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In the 1992 paper [1] Bikchandani et al. show how it may be rational for Bayesian
agents in a sequential decision making scenario to ignore their private information and
conform to the choices made by previous agents. If this occurs, an agent ignoring her
private information is said to be in a cascade.

To illustrate, consider the following example: a set of agents must decide which of
two restaurants to choose, one lying on the left side of the street, one on the right, with
one being the better – L or R. Initially, agents have no information about which; each
agent i has prior probabilities Pri(L) = Pri(R). Every agent has two choices: either to
go to the restaurant on the left, li, or to go the one on the right, ri. All agents prefer to
go to the better restaurant, and are punished for making the wrong choice, specified by
pay-offs ui(li,L) = ui(ri,R) = v1 > 0 and ui(li,R) = ui(ri,L) = v2 < 0 with v1 + v2 = 0.

Before choosing, every agent receives a private signal indicating that either the
restaurant on the left (Li) or the one on the right (Ri) is the better one. The signals
are assumed to be equally informative and positively correlated with the true state, in
the sense that Pr(Li|L) =Pr(Ri|R) = q> .5 and Pr(Li|R) =Pr(Ri|L) = 1−q. Given this
setup, rational agents will follow their private signal, the majority choosing the better
restaurant.

If agents are assumed to choose sequentially and observe the choice of those choos-
ing before them, a cascade may result, possibly leading the majority to pick the worse
option. The argument for this [1] rests on higher-ordering reasoning not represented in
the Bayesian framework, and goes as follows. Given either L1 or R1, agent 1 will choose
as her signal indicates, hereby revealing her signal to all subsequent agents. Agent 2
therefore as two pieces of information: his own signal together with that deduced from
the choice of 1. If 2 receives the same signal as 1, he will make the same choice; given
two opposing signal, assume he will invoke a self-biased tie-breaking rule, and go by his
own signal. In both cases, 2’s choice will also reveal his private signal to all subsequent
agents. Assume that 1 and 2 received signals L1,L2. Then no matter which signal 3 re-
ceives, she will choose l3: agent 3 will have three pieces of information, either L1,L2,L3

or L1,L2,R3. In either case, when conditionalizing on these, the posterior probability of
L being the true state will be higher than that of R. So 3 will choose l3, and thereby be in
a cascade. Further, agent 4 will also be in a cascade: as 3 chooses l3 no matter what, her
choice does not reveal her private signal, why also 4 has three pieces of information,
either L1,L2,L4 or L1,L2,R4. 4 is thus in the same epistemic situation as 3, and will
choose l4. As 4 is in a cascade, his choice will not reveal his private signal, and the
situation thus repeats for all subsequent agents.

Notice that cascades may not be truth conducive: there is a Pr(L1|R) ·Pr(L2|R) risk
that all agents will choose the wrong restaurant – e.g., if signals are correct with prob-
ability 2

3 , all agents choose wrong with probability 1
9 .
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Aim and Methodology. We construct a formal model that completely represents the
reasoning made by agents in the sequential setup, for any input string of private signals.
The type of model constructed is a dynamic epistemic logic variant of a state machine,
in lack of terms called a system. A system operates by having for each state (Kripke
model) some set of transition rules which as a function of the current state pick the
next update to be invoked, hereby specifying the ensuing state. It is initiated from some
initial state and terminates when an end condition is met.

The informational cascades system (IC) constructed captures the following four el-
ements of each agent’s turn: i) earlier agents’ actions are observed from which ii) their
private signals (beliefs) are deduced and combined with iii) the private signal (belief)
of the current agent after which iv) the chosen action is executed, observed by all.

IC diverges from the model of [1] in a number of aspects: it is not probabilistic, but
qualitative; related, information aggregation is not done by Bayesian conditionalization,
but by the aggregation of perceived beliefs; a finite set of agents is used; and no pay-off
structure nor rationality is assumed, agency instead captured by transition rules.

An advantage of IC over the model from [1] is that IC fully specifies the intended
scenario formally: all steps are defined for any string of private signals and all higher-
order reasoning is represented. IC is thus a complete model for informational cascades.

In the present, only the system IC and results are presented, together with novel
machinery required to define a system. A detailed walk-through of a cascading run with
arguments for modeling choices, the presupposed definitions and references may be
found in [2], the extended version of the present abstract.

Transition Rules and Systems

Before commencing with definitions, let us fix notation for presupposed machinery.
Assume a finite set of agents A = {1,2, ...,n}, atoms P ∈ Φ , a set PropΦ given by
ϕ ::= P |ϕ |¬ϕ |ϕ ∧ψ |Biϕ |Kiϕ and definitions of pointed epistemic plausibility mod-
els (EPMs) (S,s0) = (S,≤i,‖·‖ ,s0)i∈A, propositions ‖ϕ‖S ⊆ S over EPMs for ϕ ∈
PropΦ , pointed action plausibility models with postconditions (APMs) (E,σ0) = (Σ ,�i

, pre, post,σ0)i∈A, doxastic programs Γ ⊆ Σ over APMs, action priority update prod-
uct S⊗E (an anti-lexicographic belief revision operation on EPMs and APMs), and
dynamic modalities [Γ ] with associated propositions ‖[Γ ]ϕ‖S.

Transition Rules. A transition rule T is an expression ϕ � [X ]ψ where ϕ ,ψ ∈PropΦ .
Transition rules are prescriptive and read “if ϕ , then the next update must be such that
after it, ψ”.

Solutions. A set of transition rules dictates the choice for the next APM by finding the
transition rule(s)’s solution. A solution to T = ϕ � [X ]ψ over pointed EPM (S,s) is a
doxastic program Γ such that S,s |=ϕ → [Γ ]ψ . Γ is a solution to the set T= {T1, ...,Tn}
with Tk = ϕk � [X ]ψk over (S,s) if S,s |=∧n

1(ϕk → [Γk]ψk), i.e. if Γ is a solution to all
Ti over (S,s) simultaneously.1 Finally, a set of doxastic programs G is a solution to T

over S iff for every t of S, there is a Γ ∈G such that Γ is a solution to T over (S, t).

1 Note the analogy with numerical equations; for both 2+x = 5 and {2+x = 5,4+x = 7}, x= 3
is the (unique) solution.
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Next APM Choice. If G is a solution to T over S, then given any state from S, the
transition rules in T will specify one (or more) programs from G as the next APM
choice, denoted next(S)T,G, subscripts omitted. A deterministic choice will be made if
G is selected suitably, i.e. if it contains a unique Γ for each s. In the ensuing, solution
spaces will be chosen thusly.

System. A system is a tuple S = 〈S0,T,G,end〉 where S0 is an EPM, called the initial
state, T is a set of sets T(S) each a set of transition rules (those of EPM S),2 G is a
set of sets G(T(S)), each a set of doxastic programs (the solution space for T(S)), and
end ∈ PropΦ is called the end condition.

A system provides for each EPM from some chosen set, a set of transition rules
with associated solution space, and is run using next APM choice. The first next APM
choice is made when the actual state of S0 is specified. A system runs until either the
end condition is met, or until it constructs an EPM for which no transition rules are
specified or no solution is available. Care must be taken to avoid the latter possibilities.

An Informational Cascades System Based on Aggregated Beliefs

Atoms. Let Φ consist of two “types” of atomic doxastic propositions; {L} with ¬L =:
R, representing respectively that the restaurant on the left or the one on the right is
better, and {αiL,αiR}i∈A with αiL∩αiR = /0, representing i’s restaurant choice.3 αiR
is not short for ¬αiL as i may not yet have made any choice.

Aggregated Beliefs. To accumulate information, a notion of perceived aggregated
beliefs is used. Introduce an operator Ai|G, representing the beliefs of agent i when
aggregating information from her beliefs about the beliefs of agents from group G. Ai|G
is defined using simple majority ‘voting’ with a self-bias tie-breaking rule:

S,s |= Ai|Gϕ iff α + |{ j ∈ G : S,s |= BiB jϕ}|> β + |{ j ∈ G : S,s |= BiB j¬ϕ}|

with tie-breaking parameters α,β given by α = ½ if s ∈ (Biϕ)S, else α = 0, and β = ½
if s ∈ (Bi¬ϕ)S, else β = 0. This definition leaves agent i’s aggregated beliefs undeter-
mined iff both i is agnostic whether ϕ and there is no strict majority on the matter.

Overview of IC. As mentioned, each agent’s turn consists of four steps. In IC defined
below, these consist of: i) EPM Si, the initial state of i’s turn, ii) APM Ii−1, invoking the
interpretation of agent i−1’s executed action, supplying i with information about i−1’s
beliefs, iii) APM Pi, the private signal of i, forming her private beliefs about L/R, and
iv) either li or ri, the action i finally executes. The initial state of i+ 1 is then given by
Si+1 :=((Si ⊗ Ii−1)⊗Pi)⊗ next((Si⊗ Ii−1)⊗Pi), with next((Si ⊗ Ii−1)⊗Pi) ∈ {li,ri}.

Three sets of transition rules are used to run the system: the first is a singleton, always
invoking interpretation of the previous agent’s action. The second is also a singleton,
invoking a private signal specified by a vector defined together with the system. Third,
a set of two rules which specify the choice of the agent as a function of her aggregated
beliefs, hereby specifying the used agent type.

2 It is assumed that model names matter: though S = S⊗Γ , we allow that T(S) 
= T(S⊗Γ ).
3 αiL and αiR are post-factual action descriptions, not the actions themselves, as these are cap-

tured using APMs, see point 3. in the definition of the system IC below.
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The System IC. Define the system IC = 〈S1,T,G,end〉 as follows: let the initial state
be S1 (Fig. 1) and set end := αmL∨αmR with m = max(A). That is, the system initiates
with all agents uninformed about whether L or R, and terminates when the last agent
has chosen at which restaurant to dine.

L R

s0 t0A

Fig. 1. The EPM S1 representing the initial uncertainty
about the better restaurant. All agents know one restaurant
is better, but does neither know nor believe which one. La-
bels L and R indicate truth of the atom, e.g. s0 ∈ ‖L‖S1

. For
all P ∈ {αiL,αiR}i∈A, ‖P‖S1

= /0 as no agent has chosen.

Set Sn+1 := (((Sn ⊗ In−1))⊗Pn)⊗ next(((Sn ⊗ In−1))⊗Pn), and give T and G by

1. T(Sn) = {In−1 =�� [X ]�} with G({In−1}) = {In−1}, where In−1 is the one state
interpretation APM with preconditions

pre(in−1) := αn−1L → An−1|AL ∧ αn−1R → An−1|AR

with special case I0 having pre(i0) = post(i0) =�.

2. T(Sn ⊗ In−1) = {Pn = � � [X ]�} with G({Pn}) = {(Pn,xn)}, where Pn is the
private signal APM (Fig. 2) indexed for n, with xn the actual state as given by a private
signal vector P = (x1,x2, ...,xm) with xk ∈ {σL,σR}, determining whether n receives a
signal that L (σL) or that R (σR).

〈L ;�〉 〈R ;�〉σL τL

i

〈L ;�〉 〈R ;�〉
σR τR

i

A\{i}

Fig. 2. APM Pi: i receives private signal while oth-
ers remain uninformed about which. State labels
〈ϕ;ψ〉 specify pre- and postconditions. Transitive
and reflexive arrows are not drawn.

3. T(((Sn ⊗ In−1))⊗ (Pn,xn)) = {AL,AR} (Fig. 3) with G({AL,AR}) = {ln,rn}, the
singleton doxastic programs over the APM in Fig. 3, all indexed for n.

Aggregator rules:
AL = Ai|GL � [X ]αiL
AR = Ai|GR � [X ]αiR
—————————–

〈�;αiL〉 〈�;αiR〉
li ri

A A

Fig. 3. Aggregator transition rules specifying an
agent type who bases decisions on aggregated be-
liefs, and the APM Ai over which the two possible
actions for agent i is given; i may choose to go to
either the restaurant on the left (li) or the one on the
right (ri).

Given the cumbersome definition of IC, it is worth verifying that the system in fact
runs appropriately. By induction it may be shown that for every agent i ≤ m, the system
will produce state Si+1 satisfying αiL∨αiR, yielding the following proposition.

Proposition 1. The system IC runs until end := αmL∨αmR is satisfied at Sm+1, irre-
spectively of which initial state or which signal vector P is used for input.
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In a Cascade. With IC defined, it is possible to precisely define the notion of being in
a cascade: agent i is in a cascade iff

i) next((Si ⊗ Ii−1))⊗ (Pi,xi)) = li for both xi ∈ {σL,σR}, or
ii) next((Si ⊗ Ii−1))⊗ (Pi,xi)) = ri for both xi ∈ {σL,σR}.

The definition captures that i acts in accordance with an established majority, irrespec-
tive of her own signal.4

The following lemma captures a crucial property regarding the higher-order reason-
ing occurring in cascades, namely that the choice of an agent in a cascade provides no
information about their private beliefs (hence neither about their private signal).

Lemma 1. Sn+1 ⊗ In |= Bn+1BnL∨Bn+1BnR iff n is not in a cascade.

To state the main result, notation for the agents in cascade who ignored which sig-
nals is handy. Let Pi be the private signals for agents j < i, i.e. the initial segment of
P of length i− 1. Let CLi = { j < i : j is in cascade and x j = σL} and CRi = { j < i :
j is in cascade and x j = σR}. We may then state the main result.

Theorem 1. Agent i is in cascade iff two more agents have received private signal of
one type than have received signals of the other type, not counting signals of agents in
a cascade. Precisely: i is in cascade of type i) iff

|{σL ∈ Pi}|− |CLi| ≥ (|{σR ∈ Pi}|− |CRi|)+ 2,

and agent i is in cascade of type ii) iff

(|{σL ∈ Pi}|− |CLi|)+ 2 ≤ |{σR ∈ Pi}|− |CRi|.

The theorem provides necessary and sufficient conditions on the private signal string
for an agent to be in a cascade. The sufficient conditions are identical to those from
[1], see p. 1005-06, here shown for a model which explicitly represents all higher-order
reasoning and agent decision making.

Corollary 1. Cascades in IC are irreversible: if i is in a cascade of type i) resp. type
ii), then for all k > i, k will be in a cascade of type i) resp. type ii).

The corollary captures the quintessential effect of cascades, namely that they propagate
through the remaining group.

These results show that the system IC functions as the informal reasoning supposed
in [1]. For proofs, further conclusions, discussion, venues for future research and rele-
vant references, the reader is referred to [2].

References

1. Bikhchandani, S., Hirshleifer, D., Welch, I.: A Theory of Fads, Fashion, Custom, and Cultural
Change as Informational Cascades. Journal of Political Economy 100(5), 992–1026 (1992)

2. Rendsvig, R.K.: Aggregated Beliefs and Information Cascades (extended) (2013),
http://vince-inc.com/rendsvig/papers/IC1.pdf

4 The definition thus closely mirrors that from the original paper: “An informational cascade
occurs if an individual’s action does not depend on his private signal.” [1, p. 1000]

http://vince-inc.com/rendsvig/papers/IC1.pdf

	Aggregated Beliefs and Informational Cascades

	References




