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Abstract. We propose a logic for describing the interaction between
knowledge, preference, and the freedom to act, and their interactions
with the norms of a Priori and a Posteriori rationality, which we have
argued for in previous work [3]. We then apply it to strategic games to
characterise weak dominance and Nash equilibrium.

In [3] we proposed a model for rational decision making in which the facts about
knowledge, preference and freedom to act are clearly separated from the norms
of reasoning. Even the transitivity of the preference relation is considered nor-
mative, in our approach. The factual basis for decision making is modelled using
what we call ‘decision frames’ and their multi-agent extensions, ‘social decision
frames’. We proposed two norms for decision-making, called ‘a Priori rational-
ity” and ‘a Posteriori rationality’, which apply to reasoning before making the
decision, and after. Before making a decision, one is concerned with making the
best, or at least an optimal, decision in ignorance of the effect of contextual
factors, especially, in the social setting, the actions of other agents. After mak-
ing a decision, one is more interested in which the decision was optimal given
the conditions that actually applied. We went on to show that these two gen-
eral norms specialise to the familiar norms of game theory: avoiding (weakly)
dominated strategies (a Priori) and wanting to have made a best response (a
Posteriori). The level of abstraction allowed us to provide a uniform account of
both pure-strategy and mixed-strategy games.

Here, we propose a language for describing and reasoning with these norms,
and show how it formalises and so justifies some of the processes of reasoning
that we use to make decisions.

In Section [Il we introduce decision frames and the corresponding concepts of
a Priori and a Posteriori rationality. In Section [2] we propose a language for
describing these, and show how it can be embedded in a more powerful language
in which an axiomatisation can be given. We go on in Section Bl to show how
this is applied to strategic game theory.

D. Grossi, O. Roy, and H. Huang (Eds.): LORI 2013, LNCS 8196, pp. 218-P27] 2013.
(© Springer-Verlag Berlin Heidelberg 2013



A Priori and a Posteriori Rationality 219

1 The Facts and Norms of Decision-Making

The perspective of our analysis is that of your evaluating a decision that you
have just made, to determine whether or not it was a good one. To model this,
we propose in [3] the following structures:

Definition 1. A decision frame F' = (W, ~, ~, <) consists of a non-empty set
W of possible decision situations, with binary relations ~, ~ and < on W,
where

~ is an equivalence relation wu ~ v represents that v would have been pos-
sible in u had you acted differently, given the
contingencies of u that are beyond your control

(freedom,).

& s an equivalence relation uw ~ v represents that in situation u you would
not know that you weren’t in situation v (epis-
temic indistinguishability).

< is a relation u < v represents that you regard situation v as
at least as good as situation u.

Importantly, the structures only represent the facts related to your decision,
not the norms. In particular, the relation < is not required to have any special
properties (such as transitivity). Nonetheless, certain norms are definable on the
basis of these facts. In [3] we argue that the fundamental norm of decision-making
is that you should avoid situations in which you know that a strictly better
alternative was possible had you chosen differently. This is ambiguous between
two readings of the counterfactual. On the first, a Priori reading, you consider
only what was known to you at the time of making the decision. On the second,
a Posteriori reading, you also consider what is known to you after making the
decision, specifically those contingent factors such as the actual actions of other
agents and the actual circumstances relevant to your decision that you could not
have known in advance.

The first of these norms, is formalised using a generalisation of the < relation,
called ‘a Priori free preference’ that factors in the contribution of knowledge and
freedom.

Definition 2. The relation <p of a Priori free preference is defined by
u<p v iffu’ <o for all v’ ~u and all v' ~ v such that v’ ~v'.
Decision situation w is a Priori rational iff there is no v ~ u such that v >p u.

Various specific cases of the a Priori free preference relation are worthy of
mention. Firstly, assuming that your freedom to choose is unlimited (~ is the
universal relation) and your knowledge unbounded (= is the identity relation),
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<p = <, so the free preference relation is a generalisation of the ordinary pref-
erence relation. Keeping knowledge unbounded, but allowing for limitations on
your freedom to choose, we get that <p = ~ n <. In other words, you only
compares your current situation with one that you may have been in had you
chosen differently. This is a special case of a more familiar ceteris paribus re-
striction on preference comparisons, which requires the compared situations to
be equivalent ceteris paribus. In the present setting, two situations are equiva-
lent ceteris paribus iff they are free alternatives[] When your freedom to choose
is unlimited (~ is universal) but there are some limitations to your knowledge,
u <p v iff v <o for all v ~ u and all v/ ~ v. In other words, since you do
not know that you are in situation u, only that you are in one of the situations
in [u] (the ~-equivalence class of u) and, likewise, were you in situation v, you
would know only that you were in one of the situations in [v], to judge that v
is (as far as you know) at least as good as u, there should be no «’ € [u] and
v’ € [v] for which ' € ¢’. Further discussion of the justification of these various
preference relations, including our assuming neither reflexivity nor transitivity
of < are contained in [3] (p.186). A Priori rationality is closely related to the
norm of avoiding weakly dominated strategies in game theory, to be discussed
in Section Bl

The second norm of a Posteriori rationality is formalised using the relation of
‘a Posteriori free preference’ which is the restriction of a Priori free preference
to alternatives that were in fact possible had you chosen differently, even if you
didn’t know this at the time.

Definition 3. The relation <p: of a Posteriori free preference is defined by
u<p viffu <V forallv ~u and all v' ~ v such that u ~ v ~ v ~v.

Decision situation u is a Posteriori rational iff there is no v ~ w such that
UV >pru.

A posteriori rationality is closely related to the norm of achieving a best response
in game theory, to be discussed in Section Bl

2 A Logic of Rational Decisions

To describe decision frames and the corresponding norms we will use the follow-
ing hybrid modal language.

! Dealing with the ceteris paribus aspect of preference comparisons is a matter of
degree. Assume that < already involves all those ceteris paribus considerations that
are not concerned with freedom of choice. So, for example, if v is a situation that
is the same as your current situation u in all such relevant respects except that you
have one million dollars (more?) in your bank account, You may judge u < v (and
probably that u < v) but, unhappily, you are unlikely to be free to choose between
u and v and so u £F v. We could have started with a basic preference order <,
modelled ceteris paribus equivalence (not including considerations of achievability)
by an equivalence relation C'P and then defined <= CPn <. Adding freedom as a
ceteris paribus condition, we would still have <p = ~ "CPn <=~ N <.
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Definition 4. Given disjoint countably infinite sets PROP of propositional vari-
ables and NOM of nominals, the language L consists of the following formulas

pu=pli|R|R|-¢p|(pnap)|Go| Kp|Cp|Qp

for p e PrROP, i € NOM.

We interpret Gy to mean that ¢ holds in all situations that would have been at
least as good for you as the present situation. They may, of course, be no longer
possible, as a result of your decision. K¢ means, as usual, that you know that ¢
in the present situation, or, more precisely, that ¢ holds in all situations that you
could be in, given your knowledge. We do not, of course, assume that you know
precisely which situation you are in. C'vy means that ¢ holds in all situations in
which you could have been, had you acted differently. The sense of ‘could have’
here takes into account all those factors that are beyond your control, including
the actual actions of other agents and other contingent factors. Finally, R and
R’ mean that present situation is a Priori or a Posteriori rational, respectively.

The semantics of L is the standard semantics for hybrid logic, taking G, K
and C to be the normal modal operators for the relations <, ~ and ~. R and
R’ are zero-ary operators that hold in the a Priori and a Posteriorirational
situations, respectively. That R and R’ cannot be given an explicit definition in
terms of the other operators is easy to shown by a bisimulation argument. This
makes the derivation of logical principles relating them somewhat difficult and
to solve this problem we will embed the language L in the following, much more
powerful language.

Definition 5. The language of cppIif over a sets ProP of propositional vari-
ables, NOM of nominals and ATPROG of atomic programs consists of the sets
FORM of formulas and PROG of programs given by

peForM =p | i | [m]e [ ~¢ | (¢ A )
T €PROG =a | p? | 7| 7° | 7% | (m7) | (puUe)

for i € NoMm, p € PROP and o € ATPROG.

Abbreviations: T =p v —-p, U = a U « (universal), I = T? (identity), (m) =
=[7]-, (mnp) = (7 U p), (r € p) =m n p plus the usual Booleans: L, V, —, <.
Also, where mo confusion can arise, especially in the case of atomic programs,
we further abbreviate (m n p) as wp. A formula ¢ is pure iff it contains no
propositional variables.

Definition 6. A structure F = (W, R) is a CPDL frame if R(a) € W? for each
a € ATPROG. A structure M =W, R,V is a ¢PDL model if (W, R) is a CPDL
frame, V(i) € W for each i € NoM, and V(p) € W for each p € PROP.

2 What we are calling cPDL (Combinatory PDL)is also known as ‘full-cppL’. The lan-
guage of CPDL without and ° is also known as ‘hybrid ppL’ [I].
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Definition 7. Given a cpDL model M = (W, R, V), and a state u € W, we
define [ < W for each p € FOrM and [7]|* < W? for each © € PROG as
follows:

[ ={V ()}

P2l =V(p)

Mx]le]™  ={ueW | ve[p]M for each v € W such that (u,v) e [x]M}
-1 =W\[e]™

[ AT =[el™ [l

] = R(a)

7™ = {Cu,uy | we[e]™}

=] = {Cu, vy | Cu, vy ¢ 7]}

] = {(u,v) | {v,uy e [x]M}

[=*]™ = the smallest transitive, reflezive relation containing [x]™
[7; oM = {u,v) | w,w) e [r]M and {(w,v) € [p]|¥ for some w e W}
[(mu I =[=1™ o [p]™

When M is clear from the context, we write [@]|M as [¢]]. Note that [(m N

o) M = [7]M ~ [p]M and [(7 < p)|™ = W if [#]|™ < [p]|™, otherwise &.
As usual, a formula is valid on a model if M,u |= ¢ for all u, valid on a frame

F if it is valid on all models {F, V) and simply valid if it is valid on all frames.

Theorem 1. [1|] There is an aziomatisation K of CPDL which is sound and such
that for every extension KI' of K with pure formulas I' as axioms, if a formula
1s consistent in KI' then it has a countable model on a frame in which all the
formulas in I' are valid. The system KI is therefore also complete for that class
of frames.

Comment on Aziomatisation and Complexity. Although the validity problem
for cPDL is known to be highly undecidable [§], it has a number of well-known
decidable fragments, include PDL itself and its extension to allow ° and either
N or a, i.e., restricted to atomic programs, but not both [2] [5]. Hybrid PDL
namely PDL with nominals is also decidable [7] but even non-hybrid PDL with
unrestricted  is not. Frame consequence is undecidable even for pDL [§] with
premises restricted to pure formulas, and so the decidability of validity for these
fragments of CPDL cannot be automatically extended to specific classes of frames
defined by pure formulas, despite the existence of a complete axiomatisation.

In order to describe a social decision frame as a frame F' = (W, R) we take
ATPROG = {g,k,c} with R(g) =<, R(k) =~ and R(c) =~. Then the relations
of a Priori and a Posteriori free preference can be defined as

F =k;cg;k (a Priori free preference)
F' = ck; cg;ck (a Posteriori free preference)
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This enables us to embed L in CPDL as follows:

G:=[g] R:=[cFF°]Ll
K:=[k] R:=[cFF°]L
C:=|[c]

Theorem 2. A frame is a decision frame iff the following pure formulas D are
valid on F':

-Q@; K—i -Q,C'—1 (reflexivity of ~ and ~)
~(-KK-in K-i) —(-CC-i A C=i) (transitivity of ~ and ~)
Q,K-j— QjK-i @C-j— QjC-i (symmetry of ~ and ~)

Proof. Tt is enough to check that R and R’ are satisfied by precisely the a Priori
and a Posteriori rational situations.

Corollary 1. The system KD is a complete axiomatisation of the formulas valid
in decision frames.

Proof. Tt follows from Theorem [l and 21

In the full paper we will consider larger fragments of CPDL extending L but
which are self-contained in terms of axiomatisation, i.e. to identify exactly which
auxiliary operators are needed.

Our language and its CPDL-extension can easily be extended to the multi-
agent setting. For a given finite set A of agents, we define the language L(A)
to have operators Gy, K,, Cy, R, and R/ and interpret the resulting formulas in
‘social decision frames’.

Definition 8. A social decision frame F' = (W, ~, ~,<) for A consists of a
decision frame F, = (W, xy, ~q, <ay for each a € A.

Theorems [2] and Corollary [l can then be extended to social decision frames,
using the corresponding embedding into CPDL with ATPROG = {gq, ka, Cq }aca
and the corresponding KD 4.

3 Games

Our primary examples of social decision frames are taken from the concept of a
strategic game in Game Theory.

Definition 9. Given a set A of agents, sets D, of strategies (for each a € A),
and utility functions
Uy: H D, >R
a€A
the strategic game frame G(A, D,U) is the social decision frame (W, ~, =, <)
given by
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W:HaeADa
~q U iff wy =y for allb#a in A

Xa U iff wa =g
<qv i Ug(w) < Ug(v)

g g g

For example, consider the game between players a and b, whose possible strate-
gies are {A, B,C} and {X,Y, Z} respectively, with utilities given by the table on
the left of Figure [[l with (z,y) representing a utility of = to a and y to b for
the corresponding outcome. This determines the strategic game frame shown on
the right, with a’s relations shown with solid lines, and b’s with dotted lines.
We assume reflexivity and transitivity without displaying the additional links
explicitly. The ~ relations are also not shown, since they can be calculated from
the capacity relations in a strategic game frame. So, for example, AY ~, AZ,
AZ ~, BZ, AY <, AZ, AY <y, AZ > AY.

b

X Y Z
. ......... . ......... .

a A 3,1 1,0 1,0
B 372 071 270 . ......... . ......... .

C 42 0,3 1,3
. ......... . ......... .

Freedom Preference

Fig. 1. A two-player game and its representation as a strategic game frame

Theorem 3. The extension KG of KDA with the following azioms is complete
for the class of strategic game frames:

G1 F[Uncall (connected)
G2 F[cankq]Ll (isolated)

Gs + [(cascp) n(cpica)] L (unordered)
Gs FlcankenT7]L (deterministic)
Gs F[g¥ngdl A[UN (80 gal)]L (linear)

Proof. The formulas correspond to the following frame conditions:

G is valid iff (u)4 = W for every ue W (connected)
G is valid iff every a € A is isolated isolated)

Gg is valid iff ~,; ~p=~p; ~, for every a,be A (unordered)
Gy is valid iff (u)[u] = {u} for every ue W deterministic)
G5 is valid iff < is reflexive, transitive, and total (linear)

NN N N
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Each formulas are all pure, so by Theorem[IIKG is complete for the class of frames
satisfying these conditions. By Theorem 1 of [3] (p. 194) a frame is isomorphic to
a strategic game frame iff each of these conditions holds and in addition, it has a
‘small’ value-size, which means that the number of sets of indifferent situations
(i.e. equivalence classes under the equivalence relation v < v and v < u) is
of cardinality < 2%. Thus KG is a sound for strategic frames, and complete
if every formula satisfiable in such a frame is also satisfiable on a frame with
small value-size. But this is guaranteed by the existence of countable models in
Theorem [I1

Again, the full version of the paper will contain an exploration of which of these
axioms can be stated in fragments extending L with auxiliary operators.

Standard game theoretic concepts such as ‘best response’, ‘Nash equilibrium’,
‘dominated strategy,’ etc. all lift to the slightly more abstract setting of strategic
game frames, as shown in [3].

Definition 10. Given a strategic game frame G(A,D,U), agent a’s strategy
d € D, is (weakly) dominated by another strategy d' € D, iff

1. d' is sure to be at least as good as d: w[$] =a w[§] for all w € W(A,D)
and
2. d' may be better than d: w[%] >q w[4] for some we W(A, D).

For example, b’s strategy Z is dominated by Y because (1) AY >, AZ, BY >,
BZ,CY =2, CZ, and (2) BY >, BZ. In fact AY 2yr AZ but AY < AZ,
so AY >,r AZ and since AY ~, AZ, the decision situation AZ is not a Priori
rational for b. This connection between a Priori rationality and domination is
quite general.

Theorem 4. In a model M based on a strategic game frame G(D,U, A), a strat-
eqy w, is dominated iff M, w |= -R,.

Proof. By [3], Theorem 2, p.199, w, is dominated iff w is a Priori rational for
a.

Definition 11. A decision situation w in a strategic game frame G(A,D,U) is
a best response for agent a iff there is no strategy d € Do such that w <, w[j]
It is a Nash equilibrium iff it is a best response for all agents.

For example, AY is a best response for a because neither AY <, BY nor AY <,
CY. But it is not a best response for b because AY <, AX. This game has no
Nash equilibrium. Since (AY), is {AY, BY,CY} and (AY), is {AX, AY, AZ},
we can also check that AY <pp, AX but there is no w such that AY <,p w, so
AY is a Posteriori rational for a but not for b. Again, this connection is general.

3 w[4] is the strategy profile obtained by replacing a’s strategy in w by d, i.e.

d ifb=a
wp otherwise

wlz10) = {
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Theorem 5. In a model M based on a strategic game frame G(D,U, A), a sit-
uation w is Nash equilibrium iff M, w = N, o4 Ri-

Proof. By [3], Theorem 3, p.200. a Nash equilibrium is a situation that is a
Posteriori rational for all agents.

We can extend this analysis from ‘pure strategy’ games to ‘mixed strategy’
games, in which the players randomise their choice of strategy.

Definition 12. Given a strategic game frame G(A,D,U) with ﬁm’te@ D, the
mixed-strategy extension of G is the strategic game frame G*(A, D* U*) in
which DE is the set of probability functions §: D, — [0, 1] and for each 6 € D*,

Us@) =" D, uals) [ [Glss)

5€[ [pea Do beA

A frame is a mixed-strategy game frame iff it is isomorphic to G* for some
strategic game frame G.

There are, of course, formulas that are valid in every mixed-strategy game frame
that are not valid in every strategic game frame and so cannot be derived from
G. A central example is the following.

Theorem 6. KG I (U) A ,ca R, but this formula is valid on all mized-strategy
strategic game frames.

Proof. Let M be any model based on a strategic game frame G*. By [6], every
mixed-strategy game has a Nash equilibrium w, and so by Theorem Bl M, w |=
Naea R, So the formula is valid on all mixed-strategy strategic game frames.
Yet the the frame in Figure[Ildoes not validate this formula since it lacks a Nash
equilibrium, so by Theorem [3] it is not derivable in KG.

4 Concluding Remarks

We have presented a logic that formalises the approach to rational decision-
making adopted in [3]. Many salient features of games can be modelled using
strategic game frames, which conveniently generalise over pure and mixed strat-
egy games. Our logical investigations, however, are far from complete. In par-
ticular, we would like to investigate other fragments of CPDL that are sufficient
for use in game theory. A particularly interesting open problem is the axioma-
tisation of the class of mixed-strategy games. Theorem [@] gives one example of
a formula valid over these frames that is not valid in, for example, pure strat-
egy game frames. But approaches to the computation of Nash equilibria (e.g.[4])
suggest many structural features that could be analysed logically.

4 The restriction to finite D is essential, because U* is calculated as a finite sum. This
restriction prevent us from forming G** because D* is always infinite.
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