΣminΔmin

4 −λnQ
)+2

≤ P{|ΔΣn| > Σmin/2| |Ta,t−1| = n}+ e
QΔminΣmin

4L2 e−
n(Δmin)2(Σmin)2

32L2

Using Lemma 1 we can continue the chain of inequalities,

E
{
e
− n

2L2

(
Δmin
2ca,t

−λnQ

)+2 ∣∣∣|Ta,t−1|=n
}
≤ 2e−C(Σmin)

2n/4+e
QΔminΣmin

4L2 e
−n(Δmin)2(Σmin)2

32L2 .

Note that ||Σ|| ≤ 1 follows from our non-restrictive assumption that ‖xt‖2 ≤ 1 for all
xt. Before we proceed we need the following lemma:

Lemma 2. If nc =
p
2k log t , then P{|Ta,t−1| < nc} ≤ t−

p
16K .

Proof. First notice that |Ta,t−1| =
∑t−1

i=1 zi where {zi}t−1
i=1 are independent Bernoulli

random variables with parameter p/(Ki). Remember that we can assume that i > p
since in the beginning of Algorithm 1 we play each arm p/K times.

Note that P(X > c) ≤ P(X+ q > c) is always true for any r.v. X, c and q > 0. Now
write,

P(|Ta,t−1| < nc)=P

(
t−1∑
i=1

zi < nc

)
=P

(
t−1∑
i=1

(zi − p/(Ki)) < nc − (p/K)

t−1∑
i=1

1/i

)

≤ P

(
t−1∑
i=1

(−zi + p/i) > −nc + (p/K)

t−1∑
i=1

1/i

)

≤ P

(
t−1∑
i=1

(−zi + p/i) > (p/K) log t− nc

)
. (7)

Since
∑t−1

i=1 E{(zi−p/(Ki))2} =
∑t−1

i=p+1(1−p/(Ki))(p/(Ki)) ≤ p
K log t, we have

that {−zi + p/i}t−1
i=1 are i.i.d. random variables with zero mean and sum of variances
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upper bounded by (p/K) log t. Replacing nc = (p/2K) log t in (7) and applying Bern-

stein inequality we get, P(|Ta,t−1| < nc) ≤ e
−

1
2
(p/(2K))2 log2 t

p
K

log t+1
3
(p/(2K)) log t ≤ t−

p
16K . ��

We can now write, by splitting the sum in n < nc and n ≥ nc

P
{∣∣∣ 1

n

∑
τ∈T

x†txτ εa,τ

∣∣∣ ≥ Δmin

2ca,t
− λnQ

}
≤

t∑
n=1

P{|Ta,t−1| = n}E
{
2e
− n

2L2

(
Δmin
2ca,t

−λnQ
)+2∣∣∣|Ta,t−1| = n

}
≤ P{|Ta,t−1| < nc}+ 4e−C(Σmin)

2nc/4 + 2e
QΔminΣmin

4L2 e−
nc(Δmin)2(Σmin)2

32L2

≤ t−
p

16K + 4t−
Cp(Σmin)2

8K + 2e
QΔminΣmin

4L2 t−
p(Δmin)2(Σmin)2

64KL2 .

We want this quantity to be summable over t. Hence we require that,

p ≥ 128KL2

(Δmin)2(Σmin)2
, p ≥ 16K

C(Σmin)2
, p ≥32K. (8)

It is immediate to see that our proof also follows if Δmin, Σmin and L are replaced
by Δ′min = min{1, Δmin}, Σ′min = min{1, Σmin} and L′ = max{1, L} respectively.
If this is done, it is easy to see that conditions (8) are all satisfied by the p stated in
Theorem 2. Since

∑∞
t=1 1/t

2 ≤ 2, gathering all terms together we have,

R(T ) ≤ pΔmax

√
d+ pΔmax

√
d logT +Δmax

√
dK

(
4e

QΔ′
minΣ′

min
4L′2 + 10

)
≤ pΔmax

√
d+ 14Δmax

√
dKeQ/4 + pΔmax

√
d logT. ��

6 Numerical Results

In Theorem 2, we showed that, in the stochastic setting, Algorithm 1 has an expected
regret of O(log T ). We now illustrate this point by numerical simulations and, most
importantly, exemplify how violating the stochastic assumption might degrade its per-
formance. Figure 1 (a) shows the average cumulative regret (in semi-log scale) over 10
independent runs of Algorithm 1 for T = 105 and for the following setup. The context
variables x ∈ �3 and at each time step {xt}t≥1 are drawn i.i.d. in the following way:
(a) set each entry of x to 1 or 0 independently with probability 1/2; (b) normalize x. We
consider K = 6 arms with corresponding parameters θa generated independently from
a standard multivariate gaussian distribution. Given a context x and an arm a, rewards
were random and independently generated from a uniform distribution U([0, 2x†θa]).
As expected, the regret is logarithmic. Figure 1 (a) shows a straight line at the end.

To understand the effect of the stochasticity of x on the regret, we consider the fol-
lowing scenario: with every other parameter unchanged, let X = {x, x′}. At every
time step x = [1, 1, 1] appears with probability 1/I , and x′ = [1, 0, 1] appears with
probability 1− (1/I). Figure 1 (b) shows the dependency of the expected regret on the
context distribution for I = 5, 10 and 100. One can see that an increase of I causes a
proportional increase in the regret.
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Fig. 1. (a) Regret over T when xt is from i.i.d. (b) Regret over T when xt is not from i.i.d.

7 Adversarial Setting

In the stochastic setting, the richness of the subset of �d spanned by the observed
contexts is related to the skewness of the distribution D. The fact that the bound in
Theorem 2 depends on Σmin and that the regret increases as this value becomes smaller
indicates that our approach does not yield a O(log T ) regret for the adversarial setting,
where an adversary choses the contexts and can, for example, generate {xt} from a
sequence of stochastic processes with decreasing Σmin(t).

In particular, the main difficulty in using a linear regression, and the reason why
our result depends on Σmin, is related to the dependency of our estimation of x†tθa on

1
|Ta,t−1|X

†
Ta,t−1

XTa,t−1 . It is not hard to show that the error in approximating x†tθa with

x†t θ̂a is proportional to √
x†t

(
λnI +

1

n
X†
TXT

)−2

xt. (9)

This implies that, even if a given context has been observed relatively often in the past,
the algorithm can “forget” it because of the mean over contexts that is being used to
produce estimates of x†tθa (the mean shows up in (9) as 1

nX
†
TXT ).

The effect of this phenomenon on the performance of Algorithm 1 can be readily
seen in the following pathological example. Assume that X = {(1, 1), (1, 0)} ⊂ �

2.
Assume that the contexts arrive in the following way: (1, 1) appears with probability
1/I and (1, 0) appears with probability 1−1/I . The correlation matrix for this stochas-
tic process is {(1, 1/I), (1/I, 1/I)} and its minimum eigenvalue scales like O(1/I).
Hence, the regret scales as O(I2 logT ). If I is allowed to slowly grow with t, we ex-
pect that our algorithm will not be able to guarantee a logarithmic regret (assuming that
our upper bound is tight). In other words, although (1, 1) might have appeared a suffi-
cient number of times for us to be able to predict the expected reward for this context,
Algorithm 1 performs poorly since the mean (9) will the ‘saturated’ with the context
(1, 0) and forget about (1, 1).
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Algorithm 2. Contextual UCB
for t = 1 to p do

a ← 1 + (t mod K); Play arm a; Ta,t ← Ta,t−1 ∪ {t}
end for
for t = p+ 1 to T do

for a ∈ A do

ca,t ← min
T ⊂Ta,t−1

log t

|T | x
†
t

(
λnI +

1

n
X†

T XT

)−2

xt

T ∗ ← subset of Ta,t−1 that achieves the minimum; n ← |T ∗|
Get θ̂a as the solution to the linear system:

(
λnI +

1
n
X†

T XT

)
θ̂a =

(
1
n
X†

T rT
)

end for
Play arm at = argmaxa x

†
t θ̂a +

√
ca,t; Set Ta,t ← Ta,t−1 ∪ {t}

end for

One solution for this problem is to ignore some past contexts when building an esti-
mate for x†tθa, by including in the mean (9) past contexts that are closer in direction to
the current context xt. Having this in mind, and building on the ideas of [4], we propose
the UCB-type Algorithm 2.

It is straightforward to notice that this algorithm cannot be implemented in an effi-
cient way. In particular, the search for T ∗ ⊂ Ta,t−1 has a computational complexity
exponential in t. The challenge is to find an efficient way of approximating T ∗ effi-
ciently. This can be done by either reducing the size of Ta,t−1 – the history from which
one wants to extract Ta,t−1 – by not storing all events in memory (for example, if we
can guarantee that |Ta,t| = O(log t) then the complexity of the above algorithm at time
step t is O(t)), or by finding an efficient algorithm of approximating the minimization
over the Ta,t−1 (or both). It remains an open problem to find such an approximation
scheme and to prove that it achieves O(log T ) regret for a setting more general than the
i.i.d. contexts considered in this paper.

8 Conclusions

We introduced an ε-greedy type of algorithm that provably achieves logarithmic regret
for the contextual multi-armed bandits problem with linear payoffs in the stochastic
setting. Our online algorithm is both fast and uses small space. In addition, our bound on
the regret scales nicely with dimension of the contextual variables, O(poly(d) log T ).
By means of numerical simulations we illustrate how the stochasticity of the contexts is
important for our bound to hold. In particular, we show how to construct a scenario for
which our algorithm does not give logarithmic regret. The reason for this amounts to the
fact that the mean n−1X†

TXT that is used in estimating the parameters θa can “forget”
previously observed contexts. Because of this, it remains an open problem to show that
there are efficient algorithms that achieve O(poly(d) log T ) under reward separation
(Δmin > 0) in the non-stochastic setting. We believe that a possible solution might
be constructing a variant of our algorithm where in n−1X†

TXT we use a more careful
average of past observed contexts give the current observed context. In addition, we
leave it open to produce simple and efficient online algorithms for multi-armed bandit
problems under rich context models, like the one we have done here for linear payoff.
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Abstract. In this paper, we address multi-labeler active learning, where
data labels can be acquired from multiple labelers with various levels
of expertise. Because obtaining labels for data instances can be very
costly and time-consuming, it is highly desirable to model each labeler’s
expertise and only to query an instance’s label from the labeler with
the best expertise. However, in an active learning scenario, it is very
difficult to accurately model labelers’ expertise, because the quantity of
instances labeled by all participating labelers is rather small. To solve this
problem, we propose a new probabilistic model that transfers knowledge
from a rich set of labeled instances in some auxiliary domains to help
model labelers’ expertise for active learning. Based on this model, we
present an active learning algorithm to simultaneously select the most
informative instance and its most reliable labeler to query. Experiments
demonstrate that transferring knowledge across related domains can help
select the labeler with the best expertise and thus significantly boost the
active learning performance.

Keywords: Active Learning, Transfer Learning, Multi-Labeler.

1 Introduction

Active learning is an effective tool for reducing the labeling costs by choosing the
most informative instance to label for supervised classification. Traditional active
learning research has primarily relied on a single omniscient labeler to provide a
correct label for each queried instance. This is particularly true for applications
involving a handful of well-trained professional labelers. Recent advances in Web
2.0 technology have fostered a new active learning paradigm [16,21], which in-
volves multiple (non-experts) labelers, aiming to label collections of large-scale
and complex data. For example, crowdsourcing services (i.e., Amazon Mechan-
ical Turk1) allow a large number of labelers around the world to collaborate
on annotation tasks at low cost. In such settings, data can be accessed by dif-
ferent labelers, who annotate the instances based on their own expertise and
knowledge. Given multiple (possibly noisy) labels, majority vote is a simple but

1 https://www.mturk.com/
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popular approach widely used by crowdsourcing services to generate the most
reliable label for each instance.

In multi-labeler scenarios, labelers tend to have different but hidden compe-
tence for a given task, depending on their background knowledge and expertise.
Therefore, it is unlikely that all labelers are able to provide accurate labels for all
instances, and labels provided by less competent labelers might be more error-
prone. As a result, taking majority vote without considering the reliability of
different labelers would deteriorate the classification models. More importantly,
active learning starts with a small amount of labeled instances, with very few
annotations from each labeler. The limited number of labeled data gives very
little information to model labelers’ expertise, which may incur incorrect labels
and degrade classification accuracy. Therefore, accurately modeling labelers’ ex-
pertise using a limited number of data poses a main challenge for active learning.

While labeled data is either costly to obtain, or easy to be outdated in a
given domain, there often exists some labeled data from a different but related
domain. This is often the case when the labeled data is out-of-date, but new data
continuously arrives from fast evolving sources. For example, there may often
be very few Blog documents annotated for certain Blog types, but there may
be a lot of newsgroup documents labeled by numerous information sources. The
newsgroup and Blog documents are in two different domains, but share common
features (i.e. topics). Another example is text classification in online mainstream
news. The model trained from old news articles may easily become outdated,
and its classification accuracy would decrease dramatically over time. It would
be very time-consuming to obtain annotations for new documents. Therefore,
one important question is, how can we transfer useful knowledge from related
domains to accurately model labelers’ expertise in order to boost the active
learning performance?

In this paper, we propose a novel probabilistic model to address the multi-
labeler active learning problem. The proposed model can transfer knowledge
from a related domain to help model labelers’ expertise for active learning.
We use a multi-dimensional topic distribution to represent a labeler’s knowl-
edge, which determines the labeler’s reliability in labeling an instance. This ap-
proach provides a high-level abstraction of the labeled data in a low dimensional
space, which reveals the labelers’ hidden areas of expertise. More importantly,
our model opens opportunity to find “good” latent topics shared by two re-
lated domains and further transfer such knowledge for improving the estimation
of the labelers’ expertise in a unified probabilistic framework. Based on this
probabilistic model, we present a new active learning algorithm that simultane-
ously decides which instance should be labeled next and which labeler should be
queried to maximally benefit the active learning performance. Compared with
existing multi-labeler active learning methods, the advantage of our proposed
method is that it can accurately model the labelers’ expertise via transferring
knowledge from related domains, and can thus select the labeler with the best
expertise to label a queried instance. This advantage eventually leads to a higher
classification accuracy for active learning.
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2 Related Work

According to the query strategies, existing active learning techniques can be
roughly categorized into three categories: 1) uncertainty sampling [8,18], which
focuses on selecting the instances that the current classifier is most uncertain
about; 2) query by committee [6,9], which considers the most informative in-
stance to be the one that a committee of classifiers disagree most; 3) expected
error reduction [13], which aims to query instances which can maximally reduce
the model loss reduction of the current classifier once labeled. Most of existing
works have mainly focused on a single domain and assumed that an omniscient
oracle exists to provide an accurate label for each query.

Recently, learning from crowds has drawn a lot of research attention in the
presence of multiple labelers [12]. Different from conventional supervised learning
in which the annotations for data instances are provided by a single omniscient
labeler, a given learning task seeks to collect labels from multiple labelers via
crowdsourcing services at low cost, e.g., Amazon Mechanical Turk. Since la-
belers have different knowledge or expertise, the resultant labels are inherently
subjective (possibly noisy) with substantial variations among different annota-
tors. Majority vote is one simple but popular way for integrating multiple noisy
labels from crowdsourcing systems. Some research works have attempted to im-
prove the overall quality of labeling from noisy labels. Sheng et al. [16] proposed
to use repeated labeling strategies to improve the label quality inferred via ma-
jority vote. Donmez and Carbonell [4] introduced different costs to the labelers
and solved a utility optimization problem to select an optimal labeler-instance
pair subject to a budget constraint, in which expensive labelers are assumed to
provide high-quality labels. Wallace et al. [19] furthered this work and proposed
instance allocation strategies to better balance the workload between novice and
stronger experts. These works have assumed that the labelers’ levels of exper-
tise are known through available domain information such as associated costs
or expert salaries. However, the challenge of explicitly estimating each labeler’s
reliability has not been properly addressed.

In multi-labeler settings, active learning has focused on intelligently selecting
the most reliable labelers to reduce the labeling costs. One line of research has
tried to build a classifier for each labeler and approximate the labelers’ expertise
using confidence scores [2,11]. Other works have proposed to estimate the relia-
bility of labelers based on a small sample of instances labeled by all participating
experts. Yan et al. [22] directly used raw features of instances to represent the
labelers’ expertise. Fang et al. [5] modeled the reliability of the labelers via a
Gaussian mixture model with respect to some concepts. However, these methods
have relied on a small set of labeled data to estimate the dependency between
labelers’ reliability and original instances. Instead, in our work, we model the
expertise of a labeler by using a multi-dimensional topic distribution, which, at
an abstract level, better represents the labeler’s expertise, thus enabling each
queried instance to be labeled by a labeler with the best knowledge.

Transfer learning is another learning paradigm designed to save the labeling
cost for supervised classification. Given an oracle and a lot of labeled data from
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a source domain, some researchers have proposed to combine transfer learning
and active learning to train an accurate classifier for a target domain. Saha
et al. [15] proposed to use the source domain classifier as one free oracle, which
answers the target domain queries that appear similar to the source domain data.
Similarly, Shi et al. [17] used the classifier from the source domain to answer the
queries as often as possible, and the target-domain labelers are queried only when
necessary. These methods assume that the target and source domains have the
exactly same labeling problem, that is, the oracle/classifier in the source domain
shares a same set of labels with the target domain. Different from these works,
we do not require the labeling problems in the two domains to be the same,
and there is also no need to involve the source domain oracles/labelers in the
active learning process. More importantly, we consider multiple labelers in the
target domain and focus on transferring knowledge from the labeled source data
to help estimate the expertise of labelers. To the best of our knowledge, our
work is the first to leverage transfer learning to help model labelers’ expertise
for multi-labeler active learning problem.

3 Problem Definition and Framework

We consider active learning in a multiple labeler setting with a target data set
X = {x1, · · · ,xN} and a source data set Xs = {xs1 , · · · ,xsNs

}. In the target
domain, there are a total of M labelers (l1, · · · , lM ) to provide labeling informa-
tion for instances X . For any selected instance xi, we denote the label provided
by labeler lj as yi,j , and its ground truth (unknown) label as zi. In the source
domain, each instance xsi is annotated with a label ci ∈ {c1, . . . , cD} by one
or multiple labelers. In this paper, we assume that the labeling problems in the
source and target domain can be different. Once the data in the source domain
are all labeled, there is no need to involve source domain labelers in the active
learning process.

To characterize a labeler’s labeling capability, we assume that each labeler’s
reliability of labeling an instance xi is determined by whether the labeler has
the expertise with respect to the latent topics, which the instance xi belongs to.
Formally, we give specific definitions as follows.

Definition 1 Topic: A topic t represents the semantic categorization of a set of
instances. Each instance is then modeled as an infinite mixture over a set of
latent topics. For example, sports is a common topic of a set of documents (i.e.
instances) related to sports. A document contains words, such as “win”, “games”,
“stars”, which may belong to multiple topics, such as sports and music.

Definition 2 Expertise: The expertise of a labeler lj, denoted by ej , is represented
as a multinomial distribution over a set of topics T . For example, a labeler may
have expertise on two topics {t1 = sports, t2 = music}, with probabilities 0.8
and 0.6, respectively.
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Given M labelers in the target domain, and a set of labeled data Xs from the
source domain, the aim of active learning is to select the most informative
instance from the target data pool X , and to query the most reliable labeler to
label the selected instance, such that the classifier trained from labeled instances
has the highest classification accuracy in the target domain.

TARGET 

SOURCE 

Labeled 

Unlabeled 

ACTVING LEARNING 

Knowledge 

transfer 

Modeling labeler 

expertise 

Query instance label 

Instance 

selection 

Labeler 

selection 

Labeled 

Data 

Optimal query strategy 

Fig. 1. An overview of the proposed framework. “Knowledge transfer module” uses
source data to help model each labeler’s expertise in the target domain. During active
learning process, the most information instance is selected to be labeled by a labeler
with the best expertise.

Proposed Framework. The overview of the proposed framework is shown
in Figure 1. Our goal is to select the most informative instances and find the
labelers with the best expertise to label the instances. Because labeled instances
are rather limited and insufficient to characterize the labelers, we leverage the
data from some source domains to strengthen the active learning process. In the
following, we first describe the modeling of multiple labelers by using knowledge
transfer in Section 4, and then detail the active learning algorithm in Section 5.

4 Modeling Expertise of Multiple Labelers

This section details our proposed model for modeling multiple labelers and de-
scribes transfer learning techniques used to estimate labelers’ expertise.

4.1 Probabilistic Model

The main aim of modeling multiple labelers is to enable the selection of a labeler
with the best expertise to label a queried instance. Given an instance x selected
for labeling and a number of labelers, each having his/her own expertise, we
assume that the label y provided by each labeler to instance x is subject to
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labeler’s expertise with respect to some latent topics and the ground truth label z
of x. Therefore, we propose a probabilistic graphical model, as shown in Figure 2.
The two variables X , where xi ∈ X , represents an instance, and Y , where yi,j
denotes the label provided by labeler lj to instance xi, are directly observable.
All other variables – the topic distribution ti of an instance xi, the ground truth
label zi, and a labeler’s expertise ej – are hidden, so their values must be inferred
from observed variables.

N 

M 

T E Y X Z 

Fig. 2. Probabilistic graphical model for modeling multiple labelers with different ex-
pertise. The gray nodes X and Y are two observable random variables denoting in-
stances and their labels, respectively. All other nodes are unobservable. For instances
X, the latent topics T of instances and the expertise E of the labelers determine X’s
labels Y provided by the labelers, which are assumed to be an offset, subject to a
Gaussian distribution, with respect to X’s genuine labels Z.

This probabilistic graphical model can be represented using the joint proba-
bility distribution as follows

p =
N∏
i

p(zi|xi)p(ti|xi)
M∏
j

p(ei,j |ti)p(yi,j |zi, ei,j). (1)

In our model, we allow different labelers to have varying levels of expertise.
That is, the expertise of a labeler depends on the topic distribution ti of the
instance xi. Because an instance can belong to one or multiple latent topics,
we use p(tk|xi) to represent xi’s membership probability of belonging to topic
tk. Given an instance’s topic distribution ti = {p(t1|xi), · · · , p(tk|xi)}, we use
logistic regression to define the expertise of labeler lj with respect to ti as a
probability distribution given by

p(ei,j |ti) = (1 + exp(−
K∑

k=1

ekj p(tk|xi)− νj))
−1. (2)

Our model assumes that the ground truth label zi of instance xi is solely
dependent on the instance itself. To capture the relationships between xi and zi,
any probabilistic model can be used. For simplicity, we use a logistic regression
model to compute the conditional probability p(zi|xi) as

p(zi|xi) = (1 + exp(−γTxi − λ))−1. (3)
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For an instance xi, the actual label yi,j provided by the labeler lj is assumed
to depend on both the labeler’s expertise ei,j and the ground truth label zi of
xi. We model the offset between the actual label yi,j provided by the labeler and
the instance’s genuine label z as a Gaussian distribution

p(yi,j |ei,j , zi) = N(zi, e
−1
i,j ). (4)

Intuitively, if a labeler has a higher reliability ei,j of labeling instance xi, the
variance e−1

i,j of the Gaussian distribution would be smaller. That is, the actual
label yi,j provided by the labeler would be closer to x’s ground truth label zi.

So far, we have discussed the calculation of probabilities p(zi|xi), p(ei,j |ti),
and p(yi,j |zi, ei,j) in Eq.(1). We now focus on estimating the distribution of latent
topics of the instances, i.e., p(t|x). Given a set of instances X , the information
about the latent topics is usually unavailable. A simple approach would be con-
ducting latent semantic analysis on an initial set of labeled data. However, since
the number of initially labeled data for active learning is very small, the accu-
racy of the induced model is largely limited. Therefore, we resort to leveraging
labeled data from a related domain, which is detailed in the next subsection.

4.2 Transferring Knowledge

Given labeled data from a related domain, the basic idea is to exploit transfer
learning to help discover latent topics of the instances in the target domain. That
is, we aim to find common “good” latent topics to minimize the divergence of the
two domains, through which we can estimate a more accurate topic distribution
p(t|x), thus improving the accuracy in estimating labelers’ expertise, as defined
in Eq. (2). Formally, given a source data Xs, where each instance xs is annotated
with a corresponding label c ∈ {c1, . . . , cD}, our objective is to estimate a topic
distribution p(t|x) for the target data X .

For this task, we employ probabilistic latent semantic analysis (PLSA) to
model the instances (i.e. documents) in the two domains [7]. PLSA aims to
map the high-dimensional feature vectors of documents into a low dimensional
representation in a latent semantic space. This abstraction offers an ideal way
to represent labelers’ expertise with respect to latent topics. Following the as-
sumption that two related domains share similar topics from the terms in [20],
we bridge the two domains through common latent topics, denoted by random
variable T , as illustrated in Figure 3.

Specifically, we perform PLSA on the two domains. Thus, we have

p(xs|w) =
∑
t

p(xs|t)p(t|w), (5)

for the source data set, and

p(x|w) =
∑
t

p(x|t)p(t|w), (6)

for the target data set. In the above equations, both decompositions share the
same term-specific mixing part p(t|w) and relate the conditional probabilities for
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Xs

WT

X

N+Ns

Nw

Fig. 3. PLSA model for bridging two related domains. The target data X and source
data Xs are linked through latent variables T (topics) and W (terms). By transferring
knowledge from the source data, a more accurate topic distribution can be obtained,
which further improves the estimation of the labelers’ expertise.

the two domains; each topic has a different probability of generating a document,
p(xs|t), in the source domain, and p(x|t), in the target domain, respectively.

To fully make use of the label information in the source domain, we also
enforce must-link constrains and cannot-link constrains used in semi-supervised
clustering [1]. For two instances having the same label, we define the must-link
constraint as

same(xsi ,xsj ) = log
∑

p(xsi |t)p(xsj |t), (7)

and for any two instances having different labels, we define the cannot-link con-
straint as

diff(xsi ,xsj ) = log
∑
ti �=tj

p(xsi |ti)p(xsj |tj) (8)

Therefore, we define our objective function to maximize the log-likelihood of the
data with two penalty terms:

L =
∑
w

{∑
x

log
∑
t

p(x|t)p(t|w)

+
∑
xs

log
∑
t

p(xs|t)p(t|w)
}

+β1diff(xsi ,xsj ) + β2same(xsi ,xsj ), (9)

where β1 and β2 are two hyper-parameters that control the weights of the must-
link and cannot-link constrains and the question of how they would affected the
accuracy of active learning will be empirically investigated.

To solve this optimization problem, we adopt a standard EM algorithm de-
tailed as follows.

– E-step:

p(t|xs, w) =
p(xs|t)p(t|w)

p(xs|w)
(10)

p(t|x, w) = p(x|t)P (t|w)
p(x|w) (11)
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– M-step:

p(x|t) ∝
∑
w

n(w,x)p(t|x, w) (12)

p(xs|t) ∝
∑
w

n(w,xs)p(t|xs, w)

+β1
∑

xs,ci=cj

p(xsi |t)p(xsj |t)∑
t p(xsi |t)p(xsj |t)

+β2
∑

xs,ci �=cj

p(xsi |t)p(xsj |tj)∑
tj �=t p(xsi |t)p(xsj |tj)

(13)

p(t|w) ∝
∑
xs

n(w,xs)p(t|xs, w) +
∑
x

n(w,x)p(t|x, w) (14)

Finally, for the target domain, we can calculate the latent topic distribution
p(t|x) using Eq. (11).

4.3 Parameter Estimation

Now we discuss the learning process to estimate the parameters of our proposed
graphical model. Given observed variables – instances, their labels provided by
labelers, and topic distribution of instances estimated via transfer learning (de-
scribed in Section 4.2), we would like to infer two groups of hidden variables
Ω = {Θ,Φ}, where Θ = {γ, λ}, Φ = {ej, νj}Mj=1. This learning task can be
solved by using a Bayesian style of EM algorithm [3].

E-step: We compute the expectation of the data log likelihood with respect
to the distribution of the hidden variables derived from the current estimates of
model parameters. Given current parameter estimates, we compute the posterior
on the estimated ground truth:

p̂(zi) = p(zi|xi, ti, ei,yi) ∝ p(zi, ti, ei,yi|xi), (15)

where

p(zi, ti, ei,yi|xi) = p(zi|xi)p(ti|xi)
M∏
j

p(ei,j |xi)p(yi,j |zi, ei,j). (16)

M-step: To estimate the model parameters, we maximize the expectation of
the logarithm of the posterior on z with respect to p̂(zi) from E-step:

Ω∗ = argmax
Ω

Q(Ω, Ω̂), (17)
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where Ω̂ is the estimate from the previous iteration, and

Q(Ω, Ω̂) = Ep̂(zi)

[∑
i

log p(xi, ti,yi| zi)
]

=
∑
i,j

Ep̂(zi)[log p(ei,j |xi) + log p(yi,j |zi, ei,j)

+ log p(zi|xi) + log p(ti|xi)]. (18)

To solve the above optimization problem, we compute the updated parameters
by using the L-BFGS quasi-Newton method [10].

5 Knowledge Transfer for Active Learning

Based on our probabilistic model, multi-labeler active learning seeks to select
the most informative instance and the most appropriate labeler, with respect to
the selected instance, to query for its label.

Instance Selection. The goal of active learning is to learn the most accurate
classifier with the least number of labeled instances. We thus employ a commonly
used uncertainty sampling strategy, by using the posteriori probability p(z|x)
from our graphical model, to select the most informative instance:

x∗ = argmax
xi∈X

H(zi|xi), (19)

where
H(zi|xi) = −

∑
zi

p(zi|xi) log (zi|xi). (20)

Since the calculation of the posteriori probability p(z|x) takes multiple label-
ers and their expertise into consideration, the instance selected using Eq.(19)
represents the most informative instance from all labelers’ perspectives.

Labeler Selection. Given an instance selected using Eq.(19), labeler selection
aims to identify the labeler who can provide the most accurate label for the
queried instance. For each selected instance xi, we first calculate the latent topic
distribution p(ti|xi) using Eq. (11), and then compute the confidence of each
labeler as follows:

ei,j(xi) =

K∑
k=1

ekj p(tk|xi) + νj . (21)

Accordingly, we rank the confidence values from Eq.(21) and select the labeler
with the highest confidence score to label the selected instance

j∗ = argmax
j∈M

ei,j(xi). (22)

After selecting the best instance and labeler, we make a query to the labeler
for the instance. The active learning algorithm is summarized in Algorithm 1.
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Algorithm 1. Knowledge Transfer for Active Learning

Input: (1) Target data set X ; (2) Multiple labelers l1, · · · , lM ; (3) Source data set Xs;
and (4) Labeling budget: budget

Output: Labeled instance set L, Parameters Ω
1: Train an initial model with the labeled target data L and source data Xs;
2: Perform transfer learning from Xs to calculate topic distribution p(t|x) for each
instance x (Eq.(11));

3: numQueries ← 0;
4: while numQueries ≤ budget do
5: x∗ ← the most informative instance from pool X (Eq.(19));
6: j∗ ← the most reliable labeler for instance x∗ (Eq.(22));
7: (x∗, yx∗,j∗)← query instance x∗’s label from labeler lj∗ ;
8: L ← L ∪ (x∗, yx∗,j∗);
9: Ω ← retrain the model using the updated labeled data;
10: numQueries ← numQueries+ 1.
11: end while

6 Experiments

To validate the effectiveness of our proposed algorithm, we conduct experiments
on both synthetic data and real-world data. Our proposed algorithm is referred
to as AL+kTrM. For comparison, we use five other algorithms as baselines:

– RD+MV is a baseline method that randomly selects an instance to query.
It collects all labels provided by multiple labelers and then uses majority
vote to generate the label for the queried instance.

– AL+MV uses the same strategy as our proposed AL+kTrM algorithm to
select an instance but it relies on majority vote to generate the label for the
queried instance.

– AL+rM is a state-of-the-art multi-labeler active learning method [21]. It
uses raw features of the instances to calculate the reliability of labelers.

– AL+gM models a labeler’s reliability using a Gaussian mixture model
(GMM) with respect to some concepts, as proposed by [5].

– AL+kM uses the same probabilistic model as our proposed AL+kTrM al-
gorithm, but does not utilize transfer learning to improve the estimation of
labelers’ expertise. By comparing with this baseline, we can validate whether
the transfer learning module in our AL+kTrM algorithm can help improve
active learning to achieve a higher accuracy.

In our experiments, all results are based on 10-fold cross-validation. In each
round, we initially started with a small labeled data set (3% of train data), and
then made queries by using different active learning strategies. The reported
results are averaged over 10 rounds. We used logistic regression as the base clas-
sifier for classification, and evaluated algorithms by comparing their accuracies
on the same test data. For our proposed AL+kTrM algorithm, the two parame-
ters in Eq.(9) were set as β1 = 60, β2 = 40, and their impact on the classification
accuracy will be empirically studied in Section 6.3.
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6.1 Results on Real-World Data

We carried out experiments on a real-world data set, which is a publicly avail-
able corpus of scientific texts annotated by multiple annotators [14]. The in-
consistency between multiple labelers makes this data set an ideal test-bed for
evaluating the proposed algorithm. This corpus consists of two parts; we used
the first part of 1,000 sentences annotated by five labelers as the target data, and
the second part of 10,000 sentences annotated by eight labelers as source data
for transfer learning. During the original labeling process, each expert broke a
sentence into a number of fragments and provided a label to each fragment.

For the target data, we used the focus, evidence, polarity labels and consid-
ered a binary classification problem for each label. We set the fragments as the
instances and their annotations were treated as labels. We removed the frag-
ments whose number of characters is less than 10 and only kept the fragments
segmented by all five labelers in the same way. The fragments were pre-processed
by removing stopwords. As a result, we had 504 instances containing 3828 fea-
tures (words) in the target data set. In the source data, the labels, including
generic, methodology, and science were used to form the constraints in Eq.(9).

Figure 4 compares the classification accuracy of different algorithms with
respect to the number of queries. Figure 4(a)-4(c) clearly show that AL+kTrM
outperforms other baselines and achieves the highest accuracy. Particularly, at
the beginning of querying, its accuracy is much higher than others. This indicates
that, when there is a limited number of labeled data, transferring knowledge from
a related domain boosts the accuracy of active learning. AL+kM and AL+gM
perform slightly better than AL+rM, although their performance is close to
each other in Figure 4(b). AL+MV and RD+MV perform worst, because they
use majority vote to aggregate the labels but do not consider the expertise and
reliability of different labelers. AL+MV performs better than RD+MV because
it selects the most informative instance to query. Overall, AL+kTrM achieves
the highest classification accuracy during the active learning process.

6.2 Results on Synthetic Data

Since real-world data does not have the ground truth information about labelers’
expertise, we also evaluated the effectiveness of our algorithm using synthetic
data in which we can construct different expertise domains for labelers and
explicitly evaluate the accuracy of labeler selection. The synthetic data we used
is based on the 20 Newsgroups2. This data set contains 16,242 postings that
are tagged by four high-level domains: comp, rec, sci and talk. To simulate the
labelers, we assume that each labeler knows the ground truth labels of two
tagged sub data sets, and gives a random guess for the rest of the data. In this
way, we constructed five labelers of different expertise and formulated a binary
classification problem. For each domain, we selected 150 instances as the target
data, and used the rest as the source data for transfer learning. We started

2 http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html

http://kdd.ics.uci.edu/databases/20newsgroups/20newsgroups.html
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Fig. 4. Accuracy comparison of different algorithms on scientific text data for the
polarity, focus and evidence labels

all active learning algorithms with an initially labeled set and made queries to
improve the classification accuracy.

Figure 5(a) compares the accuracy of different algorithms with respect to the
number of queries. We can see that, AL+kTrM is superior to other baselines, and
RD+MV performs worst. RD+MV randomly selects the instances thus leading
to the worst performance. AL+MV improves RD+MV because it selects the
most informative instance to label. However, the two methods, RD+MV and
AL+MV, rely on majority vote to aggregate the labels for instances without
considering the reliability of labelers. AL+gM and AL+kM achieve higher accu-
racy than AL+rM, while AL+kM performs slightly better than AL+gM. This is
because, both AL+gM and AL+kM model the expertise of labelers in terms of
some topics at an abstract level, which better reveals the labelers’ areas of knowl-
edge. However, since AL+gM has a strong assumption that the expertise model
follows a GMM distribution, its performance is limited in complex text data.
Furthermore, by utilizing labeled data from a related domain, our AL+kTrM al-
gorithm yields the highest classification accuracy in the active learning process.

In order to better understand how AL+kTrM models the expertise of labelers,
Table 1 shows the correlation between the top two latent topics discovered by our
algorithm and the domain of expertise of two labelers we constructed: Labeler 1
which is simulated to have expertise in comp and rec domain, and Labeler 2 to
have expertise in sci and talk domain. The results clearly show that for Labeler
1, Topic 2 is related to rec.sport domain, and Topic 4 is related to comp.sys
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Fig. 5. Performance comparison of different algorithms

Table 1. Correlation between the labelers’ expertise and the latent topics discovered
by our AL+kTrM algorithm

Latent topic Top correlated words

Labeler 1 (comp, rec)
Topic 2 win,team,games,players,baseball,season
Topic 4 drive,data,card,technology,video,driver

Labeler 2 (sci, talk)
Topic 1 world,law,children,jews,religion,fact,war
Topic 10 question,state,research,earth,space,orbit

domain; for Labeler 2, Topic 1 and Topic 10 are correlated to talk.religion and
sci.space domain, respectively. This well explains our motivation that discovering
latent topics can better reveal labelers’ areas of expertise.

To further demonstrate the advantage of our AL+kTrM algorithm, we explic-
itly compared different algorithms with respect to their abilities to select the
best labelers to label the queried instances. Figure 5(b) reports the accuracy
of labeler selection in terms of different numbers of queries. We can observe
that, AL+MV and RD+MV performs much worse than other methods. This is
because they use majority vote to aggregate labels without considering the reli-
ability of labelers. In contrast, by modeling the labelers’ expertise, multi-labeler
active learning methods significantly improve majority vote. Among them, our
AL+kTrM algorithm can be observed to yield the highest accuracy for selecting
the best labelers to label the queried instances.

6.3 Study on the Impact of β1 and β2

Now we study the impact of the two parameters β1 and β2 in our AL+kTrM
algorithm on classification accuracy. Parameters β1 and β2 are two coefficients
in the knowledge transfer module that controls the contribution of the must-
link and cannot-link constrains, as defined in Eq.(9). Specifically, we fixed the
value of one parameter at 50, and studied the impact of the other parameter by
varying its value from 0 to 100. We analyzed the impact of β1 and β2 on both
synthetic data and real data. Due to the space limit, we used the synthetic data
as a case study, because similar observations are obtained for real data.
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Fig. 6. Classification accuracy with different β1 and β2 values

Figure 6 shows the classification accuracy by varying the values of β1 and
β2, respectively. From Figure 6(a), we can see that, as the value of β1 increases,
AL+kTrM gradually achieves higher accuracy. When β1 reaches the value of 60,
the accuracy becomes relatively saturated. From Figure 6(b), we can observe
that, the accuracy is not very sensitive to different values of β2. Overall, the
impact of the must-link constraint (controlled by β1) seems to be larger than
that of the cannot-link constraint (controlled by β2).

7 Conclusion

This paper proposed a new probabilistic model to address active learning in-
volving multiple labelers. We argued that when labelers have different levels of
expertise, it is important to properly characterize the knowledge of each labeler
to ensure the label quality. In active learning scenarios, the quantity of instances
labeled by all participating labelers is very small, which raises a challenge to
model each labeler’s strength and weakness. So we proposed to utilize data from
a related domain to help estimate labelers’ expertise. Using the proposed model,
our active learning algorithm can always select the most informative instance and
query its label using a single labeler with the best expertise with respect to the
queried instance. Experiments demonstrated that our method significantly out-
performs existing multi-labeler active learning methods, and transferring knowl-
edge from a related domain can indeed help improve active learning.
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Abstract. In this paper we present a spectral algorithm for learning
weighted finite-state sequence taggers (WFSTs) over paired input-output
sequences, where the input is continuous and the output discrete. WF-
STs are an important tool for modelling paired input-output sequences
and have numerous applications in real-world problems. Our approach is
based on generalizing the class of weighted finite-state sequence taggers
over discrete input-output sequences to a class where transitions are lin-
ear combinations of elementary transitions and the weights of the linear
combination are determined by dynamic features of the continuous input
sequence. The resulting learning algorithm is efficient and accurate.

1 Introduction

Weighted Finite-state Sequence Taggers (WFSTs) are an important tool for
modelling paired input-output sequences and have found numerous applications
in areas such as natural language processing and computational biology (e.g.
part of speech tagging, NP-chunking, entity recognition and protein folding pre-
diction, to mention a few). The problem of modelling paired input-output se-
quences is usually referred in the literature as sequence tagging. In sequence
tagging the goal is to predict a tag (i.e. a discrete output) for each symbol in
the input sequence. And thus different from the general transduction problem
where input and output sequences might be of different lengths, in the sequence
tagging problem both input and output sequences are ’aligned’ and have the
same length. Still the problem of learning sequence taggers with latent states
remains a challenging task.

The most popular methods for learning sequence taggers with hidden states
are based on gradient-based or EM optimizations [12,13], but these can be com-
putationally expensive and are susceptible to local optima issues. Recently,
an emerging line of work on spectral methods has proposed algorithms for
latent-variable structure modelling that overcome some of the limitations of EM
[11,16,21,4,15,24,3,8,6,2]. Of these, [5] proposed a spectral method for learning
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WFSTs that learns distributions where both inputs and outputs are sequences
from a discrete alphabet.

However, many real world problems require tagging sequences where the in-
puts are not discrete but continuous sequences. For example [22,28,20] consider
the problem of human gesture or action recognition where given a video sequence
the task is to predict the gesture that is been performed at each frame. Clearly,
this can be framed as a sequence tagging problem where the continuous inputs
correspond to real-valued features of the video sequence and the discrete outputs
correspond to the gestures been performed at each point in time.

In this paper we extend the previous line of work on spectral learning for con-
tinuous sequences to handle the task of tagging sequences of continuous inputs.
Our approach is based on generalizing the class of weighted finite-state sequence
taggers over discrete input-output sequences to a class where transitions are
linear combinations of elementary transitions and the weights of the linear com-
binations are determined by dynamic features of the continuous input sequence.
One intuitive way to understand our approach is to think that we are learning
a basis of the vectorial space of transition functions and that the weights of the
linear combination depend only on the given features of the continuous input
sequence.

Similar to [19,6], we develop a spectral method for our model from forward-
backward recursions which are used to derive useful matrix decompositions of
observable statistics. These matrix decompositions are then in turn exploited
to induce the relationships between observations and latent state dynamics. As
with previous spectral methods our algorithm for learning finite-state sequence
taggers is simple and efficient. It reduces to estimating simple statistics from
samples of paired input-output sequences, performing a singular value decom-
position and inversion of some matrices.

In summary the main contributions of this paper are: (1) We present a la-
tent state model for sequence tagging over continuous inputs; (2) We derive
an efficient spectral learning algorithm for this model from forward-backward
recursions; and (3) We present experiments on a real-task that validate the ef-
fectiveness of our approach.

2 Models for Sequences of Continuous Inputs and
Discrete Outputs

2.1 Preliminary: Weighted Finite-State Sequence Taggers

We start by defining a class of functions over pairs of discrete sequences. More
specifically, let x = x1, . . . , xT be an input sequence and y = y1, . . . , yT be an
output sequence, where x ∈ Δ∗ and y ∈ Σ∗. Here both Δ and Σ are assumed to
be discrete alphabets. We follow [5] in that we assume that x and y have the same
length (i.e we model aligned sequences). Defining spectral learning algorithms
over pairs of sequences of different lengths would require handling unobserved
alignments which is outside the scope of this paper.
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A weighted finite-state sequence tagger (WFST) over Δ × Σ with m states
can be defined as a tuple A = 〈α1, α∞, Aσ

δ 〉 where α1, α∞ ∈ Rm are the initial
and final weight vectors and Aσ

δ ∈ Rm×m are the |Δ × Σ| transition matrices
associated to each pair of symbols 〈δ, σ〉 ∈ Δ × Σ. The function fA realized by
a WFST is defined as:

fA(x, y) = α�1 A
y1
x1

· · ·AyT
xT
α∞ . (1)

The above equation is an algebraic representation of the computation per-
formed by a WFST on a pair of sequences 〈x, y〉. To see this consider a state
vector st ∈ Rm where the ith entry represents the sum of the weights of all
the state paths that generate the prefix 〈x1:t, y1:t〉 and end in state i. Initially,
s1 = α1, and then s�t+1 = s�t A

yt
xt

updates the state distribution by simultaneously
emiting the symbol 〈xt, yt〉 and transitioning to the next state vector.

Notice that since x and y are aligned sequences we could regard a WFST as
a weighted finite-state automata (WFA) over a combined alphabet Γ = Δ×Σ.
The reason why we maintain separate alphabets will become evident in the next
sections when we will consider modelling pairs of continuous input sequences
and discrete outputs.

We say that a WFST is stochastic if the function fA is a probability distri-
bution over (Δ × Σ)∗. That is, if fA(x, y) > 0 for all 〈x, y〉 ∈ (Δ × Σ)∗ and∑
〈x,y〉∈(Δ×Σ)∗ fA(x, y) = 1. When x is continuous we have the analogous con-

dition:
∫
(x,y)∈(Δ×Σ)∗ fA(x, y) dx dy=1. To make it clear that fA(x, y) represents

the probability of pairs of sequences 〈x, y〉 we will sometimes write it as P[x, y].

2.2 Sequence Taggers over Continuous Sequences

We will now consider the case in which the input sequences are not discrete
but continuous. More specifically, let X be an arbitrary domain of input sym-
bols (possibly infinite) and Φ = {φ1, . . . , φk} be a set of feature functions
over X , where φi : X → R . For any symbol a ∈ X we regard the vector
Φ(a) = [φ1(a), . . . , φk(a)] ∈ Rk as the real representation of a under the X → Rk

mapping induced by Φ. When necessary we will use Φ(X ) to refer to the range
of this mapping.

We could attempt to define a WFST over (X ×Σ)∗ as:

fA(x, y) = α�1 A
y1

Φ(x1)
· · ·AyT

Φ(xT )α∞. (2)

Clearly, there is a problem with the above formulation because there are an
infinite number of transition matrices (i.e. one for each member of Φ(X ) × Σ),
thus we need to impose some further restrictions on fA. The first observation
is that instead of regarding Aσ

Φ(a) as a matrix in Rm×m we can define it as a
function:

A(Φ(a), σ) : Rk ×Σ → Rm×m (3)

We can now restrict fA by restricting A, in particular we will assume that:

A(Φ(a), σ) =

k∑
l=1

φl(a)O
σ
l (4)
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where Oσ
l ∈ Rm×m is an operator associated with each of the k functions of Φ

and each output symbol σ ∈ Σ. Thus for each output symbol we restrict our
transition function to be a linear combination of a set of k elementary operators.
The weights of the linear combination are those induced by Φ.

In summary, a Continuous Weighted Finite-state Sequence Tagger (CWFST)
over (Φ(X ) × Σ)∗ with m states can be defined as a tuple A = 〈Φ, α1, α∞, Oσ

l 〉
where Φ is a set of k functions, α1, α∞ ∈ Rm are the initial and final weight
vectors, and Oσ

l ∈ Rm×m are the k× |Σ| operator matrices associated with each
each symbol in Σ and each function in Φ. The function fA realized by a CWFST
is defined as:

fA(x, y) = α�1 A(Φ(x1), y1) · · ·A(Φ(xT ), yT ) α∞ (5)

= α�1

(
k∑

l=1

φl(x1)O
y1

l

)
· · ·

(
k∑

l=1

φl(xT )O
yT

l

)
α∞ (6)

2.3 Some Examples

We give now some examples of classes of functions that can be computed by
CWFSTs.

A WFST as a CWFST. We start by considering WFSTs as they were defined
in the previous section. It is easy to see that if we have a WFST defined over
Δ × Σ we can construct a CWFST that will compute the same function. The
construction is very simple, to map aWFST A = 〈α1, α∞, Aσ

δ 〉 to a CWFST A′ =
〈Φ, α′1, α′∞, Oσ

l 〉 we perform the following construction: (1) Define one indicator
function φδ : Δ → R for each δ ∈ Δ as: φδ(a) = 1 if a = δ and 0 otherwise;
(2) Set the |Δ| × |Σ| operators to Oσ

l = Aσ
l ; (3) Define α′1 = α1 and α′∞ = α∞.

Clearly, the CWFST A′ resulting from this construction will compute the same
function as A since by construction A(Φ(δ), σ) = Aσ

δ .

Transitions as Mixture Models. We will now describe a more interesting
case of a distribution over (X × Σ)∗ that can be represented as a CWFST.
To motivate this example consider a gesture recognition problem where given a
sequence of video frames we wish to predict the gesture been performed at each
point in time.

One of the challenges in the gesture recognition task is that each video frame
lies in a high-dimensional space which makes generalization to unseen samples
difficult. To alleviate this problem we could consider a two step process where in
the first step we induce a mapping from the high-dimensional space to a lower
dimensional semantic space.

For example in the first step, like in [10] we could learn a visual topic model
[7] over frames and represent each frame as a posterior distribution over visual
topics. In the second step we need to be able to learn a sequence model from the
topic space to gesture labels. To define such a model we will make use of some
intermediate latent variables.
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More precisely, let H = {c1, . . . , cm} be a set of m hidden states and Z be a
k dimensional multinomial random variable. In the gesture recognition example
Z would correspond to the latent topic variable for each video frame. Consider
now the following distribution over paired 〈x, y〉 sequences:

P[x, y] =
∑

h∈HT+1

P[x, y, h] (7)

=
∑

h∈HT+1

P[h0]

T−1∏
t=1

P[ht+1, xt, yt | ht] (8)

P[ht+1, xt, yt|ht] is the probability of emiting a pair of symbols (x, y) at time t
and transitioning to a new state. Since x might lie in a high-dimensional space,
to ease modelling of this conditional distribution we will define it as a mixture
of k elementary conditional distributions:

{ P1[ht+1, yt | ht], . . . ,Pk[ht+1, yt | ht] } (9)

More precisely, we define the transition function as:

P[ht+1, xt, yt | ht] =

k∑
l=1

Pl[ht+1, yt | ht] P[z = l | xt] P[xt] (10)

Thus, in this model the emission of an output symbol y is conditioned on z
which is itself conditioned on the input variable x. Intuitively, we can think of
P[z = l|x] as the probability of x taking discrete label l. In the gesture example,
this would correspond to the posterior probability of a topic l given some input
x. An alternative interpretation is that Z induces a soft partition of X . The
model exploits this partition to induce a better mapping between inputs and
outputs.

Finally, we show how to construct a CWFST that realizes P[x, y]. The idea is
quite simple, we define a feature function for each of the k possible values that
Z can take. More precisely, we define a CWFST A in the following manner: (1)
Define one feature function φl(x) for each possible value of Z as P[z = l | x] P[x];
(2) Define the k× |Σ| operators as Oσ

l (i, j) = Pl[ht+1 = i, σ | ht = j]; (3) Define
α1(i) = P[h0 = i] and α∞ = 1. It is easy to see that A computes P[x, y] since by
definition A(Φ(δ), σ) = P[ht+1, δ, σ | ht].

We would like to end this section with a note on the limitations of the model.
One of the key assumptions is that the feature functions depend only on the
input. This means that the feature function needs to capture enough information
so that at any point in time the output yt can be predicted knowing the current
state vector (which is a summary of the [x1:t−1; y1:t−1] history) and the input
features at time t. In other words, there must be enough information in the
feature functions to explain the dynamics of the output symbols.

3 Spectral Learning of Stochastic CWFSTs

Recall that a stochastic CWFST computes a function fA that is a probability
distribution over (Δ×Σ)∗. In this section we will derive a learning algorithm for
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inducing the parameters of the CWFST from samples. We begin by defining some
expectation matrices induced by fA. We continue by presenting a duality result
between a subclass of stochastic CWFSTs and factorizations of these matrices.
Finally, we describe the spectral method for CWFSTs which is a statistically
robust implementation of the arguments used in the duality proof.

3.1 Duality and Minimal CWFST

Let P be the function computed by fA, we define functions: φij(aa
′) = φi(a)φj(a

′)
and φσ

ilj(aa
′a′′, σ′σ′′σ′′′) = φi(a)φl(a

′)φj(a
′′)P(a′) if σ′′ = σ and 0 otherwise.

Using these functions we construct the observable statistics matrices H1 ∈ Rk,
H2 ∈ Rk×k , Hσ

l ∈ Rk×k and C ∈ Rk×k as:

H1(i) = EP[φi(a)] (11)

H2(i, j) = EP[φij(aa
′)] (12)

Hσ
l (i, j) = EP[φ

σ
ilj(aa

′a′′, σ′σ′′σ′′′)] (13)

C(i, j) = EP[φi(a)φj(a)] (14)

We say that a CWFST A = 〈Φ, α1, α∞, Oσ
l 〉 with Oσ

l ∈ Rm×m for l = 1 : k is
minimal for fA if rank(H2) = m and rank(C) = k.

The rank-m restriction on H2 is analogous to the restriction that O and T be
rank m in [15,6]. There are ways to relax this assumption by considering higher
order expectations, but this is outside the scope of the paper. Now we will show
a relationship between minimal A and some useful rank-m factorizations of H2.
Under appropriate stationary assumptions:

Lemma 1. Let H1, H2, H
σ
l and C be the expectation matrices induced by an

m-state minimal A. There exist matrices F ∈ Rk×m and B ∈ Rm×k such that
the following holds:

H2 = FB (15)

Hσ
l = F

k∑
i=1

Oσ
i C(l, i)B (16)

H1 = Fα∞ = α�1 B (17)

Proof. Define a forward vector fl ∈ Rm and a backward vector bl ∈ Rm for each
feature function:

fl = α�1

∫
(x,y)∈(X×Σ)∗

A(x, y)φl(x) dx dy (18)

bl =

∫
(x,y)∈(X×Σ)∗

A(x, y)φl(x) dx dy α∞ (19)
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where we use the shorthand notation A(x, y) = A(Φ(x1), y1) · · ·A(Φ(xT ), yT )).
It is not hard to see that H2 can be written as:

H2(i, j) = E[φi(a)φj(a
′)]

=

∫
(xa,yσ)

∫
(a′x′,σ′y′)

fA(xaa
′x′, yσσ′y′) φi(a)φj(a

′)

=

∫
(xa,yσ)

∫
(a′x′,σ′y′)

α�1 A(xa, yσ)A(a
′x′, σ′y′)α∞ φi(a)φj(a

′)

= 〈fi, bj〉

Thus if we define a forward matrix F ∈ Rk×m where each row corresponds
to a forward vector and a backward matrix B ∈ Rm×k where each column
corresponds to a backward vector we get H2 = FB as desired. For the next
claim we have:

Hσ
l (i, j) = EP[φ

σ
ilj(a

′aa′′, σ′′σ′σ′′′)]

=

∫
(xa′,yσ′′)

∫
a

∫
(a′′x′,σ′′′y′)

fA(xa
′aa′′x′, yσ′′σσ′′′y′)φi(a

′)φl(a)φj(a
′′)P(a)

= f t
i

∫
a

A(a, σ)φl(a)P(a) bj

= f t
i

k∑
r=1

Oσ
rC(l, r) bj

A few extra algebraic manipulations using F and B give us the remaining
claims. ��

We now develop the opposite direction of the duality between factorizations
and minimal CWFSTs, which is the key to understand the spectral learning
algorithm. The following theorem shows that given any rank factorization of H2

we can compute a CWFST for f .

Theorem 1. Let H1, H2, H
σ
l and C be the expectation matrices of some func-

tion f computed by a minimal CWFST and let H2 = FB be a rank factorization,
then A = 〈Φ, α1, α∞, Oσ

l 〉 defined as:

α∞ = F+H1 (20)

α�1 = H1B
+ (21)

[Oσ
1 (i, j), . . . , O

σ
k (i, j)]

� = C−1[Qσ
1 (i, j), . . . , Q

σ
k (i, j)] (22)

Qσ
l = F+Hσ

l B
+ (23)

computes f .

Proof. Let Ã = 〈Φ, α̃1, α̃∞, Õσ
l 〉 be a minimal CWFST for f that induces rank

factorization H2 = F̃ B̃. We first show that there exists an invertible matrix M
such that for all (x, y) ∈ (X ×Σ)∗ we have that: M−1Ã(x, y)M = A(x, y). Define
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M = B̃B+, we have that: F+F̃ B̃B+ =⇒ F+H2B
+ = I =⇒ M−1 = F+F̃ .

Thus M is invertible. We also have that for every σ and every l the following
holds:

k∑
i=1

Oσ
i C(l, i) = F+Hσ

l B
+ = F+F̃

k∑
i=1

Õσ
i C(l, i)B̃B+

= M−1
k∑

i=1

Õσ
i C(l, i)M (24)

For each σ we have k different equations, one per feature l:

k∑
i=1

Oσ
i C(l, i) = M−1

k∑
i=1

Õσ
i C(l, i)M (25)

Fixing the right part of the equation we observe that it is a system of k equations
with k variables Oσ

i . Since f is minimal C is invertible and we can perform
Gauss elimination and end up with a unique solution for the system. Since
Oσ

i = M−1Õσ
i M is a solution we must have that

∀(a, σ) ∈ (X ×Σ) :

k∑
i=1

Oσ
i φi(a) = M−1

k∑
i=1

Õσ
i φi(a)M. (26)

Some algebraic manipulations give: α�1 = α̃�1 M and α∞ = M−1α̃∞. Therefore,
we can compute f as:

fA(x, y) = α�1

(
k∑

l=1

Oy1

l φl(x1)

)
· · ·

(
k∑

l=1

Oyt

l φl(xt)

)
α∞

= α̃�1 MM−1

(
k∑

l=1

Õy1

l φl(x1)

)
M · · ·M−1

(
k∑

l=1

Õyt

l φl(xt)

)
MM−1α̃∞

= fÃ(x, y) = f (27)

��

This result shows that there exists a duality between rank factorizations of H2

and minimal CWFST for f . A consequence of this is that minimal CWFSTs
for a function f with covariance C are related to each other via some change of
basis.

Corollary 1. Let A = 〈Φ, α1, α∞, Oσ
l 〉 and Ã = 〈Φ, α̃1, α̃∞, Õσ

l 〉 be two minimal
CWFSTs for some f of rank m with covariance C. Then there exists an invertible
matrix M ∈ Rm×m such that α�1 = α̃�1 M , α∞ = M−1α̃∞ and

∀(a, σ) ∈ (X ×Σ) :
k∑

l=1

Oσ
l φl(a) = M−1

k∑
l=1

Õσ
l φl(a)M.
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In practice, we do not observe H2, H
σ
l and C but we can estimate them from

n training samples (x, y). The errors in the estimation can be bounded using the
Hoeffding inequality, for example for H2 we would get:

P (|Ê[φi(a)φj(a
′)]− E[φi(a)φj(a

′)]| > ε) ≤ 2 exp
−2nε2

(μ−λ)2

where a and a′ are any two input symbols, and λ and μ are bounds on the
minimum and maximum values for φi(a) · φj(a

′).
The spectral learning algorithm that we present in the next section uses the

singular value decomposition of H2; this choice of low rank decomposition is
appealing because its robustness to noise in the estimation of H2. Using results
from the stability of the singular value decomposition it is possible to show that
the CWFST obtained from an approximate H2 will be close to the one obtained
using the exact statistics and thus the algorithm is statistically consistent. Also,
it is not hard to see that one could use techniques similar to [15,4,6] to prove
sample complexity bounds that depend linearly in the number of input features
and |Σ|.

3.2 Spectral Algorithm

In this section we present a learning algorithm for stochastic CWFST based on
spectral decompositions of observable statistics. Given samples from the joint
distribution of paired input-output sequences P[x, y] and feature functions Φ,
the task is to induce a CWFST: A = 〈Φ, α1, α∞, Oσ

l 〉 that approximates P.
More precisely, we are given:

– A set of n training samples S = {(x1, y1), . . . , (xn, yn)} of input-output
sequences (where x ∈ X T and y ∈ ΣT for some T ), sampled from P[x, y]

– A set of k feature functions Φ = {φ1(a), . . . , φk(a)}
– The desired number of states m

We first use the training samples to compute estimates of H1, H2, H
σ
l and

C. Recall that the compact SVD of a k × k matrix of rank m is given by:
H2 = UΛV � where U ∈ k×m and V ∈ k×m are orthogonal matrices. Clearly,
H2 = (UΛ)V � is a rank m factorization of H2, note that since V V � = I this
factorization is equivalent to H2 = (H2V )V �. Applying the ideas of the duality
theorem for the factorization F = H2V and B = V � we get that the model
parameters are given by:

α∞ = (HV )+H1 (28)

α�1 = H1V (29)

[Oσ
1 (i, j), . . . O

σ
k (i, j)]

� = C−1[Qσ
1 (i, j), . . .Q

σ
k (i, j)] (30)

Qσ
l = (HV )+Hσ

l V (31)

Computing the expectation matrices is linear in the size of the training set
and the number of features and output symbols. The cost of the algorithm is
dominated by the singular value decomposition of the k × k matrix H2 and
therefore the overall cost is at most cubic on the number of features.
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4 Related Work

Modelling continuous sequences with spectral methods has been studied in the
context of HMMs [26], where a spectral algorithm for this case was derived.
Their approach builds on previous work [27] on Hilbert Space Embeddings of
conditional distributions. The main idea is first to map continuous distributions
to points in a Hilbert Space and then derive a spectral method that works
directly in the embedded space. [25] proposed an alternative spectral algorithm
for continuous HMMs which is based on kernels. In spirit, our algorithm shares
some similarities with all these methods since all of them work by embedding
the transition function in some vectorial space.

Modelling continuous sequences has also been addressed in the original work
by Jaeger [17,18] on observable operator models (OOMs). Similar to that ap-
proach, we also consider operators that can be written as linear combinations
of some basis operators. The main difference is that while they consider mod-
elling continuous sequences, we consider the special case of tagging continuous
sequences, that is, modelling paired sequences of continuous inputs and discrete
outputs. Furthermore, we study the case in which the weights of the linear com-
bination are provided in the form of feature functions that depend only on the
continuous input.

More closely related to our approach is the work by [9] on transformed pre-
dictive state representations (TPSR). Although they do not directly address the
sequence tagging problem (they are interested in predicting the conditional out-
put of a dynamical system), implicitly they do consider paired sequences which
can be sampled from a continuous space. Furthermore, they also use feature rep-
resentations and operators that can be seen as linear combinations of elementary
operators. One of the main difference between our work is that we focus on the
case in which the following holds: (1) one of the two sequences comes from a
small discrete alphabet; and (2) the weights of the linear operators depend on
features of the continuous sequence only (in their case the feature function de-
pends on both sequences). We show that for this special case the observable
statistics on past and future events that are used to compute the basis of the
operators depend only on the continuous input sequence. In their case, all ob-
servable statistics depend on both sequences. In this sense the difference between
our work and theirs is analogous to the difference of a vanilla approach for com-
puting joint distributions of discrete paired input/output sequences versus the
work by [5], where they show that the basis can be computed from one of the
two sequences alone.

Thus, although the learning algorithms might seem similar at first hand, the
observable statistics on which they rely are quite different and thus they both
have different properties. For example, we can consider cases in which we can
easily estimate the statistics of the input distribution needed to compute the
basis but in which estimating the joint input/output statistic might be hard.
Another property of our model is that since some observable statistics depend
only on the input we could easily use unlabeled samples (i.e. samples for which
the output sequences are unknown) to better estimate them.
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Apart from the differences mentioned above, the techniques that we use to
prove the correctness of our algorithm are different. We derive the algorithm
directly from a duality between low-rank factorizations of certain observable
statistics and the parameters of the model. Finally, at the experimental level the
two works are quite different. We test the accuracy of our learning algorithm in
sequence tagging tasks while they test their model in tasks that involve predicting
the future state of a dynamic system conditioned on the observed history.

5 Experiments

We conducted experiments on the Wall-following Navigation dataset of the UCI
repository [1]. Given a sequence of sensor readings, the task is to predict an
appropriate movement action out of a set of discrete actions. There are four pos-
sible actions: move-right, move-left, right-turn, left-turn. The sensor readings are
the outputs of 24 ultrasound sensors sampled at a rate of 9 samples per second.
When we frame this task as a sequence prediction problem over continuous in-
puts we have that x consists of sequences of sensor readings and y consists of
sequences of appropriate actions.

The dataset consists of one long sequence of sensor readings and corresponding
robot actions. For our experiments we split this sequence into 150 contiguous
sequences of approximately 4 seconds each (36 contiguous samples per sequence).
We then randomly partition these sequences and use 100 sequences as training
data 25 sequences as validation and the remaining 25 sequences as test. When
we report optimal performance for a given model, the validation sequences were
used to pick the optimal number of states and to choose the optimal parameters
of the feature functions.

5.1 Feature Functions

In general the feature functions can be validated using a held-out validation
data. The goal of the first set of experiments is to test the robustness of our
method with respect to different feature functions.

In kernel learning one usually assumes that a kernel function is provided,
analogously a natural way to define feature functions in our setting it so as-
sume that we are provided with some distance function between elements in X .
Once we have the distance function we can obtain centroids on the input space
by performing vector-quantization (e.g. k-means) using the given distance. If
a kernel was provided instead we could also perform kernel k-means to obtain
centroids. Finally, we compute features as similarities to each of the centroids.
More specifically, to obtain features for these experiments we do the following:
(1) Perform k-means (with the provided distance function) on the input train-
ing samples to obtain k cluster centroids; and (2) For each cluster centroid c

define the corresponding feature function: φc(x) =
exp

−d(c,x)
τ

z . Here −d(x, x′) is
the provided distance function, we will compare three distance functions: (1)
Square Euclidean; (2) Correlation, computed as 1-sample correlation between
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points; and (3) Cosine, computed as 1-the cosine of the included angle between
points. The other parameter τ defines the width of the kernel function and z
is a normalization constant. A small τ will result in sparse feature vectors for
each point, where most of the mass will be concentrated around a few features.
To compare against the discrete WFST we create a discrete alphabet by map-
ping each point to its closest cluster centroid according to the provided distance
function.

In all experiments as a performance metric we report the accuracy on pre-
dicting actions for the test sequences. To predict the most probable sequence of
actions y for a given test sequence x we must compute:

argmaxyP(y|x) = argmaxyP(x; y) (32)

Due to the presence of the latent state variables the above computation is known
to be untractable. Instead we use the standard approximation of maximizing the
marginal probability at each time, that is we compute:

argmaxyt

∑
y1:t−1,yt+1:T

P(x1:T , y1:t−1ytyt+1:T ) (33)

In the next section we validate the accuracy of this approximation.
Figure 1 shows the accuracy of CWFST and WFST as a function of the

number of latent states m for the Euclidean, Correlation and Cosine feature
functions. The number of features for these graphs is 80. As we can see CWFST
outperforms WFST for all feature functions. In the three figures we can see the
performance of CWFST for different values of τ (i.e. different feature functions).
Larger values of τ result in feature functions that induce a softer partition of the
input space. Thus we expect that for small τ values CWFST and WFST give
similar performance, and this seems to be the case.

CWFST seems to be quite robust to the particular choice of feature function
and what seems to change in each case is the optimal kernel width τ . For the
cosine and correlation functions sparser feature vectors seem to be preferred (i.e.
smaller τ) than for the Euclidean distance function. WFST on the other hand
seems to be less robust to the choice of distance function (used in this case to
discretize the inputs) and Cosine and Correlation seem to perform significantly
better than the Euclidean distance.

Figure 2 (Left) shows accuracy as a function of the number of features (i.e.
for optimal number of states and τ). As we can see CWFST significantly out-
performs WFST for any number of features. This seems to suggest that working
with a soft partition of the input space always results in better performance,
regardless of the number of partitions. This appears to be true independent of
the particular choice of feature function.

We end this subsection with a note on how to pick the optimal number of
states. In general, one should use a validation set to pick the optimal number
of states. One advantage of spectral learning algorithms is that they are very
fast, hence parameter validation is cost-less. Still, we can use information of the
spectrum of H2 to guide our search for optimal m. Figure 2 (Center) shows
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Fig. 1. Accuracy as a function of the number of states for different feature functions

sorted singular singular values of H2 for the correlation model with 80 features.
As we can see the singular values drop to almost 0 after the 34th singular vector.
Most likely, the optimal number of states for the spectral method will be less
than 34 and probably in between 30 and 35 states.

5.2 Comparison with Other Methods

In the second set of experiments we fix the feature function to be Correlation
and compare CWFST against two other methods:

– (EM) We train a model as defined in section 2.3.2 using expectation max-
imization. The models were run for a maximum of 400 iterations but the
actual stopping criteria was chosen using the held-out validation data. That
is we picked the model resulting from the iteration that performed best in
validation data, which was less than 400 iterations (see table 2).

– (Bayesian) As a second model to compare we choose the winner algorithm of
a recent probabilistic automata competition 1. The winner algorithm [23] was
a Bayesian method that implements Collapsed Gibbs Sampling [14]. Since
this method assumes discrete inputs, we discretize the continuous inputs
following the same approach that was discussed in the previous section for
WFST.

1 http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac

http://ai.cs.umbc.edu/icgi2012/challenge/Pautomac
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Fig. 2. (Left) Accuracy as a function of the number of features. (Center) Singular
Values of H2. (Right) Accuracy as a function of number of states for different methods.

Figure 2 (Right) compares the performance of CWFST, EM and Bayesian as
a function of the number of states. As we can see CWFST outperforms both
the EM and Bayesian algorithms. The Bayesian algorithm seems to be able to
provide more compact models than EM (i.e. fewer number of states). Table 1
(Left) shows the performance of the best models for each learning algorithm.
Recall that we resorted to approximate max marginal inference. Given that

Table 1. Comparison with other methods

#states Acc Marginals Acc Exact
EM: 23 75.36% 76.32%
Bayesian: 5 74.67% 75.90%
CWFST: 31 79.36% 81.12%
FST: 31 67.09% 68.06%

Table 2. Training time (in seconds) and accuracy for Expectation Maximization for
optimal model with 23 states

iters: 1 20 60 80 140 180 200 210 400
time: 14s 300s 1100s 2000s 4200s 5400s 6000s 6400s 10000s
acc.: 68% 74% 73.8% 74.8% 75% 75.36*% 75.36% 75.31% 75.17%
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the average length of each sequence in the test sample is 10 it is still possible
(though costly) to perform exact inference. That is to compute: argmaxyP(y|x) =
argmaxyP(x; y) by doing exhaustive search. The last row of Table 1 (Left) shows
the accuracy of each model when the approximate inference is replaced by exact
inference. In all cases we see an improvement in between 1 % and 2 %. This seems
to suggest that the approximation is a good trade-off of accuracy vs inference
time. Table 2 shows accuracy of EM as a function of training time (for optimal
m and τ). For time comparison, the spectral training algorithm takes less than
30 seconds to train.

6 Conclusions

In this paper we presented a novel spectral learning algorithm that allows to
exploit the representational power of latent variables to solve sequence tagging
problems where the input is a continuous sequence and the output is discrete.
Our approach is based on regarding the transition function of a weighted finite-
state sequence tagger as a linear combination of atomic transition functions.
We derive a spectral learning algorithm for this model from forward-backward
mappings. The resulting algorithm is both simple and fast. Intuitively, the atomic
transition functions operate on a soft partition of the input space. Experiments
on a real task have shown the effectiveness of the method and its ability to take
full advantage of these soft partitions.
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Abstract. This paper presents a fast variational Bayesian method for
linear state-space models. The standard variational Bayesian expectation-
maximization (VB-EM) algorithm is improved by a parameter expansion
which optimizes the rotation of the latent space. With this approach, the
inference is orders of magnitude faster than the standard method. The
speed of the proposed method is demonstrated on an artificial dataset
and a large real-world dataset, which shows that the standard VB-EM al-
gorithm is not suitable for large datasets because it converges extremely
slowly. In addition, the paper estimates the temporal state variables us-
ing a smoothing algorithm based on the block LDL decomposition. This
smoothing algorithm reduces the number of required matrix inversions
and avoids a model augmentation compared to previous approaches.

Keywords: variational Bayesian methods, linear state-space models,
parameter expansion.

1 Introduction

Linear state-space models (LSSM) are widely used in time-series analysis [1, 2].
They assume that the observations are generated linearly from a latent linear
dynamical system. Although many real-world processes are non-linear, the lin-
earity makes the model easy to analyze and efficient to estimate. In addition,
many non-linear systems can be approximated using linear models, thus the
LSSM is an important tool for time-series applications.

The Bayesian framework offers a principled way to estimate the model pa-
rameters from data. However, the estimation is analytically intractable mak-
ing approximations necessary. This paper focuses on the variational Bayesian
(VB) approximation, which can be computed using the variational Bayesian
expectation-maximization (VB-EM) algorithm. The VB-EM algorithm assumes
that the variables are independent and updates the approximate posterior dis-
tributions of the variables one at a time [3, 4].

The standard VB-EM algorithm may converge extremely slowly if the vari-
ables are strongly coupled. Because the variables are updated one at a time, the
updates to each variable may be small and this results in zigzagging. This effect
can be reduced by using parameter expansion to add auxiliary variables which
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reduce the coupling between some variables [5, 6]. This can be seen as a param-
eterized joint optimization of multiple variables. Because the expansion and the
effect on the speed of the algorithm depends on the model, it is important to
examine efficient parameter expansions for different models (see, e.g., [7–9]).

This paper derives a parameter expansion for the linear state-space model
and shows experimentally that the VB-EM algorithm can be unusable for large
datasets if the expansion is not used. The proposed parameter expansion is based
on the rotation of the latent space, thus reducing the coupling between the states
and the system parameters. Similar parameter expansion has been applied to
canonical correlation and factor analysis models [7, 8]. However, those results
cannot be applied directly to the LSSM because the rotation of the dynamics
adds extra complexity.

In addition to convergence speed problems, the estimation of the state vari-
ables is not trivial, because the standard Rauch-Tung-Striebel [10] smoother
cannot be applied directly as noted in [11]. This has been previously solved by
using a parallel variant of the smoother in [11] and a model augmentation in
[12]. This paper provides another perspective on the smoothing algorithm by
deriving it from the Cholesky, or LDL, decomposition of a block-banded matrix.
This results in a smoothing algorithm which requires less matrix inversions than
the previous approaches, avoids the cost of the model augmentation and can be
extended to other Markov random fields with different graph structure.

The paper is organized as follows: Section 2 defines the linear state-space
model used in the paper. Section 3 briefly summarizes the standard VB-EM
algorithm for the model. Section 4 derives the proposed smoothing algorithm.
Section 5 presents the parameter expansion for the model. Section 6 presents
experimental results that show the effect of the parameter expansion. Section 7
ends the paper with conclusions.

2 Model

In linear state-space models a sequence of M -dimensional observations Y =
(y1, . . . ,yN ) is assumed to be generated from latent D-dimensional states X =
(x1, . . . ,xN ) which follow a first-order Markov process:

xn = Axn−1 + noise, (1)

yn = Cxn + noise, (2)

where the noise is Gaussian, A is the D×D state dynamics matrix and C is the
M ×D loading matrix. Usually, the latent space dimensionality D is assumed to
be much smaller than the observation space dimensionality M in order to model
the dependencies of high-dimensional observations efficiently.

The equations defining the linear state-space model can be used to construct
a Bayesian model [11]. The likelihood function is

p(Y|C,X, τ ) =

N∏
n=1

N (yn|Cxn, diag(τ )
−1), (3)
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where N (x|μ,Σ) is the probability density function of the Gaussian distribution
of variable x with mean μ and covariance Σ. The covariance matrix in (3) is
diagonal, that is, the noise is independent for each observed element of yn. The
probability of the states is given as

p(X|A) = N (x0|m0,Λ
−1
0 )

N∏
n=1

N (xn|Axn−1, I), (4)

where x0 is an auxiliary initial state with meanm0 and precisionΛ0. The noise of
the process in (4) has unit covariance matrix without loss of generality, because
the latent space can be rotated arbitrarily by compensating it in the parameters
A and C. The parameters of the process are given the following priors:

p(A|α) =

D∏
i=1

D∏
j=1

N (aij |0, α−1
j ), p(α) =

D∏
d=1

G(αd|aγ , bγ), (5)

p(C|γ) =
M∏

m=1

D∏
d=1

N (cmd|0, γ−1
d ), p(γ) =

D∏
d=1

G(γd|aγ , bγ), (6)

p(τ ) =
M∏

m=1

G(τm|aτ , bτ ), (7)

where aij is the element on the i-th row and j-th column of the matrix A,
αd is the d-th element of the vector α, and G(α|a, b) is the probability density
function of the gamma distribution with shape a and rate b. The variables α
and γ are automatic relevance determination (ARD) parameters, which prune
out components that are not significant enough. The hyperparameters aα, bα,
aγ , bγ , aτ and bτ can be set to small values (e.g., 10−5) to give broad priors.
The above model definition is similar to [11, 12] and the details can be modified
without affecting the main results of this paper.

3 Posterior Approximation

As the posterior distribution of the variables is analytically intractable, it is ap-
proximated using variational Bayesian (VB) framework [4]. The approximation
is assumed to factorize with respect to the variables as

p(X,A,α,C,γ, τ |Y) ≈ q(X,A,α,C,γ, τ ) = q(X)q(A)q(α)q(C)q(γ)q(τ ).
(8)

The approximation is optimized by minimizing the Kullback-Leibler divergence
from the true posterior, which is equivalent to maximizing the lower bound of
the marginal log likelihood

L(Y) = 〈log p(Y|C,X, τ )〉 +
〈
log

p(X|A)

q(X)

〉
+

〈
log

p(A|α)

q(A)

〉
+

〈
log

p(α)

q(α)

〉
+

〈
log

p(C|γ)
q(C)

〉
+

〈
log

p(γ)

q(γ)

〉
+

〈
log

p(τ )

q(τ )

〉
,

(9)
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where 〈·〉 is the expectation with respect to the approximate posterior
distribution q.

For conjugate-exponential models, the approximation can be optimized by
using the variational Bayesian expectation-maximization (VB-EM) algorithm
[3]. In VB-EM, the posterior approximation is updated for the variables one at
a time and iterated until convergence. The approximate distributions have the
following forms:

q(X) = N ([X]:|μx,Σx), q(τ ) =

M∏
m=1

G(τm|ā(m)
τ , b̄(m)

τ ), (10)

q(A) =
D∏

d=1

N (ad|μ(d)
a ,Σ(d)

a ), q(α) =
D∏

d=1

G(αd|ā(d)α , b̄(d)α ), (11)

q(C) =

M∏
m=1

N (cm|μ(m)
c ,Σ(m)

c ), q(γ) =

D∏
d=1

G(γd|ā(d)γ , b̄(d)γ ), (12)

where ad and cm are the row vectors of A and C, respectively, and [X]: is a
vector obtained by stacking the vectors xn. It is straightforward to derive the
following update equations of the variational parameters:

Σ(d)
a =

(
〈diag(α)〉+

N∑
n=1

〈xn−1x
T
n−1〉

)−1

, μ(d)
a = Σ(d)

a

N∑
n=1

〈xdnxn−1〉, (13)

ā(d)α = aα +
D

2
, b̄(d)α = bα +

1

2

D∑
i=1

〈a2id〉, (14)

Σ(m)
c =

(
〈diag(γ)〉 +

∑
n∈Om:

〈τm〉〈xnx
T
n 〉
)−1

, μ(m)
c = Σ(m)

c

∑
n∈Om:

ymn〈τm〉〈xn〉,

(15)

ā(d)γ = aγ +
M

2
, b̄(d)γ = bγ +

1

2

M∑
m=1

〈c2md〉, (16)

ā(m)
τ = aτ +

Nm

2
, b̄(m)

τ = bτ +
1

2

∑
n∈Om:

ξmn, (17)

where Om: is the set of time instances n for which the observation ymn is not
missing, Nm is the size of the set Om:, and ξmn =

〈
(ymn − cTmxn)

2
〉
. Gaussian

and gamma distributed variables have the following expectations:

For x ∼ N (μ,Σ), 〈x〉 = μ and 〈xxT〉 = μμT +Σ. (18)

For α ∼ G(a, b), 〈α〉 = a

b
and 〈logα〉 = ψ(a)− log(b). (19)

The formula for updating q(X) is discussed in the following section.
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4 Smoothing Algorithm

The approximate posterior distribution q(X) can be updated using filtering
and smoothing algorithms. However, the standard Rauch-Tung-Striebel (RTS)
smoother cannot be applied straightforwardly because the required expectations
under q(A) are difficult to compute [11]. Previous approaches have solved this
by using a parallel variant of the smoother [11] or augmenting the model to be
able to apply standard RTS smoother [12]. Although these are working meth-
ods, this section presents another view on the smoothing problem and derives
an algorithm which can be applied easily and efficiently in the VB framework.

Instead of trying to apply standard filters and smoothers directly, the smooth-
ing can be computed equivalently from a Cholesky decomposition perspective
[13]. The smoothing can be seen as a multiplication by the inverse of a large
block-banded matrix. Utilizing the block-banded structure of the matrix, the
computational complexity of the inversion is O(D3N) instead of O(D3N3),
where D + N . The inverse is computed using the block LDL decomposition
and inverting this decomposition in two parts. The resulting smoothing algo-
rithm is similar to the standard Kalman filter [14] and RTS smoother although
not exactly identical.

The smoothing algorithm can be derived from the standard update equations
of q(X). Computational aspects aside, the update equation of the covariance
matrix Σx is

Σx =

⎡⎢⎣Σ1,1 · · · Σ1,N

...
. . .

...
ΣN,1 · · · ΣN,N

⎤⎥⎦ =

⎡⎢⎢⎢⎢⎣
Ψ0,0 Ψ0,1

ΨT
0,1 Ψ1,1

. . .

. . .
. . . ΨN−1,N

ΨT
N−1,N ΨN,N

⎤⎥⎥⎥⎥⎦
−1

= Ψ−1, (20)

where the block-banded matrix Ψ is defined as

Ψ =

⎡⎢⎢⎢⎢⎣
Λ0 + 〈ATA〉 〈A1〉T

〈A〉 I− 〈ATA〉 . . .

. . .
. . . 〈A〉T
〈A〉 I− 〈ATA〉

⎤⎥⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣
0 ∑

m∈O:1
〈τm〉〈cmcTm〉

. . . ∑
m∈O:N

〈τm〉〈cmcTm〉

⎤⎥⎥⎥⎦ ,

(21)

and O:n is the set of dimensions m for which the observation ymn is not missing.
The first matrix term in the sum (21) comes from the prior (4) and the second
matrix term comes from the likelihood (3). Note that although Ψ is block-
banded, Σ is dense in general. The posterior mean parameter is updated as
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Algorithm 1. Forward pass.

Input: {Ψn,n}Nn=0, {Ψn,n+1}N−1
n=0 , {vn}Nn=0

Σ̃0,0 ← Ψ−1
0,0

μ̃0 ← Σ̃0,0v0

for n = 0→ N − 1 do
Σ̃n,n+1 ← Σ̃n,nΨn,n+1

Σ̃n+1,n+1 ←
(
Ψn+1,n+1 − Σ̃T

n,n+1Ψn,n+1

)−1

μ̃n+1 ← Σ̃n+1,n+1

(
vn+1 − Σ̃T

n,n+1μ̃n

)
end for

Output: {Σ̃n,n}Nn=0, {Σ̃n,n+1}N−1
n=0 , {μ̃n}Nn=0

μx =

⎡⎢⎢⎢⎣
μo

μ1

...
μN

⎤⎥⎥⎥⎦ = Σx

⎡⎢⎢⎢⎣
v0

v1

...
vN

⎤⎥⎥⎥⎦ = Σxv, where v =

⎡⎢⎢⎢⎣
Λ0m0∑

m∈O:1
ymn〈τm〉〈cm〉
...∑

m∈O:N
ymn〈τm〉〈cm〉

⎤⎥⎥⎥⎦ . (22)

The vector v0 comes from the prior and the vectors {vn}Nn=1 come from the
likelihood.

Instead of computing the full matrix Σx, it is sufficient for the VB-EM algo-
rithm to compute only the diagonal blocks Σn,n, the first super-diagonal blocks
Σn,n+1, and the mean μx. These terms can be computed efficiently by writing
the parameters as Σx = Ψ−1I and μx = Ψ−1v, and utilizing the block-banded
structure of Ψ. Because Ψ is a symmetric positive-definite matrix, it can be
decomposed using the block LDL decomposition Ψ = LDLT, where D is a
block-diagonal matrix and L is a lower-triangular matrix with identity matrices
on the diagonal. Thus, multiplying on the left by Ψ−1 is equivalent to multi-
plying on the left by L-TD−1L−1. This can be computed in two phases: First,
multiplying on the left by D−1L−1 results in the forward pass shown in Al-
gorithm 1. Second, multiplying on the left by L-T results in the backward pass
shown in Algorithm 2. Note that both algorithms can be implemented as in-place
algorithms by overwriting the inputs with the outputs.

This smoothing algorithm has a few benefits compared to the previous meth-
ods [11, 12]. First, the algorithm needs to compute only one matrix inversion
per time instance, whereas the parallel and the augmented variants require three
and two inversions, respectively. Second, the augmented variant requires the
Cholesky decomposition of 〈ATA〉 and 〈CT diag(τ )C〉 for each time instance if
A, C or τ varies in time or if the data Y contains missing values. Third, the
proposed Cholesky approach makes it straightforward to modify the algorithm
if one changes the graph structure of the Markov random field to something else
than a Markov chain. Fourth, if Ψ is modified directly, for instance, if optimizing
the natural parameters, the covariance and the mean can be computed without
needing to solve what would be the parameters of the corresponding Markov
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Algorithm 2. Backward pass.

Input: {Σ̃n,n}Nn=0, {Σ̃n,n+1}N−1
n=0 , {μ̃n}Nn=0

ΣN,N ← Σ̃N,N

μN ← μ̃N

for n = N − 1→ 0 do
Σn,n+1 ← −Σ̃n,n+1Σn+1,n+1

Σn,n ← Σ̃n,n − Σ̃n,n+1Σ
T
n,n+1

μn ← μ̃n − Σ̃n,n+1μn+1

end for
Output: {Σn,n}Nn=0, {Σn,n+1}N−1

n=0 , {μn}Nn=0

chain. However, whatever smoothing algorithm is used, significant speeding up
can be obtained by using the parameter expansion discussed in the next section.

5 Speeding Up the Inference

The variational Bayesian EM algorithm may converge extremely slowly because
it updates only one variable at a time resulting in zigzagging for strongly cou-
pled variables. It may be possible to speed up the algorithm using parameter
expansion which reduces the coupling between the variables [5, 6]. For instance,
parameter expanded VB-EM has been used for factor analysis [7], canonical
correlation analysis [8], and common spatial patterns [9].

In state-space models, the states xn and the loadings C are coupled through
a dot product Cxn, which is unaltered if the latent space is rotated arbitrarily:

yn = Cxn = CR−1Rxn. (23)

Thus, one intuitive transformation would be C → CR−1 and X → RX. In order
to keep the dynamics of the latent states unaffected by the transformation, the
state dynamics matrix A must be transformed accordingly:

Rxn = RAR−1Rxn−1, (24)

resulting in a transformation A → RAR−1.
The parameter expansion is performed by parameterizing the posterior distri-

butions with R and maximizing the lower bound of the marginal log likelihood
(9) with respect to R. Thus, the method optimizes the posterior distributions of
several variables jointly instead of one at a time. In general, the optimal value
for the parameter R is found using numerical optimization methods, although
for a simple factor analysis model, the solution can be found analytically [7].
The optimal transformation is guaranteed not to decrease the lower bound if the
initial value R = I recovers the original posterior unaffected. The optimization
is computationally efficient because the lower bound terms affected by R are
low-dimensional.

The rotation can be optimized using nonlinear conjugate gradient (CG) al-
gorithm. It is sufficient to find only a rough estimate of the optimal rotation
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R to speed up the algorithm significantly, thus 10 iterations of CG was used in
this paper, and CG was run after each iteration of the VB-EM algorithm. The
gradients required by CG are not given in order to keep the paper concise but
the derivations are straightforward.

The work required deriving the cost function for R for different models may
be reduced by deriving the cost function for small general blocks that appear in
several models. These general results may be used directly if a similar transfor-
mation for a similar block appears in another model. In order to provide modular
results that can be applied to other models, the following subsections consider
the following transformations of small blocks: rotating a Gaussian with an ARD
prior (C and γ), rotating a Gaussian with an ARD prior from left and right (A
and α), and rotating a Gaussian Markov chain (X).

5.1 Rotation of a Gaussian Variable with an ARD Prior

Let us examine the rotation of C as CR−1 in our linear state-space model.
This transformation corresponds to a trivial rotation of the posterior mean and
covariance of C. However, recall that C has an ARD prior with hyperparameters
γ as defined in (6). It would be possible to simply rotate C without changing
γ but it is more efficient to also transform the hyperparameters γ. This allows
q(C) and q(γ) to be optimized jointly. The transformation of γ is motivated by
the VB-EM update equation (16).

The rotation of C can be seen as the following transformation of q(C) and
q(γ):

q∗(C) =

M∏
m=1

N
(
cm

∣∣∣R-Tμ(m)
c ,R-TΣ(m)

c R−1
)
, (25)

q∗(γ) =
D∏

d=1

G(γd|ā(d)γ , β(d)
γ ), (26)

where μ
(m)
c ,Σ

(m)
c and ā

(d)
γ are the parameters of the original distributions defined

in (12),

β(d)
γ = bγ +

1

2

[
R-T〈CTC〉R−1

]
dd
, (27)

〈·〉 is the expectation with respect to the original posterior distribution, and [·]ij
is the element on the i-th row and j-th column. Note that the original posterior
distributions q(C) and q(γ) are recovered by setting R = I, thus the optimal
transformation is guaranteed not to worsen the posterior approximation.

The transformation affects only a small number of lower bound terms in (9)
making the optimization of the rotation efficient. The transformation of C af-
fects the likelihood term 〈log p(Y|C,X, τ )〉∗ but this effect is cancelled by the
transformation of X and can thus be ignored. The remaining terms are affected
as
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〈log q(C)〉∗ = −M log |R-T|+ const, (28)

〈log p(C|γ)〉∗ = −1

2
tr
(
〈CTC〉∗〈diag(γ)〉∗

)
+

M

2

D∑
d=1

〈log γd〉∗ + const, (29)

〈log q(γ)〉∗ =
D∑

d=1

〈log γd〉∗ + const, (30)

〈log p(γ)〉∗ = (aγ − 1)

D∑
d=1

〈log γd〉∗ − bγ

D∑
d=1

〈γd〉d + const, (31)

where const is the part that is constant with respect to R, 〈·〉∗ is the expectation
with respect to the transformed posterior distribution q∗, and

〈CTC〉∗ = R-T〈CTC〉R−1. (32)

The expectations 〈γd〉∗ and 〈log γd〉∗ are computed as shown in (19). When
optimizing the rotation R, it is not necessary to compute the rotated covari-
ance matrix nor the rotated mean of C because the cost function only requires
〈CTC〉∗ which can be computed efficiently using (32). After the optimization,
the parameters of the posterior distribution are transformed using the optimal
rotation in (25).

5.2 Double Rotation of a Gaussian Variable with an ARD Prior

The state dynamics matrix A should be rotated as RAR−1. However, perform-
ing this transformation exactly would make the rows of A dependent in the
posterior approximation causing the VB-EM algorithm to be computationally
much more intensive. Thus, the posterior distribution is transformed in such a
way that the rows remain independent but that the transformation resembles
the “true” transformation. The idea is to use a transformation which gives true
values for the relevant expectations 〈A〉 and 〈ATA〉 although the covariance of
A is transformed “incorrectly”. Note that the transformation of the posterior
distribution is not really incorrect even if it does not correspond to RAR−1

because, in principle, the transformation can be chosen arbitrarily.
In addition to rotating A, the ARD parameter α in (5) is also transformed

in order to improve the effect of the transformation. Thus, the transformation
of q(A) and q(α) is

q∗(A) =

D∏
d=1

N

⎛⎝ad

∣∣∣∣∣∣
D∑

j=1

rdjR
-Tμ(d)

a ,

(
D∑
i=1

rid

)2

R-TΣ(d)
a R-T

⎞⎠ (33)

q∗(α) =
D∏

d=1

G(αd|ā(d)α , β(d)
α ) (34)
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where μ
(d)
a , Σ

(d)
a and ā

(d)
α are the parameters of the original distributions in (11),

rij is the element [R]ij , and

β(d)
α = bα +

1

2

[
〈ATA〉∗

]
dd
. (35)

This transformation differs from the exact transformation RAR−1 in that the
cross-covariances between the rows of A are kept zero and the covariance of each
row is not a weighted sum of the covariances of all rows but only a rotated and
scaled version of the covariance of the same row. Although this transformation
does not exactly correspond to RAR−1, it has the nice property that the expec-
tations 〈A〉∗ and 〈ATA〉∗ are transformed “correctly”. Also, note that setting
R = I recovers the original posterior approximation unaffected.

The terms in the lower bound of the marginal log likelihood (9) are affected
as

〈log q(A)〉∗ = −D log |R-T| −D

D∑
j=1

log

∣∣∣∣∣
D∑
i=1

rij

∣∣∣∣∣+ const, (36)

〈log p(A|α)〉∗ = −1

2
tr
(
〈ATA〉∗〈diag(α)〉∗

)
+

D

2

D∑
d=1

〈logαd〉∗ + const, (37)

〈log q(α)〉∗ =
D∑

d=1

〈logαd〉∗ + const, (38)

〈log p(α)〉∗ = (aα − 1)

D∑
d=1

〈logαd〉∗ − bα

D∑
d=1

〈αd〉∗ + const . (39)

In addition, the transformation of q(A) affects the lower bound term
〈log p(X|A)〉∗ but that is examined in the next subsection. The transformed
expectations of A are

〈A〉∗ = R〈A〉R−1, (40)

〈ATA〉∗ = R-T

⎡⎣〈A〉TRTR〈A〉+
D∑

d=1

(
D∑
i=1

rid

)2

Σ(d)
a

⎤⎦R−1. (41)

The expectations 〈αd〉∗ and 〈logαd〉∗ are computed as shown in (19).

5.3 Rotation of a Gaussian Markov Chain

The state variables xn are rotated as Rxn. Because the states xn are not inde-
pendent in the posterior approximation, the rotation is written equivalently for
all the states as (I⊗R)[X]:. This results in the transformed posterior

q∗(X) = N
(
[X]:

∣∣(I⊗R)μx, (I⊗R)Σx(I⊗R)T
)
, (42)
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where μx and Σx are the original posterior mean and covariance parameters in
(10). Note that it is not necessary to compute nor store the full covariance matrix
Σx, because the cost function of the rotation requires only the cross-covariance
cov(xn−1,xn) between consecutive states and the covariance cov(xn,xn).

The transformation affects only a few lower bound terms in (9). The effect on
the likelihood term 〈log p(Y|C,X, τ )〉∗ is cancelled by the transformation of C.
Assuming that q(A) is transformed as described in the previous subsection, the
lower bound terms are affected as

〈log q(X)〉∗ = −(N + 1) log |R|+ const, (43)

〈log p(X|A)〉∗ = tr

(
− 1

2
Λ0〈x0x

T
0 〉∗ +Λ0m0〈x0〉T∗ +

N∑
n=1

[
− 1

2
〈xnx

T
n 〉∗

− 1

2
〈ATA〉∗〈xn−1x

T
n−1〉∗ + 〈A〉∗〈xn−1x

T
n 〉∗

])
,

(44)

where 〈A〉∗ and 〈ATA〉∗ are defined in (40) and (41), respectively, and

〈xn〉∗ = R〈xn〉, (45)

〈xnx
T
n 〉∗ = R〈xnx

T
n 〉RT, (46)

〈A〉∗〈xn−1x
T
n 〉∗ = R〈A〉〈xn−1x

T
n 〉RT, (47)

tr
(
〈ATA〉∗〈xn−1x

T
n−1〉∗

)
= tr

(
〈A〉TRTR〈A〉〈xn−1x

T
n−1〉

)
+

D∑
d=1

(
D∑

k=1

rkd

)2

tr
(
Σ

(d)
A 〈xn−1x

T
n−1〉

)
.

(48)

Note that the sum over n in 〈log p(X|A)〉∗ can be computed independently of R
before starting the optimization of R in order to reduce the computational cost.

6 Experiments

6.1 Artificial Data

The method was tested on an artificial dataset, which was generated using the
model with known parameter values. We generated N = 400 latent states xn by
using the following state dynamics matrix:

A =

⎡⎢⎢⎣
cos(ω) − sin(ω) 0 0
sin(ω) cos(ω) 0 0

0 0 1 0
0 0 0 0

⎤⎥⎥⎦ , (49)

where ω = 0.3. Thus, the four latent signals in X are as follows: the first and
the second signals are noisy oscillators, the third signal is Gaussian random
walk, and the fourth signal is Gaussian white noise. The loading matrix C for
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projecting the observations with dimensionality M = 30 was sampled from the
Gaussian distribution with zero mean and unit variance for each element. The
variance of the observation noise was set to τ−1 = 9.

The dataset was used to estimate the parameters with the variational Bayesian
learning method. The learning was performed both with and without the rota-
tions in order to compare the effect of the rotations on the performance. Both
methods used the same model and initialization. The dimensionality of the la-
tent states was set to D = 8, which is larger than the true dimensionality, to let
the ARD prior prune out any irrelevant dimensions. The hyperparameters were
given broad priors by setting aα = bα = aγ = bγ = aτ = bτ = 10−5, μ0 = 0 and
Λo = 10−3 · I.

The approximate posterior distributions of the variables were initialized by
using the VB-EM update formulas (13)–(17) but ignoring the variational mes-
sages from the child nodes, that is, taking into account only the parent nodes.
This means roughly that the variables were initialized from the prior. For in-
stance, the mean of α, γ and τ were set to ones, the mean of A to zeros and the
covariance of A to the identity matrix. In order to get some initial latent space
spanned, the mean of the loading matrix C was initialized randomly from the
standard Gaussian distribution and the covariance was set to zero. The latent
states X were not initialized because they were updated first in the VB-EM
algorithm.

The performance of the methods was measured by monitoring the lower bound
of the marginal log likelihood (9) and root-mean-square error (RMSE) on the
training and test sets. The test set was created by removing training data ymn

randomly with probability 0.8, thus approximately 20% of the data was used for
training.

Figure 1 shows the performance of both methods as a function of iterations.
The number of iterations is used for simplicity as the computational cost of the
rotations is negligible. The standard learning method converges in approximately
10000 iterations whereas the method with rotations converges in 10–20 iterations
based on the lower bound of the marginal log likelihood in Fig. 1a. The rotations
do not only affect the lower bound but also the reconstruction of the data. The
standard method overfits at the beginning of the learning phase as can be seen
from Fig. 1b and the predictions are improved very slowly as the test error shows
in Fig. 1c. In comparison, the method with rotations finds the solution orders of
magnitude faster.

6.2 Weather Data

The methods were tested on a real-world weather dataset provided by the
Helsinki Testbed project of the Finnish Meteorological Institute (FMI). From
the large dataset, we used temperature measurements in Southern Finland over a
period of almost two years with an interval of ten minutes resulting in N = 89202
time instances.1 Measurements from some weather stations were badly corrupted

1 The data is available at http://users.ics.aalto.fi/jluttine/ecml2013/ under
the FMI Open Data License.

http://users.ics.aalto.fi/jluttine/ecml2013/
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Fig. 1. Results of the artificial experiment. (a) The marginal log likelihood lower bound,
(b) training error, and (c) testing error shown as a function of iterations for the standard
learning method (baseline) and the proposed method using rotations. Note that the
x-axis has a logarithmic scale.

as discussed in [15] and were therefore discarded. Thus, M = 66 stations re-
mained for the analysis. From the remaining data, approximately 35% of the
measurements were missing.

The standard method and the proposed method using rotations were used to
estimate the linear state-space model from the data. The model used latent space
dimensionalityD = 10 and broad hyperpriors as in the artificial experiment. The
initialization was done similarly as in the artificial experiment. Test data was
formed by removing training data randomly with probability 0.2 and completely
for periods of one day at ten day intervals resulting in a large number of short
gaps in the training data.

Figure 2 shows the lower bound of the marginal log likelihood, the training
error and test error for both methods. Based on the lower bound in Fig. 2a,
the standard method has not converged in 1000 iterations and the progress is
extremely slow, whereas the method with rotations converges in 20–30 iterations.
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Fig. 2. Results of the weather experiment. (a) The marginal log likelihood lower bound,
(b) training error, and (c) testing error shown as a function of iterations. Note that
the x-axis has a logarithmic scale.

The computational cost of the rotations is again negligible and can be ignored for
simplicity. Similarly to the artificial experiment, the standard method overfits
at the beginning as can be seen in Fig. 2b. The performance difference of the
learning methods can be seen clearly from the test error in Fig. 2c as the test
error for the standard method is significantly larger and decreasing very slowly.
From these measures it is evident that the standard learning method has not yet
converged in 1000 iterations and it might require several thousands iterations
more to reach convergence.

7 Conclusions

The paper presented a parameter expansion for improving the speed of the vari-
ational Bayesian inference of linear state-space models. The expansion was based
on optimizing the rotation of the latent space, which corresponds to a parameter-
ized joint optimization of multiple variables. The transformations improved the
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speed of the inference by orders of magnitude compared to the standard VB-EM
algorithm as shown in the experiments for artificial and real-world data. Thus,
the proposed parameter expansion should be a standard technique if using VB
inference for variants of linear state-space models in problems that are not very
small.

The paper also gave a new perspective on estimating the posterior distribu-
tion of the states in the VB-EM algorithm. The states were estimated by using
a smoothing algorithm based on the block LDL decomposition instead of the
standard filters and smoothers used in previous papers. This approach reduced
the number of required matrix inversions and avoided a model augmentation. In
addition, as the algorithm is based on the LDL decomposition, one can utilize ex-
isting sparse LDL algorithms in order to generalize the smoothing algorithm, for
instance, to other Gaussian Markov random fields with different graph structure.

A Python implementation of the presented method is published as a part of the
Bayesian Python (BayesPy) package under the GNU General Public License.2

In addition, the data and the scripts for running the experiments shown in the
paper are available under open licenses.3
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Centre of Excellence in Computational Inference Research COIN, 251170). The
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Abstract. We introduce inhomogeneous parsimonious Markov models
for modeling statistical patterns in discrete sequences. These models are
based on parsimonious context trees, which are a generalization of con-
text trees, and thus generalize variable order Markov models. We follow
a Bayesian approach, consisting of structure and parameter learning.
Structure learning is a challenging problem due to an overexponential
number of possible tree structures, so we describe an exact and efficient
dynamic programming algorithm for finding the optimal tree structures.
We apply model and learning algorithm to the problem of model-

ing binding sites of the human transcription factor C/EBP, and find an
increased prediction performance compared to fixed order and variable
order Markov models. We investigate the reason for this improvement
and find several instances of context-specific dependences that can be
captured by parsimonious context trees but not by traditional context
trees.

1 Introduction

Discrete sequential data as diverse as bit strings in computer science, DNA and
polypeptide molecules in bioinformatics, or alphabetic strings in linguistics are
omnipresent in todays science and technology. Despite highly diverse applica-
tions, the characterization of ensembles of sequences based on a finite sample is
a common and fundamental statistical challenge raised in these different fields.
Examples are data compression [1, 2], the prediction of functional sites in bio-
logical macromolecules [3–6], or the study of the structure of languages [7, 8].

While reducing a sequence to a set of independent letters may yield satisfac-
tory results for certain tasks and certain data sets [9], one can easily name a
wealth of other settings where this is unlikely to be the case. Examples are writ-
ten texts, where the occurrence of a letter at a certain position is significantly
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constrained by the language [10], or DNA sequences, where the occurrence of a
base at a certain position of a functional site on a chromosome influences its ac-
tivity [11, 12]. Hence, there is a wealth of applications where the characterization
of finite ensembles of sequences bearing statistical dependences is needed.

Inferring the probability distribution of the sequences from a finite ensemble
of sequences becomes challenging already for moderate sequence lengths. In such
situations, trading simplifications of the model against statistical strength has
been shown to be potentially beneficial. For each model class, the joint probabil-
ity of a sequence can be decomposed into a product of conditional probabilities
of single symbols given all predecessors. While the class of Markov models of
order d is based on the simplification that all conditional dependences except for
those given the d previous symbols are dropped [2], the richer class of variable
order Markov models (VOMMs) [13] makes this order context dependent. Most
other approaches proposed to date also share the feature of dropping certain
entries from the conditional probability distributions in a Markovian manner.

Bourguignon and Robelin [14] propose an alternative approach to the reduc-
tion of the dimension of the space of conditional distributions, where conditional
independence assumptions are formed with respect to a partition of the condi-
tions, i.e., a partition of context words, by means of a parsimonious context
tree (PCT). Particular choices for the partition of the context words may re-
sult in conditional independence assumptions that coincide with those formed
by a regular Markov model, as well as those formed by a variable order Markov
model. The parallel with the VOMM is actually much further reaching, since
PCTs can be understood as a generalization of the context trees that are used
by VOMMs. However, parsimonious Markov models that use parsimonious con-
text trees are in general not representable in a sheer Markovian manner, i.e., by
dropping entries in the conditions.

Here, we aim at exploring the merits of this form of parsimony for modeling
discrete sequential data of fixed length. We introduce inhomogeneous parsimo-
nious Markov models (PMMs) based on a sequence of parsimonious context trees
and follow a Bayesian approach for structure and parameter learning. Whereas
parameter learning is straightforward, structure learning is challenging due to
an overexponential number of possible tree structures. However, this optimiza-
tion problem can be solved by an efficient dynamic programming algorithm,
which generalizes the context tree maximization algorithm [1]. We apply inho-
mogeneous PMMs to the prediction of binding sites of the human transcription
factor C/EBP [15], and investigate if the richer expressiveness of inhomogeneous
PMMs might possibly lead to an improved prediction compared to inhomoge-
neous VOMMs.

2 Theory

In this section, we introduce inhomogeneous parsimonious Markov models in a
Bayesian framework by defining likelihood and prior. We subsequently describe
structure and parameter learning, and finally discuss the relation to variable
order Markov models and further special cases.
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We denote a single symbol by x ∈ A, a sequence of length L by !x=(x1, . . . , xL),
and a data set of N sequences of fixed length L by x = (!x1, . . . , !xN ). Further,
we denote the power set of A by P(A), and P≥1(A) = P(A) \ ∅. We call each
element in Ad context word of length d.

2.1 Model

Similar to context trees, which are used by variable order Markov models for
reducing and representing their parameter space, parsimonious context trees
as proposed by Bourguignon and Robelin [14] are the central data structure of
inhomogeneous PMMs. A PCT τ of depth d for alphabet A is a rooted, balanced
tree. Each node of a PCT is labeled by a non-empty subset of A, except for the
root, which is labeled by the empty subset. The set of labels of all children of
an arbitrary inner node forms a partition of A.

It follows that the cross product of the symbol sets encountered along each
path from a leaf to the root defines a non-empty subset of Ad, which we call
context. Hence, a context is a set of context words, and the set of the contexts of
all leaves of a PCT forms a partition of Ad. Thus, the PCT is a data structure
that represents a partition of the whole set of context words. For example, the
PCT of depth two for the four-letter DNA alphabet A = {A,C,G,T} shown in
Figure 1 encodes the contexts {A}×{A},{C, G}×{A}, {T} × {A}, {A, G}×{C, G, T},
and {C, T}×{C, G, T}. A PCT of depth d interpolates between two extreme cases:
aminimal tree with only one leaf, which represents the union of all context words
into one set, and a maximal tree with |A|d leaves, each of which represents a
single context word.

An inhomogeneous PMM of order d for sequences of length L is based on ex-
actly L PCTs, which we denote by !τ = (τ1, . . . , τL). For the ease of presentation,
we exclude the first d PCTs, which have an increasing depth of 0, . . . , d−1, from
the following discussion. Since there is a bijective mapping from the leaves of a
PCT to the corresponding contexts, we can perceive a PCT as a set of contexts
as well as a set of leaf nodes. Hence, we denote a single context by c, the number
of context words represented by a context by |c|, and the set of all contexts in a
PCT by τ itself.

Fig. 1. Example PCT of depth 2 over DNA alphabet. It encodes the partition of
all 16 possible context words into subsets {AA},{CA,GA},{TA},{AC,AG,AT,GC,GG,GT},
{CC,CG,CT,TC,TG,TT}.



324 R. Eggeling et al.

We denote the conditional probability of observing a symbol a ∈ A given that
the concatenation of the preceding d symbols is in c by θca. We denote the model

parameters of a single position by Θ =
(
τ, (!θc)c∈τ

)
and all model parameters

by !Θ = (Θ1, . . . , ΘL). We now define the likelihood of an inhomogeneous PMM
by

P (x| !Θ) =

L∏

=1

∏
c∈τ�

∏
a∈A

(θ
ca)
N�ca , (1)

where N
ca is the number of occurrences of symbol a at position � in all sequences
of x where the concatenation of the symbols from position �−d to position �−1
is in c.

The likelihood of an inhomogeneous PMM is similar to that of a fixed order
inhomogeneous Markov model since it is a product over all possible observations
a for all possible contexts c at all possible positions �. However, in contrast to
fixed order inhomogeneous Markov models, where each c is a single context word,
we here allow arbitrary sets of context words defined by the PCT τ
.

2.2 Prior

Assuming local and global parameter independence [16], we define the prior of
an inhomogeneous PMM by

P ( !Θ) = P (!τ )

L∏

=1

∏
c∈τ�

P (!θ
c), (2)

where P (!τ ) is the prior probability of all PCTs !τ (and could thus be referred

to as structure prior) and P (!θ
c) is the prior over the probability parameters of
one particular context c at position �. We specify the structure prior by

P (!τ ) ∝
L∏


=1

κ|τ�|, (3)

where |τ
| denotes the number of leaves of τ
. It depends on one scalar hyper-
parameter κ ∈ (0,∞), which can be used to influence the number of leaves and
thus the complexity of the model, interpolating between the two extreme cases:
When κ → +∞, the model that has maximal PCTs at all positions, and is thus
equivalent to a fixed order Markov model, receives a prior probability of one.
Conversely, when κ → 0, the model that has minimal PCTs at all positions,
and is thus equivalent to an independence model, receives full prior support. For
the local parameter priors P (!θ
c) we choose Dirichlet distributions with hyperpa-
rameters !α
c. In this work, we further restrict the parameter priors to symmetric
Dirichlet distributions. Following the equivalent sample size concept [16], we ob-
tain a natural computation of the pseudocounts from the equivalent sample size

η that is inspired by Bayesian networks, namely α
ca = η|c|
|A|d+1 .
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2.3 Learning

In resonance with learning many other probabilistic graphical models, learning
inhomogeneous PMMs consists of structure and parameter learning with the
former being the more challenging task.

In order to learn the structure of the model, we intend to find the parsimo-
nious context trees that maximize P (!τ |x). Since P (x) is constant w.r.t. the tree
structures, it is sufficient to maximize

P (!τ,x) =

∫
P (x| !Θ)P ( !Θ)d !Θ�τ , (4)

where !Θ denotes all parameters of the model, and !Θ�τ denotes here the con-
ditional probability parameters within !Θ for given PCT structures !τ . Due to
global parameter independence (outer product of Eq. 2), we can decompose the
structure learning problem into finding the optimal PCT for each position sep-
arately. Due to local parameter independence (inner product of Eq. 2), we can
decompose the score of a PCT into a product of scores of its leaves. Solving the
remaining integral, we obtain the optimization problem

∀L

=1 : τ̂
 := argmax

τ�

∏
c∈τ�

κ
B( !N
c + !α
c)

B(!α
c)
, (5)

where B denotes the multinomial beta function. Hence, the target function is a
product over local marginal likelihoods for all contexts multiplied by the struc-
ture prior hyperparameters for each context.

While the score for a given PCT can be computed easily, finding the optimal
out of an overexponential number of possible PCTs (with respect to model order
and alphabet size) without computing the score for every single PCT explicitly
is challenging. This problem can be solved by a dynamic programming (DP)
algorithm similar to the context tree maximization algorithm [1]. The algorithm
runs on a data structure that we call the extended PCT of depth d and that
we denote by T Ad . In contrast to a PCT, the children of a node of an extended
PCT do not form a partition of alphabet A, but rather encompass all elements
of P≥1(A) (Figure 2). The leaves of an extended PCT are thus all possible leaves
(identified by their label concatenation up to the root) that may occur in any
PCT of same depth and alphabet.

Let N (T ) denote the set of nodes of an extended PCT T , n one element of
N (T ), and r(T ) the root of T . Each node can be uniquely identified by the label
concatenation on the path from that node up to the root of the extended PCT.
Let s(n) denote the score of the optimal PCT subtree rooted at n. Let C(n)
denote the set of all children of n in the extended PCT. Let V(C(n)) denote the
set of all valid child combinations, i.e., all subsets of children whose labels form
a partition of A. Let further L(T ) denote the leaves and I(T ) the remaining
inner nodes of N (T ). Using this notation, we specify the dynamic programming
approach in Algorithm 1, which consists of a single function for computing the
optimal PCT subtree rooted at an arbitrary node of the extended PCT.



326 R. Eggeling et al.

Fig. 2. Here, we show an arbitrary inner node (labeled by X) and its children in the
extended PCT over the DNA alphabet. The labels of all children form P≥1(A).

Algorithm 1. Dynamic programming for finding optimal PCT subtrees

findOptimalSubtree(n)

if n ∈ L(T A
d ) then

s(n) := κB( �N�n+�α�n)
B(�α�n)

end if
if n ∈ I(T A

d ) then
for all m ∈ C(n) do

findOptimalSubtree(m)
end for
for all v ∈ V(C(n)) do

s(v) :=
∏

m∈v

s(m)

end for
v∗ := argmax

v∈V(C(n))

s(v)

s(n) := s(v∗)
for all m ∈ C(n) \ v∗ do
remove m and subtree below

end for
end if

Applying this function to the root of the extended PCT, i.e., calling the func-
tion findOptimalSubtree(r(T Ad )), yields the optimal PCT. The algorithm can
be intuitively described as bottom-up reduction of the extended PCT towards
a valid PCT by selecting at each inner node the locally optimal PCT subtree.
The correctness of the algorithm follows from the property that the score of a
PCT is a product of leaf scores (Eq. 5), which further implies that the score of
a PCT subtree rooted at node n depends (apart from its own structure) only on
the nodes on the path from n up to the root, but is independent of the structure
of the PCT subtrees rooted at siblings of n.

The complexity of the DP algorithm is given by the size of the extended
PCT, which must be completely traversed, multiplied by the number of valid
child combinations, for which a score must be computed in each inner node of
the extended PCT. Whereas the former is exponential with the base being the
number of possible subsets of A, the latter is equivalent to the Bell number

B|A|. Hence, we obtain a time complexity of roughly O
(
B|A|

(
2|A| − 1

)d)
for

learning one PCT, stating that the complexity grows exponentially with model
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order d and overexponentially with alphabet size A. Structure learning for an
inhomogeneous PMM is linear in the sequence length as the DP algorithm is
called L− 1 times, once for each PCT of non-zero depth.

Having determined optimal PCTs, we estimate their conditional probability
parameters according to the posterior mean [17]. It is in general defined by

θ̂ =
∫
θ θP (θ|x)dθ and yields for inhomogeneous PMMs

∀L

=1∀c∈τ�∀a∈A : θ̂
ca :=

N
ca + α
ca

N
c· + α
c·
. (6)

A common task is prediction, i.e., computing the probability of a data point
!xN+1 after having observed N data points (!x1, . . . , !xN ). In a Bayesian setting,
this is done by integrating over the space of parameters, which is in resonance
with structure learning, where the target function is the probability of the model
structure given data, obtained by integrating over the space of parameters. Here,
we obtain for inhomogeneous PMMs

P (!xN+1|x, !τ ) =
∫

P (!xN+1| !Θ)

L∏

=1

P (!θτ� |x)d !Θ�τ , (7)

which is equivalent to computing P (!xN+1|!τ, Θ̂1,τ1 , . . . , Θ̂L,τL), where Θ̂
,τ� is the
posterior mean of the parameters (Eq. 6) of the PCT at position � [16].

2.4 Special Cases

Context trees (CTs), which are used by variable order Markov models [13], are
special cases of PCTs. Hence, inhomogeneous VOMMs are special cases of inho-
mogeneous PMMs. The differences between CTs and PCTs arise from a different
concept of tree-building. Whereas the idea of building CTs is to prune a maximal
tree by removing unimportant subtrees, the idea of PCTs is to fuse nodes if sub-
trees and corresponding conditional probability distributions are not sufficiently
different. Since removing nodes can be also expressed by fusing them into one
pseudo-node [18], CTs are special cases of PCTs (Figure 3). The opposite does
not hold, though. There are many PCTs that represent a set of contexts that
cannot be represented by CTs, since the notion of pruning yields several limi-
tations of the possible CT structures that are relaxed by PCTs. Two structural
features distinguish PCTs from CTs. First, an inner node in a PCT may have
an arbitrary number of fused children as long as their labels form a partition of
A, whereas a CT allows at most one fused child (the pseudo-node). Second, a
PCT allows arbitrary subtrees below a fused node, whereas a CT allows only a
completely fused node as single child of a fused parent, which is equivalent to
removing the entire subtree below the first occurrence of a fused node.

PCTs are more expressive than CTs, but this comes at the cost of a larger time
complexity for structure learning, which limits the straightforward applicability
of PMMs to problems with comparatively small alphabets. Even though there are
plenty of such applications, with the most well known example being DNA and
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Fig. 3. Example CT of depth 2 over DNA alphabet. Pruned contexts are here shown as
pseudo-nodes (displayed in gray) in order to achieve depth two for all possible contexts
and thus allow a visualization of the CT in PCT-style.

RNA sequence analysis, it might be desirable to benefit from more expressive
tree structures also for problems where the alphabet size becomes a limiting
factor.

The DP algorithm offers the possibility to reduce the allowed tree structures
(and thus the space that must be searched for the optimal structure) by redefin-
ing V(C(n)), the set of allowed child combinations of an inner node n. In PCTs
this is the set of all partitions of the alphabet, which yields the Bell number
factor in time complexity. Restricting V(C(n)) to all partitions that include one
fused node at maximum, is one of the two necessary restrictions for obtaining a
CT. Enforcing it, but allowing a fused node to have more than one child, yields
a data structure that lies in between CTs and PCTs in terms of complexity.
Conversely, restricting V(C(n)) to only one choice – the partition that lumps
all symbols together into one node – if n is already a fused node, represents
the second necessary restriction for obtaining CTs, which could also be solely
enforced.

Besides these two options, which are inspired by the special case CT, there
are further possible modifications such as restricting the maximal number of
children of n to a value smaller than |A| or restricting V(C(n)) based on the
label and/or the location of n in the extended PCT. Hence, a plethora of model
classes of almost arbitrary complexity could be defined and learned by slight
modifications of Algorithm 1.

3 Experiments

In the experimental part of this work, we apply inhomogeneous PMMs to the pre-
diction of DNA binding sites of the eukaryotic transcription factor C/EBP [15]
and compare it with inhomogeneous VOMMs, both implemented within the open
source Java library Jstacs [19]. For the sake of convenience, we drop the explicit
reference to the inhomogeneity in the following discussion. The C/EBP data set
consists of N = 96 DNA binding sites from human and mouse, retrieved from
the TRANSFAC R© database [20]. These binding sites are aligned sequences of
fixed length L = 12 over the DNA alphabet A = {A,C,G,T}.
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3.1 Comparing Prediction Performance

The Bayesian learning approach for PMMs and VOMMs described above allows
influencing the complexity of the model via the structure prior (Eq. 3). Since it
is not immediately clear, which value of hyperparameter κ translates to which
model complexity, specifying the structure prior manually is not a trivial task.
While a uniform prior over all structures, which we obtain by setting κ = 1,
may appear as a reasonable option in the absence of a priori knowledge, it might
yield tree structures that are not optimal for prediction and related tasks.

Hence, in a first study we investigate the performance of third-order PMMs
and VOMMs for different model complexities. Even though statistical models are
often used for classification purposes (e.g. positive vs. negative sites), we here
focus on prediction as the main challenge of many classification approaches.
Evaluation by prediction has the advantage of not requiring the choice of a neg-
ative data set and a corresponding statistical model, which both may influence
results heavily.

Since the C/EBP data set is rather small, we perform a leave-one-out cross
validation (CV). In the i-th step, we remove the i-th sequence from the data
set, learn a model (using η = 1 for the parameter prior) on the remaining
95 sequences and compute the predictive probability of the i-th sequence. We
repeat this procedure for i = 1, . . . , 96, compute the average number of leaves of
the models, and compute the arithmetic mean of the 96 logarithmic predictive
probabilities, as well as the corresponding standard error.

In Figure 4 we plot, for both model classes, the mean log predictive probabil-
ity against the average model complexity, quantified by the number of leaves of
all context trees in the model, which is proportional to the total number of pa-
rameters. We choose values of κ that cover the whole range of model complexity,
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Fig. 4. We compare the prediction performance of third-order PMMs with third-order
VOMMs. For both model classes, we plot the mean logarithmic prediction resulting
from a leave-one-out cross validation experiment on the C/EBP data set against differ-
ent model complexities (proportional to the number of parameters) obtained by varying
the structure prior hyperparameter κ. Error bars depict double standard error.
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interpolating from the minimal model with only 12 leaves (independence model)
to the maximal model with 597 leaves (third-order Markov model).

We observe that for low model complexities of less than 50 leaves PMMs yield
a substantially higher prediction than VOMMs. For high model complexities
both approaches show a similar prediction, lower than the prediction achieved
by a simple independence model, which indicates that overfitting occurs. These
results are interesting in three aspects. First, PMMs are capable of utilizing
statistical dependences in the data for improving prediction if the structure prior
is chosen well. Second, a uniform structure prior corresponds here to a model
structure of approximately 110 leaves, which confirms that using it is not an
optimal choice. Third, VOMMs are barely capable of benefiting from statistical
dependences no matter how κ is chosen. This observation raises the question why
PMMs are capable of finding a good compromise between modeling dependences
and avoiding overfitting whereas VOMMs are not.

3.2 Comparing Tree Structures

In a second study, we attempt to answer that question by comparing the learned
model structures of PMM and VOMM. We choose for both model classes the
values of κ that yield the highest mean log prediction in the leave-one-out CV
experiment of Figure 4. For the PMM, this is κ = e−2.5 with an average number
of leaves of 32.6 and a mean log prediction of −13.6, while for the VOMM this is
κ = e−1.8 with an average number of leaves of 42.8 and a mean log prediction of
−14.5. We use these structure priors to learn two models on the complete C/EBP
data set of 96 sequences and scrutinize the resulting models in the following.

The resulting PMM and VOMM have 32 and 43 leaves respectively, which is in
resonance with the average number of leaves of the leave-one-out CV experiment.
First, we analyze how the total numbers of leaves of both models distribute over
the 12 trees (Table 1). Even though the VOMM has more leaves than the PMM
in total, this does not apply for each of the 12 individual trees. Whereas in
some cases (positions 5, 8, 9, and 11), the CT of the VOMM is indeed more
complex than the PCT of the PMM, in other cases (positions 4, 6, 10, and 12)
the opposite holds, even though the absolute difference in complexity is here
generally smaller, which is the reason of the overall higher complexity of the
VOMM. Hence, it might be worthwhile to compare PCT and CT structures for
both groups in detail. To this end, we choose position 5 and position 4, both
representing extreme cases.

In Figure 5, we show the PCT of the PMM and the CT of the VOMM at
position 5. Since tree structures can be only partially interpreted without know-
ing the underlying conditional probability distributions, we plot the conditional

Table 1. Numbers of leaves for all trees of best third-order PMM and VOMM

Position 1 2 3 4 5 6 7 8 9 10 11 12 Σ

PMM 1 1 4 3 2 3 1 2 6 5 3 2 32

VOMM 1 1 4 1 12 2 1 3 8 2 7 1 43
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(a) (b)

Fig. 5. We compare the PCT and the CT at position 5. We choose for both the PMM
and the VOMM the optimal structure prior hyperparameter κ with respect to the
leave-one-out experiment of Figure 4. Next, we learn both models using their respective
optimal structure prior on the complete data set of 96 sequences and depict both the
PCT of the PMM (a) and the CT of the VOMM (b) at position 5.

probabilities for each context, estimated according to Eq. 6, in rectangular boxes
below the corresponding leaf node in lexicographical order of the observations.

The PCT in Figure 5(a) has only two leaves, so it partitions all context words
into only two sets. The first and the second layer of the tree are completely
fused, so the first and second predecessor symbol does not influence the proba-
bility distribution at position 5. At the third layer, however, the context words
are partitioned into two subsets according to the observed symbol at the third
predecessor (position 2). Observing a T at position 2 yields a high conditional
probability of 0.8782 for finding a C at position 5, whereas any other symbol
at position 2 yields a low conditional probability of 0.063 for a C at the fifth
position. Conversely, for the second context, the conditional probability of find-
ing A, G, and T is highly increased. This shows that there is a strong statistical
dependence among positions 5 and 2, and a PCT is capable of exploiting it with
only two parameters sets, which can be estimated comparatively robustly from
96 data points (partitioned into two sets of sizes 67 and 29 respectively).

The CT in Figure 5(b) has twelve leaves, but many of the contexts represent
only few occurrences of context words in the data set. For example, the first,
fourth, and ninth leaf represent only a single sequence in the data set each. Hence,
the reliability of the corresponding parameter estimates is highly questionable.
The reason why such a context tree is learned despite the indication of overfitting
is the strong statistical dependence among positions 5 and 2. Leaves number two,
three, seven, and ten represent most of the context words that are combined in
the first leaf of the PCT in Figure 5(a). But since a CT does not allow a split
in the tree structure below a fused node, the only possibility to learn this third-
order dependence is a broad tree with many dispensable parameter sets.

We conclude that one reason for the inability of the VOMM to effectively
capture dependences in this data set is its structural limitation of not being
capable of “skipping” a position, which may lead to strong overfitting if skipping
positions were actually required.
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(a) (b)

Fig. 6.We compare learned PCT (a) and CT (b) at position 4 of the C/EBP data set.
The experimental setup is identical to that of Figure 5.

In Figure 6, we display the PCT and CT at position 4. The CT of Figure 6(b)
is completely pruned, resulting in a minimal tree corresponding to full statistical
independence. At this position the VOMM does not suffer from overfitting, but
it may neglect existing dependences.

The PCT at the same position has three leaves, resulting in three different
parameter sets. Each leaf represents a substantial amount of sequences from the
data set (24, 10, 62) so that the parameter estimates may not be completely
unrealiable. We observe that the first leaf yields a high conditional probability
of 0.7397 for a T, given the symbol of the preceding position being either A or
G. The second and third leaf represent the other contexts that have either C

or T at the previous position and differ in the second predecessor. The second
leaf represents the subset of context words that have an A at position 2. The
corresponding conditional probability of a T is 0.6944, whereas A and C rarely
occur. However, if the symbol at the second predecessor is not A, then G has the
highest probability at position 4 (third leaf).

This implies that a certain amount of statistical dependences exists among
the fourth position of the C/EBP data set and its predecessors, and that these
dependences can be modeled – at least to some degree – by a PCT. A PCT is
capable of splitting the contexts at any layer so that there is more than one fused
child node per parent. This feature may be required to properly represent statis-
tical dependences at position 4. Apparently a CT is not capable of representing
these splits, so it here neglects statistical dependences completely. This indicates
that VOMMs are not necessarily always overfitted compared to PMMs, but also
the opposite, underfitting due to structural limitations, may occur.

We may conclude that, compared to the third-order PMM, the third-order
VOMM is both over- and underfitted. The PMM is capable of using the full
potential of the inhomogeneity of the model better than a VOMM, since it yields
– on average over all positions – a better tradeoff between capturing dependences
and reducing the parameter space.
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3.3 Model Validation

The previous two experiments show that a PMM is capable of modeling depen-
dences in a small real-world data set and how it finds a reasonable balance in
avoiding both over- and underfitting due to its structural flexibility. However, as
we have seen in Figure 4, the prediction performance depends on the choice of
the structure prior, for which real a priori knowledge is rarely available.

Hence, we must devise a method that can automatically provide us with an
adequate choice for κ in order to validate the model class against other alterna-
tives. To this end, we perform in each step of the CV described in Section 3.1
another internal CV on the 95 training sequences. We then choose in the i-th
step that κ that yields the highest mean log prediction in the CV on the 95 train-
ing data sequences, learn a model on that data set, and compute the predictive
probability of the i-th sequence. Finally, we average all logarithmic predictive
probabilities and use that single number for evaluating the performance of the
model class.

In Figure 7, we compare PMMs, VOMMs, and inhomogeneous Markov models
of orders 1-3. In addition, we consider the independence model, which neglects
all dependences. Despite its simplicity, it is the most popular choice for modeling
DNA binding sites in bioinformatics and in that field known as position weight
matrix model [21, 22]. For the independence model and the fixed order Markov
models, there is no internal cross validation.

We find that the independence model yields a mean log prediction value of
−14.91. A first-order Markov model improves it to a value of −14.56, show-
ing that taking into account first-order dependences is reasonable and benefi-
cial. Second- and third-order Markov models yield a lower prediction than the

●

●

●

●

● ●

●

●
●

●

−1
6.

5
−1

5.
5

−1
4.

5

Model

M
ea

n 
lo

g 
pr

ed
ic

tio
n

IM MM1 MM2 MM3 VOMM1 VOMM2 VOMM3 PMM1 PMM2 PMM3

Fig. 7. We show the prediction performance of the independence model (IM), fixed
order MMs, VOMMs, and PMMs of orders 1-3. The experimental setup is identical
to that of Figure 4. For the parsimonious and variable order models, we perform an
additional internal cross validation on the N − 1 training sequences for determining
the optimal structure prior hyperparameter κ.
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independence model. This is not surprising since we expect overfitting for com-
plex models when sample size is as small as 96 data points.

First- and second-order VOMM yield a prediction accuracy that is comparable
with that of an independence model. Despite reducing the parameter space, they
are – at least on this data set – not capable of utilizing statistical dependences
effectively. The third-order VOMM yields an even lower prediction, comparable
to a third-order Markovmodel, indicating that overfitting occurs. This also shows
that the internal CV fails in this case: At more than one position it selects in some
iterations very complex and thus poorly generalizing tree structures, comparable
to that in Figure 5(b).

The first-order PMM yields a mean log prediction value of −14.42, which is
comparable to that of the first-order Markov model. Apparently, overfitting is
not a serious problem for the first-order Markov model, so the potential reduction
of the parameter space yields only a small improvement. However, in contrast
to fixed order MMs, PMMs of second- and third-order continue to increase the
prediction performance. The overall best prediction is achieved by a third-order
PMM with a mean log prediction value of −14.1, which is slightly lower than
the best prediction in Figure 4, but close to the average prediction within the
range of reasonable complexities (15 to 40 leaves).

We summarize that PMMs yield a higher prediction of C/EBP binding sites
than the independence model, than fixed order Markov models, and than variable
order Markov models. Among the three PMMs, the third-order PMM yields the
overall highest prediction. Hence, PMMs are capable of exploiting dependences
in the small data set of only 96 sequences effectively, whereas the effectivity of
VOMMs is harmed by their structural limitations. This makes it tempting to
speculate that PMMs might be a useful model class for other types of sequen-
tial data as well, especially when certain dependences among non-neighboring
positions exist and when the sample size is comparatively small.

4 Conclusions

In this work, we have introduced a new model class for sequential data in a dis-
crete state space. Inhomogeneous parsimonious Markov models are capable of
learning position-dependent statistical dependences from limited data by using
parsimonious context trees for reducing the parameter space. Parsimony achieved
by grouping context words is shown here to be promising from theoretical point
of view as it generalizes the idea of context word pruning. However, the pre-
sented approach has an acceptable time complexity only for small alphabets, so
additional constraints on the tree structures must be imposed when sequences
of large alphabets are to be modeled. We have discussed how the learning algo-
rithm can be adapted to incorporate these constraints, admitting an acceptable
time complexity while retaining specific merits of parsimonious context trees.

Predicting functional DNA sequences is an important application where this
model class can be used in a straightforward manner. In a case study on binding
sites of the human transcription factor C/EBP, we have observed that inhomo-
geneous parsimonious Markov models yield more accurate predictions than the
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corresponding variable order Markov models. Scrutinizing the structural differ-
ences between the best models of both model classes, we found that strong third-
order dependences but comparatively weak first- and second-order dependences
exist at several positions. These are features that a parsimonious context tree can
take into account with very few parameters, whereas a traditional context tree is
limited by its structural constraints, either requiring substantially more param-
eters, yielding unreliable parameter estimates, or neglecting those dependences
completely. We conclude that inhomogeneous parsimonious Markov models are
a promising alternative to inhomogeneous Markov models and inhomogeneous
variable order Markov models. The adaptation to different applications might
possibly require additional algorithmic work, but taking such challenges might
be worth the effort.
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Stiftungsfonds der MLU Halle–Wittenberg, DFG (grant no. GR 3526/1-2), and
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Finnish Institute of Occupational Health,
Topeliuksenkatu 41 a A, FI-00250 Helsinki, Finland

{andreas.henelius,jussi.korpela,kai.puolamaki}@ttl.fi

Abstract. Sequences of events are an ubiquitous form of data. In this
paper, we show that it is feasible to present an event sequence as an
interval sequence. We show how sequences can be efficiently random-
ized, how to choose a correct null model and how to use randomizations
to derive confidence intervals. Using these techniques, we gain knowl-
edge of the temporal structure of the sequence. Time and Fourier space
representations, autocorrelations and arbitrary features can be used as
constraints in investigating the data. The methods presented are applied
to two real-life datasets; a medical heart interbeat interval dataset and
a word dataset from a book. We find that the interval sequence repre-
sentation and randomization methods provide a powerful way to explore
interval sequences and explain their structure.

1 Introduction

Time series are sequences of consecutive, time-stamped events. The events can
have properties, such as values of measurements at the particular time instances.
A single event can have multiple properties, in which case one ends up with a
multidimensional time series. In this paper we, however, ignore the properties
of the events and study only the fundamental temporal structure of the time
series, which can be represented as a sequence of intervals.

Interval sequences are ubiquitous. They can be analyzed and compared by
numerous methods, and many application areas such as medical signal process-
ing have established conventions on how to study them. The structure of event
sequences can be described by complex models. However, before addressing more
complex properties of the event sequence, the first question is whether it is mean-
ingful to look for complex structures. Can the structure observed in the interval
sequence be explained by a random occurrence? If not, then what constitutes a
good description?

Randomization methods provide a means of studying non-random structures.
These techniques have a long tradition in statistics and are used increasingly in
data analysis as well. To use randomization methods one first needs to define
the null distribution from which random samples are drawn. If the observed
event sequence differs, in terms of one or more test statistics, from the random
samples, we can conclude that there are non-random structures.

The null distribution encodes our prior information and assumptions about
the data as constraints. The choice of constraints is, however, far from trivial and
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no clear guidelines exist. A suitable set of constraints depends on the research
question and hence there is no universally appropriate null model. A natural
choice is to select constraints that explain those aspects of the data we assume
known and wish to account for. This makes previously unknown patterns stand
out. The randomization methodology can therefore be used as a probabilistically
robust means of detecting statistically significant patterns [14,5,6,20].

1.1 Structure and Contributions of This Paper

In this paper we show how an event sequence can be represented as a sequence
of events in the time and Fourier domains, and in the autocorrelation space. We
present the main theoretic properties of these representations in Section 2. We in-
troduce fast and convenient randomization methods in which various properties
such as Fourier amplitudes or phases, autocorrelation coefficients, or arbitrary
statistics of the event sequence are kept fixed. We demonstrate how these ran-
domization techniques can be used to determine if the observed features of the
event sequence are just random artifacts, and show how to detect the features
explaining the event sequence. In Section 3 we demonstrate our approach by ap-
plying the methods to important real-life data consisting of heart rate variability
data and the occurrence of words in natural language.

Summarizing, the main contributions of this paper are:

– Interval sequence representation and its theoretic properties.
– Efficient randomization techniques for interval sequences.
– Using randomization to derive confidence limits and to explain non-random

features of the data.
– Application of the proposed methods in two real-life applications.

2 Methods and Theory

2.1 Definitions

Assume that we have a sequence of N+1 events that occur at times t0, t1, . . . , tN ,
where t0 ≤ t1 ≤ . . . ≤ tN . In this paper, we consider a sequence of N intervals
S, defined by

S = (x0, x1, . . . , xN−1),

where xn = tn+1 − tn. In most of the numerical formulæ we use the logarithmic
interval sequence Sz = (zo, z1, . . . , zN−1), where zn = log xn. The logarithmic
scale is more appropriate for our two applications: doubling and halving the
interval both cause equal absolute changes in the value of the logarithm of the
interval sequence, whereas without use of the logarithm, long intervals would
receive much larger weight in the analysis. Furthermore, logarithms of intervals
can take any value, including negative, which is numerically convenient.

For convenience and where appropriate, we extend the interval sequence by
assuming that it is cyclic with a cycle of length N , i.e., xn+N = xn and zn+N =
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zn for all n. We denote the mean by z and the variance by σ2
z , defined by

z =
∑N−1

n=0 zn/N and σ2
z =

∑N−1
n=0 (zn − z)2/N , respectively.

Fourier Representation. The Fourier representation of the data is defined by
the sine and cosine series,

zn = a0 +
K∑

k=1

ak cos
2πkn

N
+

K∑
k=1

bk sin
2πkn

N

= a0 +

K∑
k=1

ck cos

(
2πkn

N
− ϕk

)
, (1)

where K = �N/2 . The data can be parametrized either by the parameters
(a0, {ak}, {bk}) or (a0, {ck}, {ϕk}), where k ∈ {1, . . . ,K} The Fourier amplitudes
satisfy ck =

√
a2k + b2k and the Fourier phases satisfy ϕk ∈ [0, 2π). The Fourier

parameters and the inverse transformation can be computed in O(N logN) time
by a Fast Fourier Transform (FFT).

Autocorrelation. We use the autocorrelation function rl with lag l, defined by

rl =
1

N

N−1∑
n=0

(zn − z)(zn+l − z)

σ2
z

. (2)

A value of the autocorrelation function for a single lag can be computed in O(N)
time, and the values of the autocorrelation function for all lags can be computed
in O(N logN) time by using the fast Fourier transformation. Notice that due to
the cyclicity assumption, the lags satisfy rl = rN−l; therefore, it is sufficient to
consider lags in l ∈ {1, . . . , #N/2$} only.

2.2 Randomization Methods

We define several distributions of interval sequences, and the respective random-
ization methods. Each of the distributions preserves some aspect of the original
sequence.

Interval Randomization. The interval distribution is a uniform distribution
over all permutations of sequence S. A sample S∗ from the interval distribution
can be drawn by permuting S uniformly in random.

Fixed Subsequence Randomization. The subsequence distribution is a
uniform distribution over all permutations of the sequence S where a given sub-
sequence Gx ⊆ {0, . . . , N − 1} of the intervals is kept fixed. A sample S∗ is
obtained by permuting all intervals in S that are not in Gx uniformly in ran-
dom.
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Fixed Fourier Parameters Randomization. The fourier distribution is a
distribution of interval sequences in which given subsets of Fourier amplitudes
and phases have been fixed. The fourier distribution is obtained by fixing a
subset Gc ⊆ {1, . . . ,K} of Fourier amplitudes ck where k ∈ Gc, and a subset
Gϕ ⊆ {1, . . . ,K} of Fourier phases ϕk where k ∈ Gϕ. A sample S∗ from fourier

is obtained by first taking a sample S′∗ from the interval distribution, and then
replacing the Fourier amplitudes ck and Fourier phases ϕk not in Gc and Gϕ,
respectively, by the respective Fourier parameters of the sample S′∗. The sample
S∗ is then obtained by applying the inverse Fourier transformation of Equation
(1) to the randomized Fourier parameters.

Uniform Randomization. As a comparison to the interval distribution, we
define the uniform distribution to a uniform distribution over all sequences of
N intervals in which the duration is fixed to tN − t0.

Fixed Distance Function Randomization. Finally, we define a randomiza-
tion method which approximately preserves any arbitrary constraint. We define
the constraint by a distance function d(S′) which is a non-negative function of
permutations of the original interval sequence and zero for the original non-
permuted sequence, d(S) = 0. We define a distribution distance by

f(S′) ∝ e−d(S′), (3)

where S′ is a permutation of the original interval sequence S. A sample from
the distribution f is likely to include intervals which are close to the original
interval sequence in terms of the distance function. A sample S∗ from distance

can be obtained via Markov chain Monte Carlo (MCMC) integration, described
in more detail in Section 2.4.

We use the distribution distance to sample intervals preserving the auto-
correlation function at lags given in Gr ⊆ {1, . . . , #N/2$}. We use the distance
function d(S′) = λ

∑
l∈Gr

|r′l − rl|, where λ > 0 is a parameter describing the
accuracy to which we want to preserve the autocorrelations and r′l is the value
of autocorrelations for the resampled sequence. There is a critical value of λ
in Equation (3) corresponding to the phase transition in statistical physics: the
threshold value is recognized from the fact that when λ exceeds the threshold
most of the probability mass of f is close to the original interval sequence (i.e.,
the expected value of the distance function is small). For all datasets considered
in this paper a sufficiently high value is λ = 104, which is used in all experiments.
Notice that the MCMC method could also be used to preserve the Fourier pa-
rameters, but it would be much slower than using the earlier introduced fourier

randomization.

Time Complexity of the Randomizations. The time complexity of the uni-
form, interval and subsequence randomizations is O(N), and of fourier

O(N logN). MCMC distance randomization is in practice always much slower,
but its time complexity cannot be given for a general case because the number
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of MCMC iterations needed depends on the original sequence and the distance
function. The time required by one MCMC iteration is typically dominated by
the time complexity of the distance function. However, typical wall-clock run-
ning times to produce 1000 MCMC samples from the word and interbeat interval
datasets used here are on the order of 1–3 and 10–20 minutes, respectively, using
a non-optimized R [27] implementation and a standard desktop computer.

2.3 Properties of Fourier Parameters

In this section we show some properties of the Fourier parameters under the
interval distribution: (i) the Fourier amplitudes are uncorrelated and their
variance is proportional to σ2

z , (ii) the phases ϕk approximately obey the uniform
distribution on [0, 2π).

Theorem 1. The Fourier parameters satisfy the following properties under the
interval distribution:

– The coefficient a0 is the mean of the intervals in Sz.
– The expectations E(ak) and E(bk) vanish for every k.
– The variances are E(akal) = E(bkbl) = 2δklσ

2
z(N − 2)/(N(N − 1)) for every

k and l, where δkl is the Kronecker delta.
– The cross-correlations E(akbl) vanish for every k and l.
– For all k, the phases ϕk+2πl/N (mod 2π) are equally probable for all values

of l ∈ {0, . . . , N − 1}.

We omit the proof for brevity.

2.4 MCMC and Parallel Tempering

We use MCMC integration with parallel tempering [9,22] to draw samples from
the distribution f defined by Equation (3). Instead of drawing samples directly
from f the samples are drawn from a product distribution F

F ({S′α}α∈Λ) ∝
∏
α∈Λ

f(S′α)
α, (4)

where {0, 1} ⊆ Λ ⊆ [0, 1] is a finite set and S′α is a permutation of the original
sequence. At each MCMC iteration, the value of S′1 gives a sample from f .

The distribution for specific values of α in Λ are called “chains”. We perform
sampling using the Metropolis-Hastings algorithm in which the proposal distri-
butions include changes into one chain (within-chain jumps) and swapping chains
with adjacent values of α (chain swaps). Here we use the following proposal dis-
tributions for within-chain jumps, repeated 10 times per MCMC iteration: (i)
permuting the interval sequence in random, (ii) permuting a randomly chosen
subsequence of the sequence in random, (iii) reversing a randomly chosen sub-
sequence, (iv) swapping randomly chosen intervals, and (v) swapping adjacent
items.
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The idea is that the chain mixes well for low values of α (“high tempera-
tures”). Indeed, for the chain with α = 0 each consecutive state is a random
permutation of the interval sequence. If the set Λ is chosen suitably then there
is a sufficient number of chain swaps, which brings states from the well-mixed
high temperature chains into the target distribution for which α = 1; we have
verified that the chains mix sufficiently with the high temperatures and hence
include a sufficient number of practically independent samples for use in the
computation of confidence intervals. See [22] for a more detailed discussion on
parallel tempering.

2.5 Confidence Intervals and Hypothesis Testing

Confidence intervals cannot in general be determined analytically for non-trivial
features of interest and must hence be obtained by simulation. Confidence in-
tervals of level α for any feature of interest (e.g., Fourier amplitudes, Fourier
phases or the autocorrelation structure) can be computed by calculating the
value of the feature for a set of simulated samples obtained from a chosen null
distribution. The confidence intervals here are defined to be the α/2 and 1−α/2
quantiles, where we always use α = 0.05 in confidence levels and as a limit of
significance. The parameters of interest can also be averaged in bins, in which
case the confidence intervals will be narrower.1 In this paper, we use the term
significant feature to denote features that are outside the confidence intervals
of some chosen null distribution. We further define a non-random feature as a
feature that lies outside the confidence intervals calculated using the interval

distribution.
The Fourier phases are approximately uniformly distributed under interval

randomization (see Theorem 1). Due to the cyclic nature of the phases, confi-
dence intervals for the phases cannot be computed in a meaningful way. Instead,
the null hypothesis that the phases are uniformly distributed on the interval
[0, 2π) is tested by the Kolmogorov-Smirnov test.

3 Experiments

3.1 Datasets

The application of the randomization methods presented in this paper are illus-
trated using one artificial and two real-life datasets.

Toy Dataset. The toy dataset consists of two sequences: (1) The AR sequence
is an autoregressive sequence of order 1 obeying zn+1 ∼ N(zn, ε) and (2) the
periodic sequence obeying zn ∼ N(cos (2πktoyn/N), ε) is a cosine embedded in
noise.N(μ, σ) denotes a normal distribution with mean μ and standard deviation
σ; here we have used ktoy = 7 and ε = 0.7.

IBI Dataset. The signals in the IBI dataset are interval sequences representing
the time between two successive heartbeats, forming an interbeat-interval (IBI)

1 In this paper, we always use bins of width one for the word data and bins of width
10 for the heartbeat data.
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series. It has been shown that the IBI series have different time domain (e.g. [23])
and frequency domain (e.g. [1]) properties for normal subjects and for subjects
with heart failure. The IBI dataset was hence formed from two different datasets
from the PhysioBank biomedical signal archive [11]: (1) The normal rhythm

dataset2 contains recordings from 54 subjects in normal sinus rhythm, (2) The
heart failure dataset3) contains recordings from 29 subjects with congestive
heart failure. The first 1500 intervals were chosen for analysis, which translates
to about 25 minutes of data at a heart rate of 60 beats per minute.

Word Dataset. The word dataset is composed of words from the book Pride
and Prejudice by Jane Austen, publicly available from Project Gutenberg4. The
interval sequence in this case represents the number of words between successive
occurrences of a particular word.5 A previously reported [19] representative set
of words was chosen for analysis, forming the (1) bursty and (2) non-bursty

datasets, each containing 12 words. In addition, the words were also divided
into frequency classes of low, medium and high, corresponding to frequencies of
roughly 40, 200 and 1200, respectively.

3.2 Null Model Selection and Confidence Intervals

Here we demonstrate the advantages of the interval distribution over the uni-
form distribution. In Fig. 1, both uniform and interval randomizations are
shown for the word met. We notice that for the uniform randomization many of
the Fourier amplitudes are significant, whereas for the interval randomization
all Fourier parameters are consistent with the random data. This shows that
there is structure in met not present in the uniform distribution, but explained
by the interval distribution. Observing non-random features under the inter-
val distribution is always due to the ordering of the intervals, which is not the
case if the uniform distribution is used, as shown by the example in Fig. 1. See
[21] for further discussion on the unsuitability of the uniform distribution in the
analysis of interval sequences.

3.3 Investigating the Structure of the Datasets

In this section, we present an overview of the datasets and illustrate their general
properties using examples. We determine non-random features of the sequences
by calculating confidence intervals in accordance with Section 3.2, using the
interval distribution as the null model.

The Toy Dataset. The Toy dataset is shown in Fig. 2. For AR, most of the
Fourier coefficients are non-random, as the complex structure of the sequence

2 http://www.physionet.org/physiobank/database/nsr2db/
3 http://www.physionet.org/physiobank/database/chf2db/
4 http://www.gutenberg.org
5 More specifically, the interval is one plus the number of words between successive
occurrences of a word, i.e., adjacent words have an interval value of one.

http://www.physionet.org/physiobank/database/nsr2db/
http://www.physionet.org/physiobank/database/chf2db/
http://www.gutenberg.org
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Fig. 1. uniform (top) and interval (bottom) randomizations of the word met. Shown
are, from the left: (1) the original sequence, (2) a realization from the random distri-
bution, (3) the autocorrelation function, and (4) the Fourier amplitudes. Confidence
intervals are shown in blue. Values outside confidence intervals are shown in red.

cannot be easily captured by a low number of Fourier amplitudes. For periodic,
the Fourier coefficient for k = 7 is clearly non-random, corresponding to the
number of periods in the sequence. The other Fourier amplitudes are mostly non-
random, except for some high frequencies corresponding to the noise. interval
randomization does not explain the autocorrelation structure of either sequence.

The IBI Dataset. Example sequences from the IBI dataset are shown in Fig. 3.
Sequences from both the normal rhythm and heart failure datasets exhibit
clear temporal structures, caused e.g. by different activities undertaken by the
subject. This leads to segments with varying IBI distributions within one record.
The temporal structure of the IBI sequences is usually characterized by a slow
global trend containing segments with more rapid local variation.

The Fourier amplitudes for records with a strong temporal structure are only
partially explained under the interval distribution. For such records, most
of the Fourier amplitudes are non-random (see records chf201 and nsr033 in
Fig. 3).

The non-random low-order Fourier amplitudes probably reflect the global
trend, whereas the higher-order non-random Fourier amplitudes likely reflect
short-range temporal variation. In contrast, some records with a weak global
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Fig. 2. The sequences in the Toy dataset. The AR (top row) and the periodic sequences
(bottom row). Subplots follow the same order as in Fig. 1. The confidence intervals are
based on interval randomization.



Explaining Interval Sequences by Randomization 345

●
●
●
●
●●●
●●●
●●
●
●
●●
●●
●●
●
●

●

●
●●
●
●●●
●

●●
●
●
●●●

●
●
●●

●
●●●●●
●●●
●
●●●●●
●●●
●●
●●
●●●
●●

●
●
●

●
●
●●
●●
●
●●
●●
●
●●
●
●
●●●●●
●●
●
●●
●
●
●
●
●
●
●
●
●
●
●
●
●●
●
●
●
●●●
●
●●

●
●
●
●
●
●
●
●
●

●●
●●
●
●
●
●●
●
●●●

●

●●●
●

●
●
●●

●
●
●

●
●
●

●
●

●
●
●
●●●

●
●
●●

●●
●
●●
●

●●●
●
●●●
●
●●
●●●●●

●

●
●

●●
●
●●●

●
●

●●
●●●
●●●
●●
●●●●●
●

●●●
●●●●●
●●●●
●●
●●●●●●●●●●
●
●

●●●
●●●●
●●
●●
●
●
●
●
●●
●

●●●●●●
●
●
●
●●
●
●
●●●●
●●●●●
●●●●●
●
●●
●
●●
●●●
●●●●
●
●
●●
●●
●
●
●●●●
●●
●●
●●●
●
●
●●●●
●●
●●
●
●
●●●●●
●
●●●●●●●●
●
●●
●

●●
●●
●●●●●●●

●
●●

●
●
●●●
●
●
●●●

●●●
●●

●
●●●●●
●●●●
●
●●●
●●●
●
●
●●●
●
●
●●
●●
●●●
●
●
●●
●●●●
●
●●●●
●
●
●●●
●●
●●
●
●
●●●
●
●●
●●
●●●●
●●
●●●
●
●
●●
●●
●
●
●●
●●
●●
●●
●●
●●●●
●
●●●●●
●●

●●
●
●●

●
●●●●●
●●●●●●
●●
●●●●●
●●●
●●
●●
●●
●
●●●
●●●●
●●

●
●●●●
●●●
●
●
●●●●●
●
●●●●●●●●●
●●
●●●
●●
●
●●●●
●
●●
●
●●●
●
●●●
●●●
●●●●●
●
●
●
●●
●●●●●
●

●
●
●
●
●●
●●●●●●
●●●●●●●●●●●●●
●●
●●●●●●
●●
●●●●
●●
●
●
●
●●●●●
●
●
●●
●
●
●
●
●
●●
●

●
●

●
●●

●●●●●●●
●
●
●●●●●
●
●
●
●●●
●●
●●●
●
●●●●
●●●●●
●●
●
●●
●●
●
●●●

●
●
●
●●●
●
●●
●●
●●
●●●
●
●●
●●●●●
●●●
●
●
●
●●●●●●●●●
●●●●●●●
●●●
●
●●●●●●●●●●●●●
●●
●
●
●●
●
●
●
●●
●●
●
●
●
●●●●
●●
●●
●●
●●
●●●●
●●●●●
●●●
●
●
●
●●
●●●
●●
●●
●
●●
●●
●●
●
●●

●●●
●
●●●
●●●●●
●
●●●
●
●●●●
●
●
●
●●
●
●
●

●
●

●
●

●
●●●
●●●●●●
●●●●●●
●
●
●
●
●
●●

●●
●●●
●

●
●

●

●

●
●
●●●●

●●

●
●●

●
●
●●
●
●●
●●
●●●●●

●●●
●

●●
●●●●●
●
●
●

●
●

●●

●●
●●●
●
●
●
●

●

●●●

●

●

●●
●
●●
●
●

●●
●●●●
●●

●●●
●●
●●●●
●●●●●
●●
●

●●●
●●●
●

●●
●

●●
●
●
●●
●
●●
●
●
●●
●●●●
●
●●●
●●●●
●●
●
●●●
●●●●
●●●●●●●●●●●●●●
●
●●
●
●●●●●●●
●
●●●●●●
●●●●
●
●●●●●●●●●●●
●●●●●
●●●
●●●●●●
●
●
●
●
●●
●
●●
●●
●
●
●●
●●●●●●●●●
●●●●●●●
●●●
●
●●
●
●●●●●●●●●●●

●

●

●●●●●●
●●●
●
●
●●●●●●●
●
●
●
●●
●
●
●
●●●
●●●
●
●
●●●
●●●●
●
●●●
●
●●
●●

●
●

●●
●●
●
●
●●●
●●●
●●
●●
●●
●●

●
●●
●●
●●
●●
●
●
●●●
●
●
●
●●
●
●
●●

●
●●
●
●●
●

●●
●
●
●●

●
●●

●●●
●
●
●●

●●

●
●
●
●
●
●

●●
●
●
●

●

●

●

●
●
●

●

●

●
●

●

●

●
●
●●
●

●
●

●

●

●●●●
●●

●●●
●●●●●
●
●

●●
●●
●

●

●

●
●
●●
●●●●
●●●●
●●
●
●●
●
●

●
●

●

●●

●

●●
●●●●
●
●●
●
●
●●
●●
●

●
●●

●
●●●●●●

●●●●
●

●●
●●●●
●●●
●
●●●

●

●
●●●
●
●●●
●●
●
●●

●
●●
●●●
●
●●
●●
●●
●●

●
●●●
●●
●●
●
●●
●
●●
●
●

●●●●●
●
●
●
●●

●
●●●●●●
●●
●
●●●●●●
●
●
●●

●

●●●

●●●●
●
●
●
●●
●

●
●●
●
●
●
●●
●

●
●●
●

●●●●

●
●
●
●
●
●
●

6.25

6.50

6.75

0 500 1000 1500
n

ch
f2

01 ●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●
●

●

●

●

●
●

●●

●

●
●●

●

●
●

●

●

●

●
●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●
●
●
●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●
●

●●

●

●

●●

●
●

●
●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●●

●

●
●

●

●
●

●

●●●

●●

●

●

●

●

●
●

●
●
●●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●
●●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●●

●

●
●

●

●
●
●

●
●

●

●

●

●

●●

●

●●

●

●

●
●●

●

●

●

●
●
●

●●

●
●
●
●

●

●

●

●

●

●●

●

●
●

●

●

●
●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●●

●

●

●

●●

●

●

●
●

●●
●
●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

●
●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●
●

●

●

●
●

●●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●
●
●
●●
●

●

●

●

●

●

●
●
●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●
●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●●

●●

●●

●●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●
●
●

●

●

●

●

●

●
●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●
●

●

●
●●●

●

●

●

●
●

●
●

●

●

●

●

●
●●

●

●

●

●

●

●

●
●●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●
●
●

●

●

●

●

●
●

●
●

●
●
●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●●
●

●
●

●

●●

●
●

●●

●

●
●

●

●
●

●

●

●

●
●
●
●

●
●

●
●

●

●

●

●

●

●●●
●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●
●●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●
●

●
●●

●

●

●
●

●

●
●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●
●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●●

●●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●●
●

●

●

●

●

●

●
●●●

●

●

●

●

●

●
●

●

●

●

●
●

●

6.25

6.50

6.75

0 500 1000 1500
n

in
te

rv
al

 r
an

do
m

iz
ed

se
qu

en
ce

●

●
●
●●●●●●

●
●●●●●●●

●
●●●●●●●●●●●●●●

●
●●

●
●●●●●●●●●●●●●●

●●●●●●●●
●
●●●●●●●●●●●●

−0.5

0.0

0.5

0 200 400 600
l

r l

●

●

●

●●●

●●

●
●●
●

●

●

●●●●●●●●

●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0.000

0.025

0.050

0.075

0.100

0 200 400 600
k

c k

(a) chf201

●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●

●

●

●●

●

●

●●●●●●

●

●

●●●●●●

●

●

●●

●

●

●●

●

●

●●●●●●

●

●

●●

●

●

●●

●

●

●●●●●●

●

●

●●

●

●

●●

●

●

●
●

●
●●●

●

●

●●

●

●

●●

●

●

●●●●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●●●●●●●●●●●●

●

●

●●

●

●

●●●●●●●●

●

●

●●●●●●●

●

●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●

●

●

●●●●

●

●

●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●
●●●●●●●●●●●●

●

●

●

●●●●●●●●●●●●●●

●

●

●●

●

●

●●●●●●●

●

●

●●

●

●

●●●●●●●●●●●●●●●●●●●●

●

●

●●●
●●●●●●●●●●●

●

●

●●●●●●●
●●●

●

●

●●

●

●

●●●●●●●●●●
●●
●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●●

●

●

●●

●

●

●●●●●●●

●

●

●

●

●

●
●●●●●●●●

●

●

●●

●

●

●●●●●●

●

●●●●●●●●●●●

●

●

●

●●●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●
●●●●●●●

●

●

●●●●●●●●●●●

●

●

●

●

●●●●●●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●
●

●

●

●●●

●

●

●

●

●

●●●●●●●●●●●

●

●

●●

●

●

●●●●●●●●●●●●●●●

●

●

●●

●

●

●●●●●●●●●●●●●●●
●

●

●

●●●●●●●●●●●●●●●●●●

●

●

●●●●●●●●●●●●●●
●●●
●

●
●●●
●●●●●●●●●●●●●●●●●●●●●●

●

●

●●

●

●

●●●●●
●●●●●●●●●●●●●●●●

●●

●

●

●
●

●

●

●●●●●●●●●●●●

●

●

●●●●●●●●●●●●

●

●

●

●

●
●●●●●●●●●●●●
●
●●●
●●●●●
●●
●

●●●●●
●●●●

●

●

●●

●

●

●●

●

●

●●●

●

●

●●●
●●

●

●

●●●●●

●

●

●●

●

●

●

●
●

●

●●●●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●●
●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●●●

●

●

●

●

●

●

●

●

●●●●●

●

●

●●●●

●

●●●●●●●●●●●●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●●●●●●●

●
●

●

●

●
●
●●

●

●

●●●●●●

●

●

●●●●●●●●●●●●

●

●

●●●

●

●

●●

●

●

●●●●●●

●

●

●●●

●

●

●●●

●

●

●●●●●●
●●●●
●

●
●●

●

●

●

●

●●●

●

●

●●

●

●

●●

●

●

●●●●●
●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●●●●●●●●●●●

●

●

●

●

●●

●

●

●●●●

●

●

●

●

●●●

●

●

●

●

●●●

●

●

●

●

●
●●

●

●

●●
●●●●●

●

●●

●

●

●

●

●

●

●●●●●●●●●
●●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●●●

●

●

●

●

●●●●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●●●●●

●

●

●●●

●

●

●●

●

●●●

●

●

●

●
●

●●

●

●

●

●●●●●●
●●
●●

●

●

●●●●●●●●●

●

●

●

●

●

●
●

●

●●●
●●●

●

●

●

●

●●

●

●

●●●●●●●●●●
●●●

●

●

●●●●

●

●

●●●●●●●●

●

●

●
●●●●●●●●●●●●●●●
●

●

●●●
●

●

●

●

●●●

●
●

●

●●●●●●●●●
●●●●●●●

●

●

●●●●●●

●

●

●●●●●

●
●

●

●●

●

●

●●●●●●●
●●●●●●●●●●

●

●

●●●●●●●

●

●

●●●●●●●●

●

●

●●●●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●●●●

6.0

6.4

6.8

0 500 1000 1500
n

ch
f2

07

●
●
●●
●●●
●●

●

●●
●

●
●
●●

●

●

●●●●●●

●

●
●●
●
●●

●

●
●●

●

●

●

●

●
●
●
●
●
●●

●

●
●

●

●

●●

●●

●●

●

●●
●●●●●●

●

●

●

●

●

●

●
●

●●
●

●

●●

●

●

●

●●

●

●

●

●
●

●

●

●●
●
●
●

●

●

●

●

●●
●●●

●

●●●●
●

●

●●●
●

●

●●●●

●

●

●

●●

●●

●●●●●●●

●
●

●

●

●●●●●●

●

●●

●

●

●

●
●●

●

●

●
●

●

●
●
●
●
●●●●
●
●

●●●

●

●
●
●
●

●
●
●●
●
●
●
●●●
●
●

●

●●●

●●

●
●●●●●

●

●●

●

●●●

●

●

●●
●

●
●

●

●●●

●

●

●
●
●●
●

●

●

●●●
●●

●
●●●●
●●●

●

●
●

●

●●

●

●

●

●●●

●

●

●
●

●

●
●

●

●●●

●●

●●●

●

●●●

●●

●

●

●
●

●

●

●

●

●

●●

●

●●
●

●

●●
●
●
●●

●

●

●

●
●

●
●

●

●●●●

●

●●●●

●

●
●
●

●

●●
●

●
●●

●

●

●●

●

●

●●●●

●

●●
●●●

●

●
●●

●

●●
●
●

●

●

●

●
●●

●

●
●●●●
●●●●
●●●●

●

●●

●

●●
●
●●

●

●●●
●

●

●
●
●●
●●

●

●

●

●

●

●

●
●●●●●
●●●●

●

●●

●

●

●
●
●

●

●●●
●

●

●●●●

●

●
●
●

●

●●●●●

●

●●●●

●

●
●●
●
●●●●
●

●

●●
●●
●
●

●

●

●

●

●●●

●

●
●●

●

●●

●

●
●●●●

●

●
●

●

●
●●●●●●●●●●
●

●●

●●●●●

●

●●●●●
●
●●●

●

●

●

●

●●
●●●
●

●

●

●

●

●●

●●
●

●
●

●●
●

●

●
●●
●●●
●

●

●

●

●

●●

●

●●●●
●

●

●●

●

●

●

●

●

●●

●

●●●●●●●●●●●

●

●

●

●●●
●●

●●

●

●●●●●●●
●
●●●●●
●●●●

●

●●●
●●●●

●

●

●

●
●
●

●
●

●

●●

●

●●●●●●
●●●

●

●●●●●●
●●●

●

●
●

●

●

●

●
●

●

●

●●●●●

●

●

●

●

●

●●
●●

●

●

●

●
●●●●●●
●

●

●●
●
●●●
●

●

●
●●●●●

●

●●

●

●

●

●●●●●

●

●
●

●

●●

●
●

●
●●
●
●●●

●

●●●●
●●●●

●

●●

●

●
●
●●●●●

●

●●●

●

●

●●●●●●●

●●

●

●

●●

●

●
●●●
●●●
●
●●

●

●●

●

●●●

●

●

●

●

●

●

●
●●
●

●

●
●
●●

●

●

●

●

●●●

●

●
●

●

●

●
●●●●

●

●

●●●
●●

●

●
●●

●

●
●●●●
●●●●

●

●

●

●●

●

●

●●

●

●
●●
●
●●
●
●●●
●
●●●

●

●

●

●●●●

●

●

●

●
●●
●●●●
●●
●
●●●
●
●●●●
●

●

●

●
●
●
●●●●
●

●●

●

●●

●

●●

●
●

●●●
●●●

●●

●

●●

●●●

●

●

●

●

●
●●●
●
●
●
●●●
●
●

●

●

●

●●●
●
●●
●●●●●
●●
●

●

●●●●●

●

●●

●

●
●
●●
●●●
●

●●

●

●●

●

●

●

●

●

●
●●●

●

●●
●

●

●●●
●●

●

●●

●

●

●

●
●
●●●

●

●●●

●

●●

●

●

●
●

●●

●●

●

●●
●

●●
●

●

●

●

●●●●

●

●

●●

●

●●●●●

●

●●●

●

●
●●●

●

●●

●

●
●
●

●

●●

●

●

●

●●
●

●●

●

●●●●
●
●●●

●

●

●

●

●

●●●

●

●

●

●●●●

●

●●

●

●

●

●

●

●

●
●

●

●
●
●●
●
●
●

●

●
●●●
●●
●
●●
●
●●

●

●●

●

●●
●
●
●
●●

●

●

●

●

●●

●

●

●
●
●

●

●●
●
●
●
●

●

●

●

●

●

●
●●

●

●

●

●●
●
●

●
●●●●
●
●

●

●
●●●

●

●

●
●

●
●

●●●

●

●
●

●

●

●●●●●
●
●●
●

●

●

●

●●●●●●●
●
●●
●●

●

●

●

●●
●
●●●●●
●

●

●
●●●

●

●●●

●

●
●●
●●

●

●

●●

●
●●

●

●●
●●●
●●

●
●●●
●●
●

●

●●●●●●●●
●●●

●

●
●●
●
●

●

●

●●
●

●

●●●●●

●

●●
●●

●
●●●●●●

●

●●
●
●●
●
●●
●

●

●●
●

●

●
●●●●
●●●●

●
●●
●

●

●●
●●
●

●
●
●

●

●

●●
●●
●●●

●

●●

●●●●
●

●

●●●●
●
●
●●

●●●●●●●●

●

●
●

●

●

●

●
●
●

●

●●
●
●●

●

●●

●

●●

●

●●

●

●

●●

●

●●●●●

●

●●
●

●

●

●

●●

●

●

●

●●

●

●

●

●●

●

●

●

●●●●●

●

●

●

●

●

●

●
●

●●

●●
●●●●●●

●

●
●●●

●

●●
●●

●

●

●●●●

●

●●
●●
●●

●

●

●●

●●

●
●

●

●●●
●

●

●
●●

6.0

6.4

6.8

0 500 1000 1500
n

in
te

rv
al

 r
an

do
m

iz
ed

se
qu

en
ce

●
● ●

●●

0.00

0.04

0.08

0.12

0 200 400 600
l

r l

●

●●

●●●● ●●●●●
●●● ●

●
●● ●●

●

●

●
●

●
●

●

●●

●
●

●

●●

●

●

●

●

●

●●●

●

●●
●

●

●

●
●

●

●
●

●

●

0.000

0.005

0.010

0.015

0 200 400 600
k

c k

(b) chf207

●●●●
●●●
●●
●●
●
●●●
●●
●
●
●●
●●●
●●●●●
●●●●●●
●
●●●●
●
●
●
●●
●

●●

●

●

●
●●
●●●
●
●
●●●
●●
●
●●
●●●●
●
●●
●
●●●●●
●
●

●●●
●
●
●●
●●●●●●●
●
●●●●●●●

●

●●●●
●
●
●

●
●
●

●

●

●
●
●
●●
●
●●
●●●●
●
●●●●
●●
●
●●●

●●●
●
●
●

●
●●●
●
●●●●
●●
●

●
●
●
●
●●
●
●●●●
●●●
●●●
●

●●
●●●●
●
●
●
●●●
●●●
●●
●
●
●
●●

●●

●

●
●
●●●●●
●●●●●●
●
●
●●●●●●●
●
●
●
●●●●●●●
●●●●
●●●●
●
●●●
●

●●●●●●●
●●●●●
●
●

●●●
●●●
●●●
●●●
●

●
●
●
●

●●●●●
●●●●
●●
●
●●●
●
●
●●●
●●
●
●
●
●●●
●●
●
●
●●
●
●
●
●●

●

●●
●●
●●

●●
●●●

●●

●●
●
●
●●●
●●●●●●●
●●●
●●●●
●
●●●●●●

●●●●
●
●●
●●
●●●
●
●●

●

●
●●●●●●
●
●
●
●●●●
●
●●●
●●●●●●●●●
●●●
●●
●●●●●

●
●●●●●●
●
●
●●
●
●
●
●●
●

●
●●●●
●●●●

●

●●●
●
●●●
●●●●●●
●●●
●
●●●●●
●●
●●●
●●●
●
●
●
●●
●●●
●

●
●
●●
●●
●
●●●●
●●●

●●
●●●●
●
●

●

●●
●●

●
●
●

●

●
●●
●●●●●
●
●●
●●●

●

●●●●
●
●●●
●●
●●●
●
●

●●●●
●
●
●●●
●
●●●
●
●
●

●

●
●
●

●●
●●●●
●●●●
●
●
●

●●●
●●

●
●

●●●●●
●●●●●
●●●●●●●●●●●●●●●
●●●●●●
●●●●●
●●
●

●

●●
●
●
●

●
●●

●
●
●
●
●
●
●
●
●

●●●
●●
●●●
●

●●

●

●●
●●
●
●
●●●
●
●
●
●●●
●●
●
●
●
●●
●●
●
●
●●●
●
●●
●
●●●
●
●
●

●
●●

●
●

●

●●
●
●

●
●
●

●
●●
●
●●
●●●●●
●●●
●
●●
●
●

●

●
●
●●●

●
●●●●●●●●
●
●●●●
●

●
●
●
●●●
●●●●
●
●●●
●●
●●●
●●
●
●
●●●●●
●●
●●●
●●●●
●●●●
●

●

●

●

●
●●
●●
●●
●
●
●
●●●●
●●●
●●
●
●
●●
●
●●●●
●●●●●●
●
●

●
●●
●
●●
●●●
●
●●

●
●●●●
●

●
●
●●
●●●
●

●
●●
●
●
●●
●●●●●
●
●

●●

●
●●

●●●
●●●●
●
●●
●
●
●
●●●
●
●●●
●●
●

●
●●●
●
●●●●
●
●●●●
●
●

●●●●●●●●
●●
●
●
●●●
●●●●●●
●●●
●
●
●●●●●●
●
●●●
●●
●
●●●

●
●●●●●●
●

●

●
●

●●
●●
●●
●●
●●
●●●●●●●
●●
●
●●
●
●●●●

●
●●●●●●●●
●●●●●
●

●
●●●
●●
●●●●●●●●●●
●●●●●●
●●
●
●●●
●●
●
●●●●
●●
●
●
●●
●
●●●●
●
●●●●
●●
●
●●

●
●●●
●●
●

●●
●

●●●●
●
●
●
●

●●
●●●●
●●
●
●●●●
●●
●●●●●
●●●●●●
●●
●●
●●●
●●

●●●●
●●
●●●●●
●
●●●●●
●●●
●
●●
●
●

●
●●
●●
●●
●●●
●●●

●●
●
●
●
●●
●

●●●
●
●
●

●
●

●
●
●
●

●●
●

●●
●●●
●
●●●

●●
●
●
●●●
●●
●●●
●
●
●●
●
●
●●●
●●
●

●
●●●
●
●
●
●

●
●●●
●
●
●
●

●
●●

●
●
●
●●
●
●
●●●
●●●
●
●
●●●
●●●
●●
●●●●
●
●●
●
●●
●●●
●●●
●
●●●●●●
●●●
●
●
●●●
●
●●●●●●
●

●
●
●●●
●
●●

●
●●
●
●●
●●
●
●●●●●●●●
●
●
●●●●●
●
●
●●●●●
●
●●●●●
●●

●

●●●●●●●●
●
●
●●
●●●
●●●●
●●●
●
●●●●●●●●
●●
●●●
●
●●
●
●●
●
●●●
●●
●
●

●

●●
●
●

●●
●
●
●
●●●
●●●
●

●
●●●
●●
●
●
●
●
●
●●●●●●●●●●●●●
●

●
●●●●●●●●●●●●
●
●
●
●
●

●

●

●●●●●●●●
●

●
●●
●
●●
●●
●
●

●
●●●●●●●●
●
●●●●●●
●

●

●
●●●
●
●
●
●
●●
●●
●●
●●●●●●●

6.6

6.8

7.0

0 500 1000 1500
n

ns
r0

33

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●●

●●●

●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●
●

●

●●
●

●

●

●

●
●

●
●

●

●

●

●●

●
●●●●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●●●
●

●

●

●
●

●

●●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●
●●

●

●
●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●
●●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●
●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●●

●

●

●

●

●●
●

●

●

●●
●●●

●●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

●
●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●
●
●

●

●

●●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●●●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●●

●
●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

6.6

6.8

7.0

0 500 1000 1500
n

in
te

rv
al

 r
an

do
m

iz
ed

se
qu

en
ce

●
●
●●

●
●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●−0.5

0.0

0.5

1.0

0 200 400 600
l

r l

●

●

●

●
●
●

●
●
●
●
●
●●●

● ●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●0.00

0.05

0.10

0.15

0 200 400 600
k

c k

(c) nsr033

●●●●

●
●●

●●
●
●●

●
●
●●●
●●
●●●●●●●●
●●●●●●●
●
●
●
●●●●●●
●●●
●●●●●●
●●●●●●●
●
●
●●●●●
●

●

●

●●●●●●●●●
●●●●●
●●●
●●●
●
●
●
●

●
●
●
●
●
●●●●●●●
●
●

●●
●
●
●●●
●
●
●●●
●
●
●

●
●
●●●●
●
●
●●
●
●

●
●●
●●●
●
●
●●
●●
●●●●
●
●
●
●●●●
●●●●
●●
●
●●
●●
●

●

●

●
●●●●●
●●
●
●●●●●
●
●
●●
●

●
●
●●●
●
●●●●
●●●
●●●●●●●●●
●●●●
●
●●●
●

●
●●●●
●●●
●
●●
●●●
●●
●

●
●
●
●●
●●
●
●

●
●●●●●●●●
●●
●

●●●●
●●●●●●●
●
●●●●●●●●●●

●

●

●●●●●●●●●
●●●●●●●●●●
●
●●●●
●
●
●●●●●

●
●
●●
●
●●
●●●

●
●●
●●●
●●●●
●●●●
●●
●

●

●

●

●●
●
●●
●●●●●
●
●
●●●●●
●
●
●●●●●
●
●

●

●

●
●●●●●●
●
●●●●●●●●●●●
●
●●●
●●●●●
●
●
●●●●●●
●●●●●
●
●
●
●
●●●●●●●●●●●●●●●●
●●

●

●

●
●
●
●
●●●
●●
●
●

●●
●●●●
●
●
●
●●
●●●
●●●
●
●●●●
●●
●
●●●

●●
●●
●●●●●●●●
●●●
●●
●
●●●

●

●

●●
●●●
●●
●
●

●

●

●●
●
●●
●●●●●●●
●●
●
●
●

●

●

●
●
●
●●●●●
●●●●●
●
●●
●
●●
●●●●●●●●
●
●●
●●●
●●

●

●

●●
●
●
●●●●●
●●
●●●
●
●
●●

●●●
●
●●●
●●●
●
●●●●●●●●●●●●
●
●●●
●●
●●●●
●●●
●
●●●●
●
●

●

●
●●●●●●
●●●●

●
●●●●
●
●
●

●

●
●●●●●●●
●●●●●●
●●●●●●●●●●●●
●●●
●●●●●●●
●
●●●●●
●●●
●
●●●
●
●
●●
●
●●●
●●●●●●●●●●●●●●●●
●●●●●●●
●●●●
●●
●

●

●

●●●

●

●

●
●
●●●
●●
●
●●●●●

●

●

●
●●●
●
●
●

●
●●●
●●●●●●
●
●●
●
●●●●
●
●●●
●●●●
●●●●●●●
●●
●
●
●
●●
●
●●●●
●
●●●●●
●
●●
●●●●

●

●

●●
●●●●●●●●●●●●●
●●
●
●
●●
●●
●●●●
●●●
●
●
●
●●●
●
●
●

●

●

●●●●●

●

●

●●
●
●●●●
●
●●
●●●
●●●
●
●●
●
●
●●
●
●
●●●●●
●●●●

●
●
●
●
●●
●

●

●

●
●
●
●
●
●●●●
●●●●
●
●
●●●●●●
●●●●
●
●●●●●●
●●●●●
●
●●
●●●●
●●●
●
●●
●●
●●●●●●●
●●●
●●●●●●
●
●●
●●
●
●●●●●●●●●●●●●
●●●●●
●●●●●●●●●●●●●●●●
●●●●●
●

●
●●●
●
●
●
●
●
●●
●●●●●●●●●●●●●●

●●●
●●
●
●
●●●●
●
●
●●●
●
●●
●●●●●●●●
●
●
●●
●
●
●
●
●●●●●
●
●●●
●
●●●●●●
●●●●●●●●
●●
●●●●●
●●●
●●●●●●●●●●
●

●
●●●●●
●
●●●
●●●
●●●

●
●●●●
●●●●

●

●

●

●

●
●
●●●
●
●●
●●
●
●
●
●●●

●

●

●
●
●
●●●
●●
●
●●
●●●
●
●
●
●●●●●●●●●

●

●

●●●●●
●
●
●●●
●●●●●

●

●

●●●
●
●
●●●●
●
●●
●●
●●●●●
●

●

●

●

●
●
●
●
●
●
●●
●●●●●●●
●
●
●
●
●●
●
●●●●●
●●
●●●●
●●
●
●●●●●
●●●●●
●●
●●●●
●
●●
●●
●
●●●
●
●
●
●●●
●●
●
●
●●
●●
●
●
●
●
●●
●
●
●●
●
●
●
●

●●
●
●

●

●

●●
●
●
●
●
●
●●
●
●●●
●
●●
●●
●●●●
●●
●●
●●
●
●

●
●●
●●●●●●●●●

●●●●
●●
●
●●
●
●
●
●
●●
●
●●●
●●●●
●
●
●
●●●
●●
●
●
●●●●
●
●●
●
●●●●●●●
●●●●●
●●●
●●●
●●●●●
●●●●
●
●
●
●●●
●
●
●●●●●●●
●
●●●●
●●●●
●●●●
●
●●●●
●●●●●●●●●
●●●●

6.0

6.2

6.4

6.6

6.8

0 500 1000 1500
n

ns
r0

44

●
●

●

●

●
●●●
●●
●
●●

●
●●
●
●

●

●
●

●

●●

●

●
●

●

●●
●
●

●

●

●
●●●
●●
●●
●

●
●

●

●
●
●●

●

●
●●

●●

●

●
●

●

●●

●
●●
●●

●
●
●

●
●
●

●

●

●●
●
●
●
●●
●●

●
●●
●

●

●
●

●

●

●
●
●

●

●

●
●●
●●
●

●

●●
●●
●

●
●

●
●
●●
●●●●●

●

●

●

●
●

●

●●●

●

●●

●

●

●

●
●●
●
●
●●
●●●
●
●

●

●

●

●

●

●

●
●

●

●

●
●
●●
●

●

●
●●
●
●

●
●

●●
●
●●

●●

●●
●

●

●
●

●
●●
●

●
●

●

●

●

●
●●

●
●●

●
●

●

●
●●
●

●

●

●

●

●

●●●
●
●

●

●●

●

●●
●
●
●

●

●
●●
●

●
●
●

●
●
●

●

●

●
●●●

●

●
●

●

●

●●●
●
●
●
●●

●

●

●
●
●
●

●

●

●

●●

●

●●●●
●●
●●
●

●

●

●
●

●

●

●

●
●

●

●●
●●
●
●●
●

●●●
●

●
●
●
●

●
●
●
●●●
●
●
●

●●●
●●
●

●

●●
●
●
●

●

●

●●

●

●

●

●
●
●●●
●●●●●●

●

●
●

●
●
●
●
●

●

●
●●

●●

●

●●

●
●
●

●●●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●●●
●
●

●

●

●

●

●

●

●

●

●●●

●

●
●
●

●
●

●
●
●
●●
●
●
●
●●●

●

●
●●
●●●

●

●
●

●

●
●●●●
●

●

●

●

●

●

●
●
●
●
●
●
●

●
●

●

●

●

●

●●
●
●
●
●

●
●●●

●

●

●●
●
●●●
●

●

●
●●

●
●
●
●●
●●

●

●

●●

●
●

●

●
●●

●

●
●
●
●●
●
●●

●●
●
●
●
●●●●

●

●
●●●
●●

●

●

●

●●
●

●●●●●

●●

●

●

●●

●

●●●
●●
●●
●
●●●

●

●

●●
●

●

●
●
●●
●

●

●●
●●
●
●●●●
●

●

●●

●

●●
●
●●●

●

●

●

●
●
●●●

●●
●

●

●
●
●
●●●
●

●●

●

●

●

●
●
●

●●

●
●

●
●

●

●●●
●
●

●

●
●

●

●

●
●●●
●
●●
●●●●●
●
●
●
●

●

●
●
●
●
●
●

●

●
●
●

●

●

●●

●

●

●●
●

●

●

●

●
●

●
●
●
●

●

●

●●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●●
●●

●

●
●●
●
●
●
●
●

●
●

●
●

●●
●
●●
●

●
●●

●

●

●
●
●
●
●●

●

●
●
●●●
●
●

●●
●●
●
●

●
●●●
●●

●

●

●●●
●
●
●
●
●

●

●

●
●
●
●

●●
●

●

●

●

●

●

●

●

●

●
●●●
●●
●●
●
●

●●●●●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●●●●
●●
●●

●

●

●●

●
●

●

●●

●●
●

●●●
●
●

●

●●

●●
●
●●
●●
●●

●

●

●
●●

●

●

●
●
●
●●
●
●●
●

●
●
●

●
●

●

●

●●
●
●●

●
●

●

●

●
●●
●●●
●
●
●

●
●

●
●●
●
●
●

●

●

●●

●

●

●●●

●
●

●
●
●●

●

●●
●
●
●

●

●●

●

●
●
●

●●
●●
●

●

●

●
●
●●●
●
●●●
●●●●

●

●
●●

●

●
●●●●
●
●
●●

●

●●
●
●●

●

●

●

●●●
●
●
●●
●●●●●●
●
●●

●
●●

●

●●
●●
●●
●●●
●
●

●

●

●

●●

●

●

●

●

●
●●
●
●

●

●

●●
●
●●●
●●

●
●
●

●

●
●●●
●

●●

●

●

●
●

●

●
●
●●●

●
●
●
●●

●

●

●

●

●
●

●●
●●●●●●
●
●●

●

●
●
●
●●●●
●
●
●
●
●
●
●●
●●
●●

●●
●
●

●

●●
●●
●
●
●

●●
●

●

●

●

●

●
●

●
●

●

●

●●

●
●●

●

●

●●
●

●

●●●

●●

●

●

●

●
●
●
●●●

●●
●●●●
●

●

●

●●
●

●
●●●
●
●

●●
●●●●
●
●
●

●

●
●●
●●
●

●

●

●

●
●
●

●
●

●

●
●●
●
●
●●●
●

●

●

●
●
●

●
●●
●●
●
●
●
●

●

●●
●●●

●

●

●

●
●
●
●

●

●

●

●●
●●
●
●
●●

●

●
●●

●

●

●
●

●
●●
●●●

●
●
●
●●
●●●●

●●
●●
●

●●
●
●

●

●●
●

●

●

●
●
●

●
●
●

●●
●

●

●

●

●
●
●
●●●
●
●●●
●●

●
●●
●●
●
●●
●●
●
●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●
●

●

●

●

●●
●
●
●
●
●
●
●

●

●
●
●●●●
●

●

●
●

●

●

●
●●

●

●

●

●
●
●
●
●

●

●●
●

●

●
●●
●
●

●

●

●
●

●
●●●
●
●
●
●●●
●
●

●

●

●

●

●

●

●

●

●
●
●
●●
●
●●●

●
●
●
●

●

●

●
●

●

●●●
●
●
●
●
●

●●●

●●●

●

●

●
●
●●●
●

●
●
●
●

●●

●

●

●
●●●
●
●

●

●●●
●●●
●●

●●●
●

●

●
●
●●

●●●●

●
●

●

●
●
●●

●

●●

●

●

●
●
●
●
●
●

●

●

●

●

●
●

●

●
●
●●
●
●
●

●
●

●

●

●●

●●●

●

●
●

●

●
●

●

●
●
●

●

●●

●
●●

6.0

6.2

6.4

6.6

6.8

0 500 1000 1500
n

in
te

rv
al

 r
an

do
m

iz
ed

se
qu

en
ce

●

●●
●
●
●

●●●●●
● ●●●

● ●●●
●
●●●●●●●●

●●●●●
●
●
●
●
● ●

●● ● ●●●● ●●

−0.1

0.0

0.1

0.2

0 200 400 600
l

r l

●

●

●

●●

●
●
●●
●

● ●

●●●● ●●●●●●●● ● ●● ● ● ●●●●

●
●
●
●

●

●

●

●

●●

●●
●

●●

●

●

●●

●

●

●●

●

●0.000

0.005

0.010

0.015

0.020

0.025

0 200 400 600
k

c k

(d) nsr044

Fig. 3. Example IBI sequences. Subfigures and confidence intervals as in Fig. 2.

trend (nsr044 in Fig. 3) or a high degree of outliers (chf207 in Fig. 3) are
better explained by the interval distribution, and for these records only a few
Fourier coefficients are non-random.

The significant temporal structure of the sequences is also strongly reflected
in the autocorrelation, which for most records is non-random.

The Word Dataset. Three example sequences from the word dataset are shown
in Figs. 1 and 4. Only a few Fourier amplitudes or autocorrelation lags are non-
random, usually marking visible temporal patterns in the data. The words met
(Fig. 1) and soon (Fig. 4) are explained by the interval distribution. The word
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Fig. 4. Examples of word sequences. Soon (top) is a frequent word mostly (but not
completely) explained by the interval distribution,William (bottom) contains a clear
temporal structure. Subfigures and confidence intervals as in Fig. 2.
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William (Fig. 4) contains a temporal structure that does not fit the interval

distribution. The confidence intervals for the Fourier amplitudes are wider for low
frequency words (mean confidence interval width 0.9) than for medium (0.3) and
low (0.1) frequency words. Also, within a frequency class, confidence intervals
are wider for bursty than for non-bursty words, the difference being 0.6 for low
frequency, 0.1 for medium and 0.05 for high frequency words. Both observations
are explained by the variance of the sequence, which follows a similar pattern
(see Theorem 1).

Significant Features in the Datasets. The proportions of Fourier ampli-
tudes, Fourier phases, and autocorrelation lags not explained by the interval

randomization are shown in Tab. 1 (left column). On average, well over half of
these features are non-random for the IBI sequences, compared to only a few
percent for the word sequences. Therefore, the word dataset is better explained
by the interval randomization than the IBI data. Furthermore, records in the
heart failure dataset are generally better explained by the interval distribu-
tion than records in the normal rhythm dataset. This is likely due to the greater
amount of outlier beats in the heart failure dataset and weaker global trends.
The Fourier phases of the IBI data contain some non-random structure, but all
phases in the word sequences are uniformly distributed.

3.4 Constrained Randomizations

We construct constrained randomizations by fixing a specific set of features in
the fourier or distance randomizations. If the data are explained by the
constrained null hypothesis, we can conclude that we have successfully located
the features explaining the non-random characteristics of the data.

Connection between Fourier Amplitudes and Autocorrelation. In this
section, both the AR and periodic sequences are randomized by fixing the most
significant feature (with respect to interval randomization, see Fig. 2). The
fixing of features is performed separately for autocorrelations and Fourier am-
plitudes. The results are shown in Fig. 5.

Table 1. Percentages of non-random features in the different datasets. The values
represent mean (standard error of the mean) for ck and rl, and the percentage of
sequences with non-uniform phases for ϕk (see Section 2.5).

�������� 	
����� (ck) ������� (rl)

Dataset ck rl ϕk ck rl ϕk ck rl ϕk

IBI
normal rhythm 89

(1.5)
94

(0.9)
69 0.2

(0.07)
2

(0.5)
0 5

(0.6)
3

(0.4)
5

heart failure 66
(4.7)

81
(4.5)

30 0.8
(0.2)

6
(1.3)

0 7
(1.7)

2
(0.4)

5

Word
bursty 6

(1.0)
10

(1.7)
0 0.4

(0.2)
2

(0.4)
0 9

(2.6)
8
(2)

6

non-bursty 4
(0.9)

3
(0.9)

0 0.5
(0.1)

1
(0.4)

0 8
(0.9)

5
(0.9)

4
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For AR, fixing the autocorrelation r1 produces a sequence that retains the
local temporal structure of the original sequence. The Fourier amplitudes are
almost explained, but the autocorrelation function matches the original only for
short lags. In contrast, fixing a single non-random feature in the Fourier domain
performs much worse in explaining the data.

For periodic, Fourier amplitude randomization yields signals resembling the
original. The majority of the Fourier amplitudes are explained, and the confi-
dence intervals for the autocorrelations follow the course of the original autocor-
relation function, albeit not perfectly. In contrast, fixing a single autocorrelation
lag for periodic does not explain the features of the signal at all.

Fixing Fourier Amplitudes and Autocorrelation Structure. Constrained
randomization of Fourier amplitudes and autocorrelation lags was applied to
both the IBI and word datasets, keeping the non-random Fourier amplitudes
and autocorrelation lags constant. The percentage of Fourier amplitudes and
autocorrelation lags that remain significant under the randomizations are shown
in Tab. 1. For the constrained Fourier amplitude randomization (middle column)
the percentages are low, indicating that the data are well explained. Only the
autocorrelations of the heart failure dataset shows a slightly higher percent-
age of significant features. For the constrained autocorrelation randomization
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(a) The AR sequence randomized by fixing r1.
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(b) The AR sequence randomized by fixing c1.
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(c) The periodic sequence randomized by fixing c7.
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(d) The periodic sequence randomized by fixing r182.

Fig. 5. Constrained randomizations of the toy data. Subplots are as in Fig. 1.
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(rightmost column), the Fourier amplitudes of the word data and heart failure

IBI data have above 5% of significant features, indicating that the randomiza-
tion does not fully explain the Fourier amplitudes. There is also unexplained
autocorrelation structure in the word data.

Since 95% confidence intervals were used, one must note in the interpretation
of Tab. 1, that if the randomization explains the data, at most 5% of features
should remain significant. In practice, this value is lower as a large portion of the
features is kept fixed, especially for the IBI data. Also, the autocorrelation lags
are not independent, causing them to fit the simple quantile based confidence
intervals better than Fourier amplitudes.

Fixed Subsequence Randomization. Outliers in the data can significantly
affect the structure and interpretation of the data. In order to investigate the
structure of the data, outliers can be considered subsequences and kept fixed in
the subsequence randomization.

In Fig. 6, outliers detected using a commonly used algorithm by [37] were
kept fixed while the rest of the data were randomized using the subsequence

method. In Fig. 6a several of the Fourier coefficients are outside the confidence
intervals calculated using interval randomization, i.e., the structure of the
data is not modeled by the interval distribution. However, fixing the outliers
and calculating the confidence intervals using the subsequence distribution
explains the data. In contrast, the Fourier amplitudes in Fig. 6b remain outside
the confidence intervals even after fixing the outliers. This indicates that a more
sophisticated method should be used to explain the remaining structure.
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Fig. 6. Application of fixed subsequence randomization. Outliers in the sequences (plot-
ted as red stars) are kept fixed during interval randomization. The plots show (1) the
original data, (2) a realization of interval randomized data, (3) the original Fourier
coefficients and interval confidence intervals and (4) the original Fourier coefficients
with subsequence confidence intervals.
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3.5 Application to Hypothesis Testing

Constrained realizations obtained e.g. by fixing non-random Fourier amplitudes
can be used in statistical hypothesis testing. As an example of this, the signifi-
cance of the pNN50-value commonly used in heart rate variability analysis [23]
was calculated6 for the records in the IBI datasets. The results are shown in
Tab. 2. There are clearly differences between the choices of constraints.

On one hand, the interval randomization appears to provide realizations that
are consistently too extreme for hypothesis testing, at least if the objective is to
study the differences between normal rhythm and heart failure. On the other hand,
the number of significant p-values with the Fourier amplitude constraint is much
smaller for normal rhythm than for heart failure, suggesting that part of the
IBI signal measured by the pNN50 statistic and not explained by the amplitudes,
is related to the heart failure condition. Therefore, the null hypothesis with the
amplitude constraint might be suitable for modeling healthy individuals.

Table 2. Percentages (%) of significant pNN50 -values for the datasets. From the left:
by constraining Fourier coefficients, phases, autocorrelation lags, and using interval

randomization.

Randomization method

Dataset fourier (ck) fourier (ϕk) distance (rl) interval

normal rhythm 22.2 75.9 100.0 100.0
heart failure 58.6 79.3 86.2 96.5

4 Related Work

Randomization testing in statistical analysis has a long history; see, e.g., [12,36]
for a review. Randomization methods are useful in hypothesis testing and defin-
ing confidence bounds when sampling from the null hypothesis is easier than to
define the null hypothesis analytically. Randomization methods have been de-
vised for various kinds of data structures, such as binary matrices [10], graphs
[13,38], gene periodicity (e.g., [15]), and real matrices [24].

Time series randomization has been studied, e.g., in [3,16,25,34,2,30,35]. Some
of the prior randomization methods work in the Fourier space (see, e.g., [26] for
use of phase-randomization in hypothesis testing) or in the wavelet space, see
[17] for a review. However, usually the time series has not been represented as
(equally-spaced) sequence of intervals, but as an event sequence with variable
event interval (see, e.g., [4,31]).

In the field of data analysis, a recently promoted approach [14,20,5,6] to the
use of randomization is to interpret the patterns as constraints to the null
hypothesis. The use of surrogate data [32] in the hypothesis testing of data

6 Here we consider all interbeat intervals, not just normal-to-normal (NN) intervals.
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structures is a common technique, and has been applied in the generation of
constrained realizations for hypothesis testing regarding the properties of a time
series, e.g., by [33,29,28].

Randomization techniques have been applied in the analysis of heart rate
variability (HRV), e.g., by [18,8], who used Fourier phase randomization for
generating surrogate data for hypothesis testing. Time-varying surrogates were
used by [7] for studying non-linearity in interbeat interval (IBI) series.

5 Conclusions

We have shown that interval sequences form a natural representation for event
sequences, and offer a principled and robust basis to sequence randomization. We
have investigated the problem of interpreting commonly used Fourier parameters
and autocorrelation structures. We find that the interpretation depends on the
null hypothesis used; for example, a näıve use of the uniform distribution may
lead to false conclusions regarding the temporal structure of sequences.

Furthermore, we have provided computationally efficient randomization meth-
ods for studying Fourier parameters, and an MCMC based method for studying
autocorrelation structures and arbitrary constraints. The randomization meth-
ods allow the user to efficiently test different null hypotheses by fixing chosen
subsets of parameters. This makes it possible to infer possible causes for the
observed significant patterns.

In this paper, we have shown how the proposed randomization methods can be
used in hypothesis testing, and examined the role of the null hypothesis. There
is no universally suitable null hypothesis. The null hypothesis should encompass
our best understanding of the features of the data and hence depends on the
research question.

With the help of the randomization methods presented here, simple and un-
derstandable explanations for the structure of the data can be found efficiently
and in a statistically robust way. If there are structures left unexplained by the
proposed methods, more complex constraints or models of different types can be
used to further investigate and explain the remaining patterns in the data.

Acknowledgements. This study was supported by the SalWe Research Pro-
gramme for Mind and Body (Tekes – the Finnish Funding Agency for Technology
and Innovation grant 1104/10).
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Abstract. Sequence classification is an important task in data mining.
We address the problem of sequence classification using rules composed
of interesting itemsets found in a dataset of labelled sequences and ac-
companying class labels. We measure the interestingness of an itemset
in a given class of sequences by combining the cohesion and the sup-
port of the itemset. We use the discovered itemsets to generate confident
classification rules, and present two different ways of building a classi-
fier. The first classifier is based on the CBA (Classification based on
associations) method, but we use a new ranking strategy for the gener-
ated rules, achieving better results. The second classifier ranks the rules
by first measuring their value specific to the new data object. Experi-
mental results show that our classifiers outperform existing comparable
classifiers in terms of accuracy and stability, while maintaining a com-
putational advantage over sequential pattern based classification.

1 Introduction

Many real world datasets, such as collections of texts, videos, speech signals,
biological structures and web usage logs, are composed of sequential events or
elements. Because of a wide range of applications, sequence classification has
been an important problem in statistical machine learning and data mining.

The sequence classification task can be defined as assigning class labels to
new sequences based on the knowledge gained in the training stage. There exist
a number of studies integrating pattern mining techniques and classification,
such as classification based on association rules [10], sequential pattern based
sequence classifiers [8,13], and many others. These combined methods can output
good results as well as provide users with information useful for understanding
the characteristics of the dataset.

In this paper, we propose to utilise a novel itemset mining technique [4] in
order to obtain an accurate sequence classifier. An itemset in a sequence should
be evaluated based on how close to each other its items occur (cohesion) and how
often the itemset itself occurs (support). We therefore propose a new method
called sequence classification based on interesting itemsets (SCII), that greatly
improves on the accuracy obtained by other classifiers based on itemsets, as
they typically do not take cohesion into account. Moreover, we also achieve a
reduction in complexity compared to classifiers based on sequential patterns, as
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we generate and evaluate fewer patterns, and, yet, using cohesion, we still take
the location of items within the sequences into account.

The main contribution of this paper consists of two SCII classifiers, both based
on frequent cohesive itemsets. By using cohesion, we incorporate the sequential
nature of the data into the method, while, by using itemsets, we avoid the com-
plexity of mining sequential patterns. The two classifiers differ in how the rules
are selected and ranked within the classifier, and we experimentally demonstrate
that both give satisfactory results.

The rest of the paper is organised as follows. Section 2 gives a review of the
related work. In Sections 3 and 4, we formally describe the sequence classification
problem setting and present our two approaches for generating rules and building
classifiers, respectively. We end the paper with an experimental evaluation in
Section 5 and a summary of our conclusions in Section 6.

2 Related Work

The existing sequence classification techniques deploy a number of different ap-
proaches, ranging from decision trees, Näıve Bayes, Neural Networks, K-Nearest
Neighbors (KNN), Hidden Markov Model (HMM) and, lately, Support Vector
Machines (SVMs) [7].

In this section, we give an overview of pattern-based classification methods.
Most such work can be divided into the domains of classification based on associ-
ation rules and classification based on sequential patterns. The main idea behind
the first approach is to discover association rules that always have a class label
as their consequent. The next step is to use these patterns to build a classifier,
and new data records are then classified in the appropriate classes. The idea
of classification based on association rules (CBA) was first proposed by Liu et
al. [10]. In another work, Li et al. [9] proposed CMAR, where they tackled the
problem of overfitting inherent in CBA. In CMAR, multiple rules are employed
instead of just a single rule. Additionally, the ranking of the rule set in CMAR
is based on the weighted Chi-square of each rule replacing the confidence and
support of each rule in CBA. Yin and Han [15] proposed CPAR which is much
more time-efficient in both rule generation and prediction but its accuracy is as
high as that of CBA and CMAR.

The concept of sequential pattern mining was first described by Agrawal and
Srikant [2], and further sequential pattern mining methods, such as Generalized
Sequential Patterns (GSP) [12], SPADE [16], PrefixSpan [11], and SPAM [3],
have been developed since. A number of sequence classifiers have been based on
these methods.

Lesh et al. [8] combined sequential pattern mining and a traditional Näıve
Bayes classification method to classify sequence datasets. They introduced the
FeatureMine algorithm which leveraged existing sequence mining techniques to
efficiently select features from a sequence dataset. The experimental results
showed that BayesFM (combination of Näıve Bayes and FeatureMine) is bet-
ter than Näıve Bayes only. Although pruning is used in their algorithm, there
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was still a great number of sequential patterns used as classification features. As
a result, the algorithm could not effectively select discriminative features from
a large feature space.

Tseng and Lee [14] proposed the Classify-By-Sequence (CBS) algorithm for
classifying large sequence datasets. The main methodology of the CBS method
is mining classifiable sequential patterns (CSPs) from the sequences and then
assigning a score to the new data object for each class by using a scoring func-
tion, which is based on the length of the matched CSPs. They presented two
approaches, CBS ALL and CBS CLASS. In CBS ALL, a conventional sequen-
tial pattern mining algorithm is used on the whole dataset. In CBS CLASS,
the database is divided into a number of sub-databases according to the class
label of each instance. Sequential pattern mining was then implemented on
each sub-database. Experimental results showed that CBS CLASS outperforms
CBS ALL. Later, they improved the CBS CLASS algorithm by removing the
CSPs found in all classes [13]. Furthermore, they proposed a number of alter-
native scoring functions and tested their performances. The results showed that
the length of a CSP is the best attribute for classification scoring.

Exarchos et al. [6] proposed a two-stage methodology for sequence classifi-
cation based on sequential pattern mining and optimization. In the first stage,
sequential pattern mining is used, and a sequence classification model is built
based on the extracted sequential patterns. Then, weights are applied to both
sequential patterns and classes. In the second stage, the weights are tuned with
an optimization technique to achieve optimal classification accuracy. However,
the optimization is very time consuming, and the accuracy of the algorithm is
similar to FeatureMine.

Additionally, several sequence classification methods have been proposed for
application in specific domains. Exarchos et al. [5] utilised sequential pattern
mining for protein fold recognition, while Zhao et al. [17] used a sequence clas-
sification method for debt detection in the domain of social security.

The main bottleneck problem for sequential pattern based sequence classi-
fication being used in the real world is efficiency. Mining frequent sequential
patterns in a dense dataset with a large average sequence length is time and
memory consuming. None of the above sequence classification algorithms solve
this problem well.

3 Problem Statement

In this paper, we consider multiple event sequences where an event e is a pair
(i, t) consisting of an item i ∈ I and a time stamp t ∈ N, where I is the set
of all possible items and N is the set of natural numbers. We assume that two
events can never occur at the same time. For easier readibility, in our examples,
we assume that the time stamps in a sequence are consecutive natural numbers.
We therefore denote a sequence of events by s = e1, · · · , el, where l is the length
of the sequence, and 1, · · · , l are the time stamps.

Let L be a finite set of class labels. A sequence database SDB is a set of
data objects (s, Lk), such that s is a sequence and Lk ∈ L is a class label
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(k = 1, 2, · · · ,m, where m is the number of classes). The set of all sequences
in SDB is denoted by S. We denote the set of sequences carrying class label Lk

by Sk.
The patterns considered in this paper are itemsets, or sets of items coming

from the set I. The support of an itemset is typically defined as the number of
different sequences in which the itemset occurs, regardless of how many times
the itemset occurs in any single sequence. To determine the interestingness of an
itemset, however, it is not enough to know how many times the itemset occurs.
We should also take into account how close the items making up the itemset
occur to each other. To do this, we will define interesting itemsets in terms
of both support and cohesion. Our goal is to first mine interesting itemsets in
each class of sequences, and then use them to build a sequence classifier, i.e., a
function from sequences S to class labels L.

We base our work on an earlier work on discovering interesting itemsets in a
sequence database [4], and we begin by adapting some of the necessary definitions
from that paper to our setting. The interestingness of an itemset depends on two
factors: its support and its cohesion. Support measures in how many sequences
the itemset appears, while cohesion measures how close the items making up the
itemset are to each other on average.

For a given itemset X , we denote the set of sequences that contain all items
of X as N(X) = {s ∈ S|∀i ∈ X, ∃(i, t) ∈ s}. We denote the set of sequences
that contain all items of X labelled by class label Lk as Nk(X) = {s ∈ Sk|∀i ∈
X, ∃(i, t) ∈ s}. The support of X in a given class of sequences Sk can now be

defined as Fk(X) = |Nk(X)|
|Sk| .

We begin by defining the length of the shortest interval containing an itemset
X in a sequence s ∈ N(X) as W (X, s) = min{t2 − t1 + 1|t1 ≤ t2 and ∀i ∈
X, ∃(i, t) ∈ s, where t1 ≤ t ≤ t2}. In order to calculate the cohesion of an
itemset within class k, we now compute the average length of such shortest

intervals in Nk(X): Wk(X) =
∑

s∈Nk(X) W (X,s)

|Nk(X)| . It is clear that Wk(X) is greater

than or equal to the number of items in X , denoted as |X |. Furthermore, for
a fully cohesive itemset, Wk(X) = |X |. Therefore, we define cohesion of X in

Nk(X) as Ck(X) = |X|
Wk(X)

. Note that all itemsets containing just one item are

fully cohesive, that is Ck(X) = 1 if |X | = 1. The cohesion of X in a single

sequence s is defined as C(X, s) = |X|
W (X,s) .

In a given class of sequences Sk, we can now define the interestingness of an
itemset X as Ik(X) = Fk(X)Ck(X). Given an interestingness threshold min int,
an itemset X is considered interesting if Ik(X) ≥ min int. If desired, minimum
support and minimum cohesion can also be used as separate thresholds.

Once we have discovered all interesting itemsets in each class of sequences,
the next step is to identify the classification rules we will use to build a classifier.

We define rkm : pm ⇒ Lk as a rule where pm is an interesting itemset in Sk

and Lk is a class label. pm is the antecedent of the rule and Lk is the consequent of
the rule. We further define the interestingness, support, cohesion and size of rkm
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to be equal to the interestingness, support, cohesion and size of pm, respectively.
The confidence of a rule can now be defined as:

conf(pm ⇒ Lk) =
|Nk(pm)|
|N(pm)| (1)

A rule pm ⇒ Lk is considered confident if its confidence exceeds a given threshold
min conf.

If all items in the antecedent of the rule can be found in the sequence of a
given data object, we say that the rule matches the data object. We say that a
rule correctly classifies or covers a data object in SDB if the rule matches the
sequence part of the data object and the rule’s consequent equals the class label
part of the data object.

In practice, most datasets used in the sequence classification task can be
divided into two main cases. In the first case, the class of a sequence is determined
by certain items that co-occur within it, though not always in the same order.
In this case, a classifier based on sequential patterns will not work well, as the
correct rule will not be discovered, and, with a low enough threshold, the rules
that are discovered will be far too specific. For an itemset of size n, there are n!
orders in which this itemset could appear in a sequence, and therefore n! rules
that could be discovered (none of them very frequent). Our method, however,
will find the correct rule. In the other case, the class of a sequence is determined
by items that occur in the sequence always in exactly the same order. At first
glance, a classifier based on sequential patterns should outperform our method
in this situation. However, we, too, will discover the same itemset (and rule),
only not in a sequential form. Due to a simpler candidate generation process, we
will even do so quicker. Moreover, we will do better in the presence of noise, in
cases when the itemset sometimes occurs in an order different from the norm.
This robustness of our method means that we can handle cases where small
deviations in the sequential patterns that determine the class of the sequences
occur. For example, if a class is determined by occurrences of sequential pattern
abc, but this pattern sometimes occurs in a different form, such as acb or bac, our
method will not suffer, as we only discover itemset {a, b, c}. This means that,
on top of the reduced complexity, our method often gives a higher accuracy
than classifiers based on sequential patterns, as real-life data is often noisy and
sequential classification rules sometimes prove to be too specific. On the other
hand, in cases where two classes are determined by exactly the same items, but in
different order, our classifier will struggle. For example, if class A is determined
by the occurrence of abc and class B by the occurrence of cba, we will not be able
to tell the difference. However, such cases are rarely encountered in practice.

4 Generating Rules and Building Classifiers

Our algorithm, SCII (Sequence Classification Based on Interesting Itemsets),
consists of two stages, a rule generator (SCII RG), which is based on the Apriori
algorithm [1], and two different classifier builders, SCII CBA and SCII MATCH.
This section discusses SCII RG, SCII CBA and SCII MATCH.
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4.1 Generating the Complete Set of Interesting Itemsets

The SCII RG algorithm generates all interesting itemsets in two steps. Due to
the fact that the cohesion and interestingness measures introduced in Section 3,
are not anti-monotonic, we prune the search space based on frequency alone.
In the first step, we use an Apriori-like algorithm to find the frequent itemsets.
In the second step, we determine which of the frequent itemsets are actually
interesting. An optional parameter, max size, can be used to limit the output
only to interesting itemsets with a size smaller than or equal to max size.

Let n-itemset denote an itemset of size n. Let An denote the set of frequent
n-itemsets. Let Cn be the set of candidate n-itemsets and Tn be the set of inter-
esting n-itemsets. The algorithm for generating the complete set of interesting
itemsets in a given class of sequences is shown in Algorithm 1.

Algorithm 1. GeneratingItemsets. An algorithm for generating all
interesting itemsets in Sk.

input : Sk, minimum support threshold min sup, minimum interestingness
threshold min int, max size constraint max size

output : all interesting itemsets Pk

1 C1 = {i|i ∈ Ik}, Ik is the set of all the items which occur in Sk;
2 A1 = {f |f ∈ C1, Fk(f) ≥ min sup};
3 T1 = {f |f ∈ A1, Fk(f) ≥ min int};
4 n = 2;
5 while An−1 �= ∅ and n ≤ max size do
6 Tn = ∅;
7 Cn = candidateGen(An−1);
8 An = {f |f ∈ Cn, Fk(f) ≥ min sup};
9 Tn = {f |f ∈ An, Ik(f) ≥ min int};

10 n++;

11 Pk =
n−1⋃
i=1

Ti;

12 return Pk;

Lines 1-2 count the supports of all the items to determine the frequent items.
Lines 3 stores the interesting items in T1 (note that the interestingness of a
single item is equal to its support). Lines 4-12 discover all interesting itemsets
of different sizes n (n ≥ max size ≥ 2). First, the already discovered frequent
itemsets of size n − 1 (An−1) are used to generate the candidate itemsets Cn

using the candidateGen function (line 7). The candidateGen function is similar
to the function Apriori-gen in the Apriori algorithm [1]. In line 8, we store the
frequent itemsets from Cn into An. Line 9 stores the interesting itemsets (as
defined in Section 3) from An into Tn. The final set of all interesting itemsets in
Sk is stored in Pk and produced as output.

The time cost of generating candidates is equal to that of Apriori. We will
now analyse the time needed to evaluate each candidate. We denote the time
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needed for computing the interestingness of a frequent itemset f with TIk(f). To
get Ik(f), we first need to find a minimal interval W (f, s) of an itemset f in a
sequence s ∈ Sk, whereby the crucial step is the computation of the candidate
intervals W (f, ti) for the time stamps ti at which an item of f occurs. In our
implementation, we keep the set of candidate intervals associated with f in a
list. To find the candidate interval around position ti containing all items of f ,
we start by looking for the nearest occurrences of items of f both left and right
of position ti. We then start reading from the side on which the furthest element
is closest to ti and continue by removing one item at a time and adding the same
item from the other side. This process can stop when the interval on the other
side has grown sufficiently to make it impossible to improve on the minimal
interval we have found so far. When we have found this minimal interval, we
compare it to the smallest interval found so far in s, and we update this value
if the new interval is smaller. This process can stop if we get a minimal interval
which equals to |f |, and then W (f, s) = |f |. Otherwise, W (f, s) equals to the
smallest value in the list of candidate intervals.

Theoretically, in the worst case, the number of candidate intervals that need
to be found can be equal to the length of sequence s, |s|. To find a candidate
interval, we might need to read the whole sequence both to the left and to the
right of the item. Therefore, the time to get a W (f, ti) is O(|s|). So, TIk(f) is
O(|s|2). However, this worst case only materialises if we are computing Ik(f)
when f is composed of all items that appear in s, and even then only if item
appearing at each end of s do not appear anywhere else.

4.2 Pruning the Rules

Once we have found all interesting itemsets in a given class, all confident rules can
be found in a trivial step. However, the number of interesting itemsets is typically
very large, which leads to a large amount of rules. Reducing the number of rules
is crucial to eliminate noise which could affect the accuracy of the classifier, and
to improve the runtime of the algorithm.

We therefore try to find a subset of rules of high quality to build an efficient
and effective classifier. To do so, we use the idea introduced in CMAR [9], and
prune unnecessary rules by the database coverage method.

Before using the database coverage method, we must first define a total order
on the generated rules R including all the rules from every class. This is used in
selecting the rules for our classifier.

Definition 1. Given two rules in R, ri and rj, ri � rj (also called ri precedes
rj or ri has a higher precedence than rj) if:

1. the confidence of ri is greater than that of rj , or
2. their confidences are the same, but the interestingness of ri is greater than

that of rj , or
3. both the confidences and interestingnesses of ri and rj are the same, but

the size of ri is greater than that of rj
4. all of the three parameters are the same, ri is generated earlier than rj.
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We apply the database coverage method to get the most significant subset of
rules. The main idea of the method is that if a rule matches a data object that
has already been matched by a high enough number of higher ranked rules (this
number is defined by a user chosen parameter δ, or the coverage threshold),
this rule would contribute nothing to the classifier (with respect to this data
object). The algorithm for getting this subset is described in Algorithm 2. The
algorithm has 2 main steps. First, we sort the set of confident rules R according
to definition 1 (line 1). This makes it faster to get good rules for classifying.
Then, in lines 2-13, we prune the rules using the database coverage method. For
each rule r in sorted R, we go through the dataset D to find all the data objects
correctly classified by r and increase the cover counts of those data objects (lines
3-7). We mark r if it correctly classifies a data object (line 8). If the cover count
of a data object passes the coverage threshold, its id will be stored into temp
(line 9). Finally, if r is marked, we store it into PR and remove those data
objects whose ids are in temp (lines 10-13). Line 14 returns the new set of rules
PR. In the worst case, to check whether a data object is correctly classified by
r, we might need to read the whole sequence part s of the data object, resulting
in a time complexity of O(|s|).

Algorithm 2. PruningRules. An algorithm for finding the most signifi-
cant subset among the generated rules.

input : training dataset D, a set of confident rules R, coverage threshold δ
output : a new set of rules PR

1 sort R according to Definition 1;
2 foreach data object d in D do d.cover count = 0;
3 foreach rule r in sorted R do
4 temp = ∅;
5 foreach data object d in D do
6 if rule r correctly classifies data object d then
7 d.cover count++;
8 mark r;
9 if d.cover count >= δ then store d.id in temp;

10 if r is marked then
11 select r and store it into PR;
12 foreach data object d in D do
13 if d.id ∈ temp then delete d from D;

14 return PR;

4.3 Building the Classifiers

Based on the generated rules, we now propose two different ways to build a
classifier, SCII CBA and SCII MATCH.
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SCII CBA. We build a classifier using the rules we discovered after pruning
based on the CBA-CB algorithm (the classifier builder part of CBA [10]). In
other words, we use rules generated in section 4.2 instead of using all the rules
before pruning as the input for CBA-CB. We can also skip the step of sorting
rules in CBA-CB because we have already sorted them in the pruning phase.
However, the total order for generated rules defined in CBA-CB is different from
that given in Definition 1. We use interestingness instead of support and, if the
confidence and the interestingness of two rules are equal, we consider the larger
rule to be more valuable than the smaller rule.

After building the classifier using the CBA-CB method, the classifier is of
the following format: < r1, r2, . . . , rn, default class >, where ri ∈ R, ra � rb
if a < b, and default class is the default class produced by CBA-CB. When
classifying a new data object, the first rule that matches the data object will
classify it. This means that the new data object will be classified into a class
which the consequent of this rule stands for. If there is no rule that matches the
data object, it is classified into the default class.

SCII MATCH. Rather than ranking the rules using their confidence, interest-
ingness and size, we now propose incorporating the cohesion of the antecedent of
a rule in the new data object into the measure of the appropriateness of the rule
for classifying the object. Obviously, we cannot entirely ignore the confidence of
the rules. Therefore, we will first find all rules that match the new object, and
then compute the product of the rule’s confidence and the antecedent’s cohesion
in the new data object. We then use this new measure to rank the rules, and
classify the object using the highest ranked rule.

Considering there may not exist a rule matching the given data object, we
must also add a default rule, of the form null ⇒ Ld, to the classifier. If there
is no rule that matches the given data object, the default rule will be used to
classify the data object. To find the default rule, we first delete the data objects
matched by the rules in PR. Then we count how many times each class label
appears in the remainder of the dataset. Finally we set the label that appears
the most times as the default class label Ld. If multiple class labels appear the
most times, we choose the first one as the default class label. So the default rule
default r is null ⇒ Ld. In the worst case, to check whether a data object is
matched by rule r in PR, we might need to read the whole sequence part s of
the data object. Since we need to do this for all data objects and all rules, the
time complexity of finding the default rule is O(|PR|

∑
s∈D |s|).

The classifier is thus composed of PR and the default rule default r. We now
show how we select a rule for classifying the sequence in a new data object. The
algorithm for finding the rule used to classify a new data object is shown in
Algorithm 3.

First, we find all the rules that match the given data object d and store them
into MR (lines 1). Then, we handle three different cases:

1. (lines 2-7): If the size of MR is greater than 1, we go through MR to
compute the cohesion of each rule in MR with respect to the given data object.
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Algorithm 3. ClassifyingRule. An algorithm for finding the rule used
to classify a new sequence.

input : PR and default r, a new unclassified data object d = (s, L?)
output : the classifying rule rc

1 MR = {r ∈ PR r matches d};
2 if MR.size > 1 then
3 foreach rule r : p ⇒ Lk in MR do
4 if r.length > 1 then r.measure = r.confidence ∗ C(p, d.s);
5 else r.measure = r.confidence;

6 sort rules in MR in descending order by r.measure;
7 return the first rule in sorted MR;

8 else
9 if MR.size == 1 then return the only rule in MR;

10 else return default r;

Let us go back to the cohesion defined in section 3. We use the antecedent of a
rule to take the place of itemset X to compute the cohesion of a rule. We then
compute the value of every rule in MR (the product of the rule’s confidence
and the antecedent’s cohesion), and sort the rules according to their value (the
higher the value, the higher the precedence). We then utilize the first rule in the
sorted MR to classify the given data object.

2. (line 9): If the size of MR is 1, then we classify the sequence using the only
rule in MR.

3. (line 10): If there is no rule in MR, then we use the default rule to classify
the given data object.

The only time-consuming part of Algorithm 3 is the computation of C(p, d.s).
The time complexity of this computation has already been analysed at the end
of Section 4.1.

4.4 Example

To illustrate how our methods work, we will use a toy example. Consider the
training dataset consisting of the data objects (sequences and class labels) given
in Table 1. We can see that itemset abcd exists in all sequences regardless of class.
It is therefore hard to distinguish the sequences from different classes using the
traditional frequent itemset methods. We now explain how our approach works.

Using the definitions given in Section 3 and Algorithm 1, assume min sup
= min int = 2

3 , max size = 4 and make the sequences of class 1 as input S1

in Algorithm 1. First, we discover frequent itemsets in S1, which turn out to
be itemset abcd and all its subsets. Then we generate interesting itemsets from
frequent itemsets, and find itemsets ab, a, b, c and d, whose interestingness is
equal to 1. Meanwhile, in the sequences of class 2, S2, itemsets bcd, cd a, b, c
and d are interesting. If we now set min conf = 0.5, we get the confident rules
sorted using Definition 1, as shown in Table 2.
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Table 1. An example of a sequence dataset

ID Sequence Class Label ID Sequence Class Label

1 c c x y a b d class1 5 a d z z c d b class2
2 a b e e x x e c f d class1 6 b x y d d c d d d x a class2
3 c g h a b d d class1 7 b d c c c c a y class2
4 d d e c f b a class1 8 a x x c d b class2

Table 2. Sorted rules from the example

Rule Cohesion Confidence Rule Cohesion Confidence

a b ⇒ Class1 1.0 0.5 c ⇒ Class2 1.0 0.5
c d ⇒ Class2 1.0 0.5 a ⇒ Class2 1.0 0.5
c ⇒ Class1 1.0 0.5 b ⇒ Class2 1.0 0.5
a ⇒ Class1 1.0 0.5 d ⇒ Class2 1.0 0.5
b ⇒ Class1 1.0 0.5 c b d ⇒ Class2 0.8 0.5
d ⇒ Class1 1.0 0.5 b d ⇒ Class2 0.8 0.5

Given a new input sequence s9 = a x b y c d z, we can see that it is not easy to
choose the correct classification rule, as all rules match the input sequence, and
only the last two score lower than the rest. The first two rules are ranked higher
due to the size of the antecedent, but the CBA, CMAR and SCII CBA methods
would have no means to distinguish between the two rules, and would classify
s9 into class 1, simply because rule a b ⇒ Class1 was generated before rule
c d ⇒ Class2. Using the SCII MATCH method, however, we would re-rank the
rules taking the cohesion of the antecedent in s9 into account. In the end, rule
c d ⇒ Class2 is chosen, as C(cd, s9) = 1, while C(ab, s9) =

2
3 . The cohesion of all

antecedents of size 1 in s9 would also be equal to 1, but rule c d ⇒ Class2 would
rank higher due to its size. We see that the SCII MATCH method classifies the
new sequence correctly, while other methods fail to do so.

5 Experiments

We compared our classifiers SCII CBA and SCII MATCH with five classifiers:
CBA, CMAR, BayesFM [8] and CBS [13]. The CBS paper proposes a number
of different scoring functions [13], and we chose the length policy as it gave
the best results. For better comparison, we also added a max size constraint
into the pattern mining stage of CBS. Our methods, BayesFM and CBS are
implemented in Java of Eclipse IDE, while CBA and CMAR are implemented
in LUCS-KDD Software Library1. We use SPADE [16] to mine subsequential
patterns for BayesFM and CBS and we transform the sequence dataset into a
transaction dataset for CBA and CMAR. All experiments are performed on a

1 http://cgi.csc.liv.ac.uk/~frans/KDD/Software/

http://cgi.csc.liv.ac.uk/~frans/KDD/Software/
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laptop computer with Intel i7 (2 CPUs 2.7GHz), 4GB memory and Windows 7
Professional.

In order to evaluate the proposed methods, we used four real-life datasets.
Three of these datasets were formed by making a selection from the Reuters-
21578 dataset2, consisting of news stories, assembled and indexed with categories
by Reuters Ltd personnel. We consider the words appearing in the texts as items
and treat each paragraph as a sequence. We formed the Reuters1 dataset using
the two biggest classes in the Reuters-21578 dataset, ”acq” (1596 paragraphs)
and ”earn” (2840 paragraphs). Reuters2 consists of the four biggest classes in
Reuters-21578, ”acq”, ”earn”, ”crude” (253 paragraphs) and ”trade” (251 para-
graphs), and is therefore an imbalanced dataset. Reuters3 is a balanced dataset
obtained from Reuters2 by keeping only the first 253 paragraphs in the top two
classes. Reuters1 consists of 4436 sequences composed of 11947 different items,
Reuters2 of 4940 sequences containing 13532 distinct items, and Reuters3 of
1010 sequences composed of 6380 different items.

Our fourth dataset is a protein dataset obtained from PhosphoELM3. The
data consists of different combinations of amino acids for each kind of protein. We
chose two of the biggest protein groups (PKA with 362 combinations and SRC
with 304 combinations) to form the Protein dataset. We treat each combination
of amino acids as a sequence and consider each amino acid as an item. Each
sequence is labelled by the protein group it belongs to. This dataset consists of
666 sequences containing 20 different items. All the reported accuracies in all of
experiments were obtained using 10-fold cross-validation.

5.1 Analysis of the Predictive Accuracy

Table 3 reports the accuracy results of all six classifiers. In the experiments, we
set min conf to 0.6 and min sup to 0.1 for all of the classifiers, while varying the
max size threshold. Additionally, we set min int to 0.05 for the SCII classifiers.
For the SCII methods and CMAR, the database coverage threshold was set to
3. The best result for each dataset is highlighted in bold. As shown in Table 3,
the SCII algorithms generally outperform other classifiers.

To further explore the performance of the six classifiers, we conducted an
analysis of the predictive accuracy under different support, confidence, and in-
terestingness thresholds, respectively. We first experimented on Reuters1 and
Protein, with min conf fixed at 0.6, max size set to 3 and min int for SCII clas-
sifiers set to 0.05. We can see in Fig. 1 that the SCII C classifier is not sensitive
to the minimum support thresholds as minimum interestingness threshold is the
main parameter deciding the output rules. As the number of output rules drops,
SCII M begins to suffer, as it picks just the highest ranked rules to classify a new
object. SCII C compensates by using a combination of rules, and the accuracy
therefore does not suddenly drop once some rules drop out of the classifier.

We then compared the predictive accuracy of the classifiers using different
minimum confidence thresholds on the Protein dataset. We compare just four

2 http://web.ist.utl.pt/~acardoso/datasets/r8-train-stemmed.txt
3 http://phospho.elm.eu.org/

http://web.ist.utl.pt/~acardoso/datasets/r8-train-stemmed.txt
http://phospho.elm.eu.org/
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Table 3. Comparison of Predictive Accuracy (%)

Dataset max size SCII C SCII M CBA CMAR BayesFM CBS

Reuters1 2 92.74 92.54 67.05 65.76 92.38 89.27
3 92.74 92.54 66.63 65.65 92.88 88.12
4 92.74 92.54 66.63 65.54 92.79 88.25
5 92.74 92.54 66.63 65.54 92.76 88.82
∞ 92.74 92.54 66.63 65.54 92.72 88.88

Protein 2 86.63 87.56 81.34 81.91 52.66 54.92
3 87.69 88.59 86.55 80.88 72.97 74.94
4 91.01 90.71 87.93 78.64 85.14 86.81
5 90.71 91.73 89.14 78.94 85.14 86.96
∞ 90.56 91.86 89.14 78.94 85.14 86.96

Reuters2 2 90.40 90.16 57.69 57.45 83.68 78.87
3 90.51 90.22 57.65 57.17 83.22 75.99
4 90.67 90.28 57.65 57.09 82.94 74.31
5 90.75 90.26 57.65 57.09 82.87 72.96
∞ 90.61 90.45 57.65 57.09 82.82 72.11

Reuters3 2 92.48 92.97 78.61 62.28 78.71 87.82
3 92.28 92.87 78.71 62.38 74.16 88.22
4 92.87 92.67 78.71 62.38 72.57 87.92
5 92.77 92.97 78.71 62.38 72.18 87.52
∞ 93.07 92.77 78.71 62.38 71.98 86.73

Fig. 1. The impact of varying the support threshold on various classifiers

classifiers of the classifiers, as BayesFM and CBS do not use a confidence thresh-
old. Here, min sup is fixed at 0.1, max size is set to 3 and min int for the
SCII classifiers is set to 0.05. From Fig. 2, we can see that the SCII classifiers
are not sensitive to the minimum confidence threshold at all. When the confi-
dence threshold is not lower than 0.8, the accuracies of CBA and CMAR decline
sharply. It shows the performance of CBA and CMAR is strongly related to the
number of produced rules.
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Fig. 2. The impact of varying the confi-
dence threshold on various classifiers

Fig. 3. The impact of varying the interest-
ingness threshold on the SCII classifiers

Fig. 3 shows the accuracy of the SCII classifiers on the Reuters2 dataset
with different minimum interestingness thresholds. Here, min sup is fixed at 0.1,
min conf at 0.6, and max size is set to 3. We can see that the accuracies of
both SCII C and SCII M decrease when the minimum interestingness threshold
increases. When the minimum interestingness threshold is greater than 0.2, fewer
rules are discovered, and the accuracy of SCII M, once again, declines faster than
that of SCII C. We can conclude that the selection of good classification rules
is already done using the support and confidence threshold, and there is no
need to prune further with the interestingness threshold. The interestingness
of an itemset, however, remains a valuable measure when ranking the selected
classification rules.

5.2 Analysis of the Scalability for Different Methods

Fig. 4 shows the performance of the six classifiers on Reuters1 and Protein for
a varying number of sequences (#sequences). We start off by using just 10% of
the dataset, adding another 10% in each subsequent experiment. In Reuters1 the
number of items (#items) increases when #sequences increases, while #items
is a fixed number in Protein, as there are always exactly 20 amino acids. In this
experiment we set min int = 0.01 for SCII, max size = 3 and min conf = 0.6
for all methods.

The first two plots in Fig. 4 show the effect of an increasing dataset size on
the run-times of all six algorithms. We began with a small subset of Reuters1,
adding further sequences until we reached the full dataset. We plot the runtimes
compared to the number of sequences, and the number of different items en-
countered in the sequences. For all six algorithms, the run-times grew similarly,
with the classifiers based on sequential patterns the slowest, and the classifiers
that took no sequential information into account the fastest.

The last two plots show the run-times of the algorithms on the Protein dataset.
Here, too, we kept increasing the dataset size, but the number of items was



Itemset Based Sequence Classification 367

Fig. 4. Scalability analysis

always equal to 20. We performed the experiments with two different support
thresholds, and it can be noted that classifiers based on sequential patterns are
much more sensitive to the lowering of the threshold than our two classifiers.
Once again, as expected, CMAR and CBA were fastest, but as was already seen
in Table 3, their accuracy was unsatisfactory.

6 Conclusions

In this paper, we introduce a sequence classification method based on interesting
itemsets named SCII with two variations. Through experimental evaluation, we
confirm that the SCII methods provide higher classification accuracy compared
to existing methods. The experimental results show that SCII is not sensitive to
the setting of a minimum support threshold or a minimum confidence threshold.
In addition, the SCII method is scalable as the runtime is proportional to the
dataset size and the number of items in the dataset. Therefore, we can conclude
that SCII is an effective and stable method for classifying sequence data. What is
more, the output rules of SCII are easily readable and understandably represent
the features of datasets.
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Abstract. The theory of relevance is an approach for redundancy avoid-
ance in labeled itemset mining. In this paper, we adapt this theory to the
setting of sequential patterns. While in the itemset setting it is suggestive
to use the closed patterns as representatives for the relevant patterns, we
argue that due to different properties of the space of sequential patterns,
it is preferable to use the minimal generator sequences as representa-
tives, instead of the closed sequences. Thereafter, we show that we can
efficiently compute the relevant sequences via the minimal generators in
the negatives. Unlike existing iterative or post-processing approaches for
pattern subset selection, our approach thus results both in a reduction
of the set of patterns and in a reduction of the search space – and hence
in lower computational costs.

1 Introduction

Sequential pattern mining is concerned with finding frequent subsequences in
sequence databases [1]. These subsequences, or sequential patterns, have many
real-world applications. For example, they can be used to characterize sequences
of credit card transactions having high fraud probability, or DNA subsequences
having particular properties.

Like most pattern mining tasks, sequential pattern mining suffers from the
problem that it mostly comes up with huge amounts of patterns. This problem is
well-know in the pattern mining community, and various approaches have been
proposed to cope with this issue (e.g. [2–5]).

In this paper, we take one particular approach, namely the theory of relevance
[6, 7], and adapt it to the case of sequential data. Originally, the theory of rele-
vance was developed in the setting of labeled itemset data, and assumes that one
is interested in characterizing a particular target class. The basic idea is related
to the concept of Pareto domination: remove all itemsets which are dominated
by some other itemset, meaning that the dominated itemset is strictly inferior
in characterizing the target class. More precisely, an itemset is considered as
dominated if there is another, dominating itemset which supports at least all
positives (i.e. target-class sequences) supported by the dominated itemset, but
no additional negative (i.e. non target-class sequences).

The theory of relevance not only reduces the size of the resulting set of item-
sets, but also allows for efficient algorithms. Unlike iterative or post-processing
approaches, the relevant itemsets can be collected by traversing, once only, a

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 369–384, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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small subset of all itemsets. The foundation for these algorithms is a set of
properties that relate the relevant itemsets to the itemsets that are closed in a
particular subset of the data, namely the positives.

label sequence
+ abc
+ acb
- b
- c

Fig. 1. In this sequence database, the
sequences a, ab and ac have the same sup-
port set: while the first sequence is a (mini-
mal) generator, the other two sequences are
closed. Applying the idea of domination to
this example, we see that all sequences but
the three above-mentioned are dominated:
for example, the sequence b is dominated
by a, because b supports a superset of the
negatives supported by a but the same set
of positives. In our approach, only the min-
imal generator a will be kept.

The adaptation of the theory of rel-
evance to sequential data raises in-
teresting challenges. These are due
to the different characteristics of the
space of sequential patterns, com-
pared with the space of itemsets. One
well-known difference, illustrated in
Figure 1, is that the closed sequences
are no unique representatives of their
equivalence class. This is unlike in the
itemset setting, where the closed item-
sets are used as unique representa-
tives for the relevant itemsets [8]. The
different characteristics of sequential
patterns makes the use of closed (se-
quential) patterns much less sugges-
tive for this new setting. As we will
show, there are other important dif-
ferences (for example, the relevance
of a sequence cannot be checked by
considering its generalizations, unlike
in the setting of itemsets). Altogether,
we make the following contributions:

– We show that if the concept of domination is transfered from itemsets to
sequences, several important properties no longer hold. As a consequence,
the standard algorithmic approach cannot be applied to find the relevant
sequences (Section 4.2);

– We propose to use generators as representatives for the relevant sequences,
instead of closed sequences. Besides the obvious advantage of shorter descrip-
tions, this allows dealing efficiently with maximum pattern length constraints
(Section 4.3);

– We show that our new definition of relevance has the consequence that the
relevant sequences are a subset of the minimal generator sequences in the
negatives (Section 5.1);

– Subsequently, we describe how this connection can be turned into an efficient
algorithm (Section 5.2);

– Finally, we experimentally investigate the impact of our new relevance cri-
terion on the number of patterns and the computational costs (Section 6).

The rest of this paper is structured as follows: After discussing related work in
Section 2 and introducing our notation in Section 3, we present the contributions
listed above, before we conclude in Section 7.
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2 Related Work

Sequential pattern mining was first considered by Agrawal and Srikant [1]. The
notions closed pattern, minimal generator pattern etc. have been transfered from
itemset data to the setting of sequences, and different algorithms have been
proposed to find the closed sequences [9, 10], respectively the minimal generator
sequences [11, 12].

While the use of closed patterns resp. minimal generators reduces the number
of patterns, the outcome can still be huge. A variety of pattern selection ap-
proaches have been proposed to cope with this issue. Most of these approaches
are either post-processing or iterative solutions. The post-processing approaches
expect, as input, a set of patterns, from which they choose a subset, typically in
a greedy fashion [2, 4]. The iterative approaches, on the other hand, run a new
search in every iteration; The different runs assess the pattern quality differently,
taking into account the set of patterns already collected [5, 13–15]. As all these
approaches rely, somehow, on an underlying mining algorithm, they are no alter-
native to our approach but could, instead, be combined with our approach: that
is, for labeled sequential data they could rely on our algorithm to enumerate the
candidate patterns.

Other approaches exist that reduce the set of patters by relying strongly on
the properties and operations that can be performed on itemset data [3, 16]. As
these operations are not directly applicable to sequences, there is no easy way
to transfer these approaches to the setting of sequential patterns (Note that the
theory of relevance considered here falls into this category of approaches).

Different approaches have been proposed to define a closure operator in a
sequential data setting. However, none of these approaches is directly applica-
ble to our setting, as they all consider different patterns families, which are only
connected via some post-processing to the (classical) sequential patterns we con-
sider. In particular, Garriga has proposed a new closure operator, which however
is not defined on individual sequential patterns, but on sets of sequential pat-
terns. While this approach allows for advanced summarization [17], it relies on
a classical closed sequential pattern miner to produce the patterns to be post-
processed respectively summarized. Räıssi et al. [18] presents a similar approach,
which also considers sets of sequences instead of individual sequences. Finally,
Tatti et al. [19] proposed a new notion of closedness, called i-closed. Unlike us,
they don’t consider sequence databases but consider the episode mining setting
(where frequency is defined in terms of sliding windows over a single sequence)
and consider patterns taking the form of directed acyclic graphs. Above all, the
computation of i-closed episodes is only the first step: the i-closed episodes are
a superset of the classical closed episodes, from which the closed episodes must
then be computed in a second step.

3 Preliminaries

In this section, we review the standard notions from itemset and sequential
pattern mining, which will then be used in the remainder of this paper.
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3.1 Itemsets, Closed Patterns and Minimal Generators

As the theory of relevance has been defined in the scope of itemsets, we will first
review the notions from itemset and closed pattern mining [20].

Itemsets and Itemset Databases. An itemset over an alphabet Σ is a subset of
Σ. A labeled dataset DB over an alphabet Σ is a collection of records (l, I),
where l is a label and I is an itemset. Given a database DB and an itemset P,
the support set of P in a dataset DB, denoted by DB[P], is defined as the set of
records r = (l, I) ∈ DB such that P is a subset of I. The support of an itemset
is the size of its support set.

Positives, Negatives, True Positives etc. In the rest of this paper we assume a
binary setting where the set of classes consists of “+” and “-”. We call the subset
of “+”-labeled records the positives. Similarly, we call the “-”-labeled records the
negatives. The term true positives, denoted by TP(DB,P), refers to the support
set of P in the positives. The false positives, FP(DB,P), are defined analogously
on the negatives.

Equivalence Classes, Closed Itemsets and Generators. If two itemsets have the
same support set, then the two are said to be equivalent. The space of item-
sets can thus be partitioned into equivalence classes : all itemsets with the same
support set belong to the same equivalence class. Within an equivalence class,
there are two interesting subsets of itemsets: the minimal generators and the
closed itemsets. The minimal generators are the minimal members of an equiva-
lence class, meaning that any true generalization (i.e. sub-itemset) has a strictly
higher support in the dataset. The closed itemsets are their counterpart: they are
maximal members of the equivalence class, meaning that any true specialization
(i.e. super-itemset) has strictly lower support.

3.2 The Theory of Relevance

We will now turn to the theory of relevance [6–8].

Domination and Relevance. The basic idea of the theory of relevance is to reduce
the number of itemsets by removing itemsets that are irrelevant for the purpose of
characterizing the target class, which by convention is the “+” class. An itemset
is considered to be irrelevant if there is another itemset, called the dominating
itemset, which allows characterizing the target class at least as good as the
former (dominated) itemset. Formally:

Definition 1. The itemset P dominates the itemset Pirr in dataset DB iff (i)
TP(DB,P) ⊇ TP(DB,Pirr) and (ii) FP(DB,P) ⊆ FP(DB,Pirr).

Note that it is possible that two itemsets dominate each other, however only in
the case that they belong to the same equivalence class. Given that for itemsets
there is exactly one closed itemset in every equivalence class, the closed itemsets
can be used as unique representatives. Garriga et al. [8] thus define the relevant
itemsets as follows:
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Definition 2. Itemset P is relevant in database DB iff (i) P is closed and (ii)
there is no itemset having a different support set that dominates P (in DB).

The Connection to Closed-on-the-Positives Garriga et al. [8], have shown that
when searching for relevant itemsets, it is sufficient to consider only itemsets
that are closed on the positives, that is, itemsets that are closed in the subset of
the positively labeled records:

Proposition 1 ([8]). The space of relevant itemsets consists of all itemsets Prel

satisfying the following:

– Prel is closed on the positives, and
– there is no generalization P � Prel closed on the positives such that

|FP(DB,P)| = |FP(DB,Prel)|.

The above proposition provides an elegant way to compute the relevant itemsets,
sketched in Algorithm 1.

Algorithm 1. CPOS Relevant Itemset Miner

Input : an itemset database DB
Output : the relevant itemsets in DB

1: collect all closed-on-the-positive itemsets (using some closed itemset mining algo-
rithm, e.g. [21]).

2: remove all itemsets having a (closed-on-the-positives) generalization with the same
negative support.

3.3 Sequences and Sequence Databases

We will now review the most important notions from sequence mining [1].

Sequences and Sequence Databases. A sequence over a set of items Σ is a
sequence of items i1, . . . , il, ii ∈ Σ. The length of the sequence is the num-
ber of items in the sequence. A sequence Sa = a1, . . . , an is said to be con-
tained in another Sb = b1, . . . bm, denoted by Sa . Sb, if ∃i1, . . . in such that
1 ≤ i1 < · · · < in ≤ m and a1 = bi1 , . . . , an = bin . We also call Sa a generaliza-
tion of Sb.

A sequence database SDB is a collection of labeled sequences. A labeled se-
quence is a tuple (l, S), where S is a sequence and l a label – i.e, “+” or “-”.
Again, we call the subset of “+”-labeled sequences the positives. Similarly we
call the “-”-labeled sequences the negatives.

The support set of a sequence S in a sequence database SDB, denoted by
SDB[S], consists of all labeled sequences in SDB that contain S. Here, a labeled
sequence (l, S) contains a sequence Sa iff Sa . S. Again, the term true posi-
tives, denoted by TP(SDB, S), refers to the support set of S in SDB’s positives.
FP(SDB, S) is defined analogously on the negatives. Finally, the support denotes
the size of the support set.
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Patterns, Closed Patterns and Minimal Generators. In the rest of this paper,
we will use the general term pattern to refer to either an itemset or a sequence.
In general, patterns have a support set (wrt. a given database), and moreover
there is a partial generalization order between patterns (defined via the subset
relation for itemsets, resp. the contained relation for sequences).

Based upon these generalized definitions of support set and generalization,
the terms closed and minimal generator from Section 3.1 can be carried over to
sequences, and can hence be applied to both types of patterns.

4 Relevant Sequences

We will now adapt the definition of relevance to sequential data. While is is
straightforward to transfer the concept of domination to sequential patterns,
defining relevance will raise subtle issues.

4.1 Domination between Sequences

Unlike the original definition (Definition 1), our definition of domination between
sequential patterns explicitly distinguishes between weak and strong domination.
This will be useful in situations where two different patterns dominate each other
circularly (in the original definition).

Definition 3. The sequence Sd weakly dominates the sequence S iff

– TP(SDB, Sd) ⊇ TP(SDB, S), and
– FP(SDB, Sd) ⊆ FP(SDB, S).

Moreover, Sd strongly dominates S iff Sd weakly dominates S and SDB[Sd] 
=
SDB[S].

4.2 Relevant Sequences: Problems and Differences to the Itemset
Setting

While we directly carried over the definition of domination to sequential pat-
terns, our proposed definition of relevant sequences will differ from the definition
used in the setting of itemsets. This is due do the fact that several properties
that hold in the space of itemsets do not transfer to the space of sequences.

One main issue is the choice of representatives for the patterns that are not
strongly dominated. In the itemset setting, Garriga et al. chose to use the closed
itemsets as representatives. In the itemset setting, this is very suggestive: it pro-
vides unique representatives and allows for efficient computation. In this section,
we will argue that in the sequential setting, the use of closed patterns as rep-
resentatives is much less appealing. Beside the issue that there can be several
equivalent closed sequences (as illustrated in the introduction), the use of closed
patterns as representatives results in the following issues:
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1. The computational approach proposed by Garriga et al. is not applicable,
because Proposition 1 does not carry over to sequential patterns;

2. The use of a length limit is problematic, resulting in counter-intuitive re-
sults and/or excessive computational costs. In practice, however, specifying
a limit for the length of the patterns to be considered is very useful: it allows
reducing the computational costs to a reasonable amount of time, and is
often more suitable than using a minimum support threshold.

We will now discuss these issues in detail.

Garriga’s Computational Approach Is Not Applicable to Sequences.
Proposition 1 is the foundation for many fast relevant itemset mining algorithms
[8, 22]. We will now show that it does not carry over to sequential patterns:

Proposition 2. There is a sequence database such that a closed-on-the-positives
sequence pattern S exists which is strongly dominated, yet not dominated by any
of its generalizations.

The correctness of the above proposition is shown by the example in Table 1.
Here, the sequence c is closed on the positives. It is, however, dominated, namely
by ab. Yet, c is not dominated by any generalization of itself.

Table 1. Example: the closed sequence c is strongly dominated (e.g. by a), yet it is
not dominated by any generalization

label sequence

+ cab
+ abc
- c
- d

The above proposition shows that it is not sufficient to consider generalizations
to verify the relevance of a sequence. While the above example alone shows that
Proposition 1 does not hold, we could still hope that testing for relevance is
possible by comparing only other patterns with same negative support (as in
Proposition 1). However, this also does not carry over:

Proposition 3. There is a sequence database such that a closed-on-the-positives
sequence S exists which is strongly dominated, yet it is not strongly dominated
by any sequence having the same negative support.

Again, this is illustrated by Example 1. c is closed on the positives and is
strongly dominated. However, all strongly dominating sequences (a, b, and ab)
have a different negative support.

The above two propositions show that the second step of Algorithm 1 cannot
be adapted to the sequential pattern setting: neither can relevance be tested by
considering only generalizations; nor is it possible to consider only patterns with
same negative support.
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Problems with Length Limits. We will now turn to the issues that arise
if a length limit is introduced and closed patterns are used as representatives
for the relevant sequences (Issue 2). Here, instead of considering the space of
all sequences, we are only concerned with the space of sequences satisfying the
length limit. We wish to remove all sequences that are strongly dominated, and
to keep only a set of representatives for the remaining sequences.

Again, the example from Table 1 illustrates the problems that arise if closed
patterns are used as representatives: assume that we are searching for relevant
sequences with a maximum length limit of 1. Then:

– c is dominated, namely by the patterns a, b and ab. It should thus not be in
the result set, because it is dominated by some pattern satisfying the length
limit.

– c is, however, not dominated by any closed pattern satisfying the length
limit (a and b are not closed). Checking domination would hence require a
computationally much more expensive approach, for example considering all
sequences up to the length limit, not only closed sequences.

– a should not be in the result because it is not closed; same for b. How-
ever, ab, which is closed and lies in the same equivalence class as the earlier
two sequences, has a too long description. The result is that there is no
representative in the result set for this equivalence class. This is somewhat
counter-intuitive.

While it might be possible to ensure efficient computation by using a different,
computationally-motivated definition of relevance wrt. a length limit, this is
likely to result in awkward and unintuitive results.

4.3 The Relevant Sequences

As we have seen in the previous section, the closed sequences are not a par-
ticularly suggestive set of representatives for the relevant sequences. Therefore,
we propose to use a different set of patterns as representatives: the minimal
generator sequences :

Definition 4. Given a sequence database SDB and a length limit L, the set of
relevant minimal generator sequences (wrt. SDB and L) consists of all sequences
S that satisfy the following:

1. S is a minimal generator in SDB of length ≤ L,
2. S is not strongly dominated (in SDB) by any other sequence of length ≤ L.

In the following, the database and length limit will be clear from the context,
so they will not be explicitly listed. Moreover, if no length limit is given, this
is handled as if L = ∞. Finally, we will use the expression relevant sequence to
refer to an element of the set of relevant minimal generator sequences.

Using minimal generators as representatives has several advantages. First,
it produces shorter descriptions, which can be an important advantage if the
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patterns are to be read and interpreted by human experts; second, it allows
for efficient computation via the minimal-generators-in-the-negatives, as we will
describe in Section 5; and finally it allows for maximum length constraints with
clear and simple semantics:

Proposition 4. Let SDB be a sequence database, L a positive integer and S
some sequence of length ≤ L. Then, there is a relevant sequence S∗ in SDB such
that S∗ is of length ≤ L and S∗ weakly dominates S.

Hence, for every sequence S satisfying the length limit there is a relevant
sequence as good as S in characterizing the target class.

Proof. Let SG be (one of the) minimal generator of S. Obviously, Sg weakly dom-
inates S and satisfies the length limit. If S is a relevant sequence, then S∗ = Sg

and we’re finished. Else, Sg must be strongly dominated. As strong domina-
tion is transitive, non-reflexive and the set of minimal generators satisfying the
length constraint is finite, there must be (at least one) minimal generator S∗

that (i) satisfies the length constraint, (ii) strongly dominates Sg and (iii) is not
dominated by any other minimal generator of length ≤ L.

It remains to show that this pattern S∗ dominates Sg and that it is a relevant
sequence. The first fact follows by transitivity of weak domination. Concerning
the second fact, S∗ is a minimal generator and satisfies the length constraint by
construction. It remains to show that it is not strongly dominated, which we
show by contradiction. Assume it is dominated by a sequence of length ≤ L,
then it would also be dominated by the minimal generators of that pattern.
Contradiction with (iii) above. �

5 Computing the Relevant Sequences

We will now present a new approach that allows computing the relevant se-
quences much more efficiently than by simply checking, for every pair of patterns,
the dominance criterion from Definition 3.

5.1 Relevant Sequences and Minimal Generators in the Negatives

This approach is based on the observation that the set of patterns not-strongly-
dominated is not only related to the closed-on-the-positives (as investigated by
Garriga et al.), but also to their counterpart: namely to the minimal generators
in the negatives.

Proposition 5. Let SDB be a sequence database and S some relevant sequence
in SDB. Then S is a minimal generator in SDB’s negatives.

Proof. By contradiction. Assume that S is a relevant sequence but is no minimal
generator in the negatives. The latter implies that there is a generalization S′

of S with same support in the negatives. Thus, we have that FP(SDB, S) ⊇
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FP(SDB, S′). Just as in the case of classical itemsets, for sequential patterns
we have the property that the support is anti-monotonic. That is, the support
set of S′ in the positives is a superset of the support set of S in the positives.
Thus, we also have TP(SDB, S) ⊆ TP(SDB, S′). The above implies that S′

weakly dominates S. Moreover, by the assumption that S is a relevant sequence
together with Definition 4, we have that S is a minimal generator, hence S and S′

have different support sets. Hence, S′ strongly dominates S – which contradicts
the assumption that S is relevant. �
Please note that in the above proposition, unlike in the work of Garriga et al. we
consider a different pattern type (minimal generators instead of closed patterns)
but also a different subset of the data (negatives instead of positives).

label sequence

+ ab
+ abc
- abc
- ac
- c

(a) dataset

seq. dominated closed gen g-neg

a yes, by b y y y
b no - y y
c yes, by b y y -
ab no y - -
ac yes, by b y y -
bc yes, by b - y -
abc yes, by b y - -

(b) sequential patterns

Fig. 2. Subfigure 2(b) considers all sequential patterns occurring in the dataset in
Subfigure 2(a). As the 2nd column shows, all sequences but b and ab are strongly
dominated. These two patterns belong to the same equivalence class, with b being a
minimal generator (column “gen”) and ab a closed sequence (column “closed”). As
we opted for the minimal generators as representatives, we want to come up with b.
While this result can be computed using the minimal generators as candidates (column
“gen”), using the minimal generators in the negatives (column “g-neg”) is more efficient
as this yields a smaller candidate set.

We will now illustrate the above proposition and its implications using the
example in Figure 2. In this database, only the sequences b and ab are potentially
useful in characterizing the target class. All other sequential patterns are strongly
dominated, and should thus be removed as irrelevant. The two un-dominated
patterns b and ab are equivalent, hence we would be happy with just one of
these two as representative. More precisely, according to our new approach, we
would select b as representative, which is the (only) minimal generator. Now
Proposition 5 shows that to compute this result, it is sufficient to consider the
set of minimal generators in the negatives (i.e. a and b) as candidates, instead of
considering the whole set of minimal generators (which comprises 5 sequences).

5.2 Our Algorithm

The new relation stated in Proposition 5 suggests the following approach: first
compute the minimal generators in the negatives (using some standard
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minimal generator sequence miner, e.g. [11, 12]) and then remove the domi-
nated generators. So far, we have not considered the second step – the removal
of the dominated generators. The following proposition shows that it is possi-
ble to decide whether a pattern is strongly dominated solely by considering the
minimal-generators-in-the-negatives:

Proposition 6. Let SDB be a sequence database, L a positive integer, and Sirr

some minimal generator of length ≤ L that is not relevant (wrt. SDB and L).
Then, there is a minimal-generator-in-negatives Sg of length ≤ L strongly dom-
inating Sirr.

Proof. Let Sd be one of the sequences strongly dominating Sirr and satisfying the
length limit. By Proposition 4, there is a relevant sequence Sg weakly dominating
Sd and satisfying the length limit. By Proposition 5, Sg is a minimal generator
in the negatives. Moreover, by transitivity Sg strongly dominates Sirr, which
completes the proof. �

Algorithm 2. Relevant Sequence Miner

Input : a sequence database SDB and optionally a length limit L
Output : the relevant sequences

1: Calculate the set GN of sequences that are minimal generator in the negatives and
have length ≤ L;

2: Group the candidate patterns GN into sets having same extension in SDB. Let G≡
N

denote the resulting set of equivalence classes
3: sort the set G≡

N by (i) descending positive support and (ii) in case of ties ascending
negative support

4: let R be an empty set of equivalence classes
5: for every class e in G≡

N do
6: if e is not dominated by any class in R then
7: add e to R
8: end if
9: end for
10: return The set of minimal generators in R

The above Proposition, together with Proposition 5, is the foundation for
our algorithmic approach, sketched in Algorithm 2. In Line 1, the algorithm
can make use of any minimal generator sequence miner, e.g. [11, 12] to com-
pute the minimal-generators-in-the-negatives. The rest of the pseudo-code takes
care of filtering strongly dominated sequences from this candidate set. Instead
of the naive approach – comparing every pair of candidates, which would re-
sult in a quadratic number of comparisons – we use a slightly more efficient
solution. First, we group the candidate patterns (i.e. the minimal-generators-in-
the-negatives) into equivalence classes (Line 2). The reason is that the definition
of domination immediately carries over from patterns to equivalence classes and
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it is thus sufficient to consider those instead of the individual patterns. The sec-
ond improvement is that we sort the candidates, resp. the equivalence classes, by
descending positive support and then, in case of ties, by ascending negative sup-
port. This step, done in Line 3, ensures that a pattern can only be dominated by
a predecessor in the sorted list. As a consequence, during the following iteration
over the candidates one only has to compare a candidate with the predecessors
in the sorted list which have been verified to be relevant. Hence, the number of
comparisons per candidate is limited by the number of relevant patterns.

5.3 Analysis of the New Algorithm

The correctness of our algorithm follows directly from Propositions 5 and 6.
We will now turn to its complexity: Let n denote the number of items, m the
number of sequences in the database, L the length limit, l the maximum length
of the sequences, |GN | the number of minimal generators in the negatives, |G≡N |
the equivalence classes including a minimal generator in the negatives, and |R≡|
the number of relevant equivalence classes. Then

1. The runtime of the first step in Algorithm 2 – computing the minimal gen-
erators – is O(nL ·m · l).

2. The grouping of the candidate sequences can be done using a hash function
mapping the support set to an integer. The runtime is then O(|GN | ·m · l).

3. The runtime for sorting is O(|G≡N | log(|G≡N |)).
4. The loop is executed |G≡N | times. The condition in the if requires to check each

equivalence class against at most |R≡| relevant patterns. Every comparison
can be done in O(m), assuming that hash-sets are used to check for inclusion
of a record. The total runtime is thus O(|G≡N | · |R≡| ·m).

Overall, the runtime for the computation of Algorithm 2 is hence

O(nL ·m · l + |GN | ·m · l + |G≡N | log(|G≡N |) + |G≡N | · |R≡| ·m).

As the number of minimal generators is typically much smaller than nL, the
overall runtime is typically dominated by the first summand – that is, the runtime
is dominated by the first step which computes the minimal generators in the
negatives. This will be confirmed by experiments presented in Section 6.

6 Experimental Evaluation

In this section, we experimentally evaluate the impact of our approach. As several
investigations have demonstrated that removing dominated patterns is beneficial
for classification purposes [6, 8, 23], we only investigate the effect on the size of
the result pattern set and on the computational costs.
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6.1 Implementation and Setup

Our approach requires, as a building block, a minimal generator sequence miner.
To this end, we have used a (slightly modified) reimplementation of FEAT [11],
a state-of-the-art generator sequence mining algorithm. In particular, our imple-
mentation allows for maximum length constraints. This can easily be realized by
stopping the recursive traversal of the candidate space if a pattern violates the
length constraint.

dataset # seq. # pos. # items max. length
hill-valley 606 301 5 100
libras 360 192 979 89
person 273 198 116 8610
promoter 106 53 4 57
wlan 206 166 15 2920

Fig. 3. Datasets

We used five sequence
datasets in our evaluation.
The datasets ’hill-valley’, ’li-
bras’, ’person-activity’, and
’promoter’ are publicly avail-
able datasets from the UCI
repository [24]. The last dataset,
’wlan’, is from an ongoing
project and cannot be made
publicly available. Table 3
shows all datasets together
with their most important
statistics.

6.2 Results

We will now show how the concept of relevance affects the number of patterns
obtained. Figures 4(a) to 4(e) show, for different datasets and length limits, the
number of minimal generators (“Gen”), the number of minimal generators in
the negatives (“G-neg”) and of relevant sequences (“Rel”). In the experiments,
we also used a minimum support of 10%.

Reduction of the Pattern Set. The figures show, first, that the concept of rel-
evance dramatically reduces the number of patterns. At higher length limits,
the reduction from all generator sequences (“Gen”) to the relevant sequences
(“Rel”) amounts to several orders of magnitude. The results are similar if the
size of the outcome is controlled using a support threshold instead of a length
limit. We show a corresponding plot for the ’hill-valley’ dataset in Figure 4(f),
where we additionally used a length limit of 10 (the result for other datasets
are similar and omitted for space reasons). This demonstrates the main benefit
of our relevance criterion for sequential patterns: it tremendously reduces the
number of sequential patterns.

Computational Speedup. The second observation is that the computation via
the minimal-generators-in-the-negatives reduces the computational costs. Again,
this can be seen in Figure 4, which shows the reduction from generators (“Gen”)
to generators-in-the-negatives (“G-neg”). These numbers are less
implementation-dependent than the runtime, and hence a more convenient as-
sessment of the computational costs (for comparison, we also show the runtimes
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(a) ’hill-valley’ (b) ’libras’ (c) ’promoter’

(d) ’person activity’ (e) ’wlan’ (f) ’hill-valley (by support)’

Fig. 4. The relevance constraint tremendously reduces the number of patterns. More-
over, the generators-in-the-negatives approach significantly reduces the candidate set.

on a Core 2 Duo E8400 for the hill-valley dataset in Figure 5(a)). The experi-
ments show that while the reduction varies between the datasets, it can amount
to an order of magnitude.

We also compared the runtimes for the first and second step of our algorithm,
namely computing the generators-in-the-negatives and removing the dominated
candidates. The result is shown in Figure 5(b). It shows that for all datasets,
the computational costs are dominated by the candidate mining step. While the
table shows the values for a maximum length of 2 and a support threshold of
30%, the results are similar for other settings.

(a) runtime using the G-
neg instead of all generators

dataset share of 2nd step

hillValley 4.3 %
libras 1.6 %
personActivity 8.6 %
promoter 11.1 %
WLAN 0.3 %

(b) Share of the computational time
spent in the filtering step

Fig. 5. Runtime figures showing (a) that the generators-in-the-negatives approach re-
duces the computation time, and (b) that the overall costs are dominated by the
candidate mining step
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7 Conclusions

In this paper, we have adapted the idea of relevance [6] to sequential data. We
have shown that several important properties do not carry over from itemset to
sequence data. This makes the use of the closed-on-the-positives as representa-
tives less appealing, which motivated our proposal to use, instead, the minimal
generator sequences as representatives. Besides coming up with shorter descrip-
tions, this has the important advantage that it allows for a meaningful maximum
pattern length constraint, which can be very useful in practical applications.

Subsequently, we have presented a computational approach for mining the
relevant sequences. Our approach is based on the relation between relevant se-
quences and minimal generators in the negatives. This relation is kind of the
counterpart to the relation between relevant itemsets and closed itemsets in the
positives, discovered by Garriga et al. [8].

In the experimental section, we have shown that the concept of relevance
results in a tremendous reduction of the number of patterns, and that the
generators-in-the-negatives approach reduces the computational costs. Our ap-
proach thus improves upon the use of all sequence generators in a similar way
as Garriga’s approach exceeds over the use of all closed itemsets. For sequence
data, computing the minimal generators is, in general, not more demanding than
computing closed patterns. Thus, our algorithm would also be a good choice as
underlying miner in post-processing [2, 4] or iterative approaches [5, 13–15].

There are several lines in which our research can be extended. For one, it
could be adapted to sequences of itemsets, as opposed to the sequences of items
considered here. For another, the relation between minimal generators in the
negatives and relevant patterns also holds in the case of itemsets. It might be
exploited to design algorithms for mining relevant minimal-length itemsets. This
would result in shorter itemsets, which is an important advantage if the itemsets
are to be read and interpreted by human experts. Another interesting question
would be whether the approaches proposing closure operators on patterns taking
the form of sets of sequences [17, 18] could be combined with the concept of
relevance. Finally, it would be interesting to investigate whether the notion of
relevance can be further relaxed, following the ideas of [25, 26].
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EU Collaborative Projects P-Medicine and EURECA, which are co-funded by
the European Commission under the contracts ICT-2009-6-270089 respectively
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mining by local optimization. In: Balcázar, J.L., Bonchi, F., Gionis, A., Sebag,
M. (eds.) ECML PKDD 2010, Part III. LNCS, vol. 6323, pp. 563–578. Springer,
Heidelberg (2010)

16. Grosskreutz, H.: Class relevant pattern mining in output-polynomial time. In: SDM
(2012)

17. Casas-Garriga, G.: Summarizing sequential data with closed partial orders. In:
SDM (2005)
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Abstract. We consider the problem of mining subsequences with sur-
prising event counts. When mining patterns, we often test a very large
number of potentially present patterns, leading to a high likelihood of
finding spurious results. Typically, this problem grows as the size of the
data increases. Existing methods for statistical testing are not usable
for mining patterns in big data, because they are either computationally
too demanding, or fail to take into account the dependency structure
between patterns, leading to true findings going unnoticed. We propose
a new method to compute the significance of event frequencies in sub-
sequences of a long data sequence. The method is based on analyzing
the joint distribution of the patterns, omitting the need for randomiza-
tion. We argue that computing the p-values exactly is computationally
costly, but that an upper bound is easy to compute. We investigate the
tightness of the upper bound and compare the power of the test with
the alternative of post-hoc correction. We demonstrate the utility of the
method on two types of data: text and DNA. We show that the proposed
method is easy to implement and can be computed quickly. Moreover, we
conclude that the upper bound is sufficiently tight and that meaningful
results can be obtained in practice.

Keywords: Big data, pattern mining, multiple hypothesis testing, event
sequence, frequency of occurrence.

1 Introduction

The amount of collected data is growing rapidly. As a result, the focus in data
mining research is more than ever on faster and simpler methods, where fast
currently means linear or sublinear in the size of the data. However, big data
presents more challenges. For example, when mining patterns—local structure,
as opposed to global structure [15]—the number of patterns potentially present
in the data is often exponential in the size of the data. Testing more patterns is
nice, because it increases the likelihood of finding interesting results. However,
testing more patterns is also dangerous, as it increases the likelihood of finding
spurious results, i.e., patterns caused by randomness.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 385–400, 2013.
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Several methods have been developed in the past decade for testing the sta-
tistical significance of various types of patterns, and a few studies investigated
post-hoc corrections to avoid finding many spurious patterns. Unfortunately,
none of the proposed methods is usable for big data, because they rely either on
randomization, Bonferroni-style post-hoc correction, or both.

Randomization testing is computationally expensive; a single randomization
has a computational cost linear in the size of the data or higher, and thousands or
millions of randomizations may be required for sufficient resolution. Bonferroni-
style post-hoc correction is also problematic, because the studied patterns (which
each correspond to a hypothesis test) are typically dependent, in which case the
p-values become conservative, i.e., many true findings will go unnoticed. The
problem is worse for large data, as the conservativeness depends on the number
of patterns, which may be exponential in the size of the data [6].

We propose a new method for mining subsequences with surprising event
counts that does not suffer from these problems. We formulate a statistical test
that includes a correction for testing multiple hypotheses, i.e., the p-value for
an observation will depend on the observation itself, as well as on the size of the
data. This allows us to avoid using a conservative post-hoc correction. Although
the method is not directly applicable to other data or pattern types, it may act
as a model for methods on other data.

The method provides strong control over the family-wise error rate (FWER),
that is, the probability that any of the significant results is a false positive.
Put less formally, we ask the question “what is the probability that any of the
considered patterns would have a statistic equal to or higher than the observed
statistic?”, where the statistic can be any interestingness measure: support, lift,
WRAcc, etc. We illustrate FWER control in the following example.

Assume that the interestingness measure, and thus the test statistic, is the
support of a pattern, and that the data is a transaction database in tabular
form. For simplicity assume that all items have equal support. The probability
that the statistic of a specific pattern P is significantly high can be assessed by,
for example, using swap randomization [5] to generate randomized samples1 and
then computing how often we observe a similar or higher statistic for pattern P
in the randomized samples. The obtained p-value corresponds to the question
“what is the probability that this specific pattern has a test statistic equal to or
higher than the observed statistic?”.

Now assume that we repeat this procedure for all itemsets of some fixed size.
Because we are testing many hypotheses, we are liable to finding many small
p-values. To prevent this, we can instead compare the observed statistic with the
maximum observed statistic over all itemsets of that size in each randomization.
In that case, the p-values correspond to the question “what is the probability
that any of the considered patterns would have a statistic equal to or higher
than the observed statistic?”, which is the same as FWER control. Significance

1 Which randomization method to use depends on the assumptions that one wants to
make.
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testing with FWER control using randomization for mining frequent itemsets
has been studied extensively by Hanhijärvi [7].

As stated earlier, randomization is unpractical for large data, and the method
proposed in this paper is based on computing the p-values analytically. This
means that we have to analyze the joint distribution of the statistics of all
potential patterns. We discuss a specific type of data and patterns. We show
that, although exact p-values are computationally costly to obtain, an upper
bound can be computed efficiently. We show empirically that the upper bound
is sufficiently tight.

The data that we consider are event sequences, and the aim is to find sub-
sequences of a fixed length where a certain event is significantly frequent or
infrequent. This is essentially a subgroup discovery problem: the target is a spe-
cific event, the descriptions or patterns are subsequences, and the aim is to find
all descriptions where the target is exceptionally frequent or infrequent. This
problem setting has many applications. For example, biologists are interested in
detecting isochores and CpG sites in DNA sequences, which are regions that are
especially rich or poor in CG content and rich in the dinucleotide CpG respec-
tively [2], and another example is that in text analysis it is useful to identify
text fragments where a certain word is under or overused.

Summary of contributions. We propose a new method to test the significance
of event frequencies in subsequences that provides p-values under control of
the family-wise error rate. That is, the p-value corresponds to the probability
of observing the observed statistic or higher in any of the subsequences of a
given length in a single long sequence. We show that computing the p-values
exactly is computationally costly, but that an upper bound can be computed
fast. We investigate the tightness of the upper bound and compare the power of
the test against using a generic post-hoc correction. We demonstrate the utility
of the method by applying the method to two types of data: text and DNA.
We show that the proposed method is easy to implement and can be computed
quickly. Moreover, we conclude that the upper bound is sufficiently tight and
that meaningful results can be obtained in practice.

Outline. The method is introduced in Section 2. Results from the experiments
on the tightness of the upper bound, comparison with the generic post-hoc cor-
rection, and the experiments on the two data sets are presented in Section 3.
Related work is discussed in Section 4 and conclusions are given in Section 5.

2 Method

2.1 Notation

Given a finite set of event labels L, an event sequence S is defined as S =
(s1, . . . , sn), ∀i ∈ {1, . . . , n} : si ∈ L, where n is the length of the sequence. We
denote a subsequence of S as Si,m = (si, . . . , si+m−1), where m is the length
of the subsequence. The count of an event a ∈ L in subsequence Si,m is given

by σ(Si,m, a) =
∑i+m−1

k=i 1{a}(sk), where 1A(sk) is the indicator function that



388 J. Lijffijt

equals 1 if sk ∈ A and 0 otherwise. The frequency of an event a ∈ L in subse-
quence Si,m is ζ(Si,m, a) = σ(Si,m, a)/m. The count and frequency of an event
in a sequence S are defined as σ(S, a) = σ(S1,n, a) and ζ(S, a) = ζ(S1,n, a).

2.2 Background

Our aim is to test the hypothesis that an event is significantly frequent or infre-
quent in a given subsequence. To determine if an observed frequency is signifi-
cant, we use the notion of p-values. Denote Z a random variable that represents
the count of an event under the null hypothesis. The p-value for an observed
count k is the probability of observing that count or higher, under the null
hypothesis:

pH = Pr(Z ≥ k)

The observed count is significantly high if the probability of a observing that
count or higher under the null hypothesis is less than or equal to the pre-specified
threshold α:

pH ≤ α

Vice versa, the observed count is significantly low if the probability of observ-
ing that count or lower is less than or equal to α:

pL = Pr(Z ≤ k) ≤ α

The null hypothesis that we are interested in is that the data has no structure,
i.e., that all events in the sequence are i.i.d. samples:

Definition 1 (Null Hypothesis). The null hypothesis is that the sequence is
generated by a sequence of random variables X1, . . . , Xn, where each random
variable Xi is defined by an independent Bernoulli distribution: Xi ∈ {0, 1}, and
Pr(Xi = 1) = p.

We assume that the parameter p, which represents the expected frequency
of an event, is fixed. The parameter p can be, for example, estimated from the
sequence S, in which case the method will find regions in the sequence where
the event frequency is significantly high (or low) with respect to the rest of the
sequence. Alternatively, p can be based on background knowledge, for example
an estimate derived from a database of sequences.

Furthermore, we assume that we are going to test subsequences of a fixed
length m, which is a parameter defined beforehand by the user, and we assume
that the user chooses a priori the significance threshold α.

2.3 Computing P-Values When Testing One Subsequence

Given a sequence of independent random variables X1, . . . , Xn, each following a
Bernoulli distribution with parameter p, define Zi,m as

Zi,m =
i+m−1∑
j=i

Xj .
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Because Zi,m is the sum ofm independent and identically distributed Bernoulli
variables, the probability distribution for Zi,m is a binomial distribution:

Pr(Zi,m = k) = Bin (k;m, p) =

(
m

k

)
pk(1− p)m−k.

We find that, as expected, the distribution is independent of the location i.
We can now define the one-tailed p-value under the null hypothesis for a

single subsequence at a random location. For the high frequency direction, the
one-tailed p-value is given by

pH = Pr(σ(Si,m, a) ≥ k)

= Pr(Zi,m ≥ k)

=

m∑
j=k

(
m

j

)
pj(1 − p)m−j,

(1)

while the one-tailed p-value in the low frequency direction is given by

pL = Pr(σ(Si,m, a) ≤ k)

= Pr(Zi,m ≤ k)

=

m∑
j=0

(
m

j

)
pj(1− p)m−j .

(2)

As can be seen, the p-values correspond to the cumulative distribution func-
tion of the binomial distribution. These tests are also known as the binomial test.
Many statistical software packages contain a function for computing its value.

2.4 Computing P-Values When Testing All Subsequences

When testing a single subsequence at a random location, the probability of re-
jecting the null hypothesis while it is actually true—a false positive or type I
error—is exactly α, and thus the result is easy to interpret. However, if we test
the significance of the event frequency in multiple subsequences, or in a subse-
quence at an optimized location, we increase the probability of false positives.

Let us assume that we test the observed counts for all subsequences of a given
length, using a sliding window with step size one. In that case, the probability
under the null hypothesis of observing a certain count or higher in at least one
subsequence of length m is

Pr(
⋃

i=1,...,n−m+1

Zi,m ≥ k). (3)

When we test the event frequency in all subsequences, it seems reasonable to
use this probability as a p-value. This is also theoretically justified: the proba-
bility expressed in Eq. (3) is equal to the probability of obtaining at least one
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false positive, thus, using this as the p-value corresponds to strong control of the
family-wise error rate [18].

Thus, we redefine the one-tailed p-value, in the high direction, as

pH = Pr(
⋃

i=1,...,n−m+1

Zi,m ≥ k).

The p-value can be decomposed as

pH = Pr(Z1,m ≥ k) + Pr(Z2,m ≥ k ∩
⋂
i=1

Zi,m < k) + . . .

+ Pr(Zn−m+1,m ≥ k ∩
⋂

i=1,...,n−m

Zi,m < k),
(4)

which highlights that the p-value equals the standard case (Eq. (1)) plus a cor-
rection term.

This correction term is in general difficult to compute exactly. A straight-
forward approach would be to define a column vector v with a probability for
each possible initial state, and a transition matrix W that specifies the transi-
tion probabilities between the states, and use one sink state for all subsequences
with at least k ones. Then the exact p-value is given by computing Wn−m · v.
However, the matrix W will have O(22m) entries, so this approach works only
when the length of the subsequences, m, is very small.

The main result of this paper is that we can instead obtain an upper bound
that is very easy to compute. Let us define the following approximation:

p̃H = Pr(Z1,m ≥ k) + (n−m) · Pr(Z2,m ≥ k ∩ Z1,m < k).

Theorem 1. p̃H is an upper bound on the exact p-value pH , i.e., p̃H ≥ pH .

Proof. Notice that for the correction terms of pH it holds that

Pr(Z2,m ≥ k ∩
⋂
i=1

Zi,m < k) ≥ Pr(Z3,m ≥ k ∩
⋂

i=1,2

Zi,m < k)

≥ Pr(Z4,m ≥ k ∩
⋂

i=1,2,3

Zi,m < k)

≥ . . .

≥ Pr(Zn−m+1,m ≥ k ∩
⋂

i=1,...,n−m

Zi,m < k).

(5)

Combining Eqs. (4) and (5) gives

pH = Pr(Z1,m ≥ k) + Pr(Z2,m ≥ k ∩
⋂
i=1

Zi,m < k) + . . .

+ Pr(Zn−m+1,m ≥ k ∩
⋂

i=1,...,n−m

Zi,m < k)

≤ Pr(Z1,m ≥ k) + (n−m) · Pr(Z2,m ≥ k ∩ Z1,m < k).

Thus, p̃H is an upper bound on the exact p-value pH . ��
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Notice that the first term of p̃H can be computed using Eq. (1), while the
second term can be rewritten as follows:

Pr(Z2,m ≥ k ∩ Z1,m < k)

= Pr(Z1,1 = 0 ∩ Z2,m−1 = k − 1 ∩ Zm+1,1 = 1)

= Pr(Z1,1 = 0) · Pr(Z2,m−1 = k − 1) · Pr(Zm+1,1 = 1)

= (1− p) ·Bin (k − 1;m− 1, p) · p.

Thus, the upper bound p̃H is easy to compute.
We propose to use the upper bound p̃H as a statistical test. This test may

be conservative, but that only means that results may be statistically more
significant. As the exact p-value pH is difficult to compute, we cannot analyze
directly how tight the upper bound is. In Section 3.1 we study empirically how
tight the approximation is, and in Section 3.2 we compare the power of this
test to the alternative of combining the binomial test with a general post-hoc
correction.

To complete the story, we obtain an upper bound to the one-tailed p-value in
the low direction analogously to the previous case. For brevity we just list the
result. Define

p̃L = Pr(Z1,m ≤ k) + (n−m) · Pr(Z2,m ≤ k ∩ Z1,m > k).

Theorem 2. p̃L is an upper bound on the exact p-value pL, i.e., p̃L ≥ pL.

Proof. Analogous to Theorem 1. ��

The correction term can be computed using

Pr(Z2,m ≤ k ∩ Z1,m > k) = p · Bin (k;m− 1, p) · (1− p).

2.5 A Generalization for Sliding Windows with Constant Step Size

If we use a sliding window with step size larger than one, we test fewer hypothe-
ses, but the dependency between the consecutive subsequences will also change.
The upper bound from Section 2.4 is also an upper bound when using a larger
step size, but a tighter bound can be obtained relatively easily.

Let r be the user-defined step size. The p-value in the high direction is

pH = Pr(
⋃

i=1,1+r,1+2r,...,1+�n−m
r  r

Zi,m ≥ k)

Since there are 1 +
⌊
n−m

r

⌋
subsequences, we define p̃H as

p̃H = Pr(Z1,m ≥ k) +

⌊
n−m

r

⌋
· Pr(Z1+r,m ≥ k ∩ Z1,m < k).
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Theorem 3. p̃H is an upper bound on the exact p-value pH , i.e., p̃H ≥ pH .

Proof. pH can be decomposed as

pH = Pr(Z1,m ≥ k) + Pr(Z1+r,m ≥ k ∩
⋂
i=1

Zi,m < k) + . . .

+ Pr(Z1+� n−m
r  r,m ≥ k ∩

⋂
i=1,1+r,1+2r,...,1+(�n−m

r  −1)r

Zi,m < k).
(6)

Also, it holds that

Pr(Z1+r,m ≥ k ∩
⋂
i=1

Zi,m < k) ≥

Pr(Z1+2r,m ≥ k ∩
⋂

i=1,1+r

Zi,m < k) ≥

. . .

(7)

Combining Eqs. (6) and (7) gives

pH ≤ Pr(Z1,m ≥ k) +

⌊
n−m

r

⌋
· Pr(Z1+r,m ≥ k ∩ Z1,m < k).

Thus, p̃H is an upper bound on the exact p-value pH . ��
In this setting, the correction term is more involved. For convenience, we split

the correction term into three parts: the overlap between the two subsequences,
Z1+r,m−r, and the two non-overlapping parts, Z1,r and Z1+m,r. We have that

Z1+r,m ≥ k ⇒ Z1+r,m−r + Z1+m,r ≥ k, and

Z1,m < k ⇒ Z1,r + Z1+r,m−r < k.

Both right hand sides are satisfied simultaneously if and only if

Z1+m,r ≥ k − Z1+r,m−r, Z1+r,m−r ≥ k − Z1+m,r,

Z1,r < k − Z1+r,m−r, Z1+r,m−r < k − Z1,r.
(8)

Since Z1+m,r and Z1,r are both by definition between 0 and r, we have that

k − r ≤ Z1+r,m−r < k. (9)

We can rewrite the correction term to an explicit sum using Eqs. (8) and (9):

Pr(Z1+r,m ≥ k ∩ Z1,m < k)

=

k−1∑
j=max(0,k−r)

Pr(Z1+r,m−r = j ∩ Z1+m,r ≥ k − j ∩ Z1,r < k − j)

=

k−1∑
j=max(0,k−r)

Pr(Z1+r,m−r = j) · Pr(Z1+m,r ≥ k − j) · Pr(Z1,r < k − j)

=

k−1∑
j=max(0,k−r)

⎛⎝Bin(j;m− r, p) ·
r∑

l=k−j

Bin(l; r, p) ·
k−j−1∑
l=0

Bin(l; r, p)

⎞⎠ .
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One may verify that the result for r = 1 is the same as in Section 2.4. The
binomial pmf and cmf can be computed in constant time [14], thus the compu-
tational complexity of the correction term is O(min(k, r)) and independent of
the size of the full sequence. An upper bound p̃L can be derived analogously.

3 Experiments

We studied the power of the test on synthetic data and compared the power of
the test with the alternative of post-hoc correction, results of which are discussed
in Sections 3.1 and 3.2. We also investigated the practical utility of the test on
two types of data: an English novel and a part of the human reference genome.
The findings of these experiments are presented in Sections 3.3 and 3.4.

3.1 Tightness of the Upper Bound

Since the proposed test provides strong control over the family-wise error rate,
we know that the probability of observing one or more false positives is at most
α. Unfortunately, this provides no information on the power of the test, i.e.,
the probability of rejecting a false null hypothesis. Ideally, we would study the
probability or rate of false negatives directly. But that is not possible, unless we
specify an alternative hypothesis; there is no general false negative rate. Instead,
we use the fact that there is a trade-off between the probability false positives
and the probability of false negatives.

By definition we have that the probability of false negatives is minimized when
the probability of false positives is maximized. Thus, preferably, the probability
of observing one or more false positives should be as close to α as possible. To
study how close the probability of encountering one or more false positives is in
practice, we designed the following experiment.

The tightness of the upper bound may depend both on the length of sliding
window, as well as the event probability. Thus, we tried various window lengths
(m ∈ {100, 1000, 10000}) and event probabilities (p ∈ {0.001, 0.01, 0.1}). For
each combination, we generated 1,000 sequences of length n = 9, 999 +m (such
that there are 10,000 p-values per sequence) and computed the p-values p̃H for
all subsequences using a sliding window with step size 1.

The quantity of interest is the minimal p-value per sequence, because if the
minimal p-value in a sequence is below the threshold α, then we have at least one
false positive. Ideally, the distribution of minimal p-values over the sequences is
uniform, which means that for any value α, the probability of observing one or
more p-values below α is exactly α itself. This ensures that the probability of false
positives is maximal (while providing FWER control), and that the probability
of false negatives is minimal. Note that this holds by definition for the exact
p-values under the null hypothesis, but the upper bound that we propose to use
instead may have a higher probability of false negatives.

The results of the experiment are presented in Figure 1. We find that the p-
values are reasonably close to the optimal distribution and that they are further
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Fig. 1. The distribution of minimal p-values over 1,000 synthetic sequences for the
proposed method, using various window lengths m and event probabilities p, compared
to the ideal distribution. We find that the p-values are reasonably close to the uniform
distribution and that they are further from uniform when the expected number of
events (= m · p) is higher.

from the optimal distribution when the expected event count (= m · p) is larger.
The largest observed effect is approximately 1 order of magnitude (m = 10,000,
p = 0.1), indicating that the p-values are 1 order of magnitude too high in that
case. Note that the results for very low expected counts (e.g., m = 100, p =
0.001) may appear more conservative, but they are skewed mostly because there
are very few distinct p-values: the highest number of events observed in any
subsequence is 3 (p̃H = 0.0437), and for k ∈ {0, 1}, we have p̃H = 1.

We expect that p-value estimates that are conservative by one order of magni-
tude will not be a problem in most practical settings; much larger differences in
the choice of α can be observed in the literature: from α = 0.1 to α = 0.00001.
Also, because the p-values are controlled for family-wise error rate, use of a
‘large’ α, such as 0.05, still guarantees that obtaining any false-positive results
has very low probability.

3.2 Comparison to Hochberg’s Step-Up Procedure

An alternative approach to obtaining p-values for the tested hypotheses under
strong control of the family-wise error rate is to use the binomial test (Eqs. (1)
and (2)) with post-hoc correction. The correction with largest power that we are
aware of that provides strong control for the family-wise error rate, and which is
applicable in this setting, and that does not require specifying the dependency
structure of the p-values, is Hochberg’s step-up procedure [8]. Hochberg’s proce-
dure is valid for independent and positively dependent p-values [17]. The latter is
the case here, as the p-values for overlapping windows have positive correlation.
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Fig. 2. The distribution of minimal p-values for the binomial test with Hochberg’s
post-hoc correction, on the data from Figure 1. We find that the p-values are far from
the uniform distribution, for any combination of parameters, while the distribution is
more uniform when the expected number of events (= m · p) is larger.

We computed the p-values for the binomial test for each sequence generated in
the previous experiment (Section 3.1), using a sliding window of the same length,
and adjusted these using Hochberg’s procedure. Thus, the p-values are directly
comparable to those in the previous experiment. We computed the minimal p-
value per sequence, and compared the results with those from the upper-bound
method.

The distribution of minimal p-values is shown in Figure 2. We observe that
p-values from the method with post-hoc correction are far from uniform, for
any combination of parameters, while the distribution becomes more uniform as
the expected number of events per subsequence increases. The proposed method
outperforms the post-hoc approach for any combination of parameters, although
we cannot be certain that this holds for much larger expected number of events.

3.3 Bursty and Non-bursty Words in an English Novel

The prime motivation for this work comes from the domain of text analysis.
Church and Gale [3] and Katz [9] both studied burstiness of words in the context
of probabilistic modeling of word counts, and the concept is related to relevance
measures in information retrieval, such as inverse document frequency [19]. More
recently, using a quantification of burstiness based on the inter-arrival time dis-
tributions of words, burstiness of words has been related to semantic categories
[1], statistical tests for comparing corpora that take into account burstiness have
been proposed [13], and the impact of burstiness on choosing appropriate window
lengths for sequence analysis has been studied [12].
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Fig. 3. The relationship between burstiness, measured using the Weibull distribution,
and frequency of words. Each dot represents a word in the novel Pride and Prejudice.

Table 1.We studied the local behavior of the five least and most bursty words in two
frequency bins to investigate the suitability of our method to locate over and underuse
of words in text.

Frequency Low [σ = 40–50] High [σ = 300-600]

Non-bursty hardly, help, perfectly, point, scarcely an, elizabeth, more, there, when
Bursty marry, pride, read, rosings, william are, me, their, will, your

For the purpose of text analysis, it is useful to know if there are fragments in
a text where a certain word is over or underused and to locate such fragments.
We investigated the suitability of the proposed method to this task. As an ex-
periment, we downloaded the book Pride & Prejudice by Jane Austen, which
is freely available via Project Gutenberg2. We computed the frequency and the
maximum-likelihood estimates for the Weibull distribution [1,13] for all words,
and then selected the five most and least bursty words in two frequency bins,
see Table 1. An overview of the relation between the frequency and burstiness
of words is given in Figure 3.

For each of the selected words, we tracked the frequency throughout the book
using a sliding window of length 5,000 and step size 1. The book contains n =
121,892 words, thus there are 116,893 windows. We chose a window length of
5,000 to ensure that low event counts could also be significant; for example, for
a window length of 2,000 and event probability p = 1/300, we have that the
p-value for k = 0 is p̃L = 0.4833. Thus, an event count of zero is not significant,
even for fairly frequent words. With a window length of 5,000, event counts of 3
and less are significant at α = 0.05 (p̃L = 0.0164).

We computed the significance of the observed frequencies, for both the high
and low direction. Because the results are for illustrative purposes, we did not
apply any additional correction for testing multiple sets of hypothesis. Figure
4 shows the results for three words. The word an is frequent and non-bursty,
and no parts of the book show significant under or overuse of the word. For the
pronoun me, which is frequent and bursty, we observe two areas of overuse, and

2 http://www.gutenberg.org/

http://www.gutenberg.org/
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Fig. 4. Significant over and underuse of three words in the novel Pride and Prejudice,
compared to the average frequency in the book. Each blue dot corresponds to an
occurrence of the word in the text. To aid the visualization of the results, all overlapping
significant subsequences have been merged together. We observe that for an, no parts
of the book show significant under or overuse of the word, while for the pronoun me,
two areas show significant overuse, and four areas show underuse of the word. Finally,
the family name rosings is used mainly in two parts of the book.

four areas of underuse, compared to the average frequency. Finally, the family
name rosings, which is infrequent and bursty, is used a lot in two text fragments
and occurs a few times in other parts of the book.

A full overview of results is given in Table 2. As expected, we find that each of
the bursty words is significantly over or underrepresented in at least one fragment
of the book. Surprising is that some frequent words that are non-bursty according
to the Weibull distribution estimate are also under or overused in one or more
fragments. This indicates that there is local structure that is not captured by
the Weibull measure of word burstiness. The results from the proposed method
are confirmed by visual inspection of the data and we conclude that the method
has a clear potential to find novel and interesting patterns.
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Table 2. Number of areas with significant underuse (L) or overuse (H) for each of
the twenty words. Each of the bursty words is significantly more or less frequent in
some part of the book, and some frequent words that are non-bursty according to the
Weibull distribution estimate are also under or overused in one or more book parts.

Non-bursty Bursty
Frequent Infrequent Frequent Infrequent

Word L H Word L H Word L H Word L H
an 0 0 hardly 0 0 are 1 0 marry 0 1
elizabeth 2 0 help 0 0 me 4 2 pride 0 1
more 0 0 perfectly 0 0 their 1 0 read 0 2
there 0 1 point 0 0 will 2 3 rosings 0 2
when 0 0 scarcely 0 0 your 2 3 william 0 1
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Fig. 5. Analysis of the GC content at the start of Chromosome 1 of the Homo Sapiens
reference genome, using a sliding window of length 10,000. All overlapping significant
parts have been merged. We observe that the frequency of GC is quite volatile: parts
where the content is significantly high overlap with parts where the content is sig-
nificantly low. We also observe that the test is sufficiently powerful, there are many
significant results, even though we are testing a total of 225,270,622 hypotheses.

3.4 Variation in GC and TA Content in DNA

Variation of GC content in DNA sequences is used to define isochores, which in
turn are used to identify gene structure [2]. We tested if we could find significant
variation in GC and TA content in chromosome 1 from the Homo Sapiens refer-
ence genome, which we downloaded from the NCBI repository3. We computed
the frequency of C+G using a sliding window of length 10,000 and step size 1.
Chromosome 1 of the reference genome (build 37, patch 9) contains 225,280,621
fixed nucleotides, thus the number of tested hypotheses is in this case very large.

Analysis of the first consecutive fixed part can be found in Figure 5. We
observe that the test is sufficiently powerful, because several parts of the sequence
are identified as having significantly high or low GC content. We find that the
GC content is quite volatile: the parts where the content is significantly low
and high overlap each other. We conclude again that the proposed method has
potential for finding novel and interesting patterns in the data.

3 http://www.ncbi.nlm.nih.gov

http://www.ncbi.nlm.nih.gov
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4 Related Work

The popularity of significance testing methods in data mining has increased
considerably over the past decade. Gionis et al. [5] introduced swap randomiza-
tion for mining significant patterns while maintaining row and column margins,
while De Bie [4] proposed a maximum-entropy approach that can also take into
account other types of constraints. Webb [20] and Hanhijärvi [7] studied the
problem of multiple testing for mining patterns. These studies are all restricted
to mining itemsets or tiles. A generic approach to mining structure in data using
statistical testing has been presented by Lijffijt et al. [11].

There are only a few studies on statistical testing approaches for mining se-
quential data. Most related is the statistical test proposed by Kifer et al. [10]
for detecting change points in streams. However, they rule out the possibility of
controlling the family-wise error rate, as they consider only streams of infinite
length. Another drawback of that method is that the critical points cannot be
computed analytically, but require randomization.

Complementary to this work are the randomization-based statistical tests for
comparing event counts between databases of sequences put forward by Lijffijt et
al. [13]. Segmentation methods may provide an alternative to modeling frequency
variation, although the focus is then on global modeling, while the aim here is
to find local structure. Mannila and Salmenkivi [16] study efficient methods for
sequence segmentation, while the approach by Lijffijt et al. [11] can be used to
assess the significance of such a segmentation.

5 Conclusions

We have introduced a novel statistical test for assessing the significance of event
frequencies in subsequences when using a sliding window. The test provides
strong control of the family-wise error rate and takes into account the depen-
dency structure of overlapping subsequences. We have shown that, although
exact p-values under the null hypothesis are difficult to compute, an easy-to-
compute upper bound can be used instead. We have shown empirically that
the upper bound is sufficiently tight and that the test offers increased power
compared to combining the binomial test with a generic post-hoc correction.

We have also investigated the utility and practicality of the test on linguistic
and biological sequences and found several novel and interesting patterns. We
have shown that meaningful results can be obtained, and that the method re-
mains sufficiently powerful even when testing a very large number of hypotheses.
We conclude that the proposed method is simple, fast and powerful and that it
can produce meaningful results on various types of data.
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Abstract. Sparse Dictionary Learning has recently become popular for
discovering latent components that can be used to reconstruct elements
in a dataset. Analysis of sequence data could also benefit from this type
of decomposition, but sequence datasets are not natively accepted by the
Sparse Dictionary Learning model. A strategy for making sequence data
more manageable is to extract all subsequences of a fixed length from
the original sequence dataset. This subsequence representation can then
be input to a Sparse Dictionary Learner. This strategy can be problem-
atic because self-similar patterns within sequences are over-represented.
In this work, we propose an alternative for applying Sparse Dictionary
Learning to sequence datasets. We call this alternative Relevant Subse-
quence Dictionary Learning (RS-DL). Our method involves constructing
separate dictionaries for each sequence in a dataset from shared sets
of relevant subsequence patterns. Through experiments, we show that
decompositions of sequence data induced by our RS-DL model can be
effective both for discovering repeated patterns meaningful to humans
and for extracting features useful for sequence classification.

1 Introduction

Sparse Dictionary Learning has recently become popular for discovering latent
components that can be used to reconstruct elements in a dataset. It has seen
particular success in computer vision where it has been incorporated into solu-
tions for problems in image reconstruction, in-painting, and classification [1–6].

Sparse Dictionary Learning’s success in computer vision makes it a promising
candidate as an algorithm for discovering patterns in sequence data. Sequence
data, however, is not natively accepted by the Sparse Dictionary Learning model:
sequences can be of variable length and patterns within sequences are not asso-
ciated with a fixed set of indices. These patterns can occur at any point within
a sequence and can be repeated multiple times. A strategy for making sequence
data more manageable is to extract all subsequences of length K from the orig-
inal dataset and use these as input to a Sparse Dictionary Learning algorithm.
This strategy poses a problem, however, because self-similar patterns within
sequences are over-represented.

In this work, we propose an alternative to this standard subsequence dataset
approach, which we call Relevant Subsequence Dictionary Learning (RS-DL).

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 401–416, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Our method involves constructing separate dictionaries for each sequence in a
dataset from shared “relevant subsequence patterns.” This structured dictionary
can be used to pick out shared information from sets of sequences and can be
learned using standard optimization methods. An important contribution of our
work is in showing how to efficiently run the LARS algorithm given our relevant
subsequence dictionary structure.

To show the utility of the RS-DL model, we run experiments on several types
of sequence data. Running our algorithm on synthetic sets of sequences with
discrete-valued elements, continuous electrocardiogram data, and text datasets,
we show that our RS-DL model is effective for discovering repeated patterns
meaningful to humans (also called motifs). We also show that RS-DL is effective
for classification. To do so, we use RS-DL to extract features from time-series
data and show that these features can reduce classification error compared to
standard methods.

2 Background: Sparse Dictionary Learning

Sparse Dictionary Learning is a method of decomposing a dataset into the prod-
uct of a dictionary matrix and a sparse vector of coefficients. Here we represent
the N dataset vectors as x1:N , with the nth vector given by xn ∈ Rd, the dic-
tionary matrix as W ∈ Rd×C , and the set of N sparse vectors of coefficients as
α1:N , αn ∈ RC . The number of dictionary columns, C, is chosen beforehand.
The Sparse Dictionary Learning objective is typically defined as follows:

f(xn;W ) = min
αn

1

2
||xn −Wαn||22︸ ︷︷ ︸

loss

+ λψ (αn)︸ ︷︷ ︸
sparsity-inducing term

(1)

where ψ is a regularization function, typically an L1 norm.
There has been a significant amount of research to develop efficient algo-

rithms for solving the Sparse Dictionary Learning problem [3]. These algorithms
typically consist of repeating two optimization steps. In the first step, a linear
regression problem with the sparsity-inducing regularization term is solved to
compute αn = minαn ||xn − Wαn||22 + λψ (αn) given the current value of the
dictionary, W , for each example in the dataset. Common algorithms to perform
this task include pursuit algorithms [7], Least Angle Regression (LARS) [8],
coordinate-wise descent methods [9], and proximal methods [10].

In the second step, the value of the dictionary, W , is updated given the current
minimum values of αn. As with methods for optimizing with respect to the α’s, it
is possible to use any of a number of different methods to minimize with respect
to the dictionary. These methods include K-SVD [7] (which also updates the α
terms), stochastic gradient methods [6], and solutions of the dual problem (for
a constrained dictionary) [5], among others.

Sparse Dictionary Learning is similar to other decomposition techniques like
Principal Component Analysis (PCA). PCA decomposes elements of a dataset
into linear combinations of vectors from an orthogonal basis. Sparse Dictionary
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Learning differs from PCA in two important respects. First, dictionary columns
are non-orthogonal, and second, the sparsity inducing regularization term forces
only a small number of columns to be used for reconstruction. These charac-
teristics can be advantageous compared to PCA because the sparsity inducing
term allows the dictionary to include more columns that the dimensionality of
the vector being reconstructed [3]. This “overcomplete” representation allows a
large number of patterns to be found in the data but only a small number of
these patterns are used to reconstruct each data element.

3 Relevant Subsequence Dictionary Learning

We propose an approach, which we call Relevant Subsequence Dictionary Learn-
ing (RS-DL)1, to extend Sparse Dictionary Learning to the domain of sequences.
Sequences differ from more-standard vector representations in that they can vary
in length across a single dataset, and patterns within sequences can occur at any
position rather than being associated with a fixed set of indices. To account
for these characteristics of sequence data, RS-DL constructs dictionaries from
C different subsequence dictionary components, each of length K. We refer to
these constituent components as “relevant subsequence patterns” and indicate
these patterns by the two-dimensional array, v, of size C × K, where vc,k is a
value associated with the kth position in the cth relevant subsequence pattern.

Unlike standard Sparse Dictionary Learning, RS-DL constructs a separate
dictionary, Wn, for each sequence, xn, in a dataset by positioning relevant sub-
sequence parameters, vc,:, so that they cover all possible subsequence start-
ing positions. Positions in dictionary columns that are not given by relevant
subsequence parameters are set to zero.

Figure 1 shows how the array of constituent relevant subsequence patterns,
v, is used to construct Wn, the dictionary associated with sequence xn. Table 1
gives descriptions of all parameters in the RS-DL formulation. After building the
dictionaries, Wn, we are left with an objective very similar to that of standard
Sparse Dictionary Learning:

f(x1:N ;v) =
N∑

n=1

min
αn

1

2
||xn −Wnαn||22 + λ|αn|1 (2)

To optimize with respect to this objective, we employ a stochastic gradient
descent procedure where sequences are received by the learner in random order.
The learner alternatively solves first for αn, then takes a gradient step with re-
spect to the array, v, in a similar manner to existing Sparse Dictionary Learning
optimization algorithms. For the optimization step with respect to αn, we ap-
ply a variation of the Least Angle Regression (LARS) [8] algorithm. The LARS
algorithm requires computing a number of matrix products involving Wn. How-
ever, computing these matrix products directly would be inefficient, as each Wn

matrix is of size O(Tn) × O(CTn), where Tn is the length of the nth sequence.
1 We have made code available at http://cs.gmu.edu/~sblasiak/RS-DL.tar.gz

http://cs.gmu.edu/~sblasiak/RS-DL.tar.gz
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Sequence: xn Matrix: Wn Vector: αn

≈Tn
. . .

C
(T

n
−

K
+
1)

K

Tn −K + 1

C(Tn −K + 1)

v1,: v2,: vC,:

Fig. 1. The figure above illustrates the Relevant Subsequence Dictionary Learning
setup. The matrix Wn is constructed from the weights vc,k in C blocks so that the
relevant subsequence patterns given by each vc,: are arranged to create dictionary
elements (columns of Wn) that cover every K length subsequence of the sequence
xn (illustrated in blue). White areas of the Wn matrix are set to zero. The vector
αn is L1-regularized to select a small number of dictionary columns associated with
positioned relevant subsequences patterns. The αn-weighted sum of these positioned
relevant subsequences patterns approximates xn.

To improve performance, we can take advantage of the sparse construction of
each Wn, allowing these products to be computed more quickly, as we describe
in the next section.

After computing each new value of αn, the RS-DL algorithm takes a single
stochastic gradient step in v: vi+1 ← vi −

(
γ

i+1

)
∂ 1

2 ||xn−W i
nαn||22

∂v , where γ is a
learning rate term. We found empirically that, for RS-DL, this single stochastic
gradient step is often faster than solving for v after accumulating information
from a batch of αn’s as in Mairal et. al. [3].

3.1 Efficiently Running the LARS Algorithm with RS-DL

RS-DL involves constructing dictionaries, Wn of size O(Tn)×O(CTn), many of
whose entries are set to zero. If not carefully handled, this large, sparse matrix
can cause the RS-DL training algorithm to operate inefficiently. The LARS al-
gorithm constitutes a major substep in RS-DL training and requires a number
of computations involving Wn. Efficiency of these computations can be con-
siderably improved by taking Wn’s sparse construction from elements of the
array v into account. Three LARS computations involving the dictionaries, Wn

are (i) the matrix-matrix product (Wn)
�
A (Wn)A, (ii) the matrix-vector product



Relevant Subsequence Detection with Sparse Dictionary Learning 405

Table 1. Relevant Subsequence Dictionary Learning parameters

��������� ���	
�
�	

M �� �
�� �� �� ������� ��� �
������ �����	���� �� ��
� �� M ��������� ��	 ����
	� �
�

��	�
	����������� �����	����

x1:N � ��� �� N �������� �����	���� �	�
�
���� �����	��� xn ��	 �� �� ���
���� ��	��� �
������
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α1:N � ��� �� N �������� "�� αn ������ 
� �� ��	�� C (Tn −K + 1)�
Wn � ��
�� ����
! �� �
�� Tn × C (Tn −K + 1) ������� ���� �����	�� �� �� ����# v�

v �	 ����# �� ������ ���� �� ��	������ �
��
�	��# �����	��� vc,k 
� �����
���� �
� �� kth ���
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	 �� cth ������	� ��������	�� ������	�

λ �� L1 �������
���
�	 ��������� �����
���� �
� ��� αn�

(Wn)A ωA, and (iii) the matrix-vector product W�
n u, where A indicates an ac-

tive set of columns (the number of non-zero components of α), (Wn)A indicates
a matrix constructed from this active set, ωA is a vector of length |A|, and u is
a vector of length Tn. Below, t(i) indicates the index of the start of the subse-
quence associated with the ith column of Wn (see Figure 1), c(i) indicates the
relevant subsequence position associated with the ith column of Wn, and sgn(i)
indicates the sign of the correlation between the ith matrix column, (Wn)

�
i , and

the current residual: sgn
(
(Wn)

�
i

(
xn − (Wn)

�
A αn

))
.

The matrix-matrix product, X = (Wn)
�
A (Wn)A, can be computed as follows:

Xij =

{∑max(K−t(j)+t(i),0)
k=0 sgn (i) vc(i),ksgn (j) vc(j),t(j)−t(i)+k t(j) ≥ t(i)∑max(K−t(i)+t(j),0)
k=0 sgn (i) vc(i),t(i)−t(j)+ksgn (j) vc(j),k t(j) < t(i)

(3)

This matrix-matrix product has an overall complexity of O(|A|2K). However,
the full product does not need to be computed at each LARS iteration. Rather,
as additional columns are added to the active set, we update a stored Cholesky
decomposition of (Wn)

�
A (Wn)A, at a cost of O(|A|K) for each update (updates

involve computing a single column of the product in Equation 3), plus O(|A|2)
for a back-substitution operation.

We compute the matrix-vector product, x = (Wn)A ωA, incrementally as the
weighted sum of components of v:

x(1:i) =

K∑
k=1

x
(1:i−1)
t(i)+k + sgn (i) (ωA)i vc(i),k (4)

where x(1:i) indicates the sum up to the ith term, and i ∈ [1 . . . |A|]. This matrix-
vector product has an overall complexity of O(|A|K).

Finally, we compute the matrix-vector product, x = W�
n u, as follows:

xi =
K∑

k=1

vc(i),kut(i)+k (5)

with an overall complexity of O(CTnK).
For each LARS iteration, we must also compute CTn correlations between

each column of the matrix, Wn, and the current residual at a cost of K each.
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These are computed in the same way as the matrix-vector product in Equation
5. In most of out experiments, we restrict |A| to values less than or equal to
C. Thus, each LARS iteration has a complexity of O(CTnK) when |A| is small,
which can be a significant reduction from O(CT 2

n). However, with no restrictions
on the size of the active set, |A| can potentially grow to CTn. In this case,
complexity is eventually dominated by back-substitution operations involving
the incrementally-updated Cholesky decomposition of (Wn)

�
A (Wn)A at a cost

of up to O(C2T 2
n) per iteration.

3.2 Modifications to RS-DL

The procedure for constructing the RS-DL dictionary (Figure 1) is applicable
only to sequences with continuous-valued elements. To allow RS-DL to find de-
compositions of sequences of discrete symbols, we first transform each original
sequence into M separate binary sequences, where elements of the mth binary
sequence indicate if the symbols in the original sequence are equal to the mth

symbol in the alphabet. These M binary sequences are then concatenated to ob-
tain the input sequence to RS-DL. Dictionary construction must also be modified
for discrete sequences. In this case, v becomes a three-dimensional constituent
array, where vc,k,m is associated with the mth symbol of the kth position in the
cth relevant subsequence. Separate dictionaries are constructed for each of the
M possible symbols using vc,:,m for the cth relevant subsequence pattern associ-
ated with the mth constructed binary sequence. These M dictionaries are then
stacked vertically to create a composite dictionary.

It is also possible to use RS-DL to find decompositions of multi-variate se-
quences. To do so, we rearrange each multivariate sequence as a concatenation
of univariate sequences. We then create a stack of M dictionaries as we did to
create the dictionary for discrete sequences.

Another modification of the basic RS-DL algorithm includes appending a col-
umn to the dictionary whose entries are set to a constant value. This addition
has the effect of including a bias term whose magnitude varies depending on the
associated αn term. This bias term is useful for modeling time series datasets
where the amplitudes of major trends that occur in individual sequences are off-
set by varying amounts. We employ this bias term in all experiments conducted
on time series sequences. A similar strategy can also be employed to capture
linear trends.

Finally, we can modify the LARS algorithm so that, rather than finding an
L1-regularized solution for α, it finds solutions with one or fewer non-zero α
terms associated with each of the C relevant subsequence patterns. Although
the L1 regularization is no longer enforced in this case, sparsity is maintained in
a similar manner to the L0-regularized2 version of LARS[8].

2 The “L0 norm” [7] is a pseudo-norm that counts the number of non-zero components
in a vector, i.e., ||x||0 =

∑
i I (xi �= 0).
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4 Relationship to Hidden Markov Models

A form of the Factorial Hidden Markov Model, which we describe later in this sec-
tion, shares characteristics of RS-DL. To understand Factorial Hidden Markov
Models, one must first understand the basic Hidden Markov Model (HMM),
which defines a probability distribution over sequences. The HMM assumes that
each symbol in a sequence is generated from a mixture distribution. Mixture
components are indexed by “hidden states” in the HMM. The Markov property
holds over these hidden states, meaning that the value of the hidden state in-
dexing the observation at time point t depends only on the value of the hidden
state associated with time point t− 1.

The Profile HMM (pHMM) [11] is an HMM with specific restrictions on tran-
sitions and emissions. In Profile HMMs, hidden states are divided into three
types: Match states, which describe important sequence elements, Insert states,
which model noise, and Delete states, which do not emit a symbol and allow the
model to skip a Match or Insert state. Emission distributions from the pHMM’s
Match hidden states capture an archetypal sequence or sequence fragment, and
the likelihood of an observed sequence under a pHMM can be viewed as a mea-
sure of distance to the archetypal sequence encoded in the model. Blasiak et.
al. [12] defined a simplified version of the pHMM, called the Simplified Local
pHMM (SL-pHMM), which generates observed sequences using a contiguous se-
quence of Match states surrounded by Insert states. This structure simplifies
the pHMM in a convenient way, as the only information needed to encode the
model’s entire hidden state configuration is the position of the first Match state.

The Factorial HMM [13] extends the basic HMM by postulating that the
distribution over sequence elements depends on hidden states from multiple,
parallel HMMs. If SL-pHMM factors are used, then the resulting Factorial SL-
pHMM, with Gaussian emission distributions, operates very similarly to RS-DL.

Figure 2 shows an example configuration of Match hidden states in a Fac-
torial SL-pHMM. This hidden state configuration leads to the same additive
composition of parameters used to represent symbols of an observed sequence in
RS-DL. The primary differences between RS-DL and the Factorial SL-pHMM
lie in how the parameters of each model are constrained. In the Factorial SL-
pHMM, the model’s hidden states can be encoded in a vector, α(FHMM)

n of length
C(Tn −K +1), where C indicates the number of factors in the model, Tn is the
length of the sequence, and K is the number of Match states in the SL-pHMM.
Because the hidden state sequence in the SL-pHMM only allows a single start
position for each chain of Match states, encoding the positions of initial Match
hidden states requires that α(FHMM)

n be constrained as α(FHMM)
n,i ∈ {0, 1} and∑Tn−K

t=0 α
(FHMM)
n,c(Tn−K+1)+t = 1 ∀c ∈ [1 . . . C]. In contrast, the αn-vectors in RS-

DL are not explicitly constrained but are instead subject to L1 regularization.
Substituting an L1 regularizer in RS-DL for the binary constraint in the Factorial
SL-pHMM is advantageous, because it converts the combinatorial optimization
problem associated with the MAP solution over hidden state configurations of
the Factorial SL-pHMM into one that is more-easily solvable.
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Fig. 2. The diagram above illustrates example hidden state assignments for the Facto-
rial SL-pHMM. Sequences of SL-pHMM Match states are indicated by blue nodes with
the text “Mk,” indicating the kth Match state. Insert states are indicated by white-
colored nodes with the text “I .” SL-pHMM transition probabilities are defined so that
only a single sequence of Match states per individual SL-pHMM can occur. For a Facto-
rial SL-pHMM with Gaussian emission distributions, hidden states are associated with
different weights which are summed over the C constituent SL-pHMMs (vertically in
the diagram) to obtain the mean parameter used to generate the appropriate observed
sequence element (in gray).

5 Experiments

We evaluate Relevant Subsequence Dictionary Learning using two types of mea-
surements. First, we expect RS-DL to find meaningful subsequences within a
dataset. This task is also referred to as “motif finding” [14, 15] (other authors
[16] use a different definition of the term “motif”). We quantitatively assess motif
finding on a synthetic dataset consisting of discrete sequences where the ground
truth motif positions are known. We also qualitatively assess motif finding re-
sults on sets of both time-series and text sequences to verify that RS-DL can
pick out portions of a sequence meaningful to humans. In the next sections we
make a distinction between the terms “relevant subsequence pattern” and “mo-
tif”. We use “relevant subsequence pattern” to indicate the pattern encoded in
RS-DL parameters, and “motif” to denote subsequences selected from a dataset
because of their association with a particular relevant subsequence pattern.

We also test RS-DL in sequence classification. We hypothesize that if RS-DL
can discover informative subsequences with no access to label information, then
these subsequence features will be effective for classification. In these experi-
ments, RS-DL features are input to a one-nearest-neighbor classifier to isolate
the effect of different feature representations.

5.1 Datasets

We employ four types of datasets to evaluate our algorithm. To evaluate the
ability of RS-DL to discover known motifs, we generated a synthetic dataset
of discrete-valued sequences containing three predefined subsequences. We also
assessed motif finding ability using a set of continuous-valued ECG sequences3

3 http://www.cs.ucr.edu/~eamonn/discords/ECG_data.zip

http://www.cs.ucr.edu/~eamonn/discords/ECG_data.zip
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and the Associated Press (AP) dataset4, consisting of English language text. We
assessed classification ability using only continuous-valued sequences. These in-
cluded both a synthetic dataset, which we call the “Bumps” dataset, and datasets
from the University of California Riverside (UCR) Time Series Classification
Database [17].

5.2 Finding Motifs in Synthetic Sequences

To verify basic motif finding abilities of RS-DL, we constructed a synthetic
dataset, allowing us to control the location and frequency of motifs. The syn-
thetic dataset consisted of 20 sequences, generated to contain up to three non-
overlapping motifs. These motifs consisted of 5 repetitions of “a,” “r,” or “n,”
with a 10% chance at each motif position for a motif character to be replaced by
a character generated uniformly from the full sequence alphabet of 20 possible
characters. Non-motif sequence elements were chosen uniformly at random from
the full 20-characters alphabet. Sequence lengths were generated uniformly at
random from a range of 25 to 75.

To explore the behavior of the RS-DL model, we ran a number of experiments,
varying the values of K, the length of the relevant subsequence pattern, from
3 to 7, and the values of λ, the L1-regularization parameter, from 0.4 to 0.8 in
steps of 0.05. We configured the algorithm to use at most one of each relevant
subsequence pattern to reconstruct each sequence.

Figure 3a shows graphs of the average precision and recall associated with
motifs recovered by the RS-DL algorithm over 20 trials for each configuration of
K and λ. We counted a ground truth motif as “discovered” if its start position
was within �K/2 of the motif returned by the RS-DL algorithm. To verify the
upper limit of algorithm performance and to confirm the trend that ground
truth motifs were associated with larger values of α than false positive motifs,
we counted motifs as “not found” if their associated α values were below 0.25.
Motifs were extracted by taking the subsequence of length K at the position of
an associated non-zero component of the α vector.

Figure 3b, shows the output of the run of the RS-DL algorithm with the
lowest mean-squared error (MSE) out of 20 random initializations. Columns in
the figure display both values of α and motifs selected from the dataset sequence.
Different dataset sequences are associated with different rows in the figure. In
this run, low values of α are consistently associated with incorrectly discovered
motifs (in red), and, out of four possible relevant subsequence patterns given by
the model, only three are used, which is consistent with the ground truth.

Figure 3a shows that both precision and recall tend to increase as the value
of K increases. In addition, the figure shows that if we set λ to a value that is
too high, both precision and recall are degraded. This behavior, when varying
λ, occurs because at high λ levels, the model becomes too sparse, reducing
the number of motifs returned. In this case, we do not see a corresponding
increase in precision because sparsity is only enforced in the number of relevant
4 http://www.cs.princeton.edu/~blei/lda-c/ap.tgz

http://www.cs.princeton.edu/~blei/lda-c/ap.tgz
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Fig. 3. (a) The graphs in the left-hand figure depict precision and recall over 20 runs
of the RS-DL model on a synthetic dataset. As the L1-regularization term, λ, increases,
fewer motifs are returned, leading to a drop in both recall and precision. As the length
of the relevant subsequence patterns increase, precision and recall tend to increase. (b)
Recovered α coefficients (left side of Figure b) and associated subsequences (right) from
a low-error run (the run with the smallest MSE out of 20 random initializations) of the
RS-DL algorithm on the synthetic dataset. The low-error run gave a precision of 0.7
(with an α cutoff of 0) and a recall of 1.0. The number of relevant subsequences patterns,
C, in the model was set to four, while the number of ground truth motifs was three.
Consistent with the ground truth, the model only used three relevant subsequences
patterns to reconstruct the data. Incorrectly discovered motifs are depicted in red.

subsequences patterns used to reconstruct a sequence. Also from Figure 3a, the
best precision scores were near 1.0, occurring with K = 6 and λ = 0.65 and
filtering motifs with α coefficients less that 0.25. This result contrasts with top
precision values of 0.5 (not shown in the figure) when the α filtering level is
set to zero. The reason for this trend is illustrated in Figure 3b, where motifs
associated with small α coefficients also tend to be less correlated with core
relevant subsequence patterns.

To avoid low recall solutions it is possible to rerun the model for a number
of trials with initial relevant subsequence patterns, v, drawn from a standard
Normal distribution. Because the RS-DL problem is non-convex, the optimiza-
tion algorithm will converge to different areas in the parameter space depending
on initial parameter settings. We found that, with our synthetic dataset, low-
MSE runs consistently produced recall values of 1.0 (see Figure 3b). Selecting a
low-MSE run also allows us to better take advantage of RS-DL’s sparsity. For
instance, if we set C, the number of relevant subsequence patterns, to 4, larger
than the 3 ground truth motifs in our dataset, then low-MSE solutions return
only 3 discovered motifs (higher error solutions find a fourth motif with noisy
parameters).
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5.3 Motifs in Time-Series Data

To show that RS-DL can pick out patterns meaningful to humans in continuous-
valued sequences, we trained it on a single sequence of electrocardiogram (ECG)
data, containing 3750 datapoints. The ECG sequence consists of a recording
of electrical signals from the human heart measured at the surface of the skin.
A plot of the signal (Figure 4) contains repeated patterns easily identifiable to
humans. The ECG sequence also contains an anomalous motif, which, like the
main set of patterns in the sequence, is easily identified by humans. We ran the
RS-DL algorithm on the sequence with the L1 regularization term, λ, set to .1
and the length of the relevant subsequence pattern, K, set to 150, and C, the
number of relevant subsequence patterns, set to 15. In Figure 4, we plotted the
relevant subsequence patterns learned by RS-DL associated with the largest 50
regression coefficients, α. Each pattern in the plot (top three graphs) consists
of 150 values of the relevant subsequence pattern given by the constituent vec-
tor, v, multiplied by its corresponding α coefficient. Summing over all of these
plotted subsequences gives the approximate sequence reconstructed by RS-DL
(bottom plot in green, offset by −1). The original sequence is also shown in
the figure (bottom plot in blue). The MSE between reconstructed sequence and
the original sequence was 0.98. As expected, the figure demonstrates how the
relevant subsequence patterns in the upper graphs are strongly correlated with
the human-perceptible patterns from the original sequence in the bottom graph.
Another interesting property of the RS-DL decomposition shown in Figure 4
relates to the sparsity of the model. Only a three (6, 10, and 11) out of fif-
teen possible relevant subsequence patterns account for the main patterns in the
sequence while additional patterns are responsible for increasingly fine-grained
approximations. This type of behavior is similar to commonly-used orthonormal
bases, such as the DCT basis, which consist of low frequency components that
capture major trends, while high-frequency basis elements capture finer-grained
variations. Another characteristic of the RS-DL solution is that the anomalous
portion of the sequence is associated with a different relevant subsequence pat-
tern (Relevant Subsequence Pattern 10) than the common ECG pattern. This
characteristic shows how RS-DL can be used not only to find positions of recur-
rent patterns but also to distinguish between pattern types.

5.4 Motifs in Text Data

As an additional test of RS-DL’s motif-finding ability, we trained the model
on the Associated Press (AP) corpus. We preprocessed the corpus by removing
words that occurred more than 500 times or in fewer than three documents.
We then removed documents containing fewer than 10 words. The processed
corpus size was 2213 documents. Finally, to make processing the text dataset
tractable, rather than representing each word as a large binary vector (which
would typically have a length of at least 10,000), we used the “word embedding”
representation from Collobert et. al. [18]. These word embeddings are vectors
in R50 and were constructed so that the Euclidean distance between a pair of
vectors is be small if the meanings of the associated words are similar.
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Fig. 4. A plot of the relevant subsequences patterns (upper plots) associated with the
largest 50 coefficients of the vector α that were learned by RS-DL to approximate
the ECG sequence (bottom plot, blue line). Only 3 out of the 15 possible relevant
subsequence patterns appear in this set of 50. Relevant subsequence patterns learned
by RS-DL are strongly associated with human-identifiable patterns in the sequence. The
figure also shows that the approximation learned by RS-DL (bottom plot, green line) is
very similar to the original sequence with an MSE of 0.98. The RS-DL approximation
is offset by −1 on the y-axis to aid in presentation.

Figure 5 shows the top 15 examples, as ordered by the absolute value of the
associated α coefficient, of the top four relevant subsequence patterns (out of
C = 10 total possible relevant subsequence patterns) learned from a run of the
RS-DL algorithm. Unlike text processing methods that treat words indepen-
dently, RS-DL preserves the order of words within each document (minus words
removed in the document preprocessing step). As the columns of five-word groups
in the figure show, RS-DL, in minimizing reconstruction error over sequences of
word embeddings, is capable of finding and grouping together meaningful se-
quences of words within the text. In the figure, all columns of discovered motifs
share internally consistent semantic themes. Moreover, these themes tend to cen-
ter around phrases containing important nouns. For instance, Motif 1 includes
organization-related phrases like “product safety commission defended”, “public
health system plagued”, and “environmental protection agency banned”. Motifs
2 and 4 contain phrases including a person and occupation description such
as “defense attorney thomas e. wilson”, “district attorney william h. ryan”, and
“secretary james a. baker” in Motif 2 and “attorney michael rosen,” “education
secretary william bennett,” and “assistant district attorney ted stein.” Motif 3 is
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Fig. 5. The figure above shows motifs discovered by the RS-DL model in the Associ-
ated Press corpus. It lists the top 15 motifs by α coefficient of the top four (out of ten
possible) relevant subsequence patterns. Motifs found by RS-DL have, in general, cap-
tured sets of semantically coherent phrases. Motifs 1 and 2 contain phrases including
organization and noun/concept phrases while Motifs 2 and 4 contain phrases including
a person and occupation descriptions.

centered on organizations and concepts like “natural resources,” “public services,”
and “tough economic conditions.”

5.5 Classification Experiments

To assess whether features derived by RS-DL are useful for classification, we com-
pared the performance of these features on both a synthetic dataset of our own de-
sign and five UCR Time Series datasets that satisfied the underlying assumptions
of our model. Because RS-DL selects subsequences, we do not expect features from
the algorithm to be effective for classification when discriminative information be-
tween sequence categories lies in global trends over an entire sequence or if the or-
der of different patterns within a sequence is highly correlated with its category.
Similarly, because RS-DL is a sparse regression algorithm, we expect relevant sub-
sequence patterns to be matched to high-magnitude areas of dataset sequences.
Therefore, if dataset sequences contain large-magnitude areas (e.g. spikes in an
ECG sequence), but discriminative information found elsewhere in the sequence,
we do not expect RS-DL features to be effective for classification.
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Table 2. Classification results using RS-DL features on the UCR Time Series datasets.
The “Sequence”, “DTW”, and “RS-DL” columns give error rates from the one-nearest-
neighbor algorithm using the Euclidean distance between sequences, Dynamic Time
Warping scores, and Euclidean distance between RS-DL features respectively. RS-DL
features improved the classification error for all three datasets.
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With these assumptions in mind, we generated a set of continuous sequences,
which we call the “Bumps” dataset5 (see Figure 6c). Each sequence in this dataset
contains two large magnitude bumps placed at random and without overlap. In
the negative category one out of the two bumps in each sequence contains a divot.
We also selected five datasets from the UCR Time Series database that conform
to the underlying assumptions about RS-DL: CBF, Coffee, DiatomSizeReduc-
tion, ECGFiveDays, and TwoLeadECG. These datasets consist of sequences that
contain large magnitude patterns occurring in all or nearly all sequences, satis-
fying the assumptions needed for RS-DL to extract useful features.

We ran RS-DL with randomly initialized v arrays for ten trials on all sequences
in both the training and test sets, excluding label information, for each dataset.
For all experiments, we set C = 10, K to 30% of the sequence length, and
λ = 3.0. We also enabled the restriction on the LARS algorithm (see Section
3.2) where only a single relevant subsequence pattern of each type was used. For
each sequence, we created feature vectors by concatenating the subsequences
associated with each relevant subsequence pattern. Table 2 shows a comparison
of classification errors using the one-nearest-neighbor algorithm on (i) features
given by treating sequences as vectors in Euclidean space, (ii) Dynamic Time
Warping (DTW)6 [19] distances between sequences, and (iii) Euclidean distance
between RS-DL feature vectors. As assessed by McNemar’s test [20], RS-DL
features reduce classification error over raw sequence vectors with p-values of
less than 0.014 for all datasets. For all datasets except for the CBF dataset,
RS-DL features improved on the classification error over DTW. Here, all results
were significant with p-values of less than 0.01, except for the Coffee dataset,
where RS-DL’s improvement over DTW was significant with a p-value of 0.17.

Figure 6 shows examples of positive and negative category sequences from
three of the classification datasets. In each case, RS-DL features lead to im-
proved time-series category prediction by isolating large-magnitude trends in
subsequences shared across the set of sequences (as shown in the upper portions
of each plot in the figure). Constructing features from these isolated subsequences

5 This dataset can be found at http://cs.gmu.edu/~sblasiak/RS-DL.tar.gz
6 DTW scores were computed in R using http://dtw.r-forge.r-project.org/

http://cs.gmu.edu/~sblasiak/RS-DL.tar.gz
http://dtw.r-forge.r-project.org/


Relevant Subsequence Detection with Sparse Dictionary Learning 415

6

4

2

0

2

4
Relevant Subsequence Pattern 1

6

4

2

0

2

4
Relevant Subsequence Pattern 2

6

4

2

0

2

4
Relevant Subsequence Pattern 3

0 20 40 60 80 100 120
Time

6

4

2

0

2

4

S
ig

n
a
l

Positive Category: ECGFiveDays Sequence

6

4

2

0

2

4
Relevant Subsequence Pattern 1

6

4

2

0

2

4
Relevant Subsequence Pattern 2

6

4

2

0

2

4
Relevant Subsequence Pattern 3

0 20 40 60 80 100 120
Time

6

4

2

0

2

4

S
ig

n
a
l

Negative Category: ECGFiveDays Sequence

2

1

0

1

Relevant Subsequence Pattern 1

2

1

0

1

Relevant Subsequence Pattern 2

2

1

0

1

Relevant Subsequence Pattern 3

0 10 20 30 40 50 60 70 80
Time

2

1

0

1

S
ig

n
a
l

Positive Category: TwoLeadECG Sequence

3

2

1

0

1

Relevant Subsequence Pattern 1

3

2

1

0

1

Relevant Subsequence Pattern 2

3

2

1

0

1

Relevant Subsequence Pattern 3

0 10 20 30 40 50 60 70 80
Time

3

2

1

0

1

S
ig

n
a
l

Negative Category: TwoLeadECG Sequence

(a) (b)

0.0

0.2

0.4

0.6

0.8

1.0

Relevant Subsequence Pattern 1

0.0

0.2

0.4

0.6

0.8

1.0

Relevant Subsequence Pattern 3

0 50 100 150 200
Time

0.0

0.2

0.4

0.6

0.8

1.0

S
ig

n
a
l

Positive Category: Bumps Sequence

0.0

0.2

0.4

0.6

0.8

1.0

Relevant Subsequence Pattern 1

0.0

0.2

0.4

0.6

0.8

1.0

Relevant Subsequence Pattern 3

0 50 100 150 200
Time

0.0

0.2

0.4

0.6

0.8

1.0

S
ig

n
a
l

Negative Category: Bumps Sequence

(c)

Fig. 6. Figures a, b, and c above show the top two (by α value) relevant subsequence
patterns that approximate positive (bottom blue) and negative category (bottom red)
sequences in the ECGFiveDays, TwoLeadECG, and our synthetically-generated Bumps
datasets respectively. For each of these datasets, RS-DL features improve classification
performance by picking out similarly shaped subsequences from different dataset cat-
egories. Classification performance improves because class distinctions occur in minor
variations in the major trends captured by RS-DL. After processing by RS-DL, these
minor variations can more easily be distinguished by standard classification algorithms.

aligns these major subsequence trends, allowing minor variations that occur
between the positive and negative sequence categories to be more-easily dis-
tinguished. When variations in the general trend are highly correlated with a
category label, then the feature isolation provided by RS-DL can lead to more
accurate classification.

6 Conclusions

In this paper, we have presented Relevant Subsequence Dictionary Learning,
a novel method for adapting Sparse Dictionary Learning to discover interest-
ing subsequence patterns across sets of sequences. RS-DL is related to standard
statistical models over sequences through a version of the Factorial HMM with
specially formulated restrictions on transition probabilities. In a series of ex-
periments, we have shown that RS-DL can discover useful information across a
variety of sequence domains. In addition, as demonstrated on time-series data,
sequence features extracted using RS-DL can improve sequence classification
performance.
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Abstract. The ability to predict future movements for moving objects
enables better decisions in terms of time, cost, and impact on the envi-
ronment. Unfortunately, future location prediction is a challenging task.
Existing works exploit techniques to predict a trip destination, but they
are effective only when location data are precise (e.g., GPS data) and
movements are observed over long periods of time (e.g., weeks).

We introduce a data mining approach based on a Hidden Markov
Model (HMM) that overcomes these limits and improves existing results
in terms of precision of the prediction, for both the route (i.e., trajectory)
and the final destination. The model is resistant to uncertain location
data, as it works with data collected by using cell-towers to localize
the users instead of GPS devices, and reaches good prediction results
in shorter times (days instead of weeks in a representative real-world
application). Finally, we introduce an enhanced version of the model that
is orders of magnitude faster than the standard HMM implementation.

1 Introduction

The ability to predict future movements can enable novel applications in a wide
range of scenarios. For example, in the context of Location-Based Services, it
can be used to deliver advertising to customers approaching shops of interest.

Work has been done to predict future locations for moving objects, both in
the short term [20] and in longer timeframes [11]. These works rely on two hy-
potheses: (i) moving objects follow some patterns in (most of) their movements,
and (ii) such movements can be observed with a certain accuracy. The first
argument relies on the intuition that most people drive among their points of
interest along a usually small number of routes (e.g., from home to work, from
work to the gym). The same observation holds for public transportation (such as
buses or flights), and even animals in their migrations. The second argument is
due to the increasing popularity of GPS devices in the last years. On one hand,
such systems are becoming popular because of the large diffusion of smartphones
equipped with GPS sensors. On the other hand, it is not reasonable to assume
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Fig. 1. Two cars running in different streets are going to turn in opposite directions.
(a) shows their complete trajectories; (b) and (c) show how they are observed before
they turn with GPS and cell-towers data, respectively.

the availability of these data on long periods. In fact, previous algorithms were
designed with car navigation kits in mind, which do not have any constraints on
power consumption. On the contrary, battery life is a primary issue for mobile
users and GPS sensors are known for their high battery consumption. Existing
technologies cannot be used for applications where movements of the users have
to be continuously observed. For instance, consider the following application.

Carpooling is defined as a meeting of two or more people to share a car and
travel together. Carpooling has a strong appeal for multiple reasons, but it expe-
riences rather low levels of participation because of the complexity of social and
work schedules, which make such arrangements hard to plan. Existing services
(such as iCarpool and Avego) allow drivers and passengers to arrange occasional
shared rides on short notice with smartphone applications. Such services facili-
tate one-time ride matches but users still have to define the routes and times of
their trips, exactly as in traditional carpooling. This requirement is unacceptable
in a context where users want more flexibility and short-term commitments.

This problem can be solved with methods to automatically predict the route
and destination of the drivers, but existing solutions cannot be applied as they
require the user to constantly keep the GPS sensor active. This is a tight re-
quirement, as prediction techniques require to collect the routes of the users (to
build the patterns repository) and to continuously verify their actual position.

Our approach tackles this problem by relying on location information inferred
by the cell-towers the phone is connected to. Cell towers multilateration is the
standard solution for location aware applications that need to run in background
continuously: a standard network connectivity allows the smartphone OS to
access a repository of GPS coordinates for the physical towers and to compute
an estimated position for the user based on signal strength. Therefore network
based localization comes at no additional cost and reduces battery consumption.

Consider Figure 1a, where two cars run on parallel streets before turning
in opposite directions. Figure 1b shows how the cars are observed with GPS
equipment, every dot is an observation. Given the current observations and an
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history of previous trips of the user, a system can match the current trip with
the repository to find the most probable destination for it. This is possible when
there is a sufficient number of previous trips and one of them matches to some
degree with the actual one. But what happens with noisy observations, such as in
Figure 1c? Inferring location data with cell-towers is a difficult task: real-world
data shows that the approximation in urban areas varies between 400 and 1600
meters. Predictor systems have problems in the matching step when locations
are inferred with cell-towers, thus the prediction can fail.

To overcome these issues, we introduce a new prediction model, based on the
Hidden Markov Model (HMM) [18], that naturally supports the uncertainty of
the observations. HMMs have been used before in similar setting for destination
prediction [19], and for handling uncertain location data [15], but our formula-
tion tackles the two problems in a unified, principled solution. In particular, we
designed a future location prediction system with the following contributions:

I We introduce a HMM for future locations prediction that naturally sup-
ports imprecise data and efficiently predicts both future locations (i.e., final
destinations) and their corresponding trajectories (i.e., travel routes).

II A direct implementation of the HMM leads to unacceptable execution times
in a real-world application. We therefore present a refined version with loss-
less optimization and a faster one with approximate solutions.

III We conduct an experimental study on the models and compare them with
a state-of-the-art solution in simulated and real environments. For the syn-
thetic scenarios, we introduce a tool to generate routes for moving objects.

In the following, Section 2 discusses related work and Section 3 formally intro-
duces the problem. Sections 4 and 5 present our algorithm and its optimization,
respectively. Finally, Section 6 validates the proposed approach with extensive
experiments and Section 7 discusses future directions of research.

2 Related Work

Many studies have faced the problem of predicting future locations and routes
for moving objects [16]. Considering the adopted techniques, they can be divided
in two main trends. The first one is about the prediction of paths in an euclidean
space [11,20]: given the location and velocity of an object, the future location
of the object is predicted with a function. The second trend is based on pattern
matching: the algorithms compare the current location of the object with pre-
viously observed routes and return the best match as a prediction. Considering
the domain of application, these can be further divided in three groups.

Prediction Based on GSM Network. Solutions for the prediction prob-
lem with wireless cellular communication networks differ from our approach
as user history is not considered and they focus on optimizing network re-
sources [7,17,21]. In [22], the authors build transaction rules based on neighbor
cell towers with a support computed from the user history. The approach does
not predict the final goal but only the most probable next cell tower.
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Fig. 2. A car running across an urban area: a shows its real trajectory; in b dots and
stars show the trajectory with GPS and Network data, respectively; c shows one way
to distribute the error rate for an observed block

Prediction Based on Movement. Proposals that focus on predicting the
destination and routes require precise locations [5,9,19], whereas our approach
can handle uncertain observations. The notable exception is CRPM [6], as it
can tolerate different kinds of disturbance in trajectory data. CRPM relies on a
frequency analysis and adopts different heuristics to manage imprecise data.

Prediction Based on Location. Other methods focus on predicting the des-
tination without considering the current partial route [1,2,12,14]. They rely on
different approaches, such as a prediction model leveraging the history of group
of users [14], or a route recommendation system considering user interest and a
database of geotagged photos [12].

HMMs have been successfully applied for many tasks related to sequence
clustering [18], such as map matching with noisy observations [15], and to hidden
intents recognition [1,19]. We also differ from [4], where a traditional Markov
model is used to classify different observations to an internal taxonomy. The work
proposes a one-to-one mapping to couple state-symbol, but due to the absence of
hidden states, Baum-Welch and Viterbi algorithms are not applied. Our proposal
is the first attempt to addresses the problem of predicting the destination and
the route to reach it with a HMM formulation over noisy observations.

3 Preliminaries

Road Networks. Our model does not require road networks given as input, as it
infers the underlying roads from the observations. We introduce a simple urban
trip to describe our setting. Consider the real trajectory of a car in Figure 2a. As
in [23], we divide the area of interest in blocks and use the centers of such areas as
observations points. Blocks can have variable size and their dimension depends
on the granularity required by the actual application. Once blocks are fixed, we
associate the reported location with the center of the block that contains the
location. We model a road network as a directed graph G = (V,E), where V is
the set of vertices, E is the set of edges. A vertex v ∈ V represents a block in
the road network, an edge (v, v′) ∈ E represents blocks connected by a road.
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Objects of Interest. We assume a set of moving objects d ∈ D on the edges E
of the road network G. At a given time t, each object d has its current spatial
location d.b (i.e., a block) and the predicted route d.r∗. A predicted route is
a sequence of predicted locations d.b∗1, . . . , d.b

∗
n, where d.b∗n is the final goal (or

destination) of the trip.1 The real route of an object d is denoted by d.r and it
is a sequence of locations d.b1, . . . , d.bn. A route between two goals is called a
trip or trajectory. The size (cardinality) of the set of objects D is denoted as |D|.
The shortest path between locations d.b and d.b′ in G is defined as ||d.b, d.b′||.

Problem Statement. The problem faced in this work is the following:
given a time t, a moving object d with route d.r, and the subroute of d until
t, set up a probabilistic prediction model s.t. the most probable predicted route
corresponds to the route d.r∗ that minimizes the distance between d.r∗, d.r.

The effective route is not available in general and the goal of our work is to
minimize the distance between d.r∗ and d.r with efficient algorithms. In other
words, the goal is to predict the future locations of the moving objects and find
the most similar route w.r.t. their real movements.

4 A Model for Destination and Route Prediction

The problem above can be modeled as a Markov chain reproducing the state of
a system with a random variable for the final destination that changes through
time. A state coincides with an observation and the distribution for this variable
depends only on the distribution of the previous observations. Given a Markov
chain and a sequence of observations, it is possible to predict the resulting state
distribution [2]. Unfortunately, such approach fails in practice: (i) it predicts
only the final destination and not the route; (ii) it is designed to work on precise
GPS data, thus it suffers the problems we discussed above when used with noisy
location information. The first problem can be faced with a model where l is a
known location and every state represents a transition from location l to l′ with
a pair (l′|l) [23]. By considering a n order Markov Model, this approach predicts
all the possible routes for the user by considering, for every transition, all the n
transitions that it has seen before. Unfortunately, Markov chains are not flexible
w.r.t. the order n (which is fixed and has to be chosen at design time), so it is not
easy to find a compromise between the right complexity and a good prediction.

Given the limits of Markov models, we build our solution on top of a Hidden
Markov Model (HMM), for which the modeled system is assumed to be a Markov
process with unobserved (hidden) states. In our solution, a state represents a pair
(block, goal) si = (b|g), and each state can be associated to multiple observations
Osi with a given distribution of probability, i.e., Osi is the set of blocks observ-
able from si. If we ignore hidden states observations, a moving object in a trip
towards a given goal g covers the states S = {(bi|g), (bj|g), . . . , (bk|g)}. Given
the sequence of states S, multiple observed sequences are possible. In fact, there
is no one-to-one mapping from the state to the observation. Given a sequence
of states S = {s1, . . . , sn}, the possible observation sequences are b1, b2, . . . , bn

1 A goal is a location visited by the observed object for long periods of time.
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with bi ∈ Osi . In our setting |Osi | grows if the measurement error of the block
associated to the state is high and it decreases to 1 if measurement error is low
(e.g., GPS observations). In Figure 2c, |Os| = 9, because 9 blocks are covered
by the measurement error of the observation.

Given an observation b, the possible related states are si : b ∈ Osi . Notice that
this formulation models both noisy observations and user intents. In fact, given
b1 and b2 close to observed b, possible states are (b1|g1) or (b2|g1), modeling
uncertainty w.r.t. the current location, but also (b1|g1) and (b1|g2), modeling
uncertainty w.r.t. the future location.

At prediction time, the HMM is used to calculate what is the most likely
sequence of states associated to the sequence of blocks observed so far: the last
state (bk|g) models that the location is bk and the predicted goal g.

We build our Hidden Markov Model as follows:

– A = {ai,j} is the state transition probability matrix, where ai,j is the transi-
tion probability from si to sj . If si=(bn|g) and sj=(bm|g), ai,j is the proba-
bility to move from bn to bm with same goal g, when the object is in sn.

– B={sj(ok)} is the observation probability distribution matrix. If sj=(bn|g)
and ok=bm, then sj(ok) is the probability to see bm, when in bn with goal g.

– π is the initial state distribution.

HMM is a useful representation for our application. Consider again the ex-
ample in Figure 2. Dots in Figure 2b show the trajectory with observed data as
blocks (i.e., data observed with GPS), while stars show the trajectory with the
blocks identified with the typical degraded data observed with systems based
on cell-towers only. Data retrieved with cell-towers are approximate, but we can
use a function to assign a certain probability to an observed block and spread
the rest of the information over the 8 blocks around it as shown for the third
observation in Figure 2c. As cell-towers localization services in smartphones give
an estimation of the error of measurement, the number of blocks that have to
be considered dynamically adapts to the quality of the observations.

Training. Baum-Welch algorithm [18] is used to train the model. Given a se-
quence of observations, it computes a maximum likelihood estimation, i.e., it
produces A, B, and π such that the probability that the given sequence is ob-
served is maximized. Unfortunately, it cannot be directly applied in our setting:

1. In our setting the system receives as input many sequences of observations
(i.e., different trips), but the algorithm is designed to train a single sequence.

2. We want to train our model with a route to a destination. In the training,
for each observation the corresponding state has two pieces of information:
the current block b and the final destination g. The algorithm, given an
observation for block b for which two states exist with distinct goals g and
g′, would train both states (b|g) and (b|g′). This is motivated by the fact
that no constraints are present in the HMM about the modeled goal.

3. The algorithm complexity is O(N 2T ), where N is the number of states and
T is the size of the observation sequence. Its performance is unacceptable in
settings with a large number of states and long sequences of observations.
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To overcome the above issues, we implemented an ad-hoc training. First, we
split the states domain by considering a matrix for each destination. Instead of
training a matrix A of size N=(GB)2, where G is the number of goals and B is the
number of blocks, we separately train G matrices of size B2 (thus addressing issue
3). Second, we split the training set in groups of trips with the same destination;
this allows us to train our model with multiple sequences (thus addressing issue
1) for which each goal is known and can be used to train the correct sequence
of states (thus addressing issue 2).

From the algorithmic point of view, we initialize A with flat values, a0i,j =

avg = 1
N . Given a sequence of trips T = {trip1, . . . , trip|T |}, for each tript we

train a B2 matrix St = {sti,j} associated to the observed destination gt and we
interpolate S with A. In this way we constrain the training process to consider
one trip at a time and with the interpolation process we train the original matrix
A. In particular, each value ati,j is updated as follows:

ati,j =

{
K · sti,j + (1 −K) · at−1

i,j , iff the goals of si and sj are equal to gt

F · avg + (1 − F ) · at−1
i,j , otherwise

Where K is a parameter called “learning factor”, F is the “forgetting factor”,
sti,j is the trained value in St, and 0 ≤ sti,j ≤ 1, 0 ≤ F ≤ 1, 0 ≤ K ≤ 1. Blocks of
states sti,j have to match the blocks of states ati,j . By tuning K and F , we can

find a trade-off between the importance given to old trips and new ones.2 We
train our model by repeating this task for every trip in T .

Predicting Destinations and Routes. Given a sequence of observations O,
we use the Viterbi algorithm [18] to efficiently compute the most likely states
sequence associated to the observations. The algorithm matches the current ob-
servations O (unaware of the final destination) with all the previous trips and
finds the one that maximizes the probability of the given sequence of observa-
tions. By applying Viterbi we obtain the sequence of states S = {s1, s2, . . . , sn}
that maximizes the probability of observing O. S models the information about
the final destination. In the actual implementation we consider only the last
predicted state sn and its goal.

Once we are able to recognize the current state of an object, we can find its
destination and the route to reach it. We compute how the object reaches the
predicted goal in sn by using Dijkstra’s algorithm in a connected graph where the
nodes are the states of the model, and the costs on the edges are the probabilities
from the matrix A. Our goal is to find the most likely path by maximizing the
probability to get from the current state to the destination.

This approach can predict a route d.r∗ that is closer to d.r than each of
the previous observed trips. In fact, given a training set with a route observed
multiple times, the noise in the observations is likely to be in different portions
for each of the previous trips. But, when the shortest path is computed from A,
the algorithm combines pieces matching the current route from multiple previous

2 We experimentally identified F = 0.05 and K = 0.9 as the optimal parameters.
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trips, thus automatically filtering noisy observations. Experiments show that this
behavior improves the quality of the predicted path w.r.t. alternative approaches.

Dijkstra algorithm is one of the several algorithms that can be used to compute
the route to the predicted goal given a trained matrix A, while the prediction is
done by Viterbi algorithm. The role of the HMM is to feed the weights to the
graph used by the search algorithm to efficiently find a clean d.r∗.

5 Revisiting the Model to Improve Performance

State Pruning. For a fixed T , all algorithms are O(N 2) with N = G ∗ B,
where B is the number of blocks and G the number of goals. In particular, the
cardinality of A is (GB)2, thus the matrix grows by a factor B2 for each new
goal. This easily leads to a very large number of states. A natural approach to
the problem is to reduce the size of the matrices. In fact, reducing the matrix
dimension has direct effects in response time in all stages. We reduce its size
with two pruning techniques.

Lossless Pruning In the model, all possible pairs (b|g) are considered as states,
even if most of them are useless as many pairs are never observed in the user
routes. For example, it is possible to remove all the blocks that are not crossed
by an objects in its trips. In our experiments with a large urban area, this simple
heuristic removes up to 85% of the blocks. Moreover, there are blocks crossed to
reach multiple distinct goals, but there is a larger number of blocks crossed to
always reach the same goal. In the original model, the set of all observed blocks
L contains different noisy states such as follows: given f distinct goals and the
user going to goal gi through block b, state (b|gi) is generated together with
(b|g1), . . . , (b|gf−1). These f − 1 states would be part of the model matrix, even
if b has never been observed with the user moving to a goal different from gi.
Therefore f − 1 states are pruned to reduce the size of the matrix.

Consider an incremental creation of the matrix A of dimension N , by adding
a new (i.e., never seen before) sequence tript+1 of size M to a trained model;
the original model would generate a new matrix A of dimension:

(L+M)(G + 1) = N + (MG +M + L)

On the contrary, the optimized model generates a new matrix of dimension
N +M , because a new goal is added only for the blocks that lead to it and the
already trained blocks are not involved.

This optimized model is already orders of magnitude faster than the original
model in both the training and the prediction, and the results of the predic-
tion are of same or better quality. In the following, we will refer to this model
implementing the lossless pruning as the standard HMM.

Approximate Pruning With network observations the accuracy of the mea-
sures varies between 400 and 1600 meters. With such uncertain signals we spread
the information over a number of blocks that depends on the observation quality.
This approach leads to a big A matrix: from GPS to network data there is at
least a five times increase in the number of observed blocks.
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A possible solution is to manage the blocks added for error compensation in
the B matrix, without reporting all blocks in A. In the standard model, when we
observe a block, all the blocks within its measurement error are “promoted” to
states inside the HMM. Here instead, we do not create new states for each block
reachable within the measurement error, but all the blocks added to distribute
the error for an observation are stored in the emission matrix B.

We pushed this idea further, by doing the same pruning also for observed
blocks. The basic intuition is the following: suppose that during a trip, observed
through network data, we obtain in a sequence three blocks: b1, b2, b3, with b2
inside the error area of b1. Given b1, it is added to A, but b2 is stored in the
emission matrix B, while b3 is promoted to A if it is out of the measurement error
of b1. In the approximate model only observed blocks out of the measurement
error are promoted as states. In Section 6 we show how this aggressive pruning
drastically reduces the execution times without reducing the prediction quality.

Notice that uncertainty is managed by the model and the pruning is applied
only for efficiency purpose. The complexity of HMM algorithms is O(N 2T ) and
it is not affected by the dimension of matrix B. In fact, HMM is designed to
support a large set of possible observations, and its growth does not increase
the complexity of the system. Consider an observation sequence of 10 distinct
blocks with an estimated error of 600 meters. If for each block we add the 8 blocks
around it, adding this sequence adds 10∗9 new observations. By managing the 8
extra blocks as observations, we add only 10 new blocks and the remaining 10∗8
are managed without an overhead in the model. In the following, we will refer
to this model implementing the approximate pruning as the smart HMM.

Split Training. Splitting if the training also brings a performance improvement.
Instead of working with a matrix of size N 2 = (G ∗ B)2, we train G matrices of
size B2 so that, given a trip to a goal, we train it only for the B matrix of
its goal. Given |T | sequences of observations, G goals, and B known symbols,
the cost for a training of the original matrix is |T | · T (GB)2 (considering every
observation of fixed length T ). The cost for the split training is instead |T |·T (B)2
for the Baum-Welch execution and |T | · (GB)2 for the interpolation step, with
an important improvement w.r.t. the original training:

Original

Split
=

|T | · T G2B2

|T | · T B2 + |T | · G2B2
=

T G2

T + G2

For 6 goals and T = 30, the improvement is 1080
66 = 16.36.

Maximum Observation Length. Response time can be improved also by
optimizing the observation sequence length T . This applies in the Viterbi algo-
rithm, as we do not need the complete sequence of states, but cannot be used
with Baum-Welch, because in the model setup we need a training for the entire
observation sequences. We experimentally observed that only significant changes
to the size of the observations sequence affect the results. A short sequence is
not sufficient to recognize a route, thus providing wrong predictions, while large
sizes do not improve predictions quality while increasing execution times. In the
experiments we set m=10 after verifying the prediction accuracy in real data.
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6 Experiments

We implemented and tested alternative models to compare predictions quality
and execution times. Algorithms have been implemented in Java and tested on
an i5 2.4GHz CPU with 8GB of RAM.3

Metrics. We consider a training set of routes T , and an evaluation dataset E.
Two kinds of dataset are used: synthetic, built with a route generator based on
features obtained from real data, and real-world, made with a collection of real
users movements in a large urban area. The real route d.r is known for every
object d ∈ E and is used as ground truth for evaluation.

In the evaluation, we use as input a fragment i of the real route (e.g., the
first 10% observations) to compute the predictions. For each object d ∈ E, we
collect the predicted route d.r∗ = d.l∗1, . . . , d.l

∗
n, with the last location being the

predicted goal. We test eight executions with an increasing percentage of input
data from d.r (from 10% to 80%).

We rely on two metrics for quality evaluation. In the first metric, we match the
predicted goal d.l∗n with the effective goal in d.r. A match is valid if the predicted
goal is in the area covered by the measurement error of the block containing the
effective goal. We report the percentage of errors in the goal prediction in a
set of executions as the Wrong Goal Percentage (WG-P). The second metric is
based on our definition of distance and represents the quality of the predicted
route. We define the distance between d.r∗ and d.r by using the Levenshtein edit
distance [13] with the following costs:
- Substitute: the cost to replace a wrong location d.b∗i with the correct one d.bi
is computed as the distance between them: ||d.b∗i , d.bi||.
- Add: the cost to add a location d.bi to d.r

∗ is the distance between the location
to be added and the last predicted location in the route: ||d.b∗n, d.bi||.
- Delete: the cost to remove a location d.b∗j from d.r∗ is the distance between the
location to be deleted and the closest location d.bj ∈ d.r: ||d.b∗j , d.bj ||.

For settings with several goals, an incorrect goal prediction can be close to the
correct one. We therefore distinguish two sets of routes: the ones with correct
predicted goal are measured in the Correct Goal Route Distance (CG-RD); those
with erroneous predictions are in the Wrong Goal Route Distance (WG-RD).

Synthetic Data. Despite there exist tools to generate routes [8,10], we created
our own generator to control parameters that are peculiar to our setting, such
as the probability of having alternatives route between the same pair of goals.
This cannot be defined with existing tools where the route is the shortest path
between two points. The generator takes as input the following parameters.

Goals. Goals can be randomly distributed or manually set, to verify ad-hoc
settings. Goals act as both starting and ending points for a route.

3 The scenario generator, the implementation of the models, and a sample of the
real-world datasets can be downloaded at http://www.placemancy.com/public/

code.zip

http://www.placemancy.com/public/code.zip
http://www.placemancy.com/public/code.zip
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(a) Route r (b) Alternative r′ (c) r with roads (d) r with noise

Fig. 3. Synthetic routes generation

Roads. We initialize a weighted undirected graph, with a node for every block
in the grid, and a weighted edge for every pair of adjacent blocks. The weight for
an edge is in inverse proportion to the speed associated to the block transaction.
Once goals are set, a route is the shortest path among them as in Figure 3a.

Alternative Routes. To model alternative paths to reach the same destination,
different routes between a pair of goals are computed with two parameters:
probability to have an alternative route and maximum number of alternatives.

Fast Roads. Users use fast roads when available, thus such roads are added to
make the scenarios more realistic as in Figure 3c. This makes more challenging
the prediction as users often drive the same fast roads to reach different goals.
Weight over normal edges is three times the weight of edges for fast roads.

Noise. We add noise to the above routes to simulate real-world observations.
We extracts two measurement error distributions (GPS and Network) from real
data. An error probability distribution is the probability that a specified error
rate is seen for a given block. Given a distribution, we associate to every block
an error rate according to it, then we take a route as input and use the error
rate associated to its blocks to “perturb” it. Given route r in Figure 3a, for
each block i ∈ r with error rate ei, we remove from r the following ei − 1
blocks. We then shift block i by a random number of blocks limited by ei as in
Figure 3d.

Results. We discuss results for the following models: standard HMM, smart
HMM, and CRPM [23]. CRPM is one of the current state of the art solutions
and it has been shown that it improves by 71% the goal prediction and by 30%
the route distance w.r.t. a second order Markov model. We tested [19], but it
failed in every test as it is not resistant to uncertain observations.

We consider 20 users and report the average results. We start with a standard
configuration with a 80×80 grid, 5 goals distributed randomly, and 8 executions
with increasing input. Once the parameters for the route generator are fixed, for
the same scenario and for every user we create T (50 trips) and E (50 trips).

Table 1 shows a comparison of the standard configuration for Smart HMM
and CRPM over three settings with different complexity.
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Table 1. Results on synthetic scenarios

Base Fast Roads Alternatives

Smart HMM CRPM Smart HMM CRPM Smart HMM CRPM

WG-P 0.19 0.25 0.28 0.42 0.19 0.27

CG-RD 82 82 65 77 167 256

WG-RD 509 715 1131 1791 651 1064
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Fig. 4. Synthetic experiments: (a) grid size, (b) number of goals with different training
sizes, (c-d) route input, (e) prediction time, (f) training time

- In Base, fast roads and alternatives are not enabled. This simple scenario can
be used as a measure of comparison for the other settings. HMM has a lower
error rate in the prediction of the goals (WG-P). This is reflected in the lower
values for WG-RD, while there is no difference in the easier case (CG-RD).
- With Fast Roads enabled, the goal prediction becomes more challenging: errors
in WG-P increases by 68% for CRPM, while for Smart HMM is limited to 47%.
Consequentially, the gap between HMM and CRPM increases in all measures.
- In Alternatives, each route has 3 possible alternatives. WG-P values are close
to the Base setting for both models, but the predicted routes differ more from
d.r. The distances increase more for CRPM than Smart HMM.

We now discuss how results are affected by varying the parameters fixed in
the standard configuration. Finally, we report execution times.

Grid Size The standard configuration represents a city in a 80x80 blocks grid,
with a 500 meters side for each block. An increase in the number of blocks does
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not shows remarkable differences in the goal error rate. Figure 4(a) reports that
the two models show a 10% increase of the WG-P measure with a 230x230 grid
w.r.t. the 80x80 version, while for other measures the results are stable.

Number of Goals and Training Size Figure 4(b) shows results with increasing
number of randomly located goals for models with different training sets. We
denote with T1 a set of 20 trips and with T2 a set of 70 trips, and with CRPMTx

(Smart HMMTx) the model trained on Tx. Smart HMM outperforms CRPM
in all scenarios, and, as expected, increasing the number of goals makes the
prediction more difficult: while CG-RD is of course stable, results degrade for
WG-P and WG-RD. The number of goals is important, but also their location
play a role. In fact, WG-P has a lower growth for both models starting from 7
goals because of their positions: when there are many of them, even a wrong goal
can lead to a route which is relatively close to the target d.r. Interestingly, goals
number can be reduced by using clustering techniques [2]. With a clustering
radius of 1.5 miles they reduce the number of goals for all users to less then 10.
Given the size of our blocks, we implicitly consider a clustering radius of 500m
from raw GPS data. As expected, models improve with bigger training sets.
For complex settings, longer training is necessary to obtain acceptable results.
Similar trends are observed with other measures.

Increasing Input Figures 4(c-d) show how an increasing percentage of the
effective route d.r given as input linearly increases the performances of the
algorithms. This is important: when the user starts a trip the system may pre-
dict a wrong goal, but it promptly changes prediction along the route. HMMs
outperform CRPM and similar trends are observed with CG-RD. The smart
HMM obtains a slightly better error goal rate than the standard. Similarly, it
has a lower average value in route distance. This indicates that, even in cases
where it is not possible to predict the correct goal, the smart model can predict
better routes and the pruning does not penalize the performances.

Execution Times The better prediction performance of the HMMs has a cost
in term of computational time. Figures 4(e-f) show that CRPM is faster than
HMMs in every test. However, the execution times for Smart HMM are accept-
able and its execution times do not show a quadratic growth w.r.t. the number
of blocks. Compared to the standard model in the worst setting (15 goals), the
smart model reduces the prediction time from about 8 minutes to less than 0.2
second, and from about 1.5 minute to 2 seconds for the training.

Real-World Data. We collected real-world data from 10 volunteers with mobile
applications for smartphones. Raw data trajectories were collected for 4 weeks
by separately storing and cleaning [9] both GPS and network data. The datasets
allow a comparison of the prediction models with precise and imprecise real
data on the same routes; we report an example of the same trip observed by the
two technologies in Figure 5a. Data has been pre-processed in order to identify
goals and isolate the sequences of observations to be evaluated. For each learning
system, we created one model with GPS data and one with network data. Once
the four models were trained, we computed the routes to conduct a leave-one-out
cross-validation. Examples of the predictions are in Figure 5(b-c).
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(a) GPS and cell-tower (b) HMM cell-tower (c) CRPM cell-tower

Fig. 5. In (a) the green line is the trajectory with GPS data, while the red circles
represent the cell-towers data with the measurement error for each observation. In
(b-c) green blocks are the input observations, while red are predictions done with cell-
towers data (fewer blocks indicate a more precise prediction).

Table 2. Experimental results with both GPS and cell-towers real data

HMM CRPM
GPS Network GPS Network

WG-P Average all users 0.21 0.30 0.21 0.39
Standard deviation 0.05 0.07 0.09 0.11

ALL-RD Average all users 106.2 244.0 137.7 384.2
Standard deviation 38 66 57 134

In Table 2 we report statistics about the observed distributions over the col-
lected data. The standard deviation of the distributions is averaged over 10
users. GPS data are used as the ground truth. We denote with ALL-RD the
route distance computed on all predictions. Training for Smart HMM required
259ms and a prediction required an average of 52ms. For goal prediction, Smart
HMM outperforms CRPM on real network data by more than 23% (error goal
rate of 0.30 compared to 0.39), while there is no significant difference on GPS
data. For route distance on GPS data, Smart HMM returns routes closer to
the correct one by 24% w.r.t to CRPM distance (distance of 106 compared to
137), while for the cell-tower data the difference in favor of HMM increases to
37% (244 compared to 384). In particular, Smart HMM outperforms CRPM for
all our volunteers. The advantage in WG-P ranges from 15% to 27%, while for
the ALL-RD it goes from 16% to 50%. HMM predictions are more stable than
CRPM ones w.r.t. the standard deviation.
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The differences in WG-P are due to a better modeling of the problem in the
HMM. Even in cases when the WG-P values coincide, HMM obtains a better
ALL-RD because the route is mined over all user trained paths (i.e., finding
the shortest path inside A), while CRPM returns the single trained path that
matches best. The execution times and the accuracy of predictions are in line
with those obtained with the synthetic data generator. In particular, from the
study of real data, an average user has less than 7 goals, and it is easy to verify
that the numbers in Table 2 match those computed in Figure 4(b). Moreover, the
number of goals for a user can be reduced by considering models with weekend
days or weekdays only, or if we distinguish goals observed in the morning hours
from the ones in the evening time. This leads to a solution with multiple HMMs
for each user (e.g., one for the weekdays, one for the weekend, etc), such that
the number of goals is always small.

Memory Consumption. HMM is known to be space consuming. We use a
trained HMM for every user, thus it can result in a large amount of parameters
that have to be maintained. For a space complexity analysis, we trained the two
HMMs over an increasing number of users with a month of cell-tower obser-
vations. For each user, a new prediction model is created. Then, each trained
model is added to a global list, making sure that the models are not deleted. In
this setting, a laptop (8GB RAM) can manage up to 50 trained models with the
Standard HMM and up to 2000 models with the Smart HMM. This is a con-
sequence of the different number of states in the models: the number of states
in the smart implementation is almost an order of magnitude smaller than the
standard model. In fact, the trained matrix has a |S| × |S| dimension, with |S|
the number of the states, and occupies about 95% of the allocated memory.

7 Conclusions

We presented novel prediction models for moving objects designed for imprecise
data. We first modeled the problem with a HMM and then refined it to improve
quality of the results and execution times. Experiments show that our model
needs a shorter training than existing methods and predicts more precise routes.

Our work can be easily apply to a large audience. Existing location aware
applications, such as Foursquare, already collect users’ data and have APIs to
access them. Using such systems brings advantages w.r.t. ad-hoc solutions: (1) a
large user base; (2) optimized software to save battery power, also using network-
based localization, thus highlighting the necessity of supporting imprecise data;
(3) historical observations that enable our model to make predictions from the
installation; (4) privacy issues are managed by the application provider. We plan
to implemented our solution on top of such location aware applications.

Our model is effective when users travel over routes known to the system. This
does not apply for new routes. A promising approach to overcome this limitation
is to automatically extract appointments and events from social media (such as
Facebook and shared calendars [3]) to enable the prediction of new locations.
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Abstract. Short-term energy load forecasting, such as hourly predic-
tions for the next n (n ≥ 2) hours, will benefit from exploiting the
relationships among the n estimated outputs. This paper treats such
multi-steps ahead regression task as a sequence labeling (regression)
problem, and adopts a Continuous Conditional Random Fields (CCRF)
strategy. This discriminative approach intuitively integrates two layers:
the first layer aims at the prior knowledge for the multiple outputs, and
the second layer employs edge potential features to implicitly model the
interplays of the n interconnected outputs. Consequently, the proposed
CCRF makes predictions not only basing on observed features, but also
considering the estimated values of related outputs, thus improving the
overall predictive accuracy. In particular, we boost the CCRF’s predic-
tive performance with a multi-target function as its edge feature. These
functions convert the relationship of related outputs with continuous val-
ues into a set of “sub-relationships”, each providing more specific feature
constraints for the interplays of the related outputs. We applied the pro-
posed approach to two real-world energy load prediction systems: one for
electricity demand and another for gas usage. Our experimental results
show that the proposed strategy can meaningfully reduce the predictive
error for the two systems, in terms of mean absolute percentage error
and root mean square error, when compared with three benchmarking
methods. Promisingly, the relative error reduction achieved by our CCRF
model was up to 50%.

Keywords: Conditional Random Fields, Energy Demand Forecast.

1 Introduction

Commercial building owners are facing rapidly growing energy cost. For exam-
ple, energy accounts for approximately 19% of total expenditures for a typical
commercial building in the U.S.; in Canada, annual energy cost for commercial
buildings is about 20 billion dollars. Particularly, these numbers are expected to
double in the next 10 years1. Aiming at reducing this operational cost, build-
ings have started to respond to utility’s Time of Use Pricing or Demand and

1 http://www.esource.com, http://nrtee-trnee.ca/

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 433–448, 2013.
c© Springer-Verlag Berlin Heidelberg 2013

http://www.esource.com
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Response signals. Such smart energy consumption, however, requires accurate
short-term load predictions.

One of the main challenges for short-term energy load is to predict multiple
time-ticks ahead, namely multiple target variables. Typically, these predicted
outcomes are correlated. For instance, knowing the current hour’s overall energy
usage will help estimate the next hour’s energy demand. To make use of the rela-
tionships among predicted outputs, this paper deploys the Conditional Random
Fields (CRF) [8], a sequential labeling method. More specifically, we adopt the
Continuous Conditional Random Fields (CCRF) [10]. As depicted on the left
subfigure in Figure 1, our CCRF approach intuitively integrates two layers. The
first layer consists of variable (node) features (filled squares in Figure 1), and
aims at the prior knowledge for the multiple outputs. The second layer employs
edge potential features (unfilled squares in Figure 1) to implicitly model the
interplays of the interconnected outputs, aiming at improving the predictions
from the first layer. Consequently, the proposed method makes predictions not
only basing on observed features, but also considering the estimated values of
related outputs, thus improving the overall predictive accuracy.

In addition to its capability of implicitly modeling the interplays between
outputs through its edge potential functions, the CCRF strategy can include a
large number of accurate regression algorithms or strong energy predictors as its
node features, thus enhancing its prior knowledge on each individual output. Im-
portantly, the proposed CCRF method has the form of a multivariate Gaussian
distribution, resulting in not only efficient learning and inference through matrix
computation, but also being able to provide energy load projects with smooth
predicted confidence intervals, rather than only the forecasted load values, thus
further benefiting the decision makings for energy load management.

In particular, we addressed the weak feature constraint problem in the CCRF
with a novel edge function, thus boosting its predictive performance. Such weak
constraint issue arises because CCRF takes aim at target outputs with continu-
ous values. In detail, CRF’s function constraints are weak for edge features with

yt-1 yt yt+1 

X 

xi < 3.6 

yes 

xm > 9.8 
no 

yes no 

yt =0.9 
Yt-1=6.3 

yt=6.0 
Yt+1=9.1 

Yt-1=2.0 
Yt-2=7.8 

Fig. 1. A chain-structured Continuous CRF with PCTs trees (right subfigure) as edge
potential functions (unfilled squares). Here the filled squares are the node features.
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continuous values, compared to that of binary features, because of CRF’s linear
parameterization characteristics [13,14]. That is, for a binary feature, knowing
the mean is equivalent to knowing its full probability distribution. On the con-
trary, knowing the mean may not tell too much about the distribution of a
continuous variable. Since CRF strategies are devised to form models satisfy-
ing certain feature constraints [14], such weak feature constraints will limit the
resultant CRF’s predictive performance. Moreover, typical approaches of divid-
ing continuous values into “bins” cannot be applied to our CCRF method here
because for energy load forecasting, one has to be able to simultaneously “bin”
multiple target variables that are unknown in inference time. To address the
above concern for the CCRF model, we employ a multi-target function, namely
the Predictive Clustering Trees (PCTs) strategy [1], as the CCRF’s edge fea-
ture. The PCTs method first partitions instances with similar values for multi-
ple related target variables, only based on their shared observation features, into
disjoint regions. Next, it models a separate relationship among these target vari-
ables in each smaller region. In other words, the PCTs convert the relationship of
the related target variables into a set of sub-relationships, each containing more
specific constraints for the related target variables. As a result, it enables the
CCRF to better capture the correlations between related outputs, thus boosting
the CCRF’s predictive performance.

We applied the proposed method to two real-world energy load forecasting
systems: one for gas which is used to warm buildings in winter, and another for
electricity for building cooling in summer. Also, we compared our approach with
three benchmarking strategies: 1) a random forests method where each branch
is a multi-objective decision tree for multiple target variables, 2) a collection
of regression trees each targeting an individual target variable, and 3) a CCRF
model with basic features. Our experimental results show that the proposed
method can significantly reduce the predictive error, in terms of mean absolute
percentage error and root mean square error, for the two energy systems, when
compared with the three baseline algorithms.

This paper is organized as follows. Section 2 introduces the background. Next,
a detailed discussion of the proposed algorithm is provided in Section 3. In
Section 4, we describe the comparative evaluation. Section 5 presents the related
work. Finally, Section 6 concludes the paper and outlines our future work.

2 Background

2.1 Conditional Random Fields

Conditional Random Fields (CRF) are undirected graphical models that define
the conditional probability of the label sequence Y = (y1, y2, · · · , yn), given
a sequence of observations X = (x1, x2, · · · , xr). That is, the discriminative
strategy aims to model P (Y |X). Specifically, benefiting from the Hammersley-
Clifford theorem, the conditional probability can be formally written as:

P (Y |X) =
1

Z(X)

∏
c∈C

Φ(yc, xc)
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where C is the set of cliques2 in the graph, Φ is a potential function defined
on the cliques, and Z(x) is the normalizing partition function which guarantees
that the distribution sums to one.

One of the most popular CRFs is the linear chain CRF (depicted on the
left of Figure 1), which imposes a first-order Markov assumption between la-
bels Y . This assumption allows the CRF to be computed efficiently via dynamic
programming. In addition, the clique potentials Φ in the linear chain CRF are
often expressed in an exponential form, so that the formula results in a maxi-
mum entropy model. Formally, the linear-chain CRF is defined as a convenient
log-linear form:

P (Y |X) =
1

Z(X)

n∏
t=1

exp(υT · f(t, yt−1, yt, X)) (1)

where, Z(X) =
∑
Y

n∏
t=1

exp(υT · f(t, yt−1, yt, X))

Here, f(t, yt−1, yt, X) is a set of potential feature functions which aim to capture
useful domain information; υ is a set of weights, which are parameters to be
determined when learning the model; and yt−1 and yt are the label assignments
of a pair of adjacent nodes in the graph.

2.2 Continuous Conditional Random Fields

The CRF strategy is originally introduced to cope with discrete outputs in la-
beling sequence data. To deal with regression problems, Continuous Conditional
Random Fields (CCRF) has recently been presented by Qin et al. [10], aiming
at document ranking. In CCRF, Equation 1 has the following form.

P (Y |X) =
1

Z(X,α, β)
exp(

n∑
1

H(α, yi, X) +
∑
i∼j

G(β, yi, yj , X)) (2)

where i ∼ j means yi and yj are related, and

Z(X,α, β) =

∫
y

exp(

n∑
1

H(α, yi, X) +
∑
i∼j

G(β, yi, yj , X))dy

Here, potential feature functions H(yi, X) and G(yi, yj, X) intend to capture
the interplays between inputs and outputs, and the relationships among related
outputs, respectively. For descriptive purpose, we denote these potential func-
tions as variable (node) feature and edge feature, respectively. Here, α and β
represent the weights for these feature functions. Typically, the learning of the
CCRF is to find weights α and β such that conditional log-likelihood of the

2 A clique is a fully connected subgraph.
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training data, i.e., L(α, β), is maximized, given training data D = {(X,Y )}L1 (L
is the number of sample points in D):

(α̂, β̂) = argmax
α,β

(L(α, β)), where L(α, β) =
L∑
l=1

logP (Yl|Xl) (3)

After learning, the inference is commonly carried out through finding the most
likely values for the P (Yl) vector, provided observation Xl:

Ŷl = argmax
Yl

(P (Yl|Xl)) (4)

Promisingly, as shown by Radosavljevic et al. [12], if the potential feature
functions in Equation 2 are quadratic functions of output variables Y , the CCRF
will then have the form of a multivariate Gaussian distribution, resulting in a
computationally tractable CCRF model. Our approach deploys such a Gaussian
form CCRF model with newly designed edge and variable features. We will
discuss our model and feature design in detail next.

3 CCRF for Energy Load

One of the core developments for a CCRF model is its edge and variable features.

3.1 Model Design

Our edge features are designed to capture the relationships between two adjacent
target variables, and to ensure that the resultant CCRF has a multivariate Gaus-
sian form. Our motivations are as follows. Our analysis on real-world short-term
energy load data indicates that, for these data the adjacent target variables are
highly correlated. As an example, Figure 2 pictures the partial autocorrelation
graphs of two years’ hourly gas demand and electricity load (we will discuss these
two data sets in details in Section 4) in the left and right subfigures, respectively.
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Fig. 2. Partial autocorrelation graphs of the gas demand and electricity load data
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These two subfigures indicate that adjacent target variables show significant cor-
relation, compared to the other related target variables. For example, as shown
in Figure 2, for both the gas demand and electricity load data, the first lag bears
a correlation value of over 0.8. In contrast, other lags have a correlation of less
than 0.3. These results suggest that the energy loads of a pair of adjacent hours
are highly correlated.

Aiming to capture the above mentioned correlation between two adjacent
target variables, we deploy G(β, yi, yj , X) =

∑
S βsωs(yi − yj)

2 as our edge
function form. Here yi and yj are the i-th and j-th target outputs, respectively.
Since the correlation of energy usages of a pair of adjacent hours is much higher
than other hours (as previous shown), in our design the i-th and j-th represent
two adjacent hours. The ωs is the s-th of a set of S indicator functions with
values of either zero or one, indicating if the correlation between yi and yj
should be measured or not. The β here represents the weights for these feature
functions, and these weights will be learned by the CCRF during the training. In
particular, the quadratic function forms here are specially designed to ensure that
the CCRF results in a multivariate Gaussian form with efficient computation for
the learning and inference, as will be further discussed later in this section.

In contrast to the edge potential feature which takes into account the inter-
actions between predicted target variables, the variable potential feature of the
CCRF, as described in Equation 2, aims at making good use of many efficient
and accurate regression predictors. To this end, we consider variable features
of the form H(α, yi, X) =

∑m
k=1 αk(yi − fk(X))2. Here, yi indicates the i-th

target output, fk(X) is the k-th of m predictors for the target output yi. This
specific variable feature form is motivated by the following two reasons. First,
with this particular form, the resultant CCRF strategy is able to include many
efficient and accurate single-target regression models, such as Regression Trees
or Support Vector Machines, or existing state-of-the-art energy load predictors
as its features. One may include a large number of such predictors, namely with
a large m, and the CCRF will automatically determine their relevance levels
during training. For example, for target output yi, we can have the output from
a single-target Regression Trees and the prediction from a SVM as its two fea-
tures; during the learning, the CCRF will determine their contribution to the
final prediction of the yi through their weights. Second, the quadratic form here
ensures that the final model results in a computationally tractable CCRF, as
will be discussed next.

With the above edge and variable features, our CCRF strategy results in the
graph structure depicted in Figure 1, bearing the following formula.

P (Y |X) = 1

Z(X,α, β)
exp(

n∑
1

H(α, yi, X) +
∑
i∼j

G(β, yi, yj , X))

=
1

Z(X,α, β)
exp(−

n∑
i=1

m∑
k=1

αk(yi − fk(X))
2 −
∑
i∼j

S∑
s=1

βsωs(yi − yj)
2) (5)
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In this equation, we have n target outputs (i.e., {yi}n1 ), m variable features
(i.e., {fk(X)}m1 ) for each target yi, and S edge features (with s as index) for
modeling the correlation between two outputs yi and yj (where indicator function
ωs indicates if the correlation between the i-th and j-th outputs will be taken
into account or not). In our case, we use edge features to constrain the square of
the distance between two outputs when the two outputs are adjacent. Note that
we here assume that the neighboring information between two target outputs
will be given.

Intuitively, the integration of the variable and edge feature, as described in
Equation 5, forms a model with two layers. The variable features αk(yi−fk(X))2

are predictors for individual target variables. That is, these variable features
depend only on the inputs. Hypothetically, if the edge functions are disabled, the
predictions of the CCRF model will be the outputs of these individual predictors.
In this sense, we can consider the variable features as the prior knowledge for the
multiple outputs. On the other hand, the edge potential functions βsωs(yi−yj)

2

involve multiple related target variables, constraining the relationships between
related outputs. In fact, we can think of the edge features as representing a
separate set of weights for each multi-targets output configuration. In other
words, these weights serve as a second layer on top of the variable features. This
second layer aims to fine-tune the predictions from the first layer, namely the
prior knowledge provided by the variable features.

Promisingly, following the idea presented by Radosavljevic et al. [12], the
above CCRF, namely Equation 5 can be further mapped to a multivariate Gaus-
sian because of their quadratic forms for the edge and variable potential features:

P (Y |X) =
1

(2π)n/2|
∑

|1/2 · exp(−1

2
(Y − μ(X))T

∑
−1(Y − μ(X))) (6)

In this Gaussian mapping, the inverse of the covariance matrix Σ is the sum
of two n× n matrices, namely Σ−1 = 2(Q1 +Q2) with

Q1
ij =

{∑
m
k=1αk if i = j

0 otherwise
and Q2

ij =

{∑n
j=1

∑S
s=1 βsωs if i = j

−
∑S

s=1 βsωs if i 
= j

Also the mean μ(X) is computed as Σθ. Here, θ is a n dimensional vector
with values of

θi = 2
∑

m
k=1αkfk(X)

Practically, this multivariate Gaussian form results in efficient computation
for the learning and inference of the CCRF model, which is discussed next.

Training CCRF. In the training of a CRF model, feature function constraints
require the expected value of each feature with respect to the model be the same
as that with respect to the training data [14]. Following this line of research, with
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a multivariate Gaussian distribution that aims at maximizing log-likelihood, the
learning of a CCRF as depicted in Equation 3 becomes a convex optimization
problem. As a result, stochastic gradient ascent can be applied to learn the
parameters.

Inference in CCRF. In inference, finding the most likely predictions Y , given
observation X as depicted in Equation 4, boils down to finding the mean of the
multivariate Gaussian distribution. Specifically, it is computed as following:

Ŷ = argmax
Y

(P (Y |X)) = μ(X) = Σθ

Furthermore, the 95%-confidence intervals of the estimated outputs can be ob-
tained by Ŷ ± 1.96× diag(Σ), due to the Gaussian distribution.

3.2 Cope with Weak Feature Constraint in CCRF

Recall from Section 3.1 that the edge features in our CCRF have the form of (yi−
yj)

2. This particular function form aims to ensure that not only the correction
between adjacent outputs are taken into account, but also the resultant CCRF
has a multivariate Gaussian form with efficient computation for the learning and
inference. This design, however, results in a weak feature constraint problem for
the CCRF because now each edge function depends on multiple, continuous
target variables. We detail this challenge as follows.

In a nutshell, CRF is a maximum entropy model with feature constraints
that capture relevant aspects of the training data. That is, training a CRF
amounts to forcing the expected value of each feature with respect to the model
to be the same as that with respect to the training data. Consequently, the
constraints with binary feature, for example, contain essential information about
the data because knowing the mean of the binary feature is equivalent to knowing
its full distribution. On the other hand, knowing the mean may not tell too
much about the distribution of continuous variables because of CCRF’s linear
parameterization characteristics [13,14]. As an example, the mean value of the
red curve distribution on the left subfigure in Figure 3 does not tell us too much
about the distribution of the curve. As a result, the CCRF may learn less than
it should from the training data.

To tackle this constraint weakness, one typically introduces the “Binning”
technique. That is, one can divide the real value into a number of bins, and
then each bin is represented by a binary value. However, in the CCRF, typical
“Binning” techniques are difficult to apply to the edge functions because all the
values for these features are predicted values of the target variables, and we do
not know these values beforehand. That is, we do not know, for example, the
values of yi and yj in inference time. To cope with unknown target variables, one
may have to “Bin” these features using only the known input variables. Never-
theless, relying on only the observed inputs may not be enough to distinguish
the interactions between the pair of unknown outputs. For example, a large yi
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value and a small yj value may have the same result, as computed by (yi − yj)
2,

as that of a small yi and a large yj value pair. These observations suggest that
it will be beneficial to has a “Binning” technique that is able to simultaneously
take the interactions of a pair of outputs and the observed inputs into account.

Following this line of thought, we propose to use the Predictive Clustering
Trees (PCTs) [1]. The aim here is to use the PCTs to divide the relationships
of related outputs into a set of “sub-relationships”, each providing more specific
feature constraints for the interplays of the related outputs. The PCTs strategy
considers a decision tree as a hierarchy of clusters. The root node corresponds to
one cluster containing all data, which is recursively partitioned into smaller clus-
ters while moving down the tree. When dealing with multiple target attributes,
the PCTs approach can be viewed as a tree where each leaf has multiple targets,
compared to that of traditional decision tree which learns a scalar target. The
PCTs method extends the notion of class variance towards the multi-dimensional
regression case. That is, given a distance function, such as the sum of the vari-
ances of the target variables, for the multi-dimensional target space, the PCTs
algorithm partitions the input space, namely X , into different disjoint regions,
where each is a leaf and each groups instances with similar values for the target
variables Ys. When deployed for CCRF, each PCTs tree can be used to model
the interactions between the related Ys through its leaves. The graph structure
in Figure 1 pictures our CCRF model, where each unfilled square describes an
edge feature, and each is represented by a PCTs tree on the right of the figure.

We illustrate the above weak edge feature constraint and the proposed PCTs
solution with Figure 3. In this figure, the red curve shows the distribution of the
edge potential feature of (yi − yj)

2 in the gas demand (used for heating) data
set. Here, yi and yj represent the energy loads of two neighboring hours, namely
hours i and j, respectively. This distribution subsumes three sub-distributions,
depicted by the blue, brown, and green curves, respectively. In detail, the blue
curve pictures the distribution of (yi − yj)

2 where the hours i and j have similar

x = similar temperatures 
between the two hours 

yes no 

yes no 

(yi-yj)2,depicted 
by blue curve 

(yi-yj)2,depicted 
by red curve 

(yi-yj)2,depicted 
by green curve 

(yi-yj)2,depicted 
by brown curve 

x = sharp dropped temperatures 
between the two hours 

(yi-yj)2 

11

22 33

Fig. 3. Left subfigure: distribution of (yi − yj)
2 (red curve), and the subsumed three

sub-distributions (blue, brown, and green curves); right subfigure: the PCT tree that
shows what X values were used to convert the red curve into the three sub regions



442 H. Guo

temperature; the brown curve presents the same two hours with a dramatically
increasing temperature; and the green curve shows the distribution of the same
two hours where the temperature drops sharply. Intuitively, one can consider the
red curve pictures a joint probability of P ((yi − yj)

2, X), and the other three
curves show the conditional probability of P ((yi − yj)

2|X) when X takes one of
the three weather scenarios, namely, similar, sharply increasing, and dramatically
dropping temperatures between two neighboring outputs.

As can be seen from this example, the edge feature 3 of (yi − yj)
2, as shown

by the red curve, is not able to distinguish the three sub-relationships clustered
by the blue, brown, and green curves. That is, the edge feature constraints
represented by the red curve cannot distinguish between a similar, increasing,
or reducing energy consumption trends. Such weak edge feature will limit the
constraining power of the edge potential functions in the CCRF. It is worth to
further noting that, if we do not simultaneously consider the input variables and
the interplays between the target variables, as what the PCTs do, we may not be
able to distinguish the brown and green curves since these two curves represent
similar (yi − yj)

2 values.
Let us continue with the above example. Tackled by the PCTs, the original

edge feature of (yi − yj)
2, as depicted by the red curve, will be replaced by

three sub features, namely the distributions shown in the blue, brown, and green
curves. In other words, three edge feature constraints, instead of only one, will
be used by the G(β, yi, yj , X) function, representing three different types of
interplays between the (yi, yj) pair: one constraining a small change between yi
and yj , another defining a sharp increase of energy consumption, and the other
confining a quick drop in term of energy consumption.

Let’s sum up the above example. The edge function with PCTs here can nat-
urally model the multi-steps ahead energy consumptions: 1) if the temperature
(which can be observed or forecasted) is sharply dropping, the constraint of a
small yi and a large yj will have a high probability; 2) if the temperature is
dramatically increasing, the constraint of a large yi and a small yj will have a
high probability; 3) if the temperature is similar, similar values for yi and yj will
then have a high probability.

4 Experimental Studies

4.1 Data Sets

Two real world data sets were collected from a typical commercial building in
Ontario: one aims to predict the hourly electricity loads for the next 24 hours,
and another for the next 24 hours’ gas demands. For the electricity, one year
of hourly energy consumption data in 2011 and three months of summer data,
from March 1st to May 31rd in 2012, were collected; for gas, we have the whole

3 Note that, as discussed in Section 3.1, the quadratic function forms here are specially
designed to ensure that the CCRF results in a multivariate Gaussian form with
efficient computation for the learning and inference.
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year’s data in 2011 and winter data from January to March in the year of 2012.
In our experiments, for both the electricity and gas, we trained the model with
the 2011 data and then tested the model using the data from 2012.

4.2 Features and Settings

In these two energy load forecasting systems, the proposed CCRF method de-
ployed 23 edge features, as discussed in Section 3.2. Each such feature aims to
capture the interplays of an adjacent pair of target variables, namely two con-
secutive hours of the 24 hours. The number of sub-regions generated for each of
these edge features were controlled by the search depth of the PCTs trees. The
larger this number, potentially more sub-regions or clusters will be created to
group a pair of related target variables. In our experiments, we set this number
to 3. In fact, we compared with different settings and the model was insensitive
to this parameter.

Also, 24 variable features were used, each focusing on one target variable,
namely an individual hour of the 24 output hours. To this end, we deploy Fried-
man’s additive gradient boosted trees [5,6] as our CCRF model’s variable fea-
tures. Friedman’s additive boosted trees can be considered as a regression version
of the well-known Boosting methodology for classification problems. Promising
results of applying this additive approach have been observed, in terms of im-
proving the predictive accuracy for regression problems [5]. In our studies here,
each such variable feature, namely each target yi, is modeled using an additive
gradient boosted strategy with the following parameters: a learning rate of 0.05,
100 iterations, and a regression tree as the base learner. The input features for
the Friedman machine include past energy usages, temperatures, the day of the
week, and the hour of the day.

In addition, to avoid overfitting in the training of the CCRF, penalized regu-
larization terms 0.5α2 and 0.5β2 were subtracted from the log-likelihood function
depicted in Equation 3. Also, the number of iterations and learning rate for the
gradient ascent in the CCRF learning were set to 100 and 0.0001, respectively.

4.3 Methodology

We compared our method with three benchmarking approaches. The first com-
parison algorithm is a state-of-the-art multi-target system, namely the ensembles
of Multi-Objective Decision Trees (MODTs) [7]. We obtained the settings of the
ensembles of MODTs from their authors. That is, in our experiments, a random
forest strategy was applied to combine 100 individual multi-objective decision
trees. The second benchmarking algorithm is a strategy that trains independent
regression models for each target attribute and then combines the results [9,15].
In our studies, a collection of regression trees were used where each tree models
a target variable. The last comparison approach we compared with is a CCRF
model with basic features. That is, this CCRF strategy used 24 single-target re-
gression trees as its variable features. Also, each of the 23 edge features captures
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the square of the distance between two adjacent target variables. The compari-
son here aims to evaluate the impact of the newly designed features, namely the
predictive clustering approach, to the CCRF strategy.

We implemented the CCRF models in Java on a 2.93GHz PC with 64 bit Win-
dows Vista installed. We measured the performance of the tested algorithms
with the mean absolute percentage error (MAPE) and the root mean square
error (RMSE). For descriptive purpose, we referred to the random forests ap-
proach with multi-objective decision trees, the method of learning a collection of
regression trees, the basic CCRF algorithm, and the proposed CCRF strategy
as MODTs, RTs, CCRFs BASE, and CCRFs EP, respectively.

4.4 Experimental Results

In this section we examine the predictive performance of the proposed method
against both the electricity and gas data, in terms of MAPE and RMSE.

Electricity Usage. Our first experiment studies the performance of the tested
methods on the electricity load data. We present the MAPE and RMSE obtained
by the four tested approaches for each of the three months, namely March, April,
and May, in Figure 4. In this figure, we depicted the MAPE and RMSE obtained
on the left and right subfigures, respectively.

The MAPE results, as presented on the left subfigure of Figure 4 show that
the CCRF method appears to consistently reduce the error rate for each of the
three months, when compared to all the other three tested strategies, namely the
collection of regression trees, the random forests with multi-objective decision
trees, and the CCRF model with basic features. For example, when compared
with the collection of regression trees method, namely the RTs approach, the
CCRFs EP model decreases the absolute MAPE for months March, April, and
May with 0.51, 0.53, and 1.0, respectively. The relative average error reduced for
these three tested months was 17.9% (drop from 3.80 to 3.12 as shown on the
left of Figure 4). In terms of RMSE, for each of the three months, the error was
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Fig. 4. MAPE and RMSE obtained by the four methods, against the electricity data
in the months of March, April, and May in 2012
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reduced by the CCRFs EP method from 139.63, 136.91, and 165.86 to 112.11,
114.76, and 118.17, respectively. As depicted on the right of Figures 4, a relative
average reduction was 22.0% (drop from 147.47 to 115.01).

When considering the comparison with the random forests of multi-objective
decision trees, namely the MODTs method, the results as depicted in Figure 4
indicate that the CCRFs EP model was also able to meaningfully reduce the
error. As shown in Figure 4, for both MAPE and RMSE, the CCRFs EP strategy
was able to reduce the error for all the three months. On average, relative error
reductions of 20.08% and 17.66% were achieved by the CCRFs EP model over
the MODTs strategy, in terms MAPE and RMSE, respectively.

Comparing to the CCRFs BASE algorithm, the CCRFs EP method also ap-
pears to consistently outperform the CCRFs BASE strategy for each of the three
months regardless the evaluation metrics used, namely no matter if the MAPE
or RMSE was applied as the predictive performance metrics. As depicted in Fig-
ure 4, average relative error reductions of 11.87% and 13.75% were achieved by
the CCRFs EP model over the CCRFs BASE approach, in terms MAPE and
RMSE, respectively. These results suggest that the advanced potential feature
functions as introduced in Section 3.2 enhanced the proposed CCRF model’s
predictive performance.

Gas Consumption. Our second experiment investigates the performance of
the tested methods on the gas demand data. We present the MAPE and RMSE
obtained by the four tested methods for each of the three months, namely Jan-
uary, February, and March, in Figure 5. In this figure we depicted the MAPE
and RMSE obtained on the left and right subfigures, respectively.

The MAPE results, as presented on the left subfigure of Figure 5 show that
the proposed CCRF EP method appears to consistently reduce the error for
all the three months, when compared to the RTs, MODTs, and CCRFs BASE
methods. For instance, when compared with the RTs algorithm, the results on
the left subfigure of Figure 5 show that the CCRFs EP model decreases the
absolute MAPE for months January, February, and March with 2.61, 1.81, and
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2.74, respectively. The relative average error reduced for these three months was
29.15% (drop from 8.19 to 5.80 as indicated in Figure 5). In terms of RMSE,
results on the right of Figure 5 demonstrate that, the CCRF EP strategy out-
performed the RTs algorithm for all the three tested months. A relative average
reduction was 32.77% (drop from 1894 to 1272 as shown on the right of Figure 5).

When considering the comparison with the MODTs method, the results in
Figure 5 indicate that the proposed CCRF model meaningfully reduce the error
rate. For example, for both MAPE and RMSE, the CCRF EP strategy was able
to reduce the error for all the three months. As shown on the right of Figure 5,
average relative error reductions of 56.47% and 55.82% were achieved by the
CCRF EP model over the random forests ensemble.

Comparing to the CCRFs BASE, the CCRFs EP method again appears to
consistently outperform the CCRFs BASE strategy for all the three months in
terms of both the MAPE or RMSE. As depicted in Figure 5, average relative
error reductions of 19.55% and 22.05% were achieved by the CCRFs EP model
over the CCRFs BASE strategy, in terms MAPE and RMSE, respectively.

In summary, the experimental results on the six data sets indicate that, the
proposed CCRF model consistently outperformed the other three tested methods
in terms of MAPE and RMSE. Promisingly, the relative error reduction achieved
by the proposed CCRF algorithm was at least 11.87%, and up to 56.47%.

In addition to its superior accuracy, the proposed CCRF has the form of a
multivariate Gaussian. Therefore, it can provide projects with probability dis-
tributions rather than only the forecasted numbers. In Figure 6, we depicted a
sample of the 24 predictions with their 95% confidence intervals from our gas
forecasting system. The 24 hours ahead predictions, along with their confidence
intervals, were generated for the date of April 1st, 2012, at mid night. In this fig-
ure, the dark curve in the middle shows the 24 predictions, and the two dot curves
depict the two confidence interval bands. These smooth, uncertainty information
could be beneficial for better decision makings in energy load management.

Fig. 6. Outputs with 95% confidence bands for the gas consumptions of April 1st, 2012
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5 Related Work

Short-term energy load forecasting has been an active research area for decades,
and a variety of machine learning techniques have been proposed to cope with
this challenge, including regression algorithms, time series analysis strategies,
Neural networks, and Support Vector Machines, amongst others. An informative
review has been reported by Feinberg and Genethliou [4]. Comparing with the
CCRF methods, many existing approaches either have difficulties to make use of
different types of features (such as dependent features, categorical features etc.),
to generate statistical information of the estimated values (e.g., the confidence
intervals), or to explore the interrelationships among the multiple outputs (e.g.,
structured outputs).

Recent years, Conditional Random Fields has been devised to provide a prob-
abilistic model to represent the conditional probability of a particular label se-
quence. This discriminative framework has been very successfully applied to
many classification tasks, including text labeling [8], activity recognition [14],
recommendation [16], and image recognition [11], amongst others. Also, within
the CRF research community, issues related to the powerful and flexible CRF
model have also been actively studied [2,17]. In contrast, only a few applications
of applying this framework on regression tasks have been reported. These ap-
plications include document ranking [10], Aerosol optical depth estimation [12],
and travel speed prediction [3]. To our best knowledge, this paper is the first
to report an application of Conditional Random Fields on short-term energy
load forecasting. Also, we focus on designing a CCRF with tractable compu-
tation cost for training and inferring, through the carefully designed potential
feature functions. Most importantly, we cope with the weak feature constraint
in a CCRF model, which, to our best knowledge, has not been addressed by any
CCRF paper before.

6 Conclusions and Future Work

Embracing “smart energy consumption” to optimize energy usage in commercial
buildings has provided a unique demand for modeling short-term energy load.
We have devised a Continuous Conditional Random Fields strategy to cope with
these structured outputs tasks. The CCRF can naturally model the multi-steps
ahead energy load with its two layers design. In particular, we deployed a novel
edge feature, namely a multi-target regression strategy, to enable the CCRF to
better capture the interplays between correlated outputs with continuous values,
thus boosting the CCRF model’s accuracy. We evaluated the proposed method
with two real-world energy load forecasting systems. When compared with three
benchmarking strategies, our experimental studies show that the proposed ap-
proach can meaningfully reduce the predictive error for the two energy systems,
in terms of mean absolute percentage errors and root mean square errors.

To our best knowledge, this is the first study on adopting a CRF to model
multiple-steps-ahead energy loads. Furthermore, we introduced a novel multi-
target edge function to address the weak feature constraint problem in the
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CCRF, thus boosting its accuracy. Our future work will test our approach against
more data sets with comprehensive statistical analysis. Also, we plan to further
conduct comparison studies with other state-of-the-art energy predictors.

Acknowledgments. We wish to thank the anonymous reviewers for their in-
sightful comments on our submission, which helped improve the paper quality.
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Abstract. Many systems rely on predictive models using sensor data,
with sensors being prone to occasional failures. From the operational
point of view predictions need to be tolerant to sensor failures such that
the loss in accuracy due to temporary missing sensor readings would be
minimal. In this paper, we theoretically and empirically analyze robust-
ness of linear predictive models to temporary missing data. We demon-
strate that if the input sensors are correlated the mean imputation of
missing values may lead to a very rapid deterioration of the prediction
accuracy. Based on the theoretical results we introduce a quantitative
measure that allows to assess how robust is a given linear regression
model to sensor failures. We propose a practical strategy for building and
operating robust linear models in situations when temporal sensor fail-
ures are expected. Experiments on six sensory datasets and a case study
in environmental monitoring with streaming data validate the theoretical
results and confirm the effectiveness of the proposed strategy.

Keywords: missing data, data streams, linear models, sensor failure.

1 Introduction

The amount of sensors installed in the urban and natural environments is rapidly
increasing. It is predicted that sensor data collected from satellites, mobile de-
vices, outdoor and indoor cameras will become the largest information trove for
our society in the coming years [3]. Predictive models using sensor readings as
inputs are widely applied in real-time systems, such as production quality con-
trol, air pollution monitoring, detecting traffic jams or severe road conditions,
route recognition, road navigation, cargo tracking and many more [6].

Physical sensors are exposed to various risks due to, for instance, severe envi-
ronmental conditions or exposure to physical damage. Moreover, typically sen-
sors rely on batteries, are installed in remote or hardly accessible locations, or
are unaccessible during operation runtimes. Sensors may break causing a sudden
failure until replaced. Sensors may get covered in snow or water causing a sea-
sonal temporary disruption. Some sensors may lose sensitivity due to wear and
tear. Under such circumstances it is very common to have time intervals when
readings from some sensors are missing. At the same time a predictive model
needs to operate continuously and deliver predictions in real time.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 449–464, 2013.
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We study how to make predictive models robust to temporary sensor failures
during real-time operation. We focus on linear regression models. We assume that
the observed process is stationary and the predictive model remains fixed during
real-time operation. Our goal is to maximize prediction accuracy not only when
all the input sensors are available, but also when readings from several sensors
are missing for continuous periods of time. The problem is more challenging
than it may seem due to the temporal nature of the missing data and limited
computational resources under the stream setting.

Discarding the incoming instances that contain missing values is not an option,
since there will be no predictions for continuous periods of time. The iterative
multiple imputation (MI) [14] carries high computational costs and is not consid-
ered for real-time operation. Deploying additional predictive models for filling in
missing values given the available sensors is computationally impractical, since
an exponential number of models would be required to cover all combinations
of failing sensors. One could consider an adaptive regression, e.g. [17]. However,
the time for learning a stable model before recovery or the next failure is very
limited, while the previous model is in principal correct. This applies to persis-
tent temporal failures as well as once-off outlier failures. Hence, adaptation is
not considered when to cover for frequent temporary failures.

A simple replacement of the missing values by the sensor mean value is a pop-
ular and easy to implement strategy in industrial applications. Unfortunately, in
the stream setting where values of the same sensors are missing for a continuous
period of time, this strategy may lead to a drastic deterioration of the prediction
accuracy, particularly if the input sensors are highly correlated and a regression
model exploits that correlation. Therefore, if sensor failures are expected in real-
time operation it is not enough to replace missing values by the mean; we also
need to ensure that the predictive model is robust to temporary missing data.

This paper presents a theoretical analysis of the predictive performance under
sensor failures and formulates robustness criteria for real-time operation. We in-
troduce the deterioration index that allows to assess robustness of a given linear
model to partial loss of input data. We propose a practical strategy for build-
ing robust linear models that is based on a de-correlating transformation and a
subsequent regularization of the model parameters in the transformed space. Ex-
perimental validation on six sensor datasets and a case study in environmental
monitoring domain confirms the effectiveness of the proposed strategy.

Our study contributes a theoretically supported methodology for diagnosing
robustness of linear regression models to loss of input data. This methodology
makes it possible to assess the robustness of alternative models prior to deploy-
ment in real-time operation. The second contribution is a practical strategy for
optimizing linear regression models such that they are robust to sensor failures.

The paper is organized as follows. Section 2 outlines the setting. In Section 3
we theoretically analyze how sensor failures affect the prediction accuracy and
develop an index for diagnosing the performance. Section 4 gives practical rec-
ommendations. Experimental analysis is reported in Section 5 and the case study
in Section 6. Section 7 discusses related work and Section 8 concludes the study.
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2 Background and Problem Setting

We start by formalizing the problem and presenting a recap on linear models.

Setting. Suppose we have r sensors generating multidimensional streaming data
vectors x ∈ /r (e.g. weather observation sensors). Our task is to predict the
target variable y ∈ /1 (e.g. solar radiation) using these sensor readings as inputs.
Data arrives in real time, the predictions need to be available in real time.
The expected loss in accuracy due to sensor failures should be minimum. We
assume that the observed process is stationary and the predictive model remains
fixed during real-time operation. To keep the focus, we do not explicitly model
potential spatial or temporal correlation between sensors.

Prerequisites. Without loss of generality we assume that the data (including
the target variable) is standardized to zero mean and unit variance. To keep the
focus we also assume that we know when a sensor fails (we do not need to detect
it). We also assume that when a sensor fails, the missing values are automatically
replaced with a constant value, say zero or the median value [2].

2.1 Linear Regression

In this study, we consider linear regression models for prediction [9], which as-
sume that the relationship between r input sensors x = (x1, . . . , xr) and the
target variable y is linear. The model takes the form

y = b1x1 + b2x2 + . . .+ brxr + ε = xβ + ε, (1)

where ε is the error variable and the vector β = (b1, b2, . . . , br)
T contains the

parameters of the linear model (regression coefficients). Since the data is assumed
to have been standardized, the bias term in the regression model is omitted.

There are different ways to estimate the regression parameters [8,9]. Ordinary
least squares (OLS) is a simple and probably the most common estimator. It
minimizes the sum of squared residuals giving the following solution

β̂OLS = argmin
β

(
(Xβ − y)T (Xβ − y)

)
= (XTX)−1XTy, (2)

where Xn×r is a sample data matrix containing n records from r sensors, and
yn×1 is a vector of the corresponding n target values. Having estimated a regres-
sion model β̂ the predictions for on new data xnew can be made as ŷ = xnew β̂.

If the input data is correlated, regularization is often used for estimating the
regression parameters. The Ridge regression (RR) [9, 10] regularizes the regres-
sion coefficients by imposing a penalty on their magnitude. The RR solution is

β̂RR = argmin
β

(
(Xβ − y)T (Xβ − y) + λβTβ

)
= (XTX+ λI)−1XTy, (3)

where λ > 0 controls the amount of shrinkage: the larger the value of λ, the
greater the amount of shrinkage. Ir×r is the identity matrix.
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2.2 Prediction Error

The mean squared error (MSE ) is a popular measure to quantify the discrepancy
between the true target y and the prediction ŷ. For a test dataset it is computed
as MSE =

∑n
l=1(ŷ

(l)−y(l))2/n = ŷTy/n, where n is the number of samples. We
use MSE since it punishes large deviations from the true values, that is relevant
to industrial applications. Also, MSE has interesting analytical properties. We
can decompose the expected mean squared error as

E[MSE ] = E
[ 1
n

n∑
l=1

(ŷ[l] − y[l])2
]
= E[(ŷ − y)2] = E[(ŷ)2 − 2ŷy + y2]

= E[ŷ2]− 2E[ŷy] + E[y2] = Var [ŷ]− 2Cov [ŷ, y] +Var [y] (4)

The last equation follows from Var [z] = E[z2]− (E[z])2 and Cov [x, z] = E[xz]−
E[x]E[z]. E[y] = 0 and E[ŷ] = 0, since the data has been standardized.

Let the prediction be ŷ = xβ. Then the variance of this prediction is

Var [ŷ] = Var
[ r∑

i=i

bixi
]
=

r∑
i=1

r∑
j=i

bibjCov [xi, xj ] = βTΣβ, (5)

where Σ = XTX/(n− 1) is the covariance matrix of the input data.
The covariance of the prediction is

Cov [ŷ, y] = E[ŷy] = E
[
y

r∑
i=1

bixi
]
= yTXβ/(n− 1). (6)

In real-time predictive systems if a sensor fails, typically, a constant value is
displayed. For convenience but without loss of generality we assume that the
missing values are replaced by the mean (zero, since the data is standardized)
as they arrive. Detecting sensor failures is beyond the scope of this work. We
assume that the data collection system can signal sensor failures automatically.
If this is not the case one can set up a simple rule based detector, such as: if the
value is constant for a period of time declare sensor failure.

3 Theoretical Analysis of the Effect of Sensor Failures

Let us consider theoretically the prediction error of a linear model when the
input sensors start to fail. Surprisingly, the jump in error can be nonlinear in
the number of sensors failed and highly depends on the correlation of the inputs.

Denote by MSEm the mean square error after m sensors have failed. Let
MSE0 be the error when all the sensors are working. Correspondingly, Varm
and Covm denote the variance and the covariance after m sensors have failed.
Note that cross-validtion MSE 0 is often the only consideration when assessing
the performance of a model or deploying in practice.
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Proposition 1. Suppose sensors fail independently with the uniform prior prob-
ability. With m failed sensors the expected error of a linear model is

E[MSEm] =
r −m

r
E[MSE0] +

m

r
− (r −m)m

r(r − 1)
βT (Σ− I)β,

where r is the number of input sensors, β is a vector of the regression coefficients,
Σ is the covariance matrix of the input data.

MSE can be decomposed into variance of the prediction, covariance of the
prediction and the target and the variance of the target, as given in Eq.(4). For
proving Proposition 1 we will analyze each component separately.

Proposition 2. Suppose sensors fail independently with the uniform prior prob-
ability. With m failed sensors the expected variance of the prediction ŷ = xβ is

Varm[ŷ] =
r −m

r
Var0[ŷ]−

(r −m)m

r(r − 1)
βT (Σ− I)β.

Proof (of Proposition 2). We decompose the variance from Eq. (5) intoVar0[ŷ] =
βTΣβ = βTβ + βT (Σ− I)β. The first part βTβ =

∑r
i=1 biVar [xi] describes the

variance when the inputs are linearly independent. The second part βT (Σ−I)β =

2
∑r−1

i=1

∑r
j=i+1 bibjCov (xi, xj) is due to correlation of the inputs.

Consider the first component βTβ. If a sensor fails, the individual variance
becomes zero and the term vanishes. The total variance decreases by 1

r b
2
1+

1
r b

2
2+

· · ·+ 1
r b

2
p = 1

rβ
Tβ. Likewise, if m sensors fail, the variance decreases by m

r β
Tβ.

Now consider the second component βT (Σ− I)β. Since (Σ− I) has zeros on
the diagonal, the component is a weighted sum of r(r − 1) covariances from the
covariance matrix. If one sensor (say, sensor i) fails, all the covariances of other
sensors with xi will become zero and all the terms containing covariance with xi
will vanish. The sum will lose 2(r− 1) elements (such is the amount of elements

with Cov [xi, . . .]), the total loss will be 2(r−1)
r(r−1)β

T (Σ− I)β.

However, if two sensors fail then only 2(r − 1) + 2(r − 2) elements will be
lost from the sum. If sensors i and j fail, there will be 2(r − 1) lost containing
covariance with xi, but only 2(r− 2) more terms lost containing covariance with
xj , as the term Cov (xi, xj) has already been lost earlier. Hence, if m sensors fail
then 2(r − 1) + 2(r − 2) + · · ·+ 2(r −m) = (2r − 1−m)m elements will be lost

and the collinearity component will decrease by (2r−1−m)m
r(r−1) βT (Σ− I)β.

Plugging the terms into Var [ŷ] expression gives

Varm[ŷ] = βTβ − m
r β

Tβ + βT (Σ− I)β − (2r−1−m)m
r(r−1) βT (Σ− I)β = r−m

r βTβ +

+ r−m
r βT (Σ−I)β− (r−m)m

r(r−1) β
T (Σ−I)β = r−m

r Var0[ŷ]− (r−m)m
r(r−1) β

T (Σ−I)β. ��

Proposition 3. Suppose sensors fail independently with the uniform prior prob-
ability. With m failed sensors the expected covariance of the prediction ŷ = Xβ is

Covm[ŷ, y] =
r −m

r
Cov0[ŷ, y].
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Proof (of Proposition 3). The covariance is Cov0[ŷ, y] = E
[
y
∑r

i=1 bixi
]
. If a

sensor fails, the expected value of that sensor becomes zero, the term becomes
independent from y and vanishes. If one sensor fails, the expectation decreases
by 1

ryb1x1 +
1
ryb2x2 + · · ·+ 1

rybrxr = 1
ry

∑r
i=1 bixi. If m sensors fail the expec-

tation decreases by m
r y

∑r
i=1 bixi. Plugging that into the covariance expression

gives Covm[ŷ, y] = E
[
y
∑r

i=1 bixi − m
r y

∑r
i=1 bixi

]
= E

[
r−m
r y

∑r
i=1 bixi

]
=

r−m
r Cov0[ŷ, y]. Note that the effect of sensor failure on Cov [ŷ, y] is the same no

matter whether the input data is correlated. ��

Given Proposition 2 and Proposition 3 we can now prove Proposition 1.

Proof (of Proposition 1). Following Eq. (4) we decompose the error withm failed
sensors into E[MSEm] = Varm[ŷ]−2Covm[ŷ, y]+Varm[y]. Failing input sensors
do not affect the variance of the true target, thus Varm[y] = Var0[y] = 1. From
Propositions 2, 3 and Eq. (4) we get E[MSEm] = r−m

r Var0[ŷ]−2 r−m
r cov0[ŷ, y]+

Var0[y]− (r−m)m
r(r−1) β

T (Σ− I)β = r−m
r E[MSE 0] +

m
r − m(r−m)

r(r−1) β
T (Σ− I)β. ��

For constructing fault tolerant models we will need the next proposition.

Proposition 4. Given a r × r covariance matrix Σ and a vector β ∈ /r with
at least one non-zero element, the term βT (Σ− I)β is bounded by

−βTβ ≤ βT (Σ− I)β ≤ (r − 1)βTβ.

Proof (of Proposition 4). The Rayleigh quotient of the covariance matrix is de-

fined as βTΣβ
βT β , for non-zero β ∈ /r and is bounded by the maximum and the

minimum eigenvalues of Σ: �min ≤ βTΣβ/βTβ ≤ �max, where � are eigenvalues,
and takes the extreme values when β is equal to the corresponding eigenvectors.

Since Σ is a covariance matrix, all eigenvalues are non-negative and their sum
is equal to the sum of the trace. As the data is standardized the sum of eigenval-
ues is r, hence the maximum eigenvalue does not exceed r: 0 ≤ βTΣβ/βTβ ≤ r.
Algebraic manipulations give the bound −βTβ ≤ βT (Σ− I)β ≤ (r− 1)βTβ. ��

Our analysis relies on theoretical variance and covariance of the prediction. Po-
tentially it could be extended to higher order regression models (e.g. quadratic),
that would require much more involved theoretical analysis due to interaction
terms. Alternatively, one could obtain non linear prediction models by using the
same linear regression with non-linear input features.

Proposition 1 has an important implication. If input data is uncorrelated then
MSE is increasing linearly with the number of sensors failed. If some sensor fails,
the predictive information is lost, there is no source for replacement.

On the other hand, if input data is correlated, MSE changes quadratically in
the number of sensors lost. From Proposition 4 we see that this quadratic term
can be positive or negative depending on the regression model (β). The good
news is that a well chosen β may reduce the loss in accuracy to sub-linear. The
next section considers strategies for building regression models such that the
expected MSE , when sensors are failing, is minimized.
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Comparison of three regression models

� MSEm
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Fig. 1. Three regression models and the deterioration of the prediction accuracy as a
function of number of failed sensors (m)

4 How to Build Fault Tolerant Regression Models

Based on the theoretical results next we propose a quantitative measure for
assessing robustness of regression models and present practical guidelines on
how to build fault tolerant regression models.

4.1 Deterioration Index

In Proposition 1 the term − (r−m)m
r(r−1) β

T (Σ− I)β decides whether MSE increases

linearly, quadratically or sub-linearly due to sensor failures. Hence, for diagnosing
model robustness to sensor failures we define a deterioration index as

� = −βT (Σ− I)β.

When input data is uncorrelated, i.e. Σ = I, then � = 0. When input data is
correlated � may be positive or negative (see Proposition 4). If � > 0 then MSE
deteriorates quadratically, if � < 0 then MSE deteriorates sub-linearly. Thus,
the lower the deterioration index the more robust the predictive model is.

4.2 An Illustrative Example

For illustrative purposes, let us consider a small regression problem where four
input sensors are perfectly correlated with each other and the target variable:
x1 ∼ N (0, 1), x1 = x2 = x3 = x4 = y. Note that Σ = 14×4. Figure 1 gives three
regression models that would give perfect predictions if all sensors are working,
i.e. MSE0 = 0 and their respective MSEm after m sensors fave failed (from
Proposition 1). Figure 1 plots the expected errors when sensors start to fail.

Model β1 utilizes only one input sensor and the deterioration of MSEm is
linear to the number of sensors failed (m). Can we do better? In fact we can do
better with model β2, which makes use of the redundancy in sensors. As a result,
the loss in accuracy is lower. Model β3 represents a really bad case of overfitting
with the regression, although this model can predict perfectly well, the weights
grow unnecessary high. In such a case, if a sensors start failing, the variance of
the prediction grows really high and so does the MSEm. We can observe that
even if a single sensor has failed MSE1 > 1 making the predictions worse than
a naive baseline that always predicts constant value (MSE constant = 1).
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4.3 Comparing Robustness of Several Regression Models

Since our goal is to deploy an accurate model that would also be robust to sensor
failures, the models that have small initial MSE0 and small � are preferred.

Suppose we have a choice between two regression models A and B. Two
situations may occur. First, one model, say A, has a better deterioration index

and at least equally good initial error: MSE
(A)
0 ≤ MSE

(B)
0 and �

(A) < �
(B). In

such a case for m = 0 . . . r we have MSE (A)
m ≤ MSE (B)

m (results from Proposition
1); hence, model A is preferable. Example in Section 4.2 showed such a situation.

The other situation is more tricky. One model, say A, may have a better

deterioration index , but worse initial error:MSE
(A)
0 > MSE

(B)
0 and �

(A) < �
(B).

In this case model A is preferable if we expect less than m� sensors to fail, and
otherwise model B is preferable. We can find m� from Proposition 1 by assigning
E[MSE (A)

m ] = E[MSE (B)
m ] and solving for m. The number of sensors to fail is

m� = (r − 1)(MSE
(A)
0 −MSE

(B)
0 )/(�(B) − �

(A)). (7)

4.4 Building Fault Tolerant Regression Models

A regression model β obtained using the ordinary least squares procedure OLS
minimizes MSE0. The index � takes its minimum when β is equal to the eigen-
vector with the maximum eigenvalue (Proposition 4). Unfortunately, such β does
not guarantee correct predictions, since eigenvectors are obtained not taking into
account the target variable. Hence, for making fault tolerant models we need an
optimization criteria that would minimize � and MSE 0 at the same time.

For a predictive model ŷ = xβ the deterioration index can be decomposed
into � = −βT (Σ − I)β = −Var [ŷ] + βTβ. We can rewrite Eq. (4) as Var [ŷ] =
MSE0 + 2Cov [ŷ, y] − Var [y] → 1. Accurate prediction requires Cov [ŷ, y] → 1
and Var [y] is fixed. Thus, we cannot vary Var [ŷ] without affecting the error.

However, we could vary βTβ to a certain extent with little impact toMSE0, for
instance, as in the toy example in Section 4.2. Hence, � will be minimized when
βTβ shrinks. To achieve that we recommend using regularization for building
regression models, such as the Ridge regression (Section 2.1).

In addition, we recommend reducing the dimensionality rotating the input
data towards the first k principal components. Let X = UDVT be the singu-
lar value decomposition of the training data. Let the rotation matrix Rp×k be
composed of the eigenvectors in V that correspond to the largest eigenvalues
recorded in the diagonal of D. Then new k-dimensional input data is X� = XR.
Let β� be a vector of regression coefficients in the transformed k-dimensional
space. The model β = Rβ� would give the same predictions in the original.

In order to minimize � we need to minimize βTβ in the original space, but at
the same time we need to find the optimal β� in the transformed space. Hence,
our optimization criteria is β̂� = argminβ�

(
(X�β� − y)T (X�β� − y) + λβTβ

)
.

Since R is orthogonal, thus βTβ = β�TRTRβ� = β�Tβ�. Therefore, optimizing
the above criteria is equivalent to the Ridge regression in the X� space.

Given these considerations, our recommendation for building fault tolerant
models is to apply PCA and then train the Ridge regression in the new space.
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5 Experimental Analysis

Next we experimentally analyze the robustness of selected regression techniques
against sensor failure on a synthetic benchmark and real sensor datasets.

5.1 Datasets

Chemi dataset from the INFER project1 describes a chemical production pro-
cess via 70 real valued sensor variables sampled once per hour over a two years
period (17562 instances). The goal is to predict concentration of a product.

ChemiR extends the Chemi data, an additional variable indicates the con-
centration of the product an hour ago (71 sensors, 17562 instances).

Catalyst dataset2 is a chemical modeling dataset. Given 13 input variables
the goal is to predict catalyst activity. The dataset contains 8687 instances.

Wine dataset from the UCI repository3 presents 10 chemical measurements
as inputs and 4897 instances. The goal is to predict a wine quality score.

CPU dataset from the DELVE repository4 collects computer systems activity
measures described by 19 real valued attributes. The goal is to predict the portion
of time that cpus run in user mode. The dataset contains 8192 instances.

Gaussian is a synthetic dataset in 30-dimensional space. Input data is sam-
pled from N (0, Σ), a random covariance matrix is generated as Σ = sT s, where

s ∼ U(−1, 1). The target variable is set to y =
∑30

i=1 xi + u, where u ∼ N (0, 6).

5.2 Regression Models

We test the following regression models.
ALL uses all r sensors as inputs. A regression model is built using the ordinary

least squares (OLS) optimization approach.
rALL uses all r sensors and the Ridge regression (RR) optimization.
SEL builds OLS regression on k sensors that have the largest absolute corre-

lation with the target variable (measured on the training data).
PCA rotates the input data using principal component analysis (PCA) and

builds the OLS regression on k new attributes with the largest eigenvalues.
rPCA extracts attributes using PCA, but then RR is used instead of OLS.
sPCA rotates the data using PCA, selects k new attributes that are the most

correlated with the target. A regression model is built using OLS.
PLS regression is very popular in chemometrics [18]. It is similar to PCA,

but instead of maximizing the variance with the rotation, a covariance between
the inputs and the target is maximized. We keep k new attributes.

1 Source: http://infer.eu/
2 Source: http://www.nisis.risk-technologies.com/
3 Source: http://archive.ics.uci.edu/ml/
4 Source: http://www.cs.toronto.edu/~delve/

http://infer.eu/
http://www.nisis.risk-technologies.com/
http://archive.ics.uci.edu/ml/
http://www.cs.toronto.edu/~delve/
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Table 1. Testing MSE0 and deterioration index on the six sensory datasets

rPCA PCA rALL SEL sPCA PLS ALL

Chemi MSE0 0.47 0.47 0.38 0.52 0.42 0.41 0.41
� -0.25 -0.25 1.03 0.67 6.42 6.54 7.44

ChemiR MSE0 0.42 0.43 0.36 0.35 0.37 0.35 0.34
� -0.34 -0.33 0.09 0.53 4.90 3.83 5.57

Catalyst MSE0 0.51 0.51 0.45 0.82 0.47 0.44 0.43
� -0.11 -0.08 0.21 0.69 0.63 0.82 1.71

Wine MSE0 0.83 0.83 0.73 0.76 0.74 0.73 0.73
� -0.07 -0.07 0.04 0.12 0.04 0.08 0.18

CPU MSE0 0.31 0.31 0.28 0.30 0.29 0.28 0.28
� -0.31 -0.32 -0.25 -0.26 -0.16 -0.14 -0.11

Gaussian MSE0 0.23 0.23 0.12 0.25 0.14 0.12 0.12
� -0.32 -0.33 -0.13 -0.16 -0.10 0 7.58

5.3 Experimental Protocol and Parameters

Each dataset is split into training and testing at random (equal sizes). Some
data may have temporal dependencies, hence some predictive information (such
as autocorrelation) cannot be utilized, that applies to all the tested models in the
same way, while random splits allow multiple tests. We repeat every experiment
100 times and report averaged results. The input data and the target variable
is standardized, the mean and the variance for standardization is calculated on
the training data. The regression models are trained on the training part and
the reported errors and sample covariances are estimated on the testing part.
The regression coefficients are always reported in the original (not transformed)
feature space. For feature selection SEL, PCA and PLS models we set the num-
ber of components to be a half of original number of features: k = r/2. The
regularization parameter in the Ridge regression experiments is fixed to 200.

5.4 Robustness versus Accuracy

Table 1 reports the testing errors and the deterioration index (�) on the six sen-
sory datasets. The models are grouped according to the potential deterioration
of their accuracies. We can distinguish three groups of models.

The first group contains PCA and regularized rPCA. These models consis-
tently achieve a very good deterioration index (below zero), that guarantees
preservation of prediction accuracy. The initial MSE 0 of PCA and rPCA is typi-
cally larger than the peer approaches, that is the price to pay for robustness. The
superior performance of rPCA and PCA is consistent across the six datasets.

The second group contains regularized rALL and SEL, which have varying
deterioration index , but typically not too high. rALL maintains a reasonable
accuracy (typically better than the first group); however, the accuracy of SEL
varies a lot, due to varying predictive power of the individual sensors (depends
on the prediction task at hand). The third group contains sPCA, PLS and ALL,
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Fig. 2. Empirical MSEm versus the number of sensors failed

these models mostly show a very high deterioration index , especially in Chemi,
ChemiR and Catalyst datasets, where the inputs are highly correlated.

Thus, we recommend using rPCA (or PCA) if sensors are expected to fail
often and predictions are needed continuously. If failures are rare we recommend
rALL that is less robust but more accurate with all the sensors working.

5.5 Empirical Analysis of Deterioration of Accuracy

Next we investigate how the error depends on the number of sensors that have
failed. Figure 2 shows testing MSEm as a function of the failed sensors. We chose
sensors to fail uniformly at random, we report the results over 100 runs.

Advantages of PCA and rPCA are prominent in Chemi and ChemiR, where
the dimensionality is large and the input data is strongly correlated. All the
models perform similarly (nearly linear loss) in Wine and CPUact, where the
input data is not much correlated. In Catalyst PCA and rPCA have an advantage
as expected based on deterioration index . On this dataset SEL has notably
worse performance. As the overall number of features is low (12), quite a lot of
initial accuracy is lost by dropping half of the features. Gaussian data strictly
follows the normal distribution, and the contribution of each sensor to the target
variable is uniformly distributed. ALL performs notably badly, but we see that
any regularization attempt (all the other methods) leads to a good performance.
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5.6 Sensitivity to the Number of Extracted Components

In our analysis number of components extracted in PCA, rPCA, sPCA and PLS,
as well as the number of features selected in SEL was fixed. Next we analyze
how the deterioration index and the prediction error depends on the number
of components on the Chemi dataset that has high dimensionality (r = 70).
We analyze all five models that take the number of components as a parameter:
PCA, rPCA, sPCA, SEL and PLS. Our goal is to assess the stability with respect
to sensor failures at arbitrary selected number of components. Note, that if all
the components are preserved (k = r) then PCA, sPCA, PLS and SEL are
equivalent to ALL, and the regularized rPCA is equivalent to rALL.

Figure 3 shows the deterioration index and the prediction error as a function
of extracted components (over 100 runs). The regularized rPCA performs much
better � than PCA when nearly all of the components are retained. PCA and
rPCA demonstrates superior � across all k in line with the previous experiments.
SEL demonstrates a mediocre � and sPCA together with PLS keeps a danger-
ously high � until the majority of the components are discarded (k is below 10).
We see from the right plot in Figure 3 that, unfortunately, at such a low k a lot
of prediction accuracy is lost, MSE is nearly twice as large with all the sensors.

Overall, we see a tendency to achieve a better deterioration index at an ex-
pense of a lower initial prediction accuracy. The regularized rPCA demonstrates
the most stable performance and superior results throughout all the range of k.

5.7 Worse Than Blind Guessing

Blind guessing is a naive prediction, that does not use any input data and always
predicts the average of the target variable. Next we analyse how many sensors
can fail before predictions become worse than blind guessing. Table 2 reports
empirical results on the six datasets averaged over 100 runs.

We see that in Gaussian the problem of sensor failure is very serious, it is
enough for two sensors out of 30 to fail and the predictive model is useless. In
case of Chemi and ChemiR it is enough for 6-7 sensors to fail out of 70-71 to
make ALL or even PLS useless. PLS is a very popular state of the art technique
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Table 2. No. of sensors to fail before the prediction becomes worse than blind guessing

rPCA PCA rALL SEL sPCA PLS ALL sensors

Chemi - - 29 23 7 7 6 out of 70
ChemiR - - 70 41 10 9 6 out of 71
Catalyst - - - 4 10 9 5 out of 12
Wine - - - - - - - out of 9
CPU - - - - - - - out of 19
Gaussian - - - - - - 3 out of 30

often used in chemometrics applications [13, 18], such as Chemi. From Figure 2
we can see that if just one sensor is lost, the error of PLS or ALL in Chemi
already jumps up by nearly 40%. We see that the mean imputation of missing
sensor values is a serious problem for these regression models.

The experimental results suggest that careful regularization measures are
needed for ensuring that predictive models stay functional during real-time oper-
ation. The experimental results confirm our theoretical findings and the indica-
tions of the deterioration index that the proposed rPCA and PCA can effectively
prevent rapid boosts in errors due to sensor failures. If a user does not have the
capacity to determine the optimal k, as a rule of thumb from our practical ex-
perience we recommend using k = r/2, where r is the number of input sensors.

6 Case Study in Environmental Monitoring

To validate our findings we perform a case study in environmental monitoring
where sensor failures are happening frequently. The task is to predict the level
of solar radiation from meteorological sensor data (such as temperature, precip-
itation, wind speed). We use a data stream recorded at SMEAR II station in
Finland [12]. This station can measure solar radiation; hence, the ground truth is
available for us. In general, measuring solar radiation is delicate and expensive.
Not many stations can afford to measure solar radiation and would be interested
in predicting it from other data that can be collected much cheaper and easier.

We use data over a five years period (2007-2012), recorded every 30 min. from
39 meteorological sensors at one station. The data coming from the station has
about 7% of missing values. There is no single sensor that would provide non
interrupted readings over those five years; for any sensor from 1% up to 30%
values are missing. The solar radiation (target variable) is available 99% of the
times, we eliminate from the experiment the instances having no target value.

Our goal is to verify if the proposed deterioration index can effectively di-
agnose the performance of regression models and test the performance of our
regression models with naturally occurring missing data. We use the first two
years of data as a training set and the remaining three years as a testing set.
From the training set we eliminate all the instances that contain missing values
(−25% of train data). We standardize the training set (zero mean, unit vari-
ance). Then we standardize the testing set using the mean and the variance
values obtained from the training set. After standardization we replace all the
missing values in the testing set by zeros and test the regression models.
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Table 3. Accuracy and stability on the environmental monitoring data

rPCA PCA rALL SEL sPCA PLS ALL

MSE on all test data 0.37 0.37 0.51 15.67 8.55 0.93 7.39

MSE on non-missing test data 0.33 0.33 0.29 0.35 0.29 0.28 0.28
MSE on missing test data 0.39 0.39 0.63 23.88 12.99 1.27 11.21

MSE on train data (cross-validation) 0.40 0.39 0.37 0.34 0.31 0.32 0.29
� on train data -0.22 -0.20 1.61 574.58 253.86 8.66 302.84

Table 3 reports the testing results of the regression models ALL, rALL, SEL,
PCA, rPCA, sPCA and PLS (k = 20, which is half of the input sensors follow-
ing the rule of thumb suggested in Section 5.6). The recommended rPCA and
PCA demonstrate an outstanding performance (MSE = 0.37), followed by rALL
(0.51). The performance of PLS (0.91) is more than twice worse as of PCA and
rPCA. ALL, sPCA and SEL perform much worse by a large margin.

Next we split of the test data into non-missing (35%) and missing data (65%)
parts and inspect the errors separately. We see that the performance data of
all the models is very similar when there is no missing data. However, the non-
regularized models (ALL, SEL, sPCA and PLS) fail badly when there is missing
data, except for PCA, which is consistent with our theoretical findings. More-
over, we can see from the last part of the table that if we selected a model for
deployment based on cross-validation MSE , we would probably deploy ALL. It
would perform on non-missing data well, but the performance would deteriorate
very drastically when sensors started to fail. Finally, we can see that the pro-
posed deterioration index computed on the training data indicates very well the
future robustness of the model. Hence, after seeing a comparable cross-validation
performance of all models we would deploy rPCA that gives the minimum �.

The results support our recommendation to use PCA and rPCA when tem-
poral sensor failures are expected. The case study also confirms the effectiveness
of the deterioration index in diagnosing robustness of predictive models.

7 Related Work

Our study is closely connected with handling missing data research, see e.g. [1,2,
4,14]. The main techniques are: imputation procedures where missing values are
filled in and the resulting compete data is analyzed, reweighing procedures where
instances with missing data are discarded or assigned low weights, and model-
based procedures that define models for partially missing data. We investigate
what happens after missing values are imputed during real-time operation using
a very popular and practical mean value imputation. In our setting discarding
streaming data is not suitable, since there would be continuous periods when
we have no input data and thus no predictions. Model-based procedures could
handle one-two missing sensors; however, when many sensors may fail, such a
procedure is computationally impractical and likely infeasible, as we would need
to keep an exponential number of models to account for all possible situations.
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Handling missing values in regression is reviewed in [14]. The majority of
research focuses on training regression models from data with partially missing
values. In our setting discarding some training data with missing values is not a
problem, since the volumes of data are typically large. The problem arises during
real-time operation. We not only need to input missing values, but also make
the regression models fault tolerant. Hence, our work solves a different problem
and is not directly comparable with missing value imputation techniques.

Topic-wise our work relates to fault tolerant control that is widely researched
and applied in industrial and aerospace systems [16, 19]. The main focus is on
detecting the actual fault, not operating with a fault present. In our setting there
is no fault in the system, just sensors fails, our model needs to remain accurate.

Redundancy in engineering duplicates critical components of a system to in-
crease reliability, see e.g. [5]. A common computational approach is to to use an
average the redundant sensors to reduce the impact of possible sensor failure. In
fact, this is the effect we are aiming to achieve by minimizing the deterioration
index . The main difference from our setting is in availability of backup sensors,
it is even possible to install duplicate sensors on demand. In our setting; however,
the data is given as is and we aim at exploiting it in the best way.

Robust statistics aims at producing models that are robust to outliers or
other small departures from model assumptions, see e.g. [11]. The main idea is
to modify loss functions so that they do not increase so rapidly, to reduce the
impact of outliers. In our setting there are no large deviations in the input data
due to sensor failure, in fact the opposite, the variance of a failed sensor goes to
zero. Hence, robust statistics approaches target a different problem.

Our theoretical analysis of the mean squared error resembles bias-variance
analysis (see e.g. [7]) in the way we decompose MSE into components. Regard-
ing the connection of the bias-variance decomposition to the Ridge regression
solution, we well know that enforcing strong regularisation is likely to decrease
variance and to increase bias. Further investigation is left for future work.

Finally, the setting relates to concept drift [20] and transfer learning [15] set-
tings in a sense that the training and the testing data distributions are different.
However, in our setting there is no model adaptation during real-time operation.

8 Conclusion

Systems relying on predictive models should be robust with regard to missing
input values, due to transient failures in the sensors, for instance. We focused on
linear models for predictions, and theoretically analyzed the criteria for linear
regression to be robust to sensor failures. Based on this analysis we introduced
the deterioration index measure that allows to quantify how robust is a given
linear regression model to sensor failure. We also proposed a practical strategy
for building robust linear models. Our experiments with real data confirmed the
theoretical results and demonstrated the effectiveness of the proposed strategy.

The current work assumes that input sensors fail with the uniform prior prob-
ability, but does not quantify any distribution on how many are likely to fail,
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or how the failures form correlated patterns among the sensors. These questions
would make an interesting follow up investigation. Mapping the findings of the
current study to predictive models in the evolving data stream setting offers
another important avenue for future research.
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Abstract. Data stream classification plays an important role in modern data anal-
ysis, where data arrives in a stream and needs to be mined in real time. In the data
stream setting the underlying distribution from which this data comes may be
changing and evolving, and so classifiers that can update themselves during op-
eration are becoming the state-of-the-art. In this paper we show that data streams
may have an important temporal component, which currently is not considered
in the evaluation and benchmarking of data stream classifiers. We demonstrate
how a naive classifier considering the temporal component only outperforms a
lot of current state-of-the-art classifiers on real data streams that have tempo-
ral dependence, i.e. data is autocorrelated. We propose to evaluate data stream
classifiers taking into account temporal dependence, and introduce a new eval-
uation measure, which provides a more accurate gauge of data stream classifier
performance. In response to the temporal dependence issue we propose a generic
wrapper for data stream classifiers, which incorporates the temporal component
into the attribute space.

Keywords: data streams, evaluation, temporal dependence.

1 Introduction

Data streams refer to a type of data, that is generated in real-time, arrives continuously
as a stream and may be evolving over time. This temporal property of data stream min-
ing is important, as it distinguishes it from non-streaming data mining, thus it requires
different classification techniques and a different evaluation methodology. The standard
assumptions in classification (such as IID) have been challenged during the last decade
[14]. It has been observed, for instance, that frequently data is not distributed identically
over time, the distributions may evolve (concept drift), thus classifiers need to adapt.

Although there is much research in the data stream literature on detecting concept
drift and adapting to it over time [10,17,21], most work on stream classification assumes
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Fig. 1. Characteristics of the Electricity Dataset

that data is distributed not identically, but still independently. Except for our brief tech-
nical report [24], we are not aware of any work in data stream classification discussing
what effects a temporal dependence can have on evaluation. In this paper we argue that
the current evaluation practice of data stream classifiers may mislead us to draw wrong
conclusions about the performance of classifiers.

We start by discussing an example of how researchers evaluate a data stream classi-
fier using a real dataset representing a data stream. The Electricity dataset due to [15]
is a popular benchmark for testing adaptive classifiers. It has been used in over 40 con-
cept drift experiments1, for instance, [10,17,6,21]. The Electricity Dataset was collected
from the Australian New South Wales Electricity Market. The dataset contains 45,312
instances which record electricity prices at 30 minute intervals. The class label identifies
the change of the price (UP or DOWN) related to a moving average of the last 24 hours.
The data is subject to concept drift due to changing consumption habits, unexpected
events and seasonality.

Two observations can be made about this dataset. Firstly, the data is not indepen-
dently distributed over time, it has a temporal dependence. If the price goes UP now, it
is more likely than by chance to go UP again, and vice versa. Secondly, the prior distri-
bution of classes in this data stream is evolving. Figure 1 plots the class distribution of
this dataset over a sliding window of 1000 instances and the autocorrelation function of
the target label. We can see that data is heavily autocorrelated with very clear cyclical
peaks at every 48 instances (24 hours), due to electricity consumption habits.

Let us test two state-of-the-art data stream classifiers on this dataset. We test an
incremental Naive Bayes classifier, and an incremental (streaming) decision tree learner.
As a streaming decision tree, we use VFDT [16] with functional leaves, using Naive
Bayes classifiers at the leaves.

In addition, let us consider two naive baseline classifiers that do not use any input
attributes and classify only using past label information: a moving majority class classi-
fier (over a window of 1000) and a No-Change classifier that uses temporal dependence
information by predicting that the next class label will be the same as the last seen class
label. It can be compared to a naive weather forecasting rule: the weather tomorrow will
be the same as today.

We use prequential evaluation [11] over a sliding window of 1000 instances. The
prequential error is computed over a stream of n instances as an accumulated loss L
between the predictions ŷt and the true values yt:

1 Google scholar, 2013 March.
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Fig. 2. Accuracy and Kappa Statistic on the Electricity Market Dataset

p0 =
n∑

t=1

L(ŷt, yt).

Since the class distribution is unbalanced, it is important to use a performance mea-
sure that takes class imbalance into account. We use the Kappa Statistic due to Co-
hen [7]. Other measures, such as, for instance, the Matthews correlation coefficient [19],
could be used as well. The Kappa Statistic κ is defined as

κ =
p0 − pc
1− pc

,

where p0 is the classifier’s prequential accuracy, and pc is the probability that a chance
classifier - one that assigns the same number of examples to each class as the classifier
under consideration—makes a correct prediction. If the tested classifier is always cor-
rect then κ = 1. If its predictions coincide with the correct ones as often as those of a
chance classifier, then κ = 0.

Figure 2 shows the evolving accuracy (left) of the two state-of-the-art stream clas-
sifiers and the two naive baselines, and the evolution of the Kappa Statistic (right). We
see that the state-of-the-art classifiers seem to be performing very well if compared
to the majority class baseline. Kappa Statistic results are good enough at least for the
decision tree. Following the current evaluation practice for data stream classifiers we
would recommend this classifier for this type of data. However, the No-Change clas-
sifier performs much better. Note that the No-Change classifier completely ignores the
input attribute space, and uses nothing but the value of the previous class label.

We retrospectively surveyed accuracies of 16 new stream classifiers reported in the
literature that were tested on the Electricity dataset. Table 1 shows a list of the results
reported using this dataset, sorted according to the reported accuracy. Only 6 out of 16
reported accuracies outperformed the No-Change classifier. This suggests that current
evaluation practice needs to be revised.

This paper makes a threefold contribution. First, in Section 2, we explain what is
happening when data contains temporal dependence and why it is important to take
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Table 1. Accuracies of adaptive classifiers on the Electricity dataset reported in the literature

Algorithm name Accuracy (%) Reference
DDM 89.6* [10]
Learn++.CDS 88.5 [8]
KNN-SPRT 88.0 [21]
GRI 88.0 [22]
FISH3 86.2 [23]
EDDM-IB1 85.7 [1]
No-Change classifier 85.3
ASHT 84.8 [6]
bagADWIN 82.8 [6]
DWM-NB 80.8 [17]
Local detection 80.4 [9]
Perceptron 79.1 [5]
ADWIN 76.6 [2]
Prop. method 76.1 [18]
Cont. λ-perc. 74.1 [20]
CALDS 72.5 [12]
TA-SVM 68.9 [13]
* tested on a subset

into account when evaluating stream classifiers. Second, in Section 3, we propose a
new measure to evaluate data stream classifiers taking into account possible temporal
dependence. Third, in Section 5, we propose a generic wrapper classifier that enables
conventional stream classifiers to take into account temporal dependence. In Section 4
we perform experimental analysis of the new measure. Section 6 concludes the study.

2 Why the Current Evaluation Procedures May Be Misleading

We have seen that a naive No-Change classifier can obtain very good results on the
Kappa Statistic measure by using temporal information from the data. This is a surpris-
ing result since we would expect that a trivial classifier ignoring the input space entirely
should perform worse than a well-trained intelligent classifier. Thus, we start by the-
oretically analyzing the conditions under which the No-Change classifier outperforms
the majority class classifier. Next we discuss the limitations of the Kappa Statistic for
measuring classification performance on data streams.

Consider a binary classification problem with fixed prior probabilities of the classes
P (c1) and P (c2). Without loss of generality assume P (c1) ≥ P (c2). The expected
accuracy of the majority class classifier would be pmaj = P (c1). The expected accu-
racy of the No-Change classifier would be the probability that two labels in a row are
the same pe = P (c1)P (c1|c1) + P (c2)P (c2|c2), where P (c1|c1) is the probability of
observing class c1 immediately after observing class c1.

Note that if data is distributed independently, thenP (c1|c1) = P (c1) andP (c2|c2) =
P (c2). Then the accuracy of the No-Change classifier is P (c1)

2 + P (c2)
2. Using the

fact that P (c1) + P (c2) = 1 it is easy to show that
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P (c1) ≥ P (c1)
2 + P (c2)

2,

that is pmaj ≥ pnc. The accuracies are equal only if P (c1) = P (c2), otherwise the
majority classifier is more accurate. Thus, if data is distributed independently, then we
can safely use the majority class classifier as a baseline.

However, if data is not independently distributed, then, following similar arguments
it can be shown that if P (c2|c2) > 0.5 then

P (c1) < P (c1)P (c1|c1) + P (c2)P (c2|c2).

That is pmaj < pe, hence, the No-Change classifier will outperform the majority class
classifier if the probability of seeing consecutive minority classes is larger than 0.5. This
happens even in cases of equal prior probabilities of the classes.

Similar arguments are valid in multi-class classification cases as well. If we observe
the majority class, then the No-Change classifier predicts the majority class, the ma-
jority classifier predicts the same. They will have the same accuracy on the next data
instance. If, however, we observe a minority class, then the majority classifier still pre-
dicts the majority class, but the No-Change classifier predicts a minority class. The No-
Change strategy would be more accurate if the probability of observing two instances
of that minority class in a row is larger than 1/k, where k is the number of classes.

Table 2 presents characteristics of four popular stream classification datasets. Elec-
tricity and Airlines are available from the MOA2 repository, and KDD99 and Ozone
are available from the UCI3 repository. Electricity and Airlines represent slightly im-
balanced binary classification tasks, we see by comparing the prior and conditional
probabilities that data is not distributed independently. Electricity consumption is ex-
pected to have temporal dependence. The Airlines dataset records delays of flights, it
is likely that e.g. during a storm period many delays would happen in a row. We see
that as expected, the No-Change classifier achieves higher accuracy than the majority
classifier. The KDD99 cup intrusion detection dataset contains more than 20 classes,
we report on only the three largest classes. The problem of temporal dependence is par-
ticularly evident here. Inspecting the raw dataset confirms that there are time periods
of intrusions rather than single instances of intrusions, thus the data is not distributed
independently over time. We observe that the No-Change classifier achieves nearly per-
fect accuracy. Finally, the Ozone dataset is also not independently distributed. If ozone
levels rise, they do not diminish immediately, thus we have several ozone instances in
a row. However, the dataset is also very highly imbalanced. We see that the conditional
probability of the minority class (ozone) is higher than the prior, but not high enough to
give advantage to the No-Change classifier over the majority classifier. This confirms
our theoretical results.

Thus, if we expect a data stream to contain temporal dependence, we need to make
sure that any intelligent classifier is compared to the No-Change baseline in order to
make meaningful conclusions about performance.

Next we highlight issues with the prequential accuracy in such situations, and then
move on to the Kappa Statistic. The main reason why the prequential accuracy may

2 http://moa.cms.waikato.ac.nz/datasets/
3 http://archive.ics.uci.edu/ml/

http://moa.cms.waikato.ac.nz/datasets/
http://archive.ics.uci.edu/ml/


470 A. Bifet et al.

Table 2. Characteristics of stream classification datasets

Dataset P (c1) P (c2) P (c3) Majority acc.
P (c1|c1) P (c2|c2) P (c3|c3) No-Change acc.

Electricity 0.58 0.42 - 0.58
0.87 0.83 - 0.85

Airlines 0.55 0.45 - 0.55
0.62 0.53 - 0.58

KDD99 0.60 0.18 0.17 0.60
0.99 0.99 0.99 0.99

Ozone 0.97 0.03 - 0.97
0.97 0.11 - 0.94

mislead is because it assumes that the data is distributed independently. If a data stream
contains the same number of instances for each class, accuracy is the right measure
to use, and will be sufficient to detect if a method is performing well or not. Here, a
random classifier will have a 1/k accuracy for a k class problem. Assuming that the
accuracy of our classifier is doing better than 1/k, we know that we are doing better
than guessing the classes of the incoming instances at random.

We see that when a data stream has temporal dependence, using only the Kappa
Statistic for evaluating stream classifiers may be misleading. The reason is that when
the stream has a temporal dependence, by using the Kappa Statistic we are comparing
the performance of our classifier with a random classifier. Thus, we can view the Kappa
Statistic as a normalized measure of the prequential accuracy p0:

p′0 =
p0 −min p

max p−min p

In the Kappa Statistic, we consider that max p = 1 and that min p = pc. This
measure may be misleading because we assume that pc is giving us the accuracy of the
baseline naive classifier. Recall that pc is the probability that a classifier that assigns
the same number of examples to each class as the classifier under consideration, makes
a correct prediction. However, we saw that the majority class classifier may not be
the most accurate naive classifier when temporal dependence exists in the stream. No-
Change may be a more accurate naive baseline, thus we need to take it into account
within the evaluation measure.

3 New Evaluation for Stream Classifiers

In this section we present a new measure for evaluating classifiers. We start by more
formally defining our problem. Consider a classifier h, a data set containing n examples
and k classes, and a contingency table where cell Cij contains the number of examples
for which h(x) = i and the class is j. If h(x) correctly predicts all the data, then all
non-zero counts will appear along the diagonal. If h misclassifies some examples, then
some off-diagonal elements will be non-zero.
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Fig. 3. Accuracy, κ and κ+ on the Forest Covertype dataset
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Fig. 4. Accuracy, κ and κ+ on the Forest Covertype dataset

The classification accuracy is defined as

p0 =

∑k
i=1 Cii

n
.

Let us define

Pr[class is j] =
k∑

i=1

Cij

n
,Pr[h(x) = i] =

k∑
j=1

Cij

n
.

Then the accuracy of a random classifier is

pc =

k∑
j=1

(Pr[class is j] · Pr[h(x) = j])

=

k∑
j=1

(
k∑

i=1

Cij

n
·

k∑
i=1

Cji

n

)
.
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We can define pe as the following accuracy:

pe =

k∑
j=1

(Pr[class is j])2 =

k∑
j=1

(
k∑

i=1

Cij

n

)2

.

Then the Kappa Statistic is

κ =
p0 − pc
1− pc

.

Remember that if the classifier is always correct then κ = 1. If its predictions coincide
with the correct ones as often as those of the chance classifier, then κ = 0.

An interesting question is how exactly do we compute the relevant counts for the
contingency table: using all examples seen so far is not useful in time-changing data
streams. Gama et al. [11] propose to use a forgetting mechanism for estimating pre-
quential accuracy: a sliding window of size w with the most recent observations. Note
that, to calculate the statistic for a k class problem, we need to maintain only 2k+1 es-
timators. We store the sum of all rows and columns in the confusion matrix (2k values)
to compute pc, and we store the prequential accuracy p0.

Considering the presence of temporal dependencies in data streams we propose a
new evaluation measure the Kappa Plus Statistic, defined as

κ+ =
p0 − p′e
1− p′e

where p′e is the accuracy of the No-Change classifier.
κ+takes values from 0 to 1. The interpretation is similar to that of κ. If the classifier

is perfectly correct then κ+ = 1. If the classifier is achieving the same accuracy as
the No-Change classifier, then κ+ = 0. Classifiers that outperform the No-Change
classifier fall between 0 and 1. Sometimes it can happen that κ+ < 0, which means that
the classifier is performing worse than the No-Change baseline.

In fact, we can compute p′e as the probability that for all classes, the class of the new
instance it+1 is equal to the last class seen in instance it. It is the sum for each class of
the probability that the two instances in a row have the same class:

p′e =
k∑

j=1

(Pr[it+1 class is j and it class is j]) .

Two observations can be made about κ+. First, when there is no temporal depen-
dence, κ+ is closely related to κ since

Pr[it+1 class is j and it class is j] = Pr[it class is j]2

holds, and p′e = pe. It means that if there is no temporal dependence, then the probabil-
ities of selecting a class will depend on the distributions of the classes, so does κ.
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Second, if classes are balanced and there is no temporal dependence, then κ+ is equal
to κ and both are linearly related to the accuracy p0:

κ+ =
n

n− 1
· p0 − 1

n− 1
.

Therefore, using κ+ instead of κ, we will be able to detect misleading classifier per-
formance for data that is dependently distributed. For highly imbalanced, but indepen-
dently distributed data, the majority class classifier may beat the No-Change classifier.
κ+ and κ measures can be seen as orthogonal, since they measure different aspects of
the performance. Hence, for a thorough evaluation we recommend measuring both.

An interested practitioner can take a snapshot of a data stream and measure if there
is a temporal dependency, e.g. by comparing the probabilities of observing the same
labels in a row with the prior probabilities of the labels as reported in Table 2. However,
even without checking whether there is a temporal dependency in the data a user can
safely check both κ+ and κ. If there is no temporal dependency, both measures will
give the same result. In case there is a temporal dependency a good classifier should
score high in both measures.

4 Experimental Analysis of the New Measure

The goal of this experimental analysis is to compare the informativeness of κ and κ+

in evaluating stream classifiers. These experiments are meant to be merely a proof
of concept, therefore we restrict the analysis to two data stream benchmark datasets.
The first, the Electricity dataset was discussed in the introduction. The second, Forest
Covertype, contains the forest cover type for 30 × 30 meter cells obtained from US
Forest Service (USFS) Region 2 Resource Information System (RIS) data. It contains
581, 012 instances and 54 attributes, and has been used in several papers on data stream
classification.

We run all experiments using the MOA software framework [3] that contains imple-
mentations of several state-of-the-art classifiers and evaluation methods and allows for
easy reproducibility. The proposed κ+ is not base classifier specific, hence we do not
aim at exploring a wide range of classifiers. We select several representative data stream
classifiers for experimental illustration.

Figure 3 shows accuracy of the three classifiers Naive Bayes, VFDT and No-Change
using the prequential evaluation of a sliding window of 1000 instances, κ results and
results for the new κ+. We observe similar results to the Electricity Market dataset, and
that for the No-Change classifier κ+ is zero, and for Naive Bayes and VFDT, κ+ is
negative.

We also test two more powerful data stream classifiers:

– Hoeffding Adaptive Tree (HAT): which extends VFDT to cope with concept drift.
[3].

– Leveraging Bagging: an adaptive ensemble that uses 10 VFDT decision trees [4].
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Fig. 5. Accuracy, κ and κ+ on the Electricity Market dataset

For the Forest CoverType dataset, Figure 4 shows accuracy of the three classifiers
HAT, Leveraging Bagging and No-Change using a prequential evaluation of a sliding
window of 1000 instances. It also shows κ results and the new κ+ results. We see how
these classifiers improve the results over the previous classifiers, but still have negative
κ+ results, meaning that the No-Change classifier is still providing better results.

Finally, we test the two more powerful stream classifiers on the Electricity Market
dataset. Figure 5 shows accuracy, κ and κ+ for the three classifiers HAT, Leveraging
Bagging and No-Change . κ+ is positive for a long period of time, but still contains
some negative results.

Our experimental analysis indicates that using the new κ+ measure, we can easily
detect when a classifier is doing worse than the simple No-Change strategy, by simply
observing if negative values of this measure exist.

5 SWT: Temporally Augmented Classifier

Having identified the importance of temporal dependence in data stream classification
we now propose a generic wrapper that can be used to wrap state-of-the-art classifiers
so that temporal dependence is taken into account when training an intelligent model.
We propose SWT, a simple meta strategy that builds meta instances by augmenting the
original input attributes with the values of recent class labels from the past (in a sliding
window). Any existing incremental data-stream classifier can be used as a base classifier
with this strategy. The prediction becomes a function of the original input attributes and
the recent class labels

Pr[class is c] ≡ h(xt, ct−
, . . . , ct−1)

for the t-th test instance, where � is the size of the sliding window over the most recent
true labels. The larger �, the longer temporal dependence is considered. h can be any of
the classifiers we mentioned (e.g., HAT or Leveraging Bagging).

It is important to note that such a classifier relies on immediate arrival of the pre-
vious label after the prediction is casted. This assumption may be violated in real-
world applications, i.e. true labels may arrive with a delay. In such a case it is still
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possible to use the proposed classifier with the true labels from more distant past.
The utility of this approach will depend on the strength of the temporal correlation in
the data.

We test this wrapper classifier experimentally using HAT and VFDT as the internal
stream classifiers. In this proof of concept study we report experimental results using
� = 1. Our goal is to compare the performance of an intelligent SWT, with that of the
baseline No-Change classifier. Both strategies take into account temporal dependence.
However, SWT, does so in an intelligent way considering it alongside a set of input
attributes.

Figure 6 shows the SWT strategy applied to VFDT, Naive Bayes, Hoeffding Adaptive
Tree, and Leveraging Bagging for the Electricity dataset. The results for the Forest
Cover dataset are displayed in Figure 7. As a summary, Figure 8 (left and center) shows
κ+ on the Electricity and Forest Cover datasets. We see a positive κ+ which means
that the prediction is meaningful taking into account the temporal dependency in the
data. Additional experiments reported in Figures 9, 10, 11 confirm that the results are
stable under varying size of the sliding window (to � > 1) and varying feature space
(i.e., xt−
, . . . , xt−1). More importantly, we see a substantial improvement as compared
to the state-of-the-art stream classifiers (Figures 3, 4, 5) that do not use the temporal
dependency information.
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Fig. 6. Accuracy, κ and κ+ on the Electricity Market dataset for the SWT classifiers
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Fig. 7. Accuracy, κ and κ+ on the Forest Covertype dataset for the SWT classifiers
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Fig. 9. Accuracy, κ, κ+, time and memory of a VFDT on the Electricity Market dataset for the
SWT classifiers varying the size of the sliding window parameter 
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Fig. 10. Accuracy, κ, κ+, time and memory of a Hoeffding Adaptive Tree on the Electricity
Market dataset for the SWT classifiers varying the 
 size of the sliding window parameter
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6 Conclusion

As researchers, we may have not considered temporal dependence in data stream mining
seriously enough when evaluating stream classifiers. In this paper we explain why it
is important, and we propose a new evaluation measure to consider it. We encourage
the use of the No-Change classifier as a baseline, and compare classification accuracy
against it. We emphasize, that a good stream classifier should score well on both: the
existing κ and the new κ+.

In addition, we propose a wrapper classifier SWT, that allows to take into account
temporal dependence in an intelligent way and, reusing existing classifiers outperforms
the No-Change classifier. Our main goal with this proof of concept study is to highlight
this problem of evaluation, so that researchers in the future will be able to build better
new classifiers taking into account temporal dependencies of streams.

This study opens several directions for future research. The wrapper classifier SWTis
very basic and intended as a proof of concept. One can consider more advanced (e.g.
non-linear) incorporation of the temporal information into data stream classification.
Ideas from time series analysis could be adapted. Performance and evaluation of change
detection algorithms on temporally dependent data streams present another interesting
direction. We have observed ([24]) that under temporal dependence detecting a lot of
false positives actually leads to better prediction accuracy than a correct detection. This
calls for an urgent further investigation.

Acknowledgments. I. Žliobaitė’s research has been supported by the Academy of Fin-
land grant 118653 (ALGODAN).
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Abstract. Decision rules are one of the most expressive languages for machine
learning. In this paper we present Adaptive Model Rules (AMRules), the first
streaming rule learning algorithm for regression problems. In AMRules the an-
tecedent of a rule is a conjunction of conditions on the attribute values, and the
consequent is a linear combination of attribute values. Each rule uses a Page-
Hinkley test to detect changes in the process generating data and react to changes
by pruning the rule set. In the experimental section we report the results of AM-
Rules on benchmark regression problems, and compare the performance of our
system with other streaming regression algorithms.

Keywords: Data Streams, Regression, Rule Learning.

1 Introduction

Regression analysis is a technique for estimating a functional relationship between a
dependent variable and a set of independent variables. It has been widely studied in
statistics, pattern recognition, machine learning and data mining. The most expressive
data mining models for regression are model trees [18] and regression rules [19]. In
[15], the authors present a large comparative study between several regression algo-
rithms. Model trees and model rules are among the most performant ones. Trees and
rules do automatic feature selection, being robust to outliers and irrelevant features;
exhibit high degree of interpretability; and structural invariance to monotonic transfor-
mation of the independent variables. One important aspect of rules is modularity: each
rule can be interpreted per si [6].

In the data stream computational model [7] examples are generated sequentially from
time evolving distributions. Learning from data streams require incremental learning,
using limited computational resources, and the ability to adapt to changes in the pro-
cess generating data. In this paper we present the AMRules algorithm, the first one-pass
algorithm for learning regression rule sets from time-evolving streams. It near follows
FIMT [11], an algorithm to learn regression trees from data streams, and AVFDR [13],
a one-pass algorithm for learning classification rules. AMRules can learn ordered or
unordered rules. The antecedent of a rule is a set of literals (conditions based on the
attribute values), and the consequent is a function that minimizes the mean square error
of the target attribute computed from the set of examples covered by rule. This function
might be either a constant, the mean of the target attribute, or a linear combination of
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the attributes. Each rule is equipped with an online change detector. The change detec-
tor monitors the mean square error using the Page-Hinkley test, providing information
about the dynamics of the process generating data.

The paper is organized as follows. The next Section presents the related work in
learning regression trees and rules from data focusing on streaming algorithms. Sec-
tion 3 describe in detail the AMRules algorithm. Section 4 presents the experimental
evaluation using stationary and time-evolving streams. AMRules is compared against
other regression systems including batch learners and streaming regression models. Last
Section presents the lessons learned.

2 Related Work

In this section we analyze the related work in two dimensions: regression algorithms
and incremental learning of regression algorithms.

In the field of machine learning, one of the most popular, and competitive, regres-
sion model is system M5, presented by [18]. It builds multivariate trees using linear
models at the leaves. In the pruning phase for each leaf a linear model is built. Later,
[5] have presented M5′ a rational reconstruction of Quinlan’s M5 algorithm. M5′ first
constructs a regression tree by recursively splitting the instance space using tests on
single attributes that maximally reduce variance in the target variable. After the tree has
been grown, a linear multiple regression model is built for every inner node, using the
data associated with that node and all the attributes that participate in tests in the sub-
tree rooted at that node. Then the linear regression models are simplified by dropping
attributes if this results in a lower expected error on future data (more specifically, if the
decrease in the number of parameters outweighs the increase in the observed training
error). After this has been done, every subtree is considered for pruning. Pruning occurs
if the estimated error for the linear model at the root of a subtree is smaller or equal to
the expected error for the subtree. After pruning terminates, M5′ applies a smoothing
process that combines the model at a leaf with the models on the path to the root to
form the final model that is placed at the leaf.

A widely used strategy consists of building rules from decision (or regression) trees,
as it is done in [20]. Any tree can be easily transformed into a collection of rules. Each
rule corresponds to the path from the root to a leaf, and there are as many rules as leaves.
This process generates a set of rules with the same complexity as the decision tree.
However, as pointed out by [22], a drawback of decision trees is that even a slight drift
of the target function may trigger several changes in the model and severely compromise
learning efficiency. Cubist [19] is a rule based model that is an extension of Quinlan’s
M5 model tree. A tree is grown where the terminal leaves contain linear regression
models. These models are based on the predictors used in previous splits. Also, there
are intermediate linear models at each level of the tree. A prediction is made using the
linear regression model at the leaf of the tree, but it is smoothed by taking into account
the prediction from the linear models in the previous nodes in the path, from the root to
a leaf, followed by the test example. The tree is reduced to a set of rules, which initially
are paths from the top of the tree to the bottom. Rules are eliminated via pruning of
redundant conditions or conditions that do not decrease the error.
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2.1 Regression Algorithms for Streaming Data

Many methods can be found in the literature for solving classification tasks on streams,
but only few exists for regression tasks. One of the first incremental model trees, was
presented by [17]. The authors present an incremental algorithm that scales linearly
with the number of examples. They present an incremental node splitting rule, together
with incremental methods for stopping the growth of the tree and pruning. The leaves
contain linear models, trained using the RLS (Recursive Least Square) algorithm.

The authors of [11] propose an incremental algorithm FIMT for any-time model trees
learning from evolving data streams with drift detection. It is based on the Hoeffding
tree algorithm [4], but implements a different splitting criterion, using a standard de-
viation reduction (SDR) based measure more appropriate to regression problems. The
FIMT algorithm is able to incrementally induce model trees by processing each exam-
ple only once, in the order of their arrival. Splitting decisions are made using only a
small sample of the data stream observed at each node, following the idea of Hoeffding
trees. FIMT is able to detect and adapt to evolving dynamics. Change detection in the
FIMT is carried out using the Page-Hinckley (PH) change detection test [14]. Adap-
tation in FIMT involves growing an alternate subtree from the node in which change
was detected. When the performance of the alternate subtree improves over the original
subtree, the latter is replaced by the former.

IBLStreams (Instance Based Learner on Streams) is an extension of MOA [2] that
consists of an instance-based learning algorithm for classification and regression prob-
lems on data streams by [21]. IBLStreams optimizes the composition and size of the
case base autonomously. When a new example (x0, y0) is available, the example is
added to the case base. The algorithm checks whether other examples might be re-
moved, either because they have become redundant or they are outliers. To this end,
a set C of examples within a neighborhood of x0 are considered as candidates. This
neighborhood if given by the kcand nearest neighbors of x0, accordingly with a dis-
tance function D. The most recent examples are not removed due to the difficulty to
distinguish potentially noisy data from the beginning of a concept change.

3 The AMRules Algorithm

In this section we present an incremental algorithm for learning model rules to address
these issues, named Adaptive Model Rules from High-Speed Data Streams (AMRules).
The pseudo code of the algorithm is given in Algorithm 1.

3.1 Learning a Rule Set

The algorithm begin with a empty rule set (RS), and a default rule {} → L. Every
time a new training example is available the algorithm proceeds with checking whether
for each rule from rule set (RS) the example is covered by any rule, that is if all the
literals are true for the example. The target values of the examples covered by a rule
are used to update the sufficient statistic of the rule. Before an example is covered by
any rule change detection tests are updated with every example of this rule. We use
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Algorithm 1. AMRules Algorithm
Input: S: Stream of examples
ordered-set: Boolean flag
Nmin: Minimum number of examples
λ: Threshold
α: the magnitude of changes that are allowed

Result: RS Set of Decision Rules
begin

Let RS ← {}
Let defaultRule L ← 0
foreach example (x, yk) ∈ S do

foreach Rule r ∈ RS do
if r covers the example then

Update change detection tests
Compute error =xt − x̄t − α
Call PHTest(error, λ)
if Change is detected then

Remove the rule
else

if Number of examples in Lr > Nmin then
r ← ExpandRule(r)
Update sufficient statistics of r

if ordered-set then
BREAK

if none of the rules in RS triggers then
if Number of examples in L mod Nmin = 0 then

RS ← RS ∪ExpandRule(defaultRule)
Update sufficient statistics of the defaultRule

the Page-Hinckley (PH) change detection test to monitor the online error of each rule.
If a change is detected the rule is removed from the rule set (RS). Otherwise, the rule
is expanded. The expansion of the rule is considered only after certain period (Nmin

number of example). The expansion of a rule is done with Algorithm 2.
The set of rules (RS) is learned in parallel, as described in Algorithm 1. We consider

two cases: learning ordered or unordered set of rules. In the former, every example
updates statistics of the first rule that covers it. In the latter every example updates
statistics of all the rules that covers it. If an example is not covered by any rule, the
default rule is updated.

3.2 Expansion of a Rule

Before discuss how rules are expanded, we will first discuss the evaluation measure used
in the attribute selection process. [11] describe a standard deviation reduction measure



484 E. Almeida, C. Ferreira, and J. Gama

Algorithm 2. Expandrule: Expanding one Rule
Input:

r: One Rule
τ : Constant to solve ties
δ : Confidence

Result: r′ : Expanded Rule
begin

Let Xa be the attribute with greater SDR
Let Xb be the attribute with second greater SDR

Compute ε =
√

R2 ln(1/δ)
2n

(Hoeffding bound)

Compute ratio = SDR(Xb)
SDR(Xa)

(Ratio of the SDR values for the best two splits)
Compute UpperBound = ratio+ ε
if UpperBound < 1 ∨ ε < τ then

Extend r with a new condition based on the best attribute
Release sufficient statistics of Lr

r ← r ∪ {Xa}
return r

(SDR) for use in determining the merit of a given split. It can be efficiently computed
in an incremental way. The formula for SDR measure of the split hA is given below:

SDR(hA) = sd(S)− NLeft

N
sd(SLeft)−

NRight

N
sd(SRight)

sd(S) =

√√√√ 1

N
(

N∑
i=1

(yi− ȳ)2) =

=

√√√√ 1

N
(

N∑
i=1

yi2 − 1

N
(

N∑
i=1

yi)2)

To make the actual decision regarding a spit, this SDR measure for the best two po-
tential splits are compared, dividing the second-best value by the best one to generate a
ratio ratio in the range 0 to 1. Having a predefined range for the values of the random
variables, the Hoeffding probability bound (ε) [10] can be used to obtain high confi-
dence intervals for the true average of the sequence of random variables. The value of ε
is calculated using the formula:

ε =

√
R2 ln (1/δ)

2n

where R2 = 1 is the range of the random variable. The process to expand a rule by
adding a new condition works as follows. For each attribute Xi, the value of the SDR
is computed for each attribute value vj . If the upper bound ( ¯ratio + ε) of the sample
average is below 1 then the true mean is also below 1. Therefore with confidence 1− ε
the best attribute over a portion of the data is really the best attribute. In this case, the
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rule is expanded with condition Xa ≤ vj or Xa > vj . However, often two splits
are extremely similar or even identical, in terms of their SDR values, and despite the
ε intervals shrinking considerably as more examples are seen, it is still impossible to
choose one split over the other. In these cases, a threshold (τ) on the error is used. If
ε falls below this threshold and the splitting criterion is still not met, the split is made
on the one with a higher SDR value and the rule is expanded. The pseudo-code of
expanding a rule is presented in Algorithm 2.

3.3 Prediction Strategies

The set of rules learned by AMRules can be ordered or unordered. They employ dif-
ferent prediction strategies to achieve ’optimal’ prediction. In the former, only the first
rule that cover an example is used to predict the target example. In the latter, all rules
covering the example are used for prediction and the final prediction is decided by ag-
gregating predictions using the mean.

Each rule in AMrules implements 3 prediction strategies: i) the mean of the target
attribute computed from the examples covered by the rule; ii) a linear combination of
the independent attributes; iii) an adaptive strategy, that chooses between the first two
strategies, the one with lower MSE in the previous examples.

Each rule in AMRules contains a linear model, trained using an incremental gradient
descent method, from the examples covered by the rule. Initially, the weights are set to
small random numbers in the range -1 to 1. When a new example arrives, the output is
computed using the current weights. Each weight is then updated using the Delta rule:
wi ← wi+ η(ŷ− y)xi, where ŷ is the output, y the real value and η is the learning rate.

3.4 Change Detection

We use the Page-Hinckley (PH) change detection test to monitor the online error of
each rule. Whenever a rule covers a labeled example, the rule makes a prediction and
computes the loss function (MSE or MAD). We use the Page-Hinkley (PH) test [16] to
monitor the evolution of the loss function. If the PH test signals a significant increase
of the loss function, the rule is removed from the rule set (RS).

The PH test is a sequential analysis technique typically used for online change detec-
tion. The PH test is designed to detect a change in the average of a Gaussian signal [14].
This test considers a cumulative variable mT , defined as the accumulated difference be-
tween the observed values and their mean till the current moment:

mT =

T∑
t=1

(xt − x̄T − δ)

where x̄T = 1/T
t∑

t=1
xt and δ corresponds to the magnitude of changes that are allowed.

The minimum value of this variable is also computed: MT = min(mt, t = 1 . . . T ).
The test monitors the difference between MT and mT : PHT = mT −MT . When this
difference is greater than a given threshold (λ) we signal a change in the process gener-
ating examples. The threshold λ depends on the admissible false alarm rate. Increasing
λ will entail fewer false alarms, but might miss or delay change detection.
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4 Experimental Evaluation

The main goal of this experimental evaluation is to study the behavior of the proposed
algorithm in terms of performance and learning times. We are interested in studying the
following scenarios:

– How to grow the rule set?
• Update only the first rule that covers training examples. In this case the rule

set is ordered, and the corresponding prediction strategy uses only the first rule
that covers test examples.

• Update all the rules that covers training examples. In this case the rule set is
unordered, and the corresponding prediction strategy uses a weighted sum of
all rules that covers test examples.

– How does AMRules compares against others streaming algorithms?
– How does AMRules compares against others state-of-the-art regression algorithms?
– How does AMRules learned models evolve in time?

4.1 Experimental Setup

All our algorithms were implemented in java using the Massive Online Analysis (MOA)
data stream software suite [2]. The performance of the algorithms is measured using the
standard metrics for regression problems: Mean Absolute Error (MAE) and Root Mean
Squared Error (RMSE) [24]. We used two evaluation methods. When no concept drift is
assumed, the evaluation method we employ uses the traditional train and test scenario.

The experimental datasets include both artificial and real data, as well sets with
continuous attributes. We use ten regression datasets from the UCI Machine Learn-
ing Repository [1] and other sources. The datasets used in our experimental work are
briefly described here. 2dplanes this is an artificial dataset described in [3]. Ailerons
this dataset addresses a control problem, namely flying a F16 aircraft. Puma8NH and
Puma32H is a family of datasets synthetically generated from a realistic simulation
of the dynamics of a Unimation Puma 560 robot arm. Pol this is a commercial appli-
cation described in [23]. The data describes a telecommunication problem. Elevators
this dataset was obtained from the task of controlling a F16 aircraft. Fried is an arti-
ficial dataset used in Friedman (1991) and also described in [3]. Bank8FM a family
of datasets synthetically generated from a simulation of how bank-customers choose
their banks. Kin8nm this dataset is concerned with the forward kinematics of an 8 link
robot arm. Airlines This dataset using the data from the 2009 Data Expo competition.
The dataset consists of a huge amount of records, containing flight arrival and departure
details for all the commercial flights within the USA, from October 1987 to April 2008.
This is a very large dataset with nearly 120 million records (11.5 GB memory size)
[11]. The Table 1 summarizes the number of instances and the number of attributes of
each dataset.

All algorithms learn from the same training set and the performance is estimated
from the same test set. In scenarios with concept drift, we use the prequential error
estimates [8]. This method evaluates a model on a stream by testing then training with
each example in the stream. For all the experiments, we set the input parameters to:
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Table 1. Summary of datasets

Datasets # Instances # Attributes
2dplanes 40768 11
Ailerons 13750 41

Puma8NH 8192 9
Puma32H 8192 32

Pol 15000 49
Elevators 8752 19

Fried 40769 11
bank8FM 8192 9
kin8nm 8192 9
Airline 115Million 11

Nmin = 200, τ = 0.05 and δ = 0.01. All of the results in the tables are averaged of
ten-fold cross validation [12], except for the Airlines dataset. For all the simulations
of evolving data and change detection we set the PH test parameters to λ = 50 and
α = 0.005.

4.2 Experimental Results

In this section, we empirically evaluate the adaptive model rules algorithm. The results
come in four parts. In the first part, we compare the AMRules variants. In the second
part we compare AMRules against others streaming algorithms. In the third part, we
compare AMRules against others state-of-the-art regression algorithms. In the last part,
we assess AMRules models in time-evolving data streams.

Comparison between AMRules Variants. In this section we focus in two strate-
gies that we found potentially interesting. It is a combination of expanding only one
rule, the rule that first triggered, with predicting strategy uses only the first rule that
covers test examples. Obviously, for this approach it is necessary to use ordered rules
(AMRuleso). The second setting employs unordered rule set, where all the covering
rules expand and the corresponding prediction strategy uses a weighted sum of all rules
that covers test examples (AMRulesu).

Ordered rule sets specializes one rule at time. As a result it often produces fewer
rules than the unordered strategy. Ordered rules need to consider the previous rules and
remaining combinations, which might not be easy to interpret in more complex sets.
Unordered rule sets are more modular, because they can be interpreted alone.

Table 2 summarize the mean absolute error and the root mean squared error of these
variants. Overall, the experimental results points out that unordered rule sets are more
competitive than ordered rule sets in terms of MAE and RMSE.

Comparison with Other Streaming Algorithms. We compare the performance of our
algorithm with three others streaming algorithms, FIMT and IBLStreams. FIMT is an
incremental algorithm for learning model trees, described in [11]. IBLStreams is an ex-
tension of MOA that consists in an instance-based learning algorithm for classification
and regression problems on data streams by [21].
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Table 2. Comparative performance between AMRules variants. Results of 10-fold cross-
validation except for the AIrlines dataset.

Mean Absolute Error (variance) Root Mean Squared Error (variance)
Datasets AMRuleso AMRulesu AMRuleso AMRulesu

2dplanes 1.23E+00 (0.01) 1.16E+00 (0.01) 1.67E+00 (0.02) 1.52E+00 (0.01)
Ailerons 1.10E-04 (0.00) 1.00E-04 (0.00) 1.90E-04 (0.00) 1.70E-04 (0.00)

Puma8NH 3.21E+00 (0.04) 2.66E+00 (0.02) 4.14E+00 (0.05) 4.28E+00 (0.03)
Puma32H 1.10E-02 (0.00) 1.20E-02 (0.00) 1.60E-02 (0.00) 1.00E-04 (0.00)

Pol 14.0E+00 (25.1) 15.6E+00 (3.70) 2.30E+01 (44.50) 23.3E00 (4.08)
Elevators 3.50E-03 (0.00) 1.90E-03 (0.00) 4.80E-03 (0.00) 2.20E-03 (0.00)

Fried 2.08E+00 (0.01) 1.13E+00 (0.01) 2.78E+00 (0.08) 1.67E+00 (0.25)
bank8FM 4.31E-02 (0.00) 4.30E-02 (0.00) 4.80E-02 (0.00) 4.30E-02 (0.00)
kin8nm 1.60E-01 (0.00) 1.50E-01 (0.00) 2.10E-01 (0.00) 2.00E-01 (0.00)
Airlines 1.42E+01 (0.00) 1.31E+01 (0.00) 2.44E+01 (0.00) 2.25E+01 (0.00)

Average Rank 1.7 1.3 1.8 1.2

The performance measures for these algorithms are given in Table 3. The comparison
of these streaming algorithms shows that AMRules get better results.

Table 3. Comparative performance between streaming algorithms. Results of 10-fold cross-
validation except for the AIrlines dataset.

Mean Absolute Error (variance) Root Mean Squared Error (variance)
Datasets AMRulesu FIMT IBLStreams AMRulesu FIMT IBLStreams
2dplanes 1.16E+00 (0.01) 8.00E-01 (0.00) 1.03E+00 (0.00) 1.52E+00 (0.01) 1.00E+00 (0.00) 1.30E+00 (0.00)
Ailerons 1.00E-04 (0.00) 1.90E-04 (0.00) 3.20E-04 (0.00) 1.70E-04 (0.00) 1.00E-09 (0.00) 3.00E-04 (0.00)

Puma8NH 2.66E+00 (0.01) 3.26E+00 (0.03) 3.27E+00 (0.01) 4.28E+00 (0.03) 12.0E+00 (0.63) 3.84E+00 (0.02)
Puma32H 1.20E-02 (0.00) 7.90E-03 (0.00) 2.20E-02 (0.00) 1.00E-04 (0.01) 1.20E-02 (0.00) 2.70E-02 (0.00)

Pol 15.6E+00 (3.70) 38.2E+00 (0.17) 29.7E+00 (0.55) 23.3E+00 (4.08) 1,75E+03 (1383) 50,7E+00 (0.71)
Elevators 1.90E-03 (0.00) 3.50E-03 (0.00) 5.00E-03 (0.00) 2.20E-03 (0.00) 3.00E-05 (0.00) 6.20E-03 (0.00)

Fried 1.13E+00 (0.01) 1.72E+00 (0.00) 2.10E+00 (0.00) 1.67E+00 (0.25) 4.79E+00 (0.01) 2.21E+00 (0.00)
bank8FM 4.30E-02 (0.00) 3.30E-02 (0.00) 7.70E-02 (0.00) 4.30E-02 (0.00) 2.20E-03 (0.00) 9.60E-02 (0.00)
kin8nm 1.60E-01 (0.00) 1.60E-01 (0.00) 9.50E-01 (0.00) 2.00E-01 (0.00) 2.10E-01 (0.00) 1.20E-01 (0.00)
Airlines 1.31E+01 (0.00) 1.39E+01 (0.00) 1.45E+01 (0.00) 2.25E+01 (0.00) 2.30E+01 (0.00) 2.51E+01 (0.00)

Average Rank 1.5 1.9 2.6 1.8 2.0 2.3

Comparison with Other State-of-the-Art Regression Algorithms. Another exper-
iment which involves adaptive model rules is showed in Table 4. We compared AM-
Rules with other non-incremental regression algorithms from WEKA [9]. We use the
standard method of ten-fold cross-validation, using the same folds for all the algorithms
included.

The comparison of these algorithms show that AMRules has lower accuracy (MAE,
RMSE) than M5Rules and better accuracy than the others methods. These results were
somewhat expected, since these datasets are relatively small for the incremental
algorithm.

Evaluation in Time-Evolving Data Streams. In this subsection we first study the
evolution of the error measurements (MAE and RMSE) and evaluate the change detec-
tion method. After, we evaluate the streaming algorithms on non-stationary streaming
real-world problems, using the Airline dataset from the DataExpo09 competition.
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Table 4. Comparative performance between AMRulesu and other regression algorithms. Results
of 10-fold cross validation.

Root Mean Squared Error (variance)
Datasets AMRulesu M5Rules MLPerceptron Linear Regression
2dplanes 1.52E+00 (0.01) 9.8E-01 (0.01) 1.09E+00 (0.01) 2.37E+00 (0.00)
Ailerons 1.70E-04 (0.00) 2.00E-04 (0.00) 1.71E-04 (0.00) 2.00E-04 (0.00)

Puma8NH 4.28E+00 (0.03) 3.19E+00 (0.01) 4.14E+00 (0.20) 4.45E+00 (0.01)
Puma32H 1.00E-04 (0.00) 8.60E-03 (0.00) 3.10E-02 (0.00) 2.60E-02 (0.00)

Pol 23.3E+00 (4.08) 6.56E+00 (0.45) 20.1E+00 (15.1) 30.5E+00 (0.16)
Elevators 2.20E-03 (0.00) 2.23E-03 (0.00) 2.23E-03 (0.00) 2.29E-03 (0.00)

Fried 1.67E+00 (0.25) 1.60E+00 (0.00) 1.69E+00 (0.04) 2.62E+00 (0.00)
bank8FM 4.30E-02 (0.00) 3.10E-02 (0.00) 3.40E-02 (0.00) 3.80E-02 (0.00)
kin8nm 2.00E-01 (0.00) 1.70E-01 (0.00) 1.60E-01 (0.00) 2.00E-01 (0.00)

Average Rank 2.2 1.7 2.6 3.6

Fig. 1. Evolution of the prequential Mean Absolute Error of streaming algorithms using the
dataset Fried

To simulate drift we use Fried dataset. The simulations allow us to control the rele-
vant parameters and to assess the change detection algorithm. Figure 1 depict the pre-
quential MAE curve of the streaming algorithms using the dataset Fried. The figure also
illustrates the change point and the points where the change was detected. Only two of
the algorithms detected the change (FIMT and AMRules). Table 5 shows the average
results over 10 experiments using the Fried dataset. We measure the number of nodes,
the number of rules and the Page-Hinckley test delay (number of examples monitored
by PH test before the detection). The delay of the Page-Hinckley test is an indication
of how fast the algorithm will be able to start the adaptation strategy. These two algo-
rithms obtained similar results. The general conclusions are that FIMT and AMRules
algorithms are robust and have better results than IBLStreams.
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Fig. 2. Evolution of the prequential Mean Absolute Error of streaming algorithms using the
dataset Airlines

Table 5. Average results from the evaluation of change detection over 10 experiments

Algorithms Delay Size
AMRules 1484.1 56 (nr. Rules)

FIMT 2095.6 290 (nr. Leaves)
IBLStreams - -

Figure 2 illustrates the evaluation of the prequential MAE of the streaming algo-
rithms on a non-stationary streaming real-world problem, the Airlines dataset. FIMT
and AMRules exhibit approximately the same behavior, slightly better than IBLStreams.

Learning Times. Table 6 reports the relative learning times required for the 10-cross-
validation experiments. Being one-pass algorithms, both versions of AMRules are much

Table 6. Relative learning times of experiences reported in the paper. The reference algorithm is
AMRuleso.

Time(seconds)
Datasets AMRuleso AMRulesu M5Rules MLPerceptron LinRegression IBLStreams FIMT
2dplanes 1 1.5 317 577 1.0 4627 2.3
Airlerons 1 1.2 535 737 4.6 8845 1.5
Puma8NH 1 1.1 497 113 0.5 1700 2.0
Puma32H 1 1.4 801 280 2.0 1084 2.2

Pol 1 1.4 806 1260 1.4 12133 1.5
Elevators 1 1.5 678 341 0.9 16856 1.8

Fried 1 1.4 5912 359 0.7 154157 1.4
bank8FM 1 1.4 78 73 0.8 17189 0.4
kin8nm 1 1.1 146 75 0.7 29365 0.4
Airlines 1 8.3 - - - 203 10.6
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faster than M5 Rules and multi-layer perceptron. AMRuleso generates fewer rules being
slightly faster than AMRulesu.

5 Conclusions

Regression rules are one of the most expressive languages to represent generalizations
from examples. Learning regression rules from data streams is an interesting research
line that has not been widely explored by the stream mining community. To the best
of our knowledge, in the literature there is no method that addresses this issue. In this
paper, we present a new regression model rules algorithm for streaming and evolving
data. The AMRules algorithm is a one-pass algorithm, able to adapt the current rule
set to changes in the process generating examples. It is able to induce ordered and
unordered rule sets, where the consequent of a rule contains a linear model trained with
the perceptron rule.

The experimental results point out that, in comparison to ordered rule sets, unordered
rule sets are more competitive in terms of performance (MAE and RMSE). AMRules
is competitive against batch learners even for medium sized datasets.
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Abstract. Discovering Probabilistic Frequent Itemsets (PFI) is very
challenging since algorithms designed for deterministic data are not ap-
plicable in probabilistic data. The problem is even more difficult for
probabilistic data streams where massive frequent updates need to be
taken into account while respecting data stream constraints. In this pa-
per, we propose FEMP (Fast and Exact Mining of Probabilistic data
streams), the first solution for exact PFI mining in data streams with
sliding windows. FEMP allows updating the frequentness probability of
an itemset whenever a transaction is added or removed from the obser-
vation window. Using these update operations, we are able to extract
PFI in sliding windows with very low response times. Furthermore, our
method is exact, meaning that we are able to discover the exact proba-
bilistic frequentness distribution function for any monitored itemset, at
any time. We implemented FEMP and conducted an extensive exper-
imental evaluation over synthetic and real-world data sets; the results
illustrate its very good performance.

Keywords: Probabilistic Data Streams, Probabilistic Frequent Item-
sets, Sliding Windows.

1 Introduction

Dealing with probabilistic data has gained increasing attention these past few
years in both static and streaming data management and mining [3], [9], [2],
[11], [10]. There are many possible reasons for probabilistic data, such as noise
occurring when data are collected, noise injected for privacy reasons, semantics
of the results of a search engine (often ambiguous), etc. Thus, many sensitive
domains now involve massive probabilistic data. Example 1 illustrates a collec-
tion of probabilistic data, where each record is associated to a probability of
occurrence.

Example 1. Let us consider animals’ health monitoring in a zoo, and more par-
ticularly the health of Pandas, for which reproduction is an important issue. In
our scenario, a set of body sensors gathers physiological data (blood pressure,
temperature, etc.) and transforms it into possible activities thanks to a given
model. For instance, the rule {pressure = [100..150], temperature = [80..90] →

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 493–508, 2013.
© Springer-Verlag Berlin Heidelberg 2013
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sleeping, 75%} means that with a blood pressure between 100 and 150mmHg,
and a body temperature between 80 and 90 Fahrenheit, the probability that
a Panda is sleeping is 75%. Figure 1 illustrates the activities inferred for the
pandas. We can observe, for instance, that Yuan Zi was eating at 9am, with a
probability of 40%.

With the probabilistic approach illustrated by Example 1, there are two cases
for each probabilistic record: either it really occurred in the real world or it did
not. A reliable framework for handling such probabilistic data lies in the theory
of “possible worlds” [6] where each unique combination of records’ existence
corresponds to a possible world. Unfortunately, there is a combinatorial explosion
in the number of possible worlds (n records, each associated to 2 possible values
of existence, leading to 2n possible worlds). Therefore, in this context, frequent
itemset mining [1] must be carefully adapted. Finding the number of occurrences
of an itemset X in a database D (also called the support of X in D) is at the
core of frequent itemset mining. In the literature, we find two main support
measures for probabilistic data: Expected Support [5] (an approximate measure
of support) and Probabilistic Support [3] (that is an exact measure of support
in probabilistic data). We work with Probabilistic, and we propose a solution for
Probabilistic Frequent Itemset (PFI) mining in data streams using this measure
of interest.

Huan Huan Yuan Zi
e h activity Prob.
1 8 sleeping 0.3
3 9 eating 0.3
5 10 sleeping 0.3
7 11 grooming 0.4
9 12 sleeping 0.3
11 13 drinking 0.3
13 14 courting 0.9
15 15 resting 0.2
17 16 playing 0.4
19 17 growling 0.2

e h activity Prob.
2 8 sleeping 0.9
4 9 eating 0.4
6 10 drinking 1
8 11 grooming 0.9
10 12 marking 0.4
12 13 resting 0.2
14 14 climbing 0.2
16 15 courting 0.4
18 16 playing 0.3
20 17 growling 0.9

Fig. 1. Panda’s activities inferred from body sensor data

There are several ways to observe a data stream, two important ones being
batches and sliding windows [8]. Both techniques have pros and cons. Batches
allow fast processing but the result is available only after the batch has been
fulfilled (which is not compatible with real time constraints). Sliding windows
allow maintaining the result any time the stream is updated, but they need more
CPU. Today, existing methods for probabilistic data stream mining are batch-
based and work with Expected Support [17], [11], [10]. Meanwhile, working with
sliding windows is a major matter for numerous monitoring applications where
handling “anytime queries” is crucial. Data stream mining over a sliding window
requires to provide efficient solutions for updating probabilistic supports after
adding/removing transactions and, in the probabilistic context, this is quite
challenging.
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In this paper, we introduce FEMP (Fast and Exact Mining of Probabilistic
data streams), a framework adopting the exact approach while meeting the time
limitations of data stream environments. To the best of our knowledge, FEMP
is the first solution for PFI mining in a sliding window over probabilistic data
streams.

Our contributions are i) a new model for probabilistic data streams, where an
item may have multiple occurrences (each associated to a probability) for one
transaction ii) a new approach for computing probabilistic support by recursion
on the transactions (this approach allows to develop efficient algorithms for up-
dating probabilistic support after any modification in the sliding window) and
iii) new algorithms for probabilistic frequent itemset mining with sliding win-
dows, where transactions are inserted or deleted. Our algorithms allow updating
the new probabilistic support of any monitored itemset with a low complexity
since they avoid scanning the whole sliding window from scratch.

We validated our solution through experimentation over synthetic and real-
world data sets. The results show that it is able to discover and manage PFI
in data streams with response times that are up to several orders of magnitude
faster than baseline methods of the literature employed in a sliding window
context.

2 Problem Definition

We now describe the problem we address with formal definitions of the prob-
abilistic model we adopt, probabilistic itemset mining and probabilistic data
streams.

2.1 Probabilistic Data

Let I be a set of literals. I is also called the vocabulary. An event ei is a tuple
ei =< Oid, ts, x, P > where i is the identifier of the event, Oid is an object
identifier, ts is a timestamp, x ∈ I is an item and P is an existential probability
P ∈ [0, 1] denoting the probability that ei occurs.

Example 2. Consider the data given by Figure 1, the first two events for Huan
Huan are: e1 =< Huan Huan, 8, sleeping, 0.3 > and e3 =< Huan Huan, 9,
eating, 0.3 >.

Definition 1. A probabilistic item x is an item that appears in an event, the
probability of x is the probability of its event.

Definition 2. A probabilistic transaction t is a set of pairs (x, P ) for an object
such that x is a probabilistic item and P is the probability of the event of x.
P (x ∈ t) is the probability of existence of x in t. A probabilistic database is a
set of probabilistic transactions.
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Panda Id Transaction

Huan Huan t1 (eating, 0.3); (sleeping, 0.3)

Yuan Zi t2 (eating, 0.4); (drinking, 1)

Fig. 2. The pandas’ activities (probabilistic transactions) from 9am to 10am

Example 3. Figure 2 gives the probabilistic transaction database of Huan Huan
and Yuan Zi for two hours, from 9am to 10am. We can observe that Yuan Zi’s
activities in this time window were: eating with a probability of 40% and drinking
with a probability of 100%.

Possible Worlds Probability

w1 {}; {drinking} 0.294

w2 {eating}; {drinking} 0.126

w3 {sleeping}; {drinking} 0.126

w4 {eating, sleeping}; {drinking} 0.054

w5 {}; {eating, drinking} 0.196

w6 {eating}; {eating, drinking} 0.084

w7 {sleeping}; {eating, drinking} 0.084

w8 {eating, sleeping}; {eating, drinking} 0.036

Fig. 3. Possible worlds for the database illustrated in Figure 2

A probabilistic database can be treated as a set of deterministic databases,
called possible worlds. The possible worlds are generated from the possible in-
stances of transactions. Let w be a possible world, then the instance of a transac-
tion t in w is denoted by tw. Figure 3 shows the possible worlds for the database in
Figure 2. In this database, the instance of transaction t1 in w3 is {sleeping}, and
that of transaction t2 is {drinking}. For each possible world w, there is probabil-
ity P (w) that is computed based on the probability of its transaction instances.
The sum of the probabilities of all possible worlds of a database is equal to one. In
the case of independence of events, the probability of a given world is computed
as P (w) =

∏
t∈I P (tw), where P (tw) is the probability of t’s instance in w. P (tw)

is computed as follows: P (tw) = (
∏

x∈tw (P (x ∈ t))× (
∏

x/∈tw (1− P (x ∈ t))).
Intuitively, we multiply the existential probability of t items that are present

in tw by the probability of absence of those that are not present in tw.

Example 4. In the possible worlds shown in Figure 3, the probability of w4 is
equal to the occurrence of eating and sleeping for transaction t1, drinking for t2,
and the non-occurrence of eating for t2. Thus P (w4) = (0.3×0.3×1)×(1−0.4) =
0.054.

2.2 Probabilistic Frequent Itemsets

The problem of frequent itemset mining from a set of transactions T , as de-
fined in [1], aims at extracting the itemsets that occur in a sufficient number of
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transactions in T . This is based on the number of transactions in T where an
itemset X appears (i.e. the support of X in T ). In the deterministic context,
computing this support is straightforward (with a scan over T ). In probabilistic
databases, however, the support varies from one possible world to another. For
this reason, the support of an itemset in a probabilistic database, introduced in
[3], is given as a probability distribution function. In other words, each possible
value i ∈ {0, . . . , |T |} for the support of X is associated to a probability that is
the probability that X has this support in the probabilistic database. Definition
3 gives a more formal definition of this notion.

Definition 3. Let W be the set of possible worlds and SX,w be the support of
X ∈ I in world w ∈ W . The probability PX,T (i) that X has support i in the
set of probabilistic transactions T is given by: PX,T (i) =

∑
w∈W,SX,w=i P (w). In

other words, PX,T (i) is the cumulative probability of all possible worlds in which
support of X is i. The probability distribution function PX,T (i) for i ∈ [0..|T |] is
called the probabilistic support of X.

Example 5. In the possible worlds given by Figure 3, we have Peating,T (1) =
P (w2) + P (w4) + P (w5) + P (w7) = 0.46. In other words, the probability that
exactly one Panda is eating between 9am and 10am is 46%.

Definition 4. Given a support value i, the probability P≥X,T (i) that an itemset

X has at least i occurrences in T , is given by: P≥X,T (i) =
∑|T |

j=i PX,T (j). Given
minSup and minProb, a user minimum support and minimum probability, and
T a set of probabilistic transactions, an itemset X is a probabilistic frequent
itemset (PFI) iff P≥X,D(minSup) ≥ minProb. P≥X,D(minSup) is also called
the frequentness probability of X.

For example, the probability that “eating” has support of at least 1 is given by
Peating,T (1) + Peating,T (2) = 0.46 + 0.12 = 0.58. In other words, the probability
that at least one panda was eating between 9am and 10am is 58%.

2.3 Probabilistic Data Stream Mining

In many applications, the data production rate is so high that their analysis in
real time with traditional methods is impossible. Sensor networks, Web usage
data, scientific instruments or bio-informatics, to name a few, have added to this
situation. Because of their rate, data streams should often be observed through
a limited observation window and their analysis is highly constrained (e.g. “in
real-time”, “with ongoing queries”, “with no access to outdated data”, etc.).
There are several models for this observation, including sliding windows [16].
Definition 5 gives a formal definition of this notion.

Definition 5. An event data stream (or data stream) is an unbounded stream of
ordered events. Given n, the maximum number of events to maintain in memory,
a sliding window over a data stream contains the last n events from the stream.
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The problem of probabilistic frequent itemset mining in a sliding window is to
extract the set of probabilistic frequent itemsets after each update. The updates
occur when a new event is added to the stream and the oldest one is removed
from the sliding window.

3 PFI Mining in Sliding Windows

We now introduce FEMP, our framework for PFI mining in probabilistic data
streams with a sliding window SW . FEMP allows monitoring the probabilistic
support of all the itemsets of SW in real time, as opposed to the batch model
where these results are obtained only when a batch is complete. However, the
main challenge in this approach consists in updating the probabilistic support
of an itemset X when a transaction t is added to, or removed from the sliding
window. In deterministic data, this operation is simple, we just check if X ⊆ t
and update its support consequently. In the context of possible worlds, there
is no such straightforward approach, because the set of possible worlds changes
completely, after adding/removing a transaction to/from the sliding window.

Before describing our solution, we mention that one of its requirements is to
know P (X ⊆ t), the probability that itemsetX is included in transaction t. In the

case of independent items, it can be computed as P (X ⊆ t) =
∏|X|

i=1 P (xi ∈ t).
In the case where items of transaction t are dependent, for computing P (X ⊆ t)
we have to take into account the rules defined on the dependency of items. For
example, if two items x1 and x2 have a mutual exclusion dependency, then the
probability that X = {x1, x2, . . . } is a subset of a transaction t is zero.

3.1 Sliding Window Model

Our sliding window model maintains a set of probabilistic transactions in mem-
ory. When the stream produces a new event ei =< Oid, time, x, P >, the corre-
sponding object in the model is either created or updated in the window. With
streaming data, an item x may occur at several points in time and each occur-
rence is associated to a probability. Therefore, we must give a reliable probability

Panda Sliding window of size 6, after e8
Huan Huan (eating, 0.3); (sleeping, 0.3); (grooming, 0.4)

Yuan Zi (eating, 0.4); (drinking, 1); (grooming, 0.9)

Sliding window of size 6, after e9
Huan Huan (eating, 0.3); (sleeping, 0.51); (grooming, 0.4)

Yuan Zi (eating, 0.4); (drinking, 1); (grooming, 0.9)

Sliding window of size 6, after e10
Huan Huan (sleeping, 0.51); (grooming, 0.4)

Yuan Zi (eating, 0.4); (drinking, 1); (grooming, 0.9); (marking, 0.4)

Fig. 4. Sliding windows of size 6 from e3 to e10
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of existence of x, by taking each probability of occurrence into account. To that
end, we consider P (x ∈ t) as the probability that at least one occurrence of x
exists in t (i.e. 1 minus the probability that x does not exist in t).

Example 6. Consider the stream of events illustrated in Figure 1 and SW , the
sliding window limited to the last 6 events. Figure 4 illustrates the content of
SW from 11am (i.e. e3 to e8) to 12am (i.e. e5 to e10). In this example, when
e9 is added, we update the probability of sleeping for Huan Huan, but we do
not need to remove any item from SW . Then, after e10, we add marking to the
probabilistic transaction of Yuan Zi and e3, the oldest event, must be removed.

3.2 Computing Frequentness Probability

For computing the probability that an itemset X is frequent, we need to sum
up the probabilities of all supports i for i > minsup. In other words, we have

P≥X,T (minsup) =
∑|T |

i=minsup PX,T (i), where PX,T (i) is the probability of sup-
port i for X in T . Notice that the sum of the probabilities in each row is equal
to one. Therefore, we have: P≥X,T (minsup) = (1−

∑minsup−1
i=0 PX,T (i)). We use

this equation for computing the frequentness probability of itemsets. To update
the frequentness probabilities after inserting/deleting a transaction, we need to
compute and update the probability of support i (0 ≤ i ≤ minSup− 1) for an
itemset X after inserting/deleting a transaction to/from the sliding window. Our
approach for computing the probabilistic support of itemsets uses a recursion on
transactions.

3.3 Recursion on Transactions

Let X be an itemset, DBn be a probabilistic database involving transactions
T = {t1, . . . , tn}, and PX,T (i) be the probability that the support of X , in the
set of transactions T , is i. We develop an approach for computing PX,T (i) by
doing recursion on the number of transactions.

Base. Let us first consider the recursion base. Consider DB1 be a database that
involves only transaction t1. In this database, the support of X can be zero or
one. The support of X in DB1 is 1 with probability P (X ⊆ t1) , and its support
is 0 with probability (1 − P (X ⊆ t1)). Thus, for the probabilistic support of X
in DB1, we have the following formula:

PX,{t1}(i) =

⎧⎨⎩
P (X ⊆ t1) for i=1;
(1− P (X ⊆ t1)) for i=0;
0 otherwise

(1)

Recursion Step. Assume we have DBn−1, a database involving the transac-
tions t1, . . . , tn−1. We construct DBn by adding transaction tn to DBn−1. If
X 
⊆ tn then the probability of support i for X in DBn is exactly the same as
that in DBn−1. If X ⊆ tn then two cases can lead to a support of i for X in
DBn:
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1. X ⊆ tn in DBn and the support of X in DBn−1 is equal to i− 1. Thus, we
have:
PX,T (i) = PX,T−{tn}(i− 1)× (P (X ⊆ tn)).

2. X � tn and the support of X in DBn−1 is equal to i. Thus, we have:
PX,T (i) = PX,T−{tn}(i)× (1− P (X ⊆ tn)).

Then, the probability of support i for X in a database containing t1, . . . , tn is
computed based on theorem 1.

Theorem 1. Given an itemset X and a set of transactions T ={t1, . . . , tn−1, tn},
the probabilistic support of X in T can be computed based on the probabilistic
support in T − {tn} by using the following equation:

PX,T (i) = PX,T−{tn}(i− 1)× (P (X ⊆ tn))

+PX,T−{tn}(i)× (1− P (X ⊆ tn))
(2)

Proof. Implied by the above discussion.

3.4 Updating Probabilistic Support after Inserting a Transaction

To efficiently support data mining over probabilistic data streams, we need to
update efficiently the probabilistic support of itemsets after each update. Here,
we deal with the insertion of a new transaction to the sliding window. The case
of transaction removal will be addressed in Section 3.5.

After inserting a new transaction to the sliding window, the probabilistic
support can be updated by an algorithm that proceeds as follows (we removed the
pseudo-code due to space restrictions). Let PX,T [0..|SW |] be an array such that
PX,T [i] shows the probability of support i for itemset X in a set of transactions
T . |SW | is the maximum support of a transaction in the sliding window, i.e.
the size of the window. Given PX,T , we generate an array PX,T+{t} such that
PX,T+{t}[i] shows the probability of support i for X in T + {t}. For filling the
array PX,T+{t}, our algorithm considers two main cases: either T is empty or T is
not empty (so PX,T is available). In the first case, we have only one transaction in
the sliding window. Thus, our algorithm initializes PX,T+{t} using the base of our
recursive formula (described in Section 3.3) by setting PX,T+{t}[1] = P (X ⊆ t)
and PX,T+{t}[0] = 1− P (X ⊆ t). In the second case, i.e. where T is not empty,
the algorithm computes the values of PX,T+{t} based on those in PX,T by using
our recursive formula (i.e. Equation 2) as follows:

PX,T+{t}[i] = (PX,T [i− 1]× P (X ⊆ t)) + (PX,T [i]× (1− P (X ⊆ t)))

When P (X ⊆ t) = 0 we can simply ignore the transaction since it has no
impact on the support, thus we have PX,T+{t} = PX,T . Recall that for computing
the frequentness probability of itemsets, we need to know only the probability of
supports between zero and minSup− 1. This is the reason why in our algorithm
we fill the array only for the values that are lower than minSup. Example 7
illustrates our algorithm.
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Example 7. Figure 5 shows the execution of our algorithm over the database
shown in Figure 2, with X=eating. Recall that, in this database, we have: P (X ⊆
t1) = 0.3 and P (X ⊆ t2) = 0.4. Initially T = {}, then we add t1 and afterwards
t2 to it. In the fist row, the algorithm sets the probabilistic supports for T = {t1}.
Thus, we have PX,T+{t1}[1] = P (X ⊆ t1) = 0.3 and PX,T+{t1}[0] = (1 − P (X ⊆
t1)) = 1 − 0.3 = 0.7. The probabilities in the second row are computed using
our recursive formula. For example, PX,{t1,t2}[1] = (PX,{t1}[0] × P (X ⊆ t2)) +
(PX,{t1}[1]× (1 − P (X ⊆ t2)) = (0.7× 0.4) + (0.3× 0.6) = 0.46.

T

{t1, t2} 0.42 0.46 0.12
{t1} 0.7 0.3

0 1 2 possible supports

Fig. 5. Computing the probabilistic support of eating in the probabilistic database of
Figure 2

The time complexity of our algorithm for updating the probabilistic sup-
port of an itemset X after inserting a new transaction to the sliding window
is O(minsup). Its space complexity is O(|SW |) where |SW | is the size of the
sliding window, i.e. the maximum number of transactions in the window.

3.5 Updating Probabilistic Support after Deleting a Transaction

Assume we have the probabilistic support of an itemset X for a set of trans-
actions T , then the question is: “how to compute the probabilistic support in
T −{t}?” One might think that the probabilistic support i for X in T −{t} (i.e.
PX,T−{t}(i)) could be computed as PX,T (i−1)/P (X ⊆ t)+PX,T (i)/(1−P (X ⊆
t)). Unfortunately, this formula will not work. For example, if we use it for com-
puting Peating,{t1}(1) after deleting transaction t2 from the database used in
Example 7, then we obtain 0.42× 0.4+ 0.46× 0.6 = 0.444, whereas the value of
Peating,{t1}(1) is equal to 0.3 (see Figure 5). To solve the problem of updating
the probabilistic support of X in T − {t}, we develop the following theorem:

Theorem 2. Let X be an itemset, T a set of transactions, and PX,T an array
denoting the probabilistic support of X in T . Assume we delete a transaction t
from T . Let PX,T−{t}(i) be the probability for X to have support i in T − {t},
then PX,T−{t}(i) can be computed as:

–
PX,T (i)−(PX,T−{t}(i−1)×P (X⊆t))

1−P (X⊆t) if P (X ⊆ t) 
= 1

– PX,T (i+ 1) otherwise

Proof. In the case where P (X ⊆ t) = 1, it is obvious that by removing t from
T , the support of X is reduced by one. Thus, the probability of support i in



502 R. Akbarinia and F. Masseglia

T − {t} is equal to the probability of support i + 1 in T . For the case where
P (X ⊆ t) 
= 1, it is sufficient to show that:

PX,T−{t}(i)× (1− P (X ⊆ t)) = PX,T (i)− (PX,T−{t}(i− 1)× P (X ⊆ t)).
For this, we expand the right side of this equation by using Equation 2 in

Section 3.3. We replace PX,T (i) by its equivalent, that is:
PX,T−{t}(i− 1)× (P (X ⊆ t)) + PX,T−{t}(i)× (1− P (X ⊆ t))

Thus, we have:
PX,T (i)− (PX,T−{t}(i − 1)× P (X ⊆ t))
= PX,T−{t}(i− 1)× (P (X ⊆ t))+PX,T−{t}(i)× (1−P (X ⊆ t))− (PX,T−{t}(i−
1)× P (X ⊆ t))
= PX,T−{t}(i)× (1− P (X ⊆ t)) �

Theorem 2 suggests to compute PX,T−{t}(i) based on PX,T (i) and PX,T−{t}(i−
1). To develop an algorithm based on this theorem, we need to compute
PX,T−{t}(0) that is the probability of support 0 for X in T − {t}. This can
be done as follows. We use the fact that when a transaction t is added to the
sliding window, the probability of support 0 is multiplied by the probability of
absence of t. Thus, when t is removed from T , to compute PX,T−{t}(0) we can
divide PX,T (0) by (1 - P (X ⊆ t)), if P (X ⊆ t) 
= 1. In other words, we have:

PX,T−{t}(0) =
PX,T (0)

1− P (X ⊆ t)
, forP (X ⊆ t) 
= 1 (3)

Equation 3 works iff P (X ⊆ t) 
= 1. In the case where P (X ⊆ t) = 1, we have
PX,T−{t}(0) = PX,T (1).

Based on Theorem 2 and Equation 3, we developed Algorithm 1 that updates
the probabilistic support after removing a transaction from a sliding window. Re-
call that for finding frequent itemsets, we need only to compute the probabilistic
supports for values that are lower than minSup. This is why the “for loop” in
the algorithm (started at Line 10) is from 1 to min{minSup− 1, |T | − 1}. The
time complexity of Algorithm 1 is O(minsup), and its space complexity O(|SW |)
where |SW | is the size of the sliding window.

4 Experiments

We evaluate the performance of FEMP by a thorough comparison to existing
algorithms in the literature that use Probabilistic Support in exact [3] and ap-
proximate [14] mining. Since we do not find sliding window approaches in the
literature, we implemented these algorithms as follows: each time an event is
added or removed from the sliding window, the algorithm runs, from scratch, on
the content of the updated sliding window. PFIM is the algorithm of [3] im-
plemented with all the optimizations (including the 0-1 optimization). However,
due to extremely high response time in batch mode, we implemented two other
versions of this algorithm. In PFIM-50% the discovery is not performed for
each event but for each two events (only 50% of the events are considered). In
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Algorithm 1. Probabilistic support update after deleting a transaction.

Input: X: itemset; t: deleted transaction; T : set of transactions before delete; PX,T :
an array containing probabilistic support of X in T

Output: PX,T−{t}: an array containing probabilistic supports for X in T − {t}
1: if P (X ⊆ t) = 0 then
2: PX,T−{t} = PX,T

3: else
4: if P (X ⊆ t) < 1 then

5: PX,T−{t}[0] =
PX,T [0]

1−P (X⊆t)

6: else
7: PX,T−{t}[0] = PX,T [1]
8: end if
9: k = min{minSup− 1, |T | − 1}
10: for i = 1..k do
11: if P (X ⊆ t) = 1 then
12: PX,T−{t}[i] = PX,T [i+ 1]
13: else
14: PX,T−{t}[i] =

PX,T [i]−(PX,T−{t}[i−1]×P (X⊆t))

1−P (X⊆t)

15: end if
16: end for
17: end if
18: return PX,T−{t}

PFIM-25%, the discovery on the sliding window is performed each 4 events.
Eventually, Poisson is the algorithm of [14] (that allows approximate PFI min-
ing) running on the whole sliding window after each update. A brief discussion
on these algorithms is given in Section 5.

We use two datasets for these experiments: a synthetic one (by the IBM1

generator) and a real one (the “accident” dataset from the FMI repository2). The
synthetic dataset contains 38 millions of events, 8 millions of transactions and 100
items. The accidents dataset contains 11 millions of events, 340K transactions
and 468 items. We have added an existential probability P ∈]0..1] to each event
in these datasets, with a uniform distribution. For both datasets, minSup has
been set to 30% of the window size and minProb to 40%.

We implemented two versions of FEMP. The first one is “Dynamic-FEMP”
(d-FEMP in our experiments). In this version, when a new candidate itemset
is generated, it’s frequentness probability will be checked over the next updates
in the stream thanks to our algorithms presented in Section 3. This is the fastest
approach but it implies a delay in the pattern discovery (similar to the de-
lay described in [13]). The second version is “Exact-FEMP” (e-FEMP in our
experiments). Here, each time a candidate itemset is generated it is immedi-
ately verified, from scratch, over all the transactions maintained in the current
sliding window.Besides that, the probabilistic support of all existing itemsets is

1 http://www.cs.loyola.edu/�cgiannel/assoc gen.html
2 http://fimi.ua.ac.be/data/
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maintained at each update using our algorithms presented in Section 3. e-FEMP
guarantees an exact PFI discovery at any point in the stream. However, this is
done at the price of a higher time complexity compared to d-FEMP.

We present the results obtained by these approaches on a probabilistic data
streams with sliding windows. Our goal is, on the one hand, to show that a slid-
ing window approach in probabilistic data streams with probabilistic support is
possible thanks to our algorithms and, on the other hand, to illustrate the be-
havior of our approach in a context where transactions can be added or removed
from the observation window.

4.1 Feasibility

Figure 6 shows the time needed by each algorithm to extract the PFI in a grow-
ing sliding window SW . The size of SW grows from 0 to 5000 transactions for
the synthetic dataset and from 0 to 10000 for the accident dataset. This corre-
sponds to the initialization of the stream. We observe that the response time of
d-FEMP increases barely since it needs very few calculations. e-FEMP increases
more clearly, since it must scan SW each time a new candidate is proposed.
Meanwhile, all the versions of PFIM and Poisson have much higher response
times. d-FEMP needs 7.34s to fill SW for the accident dataset, where PFIM
needs 618s. Furthermore, we can see that Poisson is faster than all versions of
PFIM after a number of transactions, but not for the first ones. This is due to the
large number of infrequent patterns extracted by Poisson, caused by the approx-
imation of Expected Support. Actually, for the first hundreds of transactions,
Poisson may extract up to 146 PFI while the real number of PFI is 36 at most.
Such a large number of erroneous PFI is a cause of unnecessary computations
and high response times.

Figure 7 shows the time needed by each algorithm to process 100 events, while
the transaction data is fed in a pass-through fashion. Although probabilistic
supports are maintained after each update in the cases of d-FEMP, e-FEMP,
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Fig. 7. Processing times for 100 events on synthetic (top) and accident (bottom)
datasets

Poisson and PFIM, we report the time for 100 events because the response time
of d-FEMP, for only one event, would always be 0s. That time is recorded as the
number of processed events increases, from the 100th event to the 50000th one
in the case of synthetic dataset (100000th for accident dataset). We observe that
d-FEMP needs less than 0.05s to update the supports of the monitored itemsets
in memory for each 100 updates to the stream. e-FEMP needs more time (up
to 1s) since it has to scan SW when new candidate itemsets are generated.
Depending on the dataset, Poisson is faster or slower that PFIM-25%. This
is due to the difference in density between these datasets, where Poisson can
extract itemsets that are not frequent (slowing down the extraction process).
Over the synthetic dataset, the time needed by e-FEMP is 5 times faster than
Poisson (while extracting exact probabilistic support, whereas Poisson gives an
approximation with Expected Support) and up to 20 times faster than PFIM.
We also observe that d-FEMP is very close to 0s. In fact, in our experimental
data, d-FEMP appears to run up to two orders of magnitude faster than PFIM
on the accident dataset to process 100 events. The global response time of d-
FEMP, as the stream passes through, is several orders of magnitude lower than
that of PFIM.

4.2 Scalability

Figure 8 shows the execution times of each algorithm for a full sliding window.
More precisely, when a sliding window SW is full (after initialization), we mea-
sure the time needed to process |SW | updates (one update is made of an event
insertion and an event removal). This time is measured for an increasing size of
SW . Our experiments clearly show that d-FEMP incurs very few overhead to
the computations needed for maintaining the data structures.
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5 Related Work

Expected Support. Probabilistic data mining is a recent research topic that is
gaining increasing attention [9], [4], [12], [10], [15]. In [5], the problem of itemset
mining from probabilistic data is introduced and the authors propose the notion
of Expected Support as a first solution. Let P (X ⊆ t) be the probability that
itemset X is included in transaction t, the Expected Support ES(X) of X in

database D is given by: ES(X) =
∑|D|

j=1 P (X, tj). This support is then used as
a frequency measure (compared to a user minimum threshold) in U-Apriori, a
level-wise approach based on the Apriori principle for frequent itemset mining.

Probabilistic Support. In [3], the authors introduce the notion of probabilistic
support which is an exact measure of an itemset support in the possible world
model. They define the probability that an itemset X has support i as in Def-
inition 4. The authors propose to compute the frequentness probability of an
itemset X using a dynamic programming approach. However, their approach is
incremental in the support (i.e. the transaction set is fixed and each iteration
of their recursion allows computing the support probability of an itemset for an
increasing support), thus not appropriate for a data stream environment.

Some approximation methods for the probabilistic support of an itemset have
also been proposed. The idea of [14] is to approximate the support distribution
function by means of a Poisson law. In [4], the authors propose another ap-
proximation of frequentness probability based on the central limit theorem. The
main drawbacks of these approaches are to use Expected Support as a measure
of probabilistic frequentness [14] and to work only on statistical independent
data [14], [4].

Probabilistic Data Streams. Itemset mining in data streams is an important
topic of knowledge discovery [13], [7]. Mainly, we find contributions on the ex-
traction techniques and the data models, such as batches [7] or sliding windows
[13], [16]. In [8], we find a comparative study of these models. In [17], the authors
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propose to extract frequent items in probabilistic data. Their approaches allow
finding items (itemsets of only one item) in static data and likely frequent items
in data streams. [11] proposes to extract frequent itemset from streaming prob-
abilistic data by means of Expected Support and a batch model. In [10], we find
a batch-based approach to extract frequent itemsets using Expected Support in
probabilistic data streams with a technique inspired from [7].

Despite the interest of exact PFI mining with sliding windows [8], [16], we do
not find any proposal in the literature for such an approach. As we discuss in
Section 3, the main challenge in this context is to update the probabilistic sup-
port of an itemset when a transaction is added to or removed from the window.
Our work is therefore motivated by the needs and challenges of providing an ap-
proach that is able to i) extract PFI from data streams; ii) use sliding windows
and update the support of an itemset upon transaction insertion or removal; and
iii) work with statistical dependent and independent data.

6 Conclusion

In this paper, we proposed FEMP, the first solution for exact PFI mining in data
streams with sliding windows. FEMP allows efficient computation of the exact
probabilistic support of itemsets whenever a transaction is added or removed
from the observation window. Compared to non-incremental algorithms, that
need to scan the whole sliding window after each update, our approach shows
very low execution time. Through an extensive experimental evaluation on syn-
thetic and real datasets, we observed that FEMP can be up to several orders of
magnitude faster than traditional approaches adapted to sliding windows.
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Abstract. We consider the problem of finding planted bicliques in ran-
dom matrices over GF [q]. That is, our input matrix is a GF [q]-sum of
an unknown biclique (rank-1 matrix) and a random matrix. We study
different models for the random graphs and characterize the conditions
when the planted biclique can be recovered. We also empirically show
that a simple heuristic can reliably recover the planted bicliques when
our theory predicts that they are recoverable.
Existing methods can detect bicliques of O(

√
N), while it is NP-hard

to find the largest such clique. Real graphs, however, are typically ex-
tremely sparse and seldom contain such large bicliques. Further, the noise
can destroy parts of the planted biclique. We investigate the practical
problem of how small a biclique can be and how much noise there can
be such that we can still approximately correctly identify the biclique.
Our derivations show that with high probability planted bicliques of size
logarithmic in the network size can be detected in data following the
Erdős-Rényi model and two bipartite variants of the Barabási-Albert
model.

1 Introduction

In this paper we study under what conditions we can recover a planted biclique
from a graph that has been distorted with a noise. We consider the general
setting of matrices under GF [q], where the problem can be restated as finding
the planted rank-1 matrix after noise has been applied. In addition to standard
additive noise, we also allow destructive noise, that is, the noise can remove edges
from the planted biclique. Therefore, we consider the planted biclique recoverable
if it is the best rank-1 approximation of the noised matrix under GF [q].

As tabular data essentially forms a bipartite graph, bicliques are meaningful
for a wide variety of real data. Identifying bicliques, such as through factorization
and bi-clustering, is an important topic in many fields, including machine learn-
ing, data mining, and social network analysis—each of these subfields naming
bicliques differently, such as ‘tiles’, ‘clusters’, or ‘communities’.

One of the main current challenges is the discovery of overlapping bicliques
under noise. In particular, there is need for techniques that can model interac-
tions where bicliques overlap. For example, say in our data we have records of

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 509–524, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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male conservatives, as well as of long-haired males, but none of long-haired male
conservatives. Under GF [2], where every subsequent factor can be seen to XOR
the corresponding entries of a binary matrix, we only need two factors—one for
conservatives, one for liberals, which corresponds to intuition. Methods unable
to model interaction will need 3 factors, or have high errors. In bio-informatics,
there are many examples of such complex interactions, such as inhibition and
excitation in gene regulation as well as in protein-protein interaction [14,13]. By
factorizing matrices in GF [q] we can model arbitrary levels of interaction.

An important step towards factorizing data under GF [q]—i.e. discovering all
important cliques in the data—is the reliable detection of individual planted
bicliques. To this end, in this paper we study bounds on the dimensions of
planted bicliques such that we can still reliably approximately identify these in
quasi-polynomial time under different noise models. As many adversarial attacks
exist that render exact solutions exponential, we focus on approximations—also,
in practice, data analysts often do not require optimal results, but rather obtain
good approximations in much less time.

Existing approaches aim at finding complete bicliques of size O(
√
N) [2], and

it has been shown to be NP-hard to find the largest such biclique [6,11]. While
most real-world graphs have very large number of vertices, they are, however,
typically only very sparsely connected. Graphs that follow the popular Barabási-
Albert model, for instance, only have a constant number of vertices with degrees
of O(

√
N). Hence, finding a clique of size O(

√
N) can be trivially achieved by

collecting those vertices with degree at least O(
√
N). As such, it is an interesting

open question what the smallest size of a biclique and the largest amount of
destructive noise are such that the biclique can still be approximately correctly
discovered. In particular, we study Erdős-Rényi and Barabási-Albert background
distributions for bipartite graphs.

Due to lack of space, we discuss the most fine-grained details of the proof of
Lemma 6, i.e. Lemma 9, and Eq. 14, in the Appendix.1

2 Related Work

Finding large bicliques has many applications, and hence has received a lot
of attention. Most research aims at finding exact bicliques, that is, complete
bipartite subgraphs. One way of finding these is to remove edges from the graph
until what is left is a complete bipartite subgraph. Hochbaum [6] showed that
minimizing the number of edges to remove is NP-hard, though she also gave
a 2-approximation algorithm for the problem. Later, Peeters [11] showed that
finding the largest biclique is NP-hard in general.

Despite that finding the largest biclique is NP-hard, it is possible to recover a
single planted biclique [2]. In particular, if the bipartite graph contains a biclique
of N+M nodes and an adversary adds up to O(NM) edges, the planted biclique
can still be recovered using nuclear norm minimization, provided that the added

1 http://www.mpi-inf.mpg.de/~pmiettin/gf2bmf/appendix.pdf

http://www.mpi-inf.mpg.de/~pmiettin/gf2bmf/appendix.pdf
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edges do not have too many neighbors. Similarly, the random process can be
characterized to add edges such that the biclique can still be found.

Our problem, however, is different as we do not aim to recover exact bicliques,
but approximate quasi-bicliques (i.e. dense but not necessarily complete bipartite
subgraphs). Compared to Ames et al. [2], we allow the noise to both add new
edges as well as to remove edges from the planted bicliques.

An alternative approach is to consider the problem as rank-1 matrix factoriza-
tion. If we work in GF [2], any method discovering binary factor matrices works,
including Boolean matrix factorization algorithms [10], binary matrix factoriza-
tion algorithms [15], and PROXIMUS [7].

The problem of finding dense quasi-bicliques has been approached from dif-
ferent directions. In graph mining, a typical goal is to find all maximal quasi-
bicliques satisfying a density condition. For example, Sim et al. [12] give an
algorithm to mine all maximal quasi-bicliques where each vertex is connected
to all but ε ∈ N vertices in the other side (for other algorithms, see [8]). Such
algorithms can be used to find the quasi-biclique that best represents the data
(in terms of error), but only by exhaustively iterating over density values.

There is existing research on finding rank-k approximations of given matrices
under GF [2]. In fact, finding the rank of a matrix under GF [2] is easy. This
can be seen by noting that the problem is equivalent to the rank of the biad-
jacency matrix of the bipartite graph under the GF [2], and therefore solvable
in polynomial time using standard techniques. Finding the best GF [2] rank-k
factorization, however, is not so easy. In the Nearest Codeword Problem, we are
given an N -by-M binary data matrix A and a binary N -by-k left factor ma-
trix B, with the task to find the right factor matrix C such that we minimize
|A−B ⊕ C|. This problem is NP-hard to approximate within any constant fac-
tor, and there exists no polynomial-time algorithm for approximation within a
factor of 2log

0.8−ε N , unless NP ⊆ DTIME(npoly(logN)) [3]. There does exist, how-
ever, a polynomial-time randomized approximation algorithm with O(k/ logN)
approximation factor [4], and a deterministic approximation algorithm with the
same factor and NO(log∗ N) running time [1].

3 Identifying Single Bicliques

We investigate bounds on discovering a single planted biclique under a given
background distribution. As models for background noise we study resp. Erdős-
Rényi graphs and the scale-free Barabási-Albert model.

3.1 A Generic Strategy

In the next sections, we will consider random graph models. In each of these
cases, we assume that a ‘planted biclique’ is combined with ‘noise’ generated
by the random graph model, and will consider the question of how easy it is to
recognize the planted biclique. In the current section we present aspects common
to the derivations for these random graph models.
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In this section, we will denote the dimensions of the matrices by N ×M . We
will use ⊕ and 0 to denote addition and subtraction in GF [q] for vectors or
matrices over GF [q]. Further, x ≡ y denotes congruency in GF [q], i.e. x ≡ y
(mod q). We also adopt the common notation [n] for the set of all integers from
1 until n, i.e. [n] = {i ∈ N | 1 ≤ i ≤ n}. We will use the indicator function
I(true) = 1 and I(false) = 0.

We will often use vectors (Boolean or over GF [q]) to select a set of rows or
columns, non-zero elements indicating a selected row or column, and similarly
matrices to select a set of cells. Therefore, we define for two vectors a and b of the
same dimensions that a\b is the vector for which (a\b)i = I(ai 
= 0∧bi = 0), and
similarly a∩b and a∪b as the binary vectors for which (a∩b)i = I(ai 
= 0∧bi 
= 0)
and (a ∪ b)i = I(ai 
= 0 ∨ bi 
= 0). We define the same operations for matrices,
e.g. (A \ B)i,j = I(Ai,j 
= 0 ∧ Bi,j = 0). We will denoted with |X | the number
of non-zero elements of a vector or matrix X . We will denote the planted clique
with uv where u ∈ GF [q]N×1 and v ∈ GF [q]1×M . We assume u and v fixed but
unknown. We will denote approximations of u and v with x and y and express
the quality of the approximation using a loss function

L(u, v, x, y) = max(|u− x|, |v − y|) . (1)

For sparse graphs, adding a planted clique to the graph usually increases the
number of nonzero elements. We therefore adopt the following notations. Let
A be a random graph according to some distribution M. Let B = A ⊕ uv
be the addition of the planted clique defined by u and v to this matrix. Let
x ∈ GF [q]m×1 and y ∈ GF [q]1×n be two vectors defining a biclique xy. We define
the error of x and y wrt. identifying the biclique planted in B and characterized
by u and v as

W ′(x, y) = |B 0 xy| = |{(i, j) | Bi,j 
≡ xiyj}| = |{(i, j) | Ai,j ⊕ ujvj 
≡ xiyj}| ,

that is, W ′(x, y) counts the matrix cells which are nonzero after removing the
hypothesized biclique xy (which we expect to be minimal if xy = uv). Fur-
thermore, W (x, y) = W ′(x, y)−W ′(u, v) characterizes whether xy yields better
representation of B than uv (W (x, y) < 0) or vice versa (W (x, y) > 0). Clearly,
W (u, v) = 0.

The set of elements where the approximated biclique xy differ from the planted
biclique uv is denoted by C�≡(x, y), i.e.

C�≡(x, y) = {(i, j) ∈ [N ]× [M ] | xiyj 
= uivj} .

If B is the matrix received on input, i.e. the matrix resulting from adding to
a random graph a planted biclique, then we will denote with û and v̂ the vectors
minimizing W ′(û, v̂) = |B 0 ûv̂|.

For each random graph model, our aim is to show that with reasonably high
probability the planted biclique uv is well approximated by the biclique ûv̂ min-
imizing W ′(û, v̂). We will first show that the probability that W (x, y) < 0, with
xy 
= uv, decreases exponentially with |C�≡(x, y)|. Then, by the following lemma
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from such result we can derive that maximizing the objective function on the
input will yield a good approximation of (u, v).

Lemma 1. Let M be a distribution over GF [q]N×M , i.e. N ×M matrices over
GF [q]. Assume that there is an integer ζ and a constant c such that for any fixed
u ∈ GF [q]N×1 and v ∈ GF [q]1×M with |u| ≥ ζ and |v| ≥ ζ, with probability at
least 1−δ1 for a matrix A randomly drawn from M, it holds for all x ∈ GF [q]N×1

and y ∈ GF [q]1×M that

P (W (x, y) ≤ 0) ≤ exp(−|C�≡(x, y)|c) . (2)

Then, for all ε > 0, u and v such that |u| ≥ ζ and |v| ≥ ζ,

PA∼M(L(u, v, û, v̂) ≤ ε) ≥ 1− δ1 − δ2

where (û, v̂) = arg min
(x,y)

|A⊕ uv 0 xy| and

δ2 = T (ε, |u|, |v|, |u|, |v|)T (ε,N,M, |u|, |v|) (3)

where

T (ε, a, b, c, d) =
exp (ε (log (a+ 1) + log (b+ 1)−min (c, d)) cp,q)

1− exp ((log(a+ 1) + log(b+ 1)−min(c, d))cp,q)
.

Proof. Equation (2) is a bound on the probability that for a given x and y,
W (x, y) < 0. Several choices for x and y are possible. We will bound the proba-
bility that ∃x, y : W (x, y) < 0 by

P (∃x, y : W (x, y) < 0) ≤
∑
x,y

P (W (x, y) < 0)

For a given x and y we now bound |C�≡(x, y)|. First, we define

Cuv\xy = {(i, j) | (uv \ xy)i,j = 1} (4)

and
Cxy\uv = {(i, j) | (xy \ uv)i,j = 1} , (5)

such that |C�≡(x, y)| =
∣∣Cuv\xy

∣∣+ ∣∣Cxy\uv
∣∣ .

As we have both
∣∣Cuv\xy

∣∣ ≥ |u \ x| |v| and
∣∣Cuv\xy

∣∣ ≥ |v \ y| |u| it follows that∣∣Cuv\xy(x, y)
∣∣ ≥ max(|v \ y| , |u \ x|)min(|u| , |v|) . (6)

There are
∑t

i=1

(|u|
i

)
≤ (|u|+ 1)t ways for choosing at most t rows out of the

|u| nonzero rows of u. Similarly, we have
∑t

i=1

(|v|
i

)
≤ (|v|+1)t ways to choose at

most t columns out of the |v| nonzero columns of v. Hence, the number of ways
to choose u\x and v\y such that both |u \ x| ≤ t and |v \ y| ≤ t hold is bounded

by (|u|+ 1)t(|v|+ 1)t. Now, let us use C
(t)
uv\· = {(x, y) | max(|u \ x| , |v \ y|) = t}
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for the set of (x, y)’s such that for each the largest intersection with the rows or
columns of (u, v) is t elements. We can now write

max(|u|,|v|)∑
t=s

∑
(x,y)∈C(s)

uv\·

exp
(
−
∣∣Cuv\xy

∣∣ c)

≤
max(|u|,|v|)∑

t=s

(|u|+ 1)t(|v|+ 1)t exp (−tmin(|u| , |v|)c)

≤
max(|u|,|v|)∑

t=s

exp (t(log(|u|+ 1) + log(|v|+ 1)−min(|u| , |v|)c))

=
exp (s(log(|u|+ 1) + log(|v|+ 1)−min(|u| , |v|)c))

1− exp ((log(|u|+ 1) + log(|v|+ 1)−min(|u| , |v|)c))
= T (s, |u| , |v| , |u| , |v|)

Here, in the one-but last step we use the fact that
∑∞

i=0 x
i = 1/(1−x). Similarly,

we define C
(t)
·\uv = {(x, y) | max(|x \ u| , |y \ v|) = t} by which we have

max(N,M)∑
t=s

∑
(x,y)∈C(s)

·\uv

exp
(
−
∣∣Cxy\uv

∣∣ c) ≤ T (s,N,M, |x| , |y|)

Note that as u and v are fixed, we have only sets of size |u| and |v| to choose
u\x and v\y from. Here however, x and y can be chosen from N−|u| remaining
rows and M − |v| remaining columns, resp. Still, however, when log(N + 1) +
log(M + 1) < min(|u| , |v|), T (s,N,M, |u| , |v|) ≤ 1.

Finally, this allows us to combine these two inequalities into

P (W (x, y) < 0 | max(|u− x| , |v − y|) ≥ ε) ≤ T (ε, |u| , |v| , |u| , |v|)T (ε,N,M, |u| , |v|) .

This proves the lemma. ��

According to the above, if we know the dimensions of a biclique, we have a clear
bound on its detectability. Further, it follows that when |u| + |v| or |x| + |y| the
problem becomes much harder. This follows intuition as under an independence
assumption large square blocks are much less probable than thin bicliques—as
these could just as well be the result of few very high degree nodes.

3.2 Erdős-Rényi

The Erdős-Rényi (ER) model is one of the most well-studied models for graph
generation. The general idea is that every edge is equally probable, regardless of
other edges in the graph. That is, graphs of the same number of nodes and same
total number of edges are all equally likely. For the case of factorizing data under
GF [q] with noise distributed according to ER, we have the following definition.



Detecting Bicliques in GF[q] 515

Definition 1. With MER(p, q,N ×M) we will denote the model of sparse ran-
dom matrices in GF [q]N×M according to the Erdős-Rényi model, in particular if
A ∈ MER(p, q,N ×M), for each (i, j) ∈ [N ]× [M ], Aij is zero with probability
1 − p and non-zero with probability p. Non-zero elements are chosen randomly
from GF [q], i.e. each non-zero element of GF [q] has probability 1/(q − 1).

We will now show that the probability that some biclique yields lower error (i.e.
residual) than the planted biclique uv decays exponentially with the difference
between that biclique and the planted one.

Lemma 2. Let p < 1/2. Let N , M and q be integers, u, x ∈ GF [q]N×1 and
v, y ∈ GF [q]1×M . Then, there is a constant cp,q depending on p and q such that

PA∼MER(p,q,N×M)(W (x, y) < 0) ≤ exp(cp,q|C�=|) .

Proof. Let A be randomly drawn from MER(p, q,N × M). As above, let B =
A⊕ uv be the matrix obtained by adding to A the biclique uv.

Let Ci,j = uivj 0 xiyj be the difference between uv and xy, and let

Di,j = I(Ai,j ⊕ Ci,j 
≡ 0)− I(Ai,j 
≡ 0) ,

where I(·) is the indicator function. Now, W (x, y) =
∑

i,j Di,j . If Cij ≡ 0, then
Dij = 0, so let C�≡(x, y) = {(i, j) ∈ [n] × [m] | Cij 
≡ 0} such that we have
W (x, y) =

∑
(i,j)∈C �≡ Di,j .

Following Section 3.1, we bound the probability that xy gives better represen-
tation of B than uv. That is, we bound P (W (x, y) < 0). To that end, we define,
for z ∈ {−1, 0,+1}, Wz(x, y) = {(i, j) ∈ C�≡ | Di,j = z}, so we have

W (x, y) = |W+1(x, y)| − |W−1(x, y)| .

The three sets Wz(x, y), z ∈ {−1, 0, 1}, partition the set C�≡(x, y). Let Xi,j

be a random variable defined as Xi,j = I
(
(i, j) ∈ W−1(x, y) ∪ W0(x, y)

)
, so

that P (Xi,j = 1) = 1 − P
(
(i, j) ∈ W1(x, y)

)
for all (i, j) ∈ C�≡(x, y), and∑

i,j Xi,j = |W−1(x, y)|+ |W0(x, y)|. We have for all (i, j) ∈ C�≡(x, y) that

P
(
(i, j) ∈ W−1(x, y)

)
=

p

q − 1
and P

(
(i, j) ∈ W0(x, y)

)
=

p(q − 2)

q − 1
,

where on the second equation we use the fact that Ci,j 
≡ 0. Therefore

P (Xi,j = 1) = P
(
(i, j) ∈ W−1(x, y)

)
+ P

(
(i, j) ∈ W0(x, y)

)
=

p

q − 1 +
p(q − 2)
q − 1 = p

for (i, j) ∈ C�≡(x, y). Then, due to Chernoff’s inequality, for any ε > 0, we have

P

(
|W−1(x, y)|+ |W0(x, y)|

|C�≡(x, y)|
≥ p+ ε

)
≤ exp [−|C�≡(x, y)|DKL(p+ ε ‖ p)] ,

where

DKL(p+ ε ‖ p) = (p+ ε) log

(
p+ ε

p

)
+ (1− p− ε) log

(
1− p− ε

1− p

)
. (7)
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In order for W (x, y) < 0 to be possible, we need to have |W−1(x, y)| +
|W0(x, y)| ≥ |C�≡(x, y)| − |W1(x, y)|. Hence,

P

(
|W−1(x, y)|+ |W0(x, y)|

|C�≡(x, y)|
≥ 1− |W1(x, y)|

|C�≡(x, y)|

)
≤ exp

(
−|C�≡(x, y)|DKL

(
1− |W1(x, y)|

|C�≡(x, y)|

∥∥∥∥ p

))
.

To have a chance to have W (x, y) < 0, we need at least |W−1(x, y)| +
|W0(x, y)| ≥ |C�=(x, y)|/2. Therefore, let ε = 1

2 − p to get

P

(
|W−1(x, y)|+ |W0(x, y)|

|C�≡(x, y)|
≥ 1

2

)
≤ exp

(
−|C�=(x, y)|DKL(1/2 ‖ p)

)
, (8)

where

DKL

(
1

2

∥∥∥∥ p

)
=

1

2
log

(
1

2p

)
+

1

2
log

(
1

2(1− p)

)
.

This already gives us a bound on P (W (x, y) < 0):

P (W (x, y) < 0) ≤ P (|W1(x, y)| < |C �≡(x, y)| /2) ≤ exp
(
−|C �≡(x, y)|DKL(1/2 ‖ p)

)
.

In case q > 2, we can do better as we expect more (i, j)’s to land in W0(x, y)
instead of W−1(x, y).

Suppose now q > 2. For a fixed value of |W−1(x, y)| + |W0(x, y)|, using
W−1(x, y) ≤ |C�=(x, y)|/2 and Chernoff’s inequality, we obtain

P

(
|W−1(x, y)|

|C�=(x, y)| − |W1(x, y)|
>

1

q − 1
+

(
|W1(x, y)|

|C�=(x, y)| − |W1(x, y)|
− 1

q − 1

))
≤ exp

(
−(|C�=(x, y)| − |W1(x, y)|)DKL

(
|W1(x, y)|

|C�=(x, y)| − |W1(x, y)|

∥∥∥∥ 1

q − 1

))
≤ exp

(
−|C�=(x, y)|

2
DKL

(
|W1(x, y)|

|C�=(x, y)| − |W1(x, y)|

∥∥∥∥ 1

q − 1

))
.

The above equations imply that there exists some constant cp,q depending on
p and q such that

P (W (x, y) < 0) ≤ exp(−|C�=(x, y)|cp,q) . (9)

This proves the lemma. ��
The above lemma can be combined with Lemma 1 (substituting ζ with
log(NM) and c with cp,q) to show that one can retrieve a planted clique with
high confidence and small error (according to the trade-off given by Equation 3),
and in time quasipolynomial in N and M .

It should be noted that for clarity of explanation and space limitations we keep
our derivation simple, but a constant factor can be gained by calculating more
precise expressions for cp,q and performing less rough estimations in Lemma 1.
Moreover, Lemma 1 does not properly take the value of q into account and doing
so would yield another q-dependent factor.



Detecting Bicliques in GF[q] 517

Algorithm 1. Generating a bipartite Barabási-Albert graph

Require: density parameter s; seed G(0); M,N ∈ N
Ensure: an N ×M bipartite Barabási-Albert graph G sampled from MBA-gen .
1: for i = 1 . . . NM do
2: V

(i)
row ← V

(i−1)
row ; V

(i)
col ← V

(i−1)
col ; E(i) ← E(i−1)

3: if |V (i)
row |M < i then

4: vnew ← NewVertex ()

5: V
(i)
row ← V

(i)
row ∪ {vnew}

6: Select a set A of s vertices from V
(i−1)
col with probability proportional to their

degree in G(i−1).
7: E(i) ← E(i) ∪ ({vnew} × A)

8: if |V (i)
col |N < i then

9: vnew ← NewVertex ()

10: V
(i)
col ← V

(i)
col ∪ {vnew}

11: Select a set A of s vertices from V
(i−1)
row with probability proportional to

their degree in G(i−1).
12: E(i) ← E(i) ∪ (A× {vnew})
13: V (i) ← V

(i)
row ∪ V

(i)
col ; G

(i) ← (V (i), E(i))

3.3 Graphs Constructed by the Barabási-Albert Process

Next, we consider the background noise distributed according to the well-known
Barabási-Albert (BA) model, of which the main intuition is also known as ‘pref-
erential attachment’. Nodes are added one at a time, and while edges are still
selected independently, their probability depends on the degree of the target
node. Instead of the ER model’s Gaussian degree distribution, for BA we see a
powerlaw—as we see for many real-world graphs [5].

For simplicity of the derivations, below we will assume that q = 2. If q > 2, a
similar but more involved derivation is possible.

Definition 2 (bipartite Barabási-Albert graph). Let G(0) be a small graph

on a vertex set V (0) = V
(0)
row ∪ V

(0)
col consisting of row vertices V

(0)
row and column

vertices V
(0)
col . Let N and M be integers. A bipartite Barabási-Albert N×M graph

is generated from seed G(0) with density parameter s by following Algorithm 1.
We denote the obtained probability distribution over N ×M adjacency matrices
with MBA-gen(s,N ×M).

Lemma 3. Let G = (V,E) be a bipartite Barabási-Albert N×M graph generated
according to Definition 2, let Vrow be its row vertices and Vcol its column vertices.
Let Xrow ⊆ Vrow and Xcol ⊆ Vcol . Then,

|E ∩Xrow ×Xcol | ≤ s(|Xcol |+ |Xrow | − (s+ 1)/2) .

Proof. The proof is straightforward from Definition 2: each vertex connects with
s vertices when added, but can only connect to vertices added before. ��
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Notice that analogue one can prove that a ‘normal’ (non-bipartite) Barabási-
Albert graph can not contain an (s + 2)-clique. The probability distribution
over graphs induced by the Barabási-Albert generative process is rather hard to
analyse in detail, but we can provide the following non-probabilistic result:

Lemma 4. Let A be drawn from MBA-gen(s,N×M). Let B = A⊕uv for some
fixed u and v with |u| > 4s and |v| > 4s. Then, |B ∩ uv| > |u||v|/2.

Proof. We know from Lemma 3 that in the area covered by uv in B, uv made
all cells except at most s(|u|+ |v| − (s+1)/2) nonzero: |B ∩ uv| ≥ |u||v| − s|u|−
s|v|+ s(s+ 1)/2. If |u| ≥ 4s and |v| ≥ 4s we have |u||v|/2− s|u| − s|v| ≥ 0 from
which |B ∩ uv| > |u||v|/2 follows. ��

Lemma 5. Let A be drawn from MBA-gen(s,N×M). Let B = A⊕uv for some
fixed u and v. Then, for any x and y such that |C�≡(x, y)| > 2s|x|+2s|y| − s(s+
1) + |u||v|, it holds that |B ∩ xy| ≤ |x||y|/2.

Proof. We know from Lemma 3 that in the area covered by xy, at most s(|x|+
|y|− (s+1)/2) cells are nonzero in A∩xy. For B ∩xy, at most the area (|x||y|+
|u||v|−|C�≡|)/2 from overlap between xy and uv can be added. We get |B∩xy| ≤
s|x|+ s|y| − s(s+1)/2+ (|x||y|+ |u||v| − |C�≡|)/2. From 2s|x|+2s|y| − s(s+1)+
|u||v| < |C�≡| we can derive that |B ∩ xy| ≤ |x||y|/2. ��

Hence, to detect a planted biclique in Barabási-Albert data, one only needs to
search for bicliques of size 4s and expand greedily.

3.4 Graphs with Barabási-Albert Degree Distribution

Here we consider random graphs with the same degree distribution as Barabási-
Albert model but without following the generative process, of which we showed
in the previous section that it prohibits the creation of large bicliques.

For simplicity, w.l.o.g. we assume N = M .

Definition 3. With MBA-deg(s, q,N × M) we will denote the model of sparse
random matrices in GF [q]N×M according to the Barabási-Albert degree distribu-
tion, in particular if A ∈ MBA-deg(s, q,N ×M), it is the result of the following
random construction procedure:

– Consider the probability distribution Pdeg over the set {s, s+1, . . . , N} such

that Pdeg(i) = i−3/Z with Z =
∑N−1

j=s j−3

– For all i ∈ [N ], choose drowi according to distribution Pdeg . For all j ∈ [N ],

choose dcolj according to Pdeg . Repeat this step until
∑N

i=1 d
row
i =

∑M
j=1 d

col
j .

– Draw X uniformly from the set of all matrices of GF [q]N×M such that for
all i ∈ [N ], the number of nonzero elements of row i equals drowi and for all
j ∈ [M ], the number of nonzero elements of column i equals drowj .

In order to say something on the discernibility of cliques we need access to
the connectivity within rows and columns in the form of degree lists.
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Definition 4. For an adjacency matrix A ∈ GF [q]N×M , let f row(A) ∈ ZN and
fcol(A) ∈ ZM such that

f
row(A)
i =

N∑
j=1

I(Ai,j 
= 0) , and f
col(A)
j =

M∑
i=1

I(Ai,j 
= 0) .

It is well-known that in Barabási-Albert graphs, the expected frequency of
vertices with degree k is proportional to k−3. Therefore, for sufficiently large N
we can estimate the number of rows of with at least c

√
N non-zero elements by

N

∑N
k=cN1/2 k−3∑N

k=s

≈ N

∫∞
k=cN1/2 k

−3dk∫∞
k=s

k−3dk
= N

(
cN1/2

)−2
/2

s−2/2
=

s2

c2

which is a constant, not depending on N . The same holds for columns.

Lemma 6. Let s be an integer. Let N and q be integers, u, x ∈ GF [q]N×1 and
v, y ∈ GF [q]1×M with log(N) + |u| and log(N) + |v|. Then, there is a constant
cBA
q depending on q and δ1 such that with probability at least 1− δ1

PA∼MBA-deg(s,q,N×N)(W (x, y) < 0) ≤ exp(cBA
q |C�=|)

Proof. We will use notations similar to those used for the Erdős-Rényi case:

Ci,j = uivj 0 xiyj

Di,j = I(Ai,j ⊕ Ci,j 
= 0)− I(Ai,j 
= 0)

W ′(x) = |B 0 x�x| = |A⊕ uv 0 xy|
W (x) = W ′(x)−W ′(u) =

∑
i,j

Di,j

We have W (u) = 0. Given a fixed degree list pair (f row , fcol), we have (approx-
imately, for sufficiently large N)

μi,j = E[Di,j ] = 1− pi,jq/(q − 1)

where pi,j = f row
i fcol

j

(∑N
l=1 f

row
l

)−1 (∑N
l=1 f

row
l

)−1

, and

σ2
i,j = E[(I(x ⊕ Ci,j 
= 0)− I(x 
= 0)− μi,j)

2]

≤ pi,j (1− pi,j)
q + 2

q − 1

≤ pi,j
q + 2

q − 1
.

We again define C�=(x) = {(i, j) ∈ [n]×[m] | uivj 
= xiyj} and for v ∈ {−1, 0,+1}
we have Wv(x) = {(i, j) | Di,j = v} . Moreover, let

μ = E[W (x)] =
∑

(i,j)∈C �=(x)

μi,j ,
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and

σ2 =
∑

(i,j)∈C �=(x)

σ2
i,j .

From (14) we can see2 that

E[μ] ≤ |C�=|2(s− 1/2)2/N(s− 1) .

By applying Chernoff’s inequality, we then arrive at

P (W (x, y) < 0) = P (μ−W (x, y) > μ) ≤ exp

(
− μ2

2(σ2 + |C�=|)

)
. (10)

Let t = #Γ−1(2/δ1)$ − 1 be such that 1/t! ≤ δ1/2. From Lemma 9 we know5

that with probability 1− δ1/2 there is at most one i s.t. f row
i ≥ s/

√
N and with

probability 1 − δ1/2 there is at most one j such that fcol
j ≥ s/

√
N . Then, with

probability at least 1− δ1,∑
(i,j)∈C �=

pi,j ≤
∑

i∈u\x

∑
j∈v

pi,j +
∑

i∈x\u

∑
j∈y

pi,j +
∑

j∈v\y

∑
i∈u

pi,j +
∑

j∈y\v

∑
i∈x

pi,j

≤ R(|u \ x|, |v|, t) +R(|x \ u|, |y|, t) +R(|v \ y|, |u|, t) +R(|y \ v|, |x|, t)

with

R(a, b, t) = R′(min(a, t),min(b, t),max(a− t, 0),max(b− t, 0))

and

R′(aH , bH , aL, bL) = R1(aH , aL)R1(bH , bL)

with R1(H,L) = H + s√
N
L. For b ≥ η ≥ t, R(a, b, t) = R∗(min(a, t), t,max(a−

t, 0), b− t) with

R∗(aH , t, cL, b− t) = R1(aH , aL)

(
t+

s√
N

(b− t)

)
≤ R1(aH , aL)b

(
s√
N

+ (1 − s√
N

)
t

b

)
≤ R1(aH , aL)bRC

with RC =
(

s√
N

+ t
η

)
. Hence, as we assume |u| ≥ η, |v| ≥ η, |x| ≥ η and |y| ≥ η,

with probability at least 1− δ1/2 we have for every u, v, x and y∑
(i,j)∈C �=

pi,j ≤ (R1(|u \ x|)|v|+R1(|v \ y|)|u|+R1(|x \ u|)|y|+R1(|y \ v|)|x|)RC

2 See appendix: http://www.mpi-inf.mpg.de/~pmiettin/gf2bmf/appendix.pdf

http://www.mpi-inf.mpg.de/~pmiettin/gf2bmf/appendix.pdf
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As

|C�=| ≤ |u \ x||v|+ |x \ u||y|+ |v \ y||u|+ |y \ v||x| ≤ 2|C�=|

and R1(a) ≤ a, ∑
(i,j)∈C �=

pi,j ≤ 2RC |C�=| (11)

and μ ≥ |C�=|(1− 2RC). Combining Eq. (11) with the definition of σ2 gives that
σ2 ≤ 2RC |C�=| q+2

q−1 . Combining this with Eq. (10) results in

P (W (x, y) < 0) ≤ exp

(
− |C�=|(1− 2RC)

2

2(1 + 2RC(q + 2)/(q − 1))

)
. (12)

Setting cBA
q = (1− 2RC)

2/(2(1 + 2RC(q + 2)/(q − 1))), we get

P (W (x, y) < 0) ≤ exp(−|C�=|cBA
q ) .

This proves the lemma. ��

In practice, this means that as long as noise levels are not overly high, i.e. s + N ,
and the dimensions of the planted biclique are not overly small, i.e. logN +
|u| + N−1/2, we can reliably identify the planted bicluster. We note that these
assumptions are quite realistic under the BA model. More to the point, we find
that a biclique uv is still discernible if |u| > logN and |v| > logN .

4 Algorithm

In this section we describe a simple heuristic algorithm to recover the planted
bicliques under GF [2]. We have already shown that the best biclique is the
planted one (with high probability), and therefore we ‘only’ need to find the best
biclique. Unfortunately, this problem is NP-hard (as finding the largest exact
biclique is NP-hard [11]). Luckily, it seems that in practice a simple heuristic—
which we present below—is able to recover the planted biclique very well.

Recall, that finding the best biclique in GF [2] is equivalent to finding rank-1
binary matrix factorization that minimizes the Hamming distance. To compute
find it, we used the Asso algorithm [10]. We note that our aim is not to perform
a comparative study of different algorithms but to show that we can achieve the
predicted performance using relatively simple, non-exhaustive method.

The crux of Asso is the use of pairwise association confidences for finding can-
didate column factors. Consider the N -by-M input matrix B. Asso will compute
the association confidence between each row of B. The association confidence
from row bi to row bj is defined as conf(bi → bj) = (

∑m
k=1 bikbjk)/(

∑m
k=1 bik)

and can be interpret as the (empirical) conditional probability that bjk = 1 given
that bik = 1. The intuition is that if rows i and j belong in the planted biclique,
they should have relatively high confidence (each column of the biclique is 1 in
both rows and each column not in the biclique is 0, save the effects of noise) and
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otherwise the confidence should be low. The Asso algorithm builds an N -by-N
matrix D where dij = conf (bi → bj).

Matrix D is then round to binary matrix D̃ from some threshold τ . The
columns of the binary matrix D̃ constitute the candidate columns of the biclique.
The algorithm will then construct the optimum row for each of these columns,
and select the best row-column pair (x, y) (measured by A 0 xy). Computing
the association accuracy takes O(N2M) time (where we assume N ≤ M), there
are N candidate vectors, and testing each of them takes O(NM) time, giving
the overall complexity for fixed τ as O(N2M).

The last detail is how to select the rounding threshold τ . We can try every
value of D, but that adds N2 factor to the second term in the time complexity.
To avoid quadratic running times, we opt to evaluate a fixed set of thresholds.

5 Experiments

In this section we experimentally evaluate the above theory. As we need to mea-
sure against a ground truth, we will experiment on synthetic data. For practical
reasons we focus on GF [2]: in order to evaluate our bounds we require an algo-
rithm to extract candidate bicliques from the data. While no polynomial time
(approximate) biclique discovery algorithm exists for GF [q] in general, we have
seen in Section 4 that Asso [10] is relatively easy to adapt to GF [2].

We implemented the GF [2] version of Asso in Matlab/C, and provide for
research purposes the source code together with the generators for bipartite
Erdős-Rényi and Barabási-Albert graphs.3

As synthetic data, we consider square matrices over GF [q] of dimensions N =
M = 1000, to which we add noise. We consider the ER model as discussed in
Section 3.2, and the probabilistic BA model from Section 3.4. We focus on this
BA variant, as by allowing larger bicliques to be generated it corresponds to
the hardest problem setting. In this matrix A we plant a square biclique uv (i.e.
|u| = |v|), such that we obtain B = A ⊕ uv. We run Asso on B for all values
of τ ∈ {0, 0.01, . . . , 1.0}, and select the best candidate biclique. We report the
L(u, v, x, y) error between this candidate and the planted biclique.

We evaluate performance for different noise ratios, defined as |A|/(NM), and
for different biclique sizes. Figure 1 shows the results averaged over five indepen-
dent runs. For Erdős-Rényi, we see that bicliques of 10× 10 are easily discerned
even for high noise ratios, despite that Asso is uninformed of the shape or size
of the biclique. In accordance with theory, bicliques of 5× 5 can still be detected
reliably for lower noise levels, while those of 3× 3 only barely so.

For Barabási-Albert (Figure 1, right), we also find that practice corresponds
to theory. Per Section 3.4 bicliques need too have |u| 2 logN to be discernible;
indeed, we here observe that for |u| ≥ 15 the clique is discovered without error,
while for smaller sized clusters error first rises and then stabilizes. By the scale-
free property of the graph the noise ratio does not influence detection much.

3 http://www.mpi-inf.mpg.de/~pmiettin/gf2bmf/

http://www.mpi-inf.mpg.de/~pmiettin/gf2bmf/
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Fig. 1. Performance of Asso of finding a square planted biclique of dimensions (|u| =
|v|), under different ratios of noise, resp. generated by the Erdős-Rényi model (left),
and the Barabási-Albert model (right).

6 Conclusion

We consider the problem of finding planted bicliques in random matrices over
GF [q]. More in particular, we investigated the size of the smallest biclique such
that we can still approximately correctly identify it as the best rank-1 approxima-
tion against a background of either Erdős-Rényi or Barabási-Albert distributed
noise. Whereas existing methods can only detect bicliques of O(

√
N) under non-

destructive noise, we show that bicliques of resp. n ≥ 3, and n 2 logN are
discernible even under destructive noise. Experiments with the Asso algorithm
confirm that we can identify planted bicliques under GF [2] with high precision.

While the ER and BA models capture important graphs properties, they are
stark simplifications. Studying whether similar derivations are possible for more
realistic models, such as Kronecker Delta [9] will make for engaging future work.

The key extension of this work will be the development of theory for ma-
trix factorization in GF [q], by which we will be able to identify and analyse
interactions between bicliques such as found in proteomics data [13].
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Abstract. Mining for cliques in networks provides an essential tool for
the discovery of strong associations among entities. Applications vary,
from extracting core subgroups in team performance data arising in
sports, entertainment, research and business; to the discovery of func-
tional complexes in high-throughput gene interaction data. A challenge
in all of these scenarios is the large size of real-world networks and the
computational complexity associated with clique enumeration. Further-
more, when mining for multiple cliques within the same network, the
results need to be diversified in order to extract meaningful information
that is both comprehensive and representative of the whole dataset.
We formalize the problem of weighted diverse clique mining (mDkC)

in large networks, incorporating both individual clique strength (mea-
sured by its weakest link) and diversity of the cliques in the result set.
We show that the problem is NP-hard due to the diversity requirement.
However, our formulation is sub-modular, and hence can be approxi-
mated within a constant factor from the optimal. We propose algorithms
for mDkC that exploit the edge weight distribution in the input network
and produce performance gains of more than 3 orders of magnitude com-
pared to an exhaustive solution. One of our algorithms, Diverse Cliques
(DiCliQ), guarantees a constant factor approximation while the other,
Bottom Up Diverse Cliques (BUDiC), scales to large and dense networks
without compromising the solution quality. We evaluate both algorithms
on 5 real-world networks of different genres and demonstrate their utility
for discovery of gene complexes and effective collaboration subgroups in
sports and entertainment.

1 Introduction

It is often said that while the success of a sports or business team depends on
good individual performances, it depends even more on how individuals gel as

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 525–540, 2013.
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a team – thus resulting in the idiom “There is no “I” in T-E-A-M”. While this
expression downplays the importance of individual performance, a team com-
prised of players with moderate individual talent but superior teamwork skills
can outperform a dysfunctional team that emphasizes superlative individual per-
formances. For example, the Detroit Pistons basketball team won the 2004 NBA
championship with a collection of relatively unheralded players who were thought
to collaborate so well together that “the whole was greater than the sum of its
parts.” Conversely, the team they defeated, the heavily-favored Los Angeles Lak-
ers, featured four future Hall of Famers, none of whom appeared to collaborate
particularly well together [14].1 Could the unexpected success of the Pistons or
the demise of the Lakers have been predicted based on previous observations?

While the importance of teamwork between elements in a group is easy to
articulate, it is a non-trivial analytical task to isolate the core subgroups of en-
tities that are responsible for the overall team performance. If the performance
of the whole team can be measured, say, in terms of wins or losses, or revenue
generated, the key problem is the discovery and identification of the team cores –
subgroups within a team, whose inclusion results in higher-than-expected overall
team performance, since their collaboration appears to motivate the success of
the team as a whole. The discovery of core subgroups can illuminate distinctive
individual characteristics, whose combination has a super-additive effect on the
team [21]. This could provide important assistance to executives, who are ulti-
mately judged by the success of the team, rather than the personal achievements
of individual players. For example, sports executives could use team performance
data from prior years to identify and acquire players exhibiting a combination
of traits that lead to team success. Similarly, Hollywood studios can use data
on prior collaborations among actors, directors, editors, cinematographers etc.
while assembling a cast for an upcoming film, since successful past collaborations
may portend similar success in the future.

“Teamwork” is not restricted to sports or business; it is also observed inside
cells of living organisms – multiple proteins interact with each other to form
a multi-protein complex, which is a cornerstone of many (if not most) biolog-
ical processes, and together they form various types of molecular machinery
that perform a vast array of biological functions [17]. The challenge here is to
discover those complexes which are core groups of interacting genes within high-
throughput pairwise interaction data [27]. The biological setting presents a dis-
tinctive challenge due to the difficulty in measuring the existence of a complex
directly. The good news is that the strength of pairwise associations between
genes can be tested efficiently via high-throughput methods employed to build
functional interaction networks for analysis [28]. Hence, analytical techniques
for mining strong gene subgroups can allow biologists to infer the existence of
protein complexes that participate in the same cellular process and predict func-
tional annotations for new gene sequences [11].

1 Indeed, the open feud between Shaquille O’Neal and Kobe Bryant combusted after
the season, resulting in the trade of O’Neal to Miami.
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Our main goal is to extract an informative set of high-scoring2 cliques that
are representative of the entire network. To mitigate the presence of free riders
(nodes attached by weak links to a strong clique), we define an intuitive score
based on the weakest link in the clique. Alternative scoring schemes using sum
or average are more forgiving to free riders since their link weights, albeit weak,
would not drag the overall clique score down significantly. Similar scoring func-
tions have been used in the Bioinformatics literature, namely Bandyopadhyay et
al. [8] measure multi-way interaction strength as the minimum average weight of
links adjacent to a node. A weakest link explanation of group success is also cen-
tral to the pooled interdependence theory for business organizations as discussed
by the classic text of Thompson [25].

Another challenge is to handle possible overlap among the best scoring cliques
in order to represent all network locations of interest in the result set. Less
overlap amounts to greater diversity among the reported cliques. Consideration
of diversity is imperative in certain team sports such as ice hockey, in which a
coach decides which lines (subgroups) of players play together on ice before being
substituted by other lines Over the course of the season, the coach experiments
with the makeup of these lines several times in order to figure out which players
play well together. Diversity is also important in team formation for multiple
tasks, where one aims to maximize the fitness of each team while simultaneously
incorporating fairness by not overloading members with multiple tasks [6]. Thus,
an analytical scheme that can mine a diverse set of subgroups is more useful than
one which merely returns the top scoring ones without taking into account the
overlap between them.

Our Contributions in this paper include the following:

Novelty:We formulate a novel weighted diverse clique mining (mDkC) problem
that incorporates clique strength and diversity of result; and show that, although
NP-hard, the formulation is sub-modular and allows accurate approximation
schemes.

Scalability: We propose a (1 − 1/e)-approximation algorithm, DiCliQ, and a
faster heuristic, BUDiC, for mDkC. Both achieve an improvement in running
time of 3 orders of magnitude, when compared to an exhaustive search.

Quality: We demonstrate the utility of DiCliQ and BUDiC to identify team
cores of significant performance and protein complexes in a gene interaction
network.

2 Related Work

Clique mining work has focused on quasi (almost) cliques which allow a con-
trolled number of missing edges [3,15,29]. While this relaxation is to accommo-

2 The edge weights between entities (player/protein/stock symbol) are indicative of the
strength of their pairwise relation. Particularly well-performing subgroups (or tightly
interacting proteins) manifest in the resulting graph as “strong” cliques associating
nodes with heavy edge weights.
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date possible missing links and noise, all of the above methods operate in the
scenario of unweighted and labeled graphs and optimize the frequency of clique
occurrence as opposed to scores (labels are not unique and hence a quasi-clique
may occur multiple times in the same data graph or in a database of small
graphs). In contrast, we operate in settings of dense and weighted interactions
exhibiting variance in the link strength. Weighted clique mining was considered
by Bandyopadhyay et al. [8] who proposed a heuristic for the largest cardinality
clique with average node-connectivity weight exceeding a user-defined threshold.
Instead of using the link quality as a constraint, we incorporate it in the solution
score. In addition, we are interested in finding a diverse set of (multiple) high
scoring cliques as opposed to the single largest one.

Different subgraph “goodness” criteria have also been considered in graph
mining, including diameter and spanning tree cost [16], Steiner tree and bottle-
neck cost [18]. Communities and modules have also been defined based on clique
percolation (highly overlapping cliques) in CFinder [22] and applied to biological
and social networks in a series of follow-up work. Such formulations allow sparse
structures including nodes that do not interact directly. Instead, our methods
are targeted to the discovery of “flat–organization” teams and all-to-all inter-
actions in the case of gene complexes. As we show experimentally, our method
(and formulation) outperforms CFinder by 20% when employed in gene complex
discovery.

Alternative definitions of diversity have also been considered. Lappas et al. [16]
investigated diversity of the node roles within single cliques. This within-clique
diversity definition is targeted to cases where multiple nodes may have the same
role (label) and can be considered in conjunction with ours. Anagnastopolus
et al. [6] considered structures with fair assignment of tasks within the team
and in follow-up work [7,18] combined communication cost with fair task assign-
ment in online team formation. While these formulations target both overlap
(task assignment) and structure, they incorporate one of the criteria (overlap or
structure density) as a user-defined constraint and allow for sparse structures,
i.e. they are suitable for hierarchical as opposed to “flat” teams/complexes.

3 Preliminaries

We model interaction strength between entities from sports, business, cinema
and biology as a weighted undirected network G = (V,E,w). Nodes V of the
network graph correspond to agents or entities, while edge weights w(u, v) be-
tween two nodes u and v reflect their connection strength: joint performance,
interaction strength or similarity. For the rest of the presentation, without loss
of generality, we assume edge weights are scaled to the interval [0, 1].

Our goal is to extract a diverse set of groups, requiring that all internal
pairwise connections are strong. In the graph setting, strong all-pair-connected
groups map to cliques (complete graphs) of high weights on all edges. Finding
the Maximum Clique (Max Clique) (the one of largest size in an unweighted
graph) is NP-hard to solve and also approximate to within n1−ε [13]. Introducing
weights on edges preserves the same general complexity.
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(a) Clique score (b) Small graph example

Fig. 1. Comparison of two cliques based on the weakest link as their score (a). Example
of five high-scoring triples from NBA (b). A diverse 2-set of cliques of size 3 minimizes
the overlap in the resulting set, i.e. prefers {G1, G3} over {G1, G2} (slightly lower total
scores but increased diversity).

4 Problem Definition

In this paper, we model the strength of a subgroup in terms of the pairwise
interactions between individuals in that subgroup. Ideally, techniques that go
beyond graph theory, e.g., hypergraphs or abstract simplicial complexes [9,19],
are appropriate for modeling higher order interactions (triples, quadruples, etc.)
directly. Such higher-order modeling approaches, however, are limited by both
data scarcity and intractability. Enumerating and scoring all subgroups becomes
computationally demanding for datasets of even hundreds of nodes. Moreover,
in order to validate methods that score higher order groups directly, we need
empirical data containing sufficiently many observations in which a particular
group has interacted as a whole — a requirement that is hard to meet.

To address the above challenges, we require that all pairwise interactions
(performances) are strong and relate the performance of a group to its weakest
link, seeking to approximate the group behavior. Most professional sports teams,
scientific collaborations, and protein networks are all examples of predominantly
non-hierarchical (“flat”) organizations that may collapse without strong pairwise
links among all group members. This is true especially in a team sport such as
basketball in which lack of good communication between any pair of players
can easily threaten the success of the team (see [14]), especially since a highly
competitive opponent is typically smart enough to exploit that vulnerability
during the game. Thus, our clique scoring scheme is targeted to groups in which
all pairs correlate/interact strongly, where the potential success of a group is
limited by the worst pairwise connection therein.

We define the score of a group (network clique) in terms of its weakest link.
That is, for any subset of nodes C ⊆ V , s(C) = |C|minu,v∈C w(u, v). If C
is not a clique (at least one missing edge), then the score is s(C) = 0. This
scoring criterion prefers larger cliques, whose minimal edge score is high. It is
also designed to eliminate the free-rider effect, i.e. inclusion of nodes that exhibit
some weak links to others within the group.
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An example from the NBA that illustrates our scoring method is shown in
Fig. 1(a). Although both cliques feature high weight edges, a single weak link
(between Shaquille O’Neal and Paul Pierce) results in a much lower score for
the top triplet. Conversely, the {Casspi,Gibson,Gee} triplet is scored higher as
all pairwise edges retain high score.

The clique score we adopt agrees with statistical measures of success for triples
in our sports data sets with 90% of the top-scoring NBA triples having statisti-
cally significant performance (p-value ≤ 0.05). Furthermore, the highest scoring
cliques of genes in our experimental gene network have homogeneous biological
functions, and hence likely correspond to gene complexes. Details of the above
observations are available in Sec. 6.

Based on our weakest link score definition, we formalize the problem of finding
the best weighted fixed-size clique in a graph.

Definition 4.1. The maximum weighted k-clique in a graph G = (V,E,w)
is the k-clique C∗k (G) of maximum score, i.e. C∗k(G) = argmaxC⊆V,|C|=k s(C).
Given a weighted graph G, Maximum Weighted k-Clique (WkC) is the prob-
lem of finding the maximum weighted k-clique in G.

WkC is NP-hard as it can be reduced from the Max Clique problem by
restriction of the edge weights to 1. In our solutions, we will exploit the weight
distribution of edges in a network in order to explore more promising cliques
first and prune unpromising candidates for extension.

Beyond a single group, our goal is to report the best set of cliques, in order
to represent all locations of interest in a large network. There are two main
computational challenges to this end: (i) efficient discovery of good (high-scoring)
cliques and (ii) ensuring informativeness of the result set by diversification.

To illustrate the intuition behind the importance of diversity in the result-
ing set, consider the NBA player example in Fig 1(b). There are five candidate
cliques of size 3 and their scores are listed in shaded boxes in the corresponding
triangles. Assuming that the top 2 highest scoring cliques are of interest, ignor-
ing diversity amounts to reporting {G1, G2}. However, there is a lot of overlap
(the duo Casspi-Gee) between {G1, G2}. Intuitively, reporting all super-cliques
of Casspi-Gee is not representative of the overall network. Instead, we can di-
versify by pairing G1 with a slightly lower scoring clique of lower overlap such
as G3. The idea of diversity has been considered in a number of other settings
including information systems for web search [4,10,12], image retrieval [24,26],
cheminformatics [5] and other domains.

Next, we formalize a joint diversity-score formulation and a corresponding
solution with a good approximation guarantee.

Definition 4.2. For a set A of cliques each of size k, we define their diversity
score as

ds(A) = α

∑
C∈A s(C)

k
+ (1− α)

|
⋃

C∈AC|
k

,

where α ∈ [0, 1],
⋃

C∈AC is the union of nodes in the cliques of A and ds(∅) =
0. Then given parameters k and α, the m Diverse k-Clique (mDkC) problem
seeks the set A of size m that maximizes ds(A).
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The above definition combines the average score of the answer set cliques and
the diversity of their comprising nodes in a linear fashion. The trade-off between
score and diversity can be controlled by the parameter α. Note that since both
terms are bounded above by |A|, ds(A) ∈ [0, |A|].

If we set m = α = 1, then ds(A) = s(C), and mDkC is equivalent to WkC.
Since, as we saw above, WkC is NP-hard,mDkC is NP-hard. However, we prove
the stronger statement that mDkC is NP-hard even if an efficient heuristic for
WkC (or an alternative high score structure) exists.3 That is, we prove that the
hardness of mDkC comes not only from the hardness of WkC, but also from
the difficulty of diversifying the result set.

Theorem 4.1. For any scoring function s() that maps a graph substructure to a
non-negative real number, the decision problem corresponding to mDkC, namely:
“Is there a set of m substructures A, each of size k, such that ds(A) ≥ B for
some positive number B,” is NP-complete.

Proof. The proof is available in the Appendix [2].

While our focus is on cliques, the above theorem shows a more general result for
arbitrary subsets of nodes in a graph given a scoring function for each subset.
Hence, in different applications in which finding an optimal score substructure
is computationally tractable, ensuring that the solution comprised of multiple
substructures is diverse remains NP-hard.

Although the mDkC problem is NP-hard (due to the NP-completeness of the
decision version), we show that the diversity score function is monotonic and sub-
modular. These properties allow a fixed-quality approximate solution based on
a greedy scheme. Next, we formally show the monotonicity and sub-modularity
of our diversity score formulation.

Theorem 4.2. If k and α are fixed, the diversity score function ds(A) is:
- Monotonic, i.e. for any subset A ⊆ B, ds(A) ≤ ds(B)
- Sub-modular, i.e. for any sets A,B, ds(A) + ds(B) ≥ ds(A ∪ B) + ds(A ∩ B).

Proof. The proof is available in the Appendix [2].

Due to the monotonicity and sub-modularity of the diversity score and based on
the seminal result of Nemhauser et al [20], we can show the following corollary.

Corollary 4.1. A Greedy procedure for mDkC that adds cliques in decreasing
order of their diversity score improvement always achieves a solution within 1− 1

e
from the optimal. Since ds(∅) = 0, this the best possible approximation ratio for
the problem.

The (1−1/e)-approximation guarantee assumes that we can constructGreedy

and hence solve WkC optimally (when α = 1, the first clique to be added is the
WkC solution). This is by itself a hard problem as we argued above, however,
we exploit the edge weights to provide scalable solutions for real-world datasets.

3 Recall that by [13], the general clique problem cannot be approximated within n1−ε

for any given ε.
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5 Weighted Diverse Clique Mining

In this section we propose two algorithms for the mDkC problem: DiCliQ and
BUDiC. Both adopt pruning of infeasible candidates based on partially explored
cliques in order to reduce computation time. DiCliQ works by enumerating
cliques within a thresholded version of the network: first high-scoring edges are
considered and as the algorithm progresses lower-weight edges are included if
needed. It provides a (1 − 1/e)-approximation guarantee as it implements a
greedy strategy. For large and dense instances (exceeding 4, 000 nodes and 30, 000
edges) and for higher number of cliques and clique sizes, DiCliQ’s running time
worsens (requiring on the order of minutes to complete in our experimental
datasets). To handle larger and denser instances, we develop a scalable heuristic
BUDiC that achieves more than 90% of DiCliQ’s diversity score (and at times
even better scores than DiCliQ). BUDiC employs similar pruning, but avoids
expensive enumeration of cliques by greedy expansion from a single edge.

5.1 Bounding the Diversity Score for Partial Cliques

We first show an upper bound for the contribution of a clique C when added
to a set of cliques A. If the newly added clique C is of the desired size k then
its contribution to the overall score can be computed according to the definition
of ds(). If, however, C is not a complete clique of the desired size |C| < k, one
can bound the contribution of any of its super cliques (cliques that contains all
nodes in C) of size k to the diversity score.

Theorem 5.1. Let C, |C| ≤ k be a clique of size not exceeding k. The maximum
improvement of ds score when adding any k super clique of C to a clique set A
is bounded by:

δ(A, C) = ds (A ∪ C)− ds(A) = α min
u,v∈C

w(u, v) + (1 − α)
k − |(∪B∈AB) ∩ C|

k
,

where in the diversity part, the set (∪B∈AB) ∩ C is the intersection of nodes
included in A and nodes in C.

Proof. The proof is available in the Appendix [2].

The upper bound can be applied for incomplete cliques C of any size, even
ones that are completely unobserved, i.e. |C| = 0. In the latter case, the score
part increases by at most α (assuming the maximum possible edge weight is 1)
and the diversity part increases by at most (1 − α). Equipped with the upper
bound δ, we next define our edge thresholding algorithm DiCliQ that considers
high-scoring cliques first and prunes infeasible candidates.

5.2 DiCliQ: Enumeration of Cliques with Thresholding

A naive Baseline heuristic for mDkC (with the (1−1/e)-approximation) can (i)
enumerate all possible cliques of the desired size k and then (ii) greedily (based
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Algorithm 1. DiCliQ

Require: G = (V,E,w), k,m, α, threshold schedule T = {Ti}
Ensure: A set of cliques A = {Ci}, |A| = m, |Ci| = k
1: A = ∅, l = 0
2: while |A| < m AND l < |T | do
3: Obtain Gl(V,El, w), e ∈ El ⇐⇒ w(e) ≥ Tl

4: Compute δ(A, Ci
l ), ∀|Ci

l | ≤ k (incl. Ci
l = ∅)

5: while max|Ci
l
|=k

δ(A, Ci
l ) ≥ max|Cj

l
|<k

δ(A, Cj
l
) do

6: A = A
⋃

argmax|Ci
l
|=k

δ(A, Ci
l )

7: break if |A| = m

8: Update δ(A, Ci
l ) based on the new A

9: end while
10: l = l + 1
11: end while
12: return A

on best ds() improvement) compile an m-size result-set. While such Baseline
might be feasible for small sparse networks (up to |V | = 500) and small values
of k, the clique enumeration step quickly becomes a bottleneck as the input size
increases due to its combinatorial nature. It fails to complete in less than 4 hours
in all but our smallest network from the NBA.

Different from Baseline, we observe that in order to maximize the diversity
score, we can first consider only edges of high weights. Then, as needed, we can
consider lower score edges completing cliques of small overlap with the partial
result set. Following this intuition, DiCliQ enumerates cliques in a thresholded
subgraph induced by the highest-score edges and gradually includes more edges
on demand. This process is based on a decreasing schedule T = {Tl} of edge
weight thresholds. The best-scoring cliques are discovered first within a much
smaller instance of the graph. In addition, DiCliQ employs the upper bound
on the improvement of the ds score for candidate cliques in order to filter out
infeasible candidates and guarantee that cliques are added to the result set in a
greedy order ensuring a (1− 1/e)-approximation.

DiCliQ is presented in Alg. 1. Apart from the input graph and parameters k,
m and α, the algorithm also takes as an input a schedule {Tl} of descending edge
value thresholds. The result set A is first initialized as empty and the threshold
level l to 0 (i.e. highest edge values). While a set A of size m is not obtained
and we have not reached the last level of thresholding, the algorithm (i) filters
the graph based on Tl (Line 3), (ii) enumerates and upper-bounds all cliques of
size up to k (Line 4) from the filtered graph and (iii) attempts to add cliques to
the result set if they are the best next cliques to add (Lines 5-9). Note, that on
Line 4 an upper bound δ(A, ∅) = αTl + 1 − α on all yet unobserved cliques is
also computed.

If the maximum improvement δ of a size-k clique Ci
l exceeds the upper bound

on any incomplete clique, we add Ci
l to the solution (Line 6) and update the

improvements of the cliques based on the new A (Line 8). Additions of cliques
are performed until no complete clique exceeds the upper bound of an incomplete
one, or until |A| = m. After all possible additions are exhausted, if the result
set does not contain m cliques, we lower the edge weight threshold (Line 10)
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Algorithm 2. BUDiC

Require: G = (V,E,w), k,m, α
Ensure: A set of cliques A = {Ci}, |A| = m, |Ci| = k
1: A = ∅
2: for i = 1→ m do
3: for all Edges e ∈ E do
4: Ce = e;
5: repeat
6: Grow Ce by argmaxv∈V δ(A, Ce

⋃
v)

7: until (|Ce| = k)∨(Ce cannot be extended)
8: end for
9: if no Ce of size k are found then

10: break
11: end if
12: A = A

⋃
argmax|Ce|=k,e∈Eδ(Ce)

13: end for
14: return A

and repeat Lines 3-5 for the new thresholded graph. Since we add cliques to
the results set only if their score improvement exceeds the upper bound of all
possible candidates (line 5) we ensure that the cliques are added in a greedy
(descending score) order and hence DiCliQ implements a greedy strategy and
obtains a (1− 1/e)-approximation.

The thresholding scheme of DiCliQ is effective when the result set of m best
cliques is completed before reaching the lowest threshold level, i.e. enumerating
cliques in the whole graph. An important means to this end is choosing an ap-
propriate schedule that reflects the distribution of edges. We divide the set of all
edge weights into equi-size bins and adjust the threshold to incorporate one more
of these bins at every iteration. Other schedules (exponentially increasing subsets
of edges) are also possible, but were not more favorable in our experiments.

5.3 BUDiC: Scalable Bottom-Up Diverse C lique Heuristic

The bottleneck in DiCliQ is the enumeration and bounding of all cliques at
a given edge weight level (Line 4, Alg. 1). This step is in general exponential
and the algorithm is efficient only when the results set is computed at the first
several thresholding levels. To scale to larger and denser graphs, while avoid-
ing exhaustive enumeration of cliques, we employ a greedy Bottom-up scheme
BUDiC.

The intuition behind BUDiC (Alg. 2) is that one can get good candidates
for the result set by starting from a good edge and growing a clique, while
avoiding overlap according to the diversity α. Cliques are added one at time in
the outer loop (Lines 2-13). Good local cliques are grown greedily by nodes of
best improvement (Line 3-8). If no clique of the desired size is found the main
loop is terminated and an incomplete set of cliques is returned (Line 9-11). The
best clique in each iteration is added to A (Line 12). Note, that BUDiC does
not have the same approximation guarantee as DiCliQ because in the greedy
expansion from an edge it does not consider all possible cliques.

The algorithm runs in polynomial time O(k ·m ·n · |E|) as every edge is grown
to a clique of at most size k and this is repeated m times. The n term is due
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to the possibility of considering all graph nodes in Step 6 when the graph is
complete. BUDiC is also suitable for parallel implementation, since Lines 3-8
can be executed on separate machines assuming the graph is partitioned with
redundancy and distributed to all machines.

5.4 Discussion on Setting Parameters

While it is unlikely that a universally appropriate value of k exists, in certain
applications there are domain-specific constraints that could be used. For exam-
ple, in basketball, subgroups of sizes less than 5 are of interest, while in gene
networks appropriate sizes are between 4 and 6 since many known yeast com-
plexes contain 4.7 subunits on average [23]. When no prior domain knowledge
is available, we envision varying k while tracking the relationship among con-
secutive result sets and concentrating on values for which the solution changes
substantially (i.e. solution cliques of size k do not tend to include those of size
k− 1). A similar approach can be adopted to determine interesting values of the
diversity weight α. We perform such analysis for α in the experimental section.
The number of cliques in the resulting set (m) can be increased until the score
contribution of adding additional cliques diminishes significantly relative to the
average contributions of already included cliques.

6 Experimental Evaluation

We evaluate our algorithms on a variety of real world data from sports, cinema,
biology and finance. Our goal in experimentation is to (i) assess the scalability of
DiCliQ and BUDiC to large problem instances; (ii) demonstrate the quality of
BUDiC compared to the (1−1/e)-approximationDiCliQ; and (iii) demonstrate
the relevance of the mined diverse cliques to real world applications.
Data. We experiment with 5 publicly-available data sets including participation
in teams sports (NBA, MLB), collaboration in movies (IMDB), a gene interac-
tion network (YeastNet) and a correlation network of stock symbols (Stocks) (see
Table 1). Edge strength in the sport/collaboration are based on the statistical
significance of the performance of the pair of entities when in groups (sport team
success or movie cast ratings). The edge weights in the gene network is based on
strength of measured interaction of the genes, while the absolute Pearson’s corre-
lation serves as a weight in the stock network. The sizes of the datasets are listed
in Table 1 (columns 2,3). We discuss in detail the sources and preprocessing of
our datasets in the Appendix [2].

Scalability. All scalability measurements are on a Dell Desktop with 6GB RAM
and Dual Core 4GHz processor. We measure the clock time of the exhaustive
Baseline, DiCliQ, BUDiC and the iterative extension of [8] called iMDV. Note
that both DiCliQ and Baseline implement a greedy strategy and hence obtain
a constant 1 − 1/e factor approximate solution. An optimal solution for the
problem would further require considering all possible (exponential) subsets of
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Table 1. Summary of our datasets including time span, number of nodes V and edges
E. The second part of the table lists the running time (in seconds) and quality (%
of Baseline) on all datasets α = 0.5, m = 10, k = 5. The quality of BUDiC and an
iterative version of iMDV is measured as percentage of DiCliQ ’s score. Baseline does
not complete in 4h and its memory footprint exceeds 6GB causing an out-of-memory
exception.

Baseline DiCliQ iMDV BUDiC

Source |V | |E| Time Time Time % sc. Time % sc.
NBA 532 5,945 23.00s 0.48s 0.018s 57 0.13s 98
MLB 1,569 40,126 >4h 3.00s 0.015s 52 0.24s 95
IMDB 25,141 417,705 >4h 107.00s 0.087s 54 0.17s 94

YeastNet 4,450 30,5416 >4h 5.8s 0.463s 73 0.77s 99
Stocks 1,194 32,406 >4h 12s 0.022s 44 0.4s 99

cliques and is not be feasible even for our smallest datasets. Details of competing
techniques are available in the Appendix [2].

The right part of Table 1 shows the performance of competing techniques in
all datasets. Baseline was able to complete only on our smallest dataset NBA
and it was 40 times slower than DiCliQ and 2 orders of magnitude slower than
BUDiC. On the rest of the datasets (α = 0.5, m = 10 and k = 5) Baseline
does not complete in 4 hours and runs out of memory, due to the exponential
number of candidate cliques that it has to consider for inclusion in the result set.
DiCliQ, BUDiC and iMDV have comparable running time on small datasets,
while in denser and larger networks DiCliQ is 10 to 100 times slower. In terms
of diverse clique score, our fast heuristic BUDiC dominates iMDV by 30−50%.

We present the scalability behavior of our techniques for varying clique size
and number of cliques in the results set within YeastNet in Fig. 2. Baseline
does not complete in 4 hours for k = 5 and any value of m. The reason for
this long running time is that Baseline consumes all allocated memory (6GB)
while enumerating all possible cliques. For smaller clique sizes it is 3 to 4 orders
of magnitude slower than DiCliQ and BUDiC. When increasing k and m,
DiCliQ slows down due to the need to lower its edge weight threshold and
enumerate more cliques in progressively larger graphs. BUDiC’s performance
does not change significantly for these experimental settings, making it a good
scalable method for higher k and m.

Quality of BUDiC. BUDiC reduces the computational time by up to 2 or-
ders of magnitude, as expected due to its polynomial complexity. However, an
immediate question is: What is its quality? We showed that BUDiC’s quality
on all datasets is above 95% (diversity score as a fraction of Baseline’s score) for
one setting of parameters in Table 1. Next, we explore the quality dependence
on the number of cliques m in the result set and on the value of α.

Fig. 2(c) summarizes the quality of BUDiC in the YeastNet and Stocks net-
works. We show its diversity score as a fraction of a Greedy solution (obtained
by either Baseline or DiCliQ.) For high values of α (i.e. when the clique score
matters more than diversity), BUDiC is able to find even better score solutions
than Baseline. On average, it behaves similar to the greedy alternatives with
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Fig. 2. Scalability comparison of Baseline, DiCliQ and BUDiC for increasing number
of cliques m in the result set for k = 5, α = 0.5 (a) and increasing clique size k for
m = 5, α = 0.5 (b) in the YeastNet network. The Baseline approach does not complete
in 4 hours for k = 5, α = 0.5 and its memory footprint exceeds 6GB. (c) Quality of
BUDiC’s diversity score as a fraction of the score obtained by a GREEDY heuristic
(both Baseline and DiCliQ obtain the same score) in the Stocks (Left) and YeastNet
(Right) networks(k = 5).

(1−1/e)-approximation. We observe similar behavior on the rest of the datasets
as well. We also explored qualitatively the mined clique sets and found that
for m up to 20 the intersection of the cliques obtained by BUDiC and Baseline
(and DiCliQ) remains above 80% as well (i.e. only 2-3 cliques differ in the result
sets). Hence, BUDiC achieves tremendous savings in time at almost no cost in
quality in the data we analyzed.

Gene Complexes and Influential Sub-groups. Next, we demonstrate the
applicability of our formulation and methods for gene complex discovery and
summarization of effective groups in sports. We label genes in YeastNet with
known process Gene Ontology (GO)terms [1]. The GO labels are hierarchical
with specificity increasing with the distance from the root. To account for varying
specificity and hierarchy utilization, we only consider labels at level 4 and their
descendants (i.e. 4 hops or more from the root). Annotations of higher specificity
are mapped to their corresponding level 4 ancestors and the YeastNet network
is filtered to include only genes that are annotated.

To evaluate the ability of BUDiC to identify meaningful gene complexes, we
measure discovered groups’ purity as the fraction of genes sharing the same label
and compare to a recent overlapping community detection algorithmCFinder [22]
and a Random subsets of genes as control (see details in the Appendix [2]).
Figure 3(a) is a scatter plot of the average solution annotation purity versus
coverage (the union size of nodes in the solution). Our diversity parameter α
allows for control over the coverage/purity trade-off (labels of the BUDiC trace
show the selected α). BUDiC’s average group purity is 20% higher than that of
CFinder [22] (at coverage 136 nodes) and 30% higher than the average random
purity (at coverage 220 nodes). This separation demonstrates that our mini-
mum edge weight formulation allows for discovery of biologically more relevant
complexes, while allowing for diversity (overlap) control within the result set.
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Fig. 3. (a) Average group GO biological process purity (fraction of genes sharing labels)
versus coverage (number of covered nodes) in YeastNet. Comparison among BUDiC

(varying α labeling each point), CFinder (δ = 0.6, w = 0.15) and Random grouping of
genes (k = 6, m = 37); (b) Dissimilarity of consecutive solutions when increasing α.
Peaks correspond to drastic changes in the result set (m = 10, k = 4).

In sports data, we compared the scores of DiCliQ cliques and the signifi-
cance scores of the corresponding groups of players (in the form of p-values).
In the NBA data set, DiCliQ retrieves 44% of the triples of lowest p-values
(considering 1% of the lowest p-value triples). These high-performing triples are
of paramount interest, since they represent the cliques that are likely driving
team success. Furthermore, the average p-values of DiCliQ’s top cliques are
comparable with the reference set of lowest p-value triples (0.010 versus 0.026)
with 90% of DiCliQ triples having p-value less than 0.05 (a common level of
determining statistical significance in general scenarios). We discuss the mined
subgroups and their relevance across the various datasets in the Appendix [2].

Effect of Diversity. By changing the value of the diversity parameter (α), we
can alter the amount of overlap between the cliques returned by BUDiC. In
Fig. 3(b), we show how the result sets change as a function of α. For any two
consecutive values of α (e.g. 0.3 and 0.4), we obtain two result sets A and B.
To measure their dissimilarity, we form the complete bipartite graph between
the cliques in A and B, and assign weights to the edges based on the Jaccard
similarity of the individuals cliques. Thus, for each clique Ca ∈ A,Cb ∈ B,
the weight of the corresponding edge is given by 1 − Jaccard(Ca, Cb) = 1 −
|Ca ∩Cb|/|Ca ∪Cb|. The maximum weighted matching on this graph provides a
dissimilarity score for A and B.

In Fig. 3(b), the dissimilarity between result sets in the NBA, for example,
spikes at α between 0.3 and 0.6. The top 3 scoring quartets returned by BU-

DiC consist of only five distinct players, all playing for the Cleveland Cavaliers.
However, by increasing diversity (α = 0.4) we retain the first and third quartets
only and bring in a different team quartet. Thus, α allows for application-specific
control of the amount of diversity desired in the result sets. When exploring a
new data set, appropriate α values can be chosen based on the tipping points of
the solutions (spikes in Fig. 3(b)).
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7 Conclusion

Mining strong subgroups in networks is an important, yet challenging compu-
tational problem. In this paper, we proposed a novel and flexible formulation
mDkC, in which a diverse set of strong cliques is identified. We show that
mDkC is NP-hard, but due to its submodularity, allows a constant factor approx-
imation. We develop scalable approximation schemes: DiCliQ with (1 − 1/e)-
approximation guarantee and BUDiC that scales to large and dense networks.
Both algorithms are more than 3 orders of magnitude faster compared to ex-
haustive counterparts, and BUDiC achieves 2 times higher scores than previous
clique-mining heuristics. We demonstrate the utility of our algorithms for iden-
tifying interesting sets of high-performance collaborators in sports and enter-
tainment, and complexes of similar biological function (30% improvement over
earlier approaches) in gene networks. The developed algorithms thus present a
useful tool for mining influential core subgroups in large networks from diverse
sources.
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Abstract. The k-core is commonly used as a measure of importance
and well connectedness for nodes in diverse applications in social net-
works and bioinformatics. Since network data is commonly noisy and
incomplete, a fundamental issue is to understand how robust the core
decomposition is to noise. Further, in many settings, such as online so-
cial media networks, usually only a sample of the network is available.
Therefore, a related question is: How robust is the top core set under
such sampling?
We find that, in general, the top core is quite sensitive to both noise

and sampling; we quantify this in terms of the Jaccard similarity of
the set of top core nodes between the original and perturbed/sampled
graphs. Most importantly, we find that the overlap with the top core
set varies non-monotonically with the extent of perturbations/sampling.
We explain some of these empirical observations by rigorous analysis in
simple network models. Our work has important implications for the use
of the core decomposition and nodes in the top cores in network analysis
applications, and suggests the need for a more careful characterization
of the missing data and sensitivity to it.

1 Introduction

The k-core Ck(G) of an undirected graph G = (V,E) is defined as the maximal
subgraph in which each node has degree at least k; the core number of a node is
the largest k such that it belongs to the k-core (i.e., v ∈ Ck(G)). The set Sk(G) =
Ck(G)\Ck+1(G), consisting of nodes with core-number k, is referred to as the k-
shell; the core decomposition (i.e., the partitioning into shells) can be computed
efficiently and combines local as well as global aspects of the network structure.
This makes it a very popular measure (along with other graph properties, e.g.,
degree distribution and clustering coefficient) in a wide variety of applications,
such as: the autonomous system level graph of the Internet [6,3], bioinformatics
[18,26], social networks and epidemiology [20,17]; some of the key properties that
have been identified include: the well-connectedness of the nodes with high core
number and their significance in controlling cascades.

In most applications however, the networks are inferred by indirect measure-
ments, e.g.: (i) the Internet router/AS level graphs constructed using traceroutes,
e.g., [12], (ii) biological networks, which are inferred by experimental correlations,
e.g., [18,26], (iii) networks based on Twitter data (related to which there is a

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 541–556, 2013.
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growing body of research, e.g., [17,4,16]), in which a limited 1% sample can be
constructed by the APIs.1 Therefore, networks studied in these applications are
inherently noisy and incomplete; this raises a fundamental issue in the use of
any graph property P(G) for graph G: How does the property, and conclusions
based on it get affected by the uncertainty in G? Is there a smooth transition
in the property with the uncertainty,2 and is it possible to quantify the error in
the observed measurement? An example of such an issue is the nature of degree
distributions of the Internet router graph and its vulnerability: several papers,
e.g., [12] observed that these are power laws. Achlioptas et al. [1] showed that
there are significant sampling biases in the way traceroutes (which are used to
infer the network) work; for a broad class of networks, they prove that such
inference methods might incorrectly infer a power-law distribution (even when
the underlying network is not).

Our work is motivated by these considerations of the sensitivity to noise and
the adequacy of sampling. Specifically, we study how results about the core
decomposition and top cores in the network, e.g., [6,3,18,26,20,17], are affected
by the uncertainty, noise and small samples (as in the case of online social
media networks). Such questions have been studied in the statistical physics
literature, e.g., [10], who show that there is a threshold probability for random
node deletions in infinite networks, above which the k-core disappears; it is not
clear how relevant such results are to real world networks, which are finite and
do not satisfy the symmetries needed in such results. Hamelin et al. [3] report
robustness of their observations related to the shell structure in the Internet
router graph, for specific sampling biases related to traceroute methods. We are
not aware of any other empirical or analytical work on the sensitivity of the core
decomposition.

Since there is very limited understanding of how noise should be modeled, we
consider three different stochastic edge perturbation models, which are specified
by how a pair u, v of nodes is picked: (i) uniformly at random (ERP, for Erdős-
Rényi perturbations), (ii) in a biased manner, e.g., based on the degrees of u, v
(CLP, for Chung-Lu or degree assortative perturbations), and (iii) by running
a missing link prediction algorithm, such as [8] (LPP, for link prediction based
perturbations); see Section 3 for complete definitions. We also study a model of
stochastic node deletions. Let α denote the fraction of nodes/edges perturbed;
typically we are interested in “small” α.

A complementary aspect (particularly relevant in the context of sampled data
from socialmedia such asTwitter) is the effect of sampling.We consider edge/node
sampling with probability p (i.e., corresponding to deletion with probability 1−p).
We study the following question: can the properties of the core structure be identi-
fied by small edge/node samples, i.e., corresponding to small p? In our discussion
below, we use G′ to denote the graph resulting from perturbation/sampling of a

1 Larger samples, e.g., 10% can be obtained form Twitter’s commercial partners for a
large fee.

2 As observed in the case of centrality measures by [5], who claim that there is a
gradual decrease in the accuracy of the centrality scores.
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starting graphG. Let kmax(G) denote the maximum core number in G. We study
the Jaccard similarity, ηj(G,G

′), between the set of nodes in the top j-cores in G
and G′; we sometimes informally refer to ηj as the “similarity” between the top
cores. Our main results are summarized below.

1. Sensitivity to Noise. We consider perturbations with α ranging from less
than 1% to 10%. We find that ηj and the shell structure shows high sensitivity
to edge/node perturbations; however, the precise effects are very network and
noise model specific. Further, η1 is quite sensitive in the CLP model for many
networks: perturbation with α < 5% can alter η1 by more than 20% in some
networks. More importantly, we find that in a large fraction of the networks,
ηj exhibits a non-monotone behavior as a function of α. This can be a seri-
ous issue in some applications where the core structure is used, and needs to
be examined critically. The sensitivity decreases as we increase j, but ηj varies
non-monotonically with j as well. In contrast, the top cores seem quite stable
to perturbations in the ERP model, which primarily affects the shell size distri-
bution in some networks. The LPP model seems to affect both the low and high
cores. Further, node perturbations (modeled as random deletions) seem to have
a much higher impact than edge perturbations, in general. It is intriguing that
co-authorship and citation networks seem to be generally much more stable com-
pared to influence and infrastructure networks. Further, we observe that sudden
changes in the similarity index are almost always accompanied with increase in
kmax.

This motivates the CorePerturbation problem: given a graph G and a pa-
rameter k, what is the probability that a k-core forms in G after perturbation, if
it did not have a k-core initially. We prove that this problem is #P-hard, which
suggests rigorous quantification of the variation in the top core even in such
simple stochastic noise models is quite challenging. We attempt to further un-
derstand and explain the empirical observations analytically using simple math-
ematical models. We also prove that under some weak assumptions that usually
hold in social networks, the low core numbers can be altered quite significantly
in the ERP model.

2. Sensitivity to Sampling. We find most networks exhibit a high level of sen-
sitivity to sampling, and ηj is a noisy and non-monotone function of p, especially
when p is close to 1; there is higher level of sensitivity to node sampling than
to edge sampling. For most of the networks we study, identifying a reasonably
large fraction (say 80%) of the top core set requires a fairly high sampling rate
p: higher than 0.6 in most networks, and as high as 0.8 in some. Specifically, in
the case of a Twitter “mentions” graph (see Section 3.2 for details), we find that
this entails a much higher level of sampling than what is supported by the public
API. Further, biased sampling based on edge weights can improve the similarity
index slightly. We analyze the effects of sampling to help explain some of these
results. We show that the maximum core number in Gp scales with the sampling
probability, and that non-monotonicity under sampling is an inherent aspect of
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the Erdős-Rényi model. We also find that the top core can be very fragile, and
can change completely even for very low sampling rate.

Organization. We briefly discuss the related work in Section 2. We introduce
the main definitions, and summarize our data sets in Section 3. We discuss the
sensitivity to noise and the effects of sampling in Sections 4 and 6, respectively.
In Section 5, we discuss the CorePerturbation problem, and conclude in
Section 7. Because of limited space, we present many of the details in the full
version [2].

2 Related Work

Noise and sampling biases in networks are well recognized as fundamental is-
sues in applications of complex networks, and many different models have been
studied for it. A common approach in social networks, e.g., [9,5], is to examine
stochastic node and edge deletions. There is a large body of work on predict-
ing missing links in complex networks (based on expected clustering and other
structural properties), e.g., [8], which could also be used as a possible candidate
set. Since there is no clear understanding of noise/perturbations, we study three
different models from the literature in this paper.

We briefly discuss a few of the results on understanding the impact of uncer-
tainty on network properties. The impact of sampling bias on the properties of
the Internet router graph [1] was already mentioned earlier. There has also been
a lot of work in understanding the sensitivity of centrality to noise, e.g., [9,5]; it
has been found that the impact on the centrality is variable and network depen-
dent, but the general finding in [5] is that the accuracy of centrality measures
varies smoothly and predictably with the noise. Morstatter et al. [22] study the
effects of limited sampling in social media data by analyzing the differences in
statistical measures, such as hashtag frequencies, and network measures, such as
centrality.

The work by Flaxman and Frieze [14,15] is among the very few rigorous results
on the impact of perturbations on network parameters— they rigorously analyze
the impact of ERP on the diameter and expansion of the graph. The issue of
noise has motivated a number of sampling based algorithmic techniques which
are “robust” to uncertainty, in the form of “property testing” algorithms, e.g.,
[25] and “smoothed analysis”, e.g., [27].

Finally, we briefly discuss some of the work on the core decomposition in
graphs. As mentioned earlier, the core number and the top core set has been used
in a number of applications, e.g., [6,3,18,26,20,17], in which the shell structure
and the top core sets have been found to give useful insights. Conditions for
existence of the k-core, and determining its size have been rigorously studied in
different random graph models, e.g., [24,13]; the main result is that there is a
sharp threshold for the sudden emergence of the k-core in these models. This has
also been analyzed in the statistical physics literature, e.g., [10]; these papers also
study the impact of node deletions on the core size in infinite graphs, and show
a characterization in terms of the second moment of the degree distribution.
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3 Definitions and Notations

The k-core Ck(G) of an undirected graph G = (V,E) is defined as the maximal
subgraph of nodes in which each node has degree at least k; the core-number of
a node v is the largest k such that v ∈ Ck(G). The set Sk(G) = Ck(G)\Ck+1(G)
is referred to as the kth-shell of G; we omit G, and refer to it by Sk, when the
graph is clear from the context. The set Ck(G), if it exists, can be obtained by
repeatedly removing vertices of degree less than k until no further removal is
possible. The maximum k such that Ck(G) 
= φ will be denoted by kmax(G); we
use just kmax, when there is no ambiguity. The core decomposition of a graph
G corresponds to the partition S0, S1, . . . , Skmax of V . Let si = |Si|. We use
β(G) = 〈s1, s2, . . . , skmax〉 to denote the vector of shell size distribution in G.
The Jaccard index is a measure of similarity between two sets and is defined

as follows: For sets A and B, JI(A,B) = |A∩B|
|A∪B| . In our empirical analysis of

networks we compare the top j cores of the unperturbed and the perturbed
graphs using the Jaccard index. For this purpose we introduce the notation
ηj(G,G

′) := JI (∪i≥kmax−j+1Ci(G),∪i≥kmax−j+1Ci(G
′)). The variation distance

between the core-number distributions of two graphs G and G′ on the same
vertex set V is defined as, δ(G,G′) = 1

2|V |
∑

i |si(G) − si(G
′)|. We say that an

event holds whp (with high probability) if it holds with probability tending to
1 as n → ∞.

3.1 Noise Models

Since there is no clear understanding of how uncertainty/noise should be mod-
eled, we introduce a generalized noise model for edge perturbations which cap-
tures most models in literature, and also enables us to control separately the
extent of addition and deletion. Let G be the unperturbed graph. Let G = G(n)
denote a random graph model on n nodes which is specified by the probability
PG ((u, v)) of choosing the edge (u, v). We define a noise model N (G,G, εa, εd)
based on G as a random graph model where the edge probability between a pair
u, v is given by

PN ((u, v)) =

{
εaPG ((u, v)) , if (u, v) /∈ EG,
εdPG ((u, v)) , if (u, v) ∈ EG,

(1)

where εa and εd denote the edge addition and deletion probabilities, respec-
tively. The perturbed graph G′ = G ⊕ R is obtained by XORing G with R ∈
N (G,G, εa, εd), a sample from the noise model, i.e., if (u, v) ∈ EG, then it is
deleted with probability εdPG ((u, v)), but if (u, v) /∈ EG, (u, v) is added with
probability εaPG ((u, v)). Depending on how we specify PG and the parameters
εa, εd, we get different models; we consider three specific models below.

Uniform Perturbation (ERP): In this model we set G = G(n, 1/n), the Erdős-
Rényi random graph model where each edge is chosen with probability 1/n inde-
pendently, i.e., PG ((u, v)) = 1/n. We use the following notation for this model:
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ERP(G, εa, εd) = N (G,G(n, 1/n), εa, εd). For example, ERP(G, ε, ε) corresponds to
adding an edge or removing an existing edge independently with probability ε/n,
while ERP(G, ε, 0) corresponds to only adding edges. This is the simplest model,
and has been studied in social network applications, e.g., [9,5].

Degree Assortative Perturbation (CLP): In this model, G corresponds to
the Chung-Lu random graph model [7] for graphs with a given expected degree
sequence. Each node u is associated with a weight wu (which we take to be
its degree), and edge is chosen independently with probability proportional to
the product of the weights of its endpoints, i.e., PG ((u, v)) ∝ wu · wv = d(u) ·
d(v). This model selects edges in a biased manner, and might be suitable in
applications dealing with assortative graphs with correlations between degrees
of the end points of edges, which has been observed in a number of networks,
e.g., [23].

Link Prediction Based Model (LPP): Instead of the purely stochastic ERP and
CLPmodels, we use the results of a missing link prediction algorithm to determine
which edges to perturb. Here, we use the algorithm of Clauset, et al. [8], which
has been used quite extensively in the social network literature; further, since it
uses a hierarchical random graph model, it can be viewed as an instance of our
generalized noise model. This model is based on the assumption that many real-
life networks have a hierarchical structure, which can be represented by a binary
tree with n leaves corresponding to the node (referred to as a “dendrogram”).
Given such a dendrogramD, each internal node r is associated with a probability
pr = Er

LrRr
, where Lr and Rr are the number of leaves in the left and right

subtrees of r respectively and Er is the number of edges between Lr and Rr

in G. The likelihood of D is defined as: L(D) = Πrp
Er
r (1 − pr)

LrRr−Er . The
algorithm of [8] specifies the probability, PD((u, v)), of an edge between two
vertices u, v, to be the value pr, where r is the lowest common ancestor of u and
v in D.

In the ERP model, the expected number of perturbed edges is ≈ nε/2. For the
purpose of fair comparison of noise models, we have normalized the weights of
vertices in the CLP model such that the expected number of perturbed edges is
again ≈ nε/2. We use Gε to denote the perturbed network. In the LPP model,
we add edges as prescribed [8]; nε/2 edges are added in the decreasing order of
their associated probabilities.

Additions vs Deletions: We find that, due to sparsity of the networks consid-
ered, perturbations involving edge additions/deletions do not alter the results
by much, compared to perturbations involving just edge additions. Hence, unless
explicitly specified, we only consider addition of edges. Also, henceforth, when-
ever we use the truncated notations ERP and CLP, we refer to ERP(G, ε, 0) and
CLP(G, ε, 0), respectively.

Noise could also manifest in terms of missing nodes. We study a model of
random node deletions with probability 1 − p (which corresponds to retaining
nodes with probability p); we study the effect of this in the form of sampling in
Section 6, instead of perturbations.
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3.2 Data

In order to make our results as robust as possible, we analyze over 25 differ-
ent real (from [21]) and random networks. We also used a Twitter mentions
graph, constructed in the following manner: we consider a set of about 9 million
tweets (corresponding to a 10% sample, obtained from a commercial source),
and construct a graph on the Twitter users, in which an edge (u, v) denotes a
mention of user v by user u (in the form of an “@v” in the tweet) or the other
way around; this graph has over 2 million nodes and about 4.6 million edges.
We then considered subgraphs constructed by sampling edges with probabil-
ity p ∈ [0.1, . . . , 0.99]; for p ∈ [0.1, . . . , 0.8], we use increments of 0.1, but for
p ∈ [0.8, 0.99], we use increments of 0.01, in order to increase the resolution. Fi-
nally, we also consider random graph models with Poisson and scale-free degree
distributions. Table 1 contains a summary of the graphs analyzed.

Table 1. Real-world and synthetic graphs used in our experiments and their properties

Class Network N E kmax |Ckmax(G)|

Autonomous Systems
As20000102 6474 12572 12 21
Oregon1010331 10670 22002 17 32
Oregon2010331 10900 31180 31 78

Co-authorship

Astroph 17903 196972 56 57
Condmat 21363 91286 25 26
Grqc 4158 13422 43 44
Hepph 11204 117619 238 239
Hepth 8638 24806 31 32

Citation
HepPh 34546 420877 30 40
HepTh 27770 352285 37 52

Communication
Email-EuAll 265214 364481 37 292
Email-Enron 33696 180811 43 275

Social
Epinion 75877 405739 67 486
Slashdot0811 77360 469180 54 129
Soc-Slashdot0902 82168 504230 55 134
Twitter 22405 59898 20 177
Wiki-Vote 7066 100736 53 336
Twitter “mentions” 2616396 4677321 19 210

Internet peer-to-peer
Gnutella04 10876 39994 7 365
Gnutella24 26518 65369 5 7480

Synthetic graphs Regular (d = 20) 10000 100000 20 10000

4 Sensitivity of the Core Decomposition to Noise

We now study the effect of node/edge perturbations on the similarity index
ηj(G,G

′), and the changes in the shell size distribution β(G) in terms of the
variation distance, δ(G,G′) (see Section 3 for definitions). We study these quan-
tities on the networks mentioned in Section 3.2 and for the perturbation models
discussed in Section 3.1. For the ERP and CLP models, we compute 100 to 1000
instances, for each choice of ε, over which ηj(G,G

′) and δ(G,G′) are averaged.
The methodology for the LPP model is discussed later.
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4.1 Sensitivity of the Top Cores

1. Sensitivity of the Top Core in the CLP Model: Figure 1 shows the variation
in η1(G,G

′) for different networks in this model. The figure shows the variation
with both ε and α (the fraction of edges added), the latter to account for the
difference in the graph sizes. The most striking observation is the high sensitivity
of η1 and its highly non-monotonic variation in a large fraction of the networks.
The specific points where significant jumps in η1 happen correspond to the points
where kmax changes in many cases, as shown in Figure 1(c). The specific behavior
is highly variable and network dependent. For example, we note that while the
top cores in collaboration and citation networks are, in general, highly resilient
to perturbation, most social and peer to peer networks show great variation.
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Fig. 1. Top core comparison for various networks under degree-weighted edge per-
turbation CLP: Here, (c) is a zoomed plot of (b). This is complemented by a plot of
kmax(G

′)−kmax(G) to depict the transition to a higher core and its effect on η1(G,G′).

2. Sensitivity of the top core in the ERP Model: In contrast to the CLP model, we
find that top cores are much more stable in the ERP model. The main reason for
this stability is the fact that almost all networks considered here have very small
fraction of nodes in the top core(s) (as shown in Figure 7 in the full version [2]),
so that most of the edges in the ERP model are added to low core nodes

3. Explaining the Differences Between the CLP and ERP Models : We note that in
the CLP model, the higher the degree of a node in the unperturbed graph, the
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greater is the number of edges incident with it after perturbation. This polarizing
nature of the model needs to be taken into account to infer and quantify the
stability of the top core. Figure 6 in the full version [2] shows scatter plots of
core number vs. degree for some selected graphs. Even though it gives some
idea about the behavior of the top core, we find it highly non-trivial to quantify
the stability in any way. Later, in Section 5 we will be considering a theoretical
formulation of this problem and showing that such a quantification of stability
is in general hard.

4. Sensitivity of the Top 5 Cores: We extend our empirical analysis to ηj(G,G
′)

for j = 1, . . . , 5 in Figure 2. Note that the non-monotonic behavior is mitigated
in these plots, but ηj varies non-monotonically with j. However, as j is increased,
the size of Cj can become very large, thus diminishing the main utility of the
top cores in most applications.
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Fig. 2. Top 2–5 cores comparison (ηj(G,G′), j = 2, . . . , 5) with respect to % increase
in edges (α). The legends are the same as in Figure 1.

5. Sensitivity in the LPP Model: We considered the stability of the top cores
in the LPP model by applying the link prediction algorithm given in [8]. We
first generated the list of likelihood probabilities for each possible edge. For this
purpose, we used the implementation of [11]. The edges were then added in the
descending order of their probabilities. As shown in Figure 3(a) for a subset of
graphs, the variation in η1 is very network specific, and hard to characterize.
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Fig. 3. Core stability with respect to LPP and ERP

4.2 Sensitivity of the Shell Size Distribution and the Low Cores

To study the effect of perturbation on the core decomposition of a network, we
consider the variation distance δ(G,G′) (defined in Section 3). The results are
in Figure 3(b). As discussed above, the ERP model has greater impact on the
overall core-structure compared to the CLP model; in the ERP model, changes
happen to lower core structure which contain most of the nodes and hence leads
to large variation distance. We observe no significant change in δ(G,G′) under
the CLP model, as is evident from Figure 7 in [2].

We attempt to explain some of the observations about the changes in the
core structure analytically. First, we consider the impact of perturbations on the
2-core in any graph in the ERP model, and prove that for any constant ε > 0,
the 2-core always becomes of size Θ(n), which is consistent with the results in
Figure 7 in [2]. Our results are similar in spirit to the work of [14]. This only
explains the changes in the lowest core, and in order to extend it further, we
examine a quantity motivated by the “corona” [10], which corresponds to nodes
which need few edges to the higher cores in order to alter the core number. We
find that there is a large fraction of nodes of this kind in many networks, which
might help in characterizing the stability of the shell structure. This is discussed
in [2].

Theorem 1. Let G be any connected graph with n vertices and let Gp = G⊕R
where, R ∼ G(n, ε/n) and ε is a constant. Then, whp Gp has a 2-core of size
Θ(n).

Proof. (Sketch) Consider a spanning tree T of G. We show that T ⊕ R itself
has a Θ(n) sized 2-core. Let T− denote the subgraph obtained by removing the
edges common to T and R. Suppose ed is the number of edges removed from T .
Since each edge of T can be removed with probability ε/n, it can be verified that
whp O(log n) edges are removed from T , so that T− has O(log n) components
whp.
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Let I be a maximum independent set of T−. We consider the graph induced
by I in R and consider the edges of R[I] (not belonging to T ) one at a time.
Let ei = (u, v) be the ith edge of R[I] added to T−. Let T−i = T−i−1 + ei with

T−0 = T−. If u and v belong to the same component of T−i−1, then, there is a

path P in T−i−1 with end points u and v and therefore, u and v both belong to
the 2-core in T ⊕R. However, when u and v belong to different components, this
does not happen. However, note that each time this happens, T−i has one less
component compared to T−i−1. Since T

−
0 has O(log n) components, there can be

at most O(log n) such edges.
Consider vertices in R[I] of degree at least 1. Note that |I| = cn for some

constant c ≥ 1/2. It is easy to see that whp a constant fraction of these vertices
in I have degree at least 1 in R[I]. Of these vertices, we will discard vertices
which are end points of an edge ei which is between two components of Ti−1

for some i. From the previous discussion, there can be only O(log n) such edges.
The rest of the vertices form a 2-core. Hence proved. ��

5 The CorePerturbation Problem

From Section 4.1, it follows that the sudden and non-monotone changes in the
similarity index correspond to an increase in the maximum core number. This
motivates the CorePerturbation problem, which captures the probability of
this change happening.

Definition 1. The CorePerturbation problem (CP(G,EA, p, k))
Input: A graph G(V,E), an integer k ≥ 4, edge probability p and a set of possible
edges EA (which are absent in G). Let Gp be the graph resulting from adding
edges to G from EA independently with probability p.
Output: Probability that Gp has a k-core.

Theorem 2. CP(G,EA, p, k) is #P -complete.

The proof of Theorem 2 is in the full version [2]. The result also holds when
kmax(G) = k − 1, which implies that even in a very simple noise model, quanti-
fying the precise effects of changes in the top core is very challenging. When this
probability is not too small (e.g., larger than 1/nc for some constant c > 0), it
can be shown that a polynomial number of Monte-Carlo samples can give good
estimates (within a multiplicative factor of 1 ± δ, with any desired confidence,
where δ > 0 is a parameter).

6 Sensitivity of the Core Decomposition to Sampling

We now address the issue of sampling and focus on ηk(G,Gp), where Gp denotes
a node/edge sampled graph with probability p— our goal is to understand to
what extent the core structure (especially the nodes in the top cores) can be
identified from sparsely sampled data. As in the case of noise (Section 4), we
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find ηk is quite sensitive to sampling, and varies non-monotonically for many
graphs. We attempt to explain these results rigorously in the following manner:
(i) using the notion of edge density, we derive bounds on the maximum core in
sampled graphs, which show that it scales with p, (ii) we analyze the sampling
process in random graphs, and prove that the non-monotonicity in ηk is an
inherent issue related to the core structure.

6.1 Variation in ηk

Figure 4(a) shows the variation in η1(G,Gp) for all networks, for an edge sam-
pling probability p ∈ [0.8, 1]. We observe that η1 is quite low in many networks;
in order to identify at least 80% of the top core nodes (i.e., η1 ≥ 0.8), we need
p ≥ 0.6 in most networks. Figure 9 in the full version [2] shows additional results
on the effect of edge sampling on ηk, for k ∈ {1, 2, 5, 10}. Like in the case of edge
perturbations, we find ηk also exhibits non-monotonicity with respect to k for
most networks. Further, it is interesting to note that the citation networks are
very sensitive to sampling (and have η1 below 0.6), but were found to be quite
robust to edge perturbations (Section 4). However, collaboration networks seem
to be robust to sampling as in the case of edge perturbations. We find that node
sampling has a much higher impact than edge sampling; see Table 2 in the full
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Fig. 4. Top core comparison for various networks under sampling edges
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version [2] for details. For instance, with p = 0.95, we observe that η1 is below
0.9 for all but four of the networks, and is below 0.62 in three networks.

Biased Sampling in Twitter Networks. Since sampling is an inherent as-
pect of the APIs provided by Twitter, we study its effects on the top cores. Our
results for the Twitter mentions graph (see Section 3.2 for the details) are shown
in Figures 4(b) and 4(c). The graph is weighted, in which the weight of an edge
(u, v) corresponds to the number of mentions of u by v (or the converse). We
observed that ηk is generally quite low, but is somewhat higher when edges are
sampled with probability proportional to the edge weight (Figure 4(b)) instead
of uniform (Figure 4(c)). Moreover, there is high non-monotonicity in both sce-
narios, suggesting that Twitter’s public API is not adequate for identifying the
core structure with high confidence (say 80% or more), and multiple calls to the
API must be run to improve the accuracy. Table 3 in the Appendix of [2] gives
additional details on the max core values in the sampled graphs.

Bounding the Max Core on Sampling. A first step towards understanding
the effect of sampling is to determine kmax(Gp) in the sampled graph Gp. Table 3
in the full version [2] suggests that kmax scales with the sampling probability.
This is examined in the following lemma, whose proof is discussed in the full
version [2].

Lemma 1. Consider a graph G such that kmax(G) → ∞ as n → ∞. Let
Gp denote the random subgraph of G obtained by retaining each edge of G
with probability p, where p is a constant. Then, for any constant δ ∈ (0, 1),
kmax(Gp) > (1− δ)kmax(G)p/2, whp.

6.2 Core Structure in Random Graphs

In order to understand our empirical observations about the sensitivity of the
core structure to noise and sampling, and especially the non-monotone behav-
ior, we now study the effect of sampling in random graph models. We consider
two random graph families: (a) the Erdős-Rényi random graphs and (b) Chung-
Lu power law random graphs [7] with node weights picked from a power-law
distribution (see Section 3 for a description of this model). Figure 5 shows the
sensitivity of ηk(G,Gp) to the sampling probability p. Figure 5(a) shows the
results for a random graph from G(n, p) for n = 10000 and p = 50/n and Figure
5(b) shows the results for a graph from the Chung-Lu model with power law
exponent 2.5, n = 10000 and average degree 5. We observe non-monotone vari-
ation in ηk with p; this is more pronounced in the case of the Chung-Lu model,
in which case ηk is quite low, which is consistent with the effect of perturbations
on real networks in Section 4. Further, we observe that the variation in ηk is
much smoother for k > 1, which is not the case of the networks in Section 4.
This non-monotone variation of ηk with the sampling probability is explained to
some extent through Lemma 2; by analyzing ηk in the Erdős-Rényi model, we
show rigorously that this is an inherent aspect of most graphs.
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Fig. 5. Non-monotonicity of top-cores in random graphs: (a) Erdős-Rényi model
G(n, c/n), with n = 10000 and c = 50; (b) Chung-Lu model with n = 10000 and
average degree 5.

Lemma 2. There exist constants c and pairs (p1, p2), where 0 < p1 < p2 < 1
such that for G ∈ G(n, c/n), η1(G,Gp1 ) > η1(G,Gp2 ) whp.

This lemma relies on the result of [19]. Suppose G ∈ G(n, λ/n). Let Po(μ) denote
a Poisson random variable with mean μ. For a positive integer j, let ψj(μ) :=
P (Po(μ) ≥ j) and let λj := minμ>0 μ/ψj−1(μ). Let, for λ > λj , μj(λ) > 0
denote the largest solution to μ/ψj−1(μ) = λ. Pittel et al. [24] show that if
λ < λk and k ≥ 3, then k-core Ck(G) is empty whp, while if λ > λk, |Ck(G)| =
ψk(μk(λ))n, whp.

Proof. (of Lemma 2) First we note that for G ∈ G(n, c/n), the random graph
sampled with probability p, Gp itself is a G(n, cp/n) random graph. We choose
c = 50, for whichwhp kmax(G) = 38 and |Ckmax(G)| ≈ 0.91n. We set p1 = 0.102,
such that cp1 is slightly less than λ4 ≈ 5.15 (in the context of the result of [24]).
For this p1, kmax(Gp1) = 3 and |Ckmax(Gp1)| ≥ 0.864n whp. We choose p2 =
0.198, such that cp2 is slightly more than λ7 ≈ 9.88. This means kmax(Gp2) = 7
and |Ckmax(Gp2)| ≈ 0.694n whp. Now we show that η1(G,Gp1 ) > η1(G,Gp2)
whp.

For any set U and subsets A,B ⊆ U , the following inequality follows trivially:
|A|+|B|−|U|

|U| ≤ JI(A,B) ≤ |B|
|A| . We set A = Ckmax(G) and U = V (G). Setting

B = Ckmax(Gp1) and using the lower bound in the above inequality, the Jaccard
Index at p1 is ≥ 0.91+0.864− 1 = 0.774. Setting B = Ckmax(Gp2) and using the
upper bound in the above inequality, the Jaccard Index at p2 is ≤ 0.694/0.91 ≈
0.762. Hence, proved. ��
Remark 1. The proof of Lemma 2 is a rigorous analysis of the non-monotone
behavior seen in Figure 5(a) in the interval [0.1, 0.2]. Similar pairs can be demon-
strated for other values of c which correspond to kmax = 39, 40 and so on.

7 Conclusions

Our results show that the top cores show significant sensitivity to perturbations,
and can be recovered to a reasonable extent in sampled graphs, only if the
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sampling rate is sufficiently high. These results suggest that a careful sensitivity
analysis is necessary when using the core structure, especially because of the
non-monotone effects on the similarity index of the top cores. Our formulation
of the CorePerturbation problem and its #P-hardness implies quantifying
the effects of uncertainty can be a challenging problem even in very simplified
noise models; developing efficient algorithms for this problem is an interesting
open problem. Further, the non-monotone behavior in the similarity index of the
top cores implies simple statistical tests that might try to improve the confidence
by bounding the uncertainty might not work. The reduced non-monotonicity in
ηk with k suggests considering the top few cores, instead of just the top core, as
a way of dealing with these effects; however, as we observe, this would require
considering a much larger set of nodes. The significant sensitivity to sampling
also suggests the need for greater care in the use of networks inferred using
small samples provided by public APIs of social media applications. We expect
our approach to be useful in the analysis of the sensitivity of other network
properties to noise and sampling.
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Abstract. Heterogeneous networks are ubiquitous. For example, bibliographic
data, social data, medical records, movie data and many more can be modeled
as heterogeneous networks. Rich information associated with multi-typed nodes
in heterogeneous networks motivates us to propose a new definition of outliers,
which is different from those defined for homogeneous networks. In this paper,
we propose the novel concept of Community Distribution Outliers (CDOutliers)
for heterogeneous information networks, which are defined as objects whose
community distribution does not follow any of the popular community distri-
bution patterns. We extract such outliers using a type-aware joint analysis of mul-
tiple types of objects. Given community membership matrices for all types of
objects, we follow an iterative two-stage approach which performs pattern dis-
covery and outlier detection in a tightly integrated manner. We first propose a
novel outlier-aware approach based on joint non-negative matrix factorization to
discover popular community distribution patterns for all the object types in a
holistic manner, and then detect outliers based on such patterns. Experimental
results on both synthetic and real datasets show that the proposed approach is
highly effective in discovering interesting community distribution outliers.

1 Introduction

Heterogeneous information networks are omnipresent. In such networks, the nodes are
of different types and relationships between nodes are encoded using multi-typed edges.
For example, bibliographic networks consist of authors, conferences, papers and title
keywords. Edges in such a network represent relationships like “an author collaborated
with another author”, “an author published in a conference”, and so on. Analysts of-
ten perform community detection on such networks with an aim of understanding the
hidden structures more deeply. Although methods designed for homogeneous networks
can be applied by extracting a set of homogeneous networks from the heterogeneous
network, such a transformation causes inevitable information loss. For example, when
converting bibliographic networks to co-authorship networks, some valuable connectiv-
ity information, e.g., paper title or conference an author published in, is lost. As objects
of different types interact strongly with each other in the network, analysis on heteroge-
neous information networks at various levels must be conducted simultaneously from
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multiple types of data. Such an analysis will help in exploiting the shared hidden struc-
ture of communities across object types, i.e., the common patterns across types that can
explain the generation of these community distributions. For example, in bibliographic
networks, when grouping authors based on their “research area” distributions, one must
use the knowledge of the grouping of “research area” distributions for related confer-
ences and keywords. This is because (1) the community space (research areas) is the
same across different object types, and (2) all these objects interact strongly with each
other in the network.

Although most of the objects in a heterogeneous network follow common commu-
nity distribution patterns which can be uncovered by joint analysis of community mem-
bership of multiple heterogeneous object types, certain objects deviate significantly
from these patterns. It is important to detect such outliers in heterogeneous information
networks for de-noising data thereby improving the quality of the patterns and also for
further analysis. Therefore, in this paper, we propose to detect such anomalous objects
as Community Distribution Outliers (or CDOutliers) given the community distribution
of each object of every type. In the following, we present a few CDOutlier examples
and discuss the importance of identifying such outliers in real applications.

CDOutlier Examples. Consider a bibliographic network where the research area label
associated with an author node depends on the community labels of the conferences
where he publishes, keywords he uses in the title of the papers, and the other authors he
collaborates with. There may exist some popular community distribution patterns ex-
tracted by analysis across various object types, which majority of the objects follow. For
example, say there are four communities: data mining (DM), software engineering (SE),
compilers (C) and machine learning (ML). Then popular distribution patterns could be
(DM:1, SE:0, C:0, ML:0), (DM:0, SE:1, C:0, ML:0), (DM:0, SE:0, C:1, ML:0), (DM:0,
SE:0, C:0, ML:1), and (DM:0.7, SE:0, C:0, ML:0.3). Then, an author who contributes to
DM and C (with a distribution like (DM:0.5, SE:0, C:0.5, ML:0)) would be considered
as a CDOutlier. Furthermore, there could be subtle patterns like (DM:0.8, Energy:0.2),
i.e., 80% probability belonging to DM and 20% probability in Energy, which is fol-
lowed by majority of the objects. If an author’s community distribution is (DM:0.2,
Energy:0.8), which deviates from the majority pattern, then he is considered as a CD-
Outlier. Similarly, one could compute outliers among other types of objects, such as
conferences and title keywords, based on the popular distribution patterns derived by
holistic analysis across all object types.

Besides these examples, applications of CDOutliers can be commonly observed in
real-life scenarios, and we briefly mention a few here. (1) In the Delicious network,
most users who tag pages about “Tech and Science” do not tag pages about “Arts and
Design”. A user doing so (user with unusual skill combinations) can be considered as a
CDOutlier. (2) In the Youtube network, most of the users would be interested in videos
of a particular category. However, certain users who act as middlemen in publishing
and uploading videos may interact with videos of many different categories and would
be detected as CDOutliers.

CDOutlier distributions should not be confused with “hub” distributions (i.e., dis-
tributions with high entropy) over communities. Certain “hub” distributions could be
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frequent patterns, but only those that are very rare should be labeled as CDOutliers. On
the other hand, not all CDOutlier distributions have high entropy.

Brief Overview of CDOutlier Detection. Given the soft community distributions for
each object of every type, one can compute distribution patterns. CDOutliers are
objects that defy the trend, and the trend must be obtained from accurate pattern discov-
ery. However, pattern discovery suffers from the presence of CDOutliers itself. There-
fore, given community detection results, we design an iterative two-stage procedure
to identify CDOutliers, which integrates community distribution pattern discovery and
CDOutlier detection. First, we discover popular distribution patterns for all the ob-
ject types together by performing a joint nonnegative matrix factorization (NMF) on
the community distribution matrices, such that it ignores the outliers discovered in the
previous iteration. At the second step, the outlierness score for an object is computed
based on its distance from its nearest distribution pattern. The algorithm iterates until
the set of outliers discovered do not change. Thus, distribution pattern discovery and
outlier detection are improved through iterative update procedures, and upon conver-
gence, meaningful outliers are output.

Summary. Our contributions are summarized as follows.

– We introduce the notion of identifying CDOutliers from heterogeneous networks
based on the discovery of community distribution patterns.

– We propose a unified framework based on joint-NMF formulation, which integrates
the discovery of distribution patterns across multiple object types and the detection
of CDOutliers based on such patterns together.

– We show interesting and meaningful outliers detected from multiple real and syn-
thetic datasets.

Our paper is organized as follows. In Sec. 2, we introduce the notion of distribution
patterns and develop our method to extract heterogeneous community trends for objects
of different types in the form of popular distribution patterns. In Sec. 3, we present
discussions related to practical usage of the algorithm. We discuss datasets and results
with detailed insights in Sec. 4. Finally, related work and conclusions are presented in
Sec. 5 and 6 respectively.

2 CDOutlier Detection Approach

In this section, we will present our iterative two-stage approach for CDOutlier detec-
tion. Table 1 shows the important notations we will use in this paper. We denote an
element (i, j) of a matrix A by A(i,j). More details about the notations will be found in
the following problem definition.

2.1 Problem Definition

We start with introduction to a few basic concepts.

Community. Consider a heterogeneous network with K types of objects
{τ1, τ2, . . . , τK}. A community is a probabilistic collection of similar objects, such that
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Notation Meaning

τk kth object type
k, l Index for a type of objects
Nk Number of objects of type k
K Number of types of objects
C Number of communities
C′ Number of distribution patterns

T
Nk×C

k Membership matrix for objects of type k

W
Nk×C′
k

Distribution pattern indicator matrix for objects of type k

HC′×C
k Distribution patterns matrix for objects of type k

Ok Outlier objects set for type k
α Regularization Parameter

Fig. 1. Table of Notations

0

0.5

1

0

0.5

1

0

0.5

1

Fig. 2. Distribution Patterns in 3D
Space

similarity between objects within the community is higher than the similarity between
objects in different communities. For example, a research area is a community in a bib-
liographic network. For heterogeneous networks, one is often interested in identifying
heterogeneous communities which contain objects of different types. We will use C to
denote the number of communities.

Membership Matrix. Membership matrix T is a matrix such that the element Toi cor-
responds to the probability with which an object o belongs to a community i. The rows
of the matrix correspond to objects while the columns correspond to communities. Let
N1, N2, . . . , NK be the number of objects of each type. Let T1, T2, . . . , TK denote
the membership matrices for the objects of types τ1, τ2, . . . , τK respectively. Thus, the
membership matrix Tk is of size Nk × C.

Distribution Patterns. The rows of a membership matrix can be grouped into clusters.
To be able to capture inter-type interactions, such clusters should be obtained using
a joint analysis of membership matrices of all types. The cluster centroid of each such
cluster denotes a representative distribution in the community space. We call these clus-
ter centroids as distribution patterns. For example, in Figure 2, we plot a membership
matrix with C=3. Each axis represents probability of membership for the correspond-
ing community. Different colors represent objects following different patterns. Black
stars (�) are the representatives (cluster centroids) used to represent the distribution
patterns.

Community Distribution Outlier. An object o in a heterogeneous network, is a CD-
Outlier if its distance to the closest distribution pattern, which is obtained by a joint
analysis of all the object types, is very high. For example, in Figure 2, the CDOutlier
points are marked as black squares (�).

Communities and hence distribution patterns discovered from a heterogeneous net-
work are very different from those obtained by processing a homogeneous projection
of a heterogeneous network. Thus, CDOutliers are quite different from the community
outliers obtained using homogeneous network analysis [6].
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Community Distribution Outlier Detection Problem
Input: Community membership matrices T1, T2, . . . , TK for the types τ1, τ2, . . . , τK .
Output: Top κ outlier objects of each type that deviate the most from distribution pat-
terns for that type.

For example, for DBLP, the types are τ1 =author, τ2 =conference and τ3 =keywords,
and research areas are communities. T1 will then be a matrix where each row denotes
the probability with which an author belongs to various research areas. The expected
output is top few authors (conferences, keywords) that deviate the most from the popu-
lar research area distribution patterns for the author (conference, keyword) type.

We will solve this problem using an iterative two-stage approach. In the first stage,
distribution patterns are discovered ignoring the outliers detected in the previous iter-
ation. In the second stage outliers are detected based on the patterns discovered at the
first stage within the same iteration. The proposed pattern discovery step is a joint Non-
negative Matrix Factorization (NMF) process, and thus we will first discuss basics about
NMF in the next section. We then introduce the two stages in Sections 2.3 and 2.4, and
finally present the complete algorithm.

2.2 Brief Overview of NMF

Given a non-negative matrix T ∈ RN×C (each element of T is ≥ 0), the basic NMF
problem formulation aims to compute a factorization of T into two factorsW ∈ RN×C′

and H ∈ RC′×C such that T ≈ WH . Both matrices W and H are constrained to have
only non-negative elements in the decomposition.

It has been shown earlier ([4]) that NMF is equivalent to a relaxed form of
KMeans [16] clustering. NMF can be considered as a form of clustering over the ma-
trix T . Each row of H represents a cluster centroid (or a distribution pattern) in the
C-dimensional space. Thus, H contains the information about the C′ cluster centroids
obtained by clustering T . Each element of row r of W represents the probability with
which the object corresponding to row r belongs to the different clusters. Generally, the
loss function used to represent the error between T and WH is the element-wise Eu-
clidean distance. Thus the typical NMF can be expressed as the following optimization
problem.

min
W,H

||T −WH ||2

subject to the constraints

W ≥ 0,H ≥ 0

(1)

(2)

where ||A|| is the sum of the square of each element in the matrix A.

2.3 Discovery of Distribution Patterns

In this sub-section, we will discuss how to learn distribution patterns from community
membership matrices. These patterns will form the basis for outlier detection which we
will discuss in Section 2.4.
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For a homogeneous network, any clustering algorithm could be run over the com-
munity membership matrix to obtain distribution patterns. However, the case of hetero-
geneous networks is challenging. Each of the membership matrices Tk can be clustered
individually (using the basic NMF) to obtain distribution patterns for that type. How-
ever, since all the membership matrices are defined for objects that are connected to
each other, the hidden structures that can explain these objects’ communities should be
consistent across types. Also, the membership matrices represent objects in the same
space of C components. Hence the clustering of matrix Ti should correspond to the
clustering of matrix Tj for all 1 ≤ i, j ≤ K . In other words, the divergence between
any pair of clusterings should be low.

This intuition can be encoded in the form of an optimization problem, which con-
ducts Non-negative Matrix Factorization (NMF) over multiple matrices together. In the
proposed problem setting, each of the matrices in the set T = {T1, T2, . . . , TK} needs
to be factorized, and we expect them to share a lot of common factors or have factors
which are quite similar to each other. We will factorize each matrix Tk ∈ RNk×C into
two factors Wk ∈ RNk×C′

and Hk ∈ RC′×C . Also, we need to ensure that cluster-
ing across different types is somewhat related. We achieve this by introducing a new
term ||Hk − Hl||2 to the basic NMF optimization objective function, and a parameter
α which decides what degree of correspondence should be obtained across clusterings.

Problem Formulation. Based on the above discussion, the problem can be formulated
as an optimization problem as follows. Let W and H represent the set of matrices
{W1,W2, . . . ,WK} and {H1, H2, . . . , HK} respectively.

min
W,H

K∑
k=1

{||Tk −WkHk||2}+ α
K∑

k=1
l=1
k<l

{||Hk −Hl||2}

subject to the constraints

Wk ≥ 0 ∀k = 1, 2, . . . ,K
Hk ≥ 0 ∀k = 1, 2, . . . ,K

(3)

(4)

(5)

For example, for DBLP, τ1=author, T1 is the research-area distribution matrix for the
author type. Each row of H1 represents a distribution pattern for the author type and
each row of W1 denotes the probability with which the author belongs to the C′ author
distribution patterns.

The objective function in Eq. 3 is quadratic with respect to Wk or Hk when
the other variable matrices are fixed. Converting to Lagrangian form by introduc-
ing the Lagrangian multiplier matrix variables P = {P1, P2, . . . , PK} and Q =
{Q1, Q2, . . . , QK}, we obtain the following.

min
W,H,P,Q

K∑
k=1

{||Tk −WkHk||2}+ α
K∑

k=1
l=1
k<l

{||Hk −Hl||2}+
K∑

k=1

{tr(PkW
T
k ) + tr(QkH

T
k )} (6)

KKT optimality conditions require the following.
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∂

⎡⎣||Tk −WkHk||2 + α
K∑
l=1
k �=l

||Hl −Hk||2
⎤⎦

∂Hk(i,j)

= Qk(i,j)
∀k = 1, 2, . . . ,K

∂
[
||Tk −WkHk||2

]
∂Wk(i,j)

= Pk(i,j)
∀k = 1, 2, . . . ,K

(7)

(8)

Also, the complementary slackness conditions can be expressed as follows.

Qk(i,j)
×Hk(i,j)

= 0 ∀i, j, k
Pk(i,j)

×Wk(i,j)
= 0 ∀i, j, k

(9)

(10)

Substituting Eqs. 7 and 8 into Eqs. 9 and 10 respectively, we get the following.

⎡⎢⎣W T
k WkHk −W T

k Tk + α
K∑
l=1
k �=l

(
IC

′×C′
Hk − IC

′×C′
Hl

)⎤⎥⎦
(i,j)

×Hk(i,j)
= 0 ∀i, j, k

[
WkHkH

T
k − TkH

T
k

]
(i,j)

×Wk(i,j)
= 0 ∀i, j, k

(11)

(12)

These set of equations can be solved using the following iterative equations.

Wk ← Wk � TkH
T
k

WkHkHT
k

∀k = 1, 2, . . . ,K

Hk ← Hk �

W T
k Tk + α

K∑
l=1
k �=l

IC
′×C′

Hl

W T
k WkHk + α

K∑
l=1
k �=l

IC′×C′Hk

∀k = 1, 2, . . . , K

(13)

(14)

Here 3 denotes the Hadamard product (element-wise product) and A
B denotes the

element-wise division, i.e.
(
A
B

)
i,j

=
Aij

Bij
.

2.4 Community Distribution Outlier Detection

Using the joint-NMF formulation described in the previous sub-section, we obtain the
matrices {Wk}Kk=1. Each row of Hk is a distribution pattern (a cluster centroid) and
each element (i, j) of Wk denotes the probability with which object i belongs to the
distribution pattern j. We define the outlier score of an object as the distance of the
object i of type Tk from the nearest cluster centroid. Thus, the outlier score for an
object i, OS(i) can be written as follows.

OS(i) = argmin
j

Dist(Tk(i,·) ,Hk(j,·)) (15)

An object which is far away from its nearest cluster centroid gets a high outlier score.
Using this outlier definition, one can find outlier scores for all objects of all types. Top
κ objects with highest outlier scores for each type can be marked as outliers.
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Iterative Refinement. If the input data contains outliers, the distribution patterns will
try to overfit to those outliers and hence will be distorted compared to the actual hidden
structure of the clean data, so the distribution pattern discovery needs to be outlier-
aware. Similarly, if the distribution patterns are accurate, outlier detection will be of a
high quality. Therefore, we propose to perform the steps of pattern discovery and outlier
detection iteratively until convergence. At each iteration, while performing pattern dis-
covery we ignore the set of top-κ outliers from each type. For outlier detection, we use
the patterns discovered during the same iteration, to compute outlier scores for all the
objects of all types. Empirically we observed that such an iterative refinement always
converges. However in case the algorithm oscillates (i.e., enters a loop where the set
of outliers detected repeats), the algorithm can be terminated when the set of outliers
detected after any iteration is the same as the one detected in any previous iteration.

We summarize the outlier detection algorithm in Algorithm 1. We initialize the set
of outliers of each type to an empty set (Step 1). The set of outliers is updated itera-
tively and the algorithm terminates when the outliers detected across two consecutive
iterations are the same. Within every iteration, we first obtain Tk for that iteration by
removing the rows corresponding to the current outliers from the original membership
matrix (Step 6). NMF is sensitive to initialization and hence we initialize Wk’s and
Hk’s using clusters discovered by running KMeans [16] on Tk (Step 7). Steps 6 to 13
correspond to pattern discovery using joint-NMF. Steps 14 to 17 correspond to outlier
detection based on the discovered patterns. Finally, the outlier objects are returned.

Algorithm 1. CDOutlier Detection Algorithm (CDODA)
Input: (1) Cluster membership matrices T = {T1, T2, . . . , TK} corresponding to objects of types τ =

{τ1, τ2, . . . , τK}, (2) α, (3)κ.
Output: Top κ CDOutlier objects of each type ({O1, O2, . . . , OK}).
1: Initialize each element of currOutliers = {O1, O2, . . . , OK} to φ.
2: Initialize each element of prevOutliers = {O′

1, O
′
2, . . . , O

′
K} to null.

3: {origTk ← Tk}Kk=1

4: while checkForChange(currOutliers, prevOutliers) do
5: prevOutliers ← currOutliers
6: {Tk ← origTk− rows corresponding to Ok}Kk=1 � Pattern Discovery
7: Initialize {Wk}Kk=1 and {Hk}Kk=1 using {KMeans(Tk)}Kk=1.
8: while NOT converged do
9: for k = 1 to K do

10: Update Wk using Eq. 13.
11: Update Hk using Eq. 14.
12: end for
13: end while
14: for k = 1 to K do � Outlier Detection
15: Compute outlier scores for all objects of type τk .
16: Ok ← top κ objects of type τk with highest outlier scores.
17: end for
18: end while

3 Discussions

In this section, we analyze the time complexity of the proposed CDOutlier detection
method. We also discuss several important issues in implementing the method.

Initialization. The joint-NMF formulation will converge to a local optimum, and thus it
could be sensitive to initialization. Therefore, it is very important to choose an
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appropriate initialization for the algorithm. To initialize the matrix Hk, we run
KMeans [16] on the matrix Tk. Wk is then computed by finding the nearest cluster
for each object and setting the corresponding entry in Wk to 1.

Computational Complexity. The time required for an update to a Wk or Hk matrix
is O(NKC′2). Thus, the pattern discovery phase has a complexity of O(K2INC′2),
where I is the number of iterations for joint-NMF and N is the average number of
objects per type. The outlier detection phase consists of finding top κ outliers per type
which can be done in O(KNlog(κ)) time. Let the number of iterations for the exter-
nal While loop (Steps 4 to 18) be I ′. Thus, the overall complexity of the algorithm is
O(NI ′K(KIC′2 + log(κ))). Note that I ′K(KIC′2 + log(κ)) becomes a small con-
stant when N is large. Thus the algorithm is linear in the number of objects.

Selecting Parameters (α and κ). α determines the amount of regularization applied
when performing the joint-NMF. If we set α to 0, it is as good as performing NMF sep-
arately. A high value of α will favor a solution where there are many shared distribution
patterns across various types, while a low value of α will try to fit the NMF for each
of the types individually without trying to discover any shared distribution patterns.
Hence, the setting of the parameter α is important and domain dependent. If we believe
that the objects of different types interact a lot all across the network, we should use a
higher value for α for better results. κ can be selected based on the percentage of out-
liers expected. Another way of principled thresholding is to set the variance level, for
example, consider any point as an outlier if it is at least two standard deviations away
from the nearest cluster centroid.

4 Experiments

Evaluation of outlier detection algorithms is quite difficult due to lack of ground truth.
We generate multiple synthetic datasets by injecting outliers into normal datasets,
and evaluate outlier detection accuracy of the proposed algorithms on the gener-
ated data. We also conduct case studies by applying the method to real data sets.
We perform comprehensive analysis to justify that the top few outliers returned by
the proposed algorithm are meaningful. The code and the data sets are available at:
http://dais.cs.uiuc.edu/manish/CDOutlier/

4.1 Baselines

Community Distribution Outlier Detection Algorithm (CDO) is the proposed method.
The baseline methods (SI and Homo) are explained as follows.

SingleIteration (SI). As described in Algorithm 1, CDO performs community pattern
discovery and outlier detection iteratively until the set of top κ outliers for each type do
not change. SI is a simpler version of CDO, which performs only one iteration. Thus
the pattern discovery phase in SI suffers from the presence of CDOutliers. This baseline
will help us evaluate the importance of ignoring the CDOutlier noise when computing
the distribution patterns.

http://dais.cs.uiuc.edu/manish/CDOutlier/
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Homogeneous (Homo). CDO performs pattern discovery using joint-NMF across mul-
tiple types. In contrast to this, the baseline Homo treats all objects to be of the same type
and then performs distribution pattern discovery using a single matrix NMF. This base-
line will help us evaluate the importance of modeling heterogeneous data types rather
than reducing them to homogeneous ones in heterogeneous information networks.

4.2 Synthetic Datasets

Dataset Generation
We generate our synthetic dataset as follows. The dataset is represented by the matrices
Tk for 1 ≤ k ≤ K . We start by generating Hk and Wk and then obtain Tk = WkHk.
We first generate a single matrix HC′×C which we consider as a template for generating
the distribution patterns. It appears across different types in a slightly perturbed form.H
is generated as follows. We first fix C′ = 2C. Next, each cluster centroid (a row of H)
could be an impulse probability distribution function at different dimensions or could
have non-zero random probability value for 2 dimensions. Perturb H randomly such
that all objects of the same type follow the same fixed perturbation to get H1, . . . , HK

(Recall K=Number of types). Such a perturbation captures the fact that clusters across
different types of objects deviate slightly from each other. Then {Wk}Kk=1 are generated
such that one element in every row is close to 1, and the remaining probability mass is
distributed uniformly among other elements. These Wk’s and Hk’s could then be used
to generate {Tk = WkHk}Kk=1.

Outliers are injected as follows. First we set an outlierness factor Ψ and choose a
random set of objects, Rk with Nk × Ψ objects of type k. For each object o in Rk, we
choose either a pattern randomly from some other type k′ 
= k or a pattern quite differ-
ent from any pattern in Hk’s. We use this pattern to define the row in Tk corresponding
to the object o, i.e., Tk(o,.)

. Note that patterns in different types are reasonably differ-
ent from each other. Hence, such an object which follows a pattern from some other
type, or a completely different pattern from H itself, can be considered as an outlier for
type k.

Results on Synthetic Datasets
We generate a variety of synthetic datasets capturing different experimental settings.
For each setting, we perform 20 experiments and report the average values. We fix
the threshold for NMF objective function convergence to 0.01. We vary the number of
objects as 1000, 2000 and 5000. We also study the accuracy with respect to variation
in number of object types (2, 3, 4) and variation in the number of communities (4, 6,
8, 10). We also vary the percentage of injected outliers as 1%, 2% and 5%. We fixed
α=0.5 for our experiments. Using these settings, we compare the actual outlier objects
with the top outliers returned by various algorithms. For each algorithm, we show the
accuracy with respect to matches in the set of detected outliers and the set of injected
outliers, in Table 1 (False Positives(%)=100-accuracy). Results for C = 6, 8 are also
similar and we omit them for lack of space. For each experimental setting, we show the
best accuracy obtained in bold. Each of the accuracy values is obtained by averaging
the accuracy across all types of objects for that experimental setting (across 20 runs).
Average standard deviations are 3.07% for CDO, 3.48 % for SI and 2.19% for Homo.
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As the table shows, the proposed algorithm outperforms both of the other algorithms for
most of the settings by a wide margin. On an average across all experimental settings,
CDO is 2.85% better than SI and 21.5% better than Homo. In general, the accuracy of
the proposed algorithm decreases slightly as the amount of outlierness increases to 5%.

4.3 Running Time and Convergence

The experiments were run on a Linux machine with 4 Intel Xeon CPUs with 2.67GHz
each. The code was implemented in Java. KMeans [16] implementation of Weka [11]
was used for initialization of the Hk and Wk matrices. Figure 3 shows the execution
time for CDO algorithm for different number of object types. Note that the algorithm
is linear in the number of objects. These times are averaged across multiple runs of the
algorithm across different settings for degree of outlierness and number of communities.

Figure 4 shows the decrease in the objective function value with respect to the num-
ber of iterations for different dataset sizes (for K=3 and C=10). The figure shows that
the joint-NMF algorithm converges well. The average number of iterations for conver-
gence of joint-NMF are 118, 173 and 242 for datasets of sizes 1000, 2000 and 5000
respectively.

0

100

200

300

400

500

1000 2000 5000

Ti
m

e 
(s

ec
)

Number of Objects (N)

K=2
K=3
K=4

Fig. 3. Running Time (sec) for CDO (Scalabil-
ity)

0
0.02
0.04
0.06
0.08
0.1
0.12

50 100 150 200

Ch
an

ge
 in

 O
bj

ec
tiv

e 
Fu

nc
tio

n 
Va

lu
e

Number of Iterations

N=1000
N=2000
N=5000

Fig. 4. Convergence of joint-NMF

On an average across all experimental settings, the proposed algorithm CDO takes
the following number of external iterations (I ′) of pattern discovery and outlier detec-
tion: 6.21 for N=1000, 6.98 for N=2000 and 7.66 for N=5000.

Table 1. Synthetic Dataset Results (CDO=The Proposed Algorithm CDODA, SI= Single Iteration
Baseline, Homo=Homogeneous (Single NMF) Baseline) for C=4 (left) and C=10 (right)

N Ψ |K| = 2 |K| = 3 |K| = 4
(%) CDO SI Homo CDO SI Homo CDO SI Homo

1000
1 92 91.5 52 81.3 80 53.7 73.8 75 54.2
2 94.2 85.8 60 83.3 83 57.3 76.1 75.4 56.4
5 86.5 70.5 59.5 74.7 67.8 57.2 71 64.4 55.6

2000
1 95 91 56.5 81.2 81.3 54.8 73.1 74.5 52.1
2 90.4 86.1 57.1 81.8 78.3 55.2 74.2 73.8 52.3
5 91.7 72.8 58 73.4 65.4 57.2 74 67.7 55.4

5000
1 92.1 86.4 52.3 80.9 78.4 56.3 72.8 69.1 51.6
2 95.4 94.4 56 79.9 77.2 54.6 74.6 74 53.8
5 88.5 68 60.7 80.4 66.7 57.9 74.8 65.9 56.8

N Ψ |K| = 2 |K| = 3 |K| = 4
(%) CDO SI Homo CDO SI Homo CDO SI Homo

1000
1 97 90.5 51 78 74.3 51.3 69.5 68.2 52.8
2 81.8 81.2 55 67.3 66.8 56.8 65.9 65.6 59
5 78.6 77.2 59.4 69.2 69.1 58.3 68.8 69 56

2000
1 79.2 78 55.5 72.7 71.5 58.2 71.9 72.2 56.6
2 79 78.2 55.8 68.1 68.2 59.2 65.4 65.9 56.1
5 74.4 72.4 61.5 73.1 73.4 58.4 66.4 67.2 56.2

5000
1 97.1 85.7 54.3 77.8 71.2 54.9 69.3 69 58.3
2 75.8 74.4 57.1 68.9 69.3 56.9 69.3 70.8 57.3
5 75 72.1 61.2 70.2 69.5 57.9 68.2 69.9 56.3
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4.4 Regularization Parameter Sensitivity

The joint-NMF optimization problem (Eq. 3) includes a regularization parameter α. We
study the sensitivity of the algorithm with respect to this parameter. Table 2 shows the
accuracy of the proposed CDO algorithm for K=3 and C=6. Across different settings
of the number of objects (N ) and the degree of outlierness (Ψ ), the table shows that the
accuracy is not sensitive to the value of α. We observe that the algorithm provides good
accuracy for any value of α between 0 and 1. Note that α decides how much importance
the algorithm gives to the quality of object clustering within one type versus matches
between clusters obtained across types. Thus, α should be decided for any dataset based
on the size of the dataset and its inter-type cluster structure similarity.

Table 2. Regularization Parameter Sensitivity for K=3,C=6

N Ψ α
(%) 0 0.2 0.5 0.8 1 10

1000
1 85.0 86.3 86.0 86.3 86.3 86.0
2 81.5 83.5 83.3 82.8 82.7 82.2
5 64.2 67.2 66.9 66.4 68.1 66.7

2000
1 82.1 85.5 85.8 85.5 85.3 83.5
2 74.7 78.6 81.0 80.2 80.3 77.7
5 62.3 70.6 70.5 70.5 70.4 69.9

5000
1 80.1 84.5 84.6 84.5 84.5 83.3
2 79.6 82.3 82.7 83.9 83.9 84.1
5 65.6 72.1 71.9 72.0 71.8 71.4

4.5 Real Datasets

Dataset Generation
We perform experiments using 2 real datasets: DBLP and Delicious. We use
NetClus [20] to perform community detection on the datasets since it uses both data
and link information for clustering and is specifically designed to handle heterogeneous
networks. NetClus outputs the matrices T1, . . . , TK which we use as input for the pro-
posed outlier detection algorithm. We found that the proposed method provides much
more interesting top outliers compared to the Homo baseline and we provide case stud-
ies using CDO only, for lack of space.

DBLP: The DBLP network consists of papers, authors, keywords and conferences. We
considered a temporal subset of DBLP1 for 2001-2010. We removed authors with <10
papers during that time period. Our dataset consists of ∼650K papers, ∼480K authors,
3900 conferences, ∼107K keywords and 14 research areas. We obtained a list of con-
ferences from the Wikipedia Computer Science Conferences page2 which labels confer-
ences by research areas. By associating keywords from these conferences with research
areas, we obtained term priors which were used as input for NetClus. We consider each
research area as a community, and thus the number of communities is 14. We experi-
mented with C′=28 (twice the number of communities), α=0.5 and κ =1%.

1 http://www.informatik.uni-trier.de/˜ley/db/
2 http://en.wikipedia.org/wiki/
List of computer science conferences

http://www.informatik.uni-trier.de/~ley/db/
http://en.wikipedia.org/wiki/List_of_computer_science_conferences
http://en.wikipedia.org/wiki/List_of_computer_science_conferences
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Delicious: The Delicious network consists of tagging events, users, URLs and tags.
The dataset consists of all tagging events performed by a randomly chosen list of ∼73K
users from July 1 to July 28, 2010. The tagging events were obtained as RSS feeds3 and
were processed to obtain the desired network. Delicious provides a basic categoriza-
tion on the home page4. We scrap category pages linked from home page to associate
keywords with the categories. We consider these categories as communities and hence
use the number of communities as 10 when running NetClus on the Delicious data. The
categorized keywords are used to supply term priors for NetClus. Our Delicious dataset
consists of ∼73K users, ∼1.3M tagging events, ∼902K URLs, ∼273K tags and 10 cat-
egories. We experimented with C′=20 (twice the number of communities), α=0.5 and
κ =1%.

Results on Real Datasets
Running time for the algorithm is about 1.5 hours for both the datasets. Here, we will
discuss case studies obtained from these datasets. We analyze the top 2 outliers of each
type from the 2 datasets in terms of their community distribution. Objects that have very
small frequency of occurrence may not have an appropriate community distribution.
Hence, we analyze objects with at least 10 links in the network. Note that the outliers
for each type have been obtained using a joint hidden structure analysis across multiple
types, and hence are quite different from outliers obtained using homogeneous network
analysis [6].

DBLP
In DBLP, we observe specialization in one of the 14 categories as clear patterns.
Multiple types of objects share a few patterns, which combine several areas, for exam-
ple, (“Databases”:0.8, “Computational Biology”:0.2). However, some of the other pat-
terns with combinations of research areas are specific to particular types. For example,
the pattern (“Software engineering”:0.3, “Operating systems”:0.6, “others”:0.1) is ob-
served for conferences but not for other types. Similarly, the pattern (“Concurrent Dis-
tributed and Parallel Computing”:0.5, “Security and privacy”:0.45, “others”:0.05) is ob-
served specifically for authors while (“Security and privacy”:0.8,“Education”:0.2) is ob-
served specifically for title keywords. Thus some patterns are shared across types while
others are slightly different. This stresses the need for a joint-NMF-based
clustering.

Authors: Most of the authors publish frequently in such “commonly-paired” categories
or in a single category of their expertise. However our top outliers show interesting
combinations as follows. (Note that the community membership probabilities are shown
in brackets and may not add up to 1; the residual is spread across other communities.)
(1) Giuseppe de Giacomo: Algorithms and Theory (0.25), Databases (0.47), Artificial
Intelligence (0.13), Human Computer Interaction (0.06). Note that the combination of
Algorithms and Theory, Databases and Artificial Intelligence with small contributions
to HCI is rare and hence interesting.

3 http://feeds.delicious.com/v2/rss/
4 http://delicious.com/

http://feeds.delicious.com/v2/rss/
http://delicious.com/
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(2) Guang R Gao: Concurrent Distributed and Parallel Computing (0.41), Computer
Architecture (0.3), Computational Biology (0.27). Similar to the case above, this com-
bination of the research areas is quite rare.

Conferences: Among the top conference outliers are conferences that span across mul-
tiple streams of computer science. The top 2 conference outliers are as follows.
(1) From integrated publication and information systems to virtual information and
knowledge environments5: Databases (0.5), Artificial Intelligence (0.09), Human Com-
puter interaction (0.4). This conference is special because it celebrates an occasion
(65th birthday of Erich J. Neuhold). From the name itself the reader can guess the wide
nature of this conference.
(2) International Conference on Modelling and Simulation: Programming languages
(0.18), Security and privacy (0.29), Databases (0.39), Computer Graphics (0.13). Again,
this combination is quite rare.

Keywords: Finally, we also list the top 2 paper title keywords with high outlierness
scores.
(1) military: Algorithms and theory (0.02), Security and Privacy (0.37), Databases
(0.22), Computer Graphics (0.37). Lots of military sponsored research and paper moti-
vations containing military scenarios results in such a diverse distribution for “military”.
(2) inventory: Security and Privacy (0.29), Databases (0.31), Computer Graphics (0.34),
Computational Biology (0.03). The nearest matching pattern for this one was
(Databases: 0.8, Computational Biology: 0.2). But usually computer graphics and se-
curity and privacy are not associated with these.

Delicious
In Delicious, we observe specialization in one of the 10 categories as clear patterns, as
expected. Different types of objects share a few patterns, which corresponds to com-
binations of categories, for example, “Education” and “Tech and Science”. However,
some of the other patterns with combinations of categories are specific to particular
types. For example, “Arts and Design” and “Tech and Science” is observed for URLs
but not for other types. Similarly, the pattern “Arts and Design” and “Entertainment” is
observed specifically for users and “Lifestyle” and “Sports” is observed specifically for
tags. Thus even in the Delicious dataset, some patterns are shared across types while
others are slightly different.

Users: Most of the users (who tag a sizeable number of pages) tag pages related to a
particular category only. However, there are some users who are experts across multiple
categories. Sometimes their interests are quite diverse and do not follow patterns of
other users. Here, we report top 2 users that the proposed algorithm reported as outliers,
along with the probabilistic categories they belong to. Usually lifestyle and travel are
highly correlated with food, unlike for the user “saassaga”.
(1) saassaga: Arts and Design (0.25), Food (0.04), Lifestyle (0.35), Travel (0.34)
(2) lbbrad: Food (0.24), Lifestyle (0.37), News and Politics (0.37)

5 http://dblp.dagstuhl.de/db/conf/birthday/neuhold2005.html

http://dblp.dagstuhl.de/db/conf/birthday/neuhold2005.html
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Tags: Top 2 tags detected as outliers by our algorithm along with the community dis-
tributions are as follows. It is interesting to note that people often mention “canoeing”
as a sport that they perform often when they travel (e.g., on group outings).
(1) canoeing: Sports (0.62), Travel (0.38). Though there are other sports which people
feel interesting in while traveling, canoeing seems to be a clear exception wrt number
of travel pages it is mentioned on. The closest distribution pattern is (Sports: 1).
(2) rosary: Arts and Design (0.38), Education (0.02), Sports (0.6)

URLs: We find that not many web-pages belong to the Lifestyle and Travel categories
together. As a result the pages that belong partially to the Travel and Lifestyle categories
get marked as top outliers.

(1) http://globetrooper.com/: Lifestyle (0.35), Travel (0.38)
(2) http://vandelaydesign.com/blog/galleries/travel-websites/:
Lifestyle (0.33), Travel (0.48)

In conclusion, our algorithm is effective at finding interesting outliers from real datasets.

5 Related Work

Outlier detection has been studied in the context of a large number of application
domains [1,2,5,6,13,15]. Chandola et al. [3] and Hodge et al. [12] provide extensive
overview of outlier detection techniques. Different from these studies, we perform com-
munity outlier detection for heterogeneous network data.

Individual, Global and Community Contexts. Outlier Detection can be performed at
different levels of context. (1) Individual Context: For example, Type I and Type II Out-
liers [5] in time series are defined based on values observed for the same object across
different time points. (2) Global Context: Stream Outliers [2], DB Outliers [13], Sub-
Structure Outliers [18] are defined based on comparison with all the other objects in
the dataset. (3) Community Context: Different from existing community outlier detec-
tion approaches (Community Outliers [6], CTOutliers [9], ECOutliers [10]), we model
multiple data types in a heterogeneous network simultaneously to find outliers.

Homogeneous versus Heterogeneous Networks. Recently there has been work on
outlier detection for homogeneous networks [2,6,7,10]. While previous work on outlier
detection for heterogeneous networks [14,17] models the anomaly detection problem
in heterogeneous networks as a tensor decomposition problem, we model the problem
using a joint-NMF model to extract distribution patterns, which are further used to
detect outliers. Also compared to our previous work (ABCOutliers [8]) which identified
outlier cliques, this work focuses on finding outlier objects.

6 Conclusions

We introduced the notion of outliers with respect to latent communities for hetero-
geneous networks, i.e., CDOutliers. Such outliers represent objects that disobey the
frequent community distribution patterns. The challenge in detecting such outliers is

http://globetrooper.com/
http://vandelaydesign.com/blog/galleries/travel-websites/
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twofold: (1) correlation between patterns across different types of objects in the net-
work should be considered; and (2) patterns need to be learned by ignoring the outliers,
while outlier detection depends on effective discovery of patterns. To tackle such chal-
lenges, we proposed a joint-NMF optimization framework to learn distribution patterns
across multiple object types, that uses a regularizer for distance between the cluster
centroid matrices of different object types. We derive the update rules to learn the joint
NMF model, which alternately updates the cluster membership and the cluster centroid
matrices. Experiments on a series of synthetic data show the proposed algorithm’s ca-
pability of detecting outliers under various levels of outlierness, data dimensionality,
and number of types. Case studies on DBLP and Delicious datasets reveal some inter-
esting and meaningful outliers. In the future, we plan to extend the framework to handle
multiple temporal network snapshots in a stream scenario.
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Abstract. Protein function prediction is one of the fundamental tasks
in the post genomic era. The vast amount of available proteomic data
makes it possible to computationally annotate proteins. Most computa-
tional approaches predict protein functions by using the labeled proteins
and assuming that the annotation of labeled proteins is complete, and
without any missing functions. However, partially annotated proteins
are common in real-world scenarios, that is a protein may have some
confirmed functions, and whether it has other functions is unknown.

In this paper, we make use of partially annotated proteomic data,
and propose an approach called Protein Function Prediction using
Dependency M aximization (ProDM). ProDM works by leveraging the
correlation between different function labels, the ‘guilt by association’ rule
between proteins, and maximizes the dependency between function labels
and feature expression of proteins. ProDM can replenish the missing func-
tions of partially annotated proteins (a seldom studied problem), and can
predict functions for completely unlabeled proteins using partially anno-
tated ones. An empirical study on publicly available protein-protein inter-
action (PPI) networks shows that, when the number of missing functions
is large, ProDM performs significantly better than other related methods
with respect to various evaluation criteria.

1 Introduction

Proteins are macromolecules that serve as the fundamental building blocks and
functional components of a living cell. The knowledge of protein functions can
promote the development of new drugs, better crops and synthetic biochemicals
[14]. With the development of high-throughput biotechnologies, it is easy to
collect various proteomic data, but the functions of these proteomic data cannot
be determined at the same pace. The availability of vast amount of proteomic
data enables researchers to computationally annotate proteins. Thus various
computational models have been developed to reduce the cost associated with
experimentally annotating proteins in the wet lab.

Numerous computational approaches have been proposed for protein function
prediction. Some approaches assume that two proteins with similar sequences
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should have similar functions. These methods use a kernel function (i.e., string
kernel [12]) to measure the similarity between the sequences of a pair of proteins
and predict their functions. A protein often interacts with other proteins to ac-
complish certain tasks. Some algorithms take advantage of this knowledge and
use protein-protein interaction (PPI) networks to automatically make predic-
tions [5,18,20,24]. Further, some approaches integrate multiple data types (i.e.,
PPI networks, protein sequences, and gene co-expression networks) for protein
function prediction [13,21].

Proteins have multiple functions and each function can be viewed as a la-
bel. These function labels are typically correlated. Traditional protein function
prediction approaches often formulate the problem as a multiple binary classi-
fication problem [12] and ignore the correlation between labels. To avoid this
limitation, multi-label learning is widely used for protein function prediction
[10,15,24]. Multi-label learning can make use of label correlations to boost the
prediction accuracy and assign more than one function to a protein [20,22]. Other
approaches train a binary classifier for each function label, and then organize
these classifiers in a hierarchical (tree or direct acyclic graph) structure according
to the Function Catalogue (FunCat) [16]1 or Gene Ontology [2]2 database [14].
In this paper, we focus on protein function prediction using multi-label learning
and function correlation.

All these approaches assume that the available annotations for the labeled
proteins are complete. In practice, we may just have a subset of the functions of
a protein, and whether some functions are missing is unknown. In other words,
proteins may not be completely annotated [4], i.e., function annotations may be
only partial. This kind of multi-label learning problem is called multi-label weak-
label learning [19], a much less studied problem in the literature [4,22]. Unlike
traditional multi-label learning methods [10,21,24], we study protein function
prediction using incomplete annotations and propose a technique called Protein
Function Prediction using Dependency M aximization (ProDM). ProDM can
replenish the missing functions of partially annotated proteins and predict the
function of completely unlabeled proteins using the partially annotated ones. Our
empirical study on publicly available PPI datasets shows that ProDM performs
better than other related approaches on these two prediction problems, and it is
also computationally efficient.

2 Related Work

Various network-based methods have been proposed for protein function predic-
tion [18]. Schwikowski et al. [17] make predictions for a protein based on the
functions of its interacting proteins. They observed that the interacting pro-
teins are likely to share similar functions, which is recognized as the ‘guilt by
association’ rule. Chua et al. [6] found that indirectly interacting proteins share
few functions, and extended the PPI network by integrating the level-1 (direct)

1 http://mips.helmholtz-muenchen.de/proj/funcatDB/
2 http://www.geneontology.org/

http://mips.helmholtz-muenchen.de/proj/funcatDB/
http://www.geneontology.org/
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and level-2 (indirect) neighbors using different weights. These methods use a
threshold on the predicted likelihood to attach more than one function to a pro-
tein. However, these methods do not take into account the correlation among
functions.

More recently, multi-label learning approaches [23] have been introduced for
protein function prediction. Pandey et al. [15] incorporated function correlations
within a weighted k-nearest neighbor classifier, and observed that incorporating
function correlations can boost the prediction accuracy. Jiang et al. [10] applied
the learning with local and global consistency model [25] on a tensor graph to
predict protein functions. Zhang et al. [24] included a function correlation term
within the manifold regularization framework [3] to annotate proteins. Jiang
et al. [9] conducted label propagation on a bi-relation graph to infer protein
functions. To avoid the risk of overwriting functions during label propagation, Yu
et al. [21] introduced a Transductive Multi-label Classifier (TMC) on a directed
bi-relation graph to annotate proteins. Chi et al. [5] considered the fact that
proteins’ functions can influence the similarity between pairs of proteins and
proposed an iterative model called Cosine Iterative Algorithm (CIA). In each
iteration of CIA, the most confidently predicted function of an unlabeled protein
is appended to the function set of this protein. Next, the pairwise similarity
between training proteins and testing proteins is updated based on the similar
functions within the two sets for each protein. CIA uses the updated similarity,
function correlations, and PPI network structures to predict the functions on
the unlabeled proteins in the following iteration.

All the above multi-label learning approaches focus on utilizing function corre-
lation in various ways and assume that the function annotations on the training
proteins are complete and accurate (without missing functions). However, due
to various reasons (e.g., the evolving Gene Ontology scheme, or limitations of
experimental methods), we may be aware of some of the functions of a protein,
but don’t know whether other functions are associated with the same protein.
Namely, proteins are partially annotated. Learning from partially (or incom-
plete) labeled data is different from learning from partial labels [7]. In the latter
case, one learns from a set of candidate labels of an instance, and assumes that
only one label in this set is the ground-truth label. Learning from partially la-
beled data is also different from semi-supervised and supervised learning, as they
both assume complete labels. In this paper, we study how to leverage partially
annotated proteins, a less studied scenario in protein function prediction and
multi-label learning literature [4,19,22].

Several multi-label weak-label learning approaches have been proposed. Sun
et al. [19] introduced a method called WEak Label Learning (WELL). WELL is
based on three assumptions: (i) the decision boundary for each label should go
across low density regions; (ii) any given label should not be associated to the
majority of samples; and (iii) there exists a group of low rank-based similarities,
and the approximate similarity between samples with different labels can be com-
puted based on these similarities. WELL uses convex optimization and quadratic
programming to replenish the missing labels of a partially labeled sample. As
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such, WELL is computationally expensive. Buncak et al. [4] annotated unlabeled
images using partially labeled images, and proposed a method called MLR-GL.
MLR-GL optimizes the ranking loss and group Lasso in a convex optimization
form. Yu et al. [22] proposed a method called Protein function prediction using
W eak-label Learning (ProWL). ProWL can replenish the missing functions of
partially annotated proteins, and can predict the functions of completely un-
labeled proteins using the partially annotated ones. However, ProWL depends
heavily on function correlations and performs the prediction for one function
label at a time.

To alleviate these drawbacks associated with ProWL, we develop a new
protein function prediction approach called Protein function prediction using
Dependency M aximization (ProDM). ProDM uses function correlations, the
‘guilt by association’ rule [17], and maximizes the dependency between the fea-
tures and function labels of proteins, to complete the prediction for all the func-
tion labels at one time. In our empirical study, we observe that ProDM performs
better than the other competitive methods in replenishing the missing func-
tions, and performs the best (or comparable to the best) in predicting function
for completely unlabeled proteins.

3 Problem Formulation

For the task of replenishing missing functions, we have available n partially anno-
tated proteins. The goal is to replenish the missing functions using such partially
annotated proteins. For the task of predicting the functions of completely unla-
beled proteins, we have a total of n = l + u proteins, where the first l proteins
are partially annotated and the last u proteins are completely unlabeled. The
goal here is to use the l partially annotated proteins to annotate the u unlabeled
ones.

Let Y = [y1,y2, . . . ,yn] be the currently available function set, with yic = 1
if protein i has the c-th function, and yic = 0 otherwise. At first, we can define
a function correlation matrix M

′ ∈ RC×C based on cosine similarity as follows:

M
′
st =

Y T
.s Y.t

‖Y.s‖‖Y.t‖
(1)

where M
′
st is the correlation between functions s and t, and Y.s represents the

s-th column of Y . There exists a number of ways (e.g., Jaccard coefficient [24]
and Lin’s similarity [15]) to define function correlation. Here, we use the cosine
similarity for its simplicity and wide application [5,20,22]. If Y is represented in
a probabilistic function assignment form, Eq. (1) can also be applied.

From Eq. (1), we can see that M
′
st measures the fraction of times function s

and t co-exist in a protein. We normalize M
′
as follows:

Mst =
M

′
st∑C

c=1M
′
sc

(2)
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Mst can be viewed as the probability that a protein has function t given that it
is annotated with function s.

Now, let’s consider the scenario with incomplete annotations and extend the
observed function set Y to Ỹ = YM . Our motivation in using Ỹ is to append
the missing functions using the currently known functions and their correlations.
More specifically, suppose the currently confirmed functions Yi for the i-th pro-
tein have a large correlation with the c-th function (which may be missing), then
it is likely that this protein will also have function c. Based on this assumption,
we define the first part of our objective function as follows:

Ψ1(f) =
1

2

n∑
i=1

C∑
c=1

(fic − ỹic)
2 =

1

2

n∑
i=1

‖F − Ỹ ‖22 (3)

where fic is the predicted likelihood of protein i with respect to the c-th function,
ỹic is the extended function annotation of protein i with respect to the c-th
function, and F = [f1, f2, . . . , fn] is the prediction for the n proteins.

Since a protein has multiple functions, and the overlap between the function
sets of two proteins can be used to measure their similarity, the larger the number
of shared functions, the more similar the proteins are. This function induced
similarity between proteins was used successfully in Chi et al. [5] and Wang et
al. [20]. The function annotations of a protein can be used to enrich its feature
representation. Thus, we define the function-based similarity matrixW f ∈ Rn×n

between n proteins as follows:

W f
ij =

yT
i yj

‖yi‖‖yj‖
(4)

Note that W f
ij measures the pairwise similarity (induced by the function sets of

two proteins) between proteins i and j, whereas Mst in Eq. (2) describes the
pairwise function correlations.

We now define a composite similarity W between pairwise proteins as:

W = W p + ηW f (5)

where W p ∈ Rn×n describes the feature induced similarity between pairs of
proteins. Here W p can be set based on the amino acid sequence similarity of a
protein pair (i.e., string kernel [12] for protein sequence data), or by using the
frequency of interactions found in multiple PPI studies (i.e., PPI networks in
BioGrid3), or the weighted pairwise similarity based on reliability scores from
all protein identifications by mass spectrometry (e.g., Krogan et al. [11]4). η is
a predefined parameter to balance the tradeoff between W p and W f . It is set to
η =

∑n,n
i=1,j=1 W

p
ij/

∑n,n
i=1,j=1 W

f
ij .

The second part of our objective function leverages the knowledge that pro-
teins with similar amino acid sequences are likely to have similar functions. In

3 http://thebiogrid.org/
4 http://www.nature.com/nature/journal/v440/n7084/suppinfo/

nature04670.html

http://thebiogrid.org/
http://www.nature.com/nature/journal/v440/n7084/suppinfo/nature04670.html
http://www.nature.com/nature/journal/v440/n7084/suppinfo/nature04670.html
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other words, we capture the ‘guilt by association’ rule [17], which states that in-
teracting proteins are more likely to share similar functions. This rule is widely
used in network-based protein function prediction approaches [5,17,18,22]. As in
learning with local and global consistency [25], we include a smoothness term as
the second part of our objective function:

Ψ2(f) =
1

2

n∑
i,j=1

‖ fi√
Dii

− fj√
Djj

‖2Wij

= tr(FT (I −D−
1
2WD−

1
2 )F )

= tr(FTLF ) (6)

whereD is a diagonal matrix with Dii =
∑n

j=1 Wij . I is an n×n identity matrix,

L = I −D−
1
2WD−

1
2 , and tr(·) is the matrix trace operation.

Here, we assume the function labels of a protein depend on the feature rep-
resentation of this protein. We encode this assumption as the third part of our
objective function. To capture the dependency between the function labels and
the features of proteins we take advantage of the Hilbert-Schmidt Independence
Criterion (HSIC) [8]. HSIC computes the squared norm of the cross-covariance
operator over the feature and label domains in Hilbert Space to estimate the
dependency. We choose HSIC because of its computational efficiency, simplicity
and solid theoretical foundation. The empirical estimation of HSIC is given by:

HSIC(F, Y, pxy) =
tr(KHSH)

(n− 1)2
=

tr(HKHS)

(n− 1)2
(7)

where H,K, S ∈ Rn×n, Kij = k(xi,xj) is used to measure the kernel induced
similarity between two samples, Sij = s(fi, fj) is used to describe the label
induced similarity between two samples, Hij = δij− 1

n , δij = 1 if i = j, otherwise
δij = 0, pxy is the joint distribution of x and y. HSIC makes use of kernel
matrices to estimate the dependency between labels and features of samples, thus
it can also be applied in the case that there is no explicit feature representation
for the n samples, as in the case of PPI network data. Although there are many
other ways to initialize K and S, in this paper, we set K = W and Sij = yT

i yj

for its simplicity and its strong empirical performance. Alternative initializations
of K and S will be investigated in our future study.

3.1 The Algorithm

By integrating the three objective functions introduced above, we obtain the
overall objective function of ProDM:

Ψ(F ) = tr(FTLF ) + α‖F − Ỹ ‖22 − βtr(HKHFFT ) + γtr(FTF ) (8)

where α > 0 and β > 0 are used to balance the tradeoff between the three
terms. Our motivation to minimize Ψ(F ) is three-fold: (i) two proteins with sim-
ilar sequences (or frequently interacting) should have similar functions, which
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corresponds to the smoothness assumption in label propagation [25]; (ii) pre-
dictions in F should not change too much from the extended function labels
Ỹ ; and (iii) the dependency between the function labels and the features of a
protein should be maximized. In Eq. (8) we also add a term tr(FTF ) (weighted
by γ > 0 ) to enforce the sparsity of F , since each function is often associated
with a relatively small number of proteins.

ProWL [22] makes use of function correlations and the ‘guilt by association’
rule to replenish the missing functions of partially annotated proteins. In addi-
tion, ProDM incorporates the assumption of dependency maximization. ProWL
relies on the function correlation matrix M to extend the observed function an-
notations and to define the weight of each function label of a protein (see Eq.
(3) in [22]). In contrast, ProDM exploits the function correlations to expand
the incomplete function sets. As the number of missing functions increases, the
function correlation matrix M becomes less reliable [22]. Therefore, when the
number of missing functions is large, ProDM outperforms ProWL. In addition,
ProWL predicts each function label separately and computes the inverse of a ma-
trix for each label. ProDM, instead, predicts all C labels at once, and computes
the inverse of a matrix only once. As a result, ProDM is faster than ProWL.
These advantages of ProDM with respect to ProWL are corroborated in our
experiments.

Eq. (8) can be solved by taking the derivative of Ψ(F ) with respect to F :

∂Ψ(F )

∂F
= 2(LF + α(F − Ỹ )− βHKHF + γF ) (9)

By setting ∂Φ(F )
∂F = 0, we obtain:

F = α(L + αI − βHKH + γI)−1Ỹ (10)

In Eq. (10), the complexity of the matrix multiplication HKH is O(n3) and
the complexity of the matrix inverse operation is O(n3). Thus, the time com-
plexity of ProDM is O(n3). In practice, though, L, H , and K are all sparse
matrices, and Eq. (10) can be computed more efficiently. In particular, the
complexity of sparse matrix multiplication is O(nm1), where m1 is the num-
ber of nonzero elements in K. In addition, instead of computing the inverse of
(L+αI −βHKH+ γI) in Eq. (10), we can use iterative solvers (i.e., Conjugate
Gradient (CG)). CG is guaranteed to terminate in n iterations. In each iteration,
the most time-consuming operation is the product between an n×n sparse ma-
trix and a label vector (one column of Ỹ ). Thus, in practice, the time complexity
of ProDM is O(m1n+ tm2nC), where C is the number of function labels, m2 is
the number of nonzero elements in (L+αI−βHKH+ γI), and t is the number
of CG iterations. CG often terminates in no more than 20 iterations.

4 Experimental Setup

Datasets We investigate the performance of ProDM on replenishing missing
functions and predicting protein functions on three different PPI benchmarks.
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The first dataset, Saccharomyces Cerevisiae PPIs (ScPPI), is extracted from
BioGrid5. We annotate these proteins according to FunCat [16] database and
use the largest connected component of ScPPI for experiments, which includes
3041 proteins. FunCat organizes function labels in a tree structure. We filtered
the function labels and used the 86 informative functions. Informative functions
[10,24] are the ones that have at least 30 proteins as members and within the
tree structure these functions do not have a particular descendent node with
more than 30 proteins. The weight matrix W p of ScPPI is specified by the
number of PubMed IDs, where 0 means no interaction between two proteins, and
q > 0 implies the interaction is supported by q distinct PubMed IDs. The second
dataset, KroganPPI is obtained from the study of Krogan et al. [11]6. We use its
largest connected component for the experiments and annotate these proteins
according to FunCat. After the preprocessing, KroganPPI contains 3642 proteins
annotated with 90 informative functions. The weight matrix of W p is specified
by the provider. The third dataset, HumanPPI is obtained from the study of
Mostafavi et al. [13]7. HumanPPI is extracted from the multiple data types of
Human Proteomic data. The proteins in HumanPPI are annotated according
to the Gene Ontology [2]. Similarly to [10,13], we use the largest connected
components of HumanPPI and the functions that have at least 30 annotated
proteins. The weight matrix W p of HumanPPI is specified by the provider. The
characteristics of these processed datasets are listed in Table 1.

Table 1. Dataset Statistics (Avg±Std means average number of functions for each
protein and its standard deviation)

Dataset #Proteins #Functions Avg±Std
ScPPI 3041 86 2.49 ± 1.70
KroganPPI 3642 90 2.20 ± 1.60
HumanPPI 2950 200 3.80 ± 3.77

Comparative Methods. We compare the proposed method with: (i) ProWL
[22], (ii) WELL [19]8, (iii) MLR-GL [4]9, (iv) TMC [21], and (v) CIA [5]. The
first three approaches are multi-label learning models with partially labeled data,
and the last two methods are recently proposed protein function prediction al-
gorithms based on multi-label learning and PPI networks. WELL and MLR-GL
need an input kernel matrix. We substitute the kernel matrix with W p, which
is semi-definite positive and can be viewed as a Mercer kernel [1]. WELL was
proposed to replenish the missing functions of partially annotated proteins. We
adopt it here to predict the functions of completely unlabeled proteins by in-
cluding the unlabeled proteins in the input kernel matrix. MLR-GL is targeted

5 http://thebiogrid.org/
6 http://www.nature.com/nature/journal/v440/n7084/suppinfo/

nature04670.html
7 http://morrislab.med.utoronto.ca/∼sara/SW/
8 http://lamda.nju.edu.cn/code WELL.ashx
9 http://www.cse.msu.edu/∼bucakser/MLR GL.rar

http://thebiogrid.org/
http://www.nature.com/nature/journal/v440/n7084/suppinfo/nature04670.html
http://www.nature.com/nature/journal/v440/n7084/suppinfo/nature04670.html
http://morrislab.med.utoronto.ca/~sara/SW/
http://lamda.nju.edu.cn/code_WELL.ashx
http://www.cse.msu.edu/~bucakser/MLR_GL.rar
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at predicting the functions of completely unlabeled proteins using partially an-
notated proteins. We adapt it to replenish the missing functions of partially
annotated proteins by using all the proteins as training and testing set. As was
done for MLR-GL, we also adapt TMC to replenish the missing functions. Due
to the iterative procedure of CIA, it cannot be easily adapted to replenish miss-
ing functions. The parameters of WELL, MLR-GL, ProWL, TMC, and CIA are
set as the authors specified in their code, or reported in the papers. For ProDM,
we search for optimal α values in the range [0.5, 1] with step size 0.05, and β
values in the range [0.01, 0.1] with step size 0.01. In our experiments, we set
α and β to 0.99 and 0.01, respectively, since we observed that the performance
with respect to the various metrics does not change as we vary α and β around
the fixed values. Similarly to ProWL, we set γ to 0.001.

Experimental Protocol In order to simulate the incomplete annotation sce-
nario, we assume the annotations on the currently labeled proteins are complete
and mask some of the ground truth functions. The masked functions are con-
sidered missing. For presentation, we define a term called Incomplete Function
(IF) ratio, which measures the ratio between the number of missing functions
and the number of ground truth functions. For example, if a protein has five
functions (labels), and two of them are masked (two 1s are changed to two 0s),
then the IF ratio is 2/5 = 40%.

Evaluation Criteria. Protein function prediction can be viewed as a multi-
label learning problem and evaluated using multi-label learning metrics [10,22].
Various evaluation metrics have been developed for evaluating multi-label learn-
ing methods [23]. Here we use five metrics: MicroF1, MacroF1, HammingLoss,
RankingLoss and adapted AUC [4]. These metrics were also used to evaluate
WELL [19], MLR-GL [4], and ProWL [22]. In addition, we design RAccuracy
to evaluate the performance of replenishing missing functions. Suppose the pre-
dicted function set of n proteins is Fp, the initial incomplete annotated function
set is Fq, and the ground truth function set is Y . RAccuracy is defined as follows:

RAccuracy =
|(Y − Fq) ∩ Fp|

|(Y − Fq)|

where |(Y − Fq)| measures how many functions are missing among n proteins
and |(Y −Fq)∩Fp| counts how many missing functions are correctly replenished.
To maintain consistency with other evaluation metrics, we report 1-HammLoss
and 1-RankLoss. Thus, similarly to other metrics, the higher the values of 1-
HammLoss and 1-RankLoss, the better the performance.

5 Experimental Analysis

5.1 Replenishing Missing Functions

We performed experiments to investigate the performance of ProDM on replen-
ishing the missing functions of n partially labeled proteins. To this end, we
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consider all the proteins in each dataset as training and testing data. To per-
form comparisons against the other methods, we vary the IF ratio from 30%
to 70%, with an interval of 20%. A few proteins in the PPI networks do not
have any functions. To make use of the ‘guilt by association’ rule and keep the
PPI network connected, we do not remove them and test the performance of
replenishing missing functions on the proteins with annotations. We repeat the
experiments 20 times with respect to each IF ratio. In each run, the missing func-
tions are randomly masked for each protein according to the IF ratio. F ∈ Rn×C

in Eq. (10) is a predicted likelihood matrix. MicroF1, MacroF1, 1-HammLoss
and RAccuracy require F to be a binary indicator matrix. Here, we consider the
functions corresponding to the r largest values of fi as the functions of the i-th
protein, where r is determined by the number of ground-truth functions of this
protein. To simulate the incomplete annotation scenario, we assume the given
functions of the i-th protein in a dataset are ground-truth functions, and mask
some of them to generate the missing functions. The experimental results are
reported in Tables 2-4. In these tables, best and comparable results are in bold-
face (statistical significance is examined via pairwise t-test at 95% significance
level).

Table 2. Results of replenishing missing functions on ScPPI

Metric IF Ratio ProDM ProWL WELL MLR-GL TMC

MicroF1
30% 93.88±0.12 86.28±0.14 60.49±0.54 23.67±0.50 91.80±0.20
50% 79.09±0.28 68.36±0.36 47.42±0.74 26.98±0.49 77.09±0.28
70% 71.67±0.51 60.09±0.51 42.06±0.04 27.15±0.59 69.79±0.44

MacroF1

30% 94.05±0.18 86.28±0.18 55.35±0.52 24.06±0.79 90.98±0.24
50% 78.39±0.33 67.81±0.36 43.80±0.55 27.45±0.72 74.72±0.35
70% 70.05±0.45 59.45±0.62 38.25±0.87 27.98±0.72 67.34±0.52

1-HammLoss

30% 99.65±0.01 99.20±0.01 97.71±0.03 95.58±0.03 99.52±0.01
50% 98.79±0.02 98.17±0.02 96.95±0.04 95.77±0.03 98.67±0.02
70% 98.36±0.03 97.69±0.03 96.64±0.00 95.78±0.03 98.25±0.03

1-RankLoss

30% 99.67±0.02 95.16±0.02 94.78±0.07 44.38±0.39 99.65±0.02
50% 96.80±0.12 91.95±0.24 90.41±0.24 41.43±0.66 97.06±0.10
70% 94.92±0.17 88.03±0.24 89.01±0.26 38.06±0.77 94.52±0.29

AUC
30% 98.79±0.05 94.92±0.04 93.09±0.04 55.63±0.38 98.77±0.04
50% 95.63±0.14 92.07±0.16 88.24±0.24 54.01±0.66 95.97±0.10
70% 93.09±0.22 88.85±0.20 86.08±0.35 52.60±0.46 93.04±0.29

RAccuracy
30% 49.24±1.28 38.05±1.07 23.94±1.55 46.18±1.04 46.01±1.52
50% 46.57±0.71 32.14±0.92 18.83±1.01 35.59±0.91 42.46±0.76
70% 44.18±1.03 31.41±1.03 17.12±0.12 33.89±0.74 41.42±0.82

From these Tables (2-4), we can observe that ProDM performs much better
than the competitive methods in replenishing the missing functions of proteins
across all the metrics. Both ProDM and ProWL take advantage of function
correlations and of the ‘guilt by association’ rule, but ProDM significantly out-
performs ProWL. The difference in performance between ProDM and ProWL
confirms our intuition that maximizing the dependency between functions and
features of proteins is effective. The performance of WELL is not comparable
to that of ProDM. The possible reason is that the assumptions used in WELL
may be not suitable for the PPI network datasets. The performance of MLR-GL
varies because it is targeted at predicting functions of unlabeled proteins using
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Table 3. Results of replenishing missing functions on KroganPPI

Metric IF Ratio ProDM ProWL WELL MLR-GL TMC

MicroF1
30% 95.51±0.13 93.05±0.08 61.04±0.27 14.78±0.23 88.67±0.12
50% 79.46±0.22 68.39±0.27 48.54±0.67 16.18±0.29 70.93±0.22
70% 70.23±0.35 60.25±0.29 43.72±0.19 16.09±0.34 61.82±0.31

MacroF1
30% 95.70±0.18 94.57±0.15 58.24±0.20 13.71±0.28 88.41±0.12
50% 78.92±0.25 71.51±0.32 52.09±1.08 15.12±0.34 69.20±0.33
70% 69.01±0.40 62.30±0.46 48.79±0.52 14.92±0.35 60.20±0.44

1-HammLoss
30% 99.78±0.01 99.66±0.00 98.08±0.01 95.81±0.01 99.44±0.01
50% 98.99±0.01 98.44±0.01 97.47±0.03 95.87±0.01 98.57±0.01
70% 98.53±0.02 98.04±0.01 97.23±0.01 95.87±0.02 98.12±0.02

1-RankLoss
30% 99.75±0.02 99.61±0.02 96.50±0.03 39.88±0.37 99.52±0.02
50% 96.87±0.12 94.55±0.12 91.60±0.09 39.99±0.27 96.20±0.16
70% 94.37±0.14 91.02±0.25 89.89±0.06 38.48±0.39 93.28±0.19

AUC
30% 98.87±0.04 98.58±0.04 94.90±0.05 45.49±0.28 98.59±0.05
50% 95.47±0.12 92.55±0.15 88.88±0.14 46.65±0.32 94.63±0.18
70% 91.91±0.16 86.90±0.35 85.87±0.10 46.45±0.37 90.58±0.24

RAccuracy
30% 44.97±1.63 14.90±0.98 9.24±0.66 30.90±1.48 23.89±1.30
50% 42.20±0.63 11.04±0.77 7.03±0.22 23.83±0.71 27.89±0.61
70% 36.25±0.75 14.89±0.61 7.68±0.44 21.69±0.80 27.06±0.65

Table 4. Results of replenishing missing functions on HumanPPI

Metric IF Ratio ProDM ProWL WELL MLR-GL TMC

MicroF1
30% 96.60±0.14 95.12±0.14 86.21±0.10 15.76±0.30 91.90±0.15
50% 88.48±0.41 77.18±0.24 64.93±0.26 16.36±0.21 77.98±0.27
70% 79.20±0.55 61.91±0.30 51.91±0.46 16.10±0.29 69.05±0.31

MacroF1
30% 96.21±0.16 94.76±0.16 87.95±0.03 15.79±0.27 91.43±0.15
50% 87.49±0.46 76.86±0.30 70.43±0.18 16.00±0.26 77.05±0.31
70% 77.58±0.53 62.19±0.30 59.05±0.37 15.45±0.26 67.67±0.35

1-HammLoss
30% 99.87±0.01 99.81±0.01 99.48±0.00 96.80±0.01 99.69±0.01
50% 99.56±0.02 99.13±0.01 98.67±0.01 96.82±0.01 99.16±0.01
70% 99.21±0.02 98.55±0.01 98.17±0.02 96.82±0.01 98.83±0.01

1-RankLoss
30% 99.81±0.02 99.74±0.03 97.19±0.03 54.78±0.32 99.73±0.02
50% 98.73±0.07 96.90±0.21 87.55±0.44 58.09±0.29 98.31±0.12
70% 97.50±0.15 93.56±0.41 83.97±0.08 58.35±0.36 96.76±0.21

AUC
30% 98.65±0.04 98.52±0.05 93.51±0.13 54.32±0.22 98.44±0.04
50% 97.37±0.09 95.86±0.15 83.05±0.20 55.90±0.21 96.82±0.10
70% 95.48±0.14 91.31±0.28 76.12±0.48 55.69±0.26 94.64±0.18

RAccuracy
30% 80.39±0.80 71.86±0.79 20.50±0.59 30.92±1.09 53.35±0.83
50% 73.14±0.96 46.78±0.55 18.23±0.62 23.92±0.56 48.66±0.63
70% 63.28±0.97 32.76±0.53 15.09±0.82 21.41±0.45 45.36±0.55

partially annotated proteins, whereas here it is adapted for replenishing missing
functions. TMC is introduced to predict functions for completely unlabeled pro-
teins using completely labeled ones; TMC sometimes outperforms ProWL and
WELL. This is because the missing functions can be appended in the bi-relation
graph. In fact, TMC also makes use of function correlations and the ‘guilt by
association’ rule, but it still loses to ProDM. The reason is that ProDM maxi-
mizes the dependency between proteins’ functions and features. The margin in
performance achieved by ProDM with respect to ProWL and TMC demonstrates
the effectiveness of using dependency maximization in replenishing the missing
functions of proteins.

We also observe that, as more functions are masked, ProWL downgrades much
more rapidly than ProDM. As the IF ratio increases, the function correlation ma-
trixM becomes less reliable. ProWL usesM to estimate the likelihood of missing
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functions and to weigh the loss function. ProDM only utilizes M to estimate the
probability of missing functions and makes additional use of dependency max-
imization. Thus ProDM is less dependent on M . Taking RAccuracy on ScPPI
as an example, ProDM on average is 33.55% better than ProWL, 49.60% better
than WELL, 19.31% better than MLR-GL, and 8.21% better than TMC. These
results confirm the effectiveness of ProDM in replenishing the missing functions.
Overall, this experimental results confirm the advantages of combining the ‘guilt
by association’ rule, function correlations, and dependency maximization.

5.2 Predicting Unlabeled Proteins

We conduct another set of experiments to study the performance of ProDM in
predicting the function of completely unlabeled proteins using partially labeled
ones. In this scenario, l < n proteins are partially annotated and n− l proteins
are completely unlabeled. At first, we partition each dataset into a training
set (accounting for 80% of all the proteins) with partial annotations and into
a testing set (accounting for the remaining 20% of all the proteins) with no
annotations. We run the experiments 20 times for each dataset. In each round,
the dataset is randomly divided into training and testing datasets. We simulate
the setting of missing functions (IF ratio=50%) in the training set as done in
the experiments in Section 5.1, but r is determined as the average number of
functions (round to the next integer) of all proteins. From Table 1: r is set to
3 for ScPPI and KroganPPI, and to 4 for HumanPPI. The results (average of
20 independent runs) are listed in Tables 5-7. Since RAccuracy is not suitable
for the settings of predicting completely unlabeled proteins, the results for this
metric are not reported.

Table 5. Prediction results on completely unlabeled proteins of ScPPI

Metric ProDM ProWL WELL MLR-GL TMC CIA
MicroF1 32.78±1.37 30.06±1.15 16.75±2.03 24.15±1.40 3.67±0.38 20.78±0.38
MacroF1 31.91±1.48 31.33±1.74 5.19±0.71 26.25±1.50 2.00±0.39 26.27±0.39

1-HammLoss 95.73±0.10 95.56±0.09 94.69±0.16 95.19±0.09 93.89±0.05 94.96±0.05
1-RankLoss 73.13±2.72 60.37±1.64 73.57±0.05 41.56±1.06 28.29±0.70 21.82±0.70

AUC 78.40±1.57 78.63±0.74 77.00±0.53 61.47±1.26 55.72±0.84 63.38±0.84

Table 6. Prediction results on completely unlabeled proteins of KroganPPI

Metric ProDM ProWL WELL MLR-GL TMC CIA
MicroF1 22.55±1.35 22.40±0.97 14.35±1.25 13.58±0.86 3.32±0.52 13.78±0.52
MacroF1 18.26±1.53 17.68±1.11 1.47±0.30 12.80±0.92 2.05±0.41 13.85±0.41

1-HammLoss 96.40±0.08 96.40±0.08 96.04±0.03 95.99±0.07 95.52±0.06 95.99±0.06
1-RankLoss 66.69±1.19 75.41±0.88 75.43±0.22 48.40±1.13 61.26±0.89 18.43±0.89

AUC 72.26±0.73 74.78±0.73 74.16±0.12 58.80±1.10 61.35±0.68 59.45±0.68

From Tables 5-7, we can observe that ProDM achieves the best (or compa-
rable to the best) performance among all the comparing methods on various
evaluation metrics. ProDM and ProWL have similar performance in the task of
predicting the functions of completely unlabeled proteins. One possible reason is
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Table 7. Prediction results on completely unlabeled proteins of HumanPPI

Metric ProDM ProWL WELL MLR-GL TMC CIA
MicroF1 24.57±1.03 23.18±1.24 16.43±1.78 12.87±0.76 1.91±0.28 12.86±0.28
MacroF1 20.58±1.18 19.32±0.90 15.55±1.30 11.95±0.78 1.61±0.26 9.90±0.26

1-HammLoss 97.17±0.05 97.11±0.09 96.85±0.10 96.73±0.05 96.33±0.07 96.72±0.07
1-RankLoss 76.70±1.07 76.64±2.01 62.98±1.82 67.89±1.44 50.93±0.77 33.87±0.77

AUC 78.82±1.19 77.41±0.92 62.30±1.38 66.23±0.85 51.78±1.21 67.08±1.21

that F is initially set to Ỹ and {ỹj}nj=l+1 are zero vectors. WELL works better
than MLR-GL in replenishing the missing functions, and it loses to MLR-GL in
predicting the functions of unlabeled proteins. One possible cause is that WELL
is targeted at replenishing missing functions, and here it’s adjusted to predict
functions on completely unlabeled proteins. MLR-GL predicts protein functions
under the assumption of partially annotated proteins, and it is outperformed by
ProDM. MLR-GL optimizes the ranking loss and the group Lasso loss, whereas
ProDM optimizes an objective function based on the function correlations, the
‘guilt by association’ rule, and the dependency between the function labels and
the features of proteins. We can claim that ProDM is more faithful to the char-
acteristics of proteomic data than MLR-GL. For the same reasons, ProDM often
outperforms WELL, which takes advantage of low density separation and low-
rank based similarity to capture function correlations and data distribution.

TMC sometimes performs similar to ProDM in the task of replenishing the
missing functions. However, TMC is outperformed by other methods when mak-
ing predictions for completely unlabeled proteins. A possible reason is that TMC
assumes the training proteins are fully annotated, and the estimated function
correlation matrix M may be unreliable when IF ratio is set to 50%. CIA also
exploits function-based similarity and PPI networks to predict protein functions,
but it’s always outperformed by ProDM and by ProWL. There are two possible
reasons. First, CIA does not account for the weights of interaction between two
proteins. Second, CIA mainly relies on the function induced similarity W f , and
when training proteins are partially annotated, this similarity becomes less reli-
able. CIA performs better than TMC. One reason might be that CIA exploits a
neighborhood count algorithm [17] to initialize the functions on unlabeled pro-
teins in the kick-off step of CIA, whereas TMC does not. All these results show
the effectiveness of ProDM in predicting unlabeled proteins by considering the
partial annotations on proteins.

5.3 Component Analysis

To investigate the benefit of using the ‘guilt by association’ rule and of ex-
ploiting function correlations, we introduce two variants of ProDM, namely
ProDM nGBA and ProDM nFC. ProDM nGBA corresponds to Protein func-
tion prediction using Dependency M aximization with no ‘Guilt By Association’
rule. Specifically, ProDM nGBA is based on Eq. (8) without the first term; that
is, ProDM nGBA uses only the partial annotations and function correlations to
replenish the missing functions. ProDM nFC corresponds to Protein function
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prediction using Dependency M aximization with no Function Correlation. In
ProDM nFC, Y is used in Eq. (8) instead of Ỹ . We increase the IF ratio from
10% to 90% at intervals of 10%, and record the results of ProDM, ProDM nGBA
and ProDM nFC with respect to each IF ratio. For brevity, in Figure 1 we just
report the results with respect to MicroF1 and AUC on HumanPPI.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.4

0.5

0.6

0.7

0.8

0.9

1

IF Ratio

M
ic

ro
F

1

HumanPPI

 

 

ProDM
ProDM_nGBA
ProDM_nFC

(a) HumanPPI (MicroF1)

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0.75

0.8

0.85

0.9

0.95

1

IF Ratio

A
U

C

HumanPPI

 

 

ProDM
ProDM_nGBA
ProDM_nFC

(b) HumanPPI (AUC)

Fig. 1. The benefit of using both the ‘guilt by association’ rule and function correlations
(ProDM nFC is ProDM with no function correlation, and ProDM nGBA is ProDM
with no ‘guilt by association’ rule)

From Figure 1, we can observe that ProDM, ProDM nGBA, and ProDM nFC
have similar performance when few functions are missing. This indicates that
both the ‘guilt by association’ rule and function correlations can be utilized to
replenish the missing functions. However, as the number of missing function
increases, ProDM generally outperforms ProDM nGBA and ProDM nFC. The
reason is that ProDM, unlike ProDM nGBA and ProDM nFC, makes use of both
the ‘guilt by association’ rule and function correlations. This fact shows that it’s
important and reasonable to integrate these two components in replenishing
missing functions.

5.4 Run Time Analysis

In Table 8 we record the average run time of each of the methods on the three
datasets. The experiments are conducted on Windows 7 platform with Intel
E31245 processor and 16GB memory. TMC assumes the training proteins are ac-
curately annotated, and it takes much less time than the other methods. MLR-GL

Table 8. Runtime Analysis (seconds)

Dataset ProDM ProWL WELL MLR-GL TMC
ScPPI 60.77 83.09 1687.09 22.66 2.29
KroganPPI 80.60 134.94 3780.24 32.40 3.62
HumanPPI 64.02 194.62 5445.97 50.68 3.49
Total 178.37 412.65 10913.30 105.74 9.40
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relaxes the convex-concave optimization problem into a Second Order Cone Pro-
gramming (SOCP) [4] problem, and it ranks 2nd (from fast to slow). ProDM takes
less time than ProWL, since ProDM infers the functions of a protein in one step,
whereas ProWL divides the prediction into C subproblems. WELL uses eigen-
decomposition and convex optimization, and it costs much more than the other
methods. As such, it is desirable to use ProDM for protein function prediction.

6 Conclusions

In this paper, we study protein function prediction using partially annotated
proteins and introduce the ProDM method. ProDM integrates the maximiza-
tion of dependency between features and function labels of proteins, the ‘guilt
by association’ rule, and function correlations to replenish the missing functions
of partially annotated proteins, and to predict the functions of completely un-
labeled proteins. Our empirical study on three PPI networks datasets shows
that the proposed ProDM performs significantly better than the competitive
methods. In addition, we empirically demonstrate the benefit of integrating the
‘guilt by association’ rule, function correlations, and dependency maximization
in protein function prediction.
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Abstract. In this paper, we address the problem of classifying entities
belonging to networked datasets. We show that assortativity is posi-
tively correlated with classification performance and how we are able
to improve classification accuracy by increasing the assortativity of the
network. Our method to increase assortativity is based on modifying the
weights of the edges using a scoring function. We evaluate the ability of
different functions to serve for this purpose. Experimental results show
that, for the appropriated functions, classification on networks with mod-
ified weights outperforms the classification using the original weights.

1 Introduction

Relational classification deals with the problem of classifying networked data,
that is, data containing a set of entities that are interlinked with each other. Net-
worked data can be found almost everywhere: from authorship networks, that
link authors sharing a common paper, to the now very popular Online Social
Networks, where users are mainly linked by friendship. Some traditional machine
learning techniques, that deal with independent entities, have been adapted to
handle networked datasets, and new algorithms have also been proposed to man-
age this kind of data. Classification is not an exception. In the last years, many
algorithms have been proposed to take advantage of the linked nature of these
datasets in order to perform classification [1–4].

In this paper, we build on these existing techniques and propose a method
to increase assortativity mixing according to the node class labels. Prior works
[5, 6] have suggested that assortativity with respect to class labels is an indicator
of the level of performance that a relational classifier is able to achieve. So after
proposing a method to increase assortativity, we will evaluate to what extents
this statement is true. We will conduct a systematic analysis of the performances
obtained when classifying different datasets with multiple configurations of the
classifier, and we will show how these performances correlate with the assor-
tativity obtained in both the original graphs and those modified to increase
assortativity. Assortativity has been proposed as a metric to perform automatic
edge selection [5] because preliminary results showed that choosing those edges
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for which higher assortativity was obtained resulted in higher classification per-
formance. However, this preliminary study already showed that the procedure
does not always lead to the best possible performance. It is thus interesting to
evaluate to what extent assortativity is positively correlated with classification
performance.

The contribution of this paper is threefold. First, we propose a method to
increase both node and edge assortativity by modifying the weights of the edges.
This method is based on the usage of scoring functions. We investigate several
scoring functions abilities to increase assortativity for different datasets. Second,
we evaluate the correlation between the level of assortativity found in a graph
and the obtained performance when trying to classify nodes of that graph. We
evaluate correlation for datasets modeling different entities and relationships and
for multiple relational classifiers. Third, we compare the classification results
of the increased assortativity graphs with the original graphs and analyze the
performance improvement.

The rest of the paper is organized as follows. Section 2 describes our pro-
posal for increasing assortativity by modifying the weights of the edges of the
graph. Then, Section 3 presents the experimental results supporting our claims.
First, Section 3.1 presents the datasets used in the experiments. Then, Section
3.2 demonstrates how the proposed method is able to increase assortativity. In
Section 3.3, we define the classification problem that we are facing in order to
show, in Section 3.4, how assortativity is positively correlated with classifica-
tion performance. After that, Section 3.5 demonstrates the effects of using the
proposed method on classification performance. Finally, Section 4 reviews the
related work and Section 5 presents the conclusions and lines for further work.

2 Modifying Edges’ Weight to Increase Assortativity

This section describes the proposed procedure for increasing assortativity. After
defining the notation and the concept of assortativity, we present the set of
scoring functions that we use to test our technique. Then, we show how to
compute the new weights taking into account the results of the scoring functions.

2.1 Notation

Given a graph G = (V,Ew), the set of vertexes V represents the entities in the
networked dataset and the set of edges Ew represents the relationships between
those entities. Since we are dealing with weighted graphs, edges are pairs of
vertexes with an associated weight e = (vi, vj , wij) s.t (vi, vj) ∈ V ×V and wij ∈
R. Because we are dealing with undirected graphs, symmetry is assumed, e =
(vi, vj , wij) = (vj , vi, wji). Let us denote by Γ (vi) the set of adjacent nodes of
vi, that is, Γ (vi) = {vj ∈ V s.t. ∃e = (vi, vj , wij) ∈ E with wij 
= 0}. Finally,
we will use the words entities, nodes, or vertexes interchangeably through the
rest of this paper, as we will do with edges, relationships, and links.

Classification is one of the basic techniques in data mining processes. Clas-
sification problems consist on assigning labels to entities for which the label



592 C. Pérez-Solà and J. Herrera-Joancomart́ı

is initially unknown. Given a set of labeled samples, the goal is to assign la-
bels to the rest of the samples in the dataset. More formally, we denote by
C = {ck, for k = 1, · · · ,m} the set of all possible categories an entity can
be labeled with. Then, there exist a set of nodes Vl ⊂ V for which the map-
ping A : Vl → C is known before classification takes place, and a set of nodes
Vnl = V \ Vl for which the mapping is unknown.1 The goal of the classifica-
tion process is to discover this latter mapping, or a probability distribution over
it. Notice that with this definition, the only uncertainty introduced is the class
membership of the nodes in Vnl.

2.2 Assortativity

Assortativity mixing is the tendency for entities in a network to be connected
to other entities that are like them in some way [7]. This phenomenon has been
much studied for social networks, where users show a preference to link, follow,
or listen to other users who are like them. When dealing with social networks,
assortativity is usually known as homophily. Assortativity (or dissortativity, the
tendency of nodes to be linked to other nodes that are not like them) has been
reported in many kinds of networks. For instance, degree dissortativity has been
observed in protein networks, neural networks, and metabolic networks [7].

Assortativity mixing can be computed according to an enumerative charac-
teristic or a scalar characteristic. In the latter case, degree assortativity is of
special interest because of its consequences on the structure of the network. In
this paper, we are interested on the first alternative, assortativity according to
an enumerative characteristic, where assortativity will be related to the class
label of the nodes for which the classification will take place. From now on, we
will refer to the assortativity regarding the class labels as merely assortativity.

The first hypothesis that we want to test is if it is possible to increase the
assortativity of a graph with respect to the class labels assigned to its nodes
without knowing these class labels. That is, given a graph G = (V,Ew) for which
all class labels are unknown, we want to see if it is possible to design a process
that results in a new graph G′ = (V,E′w) that presents higher assortativity than
G. This scenario is even more restrictive than the usual within-network node
classification scenario, where some of the labels will be known in advance. Note
that although the described process does not need any class label, we make use
of these class labels to evaluate its performance (i.e. to compute assortativity).

In order to compute edge assortativity [7] for a given graph G = (V,E) for
which the mapping A : V → C is known for all V, an edge assortativity matrix e
of size |C|×|C| is constructed. Each cell eij contains the fraction of all edges that
link nodes of class ci to nodes of class cj , normalized such that

∑
∀i,j eij = 1.

Values ai and bi are defined as the fraction of each type of end of an edge that
is attached to vertexes of type ci : ai =

∑
∀j eij and bi =

∑
∀i eij . The (edge)

assortativity coefficient AE is then defined as:

1 Note that l stands for labeled and nl stands for not labeled.
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AE =

∑
∀i eii −

∑
∀i aibi

1−
∑
∀i aibi

Because AE measures assortativity across edges and not across nodes, a node
assortativity metric, AN , is defined in [5]. AN is computed in the same way, now
using the node assortativity matrix e∗ instead of the edge assortativity matrix
e. There are also weighted versions of these metrics that take into account not
only if there exists an edge between two nodes but also the weight of that edge.
Through the rest of the paper, we make use of these weighted versions.

2.3 Scoring Functions

In order to increase both node and edge assortativity in a graph, our proposal is
to modify the weights of the edges of the graph, so that the new weight is able
to better quantify the strength of the relationship that the edges represent. So
we need to find functions that quantify this strength. We make use of functions
that receive as input an unweighted unlabeled graph G = (V,E) and return a
symmetric score, s(vi, vj) = s(vj , vi), for every pair of nodes in V , such that it
quantifies, somehow, the strength of the relationship between nodes vj and vi.
Surely, strength is a very general word and, as a consequence, many functions
meet the requirements to be used as scoring functions.

The set of scoring functions chosen to test our hypothesis was inspired from
those used to solve the link prediction problem in Online Social Networks (OSN).
OSN are very dynamic by nature. Over time, new members join the network
and new relationships are created both between new and old members. The
link prediction problem for OSN consists on inferring which new links are more
likely to appear in the future in a network given only its current state [8]. One
of the approaches that has been followed to deal with this problem is to define
functions that evaluate how likely it is, for a given pair of nodes, to create a
new link. After applying these functions to every pair of nodes in the network,
the algorithm predicts that those pairs of nodes for which the function returns
higher values are the ones who are going to create a new link in the near future.
The used functions try to evaluate the proximity or similarity of the nodes, with
the idea in mind that two nodes that are proximal are more likely to create a
connection in the future than two distant nodes. Depending on which metric is
used to define proximity, many link prediction models are created.

The set of metrics that are used to define proximity in the link prediction
problem meets all the requirements for our scoring functions. What follows is a
short summary of the metrics we have chosen to experiment with.

Number of Common Neighbors (CN): Proximity is usually understood
in terms of describing the common neighborhood. The most direct metric to
measure the common neighborhood is the number of common neighbors, that
is, the cardinal of the intersection between each of the nodes’ neighbors sets:

scoreCN (vi, vj) = |Γ (vi) ∩ Γ (vj)|
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This measure captures how many neighbors two nodes have in common, but
it does not take into account how many non shared neighbors do these nodes
have. In order to also include this information, Jaccard Index is defined.

Jaccard Index (JI): JI is defined as the size of the intersection between the
two nodes neighborhoods divided by the size of the union of the neighborhoods:

scoreJI(vi, vj) =
|Γ (vi) ∩ Γ (vj)|
|Γ (vi) ∪ Γ (vj)|

In a similar fashion, we could want to give higher score to nodes that share
low degree neighbors. Intuitively, it is more difficult that these low degree nodes
have the two evaluated nodes as neighbors than it is for higher degree nodes.

Adamic-Adar (AA): The adaptation to the link prediction model for the
Adamic-Adar metric [9] would take into account the degree of the shared neigh-
bors:

scoreAA(vi, vj) =
∑

vk∈Γ (vi)∩Γ (vj)

1

log (|Γ (vk)|)

However, other studies point metrics that do not follow this line of thought.
Instead of rewarding connections between low degree nodes, some models assume
that high degree nodes tend to create more new links.

Preferential Attachment (PA): The preferential attachment model postu-
lates that the probability that a node vi creates a new link in the network is
proportional to the current degree of vi. Then, the probability that a new link
between two nodes is formed depends on the current degrees of these two nodes:

scorePA(vi, vj) = |Γ (vi)||Γ (vj)|

Apart from looking at the degree of the neighbors, we can also take into
account the density of the common neighbors subgraph.

Clustering Coefficient (CC): The CC of the common neighborhood captures
the number of links existing between the common neighbors, taking into account
how many of those links could exist:

scoreCC(vi, vj) =
2 |{e = (vk, vl) ∈ E s.t. vk, vl ∈ Γ (vi) ∩ Γ (vj)}|

|Γ (vi) ∩ Γ (vj)|(|Γ (vi) ∩ Γ (vj)| − 1)

Note that all the proposed metrics are based on analyzing the common neigh-
borhood that any two nodes may share. Apart from these metrics, other topolog-
ical measures have been proposed to be used in link prediction. These measures
take into account distances between nodes, paths among them, or similarity. A
review of some of these metrics can be found in [8].
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2.4 Modifying Edges’ Weight

Once we have a set of functions evaluating the strength of a relationship, we
need to define how to modify the original graph, which already has weights, so
that it includes the results of the scoring functions. We propose to modify each
weight by directly multiplying it by the result of the scoring function:

w′ij = scorefunc(vi, vj) ∗ wij

By doing so, we attain two different goals. On one hand, we ensure that no
new edges are created. Recall that the scoring function is defined for every pair
of nodes of the graph, whether they share a link or not. By multiplying the result
of the scoring function by the original weight, we guarantee that all nodes that
do not share a link in the original graph (and thus have w = 0) will not share
a link on the modified graph. On the other hand, we allow all scoring functions
to eliminate non-relevant edges by assigning them a score of 0.

3 Experimental Results

This section describes the methodology used to evaluate the proposed techniques
as well as the results of the experiments performed in order to do this evaluation.

3.1 Datasets

This paper’s experiments are based on several relational datasets which have al-
ready been used in the past by the relational learning community. This allows us
to compare our results directly with those found on prior studies while providing
a set of diverse graphs coming from different environments to prove our claims.

Table 1. Original datasets

Dataset |C| Edge set |V | |E|
WebKB Cornell 7 Cocitations 351 26832
WebKB Cornell 7 Links 351 1393
WebKB Texas 7 Cocitations 338 32988
WebKB Texas 7 Links 338 1002
WebKB Washington 7 Cocitations 434 30462
WebKB Washington 7 Links 434 1941
WebKB Wisconsin 7 Cocitations 354 33250
WebKB Wisconsin 7 Links 354 1155

IMDb 2 All 1441 48419
IMDb 2 Prodco 1441 20317

Industry 12 Pr 2189 13062
Industry 12 Yh 1798 14165

Cora 7 All 4240 71824
Cora 7 Cite 4240 22516
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All the experiments described in this paper are made using essentially 4 differ-
ent datasets. For each of the datasets, various graphs can be created attending
on the kind of relationships taken into account to define the edges or the source
of information used to create the graph. This results in a total of 14 different
graphs to experiment with. Table 1 presents a short summary of the key prop-
erties of each dataset. Note that these datasets are of very different nature and
that the differences between graphs constructed using different edges or differ-
ent datasets are strongly pronounced. The fact that our assumptions hold for
most of the presented datasets is thus a good indicator of the soundness of the
presented techniques. The original datasets used in this paper can be found in
[10] together with a more detailed description of their content.

3.2 Assortativity Measurements

Table 2 shows the obtained edge assortativity (AE) values for the original graph
as well as for the graphs modified using the scoring functions (in bold type those
of which assortativity improves w.r.t. the original graph). The first thing to notice
is that original graphs present very different edge assortativity values, and even
one of the graphs presents a negative value, although it is close to 0. So we are
dealing with graphs that do not show any kind of assortativity nor dissortativity
together with graphs that show very high assortativity (for instance, coracite
presents a value of 0.74). When analyzing the success of the different scoring
functions in increasing edge assortativity, we can observe that using the Jaccard
Index (JI) leads to an increase on AE for all graphs. Then, there is a set of
three graphs (Cornellcocite, Washingtoncocite, and Coraall) for which none of the
other scoring functions are able to increase AE . Apart from Jaccard Index, both

Table 2. Edge assortativity

Graph Original AA CC CN JI PA

Cornellcocite 0.22701 0.19305 0.21925 0.18095 0.24969 0.13277

Cornelllink 0.05404 0.05860 0.09348 0.11501 0.12689 −0.25756
Texascocite 0.46064 0.47667 0.45137 0.45240 0.61685 0.29227

Texaslink −0.03256 0.25315 0.29175 0.29279 0.50357 −0.22091
Washigntoncocite 0.30070 0.27731 0.29330 0.25166 0.36886 0.19694

Washingtonlink 0.08401 0.19725 0.05016 0.15769 0.43920 −0.29734
Wisconsincocite 0.57683 0.65363 0.58620 0.64662 0.74448 0.44479

Wisconsinlink 0.16045 0.45262 0.38430 0.50690 0.54182 0.21701

IMDball 0.30519 0.39482 0.33020 0.38908 0.44831 0.24412

IMDbprodco 0.50085 0.52631 0.49038 0.53462 0.50723 0.52579

Industrypr 0.44210 0.54537 0.47248 0.54325 0.53394 0.48832

Industryyh 0.44061 0.47978 0.41910 0.45753 0.51627 0.38919

Coracite 0.73664 0.81468 0.81058 0.80629 0.84720 0.65804

Coraall 0.65627 0.65103 0.64375 0.64624 0.67744 0.58648
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the Adamic-Adar metric (AA) and the size of the common neighborhood (CN)
are also quite successful, with 11 out of 14 and 10 out of 14 graphs showing an
increase on assortativity, respectively. Finally, Clustering Coefficient leads to an
increase of AE on just half of the graphs, while Preferential Attachment is able
to do so for only 3 graphs.

The magnitude of the assortativity growth also differs depending on the used
scoring function. While JI usually leads to the biggest growth, that is not true
for all the cases. For instance, both CN and AA are able to surpass JI for the
IMDBprodco and Industrypr graphs.

Table 3. Node assortativity

Graph Original AA CC CN JI PA

Cornellcocite 0.15595 0.17092 0.15571 0.16393 0.20798 0.12103

Cornelllink1 0.03999 0.08155 0.03542 0.12417 0.12070 −0.12177
Texascocite 0.39393 0.44062 0.37213 0.42317 0.55223 0.28926

Texaslink1 0.04574 0.24626 0.21532 0.29777 0.48132 −0.12948
Washingtoncocite 0.16165 0.19945 0.14190 0.17674 0.21560 0.15828

Washingtonlink 0.02381 0.13928 0.03976 0.10134 0.36904 −0.14483
Wisconsincocite 0.45537 0.55342 0.46367 0.55227 0.60544 0.39855

Wisconsinlink 0.19886 0.41702 0.32907 0.47819 0.50172 0.20973

IMDball 0.29626 0.38699 0.32643 0.38093 0.44384 0.23210

IMDbprodco 0.50011 0.52696 0.49147 0.53516 0.50827 0.52552

Industrypr 0.38282 0.38206 0.35325 0.37290 0.38263 0.38222

Industryyh 0.38541 0.35086 0.37761 0.32570 0.42881 0.24248

Coracite 0.72968 0.81079 0.81299 0.80202 0.84906 0.65219

Coraall 0.64420 0.63709 0.63393 0.63092 0.67066 0.55912

Table 3 shows the obtained values for node assortativity (AN ). In this case,
there is a graph (Industrypr) for which none of the modified graphs are able
to surpass the original graph assortativity. Nonetheless, AN does not decrease
substantially for any of the modified graphs, so no negative consequences will
appear by using the modifications. Leaving aside this graph, results for AN are
similar than those showed for AE . Graphs modified using JI exhibit higher AN

than the original ones for all datasets, and both the AA and the CN are able to
increase AN for most of the graphs (11 out of 14 and 10 out of 14, respectively).
Graphs modified using CC and PA do not show an increase on AN for most of
the graphs.

We have shown that it is possible to increase both edge and node assortativity
without knowing the node class labels. Using Jaccard Index as a scoring function
results in a general increase on (node and edge) assortativity. The usage of the
CN and AA as scoring functions also leads to an increase on assortativity for
most of the graphs, although this increase can not be observed for all them. In
these cases where assortativity does not increase, it is worth to note that the



598 C. Pérez-Solà and J. Herrera-Joancomart́ı

magnitude of the decrease is small. The graphs modified using CC as scoring
function do not show a significant increase in assortativity, so this metric does
not seem to be a good alternative to use with general graphs. Lastly, the use of
PA as a scoring function must be discarded, as it does not show any improvement
over the non-modified graph.

The poor performance of PA in increasing assortativity may be explained by
the fact that preferential attachment is a model of network growth, that is, it
explains how likely it is for a node to get new links, but, unlike the other scoring
functions, it does not quantify the strength of the created link in any manner.
On the contrary, the relationships involving very high degree nodes (which get
high scores when using PA), will most likely be very weak connections. Note that
all the other scoring functions, although they can be used to predict the creation
of non existing links, also quantify, in some way, the strength of the relationship
between any two nodes.

3.3 Classification Algorithms

We use the Netkit toolkit [5] as the relational classification framework. By using
Netkit, we are able to systematically test different classifiers and compare the
results. Classifiers in Netkit are comprised by a local classifier (LC), a relational
classifier (RL), and a collective inference procedure (CI). Each of the different
modules can be instantiated with many components. In our experiments, we
allow the LC to be instantiated with either classpriors (cp) or uniform (unif);
the RL component can be instantiated with Weighted-Vote Relational Neighbor
Classifier (wvrn), its Probabilistic version (prn), the Class-distribution Rela-
tional Neighbor Classifier2 (cdrn-norm-cos), and Network-Only Bayes Clas-
sifier (no-bayes); the IC module can be specified with Relaxation Labeling
(relaxLabel), Iterative Classification (it), or without any inference method
(null).3 This give us 2× 4 × 3 = 24 different full classifiers. For the rest of the
paper, we will use the term full classifier (fc) to refer to a specific instantiation
of the three modules (LC-RC-CI).

In order to measure classification accuracy or performance of each classifier we
use the percentage of (initially unlabeled) nodes in the test set that the classifier
is able to correctly classify. Since our datasets contain the class labels for all
nodes, we are able to compute this accuracy by taking the labels as the ground
of truth.

3.4 Correlation between Assortativity and Performance

Once we have shown in Section 3.2 that it is possible to increase assortativity,
we have to analyze if this increase in assortativity leads to an increase on classi-
fication performance. Intuitively, this is almost tautological for some relational

2 With Normalized values of neighbor-class and using the cosine distance metric.
3 Readers can refer to the original Netkit paper [5] for a full explanation of these
modules.
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classifiers [5], but the relation is not so obvious for some other classifiers. In order
to test our second hypothesis, namely, that assortativity is positively correlated
with classification performance, we compute assortativity as in Section 3.2 and
classification performances as described in Section 3.3.

We are interested in analyzing the correlation between assortativity and classi-
fication performance. We expect that when assortativity increases, classification
performance also increases. So we want to discover if the function that describes
the relationship between these two variables is monotonically increasing. How-
ever, we are not concerned on finding the exact function that describes this
relationship.

Spearman’s rank correlation coefficient is a measure of statistical dependence
between two variables that assesses how well this relationship can be described
using a monotonic function [11]. The Spearman’s coefficient can take values be-
tween −1 and 1, with −1 describing a perfect decreasing monotonic function
and 1 characterizing a perfect increasing monotonic function.4 So we can use
the Spearman’s rank correlation coefficient to asses whether assortativity is pos-
itively correlated with performance.

In the interest of comparing classification performance between different
datasets, we use the notion of relative error reduction as defined in [5]:

ERREL(fc,D, r) =
base error(D) − error(fc,D, r)

base error(D)

The base error for a given dataset D is the error committed when predicting
that all samples belong to the most prevalent class. The error for a given dataset
D, a full classifier fc, and a labeled ratio r is the error committed when trying to
classify the 1 − r% remaining samples with the specific configuration described
by fc. Note that although the error reduction metric is not bounded, its value
is inside the [0, 1] interval when base error(D) ≥ error(fc,D, r), which is the
most common scenario.

Although classification performance increased with the labeled set ratio (as we
will see in Section 3.5), no significant differences where observed on the correla-
tion between performance and assortativity for different r values. Table 4 shows
the Spearman’s rank correlation coefficient between the node and edge assorta-
tivity of each of the graphs and the error reduction achieved when classifying
those graphs with the different full classifiers. Results presented on the table
correspond to the experiments with r set to 35%. Each of the values represents
the correlation between the 84 graphs5 assortativity values and the 100−run
mean performance obtained when classifying those graphs. As it was expected,
we found a positive correlation between both edge and node assortativity for all
full classifiers, with the Spearman’s rank coefficient ranging between 0.44 and
0.73 for node assortativity and between 0.44 and 0.71 for edge assortativity.

4 When data does not contain repeated values.
5 Notice that the total number of graphs tested comes from the 14 original graphs
plus the ones obtained using each of the 5 scoring functions.
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Table 4. Spearman’s rank correlation coefficient between error reduction and assorta-
tivity (r=0.35)

Full classifier AN AE Full classifier AN AE

cprior-wvrn-it 0.6264 0.6315 unif-wvrn-it 0.5986 0.6049

cprior-prn-it 0.4481 0.4474 unif-prn-it 0.4448 0.4417

cprior-nobayes-it 0.4949 0.5054 unif-nobayes-it 0.5002 0.5121

cprior-cdrn-norm-it 0.7362 0.7175 unif-cdrn-norm-it 0.6819 0.6676

cprior-wvrn-relaxLabel 0.5213 0.5171 unif-wvrn-relaxLabel 0.5355 0.5415

cprior-prn-relaxLabel 0.4534 0.4831 unif-prn-relaxLabel 0.4423 0.4757

cprior-nobayes-relaxLabel 0.5100 0.5357 unif-nobayes-relaxLabel 0.5205 0.5471

cprior-cdrn-norm-relaxLabl 0.4863 0.5015 unif-cdrn-norm-relaxLabl 0.4894 0.4848

cprior-wvrn-null 0.5318 0.5304 unif-wvrn-null 0.5390 0.5491

cprior-prn-null 0.4627 0.4893 unif-prn-null 0.4669 0.5016

cprior-nobayes-null 0.5103 0.5342 unif-nobayes-null 0.5431 0.5644

cprior-cdrn-norm-null 0.4963 0.5063 unif-cdrn-norm-null 0.4956 0.4903

The Spearman’s rank correlation coefficient is positive and greater than 0.44
for all the classifiers, which denotes that there exists a positive correlation be-
tween both node and edge assortativity and classification performance. The
strength of this correlation varies depending on the specific classifier configu-
ration. However, the values are quite high considering that different datasets are
compared together. Although relative error reduction is used instead of classifi-
cation accuracy, which already tries to compensate the differences between base
errors on the different datasets, the different nature of the used graphs introduces
additional complexity. When evaluating the different datasets independently6,
we found that the correlation was almost perfect for some datasets and worse for
some other datasets. For instance, Cornellcocite, Texascocite, and IMDball showed
a correlation of 0.9429 (node assortativity and relative error reduction for the
cp-wvrn-it configuration), while other datasets such as the four university ones
with link edges showed very low correlation, or even a negative one.

3.5 Increasing Classification Performance

Once we have showed that we are able to increase assortativity using our scoring
functions and that assortativity is positively correlated with performance, we
want to observe the results of our third hypothesis, namely, that using scoring
functions to correct weights can improve relational classification. In order to
evaluate the degree in which using scoring functions improves networked classifi-
cation, we use the 24 different full classifiers with all the available graphs. Since
we have 14 original graphs and 5 different variations of each of these graphs
can be obtained by using the different scoring functions, all the experiments are
done with 14 × 6 graphs. For each graph and classifier, we repeat the process
of selecting new train and test sets 100 times and define the performance of the
full classifier with respect to a given graph and a labeled ratio r as the mean
of these 100 different runs. We repeated the process for different labeled ratios
(train set sizes): 20%, 35%, 50%, and 65%.

6 We omit these individual results due to space constraints.
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(a) cp-cdrn-it (b) cp-noB-it (c) cp-prn-it (d) cp-wvrn-it

(e) cp-cdrn-null (f) cp-noB-null (g) cp-prn-null (h) cp-wvrn-null

(i) cp-cdrn-rL (j) cp-noB-rL (k) cp-prn-rL (l) cp-wvrn-rL

(m) unif-cdrn-it (n) unif-noB-it (o) unif-prn-it (p) unif-wvrn-it

(q) unif-cdrn-null (r) unif-noB-null (s) unif-prn-null (t) unif-wvrn-null

(u) unif-cdrn-rL (v) unif-noB-rL (w) unif-prn-rL (x) unif-wvrn-rL

Fig. 1. Performances comparison for all the classifiers and the different graph variations

for the Cornellcocite dataset: Original ( ), AA ( ), CC ( ), CN ( ), JI ( ), PA

( )
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Figure 1 shows the results of this classification for Cornellcocite dataset. First,
we can see that for all the classifiers but those using Network-Only Bayes (noB),
classification accuracy increases as the training set size grows. As the labeled
ratio increases, best models can be built and more correct information is available
to do the predictions.

Second, we can appreciate that the performance offered by the scoring func-
tions strongly depends on the specific relational classifier (RL) used. Graphs
showing the results for the same RL instantiation and different LC and IC com-
ponents present very similar curves.

For cdrn-cos and wvrn, the graph modified with JI leads to the best perfor-
mance; the graphs modified with AA, CC and CN give similar results than the
original graph, sometimes showing slightly better performance than the original
graph; PA modifications offer the worst results, not being able to increase per-
formance over the original graph. Performance when using prn is also consistent
when varying the LC and IC components: the graph modified with JI always
offers the best accuracy, sometimes increasing performance over 10%; CC is
slightly better than the original graph; and AA, CN, and PA do not overcome
the performance achieved with the original graph. Network-Only Bayes results
are the same for all the LC-IC variations.

Independently of the selected full classifier, the graph modified with Prefer-
ential Attachment always offers worse performance than all the other graphs.
This is consistent with the results showed in Section 3.2, where we could observe
that the assortativity values always decreased when using PA as scoring func-
tion. This is also true for the graphs modified with JI, where we could see that
assortativity always increased along with performance.

Due to space constrains, we are not able to include the results for all the
datasets. The results for the other datasets showed the same consistency when
using the same relational classifier and varying the LC and IC components. JI
also regularly performed better than all the other alternatives for all fc when
testing Washingtoncocite, Wisconsincocite, Texascocite, and IMDball.

7 JI was over-
come by CC for some specific full classifiers for Texaslink and Cornelllink datasets,
and sometimes for other modified graphs or even for the original graph for the
Washingtonlink and Wisconsinlink datasets. However, for both Cora and Indus-
try datasets, the graph modified with JI did not show a significant improvement
over the original graph.

4 Related Work

The problem of classifying networked data has been a recent focus of activity
in the machine learning research community, with special interest on adapting
traditional machine learning techniques to networked data classification.

7 The exceptions were 2 out of 24 fc in Texascocite for which the original graph per-
formed better than JI, and some specific r values and classifiers in IMDball.
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In [5], the authors present a relational classifier toolkit. Beyond the actual
toolkit itself and by describing each of its modules, the authors review different
algorithms that can be used to classify networked data.

Many algorithms for relational classifiers have been proposed in the past.
In [1] the authors present the Relational Neighbor (RL) classifier based on the

principle of homophily, where the probability of a sample belonging to a given
class is proportional to the number of neighbors of that sample belonging to the
same class.

The Weighted Vote Relational Classifier (WVRN) estimates class-membership
of a node as the weighted mean of the class-membership probabilities of the
neighbors of that node.

The Class-Distribution Relational Neighbor classifier (CDRN) is presented in
[5], where the probability of class membership of a node is estimated by the
similarity of its class vector with the class reference vector. The class vector of
a node is defined as the vector of summed linkage weights to the various classes
and the class reference vector for a given class is the average of the class vectors
for nodes known to be of that class.

Network Only Bayes classifier (nBC) [2] uses naive Bayes classification based
on the classes of the nodes’ neighbors to classify hyperlinked documents.

In [4] the Network-Only Link-Based classification (nLB) is presented, which
uses regularized logistic regression models to classify networked data.

Since in relational classification problems entities are interlinked, the predicted
class of a specific node may have consequences on the prediction of another
node’s class. For this reason, the method of independently classifying entities,
which may be of use in traditional machine learning approaches, may not be the
best way to deal with interlinked data. The process of simultaneously classifying
a set of linked entities is known as collective inference. It has been shown that
collective inference improves classification accuracy [12].

Collective inference may improve probabilistic inference in networked data
[12]. Many CI methods are used in relational learning: Gibbs sampling [13],
relaxation labeling [2], and iterative classification [4, 14] are the most used.

Relational classification has been applied to email classification [15], with a
dataset of mails being linked only by parent-children relationships; to topic clas-
sification of hypertext documents [2]; to predict movie success with IMDb data,
linking movies with a shared production company [1, 5]; to sub-topic prediction
in machine learning papers [5]; to age, gender, and location prediction of bloggers
[16]; and many other networked data classification problems.

5 Conclusions

We have showed that it is possible to increase the assortativity of a graph ac-
cording to the node class labels with a very simple technique based on the
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usage of scoring functions. We have evaluated different scoring functions and
demonstrated that using Jaccard Index (JI) always results in an increase on
edge assortativity and, on all datasets but one, also in node assortativity. The
usage of Common Neighbors (CN) and Adamic-Adar (AA) also leads to an
increase on both node and edge assortativity for most of the tested datasets.

Although we have showed that there is a positive correlation between an
increase on assortativity and an increase on classification performance, this cor-
relation is not perfect (which supports preliminary tests done in [5]). Note that
while we are dealing with a single assortativity value for each graph, many vari-
ables are involved in the performance obtained when classifying: from the spe-
cific configuration that the classifier adopts to the effect of choosing a concrete
split of the training and test samples. So each assortativity value is compared
against multiple classification performance results obtained when using different
full classifiers.

Regarding the performance improvements achieved when using the modified
graphs, the experiments showed that using Jaccard Index to modify the weights
of the edges results in a general improvement of classification performance, al-
though not for absolutely all the possible classifier configurations and datasets.
The performance improvement when using CC, AA, and CN as scoring func-
tions strongly depended on the selected dataset and, in a lesser extent, on the
relational classifier instantiated. This opens an interesting line for future work:
trying to identify the set of graph properties that determine which classifier (and
scoring function) will lead to the best performance results.

Moreover, in this paper we were focused on evaluating different scoring func-
tions and their effect on assortativity and performance. However, no specific ef-
forts were devoted to construct the best possible scoring function. In this sense,
a combination of the scoring functions that offered the best results may lead to
a higher increase on classification performance. Trying to find the best possible
scoring function is left as future work.

The techniques described in this paper can be applied to directed graphs
following the naive procedure of computing the scoring functions over the un-
derlying undirected graph obtained when omitting the direction of the edges.
Since afterwards the results of the scoring functions are multiplied by the origi-
nal weight in order to compute the new weight, edges between the same nodes
differing only on the direction could be able to obtain different modified weights.
Although the procedure seems feasible, it will be interesting to think about other
techniques improving this naive approach.
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Abstract. In this paper we introduce an approximation of theWeisfeiler-
Lehman graph kernel algorithm aimed at improving the computation
time of the kernel when applied to Resource Description Framework
(RDF) data. Typically, applying graph kernels to RDF is done by ex-
tracting subgraphs from a large RDF graph and computing the kernel on
this set of subgraphs. In contrast, our algorithm computes the Weisfeiler-
Lehman kernel directly on the large RDF graph, but still retains the sub-
graph information. We show that this algorithm is faster than the regular
Weisfeiler-Lehman kernel for RDF data and has at least the same per-
formance. Furthermore, we show that our method has similar or better
performance, and is faster, than other recently introduced graph kernels
for RDF.

Keywords: Resource Description Framework (RDF), Graph Kernels,
Weisfeiler-Lehman.

1 Introduction

Machine learning techniques have been widely used to populate the semantic
web, i.e. to create linked data. In contrast, there has been relatively little research
into learning directly from the semantic web. However, the amount of linked data
available is becoming larger and larger and provides interesting opportunities for
data-mining and machine learning.

Kernel methods [1,2] are popular machine learning techniques for handling
structured data. To deal with data structured as graphs, graph kernels, such as
described in [3] and [4], have been developed.

The representation/storage format of the semantic web is the Resource De-
scription Framework (RDF). The RDF format essentially represents a graph.
Therefore, learning from RDF can potentially be accomplished using graph ker-
nel methods on RDF. Research on this is in its infancy and, to the best of our
knowledge, there currently exists one paper [5] on this topic. In [5] the authors
introduce two types of graph kernels, designed for RDF, and compare these to
general graph kernels in two tasks. The authors conclude that the introduced
kernels work better or just as well as the general graph kernels. For the applica-
tion of most of the graph kernels, instances are represented as (small) subgraphs
extracted from a larger RDF graph.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 606–621, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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Graph kernel computation is in general slow, since it is often based on com-
puting some form of expensive (iso)morphism between graphs. In this paper we
present an approximation of the Weisfeiler-Lehman graph kernel [4] to speed up
the computation of the kernel on RDF data. This approximation exploits the
fact that the subgraph instances for RDF learning tasks are usually extracted
from the same large RDF graph. We test this kernel on a number of learning
tasks with RDF data and compare its performance to the graph kernels designed
for RDF described in [5].

Kernel methods have not been widely applied to RDF data. Earlier attempts
have been [6] and [7]. In [6] kernels are manually designed by selecting task rel-
evant properties and relations for the instances, and then incorporating these in
the kernel measure. Kernels are built from RDF using inductive logic program-
ming rules in [7]. The approach to learning from RDF using graph kernels is
more generally applicable than both these methods. Other attempts at learning
from semantic web data are based on description logic [8,9]. These approaches
are applicable to a smaller part of the semantic web, since not everything on
the semantic web is nicely formalized as description logic ontologies, whereas
nearly everything on the semantic web is available as RDF. Other specifically
tailored approaches for data-mining form the semantic web are, for instance,
using statistical relational learning [10].

The rest of this paper is structured as follows. Section 2 introduces our adap-
tion of the Weisfeiler-Lehman graph kernel for RDF data. We present our experi-
ments with this kernel in Sect. 3. Finally, we end with conclusions and suggestions
for future work.

2 Weisfeiler-Lehman Graph Kernel for RDF

In the following section we first briefly introduce RDF data. Then we define the
regular Weisfeiler-Lehman kernel for graphs. Finally we introduce our adaption
of this kernel to speed up computation on RDF data.

2.1 The Resource Description Framework

The Resource Description Framework (RDF) is the foundation for knowledge
representation on the semantic web. It is based on the idea of making statements
about resources in a subject-predicate-object form. Such expressions are dubbed
triples. The RDF specification1 defines a number of classes, for the subjects and
objects, and properties, for the predicates. Moreover, users can, and should add
their own classes and objects.

For example, suppose that we have an ontology about fruits, called fruit.
Then the RDF triple fruit:Pear-rdfs:SubClassOf-fruit:Fruit expresses the fact the the
class of Pear is a sub-class of the class of Fruit. And the triple fruit:elstar-rdf:type-
fruit:Apple expresses the fact that an elstar is an instance of the class Apple. The

1 http://www.w3.org/standards/semanticweb/

http://www.w3.org/standards/semanticweb/
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colon notation is used to indicate from which ontology a class or property is
used, i.e. the class Pear comes from the example fruit ontology that we created
ourselves, but the property type is defined by the RDF standard. These nota-
tions are shorthands for full-fledged Universal Resource Identifiers (URI) that
uniquely identify the specific ontology used and where to find it, thereby forming
the backbone of the semantic web.

RDF resources, i.e. the uri:value type of statements, can occur as subject, pred-
icate and object in a triple. This means that they can be both vertex and edge
in a graph at the same time. Therefore, formally, RDF represents a hypergraph.
However, in practice interpreting RDF as an easier to handle directed multigraph
does not lead to problems for applying graph kernels.

RDF is used as a representation scheme for more expressive knowledge rep-
resentation formalisms such as the Web Ontology Language (OWL) and RDF
Schema (RDFS). Therefore, RDF triple-stores, such as SESAME2, often include
a reasoning engine which allows the automatic derivation of new triples, using
these more expressive formalisms.

In machine learning/data-mining for RDF, arguably, the most straightforward
way to represent instances is as a set of RDF triples, or an RDF graph. For
example, for each fruit that is of rdf:type fruit:Apple or fruit:Pear we can collect the
RDF triples that describe properties of this fruit and then these sets of triples
are our instances, which we can use to train a classifier for apples and pears.

2.2 Regular Weisfeiler-Lehman Graph Kernel

TheWeisfeiler-Lehman Subtree graph kernel, from now on the Weisfeiler-Lehman
kernel, is a state-of-the-art, efficient kernel for graph comparison introduced in
[11] and elaborated upon in [4]. The kernel computes the number of subtrees
shared between two graphs by using the Weisfeiler-Lehman test of graph iso-
morphism. The rewriting procedure underlying the Weisfeiler-Lehman kernel is
given in Algorithm 1, which is taken from [4]. The idea of the rewriting pro-
cess is that for each vertex we create a multiset label based on the labels of the
neighbors of that vertex. This multiset is sorted and together with the original
label concatenated into a string, which is the new label. For each unique string a
new (shorter) label is introduced and this replaces the original vertex label. Note
that the sorting of the strings in step 3 is not necessary, but provides a simple
way to create the label dictionary f . The rewriting process can be efficiently
implemented using counting sort, for which details are given in [4].

Using the rewriting techniques of Algorithm 1 it is straightforward to define
a kernel, given in in Definition 1.

Definition 1. Let Gn = (V,E, ln) and G′n = (V ′, E′, ln) be the n-th iteration
rewriting of the graphs G and G′ using Algorithm 1 and h the number of itera-
tions. Then the Weisfeiler-Lehman kernel is defined as:

2 http://www.openrdf.org/

http://www.openrdf.org/
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Algorithm 1. Weisfeiler-Lehman Relabeling

Input graphs G = (V,E, 
), G′ = (V ′, E′, 
) and number of iterations h
Output label functions l0 to lh
Comments Mn(v) are sets of labels for a vertex v and N(v) is the neighborhood of v

– for n = 0 to h
1. Multiset-label determination

– for each v ∈ V
– if n = 0, Mn(v) = l0(v) = 
(v)
– if n > 0, Mn(v) = {ln−1(u)|u ∈ N(v)}

2. Sorting each multiset
– for each Mn(v), sort the elements in Mn(v), in ascending order and con-
catenate them into a string sn(v)

– for each sn(v), if n > 0, add ln−1(v) as a prefix to sn(v)
3. Label compression

– for each sn(v)
– sort all strings sn(v) together in ascending order
– map each string sn(v) to a new compressed label, using a function

f : Σ∗ → Σ, such that f(sn(v)) = f(sn(v
′)) iff sn(v) = sn(v

′)
4. Relabeling

– for each sn(v), set ln(v) = f(sn(v))

khWL(G,G
′) =

h∑
n=0

kδ(Gn, G
′
n) , (1)

where
kδ((V,E, l), (V

′, E′, l′)) =
∑
v∈V

∑
v′∈V ′

δ(l(v), l′(v′)) . (2)

Here δ is the Dirac kernel, which tests for equality, it is 1 if its arguments are
equal, and 0 otherwise.

Essentially this kernel counts the common vertex labels in each of the iterations
of the graph rewriting process.

Instead of computing the Weisfeiler-Lehman relabeling on pairs of graphs, as
in Algorithm 1, it can just as easily be computed on a set of graphs. Furthermore,
the label dictionary f can be used to construct a feature vector for each graph.
Then the kernel can be computed by taking the dot product of these feature
vectors, which speeds up the computation of the kernel. See [4] for more details.

2.3 Fast Weisfeiler-Lehman for RDF

Since graph kernels compute a similarity between graphs, the most immediate
approach to apply graph kernels to RDF is to extract subgraphs for the instances
that we are interested in and to compute the kernel on these subgraphs. This
approach is followed in [5] for most of the kernels. The intuition is that these
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subgraphs contain properties of the instances and that they say something about
the position of the instances in the larger graph. However, the subgraphs are
derived from the same underlying RDF graph and since they are instances of
a similar concept they often have a number of vertices and edges in common.
Potentially it can be more efficient to do the kernel computation directly on the
larger underlying RDF graph.

In this section we introduce an approximation of the Weisfeiler-Lehman kernel
designed for RDF data. We could just apply the Weisfeiler-Lehman relabeling
as we have defined it above to the underlying RDF graph and then count the re-
sulting labels in the neighborhood up to a certain depth for each instance vertex.
However, by the nature of the relabeling process this means that vertices/edges
on the border of the neighborhood are influenced by vertex/edges outside of
the neighborhood. This means that the subgraph perspective for each instance
is essentially gone, and that interesting information about the position of the
instance in the graph is lost. We deal with this problem by tracking for each
vertex and edge in the graph at what depth it occurs in the subgraphs of the
instances.

First we define, in Definition 2, the type of graph that we apply the relabeling
process to.

Definition 2. A Weisfeiler-Lehman RDF graph is a graph G = (V,E, l), where
V is a set of vertices, E a set of directed edges, and l : (V ∪ E) × N → Σ a
labeling function from vertices V or edges E and a depth index j ∈ N to a set of
labels Σ.

This graph is a directed multigraph with a special labeling function, which gives
the label for a vertex or edge given an index j. This index j indicates the depth
at which this vertex or edge was encountered in the extraction of the subgraph.

We will also need our variant of neighborhoods of vertices and edges, as given
in Definition 3.

Definition 3. The neighborhood N(v) = {(v′, v) ∈ E} of a vertex is the set of
edges going to the vertex v and the neighborhood N((v, v′)) = {v} of an edge is
the vertex that the edge comes from.

The graph extraction algorithm, given in Algorithm 2, creates an RDF graph,
as given in Definition 2, for a set of instances I. For each instance i a subgraph
up to depth d is extracted from the RDF dataset and this subgraph is added to
the total graph G that the algorithm is building. Thus, vertices and edges are
only added if they have not been added to the graph already (which is recorded
using the vMap and eMap datastructures). For each vertex and edge encountered
during the extraction process a label is saved (in �) for the depth j at which the
vertex or edge is encountered. For example, if a vertex v would only occur at
depths 1 and 2 in all of the extracted subgraphs, then we would have �(v, 1) = o
and �(v, 2) = o. Next to the graph G we also construct mappings Vi and Ei for
each instance i, which records which vertices and edges belong to the subgraph
of instance i and at which depth.



A Fast Approximation of the WL Graph Kernel for RDF Data 611

Algorithm 2. Graph Creation from RDF

Input a set of RDF triples R, a set of instances I and extraction depth d
Output a Weisfeiler-Lehman RDF graph G = (V,E, 
), mappings Vi from vertices to

integers and Ei from edges to integers for each instance i.

1. Initialization
– for each i ∈ I :

– add a vertex v to V , set 
(v, d) = ε and set vMap(i) = v
2. Subgraph Extraction

– for each i ∈ I :
– searchFront = {i}
– for j = d− 1 to 0

– newSearchFront = ∅
– for each r ∈ searchFront :

– triples = {(r, p, o) ∈ R}
– for each (s, p, o) ∈ triples :

– add o to newSearchFront
– if vMap(o) is undefined, add vertex v to V and set vMap(o) = v
– set 
(vMap(o), j) = o
– if Vi(vMap(o)) is undefined, set Vi(vMap(o)) = j
– if eMap(s, p, o) is undefined, add edge e to E and set

eMap(s, p, o) = e
– set 
(eMap(s, p, o), j) = p
– if Ei(eMap(s, p, o)) is undefined, set Ei(eMap(s, p, o)) = j

– searchFront = newSearchFront

Algorithm 3 describes the Weisfeiler-Lehman relabeling for graphs constructed
using Algorithm 2. There are two main differences compared to the standard
Weisfeiler-Lehman algorithm of Algorithm 1. The first difference is the extension
to directed edges with labels, which is relatively straightforward. The second
difference is in the construction of the multisets Mn, which are now constructed
for a vertex/edge with a depth index j. For the vertices these multisets are
constructed using the labels of the edges at depth j − 1, and for the edges with
labels of the vertices of depth j. Furthermore, a vertex label at depth 0 is never
rewritten.

Definition 4. Let G be a Weisfeiler-Lehman RDF graph, created using Algo-
rithm 2 and rewritten for h iterations using Algorithm 3, and l0 to lh the resulting
label functions. Then we compute a kernel between two instances i, i′ ∈ I, as:

khWLRDF(i, i
′) =

h∑
n=0

n+ 1

h+ 1
knδ,RDF((Vi, Ei), (Vi′ , Ei′)), (3)

where
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Algorithm 3. Weisfeiler-Lehman Relabeling for RDF

Input a Weisfeiler-Lehman RDF graph G = (V, E, 
), subgraph depth d and number
of iterations h

Output label functions l0 to lh and label dictionary f

– for n = 0 to h
1. Multiset-label determination

– for each v ∈ V and e ∈ E and j = 0 to d
– if n = 0 and 
(v, j) is defined, set Mn(v, j) = l0(v, j) = 
(v, j)
– if n = 0 and 
(e, j) is defined, set Mn(e, j) = l0(e, j) = 
(e, j).
– if n > 0 and 
(v, j) is defined, set Mn(v, j) = {ln−1(u, j)|u ∈ N(v)}
– if n > 0 and 
(e, j) is defined, set Mn(e, j) = {ln−1(u, j + 1)|u ∈ N(e)}

2. Sorting each multiset
– for eachMn(v, j) andMn(e, j), sort the elements inMn(v, j), resp.Mn(e, j),

in ascending order and concatenate them into a string sn(v, j), resp.
sn(e, j)

– for each sn(v, j) and sn(e, j), if n > 0, add ln−1(v, j), resp. ln−1(e, j), as a
prefix to sn(v, j), resp. sn(e, j)

3. Label compression
– for each sn(v, j) and sn(e, j), map sn(v, j), resp. sn(e, j), to a new com-

pressed label, using a function f : Σ∗ → Σ, such that f(sn(v, j)) =
f(sn(v

′, j)) iff sn(v, j) = sn(v
′, j), resp. f(sn(e, j)) = f(sn(e

′, j)) iff
sn(e, j) = sn(e

′, j)
4. Relabeling

– for each sn(v, j) and sn(e, j), set ln(v, j) = f(sn(v, j)) and ln(e, j) =
f(sn(e, j))

knδ,RDF((Vi, Ei), (Vi′ , Ei′)) =
∑

(v,d)∈Vi

∑
(v′,d′)∈Vi′

δ(ln(v, d), ln(v
′, d′))

+
∑

(e,d)∈Ei

∑
(e′,d′)∈Ei′

δ(ln(e, d), ln(e
′, d′)) . (4)

Here δ is the Dirac kernel, which tests for equality, it is 1 if its arguments are
equal, and 0 otherwise.

This kernel is very similar to the regular definition of the Weisfeiler-Lehman
Subtree kernel. Ones difference is that instances are not represented by their
graphs but by the two maps Vi and Ei. Furthermore, there is an added part to
sum over all the edges. Like the regular Weisfeiler-Lehman Subtree kernel, this
kernel is an instance of a convolution kernel [12]. We have added the factor n+1

h+1
to put more weight on higher iterations, to weigh more complicated structural
similarity more heavily.

The resulting kernel kWLRDF is an approximation of kWL (provided that we
add edge relabeling to the algorithm). Differences occur when there are cycles
in the subgraph. For instance, let vertex v1 have a label o1 at depth 3 and v1
has an edge to v2. Vertex v2 has a label o2 at depth 2 and has an edge back to
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v1. Therefore v1 will have a label o3 at depth 1. During the relabeling, the label
o3 will (eventually) be combined with label o2 and label o2 will be combined
with o1 (not o3, which seems more intuitive). In the regular Weisfeiler-Lehman
variant, there would be no labels at different depths, so o3 would be combined
with o2 and vice versa.

In [4] it is shown that the runtime for the relabeling algorithm on a set of
graphs is O(Nhm), where N is the number of graphs, h is the number of itera-
tions and m is the number of vertices (and edges) per graph. For our relabeling
method we do not have N graphs, but we do introduce depth d labels per ver-
tex/edge. Our larger graph has a number of vertices and edges k. Since our
algorithm is essentially regular Weisfeiler-Lehman with the addition of multiple
labels per vertex/edge, the runtime complexity for our relabeling algorithm is
O(hkd). As for the regular Weisfeiler-Lehman Subtree kernel we can create fea-
ture vectors for each instance, using the label dictionary f . Hence, in situations
with kd < Nm, our algorithm will be faster. This scenario is typical for the
RDF use-case, where the subgraphs for each instance share a (large) number of
vertices and edges, which means Nm 2 k given large enough N , and therefore
kd < Nm if d + N . The same bounds hold for the space complexity as for
the runtime complexity. Therefore, in situations with kd < Nm, our algorithm
requires less memory than regular Weisfeiler-Lehman on a set of graphs.

3 Experiments

In this section we present a number of experiments with the Weisfeiler-Lehman
for RDF (WL RDF) kernel presented above. The goal of these experiments is
to compare the prediction performance of this kernel to the regular Weisfeiler-
Lehman (WL) kernel, adapted to handle edge labels and using the same iteration
weighting. For comparison we use three prediction tasks using RDF data. Since
the WL RDF kernel is intended to be a faster variant of the WL kernel we also
compare the runtimes.

Furthermore, we compare the WL RDF kernel with the kernels designed for
RDF in [5]. These kernels are the efficient Intersection SubTree (IST) and In-
tersection Partial SubTree (IPST) kernels and the inefficient Intersection Graph
Walk (IGW) and Intersection Graph Path (IGP) kernels. The intersection sub-
tree kernels are based on counting the number of (partial) subtrees in the inter-
section tree of two graphs. The intersection graph kernels count the number of
paths/walks in the intersection graph of two graphs.

Like we did for the WL RDF kernel, [5] compute the IST and IPST kernels
directly on the RDF graph. For the WL, IGW and IGP kernels subgraphs have
to be extracted. For each kernel we test 3 extraction depths (1,2,3) and we also
test with and without RDFS inferencing by the triple-store. RDFS inferencing
potentially derives new triples based on logical relations between the concepts
defined in the RDF. We test these different settings to see the influence of larger
subgraphs on the prediction performance.
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All of the kernels and experiments where implemented in Java and the code is
available online.3 The Java version of the LibSVM [13] support vector machine
library was used for prediction with the kernels and the SESAME4 triple-store
was used to handle the RDF data and do the RDFS inferencing. The experiments
where run on an AMD X6 1090T CPU with 16 GB RAM.

3.1 Affiliation Prediction

For our first experiment we repeat the affiliation prediction task introduced in
[6] and repeated in [5]. This experiment uses data of the semantic portal of the
AIFB research institute modeled in the SWRC ontology [14], which models key
concepts in a research community. The data contains 178 persons that belong to 1
of 5 research institutes. Furthermore it contains information about publications,
students, etc. One institute contains only 4 members, which we ignore. The goal
of the prediction task is to predict the affiliation for the remaining 174 instances.
Since we know the affiliations, for training purposes the affiliation relation (and
its inverse the employs relation) are removed from the RDF for each instance.
Also we set the label of the root vertex for each instance to an identical special
root label (like in [5]), since the original URI is unique for each instance.

For the Weisfeiler-Lehman kernels we test the h settings: 0, 2, 4, 6. The two
intersection graph kernels have a maximum path length parameter, which we
also call h, for which we test 1, 2.5 All the four kernels from [5] have a discount
factor parameter λ and are tested with the setting reported to give the best
results.

For each kernel we use the C-SVC support vector machine algorithm from
LibSVM to train a classifier to predict the affiliation. Per kernel we do a 10-fold
cross-validation which is repeated 10 times. Within each fold the C parameter is
optimized from the range: {10−3, 10−2, 0.1, 1, 10, 102, 103} by doing 10-fold cross-
validation. We also weigh the different classes with the inverse of their frequency.
All kernels are normalized.

Table 1 presents the average accuracy and F16 scores. The best scores, and
the scores that have no significant difference with these scores under a Student
t-test with p < 0.05, are indicated using a bold type face.

The best performance is achieved by our Weisfeiler-Lehman RDF kernel vari-
ant, showing slightly better scores than regular Weisfeiler-Lehman in the ‘3,f’
setting. The performance of the intersection graph kernels comes close to the
WL kernels, but the intersection tree kernels clearly show worse performance.
Increasing extraction depth increases performance for all the tested kernels but
the intersection trees. Adding inferencing only benefits the WL-kernels.

The Weisfeiler-Lehman kernel under the h = 0 setting can be considered
as a baseline method, because it is essentially a ‘bag-of-labels’ kernel, where

3 https://github.com/Data2Semantics/d2s-tools
4 http://www.openrdf.org/
5 Higher settings take a very large amount of computation time and/or run out of
memory.

6 This is the average of the F1 scores for each class.

https://github.com/Data2Semantics/d2s-tools
http://www.openrdf.org/
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Table 1. Results for the affiliation prediction experiments. 1,2,3 indicate the subgraph
depth and ‘f’ indicates that inferencing was applied.

acc. F1 acc. F1 acc. F1 acc. F1

Weisfeiler-Lehman RDF

h = 0 h = 2 h = 4 h = 6

1 0.84 0.67 0.84 0.67 0.84 0.67 0.84 0.67
2 0.83 0.66 0.87 0.72 0.86 0.70 0.86 0.70
3 0.85 0.71 0.89 0.79 0.89 0.77 0.88 0.76
1,f 0.79 0.59 0.79 0.59 0.79 0.59 0.79 0.59
2,f 0.57 0.35 0.84 0.66 0.81 0.62 0.81 0.61
3,f 0.73 0.56 0.91 0.81 0.90 0.80 0.90 0.79

IntersectionSubTree, λ = 1 IntersectionPartialSubTree, λ = 0.01

1 0.83 0.64 0.81 0.61
2 0.82 0.61 0.81 0.61
3 0.82 0.61 0.79 0.60
1,f 0.81 0.61 0.79 0.58
2,f 0.79 0.58 0.78 0.58
3,f 0.81 0.61 0.78 0.58

Weisfeiler-Lehman

h = 0 h = 2 h = 4 h = 6

1 0.83 0.66 0.84 0.67 0.84 0.67 0.84 0.67
2 0.87 0.74 0.84 0.67 0.78 0.54 0.75 0.48
3 0.86 0.72 0.88 0.77 0.88 0.75 0.86 0.71
1,f 0.79 0.60 0.79 0.60 0.79 0.60 0.79 0.60
2,f 0.58 0.36 0.83 0.64 0.79 0.57 0.73 0.47
3,f 0.73 0.56 0.89 0.78 0.89 0.77 0.87 0.72

IntersectionGraphPath, λ = 1 IntersectionGraphWalk, λ = 1

h = 1 h = 2 h = 1 h = 2

1 0.84 0.65 0.84 0.65 0.84 0.64 0.84 0.64
2 0.82 0.61 0.80 0.59 0.82 0.61 0.80 0.59
3 0.88 0.76 0.90 0.77 0.89 0.76 0.89 0.77
1,f 0.81 0.61 0.81 0.61 0.81 0.61 0.81 0.61
2,f 0.79 0.58 0.75 0.51 0.79 0.58 0.71 0.48
3,f 0.88 0.76 0.88 0.76 0.88 0.76 0.88 0.75

no rewriting is performed. We can see that already quite good performance is
achieved using this baseline.

3.2 Lithogenesis Prediction

We perform the next prediction experiment on the RDF dataset from the British
Geological Survey7, which contains information about geological measurements
in Britain. This dataset was chosen because it is at least a factor 10 larger than
the affiliation prediction set and has some potential nice properties to predict.
The things that are measured by this survey are called ‘Named Rock Units’,
which have a number of different properties. One of these is the lithogenesis
property, for which the two largest classes have 93 and 53 instances. In this
experiment we try to predict for these 146 instances which of these two classes it
belongs too. Again we remove triples related to these properties from the dataset
and set the labels of the root vertices to the same special root label.

7 http://data.bgs.ac.uk/

http://data.bgs.ac.uk/
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The setup for this experiment is the same as for the affiliation prediction task.
The results are presented in Table 2.

The results of this experiment are similar to the results for affiliation predic-
tion. Again the best scores are achieved by the WL RDF kernel under the ‘3,f’
setting. However, the intersection graph path kernel achieves a similar accuracy
score and the intersection subtree kernel scores are closer to WL RDF kernel.
Increasing the subgraph depth improves the performance for all kernels. The
performance of the ‘bag-of-labels’ baseline is similar to the affiliation prediction
task.

3.3 Runtimes

To test the differences in runtimes between the kernels we measure the runtimes
for the computation of each of the kernels on the two datasets above under
the highest extraction setting (depth 3 and inferencing on). We measure these
runtimes for different fractions of the dataset, from 0.1 to 1. The computation
times of the two intersection tree kernels are nearly identical, so we only include

Table 2. Results for the lithogenesis prediction experiments. 1,2,3 indicate the sub-
graph depth and ‘f’ indicates that inferencing was applied.

acc. F1 acc. F1 acc. F1 acc. F1

Weisfeiler-Lehman RDF

h = 0 h = 2 h = 4 h = 6

1 0.79 0.62 0.79 0.62 0.79 0.62 0.79 0.62
2 0.87 0.75 0.88 0.77 0.88 0.76 0.88 0.77
3 0.86 0.73 0.87 0.75 0.88 0.76 0.88 0.77
1,f 0.78 0.61 0.78 0.61 0.78 0.61 0.78 0.61
2,f 0.82 0.66 0.88 0.76 0.87 0.75 0.87 0.75
3,f 0.88 0.75 0.89 0.78 0.91 0.82 0.91 0.82

IntersectionSubTree, λ = 1 IntersectionPartialSubTree, λ = 0.01

1 0.79 0.63 0.81 0.65
2 0.85 0.71 0.82 0.66
3 0.86 0.73 0.82 0.67
1,f 0.78 0.60 0.79 0.62
2,f 0.84 0.70 0.80 0.63
3,f 0.85 0.72 0.80 0.64

Weisfeiler-Lehman

h = 0 h = 2 h = 4 h = 6

1 0.79 0.62 0.79 0.62 0.79 0.63 0.79 0.63
2 0.88 0.77 0.86 0.73 0.85 0.70 0.84 0.69
3 0.86 0.73 0.87 0.75 0.87 0.75 0.88 0.76
1,f 0.78 0.61 0.78 0.61 0.78 0.61 0.78 0.61
2,f 0.82 0.65 0.85 0.72 0.85 0.71 0.85 0.71
3,f 0.88 0.75 0.88 0.77 0.88 0.76 0.88 0.77

IntersectionGraphPath, λ = 1 IntersectionGraphWalk, λ = 1

h = 1 h = 2 h = 1 h = 2

1 0.81 0.66 0.82 0.67 0.79 0.62 0.80 0.63
2 0.86 0.72 0.86 0.72 0.86 0.73 0.86 0.72
3 0.88 0.76 0.88 0.76 0.88 0.76 0.87 0.75
1,f 0.80 0.64 0.81 0.64 0.77 0.60 0.77 0.60
2,f 0.85 0.71 0.85 0.72 0.84 0.70 0.85 0.71
3,f 0.90 0.80 0.90 0.79 0.90 0.79 0.89 0.78
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Fig. 1. Runtimes for the kernels: Weisfeiler-Lehman for RDF (WL RDF), Intersec-
tion SubTree (IST), Weisfeiler-Lehman (WL) and Intersection Graph Walk (IGW), for
different fractions of the affiliation prediction dataset.

Fig. 2. Runtimes for the kernels: Weisfeiler-Lehman for RDF (WL RDF), Intersec-
tion SubTree (IST), Weisfeiler-Lehman (WL) and Intersection Graph Walk (IGW), for
different fractions of the lithogenesis prediction dataset.

the IST kernel. The same is true for the two intersection graph kernels, so we
only include the IGW kernel. The intersection subtree kernel is implemented as
described in [5]. For the regular WL kernel and IGW kernel, the extraction of
the subgraphs was also included, however this was only a small factor in the
overall computation time.

Figure 1 presents the results for the four kernels on the affiliation prediction
dataset. The results for the lithogenesis dataset are presented in Fig. 2.

Both figures show similar results: the IGW kernel is the slowest by a large
margin and as the datasets grow larger, the WL RDF kernel becomes more
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efficient. The differences in runtimes between the WL RDF kernel and regular
WL are in line with our expectations: as the amount of instances N become
larger, WL RDF becomes more efficient on RDF datasets than regular WL.

3.4 Geological Theme Prediction

For the two most efficient kernel types, WL RDF and IST/IPST, we performed
another experiment on the British Geological Survey data. All of the ‘Named
Rock Units’, around 12000 instances, have an associated geological theme. In
this experiment we try to predict that theme, which has two major classes, one
with 10020 instances and the other with 1377. We try to predict whether an
instance belongs to one of these two classes.

The setup for this experiment is similar to the two prediction tasks presented
above. However, we do not repeat the experiment 10 times for the full dataset,
but we take 10 random 10% subsets of the full dataset. The results are pre-
sented in Table 3. Again bold type face indicates the best scores. This time a
MannWhitney U test with p < 0.05 was used as a significance test, since the
resulting scores did not fit a normal distribution.

As in the previous experiments, the Weisfeiler-Lehman RDF kernel shows
the best performance. Almost perfect scores are achieved. However, the inter-
section subtree kernels and the ‘bag-of-labels’ baseline come very close to this
performance. For the tree kernels it holds that increasing the extraction depth
increases performance.

3.5 No Labels

The ‘bag-of-labels’ baseline, shows already good performance in the three tasks.
To test whether this is due to the fact that the graph structure provides little
information and to see if the graph kernels can exploit structure information, we

Table 3. Results for the theme prediction experiments. 1,2,3 indicate the subgraph
depth and ‘f’ indicates that inferencing was applied.

acc. F1 acc. F1 acc. F1 acc. F1

Weisfeiler-Lehman RDF

h = 0 h = 2 h = 4 h = 6

1 0.90 0.69 0.93 0.79 0.96 0.85 0.96 0.84
2 0.94 0.78 0.97 0.89 0.95 0.85 0.97 0.91
3 0.98 0.89 1.0 0.98 1.0 0.98 0.99 0.98
1,f 0.88 0.66 0.94 0.79 0.96 0.84 0.96 0.85
2,f 0.88 0.65 0.92 0.79 0.98 0.91 0.95 0.88
3,f 0.74 0.44 1.0 0.98 0.99 0.98 1.0 0.98

IntersectionSubTree, λ = 1 IntersectionPartialSubTree, λ = 0.01

1 0.93 0.79 0.88 0.68
2 0.96 0.89 0.97 0.88
3 0.98 0.93 0.97 0.88
1,f 0.94 0.84 0.94 0.78
2,f 0.97 0.91 0.97 0.86
3,f 0.99 0.96 0.98 0.92
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Table 4. Results for the affiliation prediction experiments with vertex and edge la-
bels removed. 1,2,3 indicate the subgraph depth and ‘f’ indicates that inferencing was
applied.

acc. F1 acc. F1 acc. F1 acc. F1

Weisfeiler-Lehman RDF

h = 0 h = 2 h = 4 h = 6

1 0.14 0.07 0.61 0.40 0.63 0.41 0.63 0.41
2 0.48 0.23 0.61 0.40 0.62 0.42 0.64 0.44
3 0.43 0.24 0.87 0.75 0.89 0.77 0.88 0.75
1,f 0.11 0.06 0.51 0.31 0.51 0.31 0.51 0.31
2,f 0.26 0.12 0.57 0.36 0.60 0.39 0.61 0.40
3,f 0.18 0.09 0.85 0.70 0.87 0.74 0.88 0.75

IntersectionSubTree, λ = 1 IntersectionPartialSubTree, λ = 0.01

1 0.11 0.06 0.11 0.06
2 0.22 0.09 0.11 0.06
3 0.23 0.10 0.16 0.07
1,f 0.11 0.06 0.11 0.06
2,f 0.23 0.10 0.12 0.06
3,f 0.23 0.10 0.25 0.09

Weisfeiler-Lehman

h = 0 h = 2 h = 4 h = 6

1 0.14 0.07 0.50 0.24 0.51 0.25 0.50 0.24
2 0.48 0.23 0.47 0.25 0.46 0.24 0.46 0.24
3 0.43 0.24 0.59 0.37 0.72 0.51 0.72 0.49
1,f 0.11 0.06 0.32 0.17 0.33 0.17 0.33 0.17
2,f 0.29 0.15 0.53 0.33 0.51 0.29 0.52 0.29
3,f 0.16 0.08 0.57 0.37 0.73 0.54 0.71 0.50

IntersectionGraphPath, λ = 1 IntersectionGraphWalk, λ = 1

h = 1 h = 2 h = 1 h = 2

1 0.11 0.06 0.11 0.06 0.45 0.26 0.46 0.26
2 0.48 0.20 0.44 0.24 0.47 0.26 0.36 0.20
3 0.48 0.20 0.45 0.24 0.55 0.34 0.52 0.31
1,f 0.11 0.06 0.11 0.06 0.47 0.27 0.46 0.26
2,f 0.42 0.18 0.45 0.26 0.47 0.27 0.38 0.19
3,f 0.33 0.16 0.45 0.26 0.51 0.31 0.33 0.16

repeat the affiliation prediction experiment. This time we remove all the label
information after the creation of the graph/subgraphs. Each label is replaced by
the same dummy label. The rest of the experimental setup is identical to the
affiliation prediction experiment. Results are given in Table 4.

Again, the Weisfeiler-Lehman RDF kernel shows the best performance. What
is even more striking is that a performance close to the performance on labeled
graphs can be achieved. The regular WL kernel also does reasonably well, how-
ever, the intersection graph and the intersection subtree kernel show very poor
performance. These kernels are clearly not designed for unlabeled graphs and do
not exploit graph structure as the WL kernels do.

4 Conclusions and Future Work

We presented an approximation of the Weisfeiler-Lehman Subtree kernel which
speeds up computation on RDF graphs by computing the kernel on the under-
lying RDF graph instead of extracted subgraphs. The kernel shows performance
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that is better than the regular Weisfeiler-Lehman kernel applied to RDF. Also it
is increasingly more efficient as the number of instances grows. This efficiency is
achieved by exploiting the fact that the RDF instance subgraphs share vertices
and edges in the underlying large RDF graph.

Furthermore, the presented kernel is faster and shows better classification
performance than the intersection subtree and intersection graph kernels, which
were recently introduced specifically for RDF data. When we remove the label
data, then the Weisfeiler-Lehman for RDF still has relatively good classification
performance on just the graph structure, whereas the intersection subtree and
intersection graph kernels cannot use the structure information very well.

The performance difference between the presented approximation of the WL
Subtree kernel and the regular version requires further investigation. However,
we have observed that the computed feature vectors for WL RDF are shorter
than for regular WL. Thus, our approximation probably leads to more shared
features between instances, which can result in better generalization and less
overfitting.

The presented kernel can be used in any machine learning situation where
subgraphs derive from an underlying larger graph. It is particularly well-suited
to RDF because the extracted subgraphs share a large number of vertices and
edges. As future work it would be interesting to apply the kernel to other similar
situations.

Another direction for future research is the application of the presented kernel
to extremely large RDF datasets with 100 millions of triples or more, since it
has the potential to scale well. For datasets with more instances, the computed
feature vectors can be used directly with large scale linear SVM methods, such
as LibLINEAR [15], which is not possible with the intersection subtree and in-
tersection graph kernels. We also wish to investigate extensions of the Weisfeiler-
Lehman kernel using label comparisons other the than the Dirac-kernel.
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Abstract. We study the frequent connected induced subgraph mining
problem, i.e., the problem of listing all connected graphs that are induced
subgraph isomorphic to a given number of transaction graphs. We first
show that this problem cannot be solved for arbitrary transaction graphs
in output polynomial time (if P �= NP) and then prove that for graphs
of bounded tree-width, frequent connected induced subgraph mining is
possible in incremental polynomial time by levelwise search. Our algo-
rithm is an adaptation of the technique developed for frequent connected
subgraph mining in bounded tree-width graphs. While the adaptation
is relatively natural for many steps of the original algorithm, we need
entirely different combinatorial arguments to show the correctness and
efficiency of the new algorithm. Since induced subgraph isomorphism
between bounded tree-width graphs is NP-complete, the positive result
of this paper provides another example of efficient pattern mining with
respect to computationally intractable pattern matching operators.

1 Introduction

Over the past 15 years substantial research efforts have been devoted toward de-
signing effective frequent graph mining algorithms. Despite the numerous studies
in this field of research, the theoretical aspects of the topic are still not well un-
derstood. The importance of a better understanding of the complexity aspects of
the various graph mining problem settings appears somewhat neglected, which
has as negative side effect that most algorithms are limited to some ten thousands
transaction graphs only. In this work we study the frequent connected induced
subgraph mining (FCISM) problem, which is the problem of listing all pairwise
non-isomorphic connected graphs that are induced subgraph isomorphic to at
least t transaction graphs for some parameter t ∈ N. This problem, as we show,
cannot be solved in output polynomial time for arbitrary transaction graphs.
For forests, however, it can be solved in incremental polynomial time.
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As the main result for this work, we generalize the positive result on forests by
showing that the FCISM problem can be solved in incremental polynomial time
for graphs of bounded tree-width. Regarding the practical aspects of our result, we
mention e.g. the ZINC dataset containing about 16.5 millions molecular graphs:
99.99% of these graphs have tree-width at most 3. Regarding its theoretical
aspects, we note that induced subgraph isomorphism is one of the “persistent”
problems that remain NP-complete even for graphs of tree-width 2 [8]. Thus,
our positive result provides an example of the case that efficient pattern mining
is possible even for computationally intractable pattern matching operators. To
the best of our knowledge, there is only one further such example [5].

Finally, regarding the algorithmic aspects of our result, we note that the
paradigm we followed here, and which is used also in [5] for frequent connected
subgraph mining in graphs of bounded tree-width, appears sufficiently general
for the design of graph mining algorithms for further pattern matching operators.
This paradigm consists of the following main steps: (1) Give a generic levelwise
search algorithm and, in addition to some natural conditions, (2) prove the exis-
tence of an efficiently computable pattern refinement operator that is complete
with respect to the pattern matching operator, and (3) show that the otherwise
exponential-time dynamic-programming algorithm [8] deciding the underlying
pattern matching works in time polynomial in the size of the set of patterns gen-
erated by the algorithm so far. When comparing the (sub)steps of this paradigm
for ordinary subgraph isomorphism [5] and for induced subgraph isomorphism,
on the one hand one can notice a number of steps that are (almost) the same for
the two problems. On the other hand, however, there are some crucial steps that
require entirely different techniques. Thus, for example, the pattern refinement
operator and the combinatorial characterization of the necessary information
needed to calculate by the pattern matching algorithm become much more com-
plicated for induced subgraph isomorphism, as we will show in Section 4.

The rest of the paper is organized as follows. In the next section we collect
all necessary notions. In Section 3 we give a generic levelwise search algorithm
and formulate five conditions for the efficiency of this algorithm. In Section 4 we
prove that all these conditions are fulfilled by the class of bounded tree-width
graphs. Finally, in Section 5 we conclude and mention some problems.

2 Preliminaries

In this section we collect and fix all necessary notions and notations used in the
paper. Most of the definitions and notations are taken from [5].

Graphs. An undirected graph is a pair (V,E), where V is a finite set of vertices
and E ⊆ {e ⊆ V : |e| = 2} is a set of edges. We consider simple graphs, i.e.,
which do not contain loops or parallel edges. A labeled undirected graph is a triple
(V,E, λ), where (V,E) is an undirected graph and λ is the labeling function
λ : V ∪E → N. The set of vertices, the set of edges, and the labeling function of
a graph G are denoted by V (G), E(G), and λG, respectively. Unless otherwise
stated, by graphs in this paper we always mean labeled undirected graphs.
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A subgraph of G is a graph G′ with V (G′) ⊆ V (G), E(G′) ⊆ E(G), and
λG′(x) = λG(x) for all x ∈ V (G′)∪E(G′); G′ is an induced subgraph of G if it is
a subgraph of G satisfying {u, v} ∈ E(G′) iff {u, v} ∈ E(G) for all u, v ∈ V (G′).
For S ⊆ V (G), G[S] denotes the induced subgraph of G with vertex set S. For
v ∈ V (G), G0 v denotes G[V (G) \ {v}].

A path connecting two vertices v1, vk of a graph G, denoted by Pv1,vk , is a
sequence {v1, v2}, {v2, v3}, . . . , {vk−1, vk} ∈ E(G) such that the vi’s are pairwise
distinct. A graph is connected if there is a path between any pair of its vertices. A
connected component of a graph G is a maximal subgraph of G that is connected.
The set of all connected components of a graph G is denoted by C(G).

Graph Morphisms. Two graphs G1 and G2 are isomorphic, denoted G1 & G2,
if there is a bijection ϕ : V (G1) → V (G2) satisfying (i) {u, v} ∈ E(G1) iff
{ϕ(u), ϕ(v)} ∈ E(G2) for every u, v ∈ V (G1), (ii) λG1(u) = λG2(ϕ(u)) for every
u ∈ V (G1), and (iii) λG1({u, v}) = λG2({ϕ(u), ϕ(v)}) for every {u, v} ∈ E(G1).
For G1 and G2 we say that G1 is subgraph isomorphic to G2, denoted G1 � G2,
if G1 is isomorphic to a subgraph of G2; it is induced subgraph isomorphic to G2,
denoted G1 �i G2, if it is isomorphic to an induced subgraph of G2. In what
follows, two graphs are regarded the same graph if they are isomorphic.

Tree-Width. A central notion to this work is tree-width, which was reintro-
duced in algorithmic graph theory in [10]. A tree-decomposition of a graph G
is a pair (T,X ), where T is a rooted tree and X = (Xz)z∈V (T ) is a family of
subsets of V (G) satisfying (i) ∪z∈V (T )Xz = V (G), (ii) for every {u, v} ∈ E(G),
there is a z ∈ V (T ) such that u, v ∈ Xz, and (iii) Xz1 ∩ Xz3 ⊆ Xz2 for every
z1, z2, z3 ∈ V (T ) such that z2 is on the path connecting z1 with z3 in T . The
set Xz associated with a node z of T is called the bag of z. The nodes of T
will often be referred to as the nodes of the tree-decomposition. The tree-width
of (T,X ) is maxz∈V (T ) |Xz| − 1, and the tree-width of G, denoted tw(G), is the
minimum tree-width over all tree-decompositions of G. By graphs of bounded
tree-width we mean graphs of tree-width at most k, where k is some constant.
The following notation will be used many times in what follows. Let G be a
graph, (T,X ) be a tree-decomposition of G, and z ∈ V (T ). Then G[z] denotes
the induced subgraph of G defined by the union of the bags of z’s descendants,
where z is considered also as a descendant of itself.

We will use a special kind of tree-decomposition. More precisely, a nice tree-
decomposition of G, denoted NTD(G), is a tree-decomposition (T,X ), where
T is a rooted binary tree composed of three types of nodes: (i) a leaf node has
no children, (ii) a separator node z has a single child z′ with Xz ⊆ Xz′ , and
(iii) a join node z has two children z1 and z2 with Xz = Xz1 ∪ Xz2 . It follows
from [3] that for graphs of tree-width at most k, where k is some constant, a nice
tree-decomposition of tree-width at most k always exists and can be constructed
in linear time.

Tree-width is a useful parameter of graphs in algorithmic graph theory, as
many NP-hard problems can be solved in polynomial time for graphs of bounded
tree-width. However, subgraph isomorphism and induced subgraph isomorphism
remain NP-complete even for graphs of tree-width 2 (see, e.g., [8,11]).
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Listing Algorithms. A common feature of many listing problems is that the
size of the output can be exponential in that of the input. Clearly, for such cases
there exists no algorithm enumerating the output in time polynomial in the
size of the input. Thus, the size of the output must also be taken into account.
The following listing complexity classes are usually distinguished in the literature
(see, e.g., [6]): For some input I, let O be the output set of some finite cardinality
N . Then the elements of O, say o1, . . . , oN , are listed with

polynomial delay if the time before printing o1, the time between printing oi
and oi+1 for every i = 1, . . . , N − 1, and the time between printing oN and
the termination is bounded by a polynomial of the size of I,

incremental polynomial time if o1 is printed with polynomial delay, the time
between printing oi and oi+1 for every i = 1, . . . , N − 1 (resp. the time
between printing oN and the termination) is bounded by a polynomial of
the combined size of I and the set {o1, . . . , oi} (resp. O),

output polynomial time (or polynomial total time) if O is printed in time poly-
nomial in the combined size of I and the entire output O.

Clearly, polynomial delay implies incremental polynomial time, which, in turn,
implies output polynomial time. Furthermore, in contrast to incremental polyno-
mial time, the delay of an output polynomial time algorithm may be exponential
in the size of the input even before printing the first element of the output.

3 Frequent Connected Induced Subgraph Mining

In this section we first define the frequent connected induced subgraph min-
ing problem and show in Theorem 1 that it is computationally intractable. We
then give a generic levelwise search algorithm [7] for mining frequent connected
induced subgraphs and provide sufficient conditions in Theorem 2 for the effi-
ciency of this algorithm. As a corollary of Theorem 2, we get that the frequent
connected induced subgraph mining problem can be solved in incremental poly-
nomial time for forest 1 transaction graphs. In the next section we generalize the
positive result on forests to graphs of bounded tree-width. We start by defining
the pattern mining problem we are interested in.

The Frequent Connected Induced Subgraph Mining (FCISM) Prob-

lem: Given a class G of graphs, a transaction database (i.e., multiset) DB
of graphs from G, and an integer frequency threshold t > 0, list the set O
of all distinct frequent connected induced subgraphs, that is, all connected
graphs that are induced subgraph isomorphic to at least t graphs in DB.

Note that we do not distinguish between isomorphic graphs and hence each
isomorphism type (i.e., equivalence class under isomorphism) of O is a singleton.
The parameter of the above problem is the size of DB. Clearly, the size of O
can be exponential in that of DB. Thus, in general, the set of all frequent

1 In this paper by forest we mean a set of disjoint unrooted trees.
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Algorithm 1. FCISM

Require: transaction database DB of graphs and integer t > 0
Ensure: all frequent connected induced subgraphs

1: let S1 ⊆ G be the set of frequent graphs consisting of a single labeled vertex
2: for (l := 1; Sl �= ∅; l := l + 1) do
3: Cl+1 := Sl+1 := ∅
4: forall P ∈ Sl do
5: forall H ∈ ρ(P ) ∩ G satisfying (i) H �∈ Cl+1 and (ii) ρ

−1(H) ⊆ Sl do
6: add H to Cl+1

7: if |{G ∈ DB : H �i G}| ≥ t then
8: print H and add it to Sl+1

connected induced subgraphs cannot be computed in time polynomial only in
the size of DB. The following simple polynomial reduction shows that even
output polynomial time enumeration is unlikely.

Theorem 1. Unless P = NP, the FCISM problem cannot be solved in output
polynomial time.

Proof. We prove the claim by a reduction from the NP-complete k-Clique prob-
lem. For an unlabeled graphG with n vertices, let DB consist of G and the clique
Kn with n vertices. ForDB and t = 2, the number of frequent connected induced
subgraphs is at most n (i.e., all cliques up to size n). Thus, if the FCISM prob-
lem could be solved in output polynomial time, we could decide the k-Clique

problem in polynomial time by listing first the set O of all 2-frequent connected
induced subgraphs and checking then whether |O| ≥ k or not. ��

3.1 A Generic Levelwise Search Mining Algorithm

Our goal in this paper is to show that the FCISM problem can be solved in
incremental polynomial time for graphs of bounded tree-width. To prove this re-
sult, we start by giving a generic algorithm, called FCISM, that lists frequent
connected induced subgraphs with levelwise search (see Algorithm 1). The algo-
rithm assumes the transaction graphs to be elements of some graph class G that
is closed under taking subgraphs. Thus, as we are interested in mining frequent
connected induced subgraphs, all patterns belong to G as well.

One of the basic features of the levelwise search algorithms is that the un-
derlying pattern language L is associated with some, usually naturally defined
partial order. Following the common pattern mining terminology (see, e.g., [7]),
for a partially ordered pattern language (L,≤) we say that a pattern P1 ∈ L is a
generalization of a pattern P2 ∈ L (or P2 is a specialization of P1) if P1 ≤ P2; P1

is a proper generalization of P2 (or P2 is a proper specialization of P1), denoted
by P1 < P2, if P1 ≤ P2 and P1 
= P2. Furthermore P1 is a direct generalization
of P2 (or P2 is a direct specialization of P1) if P1 < P2 and there is no P3 ∈ L
with P1 < P3 < P2.
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In case of the FCISM problem, the underlying pattern language L is the set of
all finite connected (labeled) graphs of G, associated with the following natural
generalization relation ≤ defined as follows: For any P1, P2 ∈ L, P1 ≤ P2 if and
only if P1 �i P2. The proofs of the two claims in the proposition below are
straightforward.

Proposition 1. Let L and ≤ be as defined above. Then (L,≤) is a partially
ordered set. Furthermore, for any P1, P2 ∈ L it holds that P1 is a direct gener-
alization of P2 iff

P1 < P2 and |V (P1)| = |V (P2)| − 1 . (1)

In the main loop of Algorithm 1 (lines 4–8), the set Sl+1 of frequent connected
induced subgraphs containing l+1 vertices are calculated from those containing l
vertices, in accordance with condition (1). In particular, for each frequent pattern
P ∈ Sl, we first compute a set ρ(P )∩ G of graphs, where ρ(P ) is a subset of the
set of direct specializations of P . Clearly, the graphs in ρ(P ) are all connected
by the choice of L. Notice that we cannot define ρ(P ) as the set of all direct
specializations of P , as this set can be of exponential cardinality. In Theorem 2
below we will provide sufficient conditions for ρ needed for efficient pattern
enumeration.

For each direct specialization H ∈ ρ(P ) ∩ G, we check whether it has already
been generated during the current iteration (see condition (i) in line 5). If not,
we also check for each connected direct generalization of H , denoted by ρ−1(H)
in the algorithm, whether it is frequent (condition (ii) in line 5). Here we utilize
that frequency is an anti-monotonic interestingness predicate for (L,≤). In what
follows, candidate patterns generated by Algorithm 1 that satisfy conditions (i)
and (ii) in line 5 will be referred to as strong candidates. If H is a strong candi-
date, we add it to the set Cl+1 of candidate patterns consisting of l+ 1 vertices
and compute its support count (lines 6–7). If H is frequent, i.e., it is induced
subgraph isomorphic to at least t transaction graphs in DB, we add it to the set
Sl+1 of frequent connected graphs containing l + 1 vertices.

By Theorem 1 above, the FCISM problem cannot be solved in output polyno-
mial time for the general problem setting. If, however, the class G of transaction
graphs and the refinement operator ρ satisfy the conditions of Theorem 2 below,
the FCISM problem can be solved in incremental polynomial time. To state the
theorem, we recall some basic notions for refinement operators (see, e.g., [9]). A
downward refinement operator Ξ for a poset (L,≤) is a function Ξ : L → 2L

with Ξ(P ) ⊆ {P ′ : P ≤ P ′} for all P ∈ L. That is, Ξ(P ) is a subset of the set of
specializations of P . For Ξ, we define the n-th power Ξn : L → 2L recursively
by

Ξn(P ) =

{
Ξ(P ) if n = 1

Ξ(Ξn−1(P )) o/w

for all n ∈ N. Finally, we say that Ξ is complete, if for all P ∈ L, there is some
n ∈ N with P ∈ Ξn(⊥), where ⊥ denotes the empty graph. Using the above
notions, we can formulate the following generic theorem:
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Theorem 2. Let G be a class of the transaction graphs, L be the set of connected
graphs in G, and ρ : L → 2L be a downward refinement operator. If ρ and
G satisfy the conditions below then Algorithm 1 solves the FCISM problem in
incremental polynomial time and in incremental polynomial space.

(i) G is closed under taking subgraphs.
(ii) The membership problem in G can be decided in polynomial time.
(iii) ρ is complete and ρ(P ) can be computed in time polynomial in the combined

size of the input and the set of frequent patterns listed so far by Algorithm 1.
(iv) Isomorphism can be decided in polynomial time for G.
(v) For every H,G ∈ G such that H is connected, it can be decided in time

polynomial in the combined size of the input and the set of frequent patterns
listed so far by Algorithm 1 whether H �i G.

Proof. The proof follows directly from the remarks and concepts above.

The following positive result on forests can immediately be obtained by ap-
plying the theorem above (it follows also e.g. from [5]):

Corollary 1. The FCISM problem can be solved in incremental polynomial time
for forest transaction graphs.

4 Mining Graphs of Bounded Tree-Width

In this section we generalize the positive result of Corollary 1 to graphs of
bounded tree-width and prove the main result of this paper:

Theorem 3. The FCISM problem can be solved in incremental polynomial time
for graphs of bounded tree-width.

Before proving this result, we first note that the class of bounded tree-width
graphs is not only of theoretic interest, but also of practical relevance. As an
example, consider the ZINC dataset2 consisting of more than 16 million chemical
compounds. Regarding the distribution of the molecular graphs with respect to
their tree-width, 99.99% of the 16,501,334 molecular graphs in this dataset have
tree-width at most 3 and 99, 31% only tree-width at most 2.

To prove Theorem 3, it suffices to show that all conditions of Theorem 2 hold
for bounded tree-width graphs. The proof of the claims in the theorem below
is shown in [5] for the positive result on frequent connected subgraph mining
in graphs of bounded tree-width; notice that the conditions considered in the
theorem are all independent of the underlying pattern matching operator.

Theorem 4. Conditions (i), (ii), and (iv) of Theorem 2 hold for the class of
bounded tree-width graphs.

Thus, only conditions (iii) and (v) have to be proven. We first show (iii).

2 We used a commercial version of the ZINC dataset for the tree-width statistics.
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Theorem 5. For the class of bounded tree-width graphs there exists a refinement
operator ρ satisfying condition (iii) of Theorem 2.

Proof. For a connected pattern P with tw(P ) ≤ k, define the refinement ρ(P ) of
P as follows: A connected graph P ′ with tw(P ′) ≤ k is in ρ(P ) iff P ′ has a vertex
v with degree at most k such that P & P ′0v. Notice that this definition is unique,
as isomorphic graphs are not distinguished from each other by definition. Clearly,
ρ(P ) is a subset of the set of direct specializations of P . Utilizing condition (i)
of Theorem 2 and the basic fact that every graph of tree-width at most k has a
vertex of degree at most k,3 the completeness of ρ follows directly by induction
on the number of vertices.

We now turn to the complexity of computing ρ(P ) and show the stronger
property that ρ(P ) can actually be computed in time polynomial in the size of
DB. Since each new vertex v is connected to P by at least one and at most k
vertices, for the cardinality of ρ(P ) we have

|ρ(P )| ≤
k∑

i=1

|Λ|i+1

(
n

i

)
< |Λ|k+1(n+ 1)k ,

where Λ is the set of vertex and edge labels used in DB and n is the number
of vertices of P . Since k is a constant, |ρ(P )| is polynomial in the size of DB,
and hence, as condition (iv) of Theorem 2 holds by Theorem 4, ρ(P ) can be
computed in time polynomial in the size of DB, as claimed. ��

It remains to show for the proof of Theorem 3 that condition (v) also holds.
In Section 4.1 we first recall from [4] a dynamic programming algorithm decid-
ing induced subgraph isomorphism for a restricted class of bounded tree-width
graphs. Given a connected graph H and a transaction graph G, both of bounded
tree-width, this algorithm decides H �i G by computing recursively a certain
set of tuples representing partial induced subgraph isomorphisms between H and
G. The problem is, however, that for arbitrary graphs of bounded tree-width,
the number of such partial solutions can be exponential in the size of H . Using
the paradigm developed in [5] for frequent connected subgraph mining in graphs
of bounded tree-width, we will show that H �i G can be decided by comput-
ing only a polynomial number of new partial solutions and efficiently recovering
all missing partials solutions from those calculated for the already generated
frequent patterns.

4.1 A Dynamic Programming Algorithm

To make the paper as self-contained as possible, in this section we recall the
dynamic programming algorithm from [4] that decides induced subgraph iso-
morphism for a restricted class of bounded tree-width graphs. The algorithm is

3 This fact holds trivially if the graph has at most k + 1 vertices; o/w it has a tree-
decomposition of tree-width at most k with a leaf z having a parent z′ such that
Xz � Xz′ . But then there is a v ∈ Xz that is not in the bag of any other node in
the tree-decomposition and thus, v can be adjacent only to the vertices in Xz \ {v}.
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based on an efficient algorithm [8] deciding various morphisms between bounded
tree-width and bounded degree graphs, which, in turn, follows a generic dy-
namic programming approach designed in [2]. In order to be consistent with [5]
on frequent connected subgraph mining in graphs of bounded tree-width, we
naturally adapt the notions and notations from Section 4.1 of [5] from subgraph
isomorphism to induced subgraph isomorphism.

In what follows, let H and G denote connected graphs with tw(H), tw(G) ≤ k.
In fact, as one can easily see, the results of this section hold also for the case that
G is not connected. Given H and G, the algorithm in [4] decides whether H �i G
by computing a nice tree-decomposition NTD(G) of G, traversing NTD(G) in
a postorder manner, calculating for each node in the tree-decomposition a set of
tuples, called characteristics, and by testing whether the root of NTD(G) has a
characteristic satisfying a certain condition formulated in Lemma 1 below. More
precisely, an iso-quadruple of H relative to a node z of NTD(G) is a quadruple
(S,D,K, ψ), where (i) S ⊆ V (H) with |S| ≤ k+1, (ii) D ⊆ C(H [V (H)\S]), (iii)
K = H [S ∪ V (D)], and (iv) ψ : S → Xz is an induced subgraph isomorphism
from H [S] to G[Xz ]. Notice that K is redundant; it is used for keeping the
explanation as simple as possible. The set of all iso-quadruples of H relative to
a node z of NTD(G) is denoted by Γ (H, z).

For a node z in NTD(G), an iso-quadruple (S,D,K, ψ) ∈ Γ (H, z) is a z-
characteristic of H if there exists an induced subgraph isomorphism ϕ from K
to G[z] satisfying (i) ϕ(u) = ψ(u) for all u ∈ S and (ii) ϕ(v) 
∈ Xz for all
v ∈ V (D). These conditions imply that ϕ(u) ∈ Xz for all u ∈ S. The set of all
z-characteristics of H relative to z is denoted by Γch(H, z). Clearly, Γch(H, z) ⊆
Γ (H, z). The following lemma from [4] provides a characterization of induced
subgraph isomorphism in terms of r-characteristics for the root r of NTD(G).

Lemma 1. Let r be the root of a nice tree-decomposition NTD(G) of G. Then
H �i G iff there exists (S,D,K, ψ) ∈ Γch(H, r) with K = H.

Thus, by the lemma above, we need to calculate the characteristics of the
root of NTD(G). Lemma 2 below from [4] shows how to compute the set of
characteristics for leafs, and how for internal (i.e., separator or join) nodes from
the sets of characteristics of their children. This enables the computation of the
characteristics for all nodes of NTD(G) by a postorder traversal of NTD(G).

Lemma 2. Let G,H be connected graphs of bounded tree-width and z be a node
in NTD(G). For all (S,D,K, ψ) ∈ Γ (H, z) it holds that (S,D,K, ψ) ∈ Γch(H, z)
iff one of the following conditions holds:

Leaf: z has no children and D = ∅.
Separator: z has a single child z′ and ∃(S′,D′,K ′, ψ′) ∈ Γch(H, z′) with

(S.a) S = {v ∈ S′ : ψ′(v) ∈ Xz},
(S.b) D′ = {D′ ∈ C(H [V (H) \ S′]) : D′ is a subgraph of some D ∈ D},
(S.c) ψ(v) = ψ′(v) for every v ∈ S.

Join: z has two children z1, z2 and there exist (S1,D1,K1, ψ1) ∈ Γch(H, z1)
and (S2,D2,K2, ψ2) ∈ Γch(H, z2) satisfying



Efficient FCISM in Graphs of Bounded Tree-Width 631

(J.a) Si = {v ∈ S : ψ(v) ∈ Xzi} for i = 1, 2,
(J.b) D1 and D2 form a binary partition of the connected components of D,
(J.c) ψi(v) = ψ(v) for every v ∈ Si and for i = 1, 2.

As mentioned, Lemma 2 provides a polynomial time algorithm for deciding
induced subgraph isomorphism for restricted subclasses of bounded tree-width
graphs (e.g., when the degree is also bounded [8] or when the graphs have log-
bounded fragmentation [4]). Clearly, the algorithm is exponential for arbitrary
bounded tree-width graphs; this follows directly from the negative result in [8].

It is important to stress that almost the same notions and conditions are used
for the frequent connected subgraph mining (FCSM) problem (cf. Section 4.1 in
[5]), where, in contrast to the FCISM problem, ordinary subgraph isomorphism is
the underlying pattern matching operator. The only difference is in the definition
of iso-quadruples, in particular, in the definition of ψ, in accordance with the
semantic difference between the FCSM and FCISM problems. However, as it
turns out in Section 4.2 below, we need a different combinatorial arguments to
show the positive result for the FCISM problem.

4.2 Feasible Iso-Quadruples

Like in the FCSM problem, the main source of computational intractability
of the algorithm based on Lemma 2 is the possibly exponential number of iso-
quadruples needed to test. Using the paradigm developed for the FCSM problem
[5], in this section we show that for each node of NTD(G), it suffices to check
only a polynomial number of iso-quadruples, as we can utilize the characteristics
of the frequent patterns computed earlier by Algorithm 1. In order to show this
result, we recall some necessary notions from [5]. As for the case of the FCSM
problem, for all transaction graphs we fix a nice tree-decomposition computed
in a preprocessing step for the entire mining process.

Let H1, H2, and G be connected graphs of bounded tree-width, NTD(G) be
some fixed nice tree-decomposition of G, and z be a node in NTD(G). For any
two ξ1 = (S1,D1,K1, ψ1) ∈ Γ (H1, z) and ξ2 = (S2,D2,K2, ψ2) ∈ Γ (H2, z), ξ1 is
equivalent to ξ2, denoted ξ1 ≡ ξ2, if there is an isomorphism π between K1 and
K2 such that π is a bijection between S1 and S2 and ψ1(v) = ψ2(π(v)) for every
v ∈ S1. The lemma below shows that it suffices to store only one representative
z-characteristic for each equivalence class of the set of z-characteristics and that
equivalence between iso-quadruples can be decided in polynomial time. The proof
is similar to that of the corresponding lemma in [5].

Lemma 3. Let G, H1, and H2 be connected graphs of tree-width at most k, z
be a node in NTD(G), and ξi = (Si,Di,Ki, ψi) ∈ Γ (Hi, z) (i = 1, 2). Then

(i) ξ1 ∈ Γch(H1, z) iff ξ2 ∈ Γch(H2, z) whenever ξ1 ≡ ξ2 and
(ii) ξ1 ≡ ξ2 can be decided in time O

(
nk+4.5

)
.

For a strong candidate pattern H generated by Algorithm 1 (i.e., which satis-
fies both conditions in line 5), let FH denote the set of patterns consisting of H
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and all frequent patterns listed before H . For a transaction graph G and node
z of NTD(G), an iso-quadruple ξ ∈ Γ (H, z) of a strong candidate pattern H is
redundant if there are P ∈ FH \ {H} and ξ′ ∈ Γ (P, z) with ξ ≡ ξ′; otherwise,
ξ is non-redundant. Finally, Γnr(H, z) and Γnr,ch(H, z) denote the set of non-
redundant iso-quadruples of H relative to a node z in NTD(G) and the set of
non-redundant z-characteristics of H , respectively.

Proposition 2 below implies that for a strong candidate pattern H and ξ ∈
Γ (H, z), it has to be tested whether ξ is a z-characteristic of NTD(G) only when
ξ is non-redundant; otherwise, it suffices to check whether ξ is equivalent to a
non-redundant z-characteristic for some frequent pattern P ∈ FH \ {H} (the
proof is similar to that of the corresponding claim in [5]).

Proposition 2. Let H be a strong candidate pattern, G be a transaction graph,
both of bounded tree-width, and let ξ ∈ Γ (H, z) for some node z in NTD(G).
Then ξ ∈ Γch(H, z) iff there exists ξ′ ∈

⋃
P∈FH

Γnr,ch(P, z) with ξ ≡ ξ′.

Thus, induced subgraph isomorphism can be decided by using the non-
redundant z-characteristics of the frequent patterns only. Instead of non-redun-
dant iso-quadruples, as we will show below, we can use an efficiently computable
superset of them, the set of feasible iso-quadruples. We first state a lemma that
provides a necessary condition of non-redundancy.

Lemma 4. Let H, G, and z be as in Proposition 2 and let ξ ∈ Γnr(H, z) with
ξ = (S,D,K, ψ). Then, for all vertices v ∈ V (H) \ V (K) it holds that

(i) the degree of v in H is at least 2 and
(ii) v is a cut vertex in H.

Proof. The proof of (i) applies a similar argument used for ordinary subgraph
isomorphism [5]. In particular, suppose for contradiction that V (H) \ V (K) has
a vertex v with degree 1 in H . Since, by assumption, H contains at least one
edge and is connected, it has no isolated vertices. Let H ′ be the graph obtained
from H by removing v and the (only) edge adjacent to it. Clearly, H ′ is a
connected induced subgraph of H . Since H is a strong candidate pattern, H ′ is a
frequent connected induced subgraph and has therefore already been generated
by Algorithm 1. Furthermore, K is an induced subgraph of H ′ implying ξ ∈
Γ (H ′, z). But ξ is then redundant for H , contradicting the assumption.

To prove (ii), suppose there is a non-cut vertex v ∈ V (H) \ V (K) of H . Let
H ′ = H0v. SinceH is connected and v is a non-cut vertex ofH ,H ′ is connected.
Similarly to the case above, it holds that H ′ contains K as an induced subgraph
because all edges that have been removed are outside of E(K). Thus, Γ (H ′, z)
has an element equivalent to ξ, contradicting that ξ is non-redundant. ��

We now show that for any S ⊆ V (H) of constant size, only a constant number of
connected components in H [V (H)\S] can fulfill the two conditions of Lemma 4.
Although the statement formulated below is similar to the corresponding claim
stated for the case of ordinary subgraph isomorphism in [5], the arguments used
in the proofs are entirely different, due to the difference between ordinary and
induced subgraph isomorphism.
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Lemma 5. Let H be a strong candidate pattern generated by Algorithm 1, S ⊆
V (H) with |S| ≤ k + 1, and CA be the set of connected components C from
C(H [V (H) \ S]) such that for all v ∈ C, v satisfies both conditions of Lemma 4.
Then

|CA| ≤
(
k + 1

2

)
.

To show the claim above, we first prove two technical lemmas.

Lemma 6. Let H, S, and CA be as defined in Lemma 5. Then for all C ∈ CA,
C is connected to S by at least two edges ending in different vertices in S.

Proof. The claim is straightforward if |V (C)| = 1; H has no parallel edges by
construction and the only vertex of C for this case must be connected to S by
at least two edges, as it is a cut vertex in H .

The proof of the case |V (C)| > 1 utilizes the fact that every connected graph
has at least two non-cut vertices. More precisely, let u be a non-cut vertex of C.
Since u is a cut vertex in H by condition (i) of Lemma 4, it must be the case
that u is connected to at least one vertex in S. Thus, C is connected to S by at
least two edges, as it has at least two non-cut vertices. Suppose that all non-cut
vertices of C are adjacent to the same vertex in S, say w. Let u, v ∈ V (C) be
different non-cut vertices of C. Since, on the one hand, u is a non-cut vertex
of C, and, on the other hand, it is a cut vertex in H by the condition of the
lemma, there are two vertices x, y ∈ V (H) that are disconnected by u (i.e., x
and y belong to different connected components of H 0 u). Since u is a non-cut
vertex of C, at most one of x and y can belong to C. It can easily be seen for
this case that in fact, exactly one of x and y, say x, belongs to C. Furthermore,
{u,w} must be an edge on the path connecting x and y in H , i.e., x and y are
connected by a path of the form Px,u+ {u,w}+Pw,y, where Px,u is a path in C.
Since C0u remains connected, there is a path Px,v connecting x and v in C0u.
Thus, the path Px,v+{v, w}+Pw,y connects x and y in H0u, contradicting that
u disconnects x and y. Hence, all connected components in CA are connected to
at least two different vertices in S, as stated. ��

The second lemma states that each connected component of CA “connects” such
two vertices of S that are not “connected” by any other component of CA.

Lemma 7. Let H, S, and CA be as defined in Lemma 5. Then for all connected
components C ∈ CA, there exist u′, v′ ∈ S such that

(i) u′ 
= v′ and {u, u′}, {v, v′} ∈ E(H) for some u, v ∈ V (C), and
(ii) for all C′ ∈ CA \ {C}, at least one of u′ and v′ is not adjacent to C′.

Proof. By Lemma 6, for all C ∈ CA there are u′, v′ ∈ S satisfying (i). Thus, to
show the claim above, suppose for contradiction that there exists a connected
component C ∈ CA with the following property: for all u′, v′ ∈ S satisfying (i)
for C, there is a C′ such that both u′ and v′ are adjacent to C′. Let u be the
only vertex of C if |V (C)| = 1; otherwise let u be a non-cut vertex of C. Since
C ∈ CA, u is a cut vertex in H by condition and hence, there are x, y ∈ V (H)
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such that u disconnects x and y in H . Depending on the number of vertices of
C and on the membership of x and y in C, we distinguish the following cases by
noting that the case x, y ∈ V (C) cannot occur by the choice of u:

Case 1. Suppose |V (C)| = 1. Then x and y must be connected in H by a path
of the form Px,v+{v, u}+{u,w}+Pw,y for some v, w ∈ S with v 
= w, where
the length of Px,v and Pw,y can be zero. By assumption, v and w are adjacent
to some C′ ∈ CA and thus, there is a path Pv,w in H that does not contain
u. But x and y are then connected in H by the path Px,v + Pv,w + Pw,y,
contradicting that u disconnects x and y.

Case 2. Suppose x ∈ V (C). Then x cannot be a non-cut vertex of C, as in this
case x must be adjacent to a vertex x′ ∈ S, which, in turn, is not adjacent
to u. It can be shown in a way similar to the proof of Case 1, that for this
case there is a path in H connecting x and y that does not contain u; a
contradiction. Thus, as C has at least two non-cut vertices if |V (C)| > 1,
there is a non-cut vertex v ∈ V (C) with v 
= u. Since u disconnects x and y
in H , there is a path of the form Px,u + {u, u′}+Pu′,y, where Px,u is a path
in C, {u, u′} is an edge of H with u′ ∈ S, and Pu′,y is a path connecting
u′ and y in H . Let v′ ∈ S be a vertex adjacent to v. Notice that v′ 
= u′,
as otherwise the path Px,v + {v, u′} + Pu′,y connects x and y in H 0 u,
contradicting that u disconnects x and y; clearly, a path Px,v connecting x
and v in C 0 u always exists, as u is a non-cut vertex of C. Thus, u′, v′

fulfill condition (i) and hence, u′ and v′ are connected by a path Pu′,v′ via
some connected component C′ ∈ CA by assumption. But then x and y are
connected by the path Px,v+{v, v′}+Pv′,u′ +Pu′,y in H0u, a contradiction.

Case 3. The case of x, y 
∈ V (C) can be shown in a way similar to the cases
above. ��

The proof of Lemma 5 follows directly from Lemma 7 and from |S| ≤ k + 1.
Following the paradigm designed for the FCSM problem in [5], we define fea-
sible iso-quadruples, a superset of non-redundant iso-quadruples, and formulate
in Theorem 6 the main result of this section, which states that feasible iso-
quadruples can be used correctly to decide induced subgraph isomorphism and
that the number of feasible iso-quadruples of a strong candidate pattern is poly-
nomial in the pattern’s size. More precisely, for a strong candidate pattern H
generated by Algorithm 1 and for a node z in NTD(G) of a transaction graph
of bounded tree-width, an iso-quadruple ξ ∈ Γ (H, z) is called feasible if it satis-
fies the conditions of Lemma 4. The set of feasible iso-quadruples relative to z
and the set of feasible z-characteristics are denoted by Γf(H, z) and Γf,ch(H, z),
respectively.

Theorem 6. Let H be a strong candidate pattern generated by Algorithm 1 and
z be a node of NTD(G) for some transaction graph G with tw(G) ≤ k. Then

(i) Γnr(H, z) ⊆ Γf(H, z),
(ii) for all ξ ∈ Γ (H, z), ξ ∈ Γch(H, z) iff there exist a ξ′ ∈

⋃
P∈FH

Γf,ch(P, z)
with ξ ≡ ξ′,
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(iii) |Γf(H, z)| = O
(
|V (H)|k+1

)
, and

(iv) Γf(H, z) can be computed in time polynomial in the size of H.

Proof. The proof of (i) is immediate from the definitions and from Lemma 4.
Claim (ii) follows from Proposition 2 and from the fact that

⋃
P∈FH

Γnr,ch(P, z)
and

⋃
P∈FH

Γf,ch(P, z) are equal up to equivalence. To show (iii), let S ⊆ V (H)
with |S| ≤ k + 1 and CA be the set of connected components as defined in
Lemma 5. By definition, for every ξ = (S,D,K, ψ) ∈ Γf(H, z), D contains all
connected components in C(H [V (H) \ S]) that are not in CA. For a fixed subset
S ⊆ V (H) with |S| ≤ k + 1 and for a fixed injective function ψ mapping S
to the bag Xz of z, the number of possible feasible quadruples is bounded by

2|CA|, which, in turn, is bounded by 2(
k+1
2 ) by Lemma 5. The number of induced

subgraph isomorphisms from H [S] to G[Xz ] is at most the number of injective
functions from S to the bag Xz of z, which is bounded by (k + 1)!. Since S can
be chosen in at most |V (H)|k+1 different ways, we have

|Γf(H, z)| ≤ 2(
k+1
2 ) · (k + 1)! · |V (H)|k+1 ,

from which we get (iii) by noting that k is a constant. Finally, (iv) holds along
the lines in the proof of (iii) above by noting that all cut vertices of H can
be found in time O (V (H) + E(H)) and it can be decided whether an injective
function ψ : S → Xz is an induced subgraph isomorphism from H [S] to G[Xz ]
in constant time, as |S|, |Xz| ≤ k + 1. ��

4.3 Deciding Induced Subgraph Isomorphism

In this section we show how to utilize feasible characteristics efficiently for de-
ciding induced subgraph isomorphism. Let H be a strong candidate pattern
generated by Algorithm 1 and G be a transaction graph, both of tree-width at
most k. Furthermore, let NTD(G) be a nice tree-decomposition of G and r the
root of NTD(G). By Lemma 1 and Theorem 6, H �i G iff there is a feasible
r-characteristic (S,D,K, ψ) ∈ Γf,ch(H, r) with K = H . The algorithm deciding
H �i G assumes that all nodes z in NTD(G) is associated with a set containing
all elements of Γf,ch(P, z), for all frequent patterns P ∈ FH \ {H}. It visits the
nodes of NTD(G) in postorder traversal and calculates first Γf(P, z) for all nodes
z visited; this can be done in time polynomial in the size of H by (iv) of Theo-
rem 6. It then computes Γf,ch(P, z) by testing for all ξ = (S,D,K, ψ) ∈ Γf(P, z)
whether ξ is a characteristic. Depending on the type of z, this test can be per-
formed by checking the condition given in the corresponding case below:

Leaf: By case Leaf of Lemma 2, ξ is a characteristic iff D = ∅.
Separator: Let z′ be the child of z in NTD(G) and let S(ξ) be the set of all

iso-quadruples ξ′ ∈ Γ (H, z′) that satisfy conditions (S.a)–(S.c) of Lemma 2.
Using similar arguments as in the proof of Lemma 16 in [5], one can show that
(i) ξ is a characteristic iff Γf,ch(H, z′) ∩ S(ξ) 
= ∅ and (ii) S(ξ) ⊆ Γf(H, z′)
and thus, it can be computed in time polynomial in the size of H .
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Join: Let z1 and z2 be the two children of z in NTD(G). To give the condition
for this case, we need a definition. Let ξi = (Si,Di,Ki, ψi) ∈ Γ (Pi, zi) for
some Pi ∈ FH \ {H} (i = 1, 2). We assume without loss of generality that
K,K1, andK2 are pairwise vertex disjoint. The join of ξ1 and ξ2 with respect
to ξ, denoted ⊕ξ(ξ1, ξ2), is an iso-quadruple (S′,D1 ∪D2,K

′, ψ′) relative to
z obtained from (S1 ∪ S2,D1 ∪ D2,K1 ∪ K2, ψ1 ∪ ψ2) by (i) replacing u1

and u2 in S1 ∪ S2, K1 ∪K2, and ψ1 ∪ ψ2 with a new vertex u for all vertex
pairs u1 ∈ S1 and u2 ∈ S2 with ψ1(u1) = ψ2(u2) and by (ii) connecting
in K ′ all original vertices u, v ∈ S′ with u ∈ S1 and v ∈ S2 by an edge
labeled by � if the vertices u′, v′ ∈ S with ψ(u′) = ψ1(u) and ψ(v′) = ψ2(v)
are connected in K by an edge labeled with �. One can check that this
definition is in fact an adaptation of conditions (J.a)–(J.c) of Lemma 2. In
a way similar to the proof of Lemma 17 in [5], one can show that (i) ξ is
a characteristic iff there are ξi = (Si,Di,Ki, ψi) ∈

⋃
P∈FH

Γf,ch(P, zi) for
i = 1, 2 with ξ ≡ ⊕ξ(ξ1, ξ2) and that (ii) ⊕ξ(ξ1, ξ2) can be computed in time
polynomial in the size of ξ, ξ1, and ξ2 for any ξ1, ξ2, implying that it can be
decided in time polynomial in the size of FH , i.e., in incremental polynomial
time, whether ξ is a characteristic.

Combining the arguments above with Lemma 1, we get Theorem 7 below for
condition (v) of Theorem 2. Together with Theorems 4 and 5, this completes
the proof of our main result stated in Theorem 3.

Theorem 7. Let G be the class of bounded tree-width graphs. For every H,G ∈ G
such that H is a strong candidate pattern generated by Algorithm 1, it can be
decided in time polynomial in the combined size of the input DB and the set of
frequent patterns listed before H whether H �i G.

5 Concluding Remarks

By the main result of this paper, the FCISM problem can be solved in incremen-
tal polynomial time for bounded tree-width graphs. The positive results on the
FCSM problem in [5] and on the FCISM problem in this work suggest the investi-
gation of further, computationally hard pattern matching operators for bounded
tree-width graphs, such as, for example (induced) homeomorphism or (induced)
minor embedding. We suspect that the systematic study of these and other pat-
tern matching operators will result in an efficient parameterized frequent pattern
mining algorithm for graphs of bounded tree-width, with the pattern matching
operator as the parameter. Designing such a generic pattern mining algorithm
is a very challenging project because, as the results in [5] and in this paper
show, different pattern matching operators may require entirely different pat-
tern refinement operators and entirely different combinatorial characterizations
of feasible iso-quadruples.

The results of this paper raise some interesting open problems. For example,
it is an open question whether the positive result formulated in Theorem 3
can further be strengthened. In particular, can the FCISM problem be solved
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with polynomial delay for bounded tree-width graphs? By setting the frequency
threshold t to 1, our main result implies that one can efficiently generate all
distinct connected induced subgraphs of a bounded tree-width graph. Does this
positive result hold for arbitrary graphs as well? Or does the negative result
given in Theorem 1 apply even to the special case that the database contains a
single (arbitrary) graph and the frequency threshold is set to 1?

Finally we note that we are going to design and implement a practically fast
algorithm listing frequent connected induced subgraphs for graphs of tree-width
at most 3. For this graph class, motivated practically e.g. by pharmacological
molecules (see the statistics with the ZINC dataset in Section 4), there are linear
time recognition algorithms [1]. Though the arguments used for join nodes in
Section 4.3 might suggest that we need time quadratic in the size of FH , one
can show that this test can be carried out actually in time only linear in it.
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Abstract. Large network analysis is a very important topic in data
mining. A significant body of work in the area studies the problem of
node similarity. One way to express node similarity is to associate with
each node the set of 1-hop neighbors and compute the Jaccard similar-
ity between these sets. This information can be used subsequently for
more complex operations like link prediction, clustering or dense sub-
graph discovery. In this work, we study algorithms to monitor the result
of a similarity join between nodes continuously, assuming a sliding win-
dow accommodating graph edges. Since the arrival of a new edge or the
expiration of an existing one may change the similarity between sev-
eral node pairs, the challenge is to maintain the similarity join result as
efficiently as possible. Our theoretical study is validated by a thorough
experimental evaluation, based on real-world as well as synthetically gen-
erated graphs, demonstrating the superiority of the proposed technique
in comparison to baseline approaches.

Keywords: mining streaming graphs, continuous similarity processing.

1 Introduction

Graphs play an important role in modern world [1], due to their widespread use
for modeling, representing and organizing linked data. Taking into consideration
that most of the “killer” applications require a graph-based representation (e.g.,
the Web, social network management, protein interaction networks), efficient
query processing and analysis techniques are required, not only because these
graphs are massive but also because the operations that must be supported are
complex, requiring significant computational resources.

A graph G(V,E), in its simplest form, is composed of a node-set V , repre-
senting the entities (objects), and an edge-set E, representing the relationship
among the entities. Each edge eu,v ∈ E connects a pair of nodes u, v, denoting
that these nodes are directly related in a meaningful manner. For example, if
nodes represent authors, then an edge between two authors may denote that
they have collaborated in at least one paper. As another example, in a social
network application (e.g., Facebook), an edge may denote that two users are
connected by a friendship relationship.

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 638–653, 2013.
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Fig. 1. Graph example

Motivation. A significant operation in a graph is the computation of the sim-
ilarity between nodes. The similarity between nodes u and v may be expressed
in several ways, depending on application or user requirements. For example, we
may express similarity by means of shortest paths, maximum flow, random walks
or a combination of measures. In general, similarity is expressed by a function
V ×V → [0, 1], where a value close to 0 means low similarity and a value close to 1
denotes a high similarity between a node pair. In this work, we express similarity
by means of the Jaccard similarity coefficient, which enjoys a widespread use in
diverse areas such as link prediction and recommendation [15], data cleaning [3],
near duplicate detection [19], diversity analysis [9], whereas it is one of the most
important measures for set similarity. We associate with each node u the set of
its immediate neighbors N(u) (u inclusive). Then, the similarity between nodes
u and v is computed as the fraction of their common neighborhood size over the
cardinality of their neighborhood union, i.e.:

SJ(u, v) =
|N(u) ∩N(v)|
|N(u) ∪N(v)| (1)

Example 1. Figure 1 depicts a small graph where |V | = 8 and |E| = 14. Based
on our similarity definition, it can be verified easily that: SJ(v1, v2) = 5/5 = 1,
SJ(v2, v6) = 1/8, SJ (v6, v8) = 4/4 = 1 and SJ(v1, v7) = 0. We observe that node
pairs that share the same set of immediate neighbors (e.g., v1 and v2) have a
similarity of 1, whereas node pairs without common neighbors have a similarity
of 0 (e.g., v1 and v7). �

An important operation which is based on pair-wise node similarities is the
similarity join. More specifically, given a set of objects, a similarity function and
a threshold ϑ, the similarity join operator reports all object pairs with a similarity
at least ϑ. The output of this operator may be used subsequently for more
complex mining tasks like clustering, dense subgraph discovery, association and
link prediction. Regarding our setting, the similarity join result set R between
graph nodes is defined as the set of node pairs < u, v > such that the Jaccard
similarity between their neighborhoods is at least ϑ. More formally:

R = {(u, v) : u ∈ V, v ∈ V, SJ(u, v) ≥ ϑ} (2)

Our Contributions. Although similarity joins have been studied before (see
for example [14]), to the best of our knowledge, there is a lack of research in
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maintaining the join result in a dynamic network, where insertions and deletions
of nodes and edges are allowed. In particular, in many modern applications, se-
quential access to the data is the only feasible direction, due to huge data volumes
or because of frequent updates. For example, the output of a network router, in
its simplest form, is usually a stream of triplets of the form < IP1, IP2, t >, de-
noting that IP1 sent a packet to IP2 at time t. Any online processing performed
on the router output must be based on sequential access, since the order of the
output is completely random, whereas the frequency of the stream prevents the
use of expensive data structures to organize the data on-the-fly. Based on this,
we assume that the graph is available in the form of a data stream [17], where
edges should be processed as they are presented to the algorithm.

More specifically, we study two different alternatives of the streaming graph
model. In the turnstile model, the graph is presented as a sequence of edge inser-
tions and edge deletions. For example, the sequence +eu,v,+eu,x,+ex,y,−eu,x
represents a streaming graph which is constructed by inserting edges eu,v, eu,x
and ex,y (we use a plus sign in front of an insertion) and deleting the edge eu,x
(we use the minus sign in front of the edge). A special case of the turnstile
model is the sliding window model, where the last w elements are maintained
in a first-in first-out fashion. In this setting, the arrival of a new edge eu,v is
followed by the expiration of an existing edge eu′,v′ . In fact, the expired edge is
the one with the oldest timestamp. Based on this model, at any given time, the
active set of edges forms a subgraph of the streaming graph, representing the last
m interactions among the graph nodes. This simple model may be generalized
in several directions. For example, in some cases there is a whole set of newly
arrived edges, meaning that an equal number of edges must expire. Another
option is to have a time-based sliding window, where the window maintains the
interactions that took place in the last h hours. To keep the presentation and
the algorithms simple, we base our work on count-based sliding windows, where
at any given time, exactly w edges are maintained in memory, whereas arrivals
and expirations refer to single edges.

The main goal of this paper is to study efficient algorithms for continuous
similarity monitoring of the nodes of an evolving graph, which is presented in
the form of a stream of edges. In particular, our contributions are as follows:

– To the best of our knowledge, this is the first work that studies continuous
similarity computation over streaming graphs using sliding windows. Taking
into consideration that node similarity is the base for more complex tasks,
the results of our study can be used for clustering or community discovery
over streaming graphs.

– We propose efficient algorithms to maintain the similarity join result both
when insertions and deletions of edges are arbitrary and when they follow
a sliding window scenario, thus, enabling the use of our techniques in any
dynamic network. The proposed algorithm uses effective pruning techniques
to avoid the recomputation of Jaccard similarity wherever this is possible.
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– We offer a thorough experimental evaluation based on large real-world as well
as synthetically generated graphs, showing that the proposed algorithms offer
significant performance improvement in comparison to baseline approaches.

Roadmap. The rest of the article is organized as follows. Section 2 presents
some research contributions that are highly related to our work. Algorithms for
continuous similarity computation over streaming graphs are given in Section 3.
Performance evaluation results based on real-world as well as synthetic networks
are offered in Section 4. Finally, Section 5 concludes our work.

2 Related Work

The issues studied in this paper, lie in the intersection between graph mining [1]
and data streams [11,17]. Mining streaming graphs is challenging, mainly due
to the data massiveness and also because of the inherent difficulty in solving
complex graph problems in the streaming model of computation [8,20].

Node similarity in graphs plays an important role in graph mining because
it is often the base for supporting more complex operations such as clustering
and community detection [10]. To express the similarity between graph nodes,
a meaningful similarity measure is required. One such measure is the Jaccard
similarity, which has been applied successfully in areas such as duplicate detec-
tion [6,19], link prediction [15], similarity evaluation in wikipedia [4], triangle
counting in massive graphs [5] and diversity analysis in documents [9].

Based on the importance of the Jaccard similarity, in this work we focus on
the application of this measure to detect node pairs of a dynamic network, with
a high degree of similarity. In particular, network dynamics are controlled by
a sliding window of a fixed size w, which maintains the most recent edges of
the streaming graph. Our work is inspired by previous research approaches to
process complex queries over sliding window data streams. The work in [16]
studies the problem of top-k query processing over a multidimensional data
stream for any monotone ranking function. In a similar manner, [13] proposes
efficient algorithms for top-k dominating queries whereas [12] focuses on outlier
mining over general metric streams. Those works focus on multidimensional or
metric streams.

Although there is a significant body of work dealing with processing over
streaming graphs [8,20,2], none of the existing works handles similarity com-
putation over a streaming graph using sliding windows. A research topic that
is closely related to similarity computation is triangle counting. Algorithms for
counting triangles in streaming graphs have been reported in [5] where the semi-
streaming model is used, in [7] where sampling is used. Those works aim at
reducing the space requirements and thus the solutions they provide are ap-
proximate. Moreover, since those techniques are based on either minhashing or
sampling, they cannot support deletions efficiently.

An important challenge is that apart from the fact that, in contrast to rela-
tional join processing, the insertion/deletion of an edge affects the similarity of
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other node pairs in the graph, the result set is composed of two types of node
pairs: i) node pairs joined by an edge and ii) non-adjacent node pairs. This fea-
ture is unique in graphs and requires attention because edge pruning cannot be
performed easily.

3 Continuous Similarity Computation

3.1 Preliminaries

In this section, we present some fundamental concepts related to continuous Jac-
card similarity computation in a streaming environment. Formally, the problem
we attack is the following:

Problem Definition. Given a streaming graph G and a count-based sliding
window of size w, monitor all node pairs vi, vj such that SJ(vi, vj) ≥ ϑ, where
ϑ ∈ [0, 1] is a user-defined similarity threshold.

To facilitate efficient processing, the graph is organized by an adjacency list
representation, where each node points to its immediate neighbors. Since in a
streaming environment insertions and deletions of edges are very frequent, node
information is stored in a hashmap for fast lookups. This allows us to locate
each node in O(1) expected time. Likewise, the result set R which contains the
node pairs having similarity larger than the threshold ϑ, is also organized by
a hashtable. This way, checking if a node pair is in the result set involves a
lookup in the hashtable using as key a combination of the node identifiers. The
indexing schemes used by our techniques are shown in Figure 2. Notice that,
R may contain node pairs that either are not joined by an edge or are direct
neighbors. This means that some node pairs in R correspond to adjacency list
entries and some do not. For example, the entries of R shown shaded in Figure
2 correspond to disjoint node pairs, whereas the rest correspond to node pairs
connected by an edge of G.

An important issue in the data organization is the way the set of neighbors
N(v) of a node v is arranged, since this has a direct impact on the efficiency of the
Jaccard similarity computation. To provide the best possible solution we have
to take into account that: i) insertions and deletions in N(v) must be handled
efficiently and ii) the Jaccard similarity computation between two nodes must
be also computed efficiently. We distinguish among the following cases, assuming
that currently, |N(v)| = k:

Unordered List (UL). The set of neighbors N(v) is organized as a simple
unordered list. This offers O(1) worst case time for inserting a new neighbor
in N(v), but requires linear cost to find or delete a neighbor. For Jaccard
computation, if both nodes have k neighbors, then in O(k) expected time
we can compute the intersection and the union of the neighborhoods using
hashing.
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Ordered List (OL). If both lists are ordered, then the computation of the
intersection and the union can be completed in O(k) worst case. Likewise,
insertions and deletions also require linear cost in the worst case.

Binary Search Tree (BST). With a BST, insertions and deletions are han-
dled in O(log n) worst case, whereas intersections and union operations are
executed in linear O(k) time worst case.

Hash Table (HT). In this scheme, instead of having an unordered list, the set
of neighbors is organized in a hashtable. This provides O(1) expected cost
for insertions and deletions, and also O(k) expected cost for computing the
intersection and the union.

Based on the previous discussion, HT is the most promising technique for Jaccard
similarity computation, and this is also validated by the experimental results we
report in Section 4.

3.2 Algorithmics

In this section, we study algorithmic techniques toward continuous Jaccard sim-
ilarity computation over a streaming graph. Initially, we provide a baseline ap-
proach to solve the problem, followed by an efficient algorithm that can handle
insertions and deletions of edges. Finally, we propose a more sophisticated algo-
rithm which is more appropriate for the sliding-window case.

Definition 1. The set of affected pairs of an edge eu,v, denoted as SAP (eu,v)
or simply SAP (u, v), is the set of node pairs whose Jaccard similarity is affected
by the arrival or the expiration of the edge eu,v.

Based on the previous definition, the similarity of a node pair contained in
SAP (eu,v) may be increased or decreased, according to the structure of the
graph. The following lemma explains which pairs are contained in SAP (eu,v)
and how their similarity is affected.
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Fig. 2. Indexing techniques employed
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Fig. 3. Example graph used in the proof of Lemma 1

Lemma 1. Let eu,v be an inserted/deleted edge and u, v the associated nodes.
The similarities that are affected by this insertion/deletion are those defined by:
i) the pair (u,v), ii) u and all neighbors of u, iii) u and all neighbors of v, iv) v
and all neighbors of v and v) v and all neighbors of u.

Proof. We focus on the case where the edge e is inserted, because the deletion is
handled symmetrically. Therefore, let e be a new edge joining the nodes x and y
as it is indicated in Figure 3. Based on the definition of the Jaccard similarity,
SAP (x, y) contains only the pairs mentioned above, since by using contradiction,
it is impossible that the similarity of a node pair not belonging to one of these
cases will change due to the insertion of e. Next we show how the similarities of
the node pairs contained in SAP (x, y) are modified.

The similarity between x and y is increased, since now y becomes a direct
neighbor of x and x becomes a direct neighbor of y. Consequently, the set
N(x) ∩ N(y) gets two new members, x and y, resulting in an increase of the
value of SJ (x, y). Next, we examine what is the impact of inserting e to the
similarity between x and each of its direct neighbors, denoted as xi. There are
two cases to examine here: in the first case, y is not a neighbor of xi (this is
the case for x2 and x3), whereas in the second case, y is a neighbor of xi (e.g.,
when xi is x1). In the first case, the value of SJ(x, xi) decreases, because only
the denominator increases, whereas the nominator remains unchanged. In the
second case, SJ(x, xi) increases, because the nominator increases by one and the
denominator remains the same. Similar arguments can be stated for the other
node pairs contained in SAP (x, y). ��

The Baseline Algorithm (Base). The simplest algorithm to solve the con-
tinuous similarity problem is directly derived by utilizing the result of Lemma 1.
This baseline algorithm, denoted as Base, computes the Jaccard similarity for
all node pairs contained in SAP (x, y), where x and y are the nodes associated to
an edge e which is either inserted or deleted. Each time a new similarity SJ (u, v)
is computed, the value is compared to ϑ, and if SJ(u, v) ≥ ϑ, then the pair (u, v)
is inserted into the result set R. Node pairs that are contained in R and their
updated similarity is less than ϑ are simply evicted from R.

It is evident, that the cost of this approach is highly dependent on the number
of Jaccard similarity computations executed. To reduce this number, we first
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Algorithm 1. Base

Input: G: the graph, e: the new or expiring edge between x and y, R: result set
Output: updated result set R

1: determine the set SAP (x, y);
2: for each node pair (u, v) ∈ SAP (x, y)
3: compute UBJ (u, v)
4: if (UBJ (u, v) < ϑ)
5: if ((u, v) ∈ R) R ← R − {(u, v)};
6: else
7: recompute SJ(u, v);
8: if (SJ (u, v) ≥ ϑ)
9: if ((u, v) /∈ R) R ← R + {(u, v)}; /* insert (u, v) into R */
10: else
11: if ((u, v) ∈ R) R ← R − {(u, v)}; /* remove (u, v) from R */
12: return;

enforce an upper bound, and if the node pair still survives the test, only then
the Jaccard similarity is computed. In particular, given two nodes u and v, their
Jaccard similarity satisfies the following inequality:

SJ(u, v) ≤ UBJ(u, v) =
min(|N(u)|, |N(v)|)
max(|N(u)|, |N(v)|) (3)

The outline of Base is given in Algorithm 1. The upper bound test is per-
formed at Line 4, and the Jaccard computation is executed at Line 7. Although
the use of the upper bound reduces the number of Jaccard similarity computa-
tions, more sophisticated techniques are required to decrease the cost further.

The Counter-Based Algorithm (Counter). The main drawback of Base

is that there is a significant number of Jaccard similarity computations, leading
to performance deterioration. To overcome this limitation, the next algorithm
(Counter) is based on keeping separate counters for the cardinality of the
intersection (nominator) and the cardinality of the union (denominator), thus
reducing the cost of computing Jaccard similarities significantly.

The key idea of the Counter algorithm is that when a new edge e joining x
and y is inserted, we compute the value SJ(x, y) and we maintain two separate
counters C∩ and C∪ for the cardinality of the intersection and the union of the
neighborhoods respectively, i.e. C∩(x, y) = |N(x)∩N(y)| and C∪(x, y) = |N(x)∪
N(y)|. Thus, whenever there is a need to recompute the value of SJ(x, y), we
need only adjust the values of C∩(x, y) and C∪(x, y) and just perform the division
C∩(x, y)/C∪(x, y). In addition, intersection and union counters are maintained
for node pairs that are not connected by an edge but are included in the result
set R. Subsequent recomputations of the Jaccard similarity are executed fast,
avoiding unnecessary set-oriented operations among the neighborhoods. In the
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Algorithm 2. Counter

Input: G: the graph, e: the new edge between x and y, R: result set
Output: updated result set R

1: determine the set SAP (x, y);
2: for each node pair (u, v) ∈ SAP (x, y)
3: if ((u, v) ∈ R)
4: update counters C∩(u, v) and C∪(u, v) for (u, v);
5: if (C∩(u, v)/C∪(u, v) < ϑ)
6: R ← R− {(u, v)};
7: else if ((u, v) ∈ E) /* edge (u, v) exists */
8: update counters C∩(u, v) and C∪(u, v) for (u, v);
9: if (C∩(u, v)/C∪(u, v) ≥ ϑ)
10: R ← R+ {(u, v)};
11: else
12: compute UBJ (u, v)
13: if (UBJ (u, v) ≥ ϑ)
14: compute SJ (u, v);
15: if (SJ(u, v) ≥ ϑ) R ← R + {(u, v)};
16: return;

sequel, we examine only the insertion case, since deletions are handled in a
similar manner.

Let e be a new edge that is inserted inG, linking nodes x and y.Counter first
checks if the pair (x, y) is already in the result set R. If yes, then definitely there
exist counters for the intersection and the union that have been set previously.
Therefore, the new value of SJ(x, y) is computed easily. The outline of Counter

is given in Algorithm 2. Notice that, before the computation of the Jaccard
similarity in Line 12, the algorithm first checks if the node pair is in R or the
corresponding edge exists in E. Then, the intersection and union counters are
updated based on the cases reported in Lemma 1. To avoid confusion, we use the
term set-based Jaccard computation to refer to the Jaccard computation when
there are no precomputed counters, and use the term counter-based Jaccard
computation otherwise.

The Slide-Oriented Algorithm (Slide). Although Counter is more effi-
cient than Base, it is designed to support insertion and deletion of arbitrary
edges. However, our goal is to support continuous evaluation over a sliding win-
dow of size w. In this case, we know exactly the expiration time of an edge,
since edges arrive and depart in a FIFO fashion. This means that additional
optimizations can be applied toward the design of an algorithm which is more
appropriate for the sliding-window case.

In this section, we provide the details of the Slide algorithm, which has
been designed for the sliding-window scenario. The key idea of Slide is that
if we could determine the time instance when a node pair (u, v) will enter the
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result set R, then we could decide if (u, v) is promising or not. It turns out that
such a prediction is possible, resulting in an effective mechanism to determine
node pairs that can be eliminated safely. More specifically, when a new edge is
inserted, we make an optimistic prediction, determining the closer time instance
that the nodes associated with the edge can be included in the result set R.
The prediction is optimistic, in the sense that the estimated time instance is
computed assuming the best possible scenario for this edge. In addition, as we
show in the sequel, this estimation produces only false positives and never false
dismissals.

Lemma 2. Let e be a newly arrived edge joining nodes x and y. Let t∗(x, y)
denote the closer time instance into the future in order for (x, y) to enter the
result set R. Then, it holds that:

t∗(x, y) = tnow +min{C∗∩(e)− C∩(e), C∪(e)− C∗∪(e)} (4)

where tnow is the current time, C∩(e) and C∪(e) are the values of intersection
and union counters computed upon examination of e, and C∗∩(e) and C∗∪(e) are
the values of intersection and union counters when e is expected to be inserted
into R.

Proof. Assume that e joins the nodes x and y and it is checked at the current
time tnow. Let also C∩(e) and C∪(e) denote the values of the intersection and
union counters for e at time tnow. We assume that the node pair (x, y) will enter
the result set R at some time in the future, and let t∗(x, y) denote this par-
ticular time instance. We are looking for the smallest possible value of t∗(x, y).
If C∗∩(e) and C∗∪(e) are the values of the intersection and union counters when
(x, y) enters R, then clearly we have that: C∗∩(e)/C

∗
∪(e) ≥ ϑ. Based on the pre-

vious discussion, every time SJ (x, y) is affected, exactly one of the following five
cases is true: i) only C∩(e) increases, ii) only C∪(e) increases, iii) only C∩(e)
decreases, iv) only C∪(e) decreases, iv) both C∩(e) and C∪(e) increase or v)
both C∩(e) and C∪(e) decrease. Among the previous cases, the ones that may
lead faster to the inclusion of (x, y) into R are the first two. Indeed, the fraction
C∩(e)/C∪(e) increases faster if either the nominator increases (keeping the de-
nominator fixed) or the denominator decreases (keeping the nominator fixed).
Note, that these two events cannot happen at the same time. Consequently, to
gain the additional Δϑ similarity score required to enter R, it suffixes to wait for
min(C∗∩(e) − C∩(e), C∪(e) − C∗∪(e)) time instances at best, assuming the most
optimistic scenario. ��
Lemma 3. If for an edge e it holds that texp(e) < t∗(e), then it is safe to skip
the Jaccard similarity computation for this edge.

Proof. Recall that t∗(e) is the closest time instance when e will enter R, con-
sidering the most favorable scenario for e, i.e., by increasing the nominator and
decreasing the denominator as much as possible. Consequently, if the expiration
time of e is less than t∗(e), then it is impossible for e to enter the result set
R. Therefore, the Jaccard computation between the nodes joined by e may be
skipped safely. ��
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Algorithm 3. Slide

Input: G: the graph, e: the new edge between x and y, R: result set
Output: updated result set R

1: determine the set SAP (x, y);
2: for each node pair (u, v) ∈ SAP (x, y)
3: if ((u, v) ∈ R)
4: update counters C∩(u, v) and C∪(u, v) for (u, v);
5: if (C∩(u, v)/C∪(u, v) < ϑ)
6: R ← R− {(u′, v′)};
7: else if ((u, v) ∈ E) /* edge (u, v) exists */
8: if (texp(u, v) < t∗(u, v))
9: reject (u, v) from further consideration;
10: else
11: update counters C∩(u, v) and C∪(u, v) for (u, v);
12: if (C∩(u, v)/C∪(u, v) ≥ ϑ)
13: R ← R+ {(u, v)};
14: else
15: compute UBJ (u, v)
16: if (UBJ (u, v) ≥ ϑ)
17: compute SJ (u, v);
18: if (SJ(u, v) ≥ ϑ) R ← R + {(u, v)};
19: return;

If an edge e joining nodes x and y satisfies the inequality of Lemma 3, then
there is no need to test the pair (x, y) again, and consequently there is no need to
maintain intersection and union counters, since it is guaranteed that e will never
enter R for the rest of its lifespan. The outline of Slide is given in Algorithm 3.
The expiration time pruning is applied in Lines 8 and 9.

4 Performance Evaluation

In this section, we report some representative performance results showing the
efficiency and scalability of the proposed approach. All algorithms have been
implemented in JAVA and the experiments have been conducted on an Intel
Core i5@2.7GHz machine. We study the performance of the algorithms in terms
of their runtime and their pruning capabilities, by varying the most important
parameters, such as the window size (w) and the value of the similarity threshold
(ϑ). The default values for the parameters, if not otherwise specified, are: w =
1, 000, 000 and ϑ = 0.8. The computational cost of the algorithms is given in
terms of the expected time required by an update (an insertion followed by a
deletion). This value determines the processing capabilities of the algorithms,
since it is inversely proportional to the number of updates that can be served
per time unit, which is an important measure in applications managing data
streams.
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4.1 Data Description

To study the performance of the algorithms we have used both real-world and
synthetic data sets. The real-world data sets are described briefly in Table 1 and
are freely available for download at http://snap.stanford.edu/data/index.html.

Table 1. Real-world data sets (source http://snap.stanford.edu/data/index.html)

Data #Nodes #Edges Description

Wiki-Talk 2,394,385 5,021,410 pages editing between wikipedia users

Web-BerkStan 685,230 7,600,595 web from berkeley.edu and stanford.edu

Soc-LiveJournal1 4,847,571 68,993,773 users’ connections in LiveJournal social network

The synthetic graphs have been generated by using the GenGraph tool [18].
This generator produces graphs obeying power-law degree distributions. In par-
ticular, GenGraph generates a set of n integers in the interval [dmin, dmax] obeying
a power-law distribution with exponent a. Therefore, according to the degree dis-
tribution produced, a random power-law graph is generated. The default values
for the parameters of the generator are: dmin = 0.1% of the number of vertices,
dmax = 0.8% of the number of vertices and a ∈ {1.8, 2, 2.2, 2.5}. The maximum
number of vertices has been set to 10,000.

4.2 Experimental Results for Real-Life Data

The first result involves the way Jaccard computations are computed, which is
highly related to the way adjacency lists are maintained, as it has been described
in Section 3.1. In particular, Figure 4 depicts the performance of the three studied
algorithms for the Soc-LiveJournal1 data set. As expected, the HT organization,
which relies on hashing, shows the best performance. Therefore, we apply the
HT technique in the performance evaluation discussed in the sequel.

Figures 5 and 6 demonstrate the scalability of the algorithms by varying the
windows size w. Figure 5 shows the runtime per update. All algorithms are af-
fected negatively when the number of active edges increases. However, we observe
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Fig. 4. Comparison of adjacency list maintenance using Soc-LiveJournal1
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Fig. 6. Jaccard similarity computations vs window size

Table 2. Number of counter-based Jaccard computations (Soc-LiveJournal1)

threshold result set Slide Counter

ϑ R executed saved executed

0.1 294,117 308,011,791 8,913,518 316,925,309
0.3 179,213 321,129,674 16,828,460 337,958,134
0.5 98,173 333,849,425 27,991,030 361,840,455
0.7 63,171 341,328,740 36,990,891 378,319,631
0.9 304 350,187,993 45,882,785 396,070,778

that Counter and Slide are consistently more efficient than Base. This is ex-
plained by studying the number of Jaccard computations performed by each
algorithm. Figure 6 compares Base and Counter with respect to the num-
ber of similarity computations. It is evident, that the counter-based technique
employed by Counter saves a significant number of set-based similarity com-
putations, which is the predominant cost in runtime. In general, Slide is around
four times faster than Base and two times faster than Counter, despite the
fact that the upper bound pruning is enabled for all algorithms.

Next, we illustrate the impact of the similarity threshold to the performance
of the algorithms. For this, we have used our largest graph, i.e., Soc-LiveJournal1.
Table 2 shows the number of counter-based Jaccard computations executed
by Counter and Slide. Although both algorithms execute the same num-
ber of set-based Jaccard computations, Slide manages to reduce the number of
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Fig. 7. Performance vs threshold (Soc-LiveJournal1)

counter-based Jaccard computations due to the expiration time pruning tech-
nique employed. This leads to a significant performance improvement.

Figure 7(a) shows the runtime comparison between Counter and Slide al-
gorithms. We observe that the performance gap between the algorithms increases
by increasing the similarity threshold. Note that, as it is also shown in Table
2, the larger the similarity threshold the fewer node pairs manage to enter the
result set. This means that we are going to have less precomputed information
in R and therefore Slide benefits more by this situation since it can skip more
counter-based Jaccard computations.

Finally, in Figure 7(b) we report on the pruning power of the upper bound
given in Equation 3, when applied to the Slide algorithm. We clearly see that
there is a performance gain ranging between 12% and 20%, which is very impor-
tant, since the runtime per update defines the throughput (edges per time unit)
that can be processed by the algorithm.

4.3 Experimental Results for Synthetic Data

In the sequel, we report some evaluation results showing the efficiency of the
proposed approach over synthetic streaming graphs. These graphs in which the
experiments were performed are denser than the real-life graphs explored previ-
ously. In particular, as the value of parameter a (power-law exponent) decreases,
the graph generated by GenGraph [18] contains more nodes with large degree,
resulting in a graph with larger density. This means that the density of a graph
with a = 1.8 is larger than that of a graph with a = 2.2.

Figure 8 shows the performance of the algorithms, for different values of the
window size w and the power-law exponent a. Again, as in the case of real-world
data, we observe that Slide shows the best performance in terms of runtime
(Figure 8(a)) and this is also true for different values of the power-law expo-
nent (Figure 8(b)). The small performance difference of all algorithms when the
power-law exponent increases, is due to the impact of a on the graph density,
because the cardinality of the SAP of a node pair is highly dependent on the
density of the graph. The number of set-based Jaccard computations are given
in Figure 8(c). Again, the precomputed counters save a significant number of
set-based Jaccard computations, resulting in performance improvement.
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5 Conclusions

Node similarity in graphs is an important operation, because it allows the execu-
tion of more complex analysis tasks such as clustering and community discovery.
In this work, we have studied algorithms for continuous evaluation of pair-wise
similarities, where the graph is accessed as a random sequence of edges in a
sliding window scenario. More specifically, given a similarity threshold ϑ, we are
interested in determining all node pairs with Jaccard similarity at least ϑ. This
problem arises frequently in data streams, and especially in streaming graphs,
where a sliding window retains the last w entity interactions.

Three algorithms have been studied and evaluated, namely Base, which is the
baseline approach, Counter an algorithm that supports insertion and deletion
of any edge and it is based on precomputed counters and finally Slide which is
designed for a streaming scenario and uses a pruning technique to ignore node
pairs that will never make it to the result set. Experimental results based on
real-world and synthetic data sets have demonstrated that Slide is consistently
more efficient that the other algorithms.

There are several interesting directions for future work, such as: i) the design of
algorithm for top-k most similar pairs, ii) the generalization of our techniques to
consider h-hop neighbors for similarity computation and iii) the use of sketch-
based techniques to enable performance boost by penalizing the accuracy of
the result. With respect to the last direction, graph-specific sketches, like the
gSketch [21] or cascading summaries [8], may be applied to allow for low-space
similarity computation.
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Abstract. Many applications see huge demands of discovering impor-
tant patterns in dynamic attributed graph. In this paper, we intro-
duce the problem of discovering trend sub-graphs in dynamic attributed
graphs. This new kind of pattern relies on the graph structure and the
temporal evolution of the attribute values. Several interestingness mea-
sures are introduced to focus on the most relevant patterns with regard
to the graph structure, the vertex attributes, and the time. We design an
efficient algorithm that benefits from various constraint properties and
provide an extensive empirical study from several real-world dynamic
attributed graphs.

1 Introduction

Data mining techniques are now sufficiently mature to investigate complex data
such as graph, whose vertices stand for entities and edges represent their rela-
tionships or interactions. With the rapid development of social media, sensor
technologies and bioinformatic assay tools, real-world graph data has become
ubiquitous and new dedicated data mining techniques have been developed.
Whereas dynamic graphs [2,4,13,15] and attributed graphs [12,14,16] have been
separately considered so-far, we focus on the extraction of valuable information
from dynamic attributed graphs. The simultaneous consideration of the graph
structure, the vertex attributes and their evolution through time makes possible
to tackle a wide variety of mining problems. A timely challenge is to provide
tools and methods to describe the evolution of the whole graph but also the
specific evolution of some particular sub-graphs.

The second problem was recently tackled in [6], where an algorithm that mines
cohesive co-evolution patterns is proposed. These patterns identify sets of ver-
tices that are similar from the point of view of their attribute values and of the
vertices in their neighborhood. However, as this method under-utilizes the topo-
logical structure of the vertex sets (i.e., only similarity measure are computed
from two vertex adjacency lists), it tends to fragment some reliable patterns.
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In this paper, we propose to mine maximal dynamic attributed sub-graphs that
satisfy some constraints on the graph topology and on the attribute values. To be
more robust towards intrinsic inter-individual variability, we do not compare raw
numerical values, but their trends, that is, their derivative at time stamp t. The
connectivity of the dynamic sub-graphs is constrained by a maximum diameter
value that limits the length of the longest shortest path between two vertices.
Additional interestingness measures are used to assess the interest of the trend
dynamic sub-graphs and guide their search by user-parameterized constraints.
These constraints aim at answering the following questions:

– How similar are the vertices outside the trend dynamic sub-graph to the
ones inside it?

– Are trends specific to the vertices of the pattern?
– What about the dynamic of the pattern? Does it appear suddenly or con-
tinuously?

The algorithm designed to compute these patterns traverses the lattice of
dynamic attributed sub-graphs in a depth-first manner. It prunes and propagates
constraints that are fully or partially monotonic or anti-monotonic [5], and thus
takes advantage of a large variety of constraints that are usually not exploited
by standard lattice-based approaches. To summarize, the main contributions of
this paper are:

– The introduction of a novel problem: the discovery of trend dynamic sub-
graphs in dynamic attributed graph. We define the trend dynamic sub-graph
as a suitable mathematical notion for the study of dynamic attributed graphs
and introduce the notions of vertex specificity, temporal dynamic, and trend
relevancy characterizations.

– The design of an efficient algorithm that exploits the constraints, even those
that are neither monotonic nor anti-monotonic.

– A quantitative and qualitative empirical study. We report on the evaluation
of the efficiency and the effectiveness of the algorithm on several real-world
dynamic attributed graphs.

The remainder of the paper is organized as follows. Section 2 defines the trend
dynamic sub-graphs and their related interestingness measures. It also formalizes
a new data mining task. Section 3 presents the algorithm that computes trend
dynamic sub-graphs. An empirical evaluation on real-world attributed dynamic
graphs is reported in Section 4. Section 5 discusses the related work. A conclusion
ends the paper in Section 6.

2 Trend Dynamic Sub-graphs and Their Related
Constraints

2.1 Trend Dynamic Sub-graphs

The input of our mining task is a dynamic graph G = {Gt | t = 1 . . . tmax}
over a discrete time span T = �1, tmax�. Each static graph is a non-directed
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attributed graph Gt = (V,Et, A) where V is a set of n vertices {v1, . . . , vn}
that is fixed throughout the time, {Et | t ∈ T } is a sequence of sets of edges
that connect vertices of V at time t (Et ⊆ V × V ), and A is a set of p ordinal
attributes {a1, . . . , ap} whose values are defined for each vertex at each time step
(ai : V × T → Di, where Di is the domain of ai).

Intuitively, a trend dynamic sub-graph is an induced dynamic graph of G(V, T )
whose vertices follow the same trend over a subset of attributes of A. Formally,
given a subset of vertices U ⊆ V and a subsequence S = 〈t1, · · · , ts〉 of time
stamps of T , the dynamic sub-graph of G induced by (U, S) is G(U, S) = {Gt(U) |
t ∈ S} and Gt(U) contains all the edges in Et that have both ends in U . The
induced dynamic graphs that are apt to convey a useful piece of information
are those whose vertices follow a similar trend for a set of attributes, that is to
say whose attribute value derivative at a time stamp t has the same sign over
all the vertices and the time stamps of the dynamic sub-graph. We say that an
attribute a shows an increasing trend over G(U, S), denoted a+, if ∀u ∈ U and
∀t ∈ S, a(u, t) < a(u, t+ 1). In a similar way, we also consider decreasing trend,
a−. Many trend dynamic sub-graph can be observed over a dynamic attributed
graph, but those that are particularly important occur in nodes that are closely
related through the induced sub-graph topology. To that end, we are looking for
trend dynamic sub-graphs whose static induce sub-graphs have a small diameter.
To summarize, a trend dynamic sub-graph is defined as follows:

Definition 1 (Trend Dynamic Sub-graph). A trend dynamic sub-graph of

an attributed dynamic graph
(
G(V, T ), A × {+,−}

)
is composed by (1) the in-

duced dynamic sub-graph G(U, S) = {Gt(U) | t ∈ S} where U ⊆ V and S =
〈t1, . . . , ts〉 is a subsequence of T , and (2) a subset of signed attributes Ω, with
Ω ⊆ A×{+,−}. It is denoted

(
G(U, S), Ω

)
and satisfies the following properties :

1. At each time stamp t ∈ S, the sub-graph induced by U is Gt(U) = (U, Ft)
with Ft = Et ∩ (U × U).

2. At each time stamp t ∈ S, the diameter of the graph Gt(U) is less than
or equal to k, where k is a user-defined threshold. I.e., for any two vertices
v, w ∈ U , there exists a path connecting them whose length is smaller than
or equal to k. Formally, let dGt(U)(v, w) be the shortest path length between
the vertices v and w in Gt(U). The diameter of G is thus defined by

diamGt(U) ≡ max
v,w∈U

dGt(U)(v, w)

and the diameter constraint, that is diamGt(U) ≤ k, ∀t ∈ S, is denoted

diameter
(
G(U, S), Ω

)
.

3. Each signed attribute (a,m) ∈ Ω defined a trend that has to be satisfied by
any vertex u ∈ U at any timestamp t ∈ S:{

a+(u, t) ≡ a(u, t) < a(u, t+ 1), if m = +
a−(u, t) ≡ a(u, t) > a(u, t+ 1), if m = −

This constraint is denoted trend
(
G(U, S), Ω

)
.
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4. If
(
G(U, S), Ω

)
is maximal, then the sets U and Ω, as well as the sequence S

cannot be enlarged without invalidating one or more of the above properties.
This constraint is denoted maximal

(
G(U, S), Ω

)
.

2.2 Interestingness Measures

To further guide the extraction of trend dynamic sub-graphs toward most rele-
vant ones, we propose several interstingness measures that offer the possibility
to the end-users to express their needs. An interestingness measure is a function
which assigns a value to a pattern according to its quality. Such a measure can
easily be used as a constraint by specifying a user-defined threshold that makes
possible the selection of patterns having a high or a low value on these measures.

Size measures: As most simple interestingness measures are often the most useful
ones, we first consider size measures that characterize a pattern by the number
of elements it contains: sz vertices

(
G(U, S), Ω

)
= |U |, sz times

(
G(U, S), Ω

)
=

|S| and sz attributes
(
G(U, S), Ω

)
= |Ω|. These measures are generally used to

constrain patterns to a minimal size.

Volume measure: In some contexts, it can also be useful to combine the three size

measures in a single value: volume
(
G(U, S), Ω

)
= |U|
|V | ×

|S|
|T | ×

|Ω|
|A| . This measure

is also generally used to constrain patterns to a minimal volume.

Measure of vertex specificity: The question that aims to answer this measure is:
How similar are the vertices outside the trend dynamic sub-graph to the ones
inside it? We want to quantify the average proportion of trends that are satisfied
by outside pattern vertices:

vertex specificity
(
G(U, S), Ω

)
=

∑
w∈V \U

∑
(a,m)∈Ω

∑
t∈S δam(w,t)

|V \ U | × |Ω| × |S|
where δcondition is the Kronecker function that is equal to 1 if condition is satis-
fied, or 0 otherwise. The more the trend dynamic sub-graph is made of specific
vertices with respect to attribute trends, the lower this measure.

Measure of trend relevancy: The question that aims to answer this measure
is: Does the attributes that do not belong to Ω have an homogeneous trend
on G(U, S)? To that end, we evaluate the entropy of the attribute trends and
consider the one that has the smallest entropy. Let

P1(b
m,G(U, S)) =

∑
u∈U

∑
t∈S δbm(u,t)∑

u∈U
∑

t∈S
(
δb−(u,t) + δb+(u,t)

)
be the proportion of the trend m of attribute b on the vertices and time stamps
of G(U, S). Then the trend relevancy interestingness measure is:

trend relevancy
(
G(U,S), Ω

)
= min

b∈A\Ω

∑
m∈{−,+}

−P1(b
m,G(U, S)) logP1(b

m, G(U,S))

The more a trend dynamic sub-graph is trend relevant, the higher this measure.
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Time

Outer 
Density

0

1
Inner density = 1

Trend Pattern

Fig. 1. Does the pattern burst ?

Measure of temporal dynamic: The
question that aims to answer this
measure is: How does a pattern ap-
pear in the time? Does it burst?
To that end, we evaluate the dy-
namic of the proportion of ver-
tices and attributes that satisfy the
pattern before and after the time
stamps of S: P2(t, (G(U, S), Ω)) =∑

u∈U

∑
(a,m)∈Ω δam(u,t)

|U|.|Ω| . If a trend dynamic sub-graph bursts, then the propor-

tion P2 is below a threshold at every time stamps not in S:

temporal dynamic(G(U, S), Ω) = max
t∈T\S

P2(t, (G(U, S), Ω))

3 Trend Sub-graph Enumeration

To compute all the trend attributed sub-graphs that satisfy the interestingness
measures, we design MINTAG algorithm (for MINing Trend Attributed Graph)
that enumerates induced dynamic sub-graphs based on the next partial order.

Definition 2 (Partial Order on Attributed Induced Dynamic Sub-
graphs). Let Q1 =

(
G(U1, S1), Ω1

)
and Q2 =

(
G(U2, S2), Ω2

)
be two attributed

induced dynamic sub-graphs. We say that Q1 is more specific than Q2, Q1 4 Q2,
iff U1 ⊆ U2 and S1 ⊆ S2 and Ω1 ⊆ Ω2.

This partial order forms a lattice: for any nonempty finite subset of attributed
induced dynamic sub-graphs F = {Qi | i = 1 . . . k}, F∨ =

(
G(
⋃
Ui,

⋃
Si),

⋃
Ωi

)
and F∧ =

(
G(
⋂
Ui,

⋂
Si),

⋂
Ωi

)
are respectively the join and meet elements. The

bounds of the lattice are Q� =
(
G(V, T ), A × {+,−}

)
and Q⊥ =

(
G(∅, ∅), ∅

)
.

The enumeration strategy used by MINTAG is a binary partition [17]. In order
to enumerate all the trend attributed sub-graphs R induced from

(
G(V, T ), A×

{+,−}
)
, a binary partition algorithm consists in choosing an element e ∈ E =

V ∪ T ∪ A × {+,−} and divides R into two sets R+e and R−e so that R+e

consists of all the elements of R including e, and R−e consists of those that do
not include e. Therefore, e belongs to R∧+e and e does not belong to R∨−e. If R+e

(resp. R−e) is not empty and R∨+e 
= R∧+e (resp. R∨−e 
= R∧−e), it is recursively
divided by choosing another element in R∨+e\R∧+e (resp.R∨−e\R∧−e). The number
of iterations of a binary partition algorithm is linear in |R|, which is the output
size, if it is possible to check whether either R+e or R−e are empty. In the
following, we explain how this test is performed.

3.1 Constraint Checking and Propagation Mechanisms

Let I and O be two subsets of E. We denote by RIO a search space such that I
is the set of elements that are included in all the patterns of RIO and O is the
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set of elements that cannot be included in any pattern of RIO. R∨IO and R∧IO are
respectively the join and meet elements of this search space and I ⊆ R∧IO and
O ∩R∨IO = ∅. Checking whether the search space is empty can be done by eval-
uating the constraints on the join or the meet elements. Indeed, if a monotonic
constraint is not satisfied by the join element, then RIO is empty. Similarly, if
an anti-monotonic constraint is not satisfied by the meet element, then RIO is
also empty. Constraints that are partially monotonic or anti-monotonic can also
be pushed [5], as it is explained below.

Trend Sub-graph Constraints

Trend constraint: This constraint is anti-monotonic with respect to 4. That is,
if Q1 and Q2 are two attributed induced dynamic sub-graphs such that Q1 4
Q2, then, trend(Q2) ⇒ trend(Q1). The anti-monotonic property of the trend
constraint implies that if trend(R∧IO) is not satisfied, then RIO is empty. In
MINTAG algorithm, this constraint is propagated using the following procedure:
if there exists e in R∨IO \ R∧IO such that trend(R∧IO ∪ e) is not satisfied, then e
is removed from R∨IO.
Diameter constraint: This constraint is neither monotonic nor anti-monotonic
with respect to 4. However, noting that this constraint is monotonic or anti-
monotonic in each of its parameters, we can derive a propagation mechanism
of this constraint. That is, for all vertex v and all time stamp t in the trend
sub-graph, we should have maxw∈U1 dGt(U2)(v, w) ≤ k. This constraint is anti-
monotonic on U1 and monotonic on U2, that is (a) if the constraint is satisfied on
U1, it is also satisfied for any of its subsets; (b) if the constraint is satisfied on a
graph Gt(U2), then, adding some vertices and edges to Gt(U2) will not increase
its value. Therefore, in MINTAG algorithm, this constraint is propagated using the
following mechanisms: (1) if there exists v ∈ R∨IO \ R∧IO, w ∈ R∧IO and t ∈ R∧IO
such that dGt(R∨

IO∩V )(v, w) > k then v is removed from R∨IO; (2) if there exists
t ∈ R∨IO \R∧IO, v ∈ R∧IO and w ∈ R∧IO such that dGt(R∨

IO∩V )(v, w) > k then t is
removed from R∨IO.

Other Interestingness Constraints

Minimal size constraints: As these constraints are monotonic, if sz vertices
(R∨IO ∩ V ) < min sz vertices or sz attributes(R∨IO ∩ A × {+,−}) <
min sz attributes or sz times(R∨IO ∩ T ) < min sz times, then RIO is empty.

Minimal volume constraint: Similarly, this constraint is monotonic and if
volume(R∨IO) < min volume, then RIO is empty.

Maximal vertex specificity constraint: As the diameter constraint, this constraint
is monotonic or anti-monotonic on each of its parameters. Considering the
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equation
∑

w∈V \U1

∑
(a,m)∈Ω1

∑
t∈S1

δam(w,t)

|V \U2|×|Ω2|×|S2| ≤ max vertex spec, we can observe

that it is monotonic on U1, S2 and Ω2 and anti-monotonic on U2, S1 and Ω1.
Thus, RIO is empty if∑

w∈(R∨
IO∩V )

∑
(a,m)∈(R∧

IO∩(A×{+,−})
∑

t∈(R∧
IO∩T ) δam(w,t)

|R∧IO ∩ V | × |R∨IO ∩ (A× {+,−})| × |R∨IO ∩ T | > max vertex spec

Minimal trend relevancy constraint: Handling this constraint is a little more
tricky. Let us first consider the entropy function with two probability values:
f(x) = −x log(x) − (1 − x) log(1 − x). This function increases on [0, 12 ] and de-
creases on [ 12 , 1]. Using this notation, the minimal trend relevancy can be rewrit-
ten as minb∈A\Ω f(P1(b

+,G(U, S)) ≥ min trend rel.1 Second, we can derive the
following upper bound on P1(b

m,G(U, S)):

P1(b
m,G(U, S)) ≤

∑
u∈(R∨

IO∩U)

∑
t∈(R∨

IO∩S) δbm(u,t)∑
u∈(R∧

IO∩U
∑

t∈(R∧
IO∩S)

(
δb−(u,t) + δb+(u,t)

) = UB(bm)

as P1 is monotonic on its numerator parameters, and anti-monotonic on
its denominator ones. Similarly, we can derive a lower bound2 LB(bm) ≤
P1(b

m,G(U, S)). Thus, if UB(bm) ≤ 1
2 , then f is increasing and

f(P1(b
m,G(U, S))) ≤ f(UB(bm)). Similarly, if LB(bm) ≥ 1

2 , then f is decreasing
and f(P1(b

m,G(U, S))) ≤ f(LB(bm)).
Therefore, if there exists b ∈ A \ R∨IO and m ∈ {+,−} such that either

(1) UB(bm) ≤ 1
2 and f(UB(bm)) < min trend rel, or (2) LB(bm) ≥ 1

2 and
f(LB(bm)) < min trend rel then f(P1(b

m,G(U, S))) < min trend rel and we
can conclude that RIO is empty.

Maximal temporal dynamic constraint: This constraint is anti-monotonic on its
parameters on the numerator and monotonic on the ones on the denominator:

max
t∈T\S

∑
u∈U

∑
(a,m)∈Ω δam(u,t)

|U |.|Ω| ≤ max temp dyn

Therefore, if there exists t ∈ T \R∨IO such that

∑
u∈R∧

IO
∩U

∑
(a,m)∈R∧

IO
∩Ω δam(u,t)

|R∨
IO∩U|.|R∨

IO∩Ω|
>

max temp dyn, then we can conclude that RIO is empty.

3.2 MINTAG Algorithm

Algorithm 1 presents the main steps of MINTAG. Lines 1 and 2 initialize I and O
to the emptyset. Line 3 and 4 initialize the sub-space join value to the lattice top
and the meet value to the lattice bottom. Line 5 is the first call to MINTAG Enum

1 This is equivalent to minb∈A\Ω f(P1(b
−,G(U, S)) ≥ min trend rel as

P1(b
+,G(U, S)) = 1− P1(b

−,G(U, S)).
2 LB(bm) =

∑
u∈(R∧

IO
∩U)

∑
t∈(R∧

IO
∩S)

δbm(u,t)∑
u∈(R∨

IO
∩U

∑
t∈(R∨

IO
∩S)

(
δ
b−(u,t)

+δ
b+(u,t)

) ≤ P1(b
m,G(U, S)).
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function which enumerates once and only once each trend dynamic sub-graph.
The first line of the function tests if the search space contains a single trend
dynamic sub-graph. If so, it is output. Line 4 reduces the search space join by
removing elements whose enumeration will emptied the search space due to the
trend or the diameter constraints. Line 5 checks if the search space is empty
by considering the maximality, minimal size, minimal volume, maximal vertex
specificity, minimal trend relevancy and maximal temporal dynamic constraints.
If one of these constraints is not relevant for the end-user, she can set the corre-
sponding threshold to 0, for the minimal constraints, or to 1 for the other ones.
In that case, these constraints do not coerce the result. If the search space is not
empty, a new element, that belongs to the join but not to the meet, is enumer-
ated. This element is first added to the search space meet before the recursive
call (lines 7 and 8), and then it is removed from the search space join before the
recursive call (lines 10 and 11).

Algorithm 1. MINTAG Function MINTAG Enum(R∨IO,R∧IO)

Require: An attributed dynamic
graph G = {Gt = (V,Et, A) |
t ∈ T} with A{a1, . . . , ap}, ai :
V × T → Di and the parame-
ters.

Ensure: All trend dynamic sub-
graph that satisfy the con-
straints.

1: I ← ∅
2: O ← ∅
3: R∨

IO ←
(
G(V, T ), A× {+,−}

)
4: R∧

IO ←
(
G(∅, ∅), ∅

)
5: MINTAG Enum(R∨

IO ,R∧
IO)

1: if R∨
IO = R∧

IO then
2: Ouput(R∨

IO)
3: else
4: R∨

IO ← Constraint Propagation(R∨
IO ,R∧

IO)

5: if not Empty Search Space(R∨
IO ,R∧

IO) then
6: for all e ∈ R∨

IO \ R∧
IO do

7: I ← I ∪ {e}
8: MINTAG Enum(R∨

IO ,R∧
IO ∪ {e})

9: I ← I \ {e}
10: O ← O ∪ {e}
11: MINTAG Enum(R∨

IO \ {e},R∧
IO)

12: O ← O \ {e}
13: end for
14: end if
15: end if

4 Experimental Study

In this section, we report on experimental results to illustrate the interest of
the proposed approach. We start by describing the different real-world dynamic
attributed graphs we use, as well as the questions we aim to answer. Then, we
provide a performance study and give some qualitative results. All experiments
were performed on a cluster. Nodes are equipped with 2 processors at 2.5GHz and
16GB of RAM under Linux operating systems. MINTAG algorithm is implemented
in standard C++.
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4.1 Real-World Dynamic Attributed Graphs Description

Dynamic attributed graph |V | |T | |A| density

DBLP 2145 10 43 1.3× 10−3

US Flights Last 20 years 361 20 8 3.2× 10−2

September 2001 220 30 6 5.7× 10−2

Two years around 9/11 234 25 8 5.7× 10−2

Katrina 280 8 8 5× 10−2

Brazil landslides 394885 2 11 5.7× 10−4

Fig. 2. Main characteristics of the dy-
namic attributed graphs

We considered 3 real-world dynamic
attributed graphs whose characteris-
tics are given in Figure 4.1.

DBLP: This co-authorship graph is
built from the DBLP digital library 3.
Each vertex represents an author who
published at least ten papers in one of
the major conferences and journals of
the Data Mining and Database com-
munities between January 1990 and December 2012. This time period is divided
in 10 timestamps. Each timestamp describes the co-authorship relations and the
publication records of the authors over 5 consecutive years. For sake of consis-
tency in the data, two consecutive periods have a 3 year overlap4. Each edge at
a time stamp t links two authors who co-authored at least one paper in this time
interval. The vertex properties are the number of publications in each of the 43
journals or conferences.

US Flights: RITA “On-Time Performance” database5 contains on-time arrival
data for non-stop US domestic flights by major air carriers. From this database,
we generated 4 dynamic attributed graphs that aggregate data over different
period of time. Graph vertices stand for US airports and are connected by an
edge if there is at least a flight connecting them during the time period. We
consider 8 vertex attributes that are the number of departures/arrivals, the
number of canceled flights, the number of flights whose destination airport has
been diverted, the mean delay of departure/arrival and the ground waiting time
departure/arrival. The four dynamic graphs are:

– Last 20 years: Data are aggregated over each year.
– September 2001: Data are aggregated over each day of September 2001.
– Two years around 9/11: Data are aggregated over each month between
September 2000 and September 2002.

– Katrina: To study the consequences of hurricane Katrina on US airports,
data are aggregated over each week between 01/08/2005 and 25/09/2005.

Brazil landslides: This dynamic attributed graph is derived from two satellite
images taken before and after huge landslides in Brazil. It is composed of 394885
vertices that stand for image shapes (segmented areas), two time stamps and
11 attributes that are the spectral response in infra-red, red, blue green and
indices computed from these values. There is an edge between two vertices if the
corresponding shapes are contiguous.

3 http://dblp.uni-trier.de/
4 [1990-1994][1992-1996][1994-1998]...[2008-2012].
5 http://www.transtats.bts.gov

http://dblp.uni-trier.de/
http://www.transtats.bts.gov
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The ensuing experimental study aims at answering the following questions:
What is the efficiency of MINTAG with regard to the graph characteristics that
may affect its execution time? How effective are MINTAG’s pruning properties?
Does MINTAG scale? What about MINTAG’s trend dynamic sub-graph relevancy?

4.2 Quantitative Results

We conduct intensive experiments to evaluate the performance of MINTAG in
terms of computational cost and number of trend dynamic sub-graphs on differ-
ent dynamic attributed graphs. Figure 3 shows the number of extracted patterns

 0

 2000

 4000

 6000

 8000

 1  2  3  4  5  6  7  8  9  10
 80

 90

 100

 110

 120

 130

 140

 150

N
um

be
r 

of
 p

at
te

rn
s

T
im

e 
(s

)

Volume

DBLP

Patterns
Time

 0

 4000

 8000

 12000

 16000

 5  10  15  20  25  30  35  40  45
 0

 2000

 4000

 6000

 8000

N
um

be
r 

of
 p

at
te

rn
s

T
im

e 
(s

)

Volume

US Flights

Patterns
Time

Fig. 3. Number of patterns and runtime for DBLP (left) and US flights (right) with
respect to volume: max vertex spec = 0.5, min trend rel = 0.05 and max temp dyn =
0.8. The diameter is set to 2 on (left) and to 1 on (right).

and the execution times of MINTAG on DBLP and US Flights with respect to the
volume threshold. When the minimum volume threshold decreases, more exe-
cution time is required since more trend dynamic sub-graph are obtained. Yet,
MINTAG is able to extract trend dynamic sub-graphs when the minimum volume
threshold is minimal, that is to say equals 1, since we report absolute volume
values. MINTAG does not exhibit a similar monotonic behavior when varying the
diameter constraint: the time computation is no more proportional to the num-
ber of extracted patterns. Actually, pushing this constraint needs to compute
shortest paths in the graph, that is costly.

Figure 4 reports the execution times and the number of patterns with respect
to the other interestingness measures: vertex specificity, trend relevancy and
temporal dynamic. We can observe that for the graphs DBLP and US Flights, the
less stringent the constraints, the higher the execution times and the number of
patterns are. In most of the cases, the number of patterns increases dramatically.
This behavior shows that our approach push efficiently these constraints that
are neither monotonic nor anti-monotonic. It is noteworthy that in Figure 4,
the execution time of MINTAG on DBLP for min trend rel = 0 is not available
because the process was killed after several hours.

Figure 5 reports on the scability of MINTAG. We used DBLP and replicated
alternatively the number of vertices, time stamps and attributes. As the number
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Fig. 4. Runtime and number of patterns with respect to the specificity measures
(max vertex spec = 0.3, min trend rel = 0.1, max temp dyn = 0.5, min volume = 5
and max diameter = 2 for DBLP (top) or 1 for US flights (bottom))

of extracted patterns is not preserved by these replications (i.e., the vertex repli-
cation adds connected components while the time replication introduces new
variations involving the last time stamp) we report the runtime per pattern. It
appears that MINTAG is more robust to the increase of the number of attributes
and to the number of vertices than to the number of time stamps. This is a good
point since, in practice, the number of vertices is often large while the numbers
of attributes and mainly the number of time stamps are rather small.
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min volume = 5 and max diameter = 2

We study the effectiveness of each constraint on both DBLP and US Flights,
when varying the different thresholds (volume, vertex specificity, temporal dy-
namic and trend relevancy). To this end, we count the number of pruned un-
promising candidates by each constraint. The results are shown in Figure 6 for
DBLP (top) and US Flights (bottom). It is noteworthy that all the constraints
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enable to prune unpromising candidates and they have different impact on both
graphs. We can observe that the trend relevancy constraint is effective on the
two graphs and prunes almost 50% of the unpromising candidates on DBLP in
most of the cases. Even if this constraint has no anti-monotonic property, it is ef-
ficiently pushed in MINTAG. The volume constraint, more effective on DBLP than
US Flights, makes possible to prune large part of the search space. This behavior
is much more expected since this constraint is anti-monotonic. The pruning im-
pact of the temporal dynamic constraint is not negligible, since it prunes nearly
20% of the candidates on DBLP and up to 60% on US flights. This important
difference is mainly due to the temporal regularity of US Flights. This can also
explain the fact that the vertex specificity constraint plays a prominent role on
the US Flights while having a limited impact of the DBLP dynamic graph.
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Fig. 6. Constraint efficiency on DBLP (top) and US Flights (bottom) w.r.t. speci-
ficity measures. From top to bottom: volume (black), trend relevancy (red), tempo-
ral dynamic (green) and vertex specificity (blue). Same parameters as in Fig. 3 and 4.

4.3 Qualitative Results

Results on DBLP: We perform an extraction on DBLP dynamic attributed
graph with max diameter set to infinity (vertices belong to the same connected
component) and min volume = 5. Other constraints threshold are set so as not
to constrain the result. We obtained 112 trend dynamic sub-graphs in less than
4 seconds. The top 2 largest patterns depict the same well-known phenomenon,
explained below. The first pattern involves 171 authors having an increasing
number of publications in PVLDB between 2004 and 2012. The second one
involves 164 authors that have a decreasing number of publications in VLDB
during the same period. These patterns reflect the new policy of the VLDB
endowment. Indeed, PVLDB appeared in 2008 and, in 2010, the review process of
the VLDB conference series was done in collaboration with, and entirely through
PVLDB in 2011. Then, we carry out a new extraction taking into account all the
constraints (max diameter = 2, max vertex spec = 0.3, max temp dyn = 0.5)
except min trend rel that was set to 0. We obtained 41 patterns in 8 seconds.
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We first consider the pattern that has the longest duration and involves the
most recent period, that is [2008-2012]. It implies the vertices related to Jimeng
Sun and Christos Faloutsos, who have an increasing number of publications in
KDD and SDM, while having a decreasing number of publications in VLDB. We
consider another pattern which has the best temporal dynamic value among the
patterns having their trend relevancy greater than 0.1. It involves two authors,
Rong Zhou and Eric A. Hansen, and the time stamps between 1998 and 2008.
On this period, the authors have an increasing number of publications in AAAI
conference series. This pattern has good values on vertex specificity (0.12),
temporal dynamic (0) and trend relevancy (0.81). This publication trend is
rare with regard to the whole graph.

Fig. 7. Airports (left) involved in the top temporal dynamic trend dynamic sub-graph
(in red) and in the top trend relevancy (in yellow) and the Katrina’s track (right)

Results on Katrina: Hurricane Katrina was the deadliest and most destruc-
tive Atlantic hurricane of the 2005 Atlantic hurricane season. It was the costli-
est natural disaster, as well as one of the five deadliest hurricanes, in the his-
tory of the United States. Among recorded Atlantic hurricanes, it was the sixth
strongest overall. In this experiment, we aim to characterize the impact of this
hurricane on the US domestic flights. To this end, we set constraints as follows:
min volume = 10, max vertex spec = 0.6, min trend rel = 0.1, max temp dyn =
0.2 and max diameter = ∞. We extract 37 patterns in 14 seconds. We look for
two patterns: (i) the trend dynamic sub-graph with largest temporal dynamic
value, and (ii) the pattern with the highest trend relevancy value. These pat-
terns and Katrina’s track6 are shown in Figure 7. Pattern (i) involves 71 air-
ports (in red on Figure 7 (left)) whose arrival delays increase over 3 weeks. One
week is not related to the hurricane but the two others are the two weeks af-
ter Katrina caused severe destruction along the Gulf coast. This pattern has
a temporal dynamic = 0, which means that arrival delays never increased in
these airports during another week. The hurricane strongly influenced the do-
mestic flight organization. Pattern (ii) has a trend relevancy value equal to 0.81
and includes 5 airports (in yellow on Figure 7 (left)) whose number of departures
and arrivals increased over the three weeks following Katrina hurricane. Three
out of the 5 airports are in the Katrina’s trajectory while the two other ones were

6 Map from c©2013 Google, INEGI, Inav/Geosistemas SRL, MapLink
http://commons.wikimedia.org/wiki/File:Katrina_2005_track

http://commons.wikimedia.org/wiki/File:Katrina_2005_track


Trend Mining in Dynamic Attributed Graphs 667

Table 1. Trend dynamic sub-graphs extracted by MINTAG on September 2001 graph

Pattern |V | Days A vertex spec. temp. dyn. trend rel.

P1 179 10, 11 #Cancel.+ 0.5 0.41 0.94

P2 111 13, 15 #Cancel.− 0.52 0.83 0.9

P3 102 13, 14, 15 #Cancel.− 0.6 0.84 0.81

impacted because of their connections to airports from damaged areas. Substi-
tutions flights were provided from these airports during this period. The values
on the other interestingness measures show that this behavior is rather rare in
the rest of the graph (vertex specificity = 0.29, temporal dynamic = 0.2).

Results on September 2001: To characterize the impact of September 11
attacks, we look for patterns involving many airports (at least 100) whose trends
are relevant (trend relevancy = 0.8). Given this setting, MINTAG returns 3 trend
dynamic sub-graphs in 8 seconds. These patterns are reported in Table 1. They
depict a large number of airports, whose number of canceled flights increased on
September 11 and 12 compared to the previous days, and then decreased two
days after the terrorist attacks (between the 13th and 16th September). These
patterns identify the time required for a return to normal domestic traffic.

Results on Two years around 9/11: Considering longer periods before and
after the September attacks, with more restrictive threshold values (temporal
dynamic = 1, vertex specificity = 0.5 and trend relevancy = 0.8), we obtain
87 patterns in 67 seconds. The top trend relevancy pattern involves 159 air-
ports that have an increasing number of canceled flights in September 2001 and
December 2000. Obviously, the number of canceled flights in September 2001 is
related to terrorist attack. It is noteworthy that December 2000 snow storm had
a similar impact on the cancellation of flights, because we do not quantify the
strength of the trends. Actually, the number of canceled flights in September
2001 is four times bigger than the one in December 2000.

Results on Brazil landslides: In this series of 2 satellite images, the goal is

Fig. 8. Regions involved in the
patterns: true landslides (red)
and other phenomena (white).

to identify regions in which a landslide appears
in the second image. Generally, the main con-
sequence of a landslide if the disappearance of
the vegetation. Therefore, we focus on the pat-
terns that involve NDV I−, since NDV I is a
computed index that quantifies the level of veg-
etation. MINTAG returns 4821 patterns in 2 hours
that involve 34275 regions that are reported on
Figure 8. These results were evaluated by an ex-
pert who testified that 69% of the true landslide
regions appear in the computed patterns. These
regions represent 46% of the extracted regions.
The 54% remaining regions belong to one of
the 4 following categories:(1) regions nearby true
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landslides which have not been interpreted as landslides by the expert (border
effect), (2) deforested area not due to landslides (e.g., human activity), (3) re-
gions found due to misalignment of the segmentation technique and (4) regions
that represent cities and human activity footprints.

5 Related Work

Many proposals intend to characterize graph evolution by means of patterns or
rules. Borgwardt et al. [4] introduce the problem of mining frequent sub-graphs
in dynamic graphs. Lahiri and Berger-Wolf [10] extract frequent sub-graphs that
appear periodically. Inokuchi and Washio [7] define frequent induced sub-graph
subsequence whose isomorphic occurrences appear frequently in graph sequences.
Ahmed et al. [1] propose to mine time-persistent edges and captures all maximal
non-redundant evolution paths among them. You and Cook [18] compute graph
rewriting rules that describe the evolution of consecutive graphs. Berlingerio et
al. [2] extract patterns based on frequency and derive graph evolution rules.
Descriptive n-ary association rules are defined in [13]. More recently, dynamic
attributed graphs have received a particular interest. Boden et al. [3] propose to
extract clusters in each static attributed graph and associate time consecutive
clusters that are similar. Jin et al. [8] consider dynamic graph whose vertices
are weighted. They extract groups of connected vertices whose vertex weights
follow a similar evolution, increasing or decreasing, on consecutive time stamps.
Desmier et al. [6] discover neighborhood similar set of vertices whose attributes
follow the same trends. All the above works only assess the interest of the pat-
terns by means of frequency-based constraints. They do not specify additional
interestingness measures to guide the search toward relevant patterns. However,
such constraints have been extensively studied in itemset mining, but not yet in
dynamic attributed graph settings. To name a few, Morishita et al. [11] define
a theoretical framework to compute significant association rules according to
statistical measures and Kuznetsov [9] defines the stability of a formal concept.

6 Conclusion

In this paper, we propose to extract dynamic sub-graphs that have a small
diameter. These dynamic sub-graphs are characterized by the attributes that
have the same trend over the pattern vertices at each pattern time stamps. To
only compute the most significant trend dynamic sub-graphs, we define three
interestingness measures. We design an algorithm that actively uses all the con-
straints, even those that are neither monotonic nor anti-monotonic. It reduces
the search space while preserving the completeness of the extraction. We provide
experiments that prove that MINTAG computes the trend dynamic sub-graph in
a feasible time. Moreover, experiments on real-world dynamic attributed graphs
show that our method allows to extract truly relevant patterns.



Trend Mining in Dynamic Attributed Graphs 669

Acknowledgements. The authors thank ANR for supporting this work through
the FOSTER project (ANR-2010-COSI-012-02). They also acknowledge support
from the CNRS/IN2P3 Computing Center and the ICube laboratory for provid-
ing and preprocessing the Brazil landslide data.

References

1. Ahmed, R., Karypis, G.: Algorithms for Mining the Evolution of Conserved Rela-
tional States in Dynamic Networks. In: ICDM, pp. 1–10. IEEE (2011)

2. Berlingerio, M., Bonchi, F., Bringmann, B., Gionis, A.: Mining Graph Evolution
Rules. In: Buntine, W., Grobelnik, M., Mladenić, D., Shawe-Taylor, J. (eds.) ECML
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Abstract. Learning latent representations is playing a pivotal role in ma-
chine learning and many application areas. Previous work on relational
topic models (RTM) has shown promise on learning latent topical rep-
resentations for describing relational document networks and predicting
pairwise links. However under a probabilistic formulation with normal-
ization constraints, RTM could be ineffective in controlling the sparsity of
the topical representations, and may often need to make strict mean-field
assumptions for approximate inference. This paper presents sparse rela-
tional topic models (SRTM) under a non-probabilistic formulation that
can effectively control the sparsity via a sparsity-inducing regularizer. Our
model can also handle imbalance issues in real networks via introducing
various cost parameters for positive and negative links. The deterministic
optimization problem of SRTM admits efficient coordinate descent
algorithms. We also present a generalization to consider all pairwise topic
interactions. Our empirical results on several real network datasets demon-
strate better performance on link prediction, sparser latent representa-
tions, and faster running time than the competitors under a probabilistic
formulation.

1 Introduction

Given the fast growth of the Internet and data collection technologies, statistical
network data analysis is playing an increasingly important role in both scien-
tific and engineering areas, such as biology, social science, data mining, etc. A
network is normally represented by a set of vertices (i.e., entities) and a set of
edges (i.e., links) between these entities. Link prediction is a fundamental task in
network analysis [1], and building link prediction models can provide solutions
like suggesting friends for social network users or recommending products.

Many approaches have been developed for link prediction, including both
parametric [2–4] and nonparametric [5, 6] Bayesian models as well as matrix
factorization methods [7]. Most of these approaches focus on modeling the net-
work structure. One work that accounts for both network structure and entity
contents is the relational topic model (RTM) [8], an extension of latent Dirichlet
allocation (LDA) [9] to model document networks. Because of its probabilistic
formulation, RTM has some restrictions on modeling real networks, which can be
highly complex and imbalanced. For example, real networks normally have very

H. Blockeel et al. (Eds.): ECML PKDD 2013, Part I, LNAI 8188, pp. 670–685, 2013.
c© Springer-Verlag Berlin Heidelberg 2013
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few positive links while most are negative; but the standard maximum likelihood
estimation (MLE) or Bayesian inference of RTM cannot handle this imbalance
issue. Furthermore, sparsity is an important property in learning latent repre-
sentations that are semantically meaningful and interpretable [10], especially
in large-scale applications; but RTM cannot effectively control the sparsity of
latent representations due to its probabilistic formulation with normalization
constraints.

To deal with the above issues, we present an alternative formulation of re-
lational topic models that discover nonnegative latent representations of words
and documents and make predictions on unseen links. With a non-probabilistic
formulation [11] and no normalization constraints, we can effectively control
the sparsity of the latent representations by using a sparsity-inducing �1-norm
regularizer; by using different regularization parameters on the positive link like-
lihood and negative link likelihood respectively, the sparse relational topic model
(SRTM) can effectively deal with the imbalance issue of common real networks.
Furthermore, SRTM can be generalized to capture all pairwise topic interactions
in a link likelihood model and is applicable to both symmetric and asymmetric
networks. Finally, SRTM admits efficient and simple coordinate descent algo-
rithms. Empirical results on several real network datasets demonstrate better
link prediction performance, sparser latent representations, as well as faster run-
ning time than the competitors under a probabilistic formulation.

The paper is structured as follows. Section 2 discusses related works. Section
3 introduces our sparse relational topic model as a cost-sensitive Maximum-a-
Posteriori (MAP) estimate, as well as a coordinate descent optimization algo-
rithm. In Section 4 we show empirical results and Section 5 concludes.

2 Related Work

Link prediction [1] has been considered as an important task in statistical net-
work analysis. One promising branch for predicting links is to build latent vari-
able models. Hoff et al. [3] proposed a Bayesian parametric latent variable model
in which the relationship between two entities is measured by the distance be-
tween them in a latent “social space”. Hoff [4] then extended the model by
exploiting the low rank structure in the network link matrix. Airoldi et al. [2]
built hierarchical Bayesian mixed membership block models where each entity
pair has a local membership assignment and all the entity pairs are also governed
by a global block matrix. To infer the dimension of the latent representations for
entities from data, Miller et al. [5] developed non-parametric Bayesian models
for link prediction and their max-margin variants under the regularized Bayesian
framework were proposed by Zhu [6].

One drawback of the above models is that they do not account for contents
of entities. This issue is even more important when we analyze document net-
works, where the semantic meaning of documents can be very useful for predict-
ing links among them. Chang et al. [8] proposed probabilistic relational topic
models (RTMs) built on latent Dirichlet allocation to consider both the net-
work structure and the contents of each entity when predicting links, and their
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performance exceeds several baseline methods that do not consider contents.
Liu et al. [12] further considered the author communities behind the document
networks in their models when predicting links among documents. Our SRTM
model is a non-probabilistic variant of RTM.

SRTM is based on a non-probabilistic topic model named sparse topical coding
(STC) [11], which is essentially a hierarchical non-negative matrix factorization
method [10]. STC builds a two-level hierarchy by assigning codes for documents
and each word in them. By relaxing normalization constraints and enforcing
codes to be non-negative, STC can put an �1-norm regularizer on the word level
and this makes STC a flexible model to control word code sparsity [11], which
is a good property for learning topical representations especially in large-scale
applications. The effectiveness of STC has been demonstrated on several domains
including text [11], images and videos [13–15].

SRTM presents an extension of STC to address the challenging problem of
link prediction, as we stated above. While sharing the merit of STC to learn
sparse codes, SRTM can handle the imbalance issues among networks.

3 Sparse Relational Topic Models

In this section, we present the sparse relational topic model that solves a de-
terministic optimization problem. By relaxing the normalization constraints as
in probabilistic models, SRTM can learn sparse word codes with an �1-norm
regularizer and admits an efficient coordinate descent algorithm. In contrast,
the probabilistic RTM often makes mean-field assumptions for approximate in-
ference. Though SRTM can be defined from a regularized loss minimization
perspective, for the ease of understanding we first introduce a probabilistic gener-
ative process and then cast SRTM as solving a MAP estimate with cost-sensitive
regularization parameters to deal with imbalance issues of real networks.

3.1 A Generative Process for SRTM

Let V = {1, 2, · · · , N} be a vocabulary containing N terms and D = {W,Y}
be a training dataset, where W = {wd}Dd=1 represents a corpus of D documents
and Y denotes the set of pairwise links between documents. We will use I
to denote the set of document pairs whose links are in the training set, i.e.,
I = {(d, d′) : yd,d′ ∈ Y}. We adopt the conventional bag-of-words model, i.e.,
each document is represented as a set wd = {wdn, n ∈ Id}, where wdn is the word
count for the nth term in the dictionary and Id is the set of terms in document
d. Let yd,d′ denote the label of the link between document d and d′. Though
SRTM can be easily extended to do multi-type link prediction, for clarity we
consider binary links, that is yd,d′ = 1 if there is a link between document1 d
and d′, and yd,d′ = −1 otherwise.

1 For asymmetric networks, yd,d′ denotes the link from document d to document d′.
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Fig. 1. Graphical Model for SRTM considering only one document pair as an
illustration

As a relational topic model, SRTM models words W and links Y with two
closely connected components. The first component is a hierarchical sparse topi-
cal coding (STC) [11] to describe words by using a topical dictionary Φ ∈ RK×N

with K topical bases, that is, each row Φk. is a normalized distributional vector
over the given vocabulary. We use Φ.n to denote the nth column of Φ. Each
document d has a topical representation θd ∈ RK (i.e., document code) and each
words in the document has an individual word code sdn ∈ RK (n ∈ Id). Note
that here we do not put normalization constraints on document codes or word
codes. This relaxation enables us to build a more flexible topic model. In fact,
we can achieve sparse word codes by imposing non-negative constraints and a
sparsity-inducing regularizer [10, 11]. SRTM also assumes that word codes in
one document are independent given the document code and the word count
wdn follows a distribution whose mean parameter is s�dnΦ.n [11]. The second
component of SRTM defines a likelihood model of the links between documents.
Formally, the generative procedure of SRTM on document words and links can
be described as:

1. for each document d
(1) draw a document code θd from p(θd).
(2) for each observed word n ∈ Id

(a) draw the word code sdn from p(sdn|θd)
(b) draw the observed word count wdn from p(wdn|s�dnΦ.n).

2. for each document pair (d, d′), draw a link from p(yd,d′|s̄d, s̄d′).

where s̄d = 1
|Id|

∑
n∈Id sdn is the average word code of document d, a representa-

tion of document d in the latent topic space. For the clarity of presentation, we
show a graphical model of SRTM considering only one document pair in Fig. 1,
and it can be easily extended to model a large network of documents. To fully
specify the model, we need to define the word likelihood model p(wdn|sdn,Φ)
and the link likelihood model p(yd,d′ |s̄d, s̄d′). For word counts, since wdn is a pos-
itive integer, we choose the commonly used Poisson distribution and set s�dnΦ.n

as the mean parameter:

p(wdn|sdn,Φ) = Poisson(wdn, s
�
dnΦ.n), (1)
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where Poisson(x, ν) = νxe−ν

x! . One benefit for setting the inner product s�dnΦ.n

as mean parameter is that we can easily constrain the word code space by en-
forcing sdn to be non-negative and by using a sparsity-inducing �1-norm regular-
izer [10]. For the link likelihood, both the sigmoid function and exponential link
function were used in [8]. But, the exponential function is itself unnormalized
and some special treatment is needed to normalize it. Therefore, we choose the
more common sigmoid function to model the probability of a link:

p(yd,d′|s̄d, s̄d′) = σ
(
yd,d′(η�(s̄d ◦ s̄d′) + ν)

)
, (2)

where σ(x) = 1
1+e−x ; η = (η1, η2, · · · , ηK)� are the parameters describing how

likely there is a link between two documents when they share a specific topic;
and ν denotes the offset for the link probability. The symbol ◦ denotes the
element-wise product.

3.2 Cost-Sensitive MAP Estimate

Let Θ = {θd} and S = {sd} denote the latent representations of documents and
words respectively. Then the joint distribution of SRTM can be written as:

p(W,Y,Θ,S|Φ)=
∏
d

(
p(θd)

∏
n∈Id

p(sdn|θd)p(wdn|sdn,Φ)

) ∏
(d,d′)∈I

p(yd,d′|s̄d, s̄d′)

(3)
We naturally impose a normal prior on θd so that p(θd) ∝ exp(−λ‖θd‖22).
For the word code sdn we use a Laplace prior to achieve sparsity [16]. Fur-
thermore, we restrict the word codes not too far away from the document
code by a normal regularizer. This results in a composite prior p(sdn|θd) ∝
exp(−γ‖θd − sdn‖22 − ρ‖sdn‖1), which is super-Gaussian [17] and the �1-term
drives our estimates to be sparse. The hyper-parameters (λ, γ, ρ) can be pre-
defined or selected using cross-validation. We will provide sensitivity analysis to
these parameters in experiments.

With the above joint distribution, a standard MAP estimate with dictionary
learning can be formulated as solving the problem:

min
Θ,S,Φ

�(S,Φ;W) + �(S,η;Y) +Ω(Θ,S)

s.t.: θd ≥ 0, ∀d; sdn ≥ 0, ∀d, n ∈ Id;Φk. ∈ P , ∀k, (4)

where �(S,Φ;W) =
∑

d,n∈Id �(sdn,Φ) =−
∑

d,n∈Id logPoisson(wdn, s
�
dnΦ.n) is

the negative log-likelihood of word counts; �(S,η;Y)=
∑

(d,d′)∈I �(sd, sd′ ; yd,d′) =

−
∑

(d,d′)∈I log p(yd,d′|s̄d, s̄d′) is the negative log-likelihood of links; Ω(Θ,S) =

λ
∑

d ‖θd‖22 +
∑

d,n∈Id(γ‖sdn − θd‖22 + ρ‖sdn‖1) is the regularization term; P is
the (N − 1)-dimensional simplex. The negative log-likelihood is usually called a
log-loss. We have imposed non-negative constraints on the latent representations
in order to obtain good interpretability, as a non-negative code can be interpreted
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as the importance of a topic. Moreover, non-negative constraints are good for our
objective of a sparse estimate.

It is worth noting that there could be two imbalance issues with the standard
MAP estimate. Firstly, for each pair of documents there is only one link vari-
able while there could be hundreds of words. This difference would lead to an
imbalanced combination of word likelihood and link likelihood in problem (4).
Secondly, in common real networks only a few links are positive while most are
negative, e.g., the widely used Cora citation network [8] has about 0.1% positive
links. This difference would lead to an imbalanced combination of positive link
likelihood and negative link likelihood. To address these imbalance issues, we can
easily extend the regularized log-loss minimization problem to a cost-sensitive
MAP estimate by introducing different regularization parameters for the posi-
tive and negative links respectively. Specifically, we replace the standard log-loss
of links with the following cost-sensitive log-loss:

�(S,η;Y) = C+

∑
(d,d′)∈I+

�(sd, sd′; yd,d′) + C−
∑

(d,d′)∈I−

�(sd, sd′ ; yd,d′), (5)

where I+ = {(d, d′) ∈ I : yd,d′ = 1} and I− = I\I+. Then, by setting C+ and
C− at a value larger than 1, we can improve the influence of links and overcome
the imbalance issue between words and links; and by setting C+ at a value larger
than C−, we can better balance the influence of positive links and negative links.
We will provide more insights in the experiment section.

If we look back at the generative formulation, which is easy to understand, an
intuitive understanding of the regularization parameters C+ and C− is that they
are pseudo-counts of the links, and the likelihood of the links are correspondingly:

p(yd,d′ = 1|s̄d, s̄d′) = σ(η�(s̄d ◦ s̄d′) + ν)C+

p(yd,d′ = −1|s̄d, s̄d′) = σ(−η�(s̄d ◦ s̄d′)− ν)C− .

Note that these likelihood functions are unnormalized if the pseudo-counts are
not 1. But the un-normalization does not affect our estimates in the cost-sensitive
log-loss minimization framework.

3.3 Optimization Algorithms

We first present our learning algorithm for solving problem (4). Since the opti-
mization problem is bi-convex, i.e. convex over Θ and S given the dictionary Φ
and the networks parameters η and ν; and convex over Φ, η, and ν given the
document codes Θ and the word codes S, we use a coordinate descent algorithm
to iteratively optimize the objective function. As outlined in Algorithm 1, the
algorithm iteratively solves three subproblems:

1. Hierarchical Sparse Coding: learns document codes and sparse word codes
for the documents;

2. Dictionary Learning: learns the topical dictionary with document codes and
word codes given;



676 A. Zhang, J. Zhu, and B. Zhang

Algorithm 1. Sparse Relational Topic Models

1: Initialize Φ,Θ,S,η, ν
2: read corpus D
3: while not converge do
4: (Θ,S) = HierarchicalSparseCoding(Φ,η, ν);
5: Φ = DictionaryLearning(S);
6: (η, ν) = LinkModelLearning(S);
7: end while

3. Link Model Learning: learns the link likelihood model with the codes and
topical dictionary given.

Below, we discuss each step in detail. For notation simplicity, we will set C+ =
C− = C.

Hierarchical Sparse Coding: This step involves solving for the word codes
and document codes. Since the subproblem is convex, we can apply a generic
algorithm to solve it. Here, we use the similar coordinate descent method as
in [11]. For document codes, since the documents are independent, we can solve
for each θd separately and this results in a convex subproblem:

min
θd

λ‖θd‖22 + γ
∑
n∈Id

‖sdn − θd‖22, s.t.: θd ≥ 0. (6)

It can be shown that the optimum solution is θd =
γ
∑

n∈Id
sdn

λ+γ|Id| , that is, the

document code is the average (with some re-scaling) of word codes.
For word codes, again we can treat each document separately. Formally, the

optimization problem for word codes of document d is:

min
sd

∑
n∈Id

�(sdn, β) +
∑
n∈Id

(γ‖sdn − θd‖22 + ρ‖sdn‖1) + C
∑

d′∈Nd

�(sd, sd′; yd,d′)

s.t.: sdn ≥ 0, ∀n ∈ Id, (7)

where Nd = {d′ : (d, d′) ∈ I} is the neighborhood of document d in the training
network. For the sigmoid link function, the log-loss of links is

�(sd, sd′; yd,d′) = log
(
1 + exp(−yd,d′(η�(s̄d ◦ s̄d′) + ν))

)
. (8)

Since the objective function w.r.t. a single word code is convex given other word
codes, we can iteratively optimize each word code sdn by solving:

min
sdn

�(sdn,Φ) + γ‖sdn − θd‖22 + ρ‖sdn‖1 + C
∑

d′∈Nd

�(sd, sd′ ; yd,d′)

s.t.: sdn ≥ 0. (9)

This subproblem does not have a closed-form solution because of the nonlinearity
of the sigmoid likelihood. Therefore, we resort to numerical methods using pro-
jected gradient descent [18] to take care of the constraints. Precisely, we take a
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gradient descent step with a stepsize selected with line search, and then perform
projection onto the convex feasible domain. Formally, the projected gradient
descent is to update:

snewdn = ΠP (s
old
dn − t∇sdnL)

where t is the step size; ΠP is a projection operator; and ΠP (x) =
argminx′∈P d(x, x′). Here P is the positive half space of RK and d(·, ·) stands for
the Euclidian distance. Let L be the objective function of the subproblem (9).
We can verify that snewdnk = 0 if solddnk − t∇sdnk

L < 0 and snewdnk = solddnk − t∇sdnk
L

otherwise. To simplify notation, we first calculate the derivative of the sigmoid
link function in Eq. (8) w.r.t. to sdn

∇sdn�(sd, sd′ ; yd,d′) =
∂�

∂zd,d′
· ∂zd,d

′

∂sdn
=

−yd,d′ exp(zd,d′)

1 + exp(zd,d′)
· ηk s̄d

′

|Id|
, (10)

where zd,d′ = −yd,d′(η�(s̄d ◦ s̄d′) + ν). Then, the gradient w.r.t. sdn is

∇sdnL = (1− wdn

s�dnΦ.n
)Φ.n+2γ(sdn−θd)+ρ+C

∑
d′∈Nd

∇sdn�(sd, sd′; yd,d′). (11)

Dictionary Learning: This step involves solving for the topical dictionary
Φ. Since Φ is constrained on a probabilistic simplex, we can use projected gra-
dient descent to update Φ and then project each row onto an �1-simplex [11].
Efficient linear time projection methods are available to make this step fast [19].

Link Likelihood Learning: This step involves solving for the parameters η
and ν of the link likelihood model. In this step we only need to account for the
link part

∑
(d,d′)∈I �(sd, sd′, yd,d′). The objective for each link is convex so the

summation is also convex for η and ν. Simply taking gradient we get

∇ηk
L = C

∑
(d,d′)∈I

−yd,d′ s̄dks̄d′k exp(zd,d′)

1 + exp(zd,d′)

∇νL = C
∑

(d,d′)∈I

−yd,d′ exp(zd,d′)

1 + exp(zd,d′)

and we can use gradient descent with line search to solve the problem.

3.4 A Generalized Sparse Relational Topic Model

It is worth noticing that in SRTM we define the strength of a link between two
documents by η�(s̄d ◦ s̄d′) + ν = s̄d7diag(η)s̄d′ + ν, where diag(η) is a diagonal
matrix with the diagonal elements being those of η. Therefore, SRTM can only
capture the same-topic-interactions (i.e., only when two documents have the
same topic, there is a nonzero contribution to the link likelihood); and it could be
unsuitable for modeling asymmetric networks because of the symmetric nature
of diagonal matrices. To relax these constraints and capture all-pairwise-topic-
interactions, one straightforward extension is to use a full weight matrix HK×K

and define the link likelihood model as:

p(yd,d′|s̄d, s̄d′) = σ(yd,d′(s̄�d H s̄�d′ + ν)). (12)
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Fig. 2. Weight matrix and according representative words for each topic learned by
SRTM (first row) and gSRTM (second row) on the Cora citation network data

where Hij represents the strength of two documents being connected when they
have topic i and topic j respectively. We denote this generalized SRTM by
gSRTM. Formally, using the sigmoid likelihood function we have a similar op-
timization problem, and a similar coordinate descent algorithm can be applied
with few changes for learning word codes and link likelihood models when taking
the gradient descent steps.

Before presenting all the details of our experiments, we first illustrate the
latent semantic structures learned by the sparse relational topic models and
compare the diagonal SRTM and the generalized SRTM with a full weight ma-
trix. Specifically, Fig. 2 shows the weight matrices learned by SRTM and gSRTM
on the Cora citation network data (details are in the next section), as well as
the top words of each of the 10 topics, respectively. For the diagonal SRTM,
since the latent features s̄d in the link likelihood are nonnegative, the learned
weight matrix must have some negative diagonal entries although most diago-
nal entries are positive in order to fit the training data with binary links. The
negative diagonal entries somehow conflict our intuition that papers with the
same topic should be more likely to have a citation link. In contrast, the full
weight matrix learned by gSRTM has only positive diagonal entries, which are
consistent with our intuition; and many off-diagonal entries are negative, again
consistent with our intuition that papers with different topics are less likely to
have a citation relation. We also note that some topics are generic, and papers
with these topics are likely to get cited by or cite the papers with other closely
related topics. For example, Topic3 in gSRTM is a generic topic about theory,
probabilistic, algorithm and statistical; and the papers with Topic3 are likely to
have a citation relationship with the papers with the related topics, such as
Topic4 (Bayesian, learning, Markov, etc.), Topic5 (network, belief, genetic, etc.),
and Topic6 (knowledge, systems, model, etc.).
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Table 1. Statistics of the datasets used in our experiments

Dataset # Entities # Terms (N) # Links Link sparsity ratio

Cora [20] 2,708 1,433 5,429 0.07%
WebKB [21] 877 1,608 1,703 0.2%
CiteSeer 3,312 3,703 4,714 0.04%

4 Experiments

In this section, we present more experimental results and compare with several
models on link prediction tasks. We further present a sensitivity analysis over
some built-in hyper-parameters to verify that SRTM can handle the imbalance
issues in real networks while effectively learning sparse word codes.

4.1 Datasets and Models

Our experiments are conducted on three publicly available datasets. All the
datasets contain very sparse positive links, as detailed below:

– The Cora dataset [20] consists of 2,708 research papers with a vocabulary
of 1,433 terms in total. Among the papers there are 5,429 positive links,
each representing a citation from one paper to the other. So on average each
paper has about 2 citations and the ratio of positive links is roughly 0.07%;

– The WebKB dataset [21] consists of 877 webpages collected from computer
science departments of four universities, with 1,608 hyper-links among pages.
In total, there are 1,703 terms in the dictionary. Again, this network is sparse
and about 0.2% of the pairs have links;

– The CiteSeer dataset is another sparse document network consisting of 3,312
papers and 3,703 citations among those papers (i.e., the link sparsity ratio
is about 0.04%). Its dictionary consists of 4,712 individual words.

Since RTM has been shown to outperform several baseline models on link pre-
diction [8], our empirical studies are concentrated on analyzing the effectiveness
of sparse learning in relational topic models. We use RTM as our competitive
baseline method, and compare all the methods on the above three real network
datasets. In summary, the methods we compare are the followings:

– RTM [8]: the probabilistic relational topic model built on LDA using varia-
tional methods with mean-field assumptions to approximately infer the pos-
terior distribution. We consider the case where the logistic link function is
used to model links with a diagonal weight matrix;

– STC+Regression: a two-step model in which we first train an unsuper-
vised sparse topic coding (STC) [11] to discover the latent representations of
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all documents and then learn a logistic regression model on training links to
predict the links of testing document pairs. Note that the link information
does not affect the latent representations in this method;

– SRTM: the proposed sparse relational topic model that uses a diagonal
weight matrix in the logistic link likelihood function;

– gSRTM: the generalized SRTM with a full symmetric weight matrix in the
logistic link likelihood model.

4.2 Results on Link Prediction

We follow the same approach as in [8] to predict links for unseen documents.
Namely, for each testing document, we predict its links to the training docu-
ments. For SRTM models (i.e., SRTM and gSRTM), this can be done by first
inferring the latent representation of the testing document through solving a
hierarchical sparse coding step, and then applying the logistic link likelihood
function to compute the probability of existing a link. Given a link’s probability,
we can make binary decision, that is, if the probability is larger than 0.5, there is
a link exists; otherwise, no link exists. Here, we use link rank2 as the performance
measure, the same as in [8]. We also compare the training time to analyze the
efficiency of various methods. Since all the methods are very efficient in testing,
we omit the comparison on testing time.

To partly address the serious imbalance issues of the real networks and improve
time efficiency, we randomly sample 0.2% of the negative links3 and form the train-
ing data together with all the positive links to learn the sparse topic models, in-
cluding SRTM, gSRTM and the de-coupled approach of STC+Regression. For the
probabilistic RTM, since there is no effective mechanism on balancing positive and
negative links, we found that using the same down-sampling strategy would pro-
duce worse results on both link prediction and time efficiency than the “regular-
ization” strategy suggested in [8]. Thus, we choose to use only positive links and
put a regularizer over η and ν to make sure that they will not diverge.

Fig. 3 shows the results on link prediction and training time. We tune hyper-
parameters for all the models to their best settings for link prediction. For RTM,
we tune the Dirichlet hyper-parameters α and for the SRTM models we fix λ = γ
and tune the ratio ρ/γ. Those hyper-parameters will affect link prediction results
and the sparsity of word codes, and we will provide a sensitivity analysis on
them in Section 4.3. But, in general, SRTM models have a wide range of these
parameters to get good link prediction and sparsity of word codes. Overall, we

2 For a document, its link rank is defined an average over the ranks of positive links
in the list of all testing pairs. Then, the overall link rank is an average of the link
rank over all testing documents.

3 Other sampling ratios (e.g., 1%, 0.5%, 0.1%, etc.) do not affect the link prediction
results of the SRTM models much, due to the effective balancing strategy by tuning
regularization parameters.
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Fig. 3. First row: Link rank on three datasets using different models when changing
the number of topics. Second row: Training time (in seconds) on three datasets using
different models when changing the number of topics.

can see that the sparse relational topic models obtain significantly better results
on all datasets. A closer examination can be done by comparing the following
model pairs:

– RTM vs. SRTM : On all the datasets, SRTM makes more accurate link pre-
diction (e.g., SRTM improves the average link rank by about 100 on the
Cora dataset) and uses less (about 2 times when the number of topics is rel-
atively large) time than RTM. These improvements are attributed to several
factors. First, SRTM accounts for the imbalance issues in the network, which
can affect the link prediction performance, while RTM cannot handle that
within its Bayesian framework. Second, RTM makes mean-field assumptions,
which can be too strict [22], while SRTM avoids making this assumption by
solving a deterministic optimization problem. Finally, SRTM uses coordi-
nate descent methods to optimize the objective function, where each step
breaks down to very quick projected gradient methods. All these factors
make SRTM perform better in link prediction while still faster than RTM,
even though RTM does not use negative links;

– STC+Regression vs. SRTM : Since SRTM takes link information into ac-
count during the hierarchical sparse coding step, its latent representations
could be more discriminative for link prediction and thus SRTM obtains a
huge gain in link prediction as shown in Fig. 3. With moderate values of
C+ and C−, SRTM accounts for both links and words to produce a much
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powerful network model for link prediction. With no surprise, we require
more time as a cost for considering links in SRTM. Notice that SRTM col-
lapses to STC+Regression when C+ = C− = 0 and the behavior of SRTM
approximates the matrix factorization approach for link prediction when C
is significantly larger than other factors in Eq. (4). We will further analyze
this phenomenon in Section 4.3;

– SRTM vs. gSRTM : Fig. 3 shows that the generalized gSRTM can make bet-
ter prediction on all the datasets than SRTM, while spending more training
time on the Cora and CiteSeer datasets. The reason is that by using a K×K
full weight matrix and capturing all pairwise topic interactions in link like-
lihood model, gSRTM can capture valuable topic relationships and thus fit
the network data better as we have illustrated in Fig. 2. Of course, using a
full weight matrix with more (i.e., K2) non-zero elements would increase the
computational burden, obviously in the steps of link likelihood learning and
less obviously in the step of learning word codes when computing gradients
and objective functions. On the WebKB dataset the training time of both
SRTM and gSRTM seems comparable. The reason is that gSRTM converges
in fewer steps on this dataset and thus the total time cost is low.

4.3 Sensitivity Analysis

Word Code Sparsity. The strength of SRTM partly lies on its flexibility
to learn sparse word codes by adjusting the hyper-parameters (λ, γ, ρ). Follow-
ing [11] we fix λ = γ and only tune the ratio ρ/γ. By checking problem (4) we
can clearly see that when setting ρ/γ to a relative large value, SRTM is encour-
aged to learn sparse word codes. But this can cause a high divergence between
word codes and the corresponding document code. From our experiments we
verify that balancing the two factors can let the model generalize well to un-
seen data while effectively learning sparse word codes. For the RTM model, the
Dirichlet hyper-parameters α control the sparsity level4. As it will be shown in
the experiments, RTM cannot learn sparse word codes while maintaining good
link prediction performance by tuning α.

In Fig. 4(a) and Fig. 4(b) we compare the sparsity ratio of word codes5 be-
tween RTM and SRTM with different numbers of topics when tuning their hyper-
parameters. For RTM, we tune the Dirichlet parameter α and for SRTM we fix
γ to a constant and tune6 ρ. This results in a change of ρ/γ. Fig. 4(a) shows
a sharp drop of sparsity ratio when α grows to a certain level in RTM7. This
is due to the property of the Dirichlet prior, where a little shift can cause the

4 We use the common symmetric Dirichlet prior for the topic mixing proportions in
RTMs.

5 The sparsity ratio is defined as the average ratio of zero elements in word codes.
6 Changing both γ and ρ will lead to even better link prediction results.
7 In theory, RTM does not have sparse word codes if α > 0. Here, we treat a small
value ε (e.g., ε < 0.001) as zero.
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Fig. 4. Sparsity ratio (a) and link rank (c) for RTM with different number of topics
when tuning hyper-parameter α on the Cora dataset; Sparsity ratio (b) and link rank
(d) for SRTMwith different number of topics when tuning the ratio of hyper-parameters
ρ/γ on the Cora dataset.

“sharpness” of the prior changes significantly. For SRTM, Fig. 4(b) demonstrates
that the sparsity ratio stays at a relative high level. When the number of topics
is relatively small, changing ρ can gradually affect the sparsity ratio. There is a
trend that SRTM does not learn a dense word code, which is probably due to
a clear meaning of words in the dataset that each word only has a few topical
meanings.

We also analyze how the hyper-parameters affect link prediction accuracy.
Fig. 4(c) shows that the best link prediction results of RTM can be reached
when α is around 0.1. At this point, the sparsity ratio is zero. So on the Cora
dataset, RTM tends to perform better when learning dense codes. This is not
a coincidence because a small α can produce a very “sharp” Dirichlet prior,
which can dramatically bias the model and result in an inefficient control of
sparsity ratio. In contrast, from Fig. 4(d) we can see that for SRTM there is a
gradual change in link rank when ρ grows. Finally, the model reaches its best
link rank result at a high sparsity ratio when ρ/γ is around 0.1. The reason
is that SRTM relaxes the probability constraints of codes and thus effectively
learn sparse codes by introducing �1-norm constraints at the word code level.
SRTM achieves a built-in sparsity control mechanism by constructing a two-level
hierarchical topic model.

The Hyper-Parameter C. As we have discussed, a relational topic model
might have two imbalance issues, i.e., the imbalance between modeling words and
links, and the imbalance between positive links and negative links. To address
both issues, SRTM introduces the hyper-parameter C+ for positive links and
C− for negative links. For the first issue, we can fix a reasonable value of C+

and C− to balance words and links. For the second issue, since negative links
usually dominate positive links, we can either tune the C+/C− ratio or sub-
sample the negative links. In our experiments, we use both strategies and find
that sub-sampling a few negative links while tuning C+/C− can make very good
prediction results.
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Fig. 5. Link rank of SRTM (red sold line) using different C+ values and
STC+Regression (black dash line). Both with 25 topics on the Cora Dataset. Note
that C− also changes with C+.

To analyze the sensitivity, we fix a reasonable ratio C+ = 10C− to balance the
links8 and tune C+ for training SRTM with 25 topics on the Cora dataset. The
link ranks for different C+ values are shown in Fig. 5. We can see that SRTM
performs best when C+ is not too large nor too small, e.g., in the wide range
between 0.1 and 100. When C+ approaches zero SRTM collapses to a sparse
topical coding followed by regression. On the other end, when C+ grows large, the
link part dominates the whole objective function. Thus, the behavior of SRTM
approximates the matrix factorization approach for link prediction. SRTM does
better link prediction, both utilizing words and links with a moderate C+ than
merely using any one of them. This verifies that SRTM successfully combines
the knowledge of each part to get an overall better model.

5 Conclusions and Discussions

We present sparse relational topic models (SRTM), a non-probabilistic formu-
lation of relational topic models to understand document networks and predict
missing links. By relaxing the normalization constraints of probabilistic models
and introducing appropriate regularization terms, SRTM can handle the com-
mon imbalance issues in real networks and efficiently learn sparse latent repre-
sentations. SRTM admits a simple coordinate descent algorithm, and it can be
naturally extended to capture all pairwise topic interactions for predicting links
among document networks. Empirical results show that our models perform sig-
nificantly better than probabilistic relational topic models in link prediction,
training time, and discovering sparse representations.

The current batch algorithm to learn the topical dictionary and link likelihood
modelmay cause limitations on applying SRTM to large-scale applications. There-
fore, it is worth investigating stochastic gradient descent methods [23] in the fu-
ture. Furthermore, though a restricted grid search works well as we have done in
the experiments, in general it is hard to search for the optimal hyper-parameters
for SRTM, and developing more efficient methods for hyper-parameter estimation
is an interesting topic.

8 As in the link prediction experiments, we sub-sample 0.2% of negative links as our
training data.
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